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Synopsis

Inertial Confinement Fusion (ICF) is a process where thermonuclear fusion reactions are

initiated in a fusion fuel (e.g., DT, DD, DHe3, etc) by compressing it to tremendous densities

and temperatures by focusing high power laser or charged particle beams on the surface of

the pellet or via X-rays in a hohlraum [1]. The inertia of the fuel pellet helps in confining it

long enough to produce more fusion energy than is expended inheating and containing it. The

twin requirements of heating and confinement is representedby the Lawson criterion which

is obtained by balancing the fusion energy release against the energy investment in ablating,

compressing, heating the fuel to thermonuclear temperatures and the energy lost through radia-

tion. In the laboratory, ICF plasmas provide us with very high densities and temperatures, i.e.,

extreme conditions normally obtained in the interior of stars. If good theoretical understand-

ing of the physical processes taking place in ICF plasmas is developed, experiments related

to ICF can be designed with confidence. Numerical simulationis a very convenient tool in

this regard. Starting with the appropriate initial conditions, we can predict the outcome of an

experiment by properly accounting the material propertiesand conservation laws. Energy de-

position by charged particles and neutrons, energy exchange between ions and electrons, and

interaction between radiation and material are the primaryenergy transport mechanisms within

a thermonuclear plasma. In the present thesis, an improved model of charged particle energy

deposition has been developed by considering large angle Coulomb scattering, nuclear scatter-

ing and collective plasma effects. The same model is then used to re-evaluate the concept of

internal tritium breeding in high density ICF pellets. The zero-dimensional model consisting of

rate equation for total number of nuclides, detailed energydeposition and all possible energy

loss mechanisms is used to study the thermonuclear burn characteristics of compressed DT mi-

crospheres. For validating radiation diffusion codes, newanalytical benchmark results for the

non-equilibrium Marshak diffusion problem in a planar slab, sphere and spherical shell of finite

thickness are derived using two independent methods, namely the Laplace transform method
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and the eigenfunction expansion method. In order to linearize the radiation transport and mate-

rial energy equation, the heat capacity is assumed to be proportional to the cube of the material

temperature. This assumption is made to relax the physical content of the problem such that a

detailed analytical solution can be obtained and provide useful test problems for radiative trans-

fer codes, since those codes handle an arbitrary temperature dependence of the heat capacity. As

the zero dimensional model lacks spatial variation, which is a pre-requisite for studying shock

propagation, pellet implosion and explosion, etc, fully implicit one-dimensional 3T Lagrangian

hydrodynamic code is developed. Radiation transport equation is solved using the discrete or-

dinates method and coupled with hydrodynamic code. These codes have been used to study

a range of significant problems in ICF. The work described in this thesis is divided into seven

chapters.

Chapter 1

In this chapter we introduce the various physical processeslike hydrodynamic ablation,

shock compression, radiation transport, thermonuclear ignition and burn propagation, etc. oc-

curring in ICF pellets. The analytical and numerical techniques/methodologies commonly used

for studying these mechanisms are described along with their range of applicability. We also

bring out the motivation behind the work presented in this thesis and its impact on current

understanding of the subject.

Chapter 2

The details of the charged particle and neutron energy deposition are described in this chap-

ter. The calculation of energy leakage probability is generalized to include nuclear scattering,

large angle Coulomb scattering and collective plasma effects. In general, these processes reduce

the thermalization distance in the plasma and increase the fraction of energy deposited to ions.

The fraction of the charged particle energy that is absorbedby the ICF pellet is an important

parameter determining the ignition condition. For pellet sizes comparable to the thermalization

range of fusion products, a part of the energy will escape thepellet. This fraction was calculated
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Figure 1:Thermalization distance of deuterons Vs. plasma temperature in a deuterium plasma of ion
number density 1026/cm3 for the three cases of energy loss: 1. only to electrons, 2. electrons and ions
and 3. including nuclear scattering.

by Krokhin and Rozanov [3] by considering energy transfer only to electrons. Later, Cooper

and Evans improved this calculation by including energy transfer to ions within the small angle

binary collision approximation [4]. The effects of nuclearinteractions have not been taken into

account previously as it is negligible for small scatteringangles. However, when the incident

charged particle energy is large (as in the case of the protonproduced in D2-He3 reaction) and

for higher plasma temperatures, the effect of nuclear scattering is important [5]. In this chap-

ter, we evaluate the effects of elastic nuclear scattering,large angle Coulomb scattering and

collective plasma effects on the fraction of energy leakingfrom the pellet, thereby improving

the earlier results by Cooper et al [4]. As a representative of these results, we show the effect

of including all the above mentioned energy deposition mechanisms on thermalization distance

and energy leakage probability in figures 1 and 2 respectively. A simple approach for energy

deposition by neutrons due to nuclear interaction with the ions is also developed using a multi

group model.
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0.1 MeV and ion number density 1026/cm3 for the three cases of energy loss: 1. only to electrons, 2.
electrons and ions and 3. including nuclear scattering.

Chapter 3

This chapter deals with the application of the improved energy deposition model to analyze

Internal Tritium breeding and thermonuclear burn characteristics of compressed D-T micro-

spheres. The D-T fusion reaction has a much higher cross section compared to D-D reaction

at lower temperatures. As a result, the ignition temperature in deuterium (D) fusion targets can

be significantly reduced with the addition of small quantities of tritium (T). Due to beta-decay,

with half life of 12.5 years, tritium does not occur in nature, and hence has to be produced

artificially. For instance, neutrons from the D-T reactionsproduce tritium in a Li-blanket sur-

rounding the fusion reactor via the (n,γ) reaction with lithium. Production of large quantities of

tritium by such means is technologically challenging, and so the internal breeding of tritium in

D-T pellets is a useful concept [6]. As one of the channels of D-D reaction produces tritium, a

proper pellet design, with a small concentration of tritium, can be made such that its concentra-

tion at the end of the burn is same or more than the initial concentration. The small amount of
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initial tritium, thus, acts as a catalyst during the course of fusion burn. The simulation model

considers the rate of decay or buildup of the six nuclides (D,T, He3, He4, p, n) participating in

the 4 reactions: D-D (proton channel), (D-D) (neutron channel), (D-T) and (D-He3). Energy

balance equations for ions, electrons and radiation, within the three-temperature model, includ-

ing all the energy exchange processes, determine the time dependent temperatures. Finally, the

hydrodynamic disassembly of the pellet determines the extent of burn. An accurate formula for

the Maxwellian averaged fusion cross-sections for all the four reactions, valid up to 500 keV

temperatures has been used [7]. We consider an optimal pellet configuration of densityρ=5000

gm/cm3, ρR =12.5 gm/cm2 whereR is the pellet radius, tritium fraction x= 0.0112, and ion,

electron, and radiation temperatures given by Ti= Te= 10 keV and Tr= 1 keV, respectively, an-

alyzed by Eliezer et al [6]. While this pellet showed tritiumbreeding within the assumptions

made by Eliezer et al, it failed to show breeding when inverseCompton scattering and pho-

ton losses were taken into account. However with the improved energy deposition model by

charged particles and neutrons and using the improved formulas for fusion reaction rates it is

found that the pellet breeds tritium even under extreme conditions of radiation loss. As a repre-

sentative of these results we show the variation in T ratio asa function of time on including all

the energy loss mechanisms in figure 3.

Using the above described zero dimensional three temperature model which considers all the

energy deposition mechanisms like small and large angle Coulomb scattering, nuclear scattering

and collective plasma effects, the effect of varying various pellet parameters like its density,

fraction of tritium added and initial temperature on the burn fraction and tritium breeding ratio

is studied. We conclude that for sufficient burning of the pellet and for tritium to behave as a

catalyst, the following optimum pellet configuration is necessary:

• the initial pellet density≥ 3500gm/cc

• initial plasma temperature≥ 4 keV
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Figure 3: Tritium breeding Vs. time for the DT pellet. Curve-1 refers to bremsstrahlung loss only,
Curve-2 includes inverse bremsstrahlung as well, Curve-3 includes, in addition, inverse Compton scat-
tering and Curve-4 is similar to curve-3, but without photonlosses.

• fraction of tritium added lies between 0.005 and 0.02 i.e., 0.005≤ x ≤ 0.02

The zero-dimensional model is also applied for studying thethermonuclear burn character-

istics of compressed D-T microspheres. Fusion yields in case of volume and central ignition

have been considered. Yields have been obtained for DT pellets of different masses and densi-

ties having a range of initial temperatures. As a representative of the obtained results, the yield

vs. density of a 10µg pellet having various initial temperatures is shown in figure 4. The fusion

yields are found to increase asρ2/3 for lower densities and then rise steeply and finally saturates.

Higher is the initial pellet temperature, more is the fusionyield because of the increase in DT

and DD fusion reactions as a function of temperature. Also, as the initial pellet temperatures

increase, the fusion yield attains saturation values for lower pellet densities. For an initial pel-

let temperature of 1.8 keV, there is no steep rise in the fusion yield even for densities as high

as 10,000 gm/cc showing the importance of ignition temperature in thermonuclear fusion. For

central ignition, the code has been modified to include the burn propagation into the outer cold
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fuel, bootstrap heating and subsequent increase in fusion reactions leading to higher gain in

fusion energy. Comparison with the results of a one-dimensional 3T Lagrangian hydrodynam-

ics code [8] shows good agreement which supports the fact that though the zero dimensional

model lacks spatial resolution, tracking the number densities and energetics of the nuclides is

sufficient for obtaining the energy released in fusion [9]. The dotted curves show the same for

central ignition with only inner 10% of the pellet at 10 and 20 keV respectively.

Chapter 4

Radiant energy transport plays an important role in determining the state and motion of the

medium. In the earlier chapters, radiation interaction hasbeen considered in terms of Brem-

strahlung and inverse Compton scattering only. It is possible to analyze radiation interaction

in a more rigorous manner by solving the time dependent radiation transport equation. The

time dependent non-equilibrium radiation transport equation is non linearly coupled to the ma-

terial energy equation [10], [11]. Also the material properties have complex dependence on

the independent variables. As a result, the time dependent thermal radiation transport prob-

lems are commonly solved numerically. Several numerical methods are in use for this purpose,



8

namely the discrete ordinates, finite volume, Monte Carlo, hybrid stochastic-deterministic, or

the approximate methods like the Eddington approximation,heat conduction or the diffusion

approximations. Benchmark results for test problems are necessary to validate and verify the

numerical codes [2]. Analytical solutions producing explicit expressions for the radiation and

material energy density, integrated densities, leakage currents, etc. are the most desirable. In

the literature, considerable amount of efforts have been applied for solving the Radiation Trans-

port problem analytically. Marshak obtained a semi-analytical solution by considering radiation

diffusion in a semi infinite planar slab with radiation incident upon the surface [12]. Assuming

that the radiation and material fields are in equilibrium, the problem admits a similarity solu-

tion to a second order ordinary differential equation whichwas solved numerically. The results

were extended for non-equilibrium radiation diffusion by assuming that the specific heat is pro-

portional to the cube of the temperature. This assumption linearized the problem providing a

detailed analytical solution. Using the same linearization, 3T radiation diffusion equations were

solved for spherical and spherical shell sources in an infinite medium. All available results on

the non-equilibrium radiative transfer problems in planarand spherical geometry consider sys-

tems having infinite or semi-infinite extension. Benchmarksinvolving finite size systems have

been limited either to the heat conduction or equilibrium diffusion approximation [13]. In this

chapter, new benchmark results have been generated for validating and verifying radiation dif-

fusion codes in both planar and spherical geometries. Analytical solution to the non-equilibrium

Marshak diffusion problem in a planar slab, sphere and spherical shell of finite thickness is pre-

sented. Using two independent methods namely the Laplace transform method and the eigen

function expansion method, the radiation and material energy densities are obtained as a func-

tion of space and time. The variation in integrated energy densities and leakage currents are

also studied. In order to linearize the radiation transportand material energy equation, the heat

capacity is assumed to be proportional to the cube of the material temperature. The steady state

energy densities show linear variation along the depth of the planar slab, whereas non-linear
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Figure 5:Transient analytical (symbols) and numerical (line) radiation energy densities in a spherical
shell with radiation incident on the inner surface.

dependence is observed for the spherical shell. The analytical energy densities show good

agreement with those obtained from finite difference methodusing small mesh width and time

step. As a representative of the obtained results, we show scaled radiation energy densities for

a spherical shell in figure 5. Initially, the material energydensity is found to lag behind the

radiation energy densities and finally equilibrate as time proceeds.

Chapter 5

The zero dimensional model is successful in obtaining the appropriate yields and reaction

dynamics going on in time. However, to study more complex processes like shock propagation

in ICF plasmas, pellet implosion and explosion either in a direct drive fusion or via x-rays in a

hohlraum for the indirect drive, the actual spatial variation is to be considered. Thus, to have a

better understanding of the processes taking place in a thermonuclear plasma, at least one di-

mensional hydrodynamic simulation study need to be performed. In this chapter, a fully implicit

one dimensional Lagrangian hydrodynamic code has been developed in planar, cylindrical and

spherical geometries. The medium is divided into a number ofmeshes and Lagrangian differ-
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ential equations for conservation of mass, momentum and energy are solved in each mesh. All

the meshes are connected and the velocities at the end of the time step are obtained by solving

a tri-diagonal system of equations. The hydrodynamic system of equations are closed by using

the equation of state (EOS) corresponding to the material. As the melting curve of the elements

play an important role in the early stages, we have studied the melting curve of Cu and Al and

the effect of dopants on the melting point using classical molecular dynamic simulations (in-

cluded in appendices C and D respectively). The code is used to obtain the results for Sod’s

shock tube problem in planar geometry [14], Sedov’s self similar point explosion problem in

spherical geometry [15] and Noh’s problem in both sphericaland cylindrical geometries [16].

For the high energy density systems, the flow of energy from radiation to matter cannot be

neglected and the total energy of the material changes because of radiation interaction in addi-

tion to that due to hydrodynamic compression. In order to describe properly the dynamics of

the radiating flow, it is necessary to solve the full time-dependent radiation transport equation

as very short time scales corresponding to a photon flight time over the mean free path are to

be considered [10]. Two methods commonly used are non-equilibrium diffusion theory and

radiation heat conduction approximation [17]. The former is valid for optically thick bodies,

where the density gradients are small and the angular distribution of photons is nearly isotropic.

The conduction approximation is only applicable when matter and radiation are in local ther-

modynamic equilibrium, so that the radiant energy flux is proportional to temperature gradient,

and for slower hydrodynamics time scales. Use of Eddington’s factor for closing the first two

moment equations is yet another approach followed in radiation hydrodynamics. The full ra-

diation transport equation has been solved using the discrete ordinates method [18]. The time

dependent radiation transport equation for one group modelis solved by discretizing it in angle

and space. The angular difference coefficients and the weight attached to the angles (obtained

according to Gauss quadrature) define the angular discretization whereas the finite difference

version in space is obtained by integrating over a cell. Together with the exponential difference
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scheme, the fluxes for all the meshes are obtained using the vacuum boundary condition and the

symmetry of the flux at the centre of the sphere. The rate of radiation energy absorbed by unit

mass of the material in each of the fixed mesh is finally obtained. The code is then used to study

the Marshak wave problem in planar and spherical geometry. Su and Olson [19] derived an

analytical solution of the non-equilibrium Marshak wave problem in a one-dimensional planar

geometry in the diffusion approximation. The non-equilibrium Marshak wave problem consists

of a semi-infinite, purely absorbing, and homogeneous medium occupying0 ≤ z ≤ ∞. The

medium is at a zero temperature with no radiation field present at time t<0. At time t = 0, a time

independent radiative flux Finc= c/4 impinges upon the surface at z = 0. Opacity is assumed to

be a constant independent of temperature and the specific heat is proportional to the cube of the

temperature, i.e., CV =α T3. As a representative of these results, we show the scaled radiation

and material energy densities as functions of position in the slab at different times forε = 0.1

in figure 6. For numerical simulation we have chosen opacityσa =100 cm−1 and mesh width

∆z = 10−3cm in order to maintainσa∆z = 0.1. Comparison with the analytical results shows

good agreement after a large time, whereas there is slight disagreement at earlier times. As

the analytical results are obtained for the Marshak diffusion problem whereas our results em-

ploy the full radiation transport, slight difference at earlier times is expected because of larger

penetration for diffusion approximation. An analytical solution is derived for the steady state

Marshak diffusion in spherical geometry with the plasma having a constant opacity (σa =5.58

cm−1) and neglecting the heating and cooling rates. Steady statescaled radiation temperatures

within the sphere obtained from the radiation transport code are compared to the analytical

solution.

Chapter 6

In this chapter, the radiation transport and hydrodynamicscodes described in chapter 5 are

coupled together to obtain a fully implicit radiation hydrodynamics code. The coupled radiation

hydrodynamics code is applicable when the radiative transfer and the interaction between the
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Figure 6:Linear plot of the radiation energy density and material energy density as functions of position
in the slab at different times. The symbols represent the analytical solutions.

radiation and the material have a substantial effect on boththe state and motion of the medium

[17]. The radiation energy density and pressure are negligible in comparison to those corre-

sponding to the materials for non-relativistic radiation hydrodynamics. However, the radiant

heat transfer in the medium is significant because the radiant energy flux is comparable to the

material energy flux. Thus the continuity equation and the equation of motion remains un-

changed as the radiant energy density and the work done by theradiation pressure forces are

neglected. A term describing the radiation absorption and emission is introduced into the en-

ergy equation. The solution method is described in the thesis in detail and is clearly depicted

in the flowchart given in figure 7. The time step index is denoted by ‘nh’ and ‘dt’ is the time

step taken. The iteration indices for electron temperatureand total pressure are expressed as

‘npt’ and ‘npp’ respectively. ‘Error1’ and ‘Error2’ are thefractional errors in pressure and

temperature respectively whereas ‘eta1’ and ‘eta2’ are those acceptable by the error criterion.

Using this radiation hydrodynamic code, the problem of shock propagation in Al foil is

studied in planar geometry. In the indirect drive inertial confinement fusion, high power laser
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Figure 7:Flowchart of the radiation hydrodynamics code.
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beams are focused on the inner walls of high Z cavities or hohlraums, converting the driver

energy to x-rays which implode the capsule. If the x-ray fromthe hohlraum is allowed to fall

on an aluminium foil over a hole in the cavity, the low Z material absorbs the radiation and ab-

lates generating a shock wave. Using strong shock wave theory, the radiation temperature in the

cavityTr can be correlated to the shock velocityus. The scaling law derived for aluminium is

Tr = 0.0126u0.63
s , whereTr is in units of eV andus is in units of cm/s for a temperature range of

100-250 eV [20]. Comparison between the numerically obtained shock velocities for different

radiation temperatures and the scaling law for aluminium show good agreement in the temper-

ature range where the scaling law is valid. The point explosion problem with heat conduction

is also studied in spherical geometry. P. Reinicke and J. Meyer-ter-Vehn (RMV) analyzed the

problem of point explosion with nonlinear heat conduction for an ideal gas equation of state

and a heat conductivity depending on temperature and density in a power law form [21]. The

problem combines the hydrodynamic (Sedov) point explosionwith the spherically expanding

nonlinear thermal wave. The RMV problem is a good test to determine the accuracy of coupling

two distinct physics processes: hydrodynamics and radiation diffusion. We generate the results

for the point explosion including radiation interaction using our fully implicit radiation hydro-

dynamics code. As a representative of these results, we showthe normalized density, pressure,

velocity and temperature obtained from our radiation hydrodynamic code in figure 8. The kink

in ρ/ρ1 and a sharp drop inT/T1 at a distance of 0.57 cm are observed which shows that the

heat front lags behind the shock front in this case. The smooth variation of temperature near

the origin shows the effectiveness of radiative energy transfer from regions of high temperature.

But for the unperturbed power law density profile ahead of theshock front, profiles of other

variables are somewhat similar to point explosion problem without heat conduction.

Asymptotic convergence analysis is performed for conducting verification analysis of the

code. The asymptotic convergence rate quantifies the convergence properties of the software

implementation (code) of a numerical algorithm for solvingthe discretized forms of continuum
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equations [22]. Our code verification for both planar and spherical cases consider the global

mass-wise and temporal convergence separately. Spatial aswell as temporal convergence rates

are∼1 as expected from the difference forms of mass, momentum andenergy conservation

equations.

Chapter 7

Finally, we conclude the thesis in this chapter. The studiescarried out and the important

results obtained are summarized. The limitations and the future scope of the work is also dis-

cussed.

Four appendices have been included at the end of the thesis:

1. Adaptive Cash-Carp Runge Kutta (RK) method for solving the ODEs.

2. Error arising from the discretization of mass, momentum and energy conservation equa-

tions.

3. Melting curve of metals using classical molecular dynamics (MD) simulations.
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4. Effect of Site Selective Ti substitution on the Melting Point (MP) of CuTi Alloys.

In summary, the important highlights of the work are as follows: An improved model of charged

particle and neutron energy deposition is developed to analyze internal T breeding and ther-

monuclear burn characteristics of compressed D-T pellets.Also, new analytical benchmark

results have been derived for radiation diffusion in planarand spherical geometries. A fully

implicit 1D Lagrangian hydrodynamics code is developed andapplied to significant problems

in ICF. We have performed Classical MD simulations to obtainMP of metals and alloys as they

are important for EOS determination and use in hydrodynamicsimulations.
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1
Introduction

1.1 Motivation

Hot dense plasmas are encountered in high-energy density physics scenarios such as Iner-

tial Confinement Fusion (ICF), strong explosions, astrophysical systems, shock waves, etc.

Such systems are obtained at pressures exceeding 1Mbar and energy densities greater than

1012erg/cm3 [1]. They consist of three kinds of particles, namely the ions, electrons and pho-

tons [2]. The self equilibration times of ions and electronsare much smaller (∼ 10−13 s) com-

pared to the time taken by ions and electrons to attain the same temperature (∼ 10−9 s) [3, 4].

So, distinct energy and temperature is assigned to the constituent species and the evolution of

energy density for such a plasma is described using the three-temperature (3T) equations. How-

ever, if the time scale of interest is larger than the electron-ion temperature equilibration time,

a single material temperature can be defined for the two components of the plasma fluid. When

energy is deposited locally, it gives rise to local perturbations in density, pressure and temper-

ature. These disturbances then propagate away from the source by transporting energy to the

other regions [3]. The two principal energy transport modesare hydrodynamic motion (sound

waves or shock waves) and radiation transport (RT). The fusion products in ICF (charged parti-

cles and neutrons) mainly deposit their energy to the ions through collisions whereas radiation

energy preferably heats the electrons.
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The equations for conservation of mass, momentum and energyalong with the Equation of

State (EOS) define the hydrodynamic motion of the plasma [4].The radiation transport equa-

tion defines the radiation intensity as a function of space and time in the interacting medium.

Solving the problem of radiation transport is difficult because the equation is integro-differential

in character and can take various forms (elliptic, parabolic or hyperbolic) in different mediums

[5]. Simplifying assumptions are made to obtain analyticalsolutions in some cases. As the

photon density is a function of seven independent variables; three for position, two for direc-

tion of flight, one for energy and one for time, simulating real radiation transport problems is

challenging. Significant storage and computational complexity is involved in resolving all of

these dimensions on a spatial, temporal, angular and energygrid. Radiative phenomena occur

on time scales that differ by many orders of magnitude from those characterizing hydrodynamic

flow. This leads to significant computational challenges in the efficient modeling of radiation

hydrodynamics [6, 7].

The motivation behind the work in this thesis is to study the aforementioned energy trans-

port mechanisms in detail. New analytical solutions have been derived and numerical codes

developed for the purpose.

1.2 Theoretical background

Dynamical phenomena such as shock waves, radiation waves, material ablation, etc. are essen-

tial for the production of high-energy density conditions,to the achievement of inertial fusion

and to the simulation of astrophysical phenomena [2]. The models and codes developed in

this thesis are applied to hot dense plasmas generated in thelaboratory using inertial confine-

ment fusion approach. In this section, we discuss the physical processes taking place in an ICF

plasma. The techniques and methodologies for studying energy flow through hydrodynamic

motion and radiation transport is also introduced. Analytical solutions available only for a few
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simple problems are discussed and various numerical methods in use for the complicated ones

are compared. We also discuss about atomistic simulation for obtaining the melting points of

metals and alloys which plays a major role in choosing the proper material properties (EOS) at

lower temperatures, for example, the initial stages of ICF.

