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1 Introduction

Throughout the synopsis, q is assumed to be a prime power. For a positive integer

n, let PG(n, q) be the n-dimensional Desarguesian projective space over a finite

field of order q. Let L be a given non-empty subset of the line set of PG(n, q).

A blocking set with respect to L (or simply, an L-blocking set) in PG(n, q) is a

v



§1. Introduction

subset B of the point set of PG(n, q) such that every line in L contains at least

one point of B. An L-blocking set B is said to be minimal if no proper subset of

B is an L-blocking set in PG(n, q).

Blocking sets in PG(n, q) are combinatorial objects in finite geometry with

several applications, and have been the subject of investigation by several re-

searchers with respect to varying sets of lines. An important issue in this context

is to determine the minimum size of an L-blocking set and if possible, to describe

all L-blocking sets of that minimum cardinality. Every minimum size L-blocking

set is also a minimal L-blocking set.

If L is the set of all lines of PG(n, q), then the point set of a hyperplane of

PG(n, q) is a classical example of an L-blocking set of minimum size. In fact,

the following fundamental result was proved by Bose and Burton [11, Theorem

1] which is stated in the language of blocking sets.

If B is a blocking set in PG(n, q) with respect to all its lines, then

|B| > (qn − 1)/(q − 1). Further, equality holds if and only if B is the

point set of a hyperplane of PG(n, q).

A blocking set B in PG(n, q) with respect to all its lines is called a nontrivial

blocking set if B does not contain any hyperplane of PG(n, q), or equivalently, if

every hyperplane of PG(n, q) contains a point which is not in B.

In view of the above result of Bose and Burton, there are two aspects to the

study of blocking sets in PG(n, q):

(1) Find the possible sizes of minimal nontrivial blocking sets in PG(n, q) with

respect to all its lines and describe such blocking sets corresponding to those

cardinalities.

(2) For proper subsets L of the line set of PG(n, q), find the minimum size of an

vi



§1. Introduction

L-blocking set and describe all blocking sets of that minimum cardinality.

There has been a considerable amount of interest in the first problem by several

researchers and many results are available in the literature in this regard. In this

thesis we contribute to the second problem for n ∈ {2, 3} and for certain proper

subsets L which have nice geometric descriptions.

In PG(2, q), a classical result of P. Erdős and L. Lovász [15] says that if B

is a minimum size L-blocking set with |L| > q2 − q, then B must be of linear

type in the sense that B can be obtained from a line of PG(2, q) by deleting and

adding a few points. Results of this kind are viewed as stability theorems in the

investigations by Z. Weiner and T. Szőnyi [42].

For a given non-degenerate quadric Q in PG(n, q), let L be the set of all lines

of PG(n, q) which are contained in Q. In this case, the minimum size L-blocking

sets in PG(n, q) are extensively studied by K. Metsch in a series of papers. Such

blocking sets are obtained as sets consisting of the non-singular points of quadrics

Q ∩ H for suitable hyperplanes H of PG(n, q). One can refer to the papers

[23, 24, 25, 26, 27] for the details and more general results on blocking sets.

The main objective of this thesis is to investigate the minimum size blocking

sets in PG(3, q) of certain line sets defined with respect to a given hyperbolic

quadric in it. In the process of the investigation, we discuss the minimum size

blocking sets in PG(2, q) of similar line sets defined with respect to an irreducible

conic in it and prove some new results.

There are four chapters in the thesis. In Chapter 1, we recall the basic def-

initions and properties of point-line geometries such as projective planes, affine

planes and generalized quadrangles. In this chapter, we also discuss substruc-

tures like ovals and conics in PG(2, q), and ovoids and quadrics in PG(3, q). The

contents of the other three chapters are described in the following sections.

vii



§2. Blocking sets in PG(2, q)

2 Blocking sets in PG(2, q)

Let C be a fixed irreducible conic in PG(2, q). There are q + 1 points in C, no

three of which are on the same line of PG(2, q). We denote by E (respectively,

T , S) the set of all lines of PG(2, q) which are external (respectively, tangent,

secant) with respect to C.

In Chapter 2, we discuss the minimum size L-blocking sets in PG(2, q), where

the line set L is one of E , T , S, E ∪ T , E ∪ S and T ∪ S. In a series of papers

[1, 2, 3, 4, 10, 17], the minimum size L-blocking sets with L ∈ {E ,S, E ∪T , T ∪S}

were completely characterized. It was proved that all such blocking sets are of

linear type, except for some sporadic examples which occur in a few planes of small

orders. We give a brief survey of the known results available in the literature.

If q is even, it is clear that the singleton set consisting of the nucleus of C is

the only minimum size T -blocking set in PG(2, q). Regarding the minimum size

T -blocking sets for odd q and (E ∪ S)-blocking sets in PG(2, q), we prove the

following three results.

Theorem 2.1. Let A be a T -blocking set in PG(2, q), where q is odd. Then

|A| > (q + 1)/2. Further, equality holds if and only if A consists of (q + 1)/2

exterior points to C such that for any two distinct points a1, a2 in A, the two

tangent lines through a1 are different from the two tangent lines through a2.

Theorem 2.2. Let A be an (E ∪ S)-blocking set in PG(2, q), where q is even.

Then |A| > q. Further, equality holds if and only if A consists of all the points

of a tangent line other than the nucleus of C.

Theorem 2.3. Let A be an (E ∪ S)-blocking set in PG(2, q), where q is odd.

Then the following statements hold:
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§3. Blocking sets in PG(3, q)

(i) If q = 3, then |A| > 3, and equality holds if and only if A consists of all the

three interior points of PG(2, 3) with respect to C.

(ii) If q > 5, then |A| > q + 1.

(iii) If q > 7, then |A| = q + 1 if and only if A is a line of PG(2, q).

(iv) If q = 5, then |A| = 6 if and only if one of the following two cases occurs:

(a) A is a line of PG(2, 5).

(b) A = I \ {a1, a2, a3, a4}, where I is the set of all interior points of

PG(2, 5) with respect to C and {a1, a2, a3, a4} ⊆ I is a quadrangle

such that the line determined by any two distinct ai, aj is external to

C.

3 Blocking sets in PG(3, q)

Let H be a fixed hyperbolic quadric in PG(3, q). For any line l of PG(3, q), we

have |l ∩ H| ∈ {0, 1, 2, q + 1}. We denote by E (respectively, T1, S, T0) the set

of all lines of PG(3, q) that intersect H in 0 (respectively, 1, 2, q + 1) points.

The elements of E are called external lines, those of S secant lines and those of

T := T0∪T1 tangent lines. If l ∈ Ti with i ∈ {0, 1}, then l is also called a Ti-line.

The T0-lines are precisely the lines of PG(3, q) which are contained in H. The

quadric H contains (q + 1)2 points and 2(q + 1) lines of PG(3, q).

In Chapter 3, we recall the basic properties of points, lines and planes of

PG(3, q) with respect to the quadric H. In addition to a few other results, we

prove the following theorem which is needed to study the minimum size S- and

(E ∪ S)-blocking sets in PG(3, 3).
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§3. Blocking sets in PG(3, q)

Theorem 3.1. Suppose q = 3. Then there exists a subset B of the point set of

PG(3, 3) satisfying the following three conditions:

(i) |B| = 12 and B is disjoint from H;

(ii) Every external line to H meets B in two points;

(iii) Every secant line to H meets B in one point.

In particular, B is an L-blocking set in PG(3, 3) for L ∈ {S,E,S ∪ E}.

In Chapter 4, we investigate the minimum size L-blocking sets in PG(3, q),

where the line set L is one of E, T, S, E ∪ T, E ∪ S and T ∪ S.

3.1 S-blocking sets

We prove the following theorem which characterizes the minimum size S-blocking

sets in PG(3, q) for all q.

Theorem 3.2. Let B be an S-blocking set in PG(3, q). Then |B| > q2 + q.

Further, equality holds if and only if one of the following occurs:

(i) If B ⊆ H, then B = H \ l for some T0-line l.

(ii) If B \ H 6= ∅ and B ∩ H 6= ∅, then B = (H \ (l0 ∪ l1)) ∪ (l \ {w}), where

l0, l1 are two T0-lines intersecting at the point w and l is a T1-line with

l ∩H = {w}.

(iii) If B ∩H = ∅, then q ∈ {2, 3} and the following statements hold:

(a) q = 2 : B consists of all the six points of PG(3, 2) outside H.

(b) q = 3 : B satisfies the three conditions (i)–(iii) of Theorem 3.1.
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§3. Blocking sets in PG(3, q)

3.2 E-blocking sets

A plane of PG(3, q) which is generated by two intersecting T0-lines is called a

tangent plane. The following theorem describes the minimum size E-blocking sets

in PG(3, q) for all q.

Theorem 3.3. Let B be an E-blocking set in PG(3, q). Then |B| > q2 − q, and

equality holds if and only if B = π \ H for some tangent plane π of PG(3, q).

We note that Theorem 3.3 was proved by Biondi et al. in [6, Theorem 1.1]

for q even and in [7, Theorem 2.4] for q odd, with exception of the equality case

for some small values of q, namely for q ∈ {2, 3, 4, 5, 7}. In this thesis we give

alternate proof of the equality case in Theorem 3.3 which works for all q, in

particular for q ∈ {2, 3, 4, 5, 7}. The description of the minimum size E-blocking

sets in PG(3, q) for all q is necessary while studying the minimum size (T ∪ E)-

blocking sets in PG(3, q).

3.3 (T ∪ S)-blocking sets

We prove the following theorem which characterizes the minimum size (T ∪ S)-

blocking sets in PG(3, q) for all q.

Theorem 3.4. Let B be a (T∪S)-blocking set in PG(3, q). Then |B| > q2+q+1,

and equality holds if and only if B is a plane of PG(3, q).

3.4 (E ∪ S)-blocking sets

We prove the following result regarding the minimum size (E ∪ S)-blocking sets

in PG(3, q) for all q.

Theorem 3.5. Let B be an (E∪ S)-blocking set in PG(3, q). Then the following

statements hold:
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§3. Blocking sets in PG(3, q)

(i) If q ∈ {2, 3}, then |B| > q2 + q.

(ii) If q = 2, then |B| = 6 if and only if one of the following two cases occurs:

(a) B consists of all the six points of PG(3, 2) outside H.

(b) B = (H\ (l0∪ l1))∪ (l \ {w}), where l0, l1 are two T0-lines intersecting

at the point w ∈ H and l is the unique T1-line through w.

(iii) If q = 3, then |B| = 12 if and only if B satisfies the three conditions (i)–(iii)

of Theorem 3.1.

(iv) If q > 4, then |B| > q2 +q+1, and equality holds if and only if B is a plane

of PG(3, q).

Let P denote the point set of PG(3, q). The point-line geometry with point

set P and line set consisting of the totally isotropic lines of PG(3, q) with respect

to a symplectic polarity is a generalized quadrangle of order q, denoted by W (q).

If q is even, then the point-line geometry X = (P,T) with point set P and line

set T is a generalized quadrangle of order q which is isomorphic to W (q). We

note that Theorem 3.5 was proved in [36, Theorem 1.3] for all even q > 4 using

properties of the generalized quadrangle W (q). In this thesis we give a proof of

Theorem 3.5 which works for all q irrespective of q even or odd.

3.5 (T ∪ E)-blocking sets

Recall that if π is a tangent plane of PG(3, q) with respect to H, then π ∩ H is

the union of two T0-lines intersecting at some point w ∈ H. The point w is called

the pole of the tangent plane π. An ovoid of W (q) is a set of points which meets

each line of W (q) at a unique point. An ovoid of W (q) contains q2 + 1 points.

Further, W (q) has ovoids if and only if q is even.
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§3. Blocking sets in PG(3, q)

We prove the following theorem which characterizes the minimum size (T∪E)-

blocking sets in PG(3, q) for all q.

Theorem 3.6. Let B be a (T ∪ E)-blocking set in PG(3, q). Then |B| > q2 + q

and the following statements hold for the equality case:

(i) If q = 2, then |B| = 6 if and only if one of the following occurs:

(a) B = π \ {x} for some tangent plane π of PG(3, 2) with pole x ∈ H.

(b) B = O ∪ {α}, where O is a an ovoid of the generalized quadrangle

X = (P,T) ' W (2) of order 2 and α ∈ P \ H is such that the unique

external line through α is disjoint from O.

(ii) If q > 3, then |B| = q2 + q if and only if B = π \ {x} for some tangent

plane π of PG(3, q) with pole x ∈ H.

3.6 T-blocking sets

In the last section of Chapter 4, we discuss the minimum size T-blocking sets in

PG(3, q). A simple counting argument gives the following:

Theorem 3.7. If B is a T-blocking set in PG(3, q) of minimum size, then q2+1 6

|B| 6 q2 + q.

In the case q even, using the facts that X = (P,T) ' W (q) and that W (q)

has ovoids, the following theorem characterizes the minimum size T-blocking sets

in PG(3, q).

Theorem 3.8. Let B be a T-blocking set in PG(3, q), where q is even. Then

|B| = q2 + 1 if and only if B is an ovoid of X = (P,T) ' W (q).
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§3. Blocking sets in PG(3, q)

For a general q which is odd, other than the bounds given in Theorem 3.7,

not much is known for the minimum size T-blocking sets in PG(3, q). However,

for q = 3, we are able to prove the following theorem which characterizes the

minimum size T-blocking sets in PG(3, 3).

Theorem 3.9. There is no T-blocking set of size 10 in PG(3, 3). Up to isomor-

phism, there are two T-blocking sets of size 11 in PG(3, 3).

In order to prove Theorem 3.9, we construct two nonisomorphic T-blocking

sets in PG(3, 3) each of size 11. Then we go on to prove the nonexistence of

T-blocking sets of size 10 in PG(3, 3) and classify the T-blocking sets of size 11

in PG(3, 3).
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Chapter 1

Preliminaries

In this chapter, we recall the definitions and basic properties of those point-line

geometries that are needed in the subsequent chapters.

1.1 Point-line geometry

A point-line geometry is a pair X = (P,L), where P is a non-empty set and L is

a collection of subsets of P each of size at least two. The elements of P are called

points and that of L are called lines of X . If l ∈ L is a line containing a point

x ∈ P , then we also say that x lies on l or l passes through x. If P is a finite set,

then X is called a finite point-line geometry. If any two distinct points of X are

contained in at most one line, then X is called a partial linear space. If any two

distinct points of X are contained in exactly one line, then X is called a linear

space. Every linear space is also a partial linear space.

Let X = (P,L) be a partial linear space. Two points of X are said to be

collinear if there is a line of X containing them. If x and y are two distinct

collinear points of X , then we denote by xy the unique line of X containing both

x and y. A subset P0 of P is called a subspace of X if each line of X containing at

1



§1.2. The projective space PG(n, q)

least two points of P0 is entirely contained in P0. The empty set, singletons, lines

and P are examples of subspaces of X . Observe that intersection of subspaces

is again a subspace. For a subset Y of P , the subspace generated by Y , denoted

by 〈Y 〉, is the intersection of all subspaces of X containing Y . Thus 〈Y 〉 is the

smallest subspace of X containing Y as a subset.

Let X = (P,L) and X ′ = (P ′, L′) be two partial linear spaces. A map

φ : P −→ P ′ is called an isomorphism from X to X ′ if it is a bijection preserving

collinearity of points and induces a bijection from L to L′. In that case, X and

X ′ are called isomorphic and written as X ' X ′. An isomorphism from X to

itself is called an automorphism of X .

1.2 The projective space PG(n, q)

A linear space X = (P,L) is called a projective space if every line contains at

least three points and the following axiom of Veblen-Young is satisfied:

If x, y, a, b are four distinct points of X and the lines xy and ab intersect in

some point, then the lines xa and yb also intersect in a point.

Throughout the thesis, q is assumed to be a prime power and the finite field

of order q is denoted by Fq. Every finite dimensional vector space over Fq gives

rise to a finite projective space as described below.

Let V be a vector space of finite dimension n+ 1 over Fq. Let P be the set of

all 1-dimensional subspaces of V and L be the set of all 2-dimensional subspaces

of V . If U ∈ L is a 2-dimensional subspace of V , then we identify U as the

subset of P consisting of those 1-dimensional subspaces of V which are contained

in U . Then the point-line geometry (P,L) is a finite projective space, denoted by

PG(n, q) and is called the n-dimensional projective space over Fq.

2



§1.2. The projective space PG(n, q)

For a subspace W of V , the points and the lines of PG(n, q) which are con-

tained in W form a subspace of PG(n, q). Conversely, if S is a subspace of

PG(n, q), then there exists a (k + 1)-dimensional subspace W of V such that S

is the k-dimensional projective space over Fq corresponding to W . In this case,

S is called a k-dimensional subspace of PG(n, q).

The subspaces of PG(n, q) of dimensions 0, 1 are precisely the points and

the lines, respectively, of PG(n, q). The 2-dimensional subspaces of PG(n, q)

are called planes and the (n − 1)-dimensional subspaces of PG(n, q) are called

hyperplanes. The number of points in PG(n, q) is equal to (qn+1− 1)/(q− 1). In

general, for 0 6 k 6 n, the number of k-dimensional subspaces of PG(n, q) is

(qn+1 − 1)(qn+1 − q) · · · (qn+1 − qk)
(qk+1 − 1)(qk+1 − q) · · · (qk+1 − qk)

.

Every invertible linear transformation φ of V induces an automorphism of

PG(n, q) mapping points 〈v〉 to 〈φ(v)〉 for 0 6= v ∈ V . An automorphism of

PG(n, q) obtained in this way is called a projective transformation. Note that two

invertible linear transformations of V define the same projective transformation

if and only if φ2 = λφ1 for some non-zero element λ ∈ Fq. Two geometric figures

in the projective space PG(n, q) are said to be projectively equivalent if one of

them can be carried into the other by a projective transformation.

A duality of PG(n, q) is a bijection from the point set of PG(n, q) to the set

of hyperplanes of PG(n, q) that induces a bijection from the set of k-dimensional

subspaces to the set of (n−k−1)-dimensional subspaces of PG(n, q) for 0 6 k 6

n − 1. For example, a duality in PG(3, q) maps points to planes, lines to lines

and planes to points. A polarity of PG(n, q) is a duality that has order 2 as a

map.
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1.3 Projective planes

A linear space is called a projective plane if any two distinct lines meet at exactly

one point and there are four points such that no three of them are contained in

the same line.

Let X = (P,L) be a finite projective plane. Then there exists a positive

integer s > 2 such that every line of X contains precisely s+ 1 points and every

point of X is contained in precisely s + 1 lines. The integer s is called the order

of X . There are s2 + s + 1 points and s2 + s + 1 lines of X . Let P0 be a subset

of P and define L0 := {l ∩ P0 : l ∈ L and |l ∩ P0| > 2}. If X0 = (P0, L0) is a

projective plane, then X0 is called a subplane of X and it is proper if P0 6= P .

Let X = (P,L) be a finite projective plane of order s. If X0 = (P0, L0) is a

proper subplane of X of order s0, then s20 6 s. Further, s20 = s if and only if every

line of X contains some point of X0. In the equality case, X0 is called a Baer

subplane of X and the lines of X0 are called Baer lines. Thus a Baer subplane

in a projective plane of order s can not exist unless s is a perfect square. If X0

is a Baer subplane of X , then for every point x of P \ P0, there is one line of X

through x meeting X0 in a Baer line and each of the other lines of X through x

meets X0 in a single point, see [12].

The projective space PG(2, q) is a projective plane of order q. For every per-

fect square q, PG(2, q) has Baer subplanes necessarily isomorphic to PG(2,
√
q).

We refer to [28] for the basic properties mentioned in the rest of this section.

1.3.1 Ovals in PG(2, q)

A k-arc in PG(2, q) is a set of k points such that no three of them are contained

in the same line. If PG(2, q) has a k-arc, then k 6 q+ 1 for q odd, and k 6 q+ 2

4



§1.3. Projective planes

for q even. Any (q + 1)-arc in PG(2, q) is called an oval. If q is even, then any

(q + 2)-arc in PG(2, q) is called a hyperoval.

Let O be an oval in PG(2, q). A line l of PG(2, q) is called external, tangent

or secant to O according as |l ∩O| = 0, 1 or 2. Every point of O lies on a unique

tangent line, giving exactly q + 1 tangent lines to O.

Suppose that q is even. Then all the q + 1 tangent lines meet in a point and

this common point of intersection is called the nucleus of O. Every point of O

lies on q secant lines. Every point outside O and different from the nucleus lies

on q/2 secant lines and q/2 external lines. In this case, O is contained in a unique

hyperoval which is obtained as the union of O and its nucleus. Conversely, one

can obtain an oval from a hyperoval by removing just one point from it.

Now, suppose that q is odd. Then no three tangent lines to O share a common

point. So every point of PG(2, q) is contained in at most two tangent lines. A

point x of PG(2, q) is called interior, absolute or exterior with respect to O

according as x is on 0, 1 or 2 tangent lines to O. Absolute points of PG(2, q)

are precisely the points contained in O, giving q + 1 absolute points. There are

q(q − 1)/2 interior points, q(q + 1)/2 exterior points, q(q − 1)/2 external lines

and q(q + 1)/2 secant lines. Every absolute point lies on one tangent line and

q secant lines. Every interior point lies on (q + 1)/2 secant lines and (q + 1)/2

external lines. Every exterior point lies on 2 tangent lines, (q − 1)/2 secant lines

and (q−1)/2 external lines. Every tangent line contains one absolute point and q

exterior points. Every external line contains (q+1)/2 interior points and (q+1)/2

exterior points. Every secant line contains 2 absolute points, (q − 1)/2 interior

points and (q − 1)/2 exterior points.
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1.3.2 Conics in PG(2, q)

A conic in PG(2, q) is the set C of points 〈(α, β, γ)〉 of PG(2, q) satisfying a

nonzero homogeneous quadratic polynomial equation in three variables of the

form Q(X, Y, Z) = 0, where

Q(X, Y, Z) = aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z

with a, b, c, d, e, f ∈ Fq. The conic C is said to be irreducible if the polynomial

Q(X, Y, Z) is irreducible in Fq[X, Y, Z]. Any irreducible conic in PG(2, q) is

projectively equivalent to the conic defined by the equation Y 2 = XZ.

