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1

Introduction

1.1 Overview

Materials have played a key role in the progress of human civilization. Since the ancient

times when the most sophisticated materials were stones, our steady growth has been

through the ways paved by materials science. The quest for new materials continues

even today, in an attempt to meet the never-ending demand for smaller, cheaper and

faster devices. Functional materials have enjoyed substantial scientific attention in re-

cent years (1), as key components in the so called “smart systems” that can intelligently

adapt to changing environmental conditions (2).

Novel functional materials are those with useful properties (electrical, magnetic or

mechanical), that can be tuned as a function of external parameters such as tempera-

ture, stress, electromagnetic fields etc. Many materials fall into this category; including

ferroelectrics, ferromagnets, piezoelectrics and superconductors, but to be technologi-

cally useful, they need to exhibit strong responses to the external parameters. In most

cases such strong responses originate from the presence of a phase transitions in the

system: metal-insulator transitions, structural transitions, the onset of ferroelectricity,

ferromagnetism or superconductivity. In addition to the fundamental physics interest

in the microscopic interactions that lead to the observed behavior, study of factors that

affect the phase transitions in functional materials is important in efficient utilization

of these materials in technological applications. For example, better understanding of

the myriad of phase transitions exhibited by solids can lead to the design of better

materials that can withstand extreme conditions.
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Although rare, a material can exhibit multifunctionality, where more than one

functional property is realized simultaneously, opening up several exciting possibili-

ties. Spintronic materials where magnetic and optoelectronic properties exist at the

same time are examples of this type. In magnetic shape memory alloys, the order

parameters strain and magnetization are coupled which makes it possible to control

shape by magnetic field or magnetization by pressure.

The technological progress, propelled by the discovery of advanced materials, has

led to powerful research tools which in return have accelerated the search for new

materials. Computational materials science (CMS) has come into prominence in recent

years due to the development of fast computers (thanks to semiconductors) and efficient

algorithms. Ab-initio electronic structure and atomistic simulation techniques can now

do “virtual experiments” and link experimental observations directly to the microscopic

scale. They can also work as a testing ground for theoretical models helping us to better

understand the fundamental laws that prevail at these scales. The greatest lure for

industry is probably that simulations make it possible to carry out difficult or repetitive

experiments on a computer before they are actually carried out in laboratories, saving

money and time. CMS has now reached a stage, where they are accurate enough to

be trusted with the study of materials in extreme thermodynamic conditions that are

inaccessible to experiments or where efficient theoretical models do not exist.

Although presently available high performance parallel computers have made it

possible to do simulations on a scale and accuracy unthinkable a few decades ago,

computational power still remains limited and computer time expensive, so algorithms

must rely on careful approximations depending on the available computational time

and the accuracy desired from calculations. To this end, different methods have been

developed and can be classified based on the length- and time-scales in which they are

applicable as shown in Fig. 1.1. However, with the growing computational power and

improving approximations, the regime of applicability of each method increases with

time.

Atoms and the interactions between them give rise to all the properties observed in

materials. Hence, the first step towards reasonably accurate simulation of condensed

matter systems is to treat atoms explicitly. Now, depending on how the interaction is

handled, the methods can be classified as classical or quantum mechanical.
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1.1 Overview

Figure 1.1: A multiscale modeling approach to materials simulations. Regions marked
in color are the ones used in the work presented in this thesis

The interaction between the atoms can be handled by efficient models derived from

experimental or theoretical data (3), when such information exist. Classical equations

of motion can be used to solve the system, which provides a good description in the

nanometer-nanosecond range marked by classical methods in Fig. 1.1. Although, the

applicability of classical methods are limited by the availability of good models rep-

resentative of the physical systems, they can simulate thousands of atoms for several

nanoseconds.

A more accurate way to handle interactions is to treat electrons explicitly. Elec-

trons are the “quantum glue” that keep atoms together in materials. Solutions to the

electronic wave equation will provide all the interactions, removing the necessity to use

models. However, quantum methods are computationally expensive due to the over-

head of solving Schrödinger equations (4). Quantum chemistry techniques are most

expensive and are limited to systems with a few atoms like molecules, clusters etc.

But they provide most accurate description of materials as they employ least approx-

imations. For bulk systems, by far the best strategy is provided by density functional

theory (DFT) proposed by Hohenberg and Kohn (5), which makes it possible to handle

several hundreds of atoms providing a satisfactory description of extended systems.
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At longer length- and time-scales reaching the micro regime, the atomistic picture

has to be abandoned for computational efficiency. For example, in coarse-grained meth-

ods, suitable for bio-systems and large molecules, atom groups or molecular fragments

are approximated by a single coarse-grained particle. In continuum mechanics, dis-

creteness of matter is altogether ignored and is treated as a continuous mass rather

than as separate particles. At macroscopic scales, finite element methods offer a gen-

eral framework for solving partial differential equations representing the approximate

state of the system.

Even though this classification works in most cases, sometimes a single method alone

cannot handle the whole system. A multiscale approach is then followed: different scales

in the same problem are handled by different methods. For example, data generated

by classical and quantum methods can be combined with model calculations to arrive

at qualitative predictions. In Quantum Mechanics/Molecular Mechanics (QM/MM)

simulations (6), both methods are combined on the fly; a region of the system is treated

quantum mechanically while rest of the system is treated classically.

1.2 Functional Materials

In this section the materials that were investigated as part of the doctoral research

work are summarized along with the methods that were used to study them.

1.2.1 Multiferroics

Multiferroics are multi-functional materials that exhibit coexistence and coupling of

magnetism and ferroelectricity (and optionally ferro-elasticity) in the same phase (7).

In these materials, applied electric fields can control magnetism and magnetic fields can

control electric polarization. The realization that these materials have great potential

for practical applications has lead to an extremely rapid development of the field of

multiferroics. Applications include the ability to address magnetic memory electrically,

the creation of new types of 4-state logic (i.e., with both up and down polarization and

up and down magnetization) and magnetoelectric sensors.

MnWO4 is a type-II multiferroic in which an inversion symmetry breaking spiral

magnetic structure induces ferro-electricity (8). Since the electric polarization origi-

nates as a consequence of the unique magnetic structure, the two order parameters are
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1.2 Functional Materials

strongly coupled. We investigated the origin and nature of ferro-electricity in the spiral

magnetic state of MnWO4 in detail (9). Since magnetism is essentially a quantum me-

chanical phenomena arising from interaction between spins of unpaired electrons, first

principles electronic structure calculations was employed to study this system.

1.2.2 Nanomaterials

As size is reduced from bulk, several unexpected properties emerge in materials, like,

the color of gold nanoparticles turning red below 100 nm (10). Nanomaterials find

application in a wide range of fields, including chemical and biological sensors, energy

and material storage devices etc. and come in many shapes: small clusters (quantum

dot), balls (fullerene), tubes (SWCNT), rods (Si nanowire), sheets (graphene) etc.

Much of their unique properties are a consequence of electronic wave functions starting

to feel the effect of boundary conditions, the so called quantum confinement effect.

Sheets, tubes and dots confine electrons in one two and three directions respectively.

We have studied two types of systems: nanodots and nanotubes.

The exotic physical and chemical properties of nanodots are quite distinct from both

bulk materials and single atoms, owing to the large surface to volume ratio which makes

them often metastable and highly reactive. For instance, extensive studies revealed that

optical properties of CdS quantum dots depend critically on their size and shape which

led to their wide adoption in various industrial applications like biological imaging, solar

cells and lasers (11). During synthesis, modification of chemistry in terms of monomer

and ligand concentrations enabled the synthesis of nanocrystals in more exotic shapes,

such as rods and multipods which further helped in tuning their properties. Naturally, it

is vital to have a precise control over the factors that affect the size, shape and structure

of these particles during their growth process (12). With this goal, we investigated the

effect of organic capping molecules on the crystal structure of CdS nanoparticles (13).

Another interesting system is nanoparticles of silicon. As a consequence of a mod-

ified band structure, it has improved light absorption efficiency and luminance prop-

erties, with applications in solar cells and biological markers. The surface tension was

found to affect the regime of stability of it’s ordered phases at nanoscale, resulting in

unique order-disorder transitions under pressure (14). To gain microscopic understand-

ing of the observations, we studied the effect of pressure on an isolated nanocrystal of

silicon.
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Nanotubes of carbon have been the center of intense research since their discov-

ery (15). They exhibit extraordinary strength and unique electrical and thermal prop-

erties. These tubes form bundles in which cylindrical tubes are arranged lengthwise

on a hexagonal lattice. This allows dense packing of tubes leading to a collective en-

hancement of individual tube properties. Since the mechanical stability of these tubes

are vital to their applications, we studied the effect of increasing fluid densities on

submerged single walled nanotubes (16).

Accuracy and speed requirements of different problems are clearly illustrated in

these cases. Since calculation of organic molecule binding on a CdS nanoparticle re-

quire interactions to be treated explicitly, we used the electronic structure method

based on DFT. On the other hand, behavior of several nanotubes immersed in a fluid

demand large systems and long simulation times. Since, explicit treatment of electrons

was not practical in this case, we substituted interactions by models and used classi-

cal MD. Both these requirements were simultaneously present in the case structural

transitions in silicon nanoparticles: study of stability regime of crystalline phase re-

quire the interactions within the particle calculated accurately, while the application of

pressure require submersion in a liquid necessitating a large simulation cell. We used

QM/MM calculations in which the Si particle was treated quantum mechanically and

the surrounding liquid was treated classically.

1.2.3 Molecular solids

Under suitable temperature and pressure, molecules can condense to form soft solids

and careful organization of functional molecules in to 2D (thin films) and 3D (crystals)

structures can effectively enhance their properties. In some cases, higher functionalities

emerge as a consequence of this organization. Molecular electronics (molectronics,

in which molecules replace the active and passive components of electronic circuits),

molecular magnets, conductive polymers, organic LEDs etc. are few of the potential

applications of molecular materials (17).

Silane (SiH4, inorganic methane analogue) and H2, both of which are explosive gases

under normal conditions form a stoichiometric molecular solid with many novel prop-

erties under pressure (18). Hydrogen was predicted to be “chemically precompressed”

by the presence of the heavy element and to exhibit metalization and high temperature
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1.2 Functional Materials

superconductivity at high pressures. Clearly, the interaction between silane and hydro-

gen molecules in this compound is unusually strong and responsible for it’s properties.

We studied the effect of structure and dynamics of the H2 molecule in this system (19).

As the goal was to understand the novel interactions between two molecular species

we had to use a method that derives it from first principles. Further, as dynami-

cal simulations are necessary to incorporate the effect of finite temperature, quantum

molecular dynamics (QMD) was employed.

1.2.4 Transition metal oxides

Out of all the functional responses observed in condensed matter systems, structural

changes in crystals under pressure are probably the most dramatic. The stable config-

uration of a material corresponds to the lowest energy structure, however, the energy

landscape changes when subjected to compression and it can transform from one struc-

ture to another.

Several ABO4-type minerals that share the structure of zircon (which is an im-

portant constituent of rocks in earth’s crust) also exhibit the characteristic first order

phase transition from zircon to sheelite. Models developed through extensive stud-

ies predicted the transformation to proceed through an intermediate structure argued

by various authors to be orthorhombic, monoclinic or triclinic. For the first time, in

nanocrystalline YCrO4, scientists were able observe an intermediate monoclinic phase

using x-ray and Raman scattering measurements (20).

Lanthanum Hafnate (La2Hf2O7) is a pyrochlore (major component of earth’s man-

tle) with many potential applications, one of which is as a structural material in the

encapsulation of actinide rich radio active nuclear waste. Since these structures need

to withstand unknown pressure temperature conditions for several decades, stability of

these materials against dissociation is an important criteria for their use (21).

Across a phase transition, electronic rearrangements take place, changing the very

nature of bonding. As a consequence classical interaction models are often unsuitable

to simulate these systems. Furthermore, the stability of different crystalline phases

are dictated by delicate changes in free energy, necessitating accurate first principles

calculations to study them.
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1.2.5 Amorphous solids

Although materials prefer structures of lowest free energy, they can become kineti-

cally trapped in disordered metastable states called amorphous. One way to generate

these structures is to rapidly cool (quench) a liquid before it has time to crystallize.

Amorphous structures retain short range order, and as a consequence, more or less the

functional properties of their crystalline counterparts. In many cases, it is easier to use

amorphous structures in applications because they have lower working temperatures

during manufacture, are more flexible or have desirable properties.

Amorphous silicon (a-Si) is used widely in electronic circuits because it can be

deposited over large areas at relatively lower temperatures and is used to make thin film

transistors for large LCD screens and solar cells. When heated, it crystallizes by random

nucleation and growth (RNG) resulting in a polycrystalline structure, however, when a

crystalline substrate is available, the growth proceeds through layer-by-layer conversion

of amorphous to crystalline phase, a process known as solid phase epitaxial growth

(SPEG). Many factors are known to affect the process: higher annealing temperatures,

external force fields, presence of impurities, ion beam irradiation and applied stresses,

but a clear microscopic understanding of the process is lacking (22, 23).

Crystallization of a-Si presented a challenging system to study using computational

tools. Simulation of SPEG requires large supercells containing thousands of atoms

and long simulation times spanning several nanoseconds to faithfully represent the

structure of the amorphous phase and its crystallization respectively, touching the

limits of classical MD simulations. But the second part – study of RNG – goes beyond

the limit, as the formation of nuclei in the amorphous matrix is a thermally activated

stochastic process. Hence we followed a new approach in which classical, quantum and

model calculations were combined to draw useful conclusions.

1.3 Roadmap

Based on the methodology used to study the materials, the thesis is organized in four

parts. The first part consists of two chapters that develop the background for the work

carried out. The first chapter, which is this one, provides an overview to the various

types of technologically relevant functional materials studied during the doctoral work,

depicting their significance, motivation for study and various computational methods
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used to study them. A brief introduction to multiscale modeling is provided highlighting

various challenges.

In chapter 2, the detailed theory of the computational methods used are explained.

Depending on the length and time scale the simulation methods fall into two categories:

(a) classical methods, in which the system is treated classically and the interaction

is provided by a suitable model and (b) quantum methods, in which electrons are

treated explicitly and wave equations are solved to obtain the interaction. Derivation

of these methods from fundamental principles and various approximations involved in

the simulation are discussed.

Second part consists of two chapters discussing studies that employed classical sim-

ulation methods. In chapter 3, we present the results on the effect of liquid argon on the

collapse of carbon nanotubes. To resolve the controversy regarding the disappearance

of Raman and X-ray intensity of carbon nanotubes under pressure which was attributed

to the loss of hexagonal symmetry, we studied bundles of nanotubes immersed in a fluid,

acting as pressure transmitting medium (16). Classical MD simulations showed that

upon increasing density, the transition pressure (PT ) initially decreases and then begins

to increase. The minimum in PT was found to be a consequence of shifting argon-carbon

potential energy minimum with density. Calculated x-ray diffraction patterns and vi-

brational density of states agreed well with experimental observations, confirming that

our microscopic observations were consistent.

In chapter 4, crystallization of a-Si through SPE growth under various thermody-

namic conditions using the bond order potentials by Tersoff are detailed (22). Crys-

tallization is a complex process in which an ordered phase emerges from a disordered

one through the movement of a crystalline amorphous (c/a) interface. Formation and

growth of this interface costs energy while amorphous to crystal transformation lowers

energy. A competition between the two factors determines the growth velocities in

SPEG, which were found to increase with temperature and pressure. The activation

free energy was found to decrease under pressure till it reached a minimum close to 10

GPa, when the densities of amorphous and crystalline phases became equal.

Part 3 consists of three chapters on the quantum simulations of condensed systems.

Chapter 5 is devoted to the stability of crystalline structures. We present results of

studies on the formation of metastable zinc-blend CdS nanoparticle, phase transition

in YCrO4 and dissociation of crystalline La2Hf2O7 using first principles simulations.
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During the growth of CdS nanoparticles, organic molecules that act as capping agents

were found to play a vital role in deciding the final crystal structure (12). Exact na-

ture of these interactions were investigated using QMD (13). The capping molecules

trioctylphosphine (TOP) and cis-oleic acid (cis-OA) were found to favor surfaces of

zinc-blend and wurtzite respectively. Stability of the intermediate monoclinic phase

observed in x-ray diffraction experiments on YCrO4 was investigated by careful compar-

ison of total energies of different crystallographic phases as a function of pressure (20).

The energy differences between different phases showed the monoclinic structure to be

stable over a small pressure range, in agreement with experiments. In this chapter,

we also discuss the pressure induced dissociation of La2Hf2O7 into it’s constituent ox-

ides which was shown to be feasible due to the large free volumes released during the

transition (21).

In chapter 6, origin of ferro-electricity in the multiferroic material MnWO4 is dis-

cussed (9). It has a complex spiral magnetic structure, which is also ferroelectric. The

magnetic ion is in Mn2+ state and as a consequence is expected to have nominal or-

bital moment. However, Berry phase calculations showed the origin of ferroelectric

polarization to be entirely electronic, necessitating the existence of spin orbit coupling

in this system. Subsequent experiments confirmed small orbital moment arising as a

consequence of mixing of Mn d states with oxygen p states.

In chapter 7, quantum MD simulations of the molecular solid SiH4(H2)2 are pre-

sented. In this system, pressure was found to elongate the H2 covalent bond leading to

metalization and superconductivity (18). The calculated H2 bond length and bond or-

der confirmed this observation. Further, simulations revealed that a transfer of charge

from bonding to anti bonding states was responsible for the observed elongation of

the bonds (19). The hydrogen exchange observed in experiments was found to be a

consequence of this bond weakening and to proceed in three stages.

Finally, in part 4, we discuss the use of hybrid methods in materials simulations

and it has one chapter. Many systems require a “multiscale” approach combining

both the atomistic and electronic structure methods. In the case of crystallization of

amorphous silicon through random nucleation and growth, melting curves from classical

MD, total energies from first principles and nucleation work from classical nucleation

theory provided the complete picture (22). The melting curves showed that for the

semi conducting state in ordered (diamond) and disordered (low density amorphous)
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forms, the melting temperature decreases, where as for the metallic phases (β-Sn and

high density amorphous) it increases. Crystallization temperatures and nucleation work

were also found to follow the same trend. In the case of high coordinated nano-silicon,

QM/MM calculations confirmed that pressure induces disorder within the particle.

Due to the high computational demand of the problems undertaken, all calculations

were carried out on parallel computing clusters. A parallel computer is a collection of

high performance servers, connected together by a fast network. Various software and

hardware considerations that went into the design of the cluster PLUTO are explained

in Appendix A. The cluster, located in Purnima Labs, Bhabha Atomic Research Centre,

is based on Intel Xeon dual processor quad core servers connected via fast Infiniband

network to deliver an average performance of 1 TFLOPS.
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2

Methodology

2.1 Basic Equations

The starting point for a theoretical description of condensed matter systems from fun-

damental principles, is the Hamiltonian for a collection of electrons and nuclei. Con-

sider, a system of N nuclei described by coordinates R and Ne electrons described by

coordinates r and spin σ, the Hamiltonian of the system is given by (4),

Ĥ =− ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj |
+
∑
i,I

ZIe
2

|ri −RI |

−
∑
I

~2

2MI
∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

(2.1)

where me is the mass of the electron, MI is the mass and ZIe is the charge of the Ith

nucleus. The time independent Schrödinger equation can be used to find the eigenvalues

and eigenfunctions of this system,

[Te + Vee(r) + VeN(r,R) + TN + VNN(R)]Ψ(r, σ,R) = EΨ(r, σ,R) (2.2)

where, Te and TN are the electronic and nuclear kinetic energy operators and Vee(r),

VeN(R), VNN(r,R) are electron-electron, electron-nuclear and nuclear-nuclear interac-

tion potential operators, respectively. Unfortunately, Eq. 2.2 cannot be solved exactly

for systems with three particles or more. However, using several intuitive approxima-

15



2. METHODOLOGY

tions and fast computers, it can be solved numerically and can still provide many useful

information, as discussed below.

The immediate simplification that can be made is the Born-Oppenheimer approx-

imation (24), which allows separation of electronic and ionic wave functions. It relies

on the fact that, since electrons are at least three orders of magnitude lighter than

the nuclei, they move that much faster. As a consequence, looking from nuclear time

scales, electrons appear to be always in their ground state. The wave function for the

electron-nuclear system can be separated to,

Ψ(r, σ,R) = φ(r, σ,R)χ(R) (2.3)

where φ(r, σ,R) is the electronic part and χ(R) is the ionic part of the wave functions.

Applying this to Eq. 2.2 and using the approximation that ∇Iχ(R) � ∇iφ(r, σ,R),

the electronic and ionic degrees can be decoupled.

[Te + Vee(r) + VeN(r,R)]φ(r, σ,R) = ε(R)φ(r, σ,R) (2.4)

is an electronic eigenvalue equation which will yield a set of eigenfunctions, φn(r, σ,R)

and eigenvalues, εn(R), for a particular nuclear position, R. For each electronic solu-

tion, there will be a nuclear eigenvalue equation:

[TN + VNN(R) + εn(R)]χ(R) = Eχ(R) (2.5)

These equations characterize the energy states of the system, from which all static

properties can be deduced. Information about the dynamics, however, requires the

solution of time-dependent Schrödinger equation. In this thesis, since we are interested

only in the ground state properties, dynamics of the electrons are ignored. We can

think of the electronic eigenvalues, εn(R) giving rise to an electronic energy surface

on which the nuclear dynamics described by the time-dependent nuclear wave function

X(R, t) takes place,

[TN + VNN(R) + εn(R)]χ(R, t) = i~
∂

∂t
χ(R, t) (2.6)

Now, since the nuclei are heavy, their quantum effects are often negligible. We can
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arrive at the classical nuclear evolution by assuming χ(R, t) is of the form,

χ(R, t) = A(R, t)eiS(R,t)/~ (2.7)

substituting this to Eq. 2.6 and neglecting all terms involving ~, we get an approximate

equation for S(R, t):

H
(n)
N (∇1S1, ...,∇NSN ,R1, ...RN ) +

∂S

∂t
= 0 (2.8)

which is just the classical Hamilton-Jacobi equation (25) with

H
(n)
N (P1, ..., PN ,R1, ...,RN ) =

N∑
I=1

P 2
I

2MI
+ VNN(R) + εn(R) (2.9)

denoting the classical nuclear Hamiltonian. The Hamilton-Jacobi equation is equivalent

to classical motion on the ground-state surface, U(R) = ε0(R) + VNN(R) given by,

MIR̈I = −∇IU(R) (2.10)

the force on nuclei, ∇IU(R), contains a term from the nuclear-nuclear repulsion and

a term from the derivative of the electronic eigenvalue, ε0(R). Because of Hellman-

Feynman theorem (26), this term is equivalent to:

∇Iε0(R) = 〈φ0(R)|∇IHe(R)|φi(R)〉 (2.11)

where He is the electronic Hamiltonian of Eq. 2.5.

We now have two important equations: Eq. 2.4 which gives the electronic structure

of materials for a given arrangement of nuclei, and Eq. 2.10 which defines the dynamics

of the nuclei under a potential that is a consequence of the electronic structure. If

we are interested only in the dynamics of nuclei and not the detailed energy structure

due to electrons, we can make a giant leap by replacing the exact calculation of the

potential energy U(R) by functions derived from empirical models. This removes all

quantum mechanics from the calculation, simplifying computations considerably. This

method forms the basis of the atomistic simulation techniques discussed in the next

section. Ways to solve the electronic structure from Eq. 2.4 are presented in section 2.3.
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2.2 Classical Methods

Once the electrons are ignored, we have a system of N atoms (or nuclei) interacting

under the influence of a global potential energy function U(R). Since the interactions

are discrete, this function can be divided into terms containing interactions between

self, pairs, triplets etc. (3) as given below,

U(R) =

N∑
i

u(1)(Ri) +

N∑
i,j

u(2)(Ri, Rj) +

N∑
i,j,k

u(3)(Ri, Rj , Rk) + ... (2.12)

The
∑

ij indicates a summation over all distinct pairs i and j without counting any

pair twice; the same care must be taken for triplets etc. The first term in u(1) is a self

interaction term, which can be set to zero in the absence of any external fields. The

remaining terms represent particle interactions. The pairwise interaction u(2) is the

dominant term, in most cases sufficient to capture the essential features of interaction

in solids. The u(3) term, involving triplets of atoms, represents angle potentials and

is sometimes necessary to correctly produce the structures of liquids and glasses (27).

Four body term u(4), which takes care of dihedrals and torsions, is used rarely in

simulations and all higher order terms can be safely neglected.

Construction of a model for the interaction is more like an art. It starts off by

identifying the system constituents: atoms, molecules, surfaces etc. Next step is to

choose suitable functional forms with empirical parameters for various terms in the

expansion 2.12. This is by far the most difficult step, because detailed knowledge

about various interactions in the system is necessary. Finally, the parameters in the

functions are fit sot that they can correctly reproduce observables taken either from

theoretical considerations or experimental data.

Depending on the distance over which the interaction potential is active, it can be

classified as short ranged and long ranged as explained below.

2.2.1 Short range interactions

In solids, the dominant interaction is the bonding between the immediate neighbors,

which is pairwise and short-ranged. In such cases, interaction of an atom need not

be calculated with all possible pairs in the box; after some distance the potentials will

become negligibly small. Hence, a cutoff radius can be introduced beyond which mutual
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interaction between the particles can be ignored. Thus, a short range potential may be

written as,

u(2) =
N∑
i<j

u(Rij |Rij < Rc) + Ulrc (2.13)

where, Ulrc is the long range correction to the potential in order to compensate for the

neglect of explicit calculations.

Ulrc = 2πNρ0

∫ ∞
Rc

dRR2g(R)u(R) (2.14)

where ρ0 is the number density of the particles in the system and g(R) = ρ(R)/ρ0 is

the radial distribution function. For computational reasons, g(R) is most often only

calculated up to Rc, so that in practice it is assumed that g(R) = 1 for r > Rc, which

makes it possible for many types of potentials to calculate Ulrc analytically.

Figure 2.1: Schematic representation of various types of interparticle interactions in
solids, indicating the independent variables.

Typical short ranged interactions used in MD are defined in Fig. 2.1 and a few

examples of the commonly used functional forms are given below. One of the simplest

interaction model for a solid is a harmonic bond of the form.

U(Rij) =
1

2
k(Rij −R0)2 (2.15)

where k and R0 are parameters which can be fitted later using empirical data. Often,

the parameters have physical meaning attached to them, for example, in the above

potential, R0 fixes the average bond length and k is the vibrational frequency of the

bond.
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Figure 2.2: Harmonic and Lennard-Jones potential functions for arbitrary parameter
values. Minima of the potentials are made to coincide by setting R0 = 21/6σ.

Another important short range pairwise interaction is van der Waals, which acts

between non bonded atoms and molecules. For neutral particles these are the London

forces arising from the induced dipole moments. Fluctuations of the electron distribu-

tion of a particle give rise to fluctuating dipole moments, which on average compensate

to zero. But these instantaneous dipoles attract each other with a force ∝ R−7. One

of the popular forms of the resulting interactions are the Lennard-Jones potential (28)

u
(2)
LJ(Rij) = 4ε

[(
σ

Rij

)12

−
(
σ

Rij

)6
]

(2.16)

where, again, ε and σ are system dependent parameters. Variation of the harmonic

and LJ potentials for arbitrary choices of parameters are given in Fig 2.2. The poten-

tial energy becomes a minimum for a distance which corresponds to the ground state

configuration.

Three body potentials, as shown in Fig 2.1, defines bond angles. A typical example
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is a truncated harmonic form

u(3)(θijk) =
k

2
(θijk − θ0)2 exp[−(Rij/ρ1 +Rik/ρ2)] (2.17)

Dihedrals and inversions are examples of four body interaction forms (Fig. 2.1).

Note that, calculations of many body terms are computationally expensive due to

the difficulty in identifying connected atoms in the simulation box and are rarely used.