1.2.1 Concept of inertial confinement fusion

Hans Bethe discovered in 1931 that nuclear fusion is the primary energy source of stars. As

the conventional fuels have limited resources, nuclear fusion has the potential of turning into

the energy source of the future because of its ecological andsafety advantages [8]. In order

to fuse two light nuclei which are positively charged and strongly repel each other, high tem-

peratures are required to overcome the Coulomb repulsion [3]. In 1961, a Livermore scientist,

John Nuckolls, realised that the powerful light beam of a pulsed laser could be used to achieve

the energy densities necessary to produce very high compressions. Inertial Confinement Fusion

(ICF) is a process where thermonuclear fusion reactions areinitiated in a fusion fuel (e.g., DT,

DD, DHe3, etc) by compressing it to tremendous densities and temperatures by focusing high

power laser or charged particle beams on the surface of the pellet or via X-rays in a hohlraum

[1]. The inertia of the fuel pellet helps in confining it long enough to produce more fusion

energy than is expended in heating and containing it. The twin requirements of heating and

confinement is represented by the Lawson criterion which is obtained by balancing the fusion

energy release against the energy investment in ablating, compressing, heating the fuel to ther-

monuclear temperatures and the energy lost through radiation. If n is the ion density andτ is

the confinement time, the Lawson criterion states thatnτ > 1014 s/cc for D-T reactions and

nτ > 1016 s/cc for D-D reactions when the reaction rate is evaluated atsuitable temperatures

(10 keV for D-T and 100 keV for D-D). An alternative way of defining the Lawson criterion

is the product of the fuel densityρ and pellet radius R. Efficient thermonuclear burn occurs if

ρR > 3g/cm2 so that 1/3 rd of the fuel pellet burns before its disassembly. The most important
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Figure 1.1:Target sector of a typical ICF pellet.

quantity determining whether a reaction would take place ornot is the reaction cross-section

(σ) which measures the probability per pair of particles for the reaction to occur. Cross section

is defined as the number of reactions per target nucleus per unit time when the target is hit by

a unit flux of projectile particles. IfnA is the ion density of species A whilenB is the density

of species B, then the rate at which fusion reactions occur isgiven byRAB = nAnB < σv >

where< σv >=
∫ ∫

f(~vA)f(~vB)σ(vrel)vreld~vAd~vB indicates an average over the velocity dis-

tributions of both species with the relative velocityvrel =| ~vA − ~vB |. The velocity distributions

characterizing a plasma fuel in thermal equilibrium at a temperature T is given by the Maxwell-

Boltzmann distributionf(~v) = ( m
2πkBT

)3/2 exp(− mv2

2kBT
) wherekB is the Boltzmann’s constant.

A typical ICF pellet consists of a hollow shell capsule with an outer ablator layer of 1.67 mg

plastic and a fuel layer of 1.68 mg (cryogenic) solid DT. The outer radius of the shell is slightly

less than 2 mm and its aspect ratio is about 10 as shown in figure1.1. The central cavity is filled

with DT vapour, which forms the ignition hot spot after the implosion [9].

The various stages followed in inertial confinement fusion process are:
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1. Laser/Particle beam or x-ray driven ablation

When laser light is incident on the outer surface of a fusion pellet, the material is trans-

formed into the plasma state and expands outward from this surface. The density of the

plasma is highest close to the capsule surface and lower further away. If the density of

the plasma is greater than the critical density, laser beam can no more penetrate into the

capsule. The driver energy is transported from the outer regions of the plasma corona into

the ablation surface via classical electron conduction, hot (superthermal) electron trans-

port and radiation transport. Particle beams on the other hand penetrate in the medium

upto their range and deposit their energy into the ions and electrons. An alternative is the

indirect drive approach in which laser energy is first absorbed in the inner walls of the

hohlraum coated with high Z material which emits x-rays. Thex-rays fall on the capsule

at the centre of the hohlraum and leads to the ablation of the outer surface. 70-80% of

the laser light is converted to x-rays.

2. Ablative shock compression

As the outer surface of the pellet ablates, due to rocket motion an ablative pressure is

generated inwards. A spherical shock wave moves inwards andcompresses the fuel. In

order to obtain higher shock compressions, a series of weak shocks rather than one strong

shock is used.

3. Thermonuclear ignition and burn propagation

Thermonuclear ignition and burn of a plasma occurs when internal heating by fusion

products exceeds all energy losses such that no further external heating is necessary to

keep the plasma in the burning state [9]. For a DT pellet containing equal amounts ofD2
1

andT3
1, the ignition temperature is∼ 5 keV or higher. Ignition can be achieved through

various schemes, viz. volume ignition, hot spot/ central ignition and fast ignition. In

volume ignition, the whole of the fuel is compressed and heated to fusion conditions at
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the end of the compression phase so that ignition starts in the whole pellet. The driver

energy requirement is very high∼ 60MJ for volume ignition. In hot-spot or central

ignition concept, the fuel moves inwards with increasing velocities as the driver deposits

its energy. The result of this acceleration is that the innerpart of the fuel is compressed

into a higher temperature adiabat (∼ 5-10 keV) than the outer part of the fuel (∼ 1 keV).

Both parts will be compressed to high densities, but the inner hot spot will be slightly

less dense than the outer part. In the hot spot concept the burn of the fusion material

begins in the central hot spot. The alpha particles are mainly responsible for depositing

the fusion energy into the outer layers. If the hot spot size is greater than the critical

radius, a thermonuclear burn front propagates into outer cold fuel producing high gain.

At these very high densities, the energetic alpha particlesproduced in the DT fusion

reactions are absorbed in this central region heating it to still higher temperatures and

causing the fuel to burn even more rapidly. As the central spark burns, alpha particles are

deposited in the adjacent fuel, bringing it to ignition temperatures. This process continues,

leading to a thermonuclear burn wave that propagates outward into the cold compressed

fuel surrounding the ignited pellet core, consuming the fuel in a very rapid thermonuclear

microexplosion. After only a few picoseconds a significant fraction of the imploded pellet

fuel has burned before the pellet disassembles. As the compression of hot material is

more energy consuming than the cold material, and because less material needs to be

heated in the hot spot scheme, it provides better gains with the additional advantage that

the external dense and cold fuel layer provides better confinement. In the fast ignition

scheme, the capsule is precompressed by a conventional longpulse (ns) laser to produce

a high density core (ρ ∼ 300-400 g/cc) [10]. The core is then ignited using a short

pulse (fs) ultra intense (∼ 1020 W/cm2) particle beam. The advantage of the fast ignitor

concept is that compression and ignition are separated, thereby enabling higher gain from

a lower driver energy input, possibly allowing higher tolerances in target fabrication. The
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Figure 1.2:Various stages followed in Inertial Confinement Fusion.

various stages of an ICF pellet implosion and burn is shown infigure 1.2.

The most important fusion reactions occuring in a thermonuclear plasma containingD2
1 and

T3
1 are:

D1
2 + D1

2 −→ He2
3 + n0

1 + 3.269 MeV, (1.1)

D1
2 + D1

2 −→ T1
3 + p1

1 + 4.033 MeV, (1.2)

D1
2 + T1

3 −→ He2
4 + n0

1 + 17.589 MeV, (1.3)

He2
3 + D1

2 −→ He2
4 + p1

1 + 18.353 MeV. (1.4)

DT reaction has the highest reactivity in the whole temperature interval below 400 keV. The

second most probable reaction is DD at temperatures below 25keV while it isDHe3 for 25≤ T

≤ 250 keV as shown in figure 1.3. Advanced fusion fuels involving hydrogen isotopes and light

nuclei (such as helium, lithium and boron) are particularlyinteresting as they do not involve

any radioactive fuels or neutrons and only releases chargedparticles. One such reaction is the

proton-boron reaction

p1
1 + B5

11 −→ 3He2
4 + 8.6 MeV, (1.5)

which has reactivity equal to that of DHe3 at about 250 keV and that of DT at about 400keV.
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Figure 1.3:Maxwell-averaged reactivity Vs. temperature for reactions of interest to inertial confinement
fusion. Reproduced with permission from reference [9].

A key point in achieving fusion is a homogeneous compression, which means aiming for a

perfectly symmetric implosion. But it is difficult to achieve a spherically symmetric compres-

sion because of the instabilities. Among hydrodynamic instabilities, the Rayleigh-Taylor (RT)

and Richtmyer-Meshkov (RM) instabilities play a role in ICF. Out of these two, the RT instabil-

ity is the most dangerous one. The RT instability occurs whena lighter fluid tries to accelerate

a denser fluid. During the spherical implosion of an ICF pellet, RT instability arises when the

ablated low density plasma pushes a cold high density fuel inwards. Also, at the end of the im-

plosion, the pressure in the hot fuel increases thereby decelerating the pusher shell imploding

the fuel mass. If the fuel density is lower than the pusher density, the pusher material mixes into

the fuel due to RT instability thus affecting the thermonuclear burn of the fuel [11],[12],[13].
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1.2.2 Hydrodynamics

The state of a moving fluid whose thermodynamic properties are known can be defined in

terms of velocity, density, and pressure as functions of position and time [4]. The continuity

equation or the equation of mass conservation signifies thatthe change in density within a

volume element is because of fluid flow into or out of this element. If ρ is the density and~u is

the velocity, then the above equation is

Dρ

Dt
+ ρ~∇.~u = 0, (1.6)

where D
Dt

= ∂
∂t

+ ~u.~∇. The equation of conservation of momentum is equivalent to Newton’s

second law and attributes the acceleration to the applied forces. If P is the pressure, then

ρ
D~u

Dt
= −~∇P. (1.7)

The equation of conservation of energy is equivalent to the first law of thermodynamics and

states that the change in specific internal energyE of a given fluid element is a result of the work

of compression done on the element by the surrounding medium, and the energy generated by

external sources.

DE

Dt
+ P

dV

dt
= Q, (1.8)

whereV = 1/ρ is the specific volume,Q is the energy generated by external sources per unit

mass of the material per unit time. In order to close the abovesystem of five equations with

six unknowns, the thermodynamic properties of the fluid are assumed to be known through the

Equation of State (EOS) given byP = P (ρ, T ) andE = E(ρ, T ).

The hydrodynamic equations become acoustic equations describing the propagation of sound

waves in the limiting case, where changes in density∆ρ and pressure∆P accompanying the



40

fluid motion are very small in comparison with the average values of densityρ0 and pressure

P0, and where the flow velocities are small in comparison with the speed of soundcs. The en-

ergy of a sound wave is a quantity of second order, proportional to the square of the amplitude

ρc2s [1]. If the medium is disturbed very strongly in an extremelyshort time, as in the case of

energy deposition by driver, the disturbance propagates into the neighbouring regions approxi-

mately with the speed of sound which is proportional to the square root of the density,cs ∼ ρ1/2.

Hence the disturbance propagates faster in the high densityregions than in low density regions.

The perturbation profile of a fast propagating disturbance travelling into a lower density region

steepens resulting in a shock wave which is supersonic w.r.t. the medium ahead of it [8]. Figure

1.4 a) shows a shock wave moving with speedus in a fixed frame of reference with a static

medium ahead of the shock. It is convenient to work in the frame fixed to the shock wave so

that the medium ahead of the shock moves towards it with the shock speed as shown in figure

1.4 b). The conservation laws are then given in one dimensional form by

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (1.9)

∂

∂t
(ρu) +

∂

∂x
(P + ρu2) = 0, (1.10)

∂

∂t
(ρE + ρ

u2

2
) +

∂

∂x
[ρu(E +

u2

2
+
P

ρ
)] = 0. (1.11)

In the limit of an infinitesimally thin discontinuity, we obtain the Rankine-Hugoniot relations

ρ0u0 = ρ1u1, (1.12)

P0 + ρ0u
2
0 = P1 + ρ1u

2
1, (1.13)

E0 +
P0

ρ0
+
u2

0

2
= E1 +

P1

ρ1
+
u2

1

2
. (1.14)

The Hugoniot curve is locus of all thermodynamic states obtained by single shock compres-

sions. As illustrated in the P-V diagram of figure 1.5, the Hugoniot curve lies above that of
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Figure 1.4:Hydrodynamic variables behind and ahead of a shock wave in a)fixed frame of reference
and b) frame of reference moving with the shock.

adiabatic compression. The area under the curve is equivalent to the work done to compress

the material. While the temperature and pressure across theshock will rise indefinitely with

the strength of the shock, the compression or density changeapproaches an asymptotic limiting

value of ρ1

ρ0
= γ+1

γ−1
. For a monoatomic gas (specific heat ratioγ = CP/CV = 5/3), this ratio is

4, for a diatomic gas (γ = 7/5), it is 6, and so on. In reality, at high temperatures and pressures,

the specific heats and specific heat ratios are no longer constant because of molecular dissoci-

ation and ionization. Even in this case, the density ratio remains finite and it does not exceed

11-13. As a series of weak shocks approach an adiabat, the work done to compress the fuel is

lower. An isentropic compression also prevents in heating the fuel so that it is easier to contain

the fuel for a longer time.

Numerical problems involving simple gas flows can be solved analytically and used as tests

for validating hydrodynamic simulation codes written for studying more complicated processes

[14]. A steady plane-parallel adiabatic shock, with its step function changes in density and

temperature [7] is a classic test problem for hydrodynamic codes with the analytical solution

known (Rankine Hugoniot). Such a shock can be produced numerically by a piston, i.e., by

giving the inner zone boundary a constant outward velocity.Another standard hydrodynamics

test is the shock tube [15]. The point explosion problem admits self-similar analytical solution
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Figure 1.5:P-V diagram for shock and adiabatic compression.

in spherical geometry [16]. The Noh problem has also been solved analytically for spherical

and cylindrical cases [17].

Hydrodynamic simulation is performed by dividing the system to be studied into meshes,

discretizing the hydrodynamic equations in these regions and solving them numerically [18].

As the meshes are attached to the moving material in the Lagrangian formulation, the mass

within a mesh remains constant. However, in the Eulerian scheme, the meshes are fixed in

space with material moving from one mesh to the other. The Lagrangian scheme is conceptu-

ally simple and the entire time history of all the field variables at a material point can be easily

tracked and obtained. Though it is difficult to track the timehistory data of any material point

or boundary, large deformations can be easily handled in theEulerian scheme. The equations

can be discretized either using finite difference (FD), finite volume (FV) or the finite element

(FE) methods [19]. In the finite difference method (FDM), derivatives are approximated as fi-

nite difference using Taylor’s expansion and neglecting higher order terms. Local truncation

errors are introduced in the solution depending on the orderof term neglected in the series. In

finite volume method (FVM) on the other hand, instead of pointwise approximations on a grid,
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average integral value on a reference volume is considered using Gauss theorem. The FVM is

applicable to integral form of conservation law and is a natural choice for heterogeneous ma-

terial as each grid cell can be assigned different material parameters. In finite element method

(FEM), the variables are expanded in terms of basis functionwith a partition of the domain

in a finite dimensional subspace. It is flexible and applicable for complicated geometries. For

the Lagrangian finite difference method, one may use the explicit scheme in which the thermo-

dynamic variable at the present time step is obtained from a knowledge of the previous time

step values. Implicit schemes on the other hand rely on solving a system of equations at each

time step as the variable values are dependent not only on previous time step values but also

on the present values of the adjacent meshes [20]. Approximating the time step as a backward

difference leads to explicit scheme whereas forward or central difference results in an implicit

scheme. Although the explicit scheme is computationally simple, it has a serious drawback that

the time step should be very small (less than the time taken bya sound signal to traverse the grid

spacing) for the solutions to be stable [21]. As a simultaneous system of equations is solved in

the implicit scheme, it takes more computational time per time step than the explicit scheme.

The molecular structure of a fluid results in dissipative processes like viscosity and heat

conduction which creates an additional, non-hydrodynamictransfer of momentum and energy.

They appear only where there are large gradients in the flow variables as in a shock front and are

responsible for the increase in entropy. All numerical procedures describing shock structures

must have some degree of dissipation like viscosity or heat conduction to control the numerical

instability by smearing the shock within a few mesh widths. The Von-Neumann procedure [22]

artificially adds a new viscous term whereas the high resolution methods use an upwind scheme

based on the exact Godunov [23] or an approximate [24] Riemann solver. The high resolution

methods inherently possess the needed dissipation throughthe type of differencing operator

used to approximate the governing equation [25].
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1.2.3 Radiation transport

In the radiation field, energy is carried by point massless particles called photons. Each photon

travels with the speed of light c and carries an energy hν where h is the Planck’s constant and

ν is the frequency of the electromagnetic field associated with the photon. A radiation field in

space is described by the distribution of the intensity of radiation w.r.t., frequency, to space and

to the direction of radiant energy transfer and is expressedby the photon distribution function

f(ν,~r, ~Ω, t) [4]. Then the number of photons in the frequency intervalν to ν + dν, contained

at time t in the volume elementd~r at the point~r, and having a direction of motion within an

element of solid angle d~Ω about a unit vector~Ω is given byf(ν,~r, ~Ω, t)dνd~rd~Ω. The spectral

radiation intensityIν(~r, ~Ω, t) = hνcf(ν,~r, ~Ω, t)dνd~rd~Ω represents the radiant energy in a unit

spectral interval, passing per unit time through unit area,with direction of energy propagation

contained within unit solid angle about the vector~Ω. The photons interact with the background

material by emission and absorption during electronic transitions from one energy state to an-

other in atomic systems, like electron-ion plasmas. All electronic transitions can be divided

into three groups using the continuity criterion or the discreteness of the energy spectrum of

the initial and final states of the atomic system. These groups are bound-bound, bound-free and

free-free transitions. A free electron traveling through the electric field of an ion in an ionized

plasma can either emit a photon without losing all its kinetic energy and remain free or it can

absorb a photon and acquire additional kinetic energy. These free-free transitions are called

Bremsstrahlung and has a continuous emission and absorption spectra. For a fully ionized

plasma, Bremsstrahlung transitions are the most dominant mechanism of radiation absorption

and emission. The radiative transfer equation is a partial differential equation for the radiation

intensity and describes a non-equilibrium radiation field.Thermodynamic equilibrium in matter

is usually established very rapidly, and it is therefore possible to consider the material to be in

a state of local thermodynamic equilibrium (LTE) at each point of space and at each instant of

time. The state of the material is then described by two parameters, such as temperature and



45

density. The time dependent, multi-frequency, non-equilibrium radiation transport equation is

given by

1

c

∂I(ν,~r, ~Ω, t)

∂t
+ ~Ω·~∇I(ν,~r, ~Ω, t) + (σa(~r, ν, T ) + σs)I(ν,~r, ~Ω, t) =

σa(ν,~r, t)B(ν, T ) + σs

∫ ∫

I(ν ′, ~r, ~Ω′, t)d~Ω′dν ′, (1.15)

along with the material energy equation

CV (~r, T )
∂T (~r, t)

∂t
=

∫ ∫

σa(~r, ν, T )[I(~r, ~Ω′, ν′, t) − B(ν ′, T )]d~Ω′dν ′, (1.16)

where the Planck’s function isB(ν, T ) = 8πhν3

c2
1

exp(hν/kBT )−1
. σa is the opacity (inverse of ab-

sorption mean free path) andσs is the scattering cross-section. Here, speed of light(c) =

2.9979 × 108 m/s, Planck’s constant(h) = 6.62 × 10−34 J.s and Boltzmann’s constant

(kB) = 1.38 × 10−23 J/K. Though the temperature is most familiarly expressed inKelvin (K),

it is convenient to express it in keV where 1eV=11,600K.

The external source of radiation enters through the boundary conditions. The first term in

eqn. [1.15] is a time rate of change term. This time derivative is related to several loss terms

in phase space on the LHS and gain terms on the RHS. The second term on the LHS is a loss

term due to photons streaming out of an element of phase space. The third term is a loss term

due to photons absorbed into the background material and scattered out of the phase space.

The absorption term appears as a source term in the material energy equation. The first term

on the RHS is a radiative source due to the background temperature of the material (hence a

corresponding loss term appears on the RHS of the other equation). The last term represents

increase in photon intensity in the direction~Ω due to scattering from other angles [5].

Analytical solutions of the above equations are difficult except for the simplest of cases. The

equation for the specific intensity is integro-differential in nature and non-linearly coupled to the

material equation so that devising an appropriate numerical scheme is also difficult. To generate
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solutions to physically interesting problems, it is necessary to make some approximations.

The most common approximation is the multi frequency approximation in which the fre-

quency variable is divided into G groups and group specific intensity, group Planck function,

etc. are defined. The group averaged absorption opacities are formed by multiplying with

physically meaningful weighting functions. The Planck mean opacity is obtained by weighting

against the Planck’s function and is accurate in the optically thin, emission dominated limit.

σP (~r, T ) =

∫

σa(~r, ν)B(ν, T )dν
∫

B(ν, T )dν
. (1.17)

The Rosseland mean opacity is valid for an optically thick system in which the specific heat is

small and the speed of light is large.

σR(~r, T ) =

∫ ∂B(ν,T )
∂T

dν
∫

1
σa(~r,ν)

∂B(ν,T )
∂T

dν
. (1.18)

The Rosseland mean is accurate if the problem is highly diffusive and slowly varying in time.

The Rosseland and Planck means may vary by an order of magnitude in different temperature

density regimes. In this thesis, the group averaged Rosseland opacities have been used as they

have been shown to be more accurate in the presence of strong temperature gradients.

The next level of simplification is the Grey approximation wherein the opacities are fre-

quency independent so that the above RT equation may be integrated over all frequencies to

obtain the Grey radiation transport equation.

In the diffusion approximation, the angular variable is eliminated by finding equations for

the first two terms in a spherical harmonics expansion. It is also assumed that the angular de-

pendence of the specific intensity is adequately represented by the first two terms of a Legendre

polynomial expansion. Assuming a constant radiative flux, the diffusion equation is obtained.

This approximation is valid for problems where the flux is nearly isotropic.

In the heat conduction approximation, the radiation intensity at a space point in the medium
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is assumed to be at the local material temperature at that point. In this case the equilibrium heat

conduction equation is used for obtaining energy transfer.

The other approximations normally used are the quasidiffusion approximation, Eddington

approximation, etc.

Radiation transport and diffusion equations are either solved deterministically usingPN ,

SN , etc. methods or stochastically by Monte Carlo methods. In the deterministic methods, the

radiation transport equations are discretized in space, time and angle and then solved iteratively.

Several numerical methods are in use for solving the radiation transport equation, namely the

discrete ordinates [26], finite volume [27], Monte Carlo [28], hybrid stochastic-deterministic

[29],[30], or the approximate methods like the Eddington approximation [31], heat conduction

[32] or the diffusion approximations [33], [34], [35]. Nevertheless, analytical approaches have

decisive advantages regarding accuracy, speediness and numerical implementation compared

to numerical methods and are important for their validation[36]. Also, better insight can be

gained through the mathematical form of an analytical solution compared to a discrete numeri-

cal solution. The orthogonal expansion technique [37], Green’s function approach [38], Laplace

transform and separation of variables [39], finite integraltransform method, etc. are some of

the commonly used methods for obtaining analytical solutions to the radiation conduction and

diffusion problems in several systems.

1.2.4 Atomistic simulation

An essential input to the hydrodynamic simulations is a knowledge of the material EOS which

usually takes the form of pressure P and energy E as functionsof densityρ and temperature T.

The pressure and internal energy of a material can be considered as the sum of cold and thermal

terms. The cold or elastic terms (Pc andEc) are related to the interaction forces between the

atoms of the material and is important below 1 eV. The thermalterm is related to the temperature

T of the body and consists of contribution from the lattice ions (PTL andETL) and electrons
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(PTE andETE) [40]. Therefore, the EOS can be written as

P = Pc + PTL + PTE , (1.19)

E = Ec + ETL + ETE . (1.20)

Depending on the composition, density and temperature, contribution from each of the terms

vary [41]. For low Z materials, ions make a significant contribution at any densities and temper-

atures. For high Z materials, at temperatures above∼ 10 eV, most of the pressure comes from

the free electrons and the key variable is the ionization state. The thermodynamic properties of

a system can be obtained from molecular dynamics by considering the interaction between the

atoms of the system. At the initial states of ICF implosion when phase transition from the solid

to liquid phase occurs, accurate knowledge of the melting point for various pressures is essential

for choosing the proper EOS to be used for the hydrodynamic simulation. It has been observed

both experimentally and through numerical simulation thatthe outer (∼ 20µm) of the ablator

material (e.g., Be) will be melted by radiation preheat, with subsequent material melted by the

initial shock [42]. The solid liquid phase boundary commonly known as the melting curve is an

important part of the phase diagram and is widely used in highpressure physics, inertial confine-

ment fusion, material science, astrophysics and geophysical sciences. Melting curves of metals

can be obtained experimentally by the Diamond Anvil Cell (DAC) which is a static method or

by the dynamic methods consisting of laser or ion beam drivenablation, etc. However it is dif-

ficult to design experiments because of the high pressures and temperatures involved. Various

simulation methods like the Lindemann’s law, dislocation mediated melting, classical and ab

initio Molecular Dynamics (MD) etc. are in use to complementthe experiments. The classical

MD method [43] is very convenient as a large number of atoms compared to ab initio MD can

be simulated using an empirical potential which properly describe the interatomic interactions.

In molecular dynamics simulations, the time evolution of a system of interacting particles



49

is determined by the integration of the equations of motion.Such measurements allow the

computation of relevant macroscopic variables such as kinetic or potential energy, pressure,

diffusion constants, transport coefficients, structure factors, spectral density functions, distri-

bution functions, etc. [44]. In classical molecular dynamics (MD) simulation, the trajectories

of atoms and molecules are determined by numerically solving the Newton’s equations of mo-

tion for a system of interacting particles where the forces between the particles is determined

by the interatomic potentials. The most widely used model tocalculate the interactions is the

Lenard-Jones (LJ) potential which is a pair potential. However, pair potentials are insufficient

for describing the properties of metals as the cohesive energy of a crystal is mainly described

by the many-body interactions or by a volume dependent part [45]. Pure pair interactions also

imply that the surface relaxes outwards instead of inwards as is observed in experiments. The

embedded atom method (EAM) potential circumvents these problems by viewing each atom

in a solid as embedded in a host comprising all the other atoms. The total energy is the sum

of the embedding and pair potential energy [46]. EAM potentials are generated by fitting to

experimental data or results of ab initio calculations. According to the EAM theory, the total

energy of a system of N atoms is described as the energy required to embed these N atoms into

the homogeneous electron gas caused by surrounding atoms plus a correction of energy from

two-body interactions [47]. Thus this total internal energy can be expressed as

Etot =
∑

i

Fi(ρi) +
1

2

∑

i

∑

j 6=i

φij(rij), (1.21)

whereFi(ρi) is the embedding energy required to place atom i in an electron densityρi, φij(rij)

is the two-body potential between atoms i and j,rij is the separation distance related to the

specified pair of atoms i and j, andρi denotes the host electron density at atom i due to all other
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Figure 1.6:Radial distribution function (RDF) of Cu before and after melting.

atoms and is given by

ρi =
∑

j 6=i

f(rij), (1.22)

wheref(rij) is the electron density of the individual atom j.

