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SUMMARY

Data security plays a vital role in digitalization due to the rapid increase of science

and technology. Cryptology deals with the security of data through the design and

analysis of secure algorithms (ciphers). When two parties communicate through an in-

secure channel, a third party (adversary) may try to know the secret message between

the two parties. Cryptanalysis explores the weaknesses in the cipher, which may be

repaired by the designer such that the adversary can not use the weakness for its pur-

pose. The messages are encrypted and decrypted by some keys. The stream ciphers

are widely used for efficiency, low cost, and simplicity. This thesis explores popular

cryptanalysis of well-known stream ciphers like Grain-v1, Grain-128, Grain-128a, and

Lizard. We have used differential cryptanalysis, cube tester, and Time-Memory-Data

trade-off (TMDTO) attacks to analyze those stream ciphers. The differential attack

is a well-known cryptanalysis method for a stream cipher. In previous literature,

the attacker used the conditional differential cryptanalysis to attack Grain-v1 using a

one-bit difference vector in IV (Initialization Vector). We have proposed a conditional

differential attack on Grain-v1 by using two bits difference vector in IV. Using this,

we can distinguish Grain-v1 of 112 KSA round from a random sources in a single

key setup with a 99% success rate. Further, Grain-v1 of 114 and 116 KSA rounds

can be distinguished from a random source in weak key setup with 73% success rate

for 278 weak keys and 62% success rate for 275 related keys, respectively. In recent

days, the cube tester is a very popular cryptanalysis tool to analyze a stream cipher.

Several types of attacks, including cube tester, are used to analyze Grain-128a. We

have proposed a conditional cube tester on Grain-128a. But searching for a good

cube is a challenging task in cube tester. We have proposed a heuristic method using

three strategies, maximum initial zero, maximum last zero, and maximum last α, to

find good and smaller dimensional cubes for Grain-128a. A cube tester is designed

using the heuristic to distinguish Grain-128a of 191 KSA round in single key setup

and 201 KSA round in weak key setup. Then we focused on the TMDTO attack
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by using a state bit recovery attack to analyze a lightweight stream cipher Lizard

and the ciphers of the Grain family, Grain-v1 and Grain-128a. We can recover some

state bits of the cipher by fixing and guessing the remaining state bits in the state

bit recovery attack. Then we used the information regarding numbers of recovering,

fixing, and guessing bits to design a TMDTO curve. Then we proposed a general

algorithm to recover the maximum number of state bits from the same number of

keystream bits by fixing fewer state bits of any cipher. For Grain-v1, 33 state bits are

recovered by fixing 45 state bits. For Lizard, 10,11,12,13,14,15,16,17 state bits are

recovered by fixing 9,10,11,12,14,18,22,25 state bits respectively. For Grain-128a,

35 and 48 state bits are recovered by fixing 34 and 54 state bits, respectively. We

have proposed conditional TMDTO curves for three different conditions D < T =M ;

T = 2−f−2rD2,M =D and D = T =M . Using these, we got some good results for Lizard

as (i) T = M = 254,D = 246; (ii) T = 252,M = D = 253; (iii) T = 249.68,M = D = 254.33

and (iv) T = 242,M =D = 260. For Grain-128a, we got T = 2110,M = 2111,D = 2107 and

T = 2114,M = 2113,D = 2113. Finally, we used Jiao et al.’s TMDTO curve to attack

Grain-v1 and got the result as T = 261,M = 266,D = 278. Finally, we have focused on

calculating the algebraic degrees of the output and update functions of a cipher in a

systematic manner. As a result, we claimed that how many iterations are required

for a proper mix of NFSR and LFSR bits of Grain-like cipher. Further, we can find

the degree of the IV bits (key bits are taken as a constant) to mount a cube attack

on a Grain-like cipher. We have proposed an algorithm to find the algebraic degree of

NFSR update functions of Grain-v1, which helps us calculating the degrees of LFSR

update and output functions. Using the algorithm, we could calculate the degrees of

the output and state update functions up to 54 rounds for Grain-v1.
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Chapter 1

Introduction

The modern era can be considered as an era of digitalization due to the heavy depen-

dency of human society on digital communication and rapid development in science

and technology. It is effortless to send any information digitally rather than send the

item physically. Cashless transactions are one of the best examples of digitalization

used everywhere, like shopping malls, banking sectors, online services, etc., rather

than carrying cash or checkbook. The world is currently going through the CORONA

pandemic, where the virus spreads due to physical contact. Due to this pandemic

situation, the meetings, teaching, money transactions are happening through digital

communication. Hence, the world is almost entirely dependent on digital commu-

nication. Further, the communication between physical devices, i.e., the Internet of

Things (IoT), is the evolving technology in smart networking. In the IoT network,

the devices communicate digitally very frequently in an open channel. This commu-

nication of information can be private to someone. Else another person will access his

data unconditionally. Similarly, two or a group of parties can exchange their private

information digitally. Therefore, secure data transfer in an open channel is essential

in many situations, specifically to the banking sector, the nation’s defense organiza-

tions, health sector, and government organizations. In Figure 1.1, Alice and Bob are

exchanging their secret messages with each other. Another person, Eve, tries to read
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their messages.

Bob AliceEve

Figure 1.1: Data exchange procedure

The word cryptology comes from the Greek words kryptos and logos, which means

hidden and word, respectively. Cryptology deals with the security of the secret mes-

sages transferred between two parties in an open channel. Cryptology is classified into

two parts, as in Figure 1.2.

Cryptology

Cryptography Cryptanalysis

Figure 1.2: Classification of cryptology

The first one, cryptography, deals with encoding the original message (or plaintext)

to the hidden message (or ciphertext) called encryption and decoding the hidden mes-

sage to the original message called decryption. First, the plaintext is encrypted using

public or private (secret) key, and then the ciphertext is decrypted by using a secret

key. The ciphertext is transferred through a public channel. The latter, cryptanalysis,

deals with analyzing the weakness and strength of the encryption algorithm without

knowing the secret key. The challenge is to find the secret key with or without using

the encryption (or decryption) oracle. The encryption (or decryption) oracle outputs

a ciphertext (or plaintext) when one inputs a plaintext (or ciphertext). The leakage

of any information about the plaintext or key is also associated with cryptanalysis.

The ciphertext transferred in the public channel should look like a random sequence

(called a pseudo-random sequence) of a secure cipher. The details of the above two

parts are in the following sections.
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1.1 Cryptography

During the transmission of messages, the involved parties may require the following

criteria:

1. Confidentiality: The most fundamental criterion ensures that the message is

secret between the involved parties by encrypting the message.

2. Data integrity: It ensures that any other parties can not modify the message

except the authorized parties.

3. Authentication: It guarantees the involved parties’ genuineness, i.e., the parties

are sure about each other’s identity.

4. Non-repudiation: It assures the commitment of both parties. That is, a party

can not deny the authenticity and integrity of a message after a transmission.

We will now discuss the cryptographic algorithms by which a message m can be

sent from one party A to another party B. Let M denotes the set of messages or

plaintexts, and C denotes the set of ciphertext. Consider that the setM = C = {0,1}n,

a collection of n-bit strings.

1.1.1 Different kind of cryptographic primitives

1.1.1.1 Unkeyed cryptography

These primitives require no key. An example of such a type of primitives is the hash

function which inputs a string of arbitrary length and outputs a fixed-length string.

Moreover, the function has a domain with a large size and a range with a fixed size.

A good cryptographic hash function should have the following properties:

� First pre-image resistance: From any given output value, it is computation-

ally difficult (i.e., infeasible) to get its corresponding input. It is deterministic
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and fast to compute the hash value for any given input.

� Collision resistance: It is computationally infeasible to find two distinct in-

puts whose corresponding hash values are the same.

� Second pre-image resistance: For a given hash value, finding another input

with the same hash value is infeasible.

The hash function is primarily used to resist data integrity as two different input

strings can not have the same hash value.

1.1.1.2 Private key cryptography

In this cryptosystem, the same key is used for encryption and decryption, or one

key is easily derivable from another. The key needs to be communicated privately.

Therefore, the cipher is called a private key or secret key, or symmetric cipher. Fig-

ure 1.3 gives the pictorial presentation. Stream ciphers and block ciphers belong to

this category. The motivation for stream cipher comes from the encryption scheme

Encryption

Shared secret key

Eve Decryption

Insecure Channel

Plaintext Plaintext

Alice Bob

Ciphertext Ciphertext

Figure 1.3: Private key cryptography

one-time pad, which Vernam patented in 1917. In 1949, Claude Shannon proved that

this scheme is unbreakable [1]. The encryption algorithm of this scheme is c = p ⊕ z,

where c, p and z are the strings of ciphertext, plaintext and key, respectively. There-

fore, the decryption algorithm is p = c⊕z. But the major disadvantage of this scheme

was that the key size is as long as the plaintext size, and one key is used for only one

encryption. The symmetric cipher comes with a solution by replacing the long key



1.1 Cryptography 5

with a long keystream generated from a short key. The keystream generator takes an

n-bit secret key as input and outputs a pseudo-random sequence of keystream bits

as z. Since the same key always generates the same keystream sequence, the initial-

ization vectors (IV) that the user chooses are used to generate different keystream

sequences using one secret key. The literal meaning of stream cipher comes from the

fact that it encrypts a continuous stream of characters. In general, the stream ciphers

are preferred for fast encryption and low-cost design.

Since stream ciphers are the primary interest of this thesis, we explain the structure

of classical stream ciphers. Feedback shift registers (FSR) and Boolean functions are

the basic building blocks of most of the keystream generator because of the following

properties:

� It is easily implemented into hardware.

� It produces a large period keystream sequence with good statistical property [2].

An FSR of length d is having d cells numbered by 0,1, . . . , d−1 and a recursive relation

on the content of the cells. Each cell stores one bit, and the content of the cells at

a time is called a state of the FSR. When the FSR is clocked, the FSR outputs the

content of cell 0; the remaining cells (i.e., from 1 to d−1) are shifted to cell numbered

one less (i.e., 0 to d−2). The (d−1)th cell is updated with the feedback bit of the FSR.

The feedback bit is calculated by a recursive relation obtained from the connection

polynomial. If the recursive relation is linear, the FSR is called a linear feedback shift

register (LFSR); otherwise, it is called a nonlinear feedback shift register (NFSR).

The feedback bit and the keystream bit in each clock are Boolean functions that take

d bit string from {0,1}d as input and produce one bit as output. The stream ciphers

are classified into two categories:

� Synchronous stream cipher: In this cipher, the generation of keystream

sequence is independent of plaintext and ciphertext.
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� Self-synchronizing stream cipher: The generation of keystream bits of this

cipher depends on the key and previous ciphertext bit.

The cryptanalysis performed on the ciphers in this thesis are synchronous ciphers.

The eSTREAM project [3]: From November 2004 to April 2008, the eSTREAM

project organized by the ECRYPT network was continually searching for new stream

ciphers suitable for widespread adoption. Based on the applicability, the ciphers were

categorized into two profiles:

� Profile 1: Stream ciphers for software applications with high throughput re-

quirements;

� Profile 2: Stream ciphers for hardware applications with restricted resources

such as limited storage, gate count, or power consumption.

The ciphers made up the eSTREAM portfolio are

� Profile 1: Grain-v1 [4], MICKEY 2.0 [5], Trivium [6].

� Profile 2: Salsa 2.0 [7], Sosemanuk [8], HC-128 [9], Rabbit [10].

The increase in popularity of IoT and mobile devices propels cryptographers to de-

sign lightweight ciphers for the security in the resource-constrained device, which has

limited computing power, storage space, and energy source. As a result, the state size

of lightweight ciphers has to be reduced. In 2015, NIST initiated a competition for

lightweight cryptographic algorithms [11]. Grain-128AEAD [12], Lizard [13], Fruit [14]

and Plantnet [15] are some important lightweight ciphers which are participating in

the competition.

A block cipher encrypts a block (a sequence of bits of fixed length) of plaintext

and outputs a block of ciphertext of the same size using a key for each block. Here

the encryption function (EK) is invertible. It takes plaintext (P ) and key (K) as

inputs and outputs corresponding ciphertext, i.e., C = EK(P ). Figure 1.4 shows

the encryption process of a block cipher. The decryption function(DK) returns the
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Plaintext

KEY

Block Cipher Ciphertext

Ciphertext

KEY

Block Cipher Plaintext

Figure 1.4: Encryption and Decryption of Block cipher

plaintext i.e. P =DK(C) as it is invertible. The decryption process of block cipher is

pictorially presented in Figure 1.4. AES, DES are examples of popular block ciphers.

1.1.1.3 Public key cryptography

The drawback of a symmetric cipher is that the sender and receiver need to share the

key secretly, which is solved by the public key cryptosystem. A pair of different keys

are used in this cryptosystem. These keys are the public key and the private key of the

receiver. Further, computing one key from another key must be computationally hard

without knowing a piece of information called a trapdoor. The sender uses the public

key for encryption, and the receiver uses the private key for decryption. For data

integrity purposes, the sender can use its private key for signature, and the receiver

can use the sender’s public key for verification. RSA is one of the popular public-key

primitives. The pictorial view of such primitive is presented in Figure 1.5.

Encryption

Insecure Channel

Eve Decryption

Insecure Channel

Plaintext Plaintext

Alice Bob

Bob’s public key

Bob’s private key

Ciphertext Ciphertext

Figure 1.5: Public key cryptography
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1.2 Cryptanalysis

Cryptanalysis is related to the security of cryptographic primitives. Cryptanalysis is

the study of security aspects of cryptographic primitives. The straightforward ap-

proach to secure the message transmission is by hiding the cryptographic primitive

from everyone except the involved parties. If any eavesdropper somehow gets the

knowledge of primitive and finds out the weakness of the primitive, they can decrypt

the ciphertext. Therefore, when someone designs the cryptographic primitives, Ker-

ckhoffs’ principle needs to be followed to overcome this scenario. In his two articles

on La Cryptographie Militaire [16] in 1883, he stated that the security of a cryptosys-

tem must lie in the choice of its keys only; everything else (including the algorithm

itself) should be considered as public knowledge. The cryptosystem must be designed

so that no one (even the designer) cannot break the cryptosystem without the secret

key. In general, the attacks on different encryption schemes are classified into different

categories:

� The ciphertext only attack: In this attack, the adversary uses the ciphertext

only to deduce the plaintext or the secret key.

� The known-plaintext attack: The adversary has some plaintexts and corre-

sponding ciphertexts to deduce the message or the secret key in this attack.

� The chosen-plaintext attack: In this attack, the adversary is given more

power. He can choose the plaintexts and get their corresponding ciphertexts to

deduce the message or the secret key.

� The chosen-ciphertext attack: The adversary can access the decryption

algorithm that embeds the decryption key for some period. Therefore, the

adversary can choose some ciphertexts and have their corresponding plaintexts

to deduce the message or the secret key.
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The security of different cryptographic primitives is defined under distinct models.

Some models are as follows.

1. Unconditional security: In this case, the adversary cannot attack the prim-

itives although he has infinite computational resources. A particular case is

called perfect secrecy, where one cannot have any information from the cipher-

text without having the key. A necessary condition for a symmetric cipher to

be unconditionally secure is that the key size is at least as large as the plaintext

size. An example of a scheme that is unconditional secure is the one-time pad.

2. Provable security: In this case, it can be proved that the adversary has to

solve an underlying mathematical computationally hard problem in order to

break the security of the cryptographic primitive. For example, solving the

integer factorization problem implies breaking the security of the RSA cryp-

tosystem.

3. Empirical security: If there is no efficient method rather than an exhaustive

search, each key from the whole keyspace is tried to attack the cryptosystem

until getting the right key. When designing a stream cipher, an initialization

round of the cipher is declared as a security margin, although there is no theo-

retical proof about the fixed number of initialization rounds. Eavesdropper tries

to attack the cipher on reduced initialization rounds. Most of the attacks in this

thesis are implemented on reduced initialization rounds.

As our thesis includes cryptanalysis of some stream ciphers, we discuss the attacks on

the stream cipher from now onwards. Next, we present the classification of attacks

based on the goals of the adversary.

� Key recovery attack: This is the strongest attack where the adversary recov-

ers a partial or complete secret key.

� State recovery attack: In this case, the adversary recovers a state of the

cipher at a particular clock. Then, the adversary can recover the further states
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of the cipher and the keystream in forwarding mode. Moreover, if the keystream

generation algorithm is invertible, the state recovery leads to a key recovery

attack.

� Distinguishing attack: This attack is comparatively weaker and easier to im-

plement than the previous two attacks. The adversary tries to distinguish the

keystream sequence of a cipher from a random source. In general, the adver-

sary exploits some properties of the Boolean functions (e.g., unbalancedness,

the presence of neutral or linear variables, the existence of low or high degree

monomials) used in the cipher.

Different techniques are used to analyze the stream ciphers. The attacks can be clas-

sified into (a) based on the weakness in the algorithm and (b) based on the weakness

in the physical implementation of the cryptographic primitive (e.g., a side-channel

attack). As the thesis includes the cryptanalysis of the former type, we now introduce

some popular attack methods of the former type.

� Differential attack: The adversary exploits the predictability of the keystream

bits difference at some rounds on a difference in states of the cipher. Different

statistical tests on the keystream bits difference function can distinguish the

cipher of reduced initialization rounds from the random function. Sometimes

conditions on some state bits (i.e., IV bits and key bits) are imposed to propagate

the non-randomness of the keystream difference for larger initialization rounds.

Such a type of attack is called a conditional differential attack.

� Cube attack: In this attack, a set of cube variables are chosen from the IV

bits such that the polynomial generated by adding the output function for all

possible cube values (called the superpoly) is a simple polynomial (e.g., linear

or quadratic). In the preprocessing phase of the cube attack, the linear (or

quadratic) expressions of the superpolies of corresponding cubes are collected

using the linearity test (or quadratic test). In the online phase, for a fixed key,
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the oracle is queried by setting the values of non-cube IV variables as zero, and

the values of the expressions are collected. Finally, a system of equations is

solved, and the corresponding key bits are recovered. Also, another variant of

cube attack, cube tester, deals with the properties of the superpoly to implement

the distinguishing attack. In conditional cube tester or conditional cube attack,

conditions on some state bits are imposed.

� Guess and determine attack: Some state bits are guessed to make a system

of simpler equations on other state variables in this attack. By solving the

system of equations, the other state bits are recovered.

� Time memory data tradeoff (TMDTO) attack: This attack recovers the

state bits of a cipher using a balanced trade-off between time, memory and data.

In the preprocessing stage, a table stores the states of keystream sequences. The

adversary collects some keystream sequences in the online stage and tries to

find the keystream in the preprocessing table. Once it is found, its predecessor

state is the correct state from which the keystream is generated. Sometimes

conditions on state bits are used, then such an attack is called a conditional

TMDTO attack.

The conditions on the state bits lead to two different setups as follows.

� Single key setup: A conditional attack where the conditions are imposed only

on IV bits.

� Weak key setup: A conditional attack where at least one key bit is conditioned.

The detailed presentation of some important attacks is discussed in Chapter 2.

1.3 Motivation of research

Data security is an essential need in our daily lives as we exchange a large amount of

data over the internet. Therefore, the world needs good cryptographic primitives to
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secure the data. The cryptanalysis of the cryptographic primitive helps to find out

the possible weaknesses in the primitives. Symmetric ciphers, especially the stream

ciphers, are preferred for fast encryption, low-cost implementation, and resource con-

straint networks. We have cryptanalyzed some popular and contemporary stream ci-

phers. The chosen ciphers are candidates in competitions like the eSTREAM project

by ECRYPT [3] and the lightweight design competition by NIST [11].

Grain-v1 is one of the famous ciphers in the hardware-based eSTREAM portfolio.

The best attack on Grain-v1 was the conditional differential cryptanalysis used to

attack the cipher in reduced rounds [17]. We improved the reduced rounds by using

the same attack. We, too, implemented two more attacks, i.e., the guess and determine

attack and the TMDTO attack on Grain-v1. Since the degree of the output function

of Grain-v1 is six, finally, we try to evaluate the degree of Grain-v1 up to some rounds

such that we can observe the ANF of the function more carefully.

Grain-128a is another famous cipher that belongs to the same family of Grain-

v1. First, we have proposed cube testers on the reduced initialization rounds of

Grain-128a. Also we applied the above attack on Grain-128. We have presented a

deterministic algorithm to find the state bits that need to be fixed to recover some

state bits. Using the algorithm, the state bits of Grain-128a are recovered with fewer

fixing bits. Then conditional TMDTO attacks are implemented on Grain-128a.

Recently, lightweight cryptography is in demand for its requirement in resource

constraint networks like IoT. Lizard is one of the famous lightweight ciphers. We

used our deterministic algorithm to recover state bits of Lizard and implemented

conditional TMDTO attacks on Lizard using the obtained results.

1.4 Organization of thesis

The following chapters are added to the thesis:

� Chapter 1 introduces the cryptanalysis of stream ciphers and the motivation
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for the research topics of the thesis.

� Chapter 2 covers all technical information regarding the research presented in

the thesis. In addition, the designs of the stream ciphers used in this thesis

are presented, and some important cryptanalysis models on stream cipher are

explained in this chapter.

� Chapter 3 presents a conditional differential attack on Grain-v1. In this attack,

distinguishers on Grain-v1 of 112 and 114 KSA rounds are proposed in a single

key and weak key setup, respectively. The material of this chapter is taken from

the paper [18].

� Chapter 4 presents conditional cube testers on Grain-128a. First, a new cube

searching method is presented. Using a five-dimensional cube obtained from the

method, Grain-128a of 191 and 201 KSA rounds are distinguished in single and

weak key setups, respectively. This method is also applied to Grain-128. This

chapter is based on the paper [19].

� Chapter 5 is divided into two parts. In the first part, a heuristic method is

used to recover state bits of Grain-v1, and then for the first time, a deterministic

algorithm is proposed to recover state bits with a minimal number of fixed bits

of a stream cipher. The method is used on Grain-128a and Lizard. In the second

part, a TMDTO equation is provided to mount conditional TMDTO attacks on

the ciphers using the number of recovering and fixing bits of the ciphers. The

material of this chapter is taken from the paper [20] and the communicated

paper.

� Chapter 6 presents a method to compute the algebraic degrees of the output

and the feedback function of Grain-like ciphers. The method is implemented

on Grain-v1 to compute the degree of the output function of Grain-v1 up to 54

rounds. The work is in progress. This chapter is based on the paper [21].
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� Chapter 7 concludes the thesis with a summary of our research works and the

future research plan in this direction.



Chapter 2

Preliminaries

2.1 Mathematical Background

2.1.1 Polynomial over Finite field

It is known that for each prime p and each positive integer n there exists a finite field

of order pn uniquely, called the Galois field [22] and denoted by GF (pn) or Fpn .

Definition 1. The generator of the multiplicative group F∗pn of the finite field Fpn is

called the primitive element [22] of the group, which is algebraic over GF (p) of

degree n, i.e., it satisfies a non-constant polynomial of degree n over GF (p).

Let F[x] be a polynomial ring such that F[x] = {a0 +a1x+⋯+anxn +⋯∣ai ∈ F}, where

F is a field.

Definition 2. Let D be an integral domain. A polynomial f(x) ∈ D[x] is said to be

irreducible [23], if

� f(x) is neither zero nor unit in D[x].

� if f(x) = g(x)h(x), then either g(x) or h(x) is a unit in D[x], where g(x) and

h(x) belong to D[x].
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Definition 3. The minimal polynomial [23] of an element α in the extension field

over the base field F is the monic irreducible polynomial in F[x] such that α is a root.

Theorem 1. F[x]/⟨f(x)⟩ forms a field iff ⟨f(x)⟩ is an irreducible polynomial of degree

n [24].

An irreducible polynomial is used to construct a finite field Fpn of order pn over

the base field Fp of order p and Fpn ≅ Fp[x]/⟨f(x)⟩ as fields. It is known that for a

polynomial f(x) ∈ Fp[x] of degree n with f(0) ≠ 0, there always exists one positive

integer e ≤ pn − 1 such that f(x) divides xe − 1 [22].

Definition 4. For a non-zero polynomial f(x) ∈ Fp[x], the order of f(x) is defined

for the following two cases [22]:

1. If f(0) ≠ 0, then the least positive integer e for which f(x) divides xe − 1 is said

to be the order of f(x).

2. If f(0) = 0, there exists uniquely k ∈ N and g(x) ∈ Fp[x] with g(0) ≠ 0 such that

f(x) = xkg(x), then the order of f(x) is equal to the order of g(x).

It is known that, for a polynomial f(x) ∈ Fp[x] of degree n with f(0) ≠ 0, the

order of f(x) is equal to the order of any element of F∗pn , which is a root of f(x) [22]

[25]. This means that the order of any irreducible polynomial over Fp, divides pn − 1.

Definition 5. The minimal polynomial of degree n over Fp of a primitive element

of Fpn is called a Primitive polynomial [22] of degree n. In another words, we

can say that a monic polynomial f(x) ∈ Fp[x] of degree n with f(0) ≠ 0 is said to be

Primitive, if the order of f(x) is equal to pn − 1.

2.1.2 Finite dimensional vector space over finite field

First, we discuss some basic definitions regarding vector spaces [26].

Definition 6. Let V be a vector space of the field F. Then,
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1. A linear combination of a set of vectors v1, . . . , vm ∈ V is a vector of the form

a1v1 +⋯ + amvm, where ai ∈ F, 1 ≤ i ≤m.

2. The set of all linear combinations of the vectors v1, . . . , vm ∈ V is said to be the

linear span of the set of v1, . . . , vm and it is denoted by span({v1, . . . , vm}).

3. A set of vectors v1, . . . , vm in V is said to be linearly independent if a1v1 +

⋯ + amvm = 0 implies that ai = 0 ∀ i.

Definition 7. Let V be a vector space of the field F. Then,

� The vector space V is said to be finite-dimensional vector space if there exists a

finite subset S of V such that span(S) = V.

� A basis of vector space V is a set of vectors in V which is linearly independent

and spans V.

Example 1. � Every field is a vector space over it’s subfield e.g. F2n is a vector

space over it’s subfileld F2. {1, α, . . . , αn−1} is a basis of F2n, where α is a cyclic

generator of F∗2n.

� For a fixed n, set of polynomials of degree n or less over a field F, Pn(F) =

{a0 + a1x +⋯ + anxn∣ai ∈ F} is a vector space over F. {1, x, . . . , xn} is a basis of

Pn(F).

Theorem 2. Let V be a vector space of the field F. Then,

� a set of vectors v1, . . . , vm is said to be basis of V iff each vector v ∈ V can be

uniquely written as v = a1v1 +⋯ + amvm, ai ∈ F.

� every finite dimensional vector space has a basis.

� any two bases of a finite dimensional vector space contain the same number of

vectors.
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Definition 8. The dimension of a finite dimensional vector space V is the cardinality

of any basis of the vector space and is denoted by dim V.

Example 2. dim Pn(Fp) = n + 1.

2.1.3 System of linear equations

Definition 9. An equation in n unknown variables x1, . . . , xn with n coefficients

a1, . . . , an in a field F is said to be linear if it is of the form a1x1+⋯+anxn = b, b ∈ F.

An n-tuple (α1, . . . , αn) ∈ Fn for which a1α1 +⋯ + anαn = b is said to be the solution

of the above linear equation.

Definition 10. A collection of m linear equations in n unknown variables x1, . . . , xn

with field coefficients is said to be a system of m linear equations in n unknowns.

It is denoted by

a11x1 + a12x2 +⋯ + a1nxn = b1 (2.1)

a21x1 + a22x2 +⋯ + a2nxn = b2

⋯ ⋯ ⋯ ⋯

am1x1 + am2x2 +⋯ + amnxn = bm

,where aij, bi ∈ F, 1 ≤ i ≤m,1 ≤ j ≤ n.

A solution of the above system which simultaneously solves each linear equation,

is an n-tuple (α1, . . . , αn) ∈ Fn. A system of linear equations is said to be solvable if

there is a solution of it [27].

Definition 11. An m×n matrix M in F with m rows and n columns is defined by a

collection of elements aij ∈ F, 1 ≤ i ≤m,1 ≤ j ≤ n, m,n ∈ N such that
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋮

am1 am2 ⋯ amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The collection of all row vectors Ri = (ai1, . . . , ain), 1 ≤ i ≤m of the matrix M forms a

vector subspace, called the RowSpace(M) of Fn. Similarly, the collection of all column

vectors Cj = (a1j, . . . , amj)T , 1 ≤ j ≤ n of the matrix M forms a vector subspace, called

the ColSpace(M) of Fm. The set of all m × n matrices in F is denoted by Fm,n.

Lemma 1. For every matrix M ∈ Fm,n, dim(RowSpace(M)) = dim(ColSpace(M)).

Definition 12. The rank of a matrix M ∈ Fm,n is defined by

rank(M) = dim(RowSpace(M)) = dim(ColSpace(M)).

Definition 13. A matrix M ∈ Fn,n is said to be invertible if there exists a matrix

N ∈ Fn,n such that MN = NM = In, the identity matrix. N is said to be the inverse

of M , and it is denoted by M−1 = N .

Definition 14. The system of linear equations are associated with two matrices.

1. The matrix of the coefficients, A = [aij] ∈ Fm,n, 1 ≤ i ≤m,1 ≤ j ≤ n.

2. The matrix of the inhomogeneous terms, B = [b1, . . . , bm]T ∈ Fm,1.

The augmented matrix of the linear system is given by

[A ∶ B] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n b1

a21 a22 ⋯ a2n b2

⋮ ⋮ ⋮ ⋮

am1 am2 ⋯ amn bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
So the system of linear equations can be represented as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋮

am1 am2 ⋯ amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or AX = B, where X = [x1, . . . , xn]T .

Theorem 3. The system of linear equations AX = B is solvable iff rank(A) =

rank([A ∶ B]). Let rank(A) = ρ and the system has n number of unknowns. Then,

� The total number of free unknowns is n − ρ.

� The selection of n − ρ free unknowns is done in such a way that the remaining

ρ unknowns correspond to linearly independent columns of A.

2.1.4 Boolean function

Let Vn be a vector space over F2 of dimension n. The definitions regarding Boolean

function [28] are given below:

Definition 15. A Boolean function f in n variables is a function from Vn to F2 i.e.

f ∶ Vn → F2. The set of all Boolean functions in n variables is denoted by Bn.

Definition 16. Let f ∈ Bn and the vectors of Vn are ordered in lexographically as

v0 = (0, . . . ,0), v1 = (0, . . . ,1), . . . , v2n−1 = (1, . . . ,1). Then two sequences of f are

defined as

� (0,1)-sequence: (f(v0), . . . , f(v2n−1)).

� (1,−1)-sequence: ((−1)f(v0), . . . , (−1)f(v2n−1)).

Two important representations of a Boolean function f ∈ Bn are

1. Truth table representation: The (0,1)-sequence of f .
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2. Algebraic normal form(ANF) representation: The polynomial form as an

element of F2[x1,...,xn]
(x2

1−x1,...,x2
n−xn)

. That is, f(x1, . . . , xn) = ∑v∈Vn fvx
v1
1 ⋯xvnn , where fv ∈

F2. The value of fv can be computed as fv = ∑x≤v f(x) ∈ F2.

Definition 17. An affine function la,c is defined by la,c = a.x⊕c = a1x1⊕⋯⊕anxn⊕c,

where a ∈ Vn, c ∈ F2. The set of all affine functions on n-variable is denoted by An.

Definition 18. Let f ∈ Bn, then

� The Algebraic degree of f is defined by the number of variables involved in

the highest order monomial with the non-zero coefficient in the ANF of f . It is

denoted by deg(f).

� The complement of f is defined by f̄ = f ⊕ 1.

� The support of f is defined by Ωf = {x ∈ Vn∣f(x) = 1}.

� The Hamming weight of f is defined by wt(f) = ∣Ωf ∣.

� The Hamming distance between two Boolean functions f, g is defined by

d(f, g) = wt(f ⊕ g).

� The Non-linearity of f is defined by Nf =minφ∈And(f, φ).

Definition 19. A Boolean function f with n variables is called balanced function if

wt(f) = 2n−1.

Definition 20. A sign function or character form of a Boolean function f , f̂ ∶ Vn →

C∗ is defined by f̂(x) = (−1)f(x).

Definition 21. The Walsh transformation of a Boolean function f is a function

W (f) ∶ Vn → F such that W (f)(w) = ∑x∈Vn(−1)w.xf(x).
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2.1.5 Probability distributions and hypothesis testing

Definition 22. Some definitions regarding basic probability theory [29] are given be-

low:

� Sample space: The set of all possible outcomes of an experiment is called

the sample space, denoted by S e.g., sample space of tossing a coin twice is

S = {HH,HT,TH,TT}

� Event: A subset of the sample space is called an event, denoted by E e.g., the

event that the last toss is tail is E = {HT,TT}.

� Probability: The likelihood of the occurrence of an event containing single

sample point from a finite sample space is evaluted by mean of a set of real

number, called probability, ranging from 0 to 1.

� Probability of an event: The probability of an event E is defined by the sum

of the probabilities of all sample points in E and denoted by Pr(E). Therefore,

0 ≤ Pr(E) ≤ 1, P r(φ) = 0 and Pr(S) = 1. Furthermore if A and B are mutually

exclusive events , then Pr(A ∪B) = Pr(A) + Pr(B). In case of above example,

Pr(E) = 1
4 + 1

4 = 1
2 .

� Random variable: It is a real valued function X ∶ S → R that assigns a real

number X(s) to each outcome s in the sample space. A random varible which

takes countably many values is called discrete random variable else it is called

continuous random variable.

� Probability mass function: Let X be a discrete random variable. Then

Pi, 1 ≤ i ≤ n, where Pi = Pr[X = xi] is said to be probability mass function, if

1. Pi ≥ 0 ,∀ i.

2. ∑ni=1Pi = 1.
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� Probability density function: Let X be a continuous random variable. Then

f(x) is said to be probability density function, if

1. f(x) ≥ 0, −∞ < x <∞.

2. ∫
∞
−∞ f(x)dx = 1.

Furthermore, the probability is calculated by Pr(a ≤X ≤ b) = ∫
b

a f(x)dx.

� Cumulative distribution function(CDF): Let X be a random variable.

The cumulative distribution function of X, F ∶ R→ [0,1] is defined by

F (x) = Pr[X ≤ x] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑xi≤xPi, X is a discrete random variable

∫
x

−∞ f(t)dt, X is a continuous random variable

� Mean of a random variable: The mean or expected value of a random

variable X is defined by

µ = E(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑xi xiPi, X is a discrete random variable

∫ xf(x)dx, X is a continuous random variable

.

� Variance of a random variable: The variance of a random variable X with

mean µ is defined by var(X) = σ2 = E(X − µ)2.

� Standard deviation of a random variable: The standard deviation of a

random variable X with variance σ2 is defined by sd(X) =
√
σ2 = σ.

Example 3. Some examples of important distributions of the random variables are

given below [29]:

� The Bernoulli distribution: Let X be a discrete random variable for a binary

coin flip. Let Pr(X = 1) = p, then Pr(X = 0) = 1− p for some p ∈ [0,1]. Then it

is considered as Bernoulli distribution of X and denoted by X ∼ Bernoulli(p).

The probability mass function is Pi = pxi(1 − p)1−xi for some xi ∈ {0,1}.
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� The Binomial distribution: Suppose there is a binary coin which falls heads

up with probability p for some 0 ≤ p ≤ 1. The coin is flipped for n times

and let X be the number of heads. The probability mass function is Pi =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n
xi
)pxi(1 − p)n−xi , xi = 0,1, . . . , n

0, others

. It is then considered the Binomial distri-

bution of X and denoted by X ∼ Binomial(n, p).

� Normal or Gaussian distribution: A continuous random variable is said

to have a Normal distribution with mean µ and standard deviation σ, denoted

by X ∼ N (µ,σ2), if f(x) = 1
σ
√

2π
exp{− (x−µ)2

2σ2 }, x ∈ R.

If µ = 0 and σ = 1, then the above distribution is called standard normal distri-

bution of X i.e. X ∼ N (0,1) and f(x) = 1√
2π
exp{−x2

2 }, x ∈ R.

There are two types of convergence of random variable X [29].

Definition 23. Let X1,X2,⋯ be a sequence of random variables and X be another

random variable. Let Fn and F be the cumulative distribution functions of Xn and X

respectively.

1. Xn converges to X in probability, denoted by Xn Ð→X, if Pr(∣Xn−X ∣ > ε)→ 0,

for all ε > 0 and n→∞.

2. Xn converges to X in distribution, denoted by Xn ↝ X, if limn→∞Fn(t) = F (t)

at all t for which F is continuous.

The relationship between these two types of convergence is given by a theorem.

Theorem 4. The following relationships are hold:

(a) Xn Ð→X implies that Xn ↝X.

(b) Xn ↝X and Pr(X = c) = 1, c ∈ R implies that Xn Ð→X.
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Let X = (X1, . . . ,Xn),where Xi are the random variables, be a random vector whose

probability density function is f(x1, . . . , xn). Also if X1, . . . ,Xn are independent,

Pr(X1 ∈ E1, . . . ,Xn ∈ En) =∏n
i=1Pr(Xi ∈ Ei).

Definition 24. If X1, . . . ,Xn are independent and have the same marginal distribution

with cumulative distribution function F , we say that X1, . . . ,Xn are IID(independent

and identically distributed) and we write X1, . . . ,Xn ∼ F . Also X1, . . . ,Xn are called

a random sample of size n from F .

Let X1, . . . ,Xn be an IID sample and µ = E(Xi) be the mean and σ2 be the variance

of Xi, for any 1 ≤ i ≤ n. Note that the mean of each Xi is same as they are IID. The

sample mean is defined by X̄n = ∑ni=1Xi
n . Finally we discuss about the two popular

theorems regarding convergence of random variables. The first one is discussed below.

Theorem 5. The sample mean X̄n = ∑ni=1Xi
n converges in probability to the mean

µ = E(Xi), for any i. It is known as law of large numbers.

The another theorem is the most important theorem, where X̄n has mean E(X̄n) = µ

and variance σ2
X̄n

= σ2

n .

Theorem 6. Let X1,X2, . . . ,Xn be the IID with mean µ and variance σ2 and X̄n =
∑ni=1Xi

n . Then Zn = X̄n−µ√
σ2
X̄n

=
√
n(X̄n−µ)

σ converges in distribution to Z, where Z ∼ N (0,1).

In other words, limn→∞Pr(Zn ≤ z) = ∫
z

−∞
e−
x2

2√
2π
dx. It is known as the central limit

theorem.

The important part of a statistical distribution is hypothesis testing, a method

to test a claim or hypothesis about a parameter in the population. Two types of

hypothesis testing are there to test the hypothesis against each other. These are:

1. Null hypothesis: It is a statement about a population parameter that is

assumed to be true. It is a starting point. Our goal is to test that whether

the value stated in the null hypothesis is likely to be true. It is denoted by H0.
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2. Alternative hypothesis: It is a statement that directly contradicts a null

hypothesis by stating that the actual value of the population parameter is less

than or greater than or not equal to the value stated in the null hypothesis. It

is denoted by H1.

There are few terms related to the hypothesis. These are the following.

� The level of significance refers to a criterion of judgment upon which a

decision is made regarding the value stated in H0. The criterion is based on the

probability of obtaining a statistic measured in a sample if the value stated in

H0 is true. Typically it is set at 5%.

� Test statistic is a mathematical formula that allows researchers to determine

the likelihood of obtaining sample outcomes if the H0 is true. The value of the

test statistic is used to make a decision regarding H0.

� The p-value is the probability of obtaining a sample outcome when the value

stated in H0 is true. The p-value for obtaining the sample outcome is compared

to the level of significance.

There are two types of errors that occur at the time of deciding that whether H0 is

retained or rejected. These are the following.

1. Type-I error is the probability of rejecting a null hypothesis that is actually

true.

2. Type-II error is the probability of retaining a null hypothesis that is actually

false.

One more important term regarding rejecting H0 is an alpha(α) level which is the

level of significance for a hypothesis test. It is the largest probability of committing

a Type-I error that we will allow and still decide to reject H0.
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2.2 Cryptographic Background

The main building block of stream cipher is the linear feedback shift register(LFSR).

It is always associated with a connection polynomial C(x) ∈ Z2[x] such that

C(x) = 1 + c1x + c2x
2 +⋯ + cdxd.

Definition 25. The following definitions [2] regarding LFSR are:

� The LFSR with a connection polynomial C(x) of degree d (i.e., cd = 1) is said

to be non-singular.

� [sd−1,⋯, s1, s0] is said to be initial state of LFSR, where si ∈ {0,1}, 0 ≤ i < d.

There are also some facts regarding LFSR, which are listed below:

1. Every output sequence produced by all possible initial states of LFSR is periodic

iff LFSR is non-singular.

2. If C(x) is irreducible over Z2, then every output sequence produced by all

possible initial states has a period less than or equal to p, where p∣2d − 1.

3. If C(x) is primitive over Z2, then every output sequence produced by all possible

nonzero initial states has a period equal to 2d − 1.

