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SYNOPSIS

Very High energy (VHE) gamma-rays in the energy range (0.1-50 TeV) are expected to
come from a wide variety of cosmic objects within and outside our galaxy. Studying this
radiation yields valuable and unique information about the unusual astrophysical
environment characterizing these sources, and also the intervening intergalactic space.
At energies above 0.1 TeV, a typical gamma-ray source is generally too weak for direct
detection by satellite based detectors necessitating the use of ground-based atmospheric
Cerenkov detection technique. In atmospheric Cerenkov imaging telescopes one records
the spatial distribution of the Cerenkov photons in the image plane of a light
collector by using a close-packed array of photomultipliers. By examining the subtle
differences in the shapes and orientation of the shower images, it becomes possible
to reject more than 99.5% of the cosmic-ray generated background Cerenkov events.
Gamma-ray events give rise to shower images with their major axes preferentially
oriented towards the source position in the image plane. Apart from being narrow and
compact in shape, these images have a cometary shape with their light distribution
skewed towards their source position in the image plane and become more elongated as
the impact parameter of the shower increases. On the other hand, hadronic events give
rise to images that are, on average, broader and longer and are randomly oriented within
the field of view of the camera. For each image, which is essentially elliptical in shape,
Hillas parameters [1] are calculated to characterize its shape and orientation. The
parameters are obtained using moment analysis and are defined as : LENGTH--The rms
spread of light along the major axis of the image (a measure of the vertical development
of the shower); WIDTH -- The rms spread of light along the minor axis of the image (a
measure of the lateral development of the shower); DISTANCE-- The distance from the
centroid of the image to the centre of the field of view; a --The angle between the major




axis of the image and a line joining the centroid of the image to the position of the source
in the focal plane; SIZE -- Sum of all the signals recorded in the clean Cerenkov image;
FRAC2-- The degree of light concentration as determined from the ratio of the two
largest PMT signals to sum of all signals ( also referred to as Conc.).

Keeping in view the global developments in the field, the gamma-ray telescope
TACTIC (TeV Atmospheric Cerenkov Telescope with Imaging Camera) [2] has been set
up at Mt. Abu ( 24.6 °N, 72.7 °E, 1300m asl), India. The telescope has been in
operation since 2001 to study TeV gamma-ray emission from various celestial sources.
The telescope uses a tessellated light collector of area ~ 9.5m?, which is capable of
tracking a celestial source across the sky. The light collector uses 34 front-face aluminum
coated glass mirrors of 60cm diameter each with a focal length of ~400cm. The telescope
deploys a 349-pixel imaging camera, with a uniform pixel size of ~0.31% and ~5.9° x
5.9% field of view, to record atmospheric Cerenkov events produced by an incoming
cosmic-ray particle or gamma-ray with an energy above ~1TeV. With a 50 sensitivity of
detecting the Crab Nebula in ~25 hours of observation time, regular observations were
taken on a number of potential gamma-ray sources (viz., Mrk 421, Mrk 501,
1ES2344+514, PSR 0355+54, ON 231, H1426 etc.) during the last 10 years .

The sensitivity of a Cerenkov imaging telescope is strongly dependent on the
rejection of the cosmic-ray background events. The methods which have been used to
achieve the segregation between the gamma-rays from the source and the background
cosmic-rays, include methods like Supercuts/Dynamic Supercuts, Maximum likelihood
classifier, Kernel methods, Fractals, Wavelets, Random Forest etc. The conventionally
used Supercuts/Dynamic Supercuts method, though using several image parameters
simultaneously, with some of them also being energy dependent, is still a one
dimensional technique, in the sense that the parameters it uses for classification are
treated separately and the possible correlations among the parameters are ignored.
While the segregation potential of the neural network classifier has been investigated in
the past with modest results, one of the main objectives of the thesis is to study the
gamma / hadron segregation potential of various ANN algorithms, some of which are
supposed to be more powerful in terms of better convergence and lower error compared
to the commonly used Backpropagation algorithm. Furthermore, apart from detecting
gamma-ray sources, one of the main aims of the Cerenkov imaging telescopes is also to
reconstruct the energy spectra of the sources. In the thesis work, we have applied
various artificial Neural Network (ANN) algorithms for improving the sensitivity of the
TACTIC telescope. In addition, ANN is also used for determining the energy of the
primary gamma-rays on the basis of their image SIZE, Distance and zenith angle.

A neural network is a parallel distributed information processing structure
consisting of processing elements interconnected together with unidirectional signal
channels called connections. Each processing element has a single output connection
which branches into many collateral connections as desired. Depending upon the
architecture in which the individual neurons are connected and the error minimization
scheme adopted, there can be several possible ANN configurations. While algorithms like
Standard backpropagation and the Resilient backpropation come under the category of
Local search algorithms, Conjugate Gradient methods, Levenberg-Marquardt algorithm,
One Step Secant etc. belong to the category of Global search algorithm. Hybrid algorithm
category constitutes models like Higher Order Neuron and Neuro Fuzzy systems etc. A
brief summary of the work related to gamma / hadron segregation potential of



various ANN algorithms and ANN-based energy estimation procedure for
determining the energy of the primary gamma-ray is given below.

The gamma/hadron segregation potential of various ANN algorithms  was
studied by applying them to the Monte Carlo simulated and actual observational data
on the Crab Nebula. The network used in this work comprises 6 nodes in the input layer
and one neuron in the output layer the value of which is used to categorize the output.
We used the following six image parameters in the ANN-based gamma/hadron
segregation methodology: Zenith angle, SIZE, LENGTH, WIDTH, DISTANCE and FRAC2.
The results obtained suggest that Levenberg-Marquardt method outperforms all other
methods in the ANN domain. Applying this ANN algorithm to ~101.44 h of Crab Nebula
data collected by the TACTIC telescope, during 2005 - 2006, yields an excess of ~
(1141 + 106) with a statistical significance of ~11.07 o, as against an excess of ~(928
+ 100) with a statistical significance of ~ 9.400 obtained with Dynamic Supercuts
selection methodology. The main advantage accruing from the ANN methodology is
that it is more effective at higher energies and this has allowed us to re-determine the
Crab Nebula energy spectrum in the energy range ~1-24 TeV. The results of this study
have been published in [3].

A novel energy reconstruction procedure, based on the utilization of Artificial
Neural Network (ANN), has also been developed for the TACTIC atmospheric Cerenkov
imaging telescope. The procedure uses a 3:30:1 ANN configuration with Resilient
backpropagation algorithm to estimate the energy of a gamma-ray like event on the basis
of its image SIZE, DISTANCE and zenith angle. The new ANN-based energy reconstruction
method, apart from yielding an energy resolution of ~ 26%, which is comparable to that of
other single element imaging telescopes, has the added advantage that it considers zenith
angle dependence as well. The results of this study have been published in [4]. The ANN-
based energy estimation procedure has also been used successfully for determining the
time-averaged energy spectra of Mrk 501 and Mrk 421 which were found to be in high
state by TACTIC on several occasions from 2006 to 2010 [5,6,7].

The contents of the thesis are organized in the following manner. In Chapter
1 of the thesis, we provide an introduction to the field of very high energy gamma-ray
astronomy and Cerenkov imaging technique. Chapter 2 will cover the details regarding
the hardware aspects of the TACTIC telescope. An overview of the ANN  will be
presented in Chapter 3. This chapter will also include the following aspects of the
ANN : Working and architecture of Neural network, Training of ANN, Multilayered
Feed forward Neural Networks, first and second order Learning algorithms. The
comparative performance of the ANN algorithms by applying them to standard
benchmarking problems like the IRIS data, XOR/N-bit parity and two-spiral problems
will be presented in Chapter 4 [8]. In chapter 5 we will study the gamma/hadron
segregation potential of various ANN algorithms by applying them to the Monte Carlo
simulated data and actual TACTIC observation data on the Crab Nebula. The details of
energy reconstruction procedure, based on the utilization of Artificial Neural Network
(ANN), will be presented in Chapter 6. Finally in Chapter 7, we present our main
conclusions.
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Chapter 1

Introduction to Very High Energy
Gamma-Ray Astronomy

1.1 Gamma-Ray astronomy background

The presence of certain ionizing radiation on the surface of Earth was initially pre-
dicted by Rutherford [1.1] after observing the discharge of a gold leaf elestroscope.
This radiation was postulated to be of terrestrial origin until balloon experiments
of Goeckel [1.2], observed that radiation kept decreasing upto an atitude of ~ 1 km,
beyond which it increased. Victor Hess approached this mystery by himself mea-
suring the radiation upto an altitude of ~ 5 km aloft in a balloon. He concluded
that there was a radiation penetrating the atmosphere from the outer space which
was fittingly named as the ‘cosmic-radiation’. These cosmic-rays are now known
to be consisting of variety of highly energetic particles. Over the inter-stellar dis-
tances these charged particles are deflected by the magnetic fields so that by the
time they reach the ground level, all information about their direction is lost. The
neutral component of this cosmic radiation consisting of neutrinos, neutrons and
~v-rays however retain their direction information and are thus of vital astrophysical
significance. However, neutrions have an extremely small interaction cross section
with matter and are thus difficult to detect. The life time of neutrons is too short
to provide an appreciable detectable flux. y-rays on the other hand, can travel over
inter-galactic distances without interacting. More importantly, they are destroyed
rather than scattered by interactions, thus any survived 7-ray will have travelled
directly from the source. The study of y-rays can thus provide invaluable infor-
mation about cosmic-ray sources. It also gives us an insight into the high energy
processes which occur in these extreme astrophysical environments.

The field of y-ray astronomy and astrophysics has witnessed dramatic develop-
ment on the observational and experimental fronts in the recent past. New gen-
eration experiments have been carried out both in space and on ground, following
which our perspective of the high energy universe has been substantially enriched,



both in content and overall range. In the lower energy bracket of the ~-ray win-
dow (0.1 to 100GeV), accessible to the satellite based experiments like the Fermi
LAT launched in 2008, the ~-ray map comprises a large number of galactic and
extragalactic sources (> 2000), including several with no known counterparts in
other regions of the electromagnetic (em) spectrum. Likewise, high energy ~-rays
(100GeV-10’s TeV), accessible to various ground-based Cherenkov imaging tele-
scopes, have enabled us to unequivocally detect various ~-ray source populations
and study their temporal and spatial characteristics at unmatched precision levels.
All these reassuring recent developments on the observational front have made the
~-ray astronomy field very exciting.

1.1.1 Motivation for v-ray observations and terminology
used

Many energetic cosmic processes produce y-ray radiation over a wide range of ener-
gies. Cosmic y-rays span about 10 decades of energy from ~ 10° to ~ 10%¢ eV, which
is wider than the combined range of emission of em radiation from radio-waves to
X-rays. Gamma-rays provide the best window for the study of non-thermal uni-
verse and an excellant tool for probing fundamental physics beyond the reach of
terrestrial accelerators. Apart from detecting new ~-ray sources, one of the main
aims of vy-ray telescopes is to reconstruct the energy spectra of the sources. A
study of the resulting spectral energy distributions can yield valuable information
about the underlying y-ray production mechanisms and unusual astrophysical en-
vironment characterizing these sources. By studying the v-ray emission produced
by Supernova Remnants (SNR) we can determine if it is produced by electrons or
protons and establish whether or not SNRs are the main sites of Galactic cosmic-ray
acceleration. Gamma-ray observation is the most sensitive method to measure the
flux of cosmic electrons in the energy range 20GeV-5TeV because it is claimed to
contain a component which cannot be accounted for by the conventional models of
cosmic-ray propagation and interaction in galaxy.

By studying ~v-ray emission from sources at cosmological distances we can indi-
rectly measure the extragalactic background light (EBL). This is the light emitted
by all extragalactic sources over the history of the universe. Measurement of this
radiation is important as it provides constraints to models of star formation, galaxy
evolution and cosmology. In addition, differences in the observed energy spectrum
of several active galactic nuclei can also be used to study absorption effects at the
source or in the intergalactic medium due to the interaction of ~-rays with the
extragalactic background photons [1.3-1.4].

The term v-ray is generally used to denote electromagnetic photons with ener-
gies above several hundred thousand electron volts (eV). Therefore -rays occupy an
extraordinarily broad and unbounded range of em spectrum. The term ~-ray astron-
omy is too broad and a subdivision is clearly needed. The most logical subdivision



was suggested by Weekes in his review paper [1.5]. He proposed a classification
scheme based primarily on the range of energies over which a detection technique
is used. However, since then, the classification has been modified to account for
certain more divisions and what we report here is an updated nomenclature for
v-ray energy range to reflect the current status. The term high energy [HE] is
used to include y-rays from 30MeV-30GeV, a region which is explored by satellite
based detectors. The region between 30GeV-30TeV, called the very high energy
region [VHE] is narrower than what was choosen in [1.5] originally. The ultra-high
energy (UHE) region from 30TeV-30PeV, describes the range studied through the
air-shower particle detector arrays. Energies above this range i.e > 30PeV is de-
fined as the extremely high energy range (EHE) which can be studied by the air
shower /fluorescence techniques. Table 1.1 summarises the various ranges along with
their detection techniques.

Energy Nomenclature Detection
Range Method
10 — 30MeV Medium Satellite based
Compton telescope
30MeV — 30GeV High(HE) Satellite based
tracking detector
30GeV — 30T eV Very high Ground based
Energy(VHE) | atmospheric Cherenkov

detector

30TeV — 30PeV

Ultra high
Energy(UHE)

Ground based
Particle detector

Ground based
Particle detector

> 30PeV Extremely high

Energy (EHFE)

Table 1.1: v-ray classification on the basis of energy.

1.2 Cosmic-Rays

Until HE accelerators came into being in 1950’s, experiments in the y-ray domain
were conducted with cosmic-rays and particles like muons, pions etc were actually
discovered in cosmic-ray experiments. It was thus natural that while studying -
ray astronomy the questions about origin and composition of cosmic-rays became
of prime importance.

Cosmic radiation consists of subatomic particles that possess a wide range of
energies. The rate at which cosmic-rays hit the Earth varies with their energy.
Low energy cosmic-rays are plentiful (many thousand m=2 s=!). Though some of



the cosmic-rays originate from the Sun, most of them come from sources outside
the solar system. The composition of cosmic radiation is given in Table 1.2. It is

Particle Ratio
Proton 85%
a — particle 12%
Electron 2%
HeavyNucler < 1%
Photon(y — ray) | < 0.2%

Table 1.2: Composition of Cosmic-Rays

clear from the table that a small but important contribution to the composition of
cosmic-rays comes from neutral particles, namely photons.

1.2.1 Air showers: Origin, development and sub-showers

As a high energy cosmic-ray particle enters the Earth’s atmosphere it creates an
extensive air shower (EAS) by interaction with the particles present in the atmo-
sphere. Strong electromagnetic interactions lead to development of air showers. In
these interactions, secondary particles are created which in turn interact with at-
mospheric particles and create new particles via a chain reaction. Thus a cascade of
particles is generated by these interactions which is called an air shower. Photons
interact mainly via electromagnetic interaction, leading to electron-positron pair
production and then by means of bremsstrahlung process (see Appendix), it even-
tually creates the electron-photon showers. Protons, on the other hand, interact
with nuclei of the air molecules via strong interaction leading to hadronic cascades.
In these interactions the particles loose energy till the average energy per particle
drops below the threshold critical energy (~ 86 MeV). At this point the shower
reaches its maximum size called ‘shower maximum’ beyond which particles suffer
energy loss due to ionization, as a result the number of shower particles decay ex-
ponentially and finally the shower dies out.

Electromagnetic showers

In case of an electromagnetic cascade, three processes dominate the longitudnal
development, the bremsstrahlung, the pair production processes and the ionization
processes which causes the shower to disintegrate. A discussion on these production
processes is beyond the scope of this thesis, however a short introduction to these
has been provided in the appendix for the sake of completeness.

High energy photons bombarding the atmosphere, convert into a electron positron
pair in the coulomb field of atomic nuclei (pair production process). The electrons



and positrons are deflected by the nuclei and emit photons via the bremsstrahlung
process. Thus both the processes set an avalanche of particles in tandem which re-
sults in an electromagnetic shower. The shower growth continues till energy of the
particles drops below some critical energy (E.) where the energy loss of electrons by
ionization of the air molecules becomes dominant. At this stage the shower reaches
its maximum and no new particles can be created further. Accordingly the shower
is dissipated by the ionization of the medium.

The characteristic length scale of these interaction processes is given by the
mean free path length. In case of the bremsstrahlung process, this is referred to
as the radiation length X, and is measured in g cm~2. It can be understood as
the mean distance after which a high energy electron loses all but (%) of its initial
energy Fy by the bremsstrahlung process. This can be mathematically represented

by:
dE Ey
)y =0 1.1
where % is the energy loss of an electron due to bremsstrahlung after travelling a
distance x in matter. Integrating the above expression leads to
E(z) = Eg.e” %o (1.2)

In air, the radiation length X is ~ 37.2g cm™2 and the corresponding e-folding

distance for pair production by high energy photons, called the conversion length
X, is ~ %.XO.

The predominant process which determines the lateral shower development is the
multiple coulomb scattering. A charged particle traversing air is deflected through
small angles by the air molecules present in the atmosphere. Most of this deflection
stems from coulomb scattering of electrons or photons against nuclei.

Bremsstrahlung and pair production contribute to the lateral spread of the sec-
ondary particles with respect to the shower axis as well. An electron undergoing
bremsstrahlung radiates a photon in a cone in forward direction with an average
opening angle 9:%, where v is the Lorentz factor. Thus for high energy electrons,
the directional divergence from the shower axis originating from bremsstrahlung is
very small and can be neglected.

The basic properties of the development of the electromagnetic shower can be
seen on the basis of the model proposed by Bethe and Hitler [1.6] . It is assumed that
both the radiation and conversion lengths are equal, namely X, and the incident
energy FEj is divided equally between the secondary particles. Fig 1.1 illustrates the
assumptions. After 'n’ radiation lengths, the shower consists of 2" particles each
having an energy of E(n)= Ey. 2™. The depth of the shower maximum in the
atmosphere, 1,,4., is then given by the expression:

=L X, (1.3)
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Figure 1.1: A simplified model of Electromagnetic cascade.

From above one can obtain the number of particles in the shower maximum to be

Nynas = % (1.4)
where 2/37¢ of the particles are electrons and positrons and the rest are photons.
This simple model predicts an exponential increase in the number of particles
in the initial phase of the shower development. The maximum amount of particles
is proportional to the energy of the primary particle and the depth of the shower
maximum grows logarithmically with the primary energy.

Hadronic showers

The shower development for hadrons(protons) hitting the Earth’s atmosphere
differs slightly from the shower development for photons and electrons discussed
above. Hadrons interact only through the strong interaction with the nuclei of the
air molecules. These interactions are more complex as both hadronic as well as the
electromagnetic showers are involved. In the first interaction of the hadron with a
particle in the Earth’s atmosphere, strong interaction is dominating. The interac-
tion produces not only fragments of the target nucleus, like pions and kaons, but
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nucleons (neutrons and protons) and hyperons are also created. These secondary
particles, are energetic enough to interact strongly, and hence a hadronic cascade
is created.

Neutral pions (7°) which carry about one-third of energy of all generated pions
(7", 77) play an important role in hadronic cascade. The neutral pions decay almost
instantly after a mean lifetime of ~ 107! seconds into two photons as depicted in
Fig 1.2. The photons generate electromagnetic subshowers in the hadronic cascade

Incident
N, P --- High energy nucleons i
n,p - Disi ation product r Pr4m.ary
s -—- Atomic Nuclei of Atmospheric Particle CR+AN --—--> cﬁ + Al\f +ant+b 1|:0

constituents
+other mesons

CR > Incident cosmic-ray
AN > Atmoshperic Nuclei
/
CR > Fragment of the original cosmic- ray

7/
AN > Fragment of the atmospheric Nuclei

JMean Rest
Particle |ife (s) | mass |Decay modes
(MeV)

+ | 260x ot >ty
n 108 13957 b
o>ty
0 |840x
T 1017 13498 | 20 sy 1y
- - 2.20 x fs et 1y
Electromagnetic Muonic Nucleoni ui 106 | 10566 W >e_+"u+"_e
or "soft" or "hard" l:: ec:‘nlgt Bo->e +vptv,
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Figure 1.2: Development of a hadronic cascade. The principal modes of energy
propagation of cosmic-ray cascade are also shown in the figure.

as described in the previous section. The charged pions (7%) have a much longer
lifetime and decay after ~ 1078 seconds mainly into muons (%) which in turn decay
into electrons and neutrinos. The longer lifetime of the charged pions results in an
increasing probability of new interactions with the nuclei of the air molecules during
their lifetime. These interactions give rise to hadronic subshowers in the hadronic
cascade. The different types of subshowers of the hadronic shower can also be seen
in Fig 1.2.



1.2.2 Differences between electromagnetic and hadronic sub-
showers

The interaction length of hadrons is ~ 85 g cm ™2 and is larger as compared to 35

g cm 2 for photons. Therefore the hadrons penetrate deeper into the atmosphere,
leading to a larger shower depth. In these hadronic interactions a large part of the
shower energy is lost in the generation of new particles like muons (u*), mesons,
and other secondary hadrons. The lateral development of electromagnetic showers
on the other hand is determined by elastic coulomb scattering of electrons, thus
for the TeV photons, the mean scattering angle is very small (see Fig 1.3), which
means that the lateral spread of the electromagnetic shower is smaller. The sec-
ondary particles participating in the hadronic shower, on the other hand, receive a
higher transverse momentum by inelastic scattering at extended target particles like
the nuclei of the air molecules. Complex multiparticle processes are involved in the

50 GaV Gamma @ 300 GeV Gamma w 1 TeV Proton w

L] L) o

g £ £

& & 1N

—300m +300m -300m +300m ~300m +300m

400m 400m 400m

k\ T . 2

om 400m om 400m om 400m

Figure 1.3: The vertical development and top view of the Cherenkov pool, for a
50GeV v-ray, 300GeV ~-ray and 1TeV proton initiated simulation showers. Adapted
from www.ast.leeds.ac.uk/fs/showerimages.html.

development of the hadronic shower in contrast to mainly three-particle processes
like bremsstrahlung and pair production in the electromagnetic shower. Therefore,
the hadronic shower is less regular, has larger fluctuations, and contains electro-



magnetic sub-showers that are created by neutral pion decays (Fig 1.3). It is these
differences between the two event species which ground based ~-ray astronomy seeks
to exploit [1.7].

1.3 Ground based gamma-ray astronomy

Several attempts were made in the past by various groups to detect vy-ray sources
using atmospheric Cherenkov technique. Generally speaking, the detection systems
deployed in the past were not sufficiently sensitive and these experiments met with
a limited success only. Ground based VHE ~v-ray astronomy came into prominence
with the first ever detection of TeV ~-ray source, Crab Nebula by the 10 m diameter
Whipple imaging Cherenkov telescope. Since then, VHE ~-ray astronomy, in the
energy range ~ 100GeV- 30TeV, has matured into an exciting field of research.

While as, HE v-rays can be detected from space by space telescopes like the
Large Area Telescope (LAT) on board the Fermi satellite observaory, VHE ~-rays
can be detected from Earth by ground based imaging telescopes like MAGIC, HESS,
VERITAS, Whipple, TACTIC etc. The space based Fermi-LAT consists of an anti-
coincidence shield plus a tracker and a calorimeter, which allows a nearly back-
ground free detection of y-rays in the energy bracket ~ 30MeV-100GeV. It has a
wide field of view of ~ 0.87 steradians and a duty cycle of ~ 100% [1.8]. It works in
survey mode covering the full sky in every 3 hours. In the five years of its operation,
out of ~ 2000 sources detected by it, many of these are unidentified sources. On the
other hand, ground based Imaging Atmospheric Cherenkov telescopes (IACTSs) are
sensitive to a higher energy range between ~ 100GeV to 30TeV. The typical FOV
of IACT is only few degrees (3-5° typical) and they operate in pointing mode with
a modest duty cycle of at best 10-15%, as the observations on 7-ray sources require
moonless and cloud free nights. These telescopes work on the principle of captur-
ing the images of Cherenkov light produced by electromagnetic showers initiated
by ~-rays in the Earth’s atmosphere. The main background affecting the observa-
tions of y-rays using the technique is the overwhelming flux of charged cosmic-rays
(CRs) which is at least 100 times more abundant than the y-rays. This background
is reduced during offline analysis by exploiting certain subtle differences between
the two event species. Using this technique, over a dozen sources were detected in
1990’s with TACTs. The first exploratory instruments were replaced in 2000’s by
more sophisticated instruments employing fast electronics and better designs which
revolutionized the field. Gamma-ray source catalogue now has > 160 sources and
many new populations have been established as the y-ray emitters which include
SNRs, pulsar wind nebulae, radio galaxies and binary systems.

At still higher energies (> 50 TeV), non-imaging air shower detectors identify
showers initiated by photons using different experimental techniques. Unlike the
[ACTs, the non-imaging experiments cover only the northern hemisphere and have
a limited angular resolution (> 4 1°). Despite their better duty cycle (> 90 %)
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and large field of view (> 2 sr) the obtained sensitivity is far lower than those of
[ACTs.

The success of ground based v-ray astronomy over the last two decades is mainly
due to the advent of the Cherenkov imaging technique which allows efficient sepa-
ration of photon induced showers from the huge deluge of the hadron background.
In the following section we shall discuss the technique in detail.

1.3.1 Atmospheric Cherenkov technique

Cherenkov radiaion

Production of light via the Cherenkov effect was initially proposed by Heaviside
[1.9], and arguably, Marie Curie was the first to notice the bluish white light charac-
teristic of Cherenkov radiation emanating from glass vials containing concentrated
radium solution. Since this discovery was made in 1910 around the discovery of nu-
clear radiation, Cherenkov light has been observed in various dielectric media in the
vicinity of radioactive materials [1.10]. The prerequisite properties of the particles
to allow production of this radiation is that apart from being charged, they have
to be very energetic also. Cherenkov radiation can thus be viewed as a shock wave
propagating within a dielectric medium and exciting the medium to emit the radi-
ation. The first systematic study of the effect was made by Mallet who was able to
show that the spectrum was continuous, which distinguishes it from the spectra due
to fluorescence. Cherenkov, then conducted a series of experiments between 1934 to
1938 [1.11] during which he demonstrated that the production site of radiation was
modified by the presence of magnetic fields, i.e, Cherenkov emission in the vicinity
of an uncharged ionizing radiation is due to the secondary particles. The threshold
energy for the emission of Cherenkov light depends on the mass of the particle my
and the refractive index n of the medium.

moc?

vV1—n—2

This implies that light particles like the electrons and positrons dominate Cherenkov
emission in the air showers. As the density of air changes continuously with altitude
and also with the refractive index, the threshold energy as well as the emission angle
depend on the altitude in the atmosphere.

Cherenkov effect

Consider an electron moving with velocity v< (£) in a transparent dielectric
medium of refractive index n as shown in Fig 1.4a. Circles shown represent the
individual atoms of the dielectric medium. Normally these are expected to be
roughly symmetrical and undistorted. However in the region close to the slowly
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moving electron, the electric field of the electron polarizes the atoms of the medium
isotropically, and when the electron moves to another point the distorted atoms
return to their normal shape. However there is a complete symmetry of the po-
larization field surrounding the electron as well as along the trajectory so that as
the particle passes through the medium, the net em field created at large distances
vanishes.

On the other hand if v> (£), the induced polarization vector, instead of pointing
towards the instantaneous position of the electron points towards its earlier position.
This phenomenon which is essentially a retarding effect manifests itself in a flip-over
of the axial conponent of the polarization vector because the electron location itself
becomes a source of radiation with the pulse propagating upwards. This is shown
in Fig 1.4b which shows that while the azimuthal plane symmetry is preserved,
however along the axis, the resultant dipole is apparent even at large distances
from the electron track. Therefore, it is possible for wavelets from all positions to
be in phase so that a resultant field exists even at a distant point. This resultant
radiation is referred to as the Cherenkov radiation. Using Huygens construction as
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depicted in Fig 1.4c, this radiation is seen at a particular angle # with respect to
the particle track. It is important to note here that what is demonstrated is only a
2 dimensional case. In reality, the light originating from each element of the track
is actually propagated along the surface of a cone whose axis coincides with the
track of the particle and whose semi-vertical angle is #. The condition of coherence
implies that the time taken by the light to cover a distance A;B; equals the time
it takes for the electron to cover distance A;A4. Thus ,

ABy_ AAy (1.6)
c/n v '
or .
cost) = n (1.7)

where 3 = 7. It follows from the above equation that:

(a) For a medium of a given refractive index, there is a threshold velocity
Bmin=1/n, below which no radiation is emitted. At this critical velocity the di-
rection of the radiation coincides with that of the particle.

(b) For an ultra-relativistic particle (i.e. 5 ~ 1) there is a maximum angle of

emission given by:
1
. 1.8
cos (n) (1.8)

(c) The radiation occurs mainly in the visible and near visible regions of the elec-
tromagnetic spectrum for which n >1. Emission in the X-ray region is impossible,
because n turns out to be then less 1 in this case. There are two more conditions
which need to be fulfilled to achieve coherence. First, the track length of the particle
in the medium should be large compared with the wavelength () of the radiation
in question; otherwise, diffraction effects dominate. Secondly, the velocity of the
particle must be constant during its passage through the medium, or, to be more
specific, the difference in the time for the particle to traverse successive distance A
should be small compared with the period A/c of the emitted wave. These condi-
tions are easily satisfied in the visible region, even in the presence of energy loss
due to ionization (~ 2 MeV per g cm~2). It may be worth pointing out here that
Cherenkov radiation phenomenon is completely different from recombination and
excitation radiation (radiation associated with the ionization caused by the parti-
cle). Tt also differs fundamentally from bremsstrahlung radiation which arises due
to the deacceleration of the electrons mainly in the coulomb field of a nucleus. In
this sense, bremsstrahlung radiation is akin to the radiation emitted by any ac-
celerated charged particle. On the contrary, Cherenkov radiation is essentially a
cooperative effect arising from the constituents of the medium through which the
electron moves with essentially uniform velocity whose magnitude exceeds ¢/n. Fur-
thermore, the total energy radiated by an electron in the bremsstrahlung process
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is considerably greater than that emitted by Cherenkov radiation, while the very
different spectral distributions in the two cases result in the intensity of Cherenkov
radiation exceeding the bremsstrahlung by a large factor in the visible region.

So far, we have considered the radiation produced by the passage of a point
charge through a dielectric medium, i.e. the normal Cherenkov effect. However,
Cherenkov radiation is also produced when an electric or magnetic dipole passes
through the medium, provided of course, its velocity is above a certain threshold.
The radiation mechanism is the same as for the normal Cherenkov effect, though
here intensity is much lower ( by a factor of 10° to 10° than the normal Cherenkov
effect) due to the fact that the field associated with a dipole falls off rapidly with
distance, as compared to that for a point charge. Spectral distribution of Cherenkov
radiation in this case is (55)d\ as against the (55)dX. A detailed classical treatment
of the problem of Cherenkov emission from moving dipoles has been discussed by
Balazs [1.12].

1.3.2 Characteristics of Cherenkov radiation

Threshold kinetic energy and Cherenkov emission angle

Under the assumption of an exponential atmosphere, the refractive index n at
a height h can be written in the following manner:

n = (1 + ngexp(;b—;l)> (1.9)

where hy = 7.1 kms is the scale height of the atmosphere and ny =2.7 x 10~%. Tt
can be easily found out from Equation (1.7) that the expression connecting kinetic
energy of the particle (T), its rest mass (=mgc?) and Cherenkov emission angle (6)

is given by:
T = <L039 - 1) moc? (1.10)
vn?cos?t — 1

Thus at the threshold (# = 0°), the minimum kinetic energy, T},;, which a particle
should have so that Cherenkov light can be produced, is given by :

T.. — (\/% _ 1) M (1.11)
For electrons of rest mass energy ~ 0.511MeV, T, is ~ 21MeV at sea level.
Variation of T,,;, as a function of the atmospheric height for different particles is
shown in Fig 1.5a. The expression for Cherenkov emission angle (for g ~ 1) as
a function of height 'h’ in the atmosphere also follows from equation (1.7) and is
given by

0 = \/2ngexp (;—IZD (1.12)
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Figure 1.5: (a) Threshold kinetic energy for particles as a function of altitude
for producing Cherenkov light. (b) Cherenkov angle and minimum kinetic energy
required for electrons at different altitudes in the atmosphere.

Variation of # and 7' at different heights can be seen in Fig 1.5b.
Cherenkov pool radius and time duration of the flash

Consider a single fast electron moving vertically downwards in the Earth’s at-
mosphere. Neglecting its scattering and slowing down, let a Cherenkov light pulse
generated at a height h and at an emission angle of #, arrive at the ground at a
point r away from where the electron would have normally hit the ground. Since r,
h and 6, are connected by r= htanf, we have

r(h) = \/2nghexp (%) (1.13)

0

The function r(h) has a maximum value 7,4, at h=nh,.,=2hg and equals ~126m. In
other words, it means that Cherenkov photons produced in the region hy < h < 2hg
reach the ground level with their r values less than r,,,,. The atmospheric pressure
at this typical height is 140g cm™2, with n = 4 x 107, # = 9 x 10~ °radians and
Tnin=56 MeV. In order to calculate the duration of a typical Cherenkov flash, let us
consider a charged particle moving vertically downwards through the atmosphere.
Let hy and h; (where hy > hy) be the heights at which the particle produces
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Cherenkov light in the form of two photon bunches. Assuming a simplified situation
where the Cherenkov light is emitted along the track of the particle itself, the
duration of the Cherenkov flash can be calculated in the following manner:

Time recorded at the ground when the first photon bunch (emitted at t=0 from

a height hy) reaches ground is equal to %fo}”n dh. After a time (hy — hy)/c, the
particle moving with 5 ~ 1 reaches height h; and again emits a bunch of photons
which strike the ground at time (hy — hy)/c + 1/c L Ohln dh. Since the particle
moves faster than the light flash in air, the second bunch arrives at ground earlier

and the difference in the time interval at ground dt is given by :

ho _ hi
ot = 1/ ndh — <(h2 hl) +1/ ndh) (1.14)
Cc Jo c CJo

Using the value of n from equation (1.9) this simplifies to

. Tloho —hl —hg
ot = . [exp( P ) exp( P )] (1.15)

Taking a typical example where hy=6 kms and h,=10 kms ( as in the case of an
actual EAS), the duration of the light flash turns out to be ~1.3ns. However, this
value is found to be ~5 ns if the development of an EAS shower is simulated through
Monte Carlo methods. The discrepancy between these two values is expected be-
cause of the fact that an oversimplified situation has been used to derive the above
equations.

1.3.3 Extinction of Cherenkov light in the atmosphere

On their way to the ground through several kilometers, the Cherenkov photons,
undergo scattering and absorption processes leading to an exponential extinction.
The main dominant sources of extinction are :
Rayleigh Scattering
Scattering of photons by particles which are of smaller wavelength is called the
Rayleigh scattering. The extinction coefficient ag is inversely proportional to fourth
power of wavelength (az oc A~%). Thus mostly the photons with small wavelengths
are scattered.
Mie Scattering
Photons are scattered by the target particles like aerosols with dimensions similar
to wavelength. The dependency of the extinction coefficient on the wavelength is
(cuar oc A~ 115),
Ozone Absorption
At wavelengths below 300 nm, ozone is a significant absorber. The fission of ozone
(O3 + v — O2 4 O) absorbs nearly all photons with wavelengths 200-300nm.

The total attenuation as a result of the above processes is demonstrated pictori-
ally in Fig 1.6. The curves I, IT and III represent the total photons available at ~ 10
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Figure 1.6: Cherenkov photon spectrum before and after attenuation. Adapted
from R.M.Wagner Ph.D thesis Munchen University, 2006.

km altitude, photons available at the ground level after absorption and eventually
at the PMT cathode, respectively.

1.4 Atmospheric imaging Cherenkov technique

1.4.1 Detection principle

The technique essentially employs a wide field optical telescope consisting of a large
reflector with fast photomultiplier tubes (PMTs) based imaging camera in its focal
plane. The light collector of the telescope, located within the Cherenkov light pool
can focus light onto a camera in its focal plane and thereby detect the shower.
For this purpose the telescope’s mirror area needs to be large enough in order to
detect a sufficient number of photons from the shower to discrimnate against optical
background light. The effective detection area of a Cherenkov telescope is given by
the area of the Cherenkov light pool itself which is typically of the order of 10*m?.

The camera at the focal plane, records the Cherenkov light photon distribution
in the form of images. The pre-requisite for this is to have a fine grained camera
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which can resolve details of the shower development to be able to reconstruct shower
characteristics and to uncover the differences between the hadronic and electromag-
netic showers. For this reason the cameras for Cherenkov telescopes consist of PMTs
arranged in a matrix form to collect the reflected light. Furthermore, one needs to
have a large field of view (FOV) to allow for observations of extended sources, and
a very short light integration time in order to be sensitive to short duration pulses
of light produced (~ 5 ns). Apart from this, some online trigger schemes are also
employed which allow to identify the brief and compact Cherenkov images and to
reject light of night sky (LONS) background. The first significant application of
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Figure 1.7: Detection of 7-rays through the atmospheric Cherenkov technique.
Adapted from K.Daniel Ph.D Thesis Munchen University, 2002.

the atmospheric Cherenkov technique to y-ray observations was carried out by the
Crimea group[1.13]. The principle on which this detection technique is based is
illustrated in Fig 1.7. The telescope gets triggered when Cherenkov photons pro-
duced in a y-ray / hadron induced EAS (signal) arrive at the telescope amidst noise
of the night-sky photons (background). As discussed earlier, the Cherenkov emis-
sion angle is ~ 1.36° at sea level and decreases with altitude with the result that
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most of the Cherenkov photons hit the ground within a circle of radius ~ 150m.

With the expectation that the imaging technique would provide vital clues about
the identity of primary particle, imaging technique was originally used for improving
the angular resolution of the atmospheric Cherenkov telescopes. The idea of the
imaging Cherenkov telescopes was proposed in the late 1970s by the Whipple group
[1.14]. The Whipple 10m diameter telescope employed the first imaging system
and operated for more than 10 years with a camera of 37 photomultiplier tubes.
The detection of a y-ray signal from the Crab Nebula by the Whipple system [1.15]
showed for the first time that the imaging Cherenkov telescope does reject the
cosmic-ray background and can have an angular resolution of as good as ~ 0.1°

The image of the light measured with the telescope basically represents the
‘shape’ of the electron-positron cascade when it is at its maximum development
stage. The shape is elongated along the shower axis, parallel to the direction of
the source at which the telescope is pointed. Apart from developing earlier in
the atmosphere, Cherenkov photons produced in a 7-ray cascade also have more
regular extent (at the detector level). In addition they do not have penetrating
particles, like muons, which tend to make the image of a hadron broader and more
irregular. The basic differences in the appearance of the Cherenkov light images of a
v-ray shower (centered in the field of view) and that of a typical background shower
coming from a random direction within the telescopes field of view are the following :
The smaller transverse momenta in electromagnetic interactions, compared to those
in hadronic interactions, implies that the secondary particles in the y-ray shower
are, on an average, closer to the direction of the primary. Also, since there is no
penetrating component, the local contribution to the light is small and fluctuations
in the shower images are far less. The orientation of the roughly elliptical image
of a shower depends on the angle which the shower axis makes with the optical
axis of the telescope. A shower which has its axis parallel to the optical axis of the
telescope and lies upto 150m away from it forms an elliptical image with its major
axis pointing towards the camera centre in the focal plane of the telescope. This
holds true for both 7-rays and hadrons, but it is easier to characterize the axis of
the y-ray shower because of the fact that it is a more compact image. A schematic
comparison of the y-ray and hadron initiated Cherenkov images is shown in Fig 1.8.
For each image, which is essentially elliptical in shape, several image parameters can
be evaluated to characterize its shape and orientation. Detailed investigation of the
intrinsic differences between electromagnetic and hadronic cascade development by
Hillas [1.16], in terms of both longitudinal and transverse development, is crucial to
the design of strategies which optimize separation of these two classes. In practice,
the most predominant source of events detected by Cherenkov telescopes arises from
the proton primaries.
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Figure 1.8: Comparison of Cherenkov images initiated by a ~-ray and a hadron
initiated shower, in the focal plane of the telescope. ~-ray images are roughly
elliptic with major axis pointing towards center of camera, while as hadron images
are irregular with major axis oriented randomly.