If C is an irreducible conic in PG(2, q), then C contains exactly q + 1 points

of PG(2, q) and no three points of C are contained in the same line. Thus every

irreducible conic in PG(2, q) is an oval. A famous theorem by Segre [37] says that

if q is odd, then every oval in PG(2, q) is an irreducible conic. For q ∈ {2, 4}, every

oval of PG(2, q) is an irreducible conic [14, Theorem 4.9]). However, if q > 8 is

even, then PG(2, q) has ovals that are not irreducible conics [14, Theorem 4.11].

1.4 Bilinear and Quadratic forms

Let V be a finite dimensional vector space over Fq. A bilinear form on V is a

function b : V × V → Fq satisfying the following conditions:

• b(u+ v, w) = b(u,w) + b(v, w) and b(λu,w) = λb(u,w);

• b(u, v + w) = b(u, v) + b(u,w) and b(u, λw) = λb(u,w)

for all u, v, w ∈ V and λ ∈ Fq.

Let b be a bilinear form on V . We say that b is symmetric if b(u, v) = b(v, u)

for all u, v ∈ V , and b is alternating if b(u, u) = 0 for all u ∈ V . If b is alternating,
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then b(v, u) = −b(u, v) for all u, v ∈ V . The bilinear form b is said to be non-

degenerate if for any non-zero vector u ∈ V , there exist vectors v, w ∈ V such

that b(u, v) 6= 0 and b(w, u) 6= 0.

Now, let b be a symmetric/alternating bilinear form on V . For a subspace

U of V , define U⊥ = {v ∈ V : b(u, v) = 0 for all u ∈ U}. A subspace U of

V is said to be totally isotropic if U is contained in U⊥, that is, if b(u, u′) = 0

for all u, u′ ∈ U . Note that b is non-degenerate if and only if V ⊥ = {0}. If

b is non-degenerate and alternating, then the dimension of V must be even. A

non-degenerate alternating bilinear form is also called a symplectic form.

A quadratic form on V is a map f : V → Fq satisfying the following two

conditions:

• f(λv) = λ2f(v) for all v ∈ V and λ ∈ Fq.

• The map b : V × V → Fq, defined by b(u, v) = f(u + v) − f(u) − f(v) for

u, v ∈ V , is a symmetric bilinear form on V .

Let f be a quadratic form on V with associated symmetric bilinear form b.

We say that f is non-degenerate if V ⊥ ∩ f−1(0) = {0}, that is, if for every non-

zero u ∈ V with f(u) = 0, there exists w ∈ V with b(u,w) 6= 0. Clearly, if b is

non-degenerate, then so is f . The converse is also true if q is odd. A subspace

U of V is totally singular if f(u) = 0 for all u ∈ U . If f is non-degenerate, then

every totally singular subspace has dimension at most half of the dimension of

V .

The set Q consisting of all one-dimensional subspaces 〈v〉 of V with f(v) = 0

is called a quadric in PG(n, q) with respect to f . If the dimension of V is 3, then

the quadric Q is a conic. If the quadratic form f on V is non-degenerate, then Q

is called a non-degenerate quadric. If Q is non-degenerate, then the Witt index
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of Q is the maximum (vector space) dimension of a totally singular subspace

contained in Q.

1.4.1 Non-degenerate quadrics in PG(3, q)

Consider V = F4
q and let f : V → Fq be a non-degenerate quadratic form. After

a suitable linear change of coordinates, f is given by either

(H) f(x1, x2, x3, x4) = x1x2 + x3x4; or

(E) f(x1, x2, x3, x4) = x1x2 + ax23 + bx3x4 + cx24

for (x1, x2, x3, x4) ∈ V , where a, b, c ∈ Fq such that the quadratic polynomial

aX2 + bX + c ∈ Fq[X] is irreducible over Fq. In the first case, the associated

quadratic in PG(3, q) is of Witt index 2 and is called a hyperbolic quadric. In

the latter case, the quadric is of Witt index 1 and is called an elliptic quadric. A

hyperbolic quadric contains (q+ 1)2 points and 2(q+ 1) lines. An elliptic quadric

contains q2 + 1 points but no lines. One can refer to [18] for the basic properties

of points, lines and planes of PG(3, q) with respect to a quadric.

If b is the symmetric bilinear form associated with f , then the map U 7→

U⊥ = {v ∈ V : b(u, v) = 0 for all u ∈ U} for subspaces U of V , defines a polarity

of PG(3, q). Such a polarity is called an orthogonal polarity or a pseudo polarity

according as q is odd or even.

1.5 Ovoids of PG(3, q)

Let P and L denote the set of points and lines, respectively, of PG(3, q). A subset

O of P is called an ovoid of PG(3, q) if the following two conditions are satisfied:

(i) Each line of PG(3, q) meets O in at most two points.
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(ii) For every point x ∈ O, the union of all the lines which meet O at x is a

plane of PG(3, q).

Let O be an ovoid of PG(3, q). A line of PG(3, q) is called tangent to O if

it meets O in one point. For x ∈ O, there are q + 1 lines through x which are

tangent to O. Each of the remaining q2 lines through x must meet O in exactly

one more point. It follows that |O| = q2 + 1 and there are (q+ 1)(q2 + 1) lines in

L which are tangent to O.

We recall a few basic facts related to ovoids of PG(3, q). Every plane of

PG(3, q) meets an ovoid in a single point or in an oval. When q > 2, the ovoids

of PG(3, q) are precisely the subsets of P of the largest possible size, no three

points of which are on the same line in L. This is not true in PG(3, 2). In this

case, the complement of a plane is a subset of maximum size 8 in which no three

points are on the same line, but such a set is not an ovoid of PG(3, 2). For q

odd, the ovoids of PG(3, q) are precisely the elliptic quadrics. This was proved

independently by Barlotti [5] and Panella [32]. For q even, say q = 2r, the known

ovoids of PG(3, q) are of two types:

(i) the elliptic quadrics which exist for all r > 1,

(ii) the Tits ovoids which exist for odd r > 3, that is, when q > 2 is a non-

square.

One can refer to [18, Section 16.4] for more on Tits ovoids. For small values of

the even prime power q, namely when r ∈ {1, 2, 3, 4, 5}, a complete classification

of all ovoids of PG(3, q) has been obtained. By [16, 29, 30, 31], we know that

every ovoid of PG(3, q) is an elliptic quadric if q ∈ {2, 4, 16}, and either an elliptic

quadric or a Tits ovoid if q ∈ {8, 32}. However, for a general even prime power

q, classifying all ovoids of PG(3, q) is still an open problem.
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1.6 Generalized quadrangles

We refer to [33] for the basics on finite generalized quadrangles. Let s and t be

positive integers. A (finite) generalized quadrangle of order (s, t) is a partial linear

space X = (P,L) with point set P and line set L satisfying the following three

axioms:

(Q1) Every line contains s+ 1 points.

(Q2) Every point is contained in t+ 1 lines.

(Q3) For every point-line pair (x, l) ∈ P × L with x /∈ l, there exists a unique

line m ∈ L containing x and intersecting l.

Let X = (P,L) be a generalized quadrangle of order (s, t). Then |P | =

(s + 1)(st + 1) and |L| = (t + 1)(st + 1) [33, 1.2.1]. If s = t, then X is said to

have order s. If P is a subset of the point set of some projective space PG(n, q),

L is a set of lines of PG(n, q) and P is the union of all lines in L, then X is called

a projective generalized quadrangle. An ovoid of X is a set O of points with the

property that each line of X contains exactly one point of O. If X has an ovoid

O, then counting in two ways the number of point-line pairs (x, l), where x ∈ O

and l is a line of X containing x, it follows that |O| = st+ 1.

The points and the lines contained in a hyperbolic quadric in PG(3, q) form

a generalized quadrangle of order (q, 1) and it has ovoids.

Two points of X are said to be collinear if there exists a line of X containing

both of them. For a subset Z of P , Z⊥ denotes the set of all elements of P which

are collinear with each element of Z (our two different uses of the notation ‘⊥’

should be clear from the context). Note that, for a ∈ P , a⊥ := {a}⊥ contains a.

For two distinct points a, b ∈ P , we have |{a, b}⊥| = s+ 1 or t+ 1 according as a
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is collinear with b or not. For two non-collinear points a, b ∈ P , the set {a, b}⊥⊥

is called a hyperbolic line defined by a and b. A point x ∈ P is said to be regular

if |{x, y}⊥⊥| = t+ 1 for every point y /∈ x⊥.

1.6.1 The generalized quadrangle W (q)

Let V be a 4-dimensional vector space over Fq and b : V ×V → Fq be a symplectic

form on V (that is, b is non-degenerate and alternating). The map U 7→ U⊥ =

{v ∈ V : b(u, v) = 0 for all u ∈ U} for subspaces U of V , defines a polarity of

PG(3, q). Such a polarity is called a symplectic polarity of PG(3, q).

The point-line geometry whose point set is the set of all points of PG(3, q)

and line set consisting of all the totally isotropic lines of PG(3, q) with respect

to b is a generalized quadrangle of order q, denoted by W (q). All points of W (q)

are regular [33, 3.2.1, 3.3.1]. Further, W (q) has ovoids if and only if q is even, see

[33, 3.2.1, 3.4.1]. By a result of Segre [38], every ovoid of PG(3, q) with q even, is

an ovoid of some W (q). In [41], Thas proved the converse statement that every

ovoid of W (q), q even, is an ovoid of the ambient space PG(3, q).

1.7 Blocking sets

Let X be a point-line geometry and L be a given non-empty subset of the line

set of X . A blocking set with respect to L (or simply, an L-blocking set) in X is a

subset B of the point set of X such that each line in L contains at least one point

of B. Blocking sets in various point-line geometries with respect to varying sets

of lines have been studied by several authors. The first step in this regard has

been to determine the minimum size of an L-blocking set and to give, if possible,

geometric description of all L-blocking sets of that minimum cardinality.
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An L-blocking set B is said to be minimal if no proper subset of B is an

L-blocking set in X . Every minimum size L-blocking set in X is also a minimal

L-blocking set.

When X = PG(n, q), blocking sets in PG(n, q) are combinatorial objects in

finite geometry with several applications and have been the subject of investiga-

tion by many researchers. The following fundamental result is due to Bose and

Burton [11, Theorem 1] which is stated in the language of blocking sets.

Proposition 1.7.1. [11] If B is a blocking set in PG(n, q) with respect to the

set of all lines of PG(n, q), then |B| > (qn − 1)/(q − 1). Further, equality holds

if and only if B is the point set of a hyperplane of PG(n, q).

We shall use the above proposition frequently in the subsequent chapters

while studying minimum size blocking sets in PG(n, q), n ∈ {2, 3}, with respect

to certain proper subsets of the line set of PG(n, q).

A blocking set B in PG(n, q) with respect to all its lines is called nontrivial if B

does not contain any hyperplane of PG(n, q), or equivalently, if every hyperplane

of PG(n, q) contains a point which is not in B. In view of the above result of

Bose and Burton, one can study minimal nontrivial blocking sets in PG(n, q).

When n = 2, many results on minimal nontrivial blocking sets in PG(2, q) are

available in the literature, for example, see [8, 22, 34, 35, 40] and the references

therein.
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Chapter 2

Blocking sets in PG(2, q)

Let C be an irreducible conic in PG(2, q). We denote by E (respectively, T , S)

the set of all lines of PG(2, q) which are external (respectively, tangent, secant)

with respect to C. In this chapter, we discuss the minimum size L-blocking sets

in PG(2, q), where the line set L is one of E , S, T , E ∪ T , S ∪ T and E ∪ S.

2.1 Results from the literature

In this section, we give a brief survey of the known results regarding the minimum

size L-blocking sets in PG(2, q) for L ∈ {E ,S, T ∪ E , T ∪ S}. If q is even, we

shall denote by n the nucleus of C.

2.1.1 E-blocking sets

For q odd, Aguglia and Korchmáros studied the minimum size E-blocking sets

in PG(2, q) [3, Theorem 1.1]. Using a result on the linear system of polynomials

vanishing at every interior point to C and a corollary to the classification theorem

of all subgroups of the projective general linear group PGL(2, q), they proved the
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following.

Theorem 2.1.1. [3] Let A be an E-blocking set in PG(2, q), where q is odd. Then

|A| > q − 1 and the following hold for equality case:

(i) If q > 9, then |A| = q−1 if and only if A = l\C for some line l of PG(2, q)

secant to C.

(ii) If q ∈ {5, 7}, then |A| = q − 1 if and only if one of the following two cases

occurs:

(a) A = l \ C for some line l of PG(2, q) secant to C.

(b) A is a suitable set of q − 1 interior points with respect to C.

(iii) If q = 3, then |A| = 2 if and only if one of the following two cases occurs:

(a) A = l \ C for some line l of PG(2, 3) secant to C.

(b) A consists of any two interior points with respect to C.

When q = 3, the possibility stated in Theorem 2.1.1(iii)(b) was not included

in the statement of [3, Theorem 1.1]. We give a proof of Theorem 2.1.1(iii) below.

For q = 5, an E-blocking set consisting of 4 interior points is given in Example

2.2.1.

Proof of Theorem 2.1.1(iii). There are three interior points and three exter-

nal lines in PG(2, 3) with respect to C. Every external line in PG(2, 3) contains

exactly two interior points. So any two interior points will block all the three

external lines in PG(2, 3), justifying the statement in Theorem 2.1.1(iii)(b).

Conversely, let A = {x, y} be a blocking set of minimum size 2 of the external

lines in PG(2, 3) with respect to C. Then the minimality of |A| implies A∩C = ∅.

Let l := xy be the line of PG(2, q) through x and y. We may assume that l is
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not secant to C. Suppose that l is tangent to C. Let z ∈ l be the unique point

such that l \ C = {x, y, z}. Then the unique external line through z would not

meet A, a contradiction. So l is external to C. If at least one of x and y is not

interior to C, then there exists a point b ∈ l \ {x, y} which is interior to C. Then

the external line through b, different from l, would be disjoint from A, again a

contradiction. Thus both x and y are interior with respect to C.

The case q even was considered by Giulietti in [17, Theorems 1.1, 1.2], where

he provided two more possibilities for the E-blocking sets in PG(2, q) of smallest

cardinality. Using results on the linear system of polynomials vanishing at points

uncovered by the lines of a line-conic in PG(2, q) together with the classification

of all subgroups of PSL(2, q), the following was proved.

Theorem 2.1.2. [17] Let A be an E-blocking set in PG(2, q), where q is even.

Then |A| > q−1, and equality holds if and only if one of the following three cases

occurs:

(i) A = l \ C for some line l of PG(2, q) secant to C.

(ii) A = l \ (C ∪ {n}) for some line l of PG(2, q) tangent to C.

(iii) q is a square and A = Π \ ({n} ∪ (Π ∩ C)), where Π is a Baer subplane of

PG(2, q) such that Π ∩ C is an irreducible conic in Π.

As a consequence of Theorems 2.1.1 and 2.1.2 above, we have the following.

Corollary 2.1.3. Any E-blocking set in PG(2, q) of minimum size q−1 is disjoint

from C.
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2.1.2 S-blocking sets

A quadrangle in PG(2, q) is a set of four points, no three of which are collinear. If

a, b, c, d are the points of a quadrangle in PG(2, q), define the three points x, y, z

to be the intersections of the lines ab and cd, ac and bd, ad and bc, respectively.

The points x, y, z are called the diagonal points of the given quadrangle. Note

that a quadrangle in PG(2, q) has collinear diagonal points if and only if q is even

[21, 9.63, p.501].

For q odd, Aguglia and Giulietti studied the minimum size S-blocking sets

in PG(2, q) [1, Theorem 1.1]. They showed that any such blocking set contains

at least q points and a blocking set with exactly q points necessarily consists of

q − k points of C and k other points for some k ∈ {0, 1, 3}. More precisely, they

proved the following.

Theorem 2.1.4. [1] Let A be an S-blocking set in PG(2, q), where q is odd.

Then |A| > q, and equality holds if and only if one of the following three cases

occurs:

(i) A = C \ {x} for some x ∈ C.

(ii) A = (C \ {x, y}) ∪ {a} for distinct points x, y ∈ C, where a is a point

(different from x and y) on the secant line through x and y.

(iii) A = (C \ {w, x, y, z}) ∪ {a, b, c} for some quadrangle {w, x, y, z} ⊆ C with

diagonal points a, b, c.

Note that if |A| = q, then A∩C is nonempty, except when q = 3 and Theorem

2.1.4(iii) holds, in which case A consists of all the three interior points with respect

to C.

In order to prove the above theorem, the authors used a result that is inter-

esting in its own right: For any set K consisting of k > 4 points of C, there is no

16



§2.1. Results from the literature

set of k− 1 points disjoint from C that blocks all secant lines to K (that is, lines

of PG(2, q) intersecting K at two points).

When q is even, Aguglia et al. proved in [4, Theorem 1.1] that the minimum

size of an S-blocking set in PG(2, q) is q. However, their characterization for

the S-blocking sets of size q is quite different. In the following, we describe their

procedure to construct several examples of S-blocking sets of size q. We first

recall some definitions.

Let τ be a collineation of PG(2, q), that is, an automorphism of PG(2, q). A

point z of PG(2, q) is called a centre of τ if every line through z is fixed by τ . A

line l of PG(2, q) is called an axis of τ if every point of l is fixed by τ . If τ has a

centre and an axis, then τ is called a central collineation. A central collineation

of PG(2, q) is called an elation if the center is contained in the axis. Let l0 be

a fixed line of PG(2, q) and AG(2, q) be the classical affine plane obtained from

PG(2, q) by deleting the line l0 and all its points. A translation of AG(2, q) is

an automorphism φ of AG(2, q) such that either φ is the identity map, or φ has

no fixed point and φ fixes every line of some parallel class. Every translation

of AG(2, q) can be extended to an elation of PG(2, q) with axis l0. Conversely,

every elation of PG(2, q) with axis l0 induces a translation of AG(2, q).

Now, assume that the conic C is given with its affine equation Y = X2,

that is, C is a parabola in the affine plane AG(2, q). For every a ∈ Fq, the map

ϕa : (X, Y ) 7→ (X+a, Y +a2) is a translation of AG(2, q). Viewing ϕa as an elation

of PG(2, q), the centre of ϕa is the infinite point (1, a, 0). The translation group

of C is T = {ϕa : a ∈ Fq} and it is isomorphic to the additive group (Fq,+) of Fq.

For a subgroup H of (Fq,+), consider the subgroup G = {ϕa : a ∈ H} of T and

define Γ to be the set of all centres of the nontrivial translations in G. For an affine

point (u, u2) in C, the orbit of (u, u2) under G is ∆u = {(a+u, (a+u)2) : a ∈ H}.
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Then, the set A(G, u) = (C \∆u) ∪ Γ is an S-blocking set in PG(2, q) of size q.

Theorem 2.1.5. [4] Let A be an S-blocking set in PG(2, q), where q is even.

Then |A| > q. Further, equality holds if and only if A = B(G, u) described

above, for some affine point (u, u2) ∈ C and some subgroup G of T arising from

a subgroup H of (Fq,+).

From the above, we have the following.

Corollary 2.1.6. Let A be an S-blocking set in PG(2, q). Then |A| > q. If

|A| = q, then A ∩ C 6= ∅, except when q = 3 and A consists of all the three

interior points with respect to C.

2.1.3 (T ∪ S)-blocking sets

The following lower bound for the sizes of (T ∪ S)-blocking sets in PG(2, q) is

easily obtained.

Theorem 2.1.7. Let A be a (T ∪S)-blocking set in PG(2, q). Then |A| > q+ 1.

Proof. Clearly, the result follows if A contains C. Suppose that x is a point of C

which is not in A. Each line through x is either a tangent or a secant line and

hence meets A. It follows that |A| > q + 1.

Clearly, every line of PG(2, q) and the conic C itself are minimal (T ∪ S)-

blocking sets in PG(2, q) each of size q + 1. The following result was proved by

Bruen and Thas in [13] for q even and by Segre and Korchmáros in [39] for all q.

Theorem 2.1.8. [13, 39] If A is a (T ∪S)-blocking set in PG(2, q) of size q+ 1

such that A is disjoint from C, then A is an exterior line with respect to C.
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All (T ∪ S)-blocking sets of size q + 1 that are different from C and the lines

of PG(2, q) were described by Boros et al. in [10]. We present their description

below.

Consider a line l of PG(2, q). Let c1, c2, · · · , cm, m ∈ {q − 1, q, q + 1}, be the

points of C which are not on l. Denote by l(ci, cj) the line passing through ci and

cj (if i = j, then l(ci, ci) is the tangent line at ci). Let the m points x1, x2, · · · , xm

of l which are not in C be indexed so that the point xi lies on the line l(c1, ci). As

a consequence of Pascal’s theorem, the set {1, 2, · · · ,m} forms an abelian group

under the multiplication rule:

ij = k if xk lies on the line l(ci, cj).

Denote this group by G(l, c1). It is known [20, 19] that G(l, c1) is cyclic if m ∈

{q − 1, q + 1} and elementary abelian if m = q.

Now consider a proper subgroup H of G(l, c1) and a coset Hk of H in G(l, c1).

Let A be the set of points obtained by deleting from C the points of C \ l corre-

sponding to Hk and adding the points of l \ C corresponding to the coset Hk2.

Then |A| = q+1 and A is a (T ∪S)-blocking set in PG(2, q). Note that replacing

c1 by any other ci gives the same (T ∪ S)-blocking set as the system of cosets

does not change. The following was proved in [10, Theorem 2.5].