The melting point is determined using the one-phase method [48] wherein the melting point

is identified from sharp increase in atomic volume, diffusion coefficient and energy as temper-

ature is varied. Also, as the long range order is lost once melting occurs, the height of the

first peak of RDF decreases drastically and RDF≈ 1 after 2-3 small humps. The RDF de-

scribes how the atomic density varies as a function of distance from the atom and is given by

g(r) = n(r)/(4πr2∆rρ) wheren(r) is the number of atoms at a distance r within a shell of

thickness∆r andρ is the average number density. The heights of the peaks signify the number

of first, second, etc., nearest neighbours. Similarly the position of RDF peaks reflects the neigh-

bour distances. Earlier, a similar study of alloying bcc Fe with Si has been performed and the

increase in melting point is explained in terms of the RDF peak height [49]. For Cu, at a tem-
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Figure 1.7:Jump in the diffusion coefficient (D) of Cu at melting point.

perature of 1440K, the intermediate and long distance peaksof Cu-Cu RDF are seen to slowly

merge out indicating that melting has occured (figure 1.6). The jump in diffusion coefficient for

Cu is shown in figure 1.7 wherein the melting point 1340K is indicated using arrows.

1.3 Survey of the work done prior to this thesis

Plasma heating by charged particles and neutrons, energy exchange between ions and electrons

and radiative losses are the primary mechanisms determining the ignition conditions in a ther-

monuclear plasma [3]. These processes have been modelled under varying degrees of rigor in

detailed computer simulations of both inertial and magnetic confinement fusion schemes [9, 50].

Experimental proof of these theoretical predictions measuring the energy loss of heavy ions in

fully ionised hydrogen plasma were given by Hoffmannet al [51]. It is well known that most of

the energy of the fusion products should be deposited to the ions in order to obtain higher fusion

gains [52]. However, increase of electron temperature, either due to direct energy deposition

or via energy transfer from ions, leads to radiation losses from the plasma. The fraction of the
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charged particle energy that is absorbed by the ICF pellet isan important parameter determining

the ignition condition. For pellet sizes comparable to the thermalization range of fusion prod-

ucts, a fraction of the energy will escape the pellet. Krokhin and Rozanov [53] calculated the

thermalization distance and energy leakage probability ofa charged particle in a fully ionized

plasma at a uniform temperature and density by considering energy transfer to electrons only.

Later, Cooper and Evans improved this calculation by including energy transfer to ions within

the small angle binary collision approximation [54].

Advanced fusion fuels likeDD,DHe3,DLi7, etc. are very appealing from the point of view

of radiological cleanliness, but they are very difficult to exploit because of their ultrahigh igni-

tion temperatures [52]. Recently Eliezeret al [55] have shown that the ignition temperature in

deuterium fusion targets can be significantly reduced with the addition of very small amounts

of tritium [56]. This is because DT fusion has a larger cross section in comparison to DD fusion

at lower temperatures. There is also a possibility of a catalytic regime for tritium burning where

external addition of tritium is not needed because the amount needed is bred internally. How-

ever, Gsponer and Hurni [57] showed that by taking radiationeffects such as inverse Compton

scattering fully into account, the maximum burn temperature of a highly compressed DD pellet

is reduced from about 300 keV to only 100 keV. This decrease inion temperature leads to a

substantial reduction in the burn fraction. They concludedthat if the radiation effects are prop-

erly taken into account, internal T breeding does not occur in the pellet. Fraleyet al studied

thermonuclear burn in DT microspheres at high densities andobtained numerical results char-

acterizing the burn for a broad range of initial conditions using a 1D 3T Lagrangian simulation

code and cross-checked the results with a separate non-equilibrium code which solves radiation

transport using Monte Carlo method [60].

Analytical solutions to radiation transport involve solving the radiation diffusion or trans-

port equation through a steady interacting medium. In the literature, considerable amount of

efforts have been applied for solving the Radiation Transport problem analytically. Two com-
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mon diffusion problems having analytical solutions are evolution to radiative equilibrium and

radiative cooling of a sphere [14]. Marshak obtained a semi-analytical solution by considering

radiation diffusion in a semi infinite planar slab with radiation incident upon the surface [61].

Assuming that the radiation and material fields are in equilibrium, the problem admits a similar-

ity solution to a second order ordinary differential equation which was solved numerically [62].

The results were extended for non-equilibrium radiation diffusion by assuming that the opacity

is temperature independent and the specific heat is proportional to the cube of the temperature

[63], [64]. This assumption linearized the problem providing a detailed analytical solution. As

the radiative transfer codes are meant to handle an arbitrary temperature dependence of the ma-

terial properties, the obtained solutions serve as useful test problems [65], [66], [67]. Using

the same linearization, 3T radiation diffusion equations were solved for spherical and spherical

shell sources in an infinite medium [2]. All available results on the non-equilibrium radiative

transfer problems in planar and spherical geometry consider systems having infinite or semi-

infinite extension. Benchmarks involving finite size systems have been limited either to the heat

conduction or equilibrium diffusion approximation [68], [69], [36].

Radiation transport and its interaction with matter via emission, absorption and scattering of

radiation have a substantial effect on both the state and themotion of materials in high tempera-

ture hydrodynamic flows occurring in inertial confinement fusion (ICF), strong explosions and

astrophysical systems [4]. Researchers are continuously working on devising new numerical

schemes for simulating radiation hydrodynamics. In order to describe properly the dynamics of

the radiating flow, it is necessary to solve the full time-dependent radiation transport equation

as very short time scales (tR ∼ l/c or tλ ∼ λp/c corresponding to a photon flight time over a

characteristic structural lengthl, or over a photon mean free pathλp ) are to be considered [70].

Two methods commonly used are non-equilibrium diffusion theory [71], [72] and radiation heat

conduction approximation [4]. The former is valid for optically thick bodies, where the density

gradients are small and the angular distribution of photonsis nearly isotropic. The conduction
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approximation is only applicable when matter and radiationare in local thermodynamic equi-

librium, so that the radiant energy flux is proportional to temperature gradient, and for slower

hydrodynamics time scales [4]. Use of Eddington’s factor for closing the first two moment equa-

tions is yet another approach followed in radiation hydrodynamics [73]. Earlier studies on the

non-equilibrium radiation diffusion calculations show that the accuracy of the solution increases

on converging the non-linearities within a time step and increasing benefit is obtained as the

problem becomes more and more nonlinear and faster [34], [35]. Niem developed an implicit

Lagrangian formulation to handle multi-material hydrodynamic problems involving shocks and

rarefaction waves [74]. Although high resolution methods for simulating pure hydrodynamic

flows are well established [75], their extension to coupled radiative regimes have only recently

begun [71],[73]. P. Reinicke and J. Meyer-ter-Vehn (RMV) analyzed the problem of point ex-

plosion with nonlinear heat conduction for an ideal gas equation of state and a heat conductivity

depending on temperature and density in a power law form [76]. The problem combines the

hydrodynamic (Sedov) point explosion with the sphericallyexpanding nonlinear thermal wave.

The RMV problem is a good test to determine the accuracy of coupling two distinct physics

processes: hydrodynamics and radiation diffusion. Later on, Shestakov presented the results of

point explosion with heat conduction using a coupled hydrodynamic diffusion code [77]. Bates

et al compared the time accuracy and convergence properties of three, mixed explicit-implicit

schemes for simulating nonrelativistic, radiative hydrodynamic phenomena in the equilibrium

diffusion limit [72]. Verification of codes are also performed using the asymptotic convergence

analysis [78] or modified equation analysis [79].

1.4 Scope of the thesis

The work in this thesis focuses on understanding the mechanisms of energy transport by charged

particles, neutrons, photons, etc. in an interacting medium. The temperatures we consider are
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high enough so that material stresses and strains do not playany role in the dynamics of the sys-

tem. We have improved the present energy deposition model ofcharged particles by including

large angle Coulomb scattering, nuclear scattering and collective plasma effects. Thermaliza-

tion distance is reduced resulting in lesser energy escaping from the pellet. We also resolve the

controversy regarding the possibility of internal tritiumbreeding. It is observed that on using

the improved energy deposition model, internal tritium breeding occurs even on accounting for

inverse Compton losses. Based on T breeding ratio and deuterium burn fraction, the optimum

pellet parameters have been obtained for which T is bred internally. The zero dimensional model

is next used to obtain the fusion yields in DT pellets having arange of densities and tempera-

tures and are found to agree with the results of 3T Lagrangianhydrodynamics code. The zero

dimensional model is also modified in order to apply it to central ignition where only a central

region of the pellet is heated to ignition temperatures, burn wave propagates outwards into the

cold fuel, thus producing fusion energies. As the interaction of radiation with the medium is

one of the most important energy transport mechanism, radiation transport has been analyzed

in detail in this thesis. Radiation has been considered as a stream of photons interacting with

the medium by getting absorbed, scattered and emitted. The radiation transport equation de-

fines the time and space dependent radiation intensity. Because of its coupling to the material,

it is integro-differential and highly non-linear. In this thesis, we have made some simplifying

assumptions to obtain detailed analytical solutions. Thishighly enriches our understanding of

this important energy transport mechanism. The Eigenfunction expansion method has been

successfully applied to the non-equilibrium radiation diffusion problem in finite systems. The

Laplace transform method also independently provides the same analytical results. As the dif-

fusion approximation is valid for small density gradients and for a medium whose properties

are isotropic, this is a reasonable approximation for optically thick plasmas. Near the edges,

suitable boundary conditions take care of the anisotropy. Based on the implicit Lagrangian for-

mulation of Kiem, a fully implicit 1D Lagrangian hydrodynamics code is developed. The code
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is used for studying the shock tube problem in planar, point explosion problem in spherical

and Noh problem in both spherical and cylindrical geometries. A numerical radiation diffusion

code is developed based on the finite difference method and results are generated for a finite and

infinite planar slab, and a spherical shell. The radiation transport equation is solved using the

discrete ordinates method and the code is used for studying the Marshak wave problem in both

planar and spherical geometries. A fully implicit radiation hydrodynamics code is developed by

coupling hydrodynamics and radiation transport together.This code is applied to the problem

of shock propagation in Al foil and shock velocities are compared with empirical values. Sim-

ilarly, the point explosion problem with heat conduction isstudied and compared with Meyer

ter Vehn’s problem. Asymptotic convergence analysis of thecode is next performed to verify

it. Finally, in the appendix, melting curve of metals Cu and Al have been determined using

classical molecular dynamics simulation. As Equation of State (EOS) is an integral part of the

radiation hydrodynamics code, selection of the proper EOS is important for obtaining correct

results. The EOS applicable in the solid phase cannot be usedfor the liquid phase and vice

versa. As a result, a knowledge of the melting points for various pressures, i.e., melting curve

of materials is essential. Effect of alloying Cu with Ti is also studied: melting point is found to

decrease linearly for random and microstructure doping, however the arrangement of the initial

structure determines the same for selective doping.
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Energy deposition of charged par-

ticles and neutrons in an inertial

confinement fusion plasma

2.1 Introduction

Charged particles mainly deposit energy in a plasma via elastic Coulomb interactions with ions

and electrons, though nuclear scattering also contributesto ion heating. For low density and

high temperature plasmas, Coulomb interactions can be approximated as small angle binary

collisions [80], however, large angle scattering needs to be included for high densities and

low temperatures [82]. The effect of nuclear interactions have not been taken into account

previously as it is negligible for small scattering angles.However, when the incident charged

particle energy is large, as in the case of the proton produced in D2 − He3 reaction, and for

higher pellet densities, the effect of nuclear scattering is important [83]. Collective plasma

effects arise when the plasma is considered as a dielectric medium without bringing into picture

its internal particle behaviour and the energy loss in a plasma from distant collisions is obtained

with the continuum approximation [84]. In this chapter, we generalize the calculation of energy

leakage probability to include nuclear scattering, large angle Coulomb scattering and collective

plasma effects. In general, these effects reduce the thermalization distance in the plasma and

increase the fraction of energy deposited to ions. We also develop a simple approach for energy

deposition by neutrons due to nuclear interaction with the ions.

57
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2.2 Theoretical model

In this section, we develop the theoretical methodology forobtaining the total stopping power

and energy leakage probability of fusion products in a fullyionized plasma. A multigroup

model for energy deposition by neutrons is also developed.

2.2.1 Charged particle energy deposition

The charged fusion products interact with the ions and electrons in the medium via small and

large angle Coulomb scattering in addition to nuclear interactions.

2.2.1.1 Coulomb scattering

The Fokker-Planck equation which was originally derived totreat the Brownian motion of

molecules, has been widely used to evaluate the collision term of the Boltzmann equation for

describing small-angle binary collisions of the inverse-square type of force [81]. Considering

the effects of both large and small angle scattering, the energy loss per unit length of path of

a fast charged particle of massm, laboratory frame energyE = 1
2
mv2 and charge Ze, which

moves through a hot plasma with ions of massm1, chargeZ1e and number densityn1 at a

temperatureT1 is given by [82]

dE

dx
= −2πn1Z

2Z1
2e4

m

m1E
(F1(y1) lnΛb + Θ(y1

2) ln[1.123(y1)]), (2.1)

where

F1(y1) = φ(y1) − (1 +
m1

m
)y1φ

′(y1) +
m1

m ln Λb
φ(y1), (2.2)
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with

y1
2 =

m1

m

E

kBT1
. (2.3)

Collective plasma effects are represented by the second term of eqn. [2.1], namely

Θ(y1
2) ln[1.123 (y1)] whereΘ(y1

2) is a step function whose value is identically 0 fory1
2 ≤ 1

and 1 fory1
2 > 1.

Further,kB is the Boltzmann constant,φ(y1) = 2
∫ y1

0
e−ξ

√
ξdξ√

π
andφ′(y1) are the error func-

tion and its derivative, respectively. The Coulomb logarithm term is defined as [82]

ln Λb = ln

(

λD

dmin

)

. (2.4)

The Coulomb logarithm is a measure of the importance of small-angle binary collisions relative

to large-angle scattering. The large-angle scattering canbe neglected only when the Coulomb

logarithm is of order 10 or greater. However, it cannot be neglected for moderately coupled

ICF plasmas in the intermediate regime (2 ≤ lnΛb ≤ 10). For the non-degenerate regime, the

Debye lengthλD and minimum distancedmin are defined as

λD =

√

kBTelec

4πnelece2
, (2.5)

whereTelec andnelec are the electron temperature and number density respectively, and

dmin =

√

p⊥2 + (
~

2mrvrel
)2. (2.6)

Here,~ = h/2π is the reduced Planck’s constant andp⊥ = ZZ1e2

mrv2
rel

wheremr is the reduced mass
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andvrel the relative velocity. Sodmin can be finally expressed as

dmin =

√

[

(
ZZ1e2(m+m1)

2m1E
)2 + (

~(m+m1)

2m1

√
2mE

)2

]

. (2.7)

However, when considering the energy loss to electrons,dmin can be accurately approximated

as

dmin =

√

(

ZZ1e2

3kBTelec

)2

+

(

~

2
√

3kBTelecmelec

)2

. (2.8)

Similarly, sincey1
2 ≪ 1 for electrons,F1(y1) can be approximated as

F1(y1) ≈
4

3
√
π
y1

3. (2.9)

2.2.1.2 Nuclear scattering

In computing the energy deposition or loss by heavy charged particles in a plasma, in addition

to the Coulomb interactions with the electrons and ions, nuclear forces elastic scattering plus

nuclear Coulomb interference are also to be considered. Thenuclear forces-nuclear Coulomb

interference term is assumed to be independent of the temperature and density of the medium,

the approximations are equivalent to the case when the target nuclei are at a temperature T=0.

This approximation is good enough for the incident energieslarge compared to the target tem-

perature.

The contribution to energy loss due to elastic nuclear scattering has been modeled in terms

of stopping power [85], which can be written as

dE

dx
=
< ∆E >

ΛT
, (2.10)

where< ∆E > is the average energy loss per collision and the transport mean free pathΛT =
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(n1σT )−1. The transport cross sectionsσT is expressed as

σT =
4πmm1

(m+m1)2

∫ 1

−1

σs(ν)(1 − ν)dν, (2.11)

where2πσs(ν) denotes the differential cross-section for scattering angle cos−1(ν). Eqn. [2.10]

implicitly assumes that energy loss via nuclear scatteringalso takes place predominantly due

to small angle collisions. For the calculations reported inthis paper,σT for different charged

particles slowing down in a deuterium plasma is taken from Devaneyet al [85].

2.2.1.3 Total stopping power

The total stopping power can be expressed as

dE

dx
=

(

dE

dx

)

i

(R)

+

(

dE

dx

)

e

(R)

+

(

dE

dx

)

i

(N)

= Ad(E)E−1 + Ae(E)E−1 + AN (E)E, (2.12)

where the subscripts d, e and N denote Coulomb scattering from ions, electrons and nuclear

scattering, respectively. The ionic term is explicitly given by

Ad(E) =
∑

j

−2πnjZ
2Zj

2e4
m

mj
(Fj(yj) ln Λbj + Θ(yj

2) ln[1.123(yj)]). (2.13)

The summation over j goes over all the types of ions in the pellet plasma. Similarly, the elec-

tronic and nuclear terms are

Ae(E) = −2πnelecZ
2Ze

2e4
m

melec

4

3
√
π
×
(

melecE

mkBTelec

)3/2

ln Λbe, (2.14)

AN(E) = −
∑

j

njσTj . (2.15)
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The energy loss rate given by eqn. [2.12] can be used to determine all the parameters such as

thermalization distance, energy leakage probability and fraction of energy deposited to ions as

will be discussed in the following sections.

2.2.2 Neutron energy deposition

The rate of neutron interactions in a plasma is given byn1σtφ wheren1 is the number density

of ions,σt is the total cross-section for interaction of neutrons withnuclei andφ is the neutron

flux [86]. In order to calculate the fraction of neutron energy deposited to the ions, we divide

the energy range of neutrons from 17 to 0 MeV intogmax = 30 energy groups. Then for thegth

group,

n1σtgφg = Pc(g) × Sg, (2.16)

wherePc(g) is the probability that a source neutron ingth group will collide with the ions. The

source of neutrons,Sg, in thegth energy group, consisting of the external neutron source and

the neutrons slowed down from higher energy groups, is:

Sg =

g
∑

g′=1

n1σs g′→ gφg′ + Sext g, (2.17)

whereσs g′→ g is the scattering cross-section for a neutron to change energy from groupg′ to g.

If a single neutron of energyE0 is produced by fusion per unit volume per second in the ICF

pellet, the fraction of energy deposited in the pellet is

fk
j =

1

E0

gmax
∑

g=1

n1σheating−g × φg, (2.18)

whereσheating−g is the heating cross-section of a neutron in thegth group. The neutron flux

φg of thegth group is obtained from a knowledge of neutron fluxes of all theprevious groups.
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Using eqns. [2.16] and [2.17] we get

(n1σtg − Pc(g)N1σs g→ g)φg = Pc(g)(

g−1
∑

g′=1

n1 σs g′→ gφg′ + Sext g), (2.19)

with the collision probability given by [87]

Pc(g) = 1 − 3

8(Rn1σtg)3
[2(Rn1σtg)

2 − 1 + (1 + 2N1σtgR)e−2n1σtgR], (2.20)

whereR is the pellet radius. The neutron flux in the first group is obtained by assuming that

slowing down source to that group is zero as there are no neutrons of higher energy. Cross-

sections for neutron interaction are taken from Barrettet al [88]. This multigroup neutron

energy deposition model is used in the next chapter to estimate the fraction of neutron energy

deposited in a fusion plasma.

2.2.3 Energy leakage probability

First of all, the distance traversed by the charged particle, s(E0, E), to slow down from energy

E0 to E is obtained from eqn. [2.12] as:

s(E0, E) =

∫ E

E0

dW/[Ad(W )W−1 + Ae(W )W−1 + AN(W )W ]. (2.21)

We can now calculate the fraction of the charged particle energy escaping from the pellet of

radius R. If the charged particle is produced with uniform probability in the sphere R, the escape

probability can be calculated using the integral [53] (as obtained by Krokhin and Rozanov)

η =
3

2R3

∫ R

0

ρ2dρ

∫ 1

−1

dµ
E(r)

E0

, (2.22)

whereE0 is the initial charged particle energy and E(r) the energy after traversing a distance
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Figure 2.1:Charged particle leakage probability

r from the point of birth to the spherical surface. The parameter r can be expressed in terms

of the radial distanceρ from the centre, the radius R and the cosineµ of the angle between the

path and the line passing through the centre as shown in figure2.1.

r = ρµ+
√

R2 − ρ2(1 − µ2). (2.23)

To obtain E
E0

as a function of r we solve the differential equation

dE

dr
= Ad(E)E−1 + Ae(E)E−1 + AN (E)E (2.24)

numerically using the initial condition thatE(r) = E0 at r=0. We use quadratic interpolation

for intermediate values of r for evaluatingη.

2.3 Results and discussions

In figure 2.2, we show the energy of 3.5 MeV deuteron as a function of distance traversed in a

deuterium plasma at temperature 0.1 MeV and number density10 26/cm3 for energy deposition

via 1) Coulomb scattering only to electrons, 2) Coulomb scattering to both ions and electrons,
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Figure 2.2:Energy of deuteron Vs. distance traversed in a deuterium plasma at temperature 0.1 MeV
and ion number density1026/cm3 for the three cases of energy loss: 1. only to electrons, 2. electrons
and ions and 3. including nuclear scattering.
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Figure 2.3:Thermalization distance of deuterons Vs. plasma temperature in a deuterium plasma of ion
number density1026/cm3 for the three cases of energy loss: 1. only to electrons, 2. electrons and ions
and 3. including nuclear scattering.
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Figure 2.4:Thermalization distance of deuterons Vs. plasma ion density in a deuterium plasma at a
temperature of 0.1 MeV for the three cases of energy loss: 1. only to electrons, 2. electrons and ions and
3. including nuclear scattering.
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Figure 2.5:Energy leakage probability of deuterons Vs. pellet radius in a deuterium plasma at temper-
ature 0.1 MeV and ion number density1026/cm3 for the three cases of energy loss: 1. only to electrons,
2. electrons and ions and 3. including nuclear scattering.
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and 3) nuclear as well as Coulomb scattering. Figure 2.3 and figure 2.4 show the thermalization

distance, i.e., the distance traversed by the charged particle before attaining the background

plasma temperature, as a function of the plasma temperatureand number density respectively

for the above three cases. Finally, figure 2.5 depicts the energy leakage probability for the

different pellet radii. These results indicate that Coulomb scattering, including large angle

contribution and collective effects [82], and nuclear scattering have significant contributions to

energy deposition in the plasma.

The increase in the fraction of charged particle energy deposited to the ions leads to higher

fusion gains [11] as energy deposited to the electrons lead to radiation losses from the plasma.

Increase in plasma temperature results in an increase in nuclear scattering leading to higher

energy deposition to the ions. Also, the effect of large angle Coulomb scattering (which leads

to energy deposition mainly to the ions) increases with increasing density. In figure 2.6 (a), the

fraction of charged particle (deuteron) energy deposited to the ions in deuterium plasma as a

function of plasma temperature and number density is shown.In figure 2.6 (b), the thermaliza-

tion distance of a 3.5 MeV deuteron in deuterium plasma as a function of plasma density and

temperature is plotted. Deuteron deposits more energy in a denser and colder plasma showing

a reduction in the thermalization distance.

Next, we consider a DT plasma with equal amounts of D and T. Thealpha particles produced

in the reaction redeposit their energy into the burning regions of the pellet and leads to bootstrap

heating. The range of a 3.5MeV alpha particle as a function ofthe plasma temperature for

various plasma densities are shown in figure 2.7. Though the thermalization distance decreases

with increasing density for a particular temperature, the range which is the product of density

and thermalization distance, is found to increase with density. In figure 2.8, we plot the plasma

temperature as a function of fraction of alpha particle energy deposited to the ions for various

plasma densities. As the electron temperature increases, an increasingly large fraction of alpha

energy is deposited into the ions. This fraction also increases for higher plasma densities.
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Figure 2.6:(a) Fraction of charged particle (deuteron) energy deposited to the ions in deuterium plasma
as a function of plasma temperature and logarithm of the number density. (b) Thermalization distance
of a 3.5 MeV deuteron in deuterium plasma as a function of plasma temperature and logarithm of the
number density.
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2.4 Summary

We have incorporated the effects of large angle Coulomb scattering, plasma collective interac-

tion and nuclear scattering to obtain the energy leakage probability from a pellet of size com-

parable to the thermalization distance. It is found that theenergy leakage probability decreases

significantly compared to the case when energy deposition toions due to small angle Coulomb

scattering alone is taken into account. A simple multigroupmodel is developed for correctly

accounting the energy deposition by neutrons into the plasma. We also generate extensive re-

sults for thermalization distance of deuteron in a deuterium plasma at a range of densities and

temperatures and compare with those obtained by considering loss to ions and electrons only.

Variation in the range and fraction of alpha particle energydeposited to ions in a DT plasma is

also studied for various plasma densities and temperatures.