The LFSR is used to build a stream cipher for several reasons which are:

� It can be implemented in hardware very well.

� It produces the sequences which have a large period.

� It produces the sequences which have good statistical properties.

� It can be easily analyzed using algebraic techniques due to its structure.
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Definition 26. A (general) feedback shift register(FSR) of length d which can

store one bit and has one input, one output and a clock to control the movement of

data, consists of d contents s0, ..., sd−1. The following operations are performed during

each unit of time:

� The output is s0 which is a part of the output sequence.

� si = si+1, 0 ≤ i ≤ d − 2.

� sd−1 = f(s
′
0, . . . , s

′
d−1), where the Boolean function f is the feedback function and

[s′d−1,⋯, s
′
0] is the previous state.

Based on the degree of the feedback function, it is classified by two parts [2]:

1. If the feedback function is linear, then the FSR is called linear feedback shift

register (LFSR), where f = c1sd−1 + c2sd−2 + ⋯ + cds0 given that [sd−1,⋯, s0] is

the previous state.

2. If the feedback function is non-linear i.e. the degree of the function is atleast 2,

then the FSR is called non-linear feedback shift register (NFSR).

Note: For [0,⋯,0] initial state of LFSR, the output sequence is the zero sequence.

Definition 27. An LFSR is said to generate an infinite sequence s or a sequence

whose first n terms are sn, if it is generated from some initial state of the LFSR,

where sn is of length n whose terms are s0, . . . , sn−1.

Definition 28. The Linear complexities [2] of infinite and finite sequences are

discussed below:

1. The Linear complexity L(s) of an inifinte binary sequence s is defined as

follows:

� L(s) = 0 for zero sequence.

� L(s) =∞, if no LFSR generates the sequence.



2.2 Cryptographic Background 29

� Else, L(s) is the length of the shortest LFSR which generates s.

2. The Linear complexity L(sn) of a finite binary sequence sn is defined by the

length of the shortest LFSR generating a sequence whose first n terms are sn.

Properties of linear complexity: For two binary sequences s1 and s2,

1. 0 ≤ L(sn) ≤ n, for any n ≥ 1.

2. L(sn) = 0⇔ sn is a zero sequence of length n.

3. L(sn) = n⇔ sn = 0,0, . . . ,0,1.

4. L(s) ≤ P , if s is the periodic sequence of period P .

5. L(s⊕ t) ≤ L(s)⊕L(t).

Berlekamp-Massey algorithm [2]: The linear complexity of a finite binary se-

quence sn of length n is determined by the Berlekamp-Massey algorithm. This algo-

rithm is based on the next discrepancy DN , which is defined below:

Definition 29. The next decrepancy DN is the difference between (N + 1)th term sN

of a finite binary sequence sN+1 and the (N +1)th term generated by a LFSR of length

d with connection polynomial C(x) = 1+ c1x+⋯+ cdxd which generates a subsequence

sN of the sN+1.

DN = (sN ⊕
d

∑
i=1

cisN−i)

The algorithm follows some facts due to the next decrepancy DN . Facts are given

below:

1. A LFSR of length d with connection polynomial C(x) which generates sN also

generates sN+1 ⇔DN = 0.

2. L(sN+1) = d, if DN = 0.
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3. Let DN = 1 and largest integer m < N such that L(sm) < L(sN). If a LFSR of

length L(sm) with it’s connection polynomial B(x) generates the sequence sm,

then LFSR of smallest length d
′

with connection polynomial C
′(x) generates

sN+1 such that

d
′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d, if d > N
2 ,

N + 1 − d, if d ≤ N
2 ,

and C
′(x) = C(x) +B(x)xN−m.

The Berlekamp-Massey algorithm is given below in Algorithm 1.

Algorithm 1: Berlekamp-Massey Algorithm

Input : A binary sequence sn = s0, s1,⋯, sn−1 of length n.
Output: Linear complexity L(sn) of sn, 0 ≤ L(sn) ≤ n.

1 Assign C(x)← 1, d← 0,m← −1,B(x)← 1,N ← 0;
2 while N < n do

3 Compute the next discrepancy DN where DN = (sN ⊕∑di=1 cisN−i);
4 if DN = 1 then
5 T (x)← C(x),C(x)← C(x) +B(x).xN−m;

6 if d ≤ N
2 then

7 d← N + 1 − d,m← N,B(x)← T (x);
8 end

9 end
10 N ← N + 1;

11 end
12 return d;

Example 4. Suppose sn = 0,0,1,1,0,1,1,1,0 of length n = 9. Then L(sn) = 5.

There is one fact that there exists a unique LFSR of length d generating sn, where

L(sn) = d iff d ≤ n
2 . Based on the fact, one can easily modify the Algorithm 1 by

returning both d and C(x) for a subsequence of length atleast 2d of an infinite binary

sequence s with linear complexity d. Due to that, the output sequence produced

by an LFSR can be predicted easily, although many keystream generators use LFSR

due to some good reasons. If any subsequence (of length at least 2d) of the output
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sequence s of an LFSR with linear complexity d is known, the Berlekamp-Massey

algorithm can determine the sequence s efficiently. With its connection polynomial,

the LFSR is initialized with any subsequence of length d and generates the reminder

of s. An adversary can use known-plaintext attack to get the subsequence of s as

mi ⊕ ci, 1 ≤ i ≤ 2d, where mi and ci are the plaintext and corresponding ciphertext

bits. To resist the known-plaintext attack on LFSR based system, one should not use

only LFSR as a keystream sequence generator. So linearity properties are the biggest

weakness of LFSR. Three methods are used to destroy the properties. Here is the

following:

� The outputs of several LFSRs are used in a nonlinear combining function. It is

known as Nonlinear combination generators. Geffe generator is an example

of this generator whose nonlinear combining function is f(x1, x2, x3) = x1x2 ⊕

(1⊕ x2)x3, where x1, x2, x3 are the outputs of three LFSRs.

� The content of a single LFSR is used in a nonlinear filtering function. It is known

as Nonlinear filtering generators. Knapsack generator is an example of it.

Here the nonlinear function is f(x) = ∑Li=1 xiai (mod 2L), where x = [xL,⋯, x1]

is a binary state of the LFSR at a time and ai, 1 ≤ i ≤ L are the knapsack integer

weights of the secret key.

� To control the clock of one (or more) LFSRs by using the output of other(one

or more) LFSRs. It is called Clock-controlled generators. The alternating

step generator and shrinking generator are two examples of clock-controlled

generators.

2.2.1 Design of cyptographic scheme

The state bits of the NFSR and LFSR are denoted by bi and si for the grain family,

respectively. There are two main algorithms for a Grain-like stream cipher. The

algorithms are
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1. key initialization round or key scheduling algorithm (KSA).

2. pseudo-random generation algorithm (PRGA).

We use the term key scheduling algorithm (KSA) everywhere in the thesis. The graph-

ical view of these two phases of the stream cipher Grain-v1 is provided in Figure 2.1

and Figure 2.2. Note that no LFSR bit except the LFSR bits in h function is XORed

at the time of calculating zt in the case of Grain-v1.

NFSR

g(bt)

⊕ LFSR

f(st)

⊕

h(bt, st)
/ /

⊕

/

zt

Figure 2.1: KSA of Grain Family

NFSR

g(bt)

⊕ LFSR

f(st)

h(bt, st)
/ /

⊕

/

zt

Figure 2.2: PRGA of Grain Family
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2.2.2 Design specification of Grain-v1

Grain-v1 [4] is based on an 80-bit NFSR, an 80-bit LFSR and a nonlinear filter

function. The feedback bit of LFSR (st+80) and NFSR (bt+80) are computed using the

following feedback functions.

st+80 = st+62 + st+51 + st+38 + st+23 + st+13 + st, for t ≥ 0. (2.2)

bt+80 = st + bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33 + bt+28 + bt+21 + bt+14

+bt+9 + bt + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45

+bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33

+bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37 (2.3)

+bt+33bt+28bt+21bt+15bt+9 + bt+52bt+45bt+37bt+33bt+28bt+21, for t ≥ 0.

The algebraic normal form of the nonlinear filter generator (a Boolean function)

h is

h(x0, x1, x2, x3, x4) = x1 + x4 + x0x3 + x2x3 + x3x4 +

x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4. (2.4)

The variables x0, x1, x2, x3, x4 correspond to the state bits st+3, st+25, st+46, st+64, bt+63

respectively at the t-th clock. In each round, the cipher computes one keystream bit

zt using some state bits from the NFSR and output of the nonlinear filter function.

The algebraic expression of the keystream bit at t-th round is

zt = ∑
k∈A

bt+k + h(st+3, st+25, st+46, st+64, bt+63), for t ≥ 0, (2.5)
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where A = {1,2,4,10,31,43,56}.

KSA of Grain-v1: The KSA algorithm of Grain-v1 for r rounds is described in

Algorithm 2. The value of r for the full round of Grain-v1 is 160.

Algorithm 2: KSA of Grain-v1

Input : K = (k0, k1,⋯, k79), IV = (iv0, iv1,⋯, iv63).
Output: State S = (b0,⋯, b79, s0,⋯, s79) of Grain-v1 after key scheduling

process.
1 Assign bi = ki for i = 1,⋯,79; si = ivi for i = 0,⋯,63; si = 1 for i = 64,⋯,79;
2 for r rounds do
3 Compute z = ∑k∈A bk + h(s3, s25, s46, s64, b63), for A = {1,2,4,10,31,43,56};
4 t1 = z + s62 + s51 + s38 + s23 + s13 + s0;
5 t2 = z + b80 where b80 is computed as Equation (2.3) putting t = 0;
6 bi = bi+1 and si = si+1 for i = 0,1,⋯,78;
7 s79 = t1 and b79 = t2;

8 end
9 return S = (b0, b1,⋯, b79, s0, s1,⋯, s79);

PRGA of Grain-v1: After the completion of the key scheduling phase, the cipher

starts the pseudorandom bit generation phase, where instead of fed backing to LFSR

and NFSR, the keystream bit is produced as output bit. These keystream bits are

used for encryption/decryption of plaintext/ciphertext.

2.2.3 Design specification of Grain-128

Grain-128 [30] is based on a 128-bit NFSR, a 128-bit LFSR and a nonlinear filter

function. The feedback bit of LFSR and NFSR are computed using the following

feedback functions.

st+128 = st+96 + st+81 + st+70 + st+38 + st+7 + st, for t ≥ 0. (2.6)



2.2 Cryptographic Background 35

bt+128 = st + bt+96 + bt+91 + bt+56 + bt+26 + bt + bt+3bt+67 + bt+11bt+13

+bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84

, for t ≥ 0. (2.7)

The algebraic normal form of the nonlinear filter generator (a Boolean function) h is

h(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The variables x0, x1, x2, x3, x4 correspond to the state bits b12+t, s8+t,s13+t, s20+t, b95+t,

s42+t, s60+t, s79+t, s94+t respectively at the t-th clock. In each round, the cipher computes

one keystream bit zt using some state bits from the NFSR and output of the nonlinear

filter function. The algebraic expression of the keystream bit at t-th round is

zt = st+93 +∑
k∈A

bt+k + h(b12, s8, s13, s20, b95, s42, s60, s79, s94), for t ≥ 0, (2.8)

where A = {2,15,36,45,64,73,89}.

KSA of Grain-128: KSA algorithm of Grain-128 for r rounds is described in Algo-

rithm 3. The value of r for the full round of Grain-128 is 256.

Algorithm 3: KSA of Grain-128

Input : K = (k0, k1,⋯, k127), IV = (iv0, iv1,⋯, iv95).
Output: State S = (b0,⋯, b127, s0,⋯, s127) of Grain-128 after key scheduling

process.
1 Assign bi = ki for i = 1,⋯,127; si = ivi for i = 0,⋯,95; si = 1 for i = 96,⋯,127;
2 for r rounds do
3 Compute z = ∑k∈A bk + st+93 + h(b12, s8, s13, s20, b95, s42, s60, s79, s94), for

A = {2,15,36,45,64,73,89};
4 t1 = z + s96 + s81 + s70 + s38 + s7 + s0;
5 t2 = z + b128 where b128 is computed as Equation (2.7) putting t = 0;
6 bi = bi+1 and si = si+1 for i = 0,1,⋯,126;
7 s127 = t1 and b127 = t2;

8 end
9 return S = (b0, b1,⋯, b127, s0, s1,⋯, s127);
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PRGA of Grain-128: It is same as Grain-v1.

2.2.4 Design specification of Grain-128a

Grain-128a [31] is based on an 128-bit NFSR, an 128-bit LFSR and a nonlinear filter

function. The feedback bit of LFSR and NFSR are computed using the following

feedback functions.

st+128 = st+96 + st+81 + st+70 + st+38 + st+7 + st, for t ≥ 0. (2.9)

bt+128 = st + bt+96 + bt+91 + bt+56 + bt+26 + bt + bt+3bt+67 + bt+11bt+13

+bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84

+bt+22bt+24bt+25 + bt+70bt+78bt+82 + bt+88bt+92bt+93bt+95

, for t ≥ 0. (2.10)

The algebraic normal form of the nonlinear filter generator (a Boolean function) h is

h(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The variables x0, x1, x2, x3, x4 correspond to the state bits b12+t, s8+t,s13+t, s20+t, b95+t,

s42+t, s60+t, s79+t, s94+t respectively at the t-th clock. In each round, the cipher computes

one keystream bit zt using some state bits from the NFSR and output of the nonlinear

filter function. The algebraic expression of the keystream bit at t-th round is

zt = st+93 +∑
k∈A

bt+k + h(b12, s8, s13, s20, b95, s42, s60, s79, s94), for t ≥ 0, (2.11)

where A = {2,15,36,45,64,73,89}.

KSA of Grain-128a: KSA algorithm of Grain-128a for r rounds is described in
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Algorithm 4. The value of r for the full round of Grain-128a is 256.

Algorithm 4: KSA of Grain-128a

Input : K = (k0, k1,⋯, k127), IV = (iv0, iv1,⋯, iv95).
Output: State S = (b0,⋯, b127, s0,⋯, s127) of Grain-128a after key scheduling

process.
1 Assign bi = ki for i = 1,⋯,127; si = ivi for i = 0,⋯,95; si = 1 for

i = 96,⋯,126, s127 = 0;
2 for r rounds do
3 Compute z = ∑k∈A bk + st+93 + h(b12, s8, s13, s20, b95, s42, s60, s79, s94), for

A = {2,15,36,45,64,73,89};
4 t1 = z + s96 + s81 + s70 + s38 + s7 + s0;
5 t2 = z + b128 where b128 is computed as Equation (2.10) putting t = 0;
6 bi = bi+1 and si = si+1 for i = 0,1,⋯,126;
7 s127 = t1 and b127 = t2;

8 end
9 return S = (b0, b1,⋯, b127, s0, s1,⋯, s127);

PRGA of Grain-128a: It is the similar as Grain-128. Only for authenticity part,

the keystream is taken as z64+2t, t ≥ 0.

2.2.5 Design specification of Lizard

Lizard [13] is a lightweight stream cipher of state size 121. It consists of two NFSRs

S and B of length 31,90 respectively and an output function zt which contains four

Boolean functions Lt,Qt,Tt, T̂t.
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The update function f of NFSR1 of length 31 is

S31+t = S0+t + S2+t + S5+t + S6+t + S15+t + S17+t + S18+t + S20+t + S25+t

+S8+tS18+t + S8+tS20+t + S12+tS21+t + S14+tS19+t + S17+tS21+t

+S20+tS22+t + S4+tS12+tS22+t + S4+tS19+tS22+t + S7+tS20+tS21+t

+S8+tS18+tS22+t + S20+tS21+tS22+t + S4+tS7+tS12+tS21+t

+S4+tS7+tS19+tS21+t + S4+tS12+tS21+tS22+t + S4+tS19+tS21+tS22+t

+S7+tS8+tS18+tS21+t + S7+tS8+tS20+tS21+t + S7+tS12+tS19+tS21+t

+S8+tS18+tS21+tS22+t + S8+tS20+tS21+tS22+t

+S12+tS19+tS21+tS22+t (2.12)

The update function g of NFSR2 of size 90 is

B90+t = S0+t +B0+t +B24+t +B49+t +B79+t +B84+t +B3+tB59+t +B10+tB12+t

+B15+tB16+t +B25+tB53+t +B35+tB42+t +B55+tB58+t +B60+tB74+t

+B20+tB22+tB23+t +B62+tB68+tB72+t +B77+tB80+tB81+tB83+t (2.13)

The output function of 53 bits input is

zt = Lt +Qt + Tt + T̂t (2.14)
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where

Lt = B7+t +B11+t +B30+t +B40+t +B45+t +B54+t +B71+t (2.15)

Qt = B4+tB21+t +B9+tB52+t +B18+tB37+t +B44+tB76+t (2.16)

T̂t = S23+t + S3+tS16+t + S9+tS13+tB48+t + S1+tS24+tB38+tB63+t (2.17)

Tt = B5+t +B8+tB82+t +B34+tB67+tB73+t +B2+tB28+tB41+tB65+t

+B13+tB29+tB50+tB64+tB75+t +B6+tB14+tB26+tB32+tB47+tB61+t

+B1+tB19+tB27+tB43+tB57+tB66+tB78+t (2.18)

The state initialization of Lizard is performed in four phases as following.

Phase-1(Key and IV loading): Let K = (K0,⋯,K119) and IV = (IV0,⋯, IV63).

Then

B0
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Kj + IVj, 0 ≤ j ≤ 63

Kj 64 ≤ j ≤ 89

S0
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kj+90, 0 ≤ j ≤ 28

K119 + 1, j = 29

1, j = 30.

Phase-2(Grain-like mixing): For 1 ≤ t ≤ 128, the output bit zt is fed back into

both NFSRs by adding with the feedback bits of them.

Phase-3(Second key addition): Key bits are mixed with the states again as

B129
j = B128

j +Kj, 0 ≤ j ≤ 89

S129
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S128
j +Kj+90, 0 ≤ j ≤ 29

1, j = 30.
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Phase-4(Final diffusion): This phase is similar to Phase-2 except that zt is not

fed back to both NFSRs. Both NFSRs are run up to 128 rounds. After that the

keystream bit is produced.

2.3 Cryptanalysis techniques

In this section, we present some basic and vital cryptanalysis techniques used to

analyse stream ciphers. We expect that the reader will gain basic knowledge on

cryptanalysis and will not face problems following our proposals to investigate the

stream ciphers. We use these techniques to analyse the stream ciphers.

2.3.1 Tools for cryptanalysis

2.3.1.1 Random polynomial function

The outputs of a stream cipher need to behave like the outputs of a random polyno-

mial. Further, the random polynomial is required to study cube attack, differential

attack, etc., on stream ciphers. We define the random polynomial [32] as below.

Definition 30. A random polynomial of degree d in n +m variables is a multi-

variate polynomial f such that each possible term of degree at most d is independently

chosen to occur with probability 0.5.

Further, a d-random polynomial in n +m variables is a multivariate polynomial

such that each possible term of degree d (contains one secret and d−1 public variables)

is independently chosen to occur with probability 0.5 and the remaining terms can be

chosen arbitrarily.

2.3.1.2 Birthday problem

This problem is exciting from a cryptanalytic perspective, and mainly it is used to

find out the collision between two points. Assume that there are N independent and



2.3 Cryptanalysis techniques 41

identically distributed random variables X0, . . . ,XN−1. Each Xi is drawn uniformly

from the alphabet χ = {0,1, . . . , n−1}. The probability that at least two of the random

variables have the same value, is 1 −∏N−1
i=0 (1 − i

n) ≈ 1 − e−N
2

2n . The name comes from

the fact that if 23 people are present in a room, the chance that at least two persons

share a birthday exceeds 50%. Further, a group of 70 people has a 99.9% chance of a

shared birthday, while a group of 367 people is required to have a 100% chance of a

shared birthday (pigeonhole principle).

2.3.1.3 Sample complexity for distinguishing attack

To distinguish the output of a Boolean function from a random sequence, we need to

verify the deviation of a property of the Boolean function from a random function.

Since the functions have a large domain, it is not computationally possible to verify for

every input. Therefore, the cryptanalysts make use of statistics with a high confidence.

It is necessary to use a sufficient number of samples to distinguish the distribution

Y (from cipher) from the distribution X (from random source) for a high confidence

level. Let the observation be that an event E happens in X and Y with probabilities

p and p(1 + q) respectively. The number of required samples is O( 1
pq2 ) to confirm

the distribution of Y with high confidence [33]. The confidence level (i.e., the success

probability) can be increased by taking higher multiples of 1
pq2 . The success probability

is approximately 69% for 1
pq2 samples and it is increased to more than 99.9% for 39

pq2

samples [34]. For instant, p = 1
2 and q = 1

2u , the component of complexity is O(22u+1).

Further in case of cube tester, one needs 2c data to cover all assignments of the cube

variables, where c is the dimension of the cube. Hence, the sample complexity for this

attack would be O(2c+2u+1) for a cube distinguiher.

2.3.2 Differential Attack

The motivation of this attack [35] comes from the fact that the adversary imposes

differences to some state bits of the output function at the initialization round such
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that the derivative functions (Definition 31) behave nonrandomly at higher initializa-

tion rounds. In general, the cryptanalysts impose differences to some state bits such

that the derivative functions are zero for the first few initialization rounds, and then

the nonrandomness propagates to higher rounds. Then distinguishing the derivative

at higher rounds from a random function results that the output function can be

distinguished from a random one at that round.

Definition 31. The derivatives of a Boolean function is defined below:

� The derivative of a Boolean function f ∶ Fn2 → F2 with respect to a ∈ Fn2 is defined

by ∆af(x) = f(x⊕ a) + f(x). It is also a Boolean function.

� If σ = {a1, ..., ai} be a set of vectors in Fn2 and L(σ) be the set of all 2i linear

combinations of elements in σ. The ith derivative of f w.r.t σ is defined by

∆
(i)
σ f(x) = ∑c∈L(σ) f(x⊕c). So it can be evaluated by summing up 2i evaluations

of f .

Note 1. We always assume that a1, ..., ai are linearly independent else ∆
(i)
σ f(x) = 0.

For keyed Boolean function, differences are applied to the IVs, not to the keys.

Frequency test for random Boolean function : Let f be a random Boolean

function on a set D ⊂ Fn2 . Then central limit theorem (Theorem 6) says that for

sufficiently many inputs x1, . . . , xs, t = ∑si=1 f(xi)−
s
2√

s
4

∼ N (0,1), where CDF is φ(x) =

1√
2π ∫

x

−∞ e
−u2

2 du. Then f is said to pass the frequency test on x1, . . . , xs at a significance

level α, if φ(t) < 1 − α
2 . So f passes the frequency test with probability 1 − α. Let β

be the probability to pass the frequency test for a random key k of a keyed Boolean

function f(k, .), then the advantage to distinguish the keyed Boolean function from a

random Boolean function is 1 − α − β.

The differential attack is done using following steps:

� First adversary finds a suitable set of difference vector σ on IV bits of a keyed

Boolean function f(k, .) such that the derivatives of the function are zero for

first few (as much as possible) rounds (i.e., ∆i
σf(k, .) = 0, for all/ some i).



2.3 Cryptanalysis techniques 43

� The derivatives ∆i
σf(k, .) are calculated for larger number of rounds.

� The statistical tests such as frequency test are used to distinguish ∆i
σf(k, .)

from random Boolean function. Note that, there may exist some statistical

tests where ∆i
σf(k, .) can’t be distinguished but it may be distinguished by

other statistical tests.

2.3.3 Cube attack

The primary motivation of this attack is to find out the values of the variables

k1, . . . , kn of a multivariate polynomial f(k1, . . . , kn, v1, . . . , vm) without knowing its

ANF, where K = (k1, . . . , kn) is an n-bit secret key and IV = (v1, . . . , vm) is an m-

bit IV. The adversary is provided a black box to query the unknown polynomial

f(k1, . . . , kn, v1, . . . , vm) over F2 for different secret keys and fixed IV. The black box

returns a single output for each secret key. Some definitions and a theorem related to

the attack are presented next before describing the attack.

Cube and its superpoly: Let f ∈ Bn for a positive integer n. For any I =

{i1, i2, . . . , ic} ⊊ {1,2, . . . , n}, the monomial tI and the subset of variables CI are de-

noted by

tI = xi1xi2⋯xic and CI = {xi1 , xi2 , . . . , xic}

respectively. Then f can be expressed as

f(x1, x2, . . . , xn) =tIps(I)(y1, y2, . . . , yn−c) + q(x1, x2, . . . , xn), (2.19)

where {y1, y2, . . . , yn−c} = {x1, x2, . . . , xn}∖CI and no monomial of q is divisible by tI .

Here, ps(I) is a function in variables y1, y2, . . . , yn−c. Then adding the outputs of f at

all possible 2c assignments of the variables in the set CI , we have

⊕
{xi1 ,...,xic}∈F

c
2

f(x1, x2, . . . , xn) = ps(I)(y1, y2, . . . , yn−c). (2.20)
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Here CI is called a cube of dimension c or a c-dimensional cube and ps(I) is called

the superpoly of the cube. The polynomial f(x1, x2, . . . , xn) is called the master

polynomial.

Definition 32. A maxterm of f is a term tI such that deg(ps(I)) = 1, i.e., ps(I) is a

non-constant linear polynomial.

Theorem 7. Let tI be a maxterm in a black box polynomial f [32]. Then

1. The free term in ps(I) can be determined by XORing the values of f over n

variables which are zero except the ic variables in CI .

2. The coefficient of yj in ps(I) is determined by XORing the values of f over n

variables which are zero except the ic variables in CI and yj, which is set to the

value one.

Dinur et. al. [32] first proposed a cube attack. The attack is implemented in two

phases.

� The preprocessing phase: In this phase, sufficiently many maxterms are

computed by using the probabilistic linearity test, which is used to check that

the superpolies are linear or not. Then the ANF of the linear superpoly for each

maxterm is calculated by finding the coefficients of the secret variables using

Theorem 7. Next, the online phase is followed.

� Online phase: In this phase, the key is fixed and the IV variables which are not

involved in the maxterms are set to constant values (the same values set in the

preprocessing phase). Then the values of the superpolies of the corresponding

maxterms are calculated by querying the black box. Finally, one gets a system

of linear equations over secret variables. By solving the system of equations,

one can recover the key bits.
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Another popular form of the cube attack is Cube tester. Aumasson et al. [36] first

introduced the cube tester technique to distinguish a family of functions from the

random functions by testing some properties of their superpolies. The superpoly can

be distinguished based on a property of random polynomial (See subsection 2.3.1.1),

i.e., balancedness, non-constantness, high degree and uniformity of presence of a par-

ticular monomial, linear variables, and neutral variables, etc. A few of the popular

tests are discussed below:

1. Balancedness test: The probability of the occurrence of the output value 1

of a random Boolean function is 1
2 . After choosing a cube from the variables

representing IVs, the superpoly ps(I), is a Boolean function on key bits and

remaining IV bits. Denote the variable representing the whole key by K and the

remaining IV by IV . Hence, for a random function f , the probability of ps(I) = 1

is 1
2 for every assignment of (K,IV ). If there is a cube for the output function

used in a stream cipher such that the superpoly deviates from this probability,

then the stream cipher can be distinguished from the random Boolean function.

2. Constantness test: The constantness test is a kind of balancedness test where

ps(I) is checked for its constantness, i.e., the value of ps(I) is always 1 or 0 for

every input. This attack is known as the one-sum or zero-sum distinguisher,

respectively.

3. Presence of linear variables: In this case, one can check whether any variable

yj is linear in the ps(I). The test is done in the following way for the variable y1:

� Pick a random assignment of (y2, . . . , yn−c).

� If ps(I)(0, y2, . . . , yn−c) = ps(I)(1, y2, . . . , yn−c), then it returns y1 as non-

linear.

� Repeat the above steps for N times.

� Finally, it returns y1 as linear in ps(I).
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This test results correctly with a probability of about 1−2−N in a time complexity

N.2c.

4. Presence of neutral variables: In this case, one can check whether any

variable yj is neutral in the ps(I). The test is done in the following way for y1:

� Pick a random assignment of (y2, . . . , yn−c).

� If ps(I)(0, y2, . . . , yn−c) ≠ ps(I)(1, y2, . . . , yn−c), it returns y1 as not neutral.

� Repeat the above steps for N times.

� Finally, it returns y1 as neutral variable in ps(I).

This test results correctly with a probability of about 1−2−N in time complexity

N.2c.

To check the balancedness, constantness or any property of the superpoly ps(I),

one has to evaluate ps(I) for all assignments of (K,IV ), i.e., the whole domain of the

Boolean function ps(I). In general, the domain of ps(I) is so large that the evaluation

for all assignments from the domain is not practical. In that case, a large number of

random assignments from the domain, i.e., (K,IV ) samples, need to be evaluated for

a probabilistic version of the test with a high confidence level (see paragraph 2.3.1.3).

2.3.4 Time memory data trade-off(TMDTO) attack

The motivation of this attack [37] comes from the two types of elemental attacks to

find the encryption keys of a cipher. Consider that the keyspace contains N keys.

� Exhaustive search: It is a known-plaintext attack. Given a plaintext and cor-

responding ciphertext, the adversary tries to find the encryption key by encrypt-

ing the plaintext using each key from the keyspace until he gets the ciphertext.

The process requires at most N encryption operations to find the encryption

key. It may not be possible to search for all keys in the keyspace as N is very
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large. If t number of searching operations is performed to find the encryption

key, then the success probability is t
N .

� Table look-up: It is a chosen-plaintext attack. A preprocessing table is pre-

pared to store the pairs of keys and the ciphertext of the chosen plaintext using

the key. The pairs in the table are sorted as per the ciphertexts. During the

online phase, given a ciphertext of the chosen plaintext, the adversary searches

in the table to find the pair containing the ciphertext. Hence, he finds the en-

cryption key. Hence, O(log2N) operations are required to find the encryption

key by binary search. If m pairs of key and ciphertext are stored in the table,

then the success probability is m
N .

The TMDTO attack is a combination of exhaustive search and table look-up at-

tacks. In an exhaustive search, the memory requirement is negligible as no prepro-

cessing is required, and the time complexity is O(N). In table look-up, the memory

requirement is O(N) in the preprocessing phase, and the time complexity of the on-

line phase is O(log2N). The TMDTO attack is used to invert a one-way function by

trading off the time (T ) and memory (M). The attack is processed in two phases as

follows.

Preprocessing phase: In this phase, preprocessing tables are prepared to cover

the whole space of state bits. The table can not cover the whole space as there is a

large amount of repetition of states due to the collisions. To avoid collisions, t tables

of size m × t (each one is generated from different functions) which satisfy mt2 = N

are made to cover the whole state space except a few. Only the start and end points

of each row in each table are stored to save memory. So the required memory is

M =mt. Since N points are covered, the preprocessing time is P = N . The keystream

bits are independent of the plaintext in the case of stream ciphers. Babbage [38] and

Golić [39] took advantage of keystream bits (i.e., data D) to involve in the trade-off

curve to reduce the time and memory costs. In this technique, a single m × t table

(which satisfies mt = N) was proposed to cover the whole space of states. The table
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can not cover the whole space as there is a large amount of repetition of states due to

the collisions. The total M randomly chosen points xi (internal states) are covered by

calculating yi = f(xi). In this case, the required memory is M . The attack is known

as the BG-TMDTO attack. Since it covers M points in the table, the preprocessing

time P = M . Later, Biryukov and Shamir [40] extended the BG-TMDTO attack to

stream cipher by utilizing multiple data points, known as BS-TMDTO. Due to the

involvement of the data D, the number of tables is reduced to t
D . As a result, the

memory requirement is M = mt
D and the preprocessing time is P = N

D .

Online phase: In this phase, the adversary tries to match the challenge ciphertext

with an end point in the preprocessing table. If it matches with an end point, then

he tries to verify that there is more than one pre-image or not. To verify the pre-

image or the challenge ciphertext not matching with any end points, one tries to

find the endpoints by enciphering the challenge ciphertext and again using the same

procedure. For a given ciphertext y, it searches in t tables for a match. If a match is

not found, then f i(y), i ≤ t − 1 is calculated until the point is found in any t tables.

Hence, the time complexity is T = t2 and the success probability P (S) = mt
N . In case

of BG TMDTO attack, for a given D+s−1 keystream bits c1, ..., cD+s−1, D many s-bit

state values y1, ..., yD, are generated, where yi = ci, ..., cs+i−1. Each yi is searched in the

table until a match is found. In this case, the time complexity T =D. If the point yi

is found, the corresponding xi is the recovered plaintext, and the corresponding key

is recovered.

Different TMDTO curves:

� Hellman Tradeoff Curve: TM2 = t2.m2t2 = N2. Here t ≤
√
N , else T > N ,

as a result, the attack is slower than exhaustive search. So 1 ≤ T ≤ N and
√
N ≤M ≤ N .

� BG Tradeoff Curve: TP = DM = N . So 1 ≤ T ≤ D. By Birthday para-

dox (Subsection 2.3.1.2), if DM = N , then at least one of the yi is found in the

table with significant probability.
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� BS Tradeoff Curve: TM2D2 = t2.(mtD )2.D2 = N2. This relation is true if t ≥D

i.e. T ≥ D2. So D2 ≤ T ≤ N . Here, the number of table look-ups is t. tD = t2

D

for each of D points. So total number of table look ups is t2 and the number of

disk operations is t2.





Chapter 3

Conditional Differential Attacks on

Grain-v1 of Reduced KSA Rounds

3.1 Motivation

The differential attack [Subsection 2.3.2] plays a crucial role in the cryptanalysis of

stream ciphers. This attack can be more effective if some conditions on state bits

of the cipher are imposed to vanish the keystream bit difference for the first few

rounds. Then this attack is considered as conditional differential cryptanalysis, which

is discussed in Section 3.2. This attack is applied on Grain-v1 of reduced KSA rounds

to distinguish the first keystream bit of the cipher from a random one. All the existing

conditional differential cryptanalysis on Grain-v1 is based on the difference vector of

weight one, known as the dynamic cube attack of dimension one. For the first time,

we successfully used a difference vector of weight two on the initialization vector (IV)

to improve the distinguishing round of Grain-v1.
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3.1.1 Our Contributions

In the existing articles [17, 41–43], the authors considered a single bit difference in IV.

In the case of a higher number of bit differences in IV is more complicated in handling

several conditions. For the first time, we present certain distinguishers for the higher

initialization rounds of Grain-v1 with two bits difference in the IV.

� The first distinguisher can distinguish Grain-v1 with 112 KSA rounds from a

random source almost certainly (with a success rate approximately 99%).

� The second distinguisher can distinguish Grain-v1 with 114 KSA rounds from a

random source with a success rate approximately 73% for 278 weak keys, which

is one-fourth of the full keyspace.

� Further, this distinguisher has been extended to 116 KSA rounds with the one-

bit difference in the key and four-bit differences in the IV. Here we obtain a

successful result in 62% cases for 275 related keys.

The second and third distinguishers are designed by extending the idea of the first

technique going backward direction from the initial state. As a result, the last two

distinguishers fall in a weak/related key setup. The comparisons of our result with

the previous attacks are presented in Table 3.1 and Table 3.2.

3.1.2 Organisation

The remaining part of this chapter is divided into six parts. Section 3.2 discusses the

conditional differential attack on any NFSR based stream cipher. The previous such

types of attacks on Grain-v1 are discussed in Section 3.3. We discuss our contributions

in Section 3.4 and 3.5. The comparison of our attack with other similar kinds of attacks

is discussed in Section 3.6. At last, we conclude this chapter in Section 3.7.
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Table 3.1: Comparison Table ( In single key model )

Reference R #Key #Type I,II, #Queries ∣K∣ Success
III conditions rate

Knellwolf 97 1024 33,5,0 231 280 83%
et al. [17] 104 1024 25,5,0 239 280 58%
Banik [41] 105 1000 25,6,0 239−n1* 280 92%
Sarkar [42] 106 1000 34,6,0 230 280 63%

Ma et al. [43]
104 1024 14,15,0 240 280 97%
107 64 12,12,0 242** 280 99%
110 NA 17,15,0 247 280 NA

Our work 112 2048 29,7,0 235 280 99%

Table 3.2: Comparison Table ( In weak, related key model )

Reference R #Key #Type I,II, #Queries ∣K∣ Key Success
III conditions model rate

Watanabe 114 128 23,1,39 232 240 Weak NA
et al. [44]

Our work
114 2048 30,7,2 234 278 Weak 73%
116 4096 36,7,5 228 275 Related� 62%

R: Number of KSA rounds.
#Key: Number of random keys used in the experiment. The higher number
of keys confirms the success probability better.
#Queries: Number of queries used for each random key.
∣K∣: Size of the key space where distinguisher gets success.
*: b1 ≤ 5 is the extra Type I conditions for faster implementation.
**: Only for the difference e63.
�: Two related keys differ only at one place. Existing works are based on

more number of key bit differences.
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3.2 Conditional differential attack on NFSR based

stream cipher

In this kind of cryptanalysis, a distinguisher is designed to distinguish the first

keystream bit of the cipher from a uniform random source. The differential cryptanal-

ysis technique works by placing certain conditions on the initialization vector (IV )

and the key (K) bits. For the Grain family, such an idea was initiated by Knellwolf

et al. [17].

The general framework of NFSR based stream ciphers contains a state of m bits

such that m > n + l, where n, l are the lengths of the key and the initialization vector

respectively. Let us denote the initial state as S0 = (s0, s1,⋯, sm−1) ∈ IFm2 . In every

round, the state Si = (si, si+1,⋯, si+m−1) ∈ IFm2 , i ≥ 0, is updated by a nonlinear feedback

shift register following a recursive formula as Si+1 = (si+1, si+2,⋯, si+m−1, si+m), where

si+m = g(Si) a nonlinear function on the state bits. After performing the nonlinear

evolution for a certain number of rounds, the cipher generates its first keystream bit

z. Therefore, the first output bit z of the cipher can be represented as the output

of a keyed Boolean function f ∶ IFn2 × IFl2 ↦ IF2, where the first n bits correspond to

the secret key K and the following l bits relate to the initialization vector, that is,

z = f(K,IV ).

For a fixed secret key K, we define the Boolean function fK ∶ IFl2 ↦ IF2 as fK(x) =

f(K,x). Further, for a difference vector a ∈ IFl2 on the public parameter IV, we define

the difference function ∆afK(x) = fK(x)+ fK(x+ a). If one runs two instances of the

cipher with the same key K and the IVs with difference a ∈ IFl2, then the nonlinear

differences get added in the feedback bits in every round. That is, in every round, the

difference starts affecting the state bits nonlinearly by adding the nonlinear differences

in the feedback bits. It might be possible for the attacker to control the spread of

differences by putting some conditions on the state bits involved in the nonlinear
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function in a particular round. Then going back recursively, the conditions can be

represented on the initial state bits. As per the involvement of the type of initial state

bits, the conditions are classified as follows.

◻ Type I: Conditions involving only the bits of IV .

◻ Type II: Conditions involving the bits of both K and IV (but it may exploit

without any information on the key bits).

◻ Type III: Conditions involving only the bits of K.

The Type I conditions put a restriction on the choice of the initialization vectors,

which the attacker can easily achieve. On the other hand, the attacker can not do

anything in the case of Type III conditions as the involved bits remain secret for the

attacker. However, fixing certain secret key bits, the cryptanalyst can point out a

subset of weak keys for which the attack can be implemented. In the case of Type

II conditions, since some secret key bits are expressed as some bits of the IV bits;

these conditions might be exploited without the knowledge of the secret key bits and

consequently, that may help to expose some secret bits.

If the function f is truly random, then the Boolean function ∆afK should behave

like a random function in every sub-domain (i.e., subset) of the domain IFl2. To control

the spreading of the difference by imposing the conditions on IV and K, the domain of

the IV and secret key K is shrunk. Therefore, the spreading of difference is controlled

in this sub-domain, and some bias is expected in the output of the difference function

∆afK in this sub-domain. Since the statistical test needs to be performed to find

the bias in ∆afK , the number of imposed conditions needs to be optimized such that

the number of sample inputs should support the theoretical bound for the statistical

test. Therefore, the cryptanalyst attempts to optimize the following parameters while

presenting an improvement on such attack:

1. Maximization of the number of KSA rounds;
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2. Maximization of the success rate;

3. Maximization of the space of initialization vectors (i.e., minimization of the Type

I and Type II conditions);

4. Maximization of the effective keyspace (i.e., minimization of the Type III condi-

tions);

5. Minimization of the number of queries to the oracle (stream cipher) (i.e., min-

imization of the Type II conditions); for x many IV-bits related to the Type II

conditions, we need to query with 2x many IVs, and one may like to minimize

this.