Theorem 2.1.9. [10] If A is a (T ∪S)-blocking set in PG(2, q) of minimum size

q + 1 which is different from C and the lines of PG(2, q), then A arises from a

proper subgroup H of G(l, c1) as described above.
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2.1.4 (T ∪ E)-blocking sets

For q odd, Aguglia and Korchmáros studied the minimum size (T ∪ E)-blocking

sets in PG(2, q) [2, Theorem 1.1]. Using results on the linear system of polynomi-

als vanishing at every point of C and at every interior point to C together with a

corollary to the classification theorem of all subgroups of PGL(2, q), they proved

the following.

Theorem 2.1.10. [2] Let A be a (T ∪ E)-blocking set in PG(2, q), where q is

odd. Then |A| > q, and equality holds if and only if one of the following three

cases occurs:

(i) A consists of all points of a tangent line, minus the tangency point.

(ii) A consists of all points of a secant line different from the two intersecting

points with C, plus the pole1 of this secant line with respect to C.

(iii) q is a square and A = Π \ (Π∩ C), where Π is a Baer subplane of PG(2, q)

such that Π ∩ C is an irreducible conic in Π.

When q is even, Aguglia and Giulietti studied the minimum size (T ∪ E)-

blocking sets in PG(2, q) [1, Theorem 1.2]. As an application of the equality case

of Theorem 2.1.2, they proved the following which is similar to Theorem 2.1.10.

Theorem 2.1.11. [1] Let A be a (T ∪ E)-blocking set in PG(2, q), where q is

even. Then |A| > q, and equality holds if and only if one of the following three

cases occurs:

(i) A consists of all points of a tangent line, minus the tangency point.

1Suppose that q is odd and x1, x2 are two distinct points of C. If li is the tangent line
through xi for i ∈ {1, 2}, then the point of intersection of l1 and l2 is called the pole of the
secant line x1x2.

20



§2.2. New results

(ii) A consists of all points of a secant line different from the two intersecting

points with C, plus the nucleus of C.

(iii) q is a square and A = Π \ (Π∩ C), where Π is a Baer subplane of PG(2, q)

such that Π ∩ C is an irreducible conic in Π.

2.2 New results

In this section, the other two line sets are considered, that is, we study the

minimum size T - and (E ∪ S)-blocking sets in PG(2, q).

2.2.1 T -blocking sets

For q even, it is clear that the singleton set {n} consisting of the nucleus of C is

the only T -blocking set in PG(2, q) of minimum size one.

Assume that q is odd. Let C = {x1, x2} ∪ · · · ∪ {xq, xq+1} be a partition of

C into subsets of size two and let li denote the unique tangent line to C through

xi, 1 6 i 6 q + 1. For 1 6 k 6 (q + 1)/2, each pair {x2k−1, x2k} corresponds to

an exterior point ak which is the point of intersection of the tangent lines l2k−1

and l2k. Then the set {a1, a2, · · · , a(q+1)/2} is a T -blocking set in PG(2, q) of size

(q + 1)/2.

Conversely, let A be any T -blocking set in PG(2, q). Every point of A lies on

at most two tangent lines. Counting the size of the set Z = {(l, x) ∈ T × A :

x lies on l} in two ways, we get q+1 = |T | 6 |Z| 6 2|A| and hence |A| > (q+1)/2.

If |A| = (q + 1)/2, then each point of A lies on exactly two tangent lines. So A

consists of (q + 1)/2 exterior points. Since A is a T -blocking set, it follows that

for any two distinct points a, b ∈ A, the two tangent lines through a are different

from the two tangent lines through b. Thus, we have
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Theorem 2.2.1. Let A be a T -blocking set in PG(2, q), where q is odd. Then

|A| > (q + 1)/2. Further, equality holds if and only if A consists of (q + 1)/2

exterior points to C such that for any two distinct points a, b ∈ A, the two tangent

lines through a are different from the two tangent lines through b.

2.2.2 (E ∪ S)-blocking sets

The only case left is the study of the minimum size blocking sets in PG(2, q) with

respect to all the secant and external lines to C. We now consider this case. For

q even, we prove the following.

Theorem 2.2.2. Let A be an (E ∪ S)-blocking set in PG(2, q), where q is even.

Then |A| > q. Further, equality holds if and only if A = l \ {n} for some tangent

line l.

Before stating the result for odd q, we give an example of a minimal (E ∪ S)-

blocking set in PG(2, 5) of size 6 which is different from a line. Using homoge-

neous coordinates, we write a point of PG(2, 5) as 〈(a, b, c)〉, the one dimensional

subspace generated by a non-zero vector (a, b, c) in F3
5. Each line of PG(2, 5) is

a two dimensional subspace of the form αX + βY + γZ = 0, where α, β, γ ∈ F5

are not all zero, which we coordinatize as 〈(α, β, γ)T 〉. The point 〈(a, b, c)〉 lies

on the line 〈(α, β, γ)T 〉 if and only if αa + βb + γc = 0. Without loss, we may

assume that the conic C in PG(2, 5) has the equation Y 2 = XZ. Let I be the

set of all interior points of PG(2, 5) with respect to C. Then, we have

C = {〈(1, 0, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 1)〉, 〈(1, 2, 4)〉, 〈(1, 3, 4)〉, 〈(1, 4, 1)〉} ;

I = {〈(1, 0, 2)〉, 〈(1, 0, 3)〉, 〈(1, 2, 1)〉, 〈(1, 3, 1)〉, 〈(1, 1, 3)〉, 〈(1, 2, 2)〉,

〈(1, 1, 4)〉, 〈(1, 4, 4)〉, 〈(1, 3, 2)〉, 〈(1, 4, 3)〉};
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T =
{
〈(0, 0, 1)T 〉, 〈(1, 0, 0)T 〉, 〈(1, 3, 1)T 〉, 〈(1, 4, 4)T 〉, 〈(1, 1, 4)T 〉, 〈(1, 2, 1)T 〉

}
;

E = {〈(1, 4, 2)T 〉, 〈(1, 1, 1)T 〉, 〈(1, 0, 3)T 〉, 〈(1, 3, 3)T 〉, 〈(1, 2, 4)T 〉, 〈(1, 2, 3)T 〉,

〈(1, 0, 2)T 〉, 〈(1, 4, 1)T 〉, 〈(1, 3, 4)T 〉, 〈(1, 1, 2)T 〉};

S = {〈(0, 1, 0)T 〉, 〈(1, 1, 0)T 〉, 〈(1, 0, 1)T 〉, 〈(0, 1, 1)T 〉, 〈(1, 2, 0)T 〉, 〈(1, 3, 0)T 〉,

〈(1, 4, 0)T 〉, 〈(1, 3, 2)T 〉, 〈(1, 0, 4)T 〉, 〈(0, 1, 2)T 〉, 〈(0, 1, 3)T 〉, 〈(0, 1, 4)T 〉,

〈(1, 1, 3)T 〉, 〈(1, 2, 2)T 〉, 〈(1, 4, 3)T 〉}.

Consider the following set consisting of six interior points:

A = {〈(1, 0, 2)〉, 〈(1, 2, 1)〉, 〈(1, 2, 2)〉, 〈(1, 1, 4)〉, 〈(1, 3, 2)〉, 〈(1, 4, 3)〉} .

It can be verified that A is a blocking set in PG(2, 5) with respect to all the

secant and external lines to C. The minimality of the blocking set A follows from

Theorem 2.2.3(ii). Observe that the four points 〈(1, 0, 3)〉, 〈(1, 3, 1)〉, 〈(1, 1, 3)〉,

〈(1, 4, 4)〉 of I \A form a quadrangle and they have the property that any two of

them determine an external line.

The following is an example of an E-blocking set in PG(2, 5) consisting of 4

interior points, see Theorem 2.1.1(ii)(b).

Example 2.2.1. Let A be the set consisting of the three interior points 〈(1, 0, 2)〉,

〈(1, 3, 1)〉, 〈(1, 4, 4)〉 lying on the external line 〈(1, 4, 2)T 〉, together with the inte-

rior point 〈(1, 4, 3)〉. Then it can be seen that A is an E-blocking set in PG(2, 5)

of minimum size 4.

For q odd, we prove the following for the minimum size blocking sets of

PG(2, q) with respect to all the secant and external lines to C.
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Theorem 2.2.3. Let A be an (E ∪ S)-blocking set in PG(2, q), where q is odd.

Then the following hold:

(i) If q = 3, then |A| > 3 and equality holds if and only if A consists of all the

three interior points to C.

(ii) If q > 5, then |A| > q + 1.

(iii) If q > 7, then |A| = q + 1 if and only if A is a line of PG(2, q).

(iv) If q = 5, then |A| = 6 if and only if one of the following two cases occurs:

(a) A is a line of PG(2, 5).

(b) A = I \ {a1, a2, a3, a4}, where {a1, a2, a3, a4} ⊆ I is a quadrangle such

that the line determined by any two distinct ai, aj is external to C.

We note that four interior points satisfying the condition in Theorem 2.2.3(iv)(b)

do exist, which follows from the above discussion.

Corollary 2.2.4. For q > 7 odd, every (E ∪ S)-blocking set in PG(2, q) of min-

imum size q + 1 is a blocking set with respect to all lines of PG(2, q).

Proof of Theorem 2.2.2

Here q is even. Let A be an (E ∪ S)-blocking set in PG(2, q). Since every secant

line meets A, Theorem 2.1.5 implies that |A| > q.

For every tangent line l, clearly the set l \ {n} is an (E ∪ S)-blocking set in

PG(2, q) of size q. Conversely, let A be an (E ∪ S)-blocking set of minimum size

q. Then n /∈ A by the minimality of |A|.

Lemma 2.2.5. |A ∩ C| = 1.
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Proof. Since A \ (A∩ C) blocks every external line, we have |A \ (A∩ C)| > q− 1

by Theorem 2.1.2. Then |A| = q implies that |A ∩ C| 6 1. We show that A ∩ C

is nonempty.

If A ∩ C is empty, then every point of A lies on q/2 secant lines to C. It

follows that A blocks at most q× q/2 secant lines. But q× q/2 < 1
2
q(q+ 1) = |S|,

contradicting that every secant line meets A.

Lemma 2.2.6. Any two distinct points of A \ C lie on a tangent line.

Proof. We have |A\C| = q−1 by Lemma 2.2.5. Let x, y be two distinct points of

A\C (so q > 4). If the line xy is external to C, then A blocks at most q
2
(q−1)−1

external lines. But q
2
(q−1)−1 < q

2
(q−1) = |E|, contradicting that every external

line meets A. If xy is secant to C, then A blocks at most q
2
(q − 1)− 1 + q secant

lines. Since q
2
(q − 1) − 1 + q < q

2
(q + 1) = |S|, again we get a contradiction to

that every secant line meets A. So xy must be tangent to C.

Corollary 2.2.7. All the q − 1 points of A \ C lie on the same tangent line.

Proof. Every point of PG(2, q), different from the nucleus, lies on a unique tan-

gent line. If q = 2, then A \ C is a singleton and so the result is true. If q > 4,

then the result follows from Lemma 2.2.6.

Now, let l be the tangent line containing all points of A \ C. Let w be the

tangency point of l, that is, {w} = l∩C. If w /∈ A, then for any z ∈ C \ (A∪{w}),

the secant line wz would not contain any point of A. So w ∈ A and hence

A = l\{n} for the tangent line l. This completes the proof of Theorem 2.2.2.

Remark 2.2.1. While studying the minimum size blocking sets in PG(2, q) with

respect to the secant lines, a stronger result was implicitly proved by Aguglia et

al. (see the argument after the proof of Lemma 2.1 in [4]), from which Corollary
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2.2.7 can be derived. However, our proof is much simpler using the fact that A

blocks both the secant and external lines to C.

Proof of Theorem 2.2.3

Here q is odd. Let A be an (E ∪ S)-blocking set in PG(2, q). The following

elementary result is useful.

Lemma 2.2.8. If x is an interior point and x /∈ A, then |A| > q + 1.

Proof. Every line through x, being either a secant or an external line, must meet

A. Since x /∈ A, it follows that |A| > q + 1.

First assume that q = 3. Considering A as an S-blocking set, Theorem 2.1.4

implies that |A| > 3. Every secant line contains one interior point and every

external line contains two interior points. So the set consisting of all the interior

points to C is an (E ∪ S)-blocking set in PG(2, q) of size three. Conversely, if

|A| = 3, then A contains all the three interior points to C. Otherwise, Lemma

2.2.8 would imply that |A| > 4. This proves Theorem 2.2.3(i).

Now assume that q > 5. We show that |A| > q+ 1. This is clear if A contains

all the interior points to C, since the number of such points is q(q− 1)/2 > q+ 1.

If A does not contain some interior point, then it follows from Lemma 2.2.8. This

proves Theorem 2.2.3(ii).

In order to prove Theorem 2.2.3(iii), we need the following generalization of

Theorem 2.1.8 given by Blokhuis and Wilbrink in [9].

Theorem 2.2.9. [9] Let X and Y be two disjoint sets of points in PG(2, q),

where |X| > q and |Y | = q + 1. If each line through a point of X meets Y , then

Y is a line.
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Assume that q > 7 and that |A| = q+1. The number of interior points is equal

to q(q− 1)/2. It may happen that all the q+ 1 elements of A are interior points.

Since q > 7, we have q(q − 1)/2− (q + 1) > q. So there exists a set X consisting

of at least q interior points such that X ∩A is empty. Each line through a point

of X is either secant or external to C and so meets A. Applying Theorem 2.2.9

to the sets X and A, it follows that A is a line. This proves Theorem 2.2.3(iii).

Finally, assume that q = 5. Recall that I is the set of all interior points in

PG(2, 5) with respect to C. Let X ⊆ I be a quadrangle such that any two points

of X determine an external line. Then clearly every external line meets A = I\X

as any such line contains three interior points. Also, every secant line meets A

as any such line contains two interior points one of which must be from A by the

given condition. Hence A is an (E ∪ S)-blocking set in PG(2, 5) of size 6.

Conversely, let A be an (E∪S)-blocking set in PG(2, 5) of size 6. If A contains

at most five interior points, then take X = I \A. We have |X| > 5 and |A| = 6.

As in the above proof of Theorem 2.2.3(iii), applying Theorem 2.2.9 to the sets X

and A, we get that A is a line. Suppose that all the 6 elements of A are interior

points. Let Z = I \ A. Then |Z| = 4. If l is a line containing three (interior)

points of Z, then l is an external line which would not contain any further interior

point from A. So Z ⊆ I must be a quadrangle. It also follows that any two points

of Z determine an external line. This proves Theorem 2.2.3(iv).

2.3 Miscellaneous results

We conclude this chapter with the following three results.

Lemma 2.3.1. Let x be a point of PG(2, q) and L be the set of all lines of

PG(2, q) not passing through x. If A is an L-blocking set in PG(2, q), then
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|A| > q, and equality holds if and only if A = l \ {x} for some line l through x.

Proof. Since A∪{x} is a blocking set in PG(2, q) with respect to all its lines, we

have |A ∪ {x}| > q + 1 by Proposition 1.7.1 and so |A| > q.

Clearly, l \ {x} is an L-blocking set of size q for every line l through x. Con-

versely, let |A| = q. Then x /∈ A, otherwise, A \ {x} would be an L-blocking set

of size q− 1. Let l be a line through x containing at least one point of A. If some

point y of l \ {x} is not in A, then it follows that A contains at least one point

from each line through y. This gives |A| > q + 1, which is a contradiction. So

A = l \ {x}.

Lemma 2.3.2. Let A be a (T ∪ E)-blocking set in PG(2, q), q even. If |A| = q,

then the following hold:

(a) A is disjoint from C.

(b) If q > 4, then there exists at least three secant lines through some point α

of C which are disjoint from A.

Proof. Part (a) directly follows from Theorem 2.1.11. Part (b) can be seen as

follows. Since |A| = q, one of the three cases (i)–(iii) of Theorem 2.1.11 occurs. If

Theorem 2.1.11(i) holds for some tangent line l, then take α to be the tangency

point of l in C. If Theorem 2.1.11(ii) holds for some secant line l, then take α to

be one of the two points in l ∩ C.

Finally, suppose that q is a square and Theorem 2.1.11(iii) holds for some

Baer subplane Π of PG(2, q). Then A = Π \ (Π ∩ C). Take α to be any point

of C \ Π. Let β be a point in the Baer conic Π ∩ C in Π and l be the secant line

(to C) through α and β. We claim that l is disjoint from A. Otherwise, l would

be a Baer line which is tangent to the conic Π ∩ C in Π with tangency point β.
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Then the nucleus of Π∩C is contained in the Baer line l. Since C and Π∩C share

the same nucleus, it follows that the secant line l to C contains the nucleus n, a

contradiction. Thus the secant lines through α and meeting Π ∩ C are disjoint

from A. The rest follows from the fact that |Π ∩ C| = √q + 1 > 3.

Lemma 2.3.3. Let k be a secant line to C. If A is an (E ∪ T )-blocking set

in PG(2, q) that is disjoint from k, then A contains at least q points of C :=

PG(2, q) \ C.

Proof. Suppose to the contrary that A contains at most q − 1 points of C. Since

A ∩ C is a blocking set with respect to the external lines, Theorems 2.1.1 and

2.1.2 then imply that |A∩C| = q−1. Moreover, one of the following cases occurs

for A ∩ C.

(1) A ∩ C = l \ C for some secant line l.

If we put l∩C = {x1, x2}, then the fact that k∩A = ∅ implies that k∩l = {xi}

for some i ∈ {1, 2}. The tangent line through the point xi 6∈ A would then be

disjoint from A, a contradiction.

(2) q ∈ {3, 5, 7} and A ∩ C is a suitable set of q − 1 interior points.

In this case, the tangent line through a point of k ∩ C (which cannot contain

interior points) would be disjoint from A, a contradiction.

(3) q is even and A ∩ C = l \ (C ∪ {n}) for some tangent line l.

As k is a secant line, it does not contain the nucleus n of C. As the line k is

disjoint from A, it follows that the unique point x of C on l must belongs to k.

If y denotes the other point of C on the line k, then the tangent line through y

meets l at n and so would be disjoint from A, a contradiction.

(4) q is an even square and A ∩ C = Π \
(

(Π ∩ C) ∪ {n}
)

, where Π is a Baer

subplane of PG(2, q) such that Π ∩ C is an irreducible conic in Π.
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Since k is a secant line, we have n 6∈ k. Every line of Π contains a point of

A, implying that k cannot intersect Π in a Baer subline. So, k intersects Π in

a unique point, say x. Since k is disjoint from A, we have that x ∈ Π ∩ C. If

y denotes the other point of C on the line k, then the tangent line through y

would intersect Π at the point n and hence be disjoint from A, which is again

impossible.

Therefore, A contains at least q points of C. This completes the proof.
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Chapter 3

Hyperbolic quadric in PG(3, q)

In this chapter, we recall the basic properties of points, lines and planes of

PG(3, q) with respect to a given hyperbolic quadric and prove a few results which

are needed in the next chapter.

3.1 Properties of points, lines and planes

One can refer to [18] for the following basic properties of the points, lines and

planes of PG(3, q) with respect to a hyperbolic quadric in it. We shall denote by

P the point set of PG(3, q) and by L the line set of PG(3, q). We have

|P| = (q + 1)(q2 + 1) and |L| = (q2 + 1)(q2 + q + 1).

Let H be a hyperbolic quadric in PG(3, q), that is, a non-degenerate quadric

of Witt index two. For l ∈ L, there are 0, 1, 2 or q + 1 points in l ∩ H. We

denote by E (respectively, T1, S, T0) the set of lines of PG(3, q) that intersect

H in 0 (respectively, 1, 2, q + 1) points. The elements of E are called external

lines, those of S secant lines and those of T := T0 ∪ T1 tangent lines. If l ∈ Ti
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with i ∈ {0, 1}, then l is also called a Ti-line. The T0-lines are precisely the lines

contained in H. For a T1-line l, the unique point of l ∩ H is called the tangency

point of l and denoted by xl.

The quadric H consists of (q + 1)2 points and 2(q + 1) T0-lines. Every point

x ∈ P is contained in q2 + q+1 lines, and q+1 of them are tangent to H. If x is a

point of H, then x is contained in two T0-lines, q − 1 T1-lines and the remaining

q2 lines through x are secant to H. If x is a point of P \ H, then x is contained

in q(q + 1)/2 secant lines and q(q − 1)/2 external lines. We have

|T1| = (q − 1)(q + 1)2,

|T| = (q + 1)(q2 + 1),

|S| = 1
2
q2(q + 1)2,

|E| = 1
2
q2(q − 1)2.

With the quadric H, there is naturally associated a polarity ζ which is sym-

plectic if q is even and orthogonal if q is odd. Thus the planes of PG(3, q) are

precisely xζ as x runs over all points of PG(3, q). For a point x of PG(3, q), xζ

is called a tangent plane or a secant plane according as x is a point of H or not.

For every point x of H, the tangent plane xζ intersects H in the union of

two T0-lines through x. The q + 1 tangent lines through x are precisely the lines

through x contained in xζ . In this case, we shall denote by πx the tangent plane

xζ and call x the pole of πx = xζ . Now let x be a point of P \H. Then the secant

plane xζ intersects H in an irreducible conic Cx. If q is even, then x is a point of

xζ and is the nucleus of the conic Cx in xζ . The q+ 1 tangent lines through x are

precisely the lines through x contained in xζ . In this case also, we shall denote

by πx the secant plane xζ . If q is odd, then x is not a point of xζ . In this case,

the tangent lines through x are precisely the lines through x meeting Cx.
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Thus, when q is even, the planes of PG(3, q) are precisely πx as x runs over

all the points of PG(3, q). When q is odd, the tangent planes of PG(3, q) are πx

with x ∈ H and the secant planes are xζ with x ∈ P \ H.