Several more examples for possible functional forms exist and are discussed, for example

in Ref (29).

u(4)(φijkn) = A[1 + cos(mφijkn − δ)] (2.18)

u(4)(ζijkn) =
1

2
k(ζijkn − ζ0)2 (2.19)

2.2.2 Long range interactions

In the case of Coulomb potential, which decays very slowly, interactions between all

particles in the system must be taken into account, if treated without any approxima-

tion. For systems with open boundary conditions (like liquid droplets), this method is

straightforwardly implemented and reduces to a double sum over all pairs of particles.

However, simulations of bulk systems necessitate the use of periodic boundary condi-

tions (PBCs) to overcome the spurious boundary effects. When PBCs are applied, not

only the interactions with particles in central cell but also with all periodic images must

be taken into account and formally a lattice sum has to be evaluated.

U =
1

2

N∑
i,j=1

∑
n

′ qiqj
|Rij − nL|

(2.20)

where n is a lattice vector and
∑′

n means that for n = 0 it is i 6= j. It is, however, a

well known problem that this type of lattice sum is conditionally convergent, i.e. the

result depends on the sequence of evaluating the sum (30). A method to overcome

this limitation was invented by Ewald (31). The idea is to introduce a convergence

factor into the sum of Eq. 2.20 which depends on a parameter s, evaluate the sum and

put s → 0 in the end. A form which leads to the Ewald sum is an exponential e−sn
2
,
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transforming Eq. 2.20 into (32)

U =
1

2

N∑
i,j=1

∑
n

′ qiqj erfc(α|Rij − nL|/L)

|Rij − nL|︸ ︷︷ ︸
Ureal

+
1

2

4πqiqj
L3

∑
k

1

k2
eikRije−k

2/4α2

︸ ︷︷ ︸
Ureciprocal

+
1

2L

∑
n6=0

erfc(αn)

|n|
+
e−π

2n2
/α2

πn2
− 2α√

π

 N∑
i=1

q2
i︸ ︷︷ ︸

Uself

+
2π

L3
|
N∑
i=1

qi|2︸ ︷︷ ︸
Usurface

(2.21)

The evaluation of the potential thus splits into four different terms, where the so

called self and surface terms are constant and may be calculated in the beginning of

the simulation. The first two sums, however, depend on the inter-particle separations

Rij and need to be evaluated in each time step. It is seen that the lattice sum is

essentially split into a sum which is evaluated in real space and a sum over reciprocal

space-vectors k = 2πn/L. The parameter α appears formally in the derivation as a

result of an integral splitting but it has a very intuitive physical meaning. The first

sum gives the potential of a set of point charges which are screened by an opposite

charge of the same magnitude but with a Gaussian form factor where the width of the

Gaussian is given by α. The second sum subtracts this screening charge, but the sum

is evaluated in reciprocal space. Since the error function erfc(x) = 1−erfc(x) decays as

e−x
2

for large x, the first sum contains mainly short range contributions. On the other

side, the second sum decays strongly for large k-vectors and thus contains mainly long

range contributions. All three parameters α, Rc, kmax may be chosen in an optimal

way to balance the truncation error in each sum and the number of operations (33).

Thus, the present form of the Ewald sum gives an exact representation of the potential

energy of point like charges in a system with periodic boundary conditions.

2.3 Quantum Methods

A major limitation of atomistic methods, discussed in the previous section, is the

empirical nature of the potentials, which can be overcome by solving Eq. 2.4 explicitly.

It will yield an exact form for U(R), making empirical functions unnecessary. However,

to solve Eq. 2.4, we need (a) an iterative scheme that enable numerical solution on a
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2.3 Quantum Methods

computer and (b) a way to convert the formidable many body problem to tractable

multiple single-body problems.

The first of the requirements is achieved by density functional theory (DFT) for-

mulated by Hohenberg and Kohn in 1964 (5, 34). As such, DFT has become the

primary tool for calculation of electronic structure in condensed matter, and is be-

coming increasingly important for quantitative studies of molecules and other finite

systems. The fundamental tenet of DFT is that any property of a system of many

interacting particles can be viewed as a functional of the ground state density n0(r);

that is, one scalar function of position, in principle, determines all the information in

the many-body wave functions for the ground state. However, no guidance whatsoever

for constructing the functionals are provided, and no exact functionals are known for

any system of more than one electron. DFT would remain a minor curiosity today if it

were not for the ansatz made by Kohn and Sham (35), which by allowing the electrons

to be treated independently, provided a way to make useful, approximate ground state

functionals for real systems of many electrons, thus satisfying the second requirement

as well.

2.3.1 The Hohenberg-Kohn theorems

The formulation applies to any system of interacting particles in an external potential

Vext(r), including any problem of electrons and fixed nuclei, where the Hamiltonian can

be written

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |
(2.22)

which is same as the Hamiltonian in Eq. 2.4, except that electron-nucleus potential

VeN has been replaced by Vext. Indeed, from electronic point of view, nuclei present

a static external potential. The density of particles n(r) which plays a central role

in electronic structure theory, is given by the expectation value of density operator

n̂(r) =
∑

i=1,N δ(r− ri)

n(r) =
〈φ|n̂(r)|φ〉
〈φ|φ〉

(2.23)

Density functional theory is based upon two theorems first proved by Hohenberg

and Kohn (5).
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• Theorem I: For any system of interacting particles in an external potential

Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by

the ground state particle density n0(r).

• Theorem II: A universal functional for the energy E[n] in terms of the density

n(r) can be defined, valid for any external potential Vext(r). For any particular

Vext(r), the exact ground state energy of the system is the global minimum value

of this functional, and the density n(r) that minimizes the functional is the exact

ground state density n0(r).

In essence, DFT states that a total energy functional E[n] exists and minimizing it

with respect to n(r), one can find the ground state of the system.

EHK[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) (2.24)

Unfortunately, Eq. 2.22 still remains unsolvable, because of it’s many body na-

ture. The most crucial step which made DFT the most widely used method today for

electronic structure calculations is the Kohn-Sham ansatz.

2.3.2 Kohn-Sham ansatz

Kohn and Sham replaced (35) the difficult interacting many-body problem by an aux-

iliary independent particle problem based on two assumptions:

1. The exact ground state density can be represented by the ground state density

of an auxiliary system of non-interacting particles.

2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an

effective potential V σ
eff (r) acting on an electron of spin σ at point r.

Now, instead of one equation for the entire system having Ne electrons, we have Ne

wave equations for each electronic state given as,[
− ~2

2me
∇2 + V σ

KS(r)− εσi
]
ψσi (r) = 0 (2.25)

where V σ
KS(r) is the Kohn-Sham potential acting on an electron, which takes into ac-

count the effect of all other electrons and nuclei. The density n(r) can be redefined in
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2.3 Quantum Methods

terms of one-electron wave functions ψσi (r) as

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2 (2.26)

and Kohn-Sham potential V σ
KS(r) is

V σ
KS(r) = Vint(r) + Vext(r) = VH(r) + Vext(r) + V σ

xc(r) (2.27)

where we have split the electron-electron interaction to a pure Coulomb (Hartree)

term, VH, and an exchange correlation term, which contains all other interactions not

accounted by VH. The potentials are related to their corresponding energy functionals

through the functional derivatives with respect to density (36, 37), for example,

VH(r) =
δEH[n]

δn(r, σ)
(2.28)

where, the Hartree energy is

EH[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(2.29)

By explicitly separating out external potential and the long-range Hartree terms,

the remaining exchange-correlation functional Exc[n] can reasonably be approximated

as a local or nearly local functional of density.

2.3.3 Exchange & Correlation

The major problem with DFT is that the exact functionals for exchange and correla-

tion are not known except for the free electron gas. However, great progress has been

made with remarkably simple approximations. In their original work, Kohn and Sham

pointed out (35) that since solids can be considered close to the limit of the homoge-

neous electron gas, the effects of exchange and correlation are local in character. This

form of Exc[n] is called local density approximation (LSDA when spin polarization is

considered), in which the exchange-correlation energy is simply an integral over all

space with the exchange-correlation energy density at each point assumed to be the

same as in a homogeneous electron gas with that density. Despite this simple minded

approach, LDA works remarkably well and has been used extensively. Within LDA,
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exchange-correlation energy functional and corresponding potential is given by

ELSDA
xc [n↑, n↓] =

∫
d3r n(r)εhom

xc (n↑(r), n↓(r)) (2.30)

V σ
xc(r) =

[
εhom
xc + n

∂εhom
xc

∂nσ

]
r,σ

(2.31)

The first step beyond the local approximation is a functional which depends on both

the values of n(r) and its gradient |∇nσ| at each point. Such a “gradient expansion

approximation” (GEA) was suggested in the original paper of Kohn and Sham; however,

the GEA does not lead to consistent improvement over LDA as it violates the sum rules

and other relevant conditions (38). The term generalized-gradient expansion (GGA)

denotes a variety of ways proposed for functions that modify the behavior at large

gradients in such a way as to preserve desired properties (39). The EC functional for

a spin polarized system in the generalized form,

EGGA
xc [n↑, n↓] =

∫
d3r n(r)εhom

x (n)Fxc(n
↑, n↓, |∇n↑|, |∇n↓|, ...) (2.32)

V σ
xc(r) =

[
εxc + n

∂εxc

∂nσ
−∇

(
n
∂εxc

∂∇nσ

)]
r,σ

(2.33)

where Fxc is dimensionless and εhom
x (n) is the exchange energy of the unpolarized gas.

The most enduring problem with the Kohn-Sham approach is that no systematic

way has been developed to improve the functionals for exchange and correlation. The

problems are most severe in materials in which the electrons tend to be localized and

strongly interacting, such as transition metal oxides and rare earth elements and com-

pounds (40). One way to approach such problems is “LDA+U”, which stands for meth-

ods that involve LDA- or GGA-type calculations coupled with an additional orbital-

dependant interaction (41, 42). The additional interaction is usually considered only

for highly localized atomic-like orbitals on the same site, i.e. of the same form as the

“U” interaction in Hubbard models (43, 44). The effect of the added term is to shift

the localized orbitals relative to the other orbitals, which attempts to correct errors

known to be large in the usual LDA or GGA calculations.
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2.4 Wavefunctions

2.4 Wavefunctions

We need to choose a proper set of functions that constitute a complete basis, in order

to expand the KS wave functions. In a solid (or any state of condensed matter) it is

convenient to require the states to be normalized and obey periodic boundary conditions

in a large volume Ω that is allowed to go to infinity, because the orbitals, {ψi(r)} then

become Bloch functions (45), {ψik(r)}, where k samples the first Brioullin zone (46).

2.4.1 Plane wave basis

The Bloch functions, {ψi(r)}, can be expanded in a plane wave basis. However, note

that choice of plane waves as basis, although natural, is not unique. Several sets of

functions satisfying completeness and orthonormality criteria will work.

ψik(r) =
1√
Ω
eik·r

∑
g

cikg e
ig·r (2.34)

where cikg is a set of expansion coefficients, Ω is the system volume, g = 2πh−1ĝ is a

reciprocal lattice vector, h is the cell matrix whose columns are the cell vectors, and

ĝ is a vector of integers. An advantage of plane waves is that the sums needed to go

back and forth between reciprocal space and real space can be performed efficiently

using fast Fourier transforms (FFTs). The density n(r) given by Eq. 2.23 can also be

expanded in a plane wave basis:

n(r) =
1

Ω

∑
g

nge
ig·r (2.35)

Since it is not practical to use infinite number of plane waves in simulations, the

sum over |g| is terminated after ~2|g|2/2me < Ecut in Eq. 2.34. However, since n(r)

is obtained as a square of the KS orbitals, the cutoff needed for density expansion is

4Ecut for consistency with the orbital expansion. Similarly, integrals in k space are

replaced by sum over a grid of suitable size Nk. Both Ecut and Nk limit the accuracy

of the calculations and are chosen carefully.

Using these expressions and the orthogonality of the plane waves, it is straight-

forward to compute the various energy terms. For example, the kinetic, Hartree and
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exchange-correlation energies can be shown to be,

εKE = −1

2

∑
i

∫
drψ∗i (r)∇2ψi(r) =

1

2

∑
i

∑
g

g2|cig|2 (2.36)

εH =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
=

1

Ω

′∑
g

4π

g2
|ng|2 (2.37)

εxc =
∑
g

εxc(g)n(g) (2.38)

where g = |g|2 and the sum in Eq. 2.37 excludes the g = (0, 0, 0) term.

The external energy term corresponding to Vext(r) of Eq. 2.27 is made somewhat

complicated by the fact that, in a plane wave basis, very large number of waves are

needed to treat the rapid spatial fluctuations of core electrons (47). A solution to this

problem is offered by pseudopotentials.

2.4.2 Pseudopotentials

Only electrons in the outer-most shells of atoms (valence electrons) participate in de-

termining the properties of materials, while core electrons just screen the charge of the

nucleus. Hence, we can introduce a “pseudopotential” (48, 49), which replaces strong

Coulomb potential of the nucleus and the effects of the tightly bound core electrons

by an effective ionic potential acting on the valence electrons.1 In order to make this

approximation, the valence orbitals, which, in principle must be orthogonal to the core

orbitals, must see a different pseudopotential for each angular momentum component

in the core, which means that the pseudopotential must be nonlocal. To see how this

comes about, we consider a potential operator of the form (25)

V̂ps =
∞∑
l=0

l∑
m=−l

vl(r)|lm〉〈lm| (2.39)

1This should not be confused with “interaction potentials” in classical methods: they are empirical
forms that define the interaction between atoms, while a pseudopotential defines interaction of valence
electrons with core region
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where r is the distance from the ion, and |lm〉〈lm| is a projection operator onto each an-

gular momentum component. It can be shown that (25), the complete pseudopotential

operator for all atoms in the system will be

V̂ps(r,R1, ...,RN ) =

N∑
I=1

vloc(|r−RI |) +

l̄−1∑
l=0

l∑
m=−l

∆vl(|r−RI |)|lm〉〈lm|

 (2.40)

where vloc(r) ≡ vl̄(r) is known as the local part of the pseudopotential (having no

projection operator attached to it) (50). Now, the external energy corresponding to

Eq. 2.27, being derived from the ground state expectation value of a one-body operator,

is given by

εext =
∑
i

〈ψi|V̂ps|ψi〉 = εloc + εNL (2.41)

The first (local) term gives simply a local energy of the form

εloc =
N∑
I=1

∫
drn(r)vloc(|r−RI |) =

1

Ω

N∑
I=1

∑
g

n∗g(r)ṽloc(g)e−ig·RI (2.42)

where vloc(g) is the Fourier transform of the local potential. For the nonlocal con-

tribution, an expansion of the plane waves in terms of spherical Bessel functions and

spherical harmonics is made, and after some algebra, one obtains

εNL =

Ne∑
i=1

N∑
I=1

l̄−1∑
l=0

l∑
m=−l

Z∗iIlmZiIlm (2.43)

where

ZiIlm =
∑
g

cige
ig·RI F̃lm(g) (2.44)

and

F̃lm(g) = 4πN
−1/2
lm

∫
drr2jl(gr)∆vl(ur)φl(r)Ylm(θg, φg) (2.45)

To generate a pseudopotential for an atom, first an all-electron wave equation is

solved for a given atomic reference configuration and energy eigenvalues and eigenfunc-

tions are calculated with a proper choice of the exchange-correlation functional. Then,

the core region is replaced by an angular momentum dependent scattering potential,

and is optimized till the conditions below are met (51):
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• All electron and pseudo valence wavefunctions agree beyond a cut-off radius rc.

• Logarithmic derivatives of the all electron and pseudo wavefunctions agree at rc.

• Integrated charge inside rc for all electron and pseudo wavefunctions agree.

• First energy derivative of the logarithmic derivatives of the all electron and pseudo

wavefunctions agree at rc.

The third condition (norm conservation), in particular, makes sure that the pseudo

wavefunctions satisfy the orthonormality conditions and that the Kohn-Sham equations

are unmodified. However, if one forgoes the norm-conservation condition, the pseudo

wavefunctions can be made “smoother” inside the core region, substantially improving

computational efficiency. This is the spirit of “ultrasoft” method (49), which however,

comes at a cost of increased complexity in equations.

A more efficient approach is provided by projector augmented wave (PAW) method,

which introduces projectors and auxiliary localized functions similar to “ultrasoft”

method (52, 53). However, the difference is that the PAW approach keeps the full

all-electron wavefunctions; since the full wavefunction varies rapidly near the nucleus,

all integrals are evaluated as a combination of integrals of smooth functions extend-

ing throughout space plus localized contributions evaluated by radial integration over

spheres around each atom.

2.4.3 PAW method

For the set of all-electron valence functions ψi(r), one can define (54, 55) a smooth part

of the wavefunction ψ̃i(r) and a linear transformation ψi(r) = Tψ̃i(r) that relates the

set ψi(r) to the smooth functions ψ̃i(r). The transformation is assumed to be unity

except within a sphere centered on the nucleus: T = 1 + T0. The expansion of each

smooth function |ψ̃〉 in partial waves m within each sphere can be written,

|ψ̃〉 =
∑
m

cm|ψ̃m〉 (2.46)

with the corresponding all-electron function,

|ψ〉 = T|ψ̃〉 =
∑
m

cm|ψm〉 (2.47)
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Hence the full wavefunction in all space can be written

|ψ〉 = |ψ̃〉+
∑
m

{cm{|ψ〉 − |ψ̃m〉} (2.48)

If the transformation T is required to be linear, then the coefficients must be given by

a projection in each sphere cm = 〈p̃m|ψ̃〉, for some set of projection operators p̃.

The resemblance of the projection operators to the separable form of pseudopo-

tential operators is apparent. Just as for pseudopotentials, there are many possible

choices for the projectors of smooth functions for p̃(r) closely related to pseudopoten-

tial projection operators. The difference from pseudopotentials, however, is that the

transformation T still involves the full all-electron wavefunction

T = 1 +
∑
m

{|ψm〉 − |ψ̃m〉}〈p̃m| (2.49)

The expression for physical quantities in the PAW approach follow from Eq. 2.49.

For example, the density is given by,

n(r) = ñ(r) + n1(r)− ñ1(r) (2.50)

which can be written in terms of eigenstates labeled i with occupations fi as

ñ(r) =
∑
i

fi|ψ̃i(r)|2 (2.51)

n1(r) =
∑
i

fi
∑
mm′

〈ψ̃i|ψ̃m〉ψ∗m(r)ψm′(r)〈ψ̃m′ |ψ̃i〉 (2.52)

ñ1(r) =
∑
i

fi
∑
mm′

〈ψ̃i|ψ̃m〉ψ̃∗m(r)ψ̃m′(r)〈ψ̃m′ |ψ̃i〉 (2.53)

The last two terms are localized around each atom and the integrals can be done in

spherical coordinates with no problems from the string variations near the nucleus, as

in augmented methods.
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2.5 Self consistent scheme

The Kohn-Sham equations provide a framework for finding the exact density and en-

ergy of the ground state of a many-body electron problem using standard independent-

particle methods. The procedure followed in solving these equations in DFT is given

in Flow diagram 2.3. The basic strategy is to start with an initial guess for the system

wavefunction, which is generally taken to be a linear combination of atomic wavefunc-

tions. Density and subsequently Kohn-Sham potential can be calculated from these

wavefunctions. Using this initial guess for V σ
KS, the KS equations are solved to get a set

of KS energies εσi and corresponding wavefunctions ψσi (r). A new density is calculated

from these wavefunctions, which would be different from the previous value, because

the initial guess did not correspond to the ground state of the system. An appropriate

optimization algorithm can be used to correct the density so as to reduce the error and

the cycle is repeated. The procedure is followed till the differences in energies, wave-

functions or densities fall below a specified convergence criteria. After the electronic

ground state is determined, Eq. 2.11 can be used to calculate the interaction between

the ions.

2.6 Molecular dynamics

Once the interaction between atoms are known, the Newton’s equations of motion

contained in Eq. 2.10 can be integrated to move particles to new positions and to

get new velocities at these new positions using molecular dynamics (MD) simulations.

Ingredients for an MD simulations are threefold: (i) Interaction between system con-

stituents. This can either come from electronic structure methods (Quantum MD) or

from a model potential (Classical MD), as explained in the previous sections. (ii) An

integrator, which propagates particle positions and velocities from time t to t + δt.

The time step δt has to be properly chosen to guarantee stability of the integrator,

i.e. there should be no drift in system’s energy. (iii) Appropriate statistical ensem-

ble, which controls thermodynamic quantities like pressure, temperature or the particle

number. The natural choice of an ensemble in MD simulations is the microcanonical

ensemble (NVE), since the system’s Hamiltonian without external potentials is a con-

served quantity. Nevertheless, there are extensions to the Hamiltonian which also allow

to simulate different statistical ensembles.
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Initial Guess

n↑(r), n↓(r)

Calculate KS potential

V σ
KS(r) = Vext(r) + VH [n] + V σ

xc[n
↑, n↓]

Solve KS equation[
−1

2∇
2 + V σ

KS(r)
]
ψσi (r) = εσi ψ

σ
i (r)

Calculate electron density

nσ(r) =
∑

i f
σ
i |ψσi (r)|2

Self-
consistent?

Output quantities

Energy, forces,...

no

yes

Figure 2.3: Schematic representation of the self-consistent loop for solution of Kohn-
Sham equations. In general, one must iterate two such loops simultaneously for the two
spins, with the potential for each spin a functional of the density of both spins
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2.6.1 Integrators

A finite difference integrator is an approximation for a system developing continuously

in time. An integrator breaks time into discrete steps of width δt and the system

degrees of freedom (positions and momenta) are propagated from one step to the next.

A good integrator should be accurate (so that the system always remains close to its

true trajectory), stable (so that small perturbations do not lead to instabilities) and

robust (so that it allows efficient simulation with large time steps and minimum CPU

and memory requirements).

The simplest and most straight forward way to construct an integrator is by ex-

panding the positions and velocities in a Taylor series. The integrators obtained this

way are called Verlet-Stömer integrators (56, 57). For a small enough time step δt the

expansion gives,

R(t+ δt) = R(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + ... (2.54)

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 +

1

6
c(t)δt3 + ... (2.55)

where a, b, c are the 2nd, 3rd, 4th time derivative of the coordinates. Performing a

similar expansion for δt→ −δt, which will give R(t− δt) and v(t− δt) and subtracting

the resultant equations from Eq. 2.54 we get,

R(t+ δt) = 2R(t)− r(t− δt)δt+ a(t)δt2 + O(δt4) (2.56)

v(t+ δt) = 2v(t)− v(t− δt)δt+ b(t)δt2 + O(δt4) (2.57)

Above equations are accurate up to 3rd order in δt, however, it requires the 3rd deriva-

tive of the coordinates which is not routinely calculated in MD simulations and thus

introduces some additional computational and storage overhead. An equivalent algo-

rithm, which stores only information from one time step is the so called velocity Verlet
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algorithm, which reads

R(t+ δt) = R(t) + v(t)δt+
1

2
a(t)δt2 (2.58)

v(t+ δt) = v(t) +
1

2
(a(t) + a(t+ δt))δt (2.59)

This scheme, however, requires the knowledge of the accelerations at time step t+δt.

One may therefore decompose velocities in two steps. First calculate

v(t+ δt/2) = v(t) +
1

2
a(t)δt (2.60)

Then compute the actual forces on the particles at time t + δt and finish the velocity

calculation with

v(t+ δt) = v(t+ δt/2) +
1

2
a(t+ δt)δt (2.61)

At this point the kinetic energy may be calculated without a time delay of δt. There

are several other schemes, such as leap-frog (58) or Beeman’s (59), but they all have

the same accuracy and should produce identical trajectories in coordinate space. We

have used velocity Verlet algorithm in the calculations presented in this thesis.

2.6.2 Statistical ensembles

Choice of a proper ensemble in molecular dynamics is crucial to obtain well averaged

physical quantities. The microcanonical ensemble (NVE) may be considered as the

natural ensemble for molecular dynamics, since, the system’s Hamiltonian is constant in

the absence of any time dependent external forces, implying that the dynamics evolves

on a constant energy surface. However, real systems are often canonical in nature, they

can exchange energy with the environment (NVT) or change volume to match external

pressure (NPT). The two popular schemes to simulate statistical ensembles are, The

Berendsen’s scheme in which the variables are corrected at each step through a coupling

constant towards the prescribed value (proportional control) and the Nosé-Hooever

scheme in which the system Hamiltonian is extended so that the desired variables

become automatically conserved (integral control).
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2.6.2.1 Thermostats

Temperature and energy are canonical variables which means only one can be controlled

at a time. Temperature is the measure of average kinetic energy of the system, given

by equipartition theorem as, 〈
1

2
mv2

〉
=
Nf

2
kBT (2.62)

Nf is the number of degrees of freedom in the system and kB is the Boltzmann constant.

The simplest way to keep the temperature of a system constant is to scale velocities (60)

such that vi(t) →
√
T0/T (t)vi(t), where T0 is the reference temperature and T (t) is

the actual instantaneous temperature. This method, however, leads to discontinuities

in momentum part of the phase space trajectories and is undesirable. A better way is

to use a scaling factor λ(t) that allows a weak coupling of system temperature to an

external bath, vi(t)→ λ(t)vi(t), where

λ(t) =

[
1 +

δt

τT

(
T0

T (t)
− 1

)] 1
2

(2.63)

The constant τT , is the relaxation time constant which determines the time scale on

which the desired temperature is reached – allowing a way to control the properties of

the thermostat (61, 62). Although efficient, the method cannot be mapped onto a spe-

cific thermodynamic ensemble. In computer simulations where average quantities only

at the end of the simulation are of significance, this is not a problem. Still, a more phys-

ically intuitive approach is to use the integral thermostat, proposed by Nosé (63, 64),

which adds an additional degree of freedom to the system which effectively introduces a

“friction” in the momentum space, whenever the system tries deviate from the reference

temperature. The modified equations of motion read:

dRi(t)

dt
= vi(t) (2.64)

dvi(t)

dt
=

fi(t)

mi
− χ(t)vi(t) (2.65)
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where f(t) is the force acting on the particle of mass mi. The friction coefficient, χ, is

controlled by the first order differential equation,

dχ(t)

dt
=
NfkB
Q

(T (t)− T0) (2.66)

where Q = NfkBT0τ
2
T is the ‘effective mass’ of the thermostat and τT is the time

constant.

2.6.2.2 Barostats

It is sometimes useful to keep the pressure constant in simulations and allow volume to

vary. Particularly, in first order transitions in solids, cell volume and shape can change

abruptly when a new structure forms. A constant volume simulation will not be able

to observe such transitions. For an infinite system generated by periodic boundary

conditions, the pressure on the walls of the simulation cell is defined by the equation,

PV = NfkBT +
1

3

N∑
i=1

Ri · fi(t) (2.67)

where V is the volume and fi(t) is the force acting on the particle i due to all other

particles. The second term is called the system virial. Controlling pressure is less

straight forward and a simple scaling method will not work (65). The Berendsen

barostat (61) works by making the system obey the equation

dP

dt
= (P0 − P )/τP (2.68)

where τP is a relaxation time associated with the barostat. When simulation cell size

and shape are allowed to vary, the cell vectors are scaled by a factor ¯̄η, which is a 3× 3

tensor given by

¯̄η = ¯̄1− βδt

τP
(¯̄1P0 − ¯̄σ) (2.69)

where ¯̄σ is the internal stress tensor and P0 is a scalar variable representing hydrostatic

pressure; when non-hydrostatic conditions are simulated we can replace it with a tensor

¯̄σ0. The equations for integral barostat (66) are more complex as given below.
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dRi(t)

dt
= vi(t) + η(t)(R(t)−R0) (2.70)

dvi(t)

dt
=

fi(t)

mi
− [χ(t) + η(t)]vi(t) (2.71)

dχ(t)

dt
=

NfkB
Q

(T (t)− T0) +
1

Q
(Wη(t)2 − kBT0) (2.72)

dη(t)

dt
=

3

W
V (t)(P (t)− P0)− χ(t)η(t) (2.73)

dV (t)

dt
= 3η(t)V (t) (2.74)

Above equations represent the case of isotropic cell variations. For anisotropic

changes, one has to replace the factor η by a tensor ¯̄η like before.