3.2.1 A randomness test of the difference function ∆afK

In this section, we use a statistical method of testing the randomness of the difference

function ∆afK . This concept was also followed in [17, 42]. If the Boolean function

∆afK ∶ IFl2 ↦ IF2 is a random Boolean function then the output of ∆afK is randomly

distributed for any non-empty subset S of IFl2. Hence, it follows from the central

limit theorem that, for a sufficiently large many inputs xi ∈ S = {x1, x2,⋯, xN}, the

probability density function of the random variable,

X = ∑
xi∈S

∆afK(xi),

approximately follows the normal distribution N (µ,σ), i.e.,

φ(x∣µ,σ) = 1√
2πσ

e−
(x−µ)2

2σ2 ,

where the µ and σ are the mean and standard deviation of the distribution of X.

Let b ∈ IF2 be a fixed value. Then, for a random Boolean function ∆afK with given
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Pr[∆afK(x) = b] ≥ 1
2 , the expectation of (Pr[∆afK(x) = b] − 1

2) is

1√
2πσ
∫

N

µ
e−
(x−µ)2

2σ2 ( x
N

− 1

2
) dx.

In our case, the mean µ = N
2 and standard deviation σ =

√
N
2 . Hence, solving the

integration, we have the required expectation

E = 1√
8πN

. (3.1)

If this experiment is done for m number of times then the sum

∑
Pr[∆afK(x)=b]≥ 1

2

(Pr[∆afK(x) = b] − 1

2
)

is expected to be around mE . For a specific stream cipher, if the value of the sum is

deviated from mE (i.e., either bigger or smaller than mE) for a large percentage of

keys K, then it allows to distinguish the stream cipher from a uniform random source.

Now we present the distinguishing technique on Grain-v1.

In the case of Grain-v1, the length of key is n = 80 and the length of IV is

l = 64. Consider there are t1, t2 and t3 many Type I, Type II and Type III conditions

respectively. As per the involvement of state bits in Type I and Type III conditions, t1

and t3 many bits in the IV and the key K need to be fixed respectively. In the case of

the Type II conditions, t2 many IV bits are dependent on some key bits and IV bits.

Each assignment of t2 many IV bits provides each group where we need to check the

bias. Let denote the assignments for t2 many IV bits as Ai,0 ≤ i ≤ 2t2 − 1 with some

order. One of the 2t2 many assignments for t2 many IV bits must satisfy the Type

II conditions. As the key bits are secret, the correct assignment is not known to the

observer.

For each assignment Ai, Grain-v1 has the domain of IV of size 264−t1−t2 . For all the

assignments corresponding to Type II conditions, it is expected that the keystream bit
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z will be produced with some bias. That is, for certain b ∈ IF2, we expect a deviation on

the (Pr[∆z = b]− 1
2). Hence, for a random key and b ∈ IF2, we calculate the probability

pi = Pr[∆z = b] for each assignment Ai,0 ≤ i ≤ 2t2 − 1. As each pi (0 ≤ i ≤ 2t2 − 1)

might be very close to 0.5, we calculate W = ∑
0≤i≤2t2−1,pi≥ 1

2

(pi −
1

2
).

If it is found that W is either greater than or lesser than 2t2E for a large per-

centage out of the randomly chosen keys, then we can claim that the cipher output

is not pseudorandom. In that event, it is possible to distinguish Grain-v1 from a

random source. We summarize this in Algorithm 5. This technique has earlier been

exploited in [42]. We too, follow this method to design the distinguishers on Grain-v1

in Sections 3.4 and 3.5.

3.3 Existing conditional differential attacks

In this subsection, we briefly present the existing works on the conditional differential

attack on Grain-v1. All these works are based on a single bit difference (i.e., wt(a) = 1)

on the initialization vector IV , also known as a one-dimensional cube attack. In

the case of Grain-v1, the key length n = 80 and the IV length l = 64. Let denote

ei ∈ IF64
2 ,0 ≤ i ≤ 63 is the unit binary vector where the i-th position from left in ei is 1

and other positions are 0.

In 2010, Knellwolf et al. [17] proposed the conditional differential attack with one

bit difference in IV of Grain-v1 with 97 KSA rounds. The difference vector a was

chosen as e37, i.e., they selected two initialization vectors as IV = (iv0,⋯, iv37,⋯, iv63)

and ĨV = (iv0,⋯,1+iv37,⋯, iv63) for the difference. Let zi and z̃i be the i-th keystream

bits with initialization vectors IV and ĨV respectively and ∆zi = zi + z̃i be the differ-

ence between them. To control the initial spread of the differences in the state, they

imposed certain conditions on the bits of IV to make ∆z12 = 0,∆z34 = 0, ∆z40 = 0

and ∆z46 = 0. With such conditions, non-randomness has been observed at 97-th

round. In the same paper, they extended the result to 104 KSA rounds with single
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Algorithm 5: Distinguisher for the first keystream bit of Grain-v1 with r
KSA rounds.

Input : Round r, Difference vector ea, Type I (t1 many), Type II (t2 many)
conditions.

Output: Pseudorandom or Not pseudorandom.
1 Initialize count = 0;
2 One random key K is generated first;
3 An attacker A is given access to the keystream bit zr generated from

Grain-v1 with r KSA rounds;
4 for each possibilities of free IV bits do
5 Consider all possible 2t2 many IVs corresponding to each 0/1 values for IV

bits, which are involved in Type II conditions;
6 For each of the above IVs consider a bucket Bi, i = 0, . . . ,2t2 − 1;

7 Construct IV and ĨV = IV + ea, satisfy Type I conditions;
8 Oracle outputs zr and z̃r for each 2t2 many IVs. Here zr, z̃r are generated

by using IV and ĨV respectively;
9 Put zr + z̃r in to their respective buckets Bi.;

10 end
11 A computes the probability pi = Pr[zr ≠ z̃r], for each bucket Bi;
12 A computes W = ∑

0≤i≤2t2−1,pi> 1
2

(pi −
1

2
);

13 if W > 2t2 ⋅ E then
14 count + + ;
15 end
16 Repeat the process from 2 to 15 for N many random keys K (N is large);
17 if count

N differs significantly from 1
2 then

18 D ← Not pseudorandom ;
19 end
20 else
21 D ← Pseudorandom ;
22 end
23 return D
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bit difference in IV.

In 2014, Banik [41] chose the difference vector a = e61 and improved the result till

105 KSA rounds. The author imposed some conditions on the bits of IV to make

∆z15 = ∆z36 = ∆z39 = ∆z42 = 0. Having the IV ’s with the imposed conditions, non-

randomness in the first keystream bit of Grain-v1 with 105 KSA rounds could be

observed.

In 2015, Sarkar [42] improved the number of rounds to 106 by taking the difference

vector a = e62. This could be achieved by finding the conditions on the IV bits by

making ∆z16 = ∆z34 = ∆z37 = ∆z40 = 0. The distinguisher could distinguish Grain-v1

with 106 KSA rounds from a random source with a success rate approximately 63%.

In 2016, Ma et al. [43] proposed conditional differential attack on Grain-v1 with

107 KSA rounds. For 107 rounds, they chose three different difference vectors e34,

e60 and e63. For the difference vector a = e63 they imposed conditions on the IV

bits to make ∆z17 = ∆z35 = ∆z38 = ∆z41 = ∆z46 = 0. With these conditions, they

observed bias at the first keystream bit of Grain-v1 with 107 KSA rounds. Similarly

for e34, e60 they imposed several conditions and observed the presence of bias in

the first keystream bit of Grain-v1 with 107 KSA rounds. In the same paper, they

extended the conditional differential attack on Grain-v1 with 110 KSA rounds by

choosing the difference vector a = e37. They imposed conditions on the IV bits to

make ∆z12 = ∆z34 = ∆z40 = ∆z46 = ∆z48 = 0. The authors have observed bias in the

first keystream bit of Grain-v1 with 110 KSA rounds with these conditions. As these

are experimental biases, the exact number of samples needs to be described. While

this is clear in the case for 107 rounds [43, Table 4], the number of secret key used in

the case of 110 rounds [43, Table 5] is not provided.

In the same year, Watanabe et al. [44] proposed a conditional differential attack on

Grain-v1 with 114 KSA rounds. In this work, the authors imposed some conditions on

IV bits as well as on secret key bits. Since conditions are applied on 39 secret key bits,

the attack is restricted to a subset of keyspace of size 240 whereas the size of keyspace
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is 280. If the unknown secret key K is from the set of (280 − 240) many keys, then

their attacker will not be able to distinguish Grain-v1 from a random source. Further,

the domain of weak keyspace (i.e., of size 240) is immediately prone to exhaustive key

search attack, and thus this result does not look significant.

The comparison of the existing attacks and our present work is presented in the

Table 3.1 and Table 3.2. However, one may immediately note that all the existing

works in this direction are based on the difference vector of weight 1, i.e., the one-bit

difference in the IV bits. In each case, the number of rounds is improved irrespective of

the improvement distinguishing success chance, the dimension of IV space, keyspace,

and query space. The dimension of IV space is equal to (64- the number of Type I

and Type II conditions) and the dimension of keyspace is equal to (80 - the number

of Type III conditions). Further, the dimension of the query space is proportional to

(the number of Type II conditions+1) as in each case; we need to run the cipher with

the same key and two different IVs.

Further, there are several other cryptanalytic results [44–54] available in the literature

on Grain-v1 and other variants of Grain family.

3.4 Distinguisher for 112 KSA round of Grain-v1

The non-randomness in the first keystream bit of Grain-v1 with 97,104,105,106 and

110 KSA rounds have been observed in [17, 41–43]. Further, the same is done for 114

KSA rounds in the weak key set up of keyspace size 240 in [44]. These works exploited

the transmission of bias from a single bit difference in the initialization vector IV. In

the current situation, improving result using a single bit difference seems exhaustive.

Hence, working on a single bit difference in a similar direction seems difficult for higher

rounds as it needs a powerful computer to study the equations generated at higher

rounds.

Further working on multiple difference vectors, in general it spreads more differ-
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ences into the state as there are multiple numbers of non zero positions in multiple

bit difference vectors. Henceforth, it creates more situations when ∆zt ≠ 0 and gener-

ates complicated equations at lower rounds. As a result, it becomes more difficult to

analyze for the higher round. In contrast, there could be some difference vectors of

multiple weight where the difference generated due to the different non-zero positions

cancel each other to result in ∆zt = 0. Hence, if such a difference vector is chosen,

then the attacker can make ∆zt = 0 for higher rounds and go for attacking for higher

rounds.

In our work, we have improved the number of KSA rounds by imposing a two bit

difference in the IV, i.e., by using a difference vector of weight two. Let denote the

vector ei,j ∈ IF64
2 ,0 ≤ i < j ≤ 63 such that ei,j = ei + ej. For our work, we choose the

difference vector e20,45 of weight two from (64
2
) = 2016 possibilities. The reason for

choosing the specific difference vector e20,45 is described in Remark 1.

Remark 1. For each of 2016 possible difference vectors ei,j of weight two, we exper-

imentally checked the probability of the difference ∆zt = zt + z̃t at the output of every

round t,0 ≤ t ≤ 41, for a large number of random key, IV pairs. Hence for each ei,j,

there are disjoint partitions S1, S2 and S3 of the set {0,1,⋯,41} such that zt = 0 for

t ∈ S1, zt = 1 for t ∈ S2 and zt is a non-constant function of K,IV for t ∈ S3. For a

chosen ei,j, we take action for these three different situations as following.

� When t ∈ S1: Since zt = 0, there is no addition of difference in the state from zt.

We need not to do anything in this situation.

� When t ∈ S2: Since zt = 1 (constant function), it is not possible to put any

condition on state bits to stop the propagation of difference into the state. Hence,

we prefer to choose such ei,j where ∣S2∣ = 0.

� When t ∈ S3: Since zt is a non-constant function of IV and K, it is possible

to put conditions on the bits of IV and/or K such that zt = 0. As per the

involvement of bits of IV and K, the conditions are classified as Type I, Type II
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and Type III. Hence we need to choose such ei,j’s such that the size of set S3 is

minimized, which possibly give a minimized set of conditions.

From the initial rounds (i.e., 0 ≤ t ≤ 41), we need to find the set S2 ∪ S3 containing a

few elements. For further refining, our aim is to choose ei,j such that ∣S2∣ = 0 and S3

is a minimized set. We experimentally checked for each possible ei,j for a large set of

random K,IV pairs. The experimental result shows that the vectors e20,45, e23,61, e38,62

are having minimized set S2 ∪ S3. Further, our distinguisher gives best success rate

for the difference vector e20,45. Hence, we choose e20,45 as the difference vector for the

distinguisher.

For the difference vector e20,45, the difference probabilities Pr[∆zt = 0] are nonzero

for t = 17,20,36,37,38. Therefore, our aim is to find a set of conditions on IV and key

bits such that the restriction ∆z17 = ∆z20 = ∆z36 = ∆z37 = ∆z38 = 0 is satisfied. The

reason towards choosing the restrictions on ∆z17,∆z20, ∆z36,∆z37,∆z38 is as followed.

Let two instances of the cipher be initialized with IV and ĨV = IV + e20,45. The

states at t-th round are St and S̃t respectively. Denote ∆St = St + S̃t, t ≥ 0. The states

S0 and S̃0 at the zero-th round differ exactly at two places with probability 1. As the

number of rounds increases in the KSA, the number of difference positions increases

with a complicated probability distribution. Our goal is to minimize the differences

for maximum possible KSA rounds by imposing specific conditions on the bit values

in IV .

In the KSA, the keystream bit zt involves the feedback bits from both the LFSR

and the NFSR. The main reason for the transmission of difference into the state bits

is the injection of the difference in zt via these feedback bits. We denote the t-th

keystream bits of the cipher with initial state S0 and S̃0 by zt and z̃t respectively.

Since there are differences in the two bits of the initial states, the keystream bits

(zt and z̃t) start differing after a certain number of rounds t. The difference of the

keystream bits ∆zt = zt + z̃t is a function of the bits of key K and initialization vector

IV . The algebraic expression of the function becomes more complicated as the number
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of rounds increase. We use SAGE [55] to compute the algebraic expressions of the

function ∆zt for 0 ≤ t ≤ 41. The conditions on IV bits are generated by imposing the

condition ∆zt = 0 as follows.

[C0.] Case (0 ≤ t ≤ 41 and t ≠ 17,20,36,37,38): It is observed that ∆zt = 0 for

0 ≤ t ≤ 16,18 ≤ t ≤ 19,21 ≤ t ≤ 35,39 ≤ t ≤ 41. Hence, we have nothing to impose

for these rounds.

[C1.] Case (t = 17): In 17-th round, ∆z17 = P1(K,IV ), where P1(K,IV ) is a poly-

nomial involving the bits of K and IV . The algebraic normal from of P1 is

provided in [56]. For a fixed key K, we need to find the set of IV ’s such that

P1(K,IV ) = 0. Since finding this set is quite difficult, we choose a subset of IV s

by imposing some conditions on the IV bits such that P1(K,IV ) = ∆z17 = 0.

We follow the method explained in Subsection 3.4.1 to make ∆z17 = 0. We set

iv47 = iv63 = 0 and iv1 = iv4 + iv14 + iv24 + iv26 + iv39. With these conditions the

equation becomes ∆z17 = iv52+F1(K), where F1 is a function involving only the

secret key bits. Further, fixing iv52 = F1(K), we get ∆z17 = 0. Therefore, having

three Type I conditions iv47 = 0; iv63 = 0; iv1 + iv4 + iv14 + iv24 + iv26 + iv39 = 0

and one Type II condition iv52 = F1(K), we have a smaller set of initialization

vectors IV s where ∆z17 = 0.

[C2.] Case (t = 20): At this round, ∆z20 = P2(K,IV ), where P2 is a polynomial

involving the bits of K and IV . The algebraic normal form of P2 is provided

in [56]. As similar to Item [C1], we set some conditions on the IV bits, so

that ∆z20 = 0. Setting iv49 = 0 and iv3 = iv6 + iv23, we have the equation

∆z20 = iv28 + F2(K), where F2 is a function involving only the secret key bits.

Further, imposing an extra condition iv28 = F2(K), we have ∆z20 = 0. Therefore,

we set two Type I conditions iv49 = 0; iv3+iv6+iv23 = 0 and one Type II condition

iv28 = F2(K).

[C3.] Case (t = 36): In this case, we have ∆z36 = P3(K,IV ), where P3 is a polynomial
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involving the bits of K and IV . As the algebraic expression of P3 is very

large, the algebraic normal form of P3 is placed at [56]. The same technique

(as in Subsection 3.4.1) has been followed to make P3 = 0. To set ∆z36 = 0,

we fix the conditions iv5 = iv14 = iv48 = 0; iv2 = iv22 = iv44 = 1; iv15 = iv25, iv40 =

iv53, iv16 = iv19 + iv23 + iv24 + iv26 + iv41. After setting these conditions, we have

∆z36 = iv54 + iv27iv54 + iv54F3(K) + iv27f1(K) + f2(K) = iv54(1 + iv27 +F3(K)) +

iv27f1(K) + f2(K).

Here, F3, f1 and f2 are functions on key bits. Further, setting iv27 = F3(K)

and iv54 = F3(K)f1(K) + f2(K) = F4(K), we get ∆z36 = 0. Therefore, setting

nine Type I conditions iv5 = iv14 = iv48 = iv15 + iv25 = iv40 + iv53 = 0; iv16 + iv19 +

iv23 + iv24 + iv26 + iv41 = 0; iv2 = iv22 = iv44 = 1; and two Type II conditions

iv27 = F3(K); iv54 = F4(K), we get ∆z36 = 0.

[C4.] Case (t = 37): In 37-th round, we have ∆z37 = P4(K,IV ), where P4 is a polyno-

mial involving the bits of K and IV . The algebraic normal form of P4 is available

at [56]. To make ∆z37 = 0, we impose the conditions iv24 = iv46 = iv50 = iv51 =

iv62 = 0; iv19 = 1; iv34 = iv43+ iv53+ iv56; iv7 = iv4+ iv8+ iv18+ iv21+ iv29+ iv30+ iv59.

After fixing these conditions, we have ∆z37 = iv53 + F5(K). Now considering

iv53 = F5(K), we have ∆z37 = 0. Therefore, at the 37-th round, we set the

following eight Type I and one Type II conditions.

Type I: iv24 = iv46 = iv50 = iv51 = iv62 = 0; iv19 = 1; iv34 + iv43 + iv53 + iv56 = 0;

iv4 + iv7 + iv8 + iv18 + iv21 + iv29 + iv30 + iv59 = 0

Type II: iv53 = F5(K).

[C5.] Case (t = 38): In this round, we have ∆z38 = P5(K,IV ), where P5 is a polynomial

involving the bits of K and IV . The algebraic normal form of P5 is available

at [56]. To have ∆z38 = 0, we impose iv17 = iv39 = iv42 = iv55 = 0, iv8 = iv18, iv21 =

iv30, iv56 = iv41 + iv43. So, we have equation ∆z38 = iv59 + iv23iv59 + iv59F6(K) +

iv23f3(K)+f4(K) = iv59(1+iv23+F6(K))+iv23f3(K)+f4(K). Further, imposing
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conditions iv23 = F6(K) and iv59 = F6(K)f3(K) + f4(K) = F7(K), we have

∆z38 = 0. Finally, for 38-th round, we set the following seven Type I conditions

and two Type II conditions to have ∆z38 = 0.

Type I: iv17 = iv39 = iv42 = iv55 = iv8 + iv18 = iv21 + iv30 = iv41 + iv43 + iv56 = 0

Type II: iv23 = F6(K); iv59 = F7(K).

Table 3.3: Differential status of Grain-v1 for round 0 to round 41

Round (i) ∆zi Type-I conditions Type-II conditions

0 to 16 0 No conditions No conditions

17 P1(K,IV ) iv47 = iv63 = 0; iv52 = F1(K)
iv1 + iv4 + iv14 + iv24 + iv26 + iv39 = 0

18 to 19 0 No conditions No conditions

20 P2(K,IV ) iv49 = 0; iv3 + iv6 + iv23 = 0 iv28 = F2(K)
21 to 35 0 No conditions No conditions

36 P3(K,IV ) iv5 = iv14 = iv48 = iv15 + iv25 iv27 = F3(K);
= iv40 + iv53 = 0; iv16 + iv19 + iv23+ iv54 = F4(K)

iv24 + iv26 + iv41 = 0; iv2 = iv22 = iv44 = 1;

37 P4(K,IV ) iv24 = iv46 = iv50 = iv51 = iv62 = 0; iv53 = F5(K)
iv19 = 1; iv34 + iv43 + iv53 + iv56 = 0;
iv4 + iv7 + iv8 + iv18 + iv21 + iv29

+iv30 + iv59 = 0

38 P5(K,IV ) iv17 = iv39 = iv42 = iv55 = iv8 + iv18 = iv23 = F6(K);
iv21 + iv30 = iv41 + iv43 + iv56 = 0 iv59 = F7(K)

39 to 41 0 No conditions No conditions

Therefore, for a fixed key K, setting the conditions proposed in C1, C2, C3, C4,

and C5 on the bits of IV , we will have ∆zt = 0, for 0 ≤ t ≤ 41. We summarize the

difference propagation and required Type I and Type II conditions in Table 3.3. It

can be observed that unlike the results in [17, 41–43], in our case there is no t for

which ∆zt = 1, where 0 ≤ t ≤ 41. This provides an advantage to obtain an improved

distinguisher by choosing the difference vector e20,45.

For the 42-nd round, the algebraic expression of ∆z42 is very large and complicated

on the bits of K and IV . However, the Items [C1, C2, C3, C4, C5] contain 29 Type

I conditions and 7 Type II conditions, which are listed below. Hence, with these

conditions, we have ∆zt = 0 for 0 ≤ t ≤ 41.
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Type I:

iv5 = iv14 = iv17 = iv24 = iv39 = iv42 = iv46 = iv47 = iv48 = iv49 = iv50 = iv51 = iv55

= iv62 = iv63 = 0; iv2 = iv19 = iv22 = iv44 = 1; iv8 = iv18; iv15 = iv25; iv21 = iv30;

iv40 = iv53; iv3 = iv6 + iv23; iv41 = iv43 + iv56; iv34 = iv43 + iv53 + iv56;

iv1 = iv4 + iv14 + iv24 + iv26 + iv39; iv16 = iv19 + iv23 + iv24 + iv26 + iv41;

iv4 = iv7 + iv8 + iv18 + iv21 + iv29 + iv30 + iv59;

Type II:

iv52 = F1(K); iv28 = F2(K); iv27 = F3(K); iv54 = F4(K); iv53 = F5(K);

iv23 = F6(K); iv59 = F7(K).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This set of conditions can further be simplified as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Type I:

iv5 = iv14 = iv17 = iv24 = iv39 = iv42 = iv46 = iv47 = iv48 = iv49 = iv50 = iv51 = iv55

= iv62 = iv63 = 0; iv2 = iv19 = iv22 = iv44 = 1; iv1 = iv4 + iv26; iv3 = iv6 + iv23;

iv4 = iv7 + iv29 + iv59; iv8 = iv18; iv15 = iv25; iv16 = 1 + iv23 + iv26 + iv41;

iv21 = iv30; iv34 = iv41 + iv53; iv40 = iv53; iv41 = iv43 + iv56;

Type II:

iv52 = F1(K); iv28 = F2(K); iv27 = F3(K); iv54 = F4(K); iv53 = F5(K);

iv23 = F6(K); iv59 = F7(K).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The Type II conditions are imposed on seven known IV bits iv23, iv27, iv28, iv52, iv53,
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iv54, iv59 and a set of unknown key bits. For an unknown fixed key K and a chosen

IV , if values of Fi(K), i = 1,2,⋯,7 match with the values of above mentioned IV bits

respectively, then all Type II conditions are satisfied and hence, ∆zt = 0; 0 ≤ t ≤ 41.

Consider an unknown random key K and IV satisfying all Type I conditions. Then,

there is one possibility out of 27 possible assignments of 7 bits iv23, iv27, iv28, iv52, iv53,

iv54, iv59, that satisfies the Type II conditions. Since the secret key K is unknown, we

have to try for all 27 possible assignments of state bits iv23, iv27, iv28, iv52, iv53, iv54,

iv59 and there is a case for which ∆zt = 0,0 ≤ t ≤ 41. That is, there must be a case for

which Pr[∆zt = 0] = 1 and for other 127 cases Pr[∆zt = 0] ≤ 1 for 0 ≤ t ≤ 41. Note that

there might be many assignments from these non-satisfying 127 assignments where

Pr[∆zt = 0] = 1 for 0 ≤ t ≤ 41 − l for some small integers l.

For the high values of t, the probability Pr[∆zt = 0] is expected to be 1
2 . But the

existence of a case where Pr[∆zt = 0] = 1 for 0 ≤ t ≤ 41 (or, for 0 ≤ t ≤ 41−l for some in-

tegers l) motivates us to search for non-randomness at higher rounds and to construct

a distinguisher. For a random key K, the probability pi = Pr[∆zr = 1] is calculated

for each assignment Ai,0 ≤ i ≤ 127 of the IV bits iv23, iv27, iv28, iv52, iv53, iv54, iv59 for

higher value of r. We have observed small non-randomness in some assignments for

r = 112. As each assignment corresponds to a very small bias, we use the fact to

present a distinguisher as discussed in Subsection 3.2.1.

Consider W = ∑
0≤i≤127,pi> 1

2

(pi −
1

2
). If Grain-v1 with 112 KSA rounds generates

pseudorandom bits then the value of the W would be expected as Wφ = 27E , where

E = 1√
8πN

and N is the size of the sample space. The number of IV bits fixed by

the Type I and Type II conditions are 29 + 7 = 36. Further the two IV bits iv20, iv45

can take the complementary values, either (0,0), (1,1) or (0,1), (1,0) to create the

differences. There will be 64 − 38 = 26 free IV bits that can be used to generate 226

samples. Considering the pair of complementary values, we finally obtain the sample

size N = 227. Putting N = 227 in Equation (3.1), we have Wφ ≈ 0.0022.

We performed experiments on 2048 many random keys, and it is observed that for
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approximately 99% of keys W > 0.0022. This took around 5 days in a machine having

120 processors of 2.8 GHz clock in a multi-user environment. With this experiment,

we can distinguish Grain-v1 with 112 KSA rounds from a random source with the

success rate of 99% (almost certainty). For cross-checking, we too perform the same

experiment for the round 113 and achieved the success rate of 45%, which is close

to 50%. To claim the success rate of 45%, we need to run the same experiment for

a large number of random keys. This is not possible at this point with the present

computational power we are having.

Grain-v1(K, IV i,j) Grain-v1(K, ĨV
i,j

)

Attacker
IV i,j

ĨV
i,j

IV i,j and ĨV
i,j

satisfy Type I, where i = 0, · · · , 127 and j = 0, · · · , 227 − 1

For each i attacker sends 227 many IVs (all free IV)

zi,j112 z̃i,j112

∆zi,j112 = zi,j112 + z̃i,j112 ; i = 0, · · · , 127; j = 0, · · · , 227 − 1

∆z0,j112 ∆z1,j112 ∆zi,j112 ∆z126,j112 ∆z127,j112
· · · · · · · · · · · · · · · · · ·

B0 B1 Bi B126 B127

p0 p1
pi p126 p127

Buckets →

Here pi = Pr[∆zi,j112 = 1] for each bucket i = 0, · · · , 127, where j = 0, · · · , 227 − 1.

Consider W =
∑

0≤i≤127; pi>0.5

(pi − 0.5) for each random key K . Here W > 0.0022 for 99% secret keys.

This technique can successfully distinguish Grain-v1 with 112 KSA rounds from a uniform random source in 99% cases.

Each bucket Bi (i-th bucket) contains 227 many ∆zi,j112, where j = 0, · · · , 227 − 1.

ĨV
i,j

= IV i,j + e20,45

Figure 3.1: Distinguisher for Grain-v1 with 112 KSA rounds

Hence, the distinguisher, designed by selecting the IV differential set of dimension

2 can distinguish the stream cipher Grain-v1 with 112 KSA rounds from a uniform

random source with significantly high success rate (approximately 99%).

The proposed distinguisher for Grain-v1 with 112 KSA rounds is presented as

following. The pictorial view of our distinguisher is provided in Figure 3.1.

� A distinguisher for the first keystream bit of Grain-v1 with 112 KSA

round:
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1. A random key K of 80 bit is generated.

2. An attacker A is given oracle access to the pusedo-random bit generator,

which generates keystream bit by using K.

3. A selects 64 bits IV (IV ), which satisfies Type I, Type II conditions in

Equation (3.2).

4. A constructs another IV, ĨV = IV + e20,45.

5. A considers all possible 0/1 values to 7 IV bits which satisfies Type II

conditions.

6. For each 0/1 possible values of 7 IV bits (involved in Type II), A queries

227 many IV and ĨV to the oracle.

7. For each 27.227 = 234 many IV bits, the oracle returns z and z̃ corresponding

to IV and ĨV .

8. For each 0/1 possible values of those 7 IV bits (involved in Type II) A

segregates the keystream bits into 27 many buckets (Bi, i = 0, . . . ,127).

Here, each bucket contains 227 many z and z̃.

9. A computes the probability pi = Pr[z ≠ z̃] for each bucket Bi, i = 0, . . . ,127.

10. A computes W = ∑
0≤i≤127,pi> 1

2

(pi −
1

2
).

11. IfW > 0.0022, then A claims that the oracle was is Grain-v1 with 112 KSA

round to generate the keystream bits. Otherwise A claims that the oracle

is generating the random bits.

It has been experimentally observed that the success rate of the attacker A is

approximately 99%.

3.4.1 Function reduction method

It can be observed from [56], that the ANF of the functions Pi(K,IV ), 1 ≤ i ≤ 5 are

quite complicated. In Section 3.4 we have imposed some Type I and Type II conditions
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to get Pi(K,IV ) = 0 for 1 ≤ i ≤ 5. These Type I and Type II conditions are obtained

by carefully analyzing the functions. We follow the following steps to get these Type

I and Type II conditions.

1. Firstly, we save the complete algebraic expression of the function into a file.

2. We assign 0 or 1 values to some IV bits to simplify the function.

3. Then we replace some IV bits in terms of the linear combination of some other

IV bits to get more simplified form of the function.

4. Finally, some IV bits are substituted in terms of the secret key bits to get

Pi(K,IV ) = 0.

Most of these things are done manually. Let us discuss the scenario for P2(K,IV ),

as the other functions can be tackled in the same technique. From the algebraic

normal form of the function P2(K,IV ) (can be found in [56]), one can observe that

the bit iv49 is involved in many monomials in the algebraic normal form. Hence, the

algebraic normal form is made simpler by substituting iv49 = 0. Further, substituting

iv3 + iv6 + iv23 = 0, the algebraic normal form of the function P2(K,IV ) becomes

as simple as iv28 + F2(K). Finally, the Type II condition iv28 = F2(K) helps us to

achieve P2(K,IV ) = 0. We have followed a similar method for the other complicated

functions, and naturally, for the functions P3, P4, P5, it took quite a bit of effort.

Software to handle these issues may provide even better results that may be explored

in the future.

3.5 Distinguisher for 114 KSA round of Grain-v1

In this section, we design a distinguisher on Grain-v1 with 114 KSA rounds. The idea

is to increase the number of round follows in two steps.
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� In the first step, we put conditions on iv63 = iv62 = ⋯ = iv63−j = 1 for some j ≥ 0

and generate conditions as discussed in Section 3.4 to obtain a distinguisher at

the r-th round.

� Since we are able to run the inverse of KSA for j+1 rounds as iv63 = ⋯ = iv63−j = 1,

with some more conditions on key bits, i.e., Type III conditions, we can design a

distinguisher for (r + j + 1) KSA rounds with some conditions on key space.

For our work, we first put three Type I conditions iv63 = iv62 = iv61 = 1 on last three

IV bits. Then following a similar technique as in Section 3.4, we choose the same

difference vector a = e20,45 and generate the conditions as follows. We have followed

the same technique (as in Section 3.4.1) to construct the following Type I and Type II

conditions.

[C0.] Case (0 ≤ t ≤ 41 and t ≠ 17,20,36,37,38): It is observed that ∆zt = 0 for

0 ≤ t ≤ 16,18 ≤ t ≤ 19,21 ≤ t ≤ 35,39 ≤ t ≤ 41. Hence, we need not require any

additional condition for these rounds.

[C1.] Case (t = 17): In this round, ∆z17 = Q1(K,IV ), where Q1 is a polynomial

involving the bits of K and IV . From now on we will use the term Qi in general

for this. Imposing the conditions on the IV bits as

Type I: iv46 = iv0 + iv3 + iv25 = 0;

Type II: iv42 = G1(K),

we have ∆z17 = Q1(K,IV ) = 0.

[C2.] Case (t = 20): In this round, ∆z20 = Q2(K,IV ). Similarly, imposing the follow-

ing conditions on IV bits

Type I: iv49 = iv3 + iv6 + iv23 = 0;

Type II: iv28 = G2(K),
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we get ∆z20 = Q2(K,IV ) = 0.

[C3.] Case (t = 36): Here, ∆z36 = Q3(K,IV ). Here, we set the following conditions on

IV bits to make ∆z36 = Q3(K,IV ) = 0.

Type I: iv5 = iv48 = iv47 = 0, iv2 = 1, iv25 = iv15, iv40 = iv53, iv22 = iv44, iv4 =

iv26, iv1 = iv16 + iv19 + iv23 + iv26 + iv39 + iv41;

Type II: iv27 = G3(K), iv54 = G4(K).

[C4.] Case (t = 37): Here, ∆z37 = Q4(K,IV ). We set the following conditions on IV

bits to make ∆z37 = Q4(K,IV ) = 0.

Type I: iv24 = iv50 = iv51 = 0, iv16 = iv23 + iv26 + iv41, iv7 = iv8 + iv16 + iv18 +

iv21 + iv23 + iv29 + iv30 + iv34 + iv41 + iv43 + iv44 + iv53 + iv56 + iv59;

Type II: iv53 = G5(K).

[C5.] Case (t = 38): In this round, ∆z38 = Q5(K,IV ). We set the following conditions

to make ∆z38 = Q5(K,IV ) = 0.

Type I: iv34 = 0, iv8 = iv17 + iv18 + iv21 + iv30 + iv34 + iv43 + iv44 + iv55, iv17 =

iv55, iv19 = iv39, iv23 = iv41 + iv44;

Type II: iv56 = G6(K), iv59 = G7(k).

Hence for a fixed key K, if the IV bits satisfy the conditions [C1, C2, C3, C4, C5] and

the initial conditions iv63 = iv62 = iv61 = 1 then ∆zt = 0 for 0 ≤ t ≤ 41. Complete set of
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Type I and Type II conditions on IV bits is given below.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Type I:

iv1 = iv5 = iv24 = iv34 = iv46 = iv47 = iv48 = iv49 = iv50 = iv51 = 0;

iv2 = iv61 = iv62 = iv63 = 1; iv0 = iv3 + iv25; iv3 = iv6 + iv23; iv4 = iv26;

iv7 = iv26 + iv29 + iv53 + iv56 + iv59; iv8 = iv18 + iv21 + iv30 + iv43 + iv44;

iv15 = iv25; iv16 = iv26 + iv44; iv17 = iv55; iv19 = iv39; iv22 = iv44

iv23 = iv41 + iv44; iv40 = iv53;

Type II:

iv42 = G1(K); iv28 = G2(K); iv27 = G3(K); iv54 = G4(K); iv53 = G5(K);

iv56 = G6(K); iv59 = G7(k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Since the last 3 bits of the IV are 1 (i.e., iv63 = iv62 = iv61 = 1), there is a possibility

to go for t, (t ≤ 3) inverse KSA rounds to have another valid initial state keeping the

last 16 bits of the initial state S0 (i.e., the padding bits) as 1. In this manner, one can

increase the round number to (112+ t) rounds with few more conditions on IV and K

bits. We discuss the possibility of such improvement of round numbers for t = 1,2,3

as follows.

For the first step of inversion in KSA (i.e., t = 1), we need to make z+s0 = 1 where

z is the output bit and s0 is the feedback bit of the LFSR for inverse KSA. For this,

we need to set the following conditions on key and IV bits to have z = 1, s0 = 0.

k0 = k1 + k3 + k9 + k30 + k42 + k55, (3.4)

iv12 = iv37 + iv44 + 1. (3.5)

Following the same process for the second inverse round of the KSA, we set the
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conditions as

iv44 = 0; iv11 = iv21 + iv36 + iv41 + iv60; iv41 = 0. (3.6)

k79 = k1 + k2 + k3 + k9 + k13 + k20 + k27 + k29 + k30 + k32 + k36 + k41 + k42 + k44+

k51 + k54 + k55 + k59 + k61 + k8k14 + k32k36 + k59k62 + k20k27k32 + k44k51k59+

k8k27k44k62 + k14k20k59k62 + k32k36k51k59 + k8k14k20k27k32+

k36k44k51k59k62 + k20k27k32k36k44k51. (3.7)

If we run one more inverse KSA round, then a difference vector for the secret key K

is formed. Since the difference is not allowed for the secret key K, we cannot proceed

with the third KSA inverse (i.e., t = 3). This scenario has been discussed in Section

3.5.1. The inclusion of two Type III conditions (Equation (3.4) and Equation (3.7))

reduces the keyspace by a dimension of two (i.e., one-fourth of the original keyspace).

Including this four Type I and two Type III conditions with the constraints in Equa-

tion (3.3) on the key and IV bits and further imposing two inverse KSA rounds on

the state we have the initial state S0 for the Grain-v1. Then starting from the initial

state S0, we have a non-randomness in the first keystream bit of Grain-v1 with 114

KSA rounds.

In this case, the total number of free IV variables is 26 and Type II conditions is 7.

Hence, the value of Wφ = 27 × 1√
8πN

≈ 0.00312 where N = 226 is the size of the sample

space (see Section 3.2.1 for the calculation of Wφ).

Further, to show a non-randomness in 114-th round of KSA, as in Section 3.4, we

compute the sum W = ∑
0≤i≤127,pi>0.5

(pi −0.5) where pi = Pr[∆z114 = 1] corresponds with

the i-th assignment Ai (0 ≤ i ≤ 127). Each assignment Ai is an assignment of binary

value to the 7 IV bits involved in the Type II conditions.

From the experiment with 2048 random keys, it is observed that for approximately

73% cases W < Wφ = 0.00312. Therefore, like 112 KSA rounds, we can design a dis-

tinguisher for the first keystream bit of the Grain-v1 with 114 KSA rounds with a
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success rate of approximately 73% in weak key setup as the key relation provided in

Type III conditions. For further cross-checking, we performed the same experiment

for 115 rounds and noted that the experimental success rate of distinguishing be-

came approximately 56%. That is, for 278 keys, the first keystream bit of Grain-v1

with 114 KSA rounds can be distinguished from a random bit with a success rate of

approximately 73%.

The success rate for the case of Grain-v1 with 115 KSA rounds is approximately

56%. To claim this small success rate to use for designing a distinguisher, we need to

run the same experiment for a large number of random keys, which is quite impossible

for us with our present computational power.

3.5.1 Non-randomness of Grain-v1 with 116 KSA round with

one bit difference in keys

This section extends the distinguisher from 114 KSA round to 116 round. We first

introduce one extra Type I condition iv60 = 1, then start the inverse KSA of Grain-v1

with the same setup presented in Section 3.5. As we have already performed 2 inverse

KSA rounds, the IV difference bits moved to 22-nd and 47-th positions of the LFSR.

After one more round of inverse KSA, these difference bits will move to 23-rd and

48-th positions of the LFSR. During the inverse KSA, the bit at the 23-rd position of

LFSR is involved in the computation of the linear feedback bit of the LFSR. Hence,

it will flip the feedback bit of the LFSR in this inverse KSA round. Further, this

feedback bit of LFSR is involved linearly in the feedback bit computation of NFSR.

