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Summary

In the thesis, we have introduced absolute value preserving maps between two
absolutely ordered spaces. We have discussed some of the elementary properties
of these maps. We have proved that a linear map between two absolutely ordered
spaces is absolute value preserving if and only if it is orthogonality preserving. We
have also studied absolute value preserving maps between two absolute order unit
spaces and proved the following result: Let ¢ : V' — W be a unital bijective linear
map between two absolute order unit spaces V' and W. Then ¢ is absolute value
preserving if and only if it is an isometry. Since the self-adjoint parts of unital C*-
algebras are absolute order unit spaces, this result can be considered an extension
of the studies on surjective linear isometries between C*-algebras due to Kadison
in [27, 29] and the characterization of surjective lincar isometries between unital

J B-algebras obtained by Wright and Youngson in [48] (cf. Corollary 4.2.2).

We have introduced matricial versions of absolutely ordered spaces and ab-
solute order unit spaces namely absolutely matrix ordered spaces and absolute
matrix order unit spaces in the context of matrix ordered spaces. We have studied
some of the properties of these spaces. We have extended the notion of orthogo-
nality to general elements in absolute matrix order unit spaces and related it to
the orthogonality among positive elements. We have also generalized the notion of

absolute value preserving maps between absolutely ordered spaces to completely

xvii



absolute value preserving maps between absolutely matrix ordered spaces.

We have defined the notion of partial isometry and some other related alge-
braic notions of C*-algebras in the order theoretic contexts in absolute matrix
order unit spaces. Using them, we have introduced and studied comparison of
order projections in absolute matrix order unit spaces. This idea is also an ex-
tension of comparison of projections in a C*-algebra. We have defined notions of
infinite and properly infinite projections and studied characterizations of these
notions.

Our proposed comparison theory culminates in formation of Ky-groups of ab-
solute matrix order unit spaces. To introduce Ky-groups, we have described the
matricial inductive limit of absolute matrix order unit spaces. We have studied
order structure on Ky-groups. We have proved that Kj is a functor from category
of absolute matrix order unit spaces with morphisms as unital completely abso-
lute value preserving maps to category of abelian groups. We have also defined
orthogonality of completely positive maps and proved that sum of two orthogonal
completely absolute value preserving maps is again a completely absolute value
preserving map. We have further proved that K is additive on orthogonal unital

completely absolute value preserving maps.
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Chapter 1

Introduction

Order structure is one of the basic ingredients of the C*-algebra theory. L. Kan-
torovitch initiated the order theoretic work in functional analysis in 1937 [32]. In
1941, Kakutani proved that an abstract M-space is precisely a concrete C(K,R)
space for a suitable compact and Hausdorff space K [31]. In 1943, Gelfand and
Neumark proved that an abstract (unital) commutative C*-algebra is precisely
a concrete C'(K,C) for a suitable compact and Hausdorrf space K [21]. Thus
Gelfand-Neumark theorem for commutative C*-algebra, in the light of Kakutani
theorem, yields that the self-adjoint part of a commutative C*-algebra is, in par-
ticular, a vector lattice having some other properties. As a contrast, Kadison’s
antilattice theorem [28] informs us that the self-adjoint part of non-commutative
C*-algebra can not be a vector lattice. Thus the study of the order structure of a
general C*-algebra opens an interesting area. The corresponding theory evolves

as a study of ordered vector spaces not having any vector lattice structure.

In 1951, Kadison proved that the self-adjoint part of a unital C*-algebra A is
isometrically order isomorphic to the space of continuous affine functions on the

state space S(A) of A [26]. This is known as Kadison’s functional representation
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theorem. Actually, he proved this result for any operator system (that is, a
unital self-adjoint subspace) in A. If K be a compact and convex set in a locally
convex space F, and if A(K') denote the space of all real valued continuous affine
functions on K, then A(K) is an order unit space. In particular, the self-adjont

part of an operator system is an order unit space.

This work led to the emergence of the order theoretic (non-commutative)
functional analysis. The duality theory of ordered Banach spaces was studied
during 1950’s and 60’s in the works of Asimov, Bonsall, Edwards, Ellis and Ng
and many others [5, 6, 12, 13, 16, 19, 54]. In 1964, D. A. Edwards introduced the
notion of base normed space [16] and A. J. Ellis studied duality between order
unit spaces and base normed spaces [19]. Details can be found in [1] and [23] and

the references therein.

In spite of the anti-lattice nature of non-commutative C*-algebras, the order
structure of a C*-algebra is rich with many properties. The works of Kadison,
Effros, Stgrmer and Pedersen many others, highlight various aspects of order
structure of a C*-algebra and encourages us to expect a ‘non-commutative vector
lattice’ or a ‘near lattice’ structure in it. The monograph [55] (and references

therein), for example, is a good source of information for this purpose.

In 1977, Effros found a relation between norm and order structure of a C*-

algebra in the following sense: given an element a in a C*-algebra A, we have
a
la]| <1 if and only if > 0.

(See [17]). With the help of this result, in 1977 Choi and Effros characterized
operator systems as matriz order unit spaces [14]. This characterization set a

benchmark for the study of the (quantized) functional analysis.
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With the introduction of matrix ordered spaces due to Choi and Effros in
1977 and that of L*°-matricially normed space due to Ruan [62], the non-unital
matrix ordered spaces were studied independently by Schreiner [64] and Karn
and Vasudevan [42, 43, 44, 45]. They initiated the study of non-unital matrix
ordered spaces and their duality. While Schreiner adopted the operator space
duality, Karn and Vasudevan considered matrix (Choi-Effros) duality. However,
Blecher and Neal noted that the operator space dual of a C*-algebra can not
be order embedded in C*-algebras [11], in general. To overcome this problem,
Karn introduced and studied the notion of matrix order smooth co-normed space

35, 36].

In a subsequent work, Karn characterized algebraic orthogonality in the terms
of order and norm [37, 38, 39]. This characterization paved a way to introduce
the notions of absolutely ordered space and absolute order unit space. For an
clement a in a C*-algebra A, we define the ‘absolute value’ of a as |a| := (a*a)?
and for an element v in a vector lattice V', we define the ‘absolute value’ of v as
|v| :== vV (—v). The absolute values in two different contexts have a connection.
We note that for a pair of positive elements a and b in A, ab = 0 if and only
if |a — b = a+ b [39]. Similarly, for a pair of positive elements v and v in V|
uAv = 0if and only if |u—v| = u+v [39]. Thus in both the cases, we can say that
a L bif and only if |a —b| = a+b. In other words, the two kinds of orthogonality
relate to the same kind of relation in terms of absolute value. The definition
of an absolutely ordered space is influenced by some of basic properties of the
orthogonality which hold in both kinds of the above mentioned (ordered) spaces.
The self-adjoint parts of unital C*-algebras and (unital) M-spaces are examples
of absolute order unit spaces. It was shown that under an additional condition,

an absolutely ordered space turns out to be a vector lattice [38, Theorem 4.12].
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One can easily show that under the same condition, an absolute order unit space
becomes an M-space. Therefore an absolutely ordered space may be termed as
a ‘non-commutative vector lattice’.

Let A and B be unital C*-algebras and let ¢ : A — B be a surjective linear

map. In [27], Kadison proved the following two results:
(1) If ¢ is Jordan -isomorphism, then it is isometry [27, Theorem 5].

(2) If ¢ is isometry, then ¢(1) is unitary and ¢ = ¢(1)1 for some Jordan *-
isomorphism ¢ : B — B [27, Theorem 7|. In particular, if ¢ is unital, then

it is a Jordan *-isomorphism.

Further, in [29], Kadison proved the following result: Let A and B be unital
C*-algebras and let ¢ : A — B be a unital linear map. If ¢(|a|) = |¢(a)| for all
a € Ay, then ¢ is a Jordan s-homomorphism [29, Theorem 6]. If, we combine
these three results, we can deduce the following: Let A and B be unital C*-
algebras and ¢ : A — B be unital bijective -linear map. Then the following

statements are equivalent:

(1) ¢: Agy — B, is an isometry.
(2) ¢ is a Jordan isomorphism.
(3) ¢: Asqa — Bs, is absolute value preserving.

In this thesis, we introduce absolute value preserving maps between two ab-
solutely ordered spaces. We discuss some of the elementary properties of these
maps. We prove that a linear map between two absolutely ordered spaces is ab-
solute value preserving if and only if it is orthogonality preserving. We also study

absolute value preserving maps between two absolute order unit spaces and prove
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the following result: Let ¢ : V' — W be a unital bijective linear map between
two absolute order unit spaces V' and W. Then ¢ is absolute value preserving
if and only if it is an isometry. Since the self-adjoint parts of unital C*-algebras
are absolute order unit spaces, our result can be considered an extenstion of the
studies on surjective linear isometries between C*-algebras due to Kadison.

In [48], Maitland Wright and Youngson proved that any surjective linear unital
isometry ¢ : A — B between unital J B-algebras A and B is a Jordan isomorphism
[48, Theorem 4]. Since unital JB-algebras are also examples of absolute order
unit spaces, therefore by our result, we may deduce the following: Let A and B
be unital JB-algebras and let ¢ : A — B be a unital bijective linear map. Then

the following statements are equivalent:
1. ¢ is an isometry;
2. ¢ is a Jordan isomorphism;
3. ¢ is absolute value preserving.

Thus our result can also be considered an extension of the characterization of
surjective linear isometries between unital JB-algebras obtained by Wright and
Youngson.

We introduce matricial versions of absolutely ordered spaces and absolute
order unit spaces namely absolutely matrix ordered spaces and absolute matrix
order unit spaces in the context of matrix ordered spaces. We have studied
some of the properties of these spaces. We extend the notion of orthogonality
to general elements in absolute matrix matrix order unit spaces and relate it
to the orthogonality among positive elements. We also generalize the notion of
absolute value preserving maps between absolutely ordered spaces to completely

absolute value preserving maps between absolutely matrix ordered spaces. We



prove the following result: Let ¢ : V' — W be a unital bijective *-linear map
between two absolute matrix order unit spaces. Then ¢ is completely absolute
value preserving map if and only if it is a complete isometry. In particular, when
restricted to C*-algebras, we can deduce the following result: Let A and B be
unital C*-algebras and let ¢ : A — B be unital, bijective, *-linear map. Then

the following statements are equivalent:

1. ¢ is a complete isometry;
2. ¢ is a C*-algebra isomorphism;
3. ¢ is completely absolute value preserving.

It is worth noting that Blecher et al. have studied this kind of problems for oper-
ator algebras (non-selfadjoint in general) in [9, 10]. (See, in particular, Theorem
3.1, and Corollaries 3.2 and 3.4 of [9].)

In the theory of self-adjoint operator algebras, (self-adjoint) projections ac-
quire a central role. For example, to each self-adjoint element a of a von Neumann
algebra M, there exists a spectral family of projections {p) : A € R} such that

llal
a= / A dpy and the integral converges in norm to a in the sense of Riemann.
—llall
llal

Thus for any Borel function f : [—||a||, ||a]|]] = C, we have f(a) = f(X) dpa.

The germs of comparison theory of projections in B(H) (set OE”;lHl bounded
linear operators on Hilbert space H) may be found in series of the fundamental
papers by F. J. Murray and J. von Neumann, “On rings of operators I-IV”
49, 50, 51, 52, 53]. However this theory was formally studied for Banach algebras
by I. Kaplansky [33]. The comparison theory of projections in C*-algebras grew
to K-theory in operator algebras which is the main tool for classification of von

Neumann algebras and also that of C*-algebras. We refer to [7, 8, 61, 66] and the

references therein for further details.



Recently, Karn introduced the notion of order projections in absolute order
unit spaces and studied a suitable spectral decomposition theorem [39]. In this

thesis, we have chosen order projections as the central scheme.

We have defined the notion of partial isometry and some other related alge-
braic notions of C*-algebras in the order theoretic contexts in absolute matrix
order unit spaces. Using them, we have introduced and studied comparison of
order projections in absolute matrix order unit spaces. This is again an extension
of comparison of projections in a C*-algebra. We define notions of infinite and

properly infinite projections and prove characterization theorems for them.

In [39], Karn also introduced the notions of order unit property and absolute
order unit property in absolute order unit spaces. He characterized order projec-
tions in absolute order unit spaces in terms of these properties. We extend these
notions to matrix order unit property and absolute matrix order unit property
in absolute matrix order unit spaces. We also characterize order projections in
absolute matrix order unit spaces in terms of matrix order unit property and

absolute matrix order unit property.

Our proposed comparison theory culminates in the formation of Ky of abso-
lute matrix order unit spaces. To introduce Ky-groups, we have described the
matricial inductive limit of absolute matrix order unit spaces. We study order
structure on Ky-groups. We prove that K is a functor from category of abso-
lute matrix order unit spaces with morphisms as unital completely absolute value
preserving maps to category of abelian groups. We also define orthogonality of
completely absolute value preserving maps and prove that sum of two orthog-
onal completely absolute value preserving maps is again a completely absolute
value preserving map. We also prove that K is additive on orthogonal unital

completely absolute value preserving maps.
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§1.1. Chapterwise details of the thesis

1.1 Chapterwise details of the thesis

Now we present a brief description of the remaining chapters.

In second chapter, we recall basic definitions and results which is required to
follow this thesis. We recall the theory of real ordered vector spaces, direct limit
of matrix ordered spaces and theory of absolutely ordered spaces.

In third chapter, we introduce the notions of absolutely matrix ordered spaces
and absolute matrix order unit spaces. These spaces are matricial versions of ab-
solutely ordered spaces and absolute order unit spaces respectively in the context
of matrix ordered spaces. We extend the notion of orthogonality to the general
elements of an absolute matrix order unit space and relate it to the orthogonality
among positive elements [Propositions 3.3.1 and 3.3.5].

In fourth chapter, we define absolute value preserving maps between two ab-
solutely ordered spaces. We prove that a linear map between two absolutely
ordered spaces is absolute value preserving if and only if it is orthogonality pre-
serving [Proposition 4.1.3]. With the help of this result, we proved that a unital,
bijective linear map between two absolute order unit spaces is an isometry if and
only if it is absolute value preserving [Theorem 4.2.1] which leads to provide a
simple proof of well known result that every unital Jordan isomorphism between
two unital JB-algebras is an isometry and hence we deduce that unital, bijec-
tive absolute value preseving maps between two unital JB-algebras are precisely
Jordan isomorphisms [Corollary 4.2.2]. The notion of absolute compatibility was
introduced by Karn in [39]. In Theorems 4.3.2 and 4.3.3, we prove relation of
absolute compatibility with absolute value preservers. We extend the notion of
absolute value preserving maps between absolutely ordered spaces to completely
absolute value preserving maps between absolutely matrix ordered spaces. We

prove that a unital, bijective %-linear map between absolute matrix order unit
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§1.1. Chapterwise details of the thesis

spaces is a complete isometry if and only if it is completely absolute value pre-
serving [Theorem 4.4.2]. From this, we deduce that on (unital) C*-algebras such
maps are precisely C*-algebra isomorphisms [Corollary 4.4.3]. We use a matricial
trick which is apparently new. Latter, we define orthogonality of positive maps
and prove that sum of two orthogonal completely absolute value preserving maps
is again completely absolute value preserving [Theorem 4.5.4].

In fifth chapter, we generalize and study some C*-algebraic notions in order
theoretic context. Karn [39] has recently studied order projections in an absolute
order unit space, we extend the notion of order projections in an absolute ma-
trix order unit space and introduce the notion of a partial isometry to describe
the comparison of order projections. In this chapter, we mainly focus on order
projections and partial isometries in absolute matrix order unit spaces. We also
study finiteness of order projections and prove related Theorems 5.4.5 and 5.5.4.

In the last chapter, we define matrix order unit property and absolute matrix
order unit property in absolute matrix order unit spaces which are matricial ver-
sions of order unit property and absolute order unit property in absolute order
unit spaces. We describe the direct limit of absolute matrix order unit spaces.
Using this, we introduce Ky-group of an absolute matrix order unit space [The-
orem 6.3.5]. We observe that K is functorial in nature. We prove that Kj is
a functor from category of absolute matrix order unit spaces with morphisms as
unital completely absolute value preserving maps to category of abelian groups
[Theorem 6.4.2]. We show that under a certain condition K, of an absolute ma-
trix order unit space is an ordered abelian group with some distinguished order
unit [Theorem 6.5.1 and Corollary 6.5.2]. We also prove that K is additive on

orthogonal unital completely absolute value preserving maps [Theorem 6.5.3(3)].



Chapter 2

Preliminaries

In this chapter, we recall the basic definitions and results. In the first section, we
briefly recall theory of ordered vector spaces including definition of order ideal,
order unit space, matrix ordered space, matrix order unit space, L>-matricially
normed space, L*-matricially *-normed space, positive map, completely positive
map, completely bounded map, types of orthogonality in order unit spaces and
some results charactering these notions. In the second section, we recall the direct
limit of matrix ordered spaces and its characterization in terms of non-degenerate
ordered §-bimodule. In the third section, we recall the theory of absolutely
ordered vector spaces, absolute order unit spaces and notion of orthogonality in
absolutely ordered spaces. Later, we recall the notion of order projections in

absolute order unit spaces and some characterizations of order projections.

2.1 Ordered vector spaces

We begin by recalling some basic order theoretic notions. Throughout this thesis
R denotes the field of all real numbers and C denotes the field of all complex

numbers. Let V' be a real vector space. A non-empty subset V* of V is called a
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§2.1. Ordered vector spaces

cone, if V* is closed under vectors’ addition as well as scalar multiplication with
non-negative real numbers. In this case, (V, V1) is called a real ordered vector
space.

Let (V,V™T) be a real ordered vector space. For u,v € V, define u < v if
v—u € V. Then (V,<) is a partially ordered space, in a unique way, in the
following sense that (i) v < w for all u € V (ii) v < w whenever u < v and
v < w for u,v,w € V and (iii) u 4+ w < v+ w and ku < kv whenever u < v for
u,v,w € V and k is a positive real number.

The cone V1 is said to be proper, if VN —=V*+ = {0}. It is said to be
generating, if V.=V — V. Recall that V' is proper if and only if < is anti-
symmetric.

A positive element e € VT is said to be an order unit for V, if for each v € V|
there is a positive real number k such that ke £ v € V*. The cone V7 is said to
be Archimedean, if for any v € V with ku +v € VT for a fixed v € V™ and all
positive real numbers k, we have v € V.

Let (V, V) be a real ordered vector space with an order unit e. Then V% is
Archimedean if and only if for any v € V with ke + v € VT for all positive real
numbers k, we have v € V.

Let W be a vector subspace of V. Then W is said to be an order ideal of
(V, V), if forv e VT w e W with v < w, we have v € W.

Let W be a vector subspace of an ordered vector space (V, V). Consider the
quotient vector space V /W of V by W. Put (V/W)" = {v+W :v € VT}. Then
(V /W, (V /W)T) is an ordered vector space.

The above details can be found in [1, 23, 63, 67].

Next result characterizes an order ideal in terms of properness of a cone.

Proposition 2.1.1. [1, Proposition I1.1.1] Let W be a vector subspace of an

12



§2.1. Ordered vector spaces

ordered vector space (V,V*). Then (V /W)* is proper if and only if W is an

order ideal.

Let (V, V™) be a real ordered vector space with an order unit e such that V'

is proper and Archimedean. Then e determines a norm on V given by

|v]| :==inf{k >0:ketveV"}

in such a way that V' is norm-closed and for each v € V', we have [[v|letv € V.
In this case, we say that V' is an order unit space and denote it by (V,e) [1,

Proposition 1I.1.2].

Remark 2.1.2. Let (V,e) be an absolute order unit space. Also let u,v,w € V
be such that u < v < w. Then ||v]| < maz{||ul|,||w|}. In fact, in this case,
—Julle < v < ||lw|le for —|lulle < u < ||lulle and —||w]le < w < ||w|le. Thus

—max{|[ull, [[w|}e < v < maz{[lul|, [[w][}e so that [[v]| < maz{|[ul], [w]|}.
We recall two types of orthogonality in an order unit space.
Definition 2.1.3. /39, Definition 3.6] Let (V. e) be an order unit space. Then

(a) For u,v € VT, we say that u is oo-orthogonal to v (we write it, u L v),

if (ki + kov|| = maz{||ku|l, [|kev||} for all ki, ke € R;

(b) For u,v € V' we say that u is absolutely co-orthogonal to v (we write it,

u L% v) if uy Lo vy whenever 0 < wuy <wu and 0 < vy <w.

The following result provides a characterization of co-orthogonality in an order

unit space:

Theorem 2.1.4. [37, Theorem 3.3] Let V' be an order unit space. Suppose that

u,v € VT \ {0}. Then u Lo v if and only if ||||ul| " u + [|v]| " o] = 1.

13



§2.1. Ordered vector spaces

Let (V;,V;*) be the ordered vector spaces for i = 1,2 and let ¢ : V; — V4 be

a linear map. We say that ¢ is positive (we write it, ¢ > 0), if
P(Vi") C Vo'

23, 63, 67].

Let (V,ey) and (W, ey ) be order unit spaces and let ¢ : V. — W be a linear
map such that ¢(ey) = ew. Then ¢ is positive if and only if ¢ is bounded with
¢l =1 [1, Proposition II.1.3].

Let V' be a complex vector space. We denote by M,, (V) the vector space
of all the m x n matrices v = [v;;] with entries v;; € V and by M,,, the
vector space of all the m x n matrices a = [a;;] with entries a;; € C. We

write Oy, for zero element in M,, (V). For m = n, we write 0,,,, = 0,. We
n

define av = [Z ai,kvk,j] and vb = [Z Ui,kbk,j] for a € M, p,v € My, ,(V) and
k=1 k=1
b e M, ,. We write

v 0
vOw = for v e M, ,(V),w e M, (V).