3

Internal tritium breeding and

thermonuclear burn characteris-

tics of compressed D-T micro-

spheres using zero-dimensional

model

3.1 Introduction

The ignition temperature of a thermonuclear fusion reaction is found to decrease on adding a

small amount of tritium (x∼ 0.0112) to deuterium fusion pellet (DTx). For lower fuel temper-

atures (∼10 keV), the D-T reaction proceeds at a rate almost two ordersof magnitude larger

than that characterizing the D-D reaction [3, 9]. Hence, in order to minimize the ignition tem-

perature, tritium is added to deuterium fusion pellets in stoichiometric ratio (50:50). However

tritium inventories in futuristic fusion reactors based oncurrent stoichiometric DT proposals

are very high, which poses a significant radiological problem [2]. Also, the breeding of tri-

tium in external tritium blanket and its separation is quitecomplicated. The concept of internal

tritium breeding in which a small amount of tritium in deuterium fusion pellet reduces the ig-

nition temperature and also acts as a catalyst is very lucrative [3]. The conditions necessary

for realizing tritium breeding crucially depend on the energy deposition and loss rates from the

71
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plasma. Radiation losses due to inverse Compton scatteringand photon losses have been shown

to affect the tritium breeding in a major way [57]. Thereforewe re-evaluate this problem using

a zero-dimensional model with the improvement in charged particle and neutron energy depo-

sition mechanisms discussed in the earlier chapter. In thischapter, we also analyze the catalytic

regime for tritium by changing the fraction of tritium (x). The initial density and temperature

of the pellet are also found to influence the ignition conditions in a major way. A density-

temperature regime is found where internal tritium breeding occurs even on including all the

radiative loss mechanisms like bremsstrahlung and inverseCompton scattering. We obtain the

optimum pellet parameters for which the deuterium burn fraction is high in addition to tritium

in the pellet behaving as a catalyst. The fusion yields of ICFpellets having equal amounts of D

and T (50:50) are obtained using the zero-dimensional model. Fusion yields in case of volume,

and central ignition have been considered. For volume ignition, yields have been obtained for

DT pellets of different masses and densities having a range of initial temperatures and are found

to vary asρ2/3 for spheres of fixed mass m. For central ignition, the code hasbeen modified to

include the burn propagation into the outer cold fuel, bootstrap heating and subsequent increase

in fusion reactions. Comparison with the results of a one-dimensional 3T Lagrangian hydrody-

namics code shows good agreement which supports the fact that though the zero dimensional

model lacks spatial resolution, tracking the number densities and energetics of the nuclides is

sufficient for obtaining the energy released in fusion.

3.2 Simulation model

A time dependent calculation of the fusion process of aDTx pellet can be performed using a

simple zero-dimensional model in which the spatial variation is ignored. The energy produced

in a fusion reaction is carried by the products in a ratio inversely proportional to their masses.

The energetic fusion products then deposit this energy to the ions and electrons of the back-
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ground plasma via Coulomb scattering. The neutrons depositless energy in the medium as they

have a larger mean free path. The rate equations of the nuclides present in the highly compressed

and heated thermonuclear plasma are solved along with the energy balance equations for ions,

electrons and radiation [58]. At this high densities and temperatures, photons interact with the

medium via Bremsstrahlung and inverse Compton scattering.As we are considering a fully

ionised plasma in this model, the effect of bound-bound and bound-free transition is neglected.

Most of the phenomena important in normal gases disappear; electron attachment, dissociative

recombination, excitation and deexcitation of atoms and molecules, electrical breakdown, etc.

do not occur in a fully ionized plasma. Also, the encounters between the charged particles

become simpler, as inverse square forces are more preciselycalculable than the complicated

interactions of systems containing bound electrons [59]. The radius of the pellet is assumed

to expand with sound speed times the burn fraction so that theinitial stagnation phase is ac-

counted for and fusion occurs until the pellet disassembles. In this model, the delay time in the

energy deposition by fusion-born particles is not accounted. Also, the mechanism of suprather-

mal fusions induced by high energy ions is neglected. By neglecting the finite time needed

to slow-down the fusion products, the energy evolution speed is overestimated, whereas, by

neglecting the suprathermal fusions, the actual fusion power is underestimated. However, the

energy equations governing the plasma evolution are still first order accurate. Two-dimensional

space-time dependent codes embodying simulation of all themechanisms will be needed for

an accurate design of the targets, but target physics and itsfeatures are well described by the

present model. The neutron and proton channels of the DD reaction occur with50% probability.

The total number of particles,Nk, of species k, is governed by the equation

dNk

dt
=
∑

j

ak
jNj(1)Nj(2) < σv >j

1

V
, (3.1)
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where V is the volume of the heated plasma,< σv >j is the Maxwell averaged reaction rate of

reaction j andak
j is the number of particles of species k created or destroyed in the reaction j.

Eliezer. et al used< σv >j values at different temperatures from [89]. The four major reac-

tions, given by eqns. [1.1]-[1.4] and six species viz.D2
1,He3

2,T
3
1,H

1
1,He4

2 and n1
0 are considered

in the calculation. The equation of energy balance for ions is given by

3

2

d

dt
(NionTion) =

∑

j

∑

k

fk
jωk

jEjNj(1)Nj(2)× < σv >j
1

V
− Pie

V
−NionTion4πR2(t)cs

1

V
,(3.2)

whereTion is the ion temperature,Ej is the energy yield of reaction j,ωk
j is the fraction ofEj

carried by the product k,fk
j is the fraction of the energy of the product k created in the reaction

j that is deposited into the plasma ions,Pie is the ion electron energy exchange term,R(t) is the

pellet radius,cs is the sound speed andNion is the total number of ions,

Nion =
∑

k

Nk, (3.3)

where k varies from 1 to 5 ask = 6 stands for neutrons.

The equation for energy balance for electrons is given by

3

2

d

dt
(NelecTelec) =

∑

j

∑

k

(1 − fk
j)ωk

jEjNj(1)Nj(2)× < σv >j
1

V

+
Pie

V
− PB

V
− PC −NelecTelec4πR

2(t)cs
1

V
, (3.4)

whereNelec is the number of electrons,Telec is the electron temperature,PB is the Bremsstrahlung

term andPC is the inverse Compton scattering term. The ion-electron energy exchange term is

given by

Pie(keVcm3/s) = 1.69 × 10−13Nelec

∑

k

ln ΛekZk
2Nk

mk
× Tion(keV ) − Telec(keV )

Telec(keV )1.5
, (3.5)
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wheremk andZk are the mass number and the charge of nuclei k, respectively.The Coulomb

logarithm for ion-electron collision is [90]

ln Λek = 23 − ln[(
Nelec

V
)0.5ZkTelec(eV )−1.5]. (3.6)

The Bremsstrahlung loss term including the inverse bremsstrahlung term incorporated in [57]

is given by

PB(keVcm3/s) = 2.94 × 10−15Nelec ×
∑

k

NkZk
2 × Telec(keV )0.5 ×G(γ)

Telec − Tr

Telec

, (3.7)

with

G(γ) =
π2

4

(Tr + 1.03 × Telec)

(Tr + 2.54 × Telec)
. (3.8)

However, the Bremsstrahlung loss term decreases in the caseof degenerate plasmas [91] [92].

Also the inverse Compton scattering term is

PC(keV/s) = 1.67 × 1020 × 32

3
πre

2cTr
4Nelec(Telec − Tr), (3.9)

wherere = 2.81794 × 10−13 cm is the classical electron radius. In the mechanical expansion

term, the speed of sound is computed usingcs =
√

γP
ρ

whereρ is the density,γ = 5/3 and P is

the total pressure,P = 1
V

(NionTion +NelecTelec) The radius of the pellet is governed by

R(t) = R(t− ∆t) + ηcs∆t, (3.10)

whereη = 2 × φ(t) for φ(t) < 0.5 andη = 1 for φ(t) ≥ 0.5

with the burn fractionφ(t) = 1 −ND(t)/ND(0).

It is assumed that the ratio of Coulomb logarithms for ions toelectrons is approximately
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equal to 1.2 for each ion at all temperatures and densities. Further elastic nuclear scattering is

neglected and the term involving error function in(dE
dx

)i is approximated as unity. Thus Eliezer

et al [58] use the formula

fk
j =

1

ωk
jEj

∫ ωk
jEj

Tion

dW

[

1 +
1.6√
π

(
W

Telec
)3/2 × (

melec

mk
)1/2 Nelec

mk

∑

iNi
Zi

2

mi

]−1

(3.11)

for the fraction of energy deposited to ions. We note that thecorrect numerical factor in the

above equation is 1.11 instead of 1.6 used by them. For a fullyionized single component plasma,

like deuterium, this fraction is independent of plasma density. The fraction of neutron energy

deposited in the plasma, as used by Eliezeret al [58], isρR/(ρR + 13.72) andρR/(ρR + 3.92)

for 14 MeV and 2.45 MeV neutrons, respectively [93]. With thedetailed model described in

2.2.1, the fractionfk
j is obtained as

fk
j =

1

ωk
jEj − Tion

×
∫ ωk

jEj

Tion

dW
Ad(W ) + AN (W )W 2

Ad(W ) + Ae(W ) + AN(W )W 2
. (3.12)

Further, we use the neutron energy deposition model of 2.18 given in 2.2.2, and the more accu-

rate fits for the Maxwell averaged reaction rates [94].

We have used Hurwitz’s three temperature model [57] for the rate equation for the radiation

temperature:

4σBT
3
r

dTr

dt
=
PB

V
+ PC − Rloss, (3.13)

where the photon energy loss rate in keV/s is

Rloss = 1.8069 × 1028 × 3 σB

R
Tr

4V , (3.14)

whereσB = 5.67 × 10−8 Wm−2K−4 is Stefan-Boltzmann’s constant. The rate equations for
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number of ions and electrons and the energy balance equations for ions, electrons and radiation

have been solved using the adaptive Cash Carp Runge Kutta method as described in appendix

A.

3.3 Internal tritium breeding

For analyzing the problem of internal T breeding inDTx pellets, we consider an optimal pellet

configuration of densityρ = 5000 gm/cm3, ρR = 12.5 gm/cm2 where R is the pellet radius,

tritium fraction x= 0.0112, and ion, electron, and radiation temperatures given byTion = Telec = 10

keV andTr = 1 keV, respectively, analyzed by Eliezeret al. While this pellet showed tritium

breeding within the assumptions made by Eliezeret al, using the Maxwell averaged reaction

rates versus temperature as obtained by Feldbacher [89], itfailed to show breeding when inverse

Compton scattering and photon losses were taken into account. However with the improved en-

ergy deposition model by charged particles and neutrons andusing the improved formulas for

fusion reaction rates [94] it is found that the pellet breedstritium even under extreme conditions

of radiation loss.

Figure 3.1 shows the variation in the fraction of a) charged particle energy deposited to the

ions as a function of time for the model used by Eliezeret aland the detailed model discussed in

this chapter as given by equations 3.11 and 3.12, respectively, and b) neutron energy deposited

to the ions. In figure 3.2, we compare the ion temperatures as the pellet burns. The ions reach

much higher temperatures which results in larger fraction of energy being deposited to the

ions when the above discussed energy deposition model is used. In figure 3.3, we show the

time dependent tritium build up in the target. Figure 3.4 compares the time dependent fusion

power for the approximate and detailed models, respectively, and the total energy produced are

2.905 × 1023 keV/cm3 and3.212 × 1023 keV/cm3 for the two cases. Similarly, tables 3.1 and

3.2 summarize the various results obtained with different radiation loss mechanisms for the two
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no direct and direct and reduced
radiation inverse inverse photon

interaction bremsstrahlung Compton losses
Maximum temperatures in keV
Tion 310.90 318.20 146.90 115.20
Telec 197.70 201.70 73.90 64.22
Tr - 16.90 26.16 64.22
Burn fraction 0.45 0.45 0.40 0.38
Ratio of tritium content
Initial 1.00 1.00 1.00 1.00
Minimum 0.56 0.60 0.59 0.59
Maximum 2.91 3.02 1.42 1.05
Final 2.33 2.38 0.79 0.64

Table 3.1: Maximum ion, electron and radiation temperatures (in keV) along with the burn fraction
and tritium breeding ratio in the DT pellet for the model usedby Eliezeret al. Column 1 refers to only
bremsstrahlung loss in the two temperature model, Column 2 includes inverse bremsstrahlung as well in
the three temperature model, Column 3 includes, in addition, inverse Compton scattering and Column 4
is similar to Column 3, but without photon losses.

different energy deposition models.

Using the above described zero dimensional three temperature model which considers all the

energy deposition mechanisms like small and large angle Coulomb scattering, nuclear scattering

and collective plasma effects, the effect of varying various pellet parameters like its density,

fraction of tritium added and initial temperature on the burn fraction and tritium breeding ratio

is studied.

3.3.1 Effect of pellet density on tritium breeding ratio and deuterium

burn fraction

The initial density of the DT pellet determines the burn fraction of deuterium and also the

breeding ratio of tritium. For the purpose of simulation we consider a pellet of radius 25µm,

initial ion and electron temperature 10 keV, initial radiation temperature 1 keV and tritium

fraction x = 0.0112. If the initial pellet density is less than 4000 gm/cc, tritium breeding is not



79

a)

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

C
ha

rg
ed

 p
ar

tic
le

 e
ne

rg
y 

fra
ct

io
n 

Time (ps)

1

2

b)

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

N
eu

tro
n 

en
er

gy
 fr

ac
tio

n

Time (ps)

1

2

Figure 3.1:Fraction of a) charged particle energy deposited to the ionsas the pellet burns. Curve-1
shows the case when energy deposition to ions and electrons due to small angle Coulomb scattering
alone is considered. Curve-2 considers energy deposition via large angle Coulomb scattering, collective
effects and nuclear interactions using the improved Maxwell averaged reaction rates . b) neutron energy
deposited to the ions as the pellet burns. Curve-1 is obtained using the fitted formula and Curve-2 is that
for the model discussed in this chapter using the improved Maxwell averaged reaction rates.
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Figure 3.2:Ion temperatures Vs. time in the DT pellet for a) the model used by Eliezeret al and b) the
model described in this chapter. Curve-1 refers to bremsstrahlung loss only, Curve-2 includes inverse
bremsstrahlung as well, Curve-3 includes, in addition, inverse Compton scattering and Curve-4 is similar
to Curve-3, but without photon losses.
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Figure 3.3:Tritium breeding Vs. time for the DT pellet for a) the model used by Eliezeret al and b)
the model described in this chapter. Curve-1 refers to bremsstrahlung loss only, Curve-2 includes inverse
bremsstrahlung as well, Curve-3 includes, in addition, inverse Compton scattering and Curve-4 is similar
to curve-3, but without photon losses.
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Figure 3.4:Fusion power generated Vs. time for the case of energy exchanged via bremsstrahlung,
inverse bremsstrahlung and Compton scattering. Curve-1 isfor the model used by Eliezeret al and
Curve-2 for the model described in this chapter.

no direct and direct and reduced
radiation inverse inverse photon

interaction bremsstrahlung Compton losses
Maximum temperatures in keV
Tion 448.40 459.20 259.90 203.00
Telec 176.50 179.50 84.31 65.67
Tr - 16.76 27.41 65.69
Burn fraction 0.48 0.48 0.47 0.45
Ratio of tritium content
Initial 1.00 1.00 1.00 1.00
Minimum 0.57 0.61 0.61 0.61
Maximum 2.59 2.62 2.20 1.82
Final 2.33 2.34 1.59 1.16

Table 3.2:The various fuel burnup parameters for the improved energy deposition model discussed in
this chapter.
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possible i.e., the amount of tritium left in the pellet afterthe burn is less than the amount we

started with [figure 3.5(a)]. However, above a density of 4000 gm/cc, tritium acts as a catalyst

and results in more efficient deuterium burning [figure 3.5(b)]. The deuterium burn fraction is

defined asfb = (ND,initial − ND,final)/ND,initial , whereND,initial is the total number of deuterons

in the pellet initially andND,final is the number left in the pellet after the burn. The burn fraction

steeply decreases with decreasing density as depicted in figure 3.5(b).

3.3.2 Effect of initial temperature of ions and electrons

Below a certain initial temperature of the pellet (both ionsand electrons are assumed to be at

the same temperature initially), the losses exceed the energy production and the pellet does not

burn. The rate of fusion reactions decrease on decreasing the initial plasma temperature within

the pellet and this leads to slow burnup and reduced production of tritium [figure 3.6(a)]. A

pellet of radius 25µm, density 5000 gm/cc, initial radiation temperature 1 keV and tritium

fraction x = 0.0112 is considered. Below 4 keV, the reactionsbecome so slow that within the

pellet disassembly time the rate of fusion reactions remains negligibly small. As a result the

deuterium burn fraction is also found to decrease steeply onreducing the initial temperature

below 6 keV [figure 3.6(b)].

3.3.3 Effect of tritium fraction (x) in the pellet

For a pellet of radius 25µm, density 5000 gm/cc, initial ion and electron temperature 10 keV

and initial radiation temperature 1 keV, as the fraction of tritium (x) in the pellet is decreased

below 0.005, it is no more able to ignite the deuterium so thatthe burn becomes slower. Also

the deuterium burn fraction keeps on decreasing as the tritium content is decreased. However,

it is also observed that increasing the tritium fraction beyond 0.03 does not increase the burn

fraction any further and the initial amount of tritium in thepellet is also not replenished [figure

3.7(a) and (b)]. Finally, from the above studies on the various pellet parameters like its density,
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Figure 3.5:(a) Tritium breeding ratio versus time forDTx pellets having different initial pellet densities.
(b) Deuterium burn fraction as a function of the pellet density.
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Figure 3.6:(a) Tritium breeding ratio versus time forDTx pellets having different initial plasma tem-
peratures. (b) Deuterium burn fraction as a function of the initial plasma temperatures.
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initial temperature and fraction of tritium added, we conclude that for sufficient burning of the

pellet and for tritium to behave as a catalyst, the followingpellet configuration is necessary:

initial pellet density = 3500gm/cc, initial plasma temperature = 4 keV and fraction of tritium

added lies between 0.005 and 0.02 i.e.,0.005 ≤ x ≤ 0.02

3.4 Zero dimensional model for central ignition

The gain of a DT pellet can be improved by heating only the central region to ignition tempera-

ture, under conditions that the spherical thermonuclear burn wave then propagates out, igniting

the rest of the fuel. To obtain the fusion yields in centrallyignited pellets, using the zero dimen-

sional model, modifications to the rate and energy equationsare required.

In central ignition only a central portion of the pellet of radiusRi is heated to very high

temperatures whereas the outer region is cold. LetRo be the outer radius of the pellet. Ther-

monuclear reaction starts in the inner pellet and the radiusstarts expanding. Two separate

regions can be distinguished: first the inner radius expandsthrough the outer cold DT fuel till it

reaches the outer radius, second the burn front has propagated to the outer radius and now the

whole pellet expands freely. The second region is the same asthat for volume ignition, whereas

in the first region, the inner radius expands against an external pressure due to the cold outer

region. The thermonuclear burn front propagates via the detonation and the high temperature

thermal conductivity, so that the velocity of the burn frontis the maximum of two velocities,

umax = max(us, uT ) whereus is the velocity of the detonation wave, whileuT is the velocity

of the thermal wave. The approximate analytical expressions for these velocities are obtained

by applying the strong explosion approximation in a homogeneous gas mixture [95]. If R is the

radius of the expanding burn front, forR ≤ R0, the detonation wave velocity is

us =

√

(γ + 1)2(γ − 1)CV

3γ − 1

√
T , (3.15)
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(x). (b) Deuterium burn fraction as a function of the initialtritium fraction (x).
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whereCV = 3
2

kB

AmA

Tion+ZTelec

T
is the specific heat at constant volume,γ is the specific heat ratio

andT = Telec = Tion is the temperature behind the burn front. Also the thermal wave velocity

is [96]

uT (xb, T ) =
2.149 × 10−4A

(1 + Z)(1 + 0.291Z)lnΛie

T 2.5

xb

, (3.16)

wherexb = ρR is the burn-up parameter andln Λie is the Coulomb logarithm defined in eqn.

3.6. For equimolar DT (50:50), average mass numberA = 2.5, average atomic numberZ = 1

andCV = 115.678MJ/g. Hence the detonation and thermal velocities areD = 3.7 × 107
√
T

anduT (xb, T ) = 2.08 × 105 T 2.5

xb ln Λie
both in cm/s. The maximum of the two velocitiesumax =

max{us, uT} is chosen for our calculations. The thermonuclear burn wavepropagates initially

as the thermal wave and later as the detonation wave.

As long as the inner radius has not reached the outer radius ofthe pellet, the outer cold fuel

is assumed to remain undisturbed, i.e., the outer radius does not change and the densities and

temperatures are maintained at the initial values. The equation for energy balance for ions is

now modified to

3

2

d

dt
(NionTion) =

∑

j

∑

k

fk
jωk

jEjNj(1)Nj(2)× < σv >j
1

V

−Pie

V
− 4πR2(t)umax

(

NionTion

V
− NioTio

Vo

)

, (3.17)

whereNio, Tio andVo are the total number of ions, ion temperature and volume of the outer

pellet. Nion is the total number of ions in the burn region and increases until the inner pellet

radius becomes equal to the outer radius. Similarly, the equation for energy balance for electrons
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is given by

3

2

d

dt
(NelecTelec) =

∑

j

∑

k

(1 − fk
j)ωk

jEjNj(1)Nj(2)

× < σv >j
1

V
+
Pie

V
− PB

V
− PC − 4πR2(t)umax

(

NelecTelec

V
− NeoTeo

Vo

)

, (3.18)

whereNeo, Teo andVo are the total number of electrons and electron temperature in the outer

pellet. The total number of particles of D and T change not only because of the fusion reactions

but also because of the addition of nuclides from cold outer fuel. During a time step∆t, let the

inner radiusRi expand by∆R. Since the outer region contains only D and T (ratio 50:50), for

k=1 and 3,

Nn
k = Nn−1

k +
3R2∆R

R3
o

Nk,total, (3.19)

whereNk,total is the total number of nuclides of species k within the whole pellet. The super-

scripts n and n-1 denote the present and previous time step values respectively. Similarly, for

the electrons,

Nn
elec = Nn−1

elec +
3R2∆R

R3
o

Ne,total, (3.20)

whereNe,total is the total number of electrons within the whole pellet initially. Again, for energy

conservation to hold, a portion of energy from the inner heated region bootstrap heats the region

of volume4πR2∆R. If Mk is the mass number of thekth nuclide, then the final temperature is

T n
ion =

T n−1
ion (

∑

k=1,5MkN
n−1
k ) + Tio(

∑

k=1,5
3R2∆R

R3
o
MkNk,total)

∑

k=1,5MkNn
k

. (3.21)

Similarly, the electron temperature is modified as

T n
elec =

T n−1
elec N

n−1
elec + Teo(

3R2∆R
R3

o
Ne,total)

Nn
elec

. (3.22)
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Figure 3.8:Yield Vs. density for 10µg DT pellets having various initial temperatures.

In figure 3.8, the dashed lines show the fusion energy generated, i.e., the yields as a function of

density for central 10 percent of the pellet at 10 and 20 keV, whereas the rest of the pellet at 1

keV.

The zero dimensional model is used to obtain the fusion yields for pellets having a range of

densities and temperatures with 1µg and 10µg masses. Higher is the initial pellet temperature,

more is the fusion yield because of the increase in DT and DD fusion reactions as a function

of temperature. Also, as the initial pellet temperatures increase, the fusion yield attains satu-

ration values for lower pellet densities. The results obtained are compared with the numerical

results from a 3T Lagrangian simulation code and good agreement is obtained. This shows that

though the zero dimensional model lacks spatial resolution, tracking the number densities and

energetics of the nuclides is sufficient for obtaining the energy released in fusion. Figure 3.8

shows the fusion yields in kJ obtained for 10µg DT pellet for a range of densities from 1 to

10,000 g/cc. Higher is the initial pellet temperature, moreis the fusion yield because of the

increase in DT and DD fusion reactions as a function of temperature. Also, as the initial pellet

temperatures increase, the fusion yield attains saturation values for lower pellet densities. The
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values are also obtained for different initial temperatures of the pellet. Figure 3.9 shows the

same values for a 1µg pellet. For an initial pellet temperature of 1.8 keV, thereis no steep rise

in the fusion yield even for densities as high as 10,000 gm/ccshowing the importance of igni-

tion temperature in thermonuclear fusion. Details of the temperature dependence of the yield

for various densities for the 10µg pellet are shown in figure 3.10. Upto 100 gm/cc, the fusion

yields are found to be low and rises slowly with temperature.Beyond this value the yields are

found to increase sharply with the initial pellet temperatures and attain values of 1000 kJ. Be-

yond 1000 gm/cc, such high fusion yields are obtained even for low initial temperatures like

3 keV. This study quantitatively depicts the requirements of initial density and temperature for

efficient thermonuclear burn in fusion pellets. Efficient high power lasers need to be developed

to attain such high densities and temperatures.

3.5 Summary

In this chapter, the improved model of energy deposition viasmall and large angle Coulomb

scattering, nuclear scattering and collective plasma effects has been used to re-evaluate a recent

proposal for Tritium breeding in DT fusion pellets. Tritiumbreeding is found to occur even

when all the radiative loss mechanisms like the Bremsstrahlung, and inverse Compton scattering

effects are fully accounted for. This improved model of energy deposition has been used to

obtain an optimum pellet configuration in terms of initial pellet temperature, density and tritium

fraction. In this regime, tritium acts as a catalyst, helps in reducing the ignition temperature and

the deuterium in the pellet burns sufficiently before the pellet disassembles. Modifications are

made in the model to include central ignition of a DT pellet. Fusion yields for a range of initial

densities and temperatures of the pellet are found to agree with those available in the literature.