So it will also flip the feedback bit of the NFSR. After this inverse round the state

bits {s0, s23, s48} and {b0} of the present state of the cipher are flipped. As we have

set iv61 = 1 (in Section 3.5), the last 16 bits of the LFSR remain valid (i.e., all 1). For

this one round of inverse KSA we set some conditions on IV bits and secret key bits

to make z + s0 = 1 with z = 1 and s0 = 0 (as in Section 3.5). The following conditions
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are introduced here,

iv43 = 0; iv6 = iv15 + 1; iv10 = iv20 + iv35 + iv59; (3.8)

k78 = k2 + k3 + k8 + k9 + k12 + k19 + k26 + k28 + k29 + k30 + k31 + k35 + k40 + k41+

k42 + k43 + k50 + k53 + k54 + k55 + k58 + k60 + k7k13 + k31k35 + k58k61+

k19k26k31 + k43k50k58 + k7k26k43k61 + k13k19k58k61 + k31k35k50k58+

k7k13k19k26k31 + k35k43k50k58k61 + k19k26k31k35k43k50. (3.9)

Further, we run the inverse KSA for one more round. It can be observed that iv60

was free for the distinguisher on 114-th round (presented in Section 3.5), but here we

have set iv60 = 1. For the second inverse KSA round, the flipped bit at NFSR will

move to {b1} of the present state of NFSR. As the NFSR bit {b1} is involved in the

computation of keystream bit, the keystream bit z will be flipped (i.e., ∆z = 1) in this

round. As a result, the linear feedback bit of the LFSR of this inverse KSA round

will also be flipped. Due to the linear involvement of both the keystream bit and the

linear feedback bit in the computation of the nonlinear feedback bit of the NFSR,

the nonlinear feedback bit remains unaffected in this inverse KSA round. After this

inverse KSA round, state bits {s0, s1, s24, s49} of current state of LFSR and state bit

{b1} of current state of NFSR are flipped. The last 16 bits of LFSR remain valid

(i.e., all 1) as we have set iv60 = 1. In this inverse KSA round we also set following

conditions on IV bits and secret key bits to make z + s0 = 1, where z = 1 and s0 = 0
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(as in Section 3.5).

iv21 = iv42 + 1; iv9 = iv39 + iv58; (3.10)

k59 = 0; (3.11)

k77 = k1 + k2 + k7 + k8 + k11 + k18 + k25 + k27 + k28 + k29 + k30 + k34 + k39 +

k40 + k41 + k42 + k49 + k52 + k53 + k54 + k57 + k6k12 + k30k34 + k57k60 +

k18k25k30 + k42k49k57 + k6k25k42k60 + k12k18k57k60 + k30k34k49k57 +

k6k12k18k25k30 + k34k42k49k57k60 + k18k25k30k34k42k49. (3.12)

Now to go back further, we need to set iv59 = 1, which is not possible as this bit

is involved in Type II conditions (see Equation (3.3)). Here we have allowed 1 bit

difference in the state of the NFSR, i.e., we have allowed 1 bit difference in the secret

key bits for 116 rounds. For extra 2 inverse KSA rounds, 3 extra Type III and 6 extra

Type I conditions (including iv60 = 1) are introduced. Here, we consider two states,

which differ only at {b1, s0, s1, s24, s49} as the initial state of two ciphers. After that

we perform 116 KSA rounds on both the ciphers. With all these Type I, Type II and

Type III conditions we have observed the following non-randomness in ∆z116 after 116

KSA rounds.

It can notice that the sample size is reduced to 220. With this we calculate Wφ,

which is approximately 0.02493. Now we compute W = ∑
0≤i≤127,pi>0.5

(pi − 0.5) where

pi = Pr[∆z116 = 1] corresponds with i-th assignment Ai (0 ≤ i ≤ 127).

For each key we compute W and compare with Wφ (≈ 0.02493). We perform this

experiment for 4096 many random keys and it has been observed that for 62% cases

W < Wφ(≈ 0.02493). Hence Grain-v1 with 116 KSA rounds can be distinguished in

weak key setup with the 1 bit difference in the secret key and 4 bits difference in the

IV. Further to cross-check our distinguisher, we perform the same experiment for 117

round, but the success rate is 52% (which is very close to 50%). To claim this success

chance (≈ 52%), we need to repeat this experiment for a large number of random keys,
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which is an impossible task to verify with our present computation power.

3.6 Comparison

The comparison of the existing attacks and our present work is presented in the

Table 3.1 and Table 3.2. However, one may immediately note that all the existing

works in this direction are based on the difference vector of weight 1, i.e., the one-bit

difference in the IV bits. In each case, the number of rounds is improved irrespective of

the improvement distinguishing success chance, the dimension of IV space, keyspace,

and query space. The dimension of IV space is equal to (64 − the number of Type I

and Type II conditions) and the dimension of keyspace is equal to (80 − the number

of Type III conditions). Further, the query space dimension is proportional to (the

number of Type II conditions+1) as in each case; we need to run the cipher with the

same key and two different IVs.

3.7 Conclusion

In this chapter, we have introduced distinguishers for Grain-v1 with 112 and 114 KSA

rounds. The first one can distinguish Grain-v1 with 112 KSA rounds from a random

source with a 99% success rate. The second one can distinguish Grain-v1 with 114

KSA rounds from a random source with a 73% success rate in a weak key setup for

one-fourth of all the keys. Here, we have used the difference vector of weight 2 to

improve the number of rounds for the first time. The analysis in certain cases is

indeed complicated and required manual intervention rather than writing computer

programs. Finally, the distinguisher for 114 rounds could be extended to 116 rounds

with 1 bit and 4 bits differences in key and IV, respectively. The success rate of this

distinguisher is 62%.





Chapter 4

Conditional Cube Testers for

Grain-128a of Reduced KSA

Rounds

4.1 Motivation

In recent days, cube attacks and cube testers [Subsection 2.3.3] are extensively used

for cryptanalysis of the stream ciphers. These attacks exploit the ANF of the output

function of the cipher to find its weaknesses. There is no proper method to find a

suitable cube for a cipher. Several heuristic methods to find suitable cubes are avail-

able in the literature [34, 57, 58]. These methods are used to find a suitable cube such

that the corresponding superpoly is highly nonrandom at lower rounds. The nonran-

domness is further transmitted to higher rounds by introducing few modifications in

the cube set and imposing some conditions on other state variables. The imposed

conditions are set up by a careful study of the algebraic properties of the superpoly

at different rounds. In this process, some key bits may be required for conditioning

in some cases. If at least one key bit is used for conditioning, then the tester is in
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weak key setup. Otherwise, it is in single key setup. We observed that if the Boolean

function of a cipher is sparse, then finding a suitable cube is easy. For instance, the

Boolean function in Grain-128a is sparser than the Boolean function in Grain-v1.

Hence, we expect that the cube attack is more effective on Grain-128a than Grain-

v1. This chapter has analyzed Grain-128a to find a cube tester for implementing a

distinguishing attack on it.

4.1.1 Our Contributions

The adversary increases the cube dimension by adding the IV variables using different

methods to increase the reduced KSA round in cube attacks. This chapter presents

a heuristic method to select a suitable cube for any nonlinear filter-based stream

cipher by combining the previous techniques. The previous methods are based on the

maximum initial zero and maximum last zero strategies. In the maximum initial zero

strategy, the state variables for which the number of rounds from the initial round

such that the Pr(superpoly = 1) = 0 for each round is maximum are chosen. Whereas

the maximum last zero strategy selects the state variables for which the last round

such that Pr(superpoly = 1) = 0 is maximum. We introduce another strategy based

on a maximum α round, where α is a small number close to 0. This strategy selects

the state variables for which the last round such that 0 < Pr(superpoly = 1) < α is

maximum. Details of these techniques are discussed in Section 4.2.1. Further, the non-

constant superpolies for the first few rounds are made as zero superpoly by imposing

conditions on appropriate state bits. Our heuristic method uses the three strategies

mentioned above and the conditions on state variables to find a suitable cube. Using

the heuristic, we design a cube tester that can distinguish the Grain-128a of 191 and

201 KSA rounds in the single key and the weak key setup, respectively, which are the

highest round till now and using a small dimensional cube. The paper [59] presents a

nonrandomness detector on Grain-128a of 203 KSA round using the cubes on key and

IV variables. This nonrandomness detector is a weaker attack than the distinguishing
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attack in the weak key setup as the cube variables in the cube attacks are taken from

the IV variables only. The comparisons of the number of rounds in Grain-128a of our

result with the previous attacks are presented in Table 4.1.

Table 4.1: Comparison of the number of rounds in different attacks

Attack Type Attack Name Round Dimension Time

complexity

Conditional differential attack [50] 169 1∗ 246.25

Chosen IV statistical attack [60] 169 22 226

Single key Chosen IV statistical attack [61] 171 25 236.64

Cube tester [58] 177 33 244

Fast correlation attack [62] 256 NA 2115.4

Cube tester[our result] 191 5 233.86

Conditional differential attack [50] 195 1∗ 231.25

Weak key Cube tester [58] 189 6 -

Nonrandomness detectors [59] 203 38� -

Cube tester[our result] 201 5 233.86

∗: Dimension of difference vector in differential attack.
�: Dimension of the cube containing key and IV bits.

We also tested our technique over Grain-128 and achieved good results by using

small dimensional cubes. In the single key setup, the previous attacks show bias at

207,237 and 250 KSA rounds using the cubes of dimensions 12,40 and 50, respectively.

Our attack shows a bias at 207 and 235 KSA rounds using a cube of dimension 7 for

the single and the weak key setup, respectively. Table 4.2 presents the comparison

with the previous attacks. From this experiment and comparison on Grain-128, we

further assure that our technique (i.e., Algorithm 6) to find a cube works well on

Grain-like ciphers.
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Table 4.2: Comparison with previous attack on Grain-128

Attack Type Attack Name Round Dimension Time

complexity

Cube tester [58] 207 12 223

Cube tester [58] 236 33 244

Cube tester [63] 237 40 -

Cube tester [64] 256 50 290

Single key Dynamic cube attack [65] 207 19 231

Dynamic cube attack [65] 250 37 2101

Conditional differential attack [66] 215 13∗ 225

Cube tester[our result] 205 6 228.22

Cube tester[our result] 207 7 235.86

Nonrandomness detectors[59] 256 25� 228

Weak key Cube tester[our result] 229 6 234.22

Cube tester[our result] 235 7 234.69

∗: Dimension of difference vector in differential attack.
�: Dimension of the cube containing key and IV bits.

4.1.2 Organisation

Section 4.2 explains a cube tester method by using a new cube searching strategy.

This section splits into three subsections. Subsection 4.2.1 explains the technique to

search for a suitable cube for any cipher. Subsection 4.2.2 discusses the conditional

cube tester and two different setups of analysis. Our heuristic for cube searching is

presented in Subsection 4.2.3. Section 4.3 presents the cube tester for Grain-128a.

Subsection 4.3.1 presents a structural analysis of Grain-128a to find some conditional

bits for reducing the nonlinear degrees of involved Boolean functions. The above

method is used to find suitable cubes for Grain-128a in Subsection 4.3.2. The outcomes

of the distinguishing attack on Grain-128a by using those cubes for the cube testers

are presented in Subsection 4.3.3. Section 4.4 presents the cube tester for Grain-128.
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Subsection 4.4.1 presents the study of our technique over Grain-128. The comparison

of the obtained results with the previous results is presented in Section 4.5. In the

end, Section 4.6 concludes the chapter.

4.2 Cube tester by using a cube searching method

The keystream bits of a stream cipher are a function in terms of key bits and IV bits.

The IV bits are considered public variables, i.e., an adversary can choose bits from IV

and get the corresponding output for an unknown key. The adversary’s prime goal in

the distinguishing attack model is to distinguish the cipher from a random source. In

this model, the adversary is allowed to choose some IV bits as cube variables. Then

corresponding to an unknown key, the adversary can get the output bits for each

assignment of cube variables. From these output bits, the adversary can perform cube

sum (as in Equation (2.20)) to check the randomness of the corresponding superpoly.

If the superpoly is distinguishable from a random function, then the cipher can be

distinguished from the random source.

4.2.1 Cube searching techniques

Finding a proper cube is the most crucial task in cube attacks. The nonrandomness

properties of superpoly at lower rounds are exploited to get a proper cube. In [34,

57], the cubes whose superpoly is 0 (zero function) are used to form a cube tester

at a higher round. Stankovski [57] studied the cubes at the round, which is the last

round of the first continuous zero superpolies (i.e., the maximum initial round of

zero superpolies). Sarkar et al. [34] studied the cubes at the round, which has the

last zero superpoly. The presence of some kind of nonrandomness among the state

variables in the cube results in a zero superpoly. We expect that these state variables

appear in some later rounds, which form a bias. Further adding to this idea, we

have studied cubes that form superpolies of very low weight. Such cubes with highly
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biased superpoly (i.e., having very low weight) are expected to lead us to get cubes

with biased superpoly at higher rounds. Further extending the cube’s dimension may

not always give the best results as the attack complexities increase. So the challenge

is to find the small dimensional cubes which give the bias in higher rounds. We have

included three ideas with the experiments in our study to find cubes that show bias in

superpoly at higher rounds. Three techniques are used for searching cubes are given

below.

1. Maximum initial zero: In general, the superpolies formed by the cubes are

zero Boolean functions for some initial rounds. In this technique, the cubes

are chosen, which form zero superpoly for the highest time continuously. The

bias is further extended for higher rounds by choosing new cubes from the

variables of selected cubes. Stankovski [57] used this idea to choose a cube of

one dimension which gives maximum continuous zero superpoly. By pairing

the cube variable with other variables, the author found a cube of dimension

2, which gives continuous zero superpoly. Iteratively, one can attack at higher

rounds by adding one dimension each time until there is no further possibility to

increase the round. This technique is known as the GreedyAddOneBit heuristic,

and the cube tester is known as a zero-sum distinguisher. Using this technique,

Stankovski [57] constructed a cube tester for several stream ciphers and block

ciphers. The same idea can be used for the GreedyAddTwoBits heuristic as

well.

2. Maximum last zero: By extending the maximum initial zero ideas, Sarkar et

al. [34] studied cubes that form zero superpoly at the highest round. They stud-

ied cubes with the maximum number of zero superpolies. Using this technique,

they could construct cube testers for Trivium and Trivia-SC.

3. Maximum last α: In addition to the above two techniques, we introduce the

maximum last α technique to find a cube that shows the presence of bias at a
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higher round. It is found that the superpolies of some cubes at higher rounds

output 1 with very less probability. We expect that such types of cubes can

forward the bias to a higher round for the following reason.

A superpoly is a constant (i.e., 0 or 1) implies that the variables in the superpoly

are not present in the ANF of the polynomial at that round. Once the variables

are involved (suddenly) in the ANF of the superpoly at a higher round, the

superpoly function may suddenly become a balanced function. Therefore, in

some cases, the maximum initial zero and maximum last zero techniques may not

carry the bias for higher rounds. If a superpoly ps(I) is highly unbalanced (i.e.,

Pr(ps(I) = 1) is nonzero but a very small number α) at some round, then some

variables are present in the ANF of the polynomial. In this case, the superpoly

shows a high bias (i.e., (0.5 − α)) with the involvement of some variables in

the ANF. At higher rounds, although the algebraic manipulations occur in the

ANF of superpoly, the existence of variables in the ANF of the superpoly does

not happen suddenly. Hence we expect that the bias gets forward to the higher

round and the superpoly slowly becomes a balanced polynomial.

Now having a bound α (very small), the cubes producing superpoly ps(I) such

that 0 < Pr(ps(I) = 1) < α can be interesting to study. Hence, those cubes

whose superpoly ps(I) satisfying 0 < Pr(ps(I) = 1) < α for the highest round are

chosen. Further, the attack can be improved to the higher rounds by adding new

variables with the selected cubes. Here we used to make non-cube IV variables

as zero while searching for the maximum last α round by varying keys.

It can not be said that which one of the above three techniques works best to find cube

testers. Exploiting our experimental result, we have properly used the combination

of three techniques to find cubes for higher rounds. We further use conditions on

variables along with the cube searching techniques to attack for a higher round.
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4.2.2 Conditional cube tester

We impose some conditions on state variables to increase the distinguishing rounds

in the cube tester. Such a distinguishing attack is called a conditional cube tester.

Imposing conditions on some variables, some initial non-constant superpolies can be

converted to zero superpoly. By doing this, it is expected that the bias can be ex-

tended for some more rounds. Imposing conditions is a tough task as the number of

monomials in the ANF of polynomials increases highly as round increases. Based on

conditions on key and IV bits, we have two different setups as following.

1 Single key setup: Only IV bits are fixed (or, termed as conditioned) and

(K,IV ) pairs are taken as random, where IV represents the remaining IV bits.

2 Weak key setup: At least one key bit is fixed and (K,IV ) pairs are taken as

random, where K and IV represent the remaining key and IV bits respectively.

As conditioning on key bits may not be practical, the nonrandomness of the

stream cipher is tested in this setup.

4.2.3 Our method

In our approach, we use all three techniques and conditional techniques to search for a

cube that shows bias at a higher round of Grain-128a. As described in Section 4.2.2,

we enlist the conditions for first some rounds (as high as we can compute using

SAGE [55]) for every 1-dimensional cube. When we add a variable for increasing

the cube’s dimension by one, we impose all the conditions associated with the cube

variable. Then we extend the cube’s dimension by combining three techniques such

that distinguishing round is as high as possible and choose the cube at that round. The

chosen criteria are discussed in Section 4.3.2 for Grain-128a. The searching process

of the cubes is described next.

Step-1: A nonzero threshold α (very small) is fixed, which is chosen from the
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prior experiments. All 1-dimensional cubes CI whose superpoly ps(I) satisfying

0 < Pr(ps(I) = 1) < α in at least one round are collected. Denote the set of

variables of these 1-dimensional cubes as Bα. The further cubes of a higher

dimension will be searched from the variables in Bα. Hence, the domain of cube

variables is restricted to a smaller set of variables Bα.

Then for each cube CI = {si}, si ∈ Bα, we find the conditions on key and IV

bits such that ps(I) becomes zero function for first l rounds (except at those

rounds where ps(I) = 1). The number l is the maximum round such that we

could compute the polynomials at the round using SAGE software. Let CNDI

be the set of conditions for the cube CI .

Step-2: The 1-dimensional cubes CI from Bα which satisfy maximum last α

round (i.e., the last round satisfying 0 < Pr(ps(I) = 1) < α is maximum among all

state variables in Bα) are selected. These 1-dimensional cubes are expanded to

bigger cubes by adding some variables iteratively from Bα as described in the

following step.

Step-3: An extra variable from the remaining variables in Bα is added with

each selected cube in the previous step and its behavior is studied. In this way,

the cubes with one more dimension can be searched. The stored conditions

corresponding to the cube variables are imposed. Note that we can not consider

those cubes where two conditions conflict with each other. We observe the

maximum initial zero round, maximum last zero round, and maximum last α

round for the superpoly of each new cube. The cubes satisfying at least two

cases are chosen. If no cube satisfies two cases, then the cubes satisfying the

maximum last α round are considered. This technique is repeated until there is

no improvement in the round.

The selected cubes are used with different scenarios (e.g., single key, weak key) to find

bias at higher rounds. The explanation for different scenarios in the case of Grain-128a
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is presented in Section 4.3.3.

The algorithmic form of the above strategy is presented in Algorithm 6. The

following notations are used in the algorithm.

� RMIZ
CUBE is the maximum initial zero round for the cube CUBE after imposing con-

ditions CNDI for each 1-dimensional cube CI ∈ CUBE.

� RMLZ
CUBE is the maximum last zero round for the cube CUBE after imposing conditions

CNDI for each 1-dimensional cube CI ∈ CUBE.

� RMLα
CUBE is the maximum last α round for the cube CUBE after imposing conditions

CNDI for each 1-dimensional cube CI ∈ CUBE.

CUBEj is defined by adding an extra variable sj from Bα with the previous cube CUBE

such that no condition for the cube {sj} fixes a variable in CUBE and conflicts with

earlier conditions. Then the conditions for each cube variable si ∈ CUBEj is applied

and the rounds RMIZ
CUBEj

,RMLZ
CUBEj

and RMLα
CUBEj

are stored for choosing cubes of one dimension

more.

The value of α and l can be chosen as described in Step-1. The statements from

2 to 17 in Algorithm 6 select the possible state variables satisfying α condition (i.e.,

those satisfy Pr(ps(I) = 1) < α) and store those variables in Bα. Since the value of α

is very small (i.e., the bias (0.5 − α) is high), the experiment for finding probability

in the statement number 7 does not need a very large number of samples for a high

confidence level. Now the domain of cube variables is restricted to Bα. The variables

max round and max state index store the maximum round where α test is satisfied

and the index of the state variable in the cube respectively. The constant KSA round

is the number of rounds in the KSA of the cipher. Since in these steps, we are

searching the state variables satisfying α condition, the required time complexity is

T1 = O( 1
pq2 × No. of IV bits ×KSA round) where p(1 − q) = α as in Section 2.3.1.3.

Since α is very small, the value of 1
pq2 is too small.
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Algorithm 6: Algorithm to find best cube.
Input : α, l, and m = number of IV bits
Output: A cube CUBE and dim(CUBE).

1 Set Bα = ∅,max round = 0,max state index = −1;
2 for i from 0 to m − 1 do
3 Select the cube CI = {si}; RMLα

CI
= −1;

4 for j from 0 to KSA round do
5 Consider the superpoly ps(I) at the j-th round with cube CI ;
6 if (0 < Pr(ps(I) = 1) < α) then
7 RMLα

CI
= j

8 end

9 end
10 if RMLα

CI
> −1 then

11 Bα = Bα ∪ {si};
12 if RMLα

CI
>max round then

13 max round = RMLα
CI

and max state index = i
14 end

15 end

16 end
17 for sj ∈ Bα do
18 Consider the cube CI = {sj};
19 Store CNDI as the set of conditions on key and IV bits such that ps(I) = 0 for first l

rounds (except those rounds where ps(I) = 1).

20 end
21 temp = max round; CUBE = {smax state index}; Bα = Bα ∖ CUBE;
22 while TRUE do
23 for sj ∈ Bα do
24 CUBEj = CUBE ∪ {sj};
25 If there is a round such that Pr(ps(I) = 1) < α for the cube CUBEj after imposing

the required conditions from CNDI for each CI = {si} ⊂ CUBEj then store
RMIZ

CUBEj
,RMLZ

CUBEj
and RMLα

CUBEj
;

26 end
27 max1 = max{RMIZ

CUBEj
}; max2 = max{RMLZ

CUBEj
}; max3 = max{RMLα

CUBEj
};

28 max = max{max1,max2,max3};
29 For each si ∈ Bα such that at least two of RMIZ

CUBEi
,RMLZ

CUBEi
,RMLα

CUBEi
satisfies the

max1,max2,max3 respectively. CUBE = CUBE ∪ {si} and Bα = Bα ∖ {si};
30 if max > temp then
31 temp = max;
32 end
33 else
34 Break;
35 end

36 end
37 Return CUBE and dim(CUBE).

The statements from 18 to 21 in Algorithm 6 store the conditions for each variable

in Bα for converting initial non-zero functions to zero function. The conditions are
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stored up to first l rounds for each 1-dimensional cube CI ⊂ Bα as CNDI . In this step,

the conditions are pre-searched. The time complexity T2 depends on the adversary’s

available time to evaluate the conditions at as high as possible rounds. In our case,

we could go up to 69 KSA rounds for Grain-128a using the SAGE software.

Then the remaining part of the algorithm selects possible cubes by combining

three techniques. In this step, the adversary improves the number of KSA rounds

by increasing cube variables from the set Bα till there is no improvement of rounds.

Hence the time complexity T3 in this step, is O( 1
pq2 ×∑cube dimensiond=1 (∣Bα∣

d
)). Hence the

total time complexity for cube searching is T = T1 + T2 + T3.

4.3 Cube tester for Grain-128a

4.3.1 Structure observation of Grain-128a

To improve the attack, imposing conditions on some variables (state bits) may help to

find a cube where the superpoly ps(I) satisfies a nonrandomness criterion. The struc-

ture of the cipher needs to be observed carefully to find those conditional variables.

This observation can be checked algebraically and experimentally. We observe the

algebraic structure of Grain-128a to find conditional bits for reducing the nonlinear

degree of zt and g. These conditions are helpful to extend the round (from 198 round

to 201 round) for nonrandomness (see Subsection 4.3.3).

There are some bits in Grain-128a which are involved in the highest degree mono-

mial of zt as well as NFSR update function g. The degree of zt is reduced for some

rounds by fixing those bits as zero. b95+t is involved in the highest degree monomial

(i.e., bt+12bt+95st+94 as x0x4x8) of zt (i.e., 3 degree monomial) and NFSR update func-

tion g (i.e., 4 degree monomial) of Grain-128a (See Equation 2.11 and Equation 2.10).

Assigning b95+t = 0 for first 32 rounds, the degree of the output function zt is reduced

to 2 from 3. Further, at t = 32, b95+t = b128 is substituted by g. As the highest degree
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term of g (i.e., bt+88bt+92bt+93bt+95) contains bt+95 and b95+t = 0 for 32 rounds, the degree

of g is reduced by 1 for next 32 rounds (i.e., from 32 to 63 rounds). As a result, some

higher degree monomials of the function zt vanish for next 32 rounds.

Further b12 is involved in the highest degree monomial of zt. After 64 rounds, the

state bit b12 becomes b76. Now assigning b76+t = 0 for next 19 rounds, the highest

degree monomial in zt vanishes for these rounds. As b95+t is already assigned to 0 for

32 rounds and the bits b76, b77, . . . , b127 are fixed as zero, the highest degree monomial

in zt vanishes for 51 rounds. Hence, by fixing 51 key bits, the degree of zt is reduced,

or some high degree monomials vanish for the first 84 rounds.

4.3.2 Cube searching for Grain-128a

We followed the method described in Section 4.2.3 to find a cube for a higher KSA

round of Grain-128a. The process of searching the cubes of Grain-128a is presented

next.

Step 1 : First we checked Pr(ps(I) = 1) for each 1-dimensional cube with large number

of samples. We observed that there are several cases such that 0.06 < Pr(ps(I) = 1) <

0.07. Hence, we choose the parameter α = 0.07. Let Bα be the set of variables

in the cube CI such that 0 < Pr(ps(I) = 1) < α. In the case of Grain-128a, Bα =

{s42, s43, . . . , s69, s95}. For finding the probabilities of superpolies (i.e., Pr(ps(I) = 1)),

we fix all non-cube IV bits as zero and vary key bits for a large number of samples.

Further for each 1-dimensional cube CI whose variable is from Bα, we find the

set of conditions on key and IV bits as CNDI such that ps(I) = 0 for first 69 rounds

except those rounds where the superpoly is a constant Boolean function (i.e., zero or

one function). While searching those conditions, no IV bit was pre-fixed as zero. We

choose the conditions up to 69 rounds because we could compute polynomials up to

69 rounds in SAGE software. The conditions for each 1-dimensional cube from Bα

is listed in Table 4.3. For I = {42}, the conditions in CNDI = {s35 = 0, s49 = 0, b46 =

0, b50 = 0, b95 = 0} are required to make the superpoly ps(I) = 0 for first 69 rounds
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expect the rounds where ps(I) = 1.

Table 4.3: Conditions for 1-dimensional cubes from Bα

Cube Conditions Cube Conditions

{s42} s35 = s49 = b46 = b50 = b95 = 0 {s57} s50 = s64 = b61 = b65 = b110 = 0

{s43} s36 = s50 = b47 = b51 = b96 = 0 {s58} s51 = s65 = b62 = b66 = b111 = 0

{s44} s37 = s51 = b48 = b52 = b97 = 0 {s59} s52 = s66 = b63 = b67 = b112 = 0

{s45} s38 = s52 = b49 = b53 = b98 = 0 {s60} s53 = s67 = s79 = b64 = b68 = b113 = 0

{s46} s39 = s53 = b50 = b54 = b99 = 0 {s61} s54 = s68 = s80 = b65 = b69 = b114 = 0

{s47} s40 = s54 = b51 = b55 = b100 = 0 {s62} s55 = s69 = s81 = b66 = b70 = b115 = 0

{s48} s41 = s55 = b52 = b56 = b101 = 0 {s63} s56 = s70 = s82 = b67 = b71 = b80 = b116 = 0

{s49} s42 = s56 = b53 = b57 = b102 = 0 {s64} s57 = s71 = s83 = b68 = b72 = b117 = 0

{s50} s43 = s57 = b54 = b58 = b103 = 0 {s65} s58 = s72 = s84 = b69 = b73 = b118 = 0

{s51} s44 = s58 = b55 = b59 = b104 = 0 {s66} s59 = s73 = s85 = b70 = b74 = b119 = 0

{s52} s45 = s59 = b56 = b60 = b105 = 0 {s67} s60 = s74 = s86 = b71 = b75 = b120 = 0

{s53} s46 = s60 = b57 = b61 = b106 = 0 {s68} s61 = s75 = s87 = b72 = b76 = b121 = 0

{s54} s47 = s61 = b58 = b62 = b107 = 0 {s69} s62 = s76 = s88 = b73 = b77 = b122 = 0

{s55} s48 = s62 = b59 = b63 = b108 = 0 {s95} 29 NFSR and 4 LFSR bits are 0

{s56} s49 = s63 = b60 = b64 = b109 = 0 1 NFSR and 1 LFSR bits are 1.

Step 2: In this step, we select a 1-dimensional cube whose variable is from Bα such

that the cube satisfies the maximum last α round. Here, the cubes {s42+i},0 ≤ i ≤ 27

satisfy α test at maximum round 95+ i respectively and the cube {s95} satisfies α test

at maximum round 35. Hence the superpoly corresponds to the cube {s69} satisfies the

α test at maximum round 122. It is too found that the cube {s69} satisfies maximum

initial zero round and maximum last zero round. The details of the cube are presented

in Table 4.4.

Step-3: In this step, the dimension of cubes is extended by adding one variable in

each iteration.

1. For all pair {s69, cI}, cI ∈ Bα ∖ {s69}, the conditions for {s69} and cI from Ta-

ble 4.3 are imposed and the experiment for superpoly to each cube is performed
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for several random key and IV pairs. Note that the experiment for the cube

{s62, s69} can not be performed as s62 is already conditioned for the variable

s69 and vice versa. We choose the cube {s66, s69} of dimension 2 which satisfies

maximum last α round and maximum last zero round. The cubes satisfying the

tests are listed in Table 4.5.

Table 4.4: The 1-dimensional cube(s) satisfying the conditions

Maximum last α Maximum last zero Maximum initial zero

Cube Round Cube Round Cube Round

{s69} 122 {s69} 115 {s69} 107

Table 4.5: The 2-dimensional cube(s) satisfying the conditions

Maximum last α Maximum last zero Maximum initial zero

Cube Round Cube Round Cube Round

{s66, s69},{s67, s69} 153 {s66, s69} 155 {s61, s69} 122

2. To find the 3-dimensional cubes from the cube {s66, s69}, we consider the triplets

{s66, s69, cI} where cI ∈ Bα∖{s66, s69} and set the conditions from Table 4.3 asso-

ciated with these three variables. As s59, s62 are conditioned for variables s66, s69

respectively, cI is taken from Bα ∖ {s59, s62, s66, s69}. Two 3-dimensional cubes

{s66, s67, s69},{s66, s68, s69} are found with satisfying all three tests and chosen

for further processing. The cubes satisfying the tests are listed in Table 4.6.

Table 4.6: The 3-dimensional cube(s) satisfying the conditions

Maximum last α Maximum last zero Maximum initial zero

Cube Round Cube Round Cube Round

{s66, s67, s69} 159 {s66, s67, s69} 158 All Triplets 128

{s66, s68, s69} {s66, s68, s69}
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3. We search for cubes of dimension four from these two 3-dimensional cubes. The

cubes {s66, s67, s69, cI1} and {s66, s68, s69, cI2} where cI1 ∈ Bα ∖ {s66, s67, s69} and

cI2 ∈ Bα∖{s66, s68, s69} are considered for experiment. The conditions associated

with the variables for each case are imposed. Here, s59, s60, s61, s62 are fixed for

s66, s67, s68, s69 respectively. Hence the new variables cI1 and cI2 are taken from

Bα∖{s59, s60, s62, s66, s67, s69} and Bα∖{s59, s61, s62, s66, s68, s69} respectively. We

choose the 4-dimensional cube {s63, s66, s68, s69} which satisfies the most number

of tests. The cubes satisfying the tests are listed in Table 4.7.

Table 4.7: The 4-dimensional cube(s) satisfying the conditions

Maximum last α Maximum last zero Maximum initial zero

Cube Round Cube Round Cube Round

{s55, s66, s67, s69} 160 {s66, s67, s68, s69} 160 {s45, s66, s67, s69} 158

{s55, s66, s67, s69} {s63, s66, s68, s69} {s63, s66, s68, s69}
{s56, s66, s67, s69} {s66, s67, s68, s69}
{s57, s66, s67, s69} {s45, s67, s68, s69}
{s60, s66, s67, s69}

4. The cubes of dimension five are searched as the previous technique. All cubes

{s63, s66, s68, s69, cI} where cI ∈ Bα∖{s56, s59, s61, s62, s63, s66, s68, s69} are studied.

We got three such cubes which satisfy all three tests. In this case, the maximum

initial zero round and maximum last zero round are the same, i.e., 160 and they

satisfy the maximum last α test. The results are listed in Table 4.8.

5. The same extension process of a dimension of the cube to 6 does not im-

prove rounds. Therefore, we stop the extension process. Further, we perform

some experiments on the cubes from the variables present in the selected 5-

dimensional cubes to observe their biases. From the variables of two cubes

{s63, s64, s66, s68, s69} and {s63, s66, s67, s68, s69}, we found a new 5-dimensional

cube {s61, s63, s64, s67, s69} and two 6-dimensional cubes {s63, s64, s66, s67, s68, s69}
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Table 4.8: The 5-dimensional cube(s) satisfying the conditions

Maximum last α Maximum last zero Maximum initial zero

Cube Round Cube Round Cube Round

{s43, s63, s66, s68, s69} 161 All tuples 160 {s51, s66, s67, s68, s69} 160

{s44, s64, s66, s68, s69} {s60, s63, s66, s68, s69}
{s46, s66, s67, s68, s69} {s63, s64, s66, s68, s69}
{s47, s66, s67, s68, s69} {s63, s66, s67, s68, s69}
{s57, s66, s67, s68, s69}
{s58, s66, s67, s68, s69}
{s60, s63, s66, s68, s69}
{s63, s64, s66, s68, s69}
{s63, s66, s67, s68, s69}

and {s61, s63, s64, s66, s67, s69}. Note that, in the 5-dimensional cube and the sec-

ond 6-dimensional cube, s68 is replaced by s61 as both variables are conditioned

to each other. These cubes do not extend the rounds but show higher bias at

some particular rounds (see Table 4.11).

Since the dimension of cubes are small and the bias (unbalancedness) of superpoly,

i.e., (0.5 − α), is high, we need a small number of samples to verify the bias. Our

experiments are performed in a normal PC (core-i5 processor with four cores and 8 GB

RAM), and it took less than 3 hours for searching all cubes (excluding the required

time for finding the conditions using SAGE).

4.3.3 Results for Grain-128a

After having the cubes (in Section 4.3.2) which are expected to give bias in higher

rounds, we perform the experiments for higher rounds to find bias. The experiment

is performed in the following way:

� First, the cube CI along with its fixed IVs (and fixed keys in the weak key setup)

is taken.
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� Then the values of the superpoly ps(I) of the cube are calculated for random

key-IV pairs.

� The probability Pr(ps(I) = 1) is estimated. If it is different from 0.5, then the

superpoly has a bias on the balancedness property.

� Finally, a sufficient number of random key-IV pairs is taken to verify the cor-

rectness of the bias with high confidence.

The complexity of the experiment depends on the number of sample key-IV pairs and

the dimension of the cube dim(CI). As discussed in Section 2.3.1.3, we have taken

at least 39
pq2 random key-IV pairs where p(1 − q) = Pr(ps(I) = 1) for each experiment.

Hence, the total complexity of the experiment is 39
pq2 × dim(CI) to distinguish the

cipher in reduced rounds from a random source. The experiments are performed in a

normal PC (core-i5 processor and 8 GB RAM) running eight threads parallelly. Every

thread was further running 26 samples parallelly. It took less than 2,3 and 6 hours to

distinguish Grain-128a using our cubes of dimension 4,5 and 6 respectively.

Our experiments are performed on the chosen cubes of dimension 4,5 and 6.

The 4-dimensional and 5-dimensional cubes {s63, s66, s68, s69}, {s60, s63, s66, s68, s69},

{s63, s64, s66, s68, s69} and {s63, s66, s67, s68, s69} improve the results on the number of

rounds in the single key setup as well as weak key setup. Note that in the single key

setup, the cube variables are considered with the conditions on IV bits and ignoring the

conditions on key bits from CNDI . In a weak key setup, the cubes, along with all con-

ditions from CNDI are considered. We performed experiments on the 5-dimensional

new cubes {s61, s63, s64, s67, s69}, {s63, s64, s66, s67, s68, s69} and 6-dimensional new cube

{s61, s63, s64, s66, s67, s69} to improve the bias.

Single key setup: In this setup, we apply the conditions on IV bits listed in Ta-

ble 4.9 and ignore the conditions on key bits. Since the conditions are applied on

some IV bits only, all key bits and remaining IV bits (except the cube variables) are

taken randomly. We found a distinguisher for the cubes which can distinguish Grain-
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Table 4.9: Conditions for different cube

Cube Conditional IV Bits Conditional key Bits

{s63, s66, s68, s69} s56, s59, s61, s62, b67, b70, b71, b72, b73,

s70, s73, s75, s76, b74, b76, b77, b80,

s82, s85, s87, s88 b116, b119, b121, b122

{s60, s63, s66, s68, s69} s53, s56, s59, s61, s62, b64, b67, b68, b70, b71, b72,

s67, s70, s73, s75, s76, b73, b74, b76, b77, b80,

s79, s82, s85, s87, s88 b113, b116, b119, b121, b122

{s63, s64, s66, s68, s69} s56, s57, s59, s61, s62, b67, b68, b70, b71, b72,

s70, s71, s73, s75, s76, b73, b74, b76, b77, b80,

s82, s83, s85, s87, s88 b116, b117, b119, b121, b122

{s63, s66, s67, s68, s69} s56, s59, s60, s61, s62, b67, b70, b71, b72, b73,

s70, s73, s74, s75, s76, b74, b75, b76, b77, b80,

s82, s85, s86, s87, s88 b116, b119, b120, b121, b122

{s61, s63, s64, s66, s67, s69} s54, s56, s57, s59, s60, s62, b65, b67, b68, b69, b70, b71,

s68, s70, s71, s73, s74, s76, b72, b73, b75, b76, b77, b80,

s80, s82, s83, s85, s86, s88 b114, b116, b117, b119, b120, b122

128a from a random source at 186,187 and 191 rounds. We have taken 229 samples

(i.e., key-IV pairs which are not fixed and cube variables) for each experiment which

provides at least 99% confidence level for the experiment (see Section 2.3.1.3). The

result is tabulated in Table 4.10. From a practical attack perspective, we too have

experimented using our best cube {s60, s63, s66, s68, s69} on a random key with 229 IV

samples. We performed this experiment for 200 random keys and found bias for 39

keys at 191 KSA round of Grain-128a. This result indicates that there are a significant

number of keys which show the bias at 191 KSA round of Grain-128a.

Weak key setup: In this setup, the conditions on both key and IV bits as listed

in Table 4.9 are imposed. In this weak key setup, we observed the nonrandomness

in Grain-128a for higher rounds. 229 random samples of key-IV pairs (which are not

fixed and cube variables) are used for the experiment. We have two different scenarios

for imposing conditions on key bits.
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Table 4.10: Result of cube testers on Grain-128a in the single key setup

Cube Round Pr(ps(I) = 1) No. of Time

fixed IVs complexity

{s63, s66, s68, s69} 186 0.4990 12 228.22

{s63, s66, s67, s68, s69} 186 0.4995 15 231.22

{s63, s64, s66, s68, s69} 186 0.4993 15 230.24

{s60, s63, s66, s68, s69} 191 0.4998 15 233.86

{s61, s63, s64, s66, s67, s69} 186 0.498 18 228.22

Scenario I: Here, we fix the key and IV bits to make a non-zero superpoly as zero

superpoly except the constant superpolies for the first 69 rounds. The conditions are

listed in Table 4.9. From the experiment, we found the cubes which are presented in

Table 4.11.

Table 4.11: Result of cube testers on Grain-128a in the weak key setup (Scenario I)

Cube Round Pr(ps(I) = 1) No. of No. of Time

fixed fixed complexity

IV bits key bits

{s61, s63, s64, s67, s69} 192 0.487 15 15 221.82

194 0.498 15 15 227.22

{s63, s64, s66, s68, s69} 196 0.4998 15 15 233.86

{s63, s66, s67, s68, s69} 197 0.4998 15 15 233.86

{s60, s63, s66, s68, s69} 198 0.4991 15 16 229.52

{s61, s63, s64, s66, s67, s69} 186 0.355 18 19 215.86

189 0.455 18 19 219.23

192 0.491 18 19 223.88

193 0.495 18 19 225.57

194 0.498 18 19 228.22

196 0.4998 18 19 234.86
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Scenario II: To have a bias at a higher round, more conditions on key bits are imposed

by observing the structure of Grain-128a as presented in Section 4.3.1. From the struc-

ture observation, the additional conditional key bits for the cube {s60, s63, s66, s68, s69}

are b64, b67, b70, b71, b72, b73, b74, b76, b77, b78, b79, b80, b81, b82, b83, b84, b85, b86, b87, b91, b94, b95,

b102, b104, b105, b108, b110, b112, b113, b114, b116, b118, b119, b121, b122, b125.

We achieved a bias at 201 round from the experiment that is listed in Table 4.12. In

a practical attack perspective, we have experimented on a random key with 229 IV

samples using our best cube {s60, s63, s66, s68, s69}. We performed this experiment for

200 random keys and found bias for 195 keys at 201 KSA round of Grain-128a. This

result hints that there may exist a bias in Grain-128a of 191 KSA round for a large

percentage of keys.