0 w

Here 0 denotes suitable rectangular matrix of zero entries from V' [62].
Let V be a complex vector space. Then a map * : V — V is said to be

inwvolution on V| if it satisfies the following conditions:
(1) (v+w)" =v"+w* forall v,w e V.
(2) (aw)*=av* foralla e C,v € V.
(3) (v*)* =wforallveV [14].

A complex vector space with an involution is called a x-vector space. We write

Via = {v € V :v=0*}. Then Vj, is a real vector space [14].
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§2.1. Ordered vector spaces

Definition 2.1.5. [1/] A matrix ordered space is a x-vector space V' together
with a sequence {M,(V)*} with M, (V)T C M,(V)sa for each n € N satisfying

the following conditions:

(a) (Mp(V)say My (V)T) is a real ordered vector space, for each n € N; and
(b) a*va € M, (V)" for allv e M,(V)", a € My, and n,m € N.

It is denoted by (V,{M,(V)*}). If, in addition, e € V't is an order unit in Vi,
such that V* is proper and M, (V)" is Archimedean for all n € N, then V is

called a matrix order unit space and is denoted by (V,{M,(V)"},e).
Proposition 2.1.6. Let (V,{M,(V)"}) be a matriz ordered space.
(1) [42, Proposition 1.8]

(a) If V* is proper, then M, (V)" is proper for all n € N.

(b) If V* is generating, then M, (V)" is generating for all n € N.

(2) [42, Lemma 2.6] If e € VT is an order unit for Vi,. Then e is an order
unit for Mp,(V)sq for alln € N ((where e" :==e@---dec My(V)).

Let V and W be two vector spaces. A linear map ¢ : V — W induces a
sequence of linear maps {¢, }, ¢n, : M, (V') — M, (W) such that ¢, ([vi;]) = [¢(vyj)]
for all [v;;] € M, (V). Let V and W be *-vector spaces. Then ¢ is said to be
x-linear, if ¢(v*) = ¢(v)* for all v € V or equivalently ¢(Vy,) C Wy, If ¢ is
«-linear, then each ¢,, is *-linear [14].

Let (V,{M,(V)*}) and (W,{M,,(W)*}) be two matrix ordered spaces and
let ¢ : V. — W be a *lincar map. Then ¢ is said to be completely positive, if
On 2 My(V)sa — M, (W)g, is positive for each n € N [14].

An L*°-matricially normed space denoted by (V,{]| - ||.}) is a complex vector

space V together with a sequence of norms || - ||, such that

15
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(1) (Mp(V), ]| - |ln) is @ normed linear space for each n € N:
(2) v & wllnsm = max{|[v]ln, [[w][m}; and

(3) llawdlln < llall[[v]n]l]

for all v € M, (V),w € M,,,(V),a,b € M,, and m,n € N [62].

An L*-matricially *-normed space is an L*°-matricially normed space (V,{]| -
|l.}) such that V' is a *-vector space and [[v*||,, = ||v||,, for all v € M,,(V),n € N
[36, Definition 1.3].

Let (V,{]| - ||.}) and (W,{]| - ||.}) be L*>°-matricially normed spaces and let

¢ : V. — W be a linear map. Then

(1) ¢ is called completely bounded, if sup{||é,|| : n € N} < oco. If ¢ is completely

bounded, we write ¢ := sup{||@,|| : n € N}.

(2) ¢ is called completely contractive, if ¢ is completely bounded and we have

¢cb S 1.

(3) ¢ is called complete isometry, if ¢,, is an isometry for cach n € N [62].

Let (V,{M,(V)*},e) be a matrix order unit space. For each n € N, put

ke v
|v||p :==1inf ¢ k>0 € Mo, (V)" for all v € M, (V).
v* ke”
Then (V,{M,(V)*},e) with {||- ||} is an L>-matricially x-normed space 14, 62].
Let (V,{M,(V)"},e) be a matrix order unit space. For m,n € N with m # n,

we extend a norm || - ||, o0t M, (V) in the following way:
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§2.2. Direct limit of matrix ordered spaces

v O} itm>n
[0[lnn == v
otherwise
0
\ Il L n
for all v € M, ,,(V). In this case, we have
ke™ v
||| :==1nf S & >0 € Myin(V)* for all v € M, (V).
vt ke™

2.2 Direct limit of matrix ordered spaces

In this section, we recall the direct limit of complex vector spaces and the direct
limit of matrix ordered spaces. We also recall the definition of non-degenerate or-
dered §-bimodule and the characterization of the direct limit of a matrix ordered

space as a non-degenerate ordered §-bimodule.

Consider the family {M,}. For each n,m € N define 0, p1m : My, = Myism,

given by oy, nim(a) = a ® 0. Then o, 54m is a vector space isomorphism with

O—n,n-l—m(ab) = 0n,n+m(a>0n,n+m(b)-

We observe that {M,,, 0y nim, N} is a direct system. Let § denote the set of
all the co x co complex matrices having atmost finitely many non-zero entries.
For each n € N, define o, : M,, — § given by o,(a) = a ® o for all a € M,

where o denotes the zero element in §. Then {§,0,} is the inductive limit of

17
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{M,, 0 n+m,N}. In fact, we have

% = U Un(Mn)

Let ¢;; denote the oo X co matrix with 1 at the (7, 7)th entry and 0 elsewhere.
Then the collection {e;;} is called the set of matrix units in §. We write J,, for

n
E Cii-
=1

For i, j,k,l € N, we have ¢;;ex; = 0;5¢;; where

1 ifj=k
5]']4::

0 otherwise.

Note that for any a € §, there exist complex numbers a;; such that
a—= Z Q€4 (a finite sum).
2
Thus § is an algebra.
For a = Zaijeij € §, we define a* = Za/jieij € §. Then a — a* is an
i,j ,J
involution. In other words, § is a *-algebra.

The above details are available in [18].

Definition 2.2.1. [18] Let V be a complex vector space. Consider the fam-
ily {M,(V)}. For each n,m € N, define T, pim : Mpy(V) = Muin(V) by
Tonim(V) = v @ 04y, 0,y € My (V). Then T, pym 1S an injective homomorphism.
Let {0,T,,} be the inductive limit of the directed family {M,(V), Ty ntm, N} so
that T,, = Thm © Thpntm for all m,n € N. Then U is an §-bimodule. We shall

call *U the matricial inductive limit or direct limit of V.

Definition 2.2.2. [18] An §-bimodule U is said to be non-degenerate, if for

every v € U there exists n € N such that 3,07, = 0.

18
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The matricial inductive limit of a complex vector space may be characterized

in the following sense:

Theorem 2.2.3. [18] The matricial inductive limit of a complex vector space is
a non-degenerate §-bimodule. Conversely, let U be a non-degenerate §-bimodule.
Put V =7,03,. ThenV 1s a complex vector space and ‘U is its matricial induc-

tive limit in the sense of Definition 2.2.1. Moreover,
(a) T,,(M,(V)) = 3,207,.

(b) L= U Tn(Mn(V))

Let U be a non-degenerate §-bimodule. Also let v € U and a € C. We write
av = (aJ,)v for some n € N with 7,07, = v. Then av is well-defined. Thus U
is a complex vector space.

Now we recall the notion of §-bimodule norm on a non-degenerate §-bimodule

in the following sense:

Definition 2.2.4. [58, Definition 1.4] Let B be a non-degenerate F-bimodule.
Let || - || be a norm on Q. Then we say that || - || is an F-bimodule norm on G, if

|avb|| < ||a|l||v]|||6]] for any a,b € §F and v € V.
Next, we describe the order theoretic aspect.

Definition 2.2.5. [57, Definition 2.6] Let U be an §-bimodule and let * : 0 —

U be a map satisfying the following conditions:
1. (u+v)" =u*+ 0" for allu,v € V;
2. (av)* = v*a*, (va)* =a*v* for allv € V,a € F;

3. (0*)* =0 for all v € Q.
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Then * is called an involution on U and in this case U is called a *-F-bimodule.

We put U, = {o € U : v* = v},

Definition 2.2.6. [57, Definition 3.2] Let B be a x-F-bimodule and let B+ C Y,

satisfying the following conditions:
1. u+veY" for allu,v € YT;
2. a*va €Yt forallo e Yr,acF.
Then 0" is called a bimodule cone and (0,0 ") is called an ordered §-bimodule.

Definition 2.2.7. [57] Let (0,07) be an ordered §-bimodule. We say that 0+

is proper, if B N (—Y") = {0} and generating, if given v € U there exist
3

Do, 01, 00,03 € VT such that v = Ziknk, where 12 = —1. We say that B is
k=0

Archimedean, if for any v € U, with ku+ v € BT for a fized u € B and all

positive real numbers k, we have v € 0.

Theorem 2.2.8. [57, Theorem 3.4] Let (V,{M,(V)*}) be a matriz ordered space

and let G be the matricial inductive limit of V. Then T, p4.m and T, are positive

maps. Put 0T = U T.(M,(V)"). Then (0,07) is a non-degenerate ordered
n=1

§-bimodule. Conversely, let (0,°0") be a non-degenerate ordered F-bimodule and

put V = 3,03,. Define T,, : M,,(V) — U given by

To[vig]) = ) eiaviger

i.j=1

forall[v; ;] € M, (V). ThenT, is an injective homomorphism such that T,,(M, (V') =
3,207, for alln € N. Set M,(V)* = T,%3,0"3,) for all n € N. Then
(V.AM,(V)T}) is a matriz ordered space and 0 is its matricial inductive limit

with B+ = | To(M,(V)").
n=1
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§2.3. Absolutely ordered vector spaces

Remark 2.2.9. Let (0,0") be a non-degenerate ordered §-bimodule and let

(V.{M,(V)*}) be the corresponding matriz ordered space as in Theorem 2.2.8.

Then

(1)

(2)

(3)

Bt is proper if and only if V™ is proper [57, Theorem 3.9].

Bt is generating if and only if V' is generating [57, Theorem 3.12].

B+ is Archimedean if and only if M, (V)% is Archimedean for each n € N.

Proof.  (3) First assume that M, (V)" is Archimedean for all n € N. Let

2.3

v € YU, with ku + v € Ut for a fixed u € Yt and all positive real
numbers k. Choose n € N such that J,uJ,, = u and 7,07, = v. Then
T uw) € M,(V)*, T, (v) € M,(V)s with KT (u) + T, (v) € M, (V)™
for all positive real numbers k. Since M, (V)" is Archimedean, we get that

T (v) € M, (V)" so that v = T,,(T,; }(v)) € BT. Thus V" is Archimedean.

Conversely, assume that 0T is Archimedean. Fix n € N and let v €
M, (V) with ku +v € VT for a fixed u € M, (V)" and all positive real
numbers k. Then T, (u) € U, T, (v) € Vs, with kT, (u)+T,(v) € LT for all
positive real numbers k. Thus by assumption, we get that T,,(v) € 3,077,
so that v = T, 1(T,,(v)) € M,(V)*. Hence M,(V)T is Archimedean for

each n € N.

Absolutely ordered vector spaces

In this section, we recall the notions of absolutely ordered spaces and absolute

order

unit spaces. Before it, we recall some definitions and facts which may be
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§2.3. Absolutely ordered vector spaces

seen as a fresh start for the theory of absolutely ordered spaces and absolute order
unit spaces.

Let (V,V7T) be a real ordered vector space. For v,w € V, we write v < w
if w—ov € V*T. Then V is said to be vector lattice, if given any v and w in V/,
supremum of v and w exists in V' with respect to <. We denote the supremum
of v and w in V' by v V w. We also write |v| =v V (—v) for all v € V.

Let (V, V1) be a vector lattice. For each pair v,w € V, infimum of v and w
also exists in V' with respect to <. We denote it by v A w. It is worth to notice
that v Aw = —((—v) V (—w)) for all v,w € V.

Let (V,V*) be a vector lattice with a norm || - || such that (V,| - ||) is a
Banach space. Then (V, V) is said to an M-space, if it satisfies the following

two conditions:

(1) For each pair v,w € V with |v| < |w]|, we have ||v|| < |Jw].

(2) |lvVw| = max{|v|],||w|]} for all z,y € V.

For more details see [23, 63, 67].

Remark 2.3.1. [39, Remark 3.5]

(1) Let (V,V*) be a vector lattice. Then

(a) |v| =v for allve VT,

(b) |v|£v e VT forallveV.

(c) |kv| = |k||v] for allv € V and k € R.

(d) If u,v,w eV withuAv=0 and 0 <w <wv, then u ANw = 0.

(e) Ifu,v,w eV withuAv=0 and uNw =0, then u A |[v+w| =0.
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(2) Let A be a C*-algebra and let Ag, and AT be the collections of all the self-
adjoint and all the positive elements in A respectively. Define || : Agq — AT
given by x — (562)%. Then

(a) |x| =x if v € AT;
(b) |x| £ € AT for all x € Ay
(c) |k-x|=|k|-|x| for all x € Ay, and k € R;

(d) If x,y and z € Ay, with |x —y|=x+y and 0 < z <y, then |x — z| =

T+ z;

(e) If x,y and z € Asq with |x —y| = x+y and |x — z| = x + z, then

[z =yt 2=z y+ 2|
These properties lead to the following notion:

Definition 2.3.2. /39, Definition 3.4] Let (V, V1) be a real ordered vector space

and let |- | : V — VT be a mapping satisfying the following conditions:
(a) |v|=v ifveVT;
(b) |v|]£v e VT forallv eV,
(c) |k-v|=|k|-|v| for allv €V and k € R;
(d) If u,v andw € V with lu—v| =u+v and 0 < w < v, then |u—w| = u+w;

(e) Ifu,v andw € V with |[u—v| = u+v and lu—w| = utw, then |u—|vtw|| =
u+ vt w.

Then (V,V*,|-]) is said to be an absolutely ordered space.

Let (V, VT, ]-|) be an absolutely ordered space. We call that |- | is an absolute

value on V.
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Remark 2.3.3. [39] Let (V,V*,|-|) be an absolutely ordered space. Then

(1) The cone V7T is proper and generating. In fact, if tv € V7T, then by

(2)

(3)

Definition 2.3.2(a) and (c), we get

v=lv|=|—-v|=—-v

so that v = 0. Next, by Definition 2.53.2(b), for any v € V, we have

((Jol +v) = (Jo] —v)) VT = V™.

vV =

DN | =

Let u,v € V' be such that |u —v| =u+v. Then u,v € V*. For such a pair

u,v € VT, we shall say that u is orthogonal to v and denote it by u L v.

We write, vt := (Jv|+v) and v~ = 3([v|—v). Thenvt Lv™,v =v"—v~
and |v| = vt +v~. This decomposition is unique in the following sense: If
v = vy — vy with v; L vy, then vy = v and vy = v~. In other words, every

element in 'V has a unique orthogonal decomposition in V.

The following result relates absolutely ordered space structure to a vector

lattice structure:

Theorem 2.3.4. [38, Theorem 4.12] Let (V,V*,|-|) be an absolutely ordered

space. Forv,w €V, put

. 1
VVw 1= 5(1} +w+ v —w|).

Then the following statements are equivalent:

(i) vVw = sup{v,w} for allv,w € V.
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(ii) V 1is associative in V.
(iii) uw+v e VT implies |v| < wu for all u,v € V.
() v+ w| < v+ |w| for all v,w € V.

We have a relation among all three types of orthogonality mentioned above

given in the next result.

Proposition 2.3.5. [39, Proposition 3.7] Let (V, V't |-|) be an absolutely ordered
vector space and assume that || - || is a norm on V' determined by the order unit

e such that V't is || - ||-closed. Then the following statements are equivalent:

(A) For each v € V, we have

Ifolll = vl = maz{{lo* |, [lv™1};

(B) For each u,v € V*t, we have u L% v whenever u L v;
(C) For each u,v € V', we have u 1, v whenever u L v;

(D) For each v € V with £v < e, we have |v| < e.

Definition of absolute order unit space is motivated by Proposition 2.3.5 and

is given in the following manner:

Definition 2.3.6. /39, Definition 3.8] Let (V,V* |-|) be an absolutely ordered
space and let || - || be an order unit norm on V determined by the order unit e
such that V7 is || - ||-closed. Then (V,V* ||, e) is called an absolute order unit

space, if L=1% on VT,

The self-adjoint part of a unital C*-algebra is an absolute order unit space [39,
Remark 3.9(1)]. More generally, every unital .J B-algebra is an absolute order unit

space.
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Under the conditions of Theorem 2.3.4, an absolute order unit space becomes
an M-space.

Orthogonality in C*-algebras or more generally, absolute co-orthogonality in
absolute order unit space has a curious by-product. We recall the following result

which relates absolute oo-orthogonality with order unit and absolute value.

Proposition 2.3.7. [39, Proposition 4.1] Let (V,e) be an absolute order unit
space and let u,v € V' be such that 0 < u,v < e. Then u L% v if and only if

u+v<eand|u—v|+|e—u—1v|=e.

The later part of the Proposition 2.3.7 is segregated as a property and the
definition is given in the following manner:

Let (V,e) be an absolute order unit space and let u,v € V. We say that u
is absolutely compatible with v (we write, u A v), if |u —v| + |e — u — v| = e [39,
Definition 4.3].

Next result provides a bound for absolutely compatible elements.

Proposition 2.3.8. [39, Proposition 4.2] Let (V,e) be an absolute order unit

space and let u,v € V. If u\v, then u,v < e.

Let us recall order unit property and absolute order unit property defined in
(39, Definition 5.1].

Let V be an ordered vector space. For u € VT, we set

Vo,={veV :kutveV" for some k > 0}.

If (V,e) is an order unit space, then v € V' is said to have the order unit
property in V, if for any v € V,, we have v < ||v||u. Moreover, if ||u|| = 1 then
(Vii, u) is also an order unit space and ||v||, = ||v||e for each v € V,,. Here || - ||,, is

the order unit norm on V,, determined by w.

26



§2.3. Absolutely ordered vector spaces

If (V,e) is an absolute order unit space, then u € V7 is said to have the
absolute order unit property in V', if for any v € V,, we have |v| < ||v||u. Moreover,
if [[u] = 1 then (V,,u) is also an absolute order unit space and ||v||, = ||v||e for
each v € V,,.

Finally, we recall the notion of order projections in absolute order unit spaces.
Before it, we recall the following characterization of projections in a unital C*-

algebra:

Theorem 2.3.9. [39, Theorem 5.3] Let A be a unital C*-algebra and let x € A

be such that 0 < x < 1. Then the following facts are equivalent:
(1) x is a projection in A;
(2) x has the order unit property in A;
(3) © L (1—x).

By equivalence of (1) and (3) in the Theorem 2.3.9, the notion of order pro-

jections in absolute order unit spaces is defined in the following way:

Definition 2.3.10. /39, Definition 5.2] Let (V,e) be an absolute order unit space.
Let p € V be such that 0 < p < e. We say that p is an order projection, if

pLe—p. Wewrite OP(V) for the set of all the order projections in V.

We can characterize orthogonality among order projections in the following

sense:
Proposition 2.3.11. Let (V,e) be an absolute order unit space.

(1) [39, Proposition 5.5] Let p,q € OP(V). Then the following statements are

equivalent:

(a) p+q <e;
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(b) pLg;
(¢c) p+q€ OP(V); and

(d) p Lo q.

(2) [39, Proposition 5.6] Let u,v € V be such that 0 < u,v < e. Ifu+uv €
OP(V) with w L v, then u,v € OP(V).

(3) Let p,q € OP(V) be such that p < q. Then

(i) q—p e OP(V) [39, Corollary 5.7].

(i) p L (g —p) [39, Remark 5.8].

Next result characterizes order projections in terms of the order unit property

and the absolute order unit property.

Proposition 2.3.12. [39, Proposition 6.1] Let (V,e) be an absolute order unit
space and let uw € V be such that 0 < u < e. Then the following facts are

equivalent:
(a) ue OP(V);
(b) u and e — u have the order unit property;

(¢c) uw and e — u have the absolute order unit property.
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Chapter 3

Absolute matrix order unit

spaces

In the first section of this chapter, we define absolutely matrix ordered spaces. In
the second section, we define absolute matrix order unit spaces. These notions
are matricial versions of absolutely ordered spaces and absolute order unit spaces
respectively in the context of matrix ordered space. We also study some properties
of these spaces. In the third section, we extend the notion of orthogonality in

absolutely matrix ordered spaces.

3.1 Absolutely matrix ordered spaces

In this section, we introduce absolutely matrix ordered spaces and prove some
properties of these spaces. We also show that under a certain condition absolute
value function in an absolutely matrix ordered space is positive definite. We begin

with the following notion:

Definition 3.1.1. Let (V,{ M,(V)*}) be a matriz ordered space and assume
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that | - | @ Mpn(V) = Muy(V)* for m,n € N. Let us write | - |nn = |- |n
for every n € N. Then (V,{M,(V)"},{| - |mn}) is called an absolutely matrix

ordered space, if it satisfies the following conditions:
1. Foralln € N, (M,(V)sa, M,(V)T,| - |n) is an absolutely ordered space;

2. Forve My,,(V) and a € M, ,,,, we have

vl < llall[v]m.n;

3. Forv e My,,(V) and b € M, ,;, we have

‘Ub|m¢ = | ‘U‘m,nb’n,t;

4. Forv € My, o(V) and w € M 4(V'), we have

|U S7) w‘m-ﬁ-l,n-ﬁ-t = ‘Ulm,n S¥) |w‘l7t-

Let (V,{ M,(V)"},{] - |;m.n}) be an absolutely matrix ordered space. We call

that | - |, is an absolute value on M, (V') for all m,n € N.