1.4.2 Cherenkov image parameters

A Cherenkov imaging telescope records the arrival direction of the individual Cherenkov
photons and the appearance of the recorded image depends upon a number of fac-
tors like the nature and the energy of the incident particle, the arrival direction
and the impact point of the particle trajectory on the ground. The principle of
detecting 7-rays through the imaging technique is depicted further in Fig 1.9a
and Fig 1.9b. Segregating the very high-energy ~-ray events from their cosmic-
ray counterpart is achieved by exploiting the subtle differences that exist in the two
dimensional Cherenkov image characteristics (shape, size and orientation) of the
two event species. Gamma-ray events give rise to shower images which are prefer-
entially oriented towards the source position in the image plane. Apart from being
narrow and compact in shape, these images have a cometary shape with their light
distribution skewed towards their source position in the image plane and become
more elongated as the impact parameter increases. On the other hand, hadronic
events give rise to images that are, on average, broader and longer and are ran-
domly oriented within the field of view of the camera. For each image, which is
essentially elliptical in shape, Hillas parameters [1.17] are calculated to characterize
its shape and orientation. The parameters, as depicted in Fig 1.9¢, are obtained
using moment analysis and are defined as :

LENGTH- The rms spread of light along the major axis of the image (a measure
of the vertical development of the shower).

WIDTH — The rms spread of light along the minor axis of the image (a measure of
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the lateral development of the shower).

DISTANCE- The distance from the centroid of the image to the centre of the field
of view.

(ar)-The angle between the major axis of the image and a line joining the centroid
of the image to the position of the source in the focal plane.

SIZE — Sum of all the signals recorded in the clean Cherenkov image.

FRAC2- The degree of light concentration as determined from the ratio of the two
largest PMT signals to sum of all signals (also referred to as Conc).

In the pioneering work of the Whipple Observatory only one parameter (AZWIDTH)
was used in selecting y-ray events. Later, the technique was refined to Supercuts
/ Dynamic Supercuts procedure where cuts based on the WIDTH and LENGTH
of the image as well as its orientation are used for segregating the y-rays from the
background cosmic-rays.
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1.4.3 Energy threshold and flux sensitivity

Energy threshold (Ej;,) is an important specification of a Cherenkov telescope and is
defined as the minimum 7-ray energy for which the signal-to-noise ratio is sufficient
to adequately trigger the instrument. Expression for Ej, can be determined by
evaluating the number of photoelectrons (Sy.) produced in the light-sensitive PMT
due to the Cherenkov signal and the corresponding noise level (/N,.) which is due
to the fluctuations in Light of night sky (LONS) background induced shot-noise.
Using the above definition it can be found that

1 Q
By n o[ [Qrons X QX7 (1.16)
y'y Acnpmt

where y, = p,/E=0.065 photons m 2GeV ! (in the wavelength range 300 to
700 nm) is a scaling factor for expressing Cherenkov photon density (p,) in terms of
the energy E of the primary. The typical values for the LONS flux being ¢rong ~
(2 x 10" photons m~2s~'sr~!) photons in the above specified wavelength range;
7 is the integration time; A, is the collection area of the light-collector; 1y, is
the quantum efficiency of the PMT and € is the field of view of the telescope. In
the simple formalism, we ignore the wavelength dependence of the Cherenkov and
LONS photons. In reality, however, both Sy, and N, are determined by an integral
over terms with explicit wavelength dependence and convoluted with the spectral
response of the detector. From the above equation, it is clear that we can lower the
energy threshold of a Cherenkov telescope by reducing the noise contribution from
LONS (i.e. choosing minimum possible  x 7). Since the Cherenkov light in an air
shower has a finite temporal and angular spread, there are limitations to decreasing
the energy threshold by reducing the field of view or the integration time. The
most straightforward method to reduce the threshold is by using larger mirror area
and/or using photodetectors with higher quantum efficiency.

Another important parameter of a Cherenkov telescope is its y-ray flux sensitiv-
ity. In the limit of no cosmic-ray background, the flux sensitivity would be simply
determined by the collection area of the telescope as a function of the energy and
the observation time. However, since the source has to be detected in the presence
of a large isotropic cosmic-ray background, the sensitivity of the instrument is de-
termined by its ability to detect a y-ray signal in the presence of this cosmic-ray
background.

Let us assume that the telescope has the power to discriminate between ~y-
ray and hadron-generated Cherenkov events. Defining 1, and 7, as the y-ray and
background cosmic-ray retention factors, after the events recorded by the telescope
have been selected on the basis of some particular feature of the recorded event.
The ‘figure of merit’ or the ‘Quality factor’ QF of a telescope is defined as:

QF = % (1.17)
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For generation-I systems, since there is no way to discriminate between ~-ray
and background cosmic-ray generated Cherenkov events, we have n,=1, n,=1 and
hence QF=1. Ideally one would have liked n, — 1, n, — 0, so that QF>>1. In
other words, it means almost all the cosmic-ray background events are rejected
while most of the y-ray generated events are retained. Generation-II systems and
their more recent modifications attempt to achieve this discrimination. Defining N,
as the minimum number of standard deviations at which a source must be detected
to be acceptable, the expression for NN, is written as:

A (E
N, QT°-5E<%/Q—W% (1.18)

where A,(E) and A,(FE) are the collection areas for 7-rays and background
cosmic-rays respectively; €1 is the solid angle of the telescope; T is the observation
time; and a, and «, (~ 1.7 ) are the integral spectral indices for the ~-ray and
background cosmic-ray fluxes, respectively. Analysis of the above equation shows
that there are several ways to optimize the flux sensitivity of a ~-ray telescope
(i.e, to maximize N,). (a) For typical celestial y-ray sources where o, > 0.85,
improvement in sensitivity can be achieved by operating the telescope at the lowest
possible threshold energy with the bonus that it allows the detection of ~-ray sources
which may have intrinsic energy cutoffs. For ~-ray sources with extremely hard
spectra ( a, <0.85), we can improve the sensitivity by operating the telescope at
higher energies. (b) Significance of a source detection can also be improved by
increasing the observation time. This improvement scales as 7"/ and is applicable
for steady sources. (c) Significance also can be substantially improved by using some
technique which could reject Cherenkov events due to background cosmic-rays i.e.
accomplish QF>>1. This is the backbone of generation-II systems, where QF>7
can be achieved by applying appropriate background rejection methods.

1.5 Challenges of v-ray astronomy

The development of the field of TeV v-ray astronomy has been an uphill task. In-
direct nature of the detection technique along with a need to discrimnate the vy-ray
signal against a huge background of cosmic-ray events makes it a difficult task. In
ground based y-ray astronomy the primary photon is detected indirectly. The y-ray
initiates an electromagnetic cascade through interaction high in the Earth’s atmo-
sphere which acts as a giant local calorimeter. For primary energies ~< 20 TeV
the cascade dies out in the upper atmosphere but the Cherenkov light penetrates
to ground level where it may be collected as an image with a suitable arrangement
of focussing mirrors. Although subject to fluctuations at the point of origin of the
cascade and its subsequent development, the Cherenkov light carries with it the
information pertaining to the exact direction of origin of the primary ~-ray on the
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celestial sphere along with the energy of the initiating primary. Calorimetry should
therefore be possible if the Cherenkov light can be detected in some unambiguous
manner. Unfortunately, since the y-ray signal has to be picked out against a gen-
erally overwhelming background of hadronic cascades induced by the interactions
of protons and the stripped atomic nuclei. It has long been realized that if TeV
~v-ray astronomy is to be viable and a catalogue of statistically significant cosmic
point sources of TeV photons established, then it has to be capable of rejecting
this unwanted hadronic background at a remarkably high level of efficiency, while
simultaneously retaining a majority of the genuine y-ray events. The success of TeV
~v-ray astronomy, at energies > 100GeV, thus mainly depends upon how well the
~v-ray and hadronic cascades can be separated based on the atmospheric Cherenkov
and/or any other promising techniques.

The primary objective of y-ray astronomy in the energy range 100GeV-10TeV
therefore mainly becomes a task of detecting ~-rays in the presence of a dominant
background of hadronic showers, which must be rejected with very high efficiency if
the signal-to-noise ratio of the detection process is to be improved. Extrapolation
of known cosmic point source fluxes of y-rays at several GeV energies into the TeV
range indicates the futility of attempting detection based solely on unprocessed
data. Strategies developed to date, with capability of greater than 99% rejection of
background, exploit three distinct aspects of the ACT process, namely: (a) devel-
opmental and evolutionary differences of electromagnetic and hadronic cascades in
the atmosphere, (b) consequential differences in the process of mapping Cherenkov
photons at ground level, by suitable focusing optics, and (c) registration of the
mapped photons or formation of a picture or image, through employment of some
appropriate, sensitive, fast, wide-angle focal plane detector.

While some minimal discrimination has been shown to be possible in hardware
at the detection stage, the predominantly successful strategies which have so far
evolved have been based on selection and analysis of y-ray candidate events subse-
quent to detection.

1.6 Milestones and present status of the field

The field attained a firm experimental footing with the development of TACT, which
provides a method to effectively discrimnate between the y-ray initiated showers and
the background cosmic-ray showers. A number of TACTs have been put around
the world, which includes Durham, CANGAROO, Telescope Array, Crimean As-
trophysical Observatory, SHALON, TACTIC, Whipple, HEGRA and CAT. The
1990’s saw two particularly important developments: the detection of the first ex-
tragalactic sources by the Whipple Collaboration, starting with the blazars Mrk
421 [1.18] and Markarian 501 [1.19], and the application of the first stereo imaging
technique by the HEGRA array [1.20]. Despite this progress, the relative scarcity
of bright TeV ~-ray sources (< 10 were identified by 2000) highlighted the necessity
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for improved instrumentation. Cherenkov wavefront samplers such as CELESTE
and STACEE attempted to probe to lower energies, and hence higher y-ray fluxes
and larger distances, using converted solar farms; however, the difficulty of dis-
criminating y-rays from the cosmic-ray background using this technique limited its
effectiveness. Starting with the commissioning of H.E.S.S. in 2003, the new gen-
eration of JACTs - H.E.S.S., MAGIC and VERITAS - have provided the required
order of magnitude improvement in sensitivity, and firmly established ~-ray studies
as an important astronomical discipline.

Presently three major stereoscopic imaging atmospheric Cherenkov telescope
systems are in operation globally. H.E.S.S.) located in the Khomas Highland of
Namibia (-23°N, -16°W, altitude 1800 m), consists of four telescopes arranged on a
square with 120 m side length. Each telescope has a mirror area of 107 m? and is
equipped with a 960 pixel camera covering a ~ 5° FOV. Recently a 28 m diameter
TACT with a 2048 pixel imaging camera has been installed at the center of the
array. VERITAS, at the Fred Lawrence Whipple Observatory in southern Arizona
(32°N, 111°W, altitude 1275 m) has similar characteristics, with 4 telescopes of 107
m? area and 499-pixel camera, covering ~ 3.5°. MAGIC (28°N, 17°W, altitude
2225 m) originally consisted of a single, very large reflector (236 m?) on the Canary
island of La Palma, with a ~ 3.5° camera. In 2009, a second telescope with the same
mirror area was installed at a distance of ~ 85 m from the first. The catalog of TeV
sources has grown rapidly with the commissioning of H.E.S.S. It has continued to
expand in recent years with MAGIC and VERITAS becoming operational and the
number of sources has now reached > 160 sources. The source catalog can broadly
be categorized into two classes : The galactic and the extragalactic sources.

1.6.1 Galactic sources

There are presently ~ 110 known TeV v-ray sources within our Galaxy, which are
indicated by their association with known Galactic sources at other wavelengths
[1.21]. Galactic plane is densely populated with TeV +-ray sources, primarily clus-
tered within the inner +£60°, in the galactic longitude (Fig 1.10). Many Galactic
~v-ray sources are extended, allowing detailed studies of source morphology and spa-
tially resolved spectra, while others are time variable and/or periodic. The main
sub source classification can be (a) Galactic center sources (b) Supernova Remnants
(SNR) (c) Pulsar and pulsar wind Nebulae (PWN) (d) Compact object binary sys-
tems (e) stellar clusters and (f) Unidentified VHE ~-ray sources. A brief discussion
on these sub-classes is presented below.

In the galactic center a TeV ~v-ray emitter has been reported by many imag-
ing telescopes. Determining the nature of this source is a difficult task, due to
the complexity of the region, which includes multiple potential counterparts. An
additional, faint, component is also seen, which extends in both directions along
the galactic plane. The extended component is spatially correlated with a complex
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Figure 1.10: Catalogue of VHE sources observed by ground-based Cherenkov tele-
scopes. The TeGeVcat is collecting all the information publicly available about

TeV sources observed by the past generation and current generation of imaging
Cherenkov telescopes. Adapted from The TeGeV Catalogue ASDC.

of giant molecular clouds in the central 200 pc of the Milky Way, and the TeV
emission can be attributed to the decay of neutral pions produced in the interac-
tions of hadronic cosmic-rays with the cloud material. The Galactic Centre is also
a prime candidate region to search for y-ray emission due to dark matter particle
self-annihilation. The Crab Nebula is the nearby remnant of a historical supernova
explosion at a distance of ~ 2kpc, observed in 1054 A.D. There is no detected
shell, and the broadband emission below ~ 100 MeV is dominated by a bright syn-
chrotron nebula, powered by a central pulsar (PSR B0531+21). This pulsar is the
most energetic pulsar in our Galaxy, with a pulse period of 33 ms, and a spin-down
power of 4.6 x10%%ergs—!. The Crab Nebula and Pulsar hold a unique place in the
development of TeV astronomy: The birth of the field as an astronomical discipline,
can be traced to the detection of the Crab Nebula TeV source by the Whipple 10 m
telescope, in the first application of the imaging atmospheric Cherenkov technique.
Subsequently, the Crab Nebula has acted as a bright, standard candle for TeV -
ray observatories. However, recently multiple day-scale flaring events at energies
below 1GeV have been detected by Large Area Fermi Gamma-ray space telescope
[1.22-1.23]. Measurements from Cherenkov imaging telescopes do not support these
results, but are not necessarily in conflict, because of differeing duty cycles.

Pulsar wind nebulae (PWN) are the most abundant class of known VHE emit-
ters in the Galaxy, with ~ 35 firm examples, and numerous other sources where
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the PWN association is more tentative (for reviews see e.g. [1.24-1.28]). The essen-
tial emission mechanisms i.e, shock accelerated leptons producing synchrotron and
inverse Compton radiation have already been described for the case of the Crab
PWN, but the Crab Nebula is far from the typical object. Understanding of the
structure and evolution of PWN has advanced significantly over the past few years,
in particular thanks to the high resolution X-ray imaging provided by Chandra X-
ray telescope. Supernova remnants, are believed to efficiently accelerate particles at
the shock front where the expanding SNR encounters the surrounding medium (e.g.
[1.29]). This likely occurs through diffusive shock acceleration (first order Fermi ac-
celeration), in which charged particles are reflected from magnetic inhomogeneities
and repeatedly cross the shock front, gaining energy with each crossing.

The process of diffusive shock acceleration is not limited to supernova remnant
shells. An alternative scenario invokes particle acceleration at the shock formed by
the collision between the supersonic stellar winds of massive stars in close binary
systems. Stellar winds may also become collectively important in large assemblies
of massive stars. The combined effect of the stellar winds, coupled with the effect
of multiple SNRs, results in an overall wind from the cluster which forms a giant
superbubble in the interstellar medium. Particle acceleration can occur where the
cluster wind interacts with the surrounding medium. Massive star associations are
naturally likely to host other potential source counterparts for TeV emission, such
as compact object binary systems, individual supernova remnants and pulsar wind
nebulae. Despite many early unconfirmed claims, the first definitive detection of
a TeV 7-ray binary system was not published until 2005 [1.30]. The population
has grown slowly, and now consists of four clearly identified systems, plus marginal
evidence for transient emission associated with Cyg X-1. The vy-ray emission from
binaries is believed to be powered either by accretion (most likely onto a black hole),
or by a pulsar wind.

1.6.2 Extragalactic sources

Approximately 1% of all galaxies host an active nucleus; a central compact region
with much higher than normal luminosity. Around 10% of these Active Galactic
Nuclei (AGN) exhibit relativistic jets, powered by accretion onto a supermassive
black hole. Many of the observational characteristics of AGN can be attributed to
the geometry of the system; in particular, the orientation of the jets with respect
to the observer. Blazars, which host a jet oriented at an acute angle to the line
of sight, are of particular interest for y-ray astronomy, as the emission from these
objects is dominated by relativistic beaming effects, which dramatically boost the
observed photon energies and luminosity. The first extragalactic source discovered
at TeV energies was Markarian 421, a blazar of the BL Lacertae sub-class. The
extragalactic TeV catalog now comprises ~ 50 objects, and continues to increase
steadily. The majority (~ 80%) of the known TeV blazars are high-frequency peaked
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objects (HBL). The mechanisms which drive the high energy emission from blazars
remain poorly understood, Briefly, in leptonic scenarios, a population of electrons is
accelerated to TeV energies, typically through Fermi acceleration by shocks in the
AGN jet. These electrons then cool by radiating X-ray synchrotron photons. TeV
emission results from inverse Compton interactions of the electrons with either their
self-generated synchrotron photons, or an external photon field. The strong correla-
tion between X-ray and TeV emission which is often observed provides evidence for
a common origin. Hadronic models are less favoured, because the cooling times for
the relevant processes are long, making rapid variability difficult to explain. Many
of the AGN detected at TeV energies exhibit extreme variability. The timescales
can range from minutes to days to months, and the observed flux can change by
more than an order of magnitude. Such rapid variability can be used to place con-
straints on the size of the emission region. Most distant object detected is 3C279
[1.31], with a relatively modest redshift of z ~ 0.5362. The population is truncated
at large distances due to the absorption of TeV v-rays by electron-positron pair pro-
duction with the low energy photons of the extragalactic background light (EBL).
This effect is energy dependent, and can thus strongly modify the observed VHE
spectra of extragalactic sources. While this limits the observation of distant TeV
sources, it provides a mechanism by which to infer the intensity of the EBL, by
applying assumptions about the intrinsic spectra at the source [1.32]. TeV blazar
observations have also been suggested as probes of other physical phenomena, such
as the acceleration and propagation of ultra-high energy cosmic rays etc [1.33-1.34].
Nearby radio galaxies are another class of extra-galactic TeV ~-ray sources. These
are the sources in which the jet is not directly oriented towards the line-of-sight,
but provide an alternative method by which to investigate the particle acceleration
and ~-ray emission from relativistic outflows in AGN. The advantage of studying
such objects lies in the fact that these jets can be resolved from radio to X-ray
wavelengths, allowing the possibility of correlating the ~-ray emission state with
observed changes in the jet structure. Three radio galaxies have been identified as
TeV emitters: M 87, Centaurus A and NGC 1275. M87 is the most well studied of
these, and was first reported as a y-ray source by the HEGRA collaboration [1.35].
M 87 is a giant radio galaxy at a distance of ~ 16.7 Mpc, displaying a prominent
misaligned jet, with an orientation angle of < 20° to the line-of-sight. Starburst
galaxies are yet another important class of extragalactic sources. These exhibit an
extremely high rate of star formation, sometimes triggered by interaction with an-
other galaxy. High cosmic-ray and gas densities in the starburst region make these
objects promising targets for y-ray observations, with emission predicted to result
from the interactions of hadronic cosmic-rays in the dense gas. TeV emission has
now been identified from two starburst galaxies: M 82 [1.36] and NGC 253 [1.36].
M 82 is a bright galaxy located at a distance of ~ 3.9 Mpc, with an active starburst
region at its centre. The star formation rate in this region is approximately 10
times that of the Milky Way, with an estimated supernova rate of ~ 0.1 to 0.3 per
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year. In addition to above, there are some other important classes of sources which
deserve a mention e.g., the Large Magellenic Cloud which however are predicted to
give fluxes below the current instrument sensitivity in the TeV domain.

A summary of the main galactic and extragalactic sources is presented in Table

1.3 below
Source type | Total detected Source type Total detected
Binary 5 Shell 13
SNR 9 FSRQ 3
HBL 41 Massive star cluster 4
LBL 1 XRB 3
IBL UID 30
PWN 35 FRI 3
PSR 4 SNR/Molec. cloud 9

Table 1.3: Various types of TeV sources; SNR=Supernova remnant; HBL=High
energy peaked BL lac object; LBL=Low energy peaked BL lac object; IBL= In-
termediate energy peaked BL lac object; PWN=Pulsar wind nebulae; PSR= Pul-
sar; FSRQ=FIlat spectrum radio quasar; XRB=X-ray binary; UID=Unidentified

sources; FRI= Fraunhofer radio galaxies
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Chapter 2

TACTIC telescope : Details and
Performance

The TACTIC (TeV Atmospheric Cherenkov Telescope with Imaging Camera) 7-
ray telescope [2.1] has been in operation at Mt. Abu (24.6° N, 72.7° E, 1300m
asl), India, for the last several years. The telescope uses a tessellated light-collector
of area ~ 9.5m? which is capable of tracking a celestial source across the sky. It
deploys a 349-pixel imaging camera, with a uniform pixel resolution of ~ 0.3° and a
~ 6°x6° field-of-view, to take a fast snapshot of the atmospheric Cherenkov events
produced by an incoming cosmic-ray particle or a y-ray photon with an energy
above ~1TeV. The photographs of the TACTIC imaging telescope and its back-end
signal processing electronics are shown in Fig 2.1

2.1 Observatory site, mechanical assembly and
drive control

Keeping in mind the overall scientific requirements of a good astronomical site for
atmospheric Cherenkov systems, a comprehensive site survey program was under-
taken by us in 1993 [2.2] and Mt.Abu (24.63°N, 72.75°E, 1300m asl), a hill resort
in Western Rajasthan (India) was found to be a suitable location in the country for
setting up the TACTIC telescope.

The main sub-assemblies of the TACTIC telescope are : mirror basket, mirror
fixing /adjusting frames, zenithal and azimuthal gear assembly, encoders/motors for
its two axes, camera support boom assembly and the photomultiplier tube-based
imaging camera. A three dimensional truss type structure has been used to support
the mirror frame. The mirror basket consists of a 3 layer welded mildsteel tubular
grid structure. The individual mirror facets (34 in number, each with a diameter
60 cm and weighing around 20 kg) are supported on three levelling studs, so that
desired inclination of the specific mirror with respect to the telescope axis can be
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Figure 2.1: (a) Photograph of the 349-pixel TACTIC imaging telescope (b) Photo-
graph of back-end signal processing electronics used in the telescope.

achieved. The weight of the moving part of the telescope is around 6.5 tons. The
zenithal motion to the telescope is given from only one end of the basket. Five
stage gear box has been used in the zenithal drive of the telescope and a four stage
gear box has been used in the azimuth drive. A large capacity circular cable drag
chain has been provided for easy and free movement of the nearly 700 signal and
high voltage cables.

The need for using a large light collector aperture (~3.5m) and the large tele-
scope weight (~ 6.5 tons) has led to the choice of an altitude-azimuth (alt-azm)
mounting for the TACTIC telescope, as against the comparatively simpler equa-
torial mounting. The main advantage of the alt-azm mount is that the telescope
weight is supported uniformly on a horizontally-placed central thrust-bearing. The
telescope uses two 100 N ¢m hybrid stepper motors (Pacific Scientific make, Model
H 31NREB, NEMA Size 34) for driving its azimuthal and zenithal axes through
multistage gear-trains. The speed and direction control for each axis of the tele-
scope is implemented through an in-house developed CAMAC-based Stepper Motor
Controller. The two resolvers, coupled to 16-bit resolution decoders, were calibrated
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on a precision indexing table (resolution ~0.5 arc-sec; accuracy ~5 arc-sec) and it
was found that the error profiles are largely of systematic nature [2.3]. Accordingly,
a software-based procedure has been successfully developed for compensating for
this systematic error-profile of the encoders. An Artificial Neural Network based
error compensation methodology has also been established for this error compensa-
tion [2.4]. A GPS based CAMAC-compatible digital clock (Hytec Electronics Ltd.
make; GPS92) with a resolution of ~10 ns and absolute time accuracy of ~100
ns, is used to compute the source co-ordinates in real time. The new co-ordinates
of the source are calculated after every second while tracking a candidate source.
More details regarding various hardware components of the telescope drive system
are discussed in [2.5].

The user friendly in-house developed tracking system software provides an inde-
pendent movement for the zenithal and azimuthal axes so that a matching between
the telescope pointing direction and the source direction is obtained with an accu-
racy better than +2 arc-min. Once the error goes outside the permissible bounds
of <2 arc-min in case of either axis, at a zenith angle >7°, a correction cycle (in the
form of temporary halt or faster movement at a stepping rate of ~100 Hz) is applied
till the corresponding offset gets restored to within <1.0 arc-min. While this on-off
type of correction cycle works perfectly for correcting the zenithal error, irrespective
of the source declination, following the same principle in the azimuth axis works
properly for only those sources which have a minimum zenith angle of 7°. For
sources which have a minimum zenith angle in the range 2° - 7°, we have provided
for ramp-up correction cycle (with stepping rates upto 400 Hz), for tracking them
close to their upper transit, to avoid the problem of indefinite chase which would
have otherwise occurred if the correction was performed at a stepping rate of 100
Hz. Furthermore, since an azimuth error upto ~15 arc-min can be easily tolerated
at a typical zenith angle of around 3° without leading to any serious deterioration
in the pointing direction of the telescope, the permissible azimuth error band has
been accordingly dynamically widened from ~2 arc-min to ~15 arc-min, depending
on the zenith angle of the source, so that frequent correction cycles leading to a
possible 'hunting’ problem can be avoided. Fig 2.2 gives the representative error
profiles in the zenith, azimuth and pointing angles of the telescope during tracking
of the Crab Nebula (declination ~ 22.01° N; zenith angle ~ 2.60° at upper transit)
for ~6 hours.

The tracking accuracy of the telescope is also checked on a regular basis with
so called "point runs’, where a reasonably bright star, having a declination close to
that of the candidate y-ray source is tracked continuously for ~ 5 hours. The point
run calibration data (corrected zenith and azimuth angle of the telescope when the
star image is centered) are then incorporated in the telescope drive system software
so that appropriate corrections can be applied directly in real time while tracking
a candidate y-ray source.
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Figure 2.2: Representative error-profiles in the (a) zenith, (b) azimuth and (c)
pointing angles of the TACTIC telescope, obtained while tracking the Crab Nebula
(declination ~ 22.01° N; zenith angle ~ 2.60° at upper transit) for ~6h.

2.2 Light-collector design of the TACTIC tele-
scope

The TACTIC light-collector with a collection area of ~9.5m? uses 34 front-face
aluminium-coated, glass spherical mirrors of 60cm diameter each with the following
characteristics (i) focal length ~400cm, (ii) surface figure ~ few A (iii) reflection
coefficient >80% at a wavelength of ~400nm and (iv) thickness 20mm to 40mm. The
shorter focal length facets are deployed close to the principal axis of the basket while
the longer focal length facets are deployed around the periphery. The peripheral
mirrors have the effect of increasing the overall spot size as they function in an
off-axis incidence mode.

The alignment of the various mirror facets is done by a two step process. In
the first step, the orientation angle and the focal distance of the mirror facet pole
is precalculated from geometrical considerations and the orientation of the mirror
to within an error of ~ 1° is adjusted using a dummy facet at all the locations.
The orientation of the dummy facet is set by adjusting the 3 ball-joints which
couple the triangular mirror holding frame to the mirror basket. In the second
step, the individual mirror facets of the telescope are further aligned precisely using
an indigenously developed laser plumb-line. With telescope pointed in the vertical
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direction, an individual mirror facet is installed at its pre-designated location and
the laser plumb line is suspended over it. The mirror facet is then slowly adjusted
such that the reflected beam hits the centre of the focal plane. This fine adjustment
is done by varying the gaps at the 3 locations below the mirror facet where it rests
on the triangular holding frame. The above procedure is repeated for a total of 5
points on each mirror and these preselected points are the pole of the mirror facet
and four equidistant points on the periphery of the mirror. Using this technique
for all the mirror facets, one at a time, a common focus with the minimum possible
image spread was obtained at a focal plane distance of 386¢m instead of at 400cm,
as would have been expected for a standard paraboloid or a Davies-Cotton design
of the reflector. This value of focal plane distance was chosen on the basis of the
simulation results [2.6]. The alignment of the mirror facets is further confirmed by
observing a bright star image at the focal plane. Gross misalignment in any of the
facets is easily identified as it results in multiple images being seen on the focal
plane.

In order to evaluate the optical quality of the light collector experimentally,
the telescope was pointed towards the bright star (-Tauri and its image recorded by
monitoring the anode current of the central pixel of the imaging camera. The anode
current versus angular offset plot is shown in Fig 2.3a. The point-spread function
shown has a FWHM of ~ 0.185° (=12.5mm) and Dgy ~ 0.34° (=22.8mm). Here,
Dyg is defined as the diameter of circle, concentric with the centroid of the image,
within which 90% of reflected rays lie. An image of the star Sirius recorded at the
focal plane of the telescope has also been shown in Fig 2.3b and it has superimposed
on it two circles which correspond to the diameter of the pixel and measured Dy,
value calculated on the basis of Fig 2.3a.

2.3 The imaging camera

The camera frame is made up of two bmm thick aluminium plates in which 19mm
diameter holes are drilled at a pitch of 22mm corresponding to the locations of the
349 pixels. The photomultiplier tube is held in place by a metallic collar fixed to
its socket which in turn is held to the rear plate by a specially designed fastner.
The central pixel of the camera which is on the principal axis of the light collector
is used for checking the alignment of the mirror facets and the tracking/pointing
accuracy of the telescope. The pixels are numbered sequentially clockwise from the
central pixel which is designated as No.1. This arrangement has the advantage of
not disturbing the numbering subsequently as the number of operating pixels was
increased from 81 in 1997 to 349 in the year 2001. The camera mounting system has
a provision of varying its distance from the mirror basket by about £+20cm which
is very useful in optimizing the focal plane distance for obtaining the best possible
point spread function.
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Figure 2.3: (a) Measured point spread function of the TACTIC telescope light
collector. (b) Photograph of the image produced by Sirius. Circles superimposed
on the image have diameters ~ 0.31° and ~ 0.34° and represent the diameter of the
camera pixels and Dygg, respectively.

2.3.1 Photomultiplier tubes and light guides

The imaging camera uses 19mm diameter photomultiplier tubes (ETL-9083 UVB).
The bialkali photocathode has a maximum quantum efficiency of ~ 27% at 340nm
and the use of UV glass for the window has enhanced its sensitivity in the 280-
300nm wavelength band. The 10 stage linear focussed photomultiplier tube (PMT)
has a rise time of ~1.8ns which is compatible with the time profile of the Cherenkov
pulse. A low current zener diode-based voltage divider network (VDN) is used with
the PMT. This VDN design [2.7] has the advantage of ensuring stable voltages at
the last two dynodes with VDN current of only about 240uA which is a factor of 5
less than the minimum current recommended for a resistive VDN. The VDN uses
negative voltage and the photocathode is at a high voltage of 1000-1400V while the
anode is at the ground potential. The VDN of the PMT is permanently soldered to
its socket and two R(G174 coaxial cables from each VDN circuit board are terminated
with coaxial connectors on the connector panels fixed to 4 sides of the camera. The
high voltage cable has a plug type SHV connector, while the signal cable uses a
BNC connector thereby preventing the possibility of wrong connections.

The Compound Parabolic Concentrator (CPC) shape was chosen for the light
guides to ensure better light collection efficiency and reduction in the background
light falling on the photomultipliers. After prolonged trials with various materials
the light guides were made of SS-304. Some of the important geometrical parameters
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of the CPCs are the following : height ~17.6 mm, entry aperture ~21.0 mm; exit
aperture ~15.0 mm; acceptance angle ~45.58". The light collection of the CPC,
which includes both the geometrical collection efficiency and the reflectivity of the
surface was experimentally measured to be ~65%.

2.4 Backend signal processing electronics

The image of a typical atmospheric Cherenkov event is registered in the form of
varying amplitude pulses of ~ 3mV - 60 mV produced by a group of 5-20 pixels
of the camera. These voltage pulses are brought to the control room, using 55m
long high quality RG 58 coaxial cables. In-house developed fast NIM Hex amplifier
modules with a user selectable gain range of 2-50 and amplitude discriminator
modules of 50 -500mV range are used for amplification and threshold selection
of the PMT signals. The complete back end instrumentation (Fig 2.4) based on
inhouse developed medium channel density modules is housed in seven 19 inch
racks of 36 U height (Fig 2.1b). One of the two outputs of a discriminator channel
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Figure 2.4: Block diagram of the back-end signal processing electronics used in
the TACTIC imaging element; TTG - TACTIC Trigger generator; PCR-Prompt
Coincidence Rate ; CCR- Chance Coincidence Rate.

is used for monitoring the single channel rate with a CAMAC scaler while the other
output is connected to the trigger generator for trigger generation. The outputs
from each of the four independently operating trigger generator modules are then
collated in an Event Handler which generates the 22ns duration gate pulse and
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interrupts the data acquisition for reading the charge ADC data from all the 349
pixels. The final trigger pulse is also used for latching the GPS-based clock. The
scalers and charge-to-digital converters (CDC) for the 349 channels use 5 CAMAC
crates each. Fach of these crates is controlled using an in-house developed multicrate
CAMAC controller and five such controllers are daisy chained and connected to a
data acquisition PC. A similar strategy following a custom built standard has been
used for the computer-programmable high voltage units.

2.4.1 Trigger generation

The imaging camera uses a programmable topological trigger [2.8] which can pick
up events with a variety of trigger configurations. As the trigger scheme is not
hard wired, a number of coincidence trigger options ( e.g Nearest Neighbour Pairs,
Nearest Neighbour Non-collinear Triplets and Nearest Neighbour Non-Collinear
Quadruplets) can be generated under software control. The trigger criteria have
been implemented by dividing these inner 240 pixels into 20 groups of 12 (3 x4)
pixels. A section of 5 such groups is connected to a TACTIC Trigger Generator
(TTG) module and a total of 4 TTGs are required for a maximum of 15x16 matrix
of trigger pixels. The trigger scheme has been designed around 16k x 4 bit fast
static RAM (Toshiba make TC55B417; access time of < 8ns). Each of the 4 TTG
modules uses 5 memory ICs and has horizontal cascading built into it. The TTG
operation starts with writing of the data, as per a user defined topology, from a
disk file into each of its memories under CAMAC control. Apart from generating
the prompt trigger, the trigger generator has a provision for producing a chance co-
incidence output based on 2C, combinations from various groups of closely spaced
12 channels. This chance coincidence output is used as a system monitor for eval-
uating its overall functioning during an observation run. Monitoring of the chance
coincidence rate has also helped in keeping a close check on the operation of the
telescope and the quality of the data collected by it. Other details regarding the
design, implementation and performance evaluation of the programmable topologi-
cal trigger generator for the 349-pixel imaging camera of the TACTIC telescope are
discussed in [2.9].

2.5 Data acquisition and control system

The data acquisition and control system of the telescope has been designed around
a network of PCs running the QNX (version 4.25 [2.10]) real-time operating system.
The software is designed for the real time acquisition of event and calibration data
and on-line display of telescope status in terms of prompt and chance coincidence
rates and the functional status of each of the 349 pixels of the camera. The QNX
operating system was chosen for its multitasking, priority-driven scheduling and
fast context switching capabilities. In addition, the operating system also provides
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a powerful set of interprocess communication capabilities via messages, proxies and
signals. The data acquisition and control of the TACTIC is handled by a network
of three personal computers. While one PC is used to monitor the scaler rates and
control the high voltage (HV) to the photomultipliers, the other PC handles the
acquisition of the event and calibration data and the programming of the TTGs.
These two front-end PCs, referred to as the rate stabilization node and the data
acquisition node respectively, along with a master node form the multinode Data
Acquisition and Control network of the TACTIC Imaging telescope. All executable
routines stored on the master node are spawned on to the other two front-end nodes
as and when required. The same network is extended to two more LINUX-based
PCs which are used for on-line data analysis and archiving. An event handler
module controls the whole process of data acquisition and also provides the link
between the TACTIC hardware and the application software. The event handler
accepts the atmospheric Cherenkov events, calibration and chance trigger outputs
from various TTG modules and interrupts the front end data acquisition node.
The system acquires the 349 channel CDC data for the trigger selected atmospheric
Cherenkov events, relative calibration flashes generated by the calibration LED
and sky pedestal events, in addition to CDC data for the 4 absolute calibration
channels. The high voltage and scaler data are also logged continuously, though
at a much lower frequency. At event occurrence the event handler also generates a
TTL output for latching the system clock and a 20 ns wide NIM pulse for gating
the CDC modules. The dead time of the system has been experimentally measured
to be ~2.5ms by collecting the relative calibration data along with absolute time
information at a trigger rate of ~400Hz. Other details regarding hardware and
software features of the data acquisition and control system of the telescope are
discussed in [2.11].

A cost-effective method for operating the imaging camera of the TACTIC ~-
ray telescope at stable single channel rates (SCR) and safe anode current values
is being used despite variations in the light of the night sky experienced by the
individual pixels from time to time [2.12]. The camera operates 13 PMTs ( 9 in
the central region and 4 in the periphery of the camera) with fixed high voltages
and the remaining 336 pixels at different high voltages to ensure their operation
within a pre-determined Single Channel Rate (SCR) range. The purpose behind
using the central 9 pixels of the camera at fixed high voltages is to facilitate the
gain normalization (flat fielding) of the remaining 336 camera pixels, so that the
event sizes ( = sum of CDC counts in the clean, flat-fielded image) recorded during a
nights observations can be directly compared to one another. Operation of the pixels
in a narrow SCR band has the advantage of ensuring a stable chance coincidence
rate which can be used as a system diagnostic parameter. An elaborate algorithm
[2.12] has been developed to monitor the SCR rates of all pixels using the CAMAC
front ends and ensure their operation within a narrow range despite changes in the
background light level incident on them due to changes in the sky brightness and
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star-field rotation. The algorithm also ensures that all the pixels of the camera
operate within safe anode current ranges. The feedback loop of the algorithm
changes the high voltage to the various pixels using multichannel high voltage unit
which has a resolution of 1V. The decision of operating a pixel under enhanced
light levels is solely based on the comparison of the SCR and applied high voltage
with reference data generated under controlled light level conditions. A detailed
description of the single channel rate stabilization scheme can be found in [2.12].