Table 4.12: Result of cube testers on Grain-128a in the weak key setup (Scenario II)

Cube Round Pr(ps(I) = 1) No. of fixed No. of fixed Time

IV bits key bits complexity

{s60, s63, s66, s68, s69} 201 0.4998 15 36 233.86

4.4 Cube tester for Grain-128

4.4.1 Study for Grain-128

The design of Grain-128 [30] is similar to Grain-128a. We have implemented our

technique on this cipher. From the experiment on Grain-128, we set α as 0.13. Then

the 1-dimensional cube variables are stored in Bα along with the conditions in CNDI

as described in Algorithm 6. The 1-dimensional cube {s62} is selected as it goes

for the maximum last α round. As per the process of expanding the cube, we gradu-

ally get 2-dimensional, 3-dimensional and 4-dimensional cubes {s60, s62}, {s60, s62, s65}



102 Conditional Cube Testers for Grain-128a of Reduced KSA Rounds

and {s60, s62, s65, s66} respectively, from the 1-dimensional cube. Then we get two 5-

dimensional cubes {s60, s62, s63, s65, s66} and {s60, s62, s64, s65, s66}. Further, the same

6-dimensional cube {s60, s62, s63, s64, s65, s66} is obtained by extending both the 5-

dimensional cubes. Then by extending the 6-dimensional cube, a 7-dimensional cube

{s34, s60, s62, s63, s64, s65, s66} is obtained. The selection of cube with satisfying rounds

are presented in Table 4.13.

Table 4.13: Cube selection for Grain-128

Cube Round

Maximum Maximum Maximum

last α last zero initial zero

{s60, s62} 152 149 103

{s60, s62, s65} 182 161 152

{s60, s62, s65, s66} 180 177 157

{s60, s62, s64, s65, s66} 188 184 168

{s60, s62, s63, s64, s65, s66} 199 184 184

{s34, s60, s62, s63, s64, s65, s66} 201 187 197

For the 7-dimensional cube, 20 IV bits and 19 key bits are fixed. Then per-

forming the experiment for 229 samples (which is a sufficient number of samples)

provides a significant bias in 207 and 235 KSA rounds of Grain-128 in the single

key and the weak key setup, respectively. The details of the attack are presented

in Table 4.14. From a practical attack perspective, we have experimented using our

best cube {s34, s60, s62, s63, s64, s65, s66} on a random key with 229 IV samples. We

performed this experiment for 200 random keys in both setups. We found bias for 4

keys at 207 KSA round of Grain-128 in single key setup and for 197 keys at 235 KSA

round of Grain-128 in weak key setup. This result hints that there may exist a bias

in Grain-128 of 207 KSA round for a significant number of keys in both setups.
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Table 4.14: Attacks on Grain-128

Attack Type Attack Name Cube Round Pr(ps(I) = 1) Time

dimension complexity

Single key Cube tester 6 205 0.498 228.22

Cube tester 7 207 0.4998 235.86

Weak key Cube tester 6 229 0.4998 234.22

Cube tester 7 235 0.4997 234.69

4.5 Comparison

In this section, the comparisons of our results with the previous attacks on Grain-128a

are presented.

Single key setup: In this setup, we got distinguishers for 186 and 191 rounds using

4-dimensional and 5-dimensional cubes respectively (see Table 4.10). The comparisons

of our attack with other existing attacks on Grain-128a in the single key setup are

presented below.

� Lehmann et al. [58] used 33-dimensional cubes to get a distinguisher at 177 KSA

round.

� The papers [50] (conditional differential attack), [60, 61] (chosen IV statistical

attacks) have presented attacks on Grain-128a of KSA rounds 169,169,171 using

1,22,25-dimensional difference vector or cube respectively.

� Recently a fast correlation attack [62] is proposed to cryptanalyse Grain-128a

of the full KSA round (i.e., 256). The time complexity of this attack is 2115.4,

which is yet to be practical. The time complexity of our distinguishing attack (at

reduced KSA round 191) is 233.86, which is practical. Therefore, our attack is on

the reduced KSA round (which is highest so far) with practical time complexity,
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whereas the attack in [62] is on the full KSA round with non-practical time

complexity.

Weak key setup: In this setup, we could find a bias at 201 KSA round using a

5-dimensional cube. The comparisons of our attack with other existing attacks on

Grain-128a in the weak key setup are presented below.

� Lehmann et al. [58] used 6-dimensional cubes to get a distinguisher at 189 KSA

round.

� Ma et al. [50] proposed a conditional differential attack on Grain-128a of KSA

round 195 using a 1-dimensional difference vector.

� Karlsson et al. [59] used a maximum degree monomial signature technique to

propose a nonrandomness detector on Grain-128a of 203 KSA round. This

attack uses a 38-dimensional cube on both key and IV variables. Since the

nonrandomness detector involves key variables in the cube, it is a weaker attack

than the distinguishing attack in the weak key setup.

The numeric comparisons in the single key and the weak key setups are presented in

Table 4.1.

Similarly, in the single key setup, we could find a bias for Grain-128 of 205 and

207 KSA rounds by using the cubes of dimension 6 and 7 respectively. In the earlier

attacks, we have the following.

� The cube testers presented in [58, 63, 64] can distinguish Grain-128 of KSA

rounds 207,236,237 and 256 using cubes of dimension 12,33,40 and 50 respec-

tively.

� A dynamic cube attack [65] leads to attack Grain-128 of 207 and 250 KSA

rounds using 19-dimensional and 37-dimensional cubes respectively.

� In a conditional differential attack [66], Grain-128 is being attacked for 215 KSA

round using 13 difference vector bits.
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Although we could attack till 207 KSA round of Grain-128 using our technique, the

cube’s dimension is 7, which is very small compared to the earlier results.

In the weak key setup, we could distinguish Grain-128 of 235 KSA round by

using 7-dimensional cube. The nonrandomness detector presented in [59] can find

nonrandomness in Grain-128 of full KSA round by using a 25-dimensional cube of

key and IV bits. However, the nonrandomness detector attack is weaker as its cube

involves key bits. The detailed comparisons for both setups are presented in Table 4.2.

4.6 Conclusion

In this chapter, we used the maximum last α technique combining with maximum

last zero and maximum initial zero techniques to find a good cube for a cube tester on

the Grain-like stream ciphers. Using the technique, we presented some distinguishers

on Grain-128a at higher KSA rounds for both single and weak key setups. We get a

distinguisher for Grain-128a of 191 KSA round using a 6-dimensional cube in a single

key setup. In weak key setup, we get distinguishers for Grain-128a of 189,198 and

201 KSA rounds by using 6-dimensional, 5-dimensional, and another 5- dimensional

cubes, respectively. The dimension of the cubes is lesser than the previous results. As

Grain-128AEAD inherits KSA (without the authentication initialization) and encryp-

tion modules of Grain-128a, our attack is too applicable to Grain-128AEAD with no

authentication initialization. We also studied our technique over the cipher Grain-128

to check its validity, and it returns good results.





Chapter 5

Time-Memory-Data Trade-off

(TMDTO) Attack by using state

bit recovery attack

5.1 Motivation

The state bit recovery of a cipher plays a crucial role in cryptanalysis. From the

recovered state, the following keystream bits can be generated without knowing the

key of the cipher. Moreover, since some ciphers’ state update function is invertible,

the initial state of such ciphers can be recovered from any of its later internal states.

In this case, the state recovery leads to a key recovery attack. Recent ciphers are

designed in such a way that it is challenging to recover a large number of its internal

state bits without fixing a large number of state bits using a known-plaintext attack.

The challenge is to recover many state bits of a cipher from some known keystream

bits by fixing fewer state bits. Some papers are available to recover the state bits

of a particular cipher by carefully observing its internal structure [20, 67–70]. The

proposal of an algorithm to recover state bits of a class of ciphers by fixing an optimal
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number of state bits is an essential problem in the study of cryptanalysis.

If a state of n bits of a cipher can be recovered by guessing n−l bits with the knowl-

edge of some initial keystream bits, the sampling resistance of the cipher is defined to

be R = 2−l. For example, the sampling resistance of Grain-v1 is at most 2−18 [71]. The

sampling resistance can be used for TMDTO attack as a BSW-sampling technique

which is used to cryptanalyse many stream ciphers [20, 67–74]. Having some pattern

of data, i.e., keystream, some state bits of the stream cipher can be recovered. Further,

imposing conditions on some state bits increases the number of recovering state bits.

Therefore, having these conditions on some state bits, the BSW-sampling attack can

further be improved. This attack is known as conditional BSW-sampling TMDTO

attack or simply conditional TMDTO attack. Several papers have used this technique

to analyze stream ciphers. In the first paragraph, we discussed that some state bits

are recovered from some known keystream bits and fixing some state bits in a state bit

recovery attack. Therefore, the state bit recovery attack promotes to implementation

of conditional TMDTO attack. As the number of fixing bits increases, the online time

complexity (T ) and data complexity (D) (see Equation 5.9) are increased, the number

of fixing bits needs to be decreased.

5.1.1 Our Contribution

Conditional BSW-sampling is being used to analyze FSR-based stream ciphers like

Grain-v1 [4] and Lizard [13]. For this attack, it is possible to recover some state

bits by fixing some other state bits from known specific keystream bits. A higher

number of recovering bits and a lower number of fixing bits can improve the attack

complexities. There is no algorithm available to find the state bits which need to be

recovered and fixed. In this chapter, for the first time, we present a deterministic

algorithm for this purpose. The algorithm recovers the same number of state bits

of any FSR-based cipher with possibly an optimal number of fixing bits from some

known consecutive keystream bits. We implement the algorithm on two famous FSR-
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based ciphers, Lizard and Grain-128a (without authentication mode). Also, we have

used the classical method to recover the state bits of Grain-v1. We get the following

results.

- Grain-v1: 33 state bits are recovered from the same number of keystream bits

by fixing 45 state bits.

- Lizard: 10,11, . . . ,24 state bits are recovered from the same number of keystream

bits by fixing 10,12,14,16,18,20,22,24,38,40,42,44,46,48,50 state bits respec-

tively.

- Grain-128a: 35,48 state bits are recovered from 35,48 keystream bits by fix-

ing 34,54 state bits respectively. This is the first result on this cipher in this

direction.

These recovering and fixing state bits from specific keystream bits are used to imple-

ment a conditional BSW-sampling TMDTO attack. We have followed the strategy

implemented by Jiao et al. [68], and Mihalijevic et al. [69] for Grain-v1. Then we pre-

sented the TMDTO curve using the number of fixing and recovering bits in Theorem 8.

Looking into the practicality, we analyse our results on three different conditions on

TMDTO parameters T,M,D as follows.

1. D < T =M , which is considered by looking into the practicality of the availability

of data D.

2. T = 2−f−2rD2,M = D, which satisfies the lower bound for T in terms of D, i.e.,

to have the least time complexity in terms of the data complexity.

3. D = T =M , minimizes max(D,T,M). Maitra et al. [70] first used this criterion

on Lizard with an additional condition, i.e., T ′ = D′2. Here D′ and T ′ are time

and data in reduced space.
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The previous result by Maitra et al. [70] achieved the complexity T = M = D = 254.

We improved this result concerning all parameters, which are presented in Table 5.16.

However, the best results chosen from our cases are as follows.

1. T = M = 254,D = 248 where the data is reduced by 64 times than Maitra et

al. [70].

2. T = 252,M = D = 253 or, T =M = 253,D = 252 where the result on minimization

of max{T,M,D} is improved.

3. T = 250,M = D = 254, where the time complexity is reduced by 16 times than

Maitra et al. [70].

4. T = 242,M = D = 260 which reduces time complexity by 218 times than the

overall complexity claimed by Hamann et al. [13].

Using the criteria, we can recover Lizard’s whole state bits with the best com-

plexities until now. Our TMDTO attack on Grain-v1 and Grain-128a provides better

complexities than previously known results.

5.1.2 Organisation

The remaining part of this chapter is divided into four sections. Section 5.2 is di-

vided into two subsections where Subsection 5.2.1 discusses the analysis of h function

of Grain-v1, and the guess and determine strategy is discussed in Subsection 5.2.2.

Section 5.3 presents the state recovery algorithm in two different subsections. Subsec-

tion 5.3.1 presents the basic idea of the recovery technique of any FSR-based stream

cipher, and Subsection 5.3.2 presents the algorithm to recover state bits. The algo-

rithm is implemented on stream ciphers Lizard and Grain-128a along with results in

Subsection 5.3.3.1 and 5.3.3.2, respectively. Section 5.4 discusses TMDTO attack us-

ing state recovery and is divided by five subsections. The conditional TMDTO attack
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is discussed in Subsection 5.4.1. Our Contribution regarding TMDTO curve is ex-

plained in Subsection 5.4.2. The conditional TMDTO attacks on Lizard, Grain-128a

and Grain-v1 are presented in Subsection 5.4.3, Subsection 5.4.4 and Subection 5.4.5,

respectively. Finally, in Section 5.5, we conclude our work.

5.2 Bit recovery of Grain-v1 by observing alge-

braic structure

In this section, we are discussing the recovery of the internal state of Grain-v1 at

a particular clock. A study on the subfunctions (i.e., fixing some variables of the

function) of the nonlinear function h is presented in the following subsection. The

study is useful for the state recovery of Grain-v1.

5.2.1 Analysis of the Non-linear Filter Function of Grain-v1

The nonlinear function h (Equation 2.4) is a 3 degree polynomial on 5 variables. The

algebraic normal form (ANF) of h contains only 8 nonlinear terms. The sparseness of

nonlinear terms in the ANF helps to find the affine or constant subfunctions by fixing

a few variables. It is observed that all 3-degree monomials and one 2-degree monomial

contain the variable bit st+46. Therefore, fixing st+46 = 0, h can be made a quadratic

function with 2 nonlinear terms. In addition to this fixing, if we fix st+64 = 0 or, 1,

we will have a linear function independent of the variable st+3 or, bt+63 respectively.

Moreover, exploiting the normality order of h (i.e., 2), we can have a constant function

by fixing 3 variables. We listed the observations on the ANF of h as follows.

Observation 1. The observations on the ANF of h are:

1. h(st+3, st+25,0, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+64bt+63;

1.1. h(st+3, st+25,0,1, bt+63) = st+3 + st+25;
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1.1.1. h(st+3,1,0,1, bt+63) = 1 + st+3;

1.2. h(st+3, st+25,0,0, bt+63) = st+25 + bt+63 ;

2. h(1,0, st+46,1, bt+63) = 1;

3. h(st+3,0, st+46,0,0) = 0;

4. h(st+3,0,1, st+64, bt+63) = st+64 + bt+63 + st+3bt+63.

4.1. h(1,0,1, st+64, bt+63) = st+64.

By fixing some state bits, we use these observations to extract relations (mostly

linear) among the state bits. These relations help to recover some state bits by

guessing the rest of the state bits. We use the relations in observation in Item 1 for

17 − 20 rounds, in Item 1.1. for 3,4,11 rounds, in Item 1.1.1. for 5 − 10 rounds, in

Item 1.2. for 0 − 2,16 rounds, in Item 2 for 12 − 14 rounds, in Item 3 for 15 round, in

Item 4 for 21 − 26 rounds and in Item 4.1. for 27 − 32 rounds of Grain-v1. Table 5.1

lists the observations of the relations of state bits in terms of the subfunctions of h

in the order of round. The state bits in brackets are previously fixed with the same

value, and the bits in bold letters are having a position greater than 79, which can be

expressed in terms of recurrence as defined in Equation 2.2 and Equation 2.3.

5.2.2 Guess and Determine Strategy

Exploiting the relations among the state bits presented in Table 5.1, the guess and

determine strategy is used to recover 33 state bits from the first 33 keystream bits of

Grain-v1. Having 33 known keystream bits (zt,0 ≤ t ≤ 32), appropriately replacing the

h function in Equation 2.5 by the equation presented in the Table 5.1, we will have a

system of 33 equations. For this process, 45 state bits (presented in the 3rd column

in Table 5.1) need to be fixed. If the system of equations is linearly independent, it

is possible to recover 33 state bits by guessing the rest (i.e., 160 − (45 + 33) = 82) of

the state bits.
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Table 5.1: Relations of state bits in Grain-v1 as the subfunctions of h

Round(t) Observation Fixing Bit h function

0 − 2 1.2. st+46 = 0, st+64 = 0 st+25 + bt+63

3 − 4 1.1. st+46 = 0, st+64 = 1 st+3 + st+25

5 − 10 1.1.1. st+25 = 1, st+46 = 0, st+64 = 1 1 + st+3

11 1.1. st+46 = 0, st+64 = 1 st+3 + st+25

12 − 14 2 st+3 = 1, st+25 = 0, st+64 = 1 1
15 3 st+25 = 0, st+64 = 0, bt+63 = 0 0
16 1.2. st+46 = 0, st+64 = 0 st+25 + bt+63

17 1 st+46 = 0 st+25 + bt+63 + st+3st+64
+st+64bt+63

18 − 20 1 (st+46 = 0) st+25 + bt+63 + st+3st+64
+st+64bt+63

21 − 26 4 (st+25 = 0, st+46 = 1) st+64 + bt+63 + st+3bt+63
27 − 32 4.1. (st+3 = 1, st+25 = 0, st+46 = 1) st+64

Since some equations are nonlinear and nonlinear recurrence relations represent

some state bits, choosing appropriate recovery bits and guessing bits is not obvious.

As the gap between the terms bt+10 and bt+31 in Equation 2.5 is maximum and the

terms are involved linearly, we consider those bits as recovery bits. The recovery

process of the state bits is presented below. The detailed order of evaluation and

evaluation process is presented in Table 5.4 and Table 5.5.

R1. For 0 ≤ t ≤ 2, (i.e., for first 3 rounds), we use the observation(Item 1.2.) for h to

get a linear equation on state bits for zt by fixing two state bits as mentioned

in Table 5.1. Here, each linear equation contains 9 terms as bt+1 + bt+2 + bt+4 +

bt+10 + bt+31 + bt+43 + bt+56 + st+25 + bt+63 = zt for 0 ≤ t ≤ 2. Now, we can recover

three state bits bt+10,0 ≤ t ≤ 2 by guessing remaining state bits in the equations.

R2. For t = 3,4,11, the observation(Item 1.1.) for h is used to get a linear equation

on state bits for zt by fixing two state bits as mentioned in Table 5.1. Here,

each linear equation contains 9 terms as bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 +
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bt+56 + st+3 + st+25 = zt for t = 3,4,11. Similarly, three state bits bt+10, t = 3,4,11

are recovered by guessing remaining state bits in the equations.

R3. For 5 ≤ t ≤ 10, the observation(Item 1.1.1.) for h is used to get a linear equation

on state bits for zt by fixing three state bits as mentioned in Table 5.1. Here,

each linear equation contains 8 terms as bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 +

bt+56+st+3+1 = zt for 5 ≤ t ≤ 10. Here, Six state bits bt+10,5 ≤ t ≤ 10 are recovered

by guessing remaining state bits in the equations.

R4. For 12 ≤ t ≤ 14, the observation(Item 2) for h is used to get a linear equation on

state bits for zt by fixing three state bits as mentioned in Table 5.1. Here, each

linear equation contains 7 terms as bt+1+bt+2+bt+4+bt+10+bt+31+bt+43+bt+56+1 = zt
for 12 ≤ t ≤ 14. Here, three state bits bt+10,12 ≤ t ≤ 14 are recovered by guessing

remaining state bits in the equations.

R5. For t = 15, the observation(Item 3) for h is used to get a linear equation on

state bits for zt by fixing three state bits as mentioned in Table 5.1. The linear

equation contains 7 terms as bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 + bt+56 = zt for

t = 15. Here, the state bit bt+10, t = 15 is recovered by guessing remaining state

bits in the equation.

It can be observed that for t ≥ 16, at least one term in fixing bits or in h function

(written in the bold letter in Table 5.1) which is expressed as a linear or nonlinear

combination of other state bits. For example, at t = 16, we need to fix st+16 = s80 =

s0 + s13 + s23 + s38 + s51 + s62 = 0(see Equation 2.2). Therefore, the involved bits need

to be considered for fixing or guessing bits.

Table 5.2 and Table 5.3 contain the involved bits in the linear update state relations

and the nonlinear update state relations respectively.

R6. For t = 16, the observation(Item 1.2.) for h is used to get a linear equation on

state bits for zt by fixing two state bits s62 = 0 and s0 = s13 + s23 + s38 + s51 + s62
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Table 5.2: The state bits involved to calculate the linear feedback bits

Feedback State bits used Feedback State bits used
Bits Bits

s80 s0, s13, s23, s38, s51, s62 s81 s1, s14, s24, s39, s52, s63

s82 s2, s15, s25, s40, s53, s64 s83 s3, s16, s26, s41, s54, s65

s84 s4, s17, s27, s42, s55, s66 s85 s5, s18, s28, s43, s56, s67

s86 s6, s19, s29, s44, s57, s68 s87 s7, s20, s30, s45, s58, s69

s88 s8, s21, s31, s46, s59, s70 s89 s9, s22, s32, s47, s60, s71

s90 s10, s23, s33, s48, s61, s72 s91 s11, s24, s34, s49, s62, s73

s92 s12, s25, s35, s50, s63, s74 s93 s13, s26, s36, s51, s64, s75

s94 s14, s27, s37, s52, s65, s76 s95 s15, s28, s38, s53, s66, s77

s96 s16, s29, s39, s54, s67, s78 s97 s17, s30, s40, s55, s68, s79

as mentioned in Table 5.1. The linear equation contains 9 terms as bt+1 + bt+2 +

bt+4 + bt+10 + bt+31 + bt+43 + bt+56 + st+25 + bt+63 = zt for t = 16. Here, the state bit

bt+63, t = 16 is recovered by guessing remaining state bits in the equation.

The non-linear state update relations are involved for some terms available in the h

function from this step onward.

Table 5.3: The state bits involved to calculate the non-linear feedback bits

Feedback State bits used Feedback State bits used
Bits Bits

b80 b0, b9, b14, b15, b21, b28, b33 b81 b1, b10, b15, b16, b22, b29, b34

b37, b45, b52, b60, b62, b63, s0 b38, b46, b53, b61, b63, b64, s1

b82 b2, b11, b16, b17, b23, b30, b35 b83 b3, b12, b17, b18, b24, b31, b36

b39, b47, b54, b62, b64, b65, s2 b40, b48, b55, b63, b65, b66, s3

b84 b4, b13, b18, b19, b25, b32, b38 b85 b5, b14, b19, b20, b26, b33, b39

b41, b49, b56, b64, b66, b67, s4 b42, b50, b57, b65, b67, b68, s5

b86 b6, b15, b20, b21, b27, b34, b40 b87 b7, b16, b21, b22, b28, b35, b41

b43, b51, b58, b66, b68, b69, s6 b44, b52, b59, b67, b69, b70, s7

b88 b8, b17, b22, b23, b29, b36, b42 b89 b9, b18, b23, b24, b30, b37, b43

b45, b53, b60, b68, b70, b71, s8 b46, b54, b61, b69, b71, b72, s9



116 Time-Memory-Data Trade-off (TMDTO) Attack by using state bit recovery attack

R7. For 27 ≤ t ≤ 32, the observation(Item 4.1.) for h is used to get equations on

state bits for zt by fixing three state bits as mentioned in Table 5.1 which

are already fixed in previous steps. Most of the state bits involved in the

equations are already guessed or fixed in earlier steps. In this step, six state

bits b28, b29, b30, b73, b74, b75 can be recovered by guessing two bits s24 for t = 27

and b27 for t = 30. We brought these rounds before some previous rounds (for

17 ≤ t ≤ 26), because the recovering bits b73, b74, b75 are used for the equations in

the rounds t = 17,18,19 respectively.

Further, in this step, we recover bits from the equations of the rounds in the

order of t = 29,28,27,30,31,32 (see Table 5.4 and Table 5.5). b30, b29, b28 are

recovered in this order, because b30 and b29 are required for the recovery of b29

and b28 respectively and b28 is required for the recovery of b74.

R8. For 17 ≤ t ≤ 20, the observation(Item 1) for h is used to get non-linear equations

on state bits for zt by fixing a state bit st+46 = 0 as mentioned in Table 5.1.

However, st+46 = 0 for 18 ≤ t ≤ 20 is already fixed in step R1. From the equation

and update relations, the state bit st+25,17 ≤ t ≤ 20 can be recovered by guessing

the remaining state bits in the equation.

R9. For 21 ≤ t ≤ 26, from the non-linear equation of h observations(Item 4), six

state bits s18 − s19 and s58 − s61 are recovered as the linear bits in the respective

equations. In this step the b77, b78 bits are guessed for t = 21,22 respectively.

From the above process, we recover 33 state bits from known 33 consecutive keystream

bits. To recover the whole internal state, we need to fix 45 state bits (out of which 44

bits as a constant value and one bit as a linear equation of state bits) and guessing

the rest 82 bits. For this purpose, we exploited 33 equations. The detailed recovery

process of bits with the fixing, recovering and guessing bits are presented in Table 5.4

and Table 5.5. The rows of the Table are shown in order of recovery. The terms in

brackets are previously assigned (i.e., fixing or, guessing or, recovering).
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Table 5.4: Recovery of state bits

Round Constrains Key Recovery equation Guessing bits Recover-
(t) Bits(zt) ing bit

0 s46 = 0, s64 = 0 z0 b10 = z0 + b1 + b2 + b4 b1, b2, b4, b31, b43, b10

b31 + b43 + b56 + s25 + b63 b56, s25, b63

1 s47 = 0, s65 = 0 z1 b11 = z1 + b2 + b3 + b5 (b2), b3, b5, b32, b11

+b32 + b44 + b57 + s26 + b64 b44, b57, s26, b64

2 s48 = 0, s66 = 0 z2 b12 = z2 + b3 + b4 + b6 (b3, b4), b6, b33, b12

+b33 + b45 + b58 + s27 + b65 b45, b58, s27, b65

3 s49 = 0, s67 = 1 z3 b13 = z3 + b4 + b5 + b7 (b4, b5), b7, b34, b13

+b34 + b46 + b59 + s6 + s28 b46, b59, s6, s28

4 s50 = 0, s68 = 1 z4 b14 = z4 + b5 + b6 + b8 (b5, b6), b8, b35, b14

+b35 + b47 + b60 + s7 + s29 b47, b60, s7, s29

5 s51 = 0, s69 = 1 z5 b15 = z5 + b6 + b7 + b9 (b6, b7), b9, b36, b15

s30 = 1 +b36 + b48 + b61 + s8 + 1 b48, b61, s8
6 s52 = 0, s70 = 1 z6 b16 = z6 + b7 + b8 + b10 (b7, b8, b10), b37, b16

s31 = 1 +b37 + b49 + b62 + s9 + 1 b49, b62, s9
7 s53 = 0, s71 = 1 z7 b17 = z7 + b8 + b9 + b11+ (b8, b9, b11), b38, b17

s32 = 1 b38 + b50 + b63 + s10 + 1 b50, (b63), s10

8 s54 = 0, s72 = 1 z8 b18 = z8 + b9 + b10 + b12+ (b9, b10, b12), b39, b18

s33 = 1 b39 + b51 + b64 + s11 + 1 b51, (b64), s11

9 s55 = 0, s73 = 1 z9 b19 = z9 + b10 + b11 + b13+ (b10, b11, b13), b40, b19

s34 = 1 b40 + b52 + b65 + s12 + 1 b52, (b65), s12

10 s56 = 0, s74 = 1 z10 b20 = z10 + b11 + b12 + b14+ (b11, b12, b14), b41, b20

s35 = 1 b41 + b53 + b66 + s13 + 1 b53, b66, s13

11 s57 = 0, s75 = 1 z11 b21 = z11 + b12 + b13 + b15+ (b12, b13, b15), b42, b21

b42 + b54 + b67 + s14 + s36 b54, b67, s14, s36

12 s15 = 1, s76 = 1 z12 b22 = z12 + b13 + b14+ (b13, b14, b16, b43), b22

s37 = 0 b16 + b43 + b55 + b68 + 1 b55, b68

13 s16 = 1, s77 = 1 z13 b23 = z13 + b14 + b15+ (b14, b15, b17, b44, b23

s38 = 0 b17 + b44 + b56 + b69 + 1 b56), b69

14 s17 = 1, s78 = 1 z14 b24 = z14 + b15 + b16+ (b15, b16, b18, b45, b24

s39 = 0 b18 + b45 + b57 + b70 + 1 b57), b70

15 b78 = 0, s79 = 0 z15 b25 = z15 + b16 + b17+ (b16, b17, b19, b46, b25

s40 = 0 b19 + b46 + b58 + b71 b58), b71

16 s62 = 0 z16 b79 = z16 + b17 + b18+ (b17, b18, b20, b47, b79

s0 = s13 + s38 b20 + b26 + b47 + b59 b59, s13, s38.s51),
+s23 + s51 +b72 + s41 b26, b72, s23, s41

29 (s75 = 1, s54 = 0 z29 b30 = z29 + b31 + b33+ (b31, b33, b60, b72 b30

s32 = 1) b39 + b60 + b72 + b85 + s93 b39)

Compared with the previous works, we can recover 33 state bits by fixing 45

state bits and guessing the rest 82 bits. In earlier results, it is possible to recover

18,28,31,32 bits fixing 54,51,32,0 state bits and guessing the rest of state bits, re-

spectively. Hence, our result improves the conditional sampling resistance to 2−33.

The comparison is presented in Table 5.6.
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Table 5.5: Recovery of state bits continued

Round Constrains Key Recovery equation Guessing bits Recov-
(t) Bits(zt) ering bit

28 (s74 = 1, s53 = 0 z28 b29 = z28 + b30 + b32 + b38+ (b29, b30, b32, b59, b29

s31 = 1), s63 = 0 b59 + b71 + b84 + s92 b71, b38)
27 (s73 = 1 z27 b28 = z27 + b29 + b31 + b37+ (b28, b29, b31, b58, b28

s52 = 0, s30 = 1) b58 + b70 + b83 + s91 b70, b37), s24

30 (s76 = 1 z30 b73 = z30 + b31 + b32 + b34+ (b31, b32, b34, b61, b73

s55 = 0, s33 = 1) b40 + b61 + b86 + s94 b40), b27

17 (s63 = 0) z17 s42 = z17 + b18 + b19+ (b18, b19, b21, b48, s42

b21 + b48 + b60 + b27+ b60, b73)
+b73 + h(s20, s81, b80) s1, s20, (b28)

31 (s77 = 1 z31 b74 = z31 + b32 + b33+ (b32, b33, b35, b62, b74

s56 = 0, s34 = 1) b35 + b41 + b62 + b87 + s95 b41, b28)
18 (s64 = 0) z18 s43 = z18 + b19 + b20+ (b19, b20, b22, b49, s43

b22 + b28 + b49 + b61+ b61, b74)
b74 + h(s21, s82, b81) s2, s21, (b29)

32 (s78 = 1 z32 b75 = z32 + b33 + b34+ (b33, b34, b36, b63, b75

s57 = 0, s35 = 1) b36 + b42 + b63 + b88 + s96 b42, b29)
19 (s65 = 0) z19 s44 = z19 + b20 + b21+ (b20, b21, b23, b50, s44

b23 + b29 + b50 + b62+ b62, b75)
b75 + h(s22, s83, b82) s3, s22, (b30)

20 (s66 = 0) z20 s45 = z20 + b21 + b22+ (b21, b22, b24, b51, s45

b24 + b30 + b51 + b63+ b63), b76, s4, (s42)
b76 + h(s23, s84, b83)

21 (s67 = 1, s46 = 0) z21 s56 = z21 + b22 + b23 + b25 + b31 (b22, b23, b25, b52, b64 s18

+b52 + b64 + b77 + h(s85, b84) , b31), b77, s5, (s43)
22 (s68 = 1, s47 = 0) z22 s57 = z22 + b23 + b24 + b26 + b32 (b23, b24, b26, b53, s19

+b53 + b65 + b78 + h(s86, b85) b65, b32, s44), b78

23 (s69 = 1, s48 = 0) z23 s58 = z23 + b24 + b25 + b27 + b33 (b24, b25, b27, b54, s58

+b54 + b66 + b79 + h(s87, b86) b66, b33, b79, s45)
24 (s70 = 1, s49 = 0) z24 s59 = z24 + b25 + b26 + b28 + b34 (b25, b26, b28, b55, s59

+b55 + b67 + b80 + h(s88, b87) b67, b34, b28)
25 (s71 = 1, s50 = 0) z25 s60 = z25 + b26 + b27 + b29 + b35 (b26, b27, b29, b56, s60

+b56 + b68 + b81 + h(s89, b88) b68, b35, b29)
26 (s72 = 1, s51 = 0) z26 s61 = z26 + b27 + b28 + b30 + b36 (b27, b28, b30, b57, s61

+b57 + b69 + b82 + h(s90, b89) b69, b36, b30)

Table 5.6: Comparison of our result with previous results

References Fixing Recovering Required Guessing
bits bits Keystream Bits bits

Bjørstad [71] 0 21 21 139
Mihaljević et al. [75] 54 18 18 88
Jiao et al. [68] 51 28 28 81
Mihaljević et al. [69] 32 31 31 97
Siddhanti et al. [76] 0 32 36 96
Our work 45 33 33 82
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5.3 State bit recovery of FSR based stream ciphers

We present a method to recover some state bits of an FSR-based stream cipher by

fixing and guessing the remaining state bits. The technique works for the stream

cipher Lizard and Grain-128a.

5.3.1 General idea of state bit recovery

This subsection presents a general idea of state bit recovery of an NFSR based stream

cipher. In this process, we recover some consecutive state bits of one FSR (NFSR or

LFSR). Then we possibly increase the number of recovering state bits by recovering

another set of consecutive state bits. We consider the following notations on the

primitives of an FSR based stream cipher.

- l : the length of the state of the FSR;

- A0,A1, . . . ,Al−1 : the state bits at 0-th clock;

- g : the feedback function of the FSR;

- z : the output/filter function in the stream cipher;

- zt : the output bit at the t-th clock.

For the explanation purpose, we use the NFSR2 of Lizard cipher in this subsection.

The state update formula of the NFSR and the output function of Lizard are presented

in Equation 2.13 and Equations 2.14 respectively. In this case, l = 90.

The output zt is dependent on a subset of state bits. Some of these state bits are

linear, i.e., they are not involved in any nonlinear terms. In the example, B5+t,B7+t,

B11+t,B30+t, B40+t,B45+t,B54+t,B71+t are linear state bits of NFSR2 in the output func-

tion zt(see Equations 2.15-2.18). Therefore, knowing zt and guessing some state bits

involved in nonlinear terms, a linear equation on these linear bits can be obtained. As
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a result, knowing k bits z0, z1, . . . , zk−1, one can have a system of equations over the

state bits where a subset of state bits (say, m many) are linear and the rest l−m state

bits are not linear. Therefore, by guessing the nonlinear state bits and state bits from

other FSRs in the system of equations, one can have a system of k linear equations

on m variables. Then it is possible to recover “the rank of the system” many state

bits. Hence, the aim is to

- generate a system of linear equations having rank as high as possible by guessing

and fixing as few as possible state bits;

If we continue increasing k, the number of linear state bits (m) gets decreased after

a stage. This happens because some nonlinear terms can arise involving some of the

linear state bits occurring for a lower value of k. In the example, B45 is a linear

term for k = 0. Then at k = 1, z1 involves B45 in the nonlinear term B45B77(see

Equation 2.16). As a result, B45 is no more a linear term in the system for k > 0.

However, the linearity of B45 can be restored by fixing B77 as 0 or 1. Hence, if there is

a nonlinear term containing the state variable, we fix one of the other state bit(s) as 0

to restore the linearity of the state variable in the system. Further, if there are some

variables (x) involved in a quadratic term (like xy), then one can impose a condition

y = 1 to get a new linear state bit x.

Therefore, our main purpose is to find out a set of fixing state bits such that we

can have more linear state bits. This can be achieved by the above discussed method.

As a result, three sets of state bits are generated from the set of equations zt,0 ≤ t < k.

That is,

- a set of fixing state bits C,

- a set of guessing state bits G and

- a set of recovering state bits R from the set of linear bits.
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As a summary, we need to partition the state bits into C,G and R such that after

fixing the state bits from C, we would have a set of equations of the form

MRT + F (G,R) = ZT (5.1)

where M is a k×k nonsingular lower triangular matrix (i.e., no zero entry in diagonal);

RT = (xi0 , xi1 , . . . , xik−1
)T is the transpose of the ordered state variables in R in a vector

form;

F (G,R) = (f0, f1, . . . , fk−1)T where fj is a Boolean function on the state variables

G ∪ {xi0 , xi1 , . . . , xij−1
} for 0 ≤ j < k; and

ZT = (z0, z1, . . . , zk−1)T .

The Equation 5.1 can further be written as

RT = NRT + F (G,R) +ZT (5.2)

where N is a k ×k lower triangular matrix with diagonal entries 0, i.e., M = N + I. In

the case of Lizard, the Equation 5.1 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B40

B41

B42

B43

B44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f0

f1

f2

f3

f4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z0

z1

z2

z3

z4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where ft = Lt +Qt + Tt + T̂t +B40+t +B2+tB28+tB41+tB65+t

+B1+tB19+tB27+tB43+tB57+tB66+tB78+t, 0 ≤ t ≤ 4 (see Equation 2.14).

5.3.2 An algorithm for state bit recovery

In this subsection, we present a general algorithm to recover a number of state bits

of an FSR-based stream cipher. Let denote the ordered (ascending on the index of
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state bits) set of linear bits in the output function of the FSR-based stream cipher

by L. In the case of NFSR2 of Lizard, L = {B5,B7,B11,B30,B40,B45,B54,B71} (see

Equations 2.15-2.18). Knowing zt, one of these linear bits can be expressed as the

other state bits present in the equation. In case of NFSR2 of Lizard, we can write

B11+t = zt +B5+t +B7+t +B30+t +B40+t +B45+t +B54+t +B71+t (5.3)

+B4+tB21+t +B9+tB52+t +B18+tB37+t +B44+tB76+t + Tt + T̂t

For every t ≥ 0, the state bit B11+t in the left-hand side (LHS) of the equation is

expressed in terms of some state bits which are present in the right-hand side (RHS)

of the equation. The LHS of the equation can be any other state bit in L, but we

choose the one which is farthest from the next linear bit. The state bit B11+t can be

recovered by fixing some state bits and guessing the remaining state bits present in

the RHS of the equation.

The number of recovering state bits can be increased by considering a system of

more equations. A system of k equations on the state bits can be generated by varying

t from 0 to k − 1 for a k ≥ 1. This system of equations can be solved easily if for every

t,1 ≤ t < k the state bit in LHS of the equation (e.g., B11+t in our example) is not

involved in the RHS of any earlier equations, i.e., generated from zj for 0 ≤ j < t. Such

system of equations is of the form Equation 5.2. Such a system of equations can be

formed by

1. taking state bits in the LHS of equations between two consecutive linear state

bits in the list L (to avoid the presence of any LHS state bit as a linear bit in

the RHS of an equation) and

2. fixing a state bit (other than recovering bits) involved in nonlinear terms (to

avoid the presence of any LHS state bit in a nonlinear term in the RHS of an

equation).

In our example, B11 and B30 are two consecutive state bits in the ordered set L.
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We can express the bits B11+t for 0 ≤ t ≤ 18 to get a system of 19 equations. In this

case, no LHS state bits, i.e., B11+t for 0 ≤ t ≤ 18 is present as a linear bit in RHS of the

system. If we go for t = 19, the bit B11+t = B30 is present in the equation generated

for t = 0. Hence, we can not go for t > 18 for B11+t.

Using our technique, we can recover state bits between two linear state bits present

in the output function. Hence the interval between two linear state bits plays a crucial

role in our state recovery method. The linear intervals are made from the indices

of two consecutive linear bits in the output function of a cipher. In our example,

it may possible to recover the state bits B11,B12, . . . ,B29 as B11 and B30 are two

consecutive linear bits. In this case, the interval of indices of state bits between

two consecutive linear state bits B11 and B30, i.e., (11,29), is a linear interval. If

linear bits are not available in the output function of a cipher, then one tries to

make some nonlinear monomials as linear to follow our recovery process. We define

now sets of linear intervals of a stream cipher with the output function z and m

FSRs of length l1, l2, . . . , lm. Consider the state bits of a cipher with m FSRs are

Aji , 0 ≤ i < lj, 1 ≤ j ≤m. Also, Aji , i ≥ lj is considered as state update bit. Let

ij1, i
j
2, . . . , i

j
pj (in ascending order) be indices of the linear state bits of jth FSR in z,

where 1 ≤ j ≤m. The set of linear intervals of jth FSR of the stream cipher is defined

by

Ij = {(ij1, i
j
2 − 1), (ij2, i

j
3 − 1), . . . , (ijpj−1, i

j
pj
− 1), (ijpj , lj + i

j
1 − 1)}; (5.4)

The last interval in Ij is basically (ijpj , lj − 1) ∪ (lj, lj + ij1 − 1). We try to recover

the state bits with indices from each interval. We expect to recover a larger number

of state bits from the long intervals. The length of an interval (a, b) is defined by

len(a, b) = b − a + 1. If we have a system of equations of the form Equation 5.2 as we

discussed earlier, then the size of triangular matrix k ≤ max1≤j≤m max(a,b)∈Ij len(a, b).