Considering H as a point-line geometry, an ovoid of H is a set of points

intersecting each T0-line in a unique point. Every ovoid of H has exactly q + 1

points. For every point y of P \ H, the conic Cy in yζ is an ovoid of H. The map

y 7→ Cy defines a bijection between P \ H and the set of conics contained in H

(and hence an injection between P \ H and the set of ovoids of H). When q = 3,

an easy calculation shows that there are 24 ovoids of H and so it follows that the

set of conics contained in H coincides with the set of ovoids of H.

There are (q+ 1)2 tangent planes and q3− q secant planes of PG(3, q). Every

point of H is contained in 2q+1 tangent planes and q(q−1) secant planes. Every

point of P \ H is contained in q + 1 tangent planes and q2 secant planes. Every

external line is contained in q + 1 secant planes, every secant line is contained in

two tangent planes and q − 1 secant planes, every T0-line is contained in q + 1

tangent planes, and every T1-line is contained in one tangent plane and q secant

planes.

If π is a secant plane with π = yζ for some point y in P\H, then we also denote

by Cπ the conic Cy in π = yζ and thus Cπ = π ∩ H. Let l be a line of PG(3, q)

and π0, π1, · · · , πq be the q + 1 planes of PG(3, q) containing l. If l is external

to H, then Cπ0 , Cπ1 , · · · , Cπq constitute a linear flock of H (that is, partitioning H

into mutually disjoint conics). If l is a T1-line with tangency point xl ∈ H, then

Cπ0 \ {xl}, Cπ1 \ {xl}, · · · , Cπq \ {xl} give a partition of the points in H \ (l0 ∪ l1),

where l0, l1 are the two T0-lines through xl.
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3.2 Basic results

If q is odd and x is a point of P \H, then we denote by E(x) (respectively, S(x))

the set of all lines of PG(3, q) through x which are external (respectively, secant)

to H, and by Ix (respectively, Ex) the set of all interior (respectively, exterior)

points in the plane xζ with respect to the conic Cx.

Lemma 3.2.1. Suppose that x is a point of PG(3, q) \ H, where q is odd. Then

the following hold:

(i) Each line in E(x) meets the plane xζ in a point of Ix.

(ii) The map from E(x) to Ix, sending each line in E(x) to its point of inter-

section with Ix, is bijective.

Proof. Consider a line l ∈ E(x). Since x is not a point of xζ , the line l contains

exactly one point of xζ . Denote this point by zl. Since l is an external line, we

have zl ∈ xζ \ Cx.

(i) We show that zl ∈ Ix. Suppose this is not true. Then zl is exterior to Cx.

Let m be a T1-line through zl contained in xζ and π be the plane of PG(3, q)

generated by l and m. Then π is a secant plane, as it contains the external line l.

On the other hand, if y is the unique point of m ∩ Cx, then the T1-line m1 := yx

is contained in π. So π is also the plane generated by the two T1-lines m and m1

intersecting at y ∈ Cx, implying that π is the tangent plane with pole y, which is

a contradiction.

(ii) Let f : E(x)→ Ix be the map defined by f(l) = zl for l ∈ E(x). By (i), f

is well-defined. Clearly, f is injective. Since |E(x)| = q(q − 1)/2 = |Ix|, f is also

surjective.

As a consequence of Lemma 3.2.1, we have the following.

34



§3.2. Basic results

Lemma 3.2.2. Suppose that x is a point of PG(3, q) \ H, where q is odd. Then

the following hold:

(i) Each line in S(x) meets the plane xζ in a point of Ex.

(ii) The map from S(x) to Ex, sending each line in S(x) to its point of inter-

section with Ex, is bijective.

Proof. (i) Let l ∈ S(x). Then l contains exactly one point of xζ as x /∈ xζ . Since

any line through x and a point of Cx is tangent to H, it follows that l meets xζ in

a point outside Cx. Then Lemma 3.2.1(ii) implies that l must meet xζ in a point

exterior to Cx, that is, in a point of Ex.

(ii) By (i), the map is well-defined and is clearly injective. Since |S(x)| =

q(q + 1)/2 = |Ex|, the map is also surjective.

The following two results are related to the special case that q = 3.

Lemma 3.2.3. Suppose that q = 3 and w is a point of H. Let l,m be the two

T1-lines through w. Then, for x ∈ m \ {w}, the secant plane xζ contains l.

Proof. Note that w is a point of xζ , as w ∈ Cx. Since q = 3, the tangent line in

xζ through w is either l or m. Since x is not a point of xζ , it follows that m is

not a line of xζ and hence l is the tangent line through w in xζ .

Lemma 3.2.4. Suppose that q = 3. Let π1 be a secant plane and C1 be the conic

π1 ∩ H in π1. Fix a line l of π1 which is external with respect to C1. Then there

exists exactly one more secant plane π2 satisfying the following:

(1) l is an external line of π2 with respect to the conic C2 := π2 ∩H.

(2) If a point a ∈ l is exterior (respectively, interior) to C1 in π1, then it is also

exterior (respectively, interior) to C2 in π2.
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In fact, if a ∈ l is exterior to C1 in π1, then the two T1-lines through a not in π1

are contained in π2.

Proof. Let x be the point of PG(3, 3) \ H such that Cx = C1. Such a point x

exists, since the map α 7→ Cα := αζ ∩H is a bijection between PG(3, 3) \ H and

the set of conics contained in H. We have π1 = xζ . Write l = {a, b, z1, z2}, where

a, b (respectively, z1, z2) are exterior (respectively, interior) with respect to C1 in

π1. By Lemma 3.2.1(ii), the lines t1 := xz1 and t2 := xz2 are external lines.

Let π2 be the plane generated by the line l and the point x. Then π2 is a

secant plane in which l is external to the conic C2 := π2 ∩H. The lines t1 and t2

in π2 are external to C2. Thus, for i ∈ {1, 2}, l and ti are two external lines in π2

through zi. It follows that both the points z1 and z2 are interior to C2 in π2. This

implies that the points a and b must be exterior to C2 in π2. Hence π2 satisfies

the conditions (1) and (2).

Out of the four T1-lines through a (respectively, through b), two are contained

in π1 and the other two are in π2 (as π1∩π2 = l is not a T1-line). This must hold

for any secant plane satisfying the conditions (1) and (2). This fact implies the

uniqueness of π2 satisfying (1) and (2).

Proposition 3.2.5. If q is even, then the point-line geometry X = (P,T) with

point set P and line set T is a generalized quadrangle of order q which is isomor-

phic to W (q).

Proof. We shall verify the axioms (Q1), (Q2) and (Q3) in the definition of an

(s, t)-generalized quadrangle. Clearly, the axioms (Q1) and (Q2) are satisfied

with s = q = t. We verify (Q3). Let (x, l) ∈ P×T be a point-line pair with x /∈ l.

We show that there exists a unique line in T which contains x and intersects l.

Observe that there are four cases depending on x ∈ H or not, and l is a T0-line

or not. We consider all cases together.
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Let π = 〈x, l〉 be the plane of PG(3, q) generated by x and l. Since q is even,

we have π = πw for some w ∈ l. If π is a tangent plane, then the only tangent

line containing x and intersecting l is the line through x and the pole w of π (the

remaining q lines through x in π are secant to H). If π is a secant plane, then

the unique tangent line through x and meeting l is the line through x and the

nucleus w of the conic Cπ in π. This verifies the axiom (Q3).

Thus X = (P,T) is a projective generalized quadrangle of order q with ambient

space PG(3, q). Then it follows from [33, 4.4.8] that X is isomorphic to W (q).

Remark 3.2.1. When q is odd and π = 〈x, l〉 is a secant plane as in the proof of

Theorem 3.2.5, the uniqueness (respectively, existence) of the tangent line trough

x and intersecting l fails if x is an exterior (respectively, interior) point to the

conic Cπ in π. So axiom (Q3) fails for q odd.

Another way to prove Proposition 3.2.5 is the following, see [18, Theorem

15.3.16]: Consider the polarity ζ of PG(3, q) induced by the quadric H. So ζ is

an inclusion reversing bijection of order two on the set of all subspaces of PG(3, q).

It fixes the line set L of PG(3, q), and interchanges P and the set of all planes

of PG(3, q). A subspace U of PG(3, q) is called absolute with respect to ζ if it

is incident with U ζ . Since q is even, ζ is a null polarity, that is, each point (and

so each plane) of PG(3, q) is absolute with respect to ζ. The point set P and

the line set consisting of all the absolute lines of PG(3, q) with respect to ζ form

a generalized quadrangle W (q) of order q. Since H is a (geometric) hyperplane

of W (q), each absolute line is either contained in H or meets H at exactly one

point. Then it follows that T is precisely the set of all absolute lines of PG(3, q)

with respect to ζ.
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3.3 A set in PG(3, 3)

We need the following result in the next chapter while studying the minimum

size S- and (E ∪ S)-blocking sets in PG(3, 3).

Theorem 3.3.1. Suppose that q = 3. Then there exists a subset B of the point

set of PG(3, 3) satisfying the following conditions:

(i) |B| = 12 and B is disjoint from H;

(ii) Every external line to H meets B in two points;

(iii) Every secant line to H meets B in one point.

In particular, B is an L-blocking set in PG(3, 3) for L ∈ {S,E,S ∪ E}.

We first give an example of a subset B of the point set of PG(3, 3) satisfying

the conditions (i)–(iii) of Theorem 3.3.1. Using homogeneous coordinates, we

write a point of PG(3, 3) as 〈(x0, x1, x2, x3)〉, the one dimensional subspace gen-

erated by a non-zero vector (x0, x1, x2, x3) in F4
3. Without loss, we may assume

that the quadric H has the equation X0X3 = X1X2. Then, we have

H = {〈(1, 0, 0, 0)〉, 〈(0, 1, 0, 0)〉, 〈(1, 1, 0, 0)〉, 〈(1, 2, 0, 0)〉,

〈(0, 0, 1, 0)〉, 〈(0, 0, 0, 1)〉, 〈(0, 0, 1, 1)〉, 〈(0, 0, 1, 2)〉,

〈(1, 0, 1, 0)〉, 〈(0, 1, 0, 1)〉, 〈(1, 1, 1, 1)〉, 〈(1, 2, 1, 2)〉,

〈(1, 0, 2, 0)〉, 〈(0, 1, 0, 2)〉, 〈(1, 1, 2, 2)〉, 〈(1, 2, 2, 1)〉}.

The lines contained in H form a regulus R = {l0, l1, l2, l3} together with its

opposite regulus R = {m0,m1,m2,m3}, where

l0 = {〈(1, 0, 0, 0)〉, 〈(0, 1, 0, 0)〉, 〈(1, 1, 0, 0)〉, 〈(1, 2, 0, 0)〉};
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l1 = {〈(0, 0, 1, 0)〉, 〈(0, 0, 0, 1)〉, 〈(0, 0, 1, 1)〉, 〈(0, 0, 1, 2)〉};

l2 = {〈(1, 0, 1, 0)〉, 〈(0, 1, 0, 1)〉, 〈(1, 1, 1, 1)〉, 〈(1, 2, 1, 2)〉};

l3 = {〈(1, 0, 2, 0)〉, 〈(0, 1, 0, 2)〉, 〈(1, 1, 2, 2)〉, 〈(1, 2, 2, 1)〉};

m0 = {〈(1, 0, 0, 0)〉, 〈(0, 0, 1, 0)〉, 〈(1, 0, 1, 0)〉, 〈(1, 0, 2, 0)〉};

m1 = {〈(0, 1, 0, 0)〉, 〈(0, 0, 0, 1)〉, 〈(0, 1, 0, 1)〉, 〈(0, 1, 0, 2)〉};

m2 = {〈(1, 1, 0, 0)〉, 〈(0, 0, 1, 1)〉, 〈(1, 1, 1, 1)〉, 〈(1, 1, 2, 2)〉};

m3 = {〈(1, 2, 0, 0)〉, 〈(0, 0, 1, 2)〉, 〈(1, 2, 1, 2)〉, 〈(1, 2, 2, 1)〉}.

Consider the following set

B = {〈(0, 1, 1, 0)〉, 〈(1, 1, 1, 0)〉, 〈(1, 2, 2, 0)〉, 〈(1, 0, 0, 2)〉,

〈(1, 1, 0, 2)〉, 〈(1, 2, 0, 2)〉, 〈(0, 1, 1, 1)〉, 〈(1, 2, 1, 1)〉,

〈(1, 0, 2, 2)〉, 〈(1, 1, 2, 1)〉, 〈(1, 0, 1, 2)〉, 〈(0, 1, 1, 2)〉};

which contains 12 points. Starting with a T1-line l through the point w =

〈(1, 0, 0, 0)〉 ∈ H, say

l = {〈(1, 0, 0, 0)〉, 〈(0, 1, 1, 0)〉, 〈(1, 1, 1, 0)〉, 〈(1, 2, 2, 0)〉},

we have constructed B as the following. Every secant plane π through l contains

six exterior points with respect to the conic Cπ, three of them are the points of l

different from its tangency point w. Then B is taken as the union of the exterior

points from all the three secant planes through l. We have verified that B satisfies

the conditions (i)–(iii) of Theorem 3.3.1. Based on the construction of the set B,

we shall give a theoretical proof of Theorem 3.3.1 in the rest of this section.
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3.3.1 Proof of Theorem 3.3.1

For a secant plane π, we denote by E(π) the set of all the exterior points in π

with respect to the conic Cπ. Fix a T1-line l. Let π1, π2, π3 be the three secant

planes of PG(3, 3) through l and define the following set:

B := E(π1) ∪ E(π2) ∪ E(π3).

Let {w} = l∩H. Then πw∩B = l\{w}. We claim that B satisfies the Conditions

(i)–(iii) of Theorem 3.3.1 and conversely, any set of points in PG(3, 3) satisfying

the three conditions of Theorem 3.3.1 is obtained in this way.

Set Ci := Cπi for i ∈ {1, 2, 3}. Note that the conics C1, C2, C3 pairwise intersect

at the point w only.

(I) Since each E(πi) is disjoint from Ci, it follows that B is disjoint from H.

Each E(πi) contains six points and E(πj) ∩ E(πk) = l \ {w} for 1 6 j 6= k 6 3.

This gives |B| = 12 and so the Condition (i) of Theorem 3.3.1 is satisfied.

(II) Consider a line l1 of PG(3, 3) external to H. If l1 is contained in some πi,

then l1∩B = l1∩E(πi) consists of the two exterior points on l1 with respect to Ci.

So we assume that none of π1, π2, π3 contains l1. Then l ∩ l1 is empty, as each of

the three external lines through a point of l\{w} is contained in some πi. Since l1

meets each of π1, π2, π3 and πw, we may suppose that l1 := {w1, x1, x2, x3}, where

w1 ∈ πw \ l and xi ∈ πi \ l for 1 6 i 6 3. Then w1 /∈ B, as πw ∩ B = l \ {w}.

Let m := {w,w1, w2, w3} be the T1-line in πw through w and w1. By Lemma

3.2.3, each of the three secant planes wζ1, w
ζ
2, w

ζ
3 contains l. So we must have

{wζ1, w
ζ
2, w

ζ
3} = {π1, π2, π3}.

Without loss of generality, we may assume that wζi = πi for i ∈ {1, 2, 3}.

Since w1 /∈ wζ1 and the external line l1 through w1 meets wζ1 at x1, Lemma
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3.2.1(i) implies that the point x1 in π1 = wζ1 is interior with respect to C1 = Cw1 .

So x1 /∈ B by the construction of B. We claim that B contains x2 and x3. It is

enough to show that the point xj is exterior in πj = wζj with respect to Cj = Cwj
,

where j ∈ {2, 3}.

Suppose that xj is interior to Cwj
in wζj for some j. Then the line wjxj must

be external to H, see Lemma 3.2.1. There are two external lines in wζj = πj

through xj different from wjxj and l1, thus giving four external lines through xj,

a contradiction. This verifies the Condition (ii) of Theorem 3.3.1.

(III) Consider a line l2 of PG(3, 3) secant to H. First suppose that l2 ∩ l is

nonempty. Then l2 is contained in some plane through l. If l2 is contained in

some πi, 1 6 i 6 3, then one point of l2\H is interior and the other one is exterior

in πi with respect to Ci and so l2∩B = l2∩E(πi) is a singleton. If l2 is contained

in the tangent plane πw, then l2 meets l in a point of l \ {w} and it follows that

l2 ∩B = l2 ∩ (πw ∩B) = l2 ∩ (l \ {w}) is a singleton.

Now, suppose that l2∩ l is empty. Then l2 is not contained in πw nor in any πi

and so each of πw, π1, π2, π3 contains exactly one point of l2. Let l2 := {a, b, y, z},

where l2 ∩H = {a, b}. We have that a and b both can not be in πw.

Case 1. None of a and b is in πw. Then, without loss, we may suppose that

y ∈ πw. Since y /∈ l and πw ∩ B = l \ {w}, we have y /∈ B. We show that z ∈ B.

By Lemma 3.2.2(i), the secant line l2 through y meets the plane yζ in a point

exterior to Cy. Since y /∈ yζ , we must have l2 ∩ yζ = {z} and so z is exterior to Cy

in yζ . Since l and wy are the two T1-lines through w, Lemma 3.2.3 implies that

yζ contains l and so yζ ∈ {π1, π2, π3}. Thus z is an exterior point in one of the

πi’s and hence z ∈ B.

Case 2. One of a and b is in πw. Without loss, we may assume that a ∈ πw,

b ∈ π1, y ∈ π2 and z ∈ π3. Then wb is a secant line. Let α, β be the two points
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of H satisfying the following:

(1) πα, πβ are the two tangent planes through l2.

(2) The line wβ is a T0-line (and so wα is necessarily a secant line).

Then α, β ∈ Cy ∩ Cz. Since the sets Ci \ {w}, 1 6 i 6 3, partition the points of

H which are not on the T0-lines through w, one of the conics C1, C2, C3 contains

α. But b ∈ C1 as b is a point of π1. So α is in either C2 or C3. Without loss,

we may assume that α ∈ C2. Since y ∈ π2, yα is then a T1-line in π2. So the

point y in π2 is exterior to C2 and hence is in B. We show that z /∈ B. Note that

b, α /∈ C3. Let γ be the point on the T0-line through α and b which is in C3. Then

the four points of C3 are w, γ, one point τ from the T0-line bβ and one point θ

from the T0-line aα. Since α, β ∈ Cz, it follows that none of w, γ, τ, θ is in Cz and

so C3 ∩ Cz is empty. This implies that there is no tangent line in π3 through z.

So z is interior in π3 with respect to C3 and hence z /∈ B. This completes the

verification of Condition (iii) of Theorem 3.3.1.

Conversely, let B be a set of points in PG(3, 3) satisfying the three conditions

(i)–(iii) of Theorem 3.3.1. Consider a tangent plane πw for some point w of H.

By condition (i), πw∩B is disjoint from H. By condition (iii), πw∩B blocks every

secant line contained in πw. Since the secant lines contained in πw are precisely

the lines of πw not passing through w, we have |πw ∩ B| > 3 by Lemma 2.3.1.

If |πw ∩ B| > 3, then there would be a secant line contained in πw meeting B

in two points, violating condition (iii). So |πw ∩ B| = 3. Then, using the fact

that πw ∩ B is disjoint from H, the equality case of Lemma 2.3.1 implies that

πw ∩B = l \ {w} for some T1-line l in πw.

Let π1, π2, π3 be the three secant planes through l. Then the points of B are

contained in (π1 ∪π2 ∪π3) \H. We claim that B = E(π1)∪E(π2)∪E(π3). Since
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|B| = 12, it is enough to show that no point of πi interior to Ci := Cπi is in B

for any i ∈ {1, 2, 3}. Suppose that, for some i, B contains a point z of πi which

is interior to Ci. Then each of the three lines through z and a point of l \ {w}

contains at least two points of B. This follows from the facts that z ∈ B, l is a

line of πi and l \ {w} is contained in B. Since z is an interior point, each such

line can not be tangent to Ci and so must be an external line by conditions (ii)

and (iii). This gives three external lines through z in πi, which is a contradiction.
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Chapter 4

Blocking sets in PG(3, q)

Let H be a fixed hyperbolic quadric in PG(3, q). As in the previous chapter, we

denote by E (respectively, T, S) the set of all lines of PG(3, q) which are external

(respectively, tangent, secant) with respect to H. Further, T = T0∪T1, where T0

is the set of tangent lines contained H and T1 is the set of tangent lines meeting

H in singletons. In this chapter, we discuss the minimum size L-blocking sets in

PG(3, q), where the line set L is one of E, T, S, T ∪ E, T ∪ S and E ∪ S.

Consider a line set L ∈ {E,T,S,T ∪ E,T ∪ S,E ∪ S}. Two L-blocking sets

B1 and B2 in PG(3, q) are said to be isomorphic if there is an automorphism of

PG(3, q) which stabilizes the quadric H and maps B1 to B2. For a given plane π

of PG(3, q), we set

Lπ := π ∩ L,

the set of lines of L which are contained in π. Note that if B is an L-blocking

set in PG(3, q), then π ∩B is an Lπ-blocking set in π. We shall use the following

fact mostly without mention.

Proposition 4.0.2. Let B be an L-blocking set in PG(3, q). If π0, π1, · · · , πq are
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the q + 1 planes of PG(3, q) through a given line l, then

|B| = |l ∩B|+
q∑
i=0

(|πi ∩B| − |l ∩B|).

4.1 S-blocking sets

In this section, we prove the following theorem which characterizes the minimum

size S-blocking sets in PG(3, q) for all q.

Theorem 4.1.1. Let B be an S-blocking set in PG(3, q). Then |B| > q2 + q.

Further, equality holds if and only if one of the following occurs:

(i) If B ⊆ H, then B = H \ l for some T0-line l.

(ii) If B \H 6= ∅ and B∩H 6= ∅, then B = (H\ (l0∪ l1))∪ (l \{w}), where l0, l1

are two T0-lines intersecting at the point w and l is a T1-line with tangency

point xl = w.