2.6 Relative and absolute gain calibration scheme

The PMT calibration scheme employed for TACTIC has two parts, viz., relative gain
calibration and absolute gain calibration. In the relative gain calibration scheme,
we use a high intensity blue LED ( Nichia Japan make SPB 500) at a distance of
~2m from the camera to determine the relative gain of the imaging camera pixels.
The LED has been provided with a light-diffusing medium in front of it to ensure
the uniformity of its photon field within ~4 6%. The mean light intensity from the
pulsed LED recorded by each pixel, in response to 2000 light flashes is subsequently
used for off-line relative gain calibration of the imaging camera.

The absolute gain calibration system of the camera involves monitoring the ab-
solute gain of a set of 4 gain calibrated pixels placed at the periphery of the camera.
Since measurement of the absolute gains of these PMTs by determining their single
photoelectron peaks a number of times during an observation run is rather time
consuming, we have instead used a relatively simpler method of measuring the light
pulser yield of a calibrated source for the in-situ determination of the absolute gain
of these calibration channels. The calibrated light sources used are the Am?*!-
based light pulsers (Scionix Holland BV make; dimensions of YAP:Ce pulser units
- 4 mmx1 mm) which produce fast optical flashes at an average rate of ~20 Hz
with maximum emission at a wavelength of ~370nm. After taking several mea-
surements of single photoelectron peak and the radioactive light pulser (RLP) yield
under dark room conditions to validate the reproducibility of the measurements
and for preparing the reference data base, the PMTs of these calibration channels
are mounted permanently with radioactive light pulsers. A collimator is also used
during the mounting of a light pulser on a particular tube so that the number of
photoelectrons per pulse is ~500 pe. These calibration pixels are operated at fixed
high voltage values and any changes in the RLP yield measured during actual ob-
servations, are then attributed to actual gain change of the pixels. Since the 4
calibration pixels are also partially exposed to the light flashes from the LED dur-
ing the relative calibration run, it becomes possible to determine the gain of all the
pixels of the camera. A representative example of single photoelectron response of
one of the PMT’s is shown in Fig 2.5a. The mean amplitude of the single photoelec-
tron peak (indicated by Agpp in Fig 2.5a) is then determined by fitting a Gaussian
distribution function to the differential rate curve. Fig 2.5b gives the pulse height
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distribution of the light flashes obtained with one of the radioactive light pulsers.
The underlying principle for converting the charge content of an uncalibrated pixel
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Figure 2.5: (a) An example of single photoelectron peak obtained for one of the
calibration pixels at different values of HV. (b) Representative example of the pulse
height distribution obtained with an Am?*'-based light pulser.

from CDC counts to photoelectrons, uses the fact that the calibration pixels are also
exposed to the light flashes from the LED during the relative calibration run and
hence it becomes possible to obtain the conversion factors for all the remaining 345
pixels of the camera [2.13]. The conversion for image size in CDC counts to number
of photoelectrons has also been performed independently by using the excess noise
factor method. The analysis of relative calibration data yields a value of 1pe =
(6.5£1.2) CDC for this conversion factor when an average value of ~1.7 is used for
excess noise factor of the photomultiplier tubes.

2.7 Monte Carlo simulations

Due to the non-availability of a calibrated beam of very high energy v-ray pho-
tons, detailed Monte Carlo simulations offer the only way to benchmark the design
and performance of an atmospheric Cherenkov imaging telescope. Measurements of
absolute v-ray flux and energy spectra of established ~-ray sources, as well as deter-
mination of upper limits on y-ray emission from quiet objects also rely heavily on
Monte Carlo predictions. We have used the CORSIKA (version 5.6211) air shower
simulation code [2.14] for predicting and optimizing the performance of the TAC-
TIC imaging telescope. The complete execution of the Monte Carlo simulations for
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TACTIC telescope was subdivided into two steps. The first part comprised gener-
ating the air showers induced by different primaries and recording the relevant raw
Cherenkov data (data base generation). Folding in the light collector characteris-
tics and PMT detector response was performed in the second part. The simulated
data-base for ~-ray showers used about 34000 showers in the energy range 0.2-
20TeV with an impact parameter of 5-250m. These showers have been generated at
5 different zenith angles (6= 5°, 15°, 25°, 35° and 45°). A data-base of about 39000
proton initiated showers in the energy range 0.4-40TeV, were used for studying the
gamma/hadron separation capability of the telescope. The incidence angle of the
proton showers was simulated by randomizing the shower directions in a field of view
of 6° x6° around the pointing direction of the telescope. The Cherenkov photons are
ray-traced to the detector focal plane and the number of photoelectrons (pe) likely
to be registered in a PMT pixel are inferred after folding in the relevant optical
characteristics of the mirrors, the metallic compound-paraboloid light concentrator
at the entrance window of the pixels and the photocathode spectral response. The
Cherenkov photon data-base, consisting of number of photoelectrons registered by
each pixel, is then subjected to noise injection, trigger condition check and image
cleaning. The resulting data-bases, consisting of pe distribution in the imaging
camera at various core distances and zenith angles are then used for estimating (a)
trigger efficiency (b) effective detection area (c) optimum ranges of Cherenkov image
parameters for discriminating between 7-ray and cosmic-ray events (d) differential
count rate for y-ray and cosmic-ray events and (e) effective threshold energy of the
telescope for y-ray and cosmic-ray proton events. The clean Cherenkov images were
characterized by calculating their standard image parameters (defined in chapter 1)
LENGTH, WIDTH, DISTANCE, «, SIZE and FRAC2 [2.15,2.16]. The standard
Dynamic Supercuts [2.17] procedure was used to separate vy-ray like images from
the background cosmic-rays. In this method the image parameters listed above are
adjusted to maximise the ~-ray signal in comparison to the background retention
due to the cosmic-rays. The optimized vaules for these imaging parameters used
are :

0.11° < LENGTH < (0.260 4+ 0.0265 x In S)°,
0.06° < WIDTH < (0.110 + 0.0120 x In S)°,
0.52° < DISTANCE < 1.27°cos"%%0,
SIZE > 450d.c ( where 6.5 digital counts=1.0 pe ),
a < 18° and
FRAC2 > 0.35.
The effective collection area of the telescope, for v-ray and proton events, at two
representative zenith angles values of 15° and 35° is shown in Fig 2.6a and Fig 2.6b,
respectively.
These results were obtained by using the nearest neighbour topological-trigger
with 11x11 trigger field and a single pixel threshold of >25 pe. Fig 2.6c and
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Figure 2.6: Effective collection area of the telescope for (a) y-rays and (b) protons
as a function of the primary energy at zenith angles of 15° and 35°. Differential
trigger rates for (c) y-rays and (d) proton events as a function of the primary energy.

2.6d show the corresponding differential event rates as a function of the primary
energy for 7-ray and proton events, respectively. Defined as the energy where
the differential rate peaks and assuming a Crab Nebula type of spectrum with a
differential exponent of ~ -2.62 [2.18], it is evident from Fig 2.6¢ that the ~-ray
trigger threshold energy of the telescope is ~ 1.2TeV. The corresponding trigger
threshold energy of the telescope for protons turns out to be to ~ 2.5TeV (Fig
2.6d.)

2.7.1 Comparison with real data

The agreement between the predictions from Monte Carlo simulations and the ac-
tual performance of the telescope was first checked by comparing the observed
trigger rate of the telescope with the predicted value. The expected prompt co-
incidence rate at a zenith angle of 15° turns out to be ~ 2.5 Hz for the nearest
neighbour pair trigger mode. This value has been obtained on the basis of integrat-
ing the differential rate curve for protons (Fig 2.6d). Reasonably good matching of
this with the experimentally observed value of ~ 2-3 Hz suggests that the response
of the telescope is very close to that predicted by simulations. A representative
example of the behaviour of prompt coincidence rate as a function of zenith angle
is shown in Fig 2.7. The result shown in Fig 2.7, is the analysis of the NN-2 trigger
mode ON-0506 data collected for ~101.04 h. The total data in this spell has been
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Figure 2.7: Measured cosmic ray trigger rate as a function of zenith angle (a)ON-
0506 spell collected with NN-2 trigger configuration (b) ON-0708 spell collected
with NN-3 trigger configuration. Normalized cosmic-ray rate as a function of run
number (¢) ON-0506 spell (d)ON-0708 spell. The segmentation of the data into
various sub spells, on the basis of one lunation period, are indicated by full vertical
lines.

divided into sub spells, where each sub spell corresponds to one lunation period.
Each point in this plot represents a 10 minute observation run and the event rate
has been calculated by dividing the number of events recorded in 600s. The be-
havior of the measured values of cosmic-ray rate as a function of zenith angle for
the ON-0708 data taken with NN-3 trigger mode is also shown in Fig 2.7. In this
case, the total data has been divided into 5 sub spells. The corresponding Monte
Carlo estimates (solid line), with Rog(6) ~ 2.01(cos0)*% Hz for NN-2 trigger and
Rer(0) ~ 2.33(cosf)*5" Hz for NN-3 trigger, are also shown in figure. Detailed re-
sults of Monte Carlo simulations of vy-ray and cosmic ray proton induced extensive
air showers as detected by the TACTIC atmospheric Cherenkov imaging telescope
for optimizing its trigger field of view and topological trigger generation scheme can
be found in [2.19].

The agreement between the expected and actual performance of the telescope
was next checked by comparing the expected and observed image parameter dis-
tributions. Fig 2.8 shows the distributions of the image parameters LENGTH,
WIDTH, DISTANCE and « for simulated protons and for the actual Cherenkov
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images recorded by the telescope. The simulated distributions of these image pa-
rameters for y-rays have also been shown in Fig 2.8 for comparison. The observed
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Figure 2.8: Comparison of image parameter distributions (a) LENGTH, (b)
WIDTH, (c) DISTANCE and (d) ALPHA from real and the Monte Carlo simu-
lated data for proton events. The simulated image parameter distribution of v-rays
has also been shown in the figure for comparison.

image parameter distributions are found to closely match the distributions obtained
from simulations for proton-initiated showers, testifying to the fact that the event
triggers are dominated by background cosmic-rays.

2.8 Performance evaluation using Crab Nebula
observations

TACTIC telescope with a prototype camera of 81 pixels has been successful in de-
tecting intense TeV ~-ray flaring activity from the BL-Lac object Mkn-501. This
detection has an important historical significance in the field of very high energy
~-ray astronomy for being the first ever observation of a TeV ~-ray source by 5 in-
dependent groups [2.20]. Since 1997, the TACTIC imaging telescope camera and its
data acquisition system has been continuously upgraded. Observations on potential
~v-ray sources, however, were continued during this interim period of upgradation
phase whenever it became possible. It was during Dec 2000-Mar 2001 that the
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Figure 2.9: (a) Alpha plot for the Crab Nebula when ON-0304 on-source data
is analyzed. (b), (c¢) and (d) same as (a) except for the ON-0506, ON-0708 and
ON-0810 on-source data spells.

TACTIC imaging telescope in its full configuration of 349 pixels was able to detect
~-rays from the Crab Nebula and another BL-Lac object Mkn-421 at high statistical
significances [2.21]. The results of the Crab Nebula observations, carried between
the period 2003-2010 are shown in Fig 2.9 (a-d). Referring to this figure, one can
clearly see an evidence of a ~-ray signal when Dynamic supercuts are applied to
the data. The number of v-ray events for the 4 spells shown in figure are deter-
mined to be ~ (979 +97), ~ (928 +101), ~ (968 +£90) and ~ (867 +96) with
corresponding statistical significances of ~ 10.30, ~ 9.40, ~ 11.05¢0 and ~ 9.23¢0
, respectively. The resulting ~v-ray rates for the 4 on-source data spells turn out
to ~(9.384:0.93)h 1, ~(9.40+1.00)h !, ~(9.214+0.86)h ! and ~(9.4741.05)h 1, re-
spectively. The values of x?/dof for the background region (also shown in Fig 2.9)
and the corresponding probability is also consistent with the assumption that the
background region is flat and thus can be reliably used for estimating the back-
ground level in the -domain. Combining all the data for this period, the total
data yields an excess of ~(3742+192) ~-ray events with a statistical significance of
~19.920. The resulting v-ray rate turns out to be ~(9.31£0.48)h~!. The value of
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x?%/dof ~ 5.57 /5 for the the background region with the corresponding probabil-
ity of ~ 0.35 is again consistent with the assumption that the background region
is flat. The aim of presenting these plots is to validate that the observed excess
events are indeed genuine v-rays from the source. On the basis of these results
one can confidently say that the TACTIC telescope has consistently detected v-ray
emission from the ‘standard candle’ Crab Nebula during the 4 observations spells
at a sensitivity level N, ~ 0.98 \/T, where T is the observation time in hours. The
corresponding number of y-rays recorded is seen to follow N, ~ 9.16 T.

2.9 Sensitivity estimates

In this section we shall estimate the sensitivity of the TACTIC telescope. Assuming
that main background against which v-ray signal needs to be detected is due to
protons and the detection sensitivity is limited by statistical fluctuations of v-ray
domain events (signal4+background) and background region events, the expression
for the statistical significance ( N, ), using Equation 9 of Li and Ma [2.22], is given
by :
_ (Non — BINOff) _ (N'y)
VB1(Non + Nogp) v/ B1(Non + Nogy)
where N,, is the number of events in the y-ray domain (a0 < 18°), N,ss is the
number of events in the background region (27° < a < 81°) and (;(=2/6) is the
ratio of y-ray domain (o < 18°) to background region (27° < a < 81°). Using the
fact that only 60% (denoted by By where ($,=0.6) of the total cosmic-ray events
contribute to the a-range of the background region with 27° < a < 81°, we get
Non = Nyo + 182Npo and Nypp = 2Ny (N0 and Ny are the number of y-ray and
cosmic-ray events, respectively without applying any y-domain cuts).

One of the ways of estimating the sensitivity is to calculate the minimum signal
recovery time needed for detecting a ~y-ray signal at an adequately high statistical
significance (usually N,=5 o is used as a benchmark in the field). Using the defi-
nition N, of given in equation 2.1, the expression for the minimum signal recovery
time (T}n) is given by :

(2.1)

g

6] R
Trnin = N, [—1 + (Bi(Br +1)B2) —’2’ (2.2)
R, R?
where R, and R, are the v-ray and cosmic-ray rates surviving the y-domain cuts,
respectively and these are given by:

Enmaz dey
Ry= [ S, (B, (B)E (2.3
Emin
Enmax dF
Ry = [ AE () dE 2.4)
Emin
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where dF,/dE ~ 2.79 x 107 7(E/1TeV ) 25"m 257 1TeV ! is the differential energy
spectrum of the Crab Nebula as measured by the HEGRA group [2.23] , A, (E) is the
effective collection area for y-rays in m?, dF,/dE ~ 0.096E 2"m 25 tsr 'TeV !
is the differential energy spectrum of the protons [2.24], A, is the effective collection
area for protons in units of m?sr; and as already defined, 1, and 7, are the y-ray
and protons acceptance factors, respectively after the application of selection cuts.
Although many groups have used Quality Factor (QF) (where QF= n,/,/m,) for
estimating the sensitivity and for optimizing the performance of their classification
methods, we will use 7,,;, for estimating the performance of the telescope. The
reason for this is the fact that a high value of QF can also result from tight cut
which can reduce the ~v-ray retention factor significantly.

It is evident from equation 2.2 that the calculation of T,,;,, for a particular -
ray source, involves using effective collection areas for v-rays and cosmic-rays and
the corresponding retention factors after applying v-domain cuts. Since all these
variables, apart from being energy dependent are also a function of zenith angle,
rigorous calculation of T),;,, for a particular source, can be performed only if the
actual zenith angle coverage is also duly considered in the calculation. While we
have accounted for all the above mentioned dependences in determining the energy
spectra of the Crab nebula, Mrk 421 and Mrk 501 [2.25-2.28], useful knowledge
about the system performance can be also obtained if the calculations are performed
on a basis of simple toy model. In this model, we use typical average values of these
quantities so that one can directly find out the expected cosmic-ray and ~-ray rates
by multiplying their integral spectra with effective collection areas. With these
approximations expression 2.2 can be rewritten as :

B
Ryony

Trnin =~ N2 [ + (Br(Br +1)52) Rpoﬁp] (2.5)

R
where R,y and R,y are the y-ray and cosmic ray rates without applying any ~-
domain cuts, respectively. With QF=1n,/,/n,, the above expression can be rewritten

as
A Ryo

o i 4 1) ] 26
Following this simplified approach, Fig 2.10 shows the sensitivity of the TACTIC
telescope as a function of observed 7-ray rate (i.e R,). The sensitivity plotted in
Fig 2.10 is in terms of the signal recovery time for detecting a 5 o steady signal
from the Crab nebula at an energy above ~ 1.2TeV and by using A, ~ 4 x 10*m?.
The estimated v-ray rate without applying any y-domain cuts is found to be ~
19.1h~ L. The corresponding 7-ray retention values have been also shown at the top
of the figure so that one can estimate the y-ray retention factor on the basis of the
measured y-ray rate. In order to estimate the cosmic-ray rate while one can follow a
similar procedure, by using appropriate values of relevant parameters, the resulting
predicted rate can be somewhat underestimated because of additional contribution

Tmin ~ Ng |:
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Figure 2.10: Sensitivity estimate of the TACTIC telescope in terms of the signal
recovery time for 5o steady detection from Crab nebula as a function measured
v-ray rate above. Several representative curves obtained for different values of 7,
and QF are also shown in the figure.

of ~30% to the measured event rate due to other cosmic-ray nuclei [2.24]. While
we have accounted for this appropriately in our detailed simulation work [2.19], for
the simplified approach followed here, one can directly use a value of R, ~1.8Hz
for estimating the cosmic ray rejection capability of the telescope. This value is
obtained by taking the mean of observed cosmic-ray rates for the NN-2 and NN-3
trigger rates observed at a typical zenith angle of ~ 20°.

On examination of Fig 2.10, it is evident that sensitivity level of ~ 5.00 in ~ 25
h (shown as filled circle in the figure) corresponds to 1, ~ 0.50 and 1, ~ 0.0093 (i.e
cosmic ray rejection ~ 99.07%). Several representative curves obtained for different
values of 7, and QF are also shown in the figure so that useful guidance can be
obtained from this figure for improving the sensitivity.
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Chapter 3

Artificial Neural Network (ANN)
Methodology

3.1 Introduction

The simulation of human intelligence using machines still remains a challenge to
ingenuity. In the middle of the last century a research discipline namely the Ar-
tificial Intelligence (AI) emerged. The definition of the term AT is very distinct;
a major reason for this is the fact that there is no commonly accepted definition
for ‘intelligence’. The most comprehensive definition for Al includes all research
methodologies aimed to simulate the intelligent behaviour. Thus it is safe to con-
clude that neural network theory grew out of Artificial Intelligence research, or from
the research effort for designing machines with cognitive ability. It is therefore a
computer program or a hardwired machine that is designed to learn in a manner
similar to the human brain.

Artificial Neural Network (ANN) [3.1] is a field of major research interest at
present, involving researchers from many disciplines. Subjects contributing to this
research include biology, computing, electronics, mathematics, medicine, physics,
astronomy, psychology etc. The approach to this interesting field of ANN is as
diverse as its aims. The basic idea is to use the knowledge of nervous system and
the human brain to design artificial intelligence systems.

While this quest is still in its infancy, biologists and psychologists are trying
to model and undertsand the functionality of the nervous system and search for
explanations for human behaviour. Simultaneously, scientists and engineers are
searching for efficient ways to solve problems for which conventional methods are
currently used.
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3.1.1 Biological and Artificial Neural Networks (ANN)

ANN’s draw much of their inspiration from biological nervous system. It is therefore
essential to have some knowledge of the manner in which this system is organized.

Living creatures which have the ability to adapt to the changing environment,
need a controlling unit which is able to learn. Higher developed animals and humans
use very complex networks of highly specialized neurons to perform this task. The
control unit, i.e, the brain can be divided into different sub-units, each having
certain tasks like vision, hearing, motor and sensor control. The brain is conected
by nerve sensors to the rest of body. The brain consists of a very large number
of neurons, about 10'' on an average. These can be seen as the basic building
bricks for the central nervous system . The neurons are interconnected at points
called synapses. The complexity of the brain is due to the massive number of highly
interconnected simple units working in parallel, with an indivdual neuron receiving
input from ~ 10* others. The neuron contains all structures of an animal cell. The
complexity of these structures and of the processes involved in a simple cell are
enormous. Thus, even the most sophisticated neuron models which we replicate in
artificial neural networks seem comparatively simple.

Structurally the neuron can be divided in three major parts : the cell body
(soma/nucleus), the dendrite and the axon [Fig 3.1a]. Input connection are made
from the axons of other cells to the dendrites or directly to the body of the cell.
There is only one axon per neuron. It is a single and long fibre, which transports
the output signal of the cell as electrical impulses along its length. The end of the
axon may divide in many branches, which are then connected to other cells. The
branches have the function to fan out signal to many other inputs. The neurons
thus basically perform the following function: all the inputs to the cell, which may
vary by the strength of connection or the frequency of the incomming signal, are
summed up. The input sum is processed by a threshold function and produces
an output signal. The processing time of about 1 ms per cycle and transmission
speed of the neurons of about 0.6 to 120 m s~!, is very slow compared to a modern
computer.

The brain however, works in both a parallel and serial manner. For example a
human can recognise a picture of another person in ~ 100ms. Given the processing
time of ~ 1 ms for an individual neuron this implies that a certain number of
neurons (but less than 100) are involved in serial mode; whereas the complexity of
the task is the evidence for a parallel processing, because even a simple recognition
task can not be performed by such a small number of neurons.

Biological neural systems usually have a very high fault tolerance. Experiments
with people with brain injuries have shown that damage of neurons upto a certain
level does not necessarily influence the performance of the system, though tasks
such as writing or speaking may have to be learned again, i.e, the person has to
re-train. Fig 3.1b shows an artificial implementation of the biological neuron. This
is represented by the inputs which are analogus to the dendrites, the summing part
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Figure 3.1: (a) Schematic diagram of a typical neuron or a nerve cell in the biological
neuron. (b) The ‘artificial’ model of the biological neuron.

which is a rough equivalent of the synapse and the connection branching to other
neurons which is an equilant of the axon.

Defnitions of ANN

In literature a wide variety of defnitions and explanations for the terms ANN
can be found. The definition by Igor Aleksander [3.2] includes a wide range of
methods and applications in the field of neural computing: ‘Neural computing is
the study of networks of adaptable nodes which, through a process of learning
from task examples, store experimental knowledge and make it available for use’.
According to Laurene Fausett [3.3], ‘an ANN is an information-processing system
that has certain performance characteristics in common with biological neural net-
works’. Robert Harvey [3.4] however focusses on the biological model. His definition
excludes most parts of logical neural networks from the field of ANN. ‘A neural net-
work is a dynamical system with one interconnection. It carries out processing by
its response to inputs’. There are many other definitions available in literature. In
brief ANNs, are information processing devices whose design is inspired by studies
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of the brain and the neuron system structure. Thus ANNs aim at simulating the
activities of the human brain.

Memorization and Generalization

To simulate the behaviour of brain, its abilities related to memorization and
generalization are essential. These are two basic properties of ANN. To memorize
basically means to commit to memory, i,e to learn so as to remember. To generalize
means to form general principles or conclusions from detailed facts, experience etc.
Memorising, given facts, is an obvious task in learning. This can be done by storing
the input samples explicitly or by identifying the concept behind the input data,
and memorising their general rules. This ability to identify the rules, to generalise,
allows the system to make prediction on the unknown data.

Despite not being a strictly logical approach, the process of reasoning from
specific samples can be observed in human learning process. Generalization impor-
tantly removes the need to store a large number of input samples. Features common
to the whole class need not be repeated for each sample, instead the system only
needs to remember which features are part of a sample.

Working of ANN

Over the past few decades the biological discoveries have enhanced our knowl-
edge about the structure and functioning of the human brain. Since a neuron is the
basic computing unit of the brain it is necessary to study the details of the entire
structure of neurons. Many researchers have given various architectures of the neu-
ron based on its accumulative information processing properties. The first model
of the neuron was proposed by McCulloch and Pitt in 1943 [3.5]. Mathematically
this model can be described as :

..... iof  y>T;

3.1
0...otherwise (3-1)

This means that output of the neuron is 1 if the weighted sum of all the inputs
exceeds the given threshold level T and is 0 otherwise.

Architecture of a single Neuron

The architecture of a neuron can be demonstrated by Fig 3.1b. It shows the sum-
mation symbol (called aggregation Function) and the Activation Function. Though
summation is the most commonly used function, however other functions like prod-
uct of the terms and Radial Basis functions can also be used. Apart from this there
are about two dozen activation functions which can be used, the most common
being, Sigmoid, Hyperbolic Tangent, Sine Function, Gaussian, Cauchy, Decaying

54



exponential, Logarithmic etc. In the first half the weighted summation (i.e, summa-
tion of all inputs multipied by corresponding weight) of all the inputs is performed
and then the net value is transfered through activation function to the output of
the neuron. The weights (or synaptic weights) denote the strength of linkage of the
two neurons, i,e how strongly the two neurons are associated with each other.

Architecture of Neural Network

Using a set of artificial neurons described above, a neural network can be formed.
The first layer is called the input layer and the last layer is called the output layer.
The layer in between the input layer and the output layer is called the hidden
layer. There can be more than one hidden layer and several hidden neurons in
them according to the complexity of the problem. The number of input neurons
and the output neurons are fixed for a particular problem. The only changeable
parameter in any model is the number of the nodes in the hidden layer and thus
the weights which play an important role in learning.

3.2 Learning

A crucial property of neural networks is that it can learn the desired response from
a set of examples in the domain. This is in contrast with other approaches of
computing, where an algorithm or rules are used to store the knowledge.

The advantage of learning from examples is that there is no need to explicitly
form a rule system for the task at hand. To extract rules from the knowledge in
the domain implies that there is some expert interpretation. This process is often
difficult, especially if the experts have different opinion on the problem. From an
abstract point of view training an ANN can thus be seen as an automatic process
of extracting rules from a data set.

There are three basic paradigms of neural learning, supervised, unsupervised,
and the reinforced learning. Supervised learning is a process where both information
about environment (e.g, the sensory stimuli) and the desired reaction of the system
(e.g, the motor response) is given. It is analogous to human learning with a teacher
who knows all answers. In the ANN context supervised learning is a process of
generalizing the vector pairs, i.e., the input vector together with the desired output
vector. In this learning method, however, it is often tricky to determine when the
learning process should be terminated.

A variant of supervised learning is called reinforcement learning. In this method
the required output is not provided; the response by teacher is only whether the
calculated result is ‘right’ or ‘wrong’, or (YES/NO), the actual answer is not commu-
nicated during learning. Thus the error signal generated during reinforced training
is binary.

Unsupervised learning works only on the input vectors, and the desired output
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Figure 3.2: ANN classification based on the training schemes employed.
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is not specified. This learning method can be compared to the process of cat-
egorization, discovering regularities, or adaptation to specific features. In many
unsupervised models the categorization occurs according to the distance between
the input vectors. Generalization based on this approach groups input vectors in
a manner so as to minimize the distance between different members of a category
for a given set. Unsupervised learning is closely related to the problem of density
estimation in statistics. However unsupervised learning also encompasses many
other techniques that seek to summarize and explain key features of the data. The
generalized unsupervised learning can also broadly include methods like Clustering,
blind signal separation, and dimensionality reduction methods like the Principal
Component Analysis, Singular Value Decomposition etc. However in the context of
Neural Networks, Self Organizing Maps (SOMs) (also referred to as the Kononen
networks) and the Adaptive Resonance Theory (ART) are the commonly used un-
supervised learning algorithms. We shall therefore restrict our discussion only to
these methods.

The supervised and the unsupervised networks can be further classified as shown
in Fig 3.2. The subdivision is based on the architecture in which the individual
neurons are connected and the error minimization scheme adopted, thus there can
be several possible ANN configurations.

3.3 Unsupervised methods

3.3.1 Kohonen Self Organizing Maps (SOMSs)

In such algorithms, no teacher is present and the algorithms have to self adapt to
predict an answer. Learning and brain development of newborns is an important
example which demonstrates this model. Let us consider how a newborn learns to
focus its eyes, a skill not originally present, but acquired, inspite of the parent not
being able to convey the technique to make sense of the visual stimuli impinging on
the childs brain. However, after a few days, the child learns to associate sets with
no help from outside. The possible answer to this was providen by Teuvo Kohonen
[3.6]. The work provides a relatively fast and powerful model of how neural networks
can self organize. In general, self organization refers to the ability of some networks
to learns without being given a correct answer for the input pattern.

A kohonen network is not a hierarchical system but consists of a fully inter-
connected array of neurons. The output of each neuron is an input to all other
inputs in the network including itself. Each neuron has two sets of weights: one
set is utilized to calculate sum of the weighted external inputs and the another one
to control the interactions betweeen different neurons in the network. The weights
on the input pattern are adjustable, while the weights between neurons are fixed.
The input is connected to all the nodes and there are interconnections between
neurons of the same layer. During each presentation, the complete input pattern
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Figure 3.3: A two dimensional Kohonen network.

is presented to each neuron. The neuron computes its output as a sigmoidal func-
tion on the sum of its weighted inputs. The input pattern is then removed and
the neurons interact with each other. The neuron with the largest activation func-
tion is delared as the winner and only this neuron is allowed to provide the output
(winner takes all method) and its weight is updated and next iteration is computed.
The block diagram of a Kohonen network is presented in Fig 3.3.

3.3.2 Adaptive Resonance Theory (ART)

The basic ART System is an unsupervised learning model. ART was developed
by Carpenter and Grossberg[3.7]. The term ‘resonance’ used in ART, refers to
resonant state of a neural network in which a category prototype vector matches
close enough to the current input vector. ART matching leads to a resonant state,
which permits learning. The network thus can be regarded as learning only in
its resonant state. The key to ART is expectation, as inputs are presented, it is
compared with a prototype vector that closely matches the expectation. If the
matching is not adequate, a new prototype is presented. The ART network can
adaptively create a new neuron corresponding to an input pattern if it is determined
to be sufficiently different from existing clusters. This determination, called the
vigilance test, is incorporated into the adaptive backward network. Thus the ART
architecture allows the user to control the degree of similarity of patterns placed
in the same cluster. Fig 3.4 shows the simplified ART architecture. The basic
ART involves 3 groups of neurons, an input processing field (F; layer) and the
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Figure 3.4: A simplified model of ART network.

cluster units (F, layer) and a mechanism to control the degree of similarity of
patterns placed on the same cluster (a reset mechanism). To control the similarity
of patterns, there are two sets of connections (each with its own weights) between
each unit of input of F) layer and the cluster unit of the F, layer. This setup is
referred to as the bottom-up weights. Similarly F}, layer is connected to F} layer by
top down weights.

The F5, layer is a competitive layer. The cluster unit with the large net input
becomes the candidate to learn the input pattern, setting all other F; units to zero.
The reset unit makes the decision whether the cluster unit is allowed to learn the
input pattern depending on how similar its top-down weight vector is to the input
vector. If the cluster unit is not allowed to learn (inhibited) then a new cluster unit
is selected as the candidate. ART networks are further subdivided into ART1 and
ART2. While as ART1 is a binary version of ART and can cluster binary input
vectors, the ART 2 is an analogous version of ART. It can cluster real value input
vectors.

3.3.3 Hebbian learning

This rule was proposed by D.Hebb in 1949 and is based on correlative weight ad-
justment. This is one of the oldest learning mechanisms inspired by biology. In
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this the input-output pattern pairs(X;,Y;) are associated with the weight matrix
W known as the correlation matrix. It is computed as :

W = Z?:1Xi i

where Y;T is the transpose of the associated output vector Y;

3.3.4 Drawbacks of unsupervised networks

Despite being successful, unsupervised networks have not become very popular
among the researchers. In astronomy, clustering algorithms have been used in past,
to automatically divide data into many sub groups e.g., autoclass clustering pro-
gram was used extensively to analyze infrared spectral data, which discovered a sub
class of stars previously unknown to astronomers [3.8]. However these unsupervised
algorithms are limited in what they can achieve. They can detect general trends in
data but can not make use of additional knowledge to the problem at hand, which
a human expert can. Also these methods use general notions to identify patterns
in data but cannot specalize for specific problems. Further, as they are unguided
methods, they may report patterns or trends which may not be of any interest, e.g.,
trends caused by some systematic error in data acquisition/analysis.

The alternatives to these are supervised learning methods which adapt to the
problem at hand by not only exploiting but acquiring the problem specific knowl-
edge. In the supervised methods, while algorithms like Standard Backpropaga-
tion (along with its variants like the Backprop-momentum, Quickprop etc) and the
Resilient Backpropagation come under the category of 1st order algorithms, the
Conjugate gradient methods, Levenberg-Marquardt algorithm, One Step Secant,
Simulated Annealing, use of Radial Basis Functions, etc., belong to the category
of 2nd order methods. Hybrid methods constitute the models like the Higher Or-
der Neuron and the Neuro Fuzzy Systems. We shall in the next section present
a brief description into these methods whose application has gained tremendous
momentum in the recent years.

3.4 Supervised methods

3.4.1 First order algorithms

The conventional ANN which is based on McCulloch Pitts neuron model (Fig 3.1B)
has been extensively used in many applications. A number of learning algorithms
have been formulated to reduce the learning complexity of the ANN and also to
achieve faster convergence. The McCulloch neuron model is a first order neuron
model. It has serious limitations of mapping and classification and can not even rep-
resent a simple XOR problem. The first order learning schemes may be attributed
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to the gradient decent method which is only an approximation of the truncated
Taylor series.

3.4.2 Standard Backpropagation algorithm

In the standard backpropagation model, proposed by Rumelhart [3.9], a set of
inputs is applied from outside, which are multiplied by weights, and the products
are summed. This summation of products, denoted as (NET) is calculated for each
neuron in the network. After NET is calculated , an activation function is applied
to modify it, thereby producing the signal OUT. Sigmoid activation function of the
type below is usually employed.

1
The reason for employing the sigmoid activation function over many other non

linear functions, is that it has a simpler derivative of the type :

oouT
ONET

Also called as the ‘logistic’ or simply the ‘squashing function’ the sigmoid compresses
the range of NET so that OUT lies between 0 and 1. Multilayer networks have
greater representational power than single layer networks only if nonlinearity is
introduced. The squashing function produces the desired nonlinearity.

There are many activation functions that can be used; the Backpropagation
algorithm only requires that the function be nonlinear, differentiable and continuous
everywhere. The advantage of using the sigmoid function, apart from a very simple
derivative, is that it also provides a form of automatic gain control. For small signals
(NET close to zero) the slope of the input/output curve is steep, producing a high
gain. As the magnitude of the signal increases, the gain decreases. In this manner
large signals can be accomodated by the network without saturation, while small
signals are allowed to pass through without excessive attenuation. The literature is
inconsistent in defining the number of layers needed in these networks. Some authors
refer to the input as a layer, while others refer to the weights and the outputs only
as a layer. Because the former definition is more functionally descriptive, it will be
considered throughout this thesis. By definition, therefore, the above network is
considered to consist of 3 layers. Backpropagation can be applied to networks with
any number of layers; however only two layers of weights are needed to demonstrate
the algorithm.

— OUT(1 - OUT) (3.3)

3.4.3 Overview of training

The objective of the training, is to adjust the weights so that a set of inputs produces
the desired set of outputs. These input-output sets are also referred to as the
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Figure 3.5: (a) A Feed Forward Backpropagation model with an input layer, 1
hidden layer and an output layer. (b) Sigmoidal Logistic function (c¢) Hyperbolic
Tangent function, the two most commonly used activation functions.

‘vectors’. Training assumes that each input vector is paired with a target vector
representing the desired output; together these are called a training pair. Usually,
a network is trained over a number of training pairs. Before starting the training
process all the weights must be initialized to small random numbers. This ensures
that the network is not saturated by large value of weights and prevents certain
other training pathologies, e.g if all the weights start at equal values and the desired
performance requires unequal values, the network may not train.
Training of backpropagation requires the following steps:

1. Select the next training pair from the training set; apply the input vector to
the network input.

2. Calculate the output of network.

3. Calculate the error between the network output and the desired output (target
vector from training pair)

4. Adjust the weights of the network in a way that minimises the error.

5. Repeat the steps above for each vector in the training set until the error of
the entire set is acceptably low.
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The operations required in steps 1 and 2 above are similar to the way in which
the trained network will ultimately be used. Calculations are performed on a layer
by layer basis. Referring to Fig 3.5a above, first the outputs of neurons in the
hidden layer (j) are calculated; these are then used as inputs to output layer (k),
from which the network output values are calculated.

In step 3, each of the network outputs, labelled OUT in Fig 3.5b, is subtracted
from its corresponding target vector to produce an error. This error is used in step
4 to adjust the weights of network, where the polarity and magnitude of the weight
changes are determined by training algorithm. After enough repetitions of these
four steps, the error between actual outputs and target outputs should be reduced
to an acceptable value and the network is said to have been trained. At this point
the network is used for recognition and the weights are not changed. It may be seen
that first two steps constitute a ‘forward pass’ in that the signal propagates from
the network input to the output. Last two steps maybe termed as the ‘reverse pass’
and the calculated error signal propagates backward through the network where it
is used to adjust weights .

Forward pass

First two steps can be expressed in vector form as follows: an input vector X is
applied and an output vector Y is produced. The input target vector pair X and
T come from the training set. The calculation is performed on X to produce the
output vector Y. Calculation of multilayer networks is done layer by layer starting
at the layer nearest to the inputs. The NET value of each neuron in the first layer
is calculated as the weighted sum of its neuron inputs. The activation function F
then "squashes” NET to produce the OUT value for each neuron in that layer.
Once the set of outputs for a layer is found, it serves as input to the next layer. The
process is repeated, layer by layer, until the final set of network outputs is produced.
The weights between neurons can be considered to be a matrix W. Rather than
using summation of products, the NET vector for the layer N maybe expressed as
product of X and W. In vector notation N= XW. Applying the function F to the
NET vector N, component by component, produces the output vector O. Thus for
a given layer, the following expression describes the calculation process:

0 =F(XW) (3.4)
The output vector of one layer is the input vector for the next so calculating the
outputs of the final layer requires the application of above equation to each layer,
from the network’s input to its output.
Reverse pass

In the reverse pass, three main steps are involved. (1) Adjusting the weights of

63



the output Layer. (2) Adjusting the weights of the hidden Layers and (3) Adding
a neuron bias

Because a target value is available for each neuron in the output layer, adjusting
the associated weights is easily accomplished using a modification of the delta rule.
Delta rule is a method in which, given an input vector, the output vector is compared
to the correct answer, if the difference is zero, no learning takes place, else, the
weights are adjusted to reduce this difference. Interior layers are referred to as
‘hidden layers’, as their outputs have no target values for comparison, hence the
training is far more complicated.

Assuming the training process for a single weight from neuron ‘p’ in hidden layer
j to neuron ‘q’ in the output layer k. The output of neuron in layer k is subtracted
from its target value to produce the ERROR signal. This is multiplied by the
derivative of squashing function [OUT(1-OUT)] (from equation 3.3) calculated for
the neuron layer k, thereby producing the ¢ value.