2.6.3 Car-Parrinello MD

Ordinarily, quantum MD (also called Born-Oppenheimer MD) simulations are carried

out in two steps. First, the ground state electronic wave functions and energy eigen-

values are found following the recipe of Sec 2.3. In the next step, forces on ions are

calculated and the system is propagated in time using the MD algorithms discussed

above.

An alternate way to carry out quantum MD simulations was suggested by Car

and Parrinello (67) which has proven very successful. The special feature of the CP

algorithm is that it solves the quantum electronic problem also using MD. This is

accomplished by adding a fictitious kinetic energy for the electronic states, which leads

to a fictitious Lagrangian for both nuclei and electrons.

L =
N∑
i=1

1

2
(2µ)

∫
dr|ψ̇i(r)|2 +

∑
I

1

2
MIṘ

2
I −E[ψi,RI ] +

∑
ij

Λij

[∫
drψ∗i (r)ψj(r)− δij

]
(2.75)

The final term is essential for orthonormality of the electronic states. This Lagrangian

leads to MD equations for both classical ionic degrees of freedom RI and electronic

degrees of freedom, expressed as independent-particle Kohn-Sham orbitals ψi(r). The
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resulting equations of motion are

µψ̈i(r, t) = − δE

δψ∗i (r)
+
∑
k

Λikψk(r, t)

= −Hψi(r, t) +
∑
k

Λikψk(r, t) (2.76)

MIR̈I = FI = − ∂E

∂RI
(2.77)

The equations of motion are just Newtonian equations for acceleration in terms of

forces, subject to the constraint of orthogonality in the case of electrons.

2.7 Parallel computing

A parallel computer is a collection of independent processing units (nodes) intercon-

nected through a fast network so that the processors share load and data. The success

of parallel computing strongly depends both on the underlying problem to be solved

and the optimization of the computer program. The former point is manifested in the

so called Amdahl’s law (68). If a problem has inherently certain parts which can be

solved only in serial, this will give an upper limit for the parallelization which is possi-

ble. The speedup σ, which is a measure for the gain of using multiple processors with

respect to a single one, is therefore bound

σ =
Np

wp +Npws
(2.78)

Here, Np is the number of processors, wp and ws is the amount of work, which can

be executed in parallel and in serial, i.e. wp + ws = 1. From above equation, it

is obvious that the maximum efficiency is obtained when the problem is completely

parallelizable, i.e. wp = 1 which gives an Np times faster execution of the program. In

the other extreme, when ws = 1 there is no gain in program execution at all and σ = 1,

independent of Np. Once the parallelizable regions of the problem are identified, it is

important to implement it efficiently into a computational program. A problem which

is inherently 100% parallel will not be solved with maximum speed if the program is not
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100% mapped onto this problem. Hardware aspects also affect the speedup. Although,

theoretical speedup is expected to increase continuously when number of processors are

increased, in practice, it saturates because of the communication latency. Most parallel

problems need to communicate data between nodes in order to take into account data

dependencies and as shown in Appendix A, real life networks have finite bandwidth

and the latency in communication will increase with increasing Np, bringing down the

speedup.

2.7.1 Classical methods

The replicated data strategy (69) is one of several ways to achieve parallelization in

MD. Its name derives from the replication of the configuration data on each node of a

parallel computer (i.e. the arrays defining the atomic coordinates Ri, velocities vi and

forces fi, for all N atoms in the simulated system, are reproduced on every processing

node). In this strategy, each node calculates forces and integrates equations of motion

only for a fraction of the total atoms (N/Np). The method is relatively simple to

program and is reasonably efficient. Moreover, it can be collapsed to run on a single

processor very easily. However the strategy can be expensive in memory and have high

communication overheads, but overall it has proven to be successful over a wide range

of applications.

2.7.2 Quantum methods

Replicated strategy is unsuitable in electronic structure methods, because they use a lot

more memory to store large matrices corresponding to wavefunctions. However, there

are several alternative ways to achieve parallelization. One way is to solve Kohn-Sham

equations only for a fraction of bands on each node. It requires the whole Hamiltonian

to be stored on all nodes, but only a part of the the memory intense wavefunctions needs

to be stored on each node. Another way is to split the plane wave expansion across the

nodes. Parts of KS equations are solved separately and the results are combined. For

cases where reciprocal integration over multiple k points are carried out, the calculation

can be separated to different nodes as the calculations are mostly independent.
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2.8 Simulation codes

The major programs used to carry out simulation presented in this thesis are listed

below. Several smaller programs were developed to prepare inputs and analyze results

for different problems, details of which are given in respective chapters.

2.8.1 DL POLY 2.19

DL POLY version 2 (29) is a parallel molecular dynamics simulation package developed

at Daresbury Laboratory by W. Smith and T.R. Forester under the auspices of the En-

gineering and Physical Sciences Research Council (EPSRC) at Daresbury Laboratory.

The package is the property of the Science Facilities Research Council (STFC) of the

United Kingdom. DL POLY 2 is issued free under license to academic institutions pur-

suing scientific research of a non-commercial nature. DL POLY can simulate a wide

range of systems from simple atomic materials to complex macromolecules and biologi-

cal systems. Several popular force-field types discussed in Section 2.2 are implemented

by default and it is easy to add user defined functional forms. Several variations of

boundary conditions, popular integrators and ensemble methods are also implemented.

The easy-to-understand subroutine structure makes it amenable to implement new fea-

tures. We have employed DL POLY for the classical simulations presented in this

work.

2.8.2 VASP 4.6

Vienna ab-initio simulation package (VASP) (70, 71) is a software package for per-

forming ab-initio electronic structure calculations and quantum-mechanical molecu-

lar dynamics (MD) simulations using pseudo-potentials or projector-augmented waves

and a plane wave basis set. The approach implemented in VASP for the MD simu-

lations is based on the (finite-temperature) local-density approximation with energy

as variational quantity and an exact evaluation of the instantaneous electronic ground

state at each MD time step. VASP uses efficient matrix diagonalisation schemes and

an efficient Pulay/Broyden charge density mixing. The interaction between ions and

electrons is described by ultra-soft Vanderbilt pseudopotentials (US-PP) or by the

projector-augmented wave (PAW) method. US-PP and the PAW method allow for a

considerable reduction of the number of plane-waves per atom for transition metals and
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first row elements. Forces and the full stress tensor can be calculated with VASP and

used to relax atoms into their instantaneous ground-state. VASP offers parallelization

over bands and parallelization over plane wave coefficients. It is a commercial code and

requires a license to use it.

2.8.3 CPMD 3.13

The Car-Parrinello molecular dynamics (CPMD) (72) code is a plane wave and pseudo-

potential implementation of Density Functional Theory, particularly designed for ab-

initio molecular dynamics using the Car-Parrinello method (67). It is distributed free

of charge to non-profit organizations. Its first version was developed by Jurg Hutter

at IBM Zurich Research Laboratory starting from the original Car-Parrinello codes.

CPMD can be used to carry out quantum mechanics/molecular mechanics (QM/MM)

simulations as it offers internal routines to simulate a part of the system classically

using interaction potentials while a specifically chosen region can be treated quantum-

mechanically.

In the following chapters we shall address the specific problems related to functional

materials using the methods explained here.
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3

Argon filled carbon nanotubes

Carbon nanotubes are well known for their mechanical strength. Under relatively low

pressures, some high pressure experiments observed disappearance of Raman modes,

which was taken to be indicative of collapse of cylindrical tubes. However, subsequent

experiments found the necessary pressure to be much higher. To resolve this apparent

contradiction, we carried out classical molecular dynamics simulations of bundles of

single walled carbon nanotubes (SWCNTs). When tubes were empty, the applied

pressure caused them to collapse from the cylindrical structure to a ribbon-like one

close to 2 GPa, in agreement with the initial experiments. When tubes were immersed

in argon, the behavior was found to be substantially different. The collapse pressure

shifted to higher values when the number of argon atoms was increased beyond a critical

value. Computed x-ray diffraction patterns of argon-filled nanotubes confirmed that

seemingly varied experimental observations in the high-pressure phase transitions of

carbon nanotubes is due to the pressure transmitting medium used in high pressure

experiments.

3.1 Background

Due to many extraordinary properties arising from the unique one-dimensional struc-

ture, carbon nanotubes have been the subject of intense theoretical and experimental

investigations since their discovery (15). Early theoretical studies had indicated that

isolated tubes may be able to withstand large deformations without much irreversible

structural modifications (73). Later experiments based on Raman, (74, 75, 76) x-ray
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diffraction (77, 78) and neutron diffraction (79) measurements provided evidence for a

pressure-induced structural phase transition at low pressures. In particular, the high-

pressure Raman spectroscopic investigations carried out on bundles of single-walled

carbon nanotubes (SWCNTs) showed that the peak position of the tangential mode

shifts linearly to higher frequencies, with a change in the slope at 2 GPa. A number of

studies also reported the disappearance of the radial breathing mode (RBM) from the

spectrum above that critical pressure (80). X-ray diffraction studies (77, 78) showed

that at 1.5 GPa, the (100) diffraction peak associated with the two-dimensional lat-

tice of the SWCNTs bundles to disappear reversibly, if pressure was kept less than 4

GPa. Subsequent computer simulations, using classical molecular dynamics, found that

the carbon nanotubes collapse to a ribbon-like structure at low pressures (81, 82) and

that the collapse pressure decreases with the increase in the tube diameter, apparently

supporting the experimental observations. It was also shown that the tubes having

diameter larger than a critical value would spontaneously collapse at atmospheric pres-

sure. Studies on double-walled carbon nanotubes reported similar results but with

higher collapse pressures, as the two tubes support each other (83, 84). First-principles

studies, however, found the behavior of SWCNTs under uniaxial stress (perpendicular

to the tube axis) to be non monotonous as a function of the tube diameter. (85)

However, these results were not found to be consistent with the observations of a

number of other experimental studies (86, 87, 88, 89). In situ x-ray diffraction investi-

gations (90) on SWCNTs under quasi hydrostatic pressures found that the 2D lattice

continues to persist up to 10 GPa, in contrast to the earlier results. Kawasaki et al. (91)

compared the effect of the solid and liquid pressure transmitting medium (PTM) on the

high-pressure x-ray diffraction patterns and concluded that the penetration of liquid

PTM could explain the observed differences in results. Raman spectroscopic stud-

ies (92, 93) of open-ended SWCNTs using different PTM (paraffin oil, argon, methanol

ethanol, etc.) could not observe signatures of any phase transition at low pressures.

Instead, they found that the pressure-induced changes in Raman spectra depend sig-

nificantly on the PTM. Similar PTM dependence was observed for double-walled tubes

as well. (86)

From these results appeared that for open-ended tubes, the pressure transmitter

used in the hydrostatic experiments might enter tubes and affect their high-pressure

behavior. Indeed, Rols et al. (94) demonstrated that the substantial argon adsorption
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takes place at the inner walls of SWCNTs. Hence, to understand the diverse experi-

mental reports, we have simulated SWCNTs immersed in fluid argon using the classical

MD method.

3.2 Methods

Simulations were carried out on (10, 10) arm-chair SWCNTs of diameter 13.59 Å gen-

erated using the TUBEGEN (95) code. Macrocell used in the simulations consisted

of these SWCNTs arranged in a 4×4 two-dimensional hexagonal lattice that were ten

graphene unit cells long (24.6 Å) in the z direction. Periodic boundary conditions

were applied in all the three directions. For our simulations, we have used DL POLY

code (29) with the NPT statistical ensemble with variable cell method. The equations

of motion were integrated using standard Verlet algorithm with a time step of 1 fs. The

temperature (300 K) and the hydrostatic pressure were maintained using the Berend-

sen thermostat and barostat. The bundles were initially equilibrated at 0 GPa and

subsequently the pressure was raised in steps, allowing the cell volume to equilibrate

for at least 10 ps after each increase. To remove any memory of starting structures,

the system was equilibrated for a long time under ambient conditions.

3.2.1 DREIDING force field

The covalent interactions between carbon atoms were modeled by the standard generic

macro molecular force field DREIDING (96) which has been successfully used in many

earlier studies (81, 82). The functional forms for the different terms in the poten-

tial and the parameters used in this simulation are listed in Table 3.1. As shown

in Fig. 2.1, Ebond is a two body term representing pairwise interactions, Eangle and

Etors are three body terms representing bond angle and torsion and Einv is the four

body term representing inversion symmetry of the system. Inter-tube C-C as well as

C-Ar and Ar-Ar short-range interactions were of the Lennard-Jones functional form

U(rij) = 4ε[(σ/rij)
12 − (σ/rij)

6] with a 12 Å cutoff. Parameters of L-J potentials are

listed in Table 3.2 (96, 97).
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Table 3.1: Parameters for the CR atom type (sp2 hybridized carbon atom involved in
resonance),in DREIDING, a standard generic macromolecular force field used in all our
molecular dynamics simulations.

Functional form Parameters

Ebond =
1

2
Kb(R−R0)2 R0 1.39 Å Kb 1050 kcal/mol/Å2

Eangle =
1

2
Kθ(cosθ − cosθ0)2 θ0 120◦ Kθ 100 kcal/mol/rad2

Etors =
1

2
V {1− cos[n(φ− phi0)]} φ0 180◦ V 25 kcal/mol n 2

Einv =
1

2

Ki

(sinΨ0)2
(cosΨ− cosΨ0)2 Ψ0 0◦ Ki 40 kcal/mol/rad2

Table 3.2: Parameters for the short range LJ interatomic potential between the elements
used in the simulations

Atoms ε (kcal/mol) σ (Å)

C-C 0.0951 3.473
Ar-Ar 0.2862 3.350
C-Ar 0.2827 3.573

3.2.2 Adsorption sites for argon

Rols et al. (94) studied argon adsorption on open-ended SWCNTs through thermo-

dynamics and neutron diffraction experiments and proposed the following adsorption

scenario. The inner walls of the nanotubes (INT-T) and the groove sites (G) on the

outer surface of the bundle are populated first followed by the filling of the axial sites

inside the tubes (INT-t) and remainder of the outer bundle surface as shown in Fig 3.1.

Although direct evidence was limited, a few intertubular sites (IC) seemed to be pro-

gressively populated as a function of the Ar chemical potential (94). Interestingly,

subsequent studies on rubidium-intercalated SWCNTs showed that Rb ions prefer IC

sites at very low stoichiometry. At higher Rb levels, IC sites (see Fig. 3.1) become un-

favorable and INT and bundle surface sites begin to get occupied (98). Based on these

propositions, we have carried out two sets of simulations. In the first set, presented

Sec 3.3.2, IC sites were neglected and argon was restricted to INT sites. The second

set of simulations, in which both INT and IC sites were populated, are presented in
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Sec 3.3.3. Note that due to the requirement of an infinite periodic system, we have

ignored the outer surfaces of the bundle altogether, but those sites are unlikely to affect

the high-pressure behavior of the bundle.

Figure 3.1: Schematic section of a nanotube bundle indicating the probable adsorption
sites proposed by Rols et al. from neutron scattering experiments in Ref (94)

3.2.3 Vibrational DOS

The autocorrelation function of velocity (VAF) can be used to calculate vibrational

density of states (vDOS). If the velocity vector for a system of atoms is v(t), then the

velocity autocorrelation Z(t) can be written as

Z(t) =
〈v(0) · v(t)〉
〈v(0) · v(0)〉

(3.1)

The vibrational spectrum of the system can be calculated by taking the Fourier trans-

form of the VAF:

F (ω) =
1√
2π

∫ ∞
−∞

dteiωtZ(t) (3.2)

The vibrational density of states (vDOS) is then Φ(ω) = F 2(ω).

Since molecular dynamics provides a discrete sampling of position and velocity along

a time vector, the continuous VAF is replaced with an appropriate discrete estimator

of the function, Ẑ. For a simulation with N time-steps, the nth element of the VAF

estimator Ẑn can be computed as,

Ẑn =
1

N − n

N−n−1∑
i=0

〈v(ti+n) · v(ti)〉
〈v(t0) · v(0)〉

(3.3)
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The summation is used so that Ẑn is an average of all possible VAF that can be

constructed from the discretely sampled velocity data by shifting the time origin by n

steps. Finally, the Fourier transform in Eq. 3.12 can be calculated using FFT routines.

To avoid spurious truncation effects, the VAF data is multiplied with a smoothing

function. An example of a smoothing function is a Gaussian of the form,

φ(n) =
1

σ
√

2π
exp

[
−(n− µ)2

2σ2

]
(3.4)

where µ shifts the peak along n and σ defines the breadth of the peak. As the Gaussian

should approach zero as n approaches N , σ = M/2.5 and µ = 0.

3.2.4 X-ray diffraction pattern

To make a contact between our microscopic observations and experimental predictions,

we also calculated powder x-ray diffraction intensities, Ihkl, as Ihkl = F 2
hkl, where the

structure factor, Fhkl, is defined by

Fhkl =
cell∑
j

fj exp [2πı (hxj + kyj + lzj)] exp

(
−Bj

sin2 θ

λ2

)
(3.5)

where f is the atomic form factor of atom j at sites (xj ,yj ,zj) and Bj is the Debye-

Waller factor. The structure factor is generally plotted as a function of wave vector

q = 2π(h, k, l). The form factors are approximated by the analytical function

f(sin θ/λ) =

4∑
i=1

ai exp

(
−bi sin2 θ

λ2

)
+ c (3.6)

The coefficients ai, bi and c are taken from x-ray data in International Tables (99)

automatically by the program.

3.3 Results

3.3.1 Empty SWCNTs

Although different computer simulations agreed on the existence of a transition to a

collapsed phase, the exact structure of the daughter phase was not settled unambigu-

ously (100, 101). Computations using DREIDING potentials on single and double-
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walled carbon nanotubes (83, 101) observed a herringbone structure whereas studies

using Tersoff-Brenner potential (82) found a linear arrangement of similarly deformed

tubes at comparable pressures. Energy considerations seemed to favor the linear struc-

ture, (100) but the energy differences between the two structures were found to be less

than the thermal energy (kβT) at the temperature of the simulations. It was argued

that the precise arrangement of the collapsed nanotubes within a bundle might vary

depending on the size of the macrocell, local environment, and compression rate (101).

Later, first-principles studies of structural, electronic, and optical properties of col-

lapsed SWCNTs bundles found an in-between configuration which was distinct from

both the linear and herringbone structures found previously (102).

Figure 3.2: (a) Simulated structure of SWCNTs at 0 GPa and 300 K as viewed along
z axis. Structures (b)–(f) represent snapshots of the collapsed phases at 3 GPa. (b)
The linear-o and (c) herringbone structures are the result of fine and coarse pressure
steps, respectively. (d) Linear-n, (e) basket-weave, and (f) disordered structures are new
arrangements observed in our simulations.

Since, the pressure step used to compress the system is known to affect transitions

under pressure, we carried out a series of simulations to investigate its effect on the

behavior of nanotubes. The initial state generated through equilibration of (10, 10)

carbon nanotubes at 300 K remained nearly circular as shown in Fig. 3.2(a). When very
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fine steps close to 0.1 GPa were used to compress this system, an abrupt volume drop

of about 33% was observed at 2.4 GPa, resulting in a new phase with ribbon-like tubes

shown in Fig. 3.2(b) which is similar to the linear structure of Ref. (100). When we used

larger compression rates in the range of 1-2 GPa, the herringbone structure [Fig. 3.2(c)]

was obtained, also observed in the earlier studies using DREIDING potentials. Careful

inspection of trajectories during the transition to herringbone structure revealed that

the deformation of the tubes passed through a transient linear structure in which the

tubes were arranged along the [110] direction. At the very final stage of the evolution,

the zigzag ordering characteristic of the herringbone set in. To test whether the thermal

fluctuations at 300 K were responsible for stabilizing the herringbone structure, we

repeated these simulations at very low temperatures (≈2K). To our surprise, we found

that a new linear structure with a different cell shape and tube arrangement is stable.

To differentiate the two linear structures, hereafter we refer the structure of Fig. 3.2(b)

as linear-o and that of Fig. 3.2(d) as linear-n. Upon increasing the temperature of

linear-n slowly to 300 K, the tubes retained the arrangement. Interestingly, still higher-

pressure steps (3 GPa) at room temperature resulted in a new phase that had a basket-

weave-like ordering with tubes arranged in parallel pairs, almost perpendicular to one

another [Fig. 3.2(e)]. The transition in empty SWCNTs was also found to depend

on thermostat and barostat relaxation times used in the simulations. Tubes became

disordered [Fig. 3.2(f)] when relaxation times of 10 ps each were used. Simulations on a

smaller 3×3×10 macro-cell also yielded the disordered structure similar to Fig. 3.2(f).

In all the cases, the transition is completely reversible; structures return to the ambient

phase with cylindrical tubes upon the release of pressure. In agreement with the elastic

ring model by Liew et.al. (103), the structures of collapsed tubes show a peanut-shaped

deformation under hydrostatic pressure.

Table 3.3 summarizes the relative energies, enthalpies, and volumes per atom for

the cases discussed above. We found that the linear-n structure has the lowest energy

and although the energy of the linear-o structure is lower than that of the herringbone,

the energy difference between these two is within the thermal fluctuations at room

temperature. Calculation of volume occupied by the collapsed tubes in different cases

indicated that while the tube volume is roughly equal, the interstitial volume increases

systematically from linear-n to disordered phases resulting in less compact structures

with higher energies, in agreement with the conclusions of Ref. (101). The lower volume
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Table 3.3: Total energies, enthalpies and volumes of different high-pressure phases given
in Fig. 3.2 at 3 GPa (300 K). Values in parenthesis correspond to differences from the
linear-n structure

Structure E/atom (eV) H/atom (eV) V/atom (Å3)

Linear-n 7.62 7.79 9.21
Linear-o 7.68 (0.06) 7.86 (0.07) 9.29 (0.08)
Herringbone 7.70 (0.08) 7.88 (0.09) 9.50 (0.29)
Basket-weave 7.75 (0.13) 7.93 (0.14) 9.55 (0.34)
Disordered 7.77 (0.15) 7.95 (0.16) 9.59 (0.38)

(hence, lower energy) of linear-n as compared to the linear-o was probably because of

the arrangement of tubes rather than their direction. In the first case, the tubes were

arranged such that the tubes point to the empty spaces between the neighbors (along

[110] direction), whereas for linear-o the collapsed tubes were arranged end to end.

We carried out simulated annealing on the herringbone structure up to 1000 K,

but it did not transform to the lower energy structures in Fig. 3.2, indicating that

such reconstructions are kinetically hindered up to this temperature. Although our

simulations demonstrated the existence of a variety of structures in the high-pressure

phase, we feel that Fig. 3.2 may not represent a complete set of all possible arrangements

of the collapsed tubes under pressure. For example, inclusion of non hydrostatic stresses

may lead to still newer structures.

3.3.2 SWCNTs with argon at INT sites

To study the effect of PTM on the high-pressure behavior of carbon nanotubes, we

simulated argon-filled nanotubes at different argon densities. Choice of argon was

partly due to the simplicity of its interatomic interactions (being an inert element,

argon interacts with environment through simple van der Waals forces, which can be

easily modeled through the Lennard-Jones type of pair potentials) and partly as an

effort to understand the recent experiments which used argon as PTM. The results

would be qualitatively similar for any other PTMs which do not chemically react with

the carbon atoms of the tubes. However, an important limitation of the simulations

was that the interaction potentials and periodic boundary conditions did not allow the

expulsion of argon atoms from within the carbon nanotubes, whereas in experiments

this might occur due to defects in the tube walls or the absence of end caps.
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3. ARGON FILLED CARBON NANOTUBES

In a typical high-pressure experiment, the pressure cell containing the sample is kept

immersed in a bath to fill the sample region with PTM. Since computer representation

of such a scenario was not practical in a periodic cell, we carried out several simulations

at different densities to explore the effect of PTM on the behavior of nanotubes.

0 20 40 60 80

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

0 20 40 60 80
-40

0

40

80

 

 

En
er

gy
/a

to
m

 (e
V)

Number of INT Ar atoms

 

 

ch
em

ic
al

 p
ot

 (×
10

-3
ev

)

Figure 3.3: Variation in the energy with the number of argon atoms at INT sites fitted
with a fourth-order polynomial (solid line). The inset shows the derivative of total energy
with respect to the argon number density.

Fig. 3.3 shows the computed variation in energy/atom with the argon number den-

sity. It decreases linearly for low argon densities to become minimum close to 60,

which correspond to optimum filling under ambient conditions (the negative value of

the chemical potential at lower densities indicate that these tubes are under filled).

Although in experiments under ambient conditions, tubes would be filled to an optimal

value, one can certainly generate the under or over filled tubes by varying equilibration

time and density of argon atoms in the bath (94).

SWCNTs with argon densities varying from 0 to 70 atoms/tube were subjected

to increasing pressures in steps of 1 GPa (or 0.1 GPa close to phase transitions) up

to 10 GPa. Pressure was then released back to zero in similar steps. As can be

seen from the few representative cases given in Fig. 3.4, depending on the degree of

filling of the tubes, the volume decreased discontinuously at some pressure, marking a
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Figure 3.4: Pressure-volume behavior for single-walled carbon nanotubes at different
argon densities. Closed and open symbols represent compression and deompression, re-
spectively.

structural phase transition of the first order. For a particular case of 40 atoms/tube,

however, we observed multiple volume drops at 2.5, 5.4, and 8.5 GPa. Inspection of

the intermediate structures revealed that argon undergoes structural modifications of

different compactness, forcing the enveloping nanotubes to collapse in stages. Multiple

phase transitions similar to this case was also observed in experiments (87), when

nanotubes filled with fullerenes were subjected to high pressures. Another important

observation is that as the density increases, the change in volume at the transition

becomes smaller. Hence, at higher argon densities the transformation might appear

gradual, which would explain the resonant Raman spectroscopic studies (92) on open-

ended nanotubes using argon PTM that found the structural changes to be progressive

rather than abrupt.

Computed variation in the transition pressure (PT ) in Fig. 3.5 shows that when the

number of argon atoms per nanotubes is increased beyond a critical value (≈40 argon

atoms/tube), the PT increases almost quadratically and at the optimum density (60

atoms/tube), it is close to 7 GPa. During the release of pressure, a similar curve is

followed; although with lower values of PT , representing the well-known hysteresis in
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Figure 3.5: Variation in the transition pressure with the number of argon atoms per
nanotube. Closed and open symbols represent the results during compression and de-
compression, respectively. Solid and dotted lines indicate a quadratic fit to the transition
pressure.

the first-order phase transitions. The lowering of the transformation pressure below 40

atoms/tube is puzzling because intuitively one would expect that when an empty tube

is filled with some fluid, it will become less compressible and thus withstand higher

stresses before collapse. This seemingly unusual result can be rationalized as follows:

As the tubes are quite incompressible along the axial direction, the effect of the

applied stress is felt primarily in the radial direction. When it is filled with argon,

due to van der Waals interaction between the argon and carbon atoms, the tubes will

experience an additional force which – due to the cylindrical symmetry – will also be

directed along the radius of the tubes. Van der Waals interaction is repulsive at short

distances (below a radius rmin)1 but is weakly attractive above it. As a result, when

too few argon atoms are inside the tubes, the average distances between argon atoms

and tube walls are greater than the rmin and the average interaction is attractive. This

effective attractive force adds to the external pressure and increases the inward stress

on the tube, collapsing it at a lower pressure. But when the argon density inside the

tubes becomes large enough to have the average argon-carbon distance less than rmin,

1rmin corresponds to the distance, where force becomes zero. It is related to σ as rmin = 21/6σ.
From Table 3.2, σ=3.573 Å for C-Ar and hence rmin = 4.01 Å.
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Figure 3.6: Computed Ar-C pair-correlation functions for different argon atomic densities.
The vertical line corresponds to rmin (see text) of the Lennard-Jones potential used in our
simulations.

the interactions become repulsive, which, in turn helps the tubes withstand higher

pressures. Thus the collapse pressure increases. Fig. 3.6 shows that for 20 atoms/tube,

the Ar-C pair distribution function, g(r) peaks above rmin and for higher Ar densities,

the maximum shifts toward lower r values accompanied by an increase in the transition

pressure. It would be interesting to test these results by carrying out experiments with

carbon nanotubes filled with pressure transmitter at lower densities.