4
Generating new analytical bench-

marks for non-equilibrium radia-

tion diffusion in finite size systems

4.1 Introduction

In the earlier chapters, a fully ionized plasma was considered so that the effect of bound-bound

and bound-free transitions were neglected while considering the interaction of radiation with

the medium [59]. Also, the radiation intensity was assumed to be spatially uniform [58]. For

partially ionized plasmas with spatial variation, the radiation transport equation needs to be

solved along with the material energy equation. Non-equilibrium radiation diffusion is an im-

portant mechanism of energy transport in Inertial Confinement Fusion, astrophysical plasmas,

furnaces and heat exchangers. We devote this chapter to thisimportant topic of radiation dif-

fusion and derive new analytical solutions to the non-equilibrium Marshak diffusion problem

in a finite planar slab, spherical shell and sphere. The variation in integrated energy densities

and leakage currents are also studied. In order to linearizethe radiation transport and material

energy equation, the heat capacity is assumed to be proportional to the cube of the material

temperature [63]. The steady state energy densities show linear variation along the depth of the

planar slab, whereas non-linear dependence is observed forthe spherical shell. Non-equilibrium

diffusion codes can be more easily validated and verified against these new benchmark results

because there is no need to consider a slab or spherical medium of very large size for avoiding
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boundary effects. Analytical expressions for all the quantities of interest can be obtained for

finite slab/shell width and parameter values relevant to practical problems.

4.2 Analytical solution

Using two independent methods, viz., the Laplace transformmethod and the Eigen function

expansion method, expressions for radiation and material energy densities as a function of space

and time is derived for a finite planar slab, spherical shell and sphere.

4.2.1 Planar slab

We consider a planar slab of finite thickness which is purely absorbing and homogeneous occu-

pying 0 ≤ z ≤l. The medium is at zero temperature initially. At time t=0, a constant radiative

flux (Finc) is incident on the surface at z=0 as shown in figure 4.1. Neglecting hydrodynamic

motion, the one group radiative transfer equation (RTE) in the diffusion approximation and the

material energy balance equation (ME) are [6]

∂Er(z, t)

∂t
− ∂

∂z
[

c

3σa(T )

∂Er(z, t)

∂z
] = cσa(T )[aT 4(z, t) − Er(z, t)], (4.1)

CV (T )
∂T (z, t)

∂t
= cσa(T )[Er(z, t) − aT 4(z, t)], (4.2)

whereEr(z, t) is the radiation energy density, T(z,t) is the material temperature,σa(T ) is the

opacity (absorption cross section), c is the speed of light,a is the radiation constant, andCV (T )

is the specific heat of the material.

The Marshak boundary condition on the surface atz = 0 is given by

Er(0, t) −
(

2

3σa[T (0, t)]

)

∂Er(0, t)

∂z
=

4

c
Finc. (4.3)
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zz=l

Finc

z=0

Figure 4.1:Flux incident on the left surface of a slab of thicknessz =l

And that atz =l is

Er(l, t) +

(

2

3σa[T(l, t)]

)

∂Er(l, t)

∂z
= 0. (4.4)

The initial conditions on these two equations are

Er(z, 0) = T (z, 0) = 0. (4.5)

To remove the nonlinearity in the RTE (Eqn. [4.1]) and ME (Eqn. [4.2]), opacityσa is assumed

to be independent of temperature and specific heatCV (T ) is assumed to be proportional to

the cube of the temperature. i.e.,CV (T ) = αT 3. The RTE and the ME are recast into the

dimensionless form by introducing the dimensionless independent variables given by

x ≡
√

3σaz, τ ≡ (
4acσa

α
)t. (4.6)

The new dependent variables are given by

ur(x, τ) ≡ (
c

4
)

[

Er(z, t)

Finc

]

, um(x, τ) ≡ (
c

4
)

[

aT 4(z, t)

Finc

]

. (4.7)
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With these new variables, the RTE and ME take the dimensionless form

ε
∂ur(x, τ)

∂τ
=
∂2ur(x, τ)

∂x2
+ um(x, τ) − ur(x, τ), (4.8)

∂um(x, τ)

∂τ
= ur(x, τ) − um(x, τ), (4.9)

with the initial conditions

ur(x, 0) = 0, (4.10)

um(x, 0) = 0. (4.11)

And the boundary conditions on the surfaces are

ur(0, τ) −
2√
3

∂ur(0, τ)

∂x
= 1, (4.12)

ur(b, τ) +
2√
3

∂ur(b, τ)

∂x
= 0, (4.13)

whereb =
√

3σal and the parameterε is defined as

ε =
4a

α
. (4.14)

4.2.1.1 Laplace transform method

To solve Eqs. (4.8) - (4.13), we introduce the Laplace transform according to

f̄(s) =

∫ ∞

0

dτe−sτf(τ), (4.15)

to obtain

εsūr(x, s) −
∂2ūr(x, s)

∂x2
= ūm(x, s) − ūr(x, s), (4.16)



97

sūm(x, s) = ūr(x, s) − ūm(x, s), (4.17)

ūr(0, s) −
2√
3

∂ūr(0, s)

∂x
=

1

s
, (4.18)

ūr(b, s) +
2√
3

∂ūr(b, s)

∂x
= 0. (4.19)

The solutions of Eqs. (4.16)-(4.19) in s space are obtained as

ūr(x, s) =
3 sin[β(s)(b− x)] + 2

√
3β(s) cos[β(s)(b− x)]

s[3 sin(β(s)b) + 4
√

3β(s) cos(β(s)b) − 4β2(s) sin(β(s)b)]
, (4.20)

ūm(x, s) =
3 sin[β(s)(b− x)] + 2

√
3β(s) cos[β(s)(b− x)]

s(s+ 1)[3 sin(β(s)b) + 4
√

3β(s) cos(β(s)b) − 4β2(s) sin(β(s)b)]
. (4.21)

whereβ(s) is given by

β2(s) = − s

s + 1
[1 + ε(s+ 1)]. (4.22)

Before solving for the radiation and material energy densities by invertingūr(x, s) and

ūm(x, s), we first obtain the small and largeτ limits of ur(x, τ) andum(x, τ) from the large and

small s limits of eqns. [4.20] and [4.21] respectively. Using the theorems

lim
s→∞

[sf̄(s)] = lim
τ→0

[f(τ)], (4.23)

lim
s→0

[sf̄(s)] = lim
τ→∞

[f(τ)], (4.24)

we have

ur(x, 0) = um(x, 0) = 0, (4.25)

ur(x, τ → ∞) → um(x, τ → ∞) → 3b+ 2
√

3 − 3x

3b+ 4
√

3
. (4.26)

Thus according to eqn. [4.25], at the initial instant, both the material and radiation energy
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densities are zero inside the slab. Eqn. [4.26] asserts thatat infinite time the radiation and

material energy density equilibrate among themselves. However, because of the finite thickness

of the slab, flux leaks out of the right edge so that the energy densities vary linearly along the

length of the slab.

The solutions forur(x, τ) andum(x, τ) follow from ūr(x, s) andūm(x, s) by inverting them

using the Laplace inversion theorem

f(τ) =
1

2πi

∫

C

dsesτ f̄(s), (4.27)

where the integration contour is a line parallel to the imaginary s axis to the right of all the

singularities off̄(s).The contour is closed in the left half plane so that the largesemi circle

gives a zero contribution. Both̄ur(x, s) and ūm(x, s) are single valued functions and hence

there are no branch points. However, there are an infinite number of poles obtained from the

roots of the transcendental equation

3 sin(β(s)b) + 4
√

3β(s) cos(β(s)b) − 4β2(s) sin(β(s)b) = 0,

or, tan(β(s)b) =
4
√

3β(s)

4β2(s) − 3
. (4.28)

For the semi infinite slab, because of the multiple valuedness of the functions obtained by

Laplace transform, inverting them using the inverse Laplace transform required evaluation of

contributions from all the branch cuts. This resulted in integrals which had to be computed

numerically [64]. The oscillations in the integrand resulted in difficulty in their convergence.

The advantage of solving the finite problem is that because ofthe single valuedness of the

Laplace transformed functions, the inversion is very simple. The sum of the residues at the

singularities (poles) give the required solution. The roots of the transcendental equation has

been obtained using MATHEMATICA [97] as shown in the graph offigure 4.2.

Corresponding to each root ofβ(s), there exists two values of s, i.e., two simple poles. The
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poles are obtained from solution of eqn. [4.22] as

s =
−[ε + β2(s) + 1] ±

√

[ε+ β2(s) + 1]2 − 4εβ2(s)

2ε
. (4.29)

According to the residue theorem,
∫

C
dsesτ f̄(s) = 2πi×(sum of the residues at the singulari-

ties). The residue at s=0 gives the asymptotic (steady state) solution for the radiation and mate-

rial energy densities asur(x,∞) = um(x,∞) = 3b+2
√

3−3x
3b+4

√
3

which is also obtained by equating

∂ur(x,τ)
∂τ

and ∂um(x,τ)
∂τ

in Eqs. (4.8) and (4.9) to zero, solving∂
2ur(x,τ)

∂x2 = 0 and obtaining the

values of the constants from the BC given by Eqs. (4.12) and (4.13).

The contribution to the time dependent part comes from the higher order poles. Adding

residues from all the poles give us the complete space and time dependence of the radiation

energy density as

ur(x, τ) =
3b+ 2

√
3 − 3x

3b+ 4
√

3
+
∑

n

esnτ [3 sin(β(sn)(b− x)) + 2
√

3β(sn) cos(β(sn)(b− x))]

sn[Q(sn) cos(β(sn)b) −R(sn) sin(β(sn)b)]dβ(sn)
ds

,(4.30)
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with

Q(sn) = 3b+ 4
√

3 − 4β2(sn)b, (4.31)

and

R(sn) = 4
√

3β(sn)b+ 8β(sn). (4.32)

Similarly, the solution for the material energy density is

um(x, τ) =
3b+ 2

√
3 − 3x

3b+ 4
√

3
+
∑

n

esnτ [3 sin(β(sn)(b− x)) + 2
√

3β(sn) cos(β(sn)(b− x))]

sn(sn + 1)[Q(sn) cos(β(sn)b) − R(sn) sin(β(sn)b)]
dβ(sn)

ds

.(4.33)

We also consider theε=0 case which arises when the speed of light is taken to be infinite

so that radiation is not retarded initially. At infinite time, the radiation and material energy

densities assume the same spatial dependence as forε 6= 0 case.

ur(x, τ → ∞) → um(x, τ → ∞) → 3b+ 2
√

3 − 3x

3b+ 4
√

3
. (4.34)

However, forτ = 0, ass→ ∞ for ε = 0, we obtainβ = i wherei =
√
−1. Thus,

ur(x, 0) =
3 sinh(b− x) + 2

√
3 cosh(b− x)

7 sinh(b) + 4
√

3 cosh(b)
, (4.35)

um(x, 0) = 0. (4.36)

Thus the material energy density is zero atτ = 0 as predicted by the initial condition. However,

because of the absence of retardation effects, the radiation energy density attains a finite value

consistent with the incoming flux of radiation. This behavior is in agreement with that obtained

in the case of a semi infinite planar slab for the no retardation case.

The solutionur(x, τ) andum(x, τ) for ε = 0 is obtained by inverting Eqs. (4.20) and (4.21)
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using inverse Laplace transform as in the general case withε = 0. The difference from the

ε 6= 0 case is that only one pole is obtained corresponding to a value of beta i.e.,s = − β2(s)
β2(s)+1

.

4.2.1.2 Eigenfunction expansion method

To solve eqns. [4.8] - [4.13] using eigenfunction expansionmethod, we write the solution as

the sum of an asymptotic (i.e., infinite time) and a transientpart. Let us denote the asymptotic

solutions for radiation and material energy densities byu0
r(x) andu0

m(x) respectively. Similarly

the transient parts are denoted byu1
r(x, τ) andu1

m(x, τ). Then,

ur(x, τ) = u0
r(x) + u1

r(x, τ), (4.37)

um(x, τ) = u0
m(x) + u1

m(x, τ). (4.38)

Obtaining the asymptotic solution

After infinite time, bothur(x, τ) andum(x, τ) attain the asymptotic value so that∂ur(x,τ)
∂τ

= 0

and ∂um(x,τ)
∂τ

= 0. Therefore,ur(x, τ) = um(x, τ) and hence from eqn. [4.8],

∂2ur(x, τ)

∂x2
= 0. (4.39)

The solution isu0
r(x, τ) = c+ dx. The values of the constants c and d can be obtained from the

BC given by eqns. [4.12] and [4.13]. Omitting the algebra, the obtained solution is

u0
r(x, τ) =

2 +
√

3b−
√

3x

4 +
√

3b
. (4.40)

Obtaining the transient solution
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The equations for the transient partsu1
r(x, τ) andu1

m(x, τ) are

ε
∂u1

r(x, τ)

∂τ
=
∂2u1

r(x, τ)

∂x2
+ u1

m(x, τ) − u1
r(x, τ), (4.41)

∂u1
m(x, τ)

∂τ
= u1

r(x, τ) − u1
m(x, τ). (4.42)

with the initial conditions

u1
r(x, 0) = −u0

r(x) (4.43)

u1
m(x, 0) = −u0

m(x) (4.44)

(4.45)

and the homogeneous BC on the surfaces are

u1
r(0, τ) −

2√
3

∂u1
r(0, τ)

∂x
= 0, (4.46)

u1
r(b, τ) +

2√
3

∂u1
r(b, τ)

∂x
= 0. (4.47)

The eigen value equation (EVE) is given by

∂2φ

∂x2
+ β2φ = 0 (4.48)

whereφ is the eigenvector andβ is the eigenvalue. BCs onφ are

φ(0, τ) − 2√
3

∂φ(0, τ)

∂x
= 0, (4.49)

φ(b, τ) +
2√
3

∂φ(b, τ)

∂x
= 0. (4.50)

The EVE can be solved and we can determine an infinite set of normalized and orthogonal eigen

functions and corresponding eigen values. Thus corresponding to a particular eigen value we
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have

∂2φn

∂x2
+ β2

nφn = 0, (4.51)
∫ b

0

φm(x)φn(x)dx = δmn, m, n = 1, 2, 3, .... (4.52)

As these form a complete set, we expand the solutions in termsof these eigen functions:

u1
r(x, τ) =

∑

n

an(τ)φn(x), (4.53)

u1
m(x, τ) =

∑

n

bn(τ)φn(x), (4.54)

where the expansion coefficientsan(τ) andbn(τ) have to be determined. From the orthogonal

and normalization conditions ofφn(x) we have

an(τ) =

∫ b

0

φn(x)u
1
r(x, τ)dx, (4.55)

bn(τ) =

∫ b

0

φn(x)u1
m(x, τ)dx. (4.56)

Multiplying both sides of eqns. [4.41] and [4.42] withφn(x), integrating over x from 0 to b,

and using the boundary conditions at the surfaces viz. eqns.[4.46], [4.47], [4.49] and [4.50]

along with eqns. [4.55] and [4.56], we obtain ODEs involvingthe expansion coefficientsan(τ)

andbn(τ).

ε
dan(τ)

dτ
+ (1 + β2

n)an(τ) − bn(τ) = 0, (4.57)

dbn(τ)

dτ
+ bn(τ) − an(τ) = 0, (4.58)
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with the initial condition on the expansion coefficients as

an(0) = −
∫ b

0

φn(x)u0
r(x)dx, (4.59)

bn(0) = −
∫ b

0

φn(x)u
0
m(x)dx. (4.60)

The solution of the EVE, i.e., eqn. [4.98] is given by

φ(x) = A sin(βx+B) = C∗[sin(βx) +
2β√

3
cos(βx)]. (4.61)

From the normalization condition of the eigenfuncionφ i.e.,
∫ b

0
φ2(x)dx = 1 and the BC onφ

at x=0 (Eqn. [4.49]), the value of the normalization constant is obtained as

C∗ =

√

12β

4
√

3β + (6β + 8β3)b+ (4β2 − 3) sin(2βb) − 4
√

3β cos(2βb)
. (4.62)

The eigen values are obtained by applying the BC onφ i.e., eqns. [4.49] and [4.50]. The

conditions are

sinB − 2√
3
βcosB = 0, (4.63)

(cos(βb) − 2√
3
βsin(βb))sinB + (sin(βb) +

2√
3
βcos(βb))cosB = 0. (4.64)

We will have nontrivial solutions if the system in sinB and cosB is singular so that the determi-

nant of coefficients vanishes. This condition gives us the same transcendental equation viz. eqn.

[4.28] for the eigenvalueβ. As in the Laplace transform method, the eigenvalues are obtained

as roots of this equation. For a particular eigenvalueβn, the ODEs involving the expansion co-

efficientsan(τ) andbn(τ) are solved using MATHEMATICA andφn(x) is obtained from eqn.

[4.61]. Summing the contribution from all the eigenvalues give the transient solutions for scaled

radiation and material energy densities using eqns. [4.53]and [4.54]. Adding the steady state
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Figure 4.3:Flux incident on the inner surface of a spherical shell of inner radiusR1 and outer radius
R2.

solution to the transient part gives the final solution.

4.2.2 Spherical shell

Analogous to the planar slab problem, in spherical geometrywe consider a spherical shell of

inner and outer radiiR1 andR2 respectively (figure 4.3). Under the same assumptions, witha

time independent radiative flux (Finc) incident on the inner surface of the shell, the one group

radiative transfer equation (RTE) in the diffusion approximation and the material energy balance

equation (ME) in spherical geometry are

∂Er(r, t)

∂t
− 1

r2

∂

∂r
[
r2c

3σa(T )

∂Er(r, t)

∂r
] = cσa(T )[aT 4(r, t) − Er(r, t)], (4.65)

CV (T )
∂T (r, t)

∂t
= cσa(T )[Er(r, t) − aT 4(r, t)], (4.66)

with the same notations as used in Subsec. 4.2.1

The Marshak boundary condition on the inner surface atr = R1 is given by

Er(R1, t) −
(

2

3σa[T (R1, t)]

)

∂Er(R1, t)

∂r
=

4

c
Finc. (4.67)
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And that atr = R2 is

Er(R2, t) +

(

2

3σa[T (R2, t)]

)

∂Er(R2, t)

∂r
= 0. (4.68)

With new dimensionless variables introduced in Subsec. 4.2.1, the RTE and ME take the

dimensionless form

ε
∂ur(x, τ)

∂τ
=

1

x2

∂

∂x
(x2∂ur(x, τ)

∂x
) + um(x, τ) − ur(x, τ), (4.69)

∂um(x, τ)

∂τ
= ur(x, τ) − um(x, τ), (4.70)

with the initial conditions

ur(x, 0) = 0, (4.71)

um(x, 0) = 0. (4.72)

And the boundary conditions on the surfaces are

ur(X1, τ) −
2√
3

∂ur(X1, τ)

∂x
= 1, (4.73)

ur(X2, τ) +
2√
3

∂ur(X2, τ)

∂x
= 0, (4.74)

wherex =
√

3σar. Changing variableur(x, τ) tow(x, τ) = ur(x, τ)x andum(x, τ) tog(x, τ) = um(x, τ)x,

the equations simplify to

ε
∂w(x, τ)

∂τ
=
∂2w(x, τ)

∂x2
+ g(x, τ) − w(x, τ), (4.75)

∂g(x, τ)

∂τ
= w(x, τ) − g(x, τ). (4.76)
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4.2.2.1 Laplace transform method

Applying Laplace transform, the solution in s space are obtained as

ūr(x, s) =
A

β(s)x
sin(β(s)x+B), (4.77)

ūm(x, s) =
ūr(x, s)

s+ 1
, (4.78)

with the constants A and B obtained from the BCs

ūr(X1, s) −
2√
3

∂ūr(X1, s)

∂x
=

1

s
, (4.79)

ūr(X2, s) +
2√
3

∂ūr(X2, s)

∂x
= 0. (4.80)

Then the Laplace transformed radiation energy density is given by

ū =

√
3X2

1 [(2 −
√

3X2) sin(β(s)(X2 − x)) − 2β(s)X2 cos(β(s)(X2 − x))]

sx[S(s) sin β(s)(X2 −X1) − T (s) cos(β(s)(X2 −X1))]
, (4.81)

with

S(s) = (4β2(s) − 3)X1X2 − 2
√

3(X2 −X1) + 4, (4.82)

and

T (s) = 4β(s)(X2 −X1) + 4
√

3β(s)X1X2. (4.83)

As in the case of the finite planar slab, the solutions forur(x, τ) andum(x, τ) follow from

ūr(x, s) andūm(x, s) by inverting them using the Laplace inversion theorem. An infinite num-
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ber of poles are obtained from the roots of the transcendental equation

tan(β(s)(X2 −X1)) =
4
√

3β(s)X2X1 + 4β(s)(X2 −X1)

(4β(s)2 − 3)X1X2 − 2
√

3(X2 −X1) + 4
. (4.84)

Summing over the residues at all the poles, the radiation energy density is obtained as

ur(x, τ) =

√
3X2

1X
2
2 +X2

1x(2 −
√

3X2)

x[2X2
1 −

√
3X2

1X2 +
√

3X1X
2
2 + 2X2

2 ]

+
∑

n

(

[(2 −
√

3X2) sin(β(sn)(X2 − x)) − 2β(sn)X2 cos(β(sn)(X2 − x))]

[Y (sn) sin β(sn)(X2 −X1) + Z(sn) cos(β(sn)(X2 −X1))]
× esnτ

√
3X2

1

snx
dβ(sn)

ds

)

,(4.85)

with

Y (sn) = 4β2(sn)(X2
2 +X2

1 ) + 4
√

3β(sn)X1X2(X2 −X1), (4.86)

and

Z(sn) = 4β2(sn)X1X2(X2 −X1) − 3X1X2(X2 −X1) − 2
√

3(X2
1 +X2

2 ). (4.87)

Similarly, the solution for the material energy density follows the same form as that for the

radiation energy density with an extra(sn + 1) in the denominator of the second term.

4.2.2.2 Eigenfunction expansion method

In a manner similar to the finite planar slab, the solution is assumed to be the sum of an asymp-

totic (i.e., infinite time) and a transient part given by eqns. [4.37] and [4.38].

Obtaining the asymptotic solution



109

The asymptotic solution is

u0
r(x) = u0

m(x) =

√
3X2

1X
2
2 +X2

1x(2 −
√

3X2)

x(2X2
1 −

√
3X2

1X2 +
√

3X1X2
2 + 2X2

2 )
, (4.88)

∂u0
r(x)

∂x
=
∂u0

m(x)

∂x
=

3X3
1X

3
2 (X1 −X2) − 2

√
3X2

1X
2
2 (X2

1 +X2
2 )

x2(2X2
1 −

√
3X2

1X2 +
√

3X1X2
2 + 2X2

2 )2
. (4.89)

The outgoing flux from the surface of the sphere j+ in the asymptotic limit is

u0
r(X2) −

2√
3

∂u0
r(X2, τ)

∂x
=

4X2
1

2X2
1 −

√
3X2

1X2 +
√

3X1X
2
2 + 2X2

2

, (4.90)

and the flux j- coming out of the inner surface is

u0
r(X1) +

2√
3

∂u0
r(X1, τ)

∂x
=

4X6
1 + 3X4

1X
2
2 − 4

√
3X4

1X2 + 4
√

3X3
1X

2
2 − 6X3

1X
3
2 + 3X2

1X
4
2 − 4X4

2

(2X2
1 −

√
3X2

1X2 +
√

3X1X
2
2 + 2X2

2 )2
. (4.91)

Obtaining the transient solution

The equations for the transient partsu1
r(x, τ) andu1

m(x, τ) are

ε
∂u1

r(x, τ)

∂τ
=

1

x2

∂

∂x
(x2∂u

1
r(x, τ)

∂x
) + u1

m(x, τ) − u1
r(x, τ), (4.92)

∂u1
m(x, τ)

∂τ
= u1

r(x, τ) − u1
m(x, τ), (4.93)

with the initial conditions

u1
r(x, 0) = −u0

r(x), (4.94)

u1
m(x, 0) = −u0

m(x), (4.95)
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with the homogeneous BC on the inner and outer surface

u1
r(X1, τ) −

2√
3

∂u1
r(X1, τ)

∂x
= 0, (4.96)

u1
r(X2, τ) +

2√
3

∂u1
r(X2, τ)

∂x
= 0. (4.97)

The eigen value equation (EVE) is given by

1

x2

∂

∂x
(x2∂φ

∂x
) + β2φ = 0. (4.98)

BCs onφ are

φ(X1) −
2√
3

∂φ(X1)

∂x
= 0, (4.99)

φ(X2) +
2√
3

∂φ(X2)

∂x
= 0. (4.100)

The EVE can be solved and we can determine an infinite set of normalized and orthogonal

eigen functions and corresponding eigen values. Thus corresponding to a particular eigen value

we have

1

x2

∂

∂x
(x2∂φn

∂x
) + β2

nφn = 0, (4.101)
∫ X2

X1

φm(x)φn(x)4πx2dx = δmn, m, n = 1, 2, 3, .... (4.102)

Following the same steps as for the finite planar slab, by integrating over the volume4πx3

3
with

x going fromX1 toX2, we obtain the solution of the eigenvalue equation as

φ(x) =
C∗

x

[

sin(βx) + cos(βx)
(X2 − 2√

3
) sin(βX2) + 2X2β√

3
cos(βX2)

2X2β√
3

sin(βX2) − (X2 − 2√
3
) cos(βX2)

]

, (4.103)
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Figure 4.4:Radiation flux incident on the outer surface of a sphere.

withC∗ = AcosB. From the normalization condition of the eigenfuncionφ i.e.,
∫ X2

X1
φ2(x)4πx2dx = 1,

the value of the normalization constant is obtained as

C∗ =

√

√

√

√

√

1

4π
∫ X2

X1

[(X2− 2√
3
) sinβ(X2−x)+

2X2β
√

3
cos β(X2−x)]2

[
2X2β
√

3
sin(βX2)−(X2− 2√

3
) cos(βX2)]2

dx

. (4.104)

From the b.c. onφ, the same transcendental equation (eqn. [4.84]) as in the Laplace transform

method is obtained for the eigenvalueβ. Finally, the scaled radiation and material energy

densities are obtained.