Proposition 3.1.2. Let (V,{M,(V)*},{| |mn}) be an absolutely matriz ordered

space.
1. If a € M, is an isometry i.e. a*a = I, then |av|,,, = |v|nn for any
v € My (V).
0, v
2. If ve My,,(V), then = |v*|nm D |V|mm-

m+n
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Vpm U
3. 7l € Myyin (V)T for any v € My, (V).
v* V.
v
4. |0|pn = for any v € M, ,(V) and | € N.
0
m+ln

5. [0]mn @0 = for any v € My, ,(V) and t € N.

m,n+t

[ o

Proof. (1) Let a € M;,, be an isometry. Then, using 3.1.1(2), we get that

|av]in < lall[vfmn = [a*av]mn < la*|[lav]in = |av]in.

Thus |av|;, = [V]mn-

0, v v* 0, %
= = |v"]nm @ |V|m.n-
v* 0, 0pm v
m+n m+n
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0, v
(3) As € Myin(V)sa, therefore by 2.3.2(b)
v* 0,
|U*|n7m v Om v Om v
= + € Mm+n(v)+
(U (] v 0, v 0,
m+n

v I,
(4) av = € My, for a = € My 4+1,m. Since a*a = I, by (1), we

0 0

v
conclude that |v|y,, = ,if v € Mpy,(V)and [ € N.
0
m—+l,n
m v 0
(5) For a = € M t1.m, we get that a [U 0] = € Myiin+t(V).
0 0 0
Since a*a = I,,,, again using (1)
v 0 |V|mn O
|:U 0:| = = )
m,n—+t O O 0 O
m~+Il,n+t

if ve M,,(V)and [,t € N.

Proposition 3.1.3. Let V' be an absolutely matriz ordered space and let v €
M, (V') for some m,n € N. Then v = 0 if and only if |v|m, = 0 and |v*|,m = 0.
If My (V)T is Archimedean, then v =0 if and only if |v|mn = 0.

Proof. If v = 0, then by the definition, we have |v|,,,, = 0 and that |v*|,,, = 0.

Conversely assume that |v|,,, = 0 and |v*|,,,, = 0. By Proposition 3.1.2(3),
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0 v
we deduce that + € Mpin(V)*. Since M, (V)T is proper, we have
v* 0
0
= 0 so that v = 0.
v* 0

Now, we assume that M, (V)" is Archimedean. If |v|,,, = 0, then as above,

|U*|n,m v

we have € M,,.n(V)". Let & > 0 be any real number and consider
v* 0
kI, 0
a= . Then
0 k7',
k2|v*|n,m v [V nm v
- a € Myn(V)*.
v* 0 v* 0
Elv*|pm v
It follows that € My, (V)" for all &k € R, k > 0. Since
+ov* 0
0 v
My (V)T is Archimedean, we have + € My, n(V)T. Now as My, (V)T
v* 0
is proper, we conclude that v = 0. (I

Lemma 3.1.4. Let V' be an absolutely matrix ordered space and let n € N. Then

la*val, = a*|v|,a, if ve M,(V) and a € M, is a unitary.

Proof. By 3.1.1(2), we have

la*val, < la|[|[v]nal, = |[v|nal, = |a(a®|v|na)], < a*lv],a.

Thus |a*val, < a*|v|,a. Now replacing v by ava*, we get |v|, < a*|ava*|,a so that

alv|,a* < |ava*|,. Finally, interchanging a and a*, we get that a*|v|,a < |a*val,.
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§3.2. Absolute matrix order unit spaces

Hence |a*val, = a*|v|,a. O

3.2 Absolute matrix order unit spaces

In this section, we define absolute matrix order unit spaces and prove some facts
about it. We observe that absolute value function in an absolute matrix order
unit space is positive definite. We also prove that absolute value function is an

isometry.

Definition 3.2.1. Let (V,{M,(V)"},e) be a matriz order unit space such that
(a) (V,{M,(V)* '} A{] - |mn}) is an absolutely matriz ordered space; and
(b) L=1% on M, (V)" for alln € N.

Then (V,{M,(V)T},{|- lmn},e€) is called an absolute matrix order unit space.

Example 3.2.2. A unital C*-algebra is an absolute matriz order unit space. Let
A be a unital C*-algebra with unity 14. Then, for each n € N, M, (A) is a C*-
algebra with unity element Iy (where I'y ;== 14 @ --- @ 14 € M, (A)). If M,(A)*
denotes the set of all the positive elements in M, (A), then (A, {M,(A)" }en, 14)
1S a matriz order unit space.

For m,n € N, define | - |man : Mpn(A) — Mo(A)T given by |@|mn = (z*7)2
for all x € My, n(A). We show that (A, {M,(A)"},{] -

mnts 14) is an absolute

matrix order unit space.

1. Let x € My, ,(A) and a € My . Then
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§3.2. Absolute matrix order unit spaces

laz[;, = (az)"(az)
= z'(a*a)x

< lal*(z"z)

= lall?|[2,...
Thus |az|;, < |la|||z|mn-
2. Let x € My, n(A) and b € M, ;. Then
bl = (wb)*(xb)
= b*z*zb
= b*|z]7, b
= (([2|mnd)"(|2]m.nb))
= ||x’m,nb|i,t-
Thus |2b|ms = ||@]mnblns-

3. Next, let & € My, ,,(A) and y € M, (A). Then

|z ® y’?n-&-l,n-i—t
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§3.2. Absolute matrix order unit spaces

Thus |2 © Ylmstnre = |T|mn © [Y]ie-

Remark 3.2.3. Let V be an absolute order unit space and let v € M,, (V') for

some m,n € N. Then v =0 if and only if |v|;m, = 0.

Proposition 3.2.4. Let V be an absolute matriz order unit space and let v €
M, (V) for some n € N. Then |[|[v],|l. = l|v]ln = |||v*|alln- In particular, if

v € My, (V) for some m,n € N, then

*
|||U|mn||n = ”U”m,n = [[Jv ’anm

Proof. If v = 0, then |v|, = 0 and |v*|,, = 0 so that the result holds trivially.

Thus we may assume that v # 0. Then |v|, # 0 and |v*|,, # 0. As

0 w
||l =
v* 0
2n
0 v
v* 0
2n 112n
a v, 0
0 |v|,
4 112n
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= maz{||[vfnlln [[[0"]nlln},

we have |||v]nlln [||0*|nlln < |Jv]|n- Now, as in the proof of Proposition 3.1.3,

klv*,  +v

we may deduce that € My, (V)" for all k € R,k > 0. Put
+v* k7 YHol,

k = ””“;ﬂrn”“”n Since |v], < |[||v]n]ln€™ and since |v*|, < |||v*]n|ln€", we may
koe™ v

further conclude that € My, (V)T where ko = /||[v]nllnll[v*]n]ln-
+v* kge™

Thus [[v]ln < v/l[vlallalllo* ]l Now

VIllallalllolalln < maz{ll[vhalln; 10" lla} = vl

s0 that [[0]|n = v/[[[vlalln[l[o* ]l Hence [[[v]u]ln = [[v]ln = [[[v*[x]l.-

Next, let v € M,,, (V) for some m,n € N with m # n. Without loss of

generality, we assume that m > n. Then

ol = |0
-

= H ’U‘m,n @ OHm

m
m

m

= vlmnlln

and
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||U”m,n = {U O]

= |l
/U*
0

*
= 0" llm-

3.3 Extending orthogonality

3.3.1 Extending orthogonality on absolutely ordered spaces

In this subsection, we extend the notion of orthogonality to general elements in an
absolutely ordered space. Let V be an absolutely ordered space and let u,v € V.
We say that u is orthogonal to v, we still write u L v, if |u| L |v| (or equivalently
[lul = Jvf| = lul + |v]).

In the next result, we characterize orthogonality of general elements in an

absolutely ordered space in terms of the orthogonality among positive elements.

Proposition 3.3.1. Let (V, VT |-]) be an absolutely ordered space and let u,v €

V. Then the following statements are equivalent:
1. u L
2. ut,u™, vt v are mutually orthogonal;

3. Ju£v| =lu| + |v].

39



§3.3. Extending orthogonality

Proof. (1) implies (2): Let u L v or equivalently |u] L |v]. As 0 < ut,u™ < |u
and 0 < vt v~ < |v], a repeated use of the definition yields that u*,u™, v v~
are mutually orthogonal.

(2) implies (1): Let u™,u~,v", v~ be mutually orthogonal. Then by the defini-
tion, we get (ut4u~) L (vF4o07) for [ut+u| = ut4+u” and [vT+o7| =0T +oT.
That is, |u| L |v| so that v L v.

(2) implies (3): Again, let u*,u™,v", v~ be mutually orthogonal. Then by the

definition, once again, we have (v +v%) L (u”4+v7) and (u™+v7) L (u” +v7T).

Thus
lu+v] = |ut —u +ot —ov7|
= J(ut+0") = (u +0v7)]
= v +ot +u +ov = |ul+ v
and

u—v| = Jut —u —ov" +ov7|
= |(ut+v7) = (u +ov)]

= ut+vT+u +o" = Jul+ ||

(3) implies (2): Finally, assume that |u + v| = |u| 4 |v|. Then as before, we may
get that (u™ +o%) L (u” +v7) and (v +v7) L (u” +o"). Thus ut,u", 0", v~

are mutually orthogonal. U

Corollary 3.3.2. [39, Remark 3.5] Let (V,VT,|-]) be an absolutely ordered space

and let u,v,w € VT be such thatu L v andu L w. Then |u—(vtw)| = u+|vtw].

Proof. Since v L v and v L w, by Definition 2.3.2(e), we get that u L |v £+ w|.
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Thus u L (v +w) so that |u — (vt w)| =u+ v+ w|. O

3.3.2 DMatricial version of orthogonality

Now, we extend the notion of orthogonality to the general elements in an abso-

lutely matrix ordered space.

Definition 3.3.3. Let (V,{M,(V)* '}, {| - lmn}) be an absolutely matriz ordered

space and let u,v € My, ,(V') for some m,n € N. We say that u is orthogonal to

0 u v
v (we continue to write, u L v), if 1 in Mpin(V)sa
u* 0 v* 0

Remark 3.3.4. Let V' be an absolutely matriz ordered space.

1. Let up,uy € My, (V)" and vi,vy € M, (V)" for some m,n € N. Then
ur ® vy L oug @ vy in My (V)T if and only if uy L us and vy L vy in
M,,(V)* and M, (V)*t respectively. In fact, by 3.1.1(4), we have u; L uy

and vy L vy if and only if

u; O us 0 [ty — o] 0
0 g 0 vy 0 |v1 — vo
Ui + U2 0
0 V1 + U
U1 0 U9 0
= +
0 U1 0 (%)

if and only if
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(75} 0 U9 0

1
0 (%1 0 (%)
2. In particular, for u,v € M, ,(V), we have u L v if and only if |u|pm, L

[Vl and |u*|pm L |0 |nm (using Proposition 3.1.2(2)).

Proposition 3.3.5. Let V' be an absolutely matrix ordered space and let u,v €

My (V) for some m,n € N.

1. Then u L v if and only if |u £ |mn = |Ulmn + [Vlmn and [u* £ 0%, =

|U*|n,m + |U*|n,m~

U
2. Ifu L v, then = |t|pmn+|V|mn and = U] ® |V|m.n-

m,2n

]

Proof. (1). First, assume that u L v. Then by Proposition 3.3.1, we have

2m,n

|u* £ 0", 0 0 u 0 v
= +
0 U £ V| p u* 0 v* 0
L . m-+n
0 wu 0 v
= +
u* 0 v* 0
L 4 Im+n m—+n
_ |U*|n,m 0 |U*|n,m 0
0 || 0 |U|m,n
- IU*|n7m + |U*|nm 0
0 2P o (O]

Thus |u £ 0|mn = |Ulmn+|V|me and |[u* £ 0* |0 = [0 m + [0 |nm. Now tracing

back the proof, we can also prove the converse.
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(2). First, we observe that

* *

U |u*|pm O 0 0 0

0 0 0 0 |v*nm v

n,2m n,2m

and that

= ‘u’m,n 1 ‘U‘m,n =

0 v

2m,n 2m,n

Thus by Remark 3.3.4(2) and by (1), we get

u u
= + = ‘u’m,n + ’v’m,n-

v 0 v
2m,n 2m,n 2m,n

Similarly, we have

[u 0] + {0 v}
m,2n m,2n
t)r O 0 0
= +

0 0 0 |V|mn

= |u|m7n @ |U|m,n

for

and
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Chapter 4

Absolute value preserving maps

In the first section of this chapter, we define absolute value preserving maps be-
tween absolutely ordered spaces and study some properties of such maps. In the
second section, we prove that a unital bijective linear map between two absolute
order unit spaces is absolute value preserving if and only if it is an isometry. From
here, we deduce the following known result: Unital, bijective absolute value pre-
serving maps between two unital JB-algebras are precisely Jordan isomorphisms.
In the third section, we extend the notion of absolute value preserving maps to
completely absolute value preserving maps between absolutely matrix ordered
spaces. We prove that a unital bijective x-linear map between two absolute ma-
trix order unit spaces is completely absolute value preserving if and only if it is
a complete isometry. Again from this, we deduce a known result that on (unital)
C*-algebras, unital bijective completely absolute value preserving maps are pre-
cisely C*-algebra isomorphisms. We give a simple, order-theoretic proof using a
trick which is apparently new. In the fourth section, we define notion of orthog-
onality of positive maps between absolutely ordered spaces. We also extend this

notion to orthogonality of completely positive maps between absolutely matrix
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§4.1. Absolute value preservers on absolutely ordered spaces

ordered spaces and prove that sum of two orthogonal completely absolute value

preserving maps is a completely absolute value preserving map.

4.1 Absolute value preservers on absolutely or-
dered spaces

In this section, we define absolute value preserving maps between two absolutely
ordered spaces and characterize such maps in terms of orthogonality of positive
elements. We introduce the notions of absolutely ordered subspaces and absolute
order ideals in absolutely ordered spaces and prove that kernel and image of abso-
lutely preserving maps are absolute order ideal and absolutely ordered subspaces
respectively. We also show that the quotient of an absolutely ordered space by

the kernel of an absolute value preserving map is an absolutely ordered space.

Definition 4.1.1. Let V' and W be absolutely ordered spaces. A linear map
¢ :V — W is said to be an absolute value preserving map (| - |-preserving map,

in short), if ¢(|v]) = |p(v)| for allv € V.

Remark 4.1.2. Let ¢ : V. — W be a bijective, linear and | - |-preserving map.
Then ¢~ is also a bijective, linear and |-|-preserving map. To see this, let w € W.

Since ¢ is bijective, there exists a unique v € V' such that ¢(v) = w. Now

3o~ (w)]) = (|v]) = [p(v)] = [w]

so that |¢~H(w)| = ¢~ (Jw|). Hence ¢~ is | - |-preserving.
The next result is an elementary characterization of | - |-preserving maps.

Proposition 4.1.3. Let V and W be absolutely ordered spaces and let ¢ : V — W

be a linear map. Then the following statements are equivalent:
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(1) ¢ is | - |-preserving;

(2) ¢ >0 and ¢p(v1) L ¢(vs) for all vy, ve € V' with vy L vy;
(3) p(vr) = p(v)* for allv e V;

(4) d(v™) = ¢(v)~ forallv e V.

Proof. (1) = (2): Let v € V with v > 0. Now, as ¢ is an | - |-preserving and by
2.3.2(a), we have ¢(v) = 6(|o]) = [6(v)] > 0, therefore ¢ > 0. Let vy, 05 € V+
be such that v L vg. Put v = v, — vy. Then |v] = v; + v,. Since ¢ is an additive
| - [-map (by (1)), we get ¢(v1) + ¢(v2) = ¢(|v]) = [¢(v)| = [@(v1) — P(v2)|. Thus
¢(v1), d(v2) € W with ¢(v1) L d(va).

(2) — (3): Let v € V. Then v+ L v~ so that by (2), ¢(v+) L o(v-). As
o(v) = p(v) — ¢(v7), we get ¢(v)* = @(vF), 9(v)” = d(v7).

(3) —> (4): Tf we use the fact, v= = (—v)*.

(4) = (1): Let v € V. Then |u| = v* + v~ = (—v)~ + v~. Thus by (4), we
get

o([v]) = d(=v)” + ¢(v)” = d(v)" + B(v)” = [(v)].

O

Definition 4.1.4. Let (V,V T |-|) be an absolutely ordered space. Let W be a
vector subspace of V. and put W+ := WNV™'. Then W is said to be an absolutely
ordered subspace of (V,V*t, |-]), if lw| € W for all w € W. A vector subspace
W of V which is an order ideal of (V,V*) and an absolutely ordered subspace of

(V,V* | -1]) is called an absolute order ideal of (V,V*,|-|).

Theorem 4.1.5. Let V and W be absolutely ordered spaces and let ¢ 'V — W

be a linear | - |-preserving map. Then
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(1) ker(¢) is an absolute order ideal of V.
(2) ¢(V) is an absolutely ordered subspace of W. In particular, (V)" = ¢p(VT).

(3) For each v € V, we put |v+ ker(¢)| = |v| + ker(¢). Then

(V/ker(o), (V/ker(¢)) .| ])

15 also an absolutely ordered space, where

(V/ ker(¢))+ = {v+ker(¢) :v eV}

Proof. (1) Let v € ker(¢). Then ¢(v) = 0 so that 0 = |¢(v)| = ¢(|v|). Thus
|v| € ker(¢) and consequently, ker(¢) is an absolutely ordered subspace
of V. Now, let v € V* u € ker(¢) such that v < w. Since ¢ > 0, thus
0 < ¢(v) < @(u). But ¢(u) =0 so that £¢(v) € WT. As W is proper, we

get that ¢(v) = 0 i.e. v € ker(¢), therefore ker(¢) is an order ideal.

(2) Let w € ¢(V), say w = ¢(v) for some v € V. Then ¢(v*) = ¢(v)* =
wt € ¢(V) and ¢(v™) = ¢(v)™ = w™ € ¢(V). Thus ¢(V) is an absolutely
ordered subspace of W. Next, if w € ¢(V)*, then ¢(v)” = w™ = 0 so that
w = ¢(v) = p(v*). Thus ¢(V)* C ¢(V*). Now, being | - |-preserving, ¢ > 0
so that ¢(V*) € ¢(V)*. Hence ¢p(V*F) = (V™.

(3) By Proposition 2.1.1, we note that (V' / ker(¢)) is a proper cone of V [ ker (o).
We show that the absolute value is well defined in V' / ker(¢). To see this,
let u,v € V such that u + ker(¢) = v + ker(¢). Then ¢(u) = ¢(v). Now,
¢ is | - |-preserving so that ¢(|u|) = |p(u)|] = |p(v)| = ¢(Jv|) and hence
[u] + ker(6) = [v] + ker(6).
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(a) Let v € V with v +ker(¢) € (V/ ker(¢))+ . There exists vy € V' such that
v + ker(¢) = vy + ker(¢). Thus

o+ ker(@)] = v + ker(6)] = [uo] + ker(@) = vo + ker() = v + ke ().

(b) Let v € V. Then

v+ ker(¢)] & (v + ker(4)) = (|v] £ v) + ker(¢) € (V/ ker(¢)) ™.

(c¢) Let k € R. Then

|k(v + ker(¢))] = |kv+ker(¢)| = |kv| + ker(¢)
= |kllv| + ker(¢) = [k|(|v| + ker(e))

— [klfo + ker(6)].

(d) Let u,v,w € V such that u+ker(¢), v + ker(¢), w + ker(¢) € (V/ ker(qb))Jr
with |u — v| 4+ ker(¢) = u + v + ker(¢) and w + ker(¢) < v + ker(¢). Then
|p(u —v)| = ¢(|lu —v|) = ¢(u+v) and 0 < p(w) < ¢(v). Since ¢(V) is an

absolutely ordered space, we may conclude that

O(lu —wl) = [¢(u) — p(w)| = d(u) + d(w).
Thus |u — w| + ker(¢) = u + w + ker(¢).

(e) Let |u—v|+ker(¢) = u+v+ker(¢) and |u —w| +ker(¢) = u+ w + ker(¢).
Then |p(u) — ¢(v)| = ¢(u) + ¢(v) and |p(u) — ¢(w)| = ¢(u) + ¢(w). Since
(V) is an absolutely ordered space, we may conclude that |p(u) — |¢(v) £
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o(w)|| = d(u) + |p(v) £ ¢(w)|. Thus, it follows that |u— |v £ w|| + ker(¢) =

u+ v+ w| + ker(¢).

Hence (V /ker(¢), (V/ ker(gb))Jr .| - |) is an absolutely ordered space.
O

Corollary 4.1.6. Let V and W be absolutely ordered spaces and let ¢ : V — W

be a linear | - |-preserving map. Put ker™ (¢) := {v € V* : ¢(v) = 0}, then
(1) ¢ is injective if and only if ker™ (¢) = {0}.
(2) ¢ is surjective if and only if (V) = WT.
(3) The quotient map ¢ : V /ker(¢) = ¢(V) is a bijective | - |-preserving map.

Proof. (1) By Theorem 4.1.5(1), ker(¢) is an absolutely ordered space. Thus

we have ker(¢) = ker (¢) — ker*(¢). Now, the proof of (1) is immediate.

(2) If ¢ is surjective, it follows from Theorem 4.1.5(2) that ¢(V ) = WT.
Conversely, assume that ¢(V*) = W, If w € W, by assumption there exist
v1,v2 € VT such that ¢(v1) = wt,¢(ve) = w™. Put v = v; — vy so that

¢(v) = w. Hence ¢ is surjective.

(3) It is an immediate consequence of Theorem 4.1.5(3).