Figure 3.7: Snapshots of the simulation cell containing single-walled carbon nanotubes
filled with (a) 40 and (b) 60 argon atoms/tube at INT sites at 0 GPa showing argon forming
cylindrical structures inside the tubes.

Interestingly, the zero pressure structures of SWCNTs with INT argon (Fig. 3.7
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3. ARGON FILLED CARBON NANOTUBES

resemble multiwalled nanotubes, although argon atoms are quite disordered. Similar

local partial ordering and shell formation of the pressure medium around the nanotubes

is supported by ab initio studies, which also find it to have a strong impact on pressure

transmission. (86) Similar to our results beyond the critical argon density, computer

simulations on double-walled tubes (83) had found transition pressures to be higher as

the two walls support each other. To compare, the PT for a double-walled nanotube of

type (5,5)@(10,10) is 18 GPa (Ref. (83)) whereas for optimally filled SWCNTs it is 7

GPa.

Figure 3.8: High-pressure phases of nanotubes at 10 GPa with (a) 40, (b) 50, (c) 60,
and (d) 70 argon atoms per tube. Side view argon atoms inside a single nanotube for 60
atoms/tube is shown at (e) 0 GPa and (f) 10 GPa.

High-pressure structures of argon-filled nanotubes were also quite varied (Fig. 3.8).

Up to 40 atoms/tube, the collapsed tubes adopted linear arrangements similar to those

of empty tubes and argon atoms formed a linear array parallel to the walls of the

tubes. The intermediate densities shown in Figs. 3.8(b) and 3.8(c) represent a transi-

tional regime in which faceting emerges along with the limited collapse of the tubes.

All these structures preferred an arrangement similar to Fig. 3.2(d). At densities over

70 atoms/tube, the forces favored faceting and nanotubes become “polygonized”. It is

interesting to note that in many early studies, authors had argued in favor of polygo-
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nization over collapse and our simulations show that indeed both regimes exist when

a PTM is present in the system. Figs 3.8(e) and 3.8(f) demonstrate the ordering of

argon along z direction inside a single nanotube across the phase transition.

3.3.3 SWCNTs with argon at INT and IC sites
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Figure 3.9: Variation in the total energy with the number of argon atoms in the in-
tertubular region. Argon inside the tubes is kept fixed at 50 atoms/tube. The chemical
potential in the inset shows essentially linear behavior.

To calculate the minimum energy configuration, we fixed the INT argon at 50

atoms/tube and varied the IC site density. A value lower than the optimum INT

density was chosen because the additional stress due to the presence of argon at IC

sites would increase the chemical potential at INT sites and would lower the optimum

value.1 Minimum energy was found to occur when alternate IC sites are filled with

about 7 atoms per tube (Fig. 3.9). As argon atoms at IC sites were arranged as a one-

dimensional chain along z axis, for more than 7 atoms/tube, Ar-Ar distances became

less than rmin (≈3.76 Å), making the interaction repulsive.

As we can see from pressure-volume curves given in Fig. 3.10, argon atoms present

outside the tubes further affect the behavior of the tubes. A significant observation is

1Equilibration of a 60+7 bundle at ambient pressure resulted in an increase in volume justifying
this argument
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Figure 3.10: (a) P-V behavior of argon-filled carbon nanotubes with 50 atoms inside
(INT sites) and 7 atoms in the interstitial (IC sites). Similar curves are plotted for (b) 40
INT+7 IC and (c) 35 INT+7 IC cases. (d) Variation in the transition pressure with the
total number of argon atoms.

that in all cases studied, the transition pressures are higher. We feel that the reduced

intertubular space diminishes fluctuations that lead to the collapse of nanotubes and

hence increases the transition pressure. The transition is abrupt for the case of 50+7

(INT+IC) atoms/tube, whereas for 35+7 it is spread over a wider range of pressures.

Similar to the case without IC atoms, there are multiple transitions for 40+7, though

the largest drop is found at 5.3 GPa instead of 2.5 GPa.

The structures of collapsed tubes were also different when argon is present at IC

sites. At ambient pressures, IC argon atoms formed a triangular lattice [Fig. 3.11(a)].

At 10 GPa, the collapsed tubes were arranged in layers and tubes in the neighboring

layers form an angle of ∼ 70◦ with each other and argon atoms, which were initially

arranged on an approximate equilateral triangular lattice of side 17 Å, now formed

bilateral triangles with two sides of 17 Å and one of 13 Å.
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Figure 3.11: Snapshots of simulation containing SWCNTs and argon at INT+IC sites.
(a) 50+7 argon atoms/tube at 0 GPa, (b) 50+7 atoms/tube at 10 GPa, and (c) 40+7
atoms/tube at 10 GPa.

3.3.4 Vibrational DOS

To understand the effect of argon fluid on the vibrational properties of nanotubes, we

calculated vibrational density of states by Fourier transforming velocity auto-correlation

function. Fig. 3.12 shows vDOS at 0 GPa for empty tubes (bottom) and tubes with 50

INT+7 IC argon atoms per tube. These results can be compared with inelastic neutron

scattering experiments (104) that observed peaks around 60, 75, 100, and 175 meV in

both SWCNT and graphite.
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Figure 3.12: Calculated phonon density of states. From bottom to top: empty SWCNT
bundle, SWCNT+Ar system with 50 INT+7 IC Ar atoms per tube
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In the case of empty tubes we can find generally good agreement between experiment

and calculations shown in Fig. 3.12. In particular, the positions of features in the

experimental spectrum (104) are well reproduced. However, the relative intensities of

the high energy bands (175 meV) are not well reproduced, and the peak at 155 meV

which is predicted by Fig. 3.12 is not observed in experiments. These discrepancies

in intensities might be due to multiphonon scattering and/or anharmonicity, both of

which become important at high energy. From the figure we can also see that effect of

argon is to broaden the low energy bands; the peaks close to 60, 75 and 100 meV. The

peaks at 75 and 100 meV merged to become a broad peak centered around 85 meV. So

far no experimental data is available to compare argon filled results.

3.3.5 Powder x-ray patterns

X-ray diffraction patterns (105) for the simulated structures were calculated using

Eq. 3.5. Under ambient conditions, the observed diffraction patterns showed (100)

as the dominant peak. The next most intense peak (at q ∼ 1.0 Å−1 for our system)

was found to be almost one order of magnitude weaker. In a diamond-anvil cell, only

the first diffraction peak was observed even in synchrotron-based experiments, which

was attributed to the 2D hexagonal order of the tubes in the bundles. This peak dis-

appears at the transition, which was interpreted as the loss of the translational order.

The calculated diffraction profile in Fig. 3.13 for the equilibrated ambient nanotubes

bundle shows features which are in a very good agreement with that of experimental

patterns (106). The diffraction pattern of herringbone structure of empty SWCNTs

[Fig. 3.13(b)] shows loss of intensity of (100) peak by several orders of magnitude con-

sistent with the observations in the high-pressure experiments. Other structures of the

linearized tubes shown in Fig. 3.2 also have equally weak-computed intensities, making

them indistinguishable with reference to presently published x-ray results. However, as

is evident from Fig. 3.2, the translation order is not completely lost in these structures

and in fact, calculated patterns show subtle differences. So, in principle, more sensitive

experiments might be able to identify the physically realized structure.

The loss of the diffracted intensity of the first peak with argon at INT sites1 was not

as dramatic as empty SWCNTs [Fig. 3.13(c)]. The remnant order after collapse is still

1Note that diffraction pattern is from carbon alone: effect of argon is removed by setting argon
form factors to zero
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Figure 3.13: Calculated x-ray diffraction patterns of SWCNTs (a) empty cylindrical
tubes at 0 GPa. Collapsed tubes at 10 GPa for (b) empty herringbone, (c) with INT Ar
and (d) with INT+IC Ar.

appreciable to produce intense peaks. However, when argon was present at INT as well

as IC sites the diffraction signal reduced substantially. Since the transition pressure in

this case was higher, the inferred loss of 2D order in the filled SWCNTs would take

place at higher pressures when compared to that for the empty tubes. These results

provide a rational understanding of the results of Ref. (84) as those tubes were prepared

by arc-discharge method and hence might have missing end caps and could be filled in

a manner representative of the previous section.

We may also add that though for the present comparison, the form factors of Ar were

set to zero, the inclusion of scattering from Ar shows the emergence of ordered structures

of Ar in SWCNTs. Therefore, it may be interesting to carry out such experiments to

determine the ordering of Ar atoms in SWCNTs under high pressures.

3.4 Summary

Our classical MD simulations showed that for SWCNTs at high pressures several com-

peting kinetically separated arrangements of the collapsed tubes are possible. We also

showed that compared to the empty tubes, nanotubes bundles filled with argon atoms

behave quite differently under pressure. As the density of argon atoms at INT sites
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was increased beyond the critical value of 40 atoms/tube, the pressure of transforma-

tion increased. At the critical density, multiple volume changes were observed as argon

atoms underwent ordering in stages. Interestingly, at low argon concentrations, the

nanotubes were found to adopt a collapsed structure whereas at high concentrations

they became faceted. Calculated diffraction patterns implied that for empty SWC-

NTs the diffraction experiments would show loss of the first diffraction peak across

the phase transition ≈2.4 GPa. In contrast, for Ar-filled SWCNTs, the pressure of

transformation, as determined through the loss of diffraction signal, would be much

higher. Calculated vibrational spectra showed good agreement with experimental data

for empty tubes and, for argon filled tubes, broad peaks at lower energies. Ar atoms

showed the emergence of order at high pressures and these results should encourage

further experimental investigations.

Although we assumed the fluid particles to interact with nanotubes only through

weak van der Waal’s forces in our calculations, in practice, they can make chemical

bonds with carbon and affect the properties of the tubes more dramatically. In fact,

experiments observed subtle changes in Raman spectra when different pressure trans-

mitting fluids were used. Hence it will be interesting to carry out electronic structure

calculations to study the detailed interaction of PTM with nanotubes.
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Crystallization of amorphous

silicon

Crystallization of an amorphous phase is one of the most fundamental non-equilibrium

phenomena universal to a variety of materials. It represents an important area of

research not only because of its significance in understanding the underlying microscopic

mechanisms that govern the process, but also for its practical importance in synthesizing

advanced materials with novel properties. We studied the crystallization kinetics of

amorphous silicon using classical molecular dynamics. Empirical potentials that take

into account bond order effects without complex many body terms were used to model

the system. Calculated activation energies for solid phase epitaxial growth (SPEG)

of the cubic diamond phase exhibit a minimum at the pressure where densities of

the amorphous and crystalline phases become equal. Calculations also suggested the

growth rates of metallic β-Sn phase to be higher under pressure.

4.1 Background

Amorphous materials are non-crystalline solids, that lack the characteristic long-range

order of crystals. It defines a broad class of disordered systems which may include

gels, thin films and nanostructured materials. Glasses are special type of amorphous

materials, which transform to a liquid upon heating through a characteristic glass tran-

sition temperature. They are thermodynamically metastable and will be crystallized

into one or more metastable or stable polycrystalline phases upon thermal annealing

65



4. CRYSTALLIZATION OF AMORPHOUS SILICON

or mechanical activation.

Factors that affect the process are studied intensively, because many technologi-

cally relevant materials like silicates, chalcogenides, elemental semiconductors etc. are

good glass formers by virtue of their strongly directional covalent bonds. Silicon, which

is used in a very broad spectrum of electronic applications, is a prototypical exam-

ple of such a network forming covalent solid. When heated, amorphous silicon (a-Si)

crystallizes by random nucleation and growth (RNG) resulting in a polycrystalline

diamond-like structure with small grains of randomly oriented crystals that finds usage

in making MOSFETS. However, when a crystalline substrate is available, the growth

proceeds through layer-by-layer conversion of amorphous to crystalline phase, a pro-

cess known as solid phase epitaxial growth (SPEG), which is widely used in industry to

produce high quality semiconducting thin films for integrated circuits. In the present

chapter, results of studies on crystallization process through SPEG is discussed. Our

studies on RNG process shall be discussed in Chapter 8.

According to classical nucleation and growth theory (107, 108, 109) the emergence

of ordered phase from a disordered phase is controlled by the competition between

the free energy gain due to the transformation and the free energy loss associated

with the formation of a crystal amorphous (c/a) interface. Many external and internal

parameters affect the process, although their effect is often system dependant. In a-Si,

extensive studies have shown that higher annealing temperatures (110), external force

fields (111), presence of impurities (112, 113), ion beam irradiation (114) and applied

stresses (115, 116) all enhance the process. Among these, pressure is an important

thermodynamic parameter, the impact of which on the crystallization are not clearly

understood.

Normally, crystallization is a prohibitively slow process at room temperatures as

the necessary structural relaxation is inhibited by the high viscosity in the amor-

phous phase. Since external pressure increases density, one would intuitively expect

the process to be further suppressed under pressure. Surprisingly, however, pressure

above 15 GPa has been shown to induce crystallization at room temperature in amor-

phous silicon, although some disagreement about the resulting crystalline structure

exists: earlier studies had reported the structure to be an octahedrally connected β-Sn

phase (117, 118), while recently (14) it has been shown to be an eight coordinated prim-

itive hexagonal (ph) structure (119). Pressure induces other structural changes within
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the amorphous phase: similar to glassy water (120), a-Si undergoes a pseudo-first-order

polymorphous transition from a low density amorphous (LDA) phase to a high density

amorphous (HDA) phase close to 14 GPa (121), which has been rationalized as the

non-ergodic manifestation of a first-order transition between two liquid phases as in

the supercooled regime of water (122, 123, 124).

A large body of literature exists for the crystallization of a-Si at ambient pressures.

Many experiments (110) on SPEG of thin films of Si found the interface velocity (growth

rate) to exhibit Arrhenius behavior with an activation energy of Ea ≈ 2.7 eV. RNG

process for silicon was found to have activation energies higher by about 1.3 eV and,

as a consequence, to compete with SPEG above 1000 K. Theoretically, structure and

growth of c/a interface was studied using tight binding (125) and several molecular

dynamics (MD) simulations (126, 127). Simulations found the growth velocities to be

similar along [100] and [110], but up to five times lower along the [111] direction (128).

Two distinct temperature regions with different activation energies (129) were also

found to exist.

In the only experimental study on crystallization of a-Si under pressure, using in-

situ time resolved visible interferometry Lu et al. measured the effect of hydrostatic

pressure up to 5 GPa on the growth velocity of (100) planes of doped and undoped

silicon and found it to increase exponentially with pressure (115). It was explained on

the basis of migration of dangling bonds generated at the interface, reconstructing the

random network into a crystalline network and was verified by subsequent computer

simulations (130). However, the microscopic parameters that result in the enhanced

crystallization of silicon under pressure were not clearly understood. Also, the effect

of structural transition from a covalent to a metallic system on the crystallization

phenomena was not studied.

4.2 Methods

Large simulation boxes containing thousands of atoms would be required for simulations

containing amorphous structures, to faithfully represent the disordered nature of the

phase and to avoid spurious boundary effects. Also, since SPEG is a slow process, long

simulation times spanning several nanoseconds would be necessary. Classical molecular

dynamics with empirical interaction potentials were ideally suited for this purpose
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and we carried out extensive simulations using the DL POLY code (29). Velocity

Verlet algorithm was employed to integrate the equations of motion with Berendsen

thermostat and barostat keeping temperature and pressure constant. The system was

equilibrated for several nanoseconds at each temperature/pressure using a fine timestep

of 1 fs.

In simulations, the amorphous phase was generated by first melting the cd structure

and quenching the liquid from 3500 K at a rate 1 K/ps and subsequently annealing at

1000 K for several million steps. LDA with a coordination defect density less than 5%

was thus obtained. Following a similar procedure, when β-Sn was melted and quenched,

it transformed to a high density amorphous (HDA), that has a higher coordination of

≈ 5.5.

To simulate SPEG, an interface containing a-Si/(001)Si system had to be generated.

For this, a well equilibrated crystalline phase (cd or β-Sn) consisting of about 1000

atoms and an amorphous phase consisting of about 983 atoms were joined together

along c-axis. A lower number of atoms in the amorphous phase is due to the density

difference between amorphous and crystalline silicon and the requirement of single cell

dimension for both structures. At the boundary between the structures the atomic

distances were fixed to be compatible with the average bond length of silicon in bulk.

Periodic boundary conditions are employed in all three directions. Extensive annealing

at 1000 K ensured that bonds are rebuilt and the interface is relax to a reasonable

structure of low energy.

4.2.1 Tersoff potential

Interatomic potentials by Tersoff (131, 132) that incorporate bond order without com-

plex many body terms are employed in the simulations. It is a special example of a

density dependent potential, which has been designed to reproduce the properties of

covalent bonding in systems containing carbon, silicon, germanium etc and alloys of

these elements. A special feature of the potential is that it allows bond breaking and

associated changes in hybridization. The energy is modeled in a pairwise form, where

the attractive part depends on the local environment giving a many-body potential.

uij = fC(Rij)[fR(Rij)− γijfA(Rij)] (4.1)
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with

fR(Rij) = Aij exp(−λijRij) (4.2)

fA(Rij) = −Bij exp(−µijRij)

fC(Rij) =



1 Rij < Rcij

1
2 + 1

2 cos[π(Rij −Rcij/Scij −Rcij)] Rcij < Rij < Scij

0 Rij > Scij

and

γij = χij(1 + βnii ζ
ni
ij )1/2ni (4.3)

ζij =
∑
k 6=i

fC(Rij)ωikg(θijk)

g(θijk) = 1 +
c2
i

d2
i

− c2
i

[d2
i + (hi − cos θijk)2]

Here i, j and k label the atoms in the system, Rij is the length of the ij bond, and θijk

is the bond angle between the bonds ij and ik. Single subscripted parameters, such

as λi and ζi, depend only on the type of atom. In the potential, γij is the multi-body

parameter for bond-formation energy and is affected by local atomic arrangement,

especially, by the presence of other neighboring atoms (atom k), ζ is the effective

coordination number and the function of the angle between Rij and Rik, g(θijk), is fitted

to stabilize the tetrahedral structure. The potential parameters for the potential model

for silicon are given in Table 4.1. They have been shown to reproduce the structure of

low pressure crystalline and amorphous silicon as well as recrystallization process in a-Si

quite well (126), although melting points are somewhat overestimated. We also found

that Tersoff potentials were unable to stabilize the primitive hexagonal phase; probably

because the potentials were parametrized for structures at low pressures (132). Hence,
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4. CRYSTALLIZATION OF AMORPHOUS SILICON

in the following sections, we concentrate only on the two low pressure structures shown

in Fig. 4.1

Table 4.1: Parameters for silicon to be used in Tersoff potential

Si

A (eV) 1.8308×103

B (eV) 4.7118×102

λ (Å−1) 2.4799
µ (Å−1) 1.7322
β (eV) 1.5724×10−7

n 7.8734×10−1

c 1.0039×105

d 1.6217×101

h -5.9825×10−1

Rc (Å) 2.7
Sc (Å) 3.0

4.2.2 Structures of silicon

Crystalline silicon can exist in several structural polymorphs as summarized in Ta-

ble 4.2. The well known semi-conducting form of silicon has cubic diamond (cd) struc-

ture with four coordinated silicon atoms. As the density increases under pressure, the

coordination of the Si atoms also increases and becomes six in β-Sn structure. Pressure

reduces the band gap in silicon and beyond β-Sn the structures are metallic. Single

units cells of cd and β-Sn are shown in Fig 4.1

4.2.3 Thermodynamic analysis

Growth of the crystalline phase during SPEG, proceeds through the movement of c/a

interface across the amorphous region. The velocity v(T, P ) of growth has been shown

to obey the Arrhenius behavior (116),

v(T, P ) = v0(P )× exp

(
−Qn(P )

kBT

)
(4.4)

where v0(P ) is a temperature independent velocity prefactor, Qn(P ) = E + PV is the

activation free energy for the transport of an atom across the c/a interface and kB is

the Boltzmann constant.
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Table 4.2: Stable and metastable structures of silicon

Si- Structure Pressure (GPa) Symmetry Volume/atom

I cubic diamond 0 - 12 Fd3m 20.02
II β-Sn 11 - 14 I41/amd 13.93
XI orthorhombic 13 - 16 Imma 13.6
V primitive hexagonal 16 - 38 P6/mmm 12.0
VI orthorhombic 38 - 45 Cmca 11.31
VII hexagonal 42 - 78 P63/mmc 10.17
X cubic > 79 Fm3m 9.32
III cubic 0 - 9 Ia3 18.26
XII rhombohedral 2 - 9 R3̄ 16.61
IV wurtzite 0 P63/mmc 19.63

Figure 4.1: Crystal structures of (a) cubic diamond and (b) β-Sn crystalline phases of
silicon studied in this chapter. In cd phase, silicon forms a tetrahedral network while in
β-Sn it forms an octahedral one

4.2.4 Radial distribution function

The radial distribution function gαβ(R), between two types of atoms α and β gives a

measure of probability of finding an atom β at a distance of R from an atom α and is

calculated by considering spherical shells of thickness ∆R around the atom α and then

counting the number of atoms of type β in the shell. The corresponding probability is

given by the relation (133),

〈nα(R)nβ(R+ ∆R)〉 = ρβ4πR2gαβ(R)∆R (4.5)

where ρβ is the density of species β and nβ is the probability amplitude. Experimental

techniques using x-ray and neutron measure the structure factors that are calculated
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4. CRYSTALLIZATION OF AMORPHOUS SILICON

by Fourier transforming the corresponding radial distribution function, as

Sαβ(k) = δαβ + 4πρ(cαcβ)1/2

∫ Rc

0
dRR2[gαβ(R)− 1]

sin(kR)

kR
W (R) (4.6)

where cα = Nα/N is the concentration of α species. The window function W (R) =

sin(πR/Rc)/(πR/Rc) is used to reduce termination effects and Rc is the cut-off radius

generally chosen to be about half of the simulation cell. In the case of silicon, as it has

a single species, α = β.

4.3 Results

Since the results obtained from classical simulations depend crucially on the quality of

potentials used, it is important to test them against known results. Hence, to check

the validity of Tersoff potentials, we subjected various structures of silicon listed in

Table 4.2 to increasing pressures using classical MD.

Figure 4.2: Equation of state for phases of silicon from classical MD. Arrows indicate
phase transitions.

Results for structures that were stable under the potentials are summarized in

Fig 4.2. It shows that PV behavior of the various polymorphs are reproduced well in

simulations. For example, the densities of cd, β-Sn, Imma, LDA and HDA phases are
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calculated correctly. At ambient pressure amorphous phase had lower density (LDA)

than the crystalline phase; but also had a higher compressibility. As a consequence,

density of LDA became equal to that of diamond close to 10 GPa (Fig. 4.2), which, as

shown later has important effect on SPEG.

However, not all the structural transitions are reproduced. While we were able to

observe the LDA-HDA transition above 15 GPa and β-Sn to Imma transition close

to 17 GPa; cd to β-Sn transition was not observed. This indicates that an energy

barrier exists between cd and β-Sn phases. It is well known that in the case of struc-

tures separated by an energy barrier, computer simulations may not be able to achieve

fluctuations necessary to cause the transitions due to small simulation times.
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Figure 4.3: Pair correlation functions and structure factors for low density (LDA) and
high density (HDA) amorphous forms of silicon.

The disordered LDA phase forms a continuous random network of fourfold silicon

atoms. The radial distribution functions in Fig 4.3 show that in the case of HDA, the

second neighbor peak moves to lower distances making the structure more compact.

Structure factors have lesser features at larger wavelengths, indicating that the structure

at lower distances is more distorted.

Next, following the procedure elucidated in the previous section we prepared an a-

Si/diamond structure at 0 GPa and a-Si/β-Sn at 15 GPa. These were then equilibrated
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4. CRYSTALLIZATION OF AMORPHOUS SILICON

Figure 4.4: Snapshots of the simulation cell containing c/a interface during SPEG. Each
row shows the beginning (left), intermediate (middle) and final (right) stages of simulation.
Structures of the top two rows (P=0 and P=10 GPa) represent crystallization to diamond
while the bottom row (P=15 GPa) represent crystallization to β-Sn.
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for about 1 ns at different pressures and were subjected to increasing temperatures

allowing up to 5 ns at each temperature. The procedure of Mattoni and Colombo

based on the calculation of a one dimensional structure factor (134) was used to get the

position of the c/a interface during the transition (128). Structure of the simulation cell

at various temperatures and pressures are given in Fig 4.4 which shows the amorphous,

crystalline and the interface region clearly.

4.3.1 SPEG of cubic diamond phase

To understand the effect of pressure on the growth process better, we define a crystal-

lization temperature (T ∗c ) at which the simulation cell is completely transformed to a

crystalline phase at the end of a 5 ns simulation or in other words, which corresponds

to a growth velocity of 0.25 m/s.1 Normalized T ∗c for crystallization to cd phase is

plotted in Fig 4.5.
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Figure 4.5: Normalized crystallization temperature T ∗
c (at which growth velocity is 0.25

m/s) as a function of external pressure for SPEG of cd phase. Solid line is quadratic fit to
simulation data.

Under pressure, T ∗c decreases rapidly indicating that pressure enhances SPEG of

cd-Si in agreement with earlier studies (115, 130). Interestingly, close to 10 GPa, where

1SPEG takes place at all temperatures, so the absolute value of T ∗c is not important.
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4. CRYSTALLIZATION OF AMORPHOUS SILICON

amorphous and crystalline densities become equal, T ∗c reaches a minimum. The curve

terminates close to a critical pressure Pc = 15 GPa, above which the crystalline cd

phase does not grow. This pressure, in fact, marks significant phase changes in silicon.

At this pressure, a-Si transforms from LDA to HDA with substantial volume change,

as mentioned earlier. Also, from Table 4.2 cd is expected to transform to β-Sn close to

this pressure, which means that cd is metastable above 15 GPa and its growth is not

possible.
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Figure 4.6: Arrhenius plots of the regrowth velocity as a function of temperature at
various pressures for crystallization to cd structure. Symbols correspond to simulation
data and the straight lines are fit to the data

The activation energies of growth, Qn(P ), can be estimated by measuring the

growth velocities v(T, P ) at various temperatures and pressures and then fitting Eq. 4.4

to them. In Fig. 4.6 the logarithm of v(T, P ) as a function of inverse of temperature

has been plotted for the crystallization to cd phase. The straight lines fit using Eq 4.4

can be seen to exhibit the expected Arrhenius behavior. The values calculated from

the slope, Qn(P ), and intercept (velocity prefactor v0) are given in Table 4.3. Calcu-

lated Qn(P ) at ambient pressure is close to the experimentally reported value of 2.7

eV (110). While v0 increases monotonously under pressure, Qn(P ) exhibits a minimum

at 10 GPa similar to T ∗c .
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Table 4.3: Activation free energy and velocity prefactor at different pressures calculated
from Arrhenius fit to simulation data

Pressure (GPa) Qn (eV) v0 (m/s ×105)

0 2.33 4.88
5 1.80 7.01
10 1.61 10.24
13 1.72 18.67
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Figure 4.7: Atomic volumes distribution (symbols) in a simulation cell containing c/a
interface at 0 GPa. Solid lines are Gaussian fit corresponding to crystalline and amorphous
phases

To understand the structural changes that led to the observed variation in activa-

tion energies, we looked at the atomic volume distribution in a cell containing both

crystalline and amorphous phases during SPE growth. Atomic volumes are calculated

by estimating the Voronoi polyhedra from nearest neighbor distances. The distribution

can be seen to be (Fig 4.7) made up of a convolution of two peaks, where the narrower

peak corresponds to the ordered cd phase and the broader peak corresponds to the

disordered LDA. Width of the distribution, known as the regularity factor (135), is a

measure of the distortion in the structure. Figure also shows that the peak position

indicating the average atomic volume shifts to higher values in amorphous silicon, in

agreement with predictions.