4.2.3 Sphere

We consider a sphere of radius R with a radiative flux incidenton the outer surface as shown in

figure 4.4 The radiation transport and material equation arethe same as eqns. [4.69] and [4.70].

The boundary conditions on the surface and centre are given by

ur(X, τ) +
2√
3

∂ur(X, τ)

∂x
= 0, (4.105)

ur(0, τ) = finite. (4.106)
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4.2.3.1 Laplace transform method

In a manner similar to the spherical shell, the Laplace transformed radiation energy density is

given by

ūr(x, s) =

√
3X2 sin(β(sn)x)

sx[(
√

3X − 2) sin(β(sn)X) + 2β(sn)X cos(βX)]
. (4.107)

The transcendental equation in this case is

tan(β(sn)X) =
2β(sn)X

2 −
√

3X
. (4.108)

The radiation energy density is obtained as

ur(x, τ) = 1 +
∑

n

esnτ
√

3 sin(β(sn)X)

snx[
√

3 cos(β(sn)X) − 2β(sn) sin(β(sn)X)]dβ(sn)
ds

. (4.109)

4.2.3.2 Eigenfunction expansion method

The asymptotic solution is obtained as

u0
r(x) = u0

m(x) = 1, (4.110)

and as in the finite spherical shell, we obtain the solution ofthe eigenvalue equation as

φ(x) =

√

β

π[2βX − sin(2βX)]

sin(βx)

x
, (4.111)

with the same transcendental equation 4.108 for the eigenvalue β. The scaled radiation and

material energy densities are also obtained in a manner similar to the planar slab and spherical

shell.
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4.3 Results and discussions

4.3.1 Planar slab

For the finite planar slab, at early stages (τ=0.01) the radiation energy density falls rapidly from

the left surface where radiation is incident as shown in figure 4.5. As time proceeds, the values

of energy densities increase and the variation with distance keeps on attaining linearity. At in-

finite time, the steady state values are linear with positionas given by eqn. [4.26]. Similarly,

the material energy density initially exhibits slight non-linear variation and finally attains the

linearity (figure 4.6). The non-linear variation at early stages occurs due to net absorption of

energy by the initially cold material (asur(x, 0) = um(x, 0) = 0). Initially, the material en-

ergy density is found to lag behind the radiation energy densities and finally equilibrate as time

proceeds (beyondτ=10). In this work, all the results have been obtained by considering contri-

bution from the first 30 roots of the transcendental equation. The value of opacityσa is chosen

to be 100 andε equals 0.1. For a heat wave traveling into a thin plate and composite planar slab,

a similar linear variation in temperature with distance wasobserved though difference existed

in the space and time dependent behaviour due to heat conduction approximation [98],[99].

The first derivatives w.r.t. position of the analytical radiation and material energy density are

plotted in figures 4.7 and 4.8. As the radiation and material energy densities decrease with x, the

derivative has negative values. The derivative has a greater negative value at the left compared

to the right zone. As both radiation and material energy densities keep on increasing with time

due to radiation diffusion, magnitude of the gradient decreases for the left and increases for the

right sides. The gradient of both radiation and material energy densities obtain a constant value

of −3
3+4

√
3

= −0.30217 after infinite time showing that there is a constant leakage of flux from

the right surface due to the finite thickness. This result is different from the semi-infinite slab

result where at infinite time, the entire halfspace is at a constant temperature with a uniform

radiation field and hence there is no gradient and no flux [63].



114

0.0 0.5 1.0
0.0

0.3

0.6

and 

 

 

u r(x
,

)

Scaled position (x)

Figure 4.5:Scaled radiation energy densityur(x, τ) Vs. position (x) in the slab of scaled thickness
b = 1 at different times forε = 0.1.
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Figure 4.6:Scaled material energy densityum(x, τ) Vs. position (x) in the slab at different times for
ε = 0.1.
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Figure 4.7:Space derivative of scaled radiation energy density∂ur(x, τ)/∂x Vs. position (x) in the
slab at different times.
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Figure 4.8:Space derivative of scaled material energy density∂um(x, τ)/∂x Vs. position (x) in the
slab at different times.
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Figure 4.9:Leakage currentsJ−(τ) andJ+(τ) from the left and right surfaces of the slab respectively.

The current of radiation leaking out from the left and right surfaces of the slab are

J−(τ) = ur(0, τ) + 2√
3

∂ur(0,τ)
∂x

andJ+(τ) = ur(b, τ) − 2√
3

∂ur(b,τ)
∂x

. The leakage currents are

plotted as a function of time in figure 4.9. It is found that thoughJ−(τ) is negative initially,

it attains a constant positive value of 0.30217 after saturation. J+(τ) is zero initially as the

incident flux has not reached the right face. However it risesrapidly and reaches a saturation

value of 0.6978. The energy densities and leakage currents at the left and right surfaces are also

related asur(0, τ) + ur(b, τ) = 1 andJ−(τ) + J+(τ) = 1.

The averaged or integrated radiation and material energy densities are given by

ψr(τ) =
∫ b

0
ur(x, τ)dx and ψm(τ) =

∫ b

0
um(x, τ)dx respectively. The steady state inte-

grated value is 0.5 as seen from figure 4.10. The integrated material energy density is also

found to lag the radiation energy density at early times but finally the two equilibrate.

To check the consistency of the final results, we add Eqs. (4.8) and (4.9) and integrate over

x from 0 to b, yielding

∫ b

0

(ε
∂ur(x, τ)

∂τ
+
∂um(x, τ)

∂τ
)dx =

∫ b

0

∂2ur(x, τ)

∂x2
dx =

∂ur(b, τ)

∂x
− ∂ur(0, τ)

∂x
,
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Figure 4.10:Integrated radiation (ψr(τ)) and material energy densities (ψm(τ)) in the slab as a function
of scaled timeτ .

i.e.,

ε
∂ψr(τ)

∂τ
+
∂ψm(τ)

∂τ
=
∂ur(b, τ)

∂x
− ∂ur(0, τ)

∂x
. (4.112)

Using the expressions for the energy densities, their first derivatives in space and the integrated

quantities, we find that both the left and right hand sides reduce to

∑

n
esnτ

[Q(sn) cos(β(sn)b)−R(sn) sin(β(sn)b)]
dβ(sn)

ds

× [ 3
β(sn)

(1 − cos(β(sn)b)) + 2
√

3 sin(β(sn)b)](ε+

1
sn+1

) proving the consistency of the obtained solutions.

As there are infinite number of residues, the exact solution is obtained only on adding all of

them. However, the contribution from the poles decrease very sharply. To study convergence,

we plot percentage error as a function of number of roots of the transcendental equation consid-

ered. As seen from figure 4.11, 2.1% error in the value ofur(0, 2.5) is observed on considering

only the first two roots i.e., the steady state result and residue for the two non zero poles. The er-

rors arising due to non inclusion of higher order terms is more initially as the higher order poles
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Figure 4.11:Percentage error in the radiation energy densityur(x, τ) in the slab as a function of number
of roots considered (N).

contribute only at very small times because of the exponential term. The error falls sharply to

a negligible value (0.005%) on considering the contribution from the first 6 roots i.e.,first 11

poles. More accurate results can be obtained by adding residues from higher order poles.

Figure 4.12 shows the plot of radiation energy densityur(x, τ) as a function of space and

time for ε = 0. Contrary to the results for finiteε, the radiation energy density attains a finite

value even at very early times due to the absence of retardation effects. However, the material

energy density shows the same trend as for finiteε.

4.3.2 Spherical shell

For the spherical shell, initially (τ=0.01) the radiation energy density falls rapidly from the in-

ner surface (scaled radiusX1 = 1) where radiation is incident towards the outer surface (scaled

radiusX2 = 2) as shown in figure 4.13. Though the trend is similar to the planar slab, the values

of the scaled energy densities are less. Also, contrary to the planar case, the variation in energy

densities remain sharper in the inner meshes compared to theouter ones and the variations in
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Figure 4.12:Scaled radiation energy densityur(x, τ) Vs. position (x) in the slab of scaled thickness
b = 1 at different times forε = 0.

energy densities are not linear with position even after attaining steady state. This is evident

because the mass of the material to be heated in the radially outward direction increases. Sim-

ilar to the planar slab, the material energy density lags behind the radiation energy densities at

early stages and finally reaches equilibrium (beyondτ=10) [figure 4.14]. Magnitude of deriva-

tive of analytical radiation and material energy densitiesremain higher in the inner meshes as

compared to outer ones at all times [figures 4.15 and 4.16]. The leakage currents from the inner

and outer surfaces of the spherical shell areJ−(τ) = ur(X1, τ) + 2√
3

∂ur(X1,τ)
∂x

,

J+(τ) = ur(X2, τ) − 2√
3

∂ur(X2,τ)
∂x

.

The variation inJ+(τ) is similar to planar slab though the values are less. However, J−(τ)

remains negative throughout as radiation always diffuses outwards in order to maintain the flux

boundary conditions (figure 4.17). As the derivative∂ur(x, τ)/∂x is more negative for inner

radii, ur(X1, τ) + ur(X2, τ) < 1 which leads toJ+(τ) + J−(τ) < 1. For the case considered,

X1 = 1 andX2 = 2, it is found that2ur(X1, τ) < 1. As J−(τ) = 2ur(X, τ) − 1, henceJ−(τ)

is negative. The averaged or integrated radiation and material energy densities are given by
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Figure 4.13:Scaled radiation energy densityur(x, τ) Vs. position (x) in a spherical shell of scaled
inner radiusX1 = 1 and outer radiusX2 = 2 at different times forε = 0.1.

ψr(τ) =
∫ X2

X1
ur(x, τ)4πx

2dx andψm(τ) =
∫ X2

X1
um(x, τ)4πx2dx. and plotted in figure 4.18.

The integrated material energy density is also found to lag the radiation energy density at early

times but finally the two equilibrate to a value of 0.25.

To check the consistency of the final results, we add Eqs. (4.69) and (4.70) and integrate

over x fromX1 toX2, yielding

∫ X2

X1

(ε
∂ur(x, τ)

∂τ
+
∂um(x, τ)

∂τ
)4πx2dx = 4π(X2

2

∂ur(X2, τ)

∂x
−X2

1

∂ur(X1, τ)

∂x
). (4.113)

Using the expressions for the energy densities, we find that both the left and right hand sides

reduce to the same expression proving the consistency of theobtained solutions.

As for the planar slab, convergence of relative error in radiation energy density for spherical

shell on increasing contribution from higher order poles isfound to follow the same trend.

However, the values of relative errors are slightly higher (3.4% for ur(0, 2.5) for contribution

from first 2 roots) than the planar slab as shown in figure 4.19.Thus for these finite systems,
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Figure 4.14:Scaled material energy densityum(x, τ) Vs. position in a spherical shell of scaled inner
radiusX1 = 1 and outer radiusX2 = 2 at different times forε = 0.1.
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Figure 4.15:Space derivative of scaled radiation energy density∂ur(x, τ)/∂x Vs. position (x) in the
spherical shell at different times.
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Figure 4.16:Space derivative of scaled material energy density∂um(x, τ)/∂x Vs. position (x) in the
spherical shell at different times.
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of number of roots considered (N).
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Figure 4.20:Scaled radiation energy densityur(x, τ) Vs. position (x) in a sphere of scaled radius X=
0.5.

energy densities in terms of series solutions are found to converge quickly and depending on

the required degree of accuracy, the number of poles to be considered is decided.

4.3.3 Sphere

The scaled radiation and material energy densities for a sphere of scaled radius x=0.5 are shown

in figures 4.20 and 4.21. Both the scaled radiation and material energy densities attain a steady

state value of 1 implying that the sphere finally attains the temperature of the incident radiation

as expected. The material energy density lags behind the radiation energy density as usual and

the results are found to be consistent.

4.4 Summary

In this chapter, the time dependent non equilibrium radiation diffusion problem has been solved

analytically for finite planar slab, spherical shell and sphere with a constant radiation flux inci-
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Figure 4.21:Scaled material energy densityur(x, τ) Vs. position (x) in a sphere of scaled radius X=
0.5.

dent on the surface. The observed trend in temporal and spatial variation of energy densities,

leakage currents, integral quantities, etc. has been explained physically. The results obtained

in this work can serve as new and useful benchmarks for non equilibrium radiation diffusion

codes in both planar and spherical geometries. The same methodology can be applied to any

other finite size systems like layered media with various boundary conditions.
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5
One dimensional hydrodynamic,

radiation diffusion and transport

simulation

5.1 Introduction

The zero dimensional model is successful in obtaining the proper reaction yields and reaction

dynamics going on in time. However, to study more complex processes like shock propagation

in ICF plasmas, pellet implosion and explosion either in a direct drive fusion or via x-rays

in a hohlraum for the indirect drive, the actual spatial variation is to be considered. Thus, to

have a better understanding of the processes taking place ina thermonuclear plasma, at least

one dimensional hydrodynamic simulation study need to be performed. In this chapter, we

develop a fully implicit one dimensional hydrodynamic codein the Lagrangian geometry for

planar, cylindrical and spherical cases. We validate the code in planar geometry using the

benchmark results of shock tube problem [15] and in spherical geometry using Sedov’s point

explosion problem [16]. Results for Noh’s problem have alsobeen generated in both spherical

and cylindrical geometries [17].

As the temperature of a material increases, the radiation energy keeps on increasing at a rate

greater than the material energy [4]. At high temperatures,the internal energy of the material

changes because of radiation interaction in addition to that due to hydrodynamic compression.

To obtain the energy flowing from radiation to matter, the radiation transport equation needs
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to be solved. We develop a finite difference radiation diffusion code and generate results for

the finite and infinite planar slabs and also a finite sphericalshell. Radiation transport equation

has also been solved numerically using the discrete ordinates method and results generated

for Marshak wave propagation in both planar and spherical geometries. As the hydrodynamic

motion is slow compared to radiation diffusion or transport, the material is assumed to be static

while solving the radiation intensity within the medium.

5.2 Implicit finite difference scheme for solving the hydrody-

namic equations

5.2.0.1 Grid structure

For hydrodynamic calculations using a Lagrangian grid, themedium is divided into a number

of cells as shown in figure 5.1. The coordinate of the i th vertex is denoted byri and the region

between the(i− 1)th andith vertices is theith cell. The density of theith grid isρi and its mass

is given by

mi = ć× ρi × (rδ
i − rδ

i−1), (5.1)

with ć = 1, π, (4/3)× π andδ = 1, 2, 3 for planar, cylindrical and spherical geometries respec-

tively. Velocity of theith vertex is denoted byui andPi, Vi, Tion,i, Telec,i, Eion,i andEelec,i are

the total pressure, specific volume, temperature and the specific internal energy of ions and

electrons in theith mesh respectively.
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Figure 5.1:Grid structure.

5.2.0.2 Lagrangian step

During a time interval∆t, the verticesri of the cells move as (with an error in positionO(∆t)2)

r̃i = ri + u⋆
i ∆t, (5.2)

u⋆
i = (1/2)(ui + ũi), (5.3)

whereu⋆
i is the average of velocity values at the beginning and end of the Lagrangian step,ui

andũi , respectively.

5.2.0.3 Discretized form of the hydrodynamic equations

In the Lagrangian formulation of hydrodynamics, the mass ofeach cell remains constant thereby

enforcing mass conservation.

The Lagrangian differential equation for the conservationof momentum is :

ρ
d~u

dt
= −~∇P. (5.4)

Here, the total pressure is the sum of the electron and ion pressures i.e.P = Pion + Pelec.

In ICF plasmas, the Debye length is much less than the electron mean free path so that
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there is no charge separation over the length scale of interest [3]. This allows us to assume that

electron fluid and ion fluid charge densities and velocities are equal. Thus the plasma behaves

as a single fluid though the ions and electrons posses different temperatures.

Eqn. [5.4] can be discretized, for the velocityũi at the end of the time step, in terms of the

pressuresP 1/2
i andP 1/2

i+1 in theith and(i+ 1)th meshes after half time step [74]:

ũi = ui −
(P

1/2
i+1 − P

1/2
i )∆t

ρi+1(ri+1/2 − ri) + ρi(ri − ri−1/2)
. (5.5)

The velocity in theith meshũi is determined by the pressure in theith and(i+ 1)th meshes

and hence all the meshes are connected. Mass conservation equation can be used to eliminate

the pressures at half time step to obtain an equation relating the present time step velocities in

the adjacent meshes as follows:

The equation describing conservation of mass is

dρ

dt
= −ρ(~∇.~u), (5.6)

whereρ is the mass density of the medium. This equation can be rewritten in terms of pressure

using the relation,dP
dt

=
(

dP
dρ

)

S

dρ
dt

= c2s
dρ
dt

wherecs =

√

(

dP
dρ

)

S
is the adiabatic sound speed.

Therefore, eqn. [5.6] becomes

dP

dt
= −c2sρ~∇.~u. (5.7)

This can be written for all the one dimensional co-ordinate systems as

dP

dt
= −c2sρ

1

rα

d

dr
rαu, (5.8)

whereα = 0, 1, 2 for planar, cylindrical and spherical geometries. This equation can be dis-
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cretized to obtain the change in total pressure along a Lagrangian trajectory in terms of the

velocity ũi at the end of the time step [74]:

P
1/2
i = Pi + qi − ρic

2
s,i

1

rα
i−1/2

× [
rα
i ũi − rα

i−1ũi−1

ri − ri−1
]
∆t

2
, (5.9)

and

P
1/2
i+1 = Pi+1 + qi+1 − ρi+1c

2
s,i+1

1

rα
i+1/2

× [
rα
i+1ũi+1 − rα

i ũi

ri+1 − ri
]
∆t

2
. (5.10)

Here,qi is the quadratic Von Neumann and Richtmyer artificial viscosity in the ith mesh [22]:

qi =
ḱ(ρi∆xi)

2

Vi

(
dVi

dt
)2 (5.11)

whereḱ (≃ 3) is a dimensionless constant. Using eqns. [5.9] and [5.10] ,P
1/2
i andP 1/2

i+1 in eqn.

[5.5] are eliminated to obtain a tridiagonal system of equations forũi:

−Aiũi+1 +Biũi − Ciũi−1 = Di (5.12)

where

Ai =
ρi+1(cs,i+1∆t)

2

2(ρ∆r)i
× rα

i+1

rα
i+1/2(ri+1 − ri)

, (5.13)

Bi = 1 +
ρi+1(cs,i+1∆t)

2

2(ρ∆r)i
× rα

i

rα
i+1/2(ri+1 − ri)

+
ρi(cs,i∆t)

2

2(ρ∆r)i
× rα

i

rα
i−1/2(ri − ri−1)

, (5.14)
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Ci =
ρi(cs,i∆t)

2

2(ρ∆r)i
× rα

i−1

rα
i−1/2(ri − ri−1)

(5.15)

Di = ui −
∆t

(ρ∆r)i
[Pi+1 + qi+1 − Pi − qi], (5.16)

with

(ρ∆r)i = ρi+1(ri+1/2 − ri) + ρi(ri − ri−1/2). (5.17)

The energy equations, for the ions and electrons, expressedin terms of temperature are

ρ[CV ion
∂Tion

∂t
+
∂Eion

∂V

∂V

∂t
] = −Pion

V

∂V

∂t
− Pie (5.18)

and

ρ[CV elec
∂Telec

∂t
+
∂Eelec

∂V

∂V

∂t
] = −Pelec

V

∂V

∂t
+ Pie. (5.19)

whereEion andEelec are the specific internal energies and V is specific volume.Pie is the

ion-electron energy exchange term given by

Pie(Tergs/cm3/µs) = 2.704 × 10−40nelec nion

×Tion − Telec

T 1.5
elec

M−1Z2 × ln Λ, (5.20)

with ion and electron temperatures expressed in keV. Further, ‘nelec’ and ‘nion’ are the number

densities of electrons and ions, M is the mass number and Z is the charge of the ions. Here the

Coulomb logarithm for ion-electron collision is [90]

ln Λ = max{1, (23 − ln[(nelec)
0.5Z T−1.5

elec ])} (5.21)
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with Telec expressed in eV. The discrete form of the energy equations for ions and electrons are

T n,k
ion,i = T n−1

ion,i − (P n,k−1
ion,i ∆V n,k

i +
P n,k−1

ie ∆t

ρn,k−1
i

+ δn,k−1
ion ∆V n,k

i )/Cn,k−1
V ion,i (5.22)

and

T n,k
elec,i = T n,k−1

elec,i +
ρn,k−1

i Cn,k−1
V elec,i(T

n−1
elec,i − T n,k−1

elec,i )

∆tHn,k−1
i

−(P n,k−1
elec + δn,k−1

elec )ρn,k−1
i ∆V n,k

i

∆tHn,k−1
i

+ P n,k−1
ie /Hn,k−1

i (5.23)

where

Hn,k−1
i =

ρn,k
i Cn,k−1

V elec,i

∆tn
, (5.24)

δn,k−1
ion = (

∂Eion

∂V
)n,k−1
i , (5.25)

δn,k−1
elec = (

∂Eelec

∂V
)n,k−1
i . (5.26)

(5.27)

with ‘n’ and ‘k’ denoting the time step and iteration index respectively.

5.2.1 Results

We have investigated the performance of the scheme using thefollowing benchmark problems:

Shock tube problem

The shock tube is the most convenient and widely used tool forobtaining high temperatures

in the laboratory and for studying the chemical physics of gases. It is essentially a device in

which a plane shock wave is produced by the sudden bursting ofa diaphragm which separates

a gas at high pressure from one at lower pressure [15]. After the bursting of the diaphragm a

compression wave is formed in the low pressure gas, this rapidly steepening to form a shock
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Figure 5.2:(a) The (x,t) diagram in a shock tube. (b) Velocities of the fronts relative to the shock tube
and (c) Illustrative pressure profiles at time t.

front. Simultaneously, an expansion or rarefaction wave moves back into the high-pressure

gas with sound speed where the pressure fall is smooth. Figure 5.2 (a) is an (x,t) diagram for

a shock wave in a tube in which the driver gas at high pressureP4 in the region 4 is being

expanded through the expansion fan to a lower pressureP3 behind the contact surface in the

region 3. The limits of the expansion fan are formed by the head and tail of the rarefaction

wave. Region 2 denotes the region between the shock front andcontact surface whereas the

region 1 is undisturbed low pressure region. At a time t following this event the velocities of

the fronts relative to the shock tube are shown in figure 5.2 (b), while the pressure profiles are

shown in figure 5.2 (c).

It is convenient to consider the gas motion in relation to theshock front and hence we

consider the equations for conservation of mass, momentum and energy in terms of velocityv
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measured in shock-fixed coordinates.

ρ2v2 = ρ1v1 = m, (5.28)

P2 + ρ2v
2
2 = P1 + ρ1v

2
1, (5.29)

ρ2v2(H2 +
1

2
v2
2) = ρ1v1(H1 +

1

2
v2
1), (5.30)

v1 = us − u1, v2 = us − u2. (5.31)

whereH is the enthalpy per unit mass,us is the shock velocity relative to the tube,ρ is the

density andu is the particle velocity relative to the shock tube. For an ideal gas the enthalpyH

is given by

H = E +
P

ρ
=

c2

γ1 − 1
, (5.32)

E =
P

ρ(γ1 − 1)
, c =

√

γ1P

ρ
(5.33)

whereE is the specific internal energy,c is the local sound speed andγ is the specific heat ratio.

The shock strength is defined as the fractional change in pressure due to shock compression,

i.e.,s = (P2 − P1)/P1 so that eqns. (5.28)-(5.31) can be explicitly written as

P2 = P1(1 + s), (5.34)

ρ2 = ρ1
1 + g+s

1 + g−s
, (5.35)

c2 = c1

√

(1 + s)(1 + g−s)

1 + g+s
, (5.36)

us = u1 + c1
√

1 + g+s, (5.37)

u2 = u1 + c1
s

γ1

√
1 + g+s

, (5.38)

g± =
γ1 ± 1

2γ1
. (5.39)



136

where it has been assumed thatγ1 remains unchanged even after the shock compression. At

contact discontinuity which separates regions 2 and 3, the mass flux is zero. Hence,

P3 = P2, u3 = u2 = uc, (5.40)

whereuc is the speed of the contact discontinuity. It moves with the same velocity as the two

gases on either side of it. Behind CD, a trailing fan of rarefaction wave moves towards left with

the head of the RW fan moving with velocityc4 − u4 = c4 towards left, whereas the tail end

moves with velocityc3 − u3. Inside the fan region, the expansion occurs isentropically such

thatu+ 2c
γ−1

is conserved. Thus,

u3 +
2c3

γ4 − 1
= u4 +

2c4
γ4 − 1

i.e.,c3 = c4 −
γ4 − 1

2
u3. (5.41)

Having knownc3, we can writeP3 andρ3 using adiabatic relationP3 ∝ ργ4

3 and sound speed

c23 = γ4P3

ρ3
.