4.2 Absolute value preservers on absolute order
unit spaces

In this section, we study absolute value preserving maps between absolute order

unit spaces.
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We begin with the following characterization of unital, bijective |- |-preserving

maps between absolute order unit spaces:

Theorem 4.2.1. Let (V,ey) and (W, ew) be absolute order unit spaces and let
¢V — W be a unital, bijective linear map. Then ¢ is |- |-preserving if and only

iof it 1s an isometry.

Proof. First, assume that ¢ is an | - |-preserving map. Since ¢ is surjective,
by Corollary 4.1.6(2), (V) = WT. As it is also an injection, it follows that

rey £ v € VT if and only if rey + ¢(v) € W whenever v € V and r € R. Thus

|lv]] = |l¢(v)]] for all v € V so that ¢ is an isometry.
Conversely, let ¢ be an isometry. Next, we show that ¢ preserves | - |. Let
v € Vt with [|[v]] < 1. Then 0 < v < ey so that 0 < ey — v < ey. Thus

lev —v|| < 1. Since ¢ is an isometry, we get that |leyy — ¢(v)|| < 1 and this
implies ey — ¢(v) < ey. Then ¢(v) € W and hence ¢ > 0. Now, as ¢~ ! is also
an isometry, therefore ¢! > 0.

Let vi,v9 € VT with v L ve. If v1 = 0 or vy = 0, then ¢(v1) L ¢(vy).
Now, assume that v; # 0,05 # 0. Then w; = ¢(v;) € W\ {0},7 = 1,2. Let
0 <wu <w;,i=1,2 Then 0 < ¢~ (u;) < v,i = 1,2. Since v; L vy, we have
v L% vy and consequently, ¢! (u;) Lo, ¢~ !(ug). Thus, by Theorem 2.1.4, we

have

o= [l )l o™ (ur) + 6™ (u2) | 767" (u2) |

= |llall ™ g + [z s -

as ¢! is an isometry. Again applying Theorem 2.1.4, we get that u; L. us so
that wy L% wy. Now, by the definition of an absolute order unit space, we get

that wy; L wy. Hence by Proposition 4.1.3, ¢ is | - |-preserving. O
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Maitland Wright and Youngson proved that any surjective linear unital isom-
etry ¢ : A — B between unital JB-algebras A and B is a Jordan isomorphism
[48, Theorem 4]. If we combine this result with Theorem 4.2.1, we may deduce

the following:

Corollary 4.2.2. Let A and B be unital JB-algebras and let ¢ : A — B be a

bijective linear map. Then the following statements are equivalent:
1. ¢ is a unital isometry;
2. ¢ is a unital | - |-preserving map;
3. ¢ is a Jordan isomorphism.
Proof. Let ¢ be a Jordan isomorphism. Let ¢(14) = 79 € B and let ¢~ 1(15) =

Yo € A. Then

1p = d(yo) = d(1aoyo) = ¢(14)09(yo) = 2e0lp = 7

so that ¢ is unital. Also, ¢ is positive. In fact, if x € AT, then z = (a:%)2 so that

d(z) = ¢(x2)? € BT. Now, for any y € A, we have

0> = o(y)* = o(¥*) = o(ly*) = o(|y])?

so that ¢(|y|) = |¢(y)| for all y € A. Thus (3) implies (2). Now, by Theorem

4.2.1, the proof is complete. O

Corollary 4.2.3. Let (V,ey) and (W, ew) be absolute order unit spaces and let

¢V — W be a bigective linear map. Consider the three statements:

(1) ¢ is unital;
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(2) ¢ is an isometry; and
(3) ¢ is |- |-preserving.
Then any two of these statements imply the third.

Proof. By Theorem 4.2.1, we have that (1) and (2) imply (3) and that (1) and
(3) imply (2). Now, assume that (2) and (3) hold. Then by Remark 4.1.2, we
note that ¢! is also | - |-preserving. Thus ¢ and ¢! are positive isometries.
Put ¢(ey) = wy. Then wy € W with [Jwg|| = 1 so that wy < ey. Thus
ey = ¢ (wy) < ¢ !ew). Since ¢! is an isometry, we get that ¢~ (e ) < ey so

that ¢~'(ew) = ey. Hence ¢ is unital. O

4.3 Absolute compatibility

Absolute compatibility is an useful notion. It was applied to derive spectral
decomposition in an absolute order unit space [39]. This property has been
separately studied in the context of operator algebras [24, 25]. Here, we study
absolute compatibility preservers in absolute order unit spaces and their relation

with absolute value preservers.

Remark 4.3.1. Let (V,ey) and (W, ew) be absolute order unit spaces. Then a
unital | - |-preserving map ¢ : V. — W preserves order projections. To see this, let
p € OP(V). Thenp L ey —p. As ¢(ev) = ew and ¢(|v|) = |p(v)| for allv € V,
by Proposition 4.1.3, we get ¢(p) L ew — ¢(p). Thus ¢(p) € OP(W).

Now, in the next Theorem 4.3.2(1), we generalize Remark 4.3.1.

Theorem 4.3.2. Let V and W be absolute order unit spaces and let ¢ : V — W

be an | - |-preserving map such that ¢p(ey) € OP(W). Then
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(1) ¢(OP(V)) C OP(W).

(2) Foru,v € VT with u Av, we have ¢p(u) A\ ¢(v).

Proof. (1) Put ¢(ey) = ¢ and let p € OP(V). Then

lev — 2p| = |(ev —p) —p| = ey.

Since ¢ is | - |-preserving, we have

q = ¢lev) = |dlev) — 26(p)| = |g — 2¢(p)|.

Also, as p < ey, we get that ¢(p) < q.

Now (e —¢q) L gand 0 < ¢(p), q— ¢(p) < ¢ so that, by Definition 2.3.2(d),
we get that (e —q) L ¢(p) and (ew —¢q) L g— &(p). Using Corollary 3.3.2,

we have

lew —20(p)] = |lew —q) + (¢ — &(p)) — d(p))|
= |(ew —q)| + g — o(p) — o)
= (ew —q) +[qg — 26(p)|

= ew.

Hence ¢(p) € OP(W).

(2) Let u,v € V* be such that u A v. Then |u —v| + |ey — u — v| = ey. By

Proposition 2.3.8, we conclude that 0 < u,v < ey. Since ¢ > 0, we have
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0 < ¢p(u), p(v) < pley). As ¢ is | - |-preserving, we further get that

|9(u) — &(v)] + |¢(ev) — d(u) — G(v)] = d(ev).

Now ¢(ey) € OP(W) so that ¢(ey) L ey —o(ey). Thusas0 < ¢(u), p(v) <

¢(ey) (by technique in proof of 2.3.8) and ¢(ey) L ey —d(ey ), by Definition
2.3.2(d), we have ¢(u) L ey — ¢(ey) and ¢(v) L ew — ¢p(ey). Now, by
Definition 2.3.2(e), we get that ¢(u) + ¢(v) L ew — ¢(ey). Thus applying

Corollary 3.3.2, we obtain that

lew — ¢(u) — o(v)| = |(ew — dlev)) + (¢(ev) — d(u) — ¢(v))|
= (ew — o(ev)) +[o(ev) — o(u) — d(v)].

Therefore, we get

[6(u) = (V)] + lew — d(u) — G(v)]
= [p(u) = o(v)| + (ew — lev)) + [@(ev) — ¢(u) — ¢(v)]

= ew.
so that ¢(u) A é(v).
O

Theorem 4.3.3. Let V and W be absolute order unit spaces and let ¢ -V — W

be a linear map such that ¢ > 0. If ¢ is /N-preserving, then
(1) ¢ is a contraction.
(2) ¢ is |- |-preserving.
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Proof. Assume that ¢ is /A-preserving.

(1) First, we show that ¢ is contractive on V. To see this, let v € V. Without
loss of generality, we may assume that ||v|| < 1. Since v L 0, by Proposition
2.3.7, we have v/AQ so that ¢(v)A0. Now ¢(v)A0, by Proposition 2.3.8, we
get that 0 < ¢(v) < ey. Thus ¢ is contrative on V. Now let v € V' be
an arbitrary element with ||v|| < 1. Consider the orthogonal decomposition
v=v"—v". Then v L v~ so that max{|[v™||,[|[v™||} = [|v]| < 1. Also then
—v~ <wv <wt. Since ¢ is positive, we have —¢(v™) < ¢(v) < ¢(v). Thus
lo(v)|| < max{||¢p(v)]],[|¢(vT)||} <1 as ¢ is contractive on V*. Hence ¢

is a contraction on V.

(2) Let u,v € V* with v L v and assume that |jul| < 1,|v|| < 1. Then
by Proposition 2.3.7, we have u + v < ey and ulwv. Since ¢ > 0 and
A-preserving, we get ¢(u) + ¢(v) < ¢(ey) and ¢(u)Ap(v). Also, by (1),
o(ey) < ew. Thus again applying Proposition 2.3.7, we may conclude that

¢(u) L ¢(v). Hence by Proposition 4.1.3, ¢ is | - |-preserving map.

Remark 4.3.4. Let V and W be absolute order unit spaces and let ¢ -V — W

be a linear map.

(1) If @ > 0 and ¢(ey) € OP(W), then ¢ is A-preserving if and only if it

| - |-preserving.

(2) Let ¢ be a unital surjective isometry. Then for all u,v € V', we have

o(u) A ¢(v) if and only if u A v.
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4.4 Matricial version of absolute value preserv-

ing maps
In this section, we define completely | - |-preserving maps between absolutely
matrix ordered spaces which is extension of the notion of | - |-preserving maps

between absolutely ordered spaces. We prove that unital, bijective completely
absolute value preserving maps between absolutely matrix ordered spaces are
precisely complete isometries. We also deduce known result that on (unital)

C*-algebras, such maps are C*-algebra isomorphisms.

Definition 4.4.1. Let V and W be absolutely matrix ordered spaces and let ¢ :
V. — W be a x-linear map. We say that ¢ is a complete | - |-preserving, if

On 2 My (V) — Mp(W) is an | - |-preserving map for each n € N.
Now we present the matricial version of Theorem 4.2.1.

Theorem 4.4.2. Let (V,ey) and (W, ew) be absolute matriz order unit spaces
and let ¢ - V. — W be a unital *-linear surjective isomorphism. Then ¢ is a

complete isometry if and only if it is completely | - |-preserving.

Proof. First, let ¢ be a complete isometry. Fix n € N. Then (May, (V) sa, Man (V)™ |-
|lon, €27) is an absolute order unit space and ¢, : Mon (V) e — Moy (W )4, is a uni-

tal, bijective linear isometry, thus by Theorem 4.2.1, we get that Gon(|v]2n) =

0 wv
|pon (V) ]2y for all v € My, (V)g,. Let v € M, (V). Then € Mop(V)sq sO
v* 0
that )
0 v 0 v
¢2n - ¢2n
v* 0 v* 0
2n 2n
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Thus, by Proposition 3.1.2(2), we get

On([v*]n) 0 P (V)" |n 0

0 Gn([v]n) 0 |Pn (V)]

so that ¢, (|v|n) = |@n(v)]n. Therefore ¢ is completely | - |-preserving.
Conversely, assume that ¢ is a completely |-|-preserving map. Fixn € N. Then

Gon + Moy (V)sa — Moy (W)se is an | - |-preserving map. Since ¢o, : Mop(V)se —

My, (W), is a unital bijective |- |-preserving map, again applying Theorem 4.2.1,

we have that ¢g, : Mop(V)se — Mon (W), is an isometry. Let v € M, (V). Then

0 v 0 v 0 v
€ Ms,(V)sa so that ||v]l, = = ||¢pon —
U* 0 U* 0 ’U* 0
I 2n 2n
0 én(v) . .
= ||¢n(v)||. Hence ¢ : V' — W is a complete isometry. [
Pn(v)* 0 )

Corollary 4.4.3. Let A and B be any two unital C*-algebras and let ¢ : A — B

be a x-linear bijective map. Then the following facts are equivalent:

1. ¢ is a unital complete isometry;

2. ¢ is a unital completely | - |-preserving map;

3. ¢ is a C*-algebra isomorphism.

Proof. Following Theorem 4.4.2, it suffices to show that (2) (or equivalently (1))
implies (3). Let ¢ be a unital completely | - |-preserving map. Then ¢, :
M,(A)sa — M,(B)s, is a unital | - |-preserving map for each n € N. Thus,
by Corollary 4.2.2, ¢,, : M, (A)se — M,(B)se is a Jordan isomorphism for each

n € N. In particular, ¢3(2%) = ¢3(2)? for any 2 € M3(A),. Let z,y € A
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0 =z 0
and consider z = [z* 0 y| € M3(A)s. Then ¢3(2%) = ¢3(2)* yields that

0y 0
o(xy) = o(x)d(y). Thus ¢ is a C*-algebra isomorphism. O

Remark 4.4.4. It follows, from Corollary 4.4.3, that a unital surjective x-linear

map between unital C*-algebras is complete isometry, if it is a 3-isometry.

4.5 Orthogonality of positive maps

In this section, we define orthogonality of completely positive linear maps be-
tween absolutely matrix ordered spaces. We show that sum of two orthogonal

completely | - |-preserving maps is again a completely | - |-preserving.

Definition 4.5.1. Let V and W be absolutely ordered spaces and let ¢, 1V —
W be positive linear maps. We say that ¢ is orthogonal to 1) (we write, ¢ L 1)),
if p(u) L p(v) for all u,v € V7.

Remark 4.5.2. Let V and W be absolutely ordered spaces and let ¢, -V — W
be | - |-preserving maps. Then ¢ L ¢ if and only if ¢p(u) L ¥(v) for all u,v € V.
Thus we get that |p(u) £ (V)| = |¢(u)| + [ (v)] for all u,v € V. In fact, if ¢ and
Y are orthogonal | -|-preserving maps, then by Proposition 4.1.3 and by Definition
4.5.1, we have that ¢(u)™, ¢p(u)~, ¥ (v)" and 1 (v)~ are mutually orthogonal. Thus

by Proposition 3.5.1, we conclude that ¢p(u) L (v) and |p(u) & (v)| = |op(u)] +
(V)]

Definition 4.5.3. Let V and W be absolutely matrixz ordered spaces and let ¢, :
V — W be completely positive maps. We say that ¢ is completely orthogonal to
Y (we continue to write, ¢ L ), if ¢, L 0, for alln € N.
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Theorem 4.5.4. Let V' and W be absolutely matriz ordered spaces and ¢, :
V — W be completely | - |-preserving maps such that ¢ L . Then ¢ + 1 is also

completely | - |-preserving map.

0 v
Proof. Let v € M,,(V'). Then € My, (V)sq. Since ¢ is completely orthog-

v* 0
0 v 0 v
onal to ¥, by Remark 4.5.2, we have ¢o, 1 o, . Thus
v* 0 v* 0
we get the following:
‘(¢ + w)n(v*”n 0 _ 0 ((b + w)n(v)
N (11 B | (R M B T |
_ 0 d)n(v) + 7,%(11)
_¢n(v*> + P (v7) 0 on
0 On (V) 0 U (V)
= +
_qﬁn(v*) 0 P (v*) 0 .
- 0 L- 0 v
= ¢2n + ¢2n
v* 0 v* 0
- - 2
0 v 0 v
- ¢2n + w2n (
v* 0 v* 0
L . 2n . 2n
0 ¢ulv) 0 ¢n(v)
= +
¢71(U*) 0 wn(?}*) 0
2n 2n
@ ()] 0 |tn (V)]s 0
= +
0 |¢n(v)|n 0 |wn(v)|n
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so that |(¢+1)(v)

0 (@ + P)n(|v]n)

(6460l 0 }

n = (6+1)(|v|n). Hence ¢+1) is completely |- |-preserving.
]
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Chapter 5

Partial isometries in an absolute

matrix order unit space

In this chapter, we generalize and study certain C*-algebraic notions in the order
theoretic context. We define notions of unitaries, order projections, partial isome-
tries, isometries and some other terms of a C*-algebra in absolute matrix order
unit spaces. We mainly focus on order projections and partial isometries in this
chapter. In the first section, we discuss some properties of partial isometries in
absolute matrix order unit space. In the second section, we define partial isomet-
ric equivalence relation on the collection of all the order projections in absolute
matrix order unit spaces. This equivalence relation generalizes the Murray-von
Neumann equivalence relation among the projections in a C*-algebra. We also
discuss some properties related to partial isometric equivalence relation. In the
third section, we study unitary equivalence of two projections in absolute matrix
order unit spaces. We relate it to partial isometric equivalence. In the fourth
and fifth sections, we define the notions of infinite and properly infinite order

projections respectively in absolute matrix order unit spaces which are general-
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izations of infinite and properly infinite projections respectively in a C*-algebra.

We characterize these notions.

5.1 Partial isometry

We begin with the following definitions.

Definition 5.1.1. Let (V,e) be an absolute matriz order unit space and let v €

M, (V) for some n € N.

1. v is said to be a normal, if |v|, = |v*|,;

2. v is said to be a unitary, if |v|, = |v*], = e";

3. v is said to be a symmetry, if v* = v and |v|, = €";

4. v is said to be an order projection, if v* = v and |2v — €"|, = €";

5. v is said to be a partial unitary, if |v|, = |v*|, is an order projection;

6. v is said to be a partial symmetry, if v* = v and |v|, is an order projection;
Now let v € M,,,,(V') for some m,n € N .

7. v is said to be a partial isometry, if |v|m.n and |V |, are order projections;

8. v is said to be an isometry, if v is a partial isometry and |v],,, = €";

9. v is said to be a co-isometry, if v is a partial isometry and |v*|,., = e™.

The set of all partial isometries in M, (V') will be denoted by PZ,, (V') and
the set of all order projections in M, (V') will be denoted by OP,,(V'). For m = n,
we write PZ,, (V) = PZ,(V). For n = 1, we shall write PZ(V') for PZ,(V) and
OP(V) for OP1(V).
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It may be noted that the statements in Propositions 2.3.11 and 2.3.12 remain
valid in an absolute matrix order unit space V', if we replace OP (V') by OP, (V)

for any n € N.

Now, we prove some matricial properties of order projections.

Proposition 5.1.2. Let V' be an absolute malrix order unit space and let m,n €

N. Thenp € OPn(V),q € OP,(V) if and only if p® q € OPpin(V).

Proof. Let p® q € OPyyn(V). Then
M =12(p @ q) — " min = 20 — €| © 2 — €.

Thus |[2p —€™|,, = €™ and |2q — €"|,, = €" so that p € OP,,(V) and ¢ € OP, (V).

Now tracing back the proof, we can prove the converse part. O

Proposition 5.1.3. Let (V,e) be an absolute matriz order unit space and let
a € My, such that a*a = I,. Then aua* L ava* for u,v € M,(V)" with u L v.

In particular, if p € OP,(V), then apa* € OP,, (V).

Proof. Let uw,v € M,(V)* such that v L wv. Since a*a = I,, we have that

rank(a) = n so that n < m. Thus we can find a unitary d € M, such that

I,
a=d . Then
0

I
aua® =d u [[n ()] d* =d(u®0)d”.
0
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Similarly ava* = d(v @ 0)d*. Now by Lemma 3.1.4, we get

laua™ — ava*|, = |d(u® 0)d" —d(v® 0)d"|,
= d|(u—v) @ Ofpnd*
= d(|u— |, ©0)d*
= d((u+v)@0)d”

= aua” + ava®

so that aua™ L ava™.

Next let p € OP, (V) and put r = p & 0,,_,. Then r € OP,,(V) and apa* =

drd*. Thus r L ("™ —r) so that, by the first part, we have drd* L d(e™ —r)d* =

e™ — drd*. Hence apa* € OP,,(V).

O

Remark 5.1.4. Let V' be an absolute matrix order unit space and let m,n € N.

u

1. Let u,v € PLy, (V) with w L v. Then € PLomn(V) and {u U} €

v

PLin2n(V). In fact, as u L v by Proposition 3.3.5(2), we have

-
=i

[t mn + [V and = |t|mmn B |V|mn. Similarly

[u* [m B |0 nm and

2n,m

u

n,2m

= |u*pm + [0 | for v L v*. Thus

by Propositions 2.5.11(1) and 5.1.2, we get that € PLopmn(V) and

v

{u U} € PLyon(V).

2. Let v € P, (V). Then as in (1), we get [U 0] € PL,(V), if m > n
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v

and € PZ,(V), if m < n.
0

3. Let v € My, (V). Then the following facts are equivalent:

(a) v € PLy,(V);

v* 0
(b) S ,PIm-i-n(v); and
0 v
0 v 0 v
(c) € PLyn(V). (That is, is a partial symmetry.)
v* 0 v* 0

0 v |0*|nm 0 v* 0

v* 0 0 [U|m.n 0 v
m4n m4n
Proposition 5.1.5. Let V' be an absolute matrix order unit space and let v €
M, (V)sa for some n € N. Then v € PZ,(V) (that is, v is a partial symmetry) if
and only if vt € OP,(V). In particulﬁn if v € My, (V) for some m,n € N, then
v € PLy,(V) if and only if 0 € OPin(V).
v* 0

Proof. Since v € M,,(V )44, let v = v — v~ be the orthogonal decomposition of
vin M,(V)". Thus |v] = v* +v~. Now first assume that v € PZ, (V). Then
lv] € OP,(V), therefore by Proposition 2.3.11(2), we get that v* € OP,(V) as
vt Lo,

Conversely assume that v* € OP,(V). Again by Proposition 2.3.11(1), we

get that [v| = vT +v~ € OP,(V) so that v € PZ,(V).
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0 v
Next, let v € M,, (V) for some m,n € N. Then € Mpin(V)sa. By

*

()

0
0 v
Remark 5.1.4(3), we have that v € PZ,, (V) if and only if € PLysn(V).
v* 0

+
0 v
Hence v € PZ,,,(V) if and only if € OPin(V). O
v* 0
Corollary 5.1.6. Let V' be an absolute matrix order unit space and let vy, ..., v, €

My (V) be mutually orthogonal vectors for some k,m,n € N. Then vy, ..., v, €

k
PLpn(V) if and only if Z v; € PLyn(V).

i=1

0 V;
Proof. € Mpyn(V)se forall e =1,2,--- k. Since v; L v; for all i # j,
v;i 0
+
0 (2
by Proposition 3.3.1, we get that ci=1,2,--- ,k » is an orthogonal
vy 0
set so that
k + 4

and
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Then by Remark 5.1.4(3) and by Propositions 2.3.11 and 5.1.5, it follows that
k

Vi, ... U € PLyy(V) if and only if > v; € PLy, (V). O

1=1

5.2 Comparison of order projections

In this section, we study comparison of order projections in absolute matrix order
unit spaces. Recall that a pair of projections p and ¢ in a C*-algebra A is said to
(Murray-von Neumann) equivalent, if there exists a partial isometry u € A such
that p = u*u and ¢ = uu* or equivalently p = |u| and ¢ = |u*|. The latter form
provides room to extend the notion to absolute matrix order unit spaces.