The variation of atomic volumes and coordination along the length of the simulation
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4. CRYSTALLIZATION OF AMORPHOUS SILICON

cell at different pressures are shown in Fig 4.8. Under ambient conditions, in the

amorphous region, the atomic volumes are more spread out and their average higher

than the crystalline region (center of simulation box) owing to the lower density and

higher distortion in a-Si. The thickness of the c/a interface at 0 GPa is close to 6Å,

as can be seen in Fig 4.8, in good agreement with earlier estimates (125). At 10 GPa,

although amorphous and crystalline parts have similar density (∆V = 0), the former

has a higher coordination of 4.3. The distribution of atomic volumes at this pressure is

somewhat narrower, pointing to an increased regularity factor which is a consequence

of collapse of voids that result in better packing.
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Figure 4.8: Voronoi volumes and coordination of silicon at 0 GPa and 10 GPa with
amorphous-diamond interface (note that simulation box has been shifted to center the
crystalline region). Red lines are the average of atomic volumes and the lower panel
represent Si coordination across the unit cell length.

As LDA has a lower density, the transformation causes a negative volume change

(∆V = V c − V a) during the amorphous to crystalline transition, which favors crystal-

lization under pressure. On the other hand, as pressure is raised, the coordination of

silicon in the amorphous region increases (Fig 4.8) and the difference in coordination

78



4.3 Results

(∆C = Cc − Ca) across the interface hinders growth. Our simulations suggest that

at lower pressures, crystallization is dominated by ∆V while at higher pressures ∆C

dominates and the competition results in the minimum. Interestingly, an analogous

behavior has been observed in the melting curve of ice II (among many other systems)

which exhibits maximum under pressure (136). Water has lower density and higher

compressibility than ice II at lower pressures and at the melting maximum, density of

the two phases become equal. Thus we find a common feature in two apparently distinct

phenomena: at crystallization minimum as well as melting maximum, the densities of

participating phases become equal.

4.3.2 SPEG of β-Sn phase
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Figure 4.9: Crystallization temperature (normalized by T ∗
c of cd phase at 0 GPa) as

a function of external pressure for SPEG of β-Sn silicon. Solid line is quadratic fit to
simulation data.

T ∗c of β-Sn structured silicon, normalized with that of cd phase at P = 0 is shown

in Fig 4.9. Comparing with Fig 4.5, we can see that T ∗c exhibits a qualitatively similar

behavior as that of cd phase, with the minimum close to 25 GPa. The important feature

of Fig 4.9 is the lower transition temperatures of β-Sn which indicates lower activation

energies in this phase. Growth of crystalline phase during SPEG requires substantial

rearrangement of bonds in the amorphous structure. The covalent bonds in LDA are
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strong and highly directional and their dissociations cost energy. On the other hand,

the metallic bonds in HDA are malleable and can be rearranged easily. Hence, in the

transition from semiconducting LDA to metallic HDA, the lost directionality of silicon

bonds facilitate growth of the crystalline phase. In fact, in the case of hydrogenated

silicon, it has been observed that presence of interstitial hydrogen weakens Si bonds

which substantially lowers crystallization temperature (113).

At 15 GPa, the crystalline phase is six coordinated and the amorphous phase is

5.5 coordinated (Fig. 4.10). The amorphous side boundary is less discernible at this

pressure, with the interface gradually changing to HDA. Despite large difference in vol-

ume and coordination between the crystalline and amorphous structures, the activation

energy is much smaller due to the metallic nature of the two structures.
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Figure 4.10: Voronoi volumes and coordination of silicon at 15 GPa with amorphous
β-Sn interface.

4.4 Summary

Our classical calculations of crystallization process in amorphous silicon predicted many

interesting features. For the growth of cd phase, activation energy for growth (and

hence respective crystallization temperatures) was shown to exhibit a minimum close

to 10 GPa at which densities of amorphous and crystalline phases also become equal.

Crystallization temperature for β-Sn phase was found to be much lower than that of
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diamond phase under pressure, explained to be a consequence of loss of directionality

of covalent bonds upon the phase transition.

Calculations presented in this chapter were concerned with the growth of crystalline

silicon phase through SPEG. The second mechanism of growth, namely, random nu-

cleation and growth (RNG) is important when a crystalline substrate is not available.

Study of RNG can provide valuable insight into many experimental observations, in-

cluding the pressure induced crystallization (23) observed in nano and bulk amorphous

silicon. However, since the formation of nuclei in the amorphous matrix is a ther-

mally activated stochastic process, achieving RNG in computer simulations would be a

formidable task, requiring impractically long simulation times. Therefore, we adopted

a hybrid approach to RNG in silicon; combining classical, first principles and model

calculations, results of which are presented in Chapter 8.
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5

Polymorphism in crystalline

structures

Packing polymorphism is the ability of materials have an ability to exist in more than

one ordered form with the same composition. Reversible structural transitions can

be observed when free energies of the various polymorphs cross each other before the

melting point of the solid. Electronic structure calculations, because they can estimate

accurate energies, are ideally suited to study these transitions. Studies on three typical

cases are presented in this chapter: formation (zinc-blende CdS), structural phase

transition (YCrO4) and dissociation (La2Hf2O7) of crystalline solids. In the case of CdS

nanoparticles, it was found that by carefully choosing the capping molecules used during

the growth process, the otherwise metastable zinc-blende structured nano particles

could be synthesized. Detailed investigation of the binding process of the organic

molecules (cis-oleic acid and trioctylphosphine) on various surfaces of CdS nanocrystals

revealed that adsorption energies play a crucial role in determining the crystal structure.

In YCrO4, calculations established the existence of an intermediate monoclinic phase

during the zircon→scheelite transition, showing that it is not a one step process as

thought before. The pyrochlore structured La2Hf2O7 was found to undergo dissociation

under pressure to its constituent oxides, facilitated by a large volume change during

the transition.
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5.1 Background

Crystals are ordered structures, in which a basic building unit (can be an atom, molecule

or polyhedral unit) is repeated in all directions to generate a periodic structure. A

particular structure or polymorph can be thought of as forming a lower energy pocket

on free energy hypersurface in the configurational space of the material. Many such

pockets may exist and the stable structure of a material will correspond to the lowest

energy one. To change from one structure to another, the system needs to overcome an

energy barrier equal to the height of the pocket where it is currently residing. Since the

Gibb’s free energy (G = U +PV −TS) is a function of pressure P and temperature T ,

under changing external parameters, the energy landscape will also change, bringing

the barriers within thermal energy and resulting in structural transformations.

5.1.1 Formation of zinc-blende CdS

As a crystal grows from a liquid phase, it explores the configuration space to find the

lowest energy structure. However, in many cases, chemical and physical environment

can be tweaked to generate a particular structure, shape or size. For example, in col-

loidal chemistry techniques, which is used to grow inorganic nanocrystals in solution, by

suitably controlling the growth environments, one can synthesize high quality semicon-

ducting nanocrystals (quantum dots) in controlled shapes and sizes. Nanocrystals are

usually prepared in the presence of suitable organic molecules acting as capping agents,

which typically consist of a polar headgroup and of one or more hydrocarbon chains,

the latter forming the hydrophobic part. During nanocrystal synthesis the headgroup

can adsorb to favorable surfaces on the nanocrystal and thus affect the growth process.

Extensive studies revealed that optical properties of these dots depended critically on

their size and shape which led to their wide adoption in various industrial applications

like, biological imaging (11), solar cells (137) and lasers (138). Modification of chem-

istry in terms of monomer and ligand concentrations (139, 140) led to the synthesis of

nanocrystals in more exotic shapes, such as rods and multipods which further helped

in tuning their properties.

It has been shown that in addition to size and shape, the structure of the nano

particles also critically affects their properties (141, 142). In fact, CdS can exist ei-

ther in wurtzite (W) or zinc-blende (ZB) structures in both bulk and nano crystalline
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form (143, 144) and it was found that band gap and impurity doping levels crucially

depended on the particular crystal structure of the host. However, the dependence

of nanomaterial properties on crystal structure was relatively less explored and their

applicability was restricted, mainly because of the inability in controlling the crystal

structure during synthesis until recently.

In the past, various authors had suggested different parameters to decide the crystal

structure of nano-crystalline CdS and its close neighbor CdSe. For example, some

considered lower reaction temperatures (below 240◦ C) to be the primary cause for

stabilizing the metastable ZB structure (145, 146). Gautham et al (147) suggested that

ZB nano-crystals of CdS may be realized only under high pressure. Another suggestion

was that small particle sizes (≈ 4.5 nm) favor ZB structure (148). The solvent used

in the growth process was also suspected to play a crucial role (149); where the non-

coordinating solvents believed to favor ZB structure.

Density functional theory based calculations were successfully used to study the

effect of organic ligand binding on the shape of wurtzite CdSe nanoparticles (150)

and it was found from the calculated relative binding strengths of ligands to different

facets control the relative growth rates of different facets. Calculations were also used

to study the relaxations and reconstructions (151) of several wurtzite CdSe surfaces

and subsequent organic ligand binding on these surfaces (152). Molecular dynamics

simulations on wurtzite and zinc-blende CdS nanoparticles found that small upcapped

particles are not nanocrystalline, but are amorphous with ordered surfaces (153).

Recently, through careful experiments Nag et al. found that in contrast to the

earlier reports, both crystallographic phases of CdS can be stabilized in the nanometer

size regime by a proper choice of the capping ligand (12). The key to their success was

the choice of the anionic reaction mixture: when sulphur was dissolved in 1-octadecene

(ODE) and allowed to react with Cd solution in cis-oleic acid (cis-OA), CdS particles

in the usual W structure were formed (method I). However, when sulphur dissolved

in organic precursor trioctylphosphine (TOP) was used instead (method II), it lead to

the ZB structured CdS particles beyond a critical concentration (12). To understand

how different capping molecules affect the crystal structure of the CdS nanoparticles,

we carried out first principles total energy calculations.
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5.1.2 Phase transition in YCrO4

Structural phase transitions in crystals can be either displacive or reconstructive de-

pending on how the transformation is brought about. In the former case, the initial

structure transforms to the final structure by a correlated motion of the atoms and, in

latter, a new structure grows out of the initial one through substantial rearrangement of

atoms. Displacive transformation is the dominant mechanism under pressure, because

it involves relatively less bond breaking and atomic displacements.

Zircon (ZrSiO4) is an important mineral found in the earth’s crust, mainly in ig-

neous rocks and sediments (154). It is known to undergo a first order crystalline phase

transition from the zircon (space group I41/amd) to the scheelite (space group I41/a)

form at ∼ 23 GPa. Several iso-structural ABO4 type compounds, such as the vana-

dates, chromates, germanates, also undergo the same high pressure phase transition,

displaying a typical density increase of ∼ 10% (155, 156, 157). Static as well as shock

experiments on ZrSiO4 support the displacive nature of this phase transformation (158).

Several attempts were made to explain the nature of this phase transformation.

Kusaba et al. suggested that zircon to scheelite transformation might be brought about

by shear deformations (159). However, based on the observations of abrupt changes

in frequencies of the internal Raman modes across this transition, others (156) argued

that the transformation path involve substantial rearrangement of the cations and the

anions, both in length and angle. Subsequent theoretical ab-initio and shell model

calculations on ZrSiO4 showed absence of any dynamical structural instability upto

∼ 70 GPa from which they concluded that hydrostatic compression alone could not be

responsible for this phase transition (160). Energy barrier heights obtained through

first principles calculations by Florez et al., indicated that transient states between

zircon and scheelite phases were likely monoclinic structures (161).

In high pressure x-ray diffraction and Raman spectroscopic measurements, Mishra et

al. observed that nano-crystalline YCrO4 transformed from zircon to scheelite structure

close to 7 GPa (20). More interestingly, some of the diffraction peaks just before the

transformation exhibited an anomalous increase in full width half maximum (FWHM),

which was indicative of a new structure; possibly as a result of a slight distortion of the

parent phase. To understand the nature of the transformation better, first principles

calculations were carried out.
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5.1.3 Decomposition of La2Hf2O7

Beyond the stability regime of a polymorph, if the energy barriers are too high or if

transformation paths to stable phases do not exist, crystalline structures may undergo

amorphization or dissociation (162). Solid state decomposition of crystalline structures

into dense-packed daughter phases is common at high temperatures. However, pres-

sure induced dissociation is unusual, as the large atomic diffusion necessary for growth

of daughter phases are hindered under pressure. Consequently, at ambient tempera-

ture, these compounds invariably exhibit pressure-induced-amorphization (PIA) when

decomposition is kinetically hindered but energetically favored (163).

A2B2O7 compounds having pyrochlore structure, due to the structural compatibility

with several radionuclides, were perceived as materials for encapsulation of actinide rich

nuclear waste (164, 165). The pyrochlore structure belongs to Fd3̄m space group (fcc)

with A3+ cations occupying the 16d, B4+ atoms at 16c and oxygen occupying 48f and

8b positions respectively. The structure can be viewed as made of eightfold and sixfold

coordination polyhedra of oxygen atoms around A and B cations and these polyhedra

change shape under pressure by changing the only free parameter, which is x coordinate

of 48f oxygen atoms.

It was observed that substitution of the B cation with a larger ion progressively

increases disorder (166). It is well known that in many compounds, particularly having

polyhedral network structures, amorphization can also be induced by subjecting the

compounds to high pressure. The onset pressure is determined by the limiting dis-

tances of non-bonded atoms (167). In some such cases, the inaccessible high pressure

equilibrium phases could be the products of dissociation (162).

X-ray diffraction experiments by Garg et al. showed that close to 18 GPa, several

new peaks appeared, which could not be assigned to possible structure of La2Hf2O7

obtained through subgroup analysis of the parent phase (21). Their studies seemed

to indicate that the diffraction pattern could be due to a mixture of oxides. To test

this prediction, energies of La2Hf2O7, La2O3 and HfO2 were calculated as a function

of pressure using first principles methods.
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5.2 Methods

All first-principles calculations were performed with the DFT code Vienna Ab-initio

Simulation Package (70, 71), employing PAW method to describe atomic core electrons

and a plane wave basis set with a kinetic energy cutoff of 500 eV to expand the Kohn-

Sham electronic states. We applied the generalized gradient approximation to the

exchange correlation functional with Perdue–Burke–Ernzerhof parametrization (168,

169). Sampling of the reciprocal space was done using Monkhorst-Pack mesh. Since

finer grids were required for systems that have smaller unit cells in direct space, we

employed Γ-point only sampling for nanoparticles, a grid of 4× 4× 1 for surfaces and a

fine mesh of 5×5×5 for crystalline structures. The valence electrons explicitly treated

in the PAW potentials are; Cd: 5s24d10, S: 3s23p4, Y: 4s24p65s24d1, Cr: 3p63d54s1, O:

2s22p4, La: 5s25p65d16s2 and Hf: 5p65d26s2.

5.2.1 Adsorption energy of molecules on CdS surfaces

The binding energy calculations were done in two steps. First we estimated the prob-

able binding sites of the molecules by equilibrating a system in which molecules were

attached to infinite surfaces. The surfaces were described by periodically repeated slabs

perpendicular to z-axis: continuous along x & y directions and separated by a vacuum

layer along the z-direction as shown in Fig. 5.1. Symmetric surfaces with five or more

bulk layers of Cd or S were constructed by slicing the fully relaxed bulk unit cell in

appropriate directions. The slabs were then reoriented to be perpendicular to the z-axis

and a vacuum layer of 11 Å or more was added to avoid interaction of adjacent slabs.

To verify that the neighboring slabs were sufficiently isolated, we increased vacuum

thickness, surface size and number of bilayers in all the cases and the change in total

energy was less than 0.01 eV. The top surface layers were allowed to fully relax while

two bottom layers were constrained to be fixed to their bulk positions. In addition

to relaxation, some of the surfaces were allowed to reconstruct; by generating surface

adatom or vacancy which further reduces the energies. The reconstruction energies

were calculated as:

∆Erec = Eslabrec − Eslabrel ± ECd,S (5.1)
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5.2 Methods

Figure 5.1: (a) Zinc-blende unit cell marking the (111) plane (b) smallest surface unit cell
preserving the symmetry of the structure is cut with three CdS layers (c) the structure after
reorientation to z-axis and a vacuum layer is added to remove interaction with periodic
images.

where Eslabrec is the energy of the slab after reconstruction through suitable addition or

subtraction of elements, Eslabrel is the energy of a well relaxed slab before reconstruction

and ECd,S is the energy of a Cd or S atom in vacuum and positive or negative sign means

vacancy or adatom reconstruction respectively. Larger supercells were constructed,

where necessary, to accommodate the capping molecules. Starting configurations were

selected by attaching the molecules to all the probable adsorption sites. The system

was then annealed using molecular dynamics for about 200 fs with a time step of 0.5

fs to allow the system to reach the lowest energy configurations.

Next, we studied adsorption of molecules on nanoparticles of CdS. For this, roughly

spherical nanoparticles of ∼ 15 Å size were constructed from bulk W and ZB structures

of CdS taking care to minimize the dangling bonds. The nano-particles had composition

Cd42S45 for W structure and Cd43S44 for ZB structure. Periodic supercells were chosen

with at least 10 Å between replicas to reduce spurious image interactions.

The binding energies (BE) of the adsorbate (capping ligands) on various surfaces

are calculated by subtracting the energy of the combined surface+molecule system

(Esurf+A) from the sum of energies of the adsorbate (EA) and surface (Esurf ) system

defined as

BE = Esurf + EA − Esurf+A (5.2)
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5.2.2 Equation of state

For the crystalline phases YCrO4 and La2Hf2O7, the lattice constants and fractional

coordinates as determined from the Rietveld analysis of experimental data were used

as the starting structures for the simulations. Structural optimizations were continued

until the forces on the atoms had converged to less than 1 meV/Å and the pressure

on the cell had minimized within the constraint of constant volume. Our calculated

lattice constants for YCrO4 and La2Hf2O7 are 7.20 Å and 10.69 Å, which are close to

the experimental values of 7.07 Å and 10.78 Å respectively. For analysis, the computed

energy volume data was fitted using Murnaghan equation of state (170),

E(V ) = E0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
, (5.3)

where E0 is the energy at the minimum volume V0 when external pressure on the system

is zero. B0 and B′0 are the bulk modulus and pressure derivative of bulk modulus

respectively.

5.3 Results

5.3.1 Formation of zinc-blende CdS

The lattice parameter for the wurtzite (zinc-blende) structure of CdS was calculated

to be 4.20 Å (5.81 Å) which is within 2.2% (1.5%) of the experimental value. Our

calculations on bulk CdS, summarised in Table 5.1 show that after complete ionic

relaxation the difference in total energy/atom between W and ZB structures of bulk

CdS is small (−3.07 meV) which is in agreement with earlier calculations.

Table 5.1: Total Energies and volumes of bulk CdS structures

W ZB Difference

Total E (eV/atom) -6.3195 -6.3164 -0.003
Volume (Å3/atom) 52.43 52.45 -0.02

The various surfaces of W and ZB CdS considered in our calculations are given

in Table 5.2 along with corresponding relaxation and reconstruction energies. Surfaces

with Miller Bravais indices (0001) for W and (111) for ZB are asymmetric and after each
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Table 5.2: Relaxation and reconstruction energies for surfaces of W and ZB structures.

Wurtzite Zinc-blende

Surface ∆Erel ∆Erec Surface ∆Erel ∆Erec
112̄0 -3.191 - 001 -0.171 -
101̄0 -3.338 - 110 -2.379 -
0001A -0.886 0.084 111A -0.259 -0.491
0001B -0.089 -0.194 111B -0.176 -2.326
0001̄A -1.642 0.475 1̄1̄1̄A -1.373 0.1564
0001̄B -0.079 2.976 1̄1̄1̄B -0.097 3.0145

monolayer of growth they are either Cd terminated (represented by A in the surface

name) or S terminated (represented by B). Large values of relaxation energies for some

cases in Table 5.2 means that the bulk terminated surfaces were highly strained and

rearranged their atoms to reduce strain. For excess Cd or S surfaces, further reduction

in energies can be achieved by either losing a surface atom (vacancy) or allowing an

excess atom (addatom); a process known as reconstruction. We considered vacancy

reconstructions for W(0001) and ZB(111) surfaces and found that vacancies help reduce

energies of ZB(111)A,B and W(0001)A,B surfaces.1 These results are consistent with

earlier calculations (151) for CdSe on W surfaces that found (101̄0) to be most stable

surface and reconstructions on (0001̄) surfaces to be less favorable.

Figure 5.2: Structures of the truncated molecules, (a) cis-oleic acid (cis-OA) and (b)
trioctylphosphine (TOP). Small white spheres are hydrogens, reds are oxygens, pink is
phosphorus and the rest are carbon

1The small positive value of ∆Erec for W(0001)A surface is because during relaxation the surface
automatically ejected a Cd atom and as a consequence the relaxation energy already contain the effect
of reconstruction
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5. POLYMORPHISM IN CRYSTALLINE STRUCTURES

Next, we considered the interaction of the capping molecule with the various surface

terminations. As we discussed earlier, TOP molecules present in method II for the

synthesis and cis-OA molecules present in the Cd2+ precursor solution in both methods

act as effective capping agents.1 We have calculated the binding energy of both these

ligands with the various surface terminations. In the case of TOP, the phosphorous

with lone pair of electrons is the “functional group” and can interact with the electron

deficient sites on the surface. Similarly, the -COO group of cis-OA molecule after

removal of a hydrogen can bind with electron rich sites. To reduce the computational

cost of calculating the ligand binding energies, in our simulations we modeled the

molecules by retaining the functional group and truncating the length of the alkene

chains by an ethyl group (-CH2-CH3), resulting in (CH3-CH2)3P for TOP and (CH3-

CH2)COO for cis-OA (see Fig. 5.2), which are found sufficient to grasp the essential

features of adsorption. Several possible binding sites of the two model ligands on

the relaxed and reconstructed surfaces of CdS are considered, however only the most

energetically stable configurations are explored in detail.

Figure 5.3: Reconstructed surfaces of (a) zinc-blende and (b) wurtzite viewed along a-
direction. Large red spheres represent Cd atoms while smaller green are S atoms. Filled and
empty arrows show the site at which TOP and cis-OA adsorb respectively. Coordination
numbers of the surface atoms are marked in the figure.

Fig. 5.3 shows some of the reconstructed ZB and W surfaces as well as the lowest

energy binding sites for the TOP and cis-OA molecules.2 In bulk zinc-blende and

wurtzite structure Cd and S are tetrahedrally co-ordinated as a result Cd (S) has four

1Note that ODE, which is a noncoordinating solvent does not interfere with the growth process.
2Upon molecular binding the surface relaxes further, which is not shown here
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S (Cd) atoms as neighbors. On the surface, due to the broken periodicity the co-

ordination number of Cd and S are reduced from the ideal bulk structure giving rise to

unsaturated dangling bonds (4−zi) where zi is the local co-ordination of either Cd or S

as shown in Fig. 5.3. The TOP molecule with P as the functional group binds with the

unsaturated S sites while the oxygen atoms in the cis-OA molecules are attracted to

the electron rich Cd sites on the surface. Calculated binding energies with the various

surface terminations as displayed in Table 5.3 show that among all the surfaces studied,

the molecules bind strongly to (0001) and (101̄0) surfaces of W and (001) and (111)

surfaces of ZB.

Table 5.3: Binding energy (in eV) for the molecules TOP and cis-OA on various surfaces
of CdS in ZB and W structures

Surface TOP cis-OA

ZB

001 3.71 0.13
111A 0.48 1.53
111B 1.32 3.15
110 0.19 0.24

W

101̄0 0.44 2.66
112̄0 0.47 0.71
0001A 0.48 0.48
0001B 3.13 3.73

In order to explore the adsorption process in more detail, we constructed nanopar-

ticles of CdS as shown in Fig. 5.4. These particles had a diameter of approximately 1.5

nm and were relaxed from bulk geometry. As expected (171), these surface relaxations

lead to a large intrinsic band gap in these particles.

In Fig. 5.5 we show the binding of the molecules on the (0001) (101̄0) and (001)

and (111) facets of W and ZB nanoparticles. As can be seen from the figure, both

oxygen atoms in the cis-OA molecule interact with the Cd sites on the surface while

TOP interacts strongly with S on the surface. In Fig. 5.6 we have shown the binding

energies of the cis-OA and TOP molecules for these surfaces. Our calculations clearly

reveal that TOP prefers ZB crystal structure. The binding of TOP is most favorable

for the (001) facets of the ZB CdS NCs. On the other hand, cis-OA favor (101̄0) surface

of W structure. From Fig. 5.6 we gather that since the binding energy of cis-OA, which

is present in both the methods, is higher on W surfaces, it favors W structure. However
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5. POLYMORPHISM IN CRYSTALLINE STRUCTURES

Figure 5.4: Ideal and relaxed structures of wurtzite and zinc-blende nanoparticles of CdS.
Large red spheres are Cd and small green ones are S.

the binding energy of the TOP molecule is found to be strongest for the ZB surface.

As the total energy of a nanoparticle is the sum of energy of its core plus the surface

energy, ZB particle capped with TOP can have overall energy lower than that of a W

particle. As a consequence when TOP is used as a capping agent in the synthesis of

method II, it can stabilize the otherwise metastable zinc-blende phase.

Figure 5.5: Calculated structures of organic ligand binding on (0001), (101̄0), (001) and
(111) facets of CdS nanoparticles.

The binding is more effective and therefore energetically more favorable if the cap-

ping ligands are able to saturate the dangling bonds of the exposed surface facets of

the CdS nanocluster. In order to understand this mechanism in detail, we have shown
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Figure 5.6: Binding energies of cis-OA and TOP on various nanocrystal surfaces of ZB
and W CdS. Cis-OA prefer the stable W structure whereas TOP prefer the metastable ZB
surface.

the charge density plots in Fig. 5.7. When the TOP molecule interacts with the (0001)

facet of CdS nanocrystals it cannot saturate all the three S dangling bonds. Further,

the topology of the TOP molecule only allows it to bind the W surface from directly

above it and the P-S-Cd bond angle (175◦) is large in comparison to Cd-S-Cd bond

angle (109◦) in bulk CdS thereby adding to the weakening of the binding of the ligand.

However TOP molecule on the (001) ZB surface is able to saturate both the S dangling

bonds and interestingly P-S-Cd bond angle (124◦) is very close to that of bulk CdS. A

similar mechanism also holds good of cis-OA.

Thus, our calculations clearly demonstrated the important role of the ligands in

stabilizing a particular crystal structure of CdS nano-particles.

5.3.2 Phase transitions in YCrO4

Although experiments were carried out on nanocrystalline YCrO4, the observed phase

transition may not be unique to the nano structure. Hence, as a first step, we computed

total energies of bulk YCrO4. Complete ionic relaxation was carried out on zircon

and monoclinic structures at various volumes in anti-ferromagnetic spin arrangement

(i.e., the magnetic moments of two chromium atoms in the primitive cell point in

opposite directions) to find the lowest energy configuration. For this, symmetry and
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Figure 5.7: Charge density plots for the adsorption of cis-OA and TOP on the surfaces
wurtzite and zinc-blende nanoparticles.

volume of the simulation box was fixed and the ionic degrees of freedom were allowed

to relax to the minimum energy configurations. To determine the relative stability of

the monoclinic phase compared to the zircon phase these calculations were repeated at

different volumes.

The bulk modulus of zircon structured YCrO4 determined from these calculations

was found to be 121 GPa, in agreement with the earlier published results (172) and

close to the experimentally determined value of 103 GPa.1 The computed total energies

in Fig 5.8 show that the monoclinic phase is very close in energy to the zircon phase.

In fact, our calculations showed that the monoclinic phase was consequence of very

small distortion of the zircon phase: the angle γ changes from 90◦ to 90.4◦. To see

the energy variation clearly, we have plotted the difference in energies Ez − Em and

Ez −Es (where Ez, Em and Es are energies of zircon, monoclinic and scheelite phases

respectively) in Fig. 5.9. We can see that energy of the monoclinic phase, which is

initially (at lower pressures and higher volumes) higher, becomes lower than that of

1The difference in bulk modulus could be because the experimental bulk modulus was determined
for nano YCrO4 whereas the theoretical bulk modulus was determined for bulk YCrO4.
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Figure 5.8: Variation in computed total energy per formula unit (f.u.) with volume/f.u.
for zircon, scheelite, and monoclinic phases of yttrium chromate.

zircon below 78 Å3. The dotted line corresponding to the energy of scheelite phase soon

takes over; marking a small stability region for monoclinic phase between 75–78 Å3.