If we have a system having more than max1≤j≤m max(a,b)∈Ij len(a, b) equations, then
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as per our method the matrix M can not be a lower triangular matrix.

Lemma 2. The maximum number of state bits that can be recovered in an FSR based

stream cipher with m FSRs using our technique is max1≤j≤m max(a,b)∈Ij len(a, b).

For the example purpose, let rename the state bits of Lizard as A1
i = Si,0 ≤ i < 31

for NFSR1 and A2
i = Bi,0 ≤ i < 90 for NFSR2.

Therefore, L = {A1
23,A

2
5,A

2
7,A

2
11,A

2
30,A

2
40,A

2
45,A

2
54,A

2
71}. The sets of linear intervals in

Lizard are I1 and I2, where

� I1 = {(23,31 + 22)}.

� I2 = {(5,6), (7,10), (11,29), (30,39), (40,44), (45,53), (54,70), (71,90 + 4)}

The length of above intervals are calculated as: len(23,31 + 22) = 31,len(5,6) =

2, len(7,10) = 4, len(11,29) = 19, len(30,39) = 10, len(40,44) = 5, len(45,53) = 9,

len(54,70) = 17, len(71,90 + 4) = 24. Using our technique, it is possible to recover at

most 31 state bits in Lizard.

Some state bits in between two linear bits in an interval may be involved in some

nonlinear terms of the output function z and the state update function g. As a result,

some LHS bits of the system are present in the nonlinear terms of RHS of equations. In

our example, B21+t is present in the output function zt as a nonlinear term B4+tB21+t.

The LHS bit at t = 10, i.e., B21, is present in a nonlinear term B4B21 in the equation

at t = 0. To eliminate B21 from the nonlinear term, the state bit B4 (which is not an

LHS state bit) can be fixed as 0. This way, the state bit B21 is restored as a linear

bit in the system. Hence, B21+t for 0 ≤ t ≤ 8 are present in the nonlinear terms in the

system of equation. To remove these terms from the system of equations, the state

bits B4+t,0 ≤ t ≤ 8 need to be fixed as 0.

It is needed to store all these state bits which are to be fixed (e.g., B4+t,0 ≤ t ≤ 8).

In our example, instead of collecting all 9 bits, it is enough to store the initial state

bit, i.e., B4 and the fixing length, i.e., 9. Hence, for every such state in the LHS of

the system which is involved in a nonlinear term, we need to collect
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1. the initial state bit of all such possible state bits to be fixed and

2. the fixing length of the initial state bit (which is denoted by fliz(a, b) later).

In this way, it is possible to get a system of equations of the form Equation 5.2. We

aim to form such a system of equations of k as high as possible with a smaller value

of ∣C ∣. Now we define a few notations.

- R be the set of all LHS state bits of the system which will be recovered. Note

that we already defined R as the set of all recovering bits. In our example,

R = {B11+t∣0 ≤ t ≤ 18}.

- a, b : a and b are the indices of the first and last bit of the continuous state bits

to be recovered. In our recovery technique, (a, b) should be inside of a linear

interval. We can choose a = 11, b = 25 which is the part of the linear interval

(11,29).

The state bits in R, which are involved in a nonlinear term of the system of equations,

can be recognized from the ANF of the output function z and update function g. Such

state bits are recognized from two situations.

- Situation I: Some state bits in R are involved in nonlinear terms of the output

function z. As discussed in the example, B21 is such a state bit, and B4 is the

corresponding state bit to be fixed as 0.

- Situation II: Some state bits in R appear by the update function g when a state

bit Ap is updated during 0 ≤ t ≤ b − a clocks. In this case, p ≥ l − (b − a) and Ap

needs to be present in the ANF of z. In our example of Lizard, B78 is present in

the nonlinear term B1B19B27B43B57B66B78 of z. The state bit B78+t is replaced

by the g when t = 12. As a result, some more nonlinear terms containing state

bits from R appear. In this situation removing all the nonlinear terms containing

state bits from R may require to fix lots of state bits. Therefore, we remove the

term containing B78+t, t ≥ 12 in z by fixing a state bit in the nonlinear term,
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i.e., a state bit from {B1+t,B19+t,B27+t,B43+t,B57+t,B66+t}. Therefore, we need

to collect B78 and the possible state bits {B1,B19,B27,B43,B57,B66} to be fixed.

We collect the state bits whose involvement in nonlinear terms of z creates a problem.

In the case of situation I, it is those Ad ∈ R which are part of a nonlinear term in z.

In situation II, it is those Ap, p ≥ l − (b − a) which are part of a nonlinear term in z.

Further, let b ≥ l − (b − a) and there is a state bit Aq in a nonlinear term in z such

that l − (b − a) ≤ q ≤ b. Such Aq is part of both Situation I and Situation II. To avoid

repetition, such state bits are considered in Situation I and not in Situation II. The

state bits Ap,max{l − (b − a), b + 1} ≤ p < l which are present in a nonlinear term of

z are considered in Situation II. Now we have the following definition to collect such

state bits Ad and Ap.

Definition 33. Given a function z on the state bits Ai,0 ≤ i < l and two integers

a, b (0 ≤ a ≤ b < l).

� Nonlinear index list in between the indices a, b for z is defined by

NLz(a, b) = {d ∶ a ≤ d ≤ b and Ad is present in a nonlinear term of z}.

� Updating nonlinear index list of two state bits with indices a, b for z is

defined by ULz(a, b) =

{p ∶ max{l − (b − a), b + 1} ≤ p < l, Ap is present in a nonlinear term of z}.

Now, we present a toy example of a NFSR based cipher in Example 5 to explain our

technique.

Example 5. Consider a stream cipher having one NFSR of length l = 20 with states

A0,A1, . . . ,A19 and state update function g follows the recursion A20 = A0 +A3A13 +

A5A16. The output function of the cipher is z = A3 +A7 +A1A5 +A4A15 +A4A9A11 +

A13A18. Here the set of linear bits in z is L = {A3,A7} and set of intervals I =

{(3,6), (7,20+ 2)}. Consider a = 3 and b = 6. Here, the state bits in R = {Aa+t,0 ≤ t ≤
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b − a = 3} are intended to recover. Therefore, the equations are derived as

A3+t = zt +A7+t +A1+tA5+t +A4+tA15+t +A4+tA9+tA11+t +A13+tA18+t,

for 0 ≤ t ≤ b − a. (5.5)

1. Here, NLz(a, b) = {4,5} as A4,A5 are the only state bits whose indices are

in between a = 3 and b = 6 and present in some nonlinear monomials of z.

NLz(a, b) informs that the state bits A4+t and A5+t for some t, t ≥ 0, are involved

in respective monomials in the system of equations. The respective monomials

need to be eliminated.

2. Further, ULz(a, b) = {18} as A18 is the only state bit with index in between

max{l − (b − a), b + 1} = max{20 − (6 − 3),6 + 1} = 17 and l − 1 = 19 and present

in some nonlinear monomials of z. The state update function g appears in the

system of equations (Equation 5.5) for t ≥ l − 18 = 2. As a result, some of the

state bits from R may appear in the system. Instead of eliminating monomials

from g, we aim to eliminate the term containing A18+t, t ≥ 2. For that reason,

we need to fix A13+t, t ≥ 2 as 0.

Now we will deal with the nonlinear monomials containing a state bit having index

from NLz(a, b) ∪ ULz(a, b). We need to remove the monomials by fixing a state bit

from these monomials. Fixing one state bit as 0 removes the monomial. Hence, for

each index in NLz(a, b) ∪ ULz(a, b), we collect the starting state bits of all possible

state bits to be fixed in a set and its fixing length.

Notation 1. Let M = Ai1Ai2⋯Aip be a monomial on some state bits from Aj,0 ≤ j < l.

Then

� S(M) = {Ai1 ,Ai2 , . . . ,Aip} denotes the set of state bits involved in the monomial

M .
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� For a positive integer r, (M >> r) = Ai1+rAi2+r⋯Aip+r denotes the monomial by

right shifting the indices of state bits in M by r places.

Definition 34. Let z be the output function on the state bits Aj,0 ≤ j < l and a, b be

two integers such that 0 ≤ a ≤ b < l.

1. If p ∈ NLz(a, b), then the set of fixing state bits for the state bit Ap is defined as

FSpz = {S(M) ∖R ∶M is a nonlinear monomial containing Ap in z}.

2. If p ∈ ULz(a, b), then the set of fixing state bits for the state bit Ap is defined as

FSpz = {(S(M >> (l − p)) ∖ (R ∪ {Al}) ∶M is a nonlinear monomial

containing Ap in z}.

From the definition, we have that FSpz stores the possible starting state bits which

are to be fixed as 0. In the case of Situation I, FSpz is quite clear. In the case of

Situation II, we need to remove the nonlinear terms after l − p clocks. Hence, FSpz

needs to store the state bits of the monomials after (l−p) right shifts. Since the state

bits in R can not be fixed, the state bits in R are removed from the set FSpz in both

the situations.

For example, if FSpz = {{Ai},{Aj1 ,Aj2}} then the state bits Ai+t and Aj1+t or Aj2+t

need to be fixed as 0 for 0 ≤ t < k where k is fixing length for p. We define the fixing

length of given p ∈ NLz(a, b) ∪ ULz(a, b) by the maximum length we need to fix the

variables in FSpz as 0. For given output function z and two indices of state bits a, b,

the fixing length for every p ∈ NLz(a, b) ∪ ULz(a, b) is denoted as flpz(a, b). Now we

have the following lemma on fixing length.

Lemma 3. Let z be the output function on the state bits Aj,0 ≤ j < l and a, b be two

integers such that 0 ≤ a ≤ b.

1. For p ∈ NLz(a, b), the fixing length flpz(a, b) = b − p + 1.

2. For p ∈ ULz(a, b), the fixing length

flpz(a, b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if NLg(a + l − p, b) = ∅;

b −minNLg(a + l − p, b) + 1 otherwise.
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Proof. If p ∈ NLz(a, b) then there is a nonlinear term in z which contains Ap where

a ≤ p ≤ b. As a result Ap+t is present in the equation for every 0 ≤ t ≤ b − a. The state

bits Ap+t for 0 ≤ t ≤ b − p belongs to R = {Aj ∶ a ≤ j ≤ b}. For t > b − p, the state bits

Ap+t does not belong to R and such state bits Ap+t are not problematic. Hence, the

fixing length in this case is flpz(a, b) = b − p + 1.

If p ∈ ULz(a, b) then there is a nonlinear term in z which contains Ap where

max{l − b − a, b + 1} ≤ p < l. Then the state bit Ap gets updated by the function g at

(l − p)-th clock. If g does not contain any state bit from {a + l − p, a + l − p + 1, . . . , b}

(i.e., NLg(a + l − p, b) = ∅), then we need not bother anything, i.e., the fixing length

flpz(a, b) = 0. Otherwise the term containing Ap+t needs to be made 0 for l − p ≤ t ≤

(l−p)+ (b−minNLg(a+ l−p, b)). Hence, the fixing length flpz(a, b) = b−minNLg(a+

l − p, b) + 1.

Note 2. Since p ∈ ULz(a, b) with flpz(a, b) = 0 does not force to fix any state bits, the

set ULz(a, b) can be updated by removing those p from itself. That is, ULz(a, b) =

ULz(a, b) ∖ {p ∈ ULz(a, b)∣flpz(a, b) = 0}.

Example 5. (continued) We continue the example of toy stream cipher presented

in Example 5. Here R = {A3,A4,A5,A6} for a = 3 and b = 6.

- Here NLz(a, b) = {4,5}. Since A4 is involved with the monomials A4A15 and

A4A9A11, FS4
z = {{A15},{A9,A11}}. Similarly, FS5

z = {{A1}} as A5 is in the

monomial A1A5. Further, fl4z(a, b) = b − 4 + 1 = 3 and fl5z(a, b) = b − 5 + 1 = 2.

Here, FS4
z = {{A15},{A9,A11}} indicates that the state bit A15 and one of the

state bits from A9+t and A11+t need to be fixed as 0 for 0 ≤ t < fl4z(a, b) = 3.

FS5
z(a, b) = {{A1}} implies that A1+t needs to be fixed as 0 for 0 ≤ t < fl5z(a, b) =

2.

- Here, ULz(a, b) = {18}. As the monomial A13A18 contains A18, therefore FS18
z =

S(A13A18 >> (l − 18)) ∖ {{A20}} = S(A15A20) ∖ {{A20}} = {{A15}}. Further,

NLg(a + l − 18, b) = NLg(5,6) = {5} as A5A16 is a monomial in g. Hence,
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fl18
z (a, b) = b−minNLg(5,6)+ 1 = 6− 5+ 1 = 2. Here, A5+t is contained in A20+t

which is a part of monomial A15+tA20+t for 0 ≤ t < fl18
z (a, b) = 2. Hence, the

monomials A15+tA20+t can be eliminated by fixing A15+t = 0 for 0 ≤ t ≤ 1.

- Now we have the following information on the cipher in Example 5 with a =

3, b = 6.

. NLz(a, b) ∪ULz(a, b) = {4,5,18};

. fl4z(a, b) = 3, f l5z(a, b) = 2, f l18
z (a, b) = 2;

. FS4
z = {{A15},{A9,A11}}, FS5

z = {{A1}}, FS18
z = {{A15}}.

From this collection of information, we can enumerate possible sets of state

variables that can be fixed as 0. The index of every state bit needs to be extended

till its fixing length. Here, {A9,A11} ∈ FSz4 implies that one of the A9 and A11

with its corresponding state bits of indices up to fixing length needs to be 0.

Hence, the possible sets are

1. {A15,A16,A17} ∪ {A9,A10,A11} ∪ {A1,A2} ∪ {A15,A16} =

{A1,A2,A9,A10,A11,A15,A16,A17} and

2. {A15,A16,A17} ∪ {A11,A12,A13} ∪ {A1,A2} ∪ {A15,A16} =

{A1,A2,A11,A12,A13,A15,A16,A17}

In both cases the size of set is 8, i.e., we need to fix 8 state bits as 0 to choose

any set.

From the sets NLz(a, b)∪ULz(a, b) and corresponding FSpz and flpz(a, b), we can

enumerate possible sets of fixing state bits. Then we choose the set with minimum

size for our purpose. To find all possible such sets of state bits, we have the following

notation and an easily derivable lemma.

Notation 2. � Let T = {Aj1 ,Aj2 , . . . ,Ajp} be a set of some state bits and t be a

positive integer then (T, t) is defined by
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(T, t) = {{Aj1 ,Aj1+1, . . . ,Aj1+t−1},{Aj2 ,Aj2+1, . . . ,Aj2+t−1}, . . . ,

{Ajp ,Ajp+1, . . . ,Ajp+t−1}}.

� Let U,V be two sets containing some sets of state bits. For example, U =

(T1, t1), V = (T2, t2) where T1, T2 are two sets of state bits and t1, t2 are two

positive integers. Then we define

U ⊗ V = {X ∪ Y ∶X ∈ U,Y ∈ V }.

It is obvious that (T,0) = ∅. As per this notation, in the above example, it is

observed that

({A15},3) = {A15,A16,A17} and ({A9,A11},3) = {{A9,A10,A11},{A11,A12,A13}}. So,

({A15},3)⊗({A9,A11},3) = {{A9,A10,A11,A15,A16,A17},{A11,A12,A13,A15,A16,A17}}.

Hence the two sets in the above example are ({A15},3)⊗ ({A9,A11},3)⊗ ({A1},2)⊗

({A15},2) = {{A1,A2,A9,A10,A11,A15,A16,A17},{A1,A2,A11,A12,A13,A15,A16,A17}}.

Lemma 4. The set of all possible sets of fixing state bits is

ASFz(a, b) = ⊗
p∈NLz(a,b)∪ULz(a,b)

⊗
T ∈FSpz

(T, flpz(a, b)).

Since each element T ∈ FSpz spreads into ∣T ∣ many branches,

∏
p∈NLz(a,b)∪ULz(a,b)

∏
T ∈FSpz

∣T ∣ many possible sets arose and the cardinality of each set is

at most ∑
p∈NLz(a,b)∪ULz(a,b)

∑
T ∈FSpz

flpz(a, b).

To minimize the number of fixing bits, we need to choose a set with the least

cardinality.

Note 3. For a linear interval (a, b) where a ≤ b, it may not always be possible to have

a system b − a + 1 equations of the form Equation 5.2. In such situations we go for

shorter interval (a, d), d ≤ b. Such situations are as following.

1. Let Aq be the last linear bit in the ordered set L. If b − a + 1 > l − q, then the
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update function g substitutes Al at l − q clocks. If NLg(a + l − q, b) = ∅, then

there is no problem. If NLg(a+ l− q, b) ≠ ∅ then we can have the desired system

of equations for the interval (a, d) where d = min{p ∶ Ap ∈ NLg(a + l − q, b)} − 1.

2. Let the state bits Ap, . . . ,Ap+flpz(a,b) (which are generated from the starting state

bit Ap) are needed to be fixed. If, for a 0 ≤ j ≤ flpz(a, b), Ap+j ∈ R or p + j ≥ l,

then the last index b needs to be reduced. In this case, we can choose the shorter

interval (a, d) where p + flpz(a, d) < a or b < p + flpz(a, d) < l.

Now we present an algorithm to find the maximum possible recovering bits with

fixing bits in a given linear interval (a, b). The Algorithm 7 is presented when a ≤ b.

Here, the parameters g, z, l, q are the update function, the output function, the length

of the state, and the index of the last linear bit in L, respectively.

Here we will explain Algorithm 7. Given an FSR based stream cipher, at first, we

will check that which linear interval produces the most recovering bits with as less as

possible number of fixing bits. For a given linear interval (a, b), a ≤ b, we will have

the corresponding FSR with its length l and the index (q) of the last linear bit in

L. The steps 1-6 in Algorithm 7 deal with the fact in Note 3[Item 1]. We search for

the maximum number of bits that can be recovered in the for loop from Step 8 by

increasing the length of the interval 1 each time. For each p ∈ NLz(a, b) ∪ ULz(a, b),

we check the possible fixing bits by taking the variables from the monomials involving

Ap in the for loop in step 11. Steps 15-19 deal with the fact in Note 3[Item 2] to

remove the possible fixing bits from the list. Steps 20-22 check that if it is possible to

fix at least one bit to remove the monomial containing Ap. If it is not possible, then

we exit from the algorithm, and the set of bits R and C for the previous interval are

the desired output.

The Algorithm 7 is discussed for the interval (a, b) such that a ≤ b < l. For the

interval (a, b) such that b > l, the recovery process is presented in Note 4.

Complexity of Algorithm 7: The algorithm runs four nested for loops for e, i, j

and Ap at the steps 8, 11, 14 and 15 respectively. The loop e can run for at most
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Algorithm 7: State bit recovery in a linear interval

Input : A linear interval (a, b) ∈ I such that a < b
Output: Set of recovery bits R and set of fixing bits C

1 if NLg(a + l − q, b) = ∅ then

2 b
′ = b;

3 end
4 else

5 b
′ = min{p ∶ Ap ∈ NLg(a + l − q, b)} − 1;

6 end
7 R = C = ∅;

8 for e from a to b
′
do

9 Compute NLz(a, e) ∪ULz(a, e) = {p1, . . . , p∣NLz(a,e)∪ULza,e∣};
10 P = {∅} ;
11 for i from 1 to ∣NLz(a, e) ∪ULz(a, e)∣ do
12 Compute FSpiz = {T pi1 , . . . , T

pi
∣FSpiz ∣

};
13 ti = flpiz (a, e);
14 for j from 1 to ∣FSpiz ∣ do
15 for Ap ∈ T pij do

16 if (p + ti) ≥ l or a ≤ (p + ti) ≤ e then
17 Remove Ap from T pij ;

18 end

19 end
20 if T pij = ∅ then

21 exit;
22 end
23 Calculate P = P ⊗ (T pij , ti);
24 end

25 end
26 C = {S ∈ P ∶ ∣S∣ is minimum};
27 R = {Aa, . . . ,Ae}.;
28 end

max{len(I) ∶ I ∈ I}, i.e., the length of the largest linear interval. The loop i runs for

∣NLz(a, e) ∪ ULz(a, e)∣. If the output function z is dense then the value of i will be

large. Further, the value of i increases as e increases. Let consider p0 be the probability

that a state bit is in a nonlinear monomial. Then the number of state bits from

Aa, . . . ,Ae and Al−e+a−1, . . . ,Al−1 inNLz(a, e)∪ULz(a, e) is expected to be 2p0(e−a+1).

Then further for each pi ∈ NLz(a, e) ∪ ULz(a, e), the loop j runs for the number of

nonlinear monomials in z containing the state bit Api . Consider the expected number
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of nonlinear monomials in z containing a state bit is q. Further, the number of loops

at step 15 or the number of union operations in the computation of P ⊗ (T pij , ti) in

Step 23 is the number of state bits in the monomial which is bounded by the degree

of z. Hence the expected time complexities is lm×(2p0lm)×q×deg(z) = 2p0ql2m deg(z)

where lm = max{len(I) ∶ I ∈ I}.

For efficiency purpose the output function of stream cipher is generally very sparse.

As a result p0, q and deg(z) are low. Considering the parameters p0, q,deg(z) as

constants, the time complexity is O(l2m).

Note 4. If Aa is the last linear bit and Ab is the first linear bit in z, we can also

attempt to recover state bits Aa,Aa+1, . . . ,Al−1,Ai, . . . ,Ai+b−1 where 0 ≤ i < a − b +

1. In this situation, the LHS linear bit passes through Al which is updated by the

update function g to have Ai. In Example 5, we can attempt to recover state bits

A7,A8, . . . ,A19,A0,A1,A2. In this situation, we can use Algorithm 7 separately using

the output function z and zg for recovering the states Aa, . . .Al−1 and Ai, . . . ,Ai+b−1

respectively. Here, zg is the output function by shifting the involved states l − b clocks

and using the update function g appropriately. Such a situation is used to recover the

state bits of Grain-128a in Subsection 5.3.3.2.

5.3.2.1 Combining different intervals to recover more bits with fewer fix-

ing bits

Using Algorithm 7, one can recover t = e− a+ 1 state bits Aa,Aa+1, . . . ,Ae where e ≤ b

from an input of a linear interval (a, b). Further, it is possible to add another interval

to increase the number of recovering bits and/or decrease the number of fixing bits.

Algorithm 9 is similar as Algorithm 7 with a little difference for computing the sets

NLz(a, b) and ULz(a, b), which is described below.

Consider that the initial t state bits recovered from the linear interval (a, b) using

Algorithm 7. In this case, we recover the state bits Aa,Aa+1, . . . ,Ae from first t

equations where e = a + t − 1. Combining another linear interval (c, d), we will have
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more equations including the state variables Ac, . . . ,Ad. Since the first t clocks are

used to recover t state bits Aa, . . . ,Ae, the state variables Ac, . . . ,Ac+t−1 are too present

as linear bits in the equations respectively. As a result, the state bits Ac, . . . ,Ac+t−1 can

not be recovered and we attempt to recover some state bits from Ac+t, . . . ,Ad. Hence,

we have a condition to choose the second interval such that d − c ≥ t. Therefore, we

need to eliminate the nonlinear monomials containing the state bits Ac+t, . . . ,Ad. The

sets NLz(c + t, d) and FSpz for p ∈ NLz(c + t, d) are required for the elimination of

monomials. Further, the state variables in NLz(c, c + t − 1) become some variables

from Ac+t, . . . ,Ad and the monomials containing these variables need to be eliminated.

If q ∈ NLz(c, c + t − 1), then after c + t − q + j clocks the state bit Aq is shifted

to Ac+t+j for j ≥ 0 and the state bits Ac+t+j are present in respective monomials.

Since we need to recover the state bits Ac+t, . . . ,Ad, these monomials have to be

eliminated. In this case, we need to include c + t in NLz(c + t, d) and the set of

variables {(S(M >> (c + t − q)) ∖R ∶ M is a nonlinear monomial containing Aq in z}

need to be added with FSc+tz for every q ∈ NLz(c, c+t−1). Now we define NLz(c+t, d)

and FS
p

z as discussed above.

Definition 35. Given a function z on the state bits Ai,0 ≤ i < l and integers c, d, t

such that (0 ≤ c < d < l,0 < t ≤ d − c − 1).

� The nonlinear index list in between the indices c + t, d for z is defined by

NLz(c + t, d) = NLz(c + t, d) ∪ {c + t ∶ if NLz(c, c + t − 1) ≠ ∅}.

� For p ∈ NLz(c + t, d) ∪ ULz(c, d), the set of fixing state bits for the state bit Ap

is defined as

– if p = c+ t, FSpz = ∪q∈NLz(c,c+t−1){(S(M >> (c+ t− q))∖R ∶M is a nonlinear

monomial containing Sq in z} ∪ FSpz .

– if p ≠ c + t, FSpz = FSpz .

Note 5. If c + t > maxNLg(c + l − p, d), p ∈ ULz(c, d), then flpz(c, d) = d − (c + t) + 1,

else it is same as Lemma 3.
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Example 6. Consider the output function z = A2+A6+A12+A1A5+A4A14+A4A9A13+

A13A18 with length of FSR l = 20. Consider the the linear interval (2,5), we have

NLz(2,5)∪ULz(2,5) = {4,5,18} and FS4
z = {{A14},{A9,A13}}, FS5

z = {{A1}}, FS18
z =

{{A15}}. Considering the second interval (6,11), we have NLz(6,11) ∪ ULz(6,11) =

{9,18} and FS9
z = {{A4,A13}}, FS18

z = {{A15}}. If Algorithm 7 is used to recover A2

to A5, then from t = 5 − 2 + 1 = 4 clocks onwards the state bits from A10 to A11 can

possibly be recovered using the second linear interval (6,11). In that scenario, the state

bit A6 of recovering bit for second case is shifted by t = 4. Here, NLz(6,9) = {A9} ≠

∅. Hence, NLz(10,11) ∪ ULz(6,11) = NLz(10,11) ∪ {10} ∪ ULz(6,11) = {10,18}.

Also, FS
10

z = {{A5,A14}} and FS18
z = {{A15}}. Then we can use Algorithm 7 with

NLz(10,11) ∪ ULz(6,11) and FS
p

z, p ∈ NLz(10,11) ∪ ULz(6,11) instead of using

NLz(10,11) ∪ULz(6,11) and FSpz , p ∈ NLz(10,11) ∪ULz(6,11).

Hence recovering state bits by combining two different intervals (from same FSRs

or from different FSRs), we propose Algorithm 9 by extending Algorithm 7. In the

first part of Algorithm 9(i.e., from the line no 8 to the line number 27), Algorithm 7

is run on the input of interval (a, e) with an extra condition at line number 15 (i.e.,

c+ t ≤ (p+ ti) ≤ d′). As we priorly know that t(= e− a+ 1) state bits can be recovered

from the linear interval (a, b), supplying (a, e) as the input for first interval is justified.

Algorithm 9 is presented in Appendix A.

Similarly, it is possible to add three or more intervals to get more recovering

bits with fewer fixing bits. However, the maximum number of state bits that can be

recovered is the length of the largest linear interval. Even if we achieved the maximum

number of recovering state bits, we try to combine the possible linear intervals to get

fewer fixing bits. In this process, we first try with single linear intervals. Let consider

that from linear interval Ij we could recover ej −aj +1 state bits by fixing cj state bits.

Then we search by combining the interval Ij with other intervals of length at least

ej − aj + 2. Then from the combination we hope to recover (i) more than ej − aj + 1

state bits or (ii) ej −aj +1 state bits by fixing lesser than cj state bits. We implement
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this method on Lizard and Grain-128a (in Section 5.3.3) and get the best results.

5.3.3 Implementation of Algorithm on ciphers

In this section we explain the implementation of our technique on Lizard and Grain-

128a to recover state bits and the fixing bits.

5.3.3.1 State bit recovery of Lizard

The set of linear bits in z function of Lizard is

L = {S23,B5,B7,B11,B30,B40,B45,B54,B71}.

It is observed from the Algorithm 7 that we can recover 9 state bits S23 to S31 of

NFSR1 by fixing only 8 bits of NFSR2. Further, we present following three best

possible cases in NFSR2 using Algorithm 7.

Case-1(using the linear interval (11,29)): It is possible to recover 8 state bits

from B11 to B18 by fixing 11 state bits. The state bit B19 or further state bits

can not be recovered using our technique because the term B8+tB82+t, t ≥ 8 can

not be vanished as B8+t is already recovered and B82+t is updated by g.

Case-2 (using the linear interval (54,70)): In this case, 14 state bits from B54

to B67 can be recovered by fixing 22 state bits. It is not possible to recover more

than 14 bits as the term B44+tB76+t, t ≥ 14 can not be vanished.

Case-3 (using the linear interval (71,90 + 4)): Here the output functions z and

zg are used for recovery as described in Note 4. In this case, it is possible to

recover maximum 18 state bits by fixing 42 bits.

Further, we aim to increase the number of recovering bits with as less possible number

of fixing bits. For that purpose, we use Algorithm 9 (see Note 6) combining two linear
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intervals. Combining the linear intervals (23,31) of NFSR1 and (54,70) of NFSR2,

we get the best possible result, i.e., it is possible to recover

� 10,11,12,13,14,15,16,17 state bits by fixing

� 10,12,14,16,18,20,22,24 state bits respectively.

By combining the intervals (23,31) of NFSR1 and (71,90 + 4) of NFSR2, we can

recover

� 18,19,20,21,22,23,24 state bits by fixing

� 38,40,42,44,46,48,50 state bits respectively.

Note 6. Using Algorithm 9, we could recover 10,11,12,13,14,15,16,17 state bits by

fixing 10,12,14,16,19,24,26,29 state bits respectively. Observing the following fact in

Lizard, we tweaked Algorithm 9 to improve the result. As a result, the same number of

state bits can be recovered by fixing 10,12,14,16,18, 20,22,24 state bits respectively.

We recover state bits of Lizard by combining two linear intervals (23,31) of NFSR1

and (54,70) of NFSR2. Since the first 9 state bits are recovered from NFSR1 using the

interval (23,31), the remaining state bits will be recovered from the interval (63,70) of

NFSR2. Here, ULz(54,70) = {76,78,82} as per Definition 33 and Note 2. Therefore,

the set of fixing state bits are

� FS76 = S(B44 >> 14) = {B58},

� FS78 = S(B1B19B27B43B57B66 >> 12) = {B13,B31,B39,B55,B78},

� FS82 = S(B8 >> 8) = {B16}.

We observed that the only monomial B62B68B72 of the state update function g in

Lizard (Equation 2.13) contains a state variable from B63 to B70. Hence, it is enough

to vanish only the monomial B62B68B72 instead of vanishing the whole g as we do

in Algorithm 9. Further, vanishing the monomial B62B68B72, we need to vanish only
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one of the state variables B62,B68 and B72. Since B62,B68 can not be fixed due to

recovering state bits, we can fix B72. Therefore we tweaked Algorithm 9 by adding B72

with the original sets as

� FS76 = {B58,B72},

� FS78 = {B13,B31,B39,B55,B72,B78},

� FS82 = {B16,B72}.

The results on the number of recovering and fixing bits are presented in Table 5.8

and the comparison with the previous result by Maitra et al. [70] is shown in Table 5.9.

The recovery process of 17 state bits is discussed below.

Recovering 17 state bits of Lizard: It is possible to recover 17 state bits (9 state

bits from NFSR1 and 8 state bits from NFSR2) by fixing 24 state bits. To discuss

the recovery process, we consider the two linear intervals (a, e) and (c, d), where

1. Sa = S23 and Se = S31

2. Bc = B54 and Bd = B70.

The Algorithm 9 is implemented in SAGE and the intermediate steps are explained in

Table 5.7. In Table 5.7, p ∈ NLz(23,31)∪ULz(23,31) and T pi ∈ FS
p
z for NFSR1. Then

R = {S23, . . . , S30, S2}. Since 9 state bits of NFSR1 are recovered from first linear inter-

val, the starting bit B54 of NFSR2 is shifted by 9 bits. Hence we can recover the bits of

NFSR2 from B63. NLz(54,70)∪ULz(54,70) = {57,61,63,64,65,66,67,68,76,78,82},

we have NLz(63,70) ∪ ULz(54,70) = {63,64,65,66,67,68,76,78,82}. Therefore p ∈

NLz(63,70) ∪ ULz(54,70) and T pi ∈ FSpz for NFSR2. Since 9 state bits are already

recovered, R = {S23, . . . , S30, S2,B63, . . . ,B70}. The other symbols in Table 5.7 have

their usual meaning.

In total we get ∣ASFz(54,70)∣ = ∣T 24
1 ∣ × ∣T 63

1 ∣ × ∣T 64
1 ∣ × ∣T 65

1 ∣ × ∣T 66
1 ∣ × ∣T 67

1 ∣ × ∣T 76
1 ∣ ×

∣T 78
1 ∣ × ∣T 82

1 ∣ = 2 × 6 × 5 × 3 × 4 × 3 × 6 × 2 × 2 × 6 × 2 = 6,22,080 combinations of set of

fixing bits. Finally, R = {S23, . . . , S30, S2,B63, . . . ,B70} and C = {S ∈ ASFz(54,70) ∶
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Table 5.7: Intermediate steps of Algorithm 9 (using Note 6) to recover state bits of
Lizard

(a, e) p T pi ∈ FSpz flpz(a, e) ASFz(a, e) = P
(23,31) 24 {S1,B38} = T 24

1 8 P = (T 24
1 ,8)

(c, d) p T pi ∈ FSpz flpz(c, d) ASFz(c, d) = P
′

S(B1B19B27B43B66B78 >> 6) = P
′ = P ⊗ (T 63

1 ,8)
{B7,B25,B33,B49,B72,B84} = T 63

1

63 S(B6B14B26B32B47 >> 2) = 8 P
′ = P ′ ⊗ (T 63

2 ,8)
{B8,B16,B28,B34,B49} = T 63

2

S(B38S1S24) = {B38, S1, S24} = T 63
3 P

′ = P ′ ⊗ (T 63
3 ,8)

64 {B13,B29,B50,B75} = T 64
1 7 P

′ = P ′ ⊗ (T 64
1 ,7)

(54,70) 65 {B2,B28,B41} = T 65
1 6 P

′ = P ′ ⊗ (T 65
1 ,6)

66 {B1,B19,B27,B43,B57,B78} = T 66
1 5 P = P ⊗ (T 66

1 ,5)
67 {B34,B73} = T 67

1 4 P
′ = P ′ ⊗ (T 67

1 ,4)
76 {B58,B72} = T 76

1 3 P
′ = P ′ ⊗ (T 76

1 ,3)
78 {B13,B31,B39,B55,B72,B78} = T 78

1 3 P
′ = P ′ ⊗ (T 78

1 ,3)
82 {B16,B72} = T 82

1 9 P
′ = P ′ ⊗ (T 82

1 ,9)

∣S∣ is minimum}. The fixing bits are presented in Table 5.8. The obtained system of

equations (in the form of Equation 5.2) is presented in Appendix B.

5.3.3.2 Bit recovery of Grain-128a

Here we discuss the recovery process of 35 and 48 state bits in Grain-128a. The set

of linear bits in Grain-128a is

L = {b2, b15, b36, b45, b64, b73, b89, s93}.

Two largest linear intervals are (89,128 + 1) for NFSR and (93,128 + 92) for LFSR.

We could recover more bits from the latter interval.

To recover state bits from the interval (93,128 + 92), first we use Algorithm 7 to

recover the state bits from s93 to s127. Further, we observed that the largest linear

intervals in LFSR update function s128 (see Equation 2.9) are (7,37) and (38,69). We
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Table 5.8: Recovering of 7 to 24 state bits of Lizard

No. of re- Recovering No. of Fixing Bits Keystream
covering bits bits fixing bits

7 S23, . . . , S29 6 B38 = ⋯ = B43 = 0 z0, . . . , z6
8 S23, . . . , S30 7 B38 = ⋯ = B44 = 0 z0, . . . , z7
9 S23, . . . , S30, S2 8 B38 = ⋯ = B45 = 0 z0, . . . , z8
10 S23, . . . , S30, S2 10 B38 = ⋯ = B45 = 0 z0, . . . , z9

B63 B49 = 0,B73 = 0
11 S23, . . . , S30, S2 12 B38 = ⋯ = B45 = 0 z0, . . . , z10

B63,B64 B49 = B50 = 0
B73 = B74 = 0

12 S23, . . . , S30, S2 14 B38 = ⋯ = B45 = 0 z0, . . . , z11
B63,B64,B65 B49 = ⋯ = B51 = 0

B73 = ⋯ = B75 = 0
13 S23, . . . , S30, S2 16 B38 = ⋯ = B45 = 0 z0, . . . , z12

B63, . . . ,B66 B49 = ⋯ = B52 = 0
B73 = ⋯ = B76 = 0

14 S23, . . . , S30, S2 18 B38 = ⋯ = B45 = 0 z0, . . . , z13
B63, . . . ,B67 B49 = ⋯ = B53 = 0

B73 = ⋯ = B77 = 0
15 S23, . . . , S30, S2 20 B34 = ⋯ = B45 = 0 z0, . . . , z14

B63, . . . ,B68 B72 = ⋯ = B79 = 0
16 S23, . . . , S30, S2 22 B34 = ⋯ = B45 = 0 z0, . . . , z15

B63, . . . ,B69 B72 = ⋯ = B81 = 0
17 S23, . . . , S30, S2 24 B34 = ⋯ = B46 = 0 z0, . . . , z16

B63, . . . ,B70 B72 = ⋯ = B82 = 0
18 S23, . . . , S30, S2 38 B8 = ⋯ = B26 = 0 z0, . . . , z17

B80, . . . ,B88 B38 = ⋯ = B56 = 0
19 S23, . . . , S30, S2 40 B8 = ⋯ = B27 = 0 z0, . . . , z18

B80, . . . ,B89 B38 = ⋯ = B57 = 0
20 S23, . . . , S30, S2 42 B8 = ⋯ = B28 = 0 z0, . . . , z19

B80, . . . ,B89,B0 B38 = ⋯ = B58 = 0
21 S23, . . . , S30, S2 44 B8 = ⋯ = B29 = 0 z0, . . . , z20

B80, . . . ,B89, B38 = ⋯ = B59 = 0
B0,B1

22 S23, . . . , S30, S2 46 B8 = ⋯ = B30 = 0 z0, . . . , z21
B80, . . . ,B89, B38 = ⋯ = B60 = 0
B0,B1,B2

23 S23, . . . , S30, S2 48 B8 = ⋯ = B31 = 0 z0, . . . , z22
B80, . . . ,B89, B38 = ⋯ = B61 = 0
B0,B1,B2,B3

24 S23, . . . , S30, S2 50 B8 = ⋯ = B32 = 0 z0, . . . , z23
B80, . . . ,B89, B38 = ⋯ = B62 = 0

B0,B1,B2,B3,B4
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Table 5.9: Comparison of number of fixing state bits of Lizard

Instances No. of recovering No. of fixing No. of guessing No. of fixing
bits (r) bits(f) bits(n − f − r) in [70]

1 7 6 108 −
2 8 7 106 −
3 9 8 104 12
4 10 10 101 16
5 11 12 98 20
6 12 14 95 24
7 13 16 92 27
8 14 18 89 30
9 15 20 86 −
10 16 22 83 −
11 17 24 80 −
12 18 38 65 −
13 19 40 62 −
14 20 42 59 −
15 21 44 56 −
16 22 46 53 −
17 23 48 50 −
18 24 50 47 −

can not recover many bits from the latter interval. So we recover state bits from the

former interval (7,37) as we need to handle only one monomial s13s20 in z function

after recovering s93 to s127. Hence the state bit recovery is done from two intervals.

1. Recovery of s93 to s127: Here NLz(93,127)∪ULz(93,127) = {94} and FS94
z =

{{b12, b95}}. (T 94
1 , f l94

z (93,127)) = ({b12, b95},34). Hence R = {S93, . . . , S127}.

2. Recovery of s7 to s19: In this case the update function g is used to replace S128

in the output function z. Hence, we need to use the updated output function

zg for computing the nonlinear index list and updating nonlinear index list.

Here, NLzg(7,19)∪ULzg(7,19) = {8,13}. Then FS8
zg = {{b12}}, FS13

zg = {{s20}}.

Now we calculate (T 8
1 , f l

8
z(7,19)) = ({b12},12) and (T 13

1 , f l13
z (7,19)) = ({s20},7).

Here we could recover {S7, . . . , S19}. The final R = {S93, . . . , S127, S7, . . . , S19}.

Since we recover 13 bits of LFSR from second case and the recovery process of second

case uses the update function g, (T 94
1 ,34) will be (T 94

1 ,34+ 13). The recovery process
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of 48 state bits of Grain-128a is given in Table 5.10. The symbols have their usual

meaning. Here (a, b) = (93,128 + 12) = (93,140) and (c, d) = (7,19).