Before we formally introduce the notion, let us look at the other aspects. Let
us note that being multiplicative in nature, partial isometries in C*-algebras enjoy

certain properties which we have not been able to prove order theoretically.

1. Let u be a partial isometry in a C*-algebra A so that |u| and |u*| are
projections and let p be projection in A. Then p < |u] if and only if there
exists a partial isometry u; € A with u; L (v — uy) such that p = |uy|. In
fact, if p < |u|, we put u; = up. Then u; is also a partial isometry in A
with u; L (u—wuq) such that p = |uy|. Conversely, if u; is a partial isometry

in A with uy L (u— uy) such that p = |uy|, then p < |ul.

2. Let u and v be any two partial isometries in A such that |u| = |v]. Put
w = vu*. Then w*w = wu* and ww* = vv*, that is, |w| = |u*| and
jw?| = [o7].

These properties can be extended to M, ,(A) for any m,n € N. We propose
them in terms of the following conditions on an absolute matrix order unit space

V:
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(H) If w € PZ,,,,(V) and if p € OP, (V) with p < |u|mn, then there exists a

uy € PLy (V) with uy L (u — uy) such that p = |uy|mn-

(T) If we PZ,,, (V) and v € PZ;,,(V) with |u|myn = |v|1n, then there exists a

w € PLy, (V) such that |w*|;,, = [u*|nm and |w]m = [0*]n-

Definition 5.2.1. Let V' be an absolute matrix order unit space. We write

OP(V)={p:p € OP,(V) for some n € N}.

Given p € OP,, (V) and ¢ € OP, (V) for some m,n € N, we say that p is partial
isometric equivalent to g (we write, p ~ q), if there exists v € PL,,, (V) such

that p = |v*|pm and ¢ = |V]mn-

Lemma 5.2.2. Let V be an absolute matrix order unit space satisfying condition
(H) and let p € OP,,,(V) and q € OP,(V) for some m,n € N with p ~ q. If
p1 < p for some p1 € OP,,(V), then there exists ¢ € OP, (V) with ¢ < q such

that py ~ q1 and (p —p1) ~ (¢ — q1).

Proof. Since p ~ ¢, there exists u € PZ,, (V) such that p = |u*|,,, and ¢ =
|t]pm.n- Next assume that p; < p for some p; € OP,, (V). As p1 < p = |[u*|m, by
condition (H), there exists v € PZ,, (V) with v L (u—v) such that [v*|,., = p1.
Put ¢1 = |v|m,n. Then py ~ ¢y and g = || = |V|mn+|(w—0)|mn > q1. Further,

|(u — v)*|nm =p—p; and |[(u — U)‘mn =q—q so that (p —p1) ~ (¢ — q1). U

Remark 5.2.3. Let V' be an absolute matriz order unit space satisfying condition
(H) and assume that p;,p € OP,(V), i = 1,...k and ¢ € OP,(V) for some
E,m,neN. Ifp; L p; fori# j and if p; < p~q for eachi=1,...k, then there
exists ¢; € OPn(V), i = 1,...k such that ¢; < q, p; ~ ¢; for alli =1,... k and

¢ L q; whenever i # j.
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Proposition 5.2.4. Let V be an absolute matrix order unit space satisfying the

condition (T). Then ~ is an equivalence relation on OP (V).

Proof. (a) Let p € OP (V). Considering p € PZ,(V), we get p ~ p.

(b) Let p € OP,, (V) and ¢ € OP,,(V) be such that p ~ g. Then there exists a
v € PZLy, (V) such that p = [v*|,,, and ¢ = V|- Now, for w = v* € PL,,,(V),
we have ¢ = |w*|,,,, and p = |w|, . Thus ¢ ~ p.

(c) Let p € OPr(V), ¢ € OP|(V) and r € OP,,(V) be such that p ~ ¢ and

q ~ r. Then there exists u € PZy,;(V) and v € PZ;,,,(V) such that p = |u*|i 4,

q = |ulks, ¢ = [V mg and 7 = U] m. As |ulg; = [0*|my, by condition (T), there
exists w € PZLy,,(V) such that |w|gm = [v|im = r and |w*|ne = [u|ix = p
Thus p ~ r. 0

Proposition 5.2.5. Let V' be an absolute matrixz order unit space and let p, q,r,p',q €

OP(V).
1. If myn € N and let p € OP,,(V), then p ~p & 0,, and p ~ 0,, & p;
2. Ifp~qandp ~q¢ withp Lp andq L ¢, thenp+p ~q+¢';
3. Ifp~p and g~ ¢, thenp®q~p &g
4-PDqG~qDp;
5 Ifp L g, thenp+q ~ p & q;

6. (p®q)@r=pd(gDdT).

p
Proof. 1. Let m,n € N and let p € OP,, (V). Put v = . Then by
On,m

Proposition 3.1.2(4) and (5), we have |[v| = p and [v*| = p & 0,. Thus
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On,m
p~ p®0,. Similarly, w = yields |w| = p and |w*| = 0,, & p so that
p~0, ©p.

. Let p,p' € OP,,(V) and ¢,¢' € OP,(V) be such that p L p',q¢ L ¢,p ~q
and p’ ~ ¢'. Since p L p' and ¢ L ¢, by Proposition 2.3.11(1), we have
p+p € OP,(V)and ¢+ ¢ € OP,(V). Since p ~ q and p' ~ ¢, there
exist v,v" € PZL,,n(V) such that p = |[v*|m, ¢ = [V]mm, P = [V*|m and
¢ =|V|mn- Asp L p and ¢ L ¢/, by Remark 3.3.4(2), we get that v L v

Now by Corollary 5.1.6, we may conclude that v +v" € PZ,,,,. Also then
|U + v/’m,n = ’,U|m,n + |vl|m,n =4dq + ql

and

‘U* + UI*‘n,m = |/U*’n,m + |UI*‘n,m =P +p/
sothat p+p' ~q+¢.

. Since p ~ ¢ and p’ ~ ¢, there exist v € PZ,, (V) and v € PZ, ((V) such

0
that p = |v*|nm, ¢ = |V|mn, P’ = [V*]s,r and ¢/ = |V/|,s. Put w = .
0 o

Then |w*|n+s,m+r =p&qand |w|m+r,n+s = p/ S Q’~ Hence p ® g ~ p/ S~ q/'

{. Note that =p®q and = q @ p. Since
I, 0| |p O I, O |p O
0 I, 0 I,
and are isometries in M,, ,, by Proposition 3.1.2(1),
-[’n/ 0 -[’m, O
0 ¢ 0 ¢
we get pbq = and ¢bp = . Hence p®q ~ q®p.
p 0 p 0
L m—+n m-+n
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5. Let p,q € OP,(V) such that p L ¢q. By (1), we get that p ~ p & 0,, and
q~0,®q Alsop®0, L 0,®q Thus by (2), we may conclude that

p+q~pdq.

Now, (6) can be proved in the same way. O

Definition 5.2.6. Let V be an absolute matriz order unit space and let p,q €

OPw(V). We say that p < q, if there exists 1 € OPy (V') such that p ~ r < q.

Proposition 5.2.7. Let V be an absolute matrixz order unit space satisfying con-

ditions (T) and (H).
1. Then < is a reflexive and transitive relation on OP (V).
2. Letp,q,r,s € OPo(V). If pXr and q=s, thenp®q r & s.

Proof. (1). Let p,q,7 € OP (V). Then p < p holds trivially. Next let p < ¢ and
g < r. Then there exist pi,q € OP (V) such that p ~ p; < qgand g ~ ¢ < r.
Since p; < g ~ ¢q1, by Lemma 5.2.2, there exists ¢o < ¢; such that p; ~ ¢o. Since
p ~ p1 and since p; ~ @9, by Proposition 5.2.4, we get p ~ o < ¢¢ < r. Thus
p=r.

(2). Let p < r and ¢ < s. Then there are p;,q1 € OPo(V) such that

p~pr<randqg~q <s. Thusp®g~pbqg <rdssothat pdqgrds. O

Proposition 5.2.8. Let V be absolute matriz order unit space satisfying condi-
tions (T) and (H) and let p,q € OP (V). Then p < q if and only if ¢ ~ p & po
for some py € OPs(V).

Proof. First assume that p < ¢. Then p ~ r < ¢ for some r € OP (V). Put
po = (¢ — ). Then by Proposition 2.3.11(3), we have that py € OP (V) with

po L 7. Since r ~ p, by Proposition 5.2.5, we get that ¢ = r 4+ pg ~ p & po.

73



§5.3. Unitary equivalence

Conversely assume that ¢ ~ p @ po for some pg € OPo(V). Then p @0 <
pSpo ~ q. Thus by Lemma 5.2.2, there exist r € OP (V) such that pd0 ~ r < gq.

Now, by Propositions 5.2.4 and 5.2.5(1), we have p ~ r so that p < q. O

Corollary 5.2.9. Let V' be an absolute matriz order unit space satisfying (T),(H)
and let p1,p2,q1,q2 € OPs(V) such that py L py and ¢1 L qa. If p1 < q1 and

P2 = qo, then p1 +p2 2 q1 + qa.

Proof. Assume that p; < ¢ and py < ¢». Thus by Proposition 5.2.7(2), we
get p1 B ps = q1 D qa. As p1 L p and ¢; L ¢o, by Proposition 5.2.5, we have
p1+p2 ~ p1&p2 and g1 +g2 ~ q1 @S¢z s0 that p1+p2 = p1®pr and 1Sz = 1 +¢2.

Then again by Proposition 5.2.7(1), we may conclude that p; +p> <1 +¢q. O

5.3 Unitary equivalence

In this section, we define unitary equivalence of order projections in absolute

matrix order unit spaces and relate it to partial isometric equivalence.

Definition 5.3.1. Let V be an absolutely matriz ordered space and let u,v,w €
M, (V) for some n € N such that w = v + w. We say that v and w are ortho-

components of u, if v L w.

Remark 5.3.2. 1. Let V' be an absolute matrix order unit space. Then a

partial isometry in V. may be ortho-component of more than one unitary in

01 0 0
V. To see this, let V.= M5(C) and put v = . Also set w, =

0 0 a 0
for a € C with |a| = 1. Note that v is a partial isometry with v 1 w, and

Ug 1= UV + Wy 1S @ unitary.

2. Let V' be an absolute matrixz order unit space. Then every partial unitary
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15 an ortho-component of some unitary. In fact, if v is partial unitary in

M, (V) for somen € N, then v L " —|v|, so that v+ (e" — |v|,) is unitary.

Definition 5.3.3. Let V be an absolute matriz order unit space and let p,q €
OP.(V) for some n € N. We say that p is unitary equivalent to q (we write,
P~y q), if there exists a unitary uw € M, (V') and an ortho-component v of u such

that p = |v*|, and q = |v|,.

Note that if v is an ortho-complement of a unitary u, then v and u — v are
partial isometries. In the next result, we characterize unitary equivalence of

projections in terms of partial isometric equivalence.

Proposition 5.3.4. Let V' be an absolute matriz order unit space and let p,q €

OP.(V) for some n € N. Then p ~, q if and only if p ~ q and e —p ~ e" — q.

Proof. First assume that p ~, ¢. Then there exists an ortho-complement v of a

unitary u in M, (V) such that p = |[v*|, and ¢ = |v],. Put w = u —v. Then

V] + W] = v +wl|, = |ul, =€"

and

*

[0 |0 + W] = 0" + W], = |u

Thus |w*|, = €" — p and |w|, = €" — ¢ so that p~ g and " —p ~ " — q.
Conversely assume that p ~ ¢ and €” — p ~ €™ — ¢q. Then there exist partial
isometries v,w € M,(V) such that p = |[v*|,, ¢ = |v|,, " — p = |w*|, and
e" — q = |wl|,. Thus |v|,, L |w|, and |v*|, L |w*|,. Now, by Remark 3.3.4(2) and
Proposition 3.3.5(1), we get that v L w with |v + w|, = " = |v* + w*|,. Thus

u := v+ w is a unitary so that p ~, q. Ol

75



§5.3. Unitary equivalence

Corollary 5.3.5. Let V' be an absolute matriz order unit space satisfying the

condition (T).
1. Then ~, is an equivalence relation on OP, (V) for alln € N.
2. If pe OP,(V) and g € OP,(V), then p® q ~y q D p.

3. If p,p) € OP(V) and q,¢ € OP,(V) with p ~, p' and q ~, ¢, then

pPDqgr, P O

Proof. (1) follows from Propositions 5.2.4 and 5.3.4.
(2). Let p € OP,,(V) and g € OP, (V). It follows from Proposition 5.2.5(4)
that p@q ~ g®p and (™ —p)D(e"—q) ~ (" —q) D (e™—p). Thus pdq ~, ¢Dp.

(3) follows from Propositions 5.2.5(3) and 5.3.4. O

Corollary 5.3.6. Let V' be an absolute matrix order unit space satisfying condi-
tion (T) and let p,q € OP, (V) for some n € N. Then the following statements

are equivalent:
1. p~g;
2. p®0, ~, qgB0,;
3. 0, ®p~y 0, Dg.

Proof. (1) implies (2) and (3): Assume that p ~ g. Then p = |v*|, and ¢ = |v|,

v e" —q
for some partial isometry v € M, (V). Put u = and consider
e —p v
v 0 0 e"—q 0 0
Ui = , Ul = , Uy = and ugy = . Then
0 0 0 0 e"—p 0 0 v

U = Up + Urp + U1 + Uz, Also, we have |uiy|a, = p © 0, Uizl = 0® (" — q),

|ug1]on = (€™ — p) ® 0 and |uge|e, = 0@ ¢. Similarly, |uf|en = ¢ B0, |uislon =
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(" —q) B0, |udi|on = 0B (e" — p) and |udy|2, = 0 B p. Thus uqy, ugs, ug and
ugy are mutually orthogonal partial isometries in My, (V') and subsequently, w is
a unitary in My, (V). In particular, p & 0, ~, ¢® 0, and 0, ®p ~, 0, P q.
Therefore, (1) implies (2) and (3).

(2) implies (1): Next, assume that p@ 0 ~, ¢@® 0. Then by Proposition 5.3.4,
p@0 ~ q®0. Thus by Propositions 5.2.5(1) and 5.2.4, we may conclude that
p ~ q. Thus (2) implies (1).

Similarly, as (2) implies (1), we can show that (3) implies (1). O

Proposition 5.3.7. Let (V,e) be an absolute matriz order unit space and let

p € OP, (V) for some n € N. If d is a unitary in M, then p ~, d*pd.

Proof. Let d € M, be a unitary. Put d*pd = ¢q. Consider v = d*p. Then
[v|, = |d*p|n = p and |v*|,, = |pd|, = |dq|, = q for pd = dg. Thus p ~ g. Since
e" —q=e"—d'pd = d*(e" — p)d, by a similar argument, we can also show that

(en - p) ~ (en - Q) Thus P ~u q. O

Corollary 5.3.8. Let (V,e) be an absolute matriz order unit space satisfying
condition (T) and let p € OP,(V) for some n € N. Then apa* ~ p for any

a € M,,, with a*a = I,.

Proof. Leta € M,,,, with a*a = I,,. Find a unitary d € M,, such that a = d
0

Then apa* = d(p ® 0)d* € OP,,(V). Now, by Propositions 5.2.5(1) and 5.3.7, we
have d(p®0)d* ~, (p@®0) ~ p. Thus by Propositions 5.2.4 and 5.3.4, we get that

apa* ~ p. Ol
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5.4 Infinite projections

In this section, we define and study infinite and finite order projections in absolute

matrix order unit spaces.

Definition 5.4.1. Let V be an absolute matrix order unit space and let p €
OP.(V) for somen € N. Then p is said to be infinite, if there exists ¢ € OP (V)

with ¢ < p and q # p such that p ~ q. We say that p is finite, if it is not infinite.
Proposition 5.4.2. Let V' be an absolute matrix order unit space.

1. Let p,q € OP,(V) for some n € N such that p < q. If q is finite, then so

18 P.

2. Let p1,p2,q € OPL(V) with p1 < q, p2 < q and py L pe. If q is finite, then

50 1S p1 + po.

Proof. (1) Let r € OP,(V) with p ~ r < p. Since p L (¢ —p) and r < p,
we get that » L (¢ — p). By Proposition 5.2.5(2), we may conclude that
qg=(p+(q@—p) ~ (r+(¢g—p)). Now assume that ¢ is finite. Then
q=r1+(¢g—p)ie p=rfor (r+(¢—p)) <qand qis finite. Hence p is

also finite.

(2) As p1,p> < q and pi L pp, we get that py +p; < 2 and [|p1 + pofln =
max{||p1||n, |p2]ln} < 1. Then p; 4+ ps € V. By Proposition 2.3.12, we have
that ¢ has order unit property so that p; +ps < ||p1+p2/|¢ < ¢. Now assume

that ¢ is finite. Hence by (1), we conclude that p; + p, is also finite.

The following result characterizes finite order projections:
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Corollary 5.4.3. Let V be an absolute matriz order unit space and let n € N.

Then the following statements are equivalent:
(1) €™ is finite;
(2) Every isometry in M, (V') is unitary;

(3) p is finite for all p € OP, (V).
Proof. The equivalence of (1) and (3) follows from Proposition 5.4.2(1).

(1) implies (2): Assume that e” is finite. Let v € M, (V) is an isometry. Then
|v*|,, ~ |v|, = €™ Since |v*|, € OP(V), we have that |v*|,, < e". By assumption,
we get that |v*|, = €" so that v is unitary.

(2) implies (3): Finally assume that every isometry in M, (V') is unitary. Let
p,q € OP,(V) such that p ~ ¢ < p. Then there exists v € M,,(V) with |v|, = p

and |[v*|, = ¢. Put w = v+ (¢" — p). Since ¢ < p, we get v L (" — p) so that

|w|n = |U|n + (" — p) =e"

and

By Proposition 2.3.11(1), we have |w*| € OP,(V). Thus w is an isometry in
M, (V). By assumption, w is a unitary in M, (V). Then |w*|,, = " so that ¢ = p.

Hence every projection in M, (V) is finite. O
In the next result, we characterize infinite projections. For this, we need the
following result:

Lemma 5.4.4. Let V' be an absolute matriz order unit space satisfying conditions
(T) and (H) and let p ~ q for some p € OP,,(V) and g € OP,(V), m,n € N. If

p is infinite, then q is also infinite.
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Proof. Assume that p is infinite. Then p ~ r < p with r # p for some r €
OP,,(V). By Lemma 5.2.2, there exists s € OP, (V) such that s < ¢, r ~ s and
(p—r)~(q—s). Asp~q,p~randr~ s, by Proposition 5.2.4, we have g ~ s.
Since (p—1) ~ (g—s), by Proposition 3.2.4, we have that 0 # ||p—7||m = ||l¢—$||n-

Thus ¢ # s so that ¢ is also infinite. O

Theorem 5.4.5. Let V' be an absolute matriz order unit space satisfying condition
(T) and let p € OP,(V)\ {0} for some n € N. Then the following statements

are equivalent:
(1) p is an infinite projection;
(2) there exist q,r € OP,(V)\ {0} with ¢ L r such that p=gq+1r and p ~ q;
(3) p® 0 is an infinite projection;
(4) 0@ p is an infinite projection;
(5) apa* is an infinite projection whenever a € M,,,, with a*a = I,,;

Moreover, if V also satisfies (H), then the above statements are also equivalent

to:
(6) p®q = p for some g € OP(V)\ {0}.

Proof. (1) is equivalent to (2) by the definition.
(1) is equivalent to (3): Let p € OP,, (V) for some m € N. Also suppose that

r < p®0, for some r € OP,,1n(V),n € N. Thus there exist s € M, (V),u €

s u I,
My (V) and sg € M, (V) such that r = . Put ag = and by =
u* S 0,
O
. Then
I,

0 < agrag < aj(p @ 0y,)ag
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and

0, < bsrbo < By(p & 0)bo

so that 0, < s < pand 0, < sy < 0,. Since £s9 € M,(V)* and M, (V)" is
proper, we get that sp = 0,. Let s = [s;;] and u = [u;;]. For each w, ;, we set

Cij € My 1n2 such that

1 at (i,1) and (m+j,2)

cij =
0 elsewhere.
Sisi uzg ksii iul]
so that = cjreg € Ma(V)*. Then e My(V)*
u;; 0 == 0
0 i
for all &k € Rk > 0. As My(V)*T is Archimedean, we get that +
u;; 0
0 ui,j
My(V)*. By properness of My(V)", we have + = 0 so that u;; =
u; ;0

0]
0. Thus r = s ® 0, and s < p. Now equivalence of (1) and (3) follows from

Propositions 5.2.4, 5.2.5(1) and 5.1.2.