Thus, our theoretical studies confirmed that the zircon to scheelite phase transition in

these compounds might not be a one step process. Rather, we showed it to proceed via

a symmetry descent and then a symmetry ascent, with a small window of stability for

the intermediate phase.

5.3.3 Decomposition of La2Hf2O7

To understand the experimentally observed high pressure changes in La2Hf2O7, the

total energy E(V ) was calculated as a function of the volume, for the parent monoclinic

(La2Hf2O7) and daughter (La2O3 and HfO2) phases. At each volume, the positional

coordinates were optimized by structure relaxation and the structure with the lowest

energy was obtained. At nonzero temperatures the stable structure corresponds to a

minimum in Gibbs free energyG = E+PV −TS. However, since these calculations were

carried out at T = 0 K the structural stability is related to enthalpy. For comparison

with total energy of La2Hf2O7, the total energy and volume of the mixture of products

of dissociation (i.e., La2O3+HfO2) is calculated as At = 2×A(HfO2)+A(La2O3) where

A is energy E or volume V .
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5. POLYMORPHISM IN CRYSTALLINE STRUCTURES

Figure 5.9: Energy difference (Ez−Em) and Ez−Es) per f.u. versus volume/f.u. Crystal
structures of zircon and sheelite phases are shown in the inset

100 110 120 130 140 150 160

-9.4

-9.2

-9.0

-8.8

-8.6

 

 

En
er

gy
/f.

u.
 (e

V
)

Volume/f.u. (Å3)

 La2Hf2O7

 La2O3+HfO2

La
2
Hf

2
O

7

La
2
O

3

HfO
2

Figure 5.10: Calculated total energy versus volume per f.u. for lanthanum hafnate and
its disassociation products. The structures are shown in the inset
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Fig. 5.10 shows the total energy Et as a function of volume (per formula unit of

lanthanum hafnate) in the composite and disassociated phases. The solid and dashed

lines are fits of the computed data of parent and daughter states using Eq. 5.3. The fit

gives B0 = 165 GPa, which is reasonably close to the experimental value of 147 GPa.

The sum of total energies of the disassociated products at zero pressure is higher than

that of lanthanum hafnate by 175 meV. However, below a volume of 137Å3 the total

energy of the disassociated phase is always lower than that of the parent phase.
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Figure 5.11: Calculated enthalpy versus pressure for lanthanum hafnate and its disasso-
ciation products.

The calculated enthalpy as a function of pressure is given in Fig. 5.11 which shows

that beyond ∼ 20 GPa the disassociation products are more stable than lanthanum

hafnate. Thus the results of our first principles calculations strongly support the con-

clusions deduced from our experimental measurements.

5.4 Summary

Our detailed theoretical calculations revealed that, in the case of CdS, suitable choice

of the ligands was important in thermodynamically stabilizing the rare zinc-blende

form, confirming experimental observations. The adsorption energies were found to

play the key role in stabilizing the unusual ZB phase. Hence, a suitably chosen surface
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capping molecules can act as a control parameter for crystal structure engineering of

nanoparticles.

In the case of YCrO4, the monoclinic phase has been shown to be a lower energy

intermediate phase. Our calculations suggested that the observation of monoclinic

phase in nano-crystalline samples may purely be incidental, as bulk YCrO4 is also

predicted to exhibit a similar behavior. Hence these results should encourage more

careful experiments on bulk and nano iso-structural compounds to ascertain (a) if

nano size plays a role in the observability of the monoclinic phase (b) if this path is

specific to chromates.

Our first principles calculations showed that lanthanum hafnate disassociates into a

mixture of HfO2 and La2O3 beyond 20 GPa. The results were interesting in the sense

that this was the first time that a pyrochlore had been shown to decompose under

high pressures. Since lanthanum hafnate is one of potential compounds for use in the

nuclear waste disposal, (due to the presence of Hf as a neutron absorber), the results

might have implications on its utility in this context.

Even though our calculations showed that energetics drive the crystalline trans-

formations in solids, dynamics may also play an important role. For example, in the

case of CdS nanoparticles, dynamics in the growth environment may also affect the

structure. As shown in chapter 8, QM/MM calculations can include the effect of sol-

vent on the binding process of the organic ligand on the nanoparticle and provide the

complete picture. An important limitation of the electronic structure calculations pre-

sented in this chapter is that they rely on experimental knowledge of the structures

involved. Genetic algorithm based structure predicting tools (173), can start from just

the composition and approximate volumes to find the lowest energy structures. They

can provide a complete understanding of the phase diagram of crystals with least prior

knowledge.
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6

Origin of ferroelectric

polarization in MnWO4

Multifunctional materials have gained substantial attention in recent years due to the

simultaneous existence and strong interaction between multiple functional properties.

Multiferroics, where spontaneous magnetic and dipolar orders coexist, combine rich

and fascinating physics with novel technological applications. In manganese tungstate

(MnWO4), ferroelectricity arises as a secondary effect and is coupled with magnetic

ordering. We studied the origin of magnetism and ferroelectricity in MnWO4 using

ab-initio electronic structure calculations. Our calculations correctly reproduced the

magnetic ground state and the calculated ferroelectric polarization was in good agree-

ment with experiments. Our results revealed that spin-orbit interaction is necessary

and sufficient to explain the observed ferroelectric polarization, establishing an entirely

electronic origin of ferroelectricity in MnWO4. The origin of spin-orbit interaction in

this compound with a nominally d5 L=0 orbitally quenched state was shown to be

possible due to the mixing of ligand p states with Mn d states. The origin of the non-

collinear magnetic state in MnWO4 was analyzed in detail by calculating spin exchange

parameters for the isostructural tungstate family (MWO4, where M=Mn, Fe, Ni)

6.1 Background

Multiferroics are materials that have simultaneous ferromagnetic, ferroelectric and/or

ferroelastic ordering. In addition to several new properties that emerge (7, 174, 175),

103



6. ORIGIN OF FERROELECTRIC POLARIZATION IN MNWO4

the coupling between magnetic and electric degrees of freedom can lead to magneto

electric (ME) effects (176, 177) where one can control magnetization with applied elec-

tric fields and vice versa. Such a coupling would open up entirely new possibilities in

data storage technologies, such as ferroelectric memory elements that could be read out

nondestructively via the accompanying magnetization.

Although a large number of ferroelectric and ferromagnetic materials exist, there are

relatively few multiferroics (177). The reason lies in the microscopic origin of ferroelec-

tricity and magnetism. Most ferroelectrics are transition metal oxides, in which tran-

sition ions have empty d shells. These positively charged ions like to form ‘molecules’

with one (or several) of the neighboring negative oxygen ions. This collective shift

of cations and anions inside a periodic crystal induces bulk electric polarization. The

mechanism of the covalent bonding (electronic pairing) in such molecules is the virtual

hopping of electrons from the filled oxygen shell to the empty d shell of a transition

metal ion. Magnetism, on the contrary, requires transition metal ions with partially

filled d shells, as the spins of electrons occupying completely filled shells add to zero

and do not participate in magnetic ordering.

Depending on the origin of ferroelectricity, there are two groups of multiferroics. The

first group, called type-I multiferroics, contains those materials in which ferroelectricity

and magnetism have different sources and appear largely independently of one another,

though there is some coupling between them. In these materials, ferroelectricity typi-

cally appears at higher temperatures than magnetism, and the spontaneous polarization

P is often rather large (of order 10 − 100µC/cm2). An example is BiFeO3 (178), in

which magnetism is due to unpaired electrons in Fe3+ ion and ferroelectricity is caused

by the 6s lone pair in Bi ion. Ferroelectricity can also be ‘improper’, in the sense that

it appears as an accidental by-product of some other ordering. Examples are geometric

ferroelectrics, RMnO3 in which nonpolar lattice distortion causes dipole moment (179)

and electronic ferroelectrics, LuFe2O4 where a non-centrosymmetric charge distribution

leads to net electric polarization (180).

The second group, the type-II multiferroics, is the relatively recently discovered ma-

terials (7, 181), in which magnetism causes ferroelectricity, implying a strong coupling

between the two. However, the polarization in these materials is usually much smaller

(∼ 10−2µC/cm2). In collinear spin systems this can happen via symmetric exchange

striction effects as observed in YMn2O5 (182), Ca3CoMnO6 (183), etc.
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Ferroelectricity can appear in the cycloidal-spiral spin phase without centrosymme-

try (184, 185), in which the spin rotation axis is not parallel to the magnetic modulation

vector Q as shown in Fig. 6.1. This correlation between the FE polarization and the

cycloidal-spiral spin structure is suggested to be associated with the antisymmetric

part of exchange coupling, which is the so-called Dzyaloshinskii-Moriya (DM) inter-

action (186, 187, 188). The microscopic model proposed by H. Katsura et al. (186)

describes the relationship between an electric dipole moment, P, and canted spin mo-

ments, Si and Sj , on the neighboring two sites (i and j) as follows

P = γêij × (Si × Sj) (6.1)

Here, êij denotes the unit vector connecting the two sites. The coefficient γ is a constant

which depends on the strength of spin-orbit interaction and the superexchange interac-

tion. This mechanism is often referred to as inverse DM interaction (187). As a result,

spin-orbit interaction is indispensable in generating electric dipole moments. In fact,

several materials, e.g. in TbMnO3, Ni3V2O8, CoCr2O4 and MnWO4 (7, 8, 189, 190)

exhibit this type of behavior.

Figure 6.1: Different types of spin structures relevant for type-II multiferroics. (a) Sinu-
soidal spin density wave, in which spins point along one direction but vary in magnitude.
This structure is centrosymmetic and consequently not ferroelectric. (b) The cycloidal
spiral with the wave vector Q = Qx and spins rotating in the (x, z)-plane. It is in this case
where one finds nonzero polarization, Pz 6= 0. (c) In a so-called “proper screw” the spins
rotate in a plane perpendicular to Q. Here the inversion symmetry is broken, but most
often it does not produce polarization (191)

Model Hamiltonian studies of spin-spiral multiferroic compounds have provided two

different pictures. The first is a purely electronic mechanisms based on the Katsura-
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Nagaosa-Balatsky (KNB) model (186), promoted by the spin-orbit interaction (SOI)

that modifies the hybridization of the electronic orbitals in such a way as to shift the

center of charge even if the ions are not displaced from their centro-symmetric posi-

tions (192). The second one relies on lattice mechanism where DMI not only stabilizes

helical magnetic structures (188), but also induces ferroelectric lattice displacements of

oxygen ions. Recent ab-initio calculations have provided evidence for both the mecha-

nisms (180, 193, 194) in spin spiral systems.

Among cycloidal spiral magnets, the origin of ferroelectric polarization in the com-

pound MnWO4 (8, 195, 196, 197) was particularly intriguing, since the role of SOI was

not clear. The system was believed to be in Mn2+ (3d5) O2− (2p6) configuration which

would be expected to have quenched orbital moment, similar to the spin spiral multi-

ferroic FeVO4 (198). Model Hamiltonian calculations suggested that either mixing of

ligand p orbitals with d orbitals or t2g-eg orbital mixing by SOI could lead to electric

polarization in systems with non-zero spin (S) with an arbitrary dn configuration (192).

In this chapter, we present results of first principles electronic structure calculations to

understand the electronic structure and the origin of ferroelectric polarization in the

multiferroic MnWO4.

6.2 Methods

First-principles density functional theory calculations were performed using the Vienna

ab initio simulation package (70, 71), within the projector augmented wave method by

explicitly treating 7 valence electrons for Mn (3d54s2), 6 for W (5d46s2) and 6 for O

(2s22p4). We used local spin density approximation with on-site coulomb interactions,

U = 4 eV applied to the d states of Mn using an approach described by Dudarev et

al. (199). We approximated the incommensurate wave vector q ' (-0.214, 1/2, 0.457)

by a commensurate one viz. q = (-1/4, 1/2, 1/2), and used a super cell which is (4

× 2 × 2) times the original crystallographic unit cell with 192 atoms. A plane wave

energy cut-off of 500 eV and k-space sampling on a 1×2×2 Monkhorst-Pack grid were

employed. Brillouin zone integrations were performed with a Gaussian broadening of

0.1 eV. We have checked our calculations on a finer k-mesh 1 × 4 × 4 and the results

hardly changed indicating the chosen k-mesh to be adequate. All structural relaxations

are carried out till Hellman-Feynman forces became less than 0.01 eV/Å.
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6.2.1 Crystal and magnetic structure

MnWO4 crystallizes in a monoclinic wolframite structure (200) with a space group

P2/c, as shown in Fig. 6.2. The values of lattice constants a, b, c, and β are 4.82 Å,

5.75 Å, 4.99 Å, and 91.075◦, respectively. Each unit cell includes two Mn2+ ions at

r1 = (1
2 , y,

1
4) and r2 = (1

2 , 1 − y, 3
4) with y = 0.685; the ions are interconnected

via the common edges of distorted MnO6 octahedra and form zigzag chains along

the c axis. MnWO4 with magnetic Mn2+ is known to be a moderately frustrated

antiferromagnetic (AF) system. A relatively weak nearest-neighbor superexchange via

the bending of Mn–O–Mn bonds competes with other Mn–O–O–Mn superexchange

interactions, inducing successive magnetic phase transitions at 13.5 K (TN3), 12.7 K

(TN2), and 7.6 K (TN1) (200, 201). In all the magnetic structures the moments of

Mn2+ align along the easy axis that lies in the ac plane forming an angle of α = 34◦

with the a axis, as shown in Fig. 6.2(b). There are three magnetic ordered phases; AF1

(T ≤ TN1), AF2 (TN1 ≤ T ≤ TN2), and AF3 (TN2 ≤ T ≤ TN3) phases.

Figure 6.2: (a) Crystal structure of MnWO4 showing MnO6 octahedra, (b) The basal
plane of the spiral spin structure in the ferroelectric phase. The easy spin direction forms
angle α = 34◦ with the a axis. The direction of the magnetic wave vector k is also indicated

In the AF1 phase below TN1, the magnetic structure is commensurate with a prop-

agation vector kAF1 = (±1
4 ,

1
2 ,

1
2). The magnetic structure of the AF1 phase is charac-

terized by the up-up-down-down (↑↑↓↓) spin configuration along the a and the c axes,
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Figure 6.3: Elliptical spiral spin structure in AF2 phase of MnWO4. The arrows represent
the spins and the ellipses indicate their plane of rotation

which is often realized in the ground state of the system with competing magnetic inter-

actions. In the AF2 and AF3 phases, the propagation vector becomes incommensurate

with kAF2 = (−0.214, 1
2 , 0.457). At the transition between the AF2 and AF3 phases,

the incommensurate propagation vector does not change. The difference between the

two phases is the existence of a component of the magnetic moments along the b(‖y)

axis in the AF2 phase, which does not exist in the AF3 phase. In more detail, the mag-

netic structure in the AF2 phase shows an elliptically modulated noncollinear spiral

spin structure, in which the basal pane of the elliptical spiral contains the easy axis of

magnetization and the y axis. The AF3 phase is a collinear sinusoidal magnetic struc-

ture with the magnetic moments lying along the easy axis. The magnetic structure of

the AF2 can be categorized in a cycloidal spiral as in Fig 6.3.

In contrast, the isostructural tungstates FeWO4 and NiWO4 exhibit only one or-

dered magnetic phase, which is collinear with antiferromagnetic ordering along a-axis

and ferromagnetic along other two directions making a magnetic cell 2a × b × c times

the conventional cell (202). Apparently, the magnetic instability leading to the spiral

structure in MnWO4 does not exist in other tungstates.

6.2.2 Exchange interactions

The origin of the complex magnetic structure was studied by mapping the system onto

a localized Heisenberg model (203). Ehrenberg et al. experimentally analyzed the spin

wave dispersion curves of the magnetic state AF1 of MnWO4, determined from inelastic
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neutron scattering measurements, in terms of nine spin-exchange parameters (201).

For comparison, we used the same definition of interaction paths. Fig. 6.4 shows the

position of Mn2+ ions in MnWO4 structure indicating the exchange paths. Out of the

nine relevant parameters, the exchanges J1 and J2 are in the zigzag chains of Mn2+ ions

along the c direction, the exchanges J3 and J4 are between adjacent ‖c chains of Mn2+

ions in each ‖bc layer of Mn2+ ions, and the exchanges J5 − J9 between the adjacent

‖bc layers of Mn2+ ions along the a direction.

Figure 6.4: Position of Mn ions (circles) in MnWO4 structure viewed along the a axis.
Colored lines represent exchange interaction paths. (a) Four spin exchange paths J1 − J4
in MnWO4 within each ‖bc layer of Mn2+ ions. (b) Five spin exchange paths J5 − J9
between adjacent ‖bc layers. The numbers 1− 9 refer to the spin exchange paths J1 − J9,
respectively.

To evaluate J1 − J9, we examined the 10 ordered spin states defined in Ref. (203).

For the calculation of the various exchange interactions we performed total energy

calculations in the framework of GGA+U method for these 10 ordered spin states

using a supercell of 4× 2× 2. Finally, the various exchange interactions were extracted

by mapping the relative energies of these ordered spin states determined from the

GGA+U calculations onto the corresponding energies obtained from the total spin

exchange energies of the Heisenberg spin Hamiltonian defined as,

Ĥ = −
∑
i<j

Jij(Ŝi · Ŝj) (6.2)

where Jij is the spin exchange parameter for the interaction between the spin sites i

and j, while Ŝ is the spin angular momentum operators. All the spin interaction paths

in the cell were counted and by applying the energy expression Eq. 6.2 obtained for

spin dimers with N unpaired spins per spin site, the total spin exchange energies of
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the 10 ordered spin states (per two formula units) can be written as a 9 × 10 matrix

equation,



Efm

E1

E2

E3

E4

E5

E6

E7

E8

E9


= −N2/8



4 4 4 4 4 4 4 4 4
−4 4 −4 4 4 −4 −4 −4 −4

0 −4 0 4 4 0 0 0 0
4 4 −4 −4 4 −4 −4 4 4
4 4 4 4 4 4 4 4 4
3 3 1 1 1 1 1 1 1
3 3 3 3 3 3.5 3 3 3
3 3 3 3 3 3 3 3.5 3
3 3 3 3 3 3.5 3.5 3 3
3 3 3 3 3 3 3 3 3.5


×



j1
j2
j3
j4
j5
j6
j7
j8
j9


(6.3)

N is the number of unpaired spins and is 5 for Mn, 4 for Fe, and 2 for Ni. Thus, by

calculating the relative energies E1 − E9 with respect to Efm and inverting the above

equation, we could estimate the exchange parameters J1 − J9.

6.2.3 Berry phase method

In a finite system, the average value of electric polarization P can be easily defined as,

P =
d

Ω
=

1

Ω

∫
dr n(r)r (6.4)

where d is the total dipole moment, Ω is the system volume and n(r) is the density.

The integral leads to a finite number, since P(r) = 0 outside the body. However,

for an infinite system with periodic boundary conditions, the integral is conditionally

convergent and cannot be used to evaluate P.

We calculated the electronic contribution to the polarization as a Berry phase using

the method first developed by King-Smith and Vanderbilt (204, 205), the so called

modern theory of polarization. In this approach, the change in polarization can be

found when a parameter of the Hamiltonian, λ, is changed adiabatically (e.g. when

atoms are displaced which leads to a Kohn-Sham potential V λ
KS),

∆P =

∫ 1

0
dλ

∂P

∂λ
(6.5)

where, one of the end points λ = 0 can be taken to be a centrosymmetric structure
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where macroscopic polarization is zero and the other point λ = 1 to be the structure of

interest. ∆P can determined by evaluating the phase of the product of overlaps between

cell-periodic Bloch functions, uλki, along a densely sampled string of neighboring points

in k space. For a particular cell direction α, it can be written as,

∆Pα = i
−|e|
(2π)3

∫
BZ

dk
occ∑
i

[〈uλ=1
ki |∂kαuλ=1

ki 〉 − 〈uλ=0
ki |∂kαuλ=0

ki 〉] + n× −|e|
A

(6.6)

where, n is an integer and A is the cell volume divided by the length of the unit cell in

the direction α, i.e. the area of a cell perpendicular to α. The above expression can be

cast in terms of functions involving the centers of Wannier functions (206), as

∆Pα =
−|e|
Ω

occ∑
i

[〈0i|r̂|0i〉λ=1 − 〈0i|r̂|0i〉λ=0] (6.7)

which has the simple interpretation that the change in polarization is the same as if the

electrons were localized at points corresponding to the centers of the Wannier functions.

The total polarization ∆P for a given crystalline geometry can be calculated as

the sum of ionic and electronic contributions. The ionic contribution is obtained by

summing the product of the position of each ion in the unit cell (with a given choice of

basis vectors) with the nominal charge of its rigid core. Here, we used four symmetrized

strings consisting of 15 k-points to obtain the electronic contribution to the polarization,

which was calculated separately for each spin channel.

6.3 Results

6.3.1 Magnetism

Total energy calculations were carried out for the ferromagnetic, q=(0, 0, 0), anti-ferro

magnetic, q=(1
2 , 0, 0), AF1 and AF2 with q=(1

4 ,
1
2 ,

1
2) states of MnWO4. Our results

(shown in Table 6.1) both within LDA and LDA+U reveal that the antiferromagnetic

state AF1 has the lowest energy, in agreement with experiment. The energy difference

∆E between AF1 and the FM, AFM, AF2 was found to be 0.17, 0.16, 0.01 eV/f.u.,

respectively, with U = 4 eV. In the AF2 phase, the computed magnetic moment is

4.57 µB with same U and rotate in a plane as described earlier. Calculations with

different U parameters gave average Mn magnetic moments of 4.30 µB (U=0 eV) and
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4.67 µB (U=6 eV), suggesting a rather weak dependence of magnetic moment on U .

All magnetic states were found to be insulating both in the LDA and LDA+U method.

The band gap in the AF1 state was calculated to be 1.19 eV with LDA and 2.16 eV

with LDA+U which is comparable to the experimentally reported band gap of 3 eV

from photoelectron measurements (207).

Table 6.1: Total energy difference ∆E (in eV/f.u.) and calculated magnetic moments m
(in µB) of each of the atom in FM, AFM, AF1 and AF2 structures of MnWO4

LDA LDA+U

FM AFM AF1 AF2 FM AFM AF1 AF2
∆E 0.19 0.16 0.00 0.01 0.17 0.16 0.00 0.01
Mn 4.32 4.28 4.28 4.30 4.58 4.56 4.57 4.57
W 0.20 0.06 0.00 0.05 0.12 0.04 0.00 0.03
O1 0.04 0.02 0.02 0.02 0.02 0.01 0.01 0.01
O2 0.05 0.01 0.00 0.02 0.02 0.00 0.01 0.01

6.3.2 Density of states

To gain insight into the electronic structure of MnWO4, the total and site projected

DOS for MnWO4 in the AF1 phase was calculated within LDA+U. Results are displayed

in Fig 6.5. From the figure we gather that, the spin up Mn d states are completely

occupied while the spin down states are completely empty, consistent with the Mn2+

valence of Mn with a nominal 3d5 configuration. Similarly, O-p states are completely

occupied while the W states are completely empty, indicating the valence of W to be

W6+, consistent with experimental results.

In Fig. 6.5 we can clearly see the effect of crystal field on Mn d states. In the

octahedral crystal field provided by the MnO6 octahedra the Mn d-states split into

triply degenerate t2g states and doubly degenerate eg states with the latter higher

in energy. However the exchange splitting (due to the repulsion of electrons in the

same orbital) dominates over the crystal field and therefore Mn2+ in high spin d5

configuration is realized. This is reflected in Fig. 6.5 as completely filled up spin channel

and completely empty down spin channel for the Mn-d states. Also, the d5 electronic

configuration of Mn favors the anti ferromagnetic configuration in the AF1 phase as

found in our total energy calculations.
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Figure 6.5: Calculated total and partial density of states within LDA+U for MnWO4 in
the AF1 phase. All energies are measured with respect to the Fermi level. Spin-up and
spin-down states are plotted on the positive and negative axes respectively
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6.3.3 Electric polarization

We then calculated the polarization using the Berry Phase method (204) as imple-

mented in VASP. Our results for various cases are summarized in Table 6.2. Electric

polarization in the AF2 phase with centrosymmetric crystal (wolframite) structure in

the absence of SOI was found to be zero, as expected. This provided a clear evidence

that symmetric exchange striction effects did not offer an explanation for the origin of

ferroelectric polarization in MnWO4. Since, SOI is what connects spin structure to the

lattice, when SOI is turned on, one would expect the broken inversion symmetry in the

spin sector to be communicated to the spatial (charge) degrees of freedom, and indeed

our calculations confirmed this. In the experimental structure with SOI the computed

electric polarization was P = 42.02µC/m2 along the b direction. Both the magnitude

and the direction of the polarization is in excellent agreement with the experimental

value of 50-60µC/m2 (8, 195). We also found zero polarization in the collinear AF1

phase even in the presence of SOI suggesting that the spiral magnetic order is crucial

for the realization of this finite (and large) electric polarization. Earlier studies (193)

had shown that the relaxation of the ionic coordinates improved calculated polariza-

tion. Upon relaxation without imposing any symmetry constraints in the AF2 phase,

we found P in the resulting structure in absence of SOI to be (-5.78, 4.99, 18.22) µC/m2

with a magnitude of 19.75 µC/m2. This was much smaller than the experimental value

and it was also inconsistent in direction (not along b-axis).

Table 6.2: Calculated electric polarization various magnetic structures of MnWO4

Structure Polarization (µC/m2)

Exp. AF2 without SOI (0, 0, 0)
Exp. AF2 with SOI (0, 42.02, 0)
Exp. AF1 with SOI (0, 0, 0)
Relx. AF2 without SOI (-5.78, 4.99, 18.22)
Relx. AF2 with SOI (0, 123.77, 0)

However, when SOI was included in the Berry phase calculations, an additional

polarization of 123.8 µC/m2 developed along b direction. In the relaxed structure, the

average deviation from the centrosymmetric position is found to be ∼ 2.7× 10−6 Å for

Mn, while for W and O they are ∼ 2.5× 10−6 Å and ∼ 3.7× 10−7 Å, respectively. We

also carried out constrained ionic relaxation calculations in which Mn and W special
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positions (x and z coordinates) were kept fixed. In this case, polarization without SOI

remained zero, while it was (0,121.9,0) µC/m2 in presence of SOI. The largest deviation

from centrosymmetric positions was less than ∼ 2 × 10−6 Å. Such tiny displacements

in both the cases (unconstrained and constrained ionic relaxations) would be hardly

detectable in any experiment and possibly their effects would be swamped by zero point

vibrational effects (193).

From the above discussion we conclude that our ab-initio calculations offer clear

evidence that spin-orbit interaction alone can account for the origin of polarization in

MnWO4 without involving any structural effects, establishing an electronic mechanism

as the origin of ferroelectricity in this compound. Since Mn2+ in the high spin state

(d5, S=5/2) has L = 0 in the free ion state, where the orbital moment is expected to be

quenched, an induced mechanism either due to mixing of the ligand p-orbitals or t2g-eg

orbitals is possibly operative on this system. Indeed, band structure results provided

evidence for substantial oxygen p- Mn d-mixing (Fig. 6.5) as well as finite t2g-eg mixing

(not shown here) in partial densities of states. The orbital moment was found to be

tiny (0.001 µB ) but in the same direction as the spin moment indicating Mn 3d states

were more than half filled (208). However, it was difficult to estimate quantitatively

the extent of Mn 3d occupancy or its deviation from the ionic d5 state in terms of such

ab initio band structure calculations, since the association of the electronic charge with

an atomic center within this approach is dependent on the somewhat arbitrary space

partitioning and thus, lead to non-uniqueness. Within this approach, it is also not

possible to estimate the expectation value of the angular momentum associated with

the deviation of the Mn 3d occupancy from the half-filling. High energy electron spec-

troscopies like x-ray absorption spectroscopy, on the other hand, are particularly suited

to provide a well-defined estimate of the 3d occupancy and also the expectation value

of angular momentum when analyzed in conjunction with many-electron configuration

interaction (CI) model (209, 210).