(iii) If B ∩H = ∅, then q ∈ {2, 3} and the following hold:

(a) q = 2 : B consists of all the six points outside H.

(b) q = 3 : B satisfies the three conditions (i)–(iii) of Theorem 3.3.1.

4.1.1 Proof of Theorem 4.1.1

Let B be an S-blocking set in PG(3, q). For any secant plane π of PG(3, q), Sπ

is the set of all secant lines contained in π with respect to the conic Cπ = π ∩H.

The following simple result is used frequently.

Lemma 4.1.2. Let π be any plane of PG(3, q). Then the following hold:

(i) |π ∩B| > q.
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(ii) If π is a tangent plane with pole x, then |π ∩B| = q if and only if π ∩B =

l \ {x} for some tangent line l through x (contained in π).

Proof. If π is a secant plane, then π∩B is an Sπ-blocking set in π. So |π∩B| > q

by Theorems 2.1.4 and 2.1.5. Assume that π = πx is a tangent plane for some

point x of H. Then all the lines of πx not passing through x are secant to H and

so π ∩B blocks each such line. The rest follows from Lemma 2.3.1.

Now on, suppose that the S-blocking set B is of minimum possible size.

Clearly, each of the sets defined in Theorem 4.1.1 is an S-blocking set of size

q2 + q. So |B| 6 q2 + q. Then, by Proposition 1.7.1, there exists at least one line

of PG(3, q) which is disjoint from B. We have the following.

Lemma 4.1.3. |B| = q2 + q

Proof. Let l be a line of PG(3, q) which is disjoint from B and π0, π1, · · · , πq be

the planes of PG(3, q) through l. By Lemma 4.1.2(i), we have |πi ∩ B| > q for

every i. Then

q2 + q > |B| =
q∑
i=0

|πi ∩B| > q(q + 1)

and so |B| = q2 + q.

As a consequence of the proof of Lemma 4.1.3, we have the following.

Corollary 4.1.4. If l is a line of PG(3, q) disjoint from B, then every plane

through l contains exactly q points of B.

Corollary 4.1.5. Let l ∈ T with l∩B = ∅ and x ∈ l∩H. If m (6= l) is a tangent

line through x containing at least one point of B, then πx ∩B = m \ {x}.

Proof. By Corollary 4.1.4, we have |πx ∩ B| = q. Since m ∩ B 6= ∅, Lemma

4.1.2(ii) implies that πx ∩B = m \ {x}.
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Lemma 4.1.6. There exists a T0-line which is disjoint from B.

Proof. Let l be a line of PG(3, q) which is disjoint from B. We may assume that

l is not a T0-line. Then l is necessarily an external line or a T1-line. Suppose that

l ∈ E. Let π be a secant plane through l. Then |π ∩ B| = q by Corollary 4.1.4.

Since π ∩B is an Sπ-blocking set in π, Theorem 2.1.7 implies that there exists a

T1-line in π disjoint from π ∩B (and hence from B).

So, without loss, we may assume that l itself is a T1-line. Then |πxl ∩B| = q

again by Corollary 4.1.4. So πxl∩B = l1\{xl} for some tangent line l1 through xl

by Lemma 4.1.2(ii). Then it follows that at least one of the two T0-lines through

xl is disjoint from B.

Lemma 4.1.7. Suppose that B * H. Then the following hold:

(i) There exist two intersecting T0-lines l0 and l1 which are disjoint from B.

(ii) If q > 4, then some point of H \ (l0 ∪ l1) is in B.

Proof. Let x be a point of B \ H. By Lemma 4.1.6, let l0 be a T0-line disjoint

from B. One of the q + 1 tangent planes through l0 contains x, say x ∈ πw for

some point w ∈ l0. Let l1 be the other T0-line through w, and l be the T1-line

through w and x. Since l0 ∩B = ∅ and x ∈ l∩B, applying Corollary 4.1.5 to the

triple (l0, w, l), we have πw ∩B = l \ {w}. It follows that l1 ∩B = ∅. This proves

(i).

Let m be a T1-line through w different from l. Such a line m exists for q > 3.

Consider a secant plane π through m. Since m ∩ B = ∅, we have |π ∩ B| = q

by Corollary 4.1.4. Thus π ∩ B is an Sπ-blocking set in π of size q. Since q > 4,

Corollary 2.1.6 implies that Cπ contains some point, say z, of π ∩ B. Since

w ∈ Cπ \B, we have z 6= w and it follows that z is a point in B ∩ (H \ (l0 ∪ l1)).

This proves (ii).
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Lemma 4.1.8. Let l0 and l1 be two intersecting T0-lines which are disjoint from

B. If B contains some point of H\ (l0 ∪ l1), then all points of H\ (l0 ∪ l1) are in

B.

Proof. Let x1 be a point in B ∩ (H \ (l0 ∪ l1)) and m be the T0-line through x1

intersecting l0 at some point, say x0. Since l0 ∩ B = ∅ and m ∩ B 6= ∅, applying

Corollary 4.1.5 to the triple (l0, x0,m), we get that m \ {x0} ⊆ B.

Let m = {x0, x1, x2, · · · , xq}. For 1 6 i 6 q, let mi be the T0-line through

xi intersecting l1 at the point, say yi. Since l1 ∩ B = ∅ and xi ∈ mi ∩ B, again

applying Corollary 4.1.5 to the triple (l1, yi,mi), we get that mi \ {yi} ⊆ B for

every i. Since H \ (l0 ∪ l1) is a disjoint union of the sets mi \ {yi}, it follows that

H \ (l0 ∪ l1) ⊆ B.

Lemma 4.1.9. Assume that q = 3 and B ∩ H = ∅. Let π be a secant plane.

Then the following hold:

(i) For every point x of H, one of the two T1-lines through x is disjoint from

B and the other one intersects B in three points.

(ii) If π ∩B contains some point of π exterior to Cπ, then every tangent line in

π meets B in three points. In particular, π ∩B contains all the six exterior

points to Cπ.

(iii) π ∩ B consists of either the three interior points or the six exterior points

to Cπ.

Proof. (i) Each T0-line through x is disjoint from B. So the statement follows

from Corollary 4.1.4 and Lemma 4.1.2(ii) applied to the tangent plane πx.

(ii) This follows from (i), using the fact that every exterior point in π with

respect to Cπ lies on two tangent lines contained in π.
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(iii) By Lemma 4.1.2(i), |π ∩B| > 3. If |π ∩ B| = 3, then B ∩ Cπ = ∅ implies

that π ∩ B consists of all the three interior points to Cπ by Corollary 2.1.6. If

|π ∩B| > 4, then π ∩B contains some point exterior to Cπ and so π ∩B conatins

all the six exterior points to Cπ by (ii). We show that |π ∩ B| = 6. Let l be a

T1-line in π with tangency point xl ∈ H. Then |l ∩B| = 3 by (ii). Since xl /∈ B,

the three secant lines through xl contained in π meet B at different points. So

every secant plane through l contains at least three points of B other than those

of l ∩ B. Since |B| = 12, it follows that every secant plane contains exactly six

points of B. In particular, |π ∩B| = 6.

We now prove Theorem 4.1.1 for the equality case.

Lemma 4.1.10. If |B| = q2 + q and B ⊆ H, then B = H \ l for some T0-line l.

Proof. By Lemma 4.1.6, there is a T0-line l disjoint from B. So B ⊆ H\ l. Since

|B| = q2 + q = |H \ l|, we must have B = H \ l.

Lemma 4.1.10 can also be seen without using Lemma 4.1.6. Let x, y be two

distinct points of H \ B. Since B ⊆ H and B blocks every secant line, the line

of PG(3, q) through x and y is not secant to H and so must be a T0-line. Thus

any two distinct points of H\B lie on a T0-line. Since |H \B| = q+ 1, it follows

that H \B itself is a T0-line l and hence B = H \ l.

Lemma 4.1.11. If |B| = q2 + q, B \H 6= ∅ and B ∩H 6= ∅, then B = (H\ (l0 ∪

l1))∪ (l \ {w}), where l0, l1 are two T0-lines intersecting at the point w and l is a

T1-line through w.

Proof. Since B * H, there exist two intersecting T0-lines l0, l1 which are disjoint

from B, by Lemma 4.1.7(i). Let l0 ∩ l1 = {w}. By Corollary 4.1.4, we have

|πw∩B| = q. So, by Lemma 4.1.2(ii), πw∩B = l \{w} for some T1-line l through
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w. Since B ∩H 6= ∅, it follows that H \ (l0 ∪ l1) contains some point of B and so

H \ (l0 ∪ l1) is contained in B by Lemma 4.1.8. Thus (H \ (l0 ∪ l1)) ∪ (l \ {w})

is contained in B. Since both sets have size q2 + q, we must have B = (H \ (l0 ∪

l1)) ∪ (l \ {w}).

Lemma 4.1.12. Let |B| = q2 + q and B ∩ H = ∅. Then q ∈ {2, 3} and the

following hold:

(i) If q = 2, then B consists of all the six points outside H.

(ii) If q = 3, then B satisfies the three conditions (i)–(iii) of Theorem 3.3.1.

Proof. Since B ∩ H = ∅, Lemma 4.1.7(ii) implies that q ∈ {2, 3}. Clearly, (i)

holds if q = 2. Assume that q = 3. Obviously B satisfies the condition (i) of

Theorem 3.3.1. Since B∩H = ∅, every point of B lies on 6 secant lines. Counting

the number of elements in {(x, l) : x ∈ B, l ∈ S, x ∈ l}, we get 12× 6 = |B| × 6 >

|S| = 72 and so equality should hold everywhere. It follows that each secant line

contains one point of B and so B satisfies the condition (iii) of Theorem 3.3.1.

Now let l be an external line and π be a secant plane through l. By Lemma

4.1.9(iii), π ∩ B consists of either the three interior points or the six exterior

points of π with respect to Cπ. Since l contains two interior points and two

exterior points to Cπ, it follows that |l∩B| = |l∩ (π ∩B)| = 2. So B satisfies the

condition (ii) of Theorem 3.3.1.

4.2 (T ∪ S)-blocking sets

In this section, we prove the following theorem which characterizes the minimum

size (T∪S)-blocking sets in PG(3, q) for all q. For any secant plane π of PG(3, q),

(T ∪ S)π is the set of all tangent and secant lines contained in π with respect to

the conic Cπ = π ∩H.

51



§4.3. E-blocking sets

Theorem 4.2.1. Let B be a (T ∪ S)-blocking set in PG(3, q). Then |B| >

q2 + q + 1, and equality holds if and only if B is a plane of PG(3, q).

Proof. Let B be an (T ∪ S)-blocking set in PG(3, q) of minimum possible size.

Then |B| 6 q2 + q+ 1 by Proposition 1.7.1. Let x be a point of H\B. There are

q2+q+1 lines of PG(3, q) through x. Each of the lines through x, being a tangent

or a secant to H, contains at least one point of B. This gives |B| > q2 + q + 1

and hence |B| = q2 + q + 1.

We show that B is plane of PG(3, q). By Proposition 1.7.1, it is enough to

show that every external line l meets B. For each secant plane π through l, the

set π ∩B is an (T ∪ S)π-blocking set in π. So |π ∩B| > q + 1 by Theorem 2.1.7.

If l is disjoint from B, then the q + 1 secant planes through l together contain

at least (q + 1)2 points of B, giving |B| > (q + 1)2 > q2 + q + 1, which is a

contradiction.

4.3 E-blocking sets

In this section, we prove the following theorem which characterizes the minimum

size E-blocking sets in PG(3, q).

Theorem 4.3.1. Let B be an E-blocking set in PG(3, q). Then |B| > q2 − q,

and equality holds if and only if B = π \H for some tangent plane π of PG(3, q).

We note that Theorem 4.3.1 was proved by Biondi et al. in [6, Theorem 1.1]

for q even and in [7, Theorem 2.4] for q odd, with exception of the equality case

for some small values of q, namely q ∈ {2, 3, 4, 5, 7}.

Here our aim is to give alternate proof of the equality case in Theorem 4.3.1

which works for all q, in particular for q ∈ {2, 3, 4, 5, 7}, so that we can use

them in the next two sections while studying the minimum size (E ∪ S)- and
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(T ∪ E)-blocking sets in PG(3, q). We give two separate proofs of Theorem 4.3.1

depending on q even or odd.

As in the proof of [6, Proposition 2.1] and [7, Proposition 2.1], by counting in

two ways the cardinality of the set {(x, l) : x ∈ B, l ∈ E, x ∈ l}, it follows that

|B| > q2−q with equality if and only if B∩H = ∅ and each external line contains

exactly one point of B. Thus the following hold:

Lemma 4.3.2. If B is an E-blocking set in PG(3, q) of minimum size q2 − q,

then B ∩H = ∅ and each external line contains exactly one point of B.

For any secant plane π of PG(3, q), Eπ is the set of all external lines contained

in π with respect to the conic Cπ = π ∩ H. If q is even and π = πx for some

x ∈ P \ H, then recall that the conic Cπ = Cπx is also denoted by Cx.

4.3.1 Proof of Theorem 4.3.1 for q even

Let B be an E-blocking set in PG(3, q), q even, of minimum size q2 − q. For any

secant plane πx, x ∈ P \H, the set πx ∩B is an Eπx-blocking set in πx. As in the

proof of [6, Proposition 2.3], by counting in two ways the cardinality of the set

{(y, l) : y ∈ πx ∩B, l ∈ Eπx , y ∈ l} , the following hold:

Lemma 4.3.3. Let πx, x ∈ P \ H, be a secant plane of PG(3, q). Then the

following hold.

(i) |πx ∩B| = q − 1 if and only if x /∈ B.

(ii) |πx ∩B| = q if and only if x ∈ B.

Note that if Lemma 4.3.3(ii) holds, then (πx ∩B) \ {x} is an Eπx-blocking set

in πx of minimum size q − 1. For any l ∈ T1, the tangency point xl ∈ H of l is

not in B as B ∩H is empty by Lemma 4.3.2.
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Lemma 4.3.4. Let l ∈ T1 be such that |l∩B| > 1. Then every line in T1 through

xl meets B.

Proof. Suppose that there exists a line l1 ∈ T1 through xl such that l1∩B = ∅. We

count the points of B contained in the planes through l1. The tangent plane πxl

through l1 contains at least one point of B (comes from l ∩B). Since l1 ∩B = ∅,

each of the q secant planes through l1 contains q − 1 points of B by Lemma

4.3.3(i). It follows that B contains at least 1 + q(q − 1) = q2 − q + 1 points, a

contradiction to the fact that |B| = q2 − q.

By Proposition 3.2.5, the point-line geometry X = (P,T) is a generalized

quadrangle of order q which is isomorphic to W (q). The lines of PG(3, q) are of

the form {x, y}⊥ for distinct x, y ∈ P, where {x, y}⊥ is in T or S ∪ E according

as y ∈ x⊥ or not. For l ∈ E (respectively, l ∈ S), we have l⊥ ∈ E (respectively,

l⊥ ∈ S).

Lemma 4.3.5. There exists a line in T1 containing at least two points of B.

Proof. Consider a line l in E. Then l⊥ is also in E. Since every external line

meets B at exactly one point, let {a} = l ∩ B and {b} = l⊥ ∩ B. Then the line

l1 through a and b is in T1 and |l1 ∩B| > 2.

Lemma 4.3.6. Let l be a line in T1 with |l ∩B| > 2. Then l ∩B = l \ {xl}.

Proof. Since xl /∈ B, we have l∩B ⊆ l \ {xl}. Clearly the lemma holds for q = 2.

Assume that q > 4. Suppose that there exists a point w in l\{xl} which is not in

B. Then |πw∩B| = q−1 by Lemma 4.3.3(i). So one of the three cases (i)–(iii) of

Theorem 2.1.2 holds for the Eπw-blocking set πw ∩B in πw of size q− 1. Since at

least two points of πw ∩B are on the same tangent line l in πw, Theorem 2.1.2(i)

does not occur for πw ∩B.
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Suppose that Theorem 2.1.2(ii) holds for πw∩B. Then the fact that |l∩B| > 2

implies πw∩B = l\{w, xl}. Let z ∈ πw∩B = l∩B. Then (πz∩B)\{z} is an Eπz -

blocking set in πz of minimum size q − 1. So again one of the three possibilities

(i)–(iii) of Theorem 2.1.2 holds for (πz ∩B) \ {z}. Since the line l in πz contains

q−1 points of B (which are outside the conic Cz), it follows that Theorem 2.1.2(ii)

must occur for (πz ∩ B) \ {z} and that (πz ∩ B) \ {z} = l \ {z, xl}. This gives

w ∈ B, a contradiction.

Now, suppose that q is a square and that Theorem 2.1.2(iii) holds for πw ∩B.

Then πw ∩B = Π \ ({w}∪ (Π∩Cw)), where Π is a Baer subplane of πw such that

Π∩Cw is an irreducible conic in Π (with nucleus w). Note that l contains at least

three points of Π \ (Π ∩ Cw), namely, w and at least two points of πw ∩ B. This

implies that l1 := l∩Π is a tangent line of Π and so q > 16. Thus l∩B = l1\{w, xl}

is of size
√
q − 1.

Let u ∈ l ∩ B. Then (πu ∩ B) \ {u} is an Eπu-blocking set in πu of minimum

size q − 1. Since q > 16 and |l ∩ B| =
√
q − 1, it can be seen that Theorem

2.1.2(iii) must hold for (πu ∩B) \ {u}. Let

(πu ∩B) \ {u} = Π′ \ ({u} ∪ (Π′ ∩ Cu)),

where Π′ is a Baer subplane of πu such that Π′ ∩ Cu is an irreducible conic in Π′

(with nucleus u). Since l2 := l∩Π′ is a tangent line of Π′ (as l∩B ⊆ Π′\(Π′∩Cu))

and u ∈ l ∩ B, it follows that l2 ∩ B = l2 \ {xl} is of size
√
q. This implies that

|l ∩B| = √q, a contradiction. Therefore, l ∩B = l \ {xl}.

The following lemma proves the equality case of Theorem 4.3.1 for all even q.

Lemma 4.3.7. B = π \ H for some tangent plane π.
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Proof. By Lemmas 4.3.5 and 4.3.6, consider a line l ∈ T1 such that l∩B = l\{xl}.

We claim that B = πxl \ H. This is clear if q = 2. Assume that q > 4.

Let l = l1, l2, · · · , lq−1 be the q − 1 lines in T1 through xl. Since |B| = q2 − q,

it is enough to show that li ∩ B = li \ {xl} for each i, 2 6 i 6 q − 1. By Lemma

4.3.4, we have |li ∩B| > 1. Let

t = min{|li ∩B| : 2 6 i 6 q − 1}.

Then 1 6 t 6 q as xl /∈ B. We show that t = q and this would complete the

proof. Consider a line lk, 2 6 k 6 q − 1, such that |lk ∩B| = t. Let

lk = {xl = x0, x1, · · · , xt, xt+1, · · · , xq},

where lk ∩ B = {x1, · · · , xt}. We count the points of B contained in the planes

through lk. The tangent plane πxl through lk contains at least q+ t(q− 2) points

of B. By Lemma 4.3.3(ii), each of the t secant planes πxi , 1 6 i 6 t, contains

at least q − t points of B different from the points of lk ∩ B. Again, by Lemma

4.3.3(i), each of the remaining q − t secant planes πxi , t + 1 6 i 6 q, contains

at least q − 1 − t points of B different from that of lk ∩ B. Thus all the planes

through lk together contain at least

q + t(q − 2) + t(q − t) + (q − t)(q − 1− t) = q2 − t

points of B and so q2 − t 6 |B| = q2 − q. This gives t > q and hence t = q.

4.3.2 Proof of Theorem 4.3.1 for q odd

Let B be an E-blocking set in PG(3, q), q odd, of minimum size q2 − q.
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Lemma 4.3.8. For any external line l of PG(3, q), exactly one of the planes

through l contains q points of B and each of the remaining planes contains q − 1

points of B.

Proof. Let π0, π1, · · · , πq be the q + 1 planes through l. Then each πi is a secant

plane and πi ∩B is an Eπi-blocking set in πi. By Theorem 2.1.1, |πi ∩B| > q− 1

for each i. Now the lemma follows from the three facts that B =
q⋃
i=0

(πi ∩ B),

|l ∩B| = 1 and |B| = q2 − q.

Lemma 4.3.9. Let π be a secant plane of PG(3, q). Then the following hold:

(i) |π ∩B| = q − 1 or q.

(ii) If |π∩B| = q− 1, then π∩B = l \Cπ for some secant line l contained in π.

(iii) If |π ∩B| = q, then each point of π ∩B is exterior in π with respect to Cπ.

Proof. Considering an external line l contained in π, (i) follows from Lemma

4.3.8. We prove (ii) and (iii).

Let α (respectively, β) denote the number of points of π∩B which are interior

(respectively, exterior) in π with respect to Cπ. Since B ∩ Cπ = B ∩ H = ∅, we

have α + β = |π ∩B|. Consider the following set of point-line pairs:

X = {(x, l) : x ∈ π ∩B, l ∈ Eπ, x ∈ l}.

Counting |X| in two ways, we get

α

(
q + 1

2

)
+ β

(
q − 1

2

)
= |X| = q(q − 1)

2
.

This gives

(α + β)q + α− β = q(q − 1). (4.3.1)
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If |π∩B| = q−1, then putting α+β = q−1 in equation (4.3.1), we get α = β.

Thus, half of the points of π ∩B are interior and the other half are exterior with

respect to Cπ. Then (ii) follows from Theorem 2.1.1, since π∩B is an Eπ-blocking

set in π of minimum size q − 1.

If |π ∩ B| = q, then we have α + β = q. Then equation (4.3.1) implies that

α − β = −q. It follows that α = 0 and β = q. Thus, all the points of π ∩ B are

exterior with respect to Cπ, implying (iii).