6 =0UT(1 —-0UT)(Target — OUT) (3.5)

Then § is multiplied by OUT from a neuron j, the source neuron for the weight in
question. The product is in turn multiplied by a training rate coefficient n (typically
0.01 to 1.0) and the result is added to the weight. An identical process is performed
for each weight proceeding from a neuron in the hidden layer to a neuron in the
output layer employing the following formula:

Aqu,k = /’75q7kOUTp,j
Wogr(n+1) = Wy e(n) + AWy (3.6)

where W, 1(n) is the value of weight from neuron p in the hiden layer to the neuron
¢ in the output layer at step n (before adjustment); subscript k indicates that the
weight is associated with its destination layer, W, x(n+1) is the value of the weight
(after adjustment), J,, denotes the value of ¢ for neuron ¢ in the output layer £ and
OUT, ; is the value of OUT for neuron p in the hidden layer j, subcripts p and ¢
refer to specific neurons while as subscripts 7 and k refer to a layer. The procedure
is illustrated in Fig 3.6a

Hidden layers have no target vector so that the above training process cannot be
used. The hidden layers are trained by propagating the output error back through
the network layer by layer, adjusting weights at each layer. The set of equations
given at (3.6) are used for both the output and hidden nodes, however for hidden
layer 6 must be generated without the benefit of a target vector. 0 is calculated for
each neuron in the output layer, as in equation (3.5). It is used to adjust the weights
feeding into the output layer, then it is propagated back through the same weights
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Figure 3.6: (a) Training of weights in the Output layer. (b) Training of weights in
the Hidden layer where no target is available.

to generate a value of § for each neuron in the first hidden layer. These values of ¢
are used in turn to adjust the weights of this hidden layer and in a similar way, are
propagated back to all the preceding layers (Fig 3.6b).

Consider a single neuron in the hidden layer just before the output layer. In
the forward pass, the neuron propagates its output value to neurons in the output
layer through the interconnecting weights. During training these weights operate
in reverse, passing a value § from the output layer back to the hidden layer. Each
of these weights is multiplied by the ¢ value of the neuron to which it connects
in the output layer. The value of § needed for hidden layer neuron is produced
by summing all such products and multiplying by the derivative of the squashing
function.

5pj = OUij(l — OUTPJ) (Z 5q,kqu,k) (37)
q

Knowing 9, the weights feeding the first hidden layer can be adjusted using
equation set (3.6) modifying indices to indicate the correct layers. For each neuron
in a given hidden layer 6 must be calculated, and all weights associated with that
layer must be adjusted. This is repeated, moving back towards the input layer by
layer, until all weights are adjusted.
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It is also desirable to provide each neuron with a trainable bias. This offsets the
origin of logistic function, thereby permitting more rapid convergence of the train-
ing process. This feature is easily incorporated into training algorithm; a weight
connected to +1 is added to each neuron. This weight is trainable in the same way
as all the other weights, except that the source is always +1, instead of being the
output of a neuron in a previous layer.

Backprop-Momentum

This refers to addition of a term for improving the training of the backpropaga-
tion algorithm, while enhancing the stability of the process. Called as momentum,
this method involves adding a term to the weight adjustment that is proportional
to the amount of previous weight change. Once an adjustment is made it is ‘re-
membered’ and serves to modify all subsequent weight adjustments. The weight
adjustment equations are modified to the following:

AWpge(n+1) = n(éq,kOUTp,j) + a[AWpek(n)]
qu,k(” +1) = qu,k(”) + AWk (n+1) (3.8)

where « is the momentum coefficient and is commonly set around 0.9. Using the
momentum method, the network tends to follow the bottom of narrow gullies in the
error surface rather than crossing rapidly from side to side. This method, though
works well on some problems, can however have little or sometimes even a negative
effect on other applications.

3.4.4 Caveats of the standard backpropagation model

Despite the most successful applications of backpropagation, the error minimization
scheme followed by backpropagation method, called the gradient descent method,
often converges very slowly. The success of this algorithm in solving large scale
problems critically depends on user specified learning rate and momentum param-
eters and there are no standard guidelines for choosing these parameters. Some of
the common caveats of the standard backpropagation algorithm are :

Network paralysis

As the network trains, the weights can get adjusted to very large values. This
can force all or most of the neurons to operate at large values of OUT, in a region
where derivative of activation function is very small. Since the error information
to be sent back for training is proportional to its derivative, the training process
can come to a virtual standstill. There is little theoretical undertsanding of this
problem. This can be avoided by reducing the step size n, which however extends
the training time. Various methods have been employed to prevent paralysis, or
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to recover from its effects, however a solid foundation for this is yet to be established.
Local minima

Backpropagation employing gradient descent follows the slope of the error surface
downwards constantly, adjusting the weights towards a minimum. The error surface
of a complex network is highly convoluted, full of hills, valleys, folds and gullies in a
multi-dimensional space. The network can get trapped in a local minima (a shallow
valley) when there is a much deeper minimum nearby. From the limited viewpoint
of the network, all directions are upward and hence it has no way to escape.

Step size

In the backpropagation learning algorithm, small weight adjustments are assumed,
which is clearly impractical, as it implies infinite training time. It is therefore nec-
essary to select a finite step size. If the step size is too small, convergence can be
very slow, however if the step size is large , paralysis or continuous instability can
result.

Temporal instability

If a network is learning to recognize e.g, alphabets , it does no good to learn B
if, in doing so , it forgets A. A process is needed for teaching the network to learn
an entire training set without disrupting what is already learned. The network
should therefore be presented with all vectors in the training set before adjusting
any weights. The needed weight change must be accumulated over the entire set,
thereby requiring additional storage. After the number of such training cycles, the
weight will converge to a minimal error. This method maynot be useful if the net-
work faces a continuosly changing environment where it may never see the same
input vector again. In this case, training process may never converge and wander
aimlessly or oscillate widely. In this sense backpropagation fails to mimic biological
systems.

3.4.5 Resilient backpropagation

A major drawback of the gradient descent is the ’contra intuitive’ influence of the
partial derivative on the size of the weight-step. If the error function is shallow, the
derivative is quite small, resulting in a small weight step. On the other hand, in
the presence of steep ravines in the energy landscape, where cautious steps should
be taken, large derivatives lead to large weight steps, possibly taking the algorithm
to a completely different region of the weight space.

The basic principle of the resilient backpropagation algorithm (RPROP) [3.10],

67



is to eliminate the harmful influence of the size of partial derivative on the weight
step. As a consequence, only the sign of derivative is considered to indicate the
direction of weight update. The size of the weight change is exclusively determined
by a weight specific, so called "update-value” A;;.

( oF
—Ayi(t), i f (t) >0
! oW
o OF
AW =9 LA (1), nif (1) <0 (3.9)
ij
\ 0, ....otherwise.

It is important to note here that replacing A;; by a constant update-value A in
(3.9) yields the so called Manhattan learning.

The second step of the RPROP learning is to determine the new update values
A;;(t). This is based on a sign dependant adaptation process, i,e

( LOE(t—1) 0E(t)
+ (4 —
Nt x Ayt —=1),....0f o X o >0
Aty =4 _ o LOE(t—1) 0E(t) (3.10)
n”x At —1),.....0f W X o <0
0, ....otherwise.

where 0 < = < 1 < n*. At the begining all update values are set to the initial
value Ag, which is one of the two parameters of Rprop. Since A, directly determines
the size of the first weight step, it should be chosen according to the initial value of
the weights themselves, e.g, Ay=0.1. The choice of this value is rather uncritical,
for this is adapted as the learning progresses.

In order to prevent the weights from becoming too large, the maximum weight-
step determined by the size of the update value is limited. The upper bound is set by
the second parameter of Rprop, A,,... The default upper bound is set arbitrarily
to A= 50.0. Usually, convergence is rather insensitive to this parameter as
well. Nevertheless, for some problems it can be advantageous to allow only very
cautious/small steps, in order to prevent the algorithm getting stuck too quickly in
suboptimal local minima.

The increase and the decrease factor are fixed to nt=1.2 and == 0.5. These
values are based on both theoretical considerations and empirical evaluations. This
reduces the number of free parameters to two, namely Ag and A4

Thus in contrast to the learning-rate based algorithms, Rprop modifies size of
the weight-step directly by introducing the concept of resilient update-values. As
a result the adaptation effort is not blurred by unforeseeable gradient behaviour.
Due to clarity and simplicity of the learning laws, there is only a slight expense in
computation compared with ordinary backpropagation.
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However Rprop, too, suffers from certain problems common to the adaptive
learning algorithms. As the adaptation is based on the estimation of the topology
of the error function, both adaptation and weight update can be first performed after
whole gradient information is available, i.e, after each pattern has been presented
and the gradient of the sum of pattern errors is known. Accordingly, adaptive
learning procedures are typically based on learning by epoch. This possibly reduces
their efficiency on redundant training sets, compared to simple stochastic gradient
descent and poses problems on their use with variable training sets.

Moreover, a restricted local adaptation inherently lacks the overall view that
some IInd order (global) techniques may have. Hence, there is a need to study and
adopt the more popular global search methods.

3.4.6 Quick-propagation algorithm

Standard back-propagation calculates the weight change based upon the first deriva-
tive of the error with respect to the weight. Quick-propagation method is a variation
of standard back-propagation to speed up training [3.11]. This algorithm requires
saving the previous gradient vector as well as previous weight change. The calcu-
lation of weight change uses only the information associated with the weight being
updated.

_ VWi;(n)

= VW - 1) - Vi, ()

where VIW;;(n) is the gradient vector component associated with weight vector W;;
in step n, VIW;;(n — 1) is the gradient vector component associated with weight
W;; in the previous step and AW;;(n — 1) is the weight change in step (n —1). A
maximum growth factor p is used to limit the rate of increase of step-size like :

Fahlman suggested an empirical value 1.75 for pu.

There are however certain complications in this method also. First, the step-size
calculation requires the previous value, which is not always available and has to be
sometimes derived or assumed. Second, the weight values are unbounded, and can
sometimes become so large that they overflow.

3.5 Second order algorithms

3.5.1 Conjugate gradient methods and its variants

The conjugate gradient method developed by Moller [3.12], is actually a family
of methods. There are perhaps a dozen or more forms of conjugate gradient al-
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gorithms. The methods differ only in their treatment of undetermined systems,
accuracy achieved for the problems in hand and their memory requirements etc.

Assuming that we have a quadratic equation that needs to be minimized. The
difficulty of using the gradient decent based Ist order algorithms is that, a one
dimentional minimization in direction (a) followed by a minimization in direction (b)
does not imply that the function is minimized on the subspace generated by (a) and
(b). Minimization along direction (b) may in general spoil a previous minimization
along direction (a). This is the main reason why a one dimensional minimization
in general has to be repeated a number of times, which is sometimes even larger
than the number of variables itself. If however the directions are non interfering
and linearly independant, at the end of N steps the process would converge to the
minimum of the quadratic equation.

The concept of noninterfering directions is the basis of conjugate gradient method.
Two directions p; and p; are mutually conjugate with respect to a matrix G if

pz-TGpj =0 when i#j (3.12)

After minimizing in the direction p;, the gradient at the minimizer will be perpen-
dicular to p;. If the second minimization is in direction p;,, the change of gradient
along this new direction say g; is represented by : ¢;v1 - ¢; = aGp;y1, where «
is a constant. The matrix G is the Hessian which contains the second derivatives.
Now for the equation (3.12) to be valid, this change is perpendicular to the previous
direction [p;T (gi+1 — g;)=0], therefore the gradient at the new point remains perpen-
dicular to p; and the previous minimization is not spoiled. While, for a quadratic
function the conjugate gradient method is guaranteed to converge to the minimi-
mum in at most (N + 1) gradient evaluations, for general functions however it is
necessary to iterate until a suitable approximation is obtained.

Let us introduce a vector yr = gx+1 — gx. The first search direction p; is given by
the negative gradient -¢g;. Then the new weight sequence wy of the approximations
to the minimizer is defined as

Wpa1 = Wy + AP (313)

Pk+1 = —Gk+1 + BrDr (3.14)

where g, is the gradient of the error function, qy is chosen to minimize the error £
along the search direction p; and [, which is defined by

T
Yk Jk+1

O = —— 3.15

g ykTpk ( )

There are many variants of the conjugate gradient methods. The most popular
ones being the Polak - Ribiere which modified equation (3.15) as

T
Yk Jk+1

O = —— 3.16

g kT g ( )
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and the Fletcher - Reeves method which modified equation (3.15) as

T
 Gk19k+1

3.17
9T g ( )

Though theoretically, a difficulty with the Polak - Ribiere and Fletcher - Reeves
conjugate methods is that for general functions, the obtained directions are not nec-
essarily the descent directions, however there is no rule which can suggest which of
the methods can yield best results for a particular problem. In principal one has to
use all the above methods on trial and error basis for the problem in hand.

The backpropagation-momentum algorithm can in principle be considered as
an approximate form of conjugate gradient method. In both the cases the gradient
direction is modified with a term that takes the previous direction into account, how-
ever the parameter 3 in conjugate gradient is defined by the algorithm itself, while
as the momentum rate has to be guessed by the user in case of backpropagation-
momentum which may or may not be the optimum value.

3.5.2 Lavenberg-Marquardt algorithm

Gradient descent algorithm work well in simple problems but it is too simplistic
an approach for real world complex models which can have many free parameters.
Convergence therefore can take extermely long time, because of the nature of the
gradient descent implementation. For example, when descending the walls of a very
steep local minimum bowl we must use a very small step size to avoid ‘rattling out’
of the bowl. On the other hand when we are moving along a gentle sloping part
of error surface we should take large steps otherwise it will take forever to reach
the minimum. This problem is compounded by the manner in which the gradient
descent is implemented. Here, we generally move by taking a step which is some
constant times the negative gradient, rather than a step of constant length in the
direction of negative gradient. This means that in steep regions (where we have
to be careful and not to take large steps) we move quickly and in shallow regions
(where we need to take larger steps) we move slowly. The problem is also com-
pounded by the fact that the curvature of the error surface may not always be the
same in all directions. For example, if there is a long and narrow valley in the error
surface the component of the gradient in the direction that points along the base
of the valley is very small while the component perpendicular to the valley walls is
quite large, even as, we have to move a long distance along the base and a small
distance perpendicular to the walls. Thus one has to use slightly more sophisticated
gradient descent algorithms than the simple steepest descent. Using the second or-
der information in other words using the curvature as well as the gradient of the
error surface, can speed up the convergence enormously.
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Description of method

A simplistic definition of gradient descent can be
Wi = w; — ud (3.18)

where d is the average error gradient and w; is the weight matrix.
Comparing it to the update rule based on quadratic approximation i.e.,

Wirt1 = Wj — Hild (319)

where H is the Hessian matrix containing the second derivatives. Quadratic rule
implemented here, which is generally the conjugate gradient methods discussed
above, is not a universally preferred method since it assumes a linear approximation
of functions dependance on w, which is however valid only near a minimum. The
technique invented by Lavenberg involves ”blending” between these two extremes.
We can use a steepest descent type method until we approach a minimum, then
gradually switch to the quadratic rule. It is possible to guess how close we are to
the minimum or how the error is changing. In particular, Lavenberg algorithm is
formalized as follows: Let A be the blending factor which will determine the mix
between the steepest descent and the quadratic approximation. The update rule of
equation (3.19) above is therefore modified as :

wi=w;— (H+ AI) 'd (3.20)

where I is the identity matrix. As A\ gets small, the rule approaches the quadratic
approximation update rule above. If A is large, the rule approaches

1
Wit1 = Wj — Xd (321)

which is the steepest descent. The algorithm adjusts A according to whether the
error function E is increasing or decreasing. This is done as follows:

1. Do an update as directed by the rule above
2. Evaluate the error as the new weight vector

3. If the error has increased as a result of update, then retract the step (i.e, reset
the weights to their previous values) and increase \ by a factor &~ 10 or some
such significant factor. Then go to (1) and try the update again.

4. If the error has decreased as a result of update then accept the step (i.e keep
the weights at their new values) and decrease A by a factor & 10 or so.
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The intuition is that if the error is increasing, our quadratic approximation is not
working well and we are likely not near a minimum, so we should increase \ in order
to blend more towards simple gradient descent. Conversely, if error is decreasing,
our approximation is working well, and that we are getting closer to minimum, so
A is decreased to bank more on Hessian.

Marquardt improved this method with a clever incorporation of estimated local
curvature information, resulting in the Levenberg-Marquardt method [3.13]. The
insight of Marquardt was that when A is high and we are doing esentially gradient
descent, we can still get benefit from the Hessian matrix that we estimated. In
essence Marquardt suggested that we should move further in the direction in which
the gradient is smaller in order to get around the classic ”error valley” problem.
So Marquardt replaced the identity matrix in Levenberg’s original equations with
diagonal of the Hessian.

wii1 = w; — (H+ \diag[H]) 'd (3.22)

It is important to know that the method is nothing more than a heuristic method.
It is not optimal for any well defined criterion of speed or final error, but is merely
a well thought out optimization procedure. However, it is one method that works
extremely well in practise, though there is a little understanding for the reason be-
hind this. Lavenberg-Marquardt algorithm has presently become a virtual standard
for optimization of non-linear models. It’s only flaw seems to be that it requires a
matrix inversion step as part of the update scheme which scales as the N3 where N
is the number of weights. For medium sized networks this method may not be too
slow, however for larger networks the cost of matrix inversion kills the advantage

gained by cleverness of the method as it is lost in time taken to do each iteration
[3.14].

3.5.3 Radial basis functions

Radial basis functions (RBF) neural networks have recently been studied intensively.
In many applications, several results have been obtained using this method. The
RBF neural network has the universal approximation ability, therefore, the RBF
neural network can be used for the interpolation problem [3.15]. The Radial basis
function networks (RBFNs), also called the potential function networks, have been
studied as an alternative to the multilayered feedforward neural networks (MEFNN).
A RBFN is a multidimentional non linear function mapping that depends on the
distance betwen the input vector and the center vector. A RBFN with n-dimentional
inputs and a single output (y) can be represented by the weighted summation of
finite number of radial basis functions as follows:

y=f(x) =Y widil|lx - cil]) (3.23)
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Figure 3.7: (a) Combination of Radial Basis Function Neural Networks (b) XOR
which is a not a linearly separable problem. (c¢) Using RBF a linearly inseparable
problem becomes separable.

where ¢;(||x — ¢;||) is the radial basis function of x, ¢(.) is an arbitary non
linear function, ||.|| denotes a norm that is usually assumed to be Euclidean, the
known vectors and c; are viewed as the centers of radial basis functions. Fig 3.7a
shows a combination of 3 gaussian RBF’s with basis functions located at 0,3.5 and
7 respectively. Gaussian function is the most commonly used RBF. The application
of RBF in neural networks can be seen by revisiting the conventional XOR table
shown in Table 3.1.

Table 3.1: Truth table for an XOR non linear problem.

X1 | Xo | output
0 0 0
1 0 1
0 1 1
1 1 0

The output of the truth table, represented in the last column, is a linearly
inseparable problem as shown in Fig 3.7b and no single line (decision boundary)
can be drawn to separate these. In order to find a way to separate these two classes
represented by x1, s, let there be a transformation from the input space to some
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arbitrary (¢) space denoted by (¢1,¢2), and represented in Fig 3.7c above. Let the
transformation axis be represented by a gaussian RBF of the form

o1(x) = eap (—(|1x — ta]]))” (3.24)

where t; represents the center of the function. Let this be assumed to be represented
numerically by t;=[1,1]. Similarly let the other axis be represented as:

92(x) = exp (—(||x — t2[))* (3.25)

where like ty, to be represented as to=[0,0]. Simple center values of t; and ts have
been chosen for convenience. Now let us evaluate the input space (X) in terms of
the transformed space ¢. The transformation will have to be computed for all the
values of the input space represented by the truth table above. Computation is
shown for a specific case when X;=1, X,=1 from the truth table [3.1] and ¢; =
[1,1]. Thus replacing the values in equation (3.24) we have :

exp{— [(x1 —1)*+ (x2 — 1)%]}

exp {— [(1 — 1)+ (1 - 1)2)]}

p1(x) = cop {0} (3.26)
1
Similarly for equation (3.25) we have for ¢ :
exp{— [(x1 — 0)> + (x2 — 0)%] }
B exp{—[(1-0)*+ (1 -0)*]}
P2(x) = cop {2} (3.27)
0.135

After evaluating the other values the new truth table is represented in Table 3.2.

Table 3.2: Truth table after transformation from input space to the ¢ space.
X | & b2
1,1 1 0.135
0,11 0.367 | 0.367
0,0 | 0.135 1
1,0 | 0.367 | 0.367

The plot of the truth table mentioned above is shown in Fig 3.7c. It is clear
from the figure that after the RBF transformation, a linearly inseparable problem
is converted to a linearly separable problem with a clean decision boundary as
represented (Fig 3.7c¢). Thus patterns which were not separable in the input space
(X) are now separated in the new space (¢).
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Figure 3.8: Local minima problem demonstrated for Simulated annealing method.

3.5.4 Simulated annealing

Simulated annealing is a generic probabilistic algorithm for global optimization
problem, namely locating a good approximation to the global optimum of a given
function in a large search space [3.16]. Simulated annealing algorithm implemented
in ANN is done by making certain pseudorandom changes that result in improve-
ments. The training process, tends to minimise the objective function that can
otherwise get trapped in a poor solution. Fig 3.8 demonstrates how this happens
in a system with say a single weight.

Assume the weight is set initially to the value at point A. If the random weight
steps are small, all deviations from point A increase the objective function (error
function) and hence will be rejected. The superior weight setting at point B will
never be found and the system will be trapped in ‘local minimum’ instead of the
‘global minimum’ at point B. If the random weight adjustments are very large,
both point A and B will be visited frequently, but so will be every other point. The
weight will change so drastically that it will never settle into the desired minimum
at B.

A useful strategy to avoid this problem is to start with large steps and then
gradually reduce the size of average random step. This allows the network to escape
local minima, while ensuring the network stablization.

Local minimum entrapment plagues all ‘minimum-seeking’ training algorithms.
This includes the standard backpropagation and other Ist order networks as well and
represents a serious and widespread difficulty that is often overlooked. Statistical
methods can overcome this problem by a weight adjustment strategy that causes the
weights to assume the globally optimal value which can eventually make reaching
the point B possible.

76



As an explanatory analogy, suppose the figure represents a marble on a surface
in a box. If the box is shaken violently in the horizontal direction, the marble will
move rapidly from side to side. Never settling at one point, at any instant the
marble maybe at any point on the surface with equal probability.

If the violence of the shaking is gradually reduced a condition will be reached
when the marble sticks briefly at point A and point B. At a still lower level of
shaking, the marble will stay at both points A and B for short times. If the shaking
is continually reduced, a critical point will be reached where shaking is just strong
enough to move marble from point A to B, but not strong enough to enable the
marble to climb the hill from B to A. Thus, the marble will end up in global
minimum as the shaking amplitude is reduced further and eventually to zero.

ANN'’s are trained in essentially the same way through random adjustments of
weights. At first, large random adjustments are made, retaining only those weight
changes that reduce the objective function. The average step size is then gradually
reduced and the global minimum will eventually be reached.

The procedure has a strong resemblance to the annealing of metals; hence the
term ‘simulated annealing’ is used to describe this mechanism. If the metal is raised
to a temperature above its melting point, the atoms are in violent random motion.
As with all physical systems, the atoms tend to settle towards minimum energy
state, but at high temperatures the vigour of the atomic motions prevents this.
As the metal is gradually cooled, lower and lower energy states are assumed until
finally the lowest of all possible states, a global minimum, is achieved. In annealing
process, the distribution of energy states is determined by the relationship:

P(e) x exp(—e/kT)

where P(e) is the probability that the system is in a state with energy e , k is the
Boltzman’s constant and 7T is temperature in degrees Kelvin. At high temperatures
P(e) approaches one for all energy states. Thus a high energy state is almost as
likely as a low energy state. As the temperature is reduced, the probability of high
energy states decreases as compared to the probability of low energy states. As the
temperature approaches zero it becomes very unlikely that the system will exist in
a high energy state.

Training
Applying this statistical method is quite straight forward

1. Define a variable T that represents an artificial temperature. Start with a
large value of T.

2. Apply a set of inputs to the network, and calculate the outputs and objective
function.
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3. Make a random weight change and re-calculate the network output and the
change in objective function due to the weight change.

4. If the objective function is reduced (improved) retain the weight change.

If the weight change results in an increase in objective function, calculate the
probability of accepting the change from the Boltzmann distribution as follows

P(c) x exp(—c/kT)

where P(c) is the probability of a change of ¢ in the objective function, k is a
constant analogus to the Boltzman constant that must be chosen for the problem
at hand, and T is the artificial temperature. Select a random number ‘r’ from a
uniform distribution between zero and one. If P(c) is greater than ‘r’, retain the
change, otherwise return the weight to previous value.

This allows the system to take an occasional step in the direction that worsens
the objective function, thereby permitting it to escape a local minimum where
any small step raises the objective function. To complete the Boltzmann training
strategy, repeat the steps 3 and 4 above, over each of the weights of the network,
gradually reducing the temperature 7" until an acceptably low value for the objective
function is achieved. At this point, a different input vector is applied and the
training process is repeated. The network is trained on all vectors in the training
set, perhaps repeatedly until the objective function value is acceptable for all.

The size of the random weight change in step 3 can be determined in many ways,
e.g., emulating the thermal system, the weight change w can be selected according
to the Gaussian distribution.

P(w) = exp(—w?/T?) (3.28)

where P(w) is the probability of a weight change of size w and T is artificial tem-
perature. This weight change selection method produces a system analogus to the
method described in [3.17].

3.5.5 Secant Methods-One step secant

In the above IInd order methods, we have seen that the Hessian matrix, plays
a crucial role in minimising the error function. If however the Hesian matrix is
not available analytically, secant methods (traditionally referred to as the quasi-
Newton methods) are the widely used methods for approximating the Hessian in
an iterative way using only information about the gradient. In one dimension the
second derivative 823]?;(211) ) can be approximated with the slope of the secant through
values of the first derivative in two near points.
O?E(w) _[0E(w2)  0E(un)

ow? (w2 = un) ~ ow ow (3.29)
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The one step method is an approximation of the Gauss Newton method for error
minimization. The advantage of this method is smaller memory requirements and

lesser computation time[3.18]. One step secant method has been an extensively
used ANN model.

3.6 Hybrid algorithms

3.6.1 Higher order neurons

The Standard Neuron is a combination of aggregation and activation functions. The
standard form of aggregation function is generally the linear weighted sum (linear
basis function). The most common activation functions as mentioned previously are
the sigmoid and the tangent hyperbolic functions. Such neural models, however,
when used to solve real life problems may require a large number of neurons in the
standard neural network. Also the number of unknowns to be determined grows
with the number of neurons and the hidden layers. Therefore, the working of ANN
becomes computation and memory intensive. The computational burden can be
reduced either by reducing the number of neurons or by improving the learning
techniques. The number of neurons in the ANN in turn depends on the neuron
model itself. The standard neuron model is a first order model. This has limitations
of mapping and classification. These limitations can be overcome either by using
second order gradient techniques discussed earlier or by using higher order neuron
models. The application of second order gradient techniques, such as conjugate
gradient and quasi-Newton methods, instead of simple gradient technique, have
shown to achieve rapid convergence. Second order gradient techniques may reduce
the architectural complexity but not the learning complexity.

As the mapping and the classification power of a neuron depends on its order,
a higher neuron model is likely to possess better mapping and classification capa-
bility. Higher order neuron model, which includes quadratic and higher order basis
functions in addition to linear basis function reduces the learning complexity. The
architectural complexity increases with the number of higher order basis functions.
The overall complexity of working of the ANN with higher order neurons is less
compared to second order gradient techniques.

Implementation

A higher order neuron model is considered which has N aggregation functions
and F activation functions [3.19]. The aggregation functions can be linear weighted
sum (linear basis function), quadratic or the higher order basis functions. The
activation functions can be a linear or preferably some non-linear function.

The cross-products of the input terms is added into the model, where each com-
ponent of the input pattern multiplies the entire input pattern vector. A reasonable
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Figure 3.9: A higher order Neuron model with 3 aggregation functions and 2 acti-
vation functions.

way to do this is to add all interaction terms between input values. For example,
for a back-propagation network with three inputs (A, B and C), the cross-products
would include: AA, BB, CC, AB, AC, and BC, which adds second-order terms to
the input structure of the network.

Additional input nodes can be a functional expansion of the base inputs. Thus,
a backpropagation model with A, B and C might be transformed into a higher-order
neural network model with inputs: A, B, C, f(A,B,C), g1(A,B), g2(B,C) etc. In
this model, input variables are individually acted upon by appropriate functions.
Many different functions can be used. The overall effect is to provide the network
with an enhanced representation of the input. No new information is added, but
the representation of the inputs is enhanced. Higher-order representation of the
input data can make the network easier to train. The joint or functional activations
become directly available to the model. Higher order neuron with three aggregations
and two activations is shown in Fig 3.9.

Here, > represents the weighted sum of inputs, [ represents sum of products
of weighted inputs and 'R’ represents the radial basis term as discussed above.
Sgm and T represent the sigmoidal activation and the Tan hyperbolic functions
respectively.

In some cases, a hidden layer is no longer needed. However, there are also certain
limitations to this network model. More input nodes must be processed to use the
transformations of the original inputs. With higher-order systems, the problem
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can sometimes get worsened and not help at all. Yet, because of the limitations
imposed on finite processing time in some cases, it is important that the inputs are
not expanded more than what is needed to get an accurate solution.

3.6.2 Neuro Fuzzy systems

Several other attempts apart from the usage of ANN have been reported to under-
stand and model the capabilities of the human brain. One such popular technique
is the use of Fuzzy Logic algorithms [3.20]. This algorithm represents an altogether
different aspect of human information processing. However, the model presented
may not perform all functions performed by the brain independently. Every in-
telligent technique has particular computational properties (e.g. ability to learn,
explanation of decisions) that make them more or less suited for a particular set of
problems. While neural networks are good at recognizing the patterns, they are not
good at explaining how they reach their decisions. Fuzzy logic systems, which can
reason with imprecise information, are good at explaining their decisions but they,
unlike the neural networks systems, can not automatically acquire the rules they
use to make those decisions. These limitations have been a central driving force
behind the creation of intelligent hybrid systems where two or more techniques are
combined in a manner that overcomes the limitation of individual techniques. The
computational power of Neuro Fuzzy systems, which are fuzzy rule based systems,
are implemented in the framework of neural networks.

The behaviour of fuzzy systems is designed simply by a fuzzy rule :
[F < premise > THEN < consequent >
which uses linguistics variables with symbolic terms, each term representing a fuzzy
set. The fuzzy inference mechanism consists of three stages: in the first stage,
the values of the numerical inputs are mapped by a function according to a de-
gree of compatibility of the respective fuzzy sets, this operation can be called
fuzzyfication. In the second stage, the fuzzy system processes the rules in ac-
cordance with the firing strengths of the inputs. In the third stage, the resultant
fuzzy values are transformed again into numerical values, this operation can be
called defuzzyfication. Essentially, this procedure makes possible the use of fuzzy
categories in representation of words and abstract ideas of the human beings in the
description of the decision taking procedure.

There are three main types of Neuro-fuzzy algorithms [3.21].

1. OR/AND Neuron based Neural Network (FNN)
2. Adaptive Neuro Fuzzy Inference Systems (ANFIS)
3. Compensatory Neuro Fuzzy Systems (CNFIS)
AND and OR Neurons
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AND

Figure 3.10: Standard architecture of an AND/OR, Neuron consisting of 3 layers.

The AND neuron aggregates input signals x = [z, z, ..., ¥,] by combining them
individually with the connections weights w = [wy, ws, ..., w,| and globally ANDing

these results,
y=AND(x,w)

The structure of the OR neuron is dual to that reported for the AND neuron,
namely,

y = OR(z,w)

The AND and OR neurons realize 'pure’ logic operations on the inputs. The imple-
mented OR/AND neuron constitutes a three layer network and is constructed by
arranging the above mentioned AND and OR neurons into a structure displayed in
Fig 3.10. Due to the strong functional cohesion existing between the neurons, it is
called OR/AND neuron. The pure AND and OR characteristics produced at the
level of the hidden layer are then combined by the OR neuron constituting the out-
put layer. Changing the connection weights between hidden and output layer, an
entire range of intermediate logical characteristics of the structure spread between
the AND-like and OR-like functional behavior can be obtained.

Learning
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Learning in the above OR/AND neuron was addressed as a problem of super-
vised training which concerns a series of modifications of the connections (para-
metric learning) using gradient descent algorithm. The successive updates of the
connections W = [w;;] and V=[vy, vo](weights connecting the AND/OR layer to
output) within this training are controlled by the gradient of the predetermined
performance index, in our case the mean squared error performance criterion (Q).
Considering the OR/AND neuron without the nonlinear element, we have from Fig
3.10, y=OR < z1, 25 >V ; z; =AND(x,w) : 2o= OR(x,w5). Thus at the two layers
we have:

Q) dy Oz
= —2(t t—
awij ( arge y) aZZ 8wij
oQ dy
90, 2(target — y) 90, (3.30)

where i = 1,2,....n and Q=(target-y)?.
The nonlinear sigmoidal element placed in series with the OR neuron of the
output layer is given by,
1

OUT = 1 + exp[—(y — m)o]

(3.31)

Both the parameters of the nonlinearity (m and o) were subjected to changes
during the learning of the neuron. The learning formulae become slightly modified
as compared to what has been derived above, and take the form:

0Q dy 0z
Py 2(target —y) y (1 y)aaZi Js
0Q Iy
90, —2(target —y) y (1 — y)aavi
59— “aftarget —y) y (L= y)(~0)
0
2 = 2target —y) y (1 = y)ly — ) (332

Disadvantages of the OR/AND Neural Network

Although the number of neurons and hidden layers required are less than that
required for standard Neural Network, the reduction in error is not always assured.

3.6.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

An adaptive network, as its name implies, is a network structure consisting of nodes
and directional links through which the nodes are connected. Moreover, part or all
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of the nodes are adaptive, which means their outputs depend on the parameters
pertaining to these nodes. In an adaptive network, each node performs a particular
function on incoming signals as well as a set of parameters pertaining to this node.
The node can be either a square or a circle node. A square node has some inherent
parameters while a circle node does not have any.

ANFIS architecture and learning

In ANFIS, the input space is partitioned according to the number of membership
functions selected for each of the inputs. A membership function provides a measure
of the degree of similarity of elements to a fuzzy set. The number of rules (nr) is
given by the number of membership functions for each input (nmf) raised to the
power of the number of inputs (ni). i.e.,

nr = (nmf)™

After the number of membership functions for each of the inputs is known, the in-
put space is partitioned accordingly and one of the rules as discussed, will be used
to approximate the function. In order to modify the parameters associated with
the rules adaptive network concepts are utilized. For simplicity, consider a fuzzy
inference system with two inputs x and y and one output z, assuming the rule-base
contains two types of fuzzy rules which are:

e Rulel: Ifxis Ay and y is By , then fi = p1z + quy +
e Rule 2: If xis Ay and y is By , then fo = pox + qoy + 1o

where p,q,r subscripts are referred to as the node parameters. The corresponding
architecture is shown in Fig 3.11
The node function of the different layers is given below.

e Layer - I:

(3.33)

Where x is the input to node i (Layer-I) and a;, b;, ¢; is the node parameter
set. Parameters in this node are referred to as premise parameters.

e Layer - II:
Every node in this layer is a circle node, which multiplies the incoming signals
and sends the product out.

w; = OZI(ZL') X Ojl(y) (334)

Each node output represents the firing strength of a rule.
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Figure 3.11: Figure shows the Fuzzy architecture

e Layer - III:
The nodes in this layer normalize the outputs of all layer 2 nodes.

> Wi

Outputs of this layer are called normalized firing strengths.

(3.35)

w;

e Layer - IV:
Every node in this layer is a square node with a node function

O;* =wif; = wilpiw + qiy + 13) (3.36)
Parameters in this layer are referred to as consequent parameters.

e Layer-V:
This layer has the single node that computes the overall output

0;> = mei (3.37)

After the node output at the output layer above is computed, error is minimized
using the gradient descent method which is essentially the same treatment followed
by standard backpropagation method.
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3.6.4 Compensatory Neuro-Fuzzy system

The selection of optimal fuzzy operations and optimal reasoning mechanism is car-
ried out by using a compensatory parameter in fuzzy logic, which can be updated
during learning process so that it automatically picks up the degree of compensa-
tion required between the pessimistic (min.) and optimistic (max.) operations. The
neurofuzzy system incorporated with compensatory reasoning method is known as
the compensatory neuro-fuzzy system:.

Architecture

The Compensatory Neuro-Fuzzy System can have five the following five func-
tional layers: They are called as :

e input layer

e fuzzification layer

e pessimistic-optimistic layer

e compensatory operation layer
e defuzzification layer.

A compensatory neuro-fuzzy system is initially constructed layer by layer accord-
ing to linguistic variables, fuzzy IF-THEN rules, the pessimistic and optimistic
operations, the fuzzy reasoning method, and the defuzzification scheme of a fuzzy
logic control system. For clarity and convenience, we can define more extensive
fuzzy neurons which perform some kinds of fuzzy operations. Since the fuzzy logic
control system performs typical functions of fuzzification, fuzzy reasoning, and de-
fuzzification, the control-oriented fuzzy neurons can be defined as the fuzzy neurons
performing these functions. Generally, a fuzzy neuron which performs fuzzification
is called a fuzzification neuron, a fuzzy neuron which performs fuzzy reasoning is
called a fuzzy-reasoning neuron and a fuzzy neuron which performs defuzzification
is called a defuzzification neuron[3.22].

3.6.5 Fuzzification and decision oriented fuzzy neuron

A typical fuzzification neuron is a fuzzy linguistic term of the fuzzy linguistic vari-
able . The fuzzification neuron performs a mapping from a crisp value 'x’ into a
fuzzy set, A; with a degree 'y’ such that y=pA;(z) where p is the membership
function.
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Fuzzy-reasoning neuron A simple fuzzy-reasoning neuron, can map the
inputs z;(i=1,2,...n) to the output 'y’ to the output through some t-norm
function T(z1, x9, ....7,) e.g,

T(xy, 29, ....ty) = Min(xq, 29, ....20,)

T(x1, 29, ....ty) = (x1, T, ....Tp)

The complex fuzzy-reasoning neuron can be constructed by using T-norm
fuzzy neurons performing If-condition matching of fuzzy logic rules and a
T-conorm fuzzy neuron integrating the fired rules.

Defuzzification neuron

A typical defuzzification neuron can generate the final crisp value ’y’ based on
inputs 'z;’(i=1,2,...n) and the weights w; (i=1,2,...n). Here, the weights w; are
the parameters of the output membership functions. A detailed defuzzification
scheme is described in [3.23].

Decision-oriented fuzzy neurons

Depending on their operations the Compensatory neurons are defined as pes-
simistic or optimistic neurons

Pessimistic fuzzy neurons

The pessimistic fuzzy neuron can map the inputs z; (i=1,2,...n) to a pes-
simistic output by making a conservative decision for the situation by consid-
ering the worst case scenario. T-norm fuzzy neurons are pessimistic neurons.

Optimistic fuzzy neurons

On the other hand, the optimistic fuzzy neuron, can map the inputs z;
(i=1,2,...n) to the optimistic output by making an optimistic decision for the
situation by considering the best case scenario. Tco-norm fuzzy neurons are
optimistic neurons.