P3 = P4(
c3
c4

)1/a, ρ3 = ρ4(
P3

P4
)1/γ4 , a =

γ4 − 1

2γ4
. (5.42)

assuming thatγ4 remains unchanged even after rarefaction. The self-similar solution inside the

RW fan region can be written as

c =
γ4 − 1

γ4 + 1

z

t
+

2

γ4 + 1
c4, (5.43)

P = P4(
c

c4
)1/a, ρ = ρ4(

P

P4
)1/γ4 , (5.44)

u = u4 + 2
c4 − c

γ4 − 1
. (5.45)

Assuming the lower pressure gas also to be at rest at t=0, the shock strength s can be obtained
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by solving the following algebraic equation:

F (s) = 1 − bs√
1 + g+s

− p(1 + s)a = 0, (5.46)

b =
c1(γ4 − 1)

2c4γ1
, p = (

P1

P4
)a. (5.47)

The axial distance is obtained by the product of the velocities in the respective regions and

the given time t. For verifying the results obtained from ourcode with the analytical results,

we consider ideal gas of D-T with specific heat ratio 5/3 filledwithin a tube of length 20 cm.

At time t=0, the diaphragm is at the centre of the tube i.e., atx=10 cm. On the left side of

the diaphragm, the driver gas is at a density of 1 gm/cc and pressure 0.12 Mbar. The test gas

on the right is at a pressure of 0.012 Mbar and density 0.1 gm/cc. The internal energy of both

sides is 0.18 Tergs/gm. The tube is divided into 200 meshes each of thickness 0.1 cm. Figure

5.3 shows the density, pressure, velocity and internal energy as a function of distance at a time

10µs. Comparison with the analytical results (solid lines) is also shown.

Sedov’s self similar point explosion problem

The self similar problem of a strong point explosion was formulated and solved by Sedov

[16]. The problem considers a perfect gas with constant specific heats and densityρ0 in which

a large amount of energy E is liberated at a point instantaneously. The shock wave propagates

through the gas starting from the point where the energy is released. For numerical simulation,

the energy E is assumed to be liberated in the first two meshes.The process is considered at a

larger time t when the radius of the shock frontR(t) >> r0, the radius of the region in which

energy is released. It is also assumed that the stage of the process is sufficiently early so that

the shock wave has not moved too far from the source. This ascertains that the shock strength

is sufficiently large and it is possible to neglect the initial gas pressureP0 or counter pressure in

comparison with the pressure behind the shock wave [4].

Under the above assumptions, the gas motion is determined byfour independent variables,
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Figure 5.3:Comparison of the variables obtained from the simulation data in the pure hydrodynamic
case (points) with the analytical solutions (lines) for theshock tube problem.
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viz, amount of energy released E, initial uniform densityρ0, distance from the centre of the

explosion r and time t. The dimensionless quantityξ = r/R serves as the similarity variable.

The motion of the wavefront R(t) is governed by the relationship

R = ξ0(
E

ρ0

)1/5t2/5, (5.48)

whereξ0 is an independent variable. The propagation velocity of theshock wave is

us =
2

5
ξ

5/2
0 (

E

ρ0

)1/2R−3/2. (5.49)

The parameters behind the shock front using the limiting formulas for a strong shock wave are

u1 =
2

γ + 1
us, (5.50)

P1 =
2

γ + 1
ρ0u

2
s, (5.51)

ρ1 = ρ0
γ + 1

γ − 1
, (5.52)

T1 =
P1

(γ − 1)ρ1CV
. (5.53)

whereCV is the specific heat at constant volume andγ = CP/CV is the ratio of specific heats.

The distributions of velocity, pressure and density w.r.t.the radius are determined as functions

of the dimensionless variableξ = r/R. Since the motion is self-similar, the solution can be

expressed in the form

u = u1(t)ũ(ξ), P = P1(t)P̃ (ξ), ρ = ρ1ρ̃(ξ), (5.54)

whereũ, P̃ andρ̃ are new dimensionless functions. The hydrodynamic equations, which are a
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system of three PDE’s, are transformed into a system of threeordinary first-order differential

equations for the three unknown functionsũ, P̃ andρ̃ by substituting the expressions given by

eqn. [5.54] into the hydrodynamic equations for the spherically symmetric case and transform-

ing from r and t toξ. The boundary condition satisfied by the solution at the shock front (r = R

or ξ = 1) is ũ = P̃ = ρ̃ = 1. The dimensionless parameterξ0, which depends on the specific

heat ratioγ is obtained from the condition of conservation of energy evaluated with the solu-

tion obtained. Also, the distributions of velocity, pressure, density and temperature behind the

shock front are generated numerically using the hydrodynamics code without taking radiation

interaction into account. Ideal D-T gas of densityρ0 = 1 gm/cc andγ = 1.4 is filled inside a

sphere of 1 cm radius with the region divided into 100 radial meshes each of width 0.01 cm.

The initial internal energy per unit mass is chosen as105 Tergs/gm for the first two meshes and

zero for all the other meshes. An initial time step of10−6 µs is chosen and the thermodynamic

variables are obtained after a time0.2 µs. As in the case of the problem of shock propagation

in aluminum, the total energy equation is solved assuming that electrons and ions are at the

same temperature (the material temperature). In figure 5.4.we compare the distribution of the

functionsP/P1, u/u1, ρ/ρ1 andT/T1 with respect to r/R obtained exactly by solving the ODEs

as explained above (solid lines) with the results generatedfrom our code (dots). Good agree-

ment between the numerical and theoretical results is observed. As is characteristic of a strong

explosion, the gas density decreases extremely rapidly as we move away from the shock front

as seen from figure 5.4. In the vicinity of the front the pressure decreases as we move towards

the centre by a factor of 2 to 3 and then remains constant whereas the velocity curve rapidly

becomes a straight line passing through the origin. The temperatures are very high at the centre

and decreases smoothly at the shock front. As the particles at the centre are heated by a strong

shock, they have very high entropy and hence high temperatures.

Noh’s problem

Noh’s problem in spherical and cylindrical coordinates consists of a sphere or cylinder of
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uniform densityρ0 and radiusr0 initially. At t=0, all the interior points start moving radially

towards the centre with a given uniform velocityu0. The hydrodynamic equations governing

an isentropic flow in one dimension is given by

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ(

∂u

∂r
+
Nu

r
) = 0, (5.55)

ρ(
∂u

∂t
+ u

∂u

∂r
) +

∂P

∂r
= 0, (5.56)

∂S

∂t
+ u

∂S

∂r
= 0, (5.57)

whereρ(r, t), P (r, t), u(r, t) andS(r, t) are respectively, the density, pressure, velocity and en-

tropy of the medium at point r at time t. N = 0, 1 and 2 for planar,cylindrical and spherical

geometry. In eqn. [5.57], the flow has been assumed to be inviscid and nonconducting so that

the entropy remains constant along the moving trajectory ofa fluid element. The problem was

solved analytically by W. F. Noh for an ideal gas and for a moregeneral equation of state by
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Roy A. Axford using LIE group transformation [17, 100].

At time t=0, all the points move radially towards the centre and immediately a shock wave

is reflected from the centre fort > 0. This shock wave continues moving outwards compressing

the medium behind it. Thus, at any instant of time t, the wholeregion is divided into two zones,

the shocked zone and the unshocked zone. The spatial profilesof the flow variables at any

instant of time are

ρ1 = ρ0(
γ + 1

γ − 1
)N+1, (5.58)

P1 = −u0usρ1, (5.59)

E1 =
−u0us

γ − 1
, (5.60)

u1 = 0, (5.61)

us = −u0(γ − 1)

2
, (5.62)

behind the shock front. At the shock front, the values are:

ρs = ρ0(
γ + 1

γ − 1
)N+1, (5.63)

Ps = 0, (5.64)

Es = 0, (5.65)

us = u0. (5.66)

And ahead of the shock front,

ρ(r, t) = ρ0(1 − u0t

r
)N , (5.67)

P0 = 0, (5.68)

E0 = 0, (5.69)
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for a givenu0. The uniform velocityu0 with which the points move towards the centre is taken

to be1 cm/µsec i.e., u0 = 1 cm/µsec, initial densityρ0 = 1 gm/cc andγ = 5/3. Then the

velocityus = 1/3 cm/µsec, so that att = 0.6 µsec, the shock front appears at r=0.2 cm. Using

the fully implicit hydrodynamic code, the spatial profiles of the flow variables are obtained at

t = 0.6 µsec with 100 meshes each having a width of 0.01cm. The spatial velocity profile for a

sphere and spatial temperature profile for a cylinder as obtained from the simulation as well as

the analytical values are plotted in figure 5.5.

5.3 Finite difference method for solving the radiation diffu-

sion equation

In this section, we present the finite difference solution tothe radiation diffusion equation cou-

pled to the material energy equation defined in the previous chapter. As the radiation diffusion

is faster than hydrodynamic motion, the medium is assumed toremain static during the time

required to attain the steady state.

Planar slab

We assume that the opacity is temperature independent and the heat capacity is proportional

to the cube of the temperature,CV = αT 3(z, t). Then, for a material energy densityθ =

aT 4(z, t) and radiation fluxF (z, t) = − c
3σa

∂Er(z,t)
∂z

, the radiation and material energy density

equations along with the boundary conditions for a finite slab of thicknessl are

∂Er(z, t)

∂t
+
∂F (z, t)

∂z
= cσa(θ(z, t) − Er(z, t)), (5.70)

1

c

∂θ(z, t)

∂t
= ǫσa(Er(z, t) − θ(z, t)), (5.71)

cEr(0, t) + 2F (0, t) = 4Finc, (5.72)

cEr(l, t) − 2F (l, t) = 0. (5.73)
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Time differencing is performed using a fully implicit backward Euler scheme. Spatial dis-

cretization is performed on a staggered mesh where the independent spatial variable z and the

flux F are evaluated at cell edges and the energy densities represent cell averages at the cell cen-

ters. The finite difference equations for the radiation and material energy densities are obtained

as [64]

(1 +
σa

γa + ǫσa
)γaE

n+1
r,i +

1

c∆zi
(F n+1

i+1/2 − F n+1
i−1/2) = γaE

n
r,i +

σaγa

γa + ǫσa
θn

i , (5.74)

θn+1
i =

γa

γa + ǫσa
θn

i +
ǫσa

γa + ǫσa
En+1

r,i , (5.75)

whereγa = 1/(c∆t) and∆zi = zi+1/2 − zi−1/2. The energy density is assumed to be a piece-

wise linear function in space and we define two fluxes at the cell edge, one from the left and

one from the right.

F n+1
l,i+1/2 = − 2c

3σa

En+1
r,i+1/2 − En+1

r,i

∆zi

, (5.76)

F n+1
r,i+1/2 = − 2c

3σa

En+1
r,i+1 −En+1

r,i+1/2

∆zi+1
. (5.77)

The edge value of the radiation energy density is a weighted average of the cell center quantities.

Finally a tridiagonal system of equations is obtained for the radiation energy density at time n+1

as

−En+1
r,i−1 + [1 +

∆zi−1/2

∆zi+1/2
+ 3σa∆zi∆zi−1/2γa(1 + σa/(γa + ǫσa))]E

n+1
r,i

−∆zi−1/2

∆zi+1/2

En+1
r,i+1 = 3σa∆zi∆zi−1/2γaE

n
r,i +

3σ2
a∆zi∆zi−1/2γa

γa + ǫσa
θn

i , (5.78)

where∆zi+1/2 = 1
2
(∆zi + ∆zi+1). Applying the BCs for the first and last cell, the radiation
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energy density equations for the first cell is

[1 + 2(
∆z1

∆z3/2

+
4

3σa∆z3/2

)−1 + 3σa∆z1∆z3/2γa(1 +
σa

γa + ǫσa
)]En+1

r,1 −En+1
r,2

= 3σa∆z1∆z3/2γa(E
n
r,1 +

σa

γa + ǫσa
θn
1 ) +

8

c
Finc(

∆z1
∆z3/2

+
4

3σa∆z3/2

)−1. (5.79)

And that for the last cell is

[1 + (
∆zN

2∆zN−1/2

+
2

3σa∆zN−1/2

)−1 + 3σa∆zN∆zN−1/2γa(1 +
σa

γa + ǫσa
)]En+1

r,N

−En+1
r,N−1 = 3σa∆zN∆zN−1/2γa(E

n
r,N +

σa

γa + ǫσa
θn

N ). (5.80)

Spherical shell

In this section, we derive the finite difference equations for obtaining the radiation and mate-

rial energy densities for a spherical shell of inner radiusR1 and outer radiusR2. Using the trans-

formationE ′
r(r, t) = Er(r, t)r andθ′ = aT 4(r, t)r, the flux is defined asF (r, t) = − c

3σa

∂E′
r(r,t)
∂r

.

Then the equations for transformed radiation and material energy densities and the boundary

conditions are

∂E ′
r(r, t)

∂t
+
∂F (r, t)

∂r
= cσa(θ

′(r, t) − E ′
r(r, t)), (5.81)

1

c

∂θ′(r, t)

∂t
= ǫσa(E

′
r(r, t) − θ′(r, t)), (5.82)

(
1

R1
+

2

3σaR2
1

)E ′
r(R1, t) +

2

c

F (R1, t)

R1
=

4Finc

c
, (5.83)

(
1

R2
− 2

3σaR2
2

)E ′
r(R1, t) −

2

c

F (R2, t)

R2
= 0. (5.84)

Using finite differencing in space and time as done for the plane slab, the tridiagonal equation
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for energy density (in terms of the transformed variablesE ′
r andθ′) of the inner cells is

−E ′n+1
r,i−1 + [1 +

∆ri−1/2

∆ri+1/2

+ 3σa∆ri∆ri−1/2γa(1 +
σa

γa + ǫσa
)]E ′n+1

r,i

−∆ri−1/2

∆ri+1/2

E ′n+1
r,i+1 = 3σa∆ri∆ri−1/2γaE

′n
r,i +

3σ2
a∆ri∆ri−1/2γa

γa + ǫσa

θ′ni . (5.85)

From the BC on the surface of the first and last cell, we obtain the equation relating the energy

densities for the first cell as

[1 + 2
(2 + 3σaR1)∆r3/2

4R1 + 3σaR1∆r1 + 2∆r1
+ 3σa∆r1∆r3/2γa(1 +

σa

γa + ǫσa
)]E ′n+1

r,1 − E ′n+1
r,2

= 3σa∆r1∆r3/2γa(E
′n
r,1 +

σaθ
′n
1

γa + ǫσa
) +

24Finc

c

1
4

R1σa∆r3/2
+ 3∆r1

∆r3/2R1
+ 2∆r1

R2
1σa∆r3/2

]. (5.86)

Similarly, the equation for the last cell is

[1 +
2∆rN−1/2(3σaR2 − 2)

(3σaR2 − 2)∆rN + 4R2
+ 3σa∆rN∆rN−1/2γ(1 +

σa

γa + ǫσa
)]E ′n+1

r,N

−E ′n+1
r,N−1 = 3σa∆r∆rN−1/2γa(E

′n
r,N +

σaθ
′n
N

γa + ǫσa
). (5.87)

5.3.1 Results

5.3.1.1 Planar slab

Finite planar slab

The radiation and material energy densities obtained from finite difference analysis are plot-

ted in figures 5.6 and 5.7 along with the analytical results for a slab of widthb = 1. To obtain a

normalized solution that is comparable to analytical solution, we chooseFinc = c/4 , so thatEr

andθ directly correspond tour andum respectively. The numerical results obtained from finite

difference analysis are found to converge for a mesh width∆z = 5.7733 × 10−5 cm. A time

step of∆t = 3.33 × 10−15 s is chosen upto a scaled timeτ = 0.1. Beyond this time, a coarser
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Figure 5.6:Scaled radiation energy densityur(x, τ) Vs. position (x) in the slab of scaled thickness b=1
at different times forǫ = 0.1. The symbols stand for analytical values whereas lines represent the results
obtained from finite difference method.

time step of∆t = 3.33 × 10−12 s is found to be sufficient for obtaining the converged values.

The numerical results are found to agree with the analyticalones with an error< 1% at early

stages (τ = 0.01). The error reduces further as time progresses.

Infinite planar slab

The same finite difference diffusion program for the finite planar slab is used for obtaining

the radiation and material energy densities for an infinite slab. The main modification is that the

radiation energy density in the last cell is zero, i.e.,En+1
N = 0 as radiation can never reach the

other end of the infinite slab. In figure 5.8, the scaled material and radiation energy densities

have been plotted as a function of the scaled depthσaz in the slab. The results agree with those

obtained by Su and Olson [64] both numerically and semi-analytically.
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Figure 5.7:Scaled material energy densityum(x, τ) Vs. position (x) in the slab at different times for
ǫ = 0.1. The symbols stand for analytical values whereas lines represent the results obtained from finite
difference method.
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Figure 5.9:Scaled radiation energy densityur(x, τ) Vs. position (x) in a spherical shell of scaled inner
radiusX1 = 1 and outer radiusX2 = 2 at different times forǫ = 0.1. The symbols stand for analytical
values whereas lines represent the results obtained from finite difference method.
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Figure 5.10:Scaled material energy densityum(x, τ) Vs. position in a spherical shell of scaled inner
radiusX1 = 1 and outer radiusX2 = 2 at different times forǫ = 0.1. The symbols stand for analytical
values whereas lines represent the results obtained from finite difference method.
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5.3.1.2 Spherical shell

Numerical results for energy densities in the spherical shell are obtained from finite difference

analysis using the same mesh width and time step as used for the planar slab. Good agreement

between the analytical and numerical results establish thevalidity of finite difference radiation

diffusion in spherical geometry. Magnitude of derivative of analytical radiation and material

energy densities remains higher in the inner meshes as compared to outer ones at all times

[figures 5.9 and 5.10].

5.4 Discrete ordinates method for solving the radiation trans-

port equation

In the Gray approximation, or one group model, the time dependent radiation transport equation

in a stationary medium is

1

c

∂I(~r, ~Ω, t)

∂t
+ ~Ω.~∇I(~r, ~Ω, t) + (σR(T ) + σs)I(~r, ~Ω, t) =

σR(T )B(T )

4π

+
σs

4π

∫

I(~r, ~Ω′, t)d~Ω′, (5.88)

whereI(~r, ~Ω, t) is the radiation intensity, due to photons moving in the direction ~Ω, at space

point~r and time t. HereσR(T ) is the one group radiation opacity, which is assumed to be cal-

culated by Rosseland weighing, at electron temperature T (the subscript ofTelec is dropped for

convenience). As already mentioned, B(T) is the radiation energy flux emitted by the medium

which is given by the Stefan-Boltzmann’s lawB(T ) = acT 4. The radiation constanta is≃ 137

if T is in keV and c incm/µs. This formula for the emission rate follows from the local ther-

modynamic equilibrium (LTE) approximation, which is assumed in the present model. The

scattering cross-sectionσs, representing Thomson scattering is assumed to be isotropic and in-

dependent of temperature. In the Lagrangian framework the radiation transport equation for a



152

planar medium is

1

c
ρ
∂

∂t
(
I

ρ
) + µ

∂I

∂x
+ (σR(T ) + σs)I(x, µ, t) =

σR(T )B(T )

2

+
σs

2

∫ 1

−1

I(x, µ′, t)dµ′, (5.89)

whereI(x, µ, t) is the radiation intensity along a direction at an anglecos−1(µ) to the x axis.

The termρ ∂
∂t

( I
ρ
) in this equation arises due to the Lagrange scheme used in solving the hydro-

dynamic equations.

Backward difference formula for the time derivative gives

µ
∂In,k

∂x
+ [σn,k−1

R + (c∆t)−1 + σs]I
n,k =

σn,k−1
R Bn,k−1

2

+
σs

2

∫ 1

−1

In,k(µ′)dµ′ + ρn,k−1

ρn−1
In−1(c∆t)−1. (5.90)

Here, ‘n’ and ‘k’ denote the time step and iteration index fortemperature respectively. This

iteration arises because the opacityσR(T ) and the radiation emission rateσR(T )B(T ) are func-

tions of the local temperature T. The converged spatial temperature distribution is assumed to be

known for the hydrodynamic cycle for the previous time step.Starting with the corresponding

values ofσR(T ) and B(T) , denoted byσn,0
R andBn,0, the radiation energy fluxes are obtained

from the solution of the transport equation (Eqn. [5.90]). The method of solution, well known

in neutron transport theory, is briefly discussed below. This is used in the electron energy equa-

tion of hydrodynamics (Eqn. [6.3]) to obtain a new temperature distribution and corresponding

values ofσn,1
R andBn,1. The transport equation is again solved using these new estimates and

the iterations are continued until the temperature distribution converges.

Finally the transport equation can be expressed in conservation form in spherical geometry
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as

µ

r2

∂

∂r
(r2In,k) +

∂

∂µ
[
(1 − µ2)In,k

r
] + σIn,k = Q(r, µ), (5.91)

with

σ = σn,k−1
R + (c∆t)−1 + σs, (5.92)

Q(r, µ) =
σn,k−1

R Bn,k−1

2
+
σs

2

∫ 1

−1

In,k(µ′)dµ′ + ρn,k−1

ρn−1
In−1(c∆t)−1, (5.93)

where, the second term in eqn. [5.91] accounts for angular redistribution of photons during free

flight. This term arises as a result of the local coordinate system used to describe the direction

of propagation of photons. If this term is omitted, eqn. [5.91] reduces to that for planar medium

and therefore a common method of solution can be applied.

A slightly more accurate linearization [101] can be introduced in Eqs. [5.90] and [5.91] by

replacingBn,k−1 withBn,k. Then, a first order Taylor expansion can be used for the approxima-

tionBn,k = Bn,k−1 + (∂B/∂T )n,k−1(T n,k − T n,k−1) from which(T n,k − T n,k−1) can be elim-

inated using eqn. [6.3]. The convergence of this modified method for treating the non-linearity

of the Planck function may be better compared to the simple iteration method. However, for the

problems considered in this thesis we have successfully used the iteration method.

To solve eqn. [5.91], it is written in the discrete angle variable as [26]

µm

r2

∂

∂r
(r2Im) +

2

rωm
(αm+1/2Im+1/2 − αm−1/2Im−1/2) + σIm = Qm, (5.94)

where the indices ‘n’ and ‘k’ on I have been suppressed. Here mrefers to a particular value ofµ

in the angular range [-1,1] which is divided into M directions. The parameterωm is the weight

attached to this direction whose value has been fixed according to the Gauss quadrature and

αm±1/2 are the angular difference coefficients.Im andIm±1/2 are the intensities at the centres
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and the edges of the angular cell respectively. The angle integrated balance equation for photons

is satisfied if the “α-coefficients” obey the condition

ΣM
m=1[αm+1/2Im+1/2 − αm−1/2Im−1/2] = 0. (5.95)

As photons traversing alongµ = ±1 are not redistributed during the flight, theα-coefficients

also obey the boundary conditions

α1/2 = αM+1/2 = 0. (5.96)

For a spatially uniform and isotropic angular flux, eqn. [5.94] yields the recursion relation

αm+1/2 = αm−1/2 − ωmµm, (5.97)

as the intensityI(r, µ) is a constant in this case.

The finite difference version of eqn. [5.94] in space is derived by integrating over a cell

of volumeVi bounded by surfacesAi±1/2 whereVi = 4π
∫ r+1/2

r−1/2
r2dr = 4π

3
(r3

i+1/2 − r3
i−1/2) and

Ai±1/2 = 4πr2
i±1/2. The discrete form of the transport equation in space and angle is thus ob-

tained as

µm

Vi
[Ai+1/2Im,i+1/2 − Ai−1/2Im,i−1/2] +

2(Ai+1/2 −Ai−1/2)

ωmVi

×[αm+1/2Im+1/2,i − αm−1/2Im−1/2,i] + σIm,i = Qm,i. (5.98)

The cell average intensity and source are given by

Im,i =
1

Vi

4π

∫ ri+1/2

ri−1/2

r2Im(r)dr, (5.99)
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and

Qm,i =
1

Vi
4π

∫ ri+1/2

ri−1/2

r2Qm(r)dr, (5.100)

respectively, where ‘i’ specifies the spatial mesh.

As mentioned earlier, planar geometry equations are obtained if the terms involvingαm±1/2

are omitted and the replacementsVi = ri+1/2 − ri−1/2 andAi+1/2 = 1 are made. Thus, both

geometries can be treated on the same lines using this approach. The difference scheme is

completed by assuming that the intensity varies exponentially between the two adjacent faces

of a cell both spatially and angularly so that the centered intensityIm,i can be expressed as

[102]:

Im,i = Im,i−1/2 exp [−1

2
(ri+1/2 − ri−1/2)], (5.101)

Im,i = Im,i+1/2 exp [+
1

2
(ri+1/2 − ri−1/2)], (5.102)

where the radiiri+1/2 andri−1/2 are expressed in particle mean free paths. These relations show

that

I2
m,i = Im,i−1/2Im,i+1/2, (5.103)

for the spatial direction. Similarly, for the angular direction one gets

I2
m,i = Im−1/2,iIm+1/2,i. (5.104)

Use of these difference schemes guarantees positivity of all the angular fluxes ifQm,i are posi-
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tive. The symmetry of the intensity at the centre of the sphere is enforced by the conditions

IM+1−m,1/2 = Im,1/2, m = 1, 2, ......,M/2. (5.105)

Dividing the spatial range into L intervals, for a vacuum boundary atrL+1/2, we have

Im,L+1/2 = 0, m = 1, 2, .......,M/2 (5.106)

i.e, at the rightmost boundary the intensities are zero for all directions pointing towards the

medium. Alternately, boundary sources, if present, can also be specified.