As a consequence of Lemmas 4.3.8 and 4.3.9(ii), we have the following.

Corollary 4.3.10. There exists a secant line l such that l \H is contained in B.

The following lemma proves the equality case of Theorem 4.3.1 for all odd q.

Lemma 4.3.11. B = π \ H for some tangent plane π.

Proof. Consider a secant l such that l\H is contained in B and the planes through

it. Let π be a secant plane through l. By Lemma 4.3.9(i), we have |π∩B| = q−1

or q. Since half of the points of l \ H = l \ Cπ are interior in π with respect to

Cπ, Lemma 4.3.9(iii) implies that |π ∩ B| 6= q. So |π ∩ B| = q − 1 and hence

π ∩B = l \ H.

Thus π ∩ B = l \ H for every secant plane π through l. It follows that

the points of B \ l are contained in the two tangent planes through l. Since

|B \ l| = q2 − q − (q − 1) = (q − 1)2, one of the tangent planes through l,

say π0, contains at least (q − 1)2/2 points of B \ l. Then π0 contains at least

q − 1 + (q − 1)2/2 = (q2 − 1)/2 points of B and so |B \ π0| 6 (q − 1)2/2.

We claim that B = π0 \ H. It is enough to show that each point of π0 \ H

is in B. On the contrary, suppose that there exists a point x ∈ π0 \ H which is

not in B. There are q(q − 1)/2 external lines through x and each of them meets

B at a unique point outside π0. This defines an injective map from the set of
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external lines through x to the set B \ π0. But such a map is not possible, since

q(q − 1)/2 > (q − 1)2/2 > |B \ π0|, a contradiction. Therefore B = π0 \ H.

4.4 (E ∪ S)-blocking sets

In this section, we prove the following theorem which characterizes the minimum

size (E∪S)-blocking sets in PG(3, q) for all q. For any secant plane π of PG(3, q),

(E ∪ S)π denotes the set of all external and secant lines of PG(3, q) contained in

π. Then (E ∪ S)π is precisely the set of all external and secant lines in π with

respect to the conic Cπ = π ∩H.

Theorem 4.4.1. Let B be an (E∪S)-blocking set in PG(3, q). Then the following

hold:

(i) If q ∈ {2, 3}, then |B| > q2 + q.

(ii) If q = 2, then |B| = 6 if and only if one of the following two cases occurs:

(a) B consists of all the six points outside H.

(b) B = (H\ (l0∪ l1))∪ (l \ {w}), where l0, l1 are two T0-lines intersecting

at the point w ∈ H and l is the unique T1-line through w.

(iii) If q = 3, then |B| = 12 if and only if B satisfies the three conditions (i)–(iii)

of Theorem 3.3.1.

(iv) If q > 4, then |B| > q2 +q+1, and equality holds if and only if B is a plane

of PG(3, q).

Remark 4.4.1. Theorem 4.4.1 was proved by Sahoo and Sastry in [36, Theorem

1.3] for even q > 4 using the properties of the generalized quadrangle X = (P,T) '
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W (q). Here we give an alternate proof which works for all q irrespective of q even

or odd.

4.4.1 Proof of Theorem 4.4.1

LetB be an (S∪E)-blocking set in PG(3, q) of minimum possible size. Considering

B as an S-blocking set, we have |B| > q2 + q by Theorem 4.1.1 and so

q2 + q 6 |B| 6 q2 + q + 1

by Proposition 1.7.1. Since B \ H is an E-blocking set, we have

|B \ H| > q2 − q (4.4.1)

by Theorem 4.3.1. First assume that q ∈ {2, 3}. Observe that the S-blocking sets

of size q2 + q in Theorem 4.1.1(iii) are also (S∪E)-blocking sets. So |B| = q2 + q,

proving Theorem 4.4.1(i). Then again Theorem 4.1.1 together with the fact that

B blocks every external line imply Theorem 4.4.1(ii) and (iii).

For the rest of this section, we assume that q > 4. Then |B| = q2 + q + 1.

Otherwise, B is a set of the form as defined in Theorem 4.1.1(i) and (ii) and this

would imply |B \ H| 6 q, contradicting the Inequality (4.4.1) as q > 4.

We prove two results for q even, which are needed to show that any secant

plane contains at least q + 1 points of B.

Lemma 4.4.2. Suppose that q is even. Let l be a tangent line containing a point

y which is not in B. Then for every x ∈ l \ {y}, πx ∩B contains at least q points

different from the points of l ∩B.

Proof. Let m be one of the q lines through y in πx different from l. If πx is a
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secant plane with l ∩ H 6= {y}, then m is secant or external to Cπx in πx (and

hence to H). If πx is a secant plane with l ∩H = {y} or if πx is a tangent plane,

then m is secant to H. In all cases, B blocks each such line m. Since y /∈ B, it

follows that πx ∩B contains at least q points other than those of l ∩B.

Lemma 4.4.3. Suppose that q is even and let x ∈ B∩H. If there exists a tangent

line l through x with |l ∩ B| = q, then every tangent line through x contains at

least q points of B. In particular, |πx ∩B| > q2.

Proof. Let m be a tangent line through x different from l. Since l has a point

not in B, Lemma 4.4.2 implies that the tangent plane πx through l (and hence

through m) contains at least 2q points of B. Suppose that |m∩B| 6 q−1. Then

applying Lemma 4.4.2 again carefully to the line m, it follows that each of the

q planes πz, z ∈ m \ {x}, through m contains at least q points of B different

from the points of m ∩ B. Thus all the planes through m together contain at

least 2q + q2 points of B. This gives |B| > q2 + 2q > q2 + q + 1, which is a

contradiction.

Lemma 4.4.4. Let π be any plane of PG(3, q). Then the following hold:

(i) If π is a tangent plane with pole x, then |π ∩ B| > q, and equality holds if

and only if π ∩B = l \ {x} for some tangent line l through x.

(ii) If π is a secant plane, then |π ∩B| > q + 1.

Proof. (i) This follows from Lemma 4.1.2, considering B simply as an S-blocking

set in PG(3, q).

(ii) Here π ∩ B is an (S ∪ E)π-blocking set in π. If q > 5 is odd, then

|π ∩B| > q + 1 by Theorem 2.2.3(ii). Assume that q > 4 is even. Let π = πx for

some point x ∈ P \ H. By Theorem 2.2.2, we have |πx ∩ B| > q. We show that

|πx ∩B| > q + 1.
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Suppose that |πx ∩B| = q. Then πx ∩B = l \ {x} for some T1-line l through

x, again by Proposition 2.2.2. Let l = {x0, x1, · · · , xq−1, xq = x} with tangency

point xl = x0 ∈ H. By Lemma 4.4.2, each of the secant planes πxi , 1 6 i 6 q− 1,

through l contains at least q points of B other than those of l ∩ B. By Lemma

4.4.3, we have |πx0 ∩ B| > q2. It follows that all the planes through l together

contain at least q2+(q−1)q points of B. This gives |B| > q2+(q−1)q > q2+q+1

as q > 4, which is a contradiction.

Lemma 4.4.5. Every T1-line meets B.

Proof. Consider a T1-line l. Let π0 be the tangent plane and π1, π2, ..., πq be the

secant planes through l. By Lemma 4.4.4, we have |π0∩B| > q and |πi∩B| > q+1

for 1 6 i 6 q. If l is disjoint from B, then it follows that |B| > q + q(q + 1) >

q2 + q + 1, which is a contradiction.

Lemma 4.4.6. Every T0-line meets B.

Proof. Let m be a T0-line. Suppose that m is disjoint from B. By Lemma 4.4.4(i),

each of the q+ 1 tangent planes through m contains at least q points of B. Since

|B| = q2 +q+1, one of them contains q+1 points of B and each of the remaining

q planes meets B in q points. Consider a plane πx, x ∈ m, containing q points of

B. By Lemma 4.4.4(i) again, πx ∩ B = l \ {x} for some tangent line l through

x. Since q > 4, it follows that there exists a T1-line through x which is disjoint

from B, which is a contradiction to Lemma 4.4.5.

The following lemma proves Theorem 4.4.1(iv).

Lemma 4.4.7. B is a plane of PG(3, q).

Proof. By Lemmas 4.4.5 and 4.4.6, every tangent lines meets B. Since B blocks

every external and secant lines, it follows that B blocks every line of PG(3, q).

Then |B| = q2+q+1 implies that B is plane of PG(3, q) by Proposition 1.7.1.
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4.5 (T ∪ E)-blocking sets

In this section, we prove the following theorem which characterizes the minimum

size (T ∪ E)-blocking sets in PG(3, q) for all q.

Theorem 4.5.1. Let B be a (T∪E)-blocking set in PG(3, q). Then |B| > q2 + q

and the following hold for the equality case:

(i) If q = 2, then |B| = 6 if and only if one of the following occurs:

(a) B = π \ {x} for some tangent plane π with pole x ∈ H.

(b) B = O ∪ {α}, where O is a an ovoid of the generalized quadrangle

X = (P,T) ' W (2) of order 2 and α ∈ P \ H is such that the unique

external line through α is disjoint from O.

(ii) If q > 3, then |B| = q2 + q if and only if B = π \ {x} for some tangent

plane π with pole x ∈ H.

We give a proof of Theorem 4.5.1 for all even q. However, the arguments used

for q even can not be extended to odd q. We then give a proof of Theorem 4.5.1

for all q > 3 irrespective of q even or odd. We first prove a few basic results which

are independent of the parity of q.

LetB be an (E∪T)-blocking set in PG(3, q) of minimum possible size. Observe

that, for every point x of H, the set πx \ {x} is an (E ∪ T)-blocking set of size

q2 + q. So

|B| 6 q2 + q. (4.5.1)

Since B ∩ H blocks every T0-line, we have |B ∩ H| > q + 1. Every external

line meets B outside H. So B \ H is an E-blocking set in PG(3, q) and hence
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|B \ H| > q2 − q by Theorem 4.3.1. Thus, we have

q2 − q 6 |B \ H| 6 q2 − 1 (4.5.2)

and

q + 1 6 |B ∩H| 6 2q. (4.5.3)

For a given T1-line l, recall that xl is the tangency point of l in H. Let T

denote the set of all T1-lines l such that |l ∩B| = 1 and xl 6∈ B.

Lemma 4.5.2. T is nonempty.

Proof. Let R be the set of all T1-lines l for which xl 6∈ B. For every point x of

H, there are q − 1 T1-lines through x. Using the upper bound for |B ∩H| given

in the inequality (4.5.3), we get

|R| =
[
(q + 1)2 − |B ∩H|

]
(q − 1) > (q2 + 1)(q − 1). (4.5.4)

Suppose that T is empty. Then each line of R meets B in at least two points.

Consider the set

Z = {(x, l) : x ∈ B, l ∈ T, x ∈ l}.

Counting |Z| in two ways, we get

|B|(q + 1) = |Z| > 2|R|+ |T \R| = |R|+ |T|.

Since |B| 6 q2 + q and |T| = (q + 1)(q2 + 1), it follows that |R| 6 q2 − 1, which

is a contradiction to the inequality (4.5.4). So T is nonempty.

For any secant plane π of PG(3, q), (T ∪ E)π denotes the set of all tangent
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and external lines of PG(3, q) contained in π. Then (T ∪ E)π is precisely the set

of all tangent and external lines in π with respect to the conic Cπ = π ∩H.

Lemma 4.5.3. Let π be any plane of PG(3, q). Then the following hold:

(i) If π is a secant plane, then |π ∩B| > q.

(ii) If π = πx is a tangent plane for some point x in H\B, then |π∩B| > q+1.

Proof. (i) The set π ∩ B is a (T ∪ E)π-blocking set in π. So |π ∩ B| > q by

Theorems 2.1.10 and 2.1.11.

(ii) This follows from the facts that x /∈ B and that each of the q + 1 tangent

lines through x in πx meets B.

Lemma 4.5.4. For every l ∈ T, there exists a secant plane through l containing

exactly q points of B.

Proof. Suppose that this is not the case. By Lemma 4.5.3, we then know that

each of the q secant planes through l contains at least q + 1 points of B and the

tangent plane through l contains at least q + 1 points of B (as xl /∈ B). Using

the fact that |l ∩B| = 1, it follows that all the planes through l together contain

at least (q + 1)q + 1 = q2 + q + 1 points of B, which is a contradiction to the

inequality (4.5.1).

As a consequence of Lemmas 4.5.2 and 4.5.4, we have the following.

Corollary 4.5.5. There exists a secant plane containing exactly q points of B.

Note that there are lines secant to H which are disjoint from B. Otherwise,

|B| > q2 + q + 1, as B would be a blocking set with respect to all the lines of

PG(3, q).
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Lemma 4.5.6. Let l be a secant line disjoint from B. If πc and πd, for points

c, d of H, are the two tangent planes through l, then at least one of c and d is in

B.

Proof. Suppose that none of c and d is in B. By Lemma 4.5.3, each of πc and πd

contains at least q + 1 points of B and each of the q − 1 secant planes through

l contains at least q points of B. Since l ∩ B is empty, we get |B| > 2(q + 1) +

q(q − 1) = q2 + q + 2, which is a contradiction to the inequality (4.5.1).

4.5.1 Proof of Theorem 4.5.1 for q even

Here, we prove Theorem 4.5.1 for all q even. We need the following lemmas.

Lemma 4.5.7. If x ∈ P \B, then |πx ∩B| > q + 1.

Proof. This follows, since x /∈ B and each of the q+1 tangent lines in πx through

x meets B.

Lemma 4.5.8. |B| = q2 + q.

Proof. By Lemma 4.5.2, consider a line l = {xl = x0, x1, · · · , xq} of T. We

count the points of B contained in the planes through l. We may assume that

l∩B = {xq}. By Lemma 4.5.7, each of the planes πxi (0 6 i 6 q− 1) contains at

least q+ 1 points of B. By Lemma 4.5.3, the secant plane πxq contains at least q

points of B. This gives

q2 + q > |B| = 1 +

q∑
i=0

(|πxi ∩B| − 1) > 1 + q2 + q − 1 = q2 + q. (4.5.5)

The first equality holds, since πxi ∩ πxj = l for 0 6 i 6= j 6 q and |l ∩ B| = 1.

It follows that equality should hold everywhere in the inequality (4.5.5) and so

|B| = q2 + q.
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Using the fact that |B| = q2 + q, we have the following as a consequence of

the proof of Lemma 4.5.8.

Corollary 4.5.9. Let l ∈ T and x ∈ l. Then |πx ∩ B| = q or q + 1 according as

{x} = l ∩B or not. In particular, the folowing hold:

(i) If {x} 6= l ∩ B, then each of the tangent lines through x contains exactly

one point of B.

(ii) If {x} = l ∩B, then the conic Cx = πx ∩H in πx is disjoint from B.

Proof. Only (ii) needs a proof. The set πx ∩ B is a (T ∪ E)πx-blocking set in πx

of minimum size q. So Cx is disjoint from πx ∩B (and hence from B) by Lemma

2.3.2(a).

Lemma 4.5.10. Let l and m be two T0-lines intersecting at a point x0. If |l∩B| =

1 and |m ∩B| > 2, then x0 ∈ B.

Proof. Suppose that x0 /∈ B. Let l = {x0, x1, · · · , xq}. We may assume that

l∩B = {xq}. There are (q−1) T1-lines through x0. Since |m∩B| > 2, Corollary

4.5.9(i) implies that none of these lines through x0 is in T, and so each such line

meets B in at least two points. This gives that the tangent plane πx0 through

l contains at least 2q + 1 points of B. By Lemma 4.5.3(ii), each of the tangent

planes πxi , 1 6 i 6 q− 1, through l contains at least q+ 1 points of B. It follows

that the planes πxi , 0 6 i 6 q − 1, through l together contain at least

2q + 1 + (q − 1)q = q2 + q + 1

points of B, a contradiction to Lemma 4.5.8. So x0 ∈ B.

Lemma 4.5.11. Every T0-line contains one or q points of B.
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Proof. Let m = {x0, x1, · · · , xq} be a T0-line containing at least two points of B.

Fix a line l = {y0, y1, · · · , yq} of T. We may assume that the tangency point of l is

y0 and l∩B = {yq}. Since |m∩B| > 2, by Corollary 4.5.9(i), m is different from

the two T0-lines through y0. Let l1 be the T0-line through y0 which intersects m.

Then |l1∩B| = 1, again by Corollary 4.5.9(i). We may assume that m∩l1 = {x0}.

Note that the conics Cyj = πyj ∩ H, 1 6 j 6 q, pairwise intersect at y0 and each

of them contains a unique point, say xj, of m \ {x0}. Since l ∩ B = {yq}, the

conic Cyq is disjoint from B by Corollary 4.5.9(ii). So xq /∈ B.

We claim that m \{xq} is contained in B. Since |l1∩B| = 1, |m∩B| > 2 and

m∩ l1 = {x0}, Lemma 4.5.10 implies that x0 ∈ B. We next show that xi ∈ B for

1 6 i 6 q − 1. Let mi be the tangent line through xi and yi. Since l ∩B 6= {yi},

mi contains exactly one point of B by Corollary 4.5.9(i). If mi ∩B 6= {xi}, then

mi ∈ T as xi is the tangency point of mi. Applying Corollary 4.5.9(i) again to

the line mi, it follows that every tangent line through xi, and in particular, m

contains exactly one point of B. This leads to a contradiction to our assumption

that |m ∩B| > 2. Thus mi ∩B = {xi} and so xi ∈ B.

Lemma 4.5.12. If q > 4, then there exists a T0-line containing q points of B.

Proof. By Lemma 4.5.11, it is enough to show that there exists a T0-line contain-

ing at least two points of B.

Let πx, x ∈ P \ H, be a secant plane containing q points of B. The existence

of such a plane follows from Corollary 4.5.5. We have x ∈ B, otherwise |πx∩B| >

q+1 by Lemma 4.5.7. The set πx∩B is a (T∪E)πx-blocking set in πx of minimum

size q. So, for some w ∈ Cx, there exists three lines l1, l2, l3 in πx through w which

are secant to Cx (and hence to H) and disjoint from πx ∩B (and hence from B).

This is possible by Lemma 2.3.2(b) as q > 4. By Lemma 4.5.6, B contains a point

zi ∈ H, where πzi is one of the two tangent planes through li for i ∈ {1, 2, 3}. The
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points z1, z2, z3 are pair-wise distinct and each of them lies on a T0-line through

w. It follows that one of the two T0-lines through w contains at least two points

of B.

Lemma 4.5.13. If q > 4, then B ∩H = (l∪m) \ {x} for some T0-lines l and m

intersecting at x. In particular, |B ∩H| = 2q and |B \ H| = q2 − q.

Proof. By Lemma 4.5.12, let l be a T0-line containing q points of B. Let {x} =

l \ B and m be the other T0-line though x. We have |m ∩ B| > 1. Since x /∈ B,

Lemma 4.5.10 implies that |m ∩ B| > 2 and so |m ∩ B| = q by Lemma 4.5.11.

Since |B ∩ H| 6 2q, it follows that B ∩ H = (l ∪m) \ {x}. Thus |B ∩ H| = 2q

and hence |B \ H| = q2 − q as |B| = q2 + q.

Proof of Theorem 4.5.1(ii)

Lemma 4.5.14. If q > 4, then B = πx \ {x} for some tangent plane πx, x ∈ H.

Proof. By Lemma 4.5.13, let B ∩ H = (l0 ∪ l1) \ {x}, where l0 and l1 are two

T0-lines intersecting at a point x. We claim that B \H = πx \H. Let l2, · · · , lq be

the T1-lines through x. Since |B \ H| = q2 − q by Lemma 4.5.13, it is enough to

show that li ∩B = li \ {x} for each 2 6 i 6 q. We shall apply a similar argument

as in the proof of Lemma 4.3.7.

We have 1 6 |li ∩ B| 6 q. If |lj ∩ B| = 1 for some j with 2 6 j 6 q, then

Corollary 4.5.9(i) would imply that each of the T0-lines l0 and l1 meets B at

exactly one point, which is not possible. So |li ∩B| > 2. Let

t = min{|li ∩B| : 2 6 i 6 q}.

We show that t = q and this would complete the proof. Consider a line lk,

69



§4.5. (T ∪ E)-blocking sets

2 6 k 6 q, such that |lk ∩B| = t. Let

lk = {x = x0, x1, · · · , xt, xt+1, · · · , xq},

where lk ∩ B = {x1, · · · , xt}. Now consider the planes through lk and count the

points of B contained in them. The tangent plane πx0 contains at least 2q+t(q−1)

points of B. By Lemma 4.5.3(i), each of the secant planes πxi , 1 6 i 6 t, contains

at least q − t points of B different from the points of lk ∩ B. By Lemma 4.5.7,

each of the remaining planes πxi , t+ 1 6 i 6 q, contains at least q + 1− t points

of B different from that of lk ∩ B. Thus the planes through lk together contain

at least

2q + t(q − 1) + t(q − t) + (q − t)(q + 1− t) = q2 + 3q − 2t

points of B and so q2 + 3q − 2t 6 |B| = q2 + q. This gives t > q and so t = q.

This completes the proof of Therem 4.5.1(ii).

Proof of Theorem 4.5.1(i)

We first justify the statement of Theorem 4.5.1(i)(b). We have |E| = 2. Let l1

and l2 be the two lines external to H. Then P \ H = l1 ∪ l2 and lζi = lj for

{i, j} = {1, 2}, where ζ is the symplectic polarity associated with H. Let O be

an ovoid of the generalized quadrangle X = (P,T) ' W (2) (Proposition 3.2.5).

Then |O| = 5. By [33, 1.8.4], (|l1∩O|, |l2∩O|) = (0, 2) or (2, 0). We may assume

that (|l1 ∩ O|, |l2 ∩ O|) = (2, 0). Then, for any α ∈ l2, it is clear that the set

B2 = O ∪ {α} is a (T ∪ E)-blocking set in PG(3, 2) of size 6. Since O ∩H is an

ovoid of H, we have |B2 ∩H| = 3 and so |B2 \ H| = 3.
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We now prove Theorem 4.5.1(i). So assume that q = 2 and |B| = 6. We have

(|B \ H|, |B ∩H|) = (2, 4) or (3, 3).