Compensatory fuzzy neurons

The compensatory fuzzy neuron can map the pessimistic input x; and the
optimistic input x, to the compensatory output y to make a relatively com-
promised decision for the situation between the worst case and the best case.

3.7 Techniques to improve results in ANN

Fast training is desirable, but ultimately one wants the best possible results on the
test set. This section describes the techniques for getting good performance of the
neural network models. The following points will focus on good learning.
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3.7.1 Overfitting, generalization and size of networks

One of the virtues of ANN is that it will fit any function even if the form of the
function is not known. This however, is a shortcoming also sometimes as it can lead
to over-fitting, which means as training goes on, the network will end up fitting the
training data set very closely while ruining the results on the test set. Thus we must
be careful to train the network until the test set results hit a minimum and then
stop. However, one does not always know when the test set has hit a minimum so
as to stop training, more so a local minimum may also hit this process. Over-fitting
generally occurs when we aim for rigorous error levels with a very large architecture
with the given training set. The net, once trained, gives excellent results with the
training set but totally adverse results with testing set. The error goal and network
size needs to be judiciously decided depending on the nature of the problem, number
of training data available, closeness of training data etc.

e Generalization

In classification problems, there is no guarantee that the trained neural net-
work will suggest a sensible way to partition the boundaries between classes.
There are chances that the testing data may be highly misclassified even
though the training data gets classified properly. Odd generalisations can
be minimised somewhat by averaging results over a number of networks. A
reasonable cross check is to do a nearest neighbourhood analysis of each test
pattern as well.

e Size of the network

There is unfortunately no established method to decide on the size with re-
spect to the number of hidden nodes that can be used. Literature is full of
different methods (some of them even contradictory) which can be employed
for evaluating the number of hidden nodes needed for the problem at hand
[3.24-3.27]. A thumb rule, which some neural network expert’s use, is that the
number of hidden neurons required is two-third of the sum of input neurons
and output neurons. Another thumb rule is that we need at least as many
training set patterns, as there are weights in the network. No firm rule can
therefore be stated regarding the size of the network - one has to evaluate
these through the trial and error method or do rigorous experimentation with
the neural model. An easier way that we have employed is the use of Singular
Vector Decomposition for finding the optimum nodes in hidden layer. The
details of this method will be discussed in Chapter 5.

3.7.2 Combining network outputs and pruning

One of the techniques used to improve results is to combine estimators (network
outputs) of many networks, the equivalent of getting the opinion of many experts.
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One of the notable advantages of this method is that one may get very good results
even with rather poorly trained networks.

¢ Pruning of the network

Pruning a network is the process of removing unnecessary processing elements
and connections (weights). It is often desirable to prune a network before de-
ploying it for operation to reduce the I/O processing time. Pruning can often
be performed without any noticeable effect to the performance of a network.
It can be performed by examining the output of units across the training set
inputs and eliminating non-contributory units and weights. Pruning of the
network however can also be avoided using the Singular Vector Decomposition
methodology.
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Chapter 4

Comparative study of ANN
algorithms

4.1 Introduction

An important research activity in the field of neural networks is to compare the
performance of different ANN algorithms on benchmark problems so as to develop
more efficient algorithms for solving real world problems which contain noisy and
scarce data. It has also been observed by several workers, that neural network
algorithms are often benchmarked rather poorly [4.1].

The aim to construct a neural network training benchmark arises from the situa-
tion that ANNs are very powerful information processing tools but their functional-
ity is rather poorly understood. It has been postulated that a properly chosen ANN
model can approximate any continuous function to an arbitrary accuracy [4.2-4.3].
However it is also evident that neural networks are difficult to train in practise.
Extensive training times and the concern towards the improvement have led to a
rich set of proposed alternatives for a variety of network construction activities. As
metioned in the previous chapter, these activities include a variety of activation
functions, network architectures, error minimization algorithms, node optimization
methods, network pruning methods, etc. With a large number of combinations of
these alternatives and the likelihood that the training method performance is prob-
lem dependant, it has become increasingly difficult to establish any useful guidelines
for training of the ANNs.

It is thus a belief that benchmarking the ANNs, that is, a comprehensive set of
training problems and evaluation criteria, would be helpful in a number of ways.
Firstly, it would provide a useful framework for understanding old algorithms and
developement of the newer ones. A comprehensive set of training problems would
assist algorithm development in terms of understanding the strength/weakness of
the method. A set of evaluation criteria can ensure proper weightage to the factors
such as algorithm sensitivity parameters, in addition to the parameters like exe-
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cution times etc. Secondly, a proper benchmark problem can encourage controlled
experiments to better understand the dynamics of neural network training. Thirdly,
benchmarking could assist in comparison of the algorithms and provide guidance if
a particular algorithm is better compared to others and under what conditions.

There have been a number of standard problems used for evaluating training
algorithms, ranging from the XOR problem, to the spiral problem for the classifica-
tion. More importantly, it has also been observed in the literature that performance
of any algorithm is only compared to the standard backpropagation algorithm alone
[4.4] even though there are several powerful and widely used algorithms readily
available now. Keeping this in mind, we carried out a detailed study where the per-
formance of three generations of neural network algorithms i,e Ist order algorithms
(Standard Backpropagation and Resilient Backpropagation), IInd order algorithms
(Conjugate Gradient, Levenberg-Marquardt, Radial Basis Function, Simulated An-
nealing), the Hybrid models like the Higher Order Neuron model and Neuro-Fuzzy
system, is examined by applying them to standard benchmarking problems like
IRIS data, XOR/N-Bit parity and Two Spiral data. In addition to benchmark
problems discussed above, we have also applied the above mentioned neural net-
work algorithms for solving several regression problems such as cos(x) and a few
special functions like the Gamma function, the complimentary Error function and
the upper tail cumulative y2-distribution function.

4.2 Benchmarking of ANN algorithms

The comparative performance of the ANN algorithms described above have been
studied by applying them to standard benchmarking problems like IRIS data,
XOR/N-Bit parity, Two Spiral data and Cosine(x). While we used standard ANN
package contained in the MATLAB software for implementing the Lavenberg-Marquardt
algorithm, the implementation of other algorithms like Backpropagation, Resilient
Backpropagation, Conjugate Gradient Method, Radial Basis Functions, Simulated
Annealing, Neuro-Fuzzy etc., were done by using the dedicated ANN simulator
package BIKAS (BARC - IIT Kanpur ANN Simulator)[4.5]. Written in Java en-
vironment, this dedicated ANN package contains a variety of neural network algo-
rithms like the standard backpropagation, resilient , scale and self conjugate, higher
order network functions, simulated annealing and radial basis methods, adaptive
resonance theory algorithms, self growing networks and fuzzy algorithms. An ex-
haustive library of about 15 error minimization functions (like the conventional
RMS error function, Hyperbolic square error, Minkowski error, Hubers error func-
tion, Cauchy error function etc.) and about 25 activation functions (like the sigmoid
function, hyperbolic tan, sine, cosine, decaying exponential, Gaussian, bipolar log-
arithmic etc.) are also provided in this package.

The training and testing of all the ANN algorithms used in the present work
has been done on a Pentium P-III 700 MHz machine. Rigorous checks were also
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performed at various stages to ensure that the ANN configuration used for a par-
ticular problem was properly optimized with respect to the number of nodes in the
hidden layer. This was done by monitoring the RMS error while training the ANN.
The RMS error employed here is defined as :

(Dyi = Opi)” (4.1)

I
=1

1
RMS = — >

p=1 ¢
where D,; and O,; are the desired and the observed values, P is number of
training patterns and I is the number of output nodes.

The optimized configuration yielded a RMS error which reduced only marginally
when the number of nodes in the hidden layer was increased further, but at the
cost of a much longer computation time. It is worth mentioning here that while
the number of nodes in the hidden layer used varied from 2 for XOR to 15 for
IRIS data, the number of nodes in the hidden layer was kept same for a particular
problem in different ANN algorithms to avoid any biasing towards a particular
algorithm. The training of the above networks was ‘early-stopped’ to avoid any
overfitting effects and this was done as soon as the RMS error reached a plateau. A
maximum of ~ 2000 iterations were found to be optimum for all the problems which
are considered in this work. However, it is important to note that the number of
iterations needed for the ANN to learn the input/output mapping depends on the
complexity of the problem. In real world problems, e.g star/galaxy classification
[4.6], spectra classification, primary energy estimation of Cherenkov telescopes [4.7]
etc. ~ 10,000 iterations have been used.

4.2.1 IRIS problem

The Iris flower data set or Fisher’s Iris data set is a multivariate data set intro-
duced by [4.8] as an example of discriminant analysis. It is sometimes also called
Anderson’s Iris data set because E. Anderson collected the data to quantify the
morphologic variation of Iris flowers of three related species (Fig 4.1).

Fisher introduced a benchmark dataset that contains the sepal and petal mea-
surements of different types of iris flowers. There are 150 training samples available,
each of which consists of four inputs and one output. The inputs are the measured
lengths and widths of the petals and the sepals, and the output is the type of iris
flower, such as Setosa, Versicolor, and Virginica. The distributions of the samples
with respect to the dimensions of the sepals and petals are shown in Fig 4.2 for
easy visualization. It is quite evident from Fig 4.2 that the classes of Versicolor and
Virginica overlap, whereas the class of Setosa is clearly separated from the other
two classes.

In order to convert the training data in the [0,1] interval, all measurement values
were first divided by 10. The three iris species setosa, versicolor, and virginica were
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Figure 4.1: The 3 types of IRIS flowers which were classified by ANN.
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categorized with the numbers 1, 2 and 3, respectively. The configuration employed
for training the ANN consists of 4:15:1 i.e, 4 neurons in the input layer, 15 neurons
in the hidden layer and 1 neuron in the output layer corresponding to the category
of the species. The choice of 15 neurons was found to be optimum for this task.
Since the final RMS error also depends upon the choice of initial parameters (like
«,  and the initial weights), these parameters were changed randomly 5 times
and final RMS error presented here is the mean of these five RMS error values.
The RMS error obtained at the end of the training process for all the algorithms
alongwith time taken for completing the training is presented in Table 4.1.

ANN RMS Time
Algorithm Error (s)
Standard Backpropagation | 2.00 x 1073 33

Resilient Backpropagation | 1.75 x 1073 28
Lavenberg Marquardt 1.92 x 107° 70
Congugate Gradient 9.64 x 1073 | 51
Radial Basis Functions | 3.99 x 1073 | 118
Simulated Annealing 1.20 x 1073 | 123
Neuro Fuzzy Systems 1.14 x 1073 | 311
Higher order 1.21 x 107° | 128

Table 4.1: Mean RMS error and training time of various ANN algorithms with a
configuration of 4:15:1 for the IRIS problem.

The test set for the IRIS data is similar to the training set except that this
data has not been presented during the training of the nets. It consists of 45 data
points (15 from each class). Instead of testing the performance of all the algorithms
with test data, we have only chosen one (or sometimes two) ANN algorithm for
testing purpose and these are the ones which yield the lowest RMS error during
their training stage. Since for the IRIS data case both Higher Order and Lavenberg-
Marquardt algorithms yield the lowest (and reasonably comparable also) RMS error,
we have used only these algorithms for checking their performance on the test data.
The test results obtained for these algorithms suggest that while 100% classification
is achievable for class Setosa, the classification for Versicolor and Virginica is only
80%. The reason for not being able to obtain 100% classification between versicolor
and virginica seems to be the overlapping between these two species (Fig 4.2).

4.2.2 XOR and N-bit parity problems

Exclusive disjunction, Exclusive OR, or more generally XOR, is a logical operation
that outputs true whenever both inputs differ (one is true, the other is false). It
gains the name exclusive or because the meaning of ’or’ is ambiguous when both
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operands are true; exclusive or excludes that case. This is sometimes thought of as
"one or the other but not both”. XOR is a standard and thoroughly investigated
problem in the field of neural network research. Its popularity originates from the
fact that, being able to solve it was a breakthrough achieved by back-propagation
algorithm, compared to the situation faced when no learning algorithm was known
to solve a non linearly separable classification task such as XOR [4.9]. Apart from
the XOR problem we also applied the other ANN algorithms to the generalized
XOR problem i.e the N-bit parity, where the task requires to classify the sequence
consisting of 1’s and 0’s according to whether number of 1’s is odd or even [4.9].
The target for the net here is 1 or 0 depending on whether the sequence is odd or
even. In the XOR problem the algorithm used has the form 2:2:1 i.e 2 neurons in the
input layer, 2 neurons in the hidden layer and 1 neuron in the output layer. Also,
for training the networks, more data points were also generated by incorporating
random noise of 10% at the XOR inputs. The RMS error obtained for the XOR
problem at the end of the training process, for all the algorithms, alongwith time
taken for completing the training is presented in Table 4.2.

ANN RMS Time
Algorithm Error (s)
Standard Backpropagation | 1.23 x 1073 16

Resilient Backpropagation | 7.72 x 1073 14
Lavenberg Marquardt 1.59 x 10°% 15
Congugate Gradient 6.66 x 10 °° 16
Radial Basis Functions | 2.70 x 1073 18
Simulated Annealing 1.18 x 10~* 12
Neuro Fuzzy Systems 2.88 x 1077 15
Higher order 3.67x 1077 | 28

Table 4.2: Mean RMS error and training time of various ANN algorithms with a
configuration of 2:2:1 for the XOR problem.

As seen from Table 4.2, the lowest RMS error for the XOR problem is yielded by
the Neuro-Fuzzy and the Lavenberg-Marquardt algorithms and hence performance
testing on test data sample is done only for these two algorithms. Both these
networks show ~100% success rate in reproducing the XOR truth table.

The parity problem too is a demanding classification task for neural networks to
solve, because the target-output changes whenever a single bit in the input vector
changes. The N- bit parity consists of 2V (here N = 4) training pairs. A 4:2:1
architecture was used by us for studying this problem. The RMS error obtained
for the N-Bit problem, at the end of the training process, for all the algorithms,
alongwith time taken for completing the training is presented in Table 4.3. The test
set for N-Bit parity problem consists of 10 randomly generated noisy events (noise
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10%). Testing of the net was done only with the Lavenberg-Marquardt algorithm
network since compared to other algorithms considered in this work, it gives the
lowest RMS error. The results obtained on the test data suggest that the 4-Bit
parity is reproduced with an accuracy of ~ 90%.

ANN RMS Time
Algorithm Error (s)
Standard Backpropagation | 9.81 x 10~° 26
Resilient Backpropagation | 7.12 x 10~7 40
Lavenberg Marquardt 3.43 x 1078 50
Congugate Gradient 4.03x 1077 | 16
Radial Basis Functions | 1.27 x 107* | 28
Simulated Annealing 9.01 x 10~7| 28
Neuro Fuzzy Systems 3.42 x 1073 44
Higher order 5.16 x 10~* 95

Table 4.3: Mean RMS error and training time of various ANN algorithms with a
configuration of 4:2:1 for the 4-Bit parity problem.

4.2.3 Two-spiral problem

Spiral curves have been the object of mathematical investigation over several hun-
dreds of years. Many different types of spirals exist and can be described formally
in different ways. The original two intertwined spirals benchmark problem was
designed by Lang and Witbrock [4.10] to test the performance of classification on
binary data. This particular task is difficult for most current algorithms since it re-
quires the ANN model to learn the highly non-linear separation of the input space.
In this benchmarking problem, two spirals, each of which has three complete turns,
are created inside a unit square (Fig 4.3). The two-intertwined spirals problem has
also been used quite extensively by other researchers as standard benchmark prob-
lem and requires the neural network to learn a mapping that distinguishes between
points on two intertwined spirals. The data used by us for the 2-Spiral problem
contains 194 data points (97 samples per spiral). The network configuration chosen
to represent this problem has the 2:15:1 architecture, where the two inputs corre-
spond to aj, ap values of the two spirals and the 1 output corresponds to whether
the value belongs to the spiral 1 or spiral 2 (1 if the point falls on one spiral and 0
if it falls on other spiral). Out of these 194 data points 164 were used for training
and 30 points (15 from each spiral) were used for testing. The training results ob-
tained for all the ANN algorithms used in the present study are presented in Table
4.4 and it is quite evident from this table that the Levenberg-Marquardt gives the
best convergence results. However, from training time considerations, the standard
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Figure 4.3: Distribution of data points on the two interwined spirals.

backpropagation and the resilient backpropagation algorithms are seen to consume
minimum training time. Performance check of the Levenberg-Marquardt algorithm,
on test data for 30 points (15 from each spiral), indicates that ~ 70 % of the events
are classified in the proper spiral category. This is much better as compared to
resilient backpropagation which can classify only ~ 50% of the events properly.

A consolidated report of the mean RMS error yielded by various ANN algo-
rithms used in the present work for all the 4 benchmark problems is presented in
Table 4.5. A plot of the RMS error as a function of number of iterations, for all
the 4 benchmark problems is also shown in Fig 4.4 so that the performance of the
backpropagation algorithm can be compared with other algorithms. For the sake
of clarity, the RMS error is shown only for the Backpropagation algorithm and one
more specific algorithm which yields the minimum RMS error (i.e Higher Order for
IRIS, Neuro-fuzzy for XOR and Levenberg-Marquardt method for N bit parity and
2 spiral problem). It is evident from Fig 4.4 and Table 4.5 that the Lavenberg-
Marquardt method yields a lower RMS error as compared to the standard back-
propagation method. Even for the IRIS and XOR problems, where Higher Order
and Neuro Fuzzy algorithms, respectively are found to yield the lowest RMS error,
the performance of the Levenberg-Marquardt is always better than the remaining
ANN algorithms. The reason for the superior performance of Levenberg-Marquardt
is due to the fact that it is a combination of gradient decent and Gauss-Newton
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ANN
Algorithm
Standard Backpropagation
Resilient Backpropagation

RMS Time

Error (s)
1.51 x 107! 60
7.13 x 1071 56

Lavenberg Marquardt 1.09 x 10~1 | 110
Congugate Gradient 1.23 x 1071 | 160
Radial Basis Functions | 1.37 x 1071 | 315
Simulated Annealing 1.70 x 1071 | 200
Neuro Fuzzy Systems 1.38 x 1071 | 390
Higher order 1.13x 1071 | 190

Table 4.4: Mean RMS error and training time of various ANN algorithms with a
configuration of 2:15:1 for the 2-Spiral problem.

ANN IRIS XOR N-bit 2-spiral
Algorithms problem problem parity problem
Backprop 2.00x 1073 | 1.23 x 1073 | 9.81 x 1077 | 1.51 x 10!
Resilient 1.75x 1072 | 7.72x 1073 [ 7.12x 1077 | 7.13 x 10!
Lavenberg 1.92x107° [ 1.59x 107% [ 343 x 10°® | 1.09 x 10~*
Conjugate 9.64 x 1073 | 6.66 x 107° | 4.03 x 1077 | 1.23 x 10!
Rad.Basis 3.99 x 1073 | 2.70 x 1073 | 1.27 x 10~* | 1.37 x 10~!
Sim.Annealing | 1.20 x 1072 | 1.18 x 10=* | 9.01 x 107 | 1.70 x 107!
N.Fuzzy 1.14 x 1072 | 2.88 x 1072 | 3.42 x 1072 | 1.38 x 107!
Hig.Order | 121 x107° | 3.67x10 7 | 516 x 10 2| 1.13 x 10"}

Table 4.5: Comparison of mean RMS error for the different ANN algorithms con-
sidered for the study of benchmark problems.

method which combines the advantages of the local convergence properties of the
Gauss-Newton method and the global properties of gradient descent. However, the
computational complexity of backpropagation is only O(n) as against O(n®) for
the Levenberg-Marquardt algorithm (where n is the total number of weights in the
network).

4.3 Application of ANN algorithms to regression
problems

Artificial neural networks have become a popular tool for approximating non-linear
functions in higher dimensions. Although they are not the panacea for these type
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Figure 4.4: Variation of RMS error as a function of number of iterations for the
4 benchmark problems: (a) IRIS (b) XOR (¢) N Bit Parity (d) 2 Spiral. The
RMS error is shown only for the Backpropagation algorithm and one more specific
algorithm which yields the minimum RMS error for a particular problem.

of problems, they are nevertheless recognized as a useful tool for approximating
non-linear functions. Other well known methods which are conventionally used for
these problems include splines [4.11], additive models [4.12], MARS [4.13], hinging
hyperplanes [4.14] and CART [4.15]. While none of these methods are likely to
perform consistently better than the others across a wide range of problems, it is
indeed a non-trivial task to develop a method that is truly effective for all types
of non linear functions. Keeping in view the superior ability of ANNs to capture
non-linear behaviour of a function and its reasonably fast computation speed, we
were tempted to apply the ANN as a regression tool for approximating functions
like cos(x) and a few special functions like the Gamma function, the complimentary
Error function and the upper tail cumulative y?-distribution function [4.16].

4.3.1 Approximation to cos(x)

To test the performance of the ANN algorithms as a regression analysis tool, we have
first applied the ANN algorithms to a simple trigonometric function like y=cos(x).
In order to keep the output range of the network between 0 and 1, we follow the
approach given in [4.9] where the function is changed to y =(cos(2x)+1)/3. The
ANN configuration chosen for this problem (i.e, 1:2:1) and the number of data points
used for training (=200) is again similar to that used by [4.9]. The training data
set for this problem is synthesized by evaluating the function y =(cos(2x)+1)/3
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at 200 randomly chosen points which are picked uniformly in the interval [0,7]
range (Fig 4.5a). Additional 100 data points, following the same prescription, were
also generated for testing the best ANN algorithm which produces the lowest RMS
error during training. The training results obtained for all the ANN algorithms
used in the present study are presented in Table 4.6. The results of the Levenberg-

ANN RMS Time
Algorithm Error (s)
Standard Backpropagation | 9.83 x 1075 7

Resilient Backpropagation | 7.61 x 1075 7
Lavenberg Marquardt 3.29 x 10~ 12
Congugate Gradient 7.30 x 10°© 8
Radial Basis Functions | 4.15x 107° | 12
Simulated Annealing 461 x107%| 15
Neuro Fuzzy Systems 6.71 x 1075 25
Higher order 8.12 x 10~ 20

Table 4.6: Mean RMS error and training time of various ANN algorithms with a
configuration of 1:2:1 for the (cos(2x)+1)/3 problem.

Marquardt algorithm, which yields the lowest RMS error during training, is shown
in Fig 4.5b. In this figure, we have plotted the relative error in y (defined as (yann-
vexp)/YExp) as a function of x for 100 random data points generated uniformly in
the interval [0,7]. Here, for a given value of x, yayn is the value predicted by the
ANN and ygyp is expected value of the function (cos(2x)+1)/3. Tt is evident from
Fig 4.5b that except for x values in the vicinity of 7/2 radians, where the function
y =(cos(2x)+1)/3 itself becomes close to zero, the relative error in y is in general
<1% for all other values of x.

4.3.2 Approximation to a few special functions

In this section, we apply the ANN algorithms as a function approximation tool to
few special functions like the Gamma function, the complimentary Error function
and the upper tail cumulative y2-distribution function. The training and test data
sets for the above special functions have been generated by using the MATHEMAT-
ICA software package.

Many important functions in applied sciences are defined via improper integrals.
One of the most commonly used function amongst them is the Gamma-function.
The gamma function was first introduced by the Swiss mathematician Leonhard
Euler, in his goal to generalize the factorials to non integer values. The Gamma-
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Figure 4.5: (a) The training data set for the function y =(cos(2x)+1)/3.
(b)Performance of the Levenberg-Marquardt algorithm in terms of relative error
in approximating the function, y =(cos(2x)+1)/3.

function ( I'(z)) has one argument and is defined by the following integral:

I'(z) = /OOO et dt (4.2)

The approximation of the Gamma function was implemented with an ANN config-
uration of 1:20:1, where the one node in the input corresponds to the z value in the
range 0<z<20 and the output node corresponds to In I'(z). The purpose of using In
I'(z) instead of I'(z) directly was to avoid overflow problems even at a quite modest
value of z. The training of the ANN algorithms has been done with ~1000 values
and only those values of z and In['(z) are used for which I'(z) < 1.2x10'7,

The second special function chosen by us to test the function approximation
capability of the ANN is the complimentary function, erfc(x). The complementary
error function is an important special function which appears in the solutions of
diffusion problems in heat, mass and momentum transfer, probability theory, the
theory of errors and various other branches of mathematics and physics. The com-
plimentary error function has one argument and is defined by the following integral:

2 [,
erfe(r) = ﬁ/x e dt (4.3)

Since there is direct relationship between the complimentary error function and the
cumulative distribution for the Gaussian distribution, we have tried to apply the
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ANN algorithms for approximating the normal tail integral. The upper tail inte-
gral, or the cumulative upper distribution function, Q(x) for Gaussian probability
distribution with argument x is defined by :

X

L[ ey, 1
Q@):E/m Uit = S erfe(52) (4.4)

The function approximation for the normal tail probability integral was imple-
mented with an ANN configuration of 1:20:1, where the one input node corresponds
to the x value ranging between 0 to 20 and the output node corresponds to In Q(x).
The values of Q(x) are in the range ~2.767 x107% to 0.5. About 1000 values of x
and (In Q(x)) were used for training the ANN algorithms.

The third special function chosen for testing the function approximation ca-
pability of the ANN is the cumulative distribution function of the y2-probability
distribution. The chi-square distribution is one of the most widely used theoretical
probability distributions in inferential statistics, i.e. in statistical significance tests.
The best known situations in which the y2-distribution is used are the common
x2-tests for goodness of fit of an observed distribution to a theoretical one. The
x?-upper tail cumulative distribution function ( Q(x?|v)) is defined by the following
integral:

1

QUE) = SET(]2) /X2 e V221 gt forv >0, x> >0 (4.5)

Where v is the degrees of freedom. The approximation of the 2 upper tail cumula-
tive distribution function ( Q(x?|v)) was implemented with an ANN configuration
of 2:20:1 where the two input nodes correspond to the x? and v values. The output
node of the ANN represents the (In Q(x?|v)) value. About 1000 values with 1< x?
< 100 and 1< v < 100 were used for training the ANN algorithms. The training of
the ANN was performed with only those values of x* and v which yield a (Q(x?|v))
between ~1.757 x10723 to 0.999. The results of the training regarding the mean
error for all the three special functions discussed above are presented in Table 4.7.
Performance of the Levenberg-Marquardt algorithm in terms of relative error in
approximating the three special functions is shown in Fig 4.6. A data sample of
100 values each is used for testing the approximation for the Gamma function (Fig
4.6a) and Gaussian upper tail probability integral (Fig 4.6b). The corresponding
data samples used for testing the x? upper tail probability integral is 400 for 4 dif-
ferent values of v. Referring first to the approximation of the Gamma function, it
is evident from Fig 4.6a that the relative error in I'(z) is <0.25% for 2<z<20. How-
ever, for 0<z<2, the relative error increases significantly to >+0.5%. Regarding
the approximation of the Gaussian upper tail probability integral, the relative error
in Q(x) is within +0.3% for all values of x in the range 0 to 20. The results for the
approximation of x? upper tail probability integral (Fig 4.6¢ and Fig 4.6d) indicate
that the relative error in Q(x?|v) is in general significantly more than that of the
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ANN RMS error | RMS error RMS error
Algorithm (Gamma (Upper tail | (Upper tail
Studied Function) | Normal dist.) | 2 dist.)
Backpropagation 2.25 x 1072 9.16 x 10! 2.91 x 10°
Resilient Backprop 8.97 x 102 1.51 x 107! 2.01 x 1073
Lavenberg — Marquardt | 1.25 x 107° 2.08 x 107 1.72 x 107°
ConjugateGradient 5.01 x 1073 2.14 x 1072 4.87 x 1072
Radial Basis 5.68 x 1073 7.33 x 1073 5.71 x 1072
Simulated Annealing 5.23 x 1073 1.52 x 1072 4.20 x 1073
Neuro — Fuzzy 4.12 x 1072 8.96 x 102 1.16 x 103
Higher — Order 7.16 x 107° 9.86 x 108 6.42 x 10°°

Table 4.7: Mean RMS Error of various ANN algorithms with a configuration of
1:20:1 for function approximation of 3 special functions.

other 2 special functions possibly because of the presence of 2 input parameters ( x>

and v) instead of 1 as in the case of other two special functions. Keeping in view the
fact that these special functions are being approximated over a very wide dynamic
range (~ 0.88 to 1.2x10'7 for Gamma function, ~2.7 x107% to 0.5 for Gaussian
upper tail integral and ~1.8 x1072% to 0.999 for x* upper tail integral), we believe
that the results obtained are rather encouraging. However, there is a strong need to
further improve these results if one demands that approximation using ANN algo-
rithms should yield a performance which is comparable to that of the conventional
methods using numerical algorithms or other adhoc approximations. Furthermore,
keeping in view the widespread use of these functions and also their highly non-
linear behaviour with a very wide dynamic range, we feel that these functions can
be considered as standard benchmark problems for function approximation studies
using ANNSs.

4.4 Summary

ANN algorithms have been applied to a variety of problems in various diverse areas
of physics, biology, medicine, computer science etc. The main aim of most of these
studies has been to use ANN-based algorithms (generally standard backpropaga-
tion) as an alternative method to conventional analysis for achieving better results.
While comparative performance of some ANN algorithms like standard backprop-
agation, fuzzy logic, genetic algorithms, fractals etc., has been studied for various
applications, a rigorous intercomparison of some of the powerful algorithms (e.g.
the ones studied in this work) is still missing from the literature. The primary aim
of this work has been to provide a rigorous comparative study of various powerful
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Figure 4.6: Performance of the Levenberg-Marquardt algorithm in terms of relative
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x? distribution for different values of v.

algorithms, by first applying them to standard benchmark problems and then apply
them as a regression tool for approximating functions like cos(x) and a few special
functions. Our results suggest that while Levenberg-Marquardt algorithm yields the
lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order
Neurons algorithm gives the best results for the IRIS data problem. The best results
for the XOR problem are obtained with the Neuro Fuzzy algorithm. It is worth
mentioning here that benchmark problems ( IRIS, XOR/N-Bit Parity and 2-Spiral)
have been also studied by numerous other workers. For example, using a 2:2:1 con-
figuration for the XOR problem, Wang [4.9] has reported that one can achieve an
accuracy of ~80% with ~5000 epochs of training. Other benchmark problems like
Parity and cos(x) have also been studied by the same author, but comparison is
done only for the backpropagation and simulated annealing techniques. Likewise,
the 2-Spiral problem has been studied by several workers using different algorithms
like vanilla backpropagation [4.17] with configuration of 2:5:5:1, generalised regres-
sion model [4.18], vector quantization method [4.19], input coding scheme [4.20].
Complicated ANN configurations like 2:20:20:1 for the 2-Spiral problem with 50,000
training epochs and 4:4:2:1 for the IRIS problem with 30,000 training epochs has
also been attempted by Lee [4.21] for achieving reasonably accurate results for these
benchmark problems.

Regarding application of neural network algorithms for solving regression prob-
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lems, such as evaluation of special functions like the Gamma function, the compli-
mentary Error function and the upper tail cumulative y2-distribution function, we
believe that such an attempt has been made in this work for the first time. The
results obtained in this work indicate that, among all the ANN algorithms used in
the present study, Levenberg-Marquardt algorithm yields the best results. Conven-
tionally, two groups of approximations are found in the literature which are used
for calculating these special functions. One group consists of standard numerical
algorithms which, at least in theory, allow computation of the above integral to
arbitrarily high precision. However, computation using these numerical algorithms
requires massive computation. The second group consists of the so called 'adhoc
approximations’ which require only a few carefully chosen numeric constants. Im-
portantly, a serious limitation of most of the approximations in both the groups is
that they are designed to work in a predefined range of input parameter values and
the accuracy of the approximation rapidly deteriorates when the input parameters
take a value outside the predefined range.

In order to appreciate the complexity of evaluating the special functions studied
in this paper, it is worth discussing here some of the important approximations used
for these functions. A well known method for calculating the gamma function is
the so called Lanczos approximation [4.22] which computes the value of I'(z) any
positive real argument(z) with a high level of accuracy. Likewise, a compilation of
useful approximations used for evaluating the upper tail integrals for the Gaussian
and y? distributions can be found in [4.23] and [4.24], respectively.

Although the comparative performance of different ANN algorithms is in gen-
eral problem dependent, we feel that the study undertaken here does give an insight
into the power of various ANN algorithms. Since for real world problems it is not
an easy task to identify the most suitable ANN algorithm by just having a look
at the problem, our results suggest that while investigating the comparative per-
formance of other ANN algorithm, the Levenberg-Marquardt algorithm deserves a
serious consideration and cannot be rejected outright because of its training time
overheads.
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Chapter 5

ANN based gamma-hadron
segregation for TACTIC telescope

5.1 Introduction

Gamma-ray photons in the TeV energy range (0.1-50TeV), are expected to come
from a wide variety of cosmic objects within and outside our galaxy. While this
promise of the cosmic TeV ~-ray probe has been appreciated for quite long, it was
the landmark development of the imaging technique and the principle of stereoscopic
imaging, proposed by Whipple [5.1] and the HEGRA [5.2] groups, respectively, that
revolutionized the field of ground-based very high-energy (VHE) ~-ray astronomy.

The success of VHE ~v-ray astronomy, however depends critically on the effi-
ciency of v/hadron classification methods employed. Thus, in order to improve the
sensitivity of ground based telescopes, the main challenge is to improve the exist-
ing 7/hadron segregation methods to efficiently reduce the background cosmic-ray
contamination and at the same time also retain higher number of y-ray events. De-
tailed Monte-Carlo simulations, pioneered by Hillas [5.3], show that the differences
between Cherenkov light emission from air showers initiated by vy-rays and protons
(and other cosmic-ray nuclei) are quite pronounced, with the proton image being
broader and longer as compared to the vy-ray image. This led to the development
and successful usage of several image parameters in tandem, a technique referred
to as the Supercuts/Dynamic Supercuts method. Although the efficiency of this
v/hadron event classification methodology, has been confirmed by the detection of
several y-ray sources by various independent groups including us, there is a need
to search for still more sensitive/efficient algorithms for v/hadron segregation. The
conventionally used Supercuts/Dynamic Supercuts method, though using several
image parameters simultaneously, with some of them also being energy dependent,
is still a one dimensional technique, in the sense that the parameters it uses for clas-
sification are treated separately and the possible correlations among the parameters
are ignored.
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The multivariate analysis methods, proposed by various groups, for discrimi-
nating between ~-rays and hadrons are the following: Multidimensional Analysis
based on Bayes Decision Rules [5.4], Mahalonobis Distance [5.5], Maximum Likeli-
hood [5.6], Singular Value Decomposition [5.7], Fractals and Wavelets [5.8-5.9] and
Neural Networks [5.10-5.11]. The comparative performance of different multivari-
ate classification methods like Regression ( or Classification) trees, kernel methods,
support vector machines, composite probabilities, linear discriminant analysis and
Artificial Neural Networks (ANN) has also been studied by using Monte Carlo
simulated data for the MAGIC telescope. A detailed compilation of this study is
reported in [5.12]. The results published in the above work indicate that while
as the performance of Classification Trees, Kernel and Nearest-Neighbour methods
are very close to each other, the different ANN methods employed (feed-forward,
random search and multilayer perceptron) yield results over a wide range. The feed-
forward method gives a significance of ~ 8.75 o, whileas multilayer perceptron gives
a somewhat poorer significance of ~ 7.22¢ [5.12]. The discrimination methods like
Linear Discriminant Analysis and Support Vector Machines are found to be inferior
compared to others [5.12].

5.2 Brief description of some similar applications
using ANN

Research activity in the last decade or so has established that ANN based algo-
rithms are promising alternatives to many conventional classification methods. The
advantages of ANN over the conventionally used methods are mainly the following:
Firstly, ANN are data driven, self- adaptive methods, since they adjust themselves
to given data without any explicit specification of the functional form for the un-
derlying model. Secondly, they are universal function approximators as they can
approximate any function with an arbitrary accuracy [5.13]. Third and most im-
portant, ANN are able to estimate the posterior probability which provides the ba-
sis of establishing classification rule and performing statistical analysis [5.14,5.15].
These statistical methods, though important for classification are merely based on
bayesian decision theory in which posterior probability plays a central role. The fact
that ANN can provide an estimate of posterior probability implicitly establishes the
strong connection between the ANN and statistical methods. A direct comparison
between the two, however, is not possible as ANN are non-linear and model free
methods, while as statistical methods are mostly linear and model based.

Several ~-ray astronomy groups have already explored the feasibility of using
ANN for v/ hadron separation work. While nobody has so far worked with primary
ANN (i.e using Cherenkov images directly as inputs to ANN), the results reported
are mainly from the use of secondary ANN where various image parameters are
used as inputs to the ANN. In an attempt to examine the potential of ANN for
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improving the efficiency of the imaging technique, y-ray and proton acceptance of
~ 40 % and ~ 0.7 %, respectively was achieved by Vaze [5.16] by using 8 image
parameters as inputs to the ANN. A detailed study of applying ANN to imaging
telescope data was attempted by Reynolds and Fegan [5.11] and results of their
study indicate that the ANN method although being superior to other methods
like maximum likelihood and singular value decomposition does not yield better
results than the Supercuts Method. The work reported by Chilingarian in [5.10]
by using 8 image parameters as inputs to the ANN, on the other hand, indicates
a slightly better performance of the ANN method as compared to the Supercuts
procedure. Using a network configuration of 4:5:1 on the Whipple 1988-89 Crab
Nebula data, the author has reported only marginal enhancement in the statisti-
cal significance ( viz., ~35.800 as against ~34.300 obtained with the Supercuts
method), but there is a significant increase in the number y-rays retained by the
ANN ( viz., ~3420 as against ~2686 obtained with the Supercuts method). Ap-
plication of Fourier transform to Cherenkov images and then using the resulting
spatial frequency components as inputs to a Kohonen unsupervised neural network
for classification has been reported by Lang [5.17]. The performance of Multifractal
and Wavelet parameters was examined by the HEGRA collaboration in [5.18] by
using a data sample from the Mkn 501 observation. The authors of the above work
report that combining Hillas and multifractal parameters using a neural network
yields a slight improvement in performance as compared to the Hillas parameters
used alone.

There are also many other assorted [5.19-5.20] and non-imaging applications in-
cluding data collected by extensive air shower arrays where ANN have been applied.
Bussino and Mari [5.21] employed a backpropagation based ANN model for sepa-
rating electromagnetic and hadronic showers detected by an air shower array. They
achieved a ~ 75 % identification for v-rays and ~ 74% identification for protons.
Maneva et al [5.22] used a ANN algorithm for the CELESTE data. Dumora et al
[5.23] have also reported promising results for CELESTE data where ANN method
was used for discriminating the v /hadron Cherenkov events for the wavefront sam-
pling telescope. The standard Sttutgart Neural Network Simulator (SNNS) package
has also been used for v/hadron segregation for the data obtained from AGRO-YBJ
experiment [5.24]. Application of backpropagation based ANN method for separat-
ing «v/hadron events recorded by the HEGRA air shower array has been studied by
Westerhoff et al [5.25].