Similarly, we can show that (1) is equivalent to (4) as well.

(3) is equivalent to (5): Let a € M,,, such that a*a = I,,. Then apa* =
d(p @ 0y, )d* for some d unitary in M,,. Since d is unitary, we get that apa* is
finite if and only if p & 0, is finite. Hence equivalence of (3) and (5) follows.

Now assume that V' also satisfies (H).

(1) implies (6): Assume that p is infinite. Then there exists r € OPy (V)
such that p ~r < pand r # p. Put ¢ = p —r. Then g € OP (V) \ {0}. Now,
by Proposition 5.2.5, we get that p=r+qg~p@q. Thus p®q < p.

(6) implies (1): Finally, assume that there exist ¢ € OP,,(V) \ {0} such that
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p @ q = p for some m € N. Then by Proposition 5.2.8, we get that p ~ p® q® qo
for some go € OP,(V'), | € N. Thus

PDGD G ~p~pD 0y <pDqgdqo.

Since p® 0,41 # PB q B qo, we get that p® g P qp is an infinite projection. Hence

by Lemma 5.4.4, p is also an infinite projection. O

Remark 5.4.6. Let V' be an absolute matriz order unit space satisfying (T) and
letpe OPL(V),q € OP,, (V) for some m,n € N. If p or q is infinite, then so is
p@q. In fact, in this case, either p®0,, or 0, & q s infinite. Thus by Proposition

5.4.2(1), we get that p & q is also infinite.

Proposition 5.4.7. Let V' be an absolute matriz order unit space satisfying
conditions (T) and (H) and assume that p € OP,,(V) such that p is infinite.
Then there exists a strictly decreasing sequence of infinite projections {r,}°,

with ry = p such that r, ~ p as well as (1, — rpy1) ~ (Tpe1 — Tnae) for alln € N.

Proof. Let p = ry. As 1y is infinite, there exists o € OP,, (V) such that ro #
and 3 < r; ~ ro. By Lemma 5.2.2, we can find a projection r3 € OP,, (V) with
rs3 < ry such that ro ~ r3 and (r; — r3) ~ (r9 — r3). Then by Proposition 5.2.4,
we have that r3 ~ p. Since r; # ry and (r; — rg) ~ (ro — r3), we also have that

ro # 3. Now the result follows from induction on n. O

Remark 5.4.8. Putr,—r,.1 = sp. Asrpiq < r, with r, # r,41, by Proposition
k

2.3.11(3)(i), we have s, € OP,,(V)\ {0} for all n € N. Further, as an =
n=1

=Tk <1 < €™ for all k € N, again by Proposition 2.3.11(1), we get that

k
s L s, withp=ry :an+rk+1 foralll,n € N, #n.
n=1
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Corollary 5.4.9. Let V' be an absolute matrix order unit space satisfying condi-
tions (T) and (H) and let ¢ < p for some p,q € OP (V). If p is finite, then q is

also finite.

Proof. Since ¢ < p, by Proposition 5.2.8, we get that p ~ g @ qo for some ¢ €
OP.(V),n € N. Now, assume that p is finite. Then by Lemma 5.4.4, ¢ & qo
is also finite. As ¢ ® 0,, < g @ qo, by Propositions 5.4.2(1) and 5.2.5(1) and by

Lemma 5.4.4, we may conclude that ¢ is also finite. O

Proposition 5.4.10. Let V be an absolute matrix order unit space satisfying
conditions (T) and (H) and let p < q and ¢ = p for some p,q € OP (V). If one

of them s finite, then p ~ q.

Proof. Without any loss of generality, we may assume that p is a finite order
projection. As p <X ¢ and ¢ <X p, by Proposition 5.2.8, we have ¢ ~ p @ pg and
P~ q® qo for some pgy, gy € OP (V). Thus by Propositions 5.2.4 and 5.2.5, we
get that p ~ p ® (po @ qo). Since p is finite, by Lemma 5.4.4, we conclude that
p®(po®qo) is also finite. Also note that p&0 < p®(po®qo) and pH0 ~ pd(PeBqo)-
Now p & (po @ qo) is finite so that po = 0 and go = 0. Thus p ~ ¢ & 0 ~ ¢ so that

p~q. O

5.5 Properly infinite projections

In this section, we define notion of properly infinite projections in absolute ma-
trix order unit spaces. The class of properly infinite projections is subclass of
infinite projections. We also prove a result characterizing properly infinite order

projections.

Definition 5.5.1. Let V be an absolute matrix order unit space and let p €
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OP,(V)\ {0} for some n € N. We say that p is properly infinte, if there exist

r,s € OP,(V) such thatr +s <p andr ~pn~s.

Remark 5.5.2. Every properly infinite projection in an absolute matrix order
unit space is an infinite projection. In fact, asr ~ p ~ s and p # 0, by Proposition
3.2.4, we get that ||r|| = ||s]| = ||pll # 0. Then s # 0 so that r # p forr+ s < p.

Thus p ~r < p with r # p so that p is infinite.

Proposition 5.5.3. Let V' be an absolute matriz order unit space and let p,q €
OP,(V)\ {0} for some n € N. If p and q both are properly infinite and if p L q,

then p + q s also properly infinite.

Proof. Assume that p and q both are properly infinite. Then there exist ry, 7o, s1, S2
€ OP,(V) such that (r1 +s1) <p, (ro+s9) < q, 1 ~p~ sy and r9 ~ q ~ So.
Since p L ¢, we have 1y L ry and s; L ss. Now by Proposition 5.2.5(2),
(ri1+712) ~ (p+q) ~ (s1 + s2). Also note that (r; +r9) + (51 + s2) < p+¢q

so that p + ¢ is properly infinite. U

Theorem 5.5.4. Let V' be an absolute matriz order unit space satisfying condition

(T) and let p € OPo(V) \ {0}. Then the following statements are equivalent:
(1) p is properly infinite;
(2) p® 0 is properly infinite;
(3) 0@ p is properly infinite;

Moreover, if V' also satisfies (H), then the above statements are also equivalent

to:

(4) p®&p = p.
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Proof. 1t follows from the definition that (1) implies (2) and (3).

(2) implies (1): Let p & 0 be properly infinite. Then there exist sq,s9 €
OP (V) with s1,52 < p®0 such that s; ~ p@D0 ~ sy. Since s1, 55 < p@O0, there
exist 11,73 € OP (V) with 71,79 < p such that s; = ry © 0 and sy = 75 @ 0.
Thus 1 0 ~ p@® 0 ~ ry & 0. Now by Propositions 5.2.4 and 5.2.5(1), we get
that 71 ~ p ~ r9. Thus p is also properly infinite.

Similarly, we can show that (3) implies (1) as well.

Now assume that V' also satisfies (H).

(1) implies (4): Assume that p is properly infinite. Then there exist r,s €
OP (V) such that r +s < p and r ~ p ~ s. Since r L s, by Propositions 5.2.4
and 5.2.5, we get that (r +s) ~ p@ p. Hence p ® p < p.

(4) implies (1): Finally assume that p@ p < p. Then by Proposition 5.2.8, we

have p ~ (p @ p) @ po for some py € OP (V). As

(P®0)D0<Z (p@p) D o,

0ep)@0< (p®p) @ po

and

(p®0)@0L(0®p)®O,

by Lemma 5.2.2, there exist p1,ps € OPoo(V) with p1, ps < p, and p; L pe such
that p; ~ (p®0) @0 and ps ~ (0 p) & 0. Thus p; + p2 < p and p; ~ p ~ p, for

(p®0) D0 ~p~(0®p) DO so that p is properly infinite. O

Remark 5.5.5. Let V' be an absolute matriz order unit space satisfying (T) and
let pe OP,(V)\{0},q € OP,.(V)\ {0} for some m,n € N. If both p and q are

properly infinite, then so is p & q. In fact, in this case, p & 0,, and 0, & q are
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properly infinite order projections such that p®0,, L 0, @ q. Thus by Proposition

5.5.8, we get that p @& q = (p & 0,,) + (0, & q) is properly infinite.

Proposition 5.5.6. Let V' be an absolulte matriz order unit space salisfying con-
ditions (T) and (H) and let p,q € OPs(V) \ {0} be such that p = q < p. If p is

properly infinite, then so is q.

Proof. As p < q < p, by Proposition 5.2.8, we have ¢ ~ p @ py and p ~ q D qo
for some pg,qp € OPo(V). Now assume that p is properly infinite. Then by
Theorem 5.5.4, p @ p =< p. Thus by Proposition 5.2.8, there exists r € OP (V)

such that p ~ (p @ p) @ r. A repeated use of Proposition 5.2.5 yields that

q ~ p®po~((pOp) ®r)D®po
~ (@ q)@ (@S q))Dr)®po

~ (29 ® (S qp®TSpo).

Again applying Proposition 5.2.8 and Theorem 5.5.4, we may conclude that ¢ is

properly infinite. (I

Remark 5.5.7. It follows from the proof of Proposition 5.5.6 that if p ~ q and

if p is properly infinite, then so is q.
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Chapter 6

Ky of an absolute matrix order

unit space

In this chapter, we describe K of an absolute matrix order unit space. For this
purpose, we need to discuss the direct limit of absolute matrix order unit spaces.
In the first section, we describe the direct limit of absolute matrix order unit
spaces. In the second section, we define and discuss matrix order unit property
and absolute matrix order unit property. We study some properties of matrix
order unit property and absolute matrix order unit property. We characterize
order projections in absolute matrix order spaces in terms of matrix order unit
property and absolute matrix order unit property. In the third section, we define
Ky explicitly. In the fourth section, we show that K is a functor from category
of absolute matrix order unit spaces with morphisms as unital completely | - |-
preserving maps to category of abelian groups. In the fifth section, we study
order structure on K, and prove that under certain condition K is an ordered
abelian group. We also show that K is additive on orthogonal unital completely

| - |-preserving maps.
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§6.1. Direct limit of absolute matrix order unit spaces

6.1 Direct limit of absolute matrix order unit
spaces

We start this section with the following definition:

Definition 6.1.1. Let U be a non-degenerate §-bimodule and let v € U. Then
the smallest n € N such that 3,07, = v is called the order of v in U. We denote

the order of v in B by o(v).

Proposition 6.1.2. Let (0,0") be a non-degenerate ordered §-bimodule and
assume that 0T is proper and Archimedean. Then for u,v € BT with u < v, we

have o(u) < o(v).

Proof. 1If possible, assume that n = o(u) > o(v). Then ey ,be,; = 0 so that
0 < ejue,; < epnve,; = 0. As U7 is proper, we get e ,ue,; = 0. Since
o(u) = n, there exists 1 < j < n such that e; jue,; # 0. Let A € C and put

a= (Aej1 + ¢,1). Then a*ua € YT so that

[APerjue;r + Ay juens + Aegpue;q € BF

for all A € C. Thus

ey jue;q + @y jue,  + aeg e € 0T

for all £ > 0 and o € C with |a| = 1. As ¢; jue;; € BT and YT is Archimedean,
we conclude that ae jue,; + aejue;; € YT for all o € C with |a| = 1. Put

a =21 and £i. Then

+ (g jue, 1 + egue;) € BH
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§6.1. Direct limit of absolute matrix order unit spaces

and

, +
Fi(ejuen,1 — erpue;) € U7

Again using the fact that U is proper, we have

ey jue, 1 +epuei; =0

and
i(euuen’l — el,nuej,l) =0
or
€1 jUen 1 — € pUC 1 = 0.
Thus e; jue,; = 0 which is a contradiction. Hence o(u) < o(v). O

Definition 6.1.3. Let *U be a non-degenerate §-bimodule and let u,v € 0. Then
u and v are said to be F-independent in U, if there exist I, J C N with INJ = ¢

such that vur = u and svs = v where v = g ¢ and § = E ¢
el jeJ

Remark 6.1.4. Let U be a non-degenerate §-bimodule and let u,v € 0. Then
(a) o is §-independent to every element.
(b) v is F-independent to itself if and only if b = 0.

(c) u is F-independent to v if and only if u* is F-independent to v if and only

if u is F-independent to —v.

A notation: Let (U,20") be a non-degenerate ordered F-bimodule and let
vy, 0 € YT with J,0,F, = v, and J,0,T, = vy for some n € N. Put J, =
Z ¢inti- Then we write (01,02) = vy + JX023,, and sa,(v) = 3,03, + J:0*7,

=1
for some v € U with J,,07,, = b.
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§6.1. Direct limit of absolute matrix order unit spaces

Let (0,0") be the matricial inductive limit of matrix ordered space (V, { M, (V)" }).

v 0
Put vy = T, (01),ve = T, }(y) and v = T, 1 (v). Then ! = T5 (b1, 02)])
0 (%)
0 v = =)
and = T5,'(sa,(v)). Hence =Ty ((01,02)} £ sa,(v)).
v* 0 it VA

Definition 6.1.5. Let (20,°0") be a non-degenerate ordered F-bimodule. Let

|| : 0 — B be a map satisfying the following conditions:
1. o(Jv]) < o(v);
2. o] =0 ifo eyt
3. (10*],10))o() " + S (v) € T for all v € T;

4. ForoeUandacF
jav| < [[all]o];
5. Foro e U and b e§
|0b| = [|v[b];
6. Foru and v F-independent elements in (0,°0), we have
o] = ful + ol

7. For u;0 and w € Ut with ju —v| = u+v and o < w < v, we have

lu— 1| =u+w;

8. For u,v and vo € Y with [u—v| =u+0v and [u —w| = u+ 1, we have

lu— o+ || =u+|o=£rw|
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§6.1. Direct limit of absolute matrix order unit spaces

Then (0,0 *,|-|) is said to be a non-degenerate absolutely ordered §-bimodule.

Proposition 6.1.6. Let (0,0",|-|) be a non-degenerate absolutely ordered §-

bimodule. Then |av| = |v| for any v €U and a € § with a*a = Ty().

Proof. Let a € § with a*a = J,,). Then, by Definition 6.1.5(4), we get that

|av| < [[a[[[o] = [a"av| < [[a"|||av| = |av].

so that |av| = |v|. O

Remark 6.1.7. Let (0, B™", |-|) be a non-degenerate absolutely ordered F-bimodule.

Then

(a) |av| = |a||b] for all v € B and a € C. To see this, let v € U and a € C.

Then av = (aJow))v. Thus by 6.1.5(4), we have |av| = |af|v].

(b) B+ is proper. To verify this, let +v € L. Then by 6.1.5(2) and by (a), we

have v = |o| = | — v| = —v so that v = 0.

(c) Bt is also generating. To see this, let v € Vy,. Then by 6.1.5(3), we get

that [v] £ v € B' and hence

(([o] +0) = (o] = v)) € B — V"

N

v =

(d) Letu,v € BV, be such that [u—v| =u+v. Thenu,o € Bt. For such a pair

u, 0 € BT, we shall say that u is orthogonal to v and denote it by u L v.

(¢) For v € Uy, we write v+ = Z(Jo| + v) and v~ = L(|jv| — v). Then
bt Lo ,0 =07 —0v" and |v] = vt +v". This decomposition is unique

in the following sense: If v = v; — vy with by L vy, then vy = v* and
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§6.1. Direct limit of absolute matrix order unit spaces

vy = v~ . In other words, every element in U, has a unique orthogonal

decomposition in 0.

(f) Condition (6) in Definition 6.1.5 can also be replaced by anyone of the

following statements:

(i) Foru and v F-independent elements in (0,V"), we have
w* + o] = [u*] + |o;

(ii) For u and v §-independent elements in (B, V), we have
o] = fu| + Jol

Definition 6.1.8. An element a € § is said to be a local unitary, if a*a = J,q) =

*

aa .

Proposition 6.1.9. Let (0,07, |- |) be a non-degenerate absolutely ordered -
bimodule and let v € Q. Then |a*va| = a*|v|a for every local unitary element

a € § with o(v) < o(a).

Proof. Let a € § be a local unitary with o(v) < o(a). Since o(|v|) < o(v), by

Definition 6.1.5(4), we have

a*oa| < [la®][[[o]al
= |[v]al
= [a(a"[o]a)|
< lal/|a*[o]al
= a*|v|a.

93



§6.1. Direct limit of absolute matrix order unit spaces

Similarly |ava*| < alv|a*. Now o(v) < o(a), thus replacing v by a*va, we get
lo| < ala*vala* so that a*|vja < |a*val. As Ut is proper, we conclude that

la*val = a*|v]a. O

Now, in next two Theorems 6.1.10 and 6.1.11, we generalize Theorem 2.2.8 in

the context of absolutely matrix ordered space.

Theorem 6.1.10. Let (V,{M,(V)"},{|-|.}) be an absolutely matriz ordered
space and let (V,0+) be the matricial inductive limit of (V,{M,(V)"}). For
v € U, we define |v| := To(n)(]TO_(s)(U)D and consider the map |- | : 0 — LT given
by o — |v| for all v € Q. Then (B, VT,|-|) is a non-degenerate absolutely

ordered §-bimodule.

Proof. Let v € 0. Then

so that

Lo()| Ty (0) o) Loty = [Ty5) (0)logo)-

Now, it follows that Jo)[0|Jow) = |b] so that o(|v]) < o(v) for all v € .

If v € U, then T;(j)(n) € My (V)" so that ]TO’(;)(UHO(U) = TO’(;)(U). Thus

lo| =vif v € UT.

—1 (e -1
Note that |TO(U)(U o TO(U)(U)

Ty (0) [T (0) loge)
(|U*|7 |U|)0(b)+ + SCLO(n)(U) ey,

€ Mooy(V)* for any v € U so that

Now, let v € U and a,b € §. Put n = max{o(v), o(a)} and m = max{o(v),0(b)}.

Then
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§6.1. Direct limit of absolute matrix order unit spaces

7, (@o)ln = o, (@)T; (o)l
< o (@I, ()]

= [allIZ,* (o)l

and

T, (0b)] = [T, (0)0," (0)]m
= I, (0)|m0s' (6) ]
= |7, (T (175 () ]m)b) |

7., (I0]6)]n

so that |av| < |la|||v| and |vb| = ||v|b| if b € ¥ and a,b € F.

Next, let u and v be F-independent elements in (0,20 "). There exist I, J C N
with I N J = ¢ such that rur = u and svs = v where v = Z ¢;; and 5 = Z ¢ ;-

il jeJ
Let

I:{i1<i2<"'<ik_1<ik},
J={n<jp<- <y <ug}

and put n = max{ig, j;}. Then TUJ C {1,2,3,--- ,n}. Let us write

G = {172737'” 7”}\([UJ) = {7,.177,.2,,,.3’___ 7rm71771m}
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so that k +1{ 4+ m = n. Put

k l m
a= E € ts b= E € t+k, € = E Cry t4k+1
t=1 t=1 t=1

and 0 = a+b+c. It is routine to verify that a*a = J;, aa* = v, b*b = 0, BT, bb* =

00",

5,¢*c =04y BTy, b =0ab* = a*c=ac* =b"c=bc* =0 and 20 =7,

Put u; = a*ua and v; = b*vb. Then T, T, = u; and (Ok ©® jl)t’l(Ok @ jl) = 0.

Let T, '(u1) = w and T} }(v1) = vi. Then u € My(V) and v; € Myyy(V).
Also then

v1 =T 50k ® 3)01 (0, ® 7)) = (0 ® L) v1 (04 & 1)

so that v; = 0y @ v for some v € M (V). Now T} Y (u1) = u @ 0; and T, (01) =

0, @ v so that T,;rll(ul +v1) =u@v. Thus

w +01] = Tpp(Ju® vlprr) = Tera(Julk @ [v]1)
= Tk+l(|u|k ©® Ok) + Tk+l(0k D |U|l)
= Te(|ulr) + Ty (|v1|r41)

= Jug| + Joy].

Since t0 = aa*a, we get
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§6.1. Direct limit of absolute matrix order unit spaces

MU0 = 0*(tur)d
= (0"t)u(rd)
= (a%aa)u(aa*a)
— o*(a0")u(aa")a
— o (twr)a

= aua

= U.

Similarly 0*0d = v;. Thus by Proposition 6.1.9, we get

lu+o[d = [p"(u+0)d| = |u; + vy
= |wy|+ |oy]| = 0%|u[o +d*|v[d

= "(Ju| + |v[)o.

Hence |[u+ v| = |u| + |o].

Now, let |lu —v] = u+v and 0 < w < v for some u,v,10 € L. Put
n = max{o(u),o(v),o(tw)}. Let T '(u) = u, T, (v) = v, T, (tv) = w. Then
u,v,w € M, (V)" such that lu—v|, = u+vand 0 < w < v. Thus |u—w|, = u+w
so that |u — w| = u + rv.

Finally, let u, 0,10 € U7 such that [u —v| =u+v and [u — w| = u+ . Let
n = max{o(u),0(v),0(t)} and put u = T, (u),v = T, (v) and w = T, '(tv).
Then u,v,w € M, (V)" and |u—v|, = utv, jlu—w|, = u+w. Thus |[u—|vtw|,|, =

u+ |v+wl|, so that |u — o £ w|| =u+ |o L]
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Next, we prove the converse of Theorem 6.1.10.

Theorem 6.1.11. Let (U, 0*,| - |) be a non-degenerate absolutely ordered F-
bimodule. Let (V,{M,(V)"}) be the matriz ordered space whose matricial induc-
tive limit is (0,0") as in Theorem 2.2.8. For each v € M,(V),n € N we define
vl == T, Y (|T,,(v)]) and consider the map |-|, : Mn,(V) — M, (V)" given by
v > [v]p. Then (V,{M, (V) },{|-|.}) is an absolutely matriz ordered space

with (B, V", | -]) as its matricial inductive limit.

Proof. Let v € M,(V)*. Since T,(v) € U*, we get that |T,,(v)| = T,,(v). Thus
T YT, (v)]) = v so that |v], = v.