First assume that (|B \ H|, |B ∩ H|) = (2, 4). Since q = 2 and |B ∩ H| = 4,

it is clear that there exists a T0-line l0 containing exactly two points of B. Let

{x} = l0\B and l1 be the other T0-line though x. We have 1 6 |l1∩B| 6 2. Since

x /∈ B, Lemma 4.5.10 implies that |l1∩B| = 2. So B∩H = (l0∪l1)\{x}. Let l2 be

the unique T1-line through x. Then 1 6 |l2 ∩B| 6 2. Since |πx ∩B| > 5 > q+ 1,

Corollary 4.5.9 implies that l2 /∈ T and so |l2 ∩B| = 2. Thus B \ H = l2 \ {x} as

|B \ H| = 2 and hence B = πx \ {x}.

Now assume that (|B \ H|, |B ∩ H|) = (3, 3). Then B ∩ H is an ovoid of H.

There exists a unique ovoid O of X = (P,T) ' W (2) containing B ∩ H. Note

that O ∩H = B ∩H. We show that O is contained in B. Let x ∈ O \ (B ∩H).

Suppose that x /∈ B. Since |πx ∩B| > 3 and the conic Cx is disjoint from B ∩H,

it follows that |πx ∩ B| = 3 and so πx ∩ B is the unique line in πx which is

external with respect to Cx (and hence to H). Since |B| = 6, we must have

B = (B ∩H) ∪ (πx ∩B). Then the other external line through x is disjoint from

B, contradicting that B blocks every external line. Thus O ⊆ B. As mentioned

in the above paragraph in which the statement of Theorem 4.5.1(i)(b) is justified,

exactly one of the two external lines to H, say l1, is disjoint from O. Since l1

meets B, let α ∈ l1∩B. Then, |B| = 6 implies that B = O∪{α}. This completes

the proof of Therem 4.5.1(i).

4.5.2 Proof of Theorem 4.5.1 for all q > 3

Here, we prove Theorem 4.5.1 for all q > 3 irrespective of q even or odd.

By Corollary 4.5.5, let π be any secant plane of PG(3, q) containing exactly

q points of B. Since π ∩ B is a minimum size (T ∪ E)π-blocking set in π, there
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are three possibilities for π ∩B by Theorems 2.1.10 and 2.1.11:

(I) π ∩B = l \ {xl} for some tangent line l contained in π;

(II) π ∩ B = (l \ Cπ) ∪ {α} for some secant line l in π, where α is the pole of l

if q is odd and the nucleus of Cπ if q is even;

(III) q is a square and π ∩ B = Π \ (Π ∩ Cπ), where Π is a Baer subplane of π

such that Π ∩ Cπ is an irreducible conic in Π.

Lemma 4.5.15. Possibility (I) occurs for every secant plane that contains q

points of B.

Proof. Suppose that π is a secant plane containing q points of B for which possi-

bility (I) does not occur. The number of secant lines in π that are disjoint from

π ∩ B is then equal to 2(q − 1) or (
√
q + 1)(q −√q) =

√
q(q − 1) depending on

whether possibility (II) or (III) occurs. Each of these secant lines is contained in

exactly two tangent planes, implying that the number of points a ∈ H \ Cπ for

which πa∩π is a secant line disjoint from π∩B is equal to 4(q−1) or 2
√
q(q−1).

Since |B ∩ H| 6 2q by equation (4.5.3) and 2q < min{4(q − 1), 2
√
q(q − 1)} for

q > 3, there exists a point a∗ ∈ H \ (B ∪ Cπ) such that l∗ := πa∗ ∩ π is a secant

line disjoint from π ∩B.

There are q−1 secant planes through l∗. For each such plane π′, the set π′∩B

(disjoint from l∗) is a (T ∪ E)π′-blocking set in π′ and so π′ ∩B contains at least

q points of B \ H by Lemma 2.3.3. As a∗ 6∈ B, the tangent plane πa∗ through l∗

contains at least q−1 points of B \H. Hence, |B \H| > (q−1)q+ q−1 = q2−1.

As |B \ H| 6 q2 − 1 by equation (4.5.2), we thus have that |B \ H| = q2 − 1. As

|B| 6 q2 + q and q + 1 6 |B ∩H| by equations (4.5.1) and (4.5.3), we then know

that |B| = q2 + q and |B ∩H| = q + 1.
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As mentioned above, there are 2(q− 1) or
√
q(q− 1) secant lines in π disjoint

from π ∩ B. For each such secant line l, we know from Lemma 4.5.6 that there

exists a point a ∈ B ∩ H for which πa ∩ π = l. In this way, we get a collection

of N ∈ {2(q − 1),
√
q(q − 1)} points of B ∩ H. Since N 6 |B ∩ H| = q + 1 and

q > 3, we find that q = 3 and that possibility (II) occurs for the secant plane π.

We thus have that q = 3, |B| = q2 + q = 12, |B \ H| = q2 − 1 = 8 and

|B ∩H| = q + 1 = 4 (so B ∩H is an ovoid of H). Moreover, for each of the four

secant lines l contained in π and disjoint from π ∩B, there exists a unique point

a ∈ B ∩ H for which πa ∩ π = l and a unique point b ∈ H \ (B ∪ Cπ) for which

πb ∩ π = l. Among the eight points of B \ H, there are two contained in πb and

six contained in the two secant planes through l (recall Lemma 2.3.3). So, the

tangent plane πa through l cannot contain further points of B \ H.

As l ranges over all four secant lines of π disjoint from π ∩ B, the point a

will range over all four points of B ∩ H. As none of the four tangent planes πa,

a ∈ B ∩H, contains points of B \ H, we thus have:

(∗) any T1-line through a point of B ∩H does not contain points of B \ H.

For every point x of PG(3, 3) \ H, the conic Cx in xζ is an ovoid of H. The

map x 7→ Cx from PG(3, 3) \ H to the set of ovoids of H is a bijection (see the

first section of Chapter-III). Any two distinct ovoids of H intersect in at most two

points. If x1 and x2 are two distinct points of PG(3, 3)\H, then x1x2 is a tangent,

secant or external line whenever |Cx1 ∩ Cx2| is equal to 1, 2 or 0, respectively. By

(∗), we have

For every x ∈ B \ H, the ovoid Cx is disjoint from B ∩H.

We can now label the points ofH by xij, where i, j ∈ {1, 2, 3, 4}, such that two

distinct points xij and xi′j′ ofH are incident with a T0-line if either i = i′ or j = j′.
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Without loss of generality, we may suppose that B∩H = {x11, x22, x33, x44}. Then

the ovoids of H disjoint from B ∩H are the following:

O1 = {x12, x21, x34, x43}, O2 = {x13, x31, x24, x42}, O3 = {x14, x41, x23, x32},

O4 = {x12, x24, x31, x43}, O5 = {x12, x23, x34, x41}, O6 = {x13, x24, x32, x41},

O7 = {x13, x21, x34, x42}, O8 = {x14, x21, x32, x43}, O9 = {x14, x23, x31, x42}.

The collection {Cx | x ∈ B \ H} consists of eight of these nine ovoids. So, one of

the above ovoids is missing in this collection.

Suppose one of the ovoids O1, O2 and O3 is missing in the above collection.

Without loss of generality, we may suppose that O1 is the ovoid that is missing.

Since O4∩O5 = {x12} is a singleton, the two points of PG(3, 3)\H corresponding

to O4 and O5 lie on the same T1-line through x12. Then the other T1-line through

x12 would not contain any point of B, a contradiction.

Suppose one of the ovoids O4, O5, . . . , O9 is missing in the above collection.

Without loss of generality, we may suppose that O4 is the ovoid that is missing.

The ovoids O4 = {x12, x24, x31, x43} and O′ := {x11, x23, x34, x42} are disjoint and

hence correspond to points y4 and y′ of PG(3, 3) \ H such that the line y4y
′ is

external. Denote by y′′ and y′′′ the other two points of the line y4y
′, and by O′′

and O′′′ the corresponding ovoids of H. Then {O4, O
′, O′′, O′′′} is a partition of

the point set of H in ovoids. So, these ovoids determine a partition of B ∩ H.

Since (B ∩ H) ∩ O4 = ∅ and |(B ∩ H) ∩ O′| = 1, each of the ovoids O′′ and O′′′

intersects B ∩ H in 1 or 2 points. It follows that none of the points y4, y
′, y′′, y′′′

belongs to B. This would imply that the external line y4y
′ is disjoint from B, a

contradiction.

By recycling some of the arguments in the proof of Lemma 4.5.15, we show

the following.
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Lemma 4.5.16. We have |B| = q2 + q, |B ∩ H| = 2q and |B \ H| = q2 − q.

Moreover, there exist two intersecting T0-lines l0 and l1 such that B ∩H = (l0 ∪

l1) \ (l0 ∩ l1).

Proof. By Corollary 4.5.5 and Lemma 4.5.15, there exists a secant plane π con-

taining q points of B for which possibility (I) occurs. So, there exists a T1-line

m contained in π such that π ∩ B = m \ {xm}. Let l0 and l1 denote the two

T0-lines through xm. In the plane π, there are exactly q secant lines disjoint from

π ∩ B, and each of these lines contains the point xm. For each of these secant

lines l, there exists (by Lemma 4.5.6) a point a ∈ B ∩ H, necessarily belonging

to (l0 ∪ l1) \ {xm}, for which πa ∩ π = l. In this way, we get a collection of

q > 3 points belonging to (l0 ∪ l1) ∩ B. So, B ∩ H cannot be an ovoid of H and

hence |B ∩ H| > q + 1. As |B| 6 q2 + q by equation (4.5.1), this implies that

|B \ H| < q2 − 1.

Suppose now there exists a point a of (l0 ∪ l1) \ {xm} which is not in B. Then

πa ∩ π is a secant line l disjoint from π ∩ B. Applying a similar argument as in

the proof of Lemma 4.5.15, each of the q − 1 secant planes through l contains at

least q points of B \ H and the tangent plane πa contains at least q − 1 points

of B \ H. This would again lead to the inequality |B \ H| > q2 − 1, which is

impossible.

Hence, all the 2q points of (l0 ∪ l1) \ {xm} belong to B. As |B| 6 q2 + q,

q2 − q 6 |B \ H| and |B ∩ H| 6 2q by equations (4.5.1), (4.5.2) and (4.5.3)

respectively, this implies that |B ∩ H| = 2q, |B \ H| = q2 − q and |B| = q2 + q.

Moreover, the 2q points of B ∩H are precisely the points of (l0 ∪ l1) \ {xm}.

Invoking Lemma 4.5.16, we can now prove the following.

Proposition 4.5.17. There exists a point x of H such that B = πx \ {x}.
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Proof. Since B \H is a set of size q2−q blocking all external lines, Theorem 4.3.1

implies that there exists a point x ∈ H such that B \H = πx \H. Every point y

of πx∩H distinct from x is contained in a T1-line that is not contained in πx. As

this T1-line contains a point of B, we must have y ∈ B. So, πx \ {x} is contained

in and hence equal to B (as both sets contain q2 + q points).

4.6 T-blocking sets

In this section, we shall discuss the minimum size T-blocking sets in PG(3, q). A

lower bound for the sizes of T-blocking sets is easily derived.

Lemma 4.6.1. Let B be a T-blocking set in PG(3, q). Then |B| > q2 + 1, with

equality if and only if every tangent line contains a unique point of B.

Proof. Count the cardinality of the set D = {(x, l) | x ∈ B, l ∈ T, x ∈ l}

in two ways. Each point of B is contained in q + 1 tangent lines. This gives

|B|(q + 1) = |D|. Since |T| = (q + 1)(q2 + 1) and each tangent line contains at

least one point of B, we get |D| > (q + 1)(q2 + 1). It follows that

|B| > (q + 1)(q2 + 1)

q + 1
= q2 + 1.

Clearly, equality holds if and only if every tangent line contains a unique point

of B.

If π is a tangent plane of PG(3, q) with pole x ∈ H, then observe that π \ {x}

is a T-blocking set of size q2 + q. As a consequence of Lemmas 4.6.1, we thus

have the following.

Corollary 4.6.2. If B is a T-blocking set in PG(3, q) of minimum size, then

q2 + 1 6 |B| 6 q2 + q.
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The following theorem characterizes the minimum size T-blocking sets in

PG(3, q), q even. By Proposition 3.2.5, the point-line geometry X = (P,T)

is a generalized quadrangle of order q isomorphic to W (q).

Theorem 4.6.3. Let B be a T-blocking set in PG(3, q), q even. Then |B| = q2+1

if and only if B is an ovoid of X = (P,T) ' W (q).

Proof. We know that W (q) has ovoids, each of which is of size q2 + 1. By Lemma

4.6.1, |B| = q2 + 1 if and only if every tangent line contains a unique point of B.

The latter statement is equivalent to thatB is an ovoid of X = (P,T) ' W (q).

In the q odd case, other than the bounds given in Corollary 4.6.2, not much

general theory is known for the minimum size T-blocking sets in PG(3, q). We

shall consider the case q = 3 in the next section.

4.7 T-blocking sets in PG(3, 3)

Throughout this section, we assume that q = 3. We prove the following theorem

which characterizes the minimum size T-blocking sets in PG(3, 3).

Theorem 4.7.1. There is no T-blocking set of size 10 in PG(3, 3). Up to iso-

morphism, there are two T-blocking sets of size 11 in PG(3, 3).

We first construct two nonisomorphic T-blocking sets in PG(3, 3) each of size

11. Then we prove the nonexistence of T-blocking sets of size 10 in PG(3, 3) and

classify the T-blocking sets of size 11 in PG(3, 3).

Let ζ be the orthogonal polarity of PG(3, 3) associated with H. For a point

x ∈ PG(3, 3) \ H, recall that Cx denotes the conic xζ ∩ H in the plane xζ . We

shall denote by Ix the set of all interior points in xζ with respect to Cx and by

E(x) the set of all lines of PG(3, 3) through x which are external to H.
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4.7.1 Construction of the T-blocking set B1

Consider a point x ∈ PG(3, 3) \ H and let Ix = {z1, z2, z3}. Fix a line l of xζ

which is external to Cx. Then l contains exactly two points of Ix, say z2 and z3.

Let l be the unique line in E(x) such that l meets xζ in z1, see Lemma 3.2.1(ii).

Define the following set:

B1 := Cx ∪ l ∪
(
l \ {x}

)
.

We prove the following:

Proposition 4.7.2. B1 is a T-blocking set of size 11 in PG(3, 3).

Proof. Clearly, |B1| = 11. Let A = xζ \ B1. Then A consists of four exterior

points, each of which is different from the two exterior points contained in l.

Since every tangent line meets xζ , it is enough to prove that each T1-line through

a point of A meets B1.

Take a point a ∈ A and a T1-line t through a. If t is contained in xζ , then

observe that t meets B1 in two points, one from Cx and the other one is an exterior

point contained in l. So assume that t is not contained in xζ . We show that t

contains a point of B1 \ xζ = l \ {x, z1}.

Let m be the line of xζ through a and z1. Then m is either external or secant

to Cx in xζ , as it contains the interior point z1. Since m has to intersect the

external line l of xζ in a point different from a and z1, it follows that m can not

be secant to Cx. So m is external to Cx in xζ and hence contains an interior point

different from z1. Without loss, we may assume that m contains z2 as the second

interior point.

Setting π1 = xζ and taking the external line m of π1 in Lemma 3.2.4, we get

a secant plane π2 containing m such that z1, z2 are interior points and a is an
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exterior point in π2 with respect to the conic Cπ2 . Note that t is a T1-line through

a in π2.

Let m ( 6= m) be the second line of π2 through z1 which is external to Cπ2 .

Out of the three lines through z1 external to H, the line m is common to both

the planes π1 = xζ and π2. The plane xζ contains one more external line through

z1. So m must be the external line through x which corresponds to the point z1

under the map defined in Lemma 3.2.1(ii). It follows that m = l. As xz1 and

xz2 are external lines of π2 (by Lemma 3.2.1(ii)), x must be interior to Cπ2 in π2.

Since the T1-line t and the external line l of π2 meet in a point exterior to Cπ2 , it

follows that t contains a point of l \ {x, z1}. This completes the proof.

4.7.2 Construction of the T-blocking set B2

Fix a point x ∈ PG(3, 3) \ H and let Ix = {z1, z2, z3}. Let y be a point in xζ

exterior to Cx. Let l1 and l2 be the two T1-lines through y which are not contained

in xζ . For i ∈ {1, 2}, let wi be the tangency point of li in H. Define the following

set:

B2 := Cx ∪ Ix ∪
(
l1 \ {y, w1}

)
∪
(
l2 \ {y, w2}

)
.

We prove the following:

Proposition 4.7.3. B2 is a T-blocking set of size 11 in PG(3, 3).

Proof. Clearly, |B2| = 11. Let D = xζ \ B2. Then D consists of the six exterior

points in xζ with respect to Cx. Since every tangent line meets xζ , it is enough

to prove that each T1-line through a point of D meets B2.

Take a point a ∈ D and a T1-line t through a. If t is contained in xζ , then

t meets B2 in the unique point of t ∩ Cx. So assume that t is not contained in

xζ . If a = y, then t is either l1 or l2 and hence meets B2 at two points. Assume
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that a 6= y. Since both a and y are exterior to Cx, the line m := ay in xζ is either

tangent or external to Cx.

Case I: m is tangent to Cx. Let π be the secant plane generated by the lines

t and m. Then the point y in π is exterior with respect to the conic Cπ. So there

exists one more T1-line in π (different from m) containing y. Since π ∩ xζ = m,

it follows that either l1 or l2 is a line of π. Without loss, we may assume that l1

is a line of π. The lines t and l1 intersect in π in a point different from y and w1.

So t meets B2 at a point of l1 \ {y, w1}.

Case II: m is external to Cx. Setting π1 = xζ and taking the external line m

of π1 in Lemma 3.2.4, we get a secant plane π2 through m containing the lines

t, l1 and l2. Now it can be seen that t intersects l1 (respectively, l2) in π2 at a

point different from y and w1 (respectively, w2). So t meets B2 at two points, one

from l1 \ {y, w1} and one from l2 \ {y, w2}.

Thus B2 is a T-blocking set in PG(3, 3) of size 11.

4.7.3 B1 and B2 are nonisomorphic

The following proposition proves that the T-blocking sets B1 and B2 in PG(3, 3)

of size 11 each constructed in Sections 4.7.1 and 4.7.2 are nonisomorphic.

Proposition 4.7.4. The two blocking sets B1 and B2 are nonisomorphic.

Proof. Write B2 as a disjoint union B2 = (B2 ∩ xζ)∪ (B2 \ xζ). Observe that any

line meets B2 \ xζ in at most two points. Let k be a line external to H. If k is a

line of xζ , then k meets B2 at exactly two points of B2∩xζ (which come from Ix)

and is disjoint from B2 \ xζ . Suppose that k is not a line of xζ . Then k contains

at most one point from B2 ∩ xζ and at most two points from B2 \ xζ . So k is not

contained in B2. Thus every external line meets B2 in at most three points.
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However, from the construction of B1, it is clear that B1 contains a line

external to H. So B1 and B2 are nonisomorphic.

4.7.4 T-blocking sets of sizes 10 and 11 in PG(3, 3)

We label the points of the hyperbolic quadric H in PG(3, 3) by xij where i, j ∈

{1, 2, 3, 4} such that two distinct points xij and xi′j′ of H are incident with a T0-

line if either i = i′ or j = j′. Recall that, since q = 3, the set of conics contained

in H coincides with the set of ovoids of H. This allows us to use the words ‘ovoid’

and ‘conic’ interchangeably.

We denote by O∗ the ovoid {x11, x22, x33, x44} of H. There are nine ovoids of

H that are disjoint from O∗. These are:

O1 = {x12, x21, x34, x43}, O2 = {x13, x31, x24, x42}, O3 = {x14, x41, x23, x32},

O4 = {x12, x24, x43, x31}, O5 = {x12, x23, x34, x41}, O6 = {x13, x24, x32, x41},

O7 = {x13, x21, x34, x42}, O8 = {x14, x21, x32, x43}, O9 = {x14, x23, x31, x42}.

Lemma 4.7.5. There are four collections, each of six ovoids from {O1, O2, . . . , O9},

such that every point of H \ O∗ is contained in precisely two ovoids of a given

collection. These four collections are

G∗ ={O4, O5, O6, O7, O8, O9}, {O1, O2, O5, O6, O8, O9},

{O1, O3, O4, O6, O7, O9} and {O2, O3, O4, O5, O7, O8}.

Proof. It is easily verified that each of these four collections satisfies the required

condition. Conversely, suppose that G 6= G∗ is a collection of six ovoids satisfying

the condition of the lemma. As G 6= G∗, at least one of O1, O2, O3 is contained

in G. Now, any partition of H \ O∗ in three ovoids must contain either one or
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three ovoids of the set {O1, O2, O3}, implying that at least one of O1, O2, O3 is

not contained in G.

Suppose O1 ∈ G and O2 6∈ G. As each of x13, x31 should be contained in two

ovoids of G, we then must have O4, O6, O7, O9 ∈ G. At this stage, x12 and x21 are

already contained in two ovoids of the collection G, implying that O5 and O8 do

not belong to G. So, G is necessarily equal to {O1, O3, O4, O6, O7, O9}.

By symmetry we then see that G always contains precisely two ovoids of the

set {O1, O2, O3}. If O1, O2 ∈ G and O3 6∈ G, then a similar reasoning as above

shows that G = {O1, O2, O5, O6, O8, O9}. Similarly, if O2, O3 ∈ G and O1 6∈ G,

then G = {O2, O3, O4, O5, O7, O8}.