Keeping in view the encouraging results reported in the above cited literature,
in particular the results published in [5.10-5.12], we studied the ~/ hadron segre-
gation potential of various ANN algorithms, by applying them to the Monte Carlo
simulated data. The idea of applying ANN for determining the energy of the ~-rays,
from a point source, has already been used by us [5.26] for determining the energy
spectra of the Crab Nebula, Mrk421 and Mrk501, as measured by the TACTIC
telescope, details of which will be discussed in the following chapter.
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5.3 Statistical analysis of Cherenkov image pa-
rameters

The details of the procedure related to generation of the simulated data base for
the TACTIC telescope which has been used in the present study are discussed in
chapter 2 and the Cherenkov imaging parameters used here are discussed in chapter
1.

5.3.1 Statistical analysis of various parameters for selecting
the optimal features

The success of any classification technique depends on the proper selection of the
variables which are to be used for the event segregation and the agreement between
the expected and the actual distributions of these variables. Fig 5.1, shows the
distributions of the Cherenkov image parameters LENGTH, WIDTH, DISTANCE
and « for simulated protons events and for the actual Cherenkov events recorded
by the telescope. The data plotted here has been first subjected to pre-filtering
cuts with SIZE > 50 photoelectrons (pe) and (0.4° < DISTANCE < 1.4%)
in order to ensure that the events recorded are robust and well contained in the
camera. The simulated image parameter distribution of y-rays has also been shown
in the figure below for comparison. The observed image parameter distributions
are found to closely match the distributions obtained from simulations for proton-
initiated showers, thus suggesting that the response of the telescope is reasonably
close to that predicted by simulations. For converting the event SIZE, recorded
in charge to digital counts, to corresponding number of photoelectrons, we have
used a conversion factor of 1pe 226.5 counts [5.27]. In order to understand and
improve upon the existing v/hadron segregation methods it is important to estimate
the discriminating capability of each of the Cherenkov image parameters and their
correlations[5.4]. The image parameters considered for this correlation study are :
SIZE, LENGTH, WIDTH, DISTANCE, FRAC2 and «.

In order to select image parameters which are best suited for v/ hadron sepa-
ration we have applied the following tests: Student’s t-test, Welch’s t-test, Mann
Whitney U-test (also known as Wilcoxon rank-sum test) and the Kolmogorov -
Smirnov test (KS test) [5.28]. The Student’s t-test and Welch’s t-test belong to
the category of parametric tests which assume that the data are sampled from pop-
ulations that follow a Gaussian distribution. While as, the Students unpaired t-
test assumes that the two populations have the same variances, the Welch’s t-test
is a modification of the t- test which does not assume equal variances. Tests that
do not make any assumptions about the population distribution are referred to as
nonparametric tests. Mann Whitney U-test and Kolmogorov - Smirnov test belong
to this category of tests. While the nonparametric tests are appealing because they
make fewer assumptions about the distribution of the data, they are less powerful
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Figure 5.1: Comparison of image parameter distributions (a) LENGTH, (b)
WIDTH, (c) DISTANCE and (d) Alpha («) from real and the Monte Carlo simu-
lated data for proton events. The simulated image parameter distribution of v-rays
has also been shown in the figure for comparison.

than the parametric tests. This means that the corresponding probability values
tend to be higher, making it harder to detect real differences as being statistically
significant. When large data samples are considered, the difference in power is mi-
nor. Furthermore, it is worth mentioning here that the parametric tests are robust
to deviations from Gaussian distributions, so long as the samples are large.

In order to apply the above mentioned tests to simulated data of y-ray and
proton initiated showers we have used ~ 6000 events each, at a zenith angle of 25°
and the results of these one-dimensional tests are summarized in Table 5.1.

Since the P-values (i.e the probability of rejecting the null hypothesis that the -
ray data sample and the proton-data sample come from the same population) are
usually very small we have instead used the value of the corresponding statistic
for rejecting or accepting the null hypothesis. In other words t-statistic values are
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Table 5.1: Statistic values of various parametric and non-parametric statistical tests.
Larger value of the statistic indicates that the corresponding probability of rejecting
the null hypothesis, that the vy-ray data sample and the proton-data sample come
from the same population, is low.
Notations used are SIZ=SIZE, LEN=LENGTH, WID=WIDTH,
DIS=DISTANCE, FR2=FRAC?2.

Student’s | Welch’s | Mann-Whitney KS
t-test t-test U-test D-test

t t zZ D

S1Z 1.95 1.94 8.66 0.09
LEN 138.80 138.75 90.20 0.85
WID 120.96 120.28 84.75 0.76
DIS 19.65 19.64 17.18 0.18
FR2 200.84 200.94 92.69 0.90
(oY% 112.57 112.53 82.89 0.76

given in the Table 5.1 for expressing the results of Student’s t-test and Welch’s
t-test. Similarly, for Mann Whitney U test the z-statistic values are given in the
table (where z = (U — my) /oy with my and oy as the mean and the standard de-
viation of U). For the Kolmogorov Smirnov test we have calculated D-statistic (i.e
maximum vertical distance between the two cumulative frequency distributions).
On examining Table 5.1 it is evident that four image parameters (viz., LENGTH,
WIDTH, FRAC2 and «) have a significant potential of providing efficient v/ hadron
separation. Larger the value of the corresponding statistic, lower is the correspond-
ing probability of rejecting the null hypothesis that the y-ray data sample and the
proton-data sample come from the same population.

In order to estimate the statistical relationship between two image parameters
for v-ray data sample and the proton-data samples separately we have also calcu-
lated the Pearson product-moment correlation coefficient. Following the standard
procedure, it is obtained by dividing the covariance of the two variables by the
product of their standard deviations. The closer the coefficient is to either -1 or
1, the stronger the correlation between the variables. The results of this study,
obtained separately for y-ray and proton-data samples, are presented in Tables 5.2
and Table 5.3, respectively.

The values of the t-statistic corresponding to each correlation coefficient are also
given in these Tables (numbers within parentheses). These values can be used for
assessing the significance of the correlation. Larger value of the z-statistic indicates
that the corresponding probability of rejecting the null hypothesis that the observed
value comes from a population in which correlation coefficient ~ 0, is low. If the

113



Table 5.2: Correlation matrix for simulated y-ray data sample at a zenith angle
of 25°. The values listed below for each correlation coefficient (numbers within
parentheses) are the corresponding z-statistic values obtained using Fisher trans-

formation.

SIZ LEN WID DIS FR2 a

SIZ | 1.000 | 0.394 0.474 0.072 | —0.441 | —0.037
(———) | (33.206) | (41.692) | (5.603) | (38.051) | (2.881)

LEN | 0394 | 1.000 0.615 0.038 | —0.709 | 0.196
(33.206) | (— ——) | (60.452) | (2.908) | (78.069) | (15.466)

WID | 0474 | 0.615 1.000 | —0.396 | —0.560 | 0.456
(41.692) | (60.452) | (———) | (33.360) | (53.680) | (39.649)

DIS | 0.072 | 0038 | —0.396 | 1.000 | —0.034 | —0.366
(5.603) | (2.908) | (—33.360) | (— — —) | (—2.615) | (30.491)

FR2 | —0.441 | —0.709 | —0.569 | —0.034 | 1.000 | —0.064
(38.051) | (78.069) | (53.680) | (—2.61) | (— ——) | (4.927)

a | —0.037 | 0.196 0.456 | —0.366 | —0.064 | 1.000
(2.881) | (15.466) | (39.649) | (30.491) | (4.927) | (— — —)

correlation coefficient is p the Fisher transformation can be defined as:

1 1+p
z=—=In|—
2 1—0p

The Fisher p-to-z transformation [5.29] has also been applied to assess the signifi-
cance of the difference between two correlation coefficients ( say p; and po) found
in two independent samples. The relevant expression to calculate this is given by :

(5.1)

|P1 —P2|

1 1
ni—3 na—3

(5.2)

212 =

where p; and p, are the two correlation coefficients, n; and n, are respectively
the number of data points used while calculating p; and ps. Table 5.4 gives the
values for the Fisher matrix of various image parameters for the simulated ~/proton
sample.

On examining Tables 5.2, 5.3 and 5.4, one can select the image parameters for
achieving optimum ~/hadron segregation. This can be done on the basis of iden-
tifying parameters for which the difference between their correlation coefficients is
maximum. As seen in Table 5.4, WIDTH-« pair yields the largest Fisher test value.
Furthermore, it is also encouraging to find that the other well known characteris-
tics of Cherenkov image parameters are in good agreement with our results. For
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Table 5.3: Correlation matrix for simulated proton data sample at a zenith angle
of 25°. The values listed below for each correlation coefficient (numbers within
parentheses) are the corresponding z-statistic values (obtained using Fisher trans-

formation).

SI1Z LEN | WID | DIS | FR2 o
SIZ | 1.000 | 0.036 | 0273 | —0.301 | —0.083 | —0.008
(=) | (2.757) | (21.950) | (2.332) | (6.472) | (0.624)
LEN | 0036 | 1.000 | 0360 | —0.023| —0.618 | 0.086
(2.757) | (==) | (29.916) | (1.792) | (60.947) | (6.691)
WID | 0273 | 0360 | 1.000 | —0.036 | —0.510 | 0.005
(21.950) | (29.916) | (——) | (2.806) | (46.998) | (0.368)
DIS | —0.301 | —0.023 | —0.036 | 1.000 | —0.006 | 0.012
(2.332) | (1.792) | (2.806) | (——) | (0.481) | (0.958)
FR2 | —0.083 | —0.618 | —0.510 | —0.006 | 1.000 | —0.028
(6.472) | (60.947) | (45.998) | (0.481) | (=) | (2.154)
a | —0.008 | 0.086 | 0.005 | 0.012 | —0.028 | 1.000
(0.624) | (6.691) | (0.368) | (0.958) | (2.154) | (——)

example, dependence of the image shape parameters (i.e LENGTH and WIDTH)
on SIZE for vy-rays. Both these parameters yield positive correlation coefficient
of ~0.394 and ~0.474 as shown in Table 5.2. Since SIZE parameter of an image
provides an approximate estimate of the y-ray primary energy both these param-
eters are expected to be correlated with the event SIZE. The modification of the
Supercuts procedure to Dynamic (or extended) Supercuts follows the same prin-
ciple. Negative correlation between DISTANCE and « for v-rays coming from a
point source is also seen in Table 5.2 in accordance with the expected relationship
between these image parameters. Thus, on the basis of results presented in Tables
5.2, 5.3 and 5.4, one can confidently say that there is sufficient scope for utilizing
the differences in the correlation between various image parameters for developing
alternate /hadron segregation methodologies.

Keeping in view the fact that, for proton initiated showers (as also in general for
other cosmic-ray primaries), the image parameter « is expected to be independent
of other image parameters because of the isotropic nature of the cosmic-rays we
will not use it in the ANN-based ~/hadron segregation methodology. Justification
for following this approach is also evident in Table 5.3, where for the proton data
sample, one finds negligible correlation between « and other image parameters.
Thus, for extracting the v-ray signal from the cosmic-ray background, we will use
the frequency distribution of the o parameter for the ANN selected events. The
distribution is expected to be flat for cosmic-rays and should reveal a peak at smaller
« values for v-rays coming from a point source. In all, we will use the following six
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Table 5.4: Fisher Matrix for the simulated v/hadron data sample at a zenith angle
of 25°. The matrix can be used to assess the significance of the difference between

two correlation coefficients.
SIZ | LEN | WID | DIS | FR2 «
S1Z —— | 20.83 | 12.87 | 5.6 | 21.30| 1.59
LEN | 20.83 | —— | 1865 | 3.32 | 895 | 6.16
WID | 12.87 | 1865 | —— | 20.97 | 4.56 | 26.70
DIS | 560 | 3.32 | 20.97 | — 1.51 | 21.68
FR2 | 21.30 | 8.95 4.56 1.51 —— 1.96
o 1.59 | 6.16 26.7 | 21.68 | 1.96 ——

image parameters in the ANN-based v/hadron segregation methodology : Zenith
angle (#), SIZE, LENGTH, WIDTH, DISTANCE and FRAC2. Use of 6 angle as
an additional variable can be justified by keeping in view the fact that as # angle
increases, the line of sight distance to the shower maximum also increases, making
all projected dimensions of the shower (i.e, LENGTH and WIDTH) smaller. The
shape parameters LENGTH and WIDTH are expected to approximately scale as o
cos(6).

5.4 ANN methodology

The ANN methodology along with the details and power of the various ANN algo-
rithms considered by us have been discussed in detail in chapter 3 of this thesis. It
is however important to mention here that for real world problems, the definitions
presented in chapter 3, serve only as a guideline and the actual performance of the
ANN models on real world problems does not necessarily follow these theoretical
predictions. Thus, the varied algorithms under the ANN domain can not be used as
off the shelf algorithms until sufficient expertise in the field is obtained. There are
several other issues involved in designing and training a multilayer neural network.
These are : (a) Selecting appropriate number of hidden layers in the network; (b)
Selecting the number of neurons to be used in each hidden layer; (c¢) Finding a
globally optimal solution that avoids local minima; (d) Converging to an optimal
solution in a reasonable period of time; (e) Overtraining of the network and (f)
Validating the neural network to test for overfitting.

It is important to mention that while lot of emphasis has been put lately on the
use of Random Forest (RF) technique as an efficient tool for y-hadron segregation,
we believe that a properly selected and well trained neural net algorithm is equally
as efficient for this purpose. The results obtained by [5.12] in their study obtained
a Quality factor (QF) of ~ 2.8 and ~ 3.0 for Random Forest and ANN methods
respectively when applied to the MAGIC data. The maximum significance also
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turns out to be comparable at ~ 8.740 and ~ 8.750 for RF and ANN respectively.
In another study conducted by Boinee et al. [5.30] on the MAGIC Cherenkov
telescope experiment, detailed comparison of RF, ANN, Support Vector Machines
and Classification Trees have been presented. While as, the optimized RF technique
resulted in a classification accuracy of ~ 81.24 %, the classification accuracy for
ANN turned out to be ~81.75% with a mean error rate of ~0.276 and ~ 0.256 for
the Random Forest and ANN techniques respectively, thereby suggesting that the
two techniques are at best comparable. The results obtained from other methods
turn out to be quite inferior compared to ANN and Random Forest, suggesting that
both these methods are equally suitable.

5.5 Gamma/hadron separation using ANN

5.5.1 Preparation of training, testing and validation data

Training the ANN means iteratively minimizing the error between the desired out-
put and the ANN generated value, with respect to the network weights. Clearly,
in order for the network to yield appropriate outputs for given inputs, the weights
must be set to suitable values. This is done by ’training’ the network on a set of
input vectors, for which the ideal outputs (targets) are already known. For training
the ANN we have used ~13,750 y-ray simulated events (details presented in chap-
ter 2) following a power law distribution with a differential spectral index of ~-2.6.
This data-base was obtained by combining together ~2,750 events each at 5 differ-
ent zenith angles (f = 5° 15° 259 35% and 45°). The cosmic-ray data of ~11,290
events, used for training the ANN, is the actual experimental data recorded by the
TACTIC telescope and was prepared in the following manner. Around one-third
of the data used (~ 3,163 events) were recorded in the Crab Nebula off source
direction. From the Crab Nebula on-source data base, collected between Nov.10,
2005 - Jan. 30, 2006, we used another (~ 3163 events) for which o > 27° and are
hence certainly cosmic-ray events. The remaining one-third portion of the data was
taken from ~30h of Mrk 421 off-source observations and this data was collected
during the same observing season. The zenith angle of the off-source observation
was restricted to < 45°. The reason for generating the training data in this manner
was to ensure that all possible systematic influences on the training of the network
such as variable sky brightness in different directions are also included during the
training procedure. Using the experimental data-base for the protons is a useful way
of training, since it helps ANN to recognize the latent patterns, if any, in a better
way which can otherwise be difficult to replicate in simulations e.g, in situations
when the sky brightness is higher than what has been assumed in simulations. The
importance of using real background hadronic events instead of simulated events
has also been demonstrated in [5.11].

The test data set consists of an independently generated sample of about 44,831
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events (mixture of ~ 24,603 simulated y-ray and ~ 20,228 actual cosmic-ray events),
which has not been used while training the ANN. This data set has exactly the same
format as the training data set and is generated in the same manner as the training
data. A validation data sample of ~ 29,798 events ( mixture of 16,424 simulated
v-ray and 13,374 actual cosmic-ray events) is used for verifying that the network
retains its ability to generalize and is not ‘over-trained’.

5.5.2 ANN training and optimizing the hidden layer nodes

The network used in this work comprises 6 nodes in the input layer with one node
each for Zenith angle (), SIZE, LENGTH, WIDTH, DISTANCE and FRAC2 and
one neuron in the output layer whose value decides the class to which the output is
to be categorized. This value is designated as 0.1 or 0.9 depending upon whether the
event in question is a y-ray or a cosmic-ray event respectively. In order to determine
the optimum number of neurons in the hidden layer we evaluate the Mean Square
Error (MSE) generated by the network. The MSE for the network is defined as:

11 e~ [ Dy — 0,1\
wse =577 (75, ) 6
p=1 =1

where D,; and O, are the desired and the observed values and P is the number
of training patterns and I is the number of outputs, which happens to be 1 in our
case. Thus MSE defined above, is the sum of the squared differences between the
desired output and the actual output of the output neurons averaged over all the
training exemplars [5.31]. The ANN algorithms used in the present work are the fol-
lowing: Backpropagation, Resilient Backpropagation, Backprop-momentum, Con-
jugate Gradient, One Step Secant, Higher Order Neurons, Levenberg-Marquardt
and the Neuro Fuzzy.

With regard to choosing the number of nodes in the hidden layer, it is well
known that, while using too few nodes will starve the network of the resources
that it needs to solve a particular problem; choosing too many nodes has the risk
of potential overfitting where the network tends to remember the training cases
instead of generalizing the patterns. In order to find the optimum number of nodes
in the hidden layer we employed a two step procedure. In the first step we varied the
number of nodes in the hidden layer from 5 to 60 (in steps of 5 up to 40 and in steps of
10 thereafter) and noted down the MSE for each of the configurations. In the second
step, we deliberately used significantly higher number of nodes in the hidden layer
(equal to 90) and then applied the Singular Value Decomposition (SVD) method for
identifying the redundant nodes [5.19, 5.32-5.34]. It is worth mentioning here that
determining the optimum number of neurons in the hidden layer by sequentially
increasing the number of nodes from 60 onwards involves massive computational
effort, hence the need of applying the SVD method is justified.
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In the SVD method, the weight matrix (denoted by F in the present work) was
generated by finding the output of each of the 90 nodes before subjecting them to
the nonlinear transformation (i.e output of the hidden node). With a total of 25,040
training patterns and one hidden layer with 90 nodes, the matrix F' has thus 25,040
rows and 90 columns. The SVD of the matrix F is given by F=U S V T, where U
and V are the orthogonal matrices and S is a diagonal matrix with 25,040 rows and
90 columns. The matrix S contains the singular values of F on its diagonal. The
dominance of the significant singular values of F (say g out of a total p singular
values) is found out by using the so called percentage of energy explained (P.,) and
is defined as :

g 52
i=14t
where Si, Sy, S3————— S, are the singular values of F arranged in their descending

order [5.35]. The results of this study are shown in Fig 5.2, where P,, is plotted as
a function of number of nodes in the hidden layer for a representative example of
4 ANN algorithms. Consolidated results concerning the performance of the various
algorithms with regard to their corresponding MSE values for the training, test
and validation data samples are given in Table 5.5. The results presented in this
table shown separately for 35 and 90 nodes in the hidden layer, can be used for
checking whether the ANN algorithm is ”over-trained” or not. When the network
is over-trained, the MSE for the test and validation data samples are expected to be
significantly higher than the corresponding value of MSE achieved during training.

Table 5.5: MSE values of various ANN algorithms for the training, test and valida-
tion data samples. The two values presented in the table correspond to 35 and 90
nodes in the hidden layer.

Algorithm Train 35/90 | Test 35/90 | Valid 35/90
Backpropagation 0.103/0.102 0.103/0.103 0.103/0.103
BackpropMomentum | 0.156/0.158 0.157/0.159 0.156/0.158
Resilient Backprop 0.035/0.033 0.036/0.035 0.036/0.034
ScaleConjugate 0.047/0.040 0.046/0.041 0.047/0.041
OneStepSecant 0.053/0.050 0.053/0.051 0.053/0.051
LavenbergMarquardt | 0.017/0.015 0.017/0.030 0.017/0.031
HigherOrder 0.039/0.033 0.040/0.033 0.040/0.034
NeuroFuzzy 0.062/0.062 0.062/0.063 0.062/0.062

The optimum number of nodes for P, ~ 99.9 % is also marked in the figures
by full vertical lines. For P,, ~ 99.9 %, one can easily find from the this figure
that the optimum number of nodes needed for obtaining the desired results varies
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Figure 5.2: Percentage of energy explained (P,;) as a function of number of nodes in
the hidden layer for some representative algorithms : (a) Resilient backpropation (b)
One Step Secant (c¢) Levenberg-Marquardt algorithm and (d) Conjugate Gradient.
The optimum number of nodes for P,, ~ 99.9 % is also marked in the figures by
full vertical lines.

between ~22 to ~ 32. Except for the Backpropagation-Momentum algorithm which
requires only ~5 nodes, the remaining algorithms are also found to yield optimum
performance with ~20 to ~30 nodes in the hidden layer. The reason for Backprop
momentum requiring too few nodes can be understood from the manner in which the
algorithm is trained. In this algorithm, momentum term is added to the Backprop
to enhance the training time with a slight compromise on the performance of the
network. This effect is seen in our case also where we see the Backprop Momentum
algorithm yielding the worst MSE value compared to all other algorithms.

On examining Fig 5.2 and Table 5.5 one can arrive at the following conclusions :
(i) None of the ANN algorithms used in this work are under trained or over trained
if about 35 nodes are used in the hidden layer. (ii) Increasing the number of nodes
beyond 35 results in only a marginal reduction in the MSE. (iii) The MSE value
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yielded by the Levenberg-Marquardt method with 35 nodes is found to be the lowest
compared to all other ANN algorithms. (iv) Increasing the number of nodes from 35
to 90 leads to the problem of overfitting in the Levenberg-Marquardt method. (v)
For the remaining algorithms no overfitting problem is seen when 90 nodes are used
in the hidden layer. The overfitting of the Levenberg-Marquardt (with 90 nodes
in the hidden layer) is most probably related to the way in which the training is
performed in this algorithm, more specifically how the algorithm accounts for error
as well as the gradient information based on blending between the gradient descent
method and the Gauss Newton rule. The Levenberg-Marquardt trains in such a
way that large steps are taken in the direction of low curvature to skip past the
plateaus quickly, and smaller steps are taken in the direction of high curvature to
slowly converge to the global minima. Thus every narrow valley or plateau, even if
as a result of noise in the data, is important for this method. Hence, when larger
number of nodes are presented ( i.e, 637 weights for the 90 nodes versus 252 weights
for the 35 nodes in the hidden layer), the algorithm becomes sensitive even to the
noise values present in the data, which with lesser number of nodes could have been
ignored. The source of noise in our training/test data-base is as result of inherent
fluctuations in the shower development process. On the basis of the above argument
one can thus safely use 35 nodes in the hidden layer for all the algorithms.

It is worth mentioning here that the modification of the ANN structure by ana-
lyzing how much each node contributes to the actual output of the neural network
and dropping the nodes which do not significantly affect the output is also referred
to as pruning. The basic principle of pruning relies on the fact that if two hidden
nodes give the same outputs for every input vector, then the performance of the
neural network will not be affected by removing one of the nodes in the hidden layer.
In the SVD approach, redundant hidden nodes cause singularities in the weight ma-
trix which can be identified through inspection of its singular values. A non-zero
number of small singular values indicates redundancy in the initial choice for the
number of hidden layer nodes and the approach can be safely used for eliminating
these nodes to attain the pruned network model.

A plot of the mean square error as a function of the number of nodes in
the hidden layer for the most popular standard backpropagation network and the
Lavenberg-Marquardt algorithm with Sigmoid transfer function is shown in Fig
5.3a. While the MSE at the end of the training, for 35 nodes in the hidden
layer, is ~0.1032 for the backpropagation network, the corresponding value for
the Lavenberg-Marguardt algorithm is ~0.0171. Although the MSE yielded by
the Lavenberg-Marguardt algorithm is found to be lower than the MSE values of
other training algorithms, including the backpropagation algorithm, the reason for
showing the MSE for the backpropagation algorithm is mainly because it has been
considered as a ”work-horse” in the field of neural computation.

The variation of the MSE as a function of number of iterations for all ANN
algorithms used, is shown in Fig 5.3b. The number of neurons in the hidden layer
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Figure 5.3: (a) Mean square error as a function of number of nodes in the hidden
layer for the Backpropagation and the Lavenberg-Marquardt algorithms. (b) Mean
square error for various ANN algorithms as a function of number of iterations with
35 nodes in the hidden layer.

was thus fixed at 35 nodes for all these algorithms. In all above algorithms, the
training is continued till the MSE error reaches a plateau and does not decrease any
further. About 10,000 iterations were generally found to be sufficient to train the
ANN on various algorithms. This superior convergence of Lavenberg-Marquardt
algorithm over the conventionally used backpropagation algorithm and/or resilient
backprop is not totally unexpected and has been demonstrated by us on standard
benchmark and regression problems [5.36].

It is worth mentioning here that for studying the performance of the various
ANN algorithms we have used BIKAS (BARC-IIT Kanpur ANN Simulator) ANN
package [5.36] and MATLAB [5.37,5.38] neural net packages. While as, MATLAB
has been used for backpropagation, resilient backpropagation, Scale Conjugate,
backprop-momentum, Lavenberg-Marquardt, and One Step Secant algorithms, the
BIKAS package has been used for Higher Order Network and Neuro-Fuzzy models.
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5.5.3 Testing and validating Lavenberg-Marquardt method

Since MSE error returned by the Lavenberg-Marquardt algorithm is lower than
the MSE error values of other methods including the backpropagation method, we
have used only this algorithm on the test data set for a more descriptive analysis.
When the test data-base is presented to the network, instead of yielding the desired
output as 0.1 or 0.9, the ANN outputs a range of values between 0.1 to 0.9. The
broad distributions around 0.1 and 0.9, returned after testing the prior trained
ANN algorithm, instead of the desired 0.1 or 0.9, is on account of the inherent
shower to shower fluctuations on an event to event basis even though train and
test data is generated in a similar manner. The response of the network (i.e.,
frequency distribution of the selected events) for the test data sample comprising
simulated ~-rays and actual background as a function of the ANN output is shown
in Fig 5.4a. The results obtained for the validation data sample are shown in Fig
5.4b. Excellent matching of the results obtained for the test and validation data
clearly demonstrates that ANN has indeed ”learned” and simply not remembered
the classification. It is important to mention here that no cut on o has been applied
to the data presented in these figures.

5.6 Determination of optimum ANN cut value

For determining the ANN output cutoff value (7.,;), which will optimize the sepa-
ration of the two event classes (i.e y-ray and cosmic-rays), one can maximize either
Quality Factor (QF) or more adequately, statistical significance (N,). Following
their standard definitions [5.15], which are given by :

N’Y/N’YO _ f'r

= NN~ ()
N, = (5.6)

> /N, +2N,

where NN, and N, are the number of y-rays and hadrons, respectively, after clas-
sification; IV, and N,y are the number of y-rays and hadrons, respectively, before
classifier and f, and f, are the corresponding acceptances for v-rays and hadrons.
Although many groups have used QF for optimizing the performance of their clas-
sification methods [5.11] , we have optimized the performance of the ANN on the
basis of maximizing N,. The reason for this is the fact that a high value of QF' can
also result from tight cuts which can reduce the ~-ray retention capability of the
classification method. Furthermore, maximization of N, also ensures that classifi-
cation procedure in not biased unfavorably towards higher energies. Optimization
on the basis of maximizing N, has also been followed by other groups [5.10,5.12].

It is worth mentioning here that definition of statistical significance (N,) given
above can be only used when NNV, is known beforehand which is possible only with
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Figure 5.4: (a) ANN output of Lavenberg-Marquardt algorithm in response to
simulated ~-rays and actual background events of the test data sample comprising
a total 44831 events. (b) Same as (a) except for an independant validation data
sample comprising a total 29798 events. No cut on « has been applied to the data
presented in these figures.

simulated data. Since, in case of actual data collected with Cherenkov imaging tele-
scopes, IV, can also be calculated statistically by subtracting the expected number
of background events ( e.g 27° < « < 81° used by us in [5.26] and in this work)
from the vy-ray domain events (e.g o < 18° in our case) the definition of statistical
significance given above needs to be modified. While we have used the above ex-
pression of N, for estimating 7., the significance of the y-ray events found in the
actual Crab Nebula data has been calculated by following a more rigorous method
of using maximum likelihood ratio of Li and Ma [5.39].

The value of 7., defines the decision boundary between the two event species
and in order to determine its optimum value we used a data sample of about 12953
events (mixture of 8865 simulated y-ray and 4088 actual cosmic-ray events). The
zenith angle range of these events was again chosen to be in the range (0-45)°. Since
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the value of N, depends critically on the number of y-rays present in the data we
have considered only N,o~177 ( i.e ~2% of the total y-rays present in the data
sample) for determining the optimum value of 7.,. The event is classified as a
v-ray like event only if the corresponding ANN output (1) is < 7e, and a < 18°.
The calculation was performed by varying 7., from 0.05 to 1.0 in steps of 0.05
and recording N, at each value of 7.,;. The results of this study are given in Fig
5.5, which shows variation of N, as a function of 7., for the Levenberg-Marquardt
based ANN algorithm. On examining this figure one can see that maximum value
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Figure 5.5: Variation of statistical significance (NN,;) as a function of ANN cut value
( Neut) for the Levenberg-Marquardt algorithm.

of N, ~ 6.80 is obtained at 7., ~0.475. The above data has also been used for
evaluating the performance of other ANN algorithms and finding their optimum 7).,
values. The results of this study are summarized in Table 5.6 where, in addition to
N, values yielded by different algorithms, we also give the corresponding 7.,; range
within which N, stays constant. The lower value of 7.,; defines the tight cut and
higher value designates the loose cut.
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Table 5.6: Maximum value of the statistical significance N, yielded by various ANN
algorithms along with corresponding 7.,; range with in which N, stays constant.
The lower value of 7,,; defines the tight cut and higher value defines the loose cut.

Algorithm Neut N,
Backpropagation 0.40 — 0.67 | 5.21
Backpropagation monemtum | 0.30 — 0.57 | 5.33
Resilient Backprop 0.42 — 0.67 | 5.25
Scale Conjugate 0.40 — 0.67 | 4.80
One Step Secant 0.42 — 0.67 | 5.25
Lavenberg Marquardt 0.30 — 0.62 | 6.80
Higher Order 0.40 — 0.70 | 4.80
Neuro Fuzzy 0.40 — 0.67 | 4.47

‘ Dynamic Super cut ‘ - — = ‘ 6.09 ‘

The value of N, achieved with Dynamic Supercuts is also shown in the table for
comparison. It is quite evident from the table that out of 8 different ANN algorithms
studied here, Levenberg-Marquardt algorithm yields the best results. The value of
N, for other algorithms is found to vary from ~ 4.50 ( Higher order network) to ~
5.30 (backprop-momentum). Because of the superior performance of the Levenberg-
Marquardt algorithm, we will only use this algorithm for analyzing the actual Crab
Nebula data.

Referring back to Fig 5.5, since the change in N, is insignificant when 7).,
is varied from ~0.3 to ~0.5, we will use a value of 7., ~0.5 for analyzing the
actual Crab Nebula data. Admittedly, using 7.,; ~0.5 also increases the cosmic ray
background. The reason for choosing the higher 7.,; value is to ensure that we retain
maximum number of y-rays from the source. For sources which are weaker than the
Crab Nebula one can use 7., ~0.3 so that contamination from more background
can be reduced. Since our main preference is to observe relatively stronger sources
such as blazars using 7.,; ~0.5 is an obvious choice if we want to measure their
energy spectra beyond energies of ~10TeV. Following this approach of choosing the
tight cuts for detecting weaker/new sources and loose cuts for obtaining the energy
spectrum, is a well known procedure which is adopted by almost all the groups who
work on Cherenkov imaging telescopes.
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5.7 Application of the ANN methodology to the
Crab Nebula data collected with the TACTIC

telescope

In order to study the y/hadron segregation potential of the ANN methodology,
we have applied this selection method to the Crab Nebula data collected with
the TACTIC telescope. For this purpose we reanalyzed the Crab Nebula data for
~101.44 h collected during Nov. 10, 2005 - Jan. 30, 2006. The zenith angle during
the observations was <45° and the data was collected with inner 225 pixels (~ 4.5°
x 4.5°) of the full imaging camera with the innermost 121 pixels (~ 3.4° x 3.4°)
participating in the trigger. The standard two-level image 'cleaning’ procedure with
picture and boundary thresholds of 6.50 and 3.00, respectively was employed to
obtain the clean Cherenkov images. Details of this analysis procedure and the data
collecting methodology for this period can be found in [5.27]. The purpose of this
image cleaning procedure is to take care of the fluctuations in the image which arise
due to electronic noise and night sky background variations. These clean Cherenkov
images were then characterized by calculating their standard image parameters like
LENGTH, WIDTH, DISTANCE, «, SIZE and FRAC2. Before investigating the
v/hadron segregation potential using ANN methodology, we will first apply the
standard Dynamic Supercuts procedure [5.5] to the data for extracting the ~-ray
signal from the background cosmic-ray events.

The cut values used for the analysis are the following : 0.11° < LENGTH <
(0.260 4+ 0.0265 x In S)°, 0.06° < WIDTH < (0.110 + 0.0120 x In S)°, 0.52° <
DISTANCE < 1.27°c0s%%%0, SIZE > 450d.c ( where 6.5 digital counts=1.0 pe
), @« < 18° and FRAC?2 > 0.35. It is important to emphasize here that the Dy-
namic Supercuts 7y-ray selection criteria used in the present analysis are the same
which we had used in our previous work [5.26] for developing an ANN-based energy
reconstruction procedure for the TACTIC telescope. Since the present work uses
the same data-base as well as the same energy reconstruction procedure, we will
consider the previous work [5.26] as some sort of benchmark for the present study.
Admittedly, there may be a scope for optimizing the previously used Dynamic Su-
percuts further (e.g by using cuts which depend on both energy and zenith angle),
but the results of this study will be presented elsewhere.

A well established procedure to extract the 7-ray signal from the cosmic-ray
background using a single imaging telescope is to plot the frequency distribution
of a parameter which is expected to be flat for the isotropic background of cosmic
events [5.5]. For ~-rays, coming from a point source, the distribution is expected
to show a peak at smaller o values. Defining o < 18° as the -ray domain and
27° < a < 81° as the background region, the number of vy-ray events is then
calculated by subtracting the expected number of background events (calculated on
the basis of background region) from the ~-ray domain events. The number of ~-
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ray events obtained after applying the above cuts are found to be ~(928+100) with
a statistical significance of ~9.400. The significance of the excess events has been
calculated by using the maximum likelihood ratio method of Li & Ma [5.39]. The a-
distribution is given in Fig 5.6a and the corresponding differential energy spectrum
of the Crab Nebula shown in Fig 5.6b. The details of the energy estimation for
determining the energy of a candidate vy-ray source is presented in chapter 6 of this
thesis. The procedure followed uses an ANN to estimate the energy of a v-ray like
event on the basis of its image SIZE, Distance and Zenith angle. The differential
photon flux per energy bin has been computed using the formula:
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Figure 5.6: (a) Crab Nebula a-plot for ~101.44 h of data using Dynamic Supercuts
v-ray selection criteria. (b) The corresponding differential energy spectrum of the
Crab Nebula as measured by the TACTIC telescope.
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where AN; and d®(E;)/dE are the number of events and the differential flux at
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energy E;, measured in the ith energy bin AE; and over the zenith angle range of
0°-45°, respectively. T} is the observation time in the jth zenith angle bin with cor-
responding energy-dependent effective area (A; ;) and y-ray acceptance (1; ;). The 5
zenith angle bins (j=1-5) used are 0°-10°, 10°-20°, 20°-30°, 30°-40° and 40°-50° with
effective collection area and ~y-ray acceptance values available at 5°, 15°, 25°, 35°
and 45°. The number of v-ray events (AN;) in a particular energy bin is calculated
by subtracting the expected number of background events, from the ~-ray domain
events. The ~-ray differential spectrum, shown in Fig 5.6b, has been obtained
after using appropriate values of effective collection area and v-ray acceptance ef-
ficiency (along with their energy and zenith angle dependence). A power law fit
(d®/dE = foE~") with fy ~ (3.124£0.48)x 10" em™2s7'TeV ' and " ~ 2.694-0.14
is also shown in Fig 5.6b. The fit has a x?/dof ~ 3.64/6 with a corresponding prob-
ability of ~0.72. Details of the energy reconstruction procedure can be seen in [5.31]
which uses 3:30:1 ANN configuration with SIZE, DISTANCE and Zenith angle as
the inputs to the neural net.

While applying the already trained Lavenberg-Marquardt based ANN network,
with 6:35:1 configuration, for extracting the y-ray signal from the data, the number
of y-ray events are found out to be ~(1141+106) with a statistical significance of
~11.070. A value of 7., ~0.50 has been used for selecting ~-ray events and only
those events are allowed to go for classification with ANN, which satisfy the pre-
filtering cuts (SIZE > 50pe and 0.4° < DISTANCE < 1.35°). The a-distribution of
the ANN selected events is given in Fig 5.7a, while as the corresponding differential
energy spectrum is shown in Fig 5.7b. A power law fit (d®/dE = foE ') with
fo~ (1.16 £0.14) x 10 Mem 25 'TeV ! and v ~ 2.52 £ 0.12 is also shown in Fig
5.7b. The fit has a x?/dof ~ 4.58/7 with a corresponding probability of ~0.71.
Reasonably good matching of the Crab Nebula spectrum with that obtained by
the Whipple and HEGRA groups [5.40,5.41] reassures that the procedure followed
by us for selecting y-ray like events as well as obtaining the energy spectrum of a
source, is quite reliable.

On comparing the results of Dynamic Supercuts v-ray selection procedure (Fig
5.6) with the Lavenberg-Marquardt based ANN network (Fig 5.7) it is evident that
the performance of the later is somewhat superior, both with regard to improving
the statistical significance of the y-ray signal as well as in selecting more number
of y-rays. Although the improvement (i.e gain of ~213 ~-ray like events along
with signal enhancement from 9.40 to 11.070) looks to be only modest, the main
advantage accruing from the ANN methodology is that it is more efficient at higher
energies which has allowed us to extend the Crab Nebula energy spectrum up to
an energy of ~24TeV. At y-ray energies above ~9 TeV, the Lavenberg-Marquardt
based ANN network selects ~(851-28) events as against ~(24+9) events selected
by the Dynamic Supercuts procedure.

When a value of n.,; ~0.30 is used, the number of y-ray events are found out
to be ~(680+67) with a statistical significance of ~10.49¢ and this is in perfect
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Figure 5.7: (a) Crab Nebula a-plot for ~101.44 h of data using Lavenberg-
Marquardt based ANN network ~-ray selection criteria. (b) The corresponding
differential energy spectrum of the Crab Nebula when ANN network is used for
selecting y-ray like events.

agreement with the discussion presented in Section [5.6] above. Although the use
of tight cut (i.e 1., ~0.3) yields almost same statistical significance (ignoring slight
degradation) as compared to 1., ~0.5 cut case, the number of y-rays retained are
significantly less and it is just for this reason that we preferred to use a somewhat
loose cut 1ey; ~0.5.