For any v € M, (V) and k € R, we have that |T,(v)| £ T,(v) € Ut and
ET(v)] = [K||T(v)]. Thus |v], £ v = T7H(|T,(0)] £ Tu(v)) € M, (V)" and
|kvln = T, (KT (v)]) = T (K Ta(0)]) = [El[v]-

Now, let |u —v|, = u+v and 0 < w < v for some u,v,w € M,(V)*. Then
T Y| T(u) — T, (v)]) = u + v (or equivalently |T,,(u) — T, (v)| = T (u) + T, (v))
and 0 < T, (w) < T,(v). Thus |T,(u) — T, (w)| = T, (u)+ T, (w) so that |u—w|, =
TN T (u) — Tr(w)]) = u + w.

Next, let u,v,w € M, (V)" such that |u — v|, = u+ v and |u — w|, = u + w.

Then

T (u) — To(v)] = T(u) + Tn(v)
and

T () = To(w)|n = To(u) + Th(w)
so that
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Thus

lu— vt wl,|, = Tn_l(’Tn(u) — [T (v) £ T (w)]])
= T, Y (Ta(u) + |Ta(v) £ To(w)])

n

= u+|vEw,.

Let v € M, (V) and a,b € M,. Then

T(av)| = |on(a)T5(v)|
< lon(@)||[T5(v)]
= |lall[T%(v)]

and
[ Ta(vb)| = |Th(v)on(D)]

= |[Ta(v)on(b)]
= |Tu(T, (I Tu()Db)]

= [ Ta(lvlnb)|

so that T, (|}, (av)]) < |||, (|Tn(v)|) and T, ' (|15, (vd)|) = T, (|Tn(|v]nb)]).-
Thus |av|, < ||a|||v], and |vb], = ||v].b]n-
0 Im

Finally, let v € M,,(V) and v € M, (V). Put vy =0, v and a =
I, O

Then a is unitary in M,,,,, with a*via = v @ 0,, so that o,,,(a) is local unitary

in § with o,,1,(a)*Tnin(v1)0man(a) = T,(v). By Proposition 6.1.9, we get that
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0m+n(a)*|Tm+n(vl>|0m+n(a) = |Tn(v)| Thus

a*|U1’m+na = a*Tr;-lknﬂTern(vl)')a
= Tn;—ls-n (Uern (a)* |Tm+n (Ul) |Um+n (a))
= Toin(ITa(v)])

= |U|n ® 0,

so that |vi|men = Om @ |v]n. Now note that T,,(u) and Ty,4,(vy) are §-

independent in . Thus |T,,,(u) + Tin(v1)| = |Tn(w)| + |Thnin(v1)| so that

UB Vlmin = [(WD0,)+ (0 & V)]s
= T4 ([T () + T (1))
= Tt (T ()] + Ty (1))
= (Julm ® 0,) + |V1]mtn
= (Jtlm @ 0,) + (0 @ [])

= |ulm @ |V]n.

Definition 6.1.12. Let (0,0") be a non-degenerate F-bimodule. An element
e € U is said to be a local order unit for (B,0), if it satisfies the following

two conditions:

(l) 31631 = ¢.
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(ii) For each v € 3,207, there exists k > 0 such that

(ke,ke);™ + sai(v) € TT.

Note:- Let 0 be a non-degenerate §-bimodule and let v € U with J;0J; = v.

For each n € N, we write 0" = E e;10eq ;.
i=1

Proposition 6.1.13. Let (0, 0") be a non-degenerate §-bimodule with a local
order unit e. Also let (V,{M,(V)*}) be a matriz ordered space whose matricial

inductive limit is (0,07). Then

(1) Forv € 3,03, and k > 0, we have (ke", ke")," + sa,(v) € B+ if and only

if (ke", ke™),, ™ — sa,(v) € T+,
(2) T~'(e) is an order unit for V.

(3) For each v € 3,03, there exists k > 0 such that (ke”, ke™)," + sa,(v) €

T,

Proof. (1) Put a =73, — 3:3,3,. Then a is a local unitary with (ke”, ke®), ™ —
san(v) = a*((ke", ke"),” + san(v))a. Thus by Definition 2.2.6(2), we have

(ke ke"), " + sa,(0) € D if and only if (ke ke"),* — sa,(0) € V.

(2) Since J;¢J; = ¢, we get that T-'(¢) € V. Next, let v € V. Then T(v) €
3:203,. Now by definition and by (1), we have (ke, ke); " £sa,(T(v)) € U+
N kKT~ (e) +v
Note that o((ke,ke);” £ sa;(T(v))) < 2. Thus =
+o* KT (e)
Tyt ((ke, ke), "+ sa1(T(v)) € My(V)*+ so that T~ (e) is an order unit for V.

(3) Let v € 3,07,, and put e = T~!(e). Since e is order unit for V and T, (v) €
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ke™ T, '(v) N
M, (V), we get that € My, (V)*. Then (ke ke™)," +
T o) ke
ke T Y(v)
san(0) = Ty, S
T o) kem

Definition 6.1.14. A non-degenerate ordered §-bimodule (0,20") with a local
order unit ¢ is said to be a local F-order unit bimodule, if B is proper and

Archimedean. We denote it by (0,07, ¢).

Remark 6.1.15. Let (V,{M,(V)"},e) be a matriz order unit space and let
(0, 0") be the matricial inductive limit of (V,{M,(V)"}) as in Theorem 2.2.8.
Then (20,0, T(e)) is a Local F-order unit bimodule.

Proposition 6.1.16. Let (U, 0",¢) be a local F-order unit bimodule. For each

v €Y, put
o] = inf{k > 0 : (ke°™, ke"("));“(u) + Sa,(0)(v) € BT}

Then (0,0, ¢) with || - || is a F-bimodule normed space. Moreover, for each

v €0, we have
|o]| = inf{k > 0: (ke", ke™)! + sa,(v) € B for some n € N with 3,07, = v}.

Proof. Let (V,{M,(V)*}) be the matrix ordered space corresponding to (0, U*)
as in Theorem 2.2.8. Put e = T '(¢e). By Remark 2.2.9(1) and (3) and by
Proposition 6.1.13(2), we get that (V,{M,(V)T},e) is a matrix order unit space.
Also recall that (V,{M,(V)*} e) with {|| - ||,} is an L*-matricially %-normed

space, where each || - ||,, is given in the following way:
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for all v € M, (V).

Note that for any v € U and k € R, we have (ke", ke™)! + sa,(v) € Ut if
ke T (v)

n

and only if € M,, (V)T for all n > o(v). Also note that for

T Y0)"  kem

n

n > o(v), we have that

k™ T (o
o) € Mooy (V)"

if and only if

ket T (v
(v) € My, (V).
T (o) kem
Thus ||o|| = HT;(;)(U)HO(U) and (keo("),kea("))j@) + Saopy(v) € YT if and only if

(ke™, ke™) " + sa,(v) € Tt. Since ||[v & O |lnem = ||v]n for all v € M, (V) and
n,m € N, we get that || - || determines a norm on U and ||v|| = inf{k > 0 :

(ke™, ke™)" + sa,(v) € U for some n € N with 7,07, = v}.

Finally, let a,b € § and v € U. Put n = max{o(a),0(b),o(v)}. Then

lavb]] = |7 e (306)|ogaor) = 17, (a0b) [

o(avb

= |loy, {(a)T;, ' (0)a,, " (0) |
< o @) 1T, (o) [[alle, (6)]]
= |lal|lofl||b]].
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so that ||-|| is a F-bimodule norm on U. Hence (0, VT, ¢) with |- || is a F-bimodule

normed space. 0

Definition 6.1.17. Let (0,U") be a non-degenerate ordered F-bimodule and let

| - || be a F-bimodule norm on B . Also let u,0 € V. We write u L v, if
[[k1u + Kool = max{|[kyull, [[F2o]l}

for all ki, ke € R and u L% v, if uy Lo vy for all uy, 01 € BT with u; < u and

v <v.

Proposition 6.1.18. Let (0,07, ¢) be a local F-order unit bimodule and let

u, 0 € 0" such that ||ul| =1 = ||v]|. Then u Lo v if and only if |[u+ v|| = 1.

Proof. Let (V,{M,(V)*}) be the matrix ordered space corresponding to (0, U")
as in Theorem 2.2.8. Put e = T'(¢). Then (V,{M,(V)"},e) is a matrix order
unit space. By proof of Proposition 6.1.16, we get that ||v|| = ||7},1(b)||,, for any
v € U and n > o(v). Also note that v € U if and only if T, '(v) € M, (V)" for
all n > o(v).

Next let u,v € U+ with |Ju]| = 1 = ||p||. Without loss of generality, we may
assume that o(u) > o(p). Then u L, v in U+ if and only if TJ(&) (u) Lo T(Ii)(n)
in Mooy (V). By Theorem 2.1.4, we have 7. (u) Lo T.L(0) if and only if

o(w) o(u)
|17y (1) + T (0) oy = 1. Thus w Lo v if and only if [ju + vf| = 1. O

Definition 6.1.19. Let (0,07, ¢) is a Local F-order unit bimodule such that
(a) (B, 0*,|-|) is a non-degenerate absolutely ordered §- bimodule. and
(b) L=12% on T+,

Then (0,07, e,|-|) is said to be non-degenerate absolute order unital §-bimodule.
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Next two results follow from Theorems 6.1.10 and 6.1.11 respectively.

Corollary 6.1.20. Let (V,{M,(V)*},e,{||.}) be an absolute matriz order unit
space. Let (0,0%,|-|) be non-degenerate absolutely ordered F-bimodule corre-
sponding to (V,{M,(V)*},{|-|.}) as in Theorem 6.1.10. Then (0,0, T(e),||)

15 a non-degenerate absolute order unital §-bimodule.

Corollary 6.1.21. Let (0,07, ¢,| - |) be a non-degenerate absolute order unital
§-bimodule. Let (V,{M,(V)"},{| - |.}) be absolute matrix ordered space corre-
sponding to (0,0, |-|) as in Theorem 6.1.11. Then (V,{M,(V)*}, T (e),{||n})

s an absolute matriz order unit space.

6.2 Matrix order unit property

In this section, we define matrix order unit property and absolute matrix order
unit property. These are matricial versions of order unit property and absolute

order unit property which were introduced in [39].

Proposition 6.2.1. Let (V,e) be an absolute matriz order unit space and let

p € OP,(V)\ {0} for some n € N. Then ||p||,, = 1.

Proof. By Proposition 2.3.12, we get that p < ||p||,p. Since p # 0,,, we conclude
that ||p||, > 1. By Remark 2.1.2, we have that ||p||, <1 for 0, < p < e". Hence

Iplln = 1. O

Definition 6.2.2. Let V be a matriz order unit space, then uw € V' is said to
have the matriz order unit property, if u™ has the order unit property in M, (V)s,
for all n € N. If V is an absolute matriz order unit space, then v € V7T is said
to have the absolute matriz order unit property, if u™ has the absolute order unit

property in M, (V)s for alln € N.
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Proposition 6.2.3. Let (V,e) be an absolute matriz order unit space and let

uevt.

(1) uw has the matriz order unit property if, and only if, for each n € N and

ku" v
€ My, (V)" for some v € M,(V) and k € R with k > 0, we
vt ku”
folloa® v )
have that € My, (V)T.
v* [[v][nu”

(2) If u <e, then

(i) u and e — u have the order unit property if and only if u and e — u

have the matiz order unit property.

(ii) u and e — u have the absolute order unit property if and only if u and

e — u have the absolute matix order unit property.

Proof. (1) First assume that u has matrix order unit property. Let n € N and
ku™ v
v € M,(V) be such that € My, (V)" for some k € R with
v ku”

ku™  —wv
k > 0. Then we also get that € M,,(V)*. By assumption, we

*

—v* ku™

0 v
have that u?" has order unit property in My, (V),, so that =+ <

v* 0

9 9 o]l u” v
u™ = ||v||,u"™. Thus € My, (V).
v 0 v* ||v]pu™
2n
Now assume that converse statement is true. Let n € N and v € M,,(V)s,

be such that +v < ku™ for some k& > 0. Then
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ku™ v 1 n I
=5 (ku™ + v) {In In} +5 (ku"™ —v) {[n _[n}
v ku” I, -1,
so that
ku™ v
€ My, (V).
v ku"
| ol o )
By assumption, we have that € My, (V)" so that
v follau”
. 1 |v|[pu” v I, N
lollu® £ v =3 | I, £I, eVt
v |vllou™| |£1,

Thus u™ has the order unit property in M, (V),, for all n € N. Hence u has

the matrix order unit property.

(2) (i) Assume that u < e and let n € N. By Propositions 2.3.12 and 5.1.2, we
get that u and e — u have the order unit property if and only if u € OP(V)
if and only if " € OP(V) if and only if "™ and " — u™ have the order unit
property. Thus u and e — u have the order unit property if and only if «
and e — u have the matrix order unit property.

Now, we can prove (ii) in a similar way. O

Theorem 6.2.4. Let (V,{M,, (V)" },e,{||mn}) be an absolute matriz order unit
space and let p € OP(V). Put

Vp=RveV: € My(V)T for some k >0
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and

Mpr(V)pmgn = v € My (V) : € Mpyn(V) for some k >0

for all m,n € N. Let us write My, ,(V)pn pn = My, (V)pn for every n € N. Then
(1) Minn(Vp) = Mipn (V) -
(2) M, (V)" = M,(V,) N M,(V)*T is a proper cone in M,(V},).
(3) p is an order unit for V.

(4) Let n € N and v € M,(V,). Put

|v|IP = inf< k>0 € My, (V)*

Then || - [P is a norm on M, (V},).
(5) My(Vy)* is || - [-closed in Mo(V;).
(6) If m,n € N and v € My,n(Vp), then we have [v|nn € Mn(V;)™.

Thus |- |b, . = | [;mn determines a matriz absolute value {| - |V, .} in V), so that

(Vo {M,(V)) 10, {| - |2,.}) is an absolute matriz order unit space.

m,n

By matrix absolute value {|-[? } in V,, we mean that |- [P : M, (V) —

m,n

M, (V,)" is an absolute value for all m,n € N.

Proof. The statement (2) is routine to verify. Next, we prove the other state-

ments.
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(1) Let m,n € N and v = [v;j] € M, ,(V,). For each v;; € V,, there exists
ki.jp Ui,j .
k;; > 0 such that € My(V)*. For kg = max{k;; : 1 <1 <
Vi Kigp

m,1 < j <n}, we have

kop v
O e My (vt

vl kop
for all 4, j.

For each v;, let ¢;; € M, pn2 be as constructed in the proof of Theorem

5.4.5. Thus we get that

nkop™ v kop i
=Y ¢y T et € Myin(V)F
vt mkyp” irj vi; kop
Put k = max{nkq, mko}. Then
kp™ v
€ Mpyin(V)
vt kp”
so that v € M, ,(V)pm pn.
kp™ v
Conversely, let v € M, (V') pm pn. Thus € Myin(V)T for some k >
v kp”
0. Then
kp v kp™ v
L - C:j Cij € MQ(V)+
vy, kp vt kp"
so that
vij € Vp
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for each 7, j. Hence

kp™ v
Let v € M,(V,) for some n € N. Then by (1), we get that €
v* kp"
My, (V)*. Thus p is an order unit for V.
Let v € M, (V') be such that ||v|2 = 0. Then
p* 0 0 v
k + € Mo, (V)*
p" v* 0
0 v
for all £ > 0. Since M,,(V)* is Archimedean, we get that + €
vt 0
0 v
My, (V)*. By properness of My, (V)*, we have that = 0 so that
v* 0

v = 0. Now let v = 0, then by definition ||v|2 = 0. Thus ||v|2 = 0 if and

only if v = 0.

Next let o € C\ {0}. Then a = |a|e? for some # € R. Now observe that

kla]~tp™ v e | 21, 0 kpt av | |€eflal 21,
v* kla|~tp™ 0 la|~21,| |av* kp" 0
for all £ € R. Thus we conclude that ||v]|2 = % i.e. |lav|t = |al||v|E.

Finally let vy, vy € M, (V) and also let € > 0. Then

vl + )" v;
(eille +2) € My, (V)* fori=1,2

vy (Joallf + 5)p"
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1|2 + [|v2]|P 4+ €)p” vy + v
so that (ol el ) P € M,,(V)*. By

v 403 (odllf + Nlv2llf, + €)p™
definition, we have that ||jv; + v2]|2 < [[v1]|P + ||v2]|2 + €. Since € > 0 is

arbitrary, we get that ||vq + vo|[2 < |lvg||2 + [|va]|.

Hence || - ||2 is a norm on M, (V).

(5) Let {v,,} be a sequence in M, (V,)" converging to v € M,(V,) in || - ||2.
Since p has matrix order unit property in V', we have || - |2 = || - ||, for all
n € N. Then ||v,, — v||2 = ||vm — v|n. As M, (V)T is || - ||.-closed, we have

v € M, (V)*. Thus M, (V,)" is || - [[2-closed.

kp™  +wo p™ 0
(6) Let v € My, ,(V,). Then for some k£ > 0. Since is a
+o* kp” 0 p"
V" | 0

projection in M,, ,(V'), by Proposition 2.3.12, we get that

0 v p™ 0 0 w
< ko for ky = . Thus |[v|mn < kop™
v* 0 0o p* v 0
m+n m-+n

so that |[v|pm,, € M,(V,)*. Hence |- |mn @ Mpn(Vy) = My (V)1 is well

defined for all m,n € N.

Finally, we show that L=19% on M,(V,)" for all n € N. Let u,v € M, (V,)*
be such that v L v. By (2), we get that « L v in M, (V)". Let 0 < u; < u and

0<wv <wvin M,(V,)". As L=12% on M,(V)*, we have

lkruy + kovt||P = ||krus + kavy ||
= maX{Hklu1HmHk2U1||n}

= max{ ||k [}, [0} }.
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Thus v L% v in M, (V,)". Now tracing back the proof, we can show that 1 =19
on M,(V,)*. Hence (V,, {M,(V,)*},p,{| - [2,..}) is an absolute matrix order unit

m,n

space. Il

Definition 6.2.5. Let (0,0 ",¢,||) be a non-degenerate absolute order unital §-
bimodule. An element v € U+ is said to be an order projection, if [¢" — 20| = ¢"
whenever J,07, = v for some n € N. We denote the collection of all order
projections in B+ by OP (V). Further, let n € N and p € OP(Q), then p is said

to be an n-projection, if J,p73, = p and T, 9T, # 9 for all m € N with m < n.

Corollary 6.2.6. Let (V,{M,(V)*}, e,{|-|.}) be an absolute matriz order unit
space and let p € OP (V). Assume that (0,01, T(e), |-|) is the matricial inductive

fimit of (V. (Mo (V) e, {] - |1}). Putp = T(p),
B, = {0 €T : (kp", kp").;} + sa,(v) € " for some k >0 andn > o(v)}

and let B =B, NV*. Then (B,, BV, p,|-|) is a non-degenerate absolute order

unital §-bimodule and is the matricial inductive limit of (V,, {M,(V,) "}, p, {]1n})-

P
Proof. Let v € M,(V,). By Theorem 6.2.4(1), we get that €

* 7

vt kp
My, (V)T for some k > 0. Thus (kp”, kp™)} + sa, (T, (v)) € BT so that v € Y,,.

Conversely let v € U,. Then (kp™, kp™); + sa,(v) € Ut for some k& > 0.

kp* T, (o)
Therefore, we get € My, (V)" so that T, (0) € M, (V)n.
T,'(0)"  kp"
Hence (By, Ty, p, | - |) corresponds to (V,,, {M,.(V,)*},p,{] - [n}- O

The converse of Corollary 6.2.6 can be proved in a similar fashion.

Corollary 6.2.7. Let (0,0%,¢,|-|) be a non-degenerate absolute order unital
§-bimodule and let p € OP(U) with J1pTy =p. Putp="T""(p). If (T, V", e, ||
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§6.3. Ky of an absolute matrix order unit space

is the matricial inductive limit of (V,{M,(V)*},e,{| - |n}), then (Vy, B, p,[|)

is the matricial inductive limit of (V,, {M,(V,)"}, 0, {] - In})-

6.3 K, of an absolute matrix order unit space

In this section, we show the existence of Ky of an absolute matrix order unit
space with its explicit form. We identify the direct limit of an absolute matrix

order unit space V with M (V) = U M, (V). Under this identification, the

n=1

corresponding set of projections may be identified with OP (V) = U OP,(V).
n=1

We define the following relation on OP . (V):

Definition 6.3.1. Let V' be an absolute matriz order unit space. For p,q €

OP(V), we say that p = q, if there exists 1 € OPo (V) such that p®r ~ q B .

Proposition 6.3.2. Let V' be an absolute matrixz order unit space and let p,q €

OP(V).
(1) p ~ q implies p ~ q.
(2) If V satisfies (T), then
(i) ~ is an equivalence relation.
(ii) p~ q if and only if p S e™ ~ q & e™ for some m € N.

Proof. (1) Let p ~ ¢ and also let r € OP (V). Since r ~ r, by Proposition

5.2.5(3), we get that p@&r ~ q¢& r. Thus p ~ q.
(2) Assume that V satisfies (T).

(i) By Proposition 5.2.4 and by (1), it follows that ~ is reflexive and

symmetric. Next, we check transitivity of ~. Let p ~ ¢ and also let
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r € OP(V) such that g ~r. Then p®s~gdsand gt ~r &t
for some s,t € OPy (V). Thus by Proposition 5.2.5(3) and (4), we get
that (p&s)@t ~ (¢Ss)®t, ¢B(s®t) ~ qB(tDs), (¢Bt)Ds ~ (r&t)Ds
and 7 ® (t ©s) ~r @ (s®t). Since @ is associative, by Proposition

5.2.4, we have that p® (s ®t) ~r @ (s @ t) so that p ~ r.