Invoking Lemma 4.7.5, the verification of the following lemma is straightfor-

ward.

Lemma 4.7.6. Suppose G is a collection of six ovoids from {O1, O2, . . . , O9} such

that every point of H\O∗ is contained in precisely two ovoids of G. Let S denote

the set of all points x ∈ H \ O∗ such that {x} is the intersection of two distinct

ovoids of G. Then S = H \ O∗ if G = G∗, and S = O if G 6= G∗, where O is the

unique element of {O1, O2, O3} not contained in G.

Lemma 4.7.7. Let x be a point of H and let l1 = {x, y1, y2, y3} and l2 =

{x, z1, z2, z3} be the two T1-lines through x. Then the following hold:

(1) {Cy1 , Cy2 , Cy3} (resp. {Cz1 , Cz2 , Cz3}) is a set of ovoids of H through x parti-

tioning the set of points of H noncollinear with x.

(2) If i, j ∈ {1, 2, 3}, then Cyi ∩ Czj contains precisely two points (one of which

is x).

Proof. (1) As l1 is a T1-line, we see that x ∈ Cyi for every i ∈ {1, 2, 3}. Now, take

an arbitrary point u ∈ H noncollinear with x. Then uζ does not contain x and
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so intersects l1 in a unique point yi. The point yi is the unique point v of l1 \ {x}

for which u ∈ vζ . So, {Cy1 , Cy2 , Cy3} partitions the set of points of H noncollinear

with x. A similar argument holds for the line l2.

(2) There are six ovoids through the point x. One coincides with Cyi , two

(Cyr , Cys) intersect Cyi in {x} where {i, r, s} = {1, 2, 3}, and the remaining three

(necessarily Cz1 , Cz2 , Cz3) intersect Cyi in two points (one of which is x).

Nonexistence of T-blocking sets of size 10

The following result proves the nonexistence of T-blocking sets of size 10 in

PG(3, 3).

Proposition 4.7.8. There are no T-blocking sets of size 10 in PG(3, 3).

Proof. Suppose X is a T-blocking sets of size 10 in PG(3, 3). By Lemma 4.6.1,

we then know that each tangent line contains a unique point of X. In particular,

O := X ∩ H is an ovoid of H and Y := X \ H is a set of 6 points outside H.

Without loss of generality, we may suppose that O = O∗ = {x11, x22, x33, x44}.

We show the following properties for the collection G = {Cy | y ∈ Y } of six ovoids:

(a) all ovoids of G are disjoint from O;

(b) any two ovoids of G cannot intersect in a singleton;

(c) every point of H \O is contained in precisely two ovoids of G.

If Cy with y ∈ Y contains a point x ∈ O, then the tangent line xy would contain

two points of X = O ∪ Y , namely x and y, a contradiction. If Cy1 ∩ Cy2 is a

singleton {x}, where y1, y2 ∈ Y with y1 6= y2, then Lemma 4.7.7 would imply

that there is a T1-line through x containing y1 and y2, a contradiction. Finally,
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every point x ∈ H \ O is contained in two T1-lines, each containing exactly one

point of Y , showing that x is contained in precisely two ovoids of G.

By Lemmas 4.7.5 and 4.7.6, we however know that there are no collections G

of six ovoids that satisfy the above properties (a), (b) and (c). Therefore, there

is no T-blocking set of size 10 in PG(3, 3).

Classification of the T-blocking sets of size 11

In the rest of this section, we classify the T-blocking sets of size 11 in PG(3, 3). We

show that there are only two such T-blocking sets up to isomorphism, necessarily

isomorphic to the blocking sets B1 and B2 constructed in Sections 4.7.1 and 4.7.2.

Lemma 4.7.9. If X is a T-blocking set of size 11 in PG(3, 3), then |X \ H| ∈

{6, 7} and |X ∩H| ∈ {4, 5}.

Proof. Since |X∩H| 6 |X| < 12, there exists a line l inHmeeting X in either 1 or

2 points. Suppose every line of H meets X in 2 points. Then |X∩H| = 8. If l is a

line of H and l\X = {a, b}, then each of the four T1-lines meeting {a, b} contains

at least one point of X\H. Any collection of four points of X\H that arise in this

way are mutually distinct, implying that |X| = |X ∩H|+ |X \ H| > 8 + 4 = 12,

which is a contradiction.

Hence, there exists a line l in H meeting X in a unique point. If l \ X =

{a, b, c}, then there are six T1-lines meeting {a, b, c} and each of these six T1-

lines contains at least one point of X \ H. Any collection of six points of X \ H

that arise in this way are mutually distinct, implying that |X \ H| > 6. As

|X ∩H| > 4, we thus have that |X \ H| ∈ {6, 7} and |X ∩H| ∈ {4, 5}.

Proposition 4.7.10. If X is a T-blocking set of size 11 in PG(3, 3), then |X ∩

H| = 4 and |X \ H| = 7.
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Proof. Suppose that this is not the case. Then |X ∩ H| = 5 and |X \ H| = 6

by Lemma 4.7.9. As each T0-line contains a point of X, there are precisely two

T0-lines l1 and l2 that contain exactly two points of X (while every other T0-line

intersects X in a singleton). The lines l1 and l2 belong to distinct parallel classes

of lines of H. We distinguish two cases.

Case I. The singleton l1∩ l2 is not contained in X. Without loss of generality,

we may suppose that X ∩ H = {x12, x13, x21, x31, x44}. The reasoning in Lemma

4.7.9 leading to the inequality |X \H| > 6 shows that if l is a T0-line meeting X in

a singleton, then any T1-line meeting l\X cannot contain more than one point of

X, and any T1-line meeting l∩X cannot contain a point of X \H. As any point

of H \ {x11} is contained in a T0-line intersecting X in a singleton, we thus see

from Lemma 4.7.7 that any two ovoids Cy1 and Cy2 , where y1, y2 ∈ X \H, cannot

intersect in a singleton distinct from {x11}. Also, no ovoid Cy with y ∈ X \ H

can contain a point of X ∩H. It can be seen that there are exactly six ovoids of

H disjoint from X ∩H and so these ovoids are precisely the six ovoids Cy, where

y ∈ X\H. But that is impossible as two of these ovoids, namely {x11, x23, x34, x42}

and {x14, x23, x32, x41}, intersect in the singleton {x23} 6= {x11}.

Case II. The singleton l1 ∩ l2 is contained in X. Without loss of generality,

we may suppose that X ∩H = O∗∪{x12}. The reasoning in Lemma 4.7.9 leading

to the inequality |X \ H| > 6 shows that if l is a T0-line meeting H ∩ X in a

singleton, then each of the T1-lines meeting l \X cannot contain more than one

point of X. As any point of H \ {x12} is contained in a line of H intersecting X

in a singleton, we thus see from Lemma 4.7.7 that any two ovoids Cy1 and Cy2 ,

where y1, y2 ∈ X \ H, cannot intersect in a singleton distinct from {x12}.

Put G = {Cy | y ∈ X \H}. Then G is a set of six ovoids of H, no two of which

intersect in a singleton distinct from {x12}. Moreover, each point x ∈ H \ X is
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contained in precisely two T1-lines and hence in precisely two ovoids of G.

We count the number of line-point pairs (l, x), where l is a T1-line disjoint

from X ∩H and x ∈ l∩X. There are |H \X| · 2 = 22 possibilities for l, and each

such l contains a unique point of X, implying that there are 22 such pairs. On

the other hand, there are 6 possibilities for x ∈ X \ H.

Since 6 · 3 = 18, there are at least 22− 18 = 4 points of X \H whose induced

ovoids are disjoint from H∩X. The following are six ovoids of H that are disjoint

from X ∩H:

A1 = {x13, x24, x31, x42}, A2 = {x14, x23, x32, x41},

A3 = {x13, x21, x34, x42}, A4 = {x13, x24, x32, x41},

A5 = {x14, x23, x31, x42}, A6 = {x14, x21, x32, x43}.

Among the six ovoids that we have to choose for the set G, at least four come

from the collection {A1, A2, . . . , A6}. As exactly two of the six ovoids of G contain

x13, at most two of A1, A3, A4 can occur in G. Similarly, by considering the point

x14, we see that at most two of A2, A5, A6 can occur in G. We can conclude that

precisely two of A1, A3, A4, as well as precisely two of A2, A5, A6 belong to G. As

A3 ∩ A4 and A5 ∩ A6 are singletons distinct from {x12}, the ovoids A1 and A2

must belong to G. Then the fact that A3∩A5, A3∩A6 and A4∩A6 are singletons

distinct from {x12} implies that A3 and A6 cannot belong to G. So, G certainly

contains the ovoids A1, A2, A4 and A5.

We still need to find two additional ovoids for G. As the points x21, x34 and

x43 are not contained in A1 ∪ A2 ∪ A4 ∪ A5 and need to be covered twice, each

of these two ovoids should contain these points. But that is impossible as there

is only one ovoid containing these three points, namely {x12, x21, x34, x43}. This
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completes the proof.

In the sequel, we suppose that X is a set of 11 points of PG(3, 3) that is a

T-blocking set. Then |X ∩ H| = 4 and |X \ H| = 7 by Proposition 4.7.10. In

fact, U1 := X ∩ H is an ovoid of H. Denote by U2 the subset of H consisting of

the following points:

• points of X ∩H contained in a T1-line that contains points of X \ H,

• points of H \X contained in a T1-line that contains at least two points of

X \ H.

Lemma 4.7.11. The set U2 is an ovoid of H.

Proof. Let l be a line of H and put {zl} := l ∩ U1. For every y ∈ X \ H denote

by y′ the unique point of l∩Cy, that is, the unique point y′ of l for which yy′ is a

T1-line. Each T1-line meeting l \ {zl} contains at least one point of X \ H, and

so each point of l \ {zl} is the image of at least two points of X \ H under the

map y 7→ y′. So, precisely one of the following two cases occurs:

(a) The point zl is the image of precisely one point of X \ H and each of the

three points of l \ {zl} is the image of precisely two points of X \ H.

(b) There exists a unique point z′l on l \ {zl} which is the image of precisely

three points of X \ H, each of the two remaining points of l \ {zl} is the

image of precisely two points of X \ H. In this case, the point zl itself is

not the image of any point of X \ H.

In case (a), we see that zl is the unique point of U2 on l. In case (b), we see that

z′l is the unique point of U2 on l. Since l ∩ U2 is always a singleton, we conclude

that U2 must be an ovoid of H.
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Now, if G is the collection of the seven ovoids Cy, where y ∈ X \ H, then the

following properties hold:

(P1) No point of U1 \ U2 is contained in an ovoid of G.

(P2) Every point of U1 ∩ U2 is contained in precisely one ovoid of G.

(P3) Every point of H \ (U1 ∪ U2) is contained in precisely two ovoids of G.

(P4) Every point of U2 \ U1 is contained in precisely three ovoids of G.

(P5) No two ovoids of G intersect in a singleton {x}, where x ∈ H \ (U1 ∪ U2).

(P6) No three ovoids of G can mutually intersect in the same singleton {x}, where

x ∈ U2 \ U1.

Proposition 4.7.12. Suppose that U1 and U2 are two (not necessarily distinct)

ovoids of H. Let Y be a set of seven points of PG(3, 3)\H and put G := {Cy | y ∈

Y }. If G satisfies the properties (P1) – (P6) above, then U1 ∪ Y is a T-blocking

set of size 11 in PG(3, 3).

Proof. We have |U1 ∪ Y | = 11. Since U1 is an ovoid of H, every T0-line meets U1

at a unique point. Every T1-line through a point of U1 obviously meets U1. By

(P4) and (P6), every T1-line through a point of U2 \U1 contains a point of Y . By

(P3) and (P5), every T1-line through a point of H\ (U1 ∪U2) contains a point of

Y .

We now use the above result to classify the T-blocking sets of size 11 in

PG(3, 3). We assume that U1 and U2 are two ovoids of H and that G is a collec-

tion of seven ovoids of H satisfying the properties (P1) – (P6) above. If Y is the

set of seven points of PG(3, 3) \H for which the collection {Cy | y ∈ Y } coincides

with G, then X = U1 ∪ Y is a T-blocking set of size 11 by Proposition 4.7.12.
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Without loss of generality, we may suppose that U1 = O∗ = {x11, x22, x33, x44}.

Then the nine ovoids disjoint from U1 = {x11, x22, x33, x44} are O1, O2, . . . , O9 as

defined earlier.

The ovoid U2 can have five positions with respect to U1 (up to isomorphism):

I: U2 = {x11, x22, x33, x44} = U1,

II: U2 = {x11, x22, x34, x43},

III: U2 = {x11, x23, x34, x42},

IV: U2 = {x12, x21, x34, x43},

V: U2 = {x12, x23, x34, x41}.

Treatment of Case I

In this case, (P2) implies that the points of U1∩U2 = U1 = U2 are partitioned by

certain ovoids of G. The partition has shape 4, 2 + 2, 2 + 1 + 1 or 1 + 1 + 1 + 1,

leading to four subcases.

I(a) Suppose the mentioned partition has shape 4. Then U1 = U2 ∈ G. Again

(P2) implies that every ovoid of G \ {U1} is disjoint from U1 = U2. By (P3),

G \ {U1} is a collection of six ovoids as in Lemma 4.7.5. A contradiction is then

readily obtained from Lemma 4.7.6 and property (P5).

I(b) Suppose the mentioned partition has shape 2 + 2. Without loss of gen-

erality, we may suppose that {x11, x22, x34, x43} and {x33, x44, x12, x21} belong to

G. By (P2), each of the remaining five ovoids of G is disjoint from U1 = U2.

So we need to find five additional ovoids from the collection {O1, O2, . . . , O9}.

By (P3) and (P5), the second ovoid of G through x12 must contain x21 and
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therefore be equal to O1 = {x12, x21, x34, x43}. As x12, x21, x34 and x43 have

already been covered twice, the remaining four ovoids should be contained in

{x13, x14, x23, x24, x31, x32, x41, x42} and hence equal to O2, O3, O6 and O9. One

readily verifies that the collection consisting of the seven ovoids {x11, x22, x34,

x43}, {x33, x44, x12, x21}, O1, O2, O3, O6 and O9 satisfies the properties (P1) –

(P6).

I(c) Suppose the mentioned partition has shape 2 + 1 + 1. Without loss of

generality, we may suppose that {x11, x22, x34, x43} is present in G. Then the

ovoid {x12, x21, x33, x44} is not in G. By (P3) and (P5), the second ovoid of G

through x34 must contain x43 and hence coincides with O1 = {x12, x21, x34, x43}.

Note that each of x34, x43 has now been covered twice, while each of x12 and x21

only once. Therefore the second ovoid of G through x12, which cannot intersect

{x12, x21, x34, x43} in a singleton, must also contain x21. But that is impossible as

the two ovoids through {x12, x21}, namely O1 and {x12, x21, x33, x44} are already

forbidden.

I(d) Suppose the mentioned partition has shape 1 + 1 + 1 + 1. Without loss

of generality, we may suppose that {x11, x23, x34, x42} belongs to G. Each y ∈

{x23, x34, x42} is contained in a second ovoid of G which meets {x11, x23, x34, x42}

in a second point y′ ∈ {x23, x34, x42}. But then the pairs {y, y′} would partition

{x23, x34, x42}, an obvious contradiction.

Treatment of Case II

We have U2 = {x11, x22, x34, x43}. If U2 ∈ G, then by (P1) – (P4), G \ {U2}

is a collection of six ovoids as in Lemma 4.7.5. A contradiction is then readily

obtained from Lemma 4.7.6 and property (P5). So, U2 6∈ G. By (P1) and (P2),

it follows that the unique ovoid of G containing x11 is either {x11, x23, x34, x42}
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or {x11, x24, x32, x43}. In view of the symmetry 3 ↔ 4, we may without loss of

generality suppose that {x11, x23, x34, x42} is the unique ovoid of G containing x11.

There are still six ovoids to choose for G, one of them contains x22 and the other

five are contained in the collection {O1, O2, . . . , O9}. None of these six ovoids can

intersect {x11, x23, x34, x42} in the singleton {x23} or the singleton {x42}, implying

that O2 and O3 do not belong to G. So, we need to take five ovoids among the

seven ovoids O1, O4, O5, O6, O7, O8, O9. Since O4 ∩O5 = {x12}, O5 ∩O6 = {x41},

O4 ∩ O6 = {x24} and O7 ∩ O9 = {x42}, (P5) implies that none of the pairs

{O4, O5}, {O5, O6}, {O4, O6}, {O7, O9} can be contained in G. So, two among

O4, O5, O6 cannot be in G, as well as one among O7, O9. So, it is impossible to

find the five required ovoids from the collection {O1, O4, O5, · · · , O9}.

Treatment of Case III

We have U2 = {x11, x23, x34, x42}. If U2 ∈ G, then by (P1) – (P4), G \ {U2}

is a collection of six ovoids as in Lemma 4.7.5. A contradiction is then readily

obtained from Lemma 4.7.6 and property (P5). So, U2 6∈ G. Then, using (P1)

and (P2), the unique ovoid of G containing x11 must be {x11, x24, x32, x43}. Each

point y ∈ {x24, x32, x43} is contained in a second ovoid of the collection G which

meets {x11, x24, x32, x43} in a second point y′ ∈ {x24, x32, x43}. Then the pairs

{y, y′} would partition {x24, x32, x43}, an obvious contradiction.

Treatment of Case IV

We have U2 = {x12, x21, x34, x43}. By (P1), all ovoids of G are disjoint from U1.

So we have to choose seven ovoids for G among the nine ovoids O1, O2, . . . , O9.

By (P4), there are three ovoids of G containing x12. So the ovoids O1, O4 and O5

belong to G. As O4 ∩O6 = {x24} and O4 ∩O9 = {x31}, the ovoids O6 and O9 are
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not in G by (P5). Hence, G = {O1, O2, O3, O4, O5, O7, O8}. One readily verifies

that this collection of ovoids satisfies the properties (P1) – (P6).

Treatment of Case V

Here U2 = {x12, x23, x34, x41}. By (P1), all ovoids of G are disjoint from U1. So

we have to choose seven ovoids for G among the nine ovoids O1, O2, . . . , O9. Since

O4 ∩ O6 = {x24}, O4 ∩ O8 = {x43} and O4 ∩ O9 = {x31}, O4 cannot occur in G

by (P5). Since O6 ∩ O7 = {x13} and O6 ∩ O8 = {x32}, we then know that also

O6 cannot occur in G. So, we should have that G = {O1, O2, O3, O5, O7, O8, O9}.

But that is impossible again by (P5) as O7 ∩O8 = {x21}.

Let X1 = U1∪Y1 = O∗∪Y1, where Y1 is the set of seven points of PG(3, 3)\H

for which the collection {Cy | y ∈ Y1} consists of the ovoids {x11, x22, x34, x43},

{x33, x44, x12, x21}, O1, O2, O3, O6 and O9 of H. Similarly, let X2 = U1 ∪ Y2 =

O∗ ∪ Y2, where Y2 is the set of seven points of PG(3, 3) \ H for which the col-

lection {Cy | y ∈ Y2} coincides with {O1, O2, O3, O4, O5, O7, O8}. Note that X1 is

associated with the seven ovoids corresponding to subcase I(b) in the treatment

of Case I and X2 is associated with the seven ovoids in the treatment of Case IV.

By the above discussion, we thus know:

Proposition 4.7.13. Up to isomorphism, X1 and X2 are the two T-blocking sets

of size 11 in PG(3, 3).

Our intention is now to identify the two T-blocking sets X1 and X2 with that

of B1 and B2 constructed, respectively, in Sections 4.7.1 and 4.7.2. We shall rely

on the following lemma.

Lemma 4.7.14. Every ovoid O of H is contained in precisely four partitions of

H into ovoids. Three of these are induced by external lines.
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Proof. Without loss of generality, we may suppose thatO = O∗ = {x11, x22, x33, x44}.

The partitions then have the form {O∗, Oi, Oj, Ok}, where i, j, k ∈ {1, 2, . . . , 9}

with i < j < k. It is straightforward to verify that these partitions are {O∗, O1, O2, O3},

{O∗, O1, O6, O9}, {O∗, O2, O5, O8} and {O∗, O3, O4, O7}. Now, let x denote the

unique point of PG(3, 3) \ H for which Cx = O = O∗. There are three exter-

nal lines through x. If {x, u1, u2, u3}, {x, u4, u5, u6} and {x, u7, u8, u9} are these

external lines, then the nine ovoids {Cu1 , Cu2 , . . . , Cu9} are mutually distinct. So,

{O∗, O1, O6, O9}, {O∗, O2, O5, O8} and {O∗, O3, O4, O7} must be the partitions

among the four that are induced by external lines.

Proposition 4.7.15. There exist two mutually disjoint external lines k, l and a

point x ∈ k such that X1 = Cx ∪ (k \ {x}) ∪ l.

Proof. Let k denote the external line determined by the ovoids O∗, O1, O6, O9,

and denote by x the unique point of k for which Cx = O∗. Among the four

partitions of H into ovoids containing O2, {O∗, O1, O2, O3} is not induced by

any external line (see the proof of Lemma 4.7.14). So, again by Lemma 4.7.14,

the partition of H by the four ovoids {x11, x22, x34, x43}, {x33, x44, x12, x21}, O2

and O3 is induced by some external line, say l. Then we have k ∩ l = ∅ and

X1 = Cx ∪
(
k \ {x}

)
∪ l.

By Proposition 4.7.4, we know that the two blocking sets B1 and B2 con-

structed in Sections 4.7.1 and 4.7.2 are nonisomorphic. In fact, by the proof of

Proposition 4.7.4, we know that B2 does not contain any external line, while B1

does. Comparing this with Propositions 4.7.13 and 4.7.15, we then conclude that

the blocking set X1 is isomorphic to B1 and that the blocking set X2 is isomorphic

to B2.
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matics, Birkhäuser/Springer, Cham, 2016.
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