Table 5.10: Intermediate steps of Algorithm 7 (using Note 4) to recover state bits of
Grain-128a

(a, b) p T pi ∈ FSpz flpz(a, b) ASFz(a, b) = P
(93,140) 94 T 94

1 = {b12, b95} 47 P = (T 94
1 ,47)

(c, d) p T pi ∈ FSpzg flpzg(c, d) ASFzg(c, d) = P

(7,19) 8 T 8
1 = {b12} 12 P = P ⊗ (T 8

1 ,12)
13 T 13

1 = {s20} 7 P = P ⊗ (T 13
1 ,7)

Then C = {S ∈ ASFzg(93,140) ∶ ∣S∣ is minimum)} = {b12, . . . , b58, s20, . . . , s26}.

Finally, we recover 48 state bits of Grain-128a with a 54 number of fixing bits. The

results on state bits in the recovery process of Grain-128a are presented in Table 5.11.

Table 5.11: Recovering of (up to) 48 state bits of Grain-128a

Step (i) Constrains Key Removed Feedback Bit Re

Bits Bits Bits cover

0 − 32 b12+i = 0 zi s94+i s93+i

33 − 34 b12+i = 0 zi s94+i b95+i s93+i

35 − 40 b12+i = 0, zi s94+i, b95+i

s20+j = 0,0 ≤ j ≤ 5 s13+j s7+j

41 b12+i = 0, s26 = 0 zi s94+i, s19 b95+i s13

42 − 46 b12+i = 0 zi s94+i b95+i s14, . . . , s18

47 zi s94+i, b95+i s19

5.4 State Recovery by TMDTO Attack Approach

To exploit BSW sampling with the BS-TMDTO attack, it is needed to fix the first k

bits of the keystream. Hence, the available data having first k bits with a pattern is
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reduced to D′ = D
2k

for the TMDTO. This generic technique was proposed in [77] and

the attack was deployed on the stream cipher A5/1. Suppose the sampling resistance

of a stream cipher is R (0 < R < 1), then both ultimate state space size N and data

D are reduced by RN and RD(> 1) respectively for the attack. Hence, the trade-off

curve is the same as TM2D2 = N2, but the range of T > D2 is wider by T > (RD)2

and the number of disk operations is reduced from t to Rt.

5.4.1 Conditional TMDTO attack

As the output function of FSR stream ciphers is nonlinear, with given specific first k

keystream bits, r state bits can be recovered by fixing f state bits for some r and f .

For example, Table 5.9 and Table 5.11 present our results on k, r, f for ciphers Lizard

and Grain-128a respectively. With this pattern of keystream bits and recovering bits,

the BSW-sampling technique can further be improved. Therefore, this technique

of cryptanalysis is called as conditional BSW-sampling TMDTO attack or simply,

conditional TMDTO attack. Recently this is a popular technique used to analyze

FSR-based stream ciphers [20, 69, 70]. Section 4.2 presents a method to find a set of

conditional state bits C and a set of recovering state bits R. Here, we denote

� n be the size of the state;

� f = ∣C ∣ be the number of fixing/conditioned state bits;

� r = ∣R∣ be the number of recovering state bits;

� k = r be the number of specific keystream bits.

Like other TMDTO attacks, the conditional TMDTO attack is implemented in two

phases (i) offline phase (lookup table construction) and (ii) online phase (search for

matching). The attack complexities of this attack is too based on five parameters:

pre-processing time complexity (P ), memory required to store states in a table (M),

online time complexity (T ), data required (D) and total search space (N = 2n). The
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primary goal of the TMDTO attack is to minimize the parameters T,M,D and P .

Since the parameter P is associated during the offline phase, we do not bother much

about it. Therefore, the general goal is to minimize T,M and D.

The general TMDTO curve over BSW-sampling is TM2D2 = N2 such that T ≥D2.

But in the case of conditional TMDTO, the original search space is reduced due to

fixing and recovering some bits in the search space. In that case, the parameters

P,M,T,D, and N are related differently. Consider the parameters for conditional

TMDTO are

� N ′: Reduced search space;

� P ′: Preprocessing time complexity over reduced space;

� M ′: Memory required for the preprocessing over reduced space;

� T ′: Online time complexity over reduced space.

� D′: Data over reduced space.

We explain the conditional TMDTO attack in the following subsections. One can too

follow [70].

5.4.1.1 Offline phase

In this preprocessing phase of this attack, a table of randomly chosen states is stored.

Consider that the total number of states is N = 2n. If f state bits are fixed and r state

bits are recovered, the number of states reduces to N ′ = 2n−f−r. Now the task is to

have a table of N ′ random states with the least possible collisions. To reduce collision,

Hellman [37] proposed to have t different tables which together store N ′ states. If D′

data is available, then the number of tables can be reduced to t
D′ .

Given a specific pattern ζ of first r bits of data, we now demonstrate to prepare the

look up tables. Each table has m rows and t columns such that mt2

D′ = N ′. The entries

of the tables are of τ = n−f −r bits. For every row of each table, a random string of τ
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bits is chosen to be stored as the row’s first element. The f fixing bits are joined with

the chosen bits to have a string of n−r bits. Then from the r bits of fixing pattern ζ of

the keystream, another r bits are recovered (using Equation 5.2). Now we have a state

(S) of n bits by joining these new r bits with the n − r bit string. Using an one way

function F ∶ {0,1}n ↦ {0,1}τ , a string of τ bit is generated. The function F is chosen

as F(S) = (zr, zr+1, . . . , zn−f−1) where S ∈ {0,1}n is the input to the stream cipher as

an initial state or, F(S) is a slight modification of the (zr, zr+1, . . . , zn−f−1) such that

it can be obtained by few operations. Slight modification is required to have different

functions for different tables to reduce the number of collisions. This new string is

the second entry of the row. This process is repeated t times to have a complete

row. Further, all m rows are generated by choosing a random start entry of τ bits for

each row to complete a table. Then, the same process is repeated for each table by

selecting a different one-way function F to minimize the collision. Only two entries,

i.e., the start entry and the end entry of each row, are stored, and intermediate entries

are not stored. Using hash coding, the rows are stored in such a way that searching

for the end entry can be performed in a constant number of operations. Hence, the

pre-processing time and memory requirement are respectively,

P ′ = P =m × t × t

D′ =
mt2

D′ ; M ′ =M =m × t

D′ =
mt

D′ . (5.6)

5.4.1.2 Online phase

Consider a data of n−f bits with initial r bits contains the pattern ζ. The remaining

τ = n−f−r bits of the data (say, γ) is searched for a match among the end point entries

(i.e., t-th entry) of the offline table. If a match is found, then the (t − 1)-th entry of

row possibly stores the state. This (t−1)-th entry can be obtained by performing the

operation from the starting point entry of the row till (t−1)-th entry. Upon getting the

(t−1)-th entry, the same row operation (as described in Section 5.4.1.1) is performed

to check whether it is matching with the string γ. If it matches, then the state of the
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cipher can be obtained. If there is no match, then the adversary performs the row

operation on γ, and the search process is repeated till to get a match. Hence, the

adversary may need to repeat the process t times for the whole row in the worst-case

scenario.

Such a data of n− f bits can be linearly searched from the known keystream of D

bits. Upon a hit a pattern ζ of r bits, the following τ bits are collected as γ and the

search process is performed. Further, once there is a match in the offline table, the

recovered state containing the actual fixing pattern of f bits is having a probability

of 2−f . Hence, the requirement of data and time are, respectively

D = 2r+f ⋅D′; T = 2f ⋅ T ′. (5.7)

5.4.2 Results based on our TMDTO curve equation and cri-

teria

The TMDTO curve as per the literature is

T ′M ′2D′2 = N ′2, T ′ ≥D′2 (5.8)

The parameters of the curve over full space are defined by (from Equations 5.6, 5.7)

D = 2f+rD′, T = 2fT ′, M =M ′ and P = P ′ = N
′

D′ =
N

D
. (5.9)

Hence, the TMDTO curve in whole space is obtained from the Equations 5.8 and 5.9

is presented in the following theorem.

Theorem 8. If r state bits can be recovered by fixing f state bits in a stream cipher

having n-bits state then the TMDTO curve for the stream cipher is

TM2D2 = 2fN2, T ≥ 2−f−2rD2, PD = N (5.10)
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Observation 2. We have the following observations from Theorem 8.

1. It is clear from the first equality in Equation 5.10 that the increase in the number

of fixing bits (f) increases data, time, and memory complexities.

2. The number of recovering bits (r) has not a very significant role in the TMDTO

curve except reducing the lower bound of the ratio T
D2 (from the second inequality

in Equation 5.10).

3. The third equality in Equation 5.10 notifies that the preprocessing complexity

and data complexity are inversely proportional to each other. The reduction of

one complexity increases the other.

In general, one random access to a hard disk takes several million times longer in

real-time than a simple computational step such as addition or multiplication in the

current processor. The advantage of BSW sampling is reducing hard disk operations

(i.e., matching in the table). In the conditional BSW-sampling attack, the disk access

is reduced by 2f+r factor, and this is a huge advantage for real-time consumption. The

increase in the number of recovering state bits r reduces the complexity of disk access.

Although the increase in the number of fixing state bits f reduces the complexity of

disk access, it increases the data, time, and memory complexities. Further, the actual

memory requirement for the offline table is too reduced by n
n−f−r factor as the table

stores the entries of size τ = n − f − r instead of entries of size n.

Therefore, one needs to be careful not to have a large number of fixing bits f to

recover r state bits. Further, the availability of more data(D) reduces the preprocess-

ing time(P ), online time(T ) and memory(M). Unfortunately, having a huge amount

of data is not practical. The challenge is to find a lower bound of available data.

Further, from Item 2 of Observation 2, we have that r plays the role to minimize the

bound of T
D2 . We consider three different cases, i.e.,

1. when D < T =M (to have low data);



5.4 State Recovery by TMDTO Attack Approach 149

2. when T = 2−f−2rD2 (to have low T by satisfying the lower bound for T
D2 ).

3. when D = T =M (to minimize the max{T,M,D} from [70]);

We have analyzed TMDTO over Lizard and Grain-128a as per the state bit recoveries,

which are presented in Table 5.8 and 5.11 respectively.

5.4.3 TMDTO attack on Lizard

Case 1(D < T = M): This case is considered keeping in mind that having a huge

amount of data is impractical. Therefore, we want to minimize D. When T =M we

have T 3D2 = 2fN2 from Equation 5.10. Here, we consider the following two sub cases

to have smaller D than T and M .

1. Sub case D2 = T : We have D8 = 2fN2. That implies, D = 2
2n+f

8 . Hence,

T =M =D2 = 2
2n+f

4 , T ′ = 2−fT = 2
2n−3f

4 , D′ = 2−f−rD = 2
2n−7f−8r

8 .

We have presented two instances in r and f of Lizard in Table 5.12, where

the parameters satisfy the condition D2 = T as whole numbers. Although the

parameters M and T are more than 260, the data D is closer to the practical

value.

Table 5.12: The parameters for Lizard satisfying D2 = T =M

r f N ′ T ′ D′ T M =M ′ D P = P ′

7 6 2108 256 218 262 262 231 290

12 14 295 250 26 264 264 232 289

2. Sub case D′2 = T ′: Here T = 2fT ′ = 2fD′2 = 2f(2−2f−2rD2) = 2−f−2rD2. Putting

the values of T in T 3D2 = 2fN2, we have 2−3f−6rD8 = 22n+f , i.e., D = 2
n+2f+3r

4 .

Hence, M = T = 2−f−2rD2 = 2
n−r

2 , D′ = 2−f−rD = 2
n−2f−r

4 . In Table 5.13[Instances

1-5], the parameters satisfy the condition D′2 = T ′ exactly as whole numbers.
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In the case of other instances in Table 5.13, the exponents in parameters are in

fractions to satisfy the condition. Therefore, the parameters presented for these

instances are close to the condition D′2 = T ′ as whole numbers. In Table 5.13[In-

stance 7], the number of fixing bit is increased by one to get complexity in a

whole number.

Table 5.13: The parameters for Lizard satisfying D′2 = T ′

Instance r f N ′ T ′ D′ T M =M ′ D P = P ′

1 9 8 2104 248 224 256 256 241 280

2 10 10 2101 246 223 256 255 243 278

3 11 12 298 242 221 254 256 244 277

4 12 14 295 240 220 254 255 246 275

5 13 16 292 238 219 254 254 248 273

6 14 18 289 236 218 254 253 250 271

7 15 21 285 232 216 253 253 252 269

8 17 24 280 226 213 250 254 254 267

Case 2(T = 2−f−2rD2): With this condition we want to reduce the time complexity

by satisfying the second equality in Equation 5.10. Hence we will have the curve

equation (by putting T = 2−f−2rD2 in the first equation in Equation 5.10) MD2 =

2f+rN = 2f+r+n. Considering equal complexity for memory and data, i.e., M = D,

we have M = D = 2
f+r+n

3 . That implies, T = 2
−f−4r+2n

3 . In this case, it is possible to

reduce time complexity by considering higher values of r, but the memory and data

complexities increase. We have presented few best possible instances by changing

the pair r and f of Lizard in Table 5.14, where the parameters satisfy the condition

D =M .

Case 3(D = T =M): The case D = T =M arises to minimize max(T,M,D). Here,

T =D implies that T ′ = 2rD′ and M =D implies that M ′ = 2f+rD′. Substituting these

values with N ′ = 2n−f−r in the TMDTO equation 5.8 we have 2rD′ ⋅ 22f+2rD′2 ⋅D′2 =
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Table 5.14: The parameters for Lizard satisfying T = 2−f−2rD2,D =M

r f T M D P

16 22 252 253 253 268

17 24 250 254 254 267

18 38 244 259 259 262

19 40 242 260 260 261

22n−2f−2r, i.e., D′ = 2
2n−4f

5
−r. This equation suggests that the value of D′ needs to be

decreased if f and r increases. Further the inequality T ′ ≥ D′2, i.e., 2rD′ ≥ D′2, i.e.,

2r ≥D′ implies that r ≥ n−2f
5 . Hence, this restriction on r is a necessary condition for

happening T =M =D.

The instances presented in Table 5.15 satisfy the necessary bound r ≥ n−2f
5 for T =

M = D. The parameters in instance 1 in Table 5.15 are n = 121, r = 15 and f = 23 by

adding extra five fixing bits (to satisfy the bound). Here we get r = n−2f
5 = 15. Hence,

D′ = 2
2⋅121−4⋅23

5
−15 = 215, T ′ = 215 ⋅ 215 = 230 and finally T =M = D = 223+15 ⋅ 215 = 253. In

other two instances in Table 5.15, we have parameters n = 121, f = 23,28 and r = 16,17

by adding extra one and three fixing bits respectively. Here we get r > n−2f
5 . Hence,

D′ = 2
2⋅121−4⋅23

5
−16 = 214, T ′ = 216 ⋅ 214 = 230 and so T =M = D = 253 for second instance.

For the third instance, D′ = 2
2⋅121−4⋅28

5
−17 = 29, T ′ = 217 ⋅29 = 226 and T =M =D = 254. In

the last two instances, we added few extra fixing bits to have the exponent in T,M,D

as whole numbers.

Table 5.15: The parameters for Lizard satisfying D = T =M

Instance r f N ′ T ′ D′ T M =M ′ D P = P ′

1 15 23 283 230 215 253 253 253 268

2 16 23 282 230 214 253 253 253 268

3 17 28 276 226 29 254 254 254 267



152 Time-Memory-Data Trade-off (TMDTO) Attack by using state bit recovery attack

We do not apply the TMDTO attack using the last five data reported in Table 5.9

(i.e., for r = 20,21,22,23,24) due to the large number of fixing bits for which the value

of D becomes very high.

Table 5.16 presents a comparison with the previous TMDTO attack on Lizard by

Maitra et al. [70]. We recover more bits by having much fewer fixing bits than the

Maitra et al.’s attack. The fewer fixing bits help us to reduce the complexities. The

TMDTO attack has four parameters to minimize and balance as per the available

resource. We have considered different cases, and our attack complexities on differ-

ent parameters supersede the complexities presented by Maitra et al. [70]. We have

results from Case 1 to outperform at least in data complexity (D), from case 2 to

outperform in T =M = D, and from case 3 to outperform at least in T . The outper-

forming complexities compared to Maitra et al. results are presented in bold text in

Table 5.16. The pictorial presentation of trade-off curve by using our cases such that

Table 5.16: Comparison with previous result for Lizard

Citation r f T M D P Case

Maitra et al. 13 28 254 254 254 267 Case 3, i.e.,

[70] T =M =D

Our attack

13 16 254 254 248 273 Case 1, i.e.,

14 18 254 253 250 271 D < T ≈M
15 21 253 253 252 269

15 23 253 253 253 268 Case 3, i.e.,

T =M =D
16 22 252 253 253 268 Case 2, i.e.,

17 24 250 254 254 267 M =D > T
18 38 244 259 259 262

19 40 242 260 260 261

240 ≤ T,M,D ≤ 260 is given in Figure 5.1.
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Figure 5.1: Pictorial presentation of TMDTO curve of Lizard (Parameters are in
log2(L) forms, L = T,M,D)

5.4.4 TMDTO attack on Grain-128a

We have implemented TMDTO attack on Grain-128a with state recovery parameters

n = 256, f = 54 and r = 48. For two suitable choices of D′, the attack complexities are

summarized in Table 5.17. The previous attack (fast correlation attack) on Grain-128a

is available in [62] having time and data complexities 2115.4 and 2113.8. Our conditional

TMDTO attack has better complexity than it.

Table 5.17: TMDTO attack parameters on Grain-128a

Instances r f N ′ T ′ D′ T M D P

1 35 34 2187 276 238 2110 2111 2107 2149

2 48 54 2154 260 211 2114 2113 2113 2143
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5.4.5 TMDTO Attack on Grain-v1

In this section, we have exploited the TMDTO attack technique to recover the state

bits using the above results to recover state bits. Here we consider two TMDTO

attacks, by Jiao et al. [68] and by Mihalijevic et al. [69] as the later TMDTO curve is

the modified version of the TMDTO curve followed by Bjørstad [71] and Mihaljević

et al. [75].

The TMDTO parameters by the attack by Jiao et al. [68] are as following.

� Data requirement (D) : 2f+r;

� Pre-processing time complexity (P ) : 2n−f−r;

� Online time complexity (T ): t2f ;

� Memory requirement: (M) : m = 2n−f−r
t ;

where m is the number of rows in the state storing matrix and t is the number of

columns of the matrix such that m × t = 2n−f−r.

Now we will fit our case f = 45, r = 33 and n = 160 with this curve as following.

� Data requirement (D) : 245+33 = 278;

� Pre-processing time complexity (P ) : 2160−45−33∗ = 282;

� Online time complexity (T ): t245;

� Memory requirement: (M) : m = 282

t ;

If we take the number of columns in the stored matrix t = 216, then the required

memory is M = 282−16 = 266 and the online time complexity is T = 245+16 = 261. The

TMDTO curve is TMD = 261.266.278 = 245.2160 = 2sN . So, we have seen that the

required data is reduced by half and the memory requirement is reduced by 2−5,

compared to their attack [67].
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Then Mihaljević et al. [69] used the BS-TMDTO attack as follows. In this method,

the number of fixing bits f and the number of recovering bits r reduce the total space

N = 2n to N
′ = 2n−f−r. The number of stored m × t table is t such that mt2 = N ′

.

The used BS trade-off curve is T
′
M

′2
D

′2 = N ′2
such that T

′ ≥ D′2
, where T

′ = t2

and M
′ = mt. The probability of n bits having f fixing bits and r recovering bits is

p = 2−(f+r) and the probability of occurring the given keystream with first f bits are

fixed is p
′ = 2−f . The total time complexity is T = p′−1

T
′

and required total data is

D = p−1D
′
.

In our case, we have f = 45, r = 33 and then N
′ = 282. If we take t = 212, then

T
′ = 224. Now by considering D

′ = 20, we need memory M
′ = 270 by TMDTO curve.

The pre-processing complexity P
′ = N

′

D′ = 282. The probabilities p = 2−78 and p
′ = 2−45.

Then total data is D = p−1D
′ = 278 and the total time is T = p′−1

T
′ = 269.

For our case, the TMDTO curve followed by Jiao et al. [68] gives the best result.

For the first time, in 2008, Bjørstad [71] mounted a TMDTO attack on Grain-v1,

using BSW sampling to recover the state. Showing that Grain-v1 has low sampling

resistance, he could reduce the time T and memory M by increasing data D. In 2012,

Mihaljević et al. [75] used the normality of order two of the nonlinear functions of

Grain-v1 for BSW sampling to recover 18 state bits where 18 consecutive key-stream

bits are set as zero. It needed to fix 54 state bits and to guess 88 state bits and then

BS TMDTO [40] with a single table lookup in pre-processing phase is used to recover

the state bits. In 2015, Jiao et al. [68] recovered 28 state bits from 28 consecutive key-

stream bits by using the normality order of the nonlinear function of Grain-v1. They

fixed 51 state bits and guessed 81 state bits to reduce the sampling resistance from

2−18 to 2−28. Then they used the TMDTO attack to recover state bits. The TMDTO

curve was TMD = 2fN . In 2017, Mihaljević et al. [69] used the same strategy to

recover 24 and 31 state bits from the same number of consecutive key-stream bits

in two different instants, respectively. It is needed to fix 6 and 31 state bits and

guess 130 and 97 state bits, respectively. Then BS TMDTO is implemented over the
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Table 5.18: Comparison of our result with previous results

References Time Memory Keystream Pre-processing
(T) (M) (D) (P)

Bjørstad [71] 270 269 256 2104

Mihaljević et al. [75] 254 288 261 288

Jiao et al. [68] 261 271 279 281

Mihaljević et al. [69] 258 271 276 284

270 271 270 290

Siddhanti et al. [76] 268.06 264 264 296

Our work 261 266 278 282

reduced space to recover state bits. The latest, this year, Siddhanti et al. [76] proposed

TMDTO attack by recovering 32 state bits, fixing none state bits, and guessing 96

state bits with 36 known consecutive keystream bits. Now we compare our result with

the previous results in the following Table 5.18.

5.5 Conclusion

In this chapter, we have used the classical method to recover the state bits of Grain-v1

by observing the algebraic structure of the cipher and then presented an algorithm

to recover state bits of a cipher by fixing as small as possible number of state bits

from some given keystream bits. Then we implemented the algorithm on Lizard and

Grain-128a, where we recover state bits by fixing the minimum number of state bits

as of now. Then we use the result in a conditional TMDTO attack by presenting a

TMDTO curve using the number of recovering and fixing bits, given by Jiao et al. for

Grain-v1 and given by us for Lizard and Grain-128a. We studied the attack on Lizard

in three different cases D < T = M , T < M = D and D = T = M . We supersede the

previous best result with respect to the different parameters. As lightweight stream

ciphers’ state size is small compared to standard stream ciphers, the TMDTO attack

is an exciting tool to analyze them. Currently, NIST has initiated standardizing
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lightweight stream cipher. We hope that our algorithm can be used to analyze NIST

second-round candidates under the TMDTO attack.





Chapter 6

Degree Evaluation of Grain-v1

6.1 Motivation

Most cryptographic primitives, specially NFSR based ciphers, consist of Boolean func-

tions, which take private (i.e., key) and public (i.e., IV) bits as inputs. By exploiting

the degree of the Boolean function, one can find out the weaknesses of the primitives.

The correct estimation of the degree of an NFSR based stream cipher is a challeng-

ing job. There are few tools, such as statistical analysis, symbolic computation, etc.,

to estimate the algebraic degree. Some popular cryptanalysis techniques like cube

attacks, integral attacks, algebraic attacks, higher-order differential attacks can be

executed by estimating the algebraic degree of the Boolean function.

The theories of estimating degree are based on the two ideas, the use of the Walsh

spectrum of Boolean function [78–80] and the use of the simple facts. Our work

follows the latter. At CRYPTO 2017, Liu [81] has described an algorithm to find

out the upper bounds on the degrees of NFSR based cipher by using a new concept,

called “Numeric mapping”. A degree evaluation technique for Trivium-like cipher

was designed and shown that the estimated bound is close to its original value for

maximum cases. They have used their degree estimation technique to identify the

number of rounds where the key and IV bits are mixed properly or not, and further,
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it is used for the distinguishing purpose as a cube tester. Our work is similar to this

work. After that, Ye et al. [82] have presented an algorithm to find the exact super

polynomial of a cube and proved that it is not a zero-sum distinguisher for 838 rounds

of Trivium given by Liu. To find the super polynomial, they first compute the ANF of

the output function by a backward method iteratively. The ANF of the involved bits

in the output function z up to some manageable rounds are computed, and finally,

the super polynomial is calculated.

At CRYPTO 2018, Fu et al. [83] considered the output function z as P1P2 + P3,

where P1 should be selected by (a) frequency of P1 is high in higher degree term (b) P1

has low degree (c) minimum number of key guessing in P1. The right key guessing of

P1 gives a simple polynomial as (1+P1)z = (1+P1)P3 and wrong one gives (1+P ′
1)z =

(1+P ′
1)(P1P2+P3). Finally they calculated the degree of (1+P1)z = (1+P1)P3 as d by

using their proposed algorithm and used d+1 dimensional cube as distinguisher. There

is another literature [84], where degrees of NFSR based cryptosystem are discussed.

This chapter has simplified the h function of Grain-v1 by using some static vari-

ables and then calculated the maximum degree over initial state bits up to some round

of Grain-v1. We aim to find out the round where the feedback bit and output can

achieve the highest degree and claim that the key bits and IV bits mix properly at

this round.

6.1.1 Our Contribution

We aim to evaluate the degree of NFSR and LFSR feedback bits and the output bit

over the initial state bits (including the bits of key, IV, and nonce bits). This chapter

has initiated work to evaluate the degree of the said bits using a difference of involved

tap points in the NFSR and the output functions. The degree of NFSR update terms

in Grain-v1 is higher than the degree of its output function. To control the degree

of output function, we have put some conditions on IV bits. Therefore, our degree

evaluation is subjected to some conditions on IV bits. We have followed the following
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steps to evaluate the degree.

1. The differences between the state bits involved in the NFSR update function.

2. The common bits with shifted bits according to the differences.

3. Calculating the degree of the quadratic terms.

4. Common bits according to the difference trail.

5. The possibility of degrees of NFSR updated terms.

We could calculate the degrees of the NFSR, LFSR update bits, and the output bits

up to 54 rounds, i.e., the degree of feedback bits b80+t, l80+t and output bit z80+t for

0 ≤ t ≤ 54. We have verified the degree up to 42nd round by SAGE.

6.1.2 Organization

The remaining parts of this chapter are divided into three sections. The main work is

presented in Section 6.2, where we present all steps and tools for the degree evaluation.

In Section 6.3, we apply the technique to evaluate the degrees of the functions in

Grain-v1. In the last section, we conclude our work.

6.2 Degree Evaluation of Grain-v1

We see that during KSA, both the LFSR and NFSR feedback have a term zt. Hence

the degree of LFSR bits is dominated by the degree of zt. As the NFSR has nonlinear

terms, the degree of NFSR bits may not be dominated by the degree of zt in all rounds.

From Equation 2.5, it is clear that the highest degree term of zt (i.e., 3-degree terms)

comes from h. So we vanish those 3-degree terms of h by imposing some restrictions

on IV bits for few initial rounds as following.

It can be seen from Equation 2.4 that st+46 is present in all 3-degree terms (and

one 2-degree term) in h. If the value of state bits s46 to s63 are equal to 0 (i.e., the
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last 18 bits of IV), then all 3-degree terms of h are vanished for first 18 rounds. The

equation of h for 0 ≤ t ≤ 17 becomes

h(st+3, st+25,0, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+64bt+63.

As during the key loading the LFSR bits from s64 to s79 are set 1 as padding bits, h

contains only two linear bits for first 16 rounds as the equation of h is

h(st+3, st+25,0,1, bt+63) = st+25 + st+3 for 0 ≤ t ≤ 15.

As round increases the conditions set (i.e., s46 = ⋯ = s63 = 0 and s64 = ⋯ = s79 = 1),

the conditions shifted to other state bits in the LFSR. Therefore, the equation of h is

simplified for higher rounds (i.e., t ≥ 16). The equation of h is presented in Table 6.1

for first 77 rounds (i.e., 0 ≤ t ≤ 76).

Grain-v1 is prone to be attacked by different way. There are several literature [35,

54, 67, 69, 71, 75, 76, 85] on this. Interested reader can go through this.

6.2.1 Calculating Repeated Bits

In Grain-v1, the set of state bits B = {b9, b15, b21, b28, b33, b37, b45, b52, b60, b63} are in-

volved in the non-linear terms of the state update relation of NFSR (see Equation 2.3).

We enumerate the differences between each pair of these state bits. The differences

can be computed using the following recursion.

Definition 36. Let there is a ordered set of n integers S = {a1, a2,⋯, an}. For 1 ≤ k ≤

n−1, the kth order difference of S is defined as ∆kS = {ak+1−a1, ak+2−a2,⋯, an−an−k}

and ∆0S = S. The i-th element of ∆kS (i.e., ak+i − ai) is denoted as ∆kSi for 1 ≤ i ≤

n − k.

It can be easily checked that ∆kS can be recursively computed as the following.

Lemma 5. For 2 ≤ k ≤ n − 1, ∆kSi = ∆k−1Si +∆1Sk+i−1 for 1 ≤ i ≤ n − k.
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Table 6.1: ANF of h function of Grain-v1 at different rounds

Static Bit h function Rounds

st+46 = 0, st+64 = 1 h = st+3 + st+25 0 − 15
st+46 = 0 h = st+25 + bt+63 + st+3st+64 + st+64bt+63 16
st+46 = 0 h = st+25 + bt+63 + st+3st+64 + st+64bt+63 17
st+46 = 1 h = st+25 + bt+63 + st+64 + st+3st+25+ 18 − 20

st+3bt+63 + st+25bt+63

st+25 = 0, st+46 = 1 h = bt+63 + st+64 + st+3bt+63 21 − 32
st+25 = 0 h = bt+63 + st+3st+64 + st+46st+64 + st+64bt+63+ 33 − 38

st+3st+46st+64 + st+3st+46bt+63 + st+46st+64bt+63

st+25 = 1 h = 1 + bt+63 + st+3st+64 + st+46st+64 + st+64bt+63 39 − 42
+st+3st+46 + st+3st+46st+64 + st+3st+46bt+63+
st+46bt+63 + st+46st+64bt+63

st+3 = 0, h = 1 + bt+63 + st+46st+64 + st+64bt+63+ 43 − 54
st+25 = 1 st+46bt+63 + st+46st+64bt+63

st+3 = 0 h = st+25 + bt+63 + st+46st+64 + st+64bt+63+ 54 − 60
st+25st+46bt+63 + st+46st+64bt+63

st+3 = 1 h = st+25 + bt+63 + st+64 + st+64bt+63 + st+25st+46 61 − 76
+st+46bt+63 + st+25st+46bt+63 + st+46st+64bt+63

For the Grain-v1 case, let take the set S as the index of the bits involved in the

nonlinear terms of the state update relation of NFSR, i.e., in set B. Then Table 6.2

presents the order difference of the indices of these state bits where the differences

and repeated indices can be identified. The value of the term ∆kSi represents that

in Grain-v1 the state value of (k + i)-th nonlinear bit in ordered set S is shifted to

i-th state after ∆kSi rounds. For example, ∆2S3 = 12 in Table 6.2 represents that the

state value of the 33-th state (i.e., b33) is shifted to 21-th state (i.e., b21) in the NFSR

after 12 rounds.

The sorted list of differences (from Table 6.2) and the pair of bits where the

difference occurs are presented in the Table 6.3.

When two terms are multiplied, the final term’s degree is lesser than the sum of

the individual terms if there are some common variables between the terms. The

following theorem presents the degree of the multiplication of two nonlinear terms in
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Table 6.2: Order difference ∆k of the indices

Bits b9 b15 b21 b28 b33 b37 b45 b52 b60 b63

Order (k)
0 9 15 21 28 33 37 45 52 60 63
1 6 6 7 5 4 8 7 8 3
2 12 13 12 9 12 15 15 11
3 19 18 16 17 19 23 18
4 24 22 24 24 27 26
5 28 30 31 32 30
6 36 37 39 35
7 43 45 42
8 51 48
9 54

Table 6.3: Table of Common bits according to differences

Differ- Between pair Differ- Between pair Differ- Between pair
ence of bits ence of bits ence of bits

3 (b60, b63) 16 (b21, b37) 31 (b21, b52)
4 (b33, b37) 17 (b28, b45) 32 (b28, b60)
5 (b28, b33) 18 (b15, b33), (b45, b63) 35 (b28, b63)
6 (b9, b15), (b15, b21) 19 (b9, b28), (b33, b52) 36 (b9, b45)
7 (b21, b28), (b45, b52) 23 (b37, b60) 37 (b15, b52)
8 (b37, b45), (b52, b60) 22 (b15, b37) 39 (b21, b60)
9 (b28, b37) 24 (b9, b33), (b21, b45) 42 (b21, b63)

, (b28, b52)
11 (b52, b63) 26 (b37, b63) 43 (b9, b52)
12 (b9, b21), (b21, b33) 27 (b33, b60) 45 (b15, b60)

, (b33, b45)
13 (b15, b28) 28 (b9, b37) 48 (b15, b63)
15 (b37, b52), (b45, b60) 30 (b15, b45), (b33, b63) 51 (b9, b60)

54 (b9, b63)

the case of feedback shift registers.

Theorem 9. Let denote Bk and Ck be two nonlinear terms at the k-th round (i.e.,
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multiplication of some state bits in a feedback shift register at k -th round). Further

denote that bi is i-th state bit in k-th round. If bi is a variable in Bk and bi−j is a

variable in Ck for some 0 ≤ j ≤ i then deg(BkCk+j) < deg(Bk) + deg(Ck+j). If there

are exactly m such pairs of bi and bi−j in Bk and Ck respectively, then deg(BkCk+j) =

deg(Bk) + deg(Ck+j) −m.

For an example, consider Bk and Ck as the highest degree term of the NFSR in

Grain-v1, i.e., Bk = Ck = b52b45b37b33b28b21. Since b37 is inBk and b33 = b37−4 is in Ck, the

deg(BkCk+4) = deg(Bk)deg(Ck)−1 = 11. For a demonstration, Table 6.4 represents the

degrees of BkCk+j, k ≥ 80 for those shifts j for the terms Bk = Ck = b52b45b37b33b28b21.

Table 6.4: Table of degrees of BkCk+j, i ≥ 80

Shift(j) Deg(BkCk+j) Bits in Bk,Ck Shifts(j) Deg(BkCk+j) Bits in Bk,Ck

4 11 b37, b33 15 11 b52, b37

5 11 b33, b28 16 11 b37, b21

7 10 b28, b21; b52, b45 17 11 b45, b28

8 11 b45, b37 19 11 b52, b33

9 11 b37, b28 24 10 b45, b21; b52, b28

12 10 b33, b21; b45, b33 31 11 b52, b21

Further, if there is a common bit in m terms, then the degree of the multiplication

of m terms reduced by m − 1 from the sum of the degrees of m terms because of the

m − 1 times of repetition of the bit. Since we are checking common terms between a

pair of terms at a time, the repetition is subtracted (m
2
) times (instead of m− 1) from

the sum of degree as in Theorem 9. This can be settled by adding (m−1
2

) common

repetition again for correct degree calculation.

Observation 3. Let a bit b be present in m terms of a multiplication of n terms where

n ≥ m. The common bit b comes in (m
2
) pairs of terms, and each time the degree is

subtracted by 1 as in Theorem 9. As a result, the actual degree of the multiplication

is reduced by (m−1
2

), which is the number of repeated counting of the common bit b.
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Hence the number (m−1
2

) needs to be added to the final degree for the correct degree

calculation.

By exploiting Observation 3, it is possible to make a list of trails of three differences

(i.e., i − j − (i + j)) with respect to a set (say B) such that a bit is common in three

terms. That is, if a bit bk+i+j, bk+i and bk are present in the terms Xk, Yk and Zk

respectively, then the terms Xk, Yk+j, Zk+i+j contains a common term bk+i+j. As we

aim to find out the maximum degree, we need to find the terms when the degree of

their multiplication does not reduce. Hence, it will be easier to find out such possible

terms looking from the list of trails. Table 6.5 presents the list of trails with respect

to the set B (i.e., the bits involved in the nonlinear terms of NFSR of Grain-v1).

Table 6.5: Table of Repeated Common bit with difference Trail

Difference Common bit- Difference Common bit- Difference Common bit-
Trail Via bit-Shift bit Trail Via bit-Shift bit Trail Via bit-Shift bit

6 − 6 − 12 b9 − b15 − b21 27 − 3 − 30 b33 − b60 − b63 6 − 18 − 24 b9 − b15 − b33

7 − 5 − 12 b21 − b28 − b33 28 − 8 − 36 b9 − b37 − b45 6 − 16 − 22 b15 − b21 − b37

4 − 8 − 12 b33 − b37 − b45 30 − 7 − 37 b15 − b45 − b52 7 − 17 − 24 b21 − b28 − b45

7 − 8 − 15 b45 − b52 − b60 31 − 8 − 39 b21 − b52 − b60 19 − 5 − 22 b9 − b28 − b33

12 − 7 − 19 b9 − b21 − b28 32 − 3 − 35 b28 − b60 − b63 4 − 23 − 27 b33 − b37 − b60

13 − 5 − 18 b15 − b28 − b33 36 − 7 − 43 b9 − b45 − b52 8 − 18 − 26 b37 − b45 − b63

12 − 4 − 16 b21 − b33 − b37 37 − 8 − 45 b15 − b52 − b60 6 − 22 − 28 b9 − b15 − b37

9 − 8 − 17 b28 − b37 − b45 39 − 3 − 42 b21 − b60 − b63 6 − 24 − 30 b15 − b21 − b45

12 − 7 − 19 b9 − b21 − b28 43 − 8 − 51 b9 − b52 − b60 7 − 24 − 31 b21 − b28 − b52

15 − 8 − 23 b37 − b52 − b60 45 − 3 − 48 b15 − b60 − b63 5 − 27 − 32 b28 − b33 − b60

15 − 3 − 18 b45 − b60 − b63 6 − 7 − 13 b15 − b21 − b28 4 − 26 − 30 b33 − b37 − b63

19 − 5 − 24 b9 − b28 − b33 5 − 4 − 9 b28 − b33 − b37 6 − 30 − 36 b9 − b15 − b45

18 − 4 − 22 b15 − b33 − b37 8 − 7 − 15 b37 − b45 − b52 6 − 31 − 37 b15 − b21 − b52

16 − 8 − 24 b21 − b37 − b45 8 − 3 − 11 b52 − b60 − b63 7 − 32 − 39 b21 − b28 − b60

17 − 7 − 24 b28 − b45 − b52 6 − 13 − 19 b9 − b15 − b28 5 − 30 − 35 b28 − b33 − b63

19 − 8 − 27 b33 − b52 − b60 6 − 12 − 18 b15 − b21 − b33 6 − 37 − 43 b9 − b15 − b52

23 − 3 − 26 b37 − b60 − b63 7 − 9 − 16 b21 − b28 − b37 6 − 39 − 45 b15 − b21 − b60

24 − 4 − 28 b9 − b33 − b37 5 − 12 − 17 b28 − b33 − b45 7 − 35 − 42 b21 − b28 − b63

22 − 8 − 30 b15 − b37 − b45 4 − 15 − 19 b33 − b37 − b52 6 − 45 − 51 b9 − b15 − b60

24 − 7 − 31 b21 − b45 − b52 8 − 15 − 23 b37 − b45 − b60 6 − 42 − 48 b15 − b21 − b63

24 − 8 − 32 b28 − b52 − b60 7 − 11 − 18 b45 − b52 − b63

Example 7. If the bits b37, b33 and b28 are present in the terms X28, Y28 and Z28

respectively, then there is difference trail 5 − 4 − 9 between b28 and b37. So the terms

X28, Y28+4, Z28+5+4 contains a common term b28+5+4 = b37.
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The NFSR update function of Grain-v1 contains the terms of degree 6 and less.

Expecting the higher degree terms contribute for the highest degree term in NFSR, we

have taken terms of degree 6,5 or 4. The terms are b21b28b33b37b45b52, b37b45b52b60b63,

b9b15b21b28b33, b9b28b45b63, b33b37b52b60 and b15b21b60b63. Hence, there are 36 possibilities

of pair wise multiplications among them self. Each possibility will show the number

of common bits and the differences. Based on those differences we can estimate that

which pair of terms give the maximum degree of NFSR update bits. Table 6.6 contains

all 36 possibilities, where one can find the number of common bits and the differences

of bits between each pair. To explain the contents of the table, let consider the entry

between the row containing the term nk = b15b21b60b63 and the column containing the

term mk = b33b37b52b60. b33 ∶ 27 implies that the multiplication mk+27nk contains a

common bit b33+27 = b60. Similarly the multiplication mk+30nk contains a common bit

b33+30 = b63 and other 5 cases.