Following our predictions, XAS measurements and CI model calculations with full

multiplet Coulomb interactions were carried out by Choudhury and Sarma (9). Their

fit to the experimental data showed that the ground-state wave function for the true

distorted structure with the optimal parameters to have an average 3d occupancy, n3d,

of 5.15, with 86.48% d5 character, 12.99% d6L1 character, and only 0.52% d7L2 charac-

ter. Similarly, the expectation value of the orbital angular momentum for the ground
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Table 6.3: Relative energies (in meV/f.u.) of the ordered spin states of RWO4

MnWO4 FeWO4 NiWO4

A1 -22.63 -21.32 -13.50
A2 -19.72 -20.17 -12.57
A3 -6.87 -16.56 -19.17
A4 -20.99 -34.95 -31.51
A5 -10.21 -13.74 -11.56
A6 -4.58 -5.42 -3.51
A7 -4.38 -4.61 -2.46
A8 -4.24 -4.81 -2.89
A9 -4.45 -5.07 -3.40

state was calculated to be 0.51. Thus, the experiments conclusively established a sig-

nificant population of Mn 3d level and a consequent finite expectation value of angular

momentum for the ground state (0.51), beyond the half-filling in MnWO4, providing

a way to understand the critical presence of SOI and consequent finite polarization in

this compound.

6.3.4 Exchange interaction

In order to analyze the magnetic structure, we calculated the exchange parameters.

The calculated relative energies Ei − Efm of the magnetic structures considered (203)

are given in Table 6.3. In the only experimental study of exchange interactions in

MnWO4 Ehrenberg et al. (201), estimated the nearest-neighbor intrachain exchange

J1 to be antiferromagnetic (AFM) and the next-nearest-neighbor intrachain exchange

J2 to be FM. The latter means that the spin exchanges within each ‖c chain are not

spin frustrated, which is inconsistent with the occurrence of spiral-spin within each ‖c
chain. However, our calculations for MnWO4 listed in Table 6.4, in agreement with

previous estimates (203), show that both J1 and J2 are AFM, and J2/J1 � 0.25, so

that geometric spin frustration exists within each ‖c chain. This finding accounts for

the occurrence, in each ‖c chain, of the spiral-spin order in the AF2 state and the ↑↑↓↓
spin order in the AF1 state of MnWO4, and may require further evaluation.

Our calculations also correctly reproduce the behavior of NiWO4 for which J1 is

found to be FM and J2 is AFM thus predicting no instability. However, calculations

seem to suggest that for FeWO4 also possess a magnetic instability similar to MnWO4,

116



6.4 Summary

Table 6.4: Spin exchange parameters J1 − J9 (in kBK) for RWO4

MnWO4 FeWO4 NiWO4

J1 -3.04 -2.03 26.7
J2 -3.89 -6.89 -16.8
J3 -0.29 -15.8 27.57
J4 -0.29 -14.1 -28.9
J5 -2.57 3.94 2.05
J6 -0.56 -2.16 -2.84
J7 -2.04 -11.6 -51.4
J8 -1.47 -6.25 -7.79
J9 -3.09 -9.27 -31.3

which is surprising considering that experiments does not support such an instability.

Further calculations are necessary to identify the origin of the exchange parameters for

FeWO4.

6.4 Summary

In conclusion, our first principles electronic structure calculations not only correctly

reproduced the electronic and magnetic ground state of MnWO4, but also provided an

accurate estimate of the value of the ferroelectric polarization. In addition, we found

that the polarization develops only in the spin spiral AF2 state driven by the spin-orbit

interaction. The spin exchange parameters revealed that the exchange interactions to

be frustrated within each ‖c chain of Mn2+ ions and between such ‖c chains along the

a direction.

The magnetic instability leading to a non-collinear structure can also be a conse-

quence of nesting effects of paramagnetic Fermi surface. Calculation of nesting func-

tions (211) can provide more insight in to the noncollinear structure of MnWO4. It

will also be interesting to investigate the effect of pressure on the magnetic structure

and strength of electric polarization using electronic structure methods, in an attempt

to find the factors that improve the value of electric polarization in this compound.
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7

Strength of H2 bond in the

molecular solid SiH4(H2)2

Hydrogen might seem the simplest element in nature; however, it exhibits many puz-

zling and unusual properties which actually makes it quite complex. One of them is

the predicted metallic phase under pressure, which has led to detailed investigations

of hydrogen and hydrogen rich compounds under various thermodynamic conditions

and chemical environments. To understand the recent experimental observations, we

studied the effect of pressure on the strength of H2 covalent bond in the molecular solid

SiH4(H2)2 using quantum molecular dynamics simulations and charge density analysis.

Our calculations showed, in agreement with experimental predictions, that substantial

elongation of H2 bond could be achieved at lower pressures in this system, compared

to pure H2. Model calculations showed the redistribution of charge from bonding to

antibonding states to be responsible for the behavior. The exchange of hydrogen spec-

ulated to be operative in SiH4, D2 mixture was confirmed by our calculations and was

shown to be a three step process driven by thermal fluctuations alone.

7.1 Background

Hydrogen appears prominently at the top left corner of Mendeleev’s imposing periodic

table and it is the most abundant element in the universe (more than 90% by number).

It is widely accepted that hydrogen is present in the interiors of Saturn and Jupiter

where it is both liquid and metallic (212), and the origin of their magnetospheres. In
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1935 Wigner and Huntington predicted that hydrogen would undergo a molecular to

atomic transition to a metallic phase as the density is increased and estimated that

this transition would occur above pressures of 0.25 Mbar (213). Since then, hydrogen

had been the center of immense scientific research. The metallic phase was expected to

display novel behavior, such as superconductivity, superfluidity and a quantum liquid

state (214, 215, 216). In fact, based on the simple BCS theory of superconductivity,

one could understand why metallic hydrogen would be a good superconductor: this

system has very high phonon frequencies due to the light H mass, and it has a possibly

strong electron-phonon interaction related to the lack of core electrons and to the quite

strong covalent bonding (214).

The metallic phase (217), however, has eluded experimental realization under static

pressures till now. Most recent estimate was that it requires pressures above 400

GPa (218, 219), which lie just outside the experimental capabilities. However, hy-

drogen dominant solids, i.e., those containing small amount of non-hydrogen atoms

embedded in a network of hydrogen stabilized by intermolecular and intramolecular

interactions, had been proposed as analog materials which might mimic the behavior

of solid hydrogen at relatively lower pressures (220). In such systems, such as group

IV hydrides, presence of heavier elements were expected to “chemically pre-compress”

hydrogen. In fact, in the case of silane (SiH4), several theoretical (221, 222, 223) and

experimental (224, 225) studies showed metalization pressures to be substantially lower

than that of pure hydrogen.

Remarkably, these hydrogen rich full-shell IV hydrides could absorb additional hy-

drogen at high pressures and form stoichiometric van der Waals compounds such as

CH4(H2)2, SiH4(H2)2 etc. (226, 227). X-ray diffraction experiments by Strobel et al.

on SiH4(H2)2 showed that it formed a highly symmetrical, well ordered structure above

7 GPa (18). Their Raman and IR measurements under pressure showed anti-correlated

pressure frequency dependence, implying H2 bond weakening at unusually low pres-

sures. They also observed a darkening of the sample at a pressure around 35 GPa,

which could eventually be associated with a insulator-metal transition. Studies on the

isostructural compound SiH4(D2)2 revealed a time evolution of Raman spectra, which

was interpreted as an exchange of H and D ions by the two molecules (18). This indi-

cates high proton mobility in this system which was speculated to be related to pressure

induced quantum lattice melting.
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A flurry of theoretical studies followed, which predicted that the structure might de-

viate from the ideal fcc lattice and form a tetragonal structure with a slightly elongated

c-axis (228). Total energy calculations combined with genetic algorithms confirmed the

structural transformation to a metallic orthorhombic state, albeit at much higher pres-

sures of 248 GPa which was also predicted to have interesting superconducting prop-

erties (229). Apparently, theoretical calculations employing different computational

methods disagreed on the exact transformation pressure: some calculations predicted

the metalization pressure to be 164 GPa (230) and 200 GPa (231), although they

all support the prediction of substantial overlap between silane and hydrogen charge

densities (232). Also, calculations observed only a marginal increase (< 0.01Å) in

the H2 bond length up to 35 GPa, which was surprising considering the experimental

predictions. More recent calculations predicted the experimental observed frequency

pressure anticorrelation to be a consequence of donor-acceptor interactions between the

two molecules (233).

Although the electronic structure and the energy volume characteristics of this

compound were thoroughly investigated, several questions remained. The calculations

did not explain the experimentally observed darkening of the sample close to 35 GPa.

Large spread in the metalization pressures predicted by different theoretical calculations

was unclear. Factors that lead to the exchange of hydrogen between the molecules

were not addressed. We believed that dynamics play an important role in the observed

properties and a quantum mechanical molecular dynamics simulation could shed more

light onto the observations.

7.2 Methods

First-principles calculations were performed using the Vienna ab initio simulation pack-

age (70, 71) with the ion-electron interaction described by the projector augmented

wave method (52). The energy cutoff for the plane-wave expansion of eigenfunctions

was set to 700 eV. We used the local density approximation for the exchange-correlation

functional. For properties at low pressures, we also checked higher plane wave cut-offs

and found them to be nearly unchanged. Optimization of structural parameters was

achieved by minimizing forces below 0.01 eV/Å. Highly converged results were obtained

utilizing a dense 4× 4× 4 k-point grid for the Brillouin-zone integration. To calculate

121



7. STRENGTH OF H2 BOND IN THE MOLECULAR SOLID SIH4(H2)2

the amount of electronic charge, we used the code for Bader charge analysis (234) in-

cluding both valence and core charges. Simulations employed a time step of 0.5 fs to

integrate the equations of motion under constant volume and Nosé-Hoover thermostat

to keep temperature constant. Equilibration runs were typically done for 0.5 ps and

average quantities were calculated over another 0.5 ps.

7.2.1 Structure of SiH4(H2)2

Experiments had proposed a face-centered cubic (fcc) F 4̄3m space group with as the

structure of silane hydrogen molecular solid under pressure (18). The tetrahedral SiH4

unit occupies the fcc lattice sites. The positions of eight H2 pairs are at two nonequiv-

alent sites. Four equivalent pairs are at the middle of each axis of the cubic structure

and in the center of the cube. The other four pairs of H2 are at the 1/4 or 3/4 position

of the four-body diagonal lines forming a tetrahedron. The latter four are the nearest

neighbors of a SiH4 molecule. The optimized structure at 9.3 GPa is shown in Fig. 7.1

Figure 7.1: Snapshot of the simulation cell at 9.3 GPa. Large pink spheres are silicon
atoms while small green spheres are hydrogen. The unit cell has FCC structure with SiH4

molecules at corners and face centers.

7.2.2 Bond lengths

Generally, average bond lengths at the end of the simulation are calculated by averaging

over the distances up to the first minima in the pair correlation function between bonded
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atoms. However, this procedure does not take into account the “baseline” caused by

nearby molecules and unbound atoms. To avoid this overestimation of bond lengths,

we fitted each of the H-H pair correlation functions to the functional form:

g(r) = λgf (r; cf , σf ) + (1− λ)gs(r; cs, σs) (7.1)

where gf and gs are Gaussians for the first and second neighbor peaks and c and σ

are fitting parameters corresponding to center and width of the Gaussian respectively.

The bond order parameter λ determines the fraction of protons that are bound into a

molecule.

7.3 Results
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Figure 7.2: Variation of enthalpy as a function of pressure for a simulation cell containing
pure hydrogen. Snapshots of the simulation cell are shown in the inset.

7.3.1 Hydrogen under pressure

First, to understand how well our calculations reproduce the behavior of hydrogen under

pressure, we subjected hydrogen in molecular phase in hcp crystal phase, both contain-

ing 128 hydrogen atoms, to gradual compression using QMD. As shown in Fig. 7.2,
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we found that at lower pressures molecular hydrogen was of lower energy and hence

was the stable phase. In fact, the atomic crystalline phase was unstable at lower pres-

sures and transformed spontaneously to a disordered molecular structure. Close to 150

GPa, the H2 bondlengths elongated abruptly and the atomic phase became stable. Not

surprisingly, the energy of the ordered hcp phase became lower above this pressure

(Fig. 7.2). These results are in agreement with earlier first principles simulations (235),

that predicted a liquid-liquid phase transition close to this value. Our calculations

showed that, there is also an underlying liquid-solid transition at this pressure.
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Figure 7.3: H-H radial distribution function at a few representative pressures of (a) pure
hydrogen and (b) SiH4(H2)2

We examined pair distributions functions for the molecular fluid phase as a function

of pressure and is given in Fig 7.3(a). Initially, the bonded nearest neighbor peak,

located close to 0.76 Å is very sharp and was well separated from the next nearest

neighbor peak around 2 Å. Upon increasing pressure, the second peak corresponding to

intermolecular correlations moved to lower distances and finally merged with the first

peak indicating a weakening of H-H bond length.
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7.3.2 H2 bond in SiH4(H2)2

A unit cell containing four silane and 8 hydrogen molecules as shown in Fig. 7.1 was

used as the starting configuration. Upon structural relaxation at constant volume,

this cell was found to have a pressure of 9.3 GPa, which was within the predictive

capabilities of DFT-LDA based calculations when compared to experiments (18). We

also found that H2 and SiH4 molecules are free to rotate in the structure, confirming

earlier observations (233).
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Figure 7.4: Variation of H-H bond length and bond order as a function of pressure for
silane-H2 solid. Abrupt changes are observed close to 40 GPa.

Volume of a well equilibrated simulation cell containing SiH4(H2)2 was reduced

gradually, allowing the system several thousand steps at each volume. The H-H radial

distribution functions (RDF) averaged over 100 configurations and at various pressures

are given in Fig. 7.3. It shows that, the first peak corresponding to bonded hydrogen

atoms move to higher values at higher pressures. The figure also shows that the second

peak, corresponding to inter-molecular H-H distance approaches the first peak and

merges with it at some pressure. In the case of the system containing only H2 this
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happened between 113 GPa and 169 GPa, while in the case of SiH4(H2)2 this happened

above 46 GPa.

The average bond length (cf ) and bond order (λ) of Eq. 7.1 are plotted as a function

of pressure in Fig. 7.4. As we can see the H2 covalent bond length and bond order

exhibit a change in behavior close to 40 GPa. Bond order remains 1 up to 40 GPa,

drops abruptly and continues to decrease, indicating that H2 molecule is becoming

progressively weaker beyond this pressure. In the case of pure hydrogen, a similar

decrease in bond order was observed in the range of 150-200 GPa in earlier studies (236).

This behavior of bond length seems to suggest two regimes (below 40 GPa with almost

zero variation and above 60 GPa with constant elongation rate) connected by an abrupt

increase. It is to be noted that the sudden change close to 40 GPa does not lead to

metalization as predicted by experiments (18).

7.3.3 Charge transfer
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Figure 7.5: Variation of bond length of H2 molecule (H1-H2) as a function of intermolec-
ular H-H distance (H2-H3). Arrangement of molecules for the calculation is shown in the
inset.

To understand why silane molecules are more effective in weakening H2 bond
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strength, we considered a simple one dimensional model in which only the nearest

neighbor interactions along the axis of the molecule are allowed. For this, two H2

molecules are placed end-on along z-axis as shown in the inset of Fig. 7.5. We then

varied H2 non bonded distance (dnbo between H3-H2) by constraining the positions

of adjacent hydrogen atoms and monitored the H2 bond length (dbnd between H1-H2).

The farther atoms (H4 and H1 in the figure) were allowed to relax along the z-axis. The

calculations were then repeated by replacing one of the molecules (H4-H2) by XH4, the

other known hydrides of IV group elements, forming CH4, SiH4, GeH4 and SnH4 with

one of the hydrogen atom pointing along the axis as shown in figures. Although we

have approximated the complex three dimensional interactions with multiple neighbors

to a single interaction in 1D, we believe this model to be a reasonable representation of

the real system for providing essential insights. In fact, this simple model does predict

SiH4 to have a higher effect than H2 as expected (Fig. 7.5). The model also predicts

that GeH4 causes similar elongation and that SnH4 would be more effective in bringing

about metalization in hydrogen. Curiously, CH4 causes less elongation of dbnd than H2

above dnbo = 0.9 Å.

Figure 7.6: Isosurfaces for the difference in charge densities between isolated hydrogen
molecule (on the far side) and one with adjacent H2 or XH4 (where X is C, Si, Ge, Sn)
molecules (shown inside the isosurface). Blue and red surfaces correspond to isovalues
of (1 × 10−6 and −1 × 10−6 /Å3) respectively. Note that large blue surfaces represent
unsubtracted charge cloud of the molecule and only features on the left side are significant.
Nonbonded H-H distance is fixed at 1 Å and all other distances are allowed to relax.

In the case of H2 in the interstitials of GaAs crystals, it was found that the lattice

induced charge transfer from bonding to anti-bonding states which caused elongation

of bond length and downward shift of vibrational frequencies. The charge density

differences plotted in Fig. 7.6 between an isolated hydrogen molecule and one with a

neighboring molecule shows that a similar effect is produced in the present case as well.1

1The asymmetry in charge density difference the case of two H2 can be removed if we consider an
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Moreover, we find that, the redistribution of charge from bonding to anti-bonding states

is higher when the neighboring molecule is XH4, instead of H2. The plots also show

substantial overlap between H2 and neighboring molecule in agreement with Ref (232).
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Figure 7.7: One dimensional charge density differences induced on a hydrogen molecule
by an adjacent molecule. Filled circles represent hydrogen atoms.

To have a better look at the exact charge reordering, we integrated the charge

densities perpendicular to z-axis (around φ) utilizing the cylindrical symmetry of the

hydrogen molecule. Results presented in Fig. 7.7 show that the charge redistribution

affects the bond length in two ways: removal of charge from the bonding region reduces

the attraction between the bonded nuclei and addition of charge in the antibonding

region increases the repulsion; both of which cause the bond to elongate. At the

same time, antibonding charge also helps to reduce the repulsion between nonbonded

nuclei. The figure shows that CH4 results in lowest reduction in bonding charge density

(lower than H2), while SnH4 results in the maximum reduction and interestingly, the

bond elongation also follows the same order (Fig. 7.5). In the case of SiH4 and GeH4,

according to Fig. 7.5 both exhibit similar elongation behavior although Ge clearly has

infinite chain instead of two isolated molecules. Such a calculation, however, would not change the
main conclusions of this section
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a larger effect on bonding density. But SiH4 has a larger effect on antibonding density

which we believe compensates for the reduced effect on bonding density resulting in

similar effect for both molecules. Our Bader charge analysis shows that hydrogen atoms

bonded to Si, Ge and Sn have charges higher than isolated hydrogen atom (1.6e, 1.2e

and 1.25e respectively); while hydrogen connected to C has less (0.95e) which may also

explain the observed behaviors.

7.3.4 Hydrogen exchange

The dynamical simulations showed that at 300 K, hydrogen exchange between silane

and hydrogen molecules takes place only above 90 GPa. At lower pressures the pro-

cess requires elevated temperatures, indicating the presence of a kinetics barrier which

reduces under pressure and disappears above 90 GPa. Hydrogen exchange was found

to take place in three steps: (1) a transition state forms by the transfer of hydrogen

between two adjacent SiH4 molecules forming a SiH3 and SiH5, (2) H2 molecule dissoci-

ates and one of the hydrogen atoms moves to the SiH3, and (3) SiH5 gives up a hydrogen

atom, which combines with the single hydrogen to form H2. The three distinct stages

in the process are depicted pictorially in Fig. 7.8

Figure 7.8: Hydrogen exchange mechanism (explained in the text) in silane hydrogen
mixture. Note that only hydrogen atoms participating in the event are shown. The back
face of the cell is marked by a cross and the arrows represent the movement of atoms. A &
B, and numbers 1, 2, 3 & 4 represent two silicon and four hydrogen atoms that participate
in the event.

Fig. 7.9 shows the temporal evolution or the dynamics of the process. We have

plotted the relevant bond lengths between four hydrogen and two silicon atoms that

took part in the process. The three steps mentioned earlier are marked by arrows in

the plot. We see that the process initiates when H4 leaves SiA around 50 fs after the
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beginning of the simulations, marked by the first arrow. Beyond the second arrow (75

fs) it is attached to the second silicon SiB. At this moment SiA is hydrogen deficient

and SiB is hydrogen rich. As one would expect, immediately after H4 attaches to SiB,

one of its bonds (H3) starts weakening. Around 125 fs, marked by the third arrow,

the hydrogen molecule donates a hydrogen to the deficient silane SiA and H3 detaches

completely from SiB to form H2 molecule back.

In short, the exchange was initiated by transfer of hydrogen between two silane

molecules. At 90 GPa distance between Si atoms on adjacent face centers (A and B)

was 3.3 Å, which was small enough (Si-H distance at this pressure was 1.6 Å) to allow

hydrogen transfer between them without thermal activation. Hence, according to our

simulations, the hydrogen exchange is a classical process, expedited by elongation of

bond lengths and reduction in volume. However, in experiments, H-D exchange was

observed at a pressure as low as 10 GPa which might be due to large experimental

time scales or catalysis by gasket as speculated by the authors of Ref (18). We believe

quantum lattice melting may not be operative in the present case.
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7.3.5 Summary

Our ab-initio calculations on SiH4(H2)2 crystallized in FCC lattice with orientationally

disordered hydrogen showed that pressure caused substantial elongation of H2 bond

length above 40 GPa. Transfer of charge from bonding to antibonding states was

responsible for the elongation and our studies indicated that SnH4(H2)2 might be more

effective in bringing about this transition. H-D exchange was confirmed as the reason

for observed variation of Raman spectra and dynamics of the process indicated it to be

a three step process. An activation barrier prevents the exchange from taking place at

room temperatures in simulations below 90 GPa.

Even though our calculations showed substantial elongation of H2 bond length under

pressure, they did not support the experimentally observed darkening of sample close

to 35 GPa. Similar to the case of pure silane, the darkening may be a consequence of

dissociation of the solid itself, aided by the metallic gasket acting as a catalyst. In this

context, it will be interesting to investigate the effect of gasket materials on the high

pressure behavior of SiH4(H2)2 using computer simulations.
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8

Order-disorder transitions in Si

under pressure

In this chapter, we present studies on crystallization and amorphization of silicon, in

which a combination of classical, quantum and model calculations were used. Recent

experiments had found that nano amorphous silicon undergoes crystallization to an

eight coordinated primitive hexagonal (ph) phase under pressure, which returns to the

amorphous phase upon pressure release. Our first principles total energy calculations

on bulk and nano silicon showed that at nanoscale the amorphous is not a metastable

phase and quantum mechanics/molecular mechanics (QM/MM) simulations confirmed

the progressive disordering of nano-ph phase. The crystallization kinetics in amor-

phous silicon was studied using classical nucleation theory with data derived from first

principles calculations, which showed the nucleation work to decrease with pressure.

Crystallization temperatures of cubic diamond (cd) and β-Sn structures were estimated

using empirical relations derived by Okui and melting data calculated from classical

molecular dynamics. They were found to decrease with pressure.

8.1 Background

The two computational methods used so far in this thesis mainly differed in their

speed and accuracy. DFT based electronic structure methods provide very accurate

description of materials, but are computationally expensive and, as a consequence,

can handle only small systems under reasonable simulation times. Atomistic methods,
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even though less accurate, are fast and can handle very large simulations. So far,

the compromise on a particular method had been based on whether the properties of

interest demanded larger speed or higher accuracy. Often, there are situations when

a satisfactory description of the system cannot be reached with either of the methods

alone. One such case is presented in this final chapter.

As shown in Table 4.2, several structural polymorphs with different density and

coordination exist for bulk silicon. However, at nanoscale, the behavior was found to

be different: cubic diamond phase of nano-crystalline Si (∼ 50 nm) transforms directly

to the primitive hexagonal (ph) form at 22 GPa, by-passing all other intermediate

structures (237). Increased stability regime of the diamond phase due to surface tension

effects was attributed to the non-realization of the intermediate phases. Surprisingly,

for nano-crystallites embedded in porous Si (π-Si), the initial cubic phase was claimed

to undergo pressure induced amorphization (PIA) close 14 GPa (238), explained in

terms of pressure induced pseudo-melting. Like water, liquid Si has a higher density

than its solid phase and, hence, has a negative Claperyon slope (i.e., it melts at lower

temperatures at higher pressures) for the liquid crystal coexistence curve. Thus, in the

absence of any other phase transition, amorphous phase could melt at room temperature

at sufficiently high pressure.

However, in subsequent high pressure experiments on nano π-Si and bulk a-Si using

x-ray diffraction and Raman techniques, Garg et al made several new and interesting

observations (14). In disagreement with earlier reported PIA, that the cubic nano Si

was found to undergo a phase transition to a crystalline ph phase at ∼ 20 GPa. When

they released pressure on the newly formed nano-ph phase, it underwent amorphization.

The bulk ph phase was also found to exhibit a similar behavior, but only upon abrupt

pressure release; slower releases resulted in a new crystalline phase called R8 (23).

Finally, the nano-amorphous phase obtained on pressure release was found to transform

reversibly back to the ph phase under subsequent compression. Although, formation

of crystalline ph upon compression of a-Si is also observed in bulk (23), a reversible

amorphous-crystalline transformation in an elemental solid was surprising and led to the

speculation that the nano a-Si might be favorably predisposed towards transformation

to a particular crystalline phase.

Two important order-disorder transitions in silicon are outlined in the above ex-

perimental results: amorphization and crystallization. As explained in Chapter 4,
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amorphous is a metastable, kinetically trapped phase. It can be generated through

abrupt cooling from a liquid or abrupt decompression from a crystal; a process known

as quenching. Hence, realization of bulk amorphous phase during abrupt release of

pressure is not surprising. However, the fact that the nano-ph phase amorphizes irre-

spective of rate of decompression points to a novel mechanism or a novel amorphous

phase that is not metastable.

Also interesting is the reversible recrystallization of the nano-LDA back to the ph

phase upon compression. In fact, similar “memory glass” behavior was reported in the

case of berlinite AlPO4 at high temperatures (239), where the amorphous phase “re-

members” the orientation of the original crystalline phase. Subsequent studies, however,

found the amorphous phase to be a poorly resolved crystalline phase (240). Reversibility

in crystal-to-crystal transformation is understandable as collective reordering of atoms

from one structure to another and is possible due to the long range order in crystals. In

the case of an amorphous phase, which is disordered, it is difficult to imagine a simple

transformation path that would take it reversibly to a crystalline structure. However,

if the energy barriers for crystallization in this system is such that all other structures

are forbidden, the observations can be explained.

It is reasonable to assume that crystallization in the above experiments proceeds

through random nucleation and growth (RNG) discussed in Chapter 4. Thermal fluc-

tuations induce formation of many tiny crystalline nuclei in the amorphous matrix,

a process which may be enhanced by presence of impurities or defects. The nuclei

is comprised of a crystalline core and a low density crystal-amorphous (c/a) interface

layer which forms due to the difference in the structure between the crystalline and

amorphous phases. Classical nucleation theory predicts that, as the diameter of the

nucleus increases, the energy of the nucleus increases, passes through a maximum and

then decreases. Thus, beyond a critical size, a crystalline nucleus will grow sponta-

neously, as it will lower energy. The energy necessary to form a crystalline nucleus of

critical diameter is called the nucleation work (∆G∗) and it acts as a barrier preventing

crystallization at low temperatures. However, since pressure affects relative energies in

the system, it changes the required nucleation work as well (241).

However, the effect of pressure on the nucleation work is not straight forward.

For example, in many systems pressure is known to lower ∆G∗ (242, 243), while it

also raises ∆G∗ in many others (244, 245). A notable example is the elemental solid,
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amorphous selenium, (which undergoes polymorphous crystallization similar to a-Si) in

which pressure significantly elevates crystallization temperature (246). The behavior

was later explained to be because of the increase in nucleation work with pressure (241).

In the amorphous alloy Al89La6Ni5, applied pressure resulted in the increase of Tc after

an initial reduction (247) which was explained as a result of competition between the

reduction in thermodynamic potential barrier and the diffusion activation energy under

pressure.

From a microscopic point of view, pressure has multiple effects on crystallization.