The performance of the Lavenberg-Marquardt based ANN network was further
validated by applying it to ~ 201.72 hours of on-source data collected on Mrk 421
with the TACTIC telescope during Dec. 07, 2005 to Apr. 30, 2006. The total data
used here also includes observations from Dec. 27, 2005 to Feb. 07, 2006 when the
source was found to be in a high state by the TACTIC telescope as compared to
the rest of the observation period [5.27]. When already trained ANN is used for
extracting the ~-ray signal from the data, the number of v-ray events are found
out to be ~(1493+121) with a statistical significance of ~12.60c. On comparing
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these results with that obtained by using Dynamic Supercuts [5.27] which yields
~(1236+110) y-ray events with a statistical significance of ~11.490, it is reassuring
to find that the ANN method is indeed more efficient than the Dynamic Supercuts
method. Furthermore, as expected, no signature of a y-ray signal is seen when the
ANN method is applied to ~ 29.65 hours of off-source data. The results obtained
with the ANN method ( ~ 60+42 with a statistical significance of ~1.460) compare
well with the results reported by us earlier using Dynamic Supercuts [5.27]( ~ 28420
with a statistical significance of ~0.710).

Successful detection of y-rays from Mrk-421 thus clearly demonstrates the ca-
pability of the properly trained ANN to extract a v-ray signal from a source other
than the Crab Nebula. It also indicates that the generalization capability of the
ANN can be enhanced if it is trained with the experimental data collected from
different directions having somewhat variable sky brightness.

5.8 Comparison of Dynamic Supercuts and ANN
analysis methods

A detailed study for comparing the performance of Dynamic Supercuts and ANN
analysis methods has also been conducted by us so that the overall y-ray retention
capability of the Dynamic Supercuts and ANN analysis methods can be compared.
One of the ways to study this is to use the Monte Carlo simulated data for y-rays
and plot the dependence of effective collection areas as a function of primary energy
for the two v-ray selection methodologies. The results of this study are shown in
Fig 5.8 where effective collection areas for the two v-ray selection methodologies
are plotted as a function of energy for two representative zenith angle values of
15° and 35°. Apart from showing the effective areas ( i.e A,(E)f,(E)) for the two
~v-ray selection methodologies, the corresponding effective area when no cuts are
applied to the data (i.e A,(F)) is also shown for comparison. The results displayed
in the figure clearly indicate that the efficiency of Dynamic Supercuts is biased
towards lower energies ( particularly at lower zenith angles). On the other hand, it
is the superior performance of Lavenberg-Marquardt based ANN network ( i.e more
collection area at higher energies) which has enabled us to retain relatively higher
number of events at energies above ~9 TeV in the actual data as compared to the
Dynamic Supercuts procedure.

The above conclusion has been further validated by obtaining scatter plots of
various image parameters and the results of this study are shown in Fig 5.9. This
figure displays scatter plots of LENGTH, WIDTH, DISTANCE and FRAC2 as a
function SIZE for ~8358 events which have been characterized as v-ray like by
the ANN algorithm and have o < 18°. For comparison, the Dynamic Supercuts
boundaries are also shown in the figure as full lines. It is quite evident from the
figure that the ANN method in not just selecting the same population of events
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Figure 5.8: Effective collection area as a function of the primary ~v-ray energy for
simulated v-ray at showers zenith angles of (a) 15° and (b)35°. While top most
curve (labeled as Trigger alone) gives the effective area when no cuts are applied
to the data, the remaining 2 curves (labelled as Trigger+ DSC and Trigger+ANN)
represent when Dynamic Supercuts and ANN analysis methods, respectively are
applied to the data.

as the Dynamic Supercuts but the ANN is also sensitive to selecting events which
lie outside the strict Dynamic Supercuts boundaries. An alternative way to assess
the residual population of events selected by ANN is to perform a logical NOT
selection between the ANN and the Dynamic Supercuts methods. On performing
this selection the number of y-ray events are found out to be ~(453+£74) with a
statistical significance of ~6.270 which again suggests that the ANN method is
more useful than the Dynamic Supercuts methods while determining the energy
spectrum of a 7y-ray source. On performing a logical AND selection between the
ANN and the Dynamic Supercuts methods the number of y-ray events yielded are
~(655+71) corresponding to a statistical significance of ~9.500.

In order to understand the performance of ANN for -rays at higher energies (i.e,
the events which eventually contribute to the last 3 energy bins of Fig 5.9) Fig 5.10,
displays the scatter plot of ~606 events which have been characterized as y-ray like
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Figure 5.9: Scatter plots of (a) LENGTH (b) WIDTH (¢) DISTANCE and (d)
FRAC2 as a function of SIZE which have been characterized as v-ray like by the
ANN and have o« < 18°. The Dynamic Supercuts boundaries are also shown in the
figure as full lines.

by the ANN and which have their a < 18°. In other words the data presented in this
figure represents a subsample of the data used in Fig 5.9 with an additional condition
that the v-ray like events should have energies above ~9 TeV. The capability of the
ANN in selecting events which lie outside the strict Dynamic Supercuts boundaries
is again evident from the figure. For example, presence of relatively large number of
event outside the LENGTH cut boundary (Fig 5.10a) clearly demonstrates that the
efficiency of Dynamic Supercuts in retaining -rays is biased towards lower energies.
It is important to point out here that there are background cosmic-ray events also
present in Fig 5.9 and Fig 5.10 which are classified as y-ray like events by the event
selection methodology. Since subtraction of the background events (estimated from
27° < o < 81° region), from the y-ray domain (defined as a < 18°), will cancel out
these events (in statistical sense) and it does not matter how the energy estimate
for background event was obtained.

Since differences in the observed energy spectrum of several active galactic nu-
clei, especially at higher energies, can be used to study absorption effects at the
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Figure 5.10: Scatter plots of (a) LENGTH (b) WIDTH (¢) DISTANCE and (d)
FRAC2 as a function of SIZE which have been characterized as v-ray like by the
ANN. Apart from having o < 18° these events also have energy above ~9 TeV. The
Dynamic Supercuts boundaries are also shown in the figure as full lines.

source or in the intergalactic medium due to interaction of vy-rays with the ex-
tragalactic background photons [5.42, 5.43], unarguably, efficient retention of high
energy y-ray events is always preferable. Superior performance of the ANN at higher
energies can thus play an important role in understanding the absorption effects at
the source or in the intergalactic medium.

It is worth mentioning here that once satisfactory training of the ANN is achieved,
the corresponding ANN generated weight-file can be easily used by an appropriate
subroutine of the main data analysis program for selecting y-ray like events. Use of
a dedicated ANN software package is thus necessary only during the training of the
ANN and is not needed there after. Also, compared to the conventional v/hadron
separation methods, the ANN-based procedure also offers advantages like applica-
bility over a wider zenith angle range and implementation ease.
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5.9 Summary

Atmospheric Cherenkov imaging telescopes, especially Monoscopic systems, have
to cope up with a deluge of cosmic-ray background events and the capability to
suppress these against the genuine y-rays is one of the main challenges which limits
the sensitivity of these telescopes. The main purpose of this paper is to study the
v / hadron segregation potential of various ANN algorithms for the TACTIC tele-
scope, by applying them to the Monte Carlo simulated and the observation data
on the Crab Nebula. The results of our study indicate that the performance of
Levenberg-Marquardt based ANN algorithm is somewhat superior to the Dynamic
Supercuts procedure especially beyond ~-ray energies of > 9 TeV. Since for real
world problems it is not an easy task to identify the most suitable ANN algorithm
by just having a look at the problem, our results suggest that while investigating
the comparative performance of other ANN algorithm, the Levenberg-Marquardt
algorithm deserves a serious consideration. The main advantage of using the ANN
methodology for v/ hadron segregation work is that it is more efficient in retaining
higher energy vy-ray events and this has allowed us to extend the TACTIC observed
energy spectrum of the Crab Nebula up to an energy of ~24 TeV. Reasonably good
matching of the Crab Nebula spectrum as measured by the TACTIC telescope with
that obtained by the other groups reassures that the ANN-based 7/hadron segre-
gation method and also the procedure for obtaining the energy spectrum of a y-ray
source are quite reliable.
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Chapter 6

Energy reconstruction using ANN

6.1 Introduction

Imaging atmospheric Cherenkov telescopes (IACTs) represent the prime instru-
ments for y-ray astronomy in the TeV energy range [6.1] and [6.2]. With the num-
ber of sources established as TeV ~-ray emitters in IACT observations, emphasis
is starting to shift from the detection of sources to the precise determination of
their v-ray spectra. It is therefore important to improve the energy resolution of
IACTs. The energy of v-rays is determined from the intensity of IACT images,
taking into account the radial distribution of Cherenkov light within the light pool.
The study of the spectral energy distributions can yield valuable information about
the underlying v-ray production mechanisms and unusual astrophysical environ-
ment characterizing these sources. In addition, differences in the observed energy
spectrum of several active galactic nuclei can also be used to study absorption ef-
fects at the source or in the intergalactic medium due to the interaction of v-rays
with the extragalactic background photons [6.3,6.4].

Determining the energy of primary ~v-rays is an important advantage which en-
dows the atmospheric Cherenkov technique with calorimetric capability. While the
light intensity in an image (also known as image SIZE), represents a key parameter
for determining the energy of the primary 7-ray, one also has to consider its de-
pendence on the core-position and zenith angle for improving the energy resolution.
Since the precise information of core distance is not available with a single imaging
telescope, the energy resolution of these telescopes is generally limited to ~25-35%
[6.5-6.7]. On the other hand, a stereoscopic system allows unambiguous reconstruc-
tion of the shower geometry including a direct measurement of core distance which
leads to a significant increase in sensitivity and energy resolution of these systems
[6.8,6.9].
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6.1.1 Factors governing the energy reconstruction

e Statistical fluctuations in the image itself
For a single telescope, the statistical fluctuations in the number of photoelec-
trons produced by a typical shower is a limiting factor for reconstruction of the
event energy. Additional fluctuations arise from the amplification process in
the photomultiplier and from night-sky background contaminating the image.

e Image truncation

In order to reduce the influence of the night-sky background, the image in-
tensity is usually summed only over image pixels above a minimum intensity,
cutting away the tail of the image. The sum over image pixel amplitudes
provides the so-called size parameter used to derive the shower energy. Such
a tail cut introduces both additional noise as well as systematic nonlinearities.
Thus for low-intensity images a larger fraction of the image is cut compared to
the intense images. An additional truncation occurs for images which extend
beyond the edge of the camera.

e Threshold effects
In the region near the trigger threshold the image intensity detected in the
camera will be strongly biased, since showers with upward fluctuations in the
image size will have a larger probability of triggering. In the sub-threshold
energy region, the mean intensity of triggered images will approach a constant,
independent of the shower energy, making the energy determination a difficult
task.

e Fluctuations in the shower development

Variations in the shower development provide a significant contribution to the
energy resolution; particularly relevant are fluctuations in the height of the
shower maximum, related primarily to the fluctuation in the depth of the first
interaction. Showers with their maximum deeper in the atmosphere have a
higher intensity of light within their light pool, both because of the smaller
distance between the telescope and the light source, and because of the lower
Cherenkov threshold at reduced height.

e Systematic errors

All techniques for energy determination rely heavily on Monte Carlo simu-
lations to provide the relation between image parameters and shower energy
and to describe the performance of the telescope hardware. Imperfections in
the simulations of the air shower, or of the telescopes, or alignment errors
and calibration errors not included in the simulations may have a detrimental
effect on the energy resolution. Great care must be taken to ensure that the
simulations properly reproduce all relevant aspects of the data.

139



e Monte Carlo statistics

Algorithms for energy reconstruction frequently use multi-dimensional lookup
tables to convert values of image parameters into energy estimates. Given the
time-consuming generation of Monte Carlo events in particular at the higher
energies, their number is frequently similar to, or even less than the number
of showers detected in the experiment. Statistical errors in these lookup table
values can be significant. They can be alleviated either by an efficient choice
of variables or by fitting a smooth analytical function.

The main aim of the present work is to use an ANN based procedure for es-
timating the energy of ~-ray like events, recorded by a single imaging telescope
(TACTIC), on the basis of its image SIZE, DISTANCE and zenith angle. The fea-
sibility of employing ANN for energy reconstruction has also been applied for some
other applications which are however not related to Cherenkov imaging. While the
Wizard collaboration has used it for GILDA imaging silicon calorimeter [6.10], the
ANN-based approach has also been used for reconstruction of the energy deposited
in the calorimetry system of the CMS detector [6.11] and the hadronic calorimeter
of ATLAS, Tilecal [6.12].

Application of ANN to atmospheric Cherenkov imaging data, for distinguishing
between ~y-ray and cosmic-ray generated Cherenkov events, has been studied by
several workers [6.13-6.16]. Promising results have also been reported for the wave-
front sampling telescope CELESTE [6.17] where the ANN method was used for not
only discriminating y-ray and cosmic-ray generated Cherenkov events but also for
determining the primary energy and the location of the shower core. A detailed case
study comparing different multivariate classification methods (classification trees,
kernel and nearest-neighbour methods, linear discriminant analysis, support vec-
tor machines, neural network etc.) has also been performed in [6.18] using Monte
Carlo simulated data generated for the MAGIC telescope. Keeping in view the
encouraging results reported in above cited literature, the main thrust of this work
is to use ANN for determining the energy of the v-rays detected by an atmospheric
Cherenkov imaging telescope and its comparison with conventional methods. In
addition, the other aspects which have been demonstrated are :(i) achieve a lower
normalized rms error, than reported earlier [6.19-6.20] (ii) check the interpolation
capability of the proposed ANN method with an independant data sample. Finally,
the performance of the ANN-based energy reconstruction is validated by revisiting
the energy spectrum of the Crab Nebula in the energy range 1-16 TeV as measured
by the TACTIC telescope.
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6.2 Monte Carlo simulations for energy recon-
struction of y-rays

The Monte Carlo simulation data used for developing a procedure for energy re-
construction of y-rays are based on the CORSIKA (version 5.6211) air-shower sim-
ulation code [6.21]. The simulated data-base for y-ray showers used in the present
work is the same as has been mentioned in chapter 2, where about 34,000 showers
in the energy range 0.2-20 TeV with an impact parameter of upto 250m have been
generated. These showers have been generated at 5 different zenith angles (= 5°,
15°, 25°, 35° and 45°). Wavelength dependent atmospheric absorption, the spectral
response of the PMTs and the reflection coefficient of mirror facets and light cones
has also been taken into account while performing the simulations. The number of
photoelectrons registered by each pixel has then been subjected to noise injection,
trigger condition check and image cleaning. The clean Cherenkov images were char-
acterized by calculating their standard image parameters like LENGTH, WIDTH,
DISTANCE, ALPHA, SIZE and FRAC?2 [6.22-6.23]. The same simulation data base
has also been used, as per the well known standard procedure, for calculating the
effective area of v-rays as a function of energy and zenith angle and, also the v-ray
retention factors when Dynamic Supercuts are applied to the simulated data. Both
these inputs are required for determining the energy spectrum of a source once a
statistically significant vy-ray signal is observed in the data.

Keeping in view the fact that the Cherenkov light emitted from the electromag-
netic cascade is to a first order approximation proportional to the energy of the
primary ~-ray, the approach followed in atmospheric Cherenkov imaging telescopes
is to determine the energy on the basis of the image SIZE. Since the intensity of
the Cherenkov light is a function of core distance, which is not possible to obtain
with a single imaging telescope, the angular distance of the image centroid from
the camera center (known as the DISTANCE parameter) is generally used as an
approximate measure of the impact distance. The energy reconstruction procedure
with a single imaging telescope thus involves using SIZE and DISTANCE parame-
ters of the Cherenkov event for determining energy of the primary ~-ray. Although
the method has been found to work reasonably well over a restricted zenith angle
range of < 30°, there is a need to include zenith angle dependence in the energy
reconstruction procedure for allowing data collection over a much wider zenith angle
range.

In order to check the performance of various energy reconstruction procedures
for the TACTIC telescope, we have divided the simulated data base into two parts
so that one part could be used for preparing the data for obtaining parameterized
fits (or training the ANN) and the remaining for testing. For smoothening event to
event fluctuations, which are inherently present in raw data, we have first calculated
<SIZE> and <DISTANCE> by clubbing together showers of a particular energy
in various core distance bins with each bin having a size of 40m. Furthermore, addi-
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tional selection criteria (viz., accepting events with core distance >30m, SIZE>50pe
and DISTANCE between 0.4 ° to 1.4°) has also been used while preprocessing the
training data to ensure that the image is robust with minimum possible truncation
effects. Imposing a lower bound on the core distance helps in rejecting the events
where shower to shower fluctuations in the light intensity are expected to be very
large, as most of the light in this region is produced by local penetrating particles
whose number can vary quite widely. The final training data file thus consists of
a single table with ~ 350 rows. Each row has 4 columns with one column each
for energy, <SIZE>, <DISTANCE> and zenith angle. It is worth mentioning here
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Figure 6.1: Variation of <SIZE> as a function of <DISTANCE> for ~-rays from a
point source of different energies at zenith angles of (a) 15° and (b) 35°.

that although the raw data used for training is same as used in [6.19], there is a
slight difference in the procedure followed for preparing the training data file. Using
~ 10,000 events, a training data file of 350 events was generated by interpolating
<SIZE> at <DISTANCE> values of 0.40°, 0.50° ....... 1.40 ° for each energy and
zenith angle. A representative example of the variation of <SIZE> as a function
of <DISTANCE> for different primary v-ray energies is shown in Fig 6.1. It is
quite evident from this figure that SIZE ( proportional to the Cherenkov light in an
image) is the most important factor which needs to considered for estimating the
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energy of the primary ~-ray. Since, for a fixed y-ray energy, <SIZE> also depends
on core distance (proportional to DISTANCE parameter of the image for a point
y-ray source) the second factor which needs to be considered is the DISTANCE
parameter. On comparing Fig 6.1a and Fig 6.1b, which show the behaviour of
<SIZE> at zenith angles of 15° and 35°, respectively, one finds that the zenith an-
gle dependence cannot be ignored in situations where a wider zenith angle coverage
is required.

The performance of a particular energy reconstruction procedure has been eval-
uated by calculating the relative error in the reconstructed energy (Ag), for individ-
ual y-ray events using the test data file. The relative error in the reconstructed en-
ergy is defined as (Eesim- Eirue)/ Firue, Where Eyy. is the true energy and Eegyy, is the
estimated energy yielded by the energy reconstruction procedure. The mean value of
(Ag) as a function of Ey.. and energy resolution (o(Ag)) defined as the root mean
square width of the distribution of Ag are the main quantities which can be used for
comparing the performance of various energy reconstruction procedures. It is worth
mentioning that the energy resolution, is sometimes estimated by calculating rms
width of the distribution of In(Eye/Eestm) [6.5,6.19] or In(Eespm/Eirue) [6-24]. The
only reason for using (Eesm-Eirue)/Eirue in this work as against In(Eesym/FEirue) 18
to follow a more standard and widely accepted definition of energy resolution [6.25].
Nevertheless, it can be easily shown that (Ecsim-Eirue) /Errue ~ In(Eesimn/Etrue)-

6.3 Conventional energy reconstruction methods

6.3.1 Parameterized fit with DISTANCE and SIZE as vari-
ables

The first energy estimation procedure which has been studied here is based on the
approach followed by Whipple group [6.5,6.7], where In(E.g,,) is expressed as a
polynomial in In(SIZE) and DISTANCE. The approach assumes that, for a point
~-ray source, DISTANCE parameter of the image provides an approximate measure
of the core distance. The validity of this assumption has also been checked for the
TACTIC telescope simulation data and the results of the same are presented in Fig
6.2.

The data used in this figure has been generated by clubbing together showers of a
particular energy in various core distance bins with each bin having a size of 40m and
finding <DISTANCE> for each core distance bin. Although a strong correlation
between core distance and <DISTANCE> is clearly visible in Fig 6.2, it is worth
mentioning here that DISTANCE parameter of a Cherenkov image produced by an
individual shower is also dependent on the height of the shower maximum [6.26].
Since for a single telescope it is impossible to determine separately the core distance
and height of shower maximum on an event to event basis, obtaining an approximate
measure of the core distance on the basis of DISTANCE parameter seems to be the
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Figure 6.2: Variation of <DISTANCE> as a function of core distance for y-rays of
various energies from a point source at zenith angles of (a) 15° and (b)35°.

only viable solution. Ignoring zenith angle dependence and following the Whipple
procedure, Ecg,, based on image SIZE (S) and DISTANCE (D) is calculated by
using the following relation

ln(Eestm) =a + CLQlTl(S) + Cbg(ln(S))2 + a4(D0) + CL5(D0)D (61)

Choosing Dy=1.00°, the values of a;, as, az, as(Dy) and as(Dy), obtained after
fitting equation (1) to the training data file at zenith angle of 25°, are determined
to be the following : a; ~ -2.8820, ay ~ 0.7221, az ~ 0.0035, as(D < Dy) ~ -0.2005,
as(D < Dgy) ~ 0.2395, aq(D > Dy) ~ -1.6766 and as(D > Dy) ~ 1.7290. While the
first 3 terms in the above equation use the fact that total intensity of an image is
roughly proportional to the energy of the primary, the remaining 2 terms modify
this relationship by including the dependence on the core distance also. A plot of
relative error in the energy reconstruction obtained for test data sample at zenith
angle 25° is shown in Fig 6.3a.

The corresponding relative error in the reconstructed energy (Apg) for zenith
angle of 15° and 35° is also shown in (b) and (c) if zenith angle dependence is
ignored and fit coefficients obtained at zenith angle of 25° are used as such in the
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Figure 6.3: (a) Relative mean error in the reconstructed energy (Agp = (Eestm-
Etrue)/Etrue ) as a function of energy for zenith angle of 25° using the energy es-
timation procedure given by equation (6.1). Relative mean error in the estimated
energy as a function of energy for zenith angles of (b) 15° and (c¢) 35° if zenith angle
dependence is ignored in the energy reconstruction procedure.

energy reconstruction procedure at the other two zenith angles also. Although the
energy reconstruction procedure yields o(Ag) ~28% for the data shown in Fig 6.3a,
presence of a systematic bias seen in Fig 6.3b and Fig 6.3¢ (~ 20 % and ~ -37 % at
zenith angles of 15° and 35°, respectively) suggests that there is a need to include
zenith angle dependence in the energy reconstruction procedure for allowing data
collection over a much wider zenith angle range.

6.3.2 Parameterized fit with DISTANCE, SIZE and zenith

angle as variables
Including the zenith angle (z) dependence, in the energy construction procedure,
can be in principle implemented by adding one or more zenith angle dependent

terms to equation (6.1). The method followed here uses guidance from [6.27] and
employs the following relation for estimating the energy.
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IN(Eogm) = 1.0 4+ byin(S) + by\/In(S) + bs(In(S))? + by/cos(z) + bsD (6.2)

The values of the constants after fitting equation (2) to the training data file at
all the 5 zenith angles (i.e 5 °, 15°, 25 °, 35° and 45°) together are found out to be
following : by ~ 4.0053, by ~ -9.7814, b3 ~ -0.1029, by ~ 3.3510 and b5 ~ 0.7822.
Plot of relative error in the estimated energy as a function of energy for the test
data sample at all 5 zenith angles is shown in Fig 6.4a.
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Figure 6.4: (a) Relative mean error in the reconstructed energy (Ap = (Eestm-
Eirue)/Erue ) as a function of energy for the energy estimation procedure given by
equation (6.2). (b) Frequency distribution of Az along with a best fit Gaussian
distribution to the data.

Frequency distribution of Ag by considering almost equal number of showers
at different energies is shown in Fig 6.4b. The root mean square width of the
distribution is ~ 31 % and the same for the fitted Gaussian distribution is ~ 28
%. Systematic bias at all energies (~7% in the energy range 1.8TeV to 15.0TeV)
is also seen in Fig.4a which suggests that actual zenith angle dependence in the
energy reconstruction procedure is probably more complicated than what has been
considered in equation (6.2). An improvement in the energy resolution has been

146



reported in [6.27] by including an additional parameter called LEAKAGE ( defined
as the ratio of light content in the edge pixels to total light content or SIZE) in
equation (6.2), to compensate for leakage effects in the relatively small (~ 3° diam-
eter ) HEGRA CT1 camera. Since the TACTIC telescope uses a fairly large camera
(~ 6° diameter) we do not expect the energy resolution to improve if LEAKAGE
parameter is also used. However, an attempt to remove the systematic bias was
also tried by using a nonlinear model with 2 more zenith angle dependent terms
( viz., D/cos(z) and D In(S)/cos(z)) in equation (6.2), but the improvement was
found to be only marginal. It is worth mentioning here that while the method of
least squares often gives optimal estimates of the unknown parameters, it is very
sensitive to the presence of unusual data points in the data used to fit a model. One
or two outliers can sometimes seriously skew the results of a least squares analysis.

6.3.3 Look-up table method using interpolation in 3 dimen-
sions

The third energy reconstruction method which has been studied here is based on the
look-up table method. This method has been used quite extensively by the HEGRA
collaboration [6.26]. Although the method was originally developed for the HEGRA
stereoscopic array, we essentially follow the same principle here. In this method,
we generate the fine grid look-up table by using the training data file. This is done
by interpolating the expected <SIZE> at finer intervals of DISTANCE, energy and
zenith angle. The total number of interpolated SIZE values, at a particular zenith
angle, comprise ~4000 values with DISTANCE parameter ranging from 0.4 ° to
1.4° and energy values ranging from ~ 0.74 TeV to ~ 20 TeV. In order to perform
interpolation in zenith angle, 9 different data files are prepared at 5° interval in the
zenith angle range from 5 ° to 45°. While the above interpolated data has been
obtained by fitting polynomial curves of order 3 to the given data points, final energy
estimation of an event, on the basis of its SIZE, DISTANCE and zenith angle, uses
only linear interpolation. Plot of the relative mean error in the reconstructed energy
(Ag) as a function of energy for test data sample at all the 5 zenith angles is shown
in Fig 6.5a. The frequency distribution of Ag is shown in Fig 6.5b.

It is quite evident from Fig 6.5a that, barring energy values at 1.0 TeV, 1.3 TeV
and 20.0 TeV where |Ag| is found to be >5.0 %, the reconstructed energy has a
negligible bias at other energy values from 1.8 TeV to 15.0 TeV. The rms width of
the frequency distribution is found to be ~ 27% and the rms width of the fitted
Gaussian distribution is ~ 24%. It is important to mention here that a positive bias
seen in the relative mean error (Fig6.3a, Fig 6.4a and Fig 6.5a) at energy values of
1.0 TeV and 1.3 TeV is because of the well known selection effect [6.26] and is due
to sub-threshold regime event triggers because of their upward fluctuations in the
light yield sometimes. Since events with downward fluctuations in the light yield
are unable to trigger the system in this energy range, the energy estimates tend to
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Figure 6.5: (a) Relative mean error in the reconstructed energy (Ap = (Eestm-
Etrue)/Erue ) as a function of energy for the look-up table based energy estimation
procedure. (b) Frequency distribution of Ag along with a best fit Gaussian distri-
bution to the histogram.

be biased towards larger values.

6.4 Energy reconstruction using ANN

6.4.1 Training of the network

As already discussed the network requires at least two layers, an input layer and
an output layer. In addition, the network can include any number of hidden layers
with any number of hidden nodes in each layer. The signal from the input vector
propagates through the network layer by layer till the output layer is reached. The
output vector represents the predicted output of the ANN and has a node for each
variable that is being predicted.

The essence of the training process is to iteratively reduce the error between the
predicted value and the target value. While the choice of using a particular error
function is problem dependent, there is no well defined rule for choosing the most
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suitable error function. We have used the root-mean-squared error (normalized)
RMS [6.28] in this work which is defined as :

1 |1 Dy — 0y’
RMS = =215 pz:; ;‘ <T> (6.3)
where D,; and O,; are the desired and the observed values and P is number
of training patterns. The error here depicts the accuracy of the neural network
mapping after a number of training cycles have been implemented.

Given the inherent power of Artificial Neural Network (ANN) to effectively
handle the multivariate data fitting, we have developed an ANN-based energy esti-
mation procedure for determining the energy of the primary vy-ray on the basis of
its image SIZE, DISTANCE and zenith angle. The procedure followed by us uses
a 3:30:1 (i.e 3 nodes in the input layer, 30 nodes in hidden layer and 1 node in
the output layer) configuration of the ANN with resilient back propagation training
algorithm [6.29] to estimate the energy of a vy-ray event on the basis of its image
SIZE, DISTANCE and zenith angle. The 3 nodes in the input layer correspond to
zenith angle, SIZE and DISTANCE, while the 1 node in the output layer repre-
sents the expected energy (in TeV) of the event. As already mentioned earlier, the
training data comprises ~ 350 events where <SIZE> and <DISTANCE > are first
obtained at each zenith angle by clubbing together showers of a particular energy
in various core distance bins. Apart from reducing the training data base, follow-
ing this method also makes ANN training simpler for achieving the desired level of
convergence in a reasonable amount of time. The activation function chosen for the
present, study is the sigmoid function. In order to optimize the number of nodes
required in the hidden layer, we also varied the number of the nodes in the hidden
layer from 5 to 60 in steps of 5. A plot of the normalised rms error as a function of
number of nodes in the hidden layer is shown in Fig 6.6a.

Since increasing the number of nodes beyond 30 results in only a marginal
reduction in the normalised rms error (at the cost of longer computation time), it
seems one hidden layer with 30 nodes is quite optimum. The normalised rms error
at the end of the training, for 30 nodes in the hidden layer, reaches a value ~3
x 1073 and variation of the same as a function of number of iterations is shown
in Fig 6.6b. It is worth mentioning here that a normalised rms error of ~2.7 x
10 =% was achieved in our previous work [6.19] and the improvement seen in the
present work is as a result of using more data during ANN training. In order to
ensure that the network has not become ‘over-trained’ [6.30], the ANN training is
stopped when the normalised rms error stops decreasing any further (somewhere
around 8000 iterations).
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Figure 6.6: (a) Normalised root mean square error as a function of number of nodes
in the hidden layer. (b) Normalised root mean square error as a function of number
of iterations for 30 nodes in the hidden layer.

6.4.2 Testing and validation of the ANN

The ANN is tested with two data samples. The first data sample comprises 10,000 -
ray images (which was earlier used for calculating mean SIZE and mean DISTANCE
while preparing the training data set). The second data sample comprises 24,000
~v-ray images which were not used at all while preparing the training data set. Both
these data samples yielded similar energy reconstruction error plots, thus indicating
that ANN has ”learned” and not ”remembered” the energy reconstruction procedure
through over-training [6.30]. Plot of energy reconstruction error obtained for second
test data sample is shown in Fig 6.7a. The frequency distribution of Ag is shown
in Fig 6.7b.

It is evident from Fig 6.7a that, the reconstructed energy, employing the ANN
method, has a negligible bias in the energy range 1.8 TeV to 20.0 TeV with | Ag
| < 5.0 %. The rms width of the frequency distribution is found to be ~26% and
the same for best fit Gaussian distribution is ~22%.

The interpolation capability of the ANN-based energy reconstruction procedure,
at intermediate y-ray energies and zenith angles, has also been checked by applying
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Figure 6.7: (a) Relative mean error in the reconstructed energy (Agp = (Eestm-
Etrue)/Etrue ) as a function of energy for the ANN- based energy estimation proce-
dure. (b) Frequency distribution of Ay along with a best fit Gaussian distribution
to the histogram.

it to an independent validation data base of 4000 showers. The energy of the
primary ~y-rays was chosen to be 1.1 TeV, 2.1 TeV, 5.2 TeV and 9.5 TeV at zenith
angles of 10° and 20°, and 2.1 TeV, 5.2 TeV, 9.5 TeV and 17.0 TeV at zenith
angles of 30° and 40°. Since no simulated data at these zenith angles and energies
was used during training of the ANN, the results obtained now on the validation
data obviously indicate the interpolation capability of the ANN. A plot of energy
reconstruction error obtained for the validation data sample is shown in Fig 6.8a.
The frequency distribution of Ag along with a best fit Gaussian distribution to the
histogram is shown in Fig 6.8b.

The rms width of the best fit Gaussian distribution for the test and validation
data (~ 22% and ~ 26%, respectively), with a negligible bias in the energy sug-
gests that the performance of the ANN-based method for energy reconstruction is
quite reliable. Taking higher of the two o(Ag) values ( i.e o(Ag) ~ 26%) as a
safe value of the energy resolution achieved by the ANN-based for energy recon-
struction procedure, one can easily conclude that the proposed method, apart from
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Figure 6.8: (a) Relative mean error in the reconstructed energy (Agp = (Eestm-
Etrue)/Etrue ) as a function of energy for the ANN- based energy estimation proce-
dure when applied to a validation data sample. (b) Frequency distribution of Ag
along with a best fit Gaussian distribution to the histogram.

yielding a comparable performance to that of other single imaging telescopes ( e.g.
o(In E) of ~ 25% reported by the Whipple group [6.7]), has the added advantage
that it considers zenith angle dependence of SIZE and DISTANCE parameters as
well. The procedure thus allows data collection over a much wider zenith angle
range as against a coverage of upto 30° in case the zenith angle dependence is to
be ignored. On analyzing Figures 6.3, 6.4, 6.5 and 6.7, it is also obvious that the
ANN-based energy reconstruction procedure yields better results (both in terms of
bias and energy resolution) as compared to the conventional energy reconstruction
methods. Even though the look-up table based energy reconstruction procedure
appears to be equally competitive it suffers from other drawbacks. Implementation
of this method requires cumbersome tabulation of interpolated data at a number of
DISTANCE, energy and zenith angle values and energy reconstruction procedure
is also more time consuming as compared to the ANN method. Implementation of
the ANN-based energy reconstruction procedure, on the other hand, is relatively
much more straignt forward. Once satisfactory training of the ANN is achieved,
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the corresponding ANN generated weight-file can be easily used by an appropri-
ate subroutine of the main data analysis program for determining the energy of
~v-ray like events. Use of a dedicated ANN software package is thus necessary only
during the training of the ANN. Hence, compared to the conventional methods,
the ANN-based energy reconstruction procedure offers several advantages like rea-
sonably good energy resolution, applicability over a wider zenith angle range and
implementation ease.

6.5 Energy spectrum of the Crab Nebula as mea-
sured by the TACTIC telescope

In order to test the validity of the ANN-based energy estimation procedure, we
have applied this procedure for determining the energy spectrum of the Crab Neb-
ula. For this purpose we reanalyzed the Crab Nebula data collected by the TACTIC
imaging telescope for ~101.44 h during Nov. 10, 2005 - Jan. 30, 2006. The zenith
angle of the observations was <45°. The data has been collected with inner 225
pixels (~ 4.5° x 4.5°) of the full imaging camera with the innermost 121 pixels (~
3.4° x 3.4°) participating in the trigger. The data recorded by the telescope was
corrected for inter-pixel gain variation and then subjected to the standard two-level
image ’cleaning’ procedure with picture and boundary thresholds of 6.50 and 3.00,
respectively. The clean Cherenkov images were characterized by calculating their
standard image parameters like LENGTH, WIDTH, DISTANCE, ALPHA, SIZE
and FRAC2 [6.23-6.24]. Before determining the energy spectrum, the agreement
between the predictions from Monte Carlo simulations and the actual performance
of the telescope has been checked. This is done by comparing the observed trigger
rate of the telescope with the predicted value and by comparing the expected and
observed image parameter distributions for protons [6.31]. Reasonably good match-
ing is seen between the experimentally observed quantities and those predicted by
simulations.

The standard Dynamic Supercuts procedure [6.5,6.19] is used to separate 7-
ray like images from the background cosmic-rays. The Dynamic Supercuts v-ray
selection criteria used in the present analysis are slightly less tight than the ones used
by us in our earlier work [6.23,6.24] as the main aim here is to increase the number
of v-ray like events with only a marginal loss of statistical significance. The new
cut values used for the present analysis are the following : 0.11° < LENGTH <
(0.260 4+ 0.0265 x In S)°, 0.06° < WIDTH < (0.110 + 0.0120 x In S)°, 0.52° <
DISTANCE < 1.27°c0s%%z, SIZE > 450d.c ( where 6.5 digital counts=1.0 pe
), ALPHA < 18° and FRAC?2 > 0.35. The number of ~-ray events obtained
after applying the above cuts are determined to be ~(928+100) with a statistical
significance of ~9.400. Defining ALPHA < 18° as the y-ray domain and 27° <
ALPHA < 81° as the background region, the number of y-ray events have been
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calculated by subtracting the expected number of background events (calculated on
the basis of background region) from the y-ray domain events.
The differential photon flux per energy bin has been computed using the formula

dd AN;
S — (6.4
AE; 21 Aijni ;T
‘]:

where AN; and d®(E;)/dE are the number of events and the differential flux
at energy F;, measured in the ith energy bin AE; and over the zenith angle range
of 0°-45°, respectively. T} is the observation time in the jth zenith angle bin with
corresponding energy-dependent effective area (A;;) and vy-ray acceptance (;;).
The 5 zenith angle bins (j=1-5) used are 0°-10°, 10°-20°, 20°-30°, 30°-40° and 40°-
50° with effective collection area and vy-ray acceptance values available at 5°, 15°,
25°, 35° and 45°. The number of y-ray events (AN;) in a particular energy bin is
calculated by subtracting the expected number of background events, from the -
ray domain events. The vy-ray differential spectrum obtained after using appropriate
values of effective collection area and 7-ray acceptance efficiency (along with their
energy and zenith angle dependence) is shown in Fig 6.9a.

A power law fit (d®/dE = fyE ) to the measured differential flux data with
for~ (3.124+0.48) x 107 em 25 'TeV " and T ~ 2.69 + 0.14 is also shown in Fig
6.9a. The fit has a x?/dof ~ 3.64/6 with a corresponding probability of ~0.72. The
errors in the flux constant and the spectral index are standard errors. Reasonably
good matching of this spectrum with that obtained by the Whipple and HEGRA
groups [6.32-6.33] reassures that the procedure followed by us for obtaining the
energy spectrum of a ~y-ray source is quite reliable. The confidence ellipses in the
two parameters jointly (i.e fo and ') at 68.3%, 90%, 95.4% and 99% confidence
levels are shown in Fig 6.9b. The corresponding Ax? values of these 4 contours, for
6 degrees of freedom are ~7.04, ~10.6, ~12.8 and ~16.8.

It is important to point out here that for background cosmic-ray events, which
are not coming from the source direction and are classified as y-ray like events by
the Dynamic Supercuts procedure, a wrong energy value will be obtained. However,
subtraction of the background events (estimated from 27° < ALPHA< 81° region),
from the y-ray domain (defined as o < 18°), will cancel out these events (in a
statistical sense). Estimating the energy spectrum of 7-rays in the presence of
background events by following this approach is well known [6.30] and has been
used quite extensively by other groups.