In the following section, we present the algorithm to find the degree of NFSR

function (b80+t), LFSR function (s80+t) and output function (zt).

6.3 Calculating the Degree of Feedback and Out-

put Bits

In the key scheduling phase, the output bit zt is added with the NFSR feedback

function. Here, the NFSR update function’s degree is 6, and the degree of output

function is 3. As the round increases, the degree of output bit zt increases. If the

degree of output bit zt can be resisted to increase it (using the conditional equations

in Table 6.1), then the degree of NFSR update bits are dominated by NFSR update

functions for some more rounds. We present a correct degree estimation technique of

NFSR update bit (b80+t) and output bit (zt) of Grain-like cipher in Algorithm 8.

Example 8. We evaluate the degree of b117 = b80+37 at round t = 37.
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Table 6.6: Table of differences (i) between terms mk+i and nk contain a common bit

mk → b15b21 b33b37 b9b28 b9b15 b37b45 b21b28b33

nk ↓ b60b63 b52b60 b45b63 b21b28b33 b52 b37b45b52

b60b63

b15b21 b15 ∶ 6,45 b33 ∶ 27,30 b9 ∶ 6,12, b9 ∶ 6,12,51,54 b37 ∶ 23,26 b21 ∶ 39,42; b28 ∶
b60b63 48 b37 ∶ 23,26 51,54 b15 ∶ 6,45,48; b21 b45 ∶ 15,18 32,35; b33 ∶ 27,30

b21 ∶ 39,42 b52 ∶ 8,11 b28 ∶ 32,35 ∶ 39,42; b28 ∶ 32 b52 ∶ 8,11 b37 ∶ 23,26; b45 ∶
b60 ∶ 3 b60 ∶ 3 b45 ∶ 15,18 ,35; b33 ∶ 27,30 b60 ∶ 3 15,18; b52 ∶ 8,11

b33b37 b15 ∶ 18,22, b33 ∶ 4,19, b9 ∶ 24,28 b9 ∶ 24,28,43,51 b37 ∶ 15,23 b21 ∶ 12,16,31,39
b52b60 37,45 27 43,51 b15 ∶ 18,22,37,45 b45 ∶ 7,15 b28 ∶ 5,9,24,32

b21 ∶ 12,16, b37 ∶ 15,23 b28 ∶ 5,9, b21 ∶ 12,16,31,39 b52 ∶ 8 b33 ∶ 4,19,27
31,39 b52 ∶ 8 24,32 b28 ∶ 5,9,24,32 b37 ∶ 15,23

b45 ∶ 7,15 b33 ∶ 4,19,27 b45 ∶ 7,15; b52 ∶ 8
b9b28 b15 ∶ 13,30, b33 ∶ 12,30 b9 ∶ 19,36, b9 ∶ 19,36,54; b15 ∶ b37 ∶ 8,26 b21 ∶ 7,24,42; b28

b45b63 48 b37 ∶ 8,26 54 13,30,48; b21 ∶ 7, b45 ∶ 18 ∶ 17,35; b33 ∶ 12,
b21 ∶ 7,24, b52 ∶ 11 b28 ∶ 17,35 24,42; b28 ∶ 17,35 b52 ∶ 11 30; b37 ∶ 8,26
42; b60 ∶ 3 b60 ∶ 3 b45 ∶ 18 b33 ∶ 12,30 b60 ∶ 3 b45 ∶ 18; b52 ∶ 11

b9b15 b15 ∶ 6,30, b9 ∶ 6,12, b9 ∶ 6,12,19,24 b21 ∶ 7,12
b21 18 19,24 b15 ∶ 6,30,18; b21 b28 ∶ 5
b28b33 b21 ∶ 7,12 b28 ∶ 5 ∶ 28,12; b28 ∶ 5
b37b45 b15 ∶ 22,30, b33 ∶ 4,12, b9 ∶ 28,36, b9 ∶ 28,36,43,51, b37 ∶ 8,15, b21 ∶ 16,24,31,39,
b52 37,45,48 19,27,30 43,51,54 54; b15 ∶ 22,30,37 23,26 42; b28 ∶ 9,17,24,
b60b63 b21 ∶ 16,24, b37 ∶ 8,15 b28 ∶ 9,17, ,45,48; b21 ∶ 16,24 b45 ∶ 7,15, 32,35; b33 ∶ 4,12,

31,39,42 23,26 24,32,35 ,31,39,42; b28 ∶ 9, 18 19,27,30; b37 ∶ 8,
b60 ∶ 3) b52 ∶ 8,11 b45 ∶ 7,15, 17,24,32,35; b33 ∶ b52 ∶ 8,11 15,23,26; b45 ∶ 7,

b60 ∶ 3) 18 4,12,19,27,30 b60 ∶ 3 15,18; b52 ∶ 8,11
b21b28 b15 ∶ 6,13, b33 ∶ 4,12, b9 ∶ 12,19, b9 ∶ 12,19,24, ,28, b37 ∶ 8,15 b21 ∶ 7,12,16,24
b33b37 18,22,30 19 24,28,36 36,43; b15 ∶ 6,13, b45 ∶ 7 ,31; b28 ∶ 5,9,17
b45b52 ,37 b37 ∶ 8,15 43 18,22,30,37; b21 ∶ 24; b33 ∶ 4,12,19

b21 ∶ 7,12, b28 ∶ 5,9, 7,12,16,24,31 b37 ∶ 8,15; b45 ∶ 7
16,24,31 17,24 b28 ∶ 5,9,17,24

b45 ∶ 7 b33 ∶ 4,12,19

1. There are six terms of b117 of degree 4,5 or 6. For the example we considered

the term, say T5 = b100b97b89b82b74 which gives the maximum degree.

2. There are differences of the indices of bits (which are greater than or equal to

80) are 3,8,7,11,15,18 using Table 6.2. Further b100 contain some terms. For

this example, we replace b100 by b83b80b72b65b57 and for other high degree terms

it can be done similar way.

The term can be rewritten as T = b97b89b83b82b80b74b72b65b57. Now we will find

out the degree of T . Since last four bits are of degree one, for sake of simplicity,

we consider T as b97b89b83b82b80. Now we apply step 4 of the algorithm.

3. As per the step 4 in Algorithm 8, the rows of the difference table as Table 6.2
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Algorithm 8: Algorithm for max degree of NFSR bits of Grain-v1.

Input : Round t
Output: A highest degree term of b80+t

1 List the high degree terms T1, T2,⋯, Tn in b80+t;
2 Set DEGi = 0,1 ≤ i ≤ n and let Ti = bt+i1bt+i2⋯bt+ik ;
3 for i from 1 to n do
4 Construct a difference table as Table 6.2 using the bits in Ti.;
5 Find out differences of the pair from Table 6.3.;
6 Find the terms involved in each bit bt+ij in Ti, which gives highest degree

using Table 6.6. Let the terms are Qt+i1 ,Qt+i2 ,⋯,Qt+ik ;
7 Set DEGi =Deg(Qt+i1) +⋯ +Deg(Qt+ik)).;
8 Find out pairwise common key bits according to the difference of the bits

in the terms Qt+ij using Table 6.3 and count the number, say l.;
9 Set DEGi =DEGi − l.;

10 Count repeated common bits from Table 6.5, say m.;
11 Set DEGi =DEGi +m.;

12 end
13 Set DEG =MAX(DEGi).;
14 return DEG.;

are 8,6,1,2; 14,7,3; 15,9; 17.

4. The differences of the pair of bits are found from Table 6.3:

(b9, b15), (b21, b28), (b28, b45), (b37, b52), (b45, b52), (b45, b60), (b15, b21),

(b28, b37), (b37, b45), (b45, b52), (b52, b60), (b60, b63).

5. Consider the pair (b9, b15). This pair indicates that b9 is in b89 and b15 in b83,

which is a common bit of both. We write such information of all pairs as b89 ∶ b9

and b83 ∶ (b15) in step 1 in Table 6.7.

6. Now we select the suitable terms for each bit of b80, b82, b83, b89, b97, b100 step

by step (Step 2 to Step 5 in Table 6.7 respectively). As example, for b80 ∶

(b37, b45, b63), we will try to find the term from Table 6.6 where b37, b45, b63 are

not involved or are least involved. So we set b80 = b33b28b21b15b9 and correspond-

ing pairs of b80 with others are deleted. Here, b28 is removed from b97, b89 and

b60 is removed from b83 in step 2 in Table 6.7.
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7. The last step of Table 6.7 performs step 7 to step 9 of Algorithm 8, where

the degrees of all terms are added in step 7. Then we see from the step 8

that b28 is a common bit between b89 and b82, so l = 1. Hence DEG(b117) =

Degb97+Degb89+Degb83+Degb82+Degb80+Degb74+Degb72+Degb65+Degb57 =

5 + 6 + 6 + 5 + 5 + 1 + 1 + 1 + 1 − 1 = 30.

Table 6.7: Table of Calculating Degrees of NFSR bit b117

Step 1:b100 ∶ b45, b52, b60. Step 2:b100 ∶ b45, b52, b60.
b97 ∶ b28, b37, b45, b52(b63). b97 ∶ b37, b45, b52(b63).
b89 ∶ b9, b15, b21, b28, b45. b89 ∶ b9, b15, b21, b45. (b45, b60, b63).

(b45, b60, b63).
b83 ∶ b60(b15, b21). b83 ∶ (b15, b21).
b82 ∶ (b28, b52, b60, b63). b82 ∶ (b28, b52, b60, b63).
b80 ∶ (b37, b45, b63). b80 = b33b28b21b15b9.

Step 4:b100 ∶ b60. Step 3:b100 ∶ b60.
b97 ∶ b37, (b63). b97 ∶ b37, b52(b63).
b89 = b52b45b37b33b28b21(b21). b89 ∶ b9, b15,b21. (b45, b60, b63).
(b45).
b83 ∶. b83 ∶ (b15, b21).
b82 = b33b28b21b15b9(b28). b82 = b33b28b21b15b9(b28).
b80 = b33b28b21b15b9. b80 = b33b28b21b15b9.

Step 5:b100 ∶. Deg(b117) =Deg(b100b97b89b82) + 1.
b97 = b33b28b21b15b9. =Deg(b97b89b83b82b80) + 3 + 1.
b89 = b52b45b37b33b28b21(b21). =Deg(b97b89b83b82) + 5 + 3 + 1.
b83 = b52b45b37b33b28b21. =Deg(b97b89b83) + 5 + 5 + 3 + 1.
b82 = b33b28b21b15b9(b28). =Deg(b97b83) + 6 + 5 + 5 + 4.
b80 = b33b28b21b15b9. = 5 + 6 + 6 + 5 + 5 + 4 − 1 = 30.

We used Algorithm 8 to calculate the degrees of the NFSR, LFSR update bits

and the output bit up to some rounds. Table 6.8 presents the degrees of these bits.

The degree of terms up to first 42 rounds in Table 6.8 are verified using the software

SAGE.
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Table 6.8: Table of Degrees of different non-linear functions

Rounds Degree Degree Degree Rounds Degree Degree Degree
(i) of b80+i of z80+i of s80+i (i) of b80+i of z80+i of s80+i

0 − 15 6 1 1 42 33 22 22
16 6 2 2 43 34 22 22
17 − 19 10 7 7 44 34 22 22
20 − 27 15 7 7 45 38 26 26
28 − 33 19 7 7 46 38 26 26
34 23 18 18 47 38 26 26
35 26 18 18 48 38 26 26
36 26 18 18 49 38 26 26
37 30 22 22 50 38 34 34
38 31 22 22 51 45 39 39
39 31 22 22 52 47 41 41
40 32 22 22 53 47 45 45
41 32 22 22 54 51 48 48

6.4 Conclusion

This chapter aims to develop a degree evaluation technique for feedback and output

bits of the NFSR based stream cipher. Using our technique, we can calculate the

degree of the said bits during the key scheduling algorithm of Grain-v1 of the reduced

round.





Chapter 7

Conclusions

This dissertation presents the cryptanalysis of contemporary famous FSR-based stream

ciphers. The first chapter presents the introduction and motivation towards the crypt-

analysis of stream ciphers. Then, the required mathematical and cryptographical

terms and definitions are presented in the next chapter. Moreover, the design of some

stream ciphers and some essential cryptanalysis techniques are too presented in the

same chapter. Finally, we have discussed our contributions in Chapter 3 to Chapter 6.

We explored conditional differential attack on Grain-v1 in Chapter 3. For the first

time, certain distinguishers using two bits differences in the IV are proposed for higher

initialization rounds of Grain-v1.

� The first distinguisher can distinguish Grain-v1 with 112 initialization rounds

from a random source with a success rate of approximately 99%.

� The second distinguisher can distinguish Grain-v1 with 114 initialization rounds

from a random source with a success rate of approximately 73% for 278 weak

keys, one-fourth of the whole keyspace.

� Further, this distinguisher has been extended to 116 initialization rounds with

1 bit difference in the key and 4 bit differences in the IV. Here the success rate

is 62% for 275 related keys.
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Chapter 4 discusses the conditional cube attack on Grain-128a. This chapter

introduces a new heuristic by combining maximum initial zero, maximum last zero,

and maximum last α strategies for searching a suitable cube. This heuristic method

also imposes conditions on state variables to find a suitable cube. A cube tester using

the heuristic is designed with a small dimensional cube to distinguish the Grain-128a

of 191 KSA rounds in the single key setup and 201 KSA rounds in the weak key

setup. The distinguishing rounds are the highest round till now. Further, the attack

is implemented on Grain-128.

We discuss two different state recovery attacks in Chapter 5. The first one uses

the classical method to recover the state bits by observing the ANF of the output

and non-linear update functions. The second one is a deterministic algorithm to

recover a maximum number of state bits by fixing fewer state bits. We implement

the algorithm on two famous FSR-based ciphers, Lizard and Grain-128a (without

authentication mode). Also, we have used the classical method to recover the state

bits of Grain-v1. We get the following results.

� Grain-v1: 33 state bits are recovered from same number of keystream bits by

fixing 45 state bits.

� Lizard: 10,11,12,13,14,15,16,17 state bits are recovered from same number of

keystream bits by fixing 9,10,11,12,14,18,22,25 state bits respectively.

� Grain-128a: 35,48 state bits are recovered from 35,48 keystream bits by fixing

34,54 state bits respectively, which is the first result on this cipher in this

direction.

These recovering and fixing state bits from specific keystream bits are exploited to im-

plement a conditional BSW-sampling TMDTO attack. Looking into the practicality,

we analyze our results on three different conditions on TMDTO parameters T,M,D

as follows.
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1. D < T =M which is considered by looking into the practicality of the availability

of data D.

2. T = 2−f−2rD2,M =D, which satisfies the lower bound for T in terms of D.

3. D = T =M which is to minimize max(D,T,M).

By using these criteria, we can recover the whole state bits of Lizard with the best

complexities till now. Furthermore, our TMDTO attacks on Grain-v1 and Grain-128a

provide better complexities than previously known results.

A degree evaluation method to compute the algebraic degrees of output and state

update functions of Grain-v1 is discussed in Chapter 6.

There are many scopes to extend our works. Here a list of the proposal is given.

� The stream ciphers can be analyzed by applying conditional differential attack

with a suitable difference vector of weight two or more. Therefore, automated

handling of such scenarios will be of considerable interest.

� From the practical point of view of the cube attack, small dimensional cubes

of any cipher are of great interest. Hence, the techniques for searching suitable

small cubes for different stream ciphers can be explored.

� The approximations of the output function of any cipher can be utilized for a

better state recovery attack. An improved TMDTO curve can also be designed

for cryptanalysis purposes.

� A deterministic algorithm can be proposed to evaluate the algebraic degree of

output and state update functions for as high as possible rounds. As a result,

it could be possible to analyze the proper mixing of NFSR and LFSR bits of

Grain-like cipher till that round. Further, one can find out the degrees of the

IV bits (where key bits are taken as a constant) to mount a cube attack on a

Grain-like cipher.
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Appendix A

Algorithm to recover state bits from two different intervals of a cipher

Algorithm 9: Algorithm for adding two different intervals.

Input : Intervals (a, e) and (c, d).
Output: Set R and C of recovering bits and fixing bits respectively.

1 P = {∅} and R = C = ∅;
2 if NLg(c + l2 − q, d) = ∅ then

3 d
′ = d;

4 end
5 else

6 d
′ = min{p ∶ Ap ∈ NLg(c + l2 − q, d), p > c + t} − 1;

7 end

8 for e
′
from e to a + 1 do

9 Calculate NLz(a, e
′) ∪ULz(a, e

′) = {p1, . . . , p∣NLz(a,e′)∪ULz(a,e′)∣} ;

10 for i from 1 to ∣NLz(a, e
′) ∪ULz(a, e

′)∣ do
11 Compute FSpiz = {T pi1 , . . . , T

pi
∣FSpiz ∣

};

12 ti = flpiz (a, e
′);

13 for j from 1 to ∣FSpiz ∣ do
14 for Ap ∈ T pij do

15 if (p + ti) ≥ l1 or a ≤ (p + ti) ≤ e
′
or c + t ≤ (p + ti) ≤ d

′
then

16 Remove Ap from T pij
17 end

18 end
19 if T pij = ∅ then

20 goto 9;
21 end
22 Calculate P = P ⊗ (T pij , ti);
23 end

24 end

25 R
′ = {Aa,Aa+1, . . . ,Ae′};

26 exit;

27 end
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28 for f from c + t to d′ do
29 NLz(c + t, f) ∪ULz(c, f) = {p∗1 , . . . , p∗∣NLz(c+t,f)∪ULz(c,f)∣};
30 P

′ = {∅};
31 for i from 1 to ∣NLz(c + t, f) ∪ULz(c, f)∣ do
32 Compute FS

p∗i
z = {T p

∗
i

1 , . . . , T
p∗i

∣FS
p∗
i
z ∣
};

33 t∗i = fl
p∗i
z (c + t, f);

34 for j from 1 to ∣FSp
∗
i
z ∣ do

35 for Ap ∈ T
p∗i
j do

36 if (p + t∗i ) ≥ l2 or a ≤ (p + t∗i ) ≤ e
′ + 1 or c + t ≤ (p + t∗i ) ≤ d

′
then

37 Remove Ap from T
p∗i
j

38 end

39 end

40 if T
p∗i
j = ∅ then

41 exit;
42 end

43 Calculate P
′ = P ⊗ P ′ ⊗ (T p

∗
i

j , t∗i );
44 end

45 end

46 C = {S ∈ P ′ ∶ ∣S∣ is minimum};
47 R = {Ac+t, . . . ,Af} ∪R

′
;

48 end
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Appendix B

The system of equations obtained to recover 17 bits of Lizard

The following system of equations (as Equation 5.2) is obtained to recover 17 bits of

Lizard using the conditions in Table 5.8. Here,

- the set of fixing state bits C = {B34, . . . ,B46,B72, . . . ,B82},

- the set of recovering state bits R = {S23, . . . , S30, S2,B63, . . . ,B70},

- the set of guessing state bits

G = {S0, S1, S3 . . . , S22,B0, . . . ,B33,B47, . . . ,B62,B71,B83, . . . ,B89}.

S23 = z0 + f0(G)

S24 = z1 + f1(G,S23)

S25 = z2 + f2(G,S23, S24)

S26 = z3 + f3(G,S23, S24, S25)

S27 = z4 + f4(G,S23, S24, S25, S26)

S28 = z5 + f5(G,S23, . . . , S26, S27)

S29 = z6 + f6(G,S23, . . . , S27, S28)

S30 = z7 + f7(G,S23, . . . , S28, S29)

S2 = z8 + f8(G,S23, . . . , S29, S30)

B63 = z9 + f9(G,S23, . . . , S30, S2)

B64 = z10 + f10(G,S23, . . . , S30, S2,B63)

B65 = z11 + f11(G,S23, . . . , S30, S2,B63,B64)

B66 = z12 + f12(G,S23, . . . , S30, S2,B63,B64,B65)

B67 = z13 + f13(G,S23, . . . , S30, S2,B63, . . . ,B65,B66)

B68 = z14 + f14(G,S23, . . . , S30, S2,B63, . . . ,B66,B67)

B69 = z15 + f15(G,S23, . . . , S30, S2,B63, . . . ,B67,B68)

B70 = z16 + f16(G,S23, . . . , S30, S2,B63, . . . ,B68,B69).
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As per the Equation 13, we have the lower triangular matrix N is the zero matrix and

F (G,R) = (f0, f1, . . . , f16)T where

� f0(G) = B5 +B7 +B11 +B30 +B54 +B71 +B4 ∗B21 +B6 ∗B14 ∗B26 ∗B32 ∗B47 ∗B61 +

B9 ∗B52 +B48 ∗ S9 ∗ S13 + S3 ∗ S16;

� f1(G,S23) = B6 +B8 +B12 +B31 +B55 +B5 ∗B22 +B7 ∗B15 ∗B27 ∗B33 ∗B48 ∗B62 +

B9 ∗B83 +B10 ∗B53 +B49 ∗ S10 ∗ S14 + S4 ∗ S17;

� f2(G,S23, S24) = S25 = z2 +B7 +B9 +B13 +B32 +B47 +B56 +B6 ∗B23 +B10 ∗B84 +

B11 ∗B54 +B50 ∗ S11 ∗ S15 + S5 ∗ S18;

� f3(G,S23, . . . , S25) = B8 +B10 +B14 +B33 +B48 +B57 +B7 ∗B24 +B11 ∗B85 +B12 ∗

B55 +B51 ∗ S12 ∗ S16 + S6 ∗ S19;

� f4(G,S23, . . . , S26) = B9 +B11 +B15 +B49 +B58 +B8 ∗B25 +B12 ∗B86 +B13 ∗B56 +

B52 ∗ S13 ∗ S17 + S7 ∗ S20;

� f5(G,S23, . . . , S27) = B10 +B12 +B16 +B50 +B59 +B6 ∗B24 ∗B32 ∗B48 ∗B62 ∗B71 ∗

B83 +B9 ∗B26 +B13 ∗B87 +B14 ∗B57 +B53 ∗ S14 ∗ S18 + S8 ∗ S21;

� f6(G,S23, . . . , S28) = B11 +B13 +B17 +B51 +B60 +B10 ∗B27 +B14 ∗B88 +B15 ∗B58 +

B54 ∗ S15 ∗ S19 + S9 ∗ S22;

� f7(G,S23, . . . , S29) = B12 +B14 +B18 +B47 +B52 +B11 ∗B28 +B15 ∗B89 +B16 ∗B59 +

B51 ∗B83 +B55 ∗ S16 ∗ S20 +B61 + S10 ∗ S23;

� f8(G,S23, . . . , S30) = B0∗B16+B3∗B16∗B59+B10∗B12∗B16+B12∗B29+B13+B15∗B16+

B15+B16∗B20∗B22∗B23+B16∗B24+B16∗B25∗B53+B16∗B49+B16∗B55∗B58+B16∗

B84+B16∗S0+B17∗B60+B19+B48+B52∗B84+B53+B56∗S17∗S21+B62+S0+S4∗S7∗S12∗

S21+S4∗S7∗S19∗S21+S4∗S12∗S21∗S22+S4∗S12∗S22+S4∗S19∗S21∗S22+S4∗S19∗S22+

S5+S6+S7∗S8∗S18∗S21+S7∗S8∗S20∗S21+S7∗S12∗S19∗S21+S7∗S20∗S21+S8∗S18∗
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S21∗S22+S8∗S18∗S22+S8∗S18+S8∗S20∗S21∗S22+S8∗S20+S12∗S19∗S21∗S22+S12∗

S21+S14∗S19+S15+S17∗S21+S17+S18+S20∗S21∗S22+S20∗S22+S20+S25 + S11 ∗ S24;

� f9(G,S23, . . . , S30, S2) = B1∗B17+B4∗B17∗B60+B11∗B13∗B17+B13∗B30+B14+B16∗

B17+B16+B17∗B21∗B23∗B24+B17∗B25+B17∗B26∗B54+B17∗B50+B17∗B56∗B59+

B17∗B85+B17∗S1+B18∗B61+B20+B49+B53∗B85+B54+B57∗S18∗S22+S1+S3+S5∗S8∗

S13∗S22+S5∗S8∗S20∗S22+S6+S7+S8∗S9∗S19∗S22+S8∗S9∗S21∗S22+S8∗S13∗S20∗

S22+S8∗S21∗S22+S9∗S19+S9∗S21+S13∗S22+S15∗S20+S16+S18∗S22+S18+S19+S21+

S5∗S13∗S22∗S23+S5∗S13∗S23+S5∗S20∗S22∗S23+S5∗S20∗S23+S9∗S19∗S22∗S23+S9∗

S19∗S23+S9∗S21∗S22∗S23+S13∗S20∗S22∗S23+S21∗S22∗S23+S21∗S23+S12∗S25+S26;

� f10(G,S23, . . . , S30, S2,B63) = B2 ∗B18 +B5 ∗B18 ∗B61 +B12 ∗B14 ∗B18 +B14 ∗B31 +

B15 +B17 ∗B18 +B17 +B18 ∗B22 ∗B24 ∗B25 +B18 ∗B26 +B18 ∗B27 ∗B55 +B18 ∗B51 +

B18 ∗B57 ∗B60 +B18 ∗B86 +B19 ∗B62 +B21 +B28 ∗B47 +B50 +B54 ∗B86 +B55 +S4 +

S7 +S8 +S10 ∗S20 +S10 ∗S22 +S16 ∗S21 +S17 +S19 +S20 +S22 +B58 ∗S19 ∗S23 +S6 ∗

S9 ∗S14 ∗S23 +S6 ∗S9 ∗S21 ∗S23 +S6 ∗S14 ∗S23 ∗S24 +S6 ∗S21 ∗S23 ∗S24 +S9 ∗S10 ∗

S20 ∗ S23 + S9 ∗ S10 ∗ S22 ∗ S23 + S9 ∗ S14 ∗ S21 ∗ S23 + S9 ∗ S22 ∗ S23 + S10 ∗ S20 ∗ S23 ∗

S24 +S10 ∗S22 ∗S23 ∗S24 +S14 ∗S21 ∗S23 ∗S24 +S14 ∗S23 +S19 ∗S23 +S22 ∗S23 ∗S24 +

S6 ∗S14 ∗S24 +S6 ∗S21 ∗S24 +S10 ∗S20 ∗S24 +S22 ∗S24 +S13 ∗S26 +S27 +B18 ∗S2 +S2;

� f11(G,S23, . . . , S30, S2,B63,B64) = B3 ∗B19 +B6 ∗B19 ∗B62 +B13 ∗B15 ∗B19 +B15 ∗

B32 +B16 +B18 ∗B19 +B18 +B19 ∗B23 ∗B25 ∗B26 +B19 ∗B27 +B19 ∗B28 ∗B56 +B19 ∗

B52 +B19 ∗B58 ∗B61 +B19 ∗B87 +B19 ∗S3 +B22 +B29 ∗B48 +B51 +B55 ∗B87 +B56 +

S3+S5+S8+S9+S11 ∗S21+S17 ∗S22+S18+S20+S21+S10 ∗S11 ∗S23 ∗S24+S10 ∗S23 ∗

S24 +S11 ∗S23 ∗S24 ∗S25 +S11 ∗S23 +S23 ∗S24 ∗S25 +B59 ∗S20 ∗S24 +S23 ∗S25 +S23 +

S7∗S10∗S15∗S24+S7∗S10∗S22∗S24+S10∗S11∗S21∗S24+S10∗S15∗S22∗S24+S11∗

S21 ∗S24 ∗S25 +S15 ∗S24 +S15 ∗S22 ∗S24 ∗S25 +S20 ∗S24 +S7 ∗S15 ∗S24 ∗S25 +S7 ∗

S15∗S25+S7∗S22∗S24∗S25+S7∗S22∗S25+S11∗S21∗S25+S14∗S27+S28+B20∗B63;

� f12(G,S23, . . . , S30, S2,B63, . . . ,B65) = B4 ∗B20 +B14 ∗B16 ∗B20 +B16 ∗B33 +B17 +

B19∗B20+B19+B20∗B24∗B26∗B27+B20∗B28+B20∗B29∗B57+B20∗B53+B20∗B59∗
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B62+B20∗B83+B20∗B88+B20∗S4+B23+B30∗B49+B52+B56∗B88+B57+B83+S4+

S6 +S9 +S10 +S12 ∗S22 +S19 +S21 +S22 +S8 ∗S11 ∗S23 ∗S25 +S8 ∗S23 ∗S25 ∗S26 +S8 ∗

S23∗S26+S16∗S23∗S25∗S26+S11∗S16∗S23∗S25+S18∗S23+S11∗S12∗S24∗S25+S11∗

S24∗S25+S12∗S24+S12∗S24∗S25∗S26+S24∗S26+S24+B60∗S21∗S25+S8∗S11∗S16∗

S25+S8∗S16∗S25∗S26+S11∗S12∗S22∗S25+S12∗S22∗S25∗S26+S16∗S25+S21∗S25+

S24∗S25∗S26+S8∗S16∗S26+S12∗S22∗S26+S15∗S28+S29+B7∗B20∗B63+B21∗B64;

� f13(G,S23, . . . , S30, S2,B63, . . . ,B66) = B5 ∗B21 +B15 ∗B17 ∗B21 +B18 +B20 ∗B21 +

B20 +B21 ∗B25 ∗B27 ∗B28 +B21 ∗B29 +B21 ∗B30 ∗B58 +B21 ∗B54 +B21 ∗B84 +B21 ∗

B89+B21 ∗S5+B24+B31 ∗B50+B53+B57 ∗B89+B58+B84+S5+S7+S10+S11+S20+

S22+S12∗S13∗S23∗S26+S13∗S23∗S26∗S27+S13∗S23∗S27+S13∗S23+S23+S9∗S12∗

S24∗S26+S9∗S24∗S26∗S27+S9∗S24∗S27+S17∗S24∗S26∗S27+S19∗S24+S12∗S17∗

S24∗S26+S12∗S13∗S25∗S26+S12∗S25∗S26+S13∗S25∗S26∗S27+S13∗S25+S25∗S27+

S25∗S26∗S27+S25+S9∗S12∗S17∗S26+S9∗S17∗S26∗S27+S9∗S17∗S27+S17∗S26+

S22 ∗S26 +B61 ∗S22 ∗S26 +S16 ∗S29 +S30 +B21 ∗B60 ∗B63 +B8 ∗B21 ∗B64 +B22 ∗B65;

� f14(G,S23, . . . , S30, S2,B63, . . . ,B67) = B0 ∗B22+B0 ∗B58+B3 ∗B22 ∗B59+B3 ∗B58 ∗

B59+B6∗B22+B10∗B12∗B22+B10∗B12∗B58+B15∗B16∗B22+B15∗B16∗B58+B16∗B18∗

B22+B19+B20∗B22∗B23∗B58+B20∗B22∗B23+B21∗B22+B21+B22∗B24+B22∗B25∗

B53+B22∗B26∗B28∗B29+B22∗B30+B22∗B31∗B59+B22∗B49+B22∗B55∗B58+B22∗

B55+B22∗B83∗B86∗B87∗B89+B22∗B84+B22∗B85+B22∗S0+B22∗S6+B24∗B58+B25∗

B53∗B58+B25+B32∗B51+B49∗B58+B54+B55∗B58+B58∗B84+B58∗S0+B59+B85+S0+

S4∗S7∗S12∗S21+S4∗S7∗S19∗S21+S4∗S12∗S21∗S22+S4∗S12∗S22+S4∗S19∗S21∗S22+

S4∗S19∗S22+S5+S7∗S8∗S18∗S21+S7∗S8∗S20∗S21+S7∗S12∗S19∗S21+S7∗S20∗S21+

S8∗S18∗S21∗S22+S8∗S18∗S22+S8∗S18+S8∗S20∗S21∗S22+S8∗S20+S8+S11+S12∗S19∗

S21∗S22+S12∗S21+S12+S14∗S19+S15+S17∗S21+S17+S18+S20∗S21∗S22+S20∗S22+

S20+S21+B62∗S23∗S27+S23∗S27+S23+S13∗S14∗S24∗S27+S14∗S24∗S27∗S28+S14∗

S24∗S28+S14∗S24+S24+S10∗S25∗S27∗S28+S10∗S25∗S28+S13∗S18∗S25∗S27+S18∗S25∗

S27∗S28+S20∗S25+S25+S13∗S14∗S26∗S27+S13∗S26∗S27+S14∗S26∗S27∗S28+S14∗

S26+S26∗S27∗S28+S26∗S28+S26+S10∗S13∗S18∗S27+S10∗S13∗S25∗S27+S10∗S18∗S27∗
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S28+S18∗S27+S10∗S18∗S28+S17∗S30+S2+B22∗B61∗B64+B9∗B22∗B65+B23∗B66;

� f15(G,S23, . . . , S30, S2,B63, . . . ,B68) = B0∗B23∗B84∗B87∗B88+B1∗B23+B1∗B59+B3∗

B23∗B59∗B84∗B87∗B88+B4∗B23∗B60+B4∗B59∗B60+B7∗B23+B10∗B12∗B23∗B84∗

B87∗B88+B11∗B13∗B23+B11∗B13∗B59+B15∗B16∗B23∗B84∗B87∗B88+B16∗B17∗B23+

B16∗B17∗B59+B17∗B19∗B23+B20∗B22∗B23∗B84∗B87∗B88+B20+B21∗B23∗B24∗B59+

B21∗B23∗B24+B22∗B23+B22+B23∗B24∗B84∗B87∗B88+B23∗B25∗B53∗B84∗B87∗B88+

B23∗B25+B23∗B26∗B54+B23∗B27∗B29∗B30+B23∗B31+B23∗B32∗B60+B23∗B49∗B84∗

B87∗B88+B23∗B50+B23∗B55∗B58∗B84∗B87∗B88+B23∗B56∗B59+B23∗B56+B23∗B84∗

B87∗B88∗S0+B23∗B84∗B87∗B88+B23∗B85+B23∗B86+B23∗S1+B23∗S7+B25∗B59+

B26∗B54∗B59+B26+B33∗B52+B50∗B59+B55+B56∗B59+B59∗B85+B59∗S1+B60+B86+

S0∗S18+S1+S3+S4∗S7∗S12∗S18∗S21+S4∗S7∗S18∗S19∗S21+S4∗S12∗S18∗S21∗S22+S4∗

S12∗S18∗S22+S4∗S18∗S19∗S21∗S22+S4∗S18∗S19∗S22+S5∗S8∗S13∗S22+S5∗S8∗S20∗

S22+S5∗S18+S6∗S18+S6+S7∗S8∗S18∗S20∗S21+S7∗S8∗S18∗S21+S7∗S12∗S18∗S19∗

S21+S7∗S18∗S20∗S21+S8∗S9∗S19∗S22+S8∗S9∗S21∗S22+S8∗S13∗S20∗S22+S8∗S18∗

S20∗S21∗S22+S8∗S18∗S20+S8∗S18∗S21∗S22+S8∗S18∗S22+S8∗S18+S8∗S21∗S22+S9∗

S19+S9∗S21+S9+S12∗S18∗S19∗S21∗S22+S12∗S18∗S21+S12+S13∗S22+S13+S14∗S18∗

S19+S15∗S18+S15∗S20+S16+S17∗S18∗S21+S17∗S18+S18∗S20∗S21∗S22+S18∗S20∗S22+

S18∗S20+S18∗S22+S19+S21+S22+S5∗S13∗S22∗S23+S5∗S13∗S23+S5∗S20∗S22∗S23+

S5∗S20∗S23+S9∗S19∗S22∗S23+S9∗S19∗S23+S9∗S21∗S22∗S23+S13∗S20∗S22∗S23+S21∗

S22∗S23+S21∗S23+S24∗S28+S24+S14∗S15∗S25∗S28+S15∗S25∗S29+S15∗S25+S15∗S25∗

S28∗S29+S18∗S25+S25+S11∗S14∗S26∗S28+S11∗S26∗S28∗S29+S11∗S26∗S29+S14∗S19∗

S26∗S28+S21∗S26+S19∗S26∗S28∗S29+S26+S14∗S27∗S28+S11∗S14∗S19∗S28+S11∗S19∗

S28∗S29+S14∗S15∗S27∗S28+S15∗S27∗S28∗S29+S15∗S27+S27∗S28∗S29+S27∗S29+S27+

S19∗S28+S11∗S19∗S29+S2∗S18+B63∗S24∗S28+B23∗B62∗B65+B10∗B23∗B66+B24∗B67;

� f16(G,S23, . . . , S30, S2,B63, . . . ,B69) = B1∗B24∗B85∗B88∗B89+B2∗B24+B2∗B60+

B4∗B24∗B60∗B85∗B88∗B89+B5∗B24∗B61+B5∗B60∗B61+B8∗B24+B11∗B13∗B24∗

B85∗B88∗B89+B12∗B14∗B24+B12∗B14∗B60+B16∗B17∗B24∗B85∗B88∗B89+B17∗

B18∗B24+B17∗B18∗B60+B18∗B20∗B24+B21∗B23∗B24∗B85∗B88∗B89+B21+B22∗
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B24∗B25∗B60+B22∗B24∗B25+B23∗B24+B23+B24∗B25∗B85∗B88∗B89+B24∗B26∗

B54∗B85∗B88∗B89+B24∗B26+B24∗B27∗B55+B24∗B28∗B30∗B31+B24∗B32+B24∗

B33∗B61+B24∗B50∗B85∗B88∗B89+B24∗B51+B24∗B56∗B59∗B85∗B88∗B89+B24∗

B57∗B60+B24∗B57+B24∗B85∗B88∗B89∗S1+B24∗B85∗B88∗B89+B24∗B86+B24∗B87+

B24∗S2+B24∗S8+B26∗B60+B27∗B55∗B60+B27+B50∗B83∗B89+B51∗B60+B56+B57∗

B60+B60∗B86+B60∗S2+B61+B87+S1∗S19+S3∗S19+S4+S5∗S8∗S13∗S19∗S22+S5∗

S8∗S19∗S20∗S22+S6∗S19+S7∗S19+S7+S8∗S9∗S19∗S21∗S22+S8∗S9∗S19∗S22+S8∗

S13∗S19∗S20∗S22+S8∗S19∗S21∗S22+S9∗S19∗S21+S9∗S19+S10∗S20+S10∗S22+S10+

S13∗S19∗S22+S13+S14+S15∗S19∗S20+S16∗S19+S16∗S21+S17+S18∗S19∗S22+S18∗

S19+S19∗S21+S20+S22+S5∗S13∗S19∗S22∗S23+S5∗S13∗S19∗S23+S5∗S19∗S20∗S22∗

S23+S5∗S19∗S20∗S23+S6∗S9∗S14∗S23+S6∗S9∗S21∗S23+S6∗S14∗S23∗S24+S6∗S21∗

S23∗S24+S9∗S10∗S20∗S23+S9∗S10∗S22∗S23+S9∗S14∗S21∗S23+S9∗S19∗S21∗S22∗

S23+S9∗S19∗S22∗S23+S9∗S19∗S23+S9∗S22∗S23+S10∗S20∗S23∗S24+S10∗S22∗S23∗

S24+S13∗S19∗S20∗S22∗S23+S14∗S21∗S23∗S24+S14∗S23+S19∗S21∗S22∗S23+S19∗S21∗

S23+S19∗S23+S22∗S23∗S24+S23+S6∗S14∗S24+S6∗S21∗S24+S10∗S20∗S24+S22∗S24+

S25∗S29+S25+S15∗S16∗S26∗S29+S19∗S26+S16∗S26∗S29∗S30+S16∗S26∗S30+S16∗

S26+S26+S12∗S27∗S29∗S30+S12∗S27∗S30+S12∗S15∗S20∗S29+S12∗S15∗S27∗S29+

S20∗S27∗S29∗S30+S22∗S27+S15∗S20∗S27∗S29+S27+S15∗S28∗S29+S16∗S28∗S29∗

S30+S16∗S28+S28∗S29∗S30+S28∗S30+S15∗S16∗S28∗S29+S28+S12∗S20∗S29∗S30+

S20∗S29+S12∗S20∗S30+S2+B24∗B63∗B66+B64∗S25∗S29+B11∗B24∗B67+B25∗B68.
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[66] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. “Conditional Differen-

tial Cryptanalysis of NLFSR-Based Cryptosystems”. In: Advances in Cryptology

- ASIACRYPT 2010,Singapore. Vol. 6477. Lecture Notes in Computer Science.

Springer, 2010, pp. 130–145.

[67] Lin Ding, Chenhui Jin, Jie Guan, et al. “New state recovery attacks on the

Grain v1 stream cipher”. China Communications 13.11 (2016), pp. 180–188.

[68] Lin Jiao, Bin Zhang, and Mingsheng Wang. “Two Generic Methods of Analyzing

Stream Ciphers”. In: International Conference on Information Security - ISC

2015. Vol. 9290. Lecture Notes in Computer Science. Springer-Verlag, 2015,

pp. 379–396.
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