(ii)) Let p =~ ¢q. Then there exists r € OP,,(V),m € N such that p @
r~q@r. Since r L (e™ —r), by Proposition 5.2.5(5), we get that
e ~ r @ (e™ —r). Then again applying Proposition 5.2.5(3), we
conclude that p @ €™ ~ pd (r® (" —1r)), (p&r)d (™ —71) ~
(ger)d (e —r), g& (rd(e" —1)) ~qde™. Now & is associative,

thus by Proposition 5.2.4, we have that p@® e™ ~ ¢ @ e™.

O

Proposition 6.3.3. Let V' be an absolute matrixz order unit space and let p,q,r,p',q €

OP(V).

1. Ifmn €N and let p € OP,,(V), thenp~p® 0, and p =~ 0, & p;

2. If V satisfies (T), then
(i) Ifp~qandp ~q withp Lp andq L ¢, thenp+p ~q+¢;
(1)) If pryp and g~ ¢, thenp® g~ p' & ¢;

3 pDgRqDp;

4. Ifp L g thenp+q=p®g;

5. p®Qer=pd(qdT).

Proof. (1), (3), (4) and (5) are immediate by Proposition 5.2.5(1), (4), (5) and

(6) respectively with Proposition 6.3.2(1).
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(2) Assume that V satisfies (T).

(i) Let p~q, P ~¢, pLpandqg L ¢. Then pdr ~ q&r and
p@s~q @sforsomer,s € OP (V). Without loss of generality, we
can assume that » L ssothat p®r Lp  ®@sand ¢®r L ¢ & s. By
Proposition 5.2.5(2), we get that (p& )+ (p @ s) ~ (¢Pr)+ (¢ B s).
Thus (p+p' )@ (r+s)~(¢+¢)®(r+s)sothat p+p ~qg+4.

(ii) Assume that p &~ p’ and g &~ ¢. Then there exist r, s € OP (V) such
that p@r ~ p'@r and ¢® s ~ ¢’ P s. Thus by Proposition 5.2.5(3),(4)
and (6) with Proposition 5.2.4, we conclude that (p @ q) ® (r @ s) ~

(P ®qd)®(r®s). Hence p®d g p & ¢
O

Proposition 6.3.4. Let V' be an absolute matriz order unit space satisfying (T).
For each p,q € OPy(V), let [p] = {r € OP(V) : r =~ p} and put [p] + [¢] =
[p® q|. Then

(1) [p] + [0] = [p] for all p € OP(V);

(2) o] + la] = la] + [p] for all p, q € OP(V);

(3) bl +[r] = la + [r] forp, q. 7 € OP(V), then [p] = [q].
Thus (OPso(V)/ =, +) is a monoid in which cancellation law holds.

Proof. By Proposition 6.3.3(2)(ii), it follows that + is well-defined in OP (V) / =

. Note that (1) and (2) immediately follow from 6.3.3(1) and (3) respectively.

(3) Let p,q,7 € OP (V) such that [p] + [r] = [¢] + [r]. Then p&r =~ g®r so
that p® (r & s) ~ ¢® (r @ s) for some s € OPo (V). Thus p = ¢ so that
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O

Theorem 6.3.5. Let (V,e) be an absolute matriz order unit space satisfying
(T). Consider OPo (V) X OPoo (V) and for all p1,p2,q1,q2 € OP(V), define
(p1,q1) = (P2,q2) if and only if pr ® qo = ps & q1. Then = is an equivalence
relation on OP (V) X OP (V). Further, put Ko(V) = {[(p.q)] : p,q € OPw}
where [(p, q)] stands for the equivalence class of (p,q) in (OP (V) x OP(V),=).

For all p1,p2, g1, g2 € OPoo(V), we write [(p1, ¢1)] + [(p2, ¢2)] = [(p1 € P2, 1 S ¢2)].
then (Ko(V),+) is an abelian group.

Proof. The relation = on OP (V) x OP (V) is reflexive and symmetric follows
from Proposition 6.3.2(2)(i). Let [(p1,q1)] = [(p2, ¢2)] and [(p2, ¢2)] = [(p3. ¢3)] for
some pi, P2, P3, 41, 42, ¢ € OPoc (V). Then p1 @ g2 = p> ® q1 and pr © g3 = p3 ® ¢o.
By Proposition 6.3.3(2)(ii),(3) and (5), we get that (p; & q3) & (p2 & ¢2) =~ (p3 &
¢1) @ (p2 © g2) so that [p1 @ gz] + [p2 @ 2] = [p3 © ¢1] + [p2 ® ¢2]. By Proposition
6.3.4(3), we conclude that [p; @ ¢3] = [p3s © ¢1] so that p; & g3 =~ p3 ® ¢;. Thus
[(p1,q1)] = [(ps3,q3)] so that = satisfies transitivity. Hence = is an equivalence
relation on OP (V) x OP (V).

Next, we show that + is well-defined on Ky(V'). Let (p1,¢q1) = (pi,¢q;) and
(p2,@2) = (P, @3) in OPoo(V) x OP (V). Then p1 @ ¢; = p; © q1 and p2 © g3 =
Py & q2. By Proposition 6.3.3(2)(ii),(3) and (5), we get that (p1 & p2) & (¢} B ¢) ~
(P ®p3) ® (@1 @ g2). Thus [(pr, )] + (P2, @2)] = [(p1, 63)] + [(p3, @3)] s0 that + is

well-defined. Next we verify that Ky(V) is an abelian group.

(1) Commutativity:- Let p1, g1, p2, g2 € OP (V). By Proposition 6.3.3(2)(ii)
and (3), we have that (p1 ®p2) ® (2 B ¢1) =~ (P2 B p1) ® (¢1 D q2). Thus

[(p1, @)] + [(p2, @2)] = [(P2, @2)] + [(p1, @0)]-
(2) Existence of Identity:- Let p,q € OP (V). We claim that [(0,0)] is an
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identity element in Ko(V'). By Proposition 6.3.3(1) and (2)(ii), it follows

that (p©0) ® g~ p ® (¢ ©0). Hence [(p, ¢)] + [(0,0)] = [(p, 9)].
(3) Associativity:- It is immediate by 6.3.3(5).

(4) Existence of Inverse:- Let p,q € OPo (V). We claim that [(¢,p)] is in-
verse element of [(p, ¢)] in Ko(V). Since (pq) D0 = 0B (pEq) =~ 0B (¢Ep),
by Proposition 6.3.2(2)(i), we get that (p ® ¢) ®0 ~ 0 & (¢ ® p). Then
(p®q, q®p) = (0,0) so that [(p&q,g&p)] = [(0,0)]. Thus [(p, ¢)]+ (g, p)] =
[(0,0)].

6.4 Functoriality of K|

Let V' be an absolute matrix order unit space satisfying (T). Then p — [(p,0)]
defines a map xy : OP (V) — Ko(V). If V and W are complex vector spaces
and if ¢ : V' — W be a linear map, we denote the corresponding F-bimodule map
from M. (V) to M, (W) again by ¢. In this sense, Dlas vy = Gn for alln € N. In

the next result, we describe the functorial nature of K.

Theorem 6.4.1. Let V and W be absolute matriz order unit spaces satisfying (T)
and let ¢ : V. — W be a completely |- |-preserving map such that ¢(ey) € OP(W).
Then there exists a unique group homomorphism Ko(¢) : Ko(V) — Ko(W) such

that the following diagram commutes:

OPL(V) —2 OP (W)

w)| Jw

Eo(V) —e Ho(W)
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Proof. Since ¢(e) € OP(W), by Theorem 4.3.2(1) and by Proposition 5.1.2,
we have that ¢(OP(V)) C OP(W). Let p,qg € OP (V) such that p ~ q.
Without loss of generality, we may assume that p € OP, (V) and g € OP,,(V)

with n > m. There exists v € M, (V) such that p = |[v|;,, and ¢ = |[v* |-

v
Put r = n—m and w = € M, (V). By Proposition 3.1.2(4) and (5), it
0

follows that p = |wl|, and ¢ ® 0, = |w*|, so that p ~ ¢ ® 0, in OP,(V). As
On : Mp(V) — M,(W) is an | - |-preserving map, we get that ¢, (p) = |on(w)]|n
and ¢, (q) ® 0, = |p(w)*|n. Thus ¢ (p) ~ dm(q) ®0,. By Propositions 5.2.4 and
5.2.5(1), we have that ¢,(p) ~ ¢n(q) so that ¢(p) ~ ¢(q).

Next, put Ko(¢)([(p, q)]) = [(¢(p), ¢(q))] for each [(p,q)] € Ko(V). We show
that Ko(¢) is well-defined. Let [(p1,q1)] = [(p2,q2)] for some pi,p2,q1,q2 €
OP (V). Then there exists € OP (V) such that p; &g &7 ~ pa B gy @&r. Thus

¢(P1)©P(q2) ©e(r) ~ d(p2) ®P(q1) SA(r) s0 that [((p1), d(q1))] = [(¢(p2), #(g2))]-
Hence Ko(¢) is well-defined. For all [(p1, ¢1)], [(p2, ¢2)] € Ko(V'), we have that

Ko(0)([(p1, a)] + [(p2, @2)]) = Ko(@)([(p1 @ p2, 11 © ¢2)])
= [(0(p1 @ p2), d(01 © g2))]
= [(0(p1) ® ¢(p2), d(a1) © ¢(g2))]
= [(@(p1), ¢(@))] + [(¢(p2), 9(g2))]
= Ko(¢)([(pr. a1)]) + Ko(8)([(p2: 42)])

so that Ko(¢) is a group homomorphism. By construction K, satisfies the

diagram.
Uniqueness of Ky(¢):- Let H : Ko(V) — Ko(W) be a group homomorphism
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satisfying the same diagram. Then Koy(¢)(xv(p)) = xw(¢(p)) = H(xv(p)) for all
p € OP (V). Thus we get that

Ko(o)([(p.a)]) = Ko(8)([(p,0)] —[(g,0)])
= Ko(6)(xv(p) — xv(9)
= Ko(o)(xv(p) — Ko(o)(xv(q))
= Hixv(p) — Hixv(q))
= Hxv(p) —xv(a))

= H((p,9)])

for all [(p,q)] € Ko(V). Hence Ko(¢) = H. O

Let V and W be absolute matrix order unit spaces. We denote the zero map
between V' and W by Oyy. Similarly, the identity map on V' is denoted by Iy
Further, if V' and W satisfy (T), then we denote the zero group homomorphism
between Ko(V') and Ko(W) by Ox,w),x,(v) and the identity map on Ky(V) is

denoted by Ik, (v)-

Corollary 6.4.2. Let U,V and W be absolute matrix order unit spaces satisfying
(T). Then

(a) Ko(Iy) = Ixyvy;

(b) If o - U =V and ¢ : V — W be unital completely | - |-preserving maps,

then Ko(1 0 ¢) = Ko(¢) o Ko(9);

(¢) Ko(Owv) = Okow),k0(v)-
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Proof. (a) Let p,q € OP (V). Then

Ko(Iv)([(p,9))) = [(Iv(p), Iv(q))]

= [(p,9)]

so that by Theorem 6.4.1, Ko(Iy) = Ixyv)-

(b) For any [(p,q)] € Ko(U), we get that

Ko(voo)([(p,@)]) = [(¥oo(p),voe(q))]
= [(@((p)), ¥((a)))]
= Ko(¥)[(6(p), 9(q))]
= Ko()(Ko(9)([(p,a)]))
= Ko(¢) o Ko(¢)([(p, 0)])-

Thus by Theorem 6.4.1, we conclude that Ky(v o ¢) = Ko(¢) o Ko(9).

(¢) Ko(Ow,v)([(p,9)]) = [(Ow,v(p), 0w, (9))] = [(0,0)] for all [(p,q)] € Ko(V).

Thus again using 6.4.1, we get that Koy, = Or,w), 101
O

Remark 6.4.3. It follows from Corollary 6.4.2 that Ky is a functor from category
of absolute matriz order unit spaces with morphisms as unital completely | - |-

preserving maps to category of abelian groups.

Corollary 6.4.4. Let V and W be isomorphic absolute matriz order unit spaces
(isomorphic in the sense that there exists a unital, bijective completely | - |-
preserving map between V' and W). Then Ko(V) and Ko(W) are group iso-

morphic.
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Proof. Let ¢ : V. — W be unital completely | - |-preserving map. Then ¢! is
also unital completely | - |-preserving map. Since ¢~'o ¢ = Iy and ¢po ¢! =
Iy, by Corollary 6.4.2(a) and (b), we get that Ko(¢~') o Ko(¢) = Ix,v) and
Ko(¢) o Ko(¢™) = Iywy. Thus Ko(¢) : Ko(V) — Ko(W) is a surjective group
isomorphism and Ky(¢)™! = Ky(¢~!). Hence Ko(V) and Ko(W) are group iso-

morphic. O

6.4.1 Relation between K\(V,) and Ky(V)

Let V' be an absolute matrix order unit space and let p € OP (V). By [39, Remark

6.2(3)], we get that

OP.(V,) = {q€eOP,(V):q<p"}

= OP,. (V)N M,(V,).

for all n € N.

Proposition 6.4.5. Let V' be an absolute matriz order unit space and let q,r €

OPo(V},) for some p e OP(V). Then g ~ 1 in 'V, if and only if g ~r in V.

Proof. ¢ ~ r in V,, implies ¢ ~ 7 in V is obvious. Now assume that ¢ ~ 7 in
V. Let ¢ € OP,,(V) and r € OP, (V) for some m,n € N. Then there exists

v € M, (V) such that ¢ = |v*|,,,, and r = |v|,,,. Since p™ > ¢ and p" > r, we
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get that
pm O ’U*|n,m 0
0 pr| 0 |lmn
0 wv
v* 0
_m—HL
0 v
> +
v* 0
p'f)’l/ )
Thus € M0 (V)T so that v € M,,,,(V,). Hence g ~ r in V. O
v* pn

The following Corollary is immediate from Proposition 6.4.5.

Corollary 6.4.6. Let V' be an absolute matriz order unit space and let p €

OP(V). If V satisfies (T), then V), also satisfies (T).

Corollary 6.4.7. Let V' be an absolulte matriz order unit space satisfying (T').

Then [(q,7)] — [(q,7)] is a group homomorphism from Ky(V,) to Ko(V).

Proof. Let i : V,, — V be inclusion map. By Theorem 6.4.1, there exists a unique
group homomorphism Ky(i) : Ko(V,) — Ko(V') such that the following diagram

commutes:

OPoo(V,) ——= OP (V)

xvpl lxv
Eo(Vy) — Bo(V)

. Thus Ko(i)(xv,(q)) = xv(q) for all ¢ € OP(V},).
Let [(¢,7)] € Ko(V,). Then
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Ko(1)([(g,7)]) = Ko(i)(xv,(9) = x3,(r))

so that by Theorem 6.4.1, [(¢,7)] — [(g,7)] is a group homomorphism from
KO(‘/p) to K()(V)

6.5 Order structure on K|

Let (G, +) be a group and let G* be a non-empty subset of G such that GT+G* C
GT. Then G is said to be a group cone in G. In this case, (G,G™") is said to be
an ordered group.

Let (G,G™) be an ordered group. Given any g1, g2, we write g; < g if and
only if o — g1 € G*. Then GT ={g € G : g > 0}.

Let (G,G™) be an ordered group. Then
(1) G* is said to be proper, if Gt N -Gt = {0}.
(2) G is said to be generating, if G = Gt — G™.

Let (G,G7) be an ordered group. Then (G,G7) is said to be an ordered
abelian group, if GG is abelian, proper and generating.
Let (G,G™") be an ordered group. Then g € G* is said to be an order unit

for G, if given any h € G there exists n € N such that —ng < h < ng.
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An ordered abelian group (G, GT) with an order unit g, is called an ordered
abelian group with a distinguished order unit. For details please refer to [22, 61].
In this section, we show that given an absolute matrix order unit space V/,
Ko(V') is an ordered abelian group with a distinguished order unit under the

assumption that all order projections in V' are finite.

Theorem 6.5.1. Let V' be an absolute matriz order unit space satisfying (T).
Put Ko(V)" ={[(p,0)] : p € OP(V)}. Then

(a) Ko(V)" is a group cone in Ko(V).

b) If € is finite for alln € N, then Ko(V)*1 is proper.
(b) : prop

(c) Ko(V)* is generating.

In other words, if €" is finite for all n € N, then (Ko(V'), Ko(V)T) is an ordered

abelian group.

Proof. (a) Let p,q € OPy (V). Then [(p,0)] + [(¢,0)] = [(p & ¢,0)]. Thus
Ko(V)*t + Ko(V)t € Ko(V)™.

(b) Assume that e" is finite for all n € N. Let g € Ko(V)" N —Ky(V)*. There
exist p € OP,,(V) and ¢ € OP, (V) such that g = [(p,0)] = [(0,¢)]. Then
(p,0) = (0,q) so that p&q ~ 0, ®0,,. Thus pHgEHr ~ 0,50, &7 for some
r e OP(V). Since p@®q®r ~ 0,0, drand p®qg®r >0, 0, Sr, by
Corollary 5.4.3, we get that p&qg®r = 0,,H0,Er. Then pEqgH0; = 0,11y

so that p,, = 0,, and ¢ = 0,. Thus g = 0.

(¢) For each p,q € OP(V), we get that
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[(p,0)] = [(p,0)] + (0, q)]

= [(p,0)] = (¢, 0)]

so that Ko(V) = K(](V)+ - Ko(V)+
O

Corollary 6.5.2. Let (V. e) be an absolute matrixz order unit space satisfying (T)
and let €™ be finite for alln € N. Then (Ko(V), Ko(V)1) is an ordered abelian
group with distinguished order unit [(e,0)]. In other words, for each g € Ko(V),

there exists n € N such that —n[(e,0)] < g < n[(e, 0)].

Proof. By Theorem 6.5.1, (Ko(V), Ko(V)") is an ordered abelian group. We
show that [(e,0)] is an order unit. First, let » € OP,,(V) for some m € N. By

Proposition 5.2.5(5), we have

[(r,0)] < {(r,0)] + [(e™ =7, 0)]

Let g € Ko(V). Then by Theorem 6.5.1(c), we have g = [(p,0)] — [(¢g,0)]
for some p,q € OP, (V). Without any loss of generality, we may assume that
p,q € OP,(V) for some n € N. Since —[(q,0)] < g < [(p,0)], we get that

—n[(e, 0)] < g < nl(e,0)]. Hence [(e,0)] is an order unit for Ky(V). O
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Theorem 6.5.3. Let V and W be absolute matrix order unit spaces and ¢, :
V. — W be completely | - |-preserving maps such that ¢ L . If ¢ and ¢ map
OPw(V) into OP (W), then

(1) ¢+ also maps OP (V) into OP(W).

(2) &,% and ¢+ are completely contractive maps with ||p+ || = mazf{||@||e, [P} -

(3) If V and W satisfy (T), then Ko(¢ + 1) = Ko(d) + Ko(v).

Proof. Assume that ¢ and ) map OP (V) into OP . (W).

(1) Let p € OP, (V). Then ¢n(p), ¥u(p) € OP,(W) with ¢,(p) L ¢n(p). By
Proposition 2.3.11(1), we get that ¢,(p) + ¥n(p) € OP,(V). Thus ¢ + ¢
maps OP (V) into OP(W).

(2) Let v € M,(V),n € N. By Theorems 4.3.2(2) and 4.3.3(1), we get that

0 On (V)
lén ()l =
¢n(v)* 0
2n
0 v
- ¢2n
v* 0
2n
0 v
<
v* 0
2n

= [[v]ln

Thus ¢ is completely contractive. Similarly, we can show that v is also

completely contractive.
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Further, by Remark 4.5.2, we have

an(v)* 0 v* 0 v* 0

so that

0
(0 + ¥) (V)|
(¢n + ¥n)(v)*

0

max

(I
Pn(v)"

(@n + Un) (V)

0 ] (0) s 450 ()3 .

(¢n + Un)(v)
0 2
(¢n + ¥n)(v)
0 2n 112
0 Yu(v)
+
l¢n(v)* 0 ] 2nl112n
0 ¢n(v)
+
2n _wn(v)* 0 2nli2n
Pn(v) 0 Un(v)
0 4 12nli2n wn(v)* 0 2nl112n
n(v)

Y

’

]

0 tn(v)
Un(v)” 0

2n

Thus [|¢ + 9| = max{||¢|e, ||¢||s} and consequently ¢ + 1) is also com-

pletely contractive.

(3) Assume that V' and W satisfy (T). Let p € OP,(V) for some n € N.
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Since ¢n(p) L ¥n(p), by Proposition 5.2.5(5), we get that ¢, (p) + ¥n(p) ~

én(p) © Yn(p). Then

Ko(¢+¢)([(p,0)]) = [((¢+¢)n(p),0)]
= [(én(p) + ¢n(p), 0)]
= [(¢n(p) & ¥n(p),0)]
= [(@n(p), 0)] + [(¥n(p), 0)]
= Ko(o)([(p, 0)]) + Ko(¥)([(p, 0))).

Thus by Theorem 6.5.1(c), we conclude that Ko(¢ + ¢) = Ko(¢) + Ko().

O

Remark 6.5.4. Let V and W be absolute matriz order unit spaces and let ¢; :
V. — W be completely | - |-preserving maps for i = 1,2,--- ,n such that ¢; L ¢;
for all i # j. Then i(bi is also a completely | - |-preserving map. Moreover, if
V oand W satisfy (%71and if @ maps OPo(V) into OPo(W) for each i, then

K, (Z €Z57> = ZKO(@).
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