6.6 Summary

A novel ANN-based energy estimation procedure, for determining the energy spec-
trum of a candidate y-ray source has been presented in this chapter. The procedure
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Figure 6.9: (a) The differential energy spectrum of the Crab Nebula as measured
by the TACTIC telescope and employing the ANN-based energy reconstruction
procedure.(b) The confidence ellipses in the two parameters jointly (i.e fo and T)
at 68.3%, 90%, 95.4% and 99% confidence levels.

followed by us uses an Artificial Neural Network to estimate the energy of a y-ray
like event on the basis of its image SIZE, DISTANCE and zenith angle. Apart from
yielding a reasonably good o(Apg) of ~ 26%, this procedure has the added advan-
tage that it allows data collection over a much wider zenith angle range as against a
coverage of upto 30° only in case the zenith angle dependence is to be ignored. We
have also successfully implemented the ANN-based energy reconstruction algorithm
in our analysis chain, by directly using the ANN generated weight-file, so that the
energy of a ~-ray like event could be predicted without using the ANN software
package. Reasonably good matching of the Crab Nebula spectrum as measured
by the TACTIC telescope with that obtained by the Whipple and HEGRA groups
reassures that the procedure followed by us for obtaining the energy spectrum of a
v-ray source is quite reliable.
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Chapter 7

Conclusions and future work

7.1 Brief summary of the work presented

The field of VHE v-ray astronomy has produced many exciting results over the last
decade largely due to the development of the ground based Cherenkov imaging tech-
niques pioneered by the Whipple collaboration. This technique was applied for the
first time in 1988-1989 by the Whipple collaboration to detect steady 7-ray emis-
sion from the Crab Nebula using a 10m reflector with a 37- pixel photomultiplier
tube camera [7.1]. Another important development in the field is the application of
stereoscopic imaging, proposed by the HEGRA group [7.2], which proves that the
information available from multiple telescopes, located within the same Cherenkov
light pool, can dramatically improve the sensitivity of the technique. The instru-
ments use multiple telescopes to image the air-shower from different viewing angles
for improved reconstruction of «-ray direction and rejection of cosmic-ray back-
ground. The stereoscopic method also allows rejection of triggers caused by cosmic-
ray secondary muons. It is thus imperative that telescope systems such as H.E.S.S,
for example, provide an angular resolution for single v-rays of 3 arc-min to 6 arc-
min, a y-ray energy resolution of around 15% and an unprecedented sensitivity with
cosmic-ray rejection factor of more than 99.9%. It is the landmark development of
these two methods that revolutionized the field of ground-based very high-energy
(VHE) ~-ray astronomy. In addition to the ground based methods, the success of
the satellite borne experiments like CGRO and the more recent experiments like
the Fermi-LAT have revealed the rich nature of the ~-ray sky and provided a guide
for TeV observations. Apart from the discovery of the Crab Nebula as a stan-
dard candle, the discovery of VHE emission from the active galactic nuclei like the
Markarian 421, Markarian 501, PKS 2155-304, PKS 1222+21, PKS 1510-089 etc. is
particularly exciting, due to the observed rapid variability of these sources at TeV
energies.

The recent exciting results include the ones from the galactic plane survey. The
region between £30° in longitude and £3° in latitude relative to galactic center has
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been extensively observed at an average flux sensitivity of ~ 2% of the Crab Nebula
for point source searches at energies above 200GeV. The inner part of our galaxy now
contains several known sources of VHE 7-rays. The increased number of sources will
allow the first ever study of the behaviour of populations of sources in this energy
band. A major task of multi-wavelength follow-up observations now lie ahead to
understand the processes at work in these exotic astrophysical environments. The
paradigm of cosmic-ray acceleration in SNRs is consistent with these new findings.
Follow-up observations of the new sources are planned with different telescopes as
well as an extension of this survey into unexplored regions of the galactic plane
[7.3]. Another interesting aspect of these sources is that nearly one-third are still
not clearly identified with objects seen at other wavelengths, thus having a precise
angular resolution is another challenge. Coupled with this, a lower flux threshold is
needed to provide a greater sample of SNRs, in particular those which are not biased
by being just above the detection threshold. The spectrum will also have to be taken
to an energy threshold of well below 50GeV to overlap with the satellite regime. The
future multi-wavelength studies of all these objects promise to provide invaluable
information about the particle acceleration mechanisms involved in these source
environments. The imaging atmospheric Cherenkov technique has thus opened
up a new but challenging window of the electromagnetic spectrum which is now
beginning to provide insights into very high energy astrophysical environments and
the origin of cosmic-rays. Ground-based imaging atmospheric Cherenkov telescopes
have become the most efficient instruments for the observation of y-rays in the TeV
energy range [7.4-7.6]. These v-rays trace back to cosmic accelerators which can
be responsible for the creation and acceleration of the charged cosmic-rays, and
are expected to come from a wide variety of cosmic objects within and outside our
galaxy. Studying this radiation in detail can yield valuable and unique information
about the unusual astrophysical environment characterizing these sources, as also
on the intervening intergalactic space [7.7-7.9].

In the begining of the thesis, a general overview of ground based ~-ray as-
tronomy, in general and atmospheric Cherenkov technique in particular has been
presented. The progress and milestones achieved in the field, difficulties of the
analysis methods, challenges in the field and the current observational status of
the field has also been discussed in detail. Since the thesis revolves around the
optimization of the new ANN algorithms and their subsequent use for improving
the sensitivity of the TACTIC telescope, it thus becomes critical to provide a de-
tailed introduction about the telescope. The details of the TACTIC telescope, its
mechanical structure, optical geometry, electronics used and summary of the per-
formance evaluation of the telescope has also been presented. The telescope has
been in operation at Mt.Abu, India and has so far detected 7y-ray emissions from
the Crab Nebula, Mrk 421 and Mrk 501 and we have been able to give upper lim-
its on 1ES2344 + 514, 1C310, H1426 + 428 etc. While excellent matching of the
Crab Nebula spectrum with that obtained by other groups reassures us that the
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telescope subsystems are functioning properly, there is however a need to improve
the present sensitivity level which stands at the detection of 1 Crab Unit at 5 o in
25h. Also, apart from validating the stability of the TACTIC subsystems directly
with y-rays from this source, matching of the Crab Nebula spectrum also validates
the full analysis chain, including the inputs used from the Monte Carlo simulations,
like the effective area and ~-ray acceptance factors and the energy reconstruction
procedure. Furthermore, keeping in view that the weak signature of possible cutoff
in the energy spectrum of Mrk 421, inferred from our observations which is fairly
consistent with the observations of other groups [7.10-7.11], we believe that there is
considerable scope for the TACTIC telescope to monitor similar TeV v-ray emission
activity from other active galactic nuclei on a long term basis.

Since the aim of the present thesis is essentially to show the power and ad-
vantages of applying an intelligent machine learning algorithm like ANN, it is also
imperative to have an indepth appreciation related to the field of ANN; its working
methodology, various algorithms contained in the ANN umbrella, the supervised,
the unsupervised and the recurrent methods along with the algorithms contained
therein with special emphasis on the newer techniques used by researchers and
also the merits and demirits of the ANN usage. Having discussed so, it becomes
crucial to have an intercomparison of these varied methods to have a feel of the
strengths/limitations of every single algorithm. While comparative performance
of some ANN algorithms like standard backpropagation, fuzzy logic, genetic algo-
rithms, fractals etc., has been studied for various applications, a rigorous intercom-
parison of some of the powerful algorithms (e.g. the ones studied in this thesis) was
missing from the literature. The work thus also provides a rigorous comparative
study of various powerful algorithms, by first applying them to standard benchmark
problems and then applying as a regression tool for approximating functions like
cos(x) and a few special functions. Results of the study conducted suggested that
while Levenberg-Marquardt ANN algorithm yields the lowest RMS error for the
N-bit Parity and the Two Spiral problems, Higher Order Neurons ANN algorithm
gives the best results for the IRIS data problem. The best results for the XOR
problem are obtained with the Neuro Fuzzy ANN algorithm. Also, an attempt
has been made for the first time to apply ANN for solving the regression problems,
such as evaluation of special functions like the Gamma function, the complimentary
Error function and the upper tail cumulative y2-distribution function.

Although the comparative performance of different ANN algorithms is in general
problem dependent, the study undertaken in the thesis, gives an insight into the
power of various powerful ANN algorithms. Since for real world problems, it is not
an easy task to identify the most suitable ANN algorithm by just having a look at
the problem, the results presented in the thesis suggest that while investigating the
comparative performance of other ANN algorithm, the Levenberg-Marquardt ANN
algorithm deserves a serious consideration and cannot be rejected outright because
of its training time overheads.
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After having established the superiority of the Levenberg-Marquardt ANN algo-
rithm compared to the other methods available within the ANN domian, the study
has thus been extended to the core problem, the v/hadron segregation potential of
various ANN algorithms for the TACTIC telescope, by applying the ANN based
methods to the Monte Carlo simulated and the observation data on the Crab Neb-
ula. The results of the study indicate that the performance of Levenberg-Marquardt
based ANN algorithm is somewhat superior to the Dynamic Supercuts procedure
especially beyond v-ray energies of > 9 TeV. The main advantage of using the ANN
methodology for v/ hadron segregation work is that it is more efficient in retaining
higher energy vy-ray events and this has allowed us to extend the TACTIC observed
energy spectrum of the Crab Nebula up to an energy of ~ 24TeV. Reasonably good
matching of the Crab Nebula spectrum as measured by the TACTIC telescope with
that obtained by the other groups reassures that the ANN-based ~/hadron segre-
gation method is quite reliable. Another advantage of this approach is that once
a satisfactory performance with respect to the segregation potential of the ANN is
achieved, a ANN weight-file can be generated which can be easily used by an ap-
propriate subroutine of the main data analysis program for determining the y-ray
like events. Use of a dedicated ANN based software is thus necessary only during
the training of the ANN and becomes redundant once the training procedure is
completed.

Also, having established the advantages of the ANN based method for selecting
higher number of ~-rays, a novel ANN-based energy estimation procedure, for de-
termining the energy spectrum of a candidate y-ray source has also been developed.
Since the intensity of the Cherenkov light (i.e image SIZE) is a function of core dis-
tance, which is not possible to obtain with a single imaging telescope, the angular
distance of the image centroid from the camera center (known as the DISTANCE
parameter) is generally used as an approximate measure of the impact distance. The
energy reconstruction procedure with a single imaging telescope thus involves using
SIZE and DISTANCE parameters of the Cherenkov event for determining energy
of the primary 7-ray. Although the method has been found to work reasonably well
over a restricted zenith angle range of < 30°, there is a need to include zenith angle
dependence in the energy reconstruction procedure for allowing data collection over
a much wider zenith angle range. The procedure followed uses an Artificial Neural
Network to estimate the energy of a y-ray like event on the basis of its image SIZE,
DISTANCE and zenith angle. This new energy estimation procedure employed,
has yielded a reasonably good o(Ag) of ~ 26%. ANN-based energy reconstruction
algorithm has successfully been implemented in our data analysis chain, by directly
using the ANN generated weight-file, so that the energy of a y-ray like event could
be predicted without using the ANN software package. Reasonably good matching
of the Crab Nebula spectrum as measured by the TACTIC telescope with that ob-
tained by the Whipple and HEGRA groups reassures that the procedure followed
for obtaining the energy spectrum of a ~-ray source is quite reliable.
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7.2 Multivariate background rejection and the fu-
ture of ANN

There are inherently different approaches adopted by space-based and ground based
astronomy telescopes for cosmic-ray background rejection. For the ground based
telescopes like TACTIC, additional analysis needs to be conducted in order to sep-
arate the signal events from the background events. As discussed in the thesis,
the existing ground-based Cherenkov systems do this using the standard Hillas
method of parameterising the shower images. The method itself is extremely ro-
bust, but for TACTIC, in order to enhance its sensitivity additional analysis tech-
niques need to be applied. Application of the Artificial Neural Networks to improve
the gamma/hadron segregation methodology, is one such attempt in this direction.
By implementing a multivariate method, the information contained in many pa-
rameters, that help to distinguish between signal and background events, can be
combined to obtain a single response parameter. This response parameter called
eta () in the current work enables events to be classified according to their y-ray
or cosmic-ray likeness. When utilising a multivariate methodology we have demon-
strated that significant improvements in performance can be obtained compared to
the standard background rejection method. Multivariate methods can be seen as an
extension of the standard cuts-based discrimination method. The cost effectiveness,
availability and processing power of modern desktop computers enables machine
learning algorithms such as Artificial Neural Networks, Decision Trees, Likelihood
Estimators, Fisher Discriminants etc to be easily implemented. As noted by Ohm
et al,[7.12], one of the main advantages of Neural Networks over Likelihood, Fisher
discriminants and other such methods, is their ability to handle nonlinear correla-
tions between parameters which has also been amply demonstrated in this thesis.
It is also concluded in the thesis that Neural Networks are the preferred multi-
variate method for two reasons: they ignore non-discriminating parameters and
their decision trail is transparent. Neural Networks are therefore implemented in
the work presented and they have been proven to provide results with consistent
performances. Attempts in the field are now underway to use real-time Neural Net-
works, though being applied in other fields, the idea is still at infancy in the field
of VHE ~-ray astronomy.

In the last few years there has been an increased interest towards the astro-
nomical applications of NNs even though, in spite of the great variety of problems
addressed, most applications still make use of handful of neural models only. This
situation is bound to change due to the huge increase in both the quality and the
volume of data which is becoming available to the astronomical community world-
wide. Conservative predictions lead to the expectations that in about 3 — 5 years,
nearly 100 TB of data will be acquired worldwide every night and most of this data
will become available to the astronomical community. These huge and heteroge-
neous data sets will open possibilities which so far are just unthinkable, but it is
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already clear that their scientific exploitation will require the implementation of
automatic tools capable to perform a large fraction of the routine data reduction,
data mining and data analysis work.

Historically, the first attempts to use Neural Networks on astronomical data were
meant to separate stars from galaxies or to classify galaxy morphologies or spectral
features [7.13]. While the problem of star/galaxy classification seems to have been
satisfactorily answered, the problems like object detection, due to their intrinsic
complexity, are still a matter of research and will be adressed by the astronomical
community in the near future. Neural Networks have also been applied to planetary
studies [7.14]; to the study and prediction of solar activity and phenomena [7.15],
to the study of the interplanetary magnetic field [7.16], and to stellar astrophysics
[7.17] . Other fields of application also include: time series analysis [7.18], and the
identification and characterization of peculiar objects such as QSO’s, ultraluminous
IR galaxies, and v-ray Bursts [7.19], the noise removal in pixel lensing data, the
decomposition of multifrequency data simulated for the Planck mission, the search
for galaxy clusters etc.

Still in its infancy, is the use of NN for the analysis of the data collected by the
new generation of instruments for astroparticle physics such as, for instance, the
Solar energetic proton events, the cosmic-ray telescopes AUGER [7.20] and ARGO
[7.21]; the y-ray Cherenkhov telescope [7.22], the VIRGO gravitational waves inter-
ferometer [7.23] and even for the search of the Higgs boson [7.24].

7.3 TACTIC Telescope upgradation and the road
ahead

The TACTIC ~-ray telescope has been in operation at Mt. Abu, India for over a
decade now to study TeV ~-ray emission from celestial sources. During this time,
apart from consistently detecting a steady signal from the Crab Nebula above ~
1.2 TeV energy, at a sensitivity level of ~5.00 in ~25 h, the telescope has also
detected flaring activity from Mrk 421 and Mrk 501 on several occasions. We have
very recently carried out improvements in the various sub-systems of the telescope
which has resulted in a substantial improvement in its detection sensitivity (viz.,
~50 in an observation period of ~12h as compared to ~25h earlier).

Major upgrading work, involved replacement of signal and high voltage cables
and installation of new Compound Parabolic Concentrators (CPC) with the aim to
improve the sensitivity of the telescope. New CPCs with square entry and circular
exit aperture were installed on the TACTIC imaging camera in order to increase
its photon collection efficiency. The reflection coefficient of the new CPCs was
measured to be ~85 % in the wavelength range ~ 400nm-550nm. Apart from
removing the dead space in between the PMTs completely, use of the new CPCs
has also helped us to improve the gamma/hadron segregation capability of the
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telescope. In addition, the trigger criteria was also modified by including more
nearest neighbor collinear triplet combinations. A dedicated CCD camera was also
installed for conducting detailed point run calibrations and data collected has been
successfully used for determining the position of the source in the image plane with
an accuracy of better than ~ £+ 3 arc min. The analysis procedure has also been
upgraded by using the Asymmetry parameter so that an additional 40 % of the
hadronic background can be further removed by identifying the "head” and ”tail”
feature of Cherenkov images. It is worth mentioning here that the y-ray images have
their head closer to the assumed source position in the imaging camera and thus
can be selected preferentially by imposing Asymmetry>0 cut. Analysis of the ~
27h data collected with the telescope between 23-Dec-2011 and 29-Dec-2011, after
completing the hardware and software upgrading work, yields an increase in the
prompt coincidence rate from ~ 2.33 Hz (at zenith angle of 0°) to ~ 3.70 Hz. This
translates to reduction in the threshold energy of the telescope for cosmic-rays from
~1.8 TeV to ~1.4TeV and from ~1.2 TeV to ~0.8 TeV for the y-rays. Detailed
simulation studies are still in progress to confirm these estimates. As a result of
the upgradation and more refined data analysis, the sensitivity of the TACTIC
telescope has improved from N, ~ 0.97 VT to N, ~ 1.40 VT. The v-ray rate
per hour from the Crab Nebula has also increased from ~ 9.13 to ~ 15.00. The
telescope can now detect the TeV ~-ray emission from the Crab Nebula at ~50 in
an observation period of ~12h as compared to ~25h earlier.

The successful applications of the ANN methodology demonstrated in this thesis
will again be taken up in the near future, for gamma/hadron segragation and energy
estimation procedures and applied to the new data base generated by the upgraded
telescope over the next 1 year or so. This should enhance the telescope sensitiv-
ity further which will be invaluable for long term monitoring with the TACTIC
telescope.

It is worth having a closer look at some of the scientific drivers which motivate
observations in the multi-TeV energy range with a dedicated instrument like TAC-
TIC. With ever growing number of y-ray sources in the sky and rather limited field
of view of Chernkov imaging telescopes most of the TeV sky remains relatively un-
explored and only 10 % of the sky has been observed. Searching for v-ray emission
from different types of blazars including high energy peaked BL Lac objects (HBLs),
intermediate energy peaked BL Lac objects (IBLs), and flat spectrum radio quasars
(FSRQs) is an important research field where we can also contribute to understand
the y-ray emission characteristics in different types of blazars. The most notable
observational results from the blazars have been extremely fast large amplitude flux
and spectral variability on hour time scales, and a pronounced X-ray, TeV v-ray flux
correlation. Studying the temporal correlation between flux variations at different
wavelengths during flares can help in providing constraints on the blazar emission
models. While multiwavelength information, in particular at radio and X-ray en-
ergies, can provide constraints on hadronic or electronic components but often one
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requires model-dependent assumptions to decide the nature of the parent particles.

One of the objectives of the TACTIC telescope will also be to conduct deep
observations on a small number of well known VHE blazars like Mrk421, Mrk501,
H1426+428, 1ES1959+650, BL. Lacertae and 1ES 2344+514. In this regard, it
is quite reassuring to find that the energy spectrum of the Mrk421 measured by
the TACTIC telescope, for the data collected between December 27, 2005 and Feb
07,2006, has been used while interpreting the results of the Swift observations be-
tween April 2006 and July 2006. Participating in target of opportunity observations
of flaring blazars is another important area where results from the TACTIC tele-
scope can help in constraining the blazar emission models. Further, the TeV energy
spectra of extragalactic sources also carry the imprint of extragalactic absorption
in the form of ‘characteristic high-energy cutoffs’ at energies above 100GeV energy
range. Detecting this imprint of absorption thus is yet another scientific objective
where results from TACTIC telescope can be useful by providing deep observations
of blazars and by determining their energy spectra with good accuracy.

7.4 Other possible applications of ANN

7.4.1 Image cleaning with ANN

Apart from this, at the cleaning level itself nearly 30-40% ~-ray images are lost.
The traditional cleaning method used to analyse images provided by Cherenkov
telescopes selects those pixels which are above the ‘picture’ threshold or are beside
such pixels which have signal above the lower ’boundary’ threshold. A significant
quantity of the total number of PMTs that have real signal are rejected by this
method. The percentage can be increased by lowering the picture and boundary
thresholds. However, this in turn also increases the number of noise pixels incor-
rectly selected as signal pixels which makes cleaning an extremely difficult task.
We also propose to use an ANN based algorithm which will be trained to select
the pixels depending on whether they are a part of the genuine signal or not. The
method will not involve any image cleaning at all and shall thus be inherently more
poweful in accepting more genuine signals.

7.4.2 Application of ANN to raw images

Having seen the potential of an ANN based algorithm for segregating the v /hadron
showers, work will be undertaken to extend this study further to evaluate the possi-
bility of using the ANN for segregation of v /hadron on the basis of raw Cherenkov
images. For this purpose, we plan to use raw simulated images as would have been
recorded by the 349-pixel camera of the TACTIC telescope, at vy-ray energies of
1.0-27 TeV. Simulated proton energies will be taken between the energy range of
2.0-40 TeV. A total base of ~ 50,000 v-rays and and equal set of proton images will
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be generated, from which ~ 33% of the data will be used for training the ANN and
the remaining ~ 67% of the data will be used for for testing of the network. The
ANN configuration will have 349 inputs corresponding to each pixel output and the
output will be 1 node depending on whether the event in question is y-ray like or a
proton event. To reduce the complexity of the problem, we may also use some data
compressing technique like PCA etc, so that the number of inputs can be reduced
without compromising on the information contained in the inputs.

7.5 New Experiments

7.5.1 MACE Telescope

The current generation of imaging atmospheric Cherenkov telescopes (IACT) has
increased the number of known GeV/TeV astrophysical sources to more than 160.
The Himalyan Gamma Ray Observatory (HiGRO) is the highest altitude ground
based 7-ray observatory using the atmospheric Cherenkov technique, located at
Hanle (32.8° N; 78.9°E; 4200 m asl) in the Ladakh region of Himalayas, in Northern
India. High Altitude GAmma Ray (HAGAR) telescope which is a wavefront sam-
pling array of seven telescopes each with 7 para-axially mounted mirrors of 0.9m
diameter, has been in operation there since 2008 as the first phase of the HIGRO.
The MACE (Major Atmospheric Cherenkov Experiment) telescope [7.25] which is
currently being setup there will explore the y-ray sky at energies down to 30GeV.
The 155 ton MACE telescope follows a track and wheel design and is supported on 6
wheels of 60 cm diameter which move on a 27m diameter track. The 21m diameter
light collector of the telescope is made up of honeycomb based spherical Aluminium
mirror facets (size 50cmx 50cm) which have been manufactured within the country.
They have graded focal length between 25.1m and 26.2m and produce an on-axis
spot size of ~ 15mm diameter. The imaging camera of the telescope comprises
1088 pixels covering a total field-of-view of ~ 4.3° x 4.0°. The signal processing and
data acquisition electronics is housed in the camera shell itself. The imaging cam-
era follows a modular design with 16 pixels forming a Camera Integrated Module
(CIM) complete with its signal processing and digitization electronics. The data
from all the 68 modules are integrated in a data concentrator before being sent to
archiving and display systems located in the control room. The structural elements
of the telescope are presently being assembled at the manufacturer’s facility in Hy-
derabad. The drive system tests are likely to be started soon after installing ~ 30
mirror panels (1 panel has 4 mirrors to form a 1m? area) on the space frame of the
telescope. The modular data acquisition hardware and software is at an advanced
stage of prototyping. After detailed testing the telescope is planned to be shifted to
Hanle by mid 2014 and we expect the first engineering runs to commence at Hanle
by early 2015.
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Figure 7.1: Present status of MACE telescope.

7.5.2 Cherenkov Telescope Array (CTA)

The CTA project [7.26-7.27] is an initiative to build the next generation ground-
based very high energy 7-ray instrument. It will serve as an open observatory to a
wide astrophysics community and will provide a deep insight into the non-thermal
high-energy universe. The proposed CTA is a large array of Cherenkov telescopes
of different sizes, based on proven technology and deployed on an unprecedented
scale. It will allow significant extension of our current knowledge in high-energy as-
trophysics. CTA is a new facility, with capabilities well beyond those of conceivable
upgrades of existing instruments such as H.E.S.S., MAGIC or VERITAS. CTA will,
for the first time in this field, provide open access via targeted observation propos-
als and generate large amounts of public data, accessible using Virtual Observatory
tools. CTA aims to provide full-sky view, from a southern and a northern site,
with unprecedented sensitivity, spectral coverage, angular and timing resolution,
combined with a high degree of flexibility of operation. CTA will be about a factor
of 10 more sensitive than any existing instrument. It will therefore for the first
time allow detection and in-depth study of large samples of known source types,
will explore a wide range of classes of possible y-ray emitters beyond the sensitivity
of current instruments, and will be sensitive to new phenomena. In its core energy
range, from about 100GeV to several TeV, CTA will have milli-Crab sensitivity, a
factor of 1000 below the strength of the strongest steady sources of VHE ~-rays,
and a factor of ~ 10000 below the highest fluxes measured in bursts. This dynamic
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range will not only allow study of weaker sources and of new source types, it will
also reduce the selection bias in the taxonomy of known types of sources.

Figure 7.2: Conceptual layout of the Cherenkov telescope array.

7.6 New insights to VHE ~-ray observations

TeV v-rays from dark matter condensing around the galactic center is an exciting
new prospect for TeV ~-ray astronomy. However it is not easy to abtain exclusively
a conclusion that VHE ~v-rays from galactic center are due to the dark matter
origin and not from conventional emission mechanism. A progress to some extent
is expected from newly starting projects by mapping the region of emission with
good angular resolution and by watching the time variability, but it is important
to improve the IACT’s to have, in particular better energy resolution.

Since the Galactic Center is likely to have a large irreducible y-ray background, if
the sensitivity of future instruments can be improved to a level of ~ 107 3ergem =251
then a number of different sources ranging from very nearby galactic substructure
(microhalos) to the closest galactic clusters can be detected. Close to the Earth it-
self, there is the possibility that the galactic halo has a significant substructure that
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might be observable. Outside of our Galaxy, nearby low surface brightness galax-
ies and dwarf spheroidals such as Ursa Minor, Draco and Willmanl are possible
observables.

The extragalactic background light (EBL) consists of photons emitted by galax-
ies over the history of the universe. Interactions between EBL photons and ~y-rays
can obscure y-ray sources, and produce a link between the history of galaxy forma-
tion and VHE observations. Direct measurement of the EBL is difficult, because the
EBL is produced across cosmological time from all types of galaxies, sophisticated
modeling is required to understand the buildup of this photon population. Model-
ing the sources of the EBL has been done historically using a variety of techniques,
including evolution of galaxy properties that are either inferred over some range
in wavelength or directly observed in galaxy surveys. Photon-photon interactions
with sufficient energy can create electron-positron pairs. For multi-GeV and TeV
~v-rays, interactions with UV and IR background photons can create an optically-
thick barrier to passage over cosmological distances. This effect has been used by
many authors in recent years to constrain the EBL and disfavor or exclude specific
models.

In addition to the above, future generation vy-ray telescopes will mainly be driven
to better address the particle accelerations, to address the origin of cosmic radia-
tion, to detect the annihilation and production of dark matter, to understand the
~-ray bursts and finally to enable the discovery of new types of sources unseen at
other wavelengths. Having said so, the future of VHE v-ray astronomy therefore is
extremely promising as the goals to be addressed are limitless.
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Appendix A

Gamma-ray production
mechanisms

Gamma-rays are produced in non-thermal processes like interactions of radiation
with matter fields. Supernova remnants, the regions where charged particles may
be accelerated to TeV energies at the shock fronts, can produce such vy-rays. Also
the vicinity of a neutron star which is highly magnetized, or jets of an AGN are
possible production sites of these high-energy v-rays. In the following sections, the
possible production mechanisms of high energy - rays are briefly summarized.

e Charged particles in strong electric or magnetic fields

The charge of a particle at rest produces a Coulomb field. When the par-
ticle moves, its corresponding electromagnetic field also varies. According
to Maxwells equations, all accelerated charged particles emit electromagnetic
radiation. photons are emitted by accelerated charged particles, while mo-
mentum is conserved in the whole process.

e Cyclotron process

When a non-relativistic charged particle enters into a magnetic field, it gyrates
(rotates) non-relativistically around magnetic field lines with an angle € (pitch
angle) between the particle’s trajectory and the direction of magnetic field and
with a specific Larmor frequency given by:

v, = eB/mc (A.1)

where e and m are the charge and the mass of the particle, respectively. B is
the magnetic field strength and c is the speed of light. The gyration radius
is maintained by the balance between the Lorentz force of the magnetic field
and the centrifugal repulsion of the orbiting particle. A rotating charged
particle emits electromagnetic waves. This type of radiation is called cyclotron
radiation. It is also observed that while the charged particle is moving in
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the magnetic field, circularly or linearly polarized electromagnetic waves are
emitted depending on the direction of the observer to the magnetic field.

Synchrotron radiation

Cyclotron radiation is replaced by the synchrotron radiation, when the charged
particle moves with a speed close to the speed of light. The motion of the
particle is circular in trajectory and uniform around the magnetic field lines,
but if the velocity along the field lines is non-zero, the path becomes helical as
shown in Fig A.1. Therefore, the radiation emitted by the charged particles
is beamed into a cone of angle v= mc?/E. An observer located at the orbital
plane of the electron will only see radiation when the cone is pointed in that
direction. Instead of a single frequency, the radiation now is emitted as a
continuum spectrum about the v., which is the critical frequency at which
the maximum power is emitted. v, can be written as

Ve = 3 <§> I sing (A.2)

2 \mc

where ¢ is the pitch angle between the direction of the magnetic field and that

of the electron and I'= E/m is the Lorentz factor of the particle with mass m

and energy F.

The loss of energy is given by
dE. 1dE
dr ¢ dt

where B is measured in guass and E in erg.

= (2¢*/3m*c") I?B%erg em™". (A.3)

The power emitted by an accelerated particle has a characteristic two-lobe
distribution around the direction of the acceleration. In astrophysical sources
the electron energies are obeying a power-law with index « so that N(E) o
E~¢, then the synchrotron spectrum also follows a power-law of P(v) oc v/° |
where the spectral index is = (1 — «)/2.

Curvature Radiation

In a strong magnetic field (~ 102 G) an electron may be constrained to fol-
low the path of a magnetic field line very closely, with pitch angle nearly zero.
The magnetic field lines are generally curved and the electrons are accelerated
transversely and begin to radiate. This radiation is called curvature radia-
tion. The frequency spectrum of curvature radiation is like the spectrum of
synchrotron radiation: the spectrum depends on the magnetic field strength,
the energy of the electron, and the curvature of the magnetic field lines. The
relation between the particle energy spectral index («) and the radiation spec-
tral index (/) is given as o = 1 — 33 for the curvature radiation instead of
a = 1— 20 for the synchrotron radiation. This type of production process for
the VHE ~ rays is expected to take place in pulsars and supernova remnants.
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e Bremsstrahlung

Acceleration/de-acceleration of charged particles in electric fields is another
production mechanism of y-rays. When an electron passes by a positively
charged nucleus, the trajectory of the electron is altered leading to emission
of electromagnetic radiation. This process is known as bremsstrahlung. If the
parent electrons have an energy N(FE.) ~ E~%, then the typical spectrum for
bremsstrahlung is given as N(E.,) ~ E;B where o = 3. The frequency range
of this radiation depends on how much the electron trajectories are bent by
the interaction with the positive ions or nucleus. This depends on the relative
velocities of the two bodies, which in turn depends on the temperature of
the gas. An example of high-energy thermal bremsstrahlung is the X-ray
emission from giant elliptical galaxies and hot inter-cluster gas. The high-
energy thermal bremsstrahlung does play a very important role in studies of
diffuse Galactic emission for energies less than 200GeV, but it is not a primary
TeV ~-ray production mechanism in supernova remnants and pulsars.

e Inverse Compton Scattering

If photons of lower energy collide with energetic electrons, they gain energy
in the collisions. This process is known as the inverse Compton (IC) process,
illustrated in Fig A.1. The cross section of IC-scattering is approximately de-
scribed by Thomson scattering, only when the photon’s energy in the electron
rest frame is less than the electron mass (E, << m.c?). It is given as follows

8T
or = —7"82 (A4)
3
where 7, = 2.8 x 10°!* c¢m is the classical electron radius. However, around
MeV energies, where E, > m.c?, the cross section of the interaction is de-
scribed by the Klein-Nishina formula, which is as follows:

2
S reQWmeC [ln < 2E, + 1)] (A.5)

E, mec? 2

Inverse Compton scattering is considered from relativistic electrons, which
have a power-law distribution of the form N(FE,) ~ E~%, with a soft photon
density of p,h. The resulting - rays will have characteristic (Thompson)
energies of ['?hv or (Klein-Nishina) energies of Thy, where hv is the energy
of the soft photon and I' is the Lorentz factor. The spectrum of the resulting
y-rays is given as N,(E) ~ E;(O‘HW. This process is important in regions
with high photon densities. For example, in compact objects like neutron
stars, which generate beams of charged particles in their vicinity.

e Annihilation in flight
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The cross section for ete™ annihilation at extreme relativistic energies is given
by )

oa="*ln () -1 (A.6)
where y(= E./m.c?) is the Lorentz factor of the positrons and r. is the
classical radius of the electron. Two photon production is the dominant
result of annihilation leading to a continuum of photon energies. At high
positron energies, the photon emitted in the extreme forward direction has
almost all the energy of the positron while the other photon has an energy of
mec?/2 = 0.256 MeV. The cross section given by the above equation is quite
low (04 = 6 x 1072"e¢m? for a 100 MeV positron).

Matter-antimatter
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Figure A.1 : Pictorial representation of the various v-ray production mechanisms.

e Pair annihilation

Annihilation between particles and antiparticles may also produce ~- rays.
The annihilation process of an electron and positron is also shown in Fig A.1.
The rays from pair annihilation are produced in the vicinity of radioactive
decay regions, or energetic environments capable of positron production by
other processes. Examples of the pair annihilation can be seen in neutron stars
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or black holes, which have high energy densities and strong gravitational and
magnetic fields. In a similar manner, hadronic anti-particles also annihilate
with their corresponding particles. This may cause the spectral features at
correspondingly higher energies in the vy-ray spectrum.

Pion Production and Decay

Pion is an elementary particle, which is created in strong interaction pro-
cesses, such as a collision of an accelerated cosmic-ray proton with a nucleus
in the ambient gas or with another proton or high-energy photon. In such
an interaction charged (7*) or neutral (7°) secondary pions are created. The
neutral pions then rapidly decay into two rays, each of which has an energy of
~ 70 MeV in the rest frame of 7°. The charged pions decay into muons and
neutrinos. If the cosmic-ray has a power-law spectrum with a spectral index of
a, then for higher energies the y-ray spectral distribution is a power-law with
spectral index = (4/3)(« - 1/2). When the energy decreases, the spectrum
turns over with a peak at 70 MeV. This peak is the characteristic feature of
the p-p interaction and a signature of hadrons as primary cosmic particles.
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Appendix B

Interaction of y-rays

Though a large number of interaction mechanisms are known for ~-rays, only three
major types play an important role in radiation measurements namely the photo-
electric absorption, Compton scattering and pair production.

e Photoelectric absorption

In this process, a photon undergoes interaction with an absorber atom in
which the photon completely disappears. In its place an energetic photoelec-
tron is ejected by the atom from one of its bound shells. The interaction
is with the atom as a whole and cannot take place with free electrons. For
~v-rays of sufficient energy, the most probable origin of photoelectron is the
most tightly bound or K shell of the atom. The photoelectron appears with
an energy given by

E.=hv—FE, (A.7)
where Fj, represents the binding energy of the photoelectron in its original
shell. For ~-ray energies of more than a hundred keV, the photoelectron
carries off the majority of the original photon energy. In addition to the
photoelectron, the interaction also creates an ionized absorber atom with a
vacancy in one of its bound shells. This vacancy is quickly filled through
capture of a free electron from the medium and /or rearrangement of electrons
from other shells of the atom. Therefore, one or more characteristic X-ray
photons may also be generated. Although in most cases these X-rays are
reabsorbed close to the original site through photoelectric absorption involving
less tightly bound shells, their migration and possible escape from detectors
can influence their response.

e Compton scattering

The interaction process of compton scattering takes place between the incident
~-ray photon and an electron in the absorbing material. It is most often the
predominant interaction mechanism for y-ray energies typical of radioisotope
sources.
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In this type of scatterring, the incoming y-ray photon is deflected through an
angle # with respect to the original direction. The photon transfers a portion
of its energy to the electron (assumed to be initially at rest), which is then
known as recoil electron. Because all angles of scattering are possible, the
energy transferred to the electron can vary from zero to a large fraction of the
~v-ray energy. The photon gets scattered with the energy given as

’ hv
14+ 25(1 — cosb)

Mo C

(A.8)

where m,c? is the rest mass energy of the electron. For small scattering angle
6, very little energy is transferred. Some of the energy is always retained by
incident photon, even in the extreme case of # = w. The probability of the
Compton scattering per atom of absorber depends on the number of electrons
available as scattering targets and thus increases linearly with Z

Pair production

If the y-ray energy exceeds the rest mass energy of the electron, the process
of pair production is energetically possible. The probability of this interac-
tion remains very low until the ~-ray energy approaches several MeV and
therefore pair production is predominantly confined to high energy 7-rays. In
such an interaction, which takes place in the coulomb field of a nucleus, the
~-ray photon disappears and is replaced by an electron-positron pair. All the
excess energy carried by the photon above 1.02 MeV required to create the
pair goes into kinetic energy shared by the positron and the electron. Because
the positron will subsequently annihilate after slowing down in the absorbing
medium, two annihilation photons are normally produced as secondary prod-
ucts of the interaction. Though no simple rule exists for the probability of
pair production per nucleus, its magnitude however varies approximately as
the square of the absorber atomic number.

The relative importance of the three processes for different absorber mate-
rials and ~y-ray energies is illustrated in the Fig B.1. The curve on the left
represents the energy, at which photoelectric absorption and compton scat-
tering are equally probable as a function of the absorber atomic number. The
curve on the right represents the energy at which compton scattering and
pair production are equally probable. Three areas are thus defined on the
plot within which the photoelectric absoprption, Compton scattering and the
pair production mechanisms dominate.

v — 7 interaction

This process is of extreme importance and requires very unusual combination
of high energy photons and a high density of low energy photons. 7-rays are
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Figure B.1: Gamma-ray interaction as a function of y-ray production mechanisms.

absorbed by photon-photon pair production (v + v — e™+e~) on background
photon fields provided the center of mass energy of the two photon system
is more than the square of rest mass energy of an electron. A ~-ray photon
of energy €; collides with another photon of lower energy €, and gives rise to
a pair of particles, each of mass m if €, is greater than a threshold value ¢,
given by :
2m?ct

€2(1 — cosh)

where # is the angle between the photon trajectories. Taking a case of head
on collisions, €5 €, = 0.26 x 10'? (all energies in eV). Following are the cases
with astronomically important radiation fields with their mean energy (e,,)
and required threshold energy of incident photon: (i) 2.7K CMBR (€, ~
6 x 107%eV), € ~ 4 x 10MeV, (ii) Starlight (e, ~ 2 eV), ¢ ~ 10MeV (iii)
X-ray (€, ~ 1 KeV), ¢, ~ 3 x 10° eV.

The cross section for this process is not very small but such collisions are not
very frequent because of the low densities of target photons. Nevertheless,
even with low photon densities these collisions lead to significant attenuation
of photons travelling over typical extragalactic distances. The effect is par-

(A.9)

€t —
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ticularly important where the presence of EBL, limits the distance to which
VHE ~-ray telescopes can detect sources.
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