Pressure is an obstacle to the formation of c/a interface, which has a lower density and

coordination than the surrounding crystalline and amorphous regions. Pressure also

inhibits atomic diffusion as a consequence of reduced free volumes and inversely affects

the movement of the interface. On the other hand, there occurs a negative volume

change (∆V < 0) during amorphous to crystal transition, due to the lower density of

the amorphous phase, which would favor crystallization under pressures. Such a density

driven crystallization was first reported in case of water (248). Finally, pressure induces

several structural transitions (Table 4.2) which causes abrupt changes in free energy.

Their effects on nucleation work cannot be easily predicted.

To understand the order-disorder transitions in Si, we carried out following simu-

lations. First, the amorphization of ph phase was studied using total energies (first-

principles) for different silicon clusters which showed that amorphous state has a lower

energy compared to the, otherwise stable, cd phase. We subjected bulk (first-principles)

and nano-ph (QM/MM) structures of silicon to abrupt and slow release of pressure and

found that in the case nano, the structure becomes disordered, in agreement with ex-

perimental observations. Crystallization of a-Si was studied by calculating nucleation

work (first-principles and model) and crystallization temperatures from melting curves

(classical MD and model).

8.2 Methods

8.2.1 Classical MD

Classical MD simulations were carried out using the DL POLY code (29) and inter-

atomic potentials by Tersoff (131, 132). Velocity Verlet algorithm was employed to

integrate the equations of motion with Berendsen thermostat and barostat keeping
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temperature and pressure constant. The system was equilibrated for several nanosec-

onds at each temperature/pressure using a fine timestep of 1 fs. The amorphous phase

was generated by quenching liquid silicon from 3500 K at a rate 1 K/ps and annealing

at 1000 K for several million steps. Melting curve for a-Si was estimated by subjecting

the amorphous structure to increasing temperatures and changes in diffusion constant

and volume were monitored to identify the melting point. To obtain the crystalline

melting curves, a cell containing the crystal-liquid interface was heated and the melt-

ing point was identified as the temperature at which the interface moves towards the

crystalline region.1

8.2.2 First-principles calculations

Density functional theory based calculations were used to optimize ionic positions of

small silicon clusters of approximately ∼ 110 atoms and diameter ∼ 1.4 nm. Struc-

tural relaxations were performed within generalized gradient approximation (168) using

projector augmented wave (52) method as implemented in Vienna ab-initio simulation

package (70, 71) starting from roughly spherical clusters. An energy cutoff of 400 eV

with Γ point sampling was used to find the lowest energy configurations of clusters in a

20 Å supercell. The amorphous structure was generated by heating cubic silicon cluster

to 1500 K and quenching it. Molecular Dynamics simulations were then carried out for

0.3 ps at 300 K to equilibrate the cluster and was then subsequently optimized at 0 K.

The resultant cluster had almost the same volume as the diamond structure. The en-

ergy volume characteristics of amorphous were calculated using a supercell containing

216 atoms and Γ centered k-point sampling. Each structure was equilibrated for 0.5 ps

at 500 K and subsequently fully relaxed.

8.2.3 QM/MM simulations

The simulation box consisted of a cluster of silicon treated quantum mechanically sub-

merged in a liquid which was treated classically as shown in Fig. 8.1. Since the main

role of the liquid was to transmit the hydrostatic pressure, it was actually not necessary

to model the specific properties of a real liquid in the simulations. It is known that

basic properties of a real simple liquid are captured by a classical short-range repulsive

1The crystal-liquid interface was constructed by heating a crystal-amorphous cell shown in Fig. 4.4
of Chapter 4 above the glass melting temperature.
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pair potential (249). Thus we chose the liquid-liquid and cluster-liquid interactions

to be pairwise additive potentials, VL−L(r) and VC−L(r), respectively. Adding both

interactions as well as the kinetic energy of the liquid particles to the Car-Parrinello

Lagrangian of Eq. 2.75, we obtain a new Lagrangian for the extended system, consisting

of electrons and ions of the cluster and the liquid particles,

L =
1

2

∑
i

µ

∫
dr|ψ̇i(r)|2 +

1

2

∑
I

MIṘ
2
I − E[{ψi}, {RI}]

+
∑
ij

Λij(〈ψi|ψj〉 − δij +
1

2

∑
I

mIẊ
2
I

−
∑
IJ

VC−L(|RI −XJ |)−
∑
I<J

VL−L(|XI −Xj |)

(8.1)

Here, XI and mI are the coordinates and masses of the liquid particles, RI and MI

those of the cluster atoms and ψi and µ the electronic wave functions and the associated

electronic fictitious mass. From this Lagrangian, equations of motion corresponding to

the coupled Car-Parrinello/classical MD can be derived (250).

Since the pressure might induce a macroscopic shape change in the cluster, the

liquid should be able to flow fast enough to accommodate such a change, without

developing appreciable pressure gradients or shear components which might hinder the

transformation. Also, under high pressure the liquid may crystallize or undergo glass

transition, marked by a dramatic slowing down of the liquid dynamics. To avoid these

effects, we have used a repulsive soft-sphere potential with carefully chosen parameters

of the form,

VL−L(r) = ε(σL−L/r)
12 (8.2)

A similar form is chosen for the cluster-liquid interaction σC−L as well. We set ε = 1 a.u.;

the potential is then fully specified by the single parameter σL−L. The parameters used

for the potentials are σL−L = 1.05 Å, σC−L = 3.30 Å. Other constants of simulation

are mass of the liquid particles m = 20 a.u., fictitious electron mass µ = 400 a.u. and

a time step of ∆t ≈ 0.1 fs.
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Figure 8.1: Snapshot of the simulation cell containing the silicon cluster (114 atoms) and
surrounding liquid (∼ 28000 atoms)

8.2.4 Model calculations

The energy required to form a nucleus of critical size (nucleation work ∆G∗) is related to

the growth rate I at a temperature T according to crystallization kinetics theory (241),

I = I0 exp

(
∆G∗ +Qn

kBT

)
× exp

[
− KT 2

m

kBT (Tm − T )

]
(8.3)

where I0 is a constant, Qn is the activation energy for the transport of an atom across

the c/a interface, K is nucleation parameter, Tm is the melting temperatuer of the

crystalline phase and kB is the Boltzmann constant. For homogeneous nucleation,

forming a spherical crystalline nucleus with a diameter d from an amorphous matrix

with an interface between them, Gibb’s free energy change (243) can be expressed as a

sum of a volume term corresponding to the energy of the crystalline core (1
6πd

3) and a

surface term (πd2) corresponding to the interface energy,

∆Gn(T, P ) =
πd3

6V c
(∆Ga→c + E) + πd2σ (8.4)
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where, Ga→c is the molar free energy change for the transformation from amorphous to

crystalline phase, σ is the free energy increase for forming the unit area c/a interface,

i.e., the interfacial energy, V c is the molar volume of crystalline phase and E is the elas-

tic energy induced by the volume change during the phase transformation in the solid

state. The nucleation work ∆G∗ and critical nucleus diameter d∗ for the crystallization

under pressure can be calculated when ∂Gn/∂d = 0.

∆G∗ =
16πσ3

3(∆Ga→c/V c)2
(8.5)

where the elastic energy, E, has been omitted since its effect on the free energy change

has been shown to be minor (243).

Turnbull (251) showed that for most metals the ratio of liquid solid interface energy,

σ, to the enthalpy of fusion, ∆Hf , is approximately 0.45 at ambient pressure. However,

∆Hf is generally expressed in kJ/mol while σ is expressed in J/m2. To find the ratio,

we need to convert the interface energy to a molar quantity σm, which may be defined

as the free energy of an interface containing Avogadro number, N , of atoms. If the

area of such an interface is A, and thickness is one atom; then A = N1/2V 2/3 and the

interface energy can be written as,

σm = N
1
2V

2
3σ (8.6)

where N is the Avogadro number and V is the volume per atom at the surface.

The second term in Eq. 8.3 incorporates the effect of melting at high enough tem-

peratures. Thus crystallization temperature increases with temperature and reaches a

maximum at Tmax
c above the glass transition temperature Tg and below the melting

point of the crystalline phase Tm (252). It has been shown that the ratios of tempera-

tures Tmax
c , Tg and Tm are related by a constant at ambient pressure (253, 254). Okui

derived expressions for these ratios in terms of activation energy of migration through

the nucleus-melt interface and a nucleation parameter associated with the mean sur-

face energy and the heat of fusion (255). Using them, one can arrive at the following

relation for Tmax
c :

Tmax
c =

Tm
2

(
1 +

Tg
Tm

)
(8.7)
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8.3 Results

8.3.1 Amorphization

The structures of the different phases of silicon, obtained after structural optimization,

are shown in Fig. 8.2. According to our calculations on small clusters, amorphous phase

has lower energy than the cubic diamond structure (energy difference, Ecd − Eam, is

67.9 meV). The β-Sn structure did not stabilize at the end of structural optimization,

but transformed to a four coordinated disordered structure. Hence, in case of nano-

clusters, the cubic diamond phase is actually a metastable state, in contrast to the

situation in bulk. This means that emergence of LDA on release of pressure is basically

kinetics independent. These calculations also explain the non-observability of the β-Sn

phase during the compression of nano π-Si (14). A similar size dependent structural

transformation has been observed recently in silver (256).

Figure 8.2: Clusters of different structures of silicon at the end of first principles ionic
relaxation. (a) cubic diamond (b) β-Sn, which becomes disordered upon relaxation, and
(c) the amorphous phases.

High pressure experiments submerge the nanoparticles in a fluid which acts as a

pressure transmitting medium (PTM). A quantum mechanical simulation of the particle

plus the pressure-transmitting liquid is beyond the limit of what could be handled

computationally. Hence we employed the method implemented by Martoňák et al.

where only the cluster is treated quantum mechanically while the surrounding liquid is

treated classically (250).

To prepare an initial configuration for the QM/MM simulations, we first equilibrated
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Figure 8.3: Final configurations of the cluster at different pressures. The surrounding
liquid is not shown for clarity. Decompression induces progressive disorder.

the liquid at ∼ 600 K and 25 GPa with about NL = 313 = 29791 in a simulation cell of

∼ (68 Å)3. A spherical ph-cluster made up of 114 silicon atoms was made from bulk

ph phase equilibrated at ∼ 25 GPa. The cluster was immersed in the liquid and those

liquid particles which were closer than 2.5 Å to any Si atom were removed. The liquid

was then equilibrated for about 2 ps while the cluster was kept frozen.

The conventional way to change the pressure on this system would be to change

the volume of the classical cell. A more efficient way is to change the liquid repulsion

parameter, σL−L. Decreasing the repulsion between the liquid particles will increase

free volumes in the liquid and will reduce the pressure on the surface of the cluster. This

method of controlling pressure has the advantage that, the volume of the simulation

box can be kept fixed. We found that varying σL−L = 1.05→ 0.05 resulted in decrease

of pressure 35→ 0.3 GPa. Thus, changing pressure of the simulation cell involved two

steps. First, the parameter σL−L is changed, and only the liquid is equilibrated keeping

the cluster atoms fixed. In the second step, once the required pressure is reached, the

cluster is also allowed to relax.

Fig. 8.3 shows snapshots of the cluster at different pressures. We can see that,

reducing pressure introduces disorder in the cluster. Initially, the surface atoms begins

to get disordered which soon spreads to the core, causing the entire cluster to amorphize.

This is evidenced by the distribution of first neighbor distances plotted in the Fig. 8.4,

which shows that as the pressure decreases the peak moves to slightly higher values

and becomes broad.
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Figure 8.4: Bond length distribution for silicon ph cluster under decompression. Broader
distribution indicate disorder.

These calculations show that even under slow release of pressure, the ph cluster

transforms to amorphous structure. Our first principles MD calculations on bulk ph

showed that it does not become amorphous upon gradual reduction in pressure, in

agreement with experimental observations (23).

8.3.2 Crystallization through RNG

To understand the nature of crystallization via random nucleation in silicon, we have

calculated nucleation work using Eq. 8.5. For this, the free energy change ∆Ga→c and

V c were calculated using first principles methods. Since change in entropy ∆Sa→c

is three orders of magnitude smaller (246) than change in enthalpy ∆Ha→c, we have

used ∆Ha→c in our calculations. The energy volume characteristics under pressure

estimated from simulations are depicted in Fig. 8.5.

The results are in good agreement with earlier reports (257). Volume of a-Si which

is initially higher than that of the diamond phase by about 3% and decreases faster

and crosses the cd curve ∼ 10 GPa, which is also similar to the observations in classical

MD simulations discussed in Chapter 4. Also similar is the first order phase transition

from LDA to HDA, which is accompanied by a large volume drop of ∼ 16%. The kink
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Figure 8.5: Variation of volume and energy as a function of pressure, obtained from first
principles simulations. Red dotted line represents extension of the HDA enthalpy to the
metastability region of LDA

in the LDA-HDA enthalpy due to the first order nature of the transition is removed by

extending the HDA enthalpy to lower pressures (red dotted line).

Using the melting enthalpy of 40.06 kJ/mol calculated from a classical simulation

(Fig. 8.7) and the ratio ∆Hf/σ = 0.45, we estimate the c/a interface energy to be

0.41 J/m2 which is close to the value 0.49 J/m2 determined by Bernstein et al. from

tight binding calculations (125). We used this value for σ for both diamond and β-Sn

interfaces while calculating nucleation work using Eq. 8.5 and is given in Fig. 8.6.

Consistent with our simulations on SPEG presented in Chapter 4, we observe a

minimum in the nucleation work close to 10 GPa. This shows that underlying micro-

scopic parameters affecting both processes are similar. We also see that ∆G∗ for β-Sn

is lower than that for diamond, as observed earlier (Fig. 4.9). The discontinuity in

∆G∗ close to 8 GPa is because the denser HDA phase is energetically favorable above

this pressure (even though the first order LDA-HDA transition is not observed till 15

GPa). Calculations also showed that for β-Sn nucleation work decreases as pressure

is increased beyond 15 GPa. We should note that, though we have used same value

for σ, in principle it can be pressure dependent and different for two structures. Care-
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Figure 8.6: Variation of nucleation work with the applied pressure for crystallization of
a-Si to diamond and β-Sn structures

ful first principles calculations are necessary to identify such differences, if any. We

have also calculated nucleation work for the ph phase (23) and found that it is lower

than that of β-Sn, which may explain the pressure induced crystallization observed in

experiments (14).

8.3.3 Melting behavior

Finally, to check the relationship between crystallization and melting temperatures

under pressure, we simulated the melting process in amorphous and crystalline silicon.

Fig. 8.7 shows the results of this simulation which agree well with available ex-

perimental data. The melting curves for amorphous and crystalline phase of silicon

display negative Clayperon slope and remain almost parallel as a function of pressure.

Melting temperatures at ambient pressure obtained from our calculations were 2000 K

for amorphous-Si and 2600 K for d-Si, in agreement with earlier calculations carried

out using the same interaction potentials (131). Since experimental estimates are 1420

K for amorphous and 1685 K for crystalline silicon (258) our calculations showed that

Tersoff potentials overestimate the melting temperatures by 40-50% as predicted.

147



8. ORDER-DISORDER TRANSITIONS IN SI UNDER PRESSURE

At ambient pressure the ratio of calculated melting temperatures Tg/Tm = 2/2.6,

which is close to the experimental value of 2/3 (59, 259, 260). The negative slope of the

melting curve under pressure suggests increased self-diffusion (261), which is a common

characteristic of negative Clapeyron slope materials where the liquid phase is denser

than the solid phase, as in water (261). This increased diffusion with pressure also

results in reduction of the crystallization temperature observed in Si. Close to 15 GPa,

melting curves exhibit minima, as a result of structural transition from a “strong” to

a “fragile” system in both crystalline and amorphous phases.
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Figure 8.7: Melting curves for amorphous and crystalline silicon under pressure. Solid
black lines are quadratic fit to simulation data. The red lines represent calculated crystal-
lization curves using Eq. 8.7.

The red lines in Fig. 8.7 represent Tmax
c calculated using Eq. 8.7 (a continuous fit to

amorphous data is used for this case) which agrees qualitatively with earlier calculations

of T ∗c (Fig. 4.5, Fig. 4.9) and ∆G∗ (Fig. 8.6). Tmax
c for diamond shows a 50% decrease

up to 10 GPa similar to T ∗c .
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8.4 Summary

Experiments observed that in nano silicon, an amorphous phase is stable under ambient

pressure, which arises only upon abrupt pressure release in the bulk. This amorphous

phase was found to undergo pressure induced crystallization at room temperature.

Our classical and quantum calculations provided a qualitative understanding of these

experimental results. Total energy calculations confirmed that increased surface to

volume ratio stabilizes the amorphous structure at the nanoscale. Using QM/MM

simulations, we were able to observe amorphization of nano-ph upon slow pressure

release. Model calculations based on classical nucleation theory and melting behavior

indicated that crystallization of amorphous silicon is enhanced under pressure and

showed that high pressure phases of silicon have lower crystallization temperatures,

explaining the pressure induced crystallization observed in this system.

A way to observe probability driven events like nuceation in simulations is to use

faster configuration space sampling tools like simulated annealing, parallel tempering

etc. within the Monte Carlo method. It may be interesting to use these methods to

study the effect of finite size on crystallization kinetics in nanoparticles of silicon.
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Appendix A

Parallel Cluster

By distributing a computational task across multiple processors, the work load can be

shared and the required computational time can be reduced substantially. A larger

parallel computer, in principle, makes it possible to handle larger problem sizes and

longer simulation times. It also gives the program access to larger physical memory

which can be utilized to divide the memory requirement of the problem across multiple

processors. This allows execution of jobs which could otherwise not run on smaller sys-

tems due to memory limitations. The most important advantage of parallel computing

is that it is much cheaper to built and maintain a parallel cluster compared to any

other system with similar performance. Details of the PLUTO cluster setup during the

course of the doctoral work is presented in this chapter.

A.1 Architecture

During the past decade, many different computer systems supporting high performance

computing have emerged. Their taxonomy is based on how their processors, memory,

and interconnect are laid out. The most common systems are: Massively Parallel

Processors (MPP), Symmetric Multiprocessors (SMP), Cache-Coherent Nonuniform

Memory Access (CC-NUMA), Distributed Systems and Clusters.

In the 1980s it was believed that computer performance was best improved by creat-

ing faster and more efficient processors. This idea was challenged by parallel processing,

which in essence means linking together two or more computers to jointly solve some

computational problem. Since the early 1990s there has been an increasing trend to
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move away from expensive and specialized proprietary parallel supercomputers towards

networks of workstations. One of the driving forces that enabled this transition was

the rapid improvement in the availability of commodity high performance components

for workstations and networks.

A computer node can be a single or multiprocessor system (PCs, workstations,

or SMPs) with memory, I/O facilities, and an operating system. A cluster generally

refers to two or more computers (nodes) connected together. The nodes can exist in

a single cabinet or be physically separated and connected via a local area network

(LAN). An interconnected cluster of computers can appear as a single system to users

and applications.

0 20 40 60 80 100 120 140
2

4

6

8

10

12

14

16

Number of CPU

T
im

e
 t
a
k
e
n
 (

H
rs

)

 

 

Gigabit

Infiniband

Figure A.1: Time taken by a sample VASP job on ANUPAM parallel computing cluster.
Simulation over gigabit used MPICH while simulation over Infiniband used OPENMPI
interface

As explained in Chapter 2, without efficient algorithms that parallelize problems,

the strength of parallel computers cannot be exploited. A typical parallel program

works in three steps. A master node initializes the input and output arrays and dis-

tributes data across all the compute nodes. The nodes then carries out operations on

the data they each have independently and in parallel. Finally, the master node collects

the results from compute nodes and combines them back. The process is repeated if

necessary. Example of a real life first principles simulation using VASP is shown in

Fig. A.1. It takes only 2.1 hours when run on 32 processors compared to 14.2 hours on
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4 processors, which shows the significance of parallel computing. The figure also shows

that the interconnecting network affects the scaling of the parallel jobs significantly. In

the absence of network latency, the step involving transfer of data between the nodes

would be instantaneous and program execution speed would increase indefinitely with

number of processors. In practice, however, network has a finite response time and

bandwidth. As the number of processors increase, higher network traffic will cause

nodes to wait in idle processor cycles for the communication to finish, reducing the

overall performance. In fact, as shown in Fig. A.1, after a particular size, the speedup

will start to decrease due to the communication bottleneck. For this job, on Gigabit

network based on 1 Gbps Ethernet connection, the limit is 24 processors while on In-

finiband based on 8 Gbps connection the limit is reached at 64 processors. Note that,

since the limit depends on the communication level and size of the problem, it is highly

job dependent.

The prominent hardware and software components of a cluster computer are:

• Multiple high performance computers (PCs, workstations, SMPs)

• High performance network (Gigabit Ethernet, Infiniband)

• Operating system (Linux, Windows NT)

• Cluster middleware (Rocks, Oscar)

• Parallel programming environment (Compilers, MPI, PVM)

• Applications

A.2 Hardware considerations

One of the most fundamental design decisions of cluster building is the choice of the

processor. As the price varies substantially across different processor speeds, it is often

advisable to build a larger cluster with mid-range processors and a fast interconnect

than a smaller cluster with top-range processors. The physical memory also affects

the performance of the cluster. Higher clock speeds are desirable because it allows

faster data transfer between CPU and RAM, but more important is the amount of

RAM per processor, as the largest problem sizes the cluster can handle are decided by
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it. Another important design parameter is the network fabric. As shown in Fig. A.1,

with a slow interconnect will actually slow down program execution beyond a limit.

Since scalability depends crucially on the interconnect, it is advisable to use the fastest

affordable network technology.

Finally, a factor that affects not the performance but the usability of the cluster is

storage and backup solutions. Since computer simulations generate large amounts of

data, a fast and reliable storage array is required. Typically, a file server with all the user

directories sits in the private network of the cluster but is not used for computations.

The files are made available to the compute nodes through a network file system (NFS).

This arrangement ensures that the file server is available at all times and is not loaded

by computational jobs. For reliability of the file system, a fault tolerant RAID5 array,

which has on-line error checking and redundancy against disk failure can be used. A

routine backup system can ensure additional data security.

Based on the above design criteria, a parallel computing cluster has been setup in

Purnima Labs, BARC for condensed matter simulations. The cluster, named PLUTO,

is based on dual processor quad-core Intel Xeon processors comprising of 16 individual

servers of 1U form factor as shown in Fig. A.2. The final configuration of the PLUTO

is given the Table A.1.

A.3 Software considerations

Individual nodes and the file server of the HPC require an operating system like any

other computer to manage the local resources like CPU, RAM, storage etc. Any of the

modern day operating systems like Linux, Unix, Windows etc. can be used in a cluster.

If the nodes have local disks, the OS can be installed on each them allowing the nodes

to boot independently of each other. Another approach is master-client architecture

where only one master server holds the operating system and the compute nodes boot

from it over the network. Even though the latter case is less difficult to set up and

manage, the former puts less burden over the network.

In addition to the operating system, parallel computers require software libraries

that allow communication between different nodes and utilities that manage the clus-

ter. They make it possible for a program to distribute itself across the cluster and

communicate with it’s components on different nodes.
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Table A.1: PLUTO hardware & software configuration

Item Specification Per Node Total

Hardware
Processor Quad core Xeon @ 2.33 GHz 2P 128
RAM DDR2 667 MHz 8 GB 128 GB
Local storage SATA2 7200 rpm 160 GB -
Network storage 15Krpm SAS in RAID5 - 2 TB
Gigabit NIC Dual PXE 1000 Base T 1 16
Infiniband NIC 4X DDR Infiniband PCIe 1 16
Gigabit switch 48 RJ45 (1 Gbps) - 1
Infiniband switch 24 CX4 (8 Gbps) - 1
Backup Ultrium 3 LTO 800 GB Tape - 1
Management 16 port KVM - 1
Software
OS Scientific Linux 5.2 1 -
Management OSCAR 6.0.2 - 1
Resource Torque 5.1 - 1
Scheduler MAUI - 1

There are also few cluster specific operating systems which integrate several libraries

and utilities into the operating system itself. Rocks Cluster Distribution developed

by a group at University of California (UCSD), is such an operating system, with a

modified Anaconda installer that simplifies mass installation onto many computers and

pre-configured libraries and utilities to run and manage the cluster. Even though Rocks

provides an integrated and streamlined cluster management option, it lacks the flexibil-

ity necessary for experimentation. After extensive testing, we opted for manual cluster

setup using Scientific Linux as operating system and Open Source Cluster Application

Resources (OSCAR) for cluster management. Scientific Linux produced by FNAL and

CERN is based on the RedHat Enterprise Linux from which Rocks is also built.

OSCAR is a cluster software stack providing a complete infrastructure for cluster

computing. The core components enable a user to construct a virtual image of the

target machine using System Installation Suite (SIS). A master node keeps a single

installation image for all the compute nodes. Node reinstallation involves pushing this

image to the local disk of the node, ensuring fast installation. This method also makes

sure that all nodes are identical. It include a parallel distributed “shell” tool set called

C3 and an environment management facility called Env-Switcher. These components
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help in diagnosis and trouble-shooting. Cluster usage monitoring and statistics are

handled by ANULIB routines developed by Computer Division, BARC.

Another component in the cluster setup is the Resource Management and Schedul-

ing (RMS). Since multiple users are expected to use the cluster simultaneously, RMS

ensures that user jobs are distributed over all available resources. It also enables the

effective and efficient utilization of the resources available. The software that performs

the RMS consists of two components: a resource manager and a resource scheduler.

The resource manager component is concerned with problems, such as locating and

allocating computational resources, authentication, as well as tasks such as process

creation and migration. The resource scheduler component is concerned with tasks

such as queuing applications, as well as resource location and assignment. RMS has

come about for a number of reasons, including: load balancing, utilizing spare CPU

cycles, providing fault tolerant systems, managed access to powerful systems, and so

on. But the main reason for their existence is their ability to provide an increased, and

reliable, throughput of user applications on the systems they manage. We have used

MAUI resource manager and TORQUE scheduler to control user jobs.

The most vital software component that makes a collection of interconnected com-

puters into a parallel cluster is the collection of libraries that allow a program to run

in parallel. MPI libraries allow efficient parallel programs to be written for distributed

memory systems. These libraries provide routines to initiate and configure the messag-

ing environment as well as sending and receiving packets of data. The MPI standard is

the amalgamation of what were considered the best aspects of the most popular mes-

sage passing systems at the time of its conception. The goals of the MPI design were

portability, efficiency and functionality. The standard only defines a message passing

library and leaves, among other things, the initialization and control of processes to

individual developers to define. Like PVM, MPI is available on a wide range of plat-

forms from tightly coupled systems to metacomputers. MPI libraries are available for

Fortran 77, Fortran 90, ANSI C and C++.

A.4 LINPACK Benchmark

LINPACK is a software library for performing numerical linear algebra on digital com-

puters. It makes use of the BLAS (Basic Linear Algebra Subprograms) libraries for

156



A.4 LINPACK Benchmark

Figure A.2: The parallel computing cluster PLUTO located in Purnima Labs, Bhabha
Atomic Research Center
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performing basic vector and matrix operations. The LINPACK Benchmarks are a mea-

sure of a system’s floating point computing power. They measure how fast a computer

solves a dense N × N system of linear equations Ax = b, which is a common task in

computational science. The solution is obtained by Gaussian elimination with partial

pivoting, with 2/3N3 +2N2 floating point operations. The result is reported in number

of floating point operations per second (FLOPS). The Fig. A.3 shows the LINPACK

score of PLUTO as a function of number of processors. Each computing server with 8

cores (2CPU×4Cores) scored an average of 73 GFlops. However, when benchmark is

run on multiple servers, latency of the network comes into play and affects the overall

score. The total LINPACK score for 16 servers is found to be 1.005 TFlops which is

∼ 85% of the sum of individual scores. It is the expected latency from the Infiniband

network.
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Figure A.3: LINPACK score for PLUTO cluster using Infiniband network and OpenMPI
libraries. With 128 nodes, the cluster scored just above 1 TFlops.
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[200] G. Lautenschläger, H. Weitzel, T. Vogt, R. Hock,
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