An iterative method is used to solve the transport equation to treat the scattering term. The

radiation densities at the centre of the meshes are taken from the previous time step, thereby

providing the source explicitly. The intensitiesI1/2,i for all meshes do not occur in eqn. [5.98]

asα1/2 = 0. Then the intensitiesI3/2,i are eliminated from this equation using the upwind

schemeI3/2,i = I1,i. Starting from the boundary condition, viz. eqn. [5.106], eqn. [5.98]

and eqn. [5.103] can be used to determine these two intensities for all the spatial meshes ’i’.

Thereafter together with eqn. [5.104], the intensities forall the negative values ofµm can be

solved for. At the centre, the reflecting boundary conditiongiven by eqn. [5.105] provide

the starting intensities for the outward sweeps through allthe spatial and angular meshes with

positive values ofµm.

This completes one space-angle sweep providing new estimates of radiation energy flux (at

the mesh centres) given by:

En,k
Ri =

∑

m

ωmIm,i/
∑

m

ωm (5.107)

where the sum extends over all directions M. The mesh-angle sweeps are repeated until the

scattering source distribution converges to a specified accuracy. The rate of radiation energy
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absorbed by unit mass of the material in theith mesh is

εi = σn,k−1
Ri [En,k

Ri −Bn,k−1
i ]/ρn,k

i , (5.108)

thus providing the material temperatures in theith mesh at that time step using the material

energy equations, viz.

ρ[CV ion
∂Tion

∂t
+
∂Eion

∂V

∂V

∂t
] = −Pie, (5.109)

ρ[CV elec
∂Telec

∂t
+
∂Eelec

∂V

∂V

∂t
] = σR(Telec)[ER(r, Telec) − B(Telec)] + Pie (5.110)

by ignoring hydrodynamic motion, i.e., considering the meshes to be fixed.

5.4.1 Results

We have investigated the performance of the scheme using these benchmark problems:

Marshak wave problem

In figure 5.11, we plot the scaled radiation and material energy densitiesur(x, τ) and

um(x, τ) as functions of position in the slab at different times forǫ = 0.1. For numerical simu-

lation we have chosen opacityσa = 100cm−1 and mesh width∆z = 10−3cm in order to main-

tain σa∆z = 0.1. Comparison with the analytical results show good agreement at later times,

whereas there is slight disagreement at earlier times. As the analytical results are obtained for

the Marshak diffusion problem whereas our results employ the full radiation transport, slight

difference at earlier times is expected because of larger penetration for diffusion approximation.

Forσa = 0.558cm−1, and mesh width∆z = 0.1792cm, the comparison between the analytical

and numerical solution for the scaled radiation temperature(Tr/Tinc)
4 and material temperature

(Tm/Tinc)
4 are shown in figures 5.12 and 5.13 respectively.

Steady state radiative heat fluxThe steady state radiative heat flux through a finite planar
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Figure 5.11:Linear plot of the radiation energy density and material energy density as functions of
position in the slab at different times. The symbols represent the analytical solutions.
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Figure 5.12:Linear plot of the scaled radiation temperature density(Tr/Tinc)
4 as functions of position

in the slab at different times. The symbols represent the analytical solutions.
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Figure 5.13:Linear plot of the scaled material temperature density(Tm/Tinc)
4 as functions of position

in the slab at different times. The symbols represent the analytical solutions.

slab containing a Grey absorbing and emitting gas of opticaldepthτ is given by

FT =
σB(T 4

2 − T 4
1 )

R(t)
, (5.111)

where the interpolation distance R(t) is given by1 + 3τ/4 + (τ/4)/(1 + 3.8070τ). τ is the

optical thickness of the medium,σB is the Stefan Boltzmann constant,T1 andT2 are the tem-

peratures on two sides of the slab. This expression is accurate to 0.3% [103]

For the purpose of numerical simulation, we consider a slab of material 0.5 cm thick, of

densityρ = 10 g/cc, specific heat1012ergs/g/eV and initial temperature of 100eV driven by a

blackbody at 4keV. The value of opacity isσa = 10cm−1 and the blackbody boundary condi-

tion is applied at 0.05cm. This slab has an optical thicknessof τ = 5. As observed in figure

5.14, initially the radiation flux is high on the incident surface and falls off with distance. As

time progresses, it penetrates more into the slab with a slight drop on the surface. Finally, at

1.37 × 10−9 s, the steady state value of5.476 × 1025ergs/cm2/s is attained which is in good
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Figure 5.14:Radiation flux Vs. position at consecutive times. The symbols represent the solutions
generated by Wilson [104]

agreement with the theoretical value of5.31× 1025ergs/cm2/s obtained from eqn. [5.111] and

also with earlier numerically obtained value of5.54 × 1025ergs/cm2/s [104]. A time step of

10−16 s and a mesh width of2.5 × 10−2 cm has been used for these simulations. The radiation

energy density and temperature as a function of position areshown in figures 5.15 and 5.16,

respectively.

Marshak wave problem in spherical geometryIn the literature, though there are plenty

of results on radiation transport in planar geometry, that in spherical geometry is scarce. Hon-

rubia has generated results for Marshak wave propagation problem in spherical geometry using

1D-radiation hydrodynamics code called SARA that implicitly solves the multigroup radiation

transport equations [93]. We generate results for radiation and material energy densities in a

sphere using opacityσ = 100cm−1 and mesh width∆z = 10−3 cm as for the planar case. The

radius of the sphere is chosen to be 0.05 cm and a time independent radiative flux= c/4 falls on

the surface of the sphere. The plots for scaled radiation andmaterial energy densities are similar

to planar case at earlier times. At steady state, the radiation and material temperatures become
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represent the solutions generated by Wilson [104]

0.0 0.2 0.4 0.6
0

2

4
3.7 x 10-9s 

2.41 x 10-10s 

1.35 x 10-10s 
5.2 x 10-11s 

1.2 x 10-11s 

 

 

Te
m

pe
ra

tu
re

 (k
eV

)

Distance (cm)

Figure 5.16: Radiation temperature Vs. position at consecutive times. The symbols represent the
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equal to 1 and is almost constant throughout the sphere as there is no loss from the centre. In the

planar case, as there is loss from the other side of the finite slab, at steady state, the temperatures

are found to decrease away from the incident surface. The results for spherical geometry are

shown in figure 5.17. Let us consider a simplified case where radiation is not emitted by the

material. We derive an analytical solution for the steady state under diffusion approximation

with the plasma having a constant opacity and neglecting theheating and cooling rates. In this

case, the time independent diffusion equation without emission term is

~∇.(− c

3σa

~∇I) = −cσaI. (5.112)

In spherical coordinates,

− c

3σa

[
∂2I

∂r2
+

2

r

∂I

∂r
] = −cσaI (5.113)

or,
∂2I

∂r2
+

2

r

∂I

∂r
− 3σ2

aI = 0 (5.114)

as the opacityσa is assumed to be a constant. Let us change the variable I to J=Ir. Hence,

I = J/r, (5.115)

∂I

∂r
=

1

r

∂I

∂r
− J

r2
, (5.116)

and
∂2I

∂r2
= − 2

r2

∂J

∂r
+

1

r

∂2J

∂r2
+

2J

r3
. (5.117)

Substituting in eqn. [5.114], the time independent diffusion equation in J becomes

∂2J

∂r2
− 3σ2

aJ = 0, (5.118)

which is a second order differential equation with constantcoefficients. The solutions to this

equation areexp(+
√

3σa) and exp(−
√

3σa) i.e.,exp(λx) and exp(−λx) with λ =
√

3σa.
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Hence, the solutions for I areexp(λr)
r

and exp(−λr)
r

. Linear combinations of the solution yield

2 sinh(λr)
r

and 2 cosh(λr)
r

as the solutions. As the solutioncosh(λr) diverges at r=0, the solution

for I is A sinh(λr)
r

with A as the multiplication constant. In diffusion theory,the flux of radiation

falling on the sphere is given by

I

4
+
D

2

∂I

∂r
=
acT 4

inc

4
(5.119)

at r = R

whereTinc is the incident radiation temperature and R is the radius of the sphere. If T(r)is the

radiation temperature at a distance r from the centre, then

acT (r)4 =
A sinh(λr)

r
, (5.120)

and

acT 4
0

4
=
A sinh(λR)

4R
+
DA

2
[
λ

R
cosh(λR) − sinh(λR)

R2
]. (5.121)

Dividing,

T (r) = T0[
1

2

R
sinh(λR)

2
+D(λ cosh(λR) − sinh(λR)

R
)

sinh(λr)

r
]1/4. (5.122)

Steady state scaled radiation temperatures within the sphere obtained from our radiation

transport code (for order 2 and 4 in the discrete ordinates method on switching off the emission

term) are compared to the analytical solution in figure 5.18.Results obtained for lower order

agrees better with the analytical results as expected.
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5.5 Summary

In this chapter we develop numerical codes for hydrodynamicmotion of the medium, radia-

tion diffusion and transport and validate them using analytical or semi-analytical results. The

Lagrangian hydrodynamic code is solved implicitly by solving the system of equations for the

velocities in the adjacent meshes at each time step. The codeis able to reproduce analytical

results in all the three geometries. Results obtained from the finite difference radiation diffu-

sion program agrees with the analytical results derived in the earlier chapter for finite systems

and also for the infinite planar slab. Radiation transport equation is solved using the discrete

ordinates method and compared with available results. New results are also obtained for radia-

tion transport through a sphere. These codes serve as starting point for developing the radiation

hydrodynamics code in the next chapter.



166



6
Fully implicit 1D radiation hydro-

dynamics: validation and verifica-

tion

6.1 Introduction

Radiation hydrodynamics is a dynamical description of fluidmaterial interacting with electro-

magnetic radiation and is appropriate whenever radiation governs the transport of energy and

momentum in the fluid [105]. In the earlier chapter, we develop codes for determining the ra-

diation field in a material when its state, i.e., temperatureand density distributions are known.

At moderate densities and temperatures, the radiation energy density and radiation pressure are

negligible in comparison with the energy and pressure of thefluid. As the velocity of light is

much greater than the fluid velocity, the energy flux in the fluid and the radiant energy flux can

become comparable, even if the radiant energy density is much less than the energy density of

the fluid. At high enough temperatures, the radiant pressuredominates as it is proportional to

the fourth power of the temperature whereas the material pressure is directly proportional to

the temperature [4]. In this chapter, we develop a fully implicit radiation hydrodynamics code

applicable for systems where radiative transfer and interaction between radiation and the fluid

have a substantial effect on both the state and motion of the medium. The results obtained from

this fully implicit radiation hydrodynamics code in the planar geometry agrees well with the

scaling law for radiation driven strong shock propagation in aluminium [107]. Good agreement

167
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is obtained between the numerical results for the point explosion problem with radiation interac-

tion and the point explosion with heat conduction as obtained by Meyer ter Vehn [76]. Having,

thus, benchmarked the code, self convergence of the method w.r.t. time step is studied in detail

for both the planar and spherical problems [78]. Spatial as well as temporal convergence rates

are≃ 1 as expected from the difference forms of mass, momentum andenergy conservation

equations. This shows that the asymptotic convergence rateof the code is realized properly.

Earlier studies on the non-equilibrium radiation diffusion calculations show that the accuracy

of the solution increases on converging the non-linearities within a time step and increasing

benefit is obtained as the problem becomes more and more nonlinear and faster [34], [35].

6.2 Implicit radiation hydrodynamics

Radiation hydrodynamic simulation is performed by coupling the implicit finite difference hy-

drodynamics with discrete ordinates radiation transport.In the low radiation energy density

regime, radiation momentum deposition to the material is not important so that radiation is cou-

pled only to electron energy equation via absorption and emission processes. In this case, the

terms O(u/c) can be neglected from the hydrodynamics as wellas radiation transport equations.

Also, the equations for conservation of mass and momentum remain unchanged as the radiation

energy density and work done by the radiation pressure forces are neglected. A term describing

the radiation absorption and emission is introduced into the electron energy equation as

ρ[CV elec
∂Telec

∂t
+
∂Eelec

∂V

∂V

∂t
] = −Pelec

V

∂V

∂t
+ σR(Telec)[ER(r, Telec) −B(Telec)] + Pie. (6.1)

The discrete form of the energy equations for ions and electrons are
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T n,k
ion,i = T n−1

ion,i − (P n,k−1
ion,i ∆V n,k

i +
P n,k−1

ie ∆t

ρn,k−1
i

+ δn,k−1
ion ∆V n,k

i )/Cn,k−1
V ion,i, (6.2)

and

T n,k
elec,i = T n,k−1

elec,i +
ρn,k−1

i Cn,k−1
V elec,i(T

n−1
elec,i − T n,k−1

elec,i )

∆tGn,k−1
i

+(
σn,k−1

Ri

Gn,k−1
i

)(En,k
Ri −Bn,k−1

i ) − (P n,k−1
elec + δn,k−1

elec )ρn,k−1
i ∆V n,k

i

∆tGn,k−1
i

+ P n,k−1
ie /Gn,k−1

i , (6.3)

where

Gn,k−1
i =

ρn,k
i Cn,k−1

V elec,i

∆tn
+ σn,k−1

Ri Cn,k−1
v,Ri , (6.4)

δn,k−1
ion = (

∂Eion

∂V
)n,k−1
i , (6.5)

δn,k−1
elec = (

∂Eelec

∂V
)n,k−1
i , (6.6)

Cn,k−1
vRi = 4ac(T n,k−1

elec,i )3, (6.7)

with ‘n’ and ‘k’ denoting the time step and iteration index respectively. Also, the constants

a(= 4σB/c), σB and c denote the radiation constant, Stefan-Boltzmann’s constant and the speed

of light respectively. Stefan-Boltzmann’s law,B(Telec) = acT 4
elec, has been used explicitly in

these equations.

In the high energy density regime, the total pressure isP = Pion + Pelec + Prad. Here the

radiation pressure is given byPrad = U/3 withU(r, t) = 1
c

∫

I(Ω)dΩ being the radiation energy

density. Also, the total energy is the sum of the radiation and material energies.

We begin the simulation by dividing the sample volume into ‘L’ meshes of equal width.

The initial position and velocity of all the vertices are defined according to the problem under

consideration. Also the initial pressure, temperature andinternal energy of all the meshes are
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entered as input.

For any time step, the temperature of the incident radiationis obtained by interpolating the

data for the radiation temperature as a function of time (as in the case of shock propagation in

aluminium sheet or an ICF pellet implosion in a hohlraum). All the thermodynamic parameters

for this time step are initialized using their corresponding values in the previous time step. It

is important to note that the velocityui in Eqns. [5.3] and [5.16] and positionri in eqn. [5.2]

are the old variables and remain constant unless the pressure and temperature iterations for this

time step converge.

The temperature iterations begin by solving the radiation transport equation for all the

meshes which gives the energy flowing from radiation to matter.

The 1D Lagrangian step is a leapfrog scheme where new radial velocitiesũi arise due to

acceleration by pressure gradient evaluated at half time step. This leads to a time implicit algo-

rithm. The first step in the pressure iteration starts by solving the tridiagonal system of equations

for the velocity of all the vertices. The sound speed is obtained from the equation of state (EOS)

of that material. The new velocities and positions of all thevertices are obtained which are used

to calculate the new density and change in volume of all the meshes. The total pressure is ob-

tained by adding the Von Neumann and Richtmeyer artificial viscosity to the ion and electron

pressures and solving the energy equations which takes intoaccount both the energy flow from

radiation and the work done by (or on) the meshes due to expansion (or contraction). The en-

ergy equations for ions and electrons are solved using the corresponding material EOS which

provides the pressure and the specific heat at constant volume of the material (both ions and

electrons). The hydrodynamic variables like the position,density, internal energy and velocity

of all the meshes are updated. The convergence criterion forthe total pressure is checked and if

the relative error is greater than a fixed error criterion, the iteration for pressure is continued, i.e,

the code goes back to solve the tridiagonal equations to obtain the velocities, positions, energies

and so on. When the pressure converges according to the errorcriterion, the convergence for
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the electron temperature is checked in a similar manner. Themaximum value of the error in

electron temperature for all the meshes is noted and if this value exceeds the value acceptable

by the error criterion, the temperature iterations are continued, i.e, transport equation, tridiago-

nal system of equations for velocity, etc, are solved, untilthe error criterion is satisfied. Thus

the method is fully implicit as the velocities of all the vertices are obtained by solving a set of

simultaneous equations. Also, both the temperature and pressure are converged simultaneously

using the iterative method. Once both the pressure and temperature distributions converge, the

position of the shock front is obtained by noting the pressure change and the new time step is

estimated as follows:

The time step∆t is chosen so as to satisfy the Courant condition which demands that it is

less than the time for a sound signal with velocitycs to traverse the grid spacing∆x, cs∆t
∆x

< C

where the reduction factor C is referred to as the Courant number. The stability analysis of Von

Neumann introduces additional reduction in time step due tothe material compressibility [106].

The order of theSn approximation may take the values 2, 4, 6 and 8. All the results presented

in this chapter have been generated usingSn approximation of order 4.

The above procedure is repeated up to the time we are interested in following the evolution

of the system. The solution method described above is clearly depicted in the flowchart given in

figure 6.2. The time step index is denoted by ‘nh’ and ‘dt’ is the time step taken. The iteration

indices for electron temperature and total pressure are expressed as ‘npt’ and ‘npp’ respectively.

‘Error1’ and ‘Error2’ are the fractional errors in pressureand temperature respectively whereas

‘eta1’ and ‘eta2’ are those acceptable by the error criterion.



172

Figure 6.1:Section of a cylindrical hohlraum with a hole in the wall on which an aluminium foil is
placed.

6.3 Results

6.3.1 Investigation of the performance of the scheme using benchmark

problems

6.3.1.1 Shock propagation in Aluminium

In the indirect drive inertial confinement fusion, high power laser beams are focused on the inner

walls of high Z cavities or hohlraums, converting the driverenergy to x-rays which implode the

capsule. If the x-ray from the hohlraum is allowed to fall on an aluminium foil over a hole

in the cavity, the low Z material absorbs the radiation and ablates generating a shock wave as

illustrated schematically in 6.1. Using strong shock wave theory, the radiation temperature in

the cavityTr can be correlated to the shock velocityus. The scaling law derived for aluminium

isTr = 0.0126u0.63
s , whereTr is in units of eV andus is in units of cm/s for a temperature range

of 100-250 eV [107].
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For the purpose of simulation, an aluminium foil of thickness 0.6 mm and unit cross section

is chosen. It is subdivided into 300 meshes each of width2 × 10−4 cm. An initial guess value

of 10−7µs is used for the time step. The equilibrium density of Al is 2.71 gm/cc. In the discrete

ordinates method four angles are chosen. As the temperatureattained for this test problem is

somewhat low, the total energy equation is solved assuming that electrons and ions are at the

same temperature (the material temperature). The EOS and Rosseland opacity for aluminium

are given by

E =
PV

γ − 1
= ǫT µV ν , (6.8)

σR = l−1T−µRV −νR. (6.9)

Here V = 1/ρ is the specific volume andγ = 1 + ν/(µ− 1) is the adiabatic index. These

power law functions, of temperature and density, whereǫ = 12.5 in units of1014gνcm2−3νs−2keV −µ,

l=5 in units ofgνRcm1−3νRkeV −µR , µ = 1.145, ν = 0.063, µR = 3.8 andνR = 1.5 are the fit-

ting parameters, are quite accurate in the temperature range of interest [108].

Using the fully implicit radiation hydrodynamics code, a number of simulations are carried

out for different values of time independent incident radiation fluxes or temperatures. Corre-

sponding shock velocities are then determined after the decay of initial transients. In figure 6.3.

we show the comparison between the numerically obtained shock velocities for different radi-

ation temperatures (points) and the scaling law for aluminium (line) mentioned earlier. Good

agreement is observed in the temperature range where the scaling law is valid.

Figure 6.4. shows the various thermodynamic variables likevelocity, pressure, density and

material temperature after 2.5 ns when the radiation profileshown in figure 6.5 is incident on the

outermost mesh. This radiation temperature profile is chosen so as to achieve nearly isentropic

compression of the fuel pellet. The pulse is shaped in such a way that the pressure on the

target surface gradually increases, so that the generated shock rises in strength. From figure 6.4.
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we observe that the outer meshes have ablated outwards whilea shock wave has propagated

inwards. At 2.5 ns, the shock is observed at 0.5 mm showing a peak in pressure and density. As

the outer region has ablated, they move outwards with high velocities. The outermost mesh has

moved to 1.2 mm. The meshes at the shock front move inwards showing negative velocities.

Also the temperature profile shows that the region behind thethe shock gets heated to about

160 eV. In figure 6.6. we plot the distance traversed by the shock front as a function of time for

the above radiation temperature profile. The shock velocitychanges from 3.54 to 5.46cm/µs

at 1.5 ns when the incident radiation temperature increasesto 200 eV.

All the runs in this study were done on a Pentium(4) computer having 1GB of RAM oper-

ating at 3.4 GHz.
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Figure 6.2:Flowchart for the Implicit 1D Radiation Hydrodynamics. Here, ‘nh’ is the time step index
and ‘dt’ is the time step taken. The iteration indices for electron temperature and total pressure are
‘npt’ and ‘npp’ respectively. ‘Error1’ and ‘Error2’ are thefractional errors in pressure and temperature
respectively whereas ‘eta1’ and ‘eta2’ are those acceptable by the error criterion.
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Figure 6.3:Comparison of simulation data (points) with scaling law (line) relating shock velocity with
the radiation temperature for aluminium.

6.3.1.2 Point explosion problem with heat conduction

P. Reinicke and J. Meyer-ter-Vehn (RMV) analyzed the problem of point explosion with non-

linear heat conduction for an ideal gas equation of state anda heat conductivity depending on

temperature and density in a power law form [76]. The problemcombines the hydrodynamic

(Sedov) point explosion with the spherically expanding nonlinear thermal wave. The RMV

problem is a good test to determine the accuracy of coupling two distinct physics processes:

hydrodynamics and radiation diffusion. Later on, Shestakov presented the results of point ex-

plosion with heat conduction using a coupled hydrodynamic diffusion code [77]. We generate

the results for the point explosion including radiation interaction using our fully implicit radia-

tion hydrodynamics code. In the heat conduction approximation, the energy equation is written

as

∂

∂t
(ρE) + ~∇.(~u(ρE + P )) = −~∇. ~Hf , (6.10)
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Figure 6.4: Profiles of the thermodynamic variables: (a) velocity, (b) pressure, (c) density and (d)
temperature in the region behind the shock as a function of position at t = 2.5 ns. The region ahead of
the shock is undisturbed and retain initial values of the variables. The incident radiation temperature on
the Al foil is shown in figure 6.5.
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Figure 6.5:Radiation temperature profile in the hohlraum for strong shock propagation in aluminium.
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Figure 6.6:Distance traversed by the shock front Vs. time in Al foil for incident radiation temperature
shown in figure 6.5. The two slopes correspond to the two plateaus in the radiation profile.



179

where the heat flux~Hf = −χ~∇T and the conductivity is of the formχ = χ0ρ
a0T b0 where

χ0, a0 and b0 are constants. The conductivity can be related to Rosselandopacity as fol-

lows: ~Hf = − c
3σR

~∇ER in the heat conduction approximation. Now,ER = aT 4 and there-

fore, ~Hf = −4acT 3

3σR

~∇T , so thatχ = 4acT 3

3σR
. The Rosseland opacity is assumed to vary with

density and temperature asσR = σ0ρ
mT−n. Substituting the functional dependencies of con-

ductivity and Rosseland opacity into the equation relatingthe two, we obtaina0 = −m and

b0 = n+ 3. For the problem under consideration,a0 = −2 andb0 = 6.5. So, the Rosseland

opacity used in our code isσR = σ0ρ
2T−3.5 with σ0 = 4ac

3χ0
. As in the RMV problem, the ini-

tial gas density is assumed to beρ = g0r
k with k = −(6b0 − 1)/(2b0 − 2a0 + 1) = −2.111

in this case. The thermodynamic variables are related by theideal gas equation of state,

P
ρ

= NkT = RT = (γ − 1)E = ΓT . If energy is in unit of1016 ergs, pressure in1016 ergs/cc,

temperature in keV and density in gm/cc, then we can setΓ = g0 = χ0 = 1.

The normalized density, pressure, velocity and temperature obtained from our radiation

hydrodynamic code forγ = 5/4 at 4.879 ns for a total energy of16.9 × 1016 ergs deposited

in the first mesh are shown in figure 6.7. The results agree withthose published by RMV and

those generated by Shestakov. The kink inρ/ρ1 and a sharp drop inT/T1 at a distance of

0.57 cm are observed which shows that the heat front lags behind the shock front in this case.

The smooth variation of temperature near the origin shows the effectiveness of radiative energy

transfer from regions of high temperature. But for the unperturbed power law density profile

ahead of the shock front, profiles of other variables are somewhat similar to point explosion

problem without heat conduction.

For energy deposition of235 × 1016 ergs, the heat front is found to move ahead of the shock

front at 0.5145 ns in RMV problem. The perturbations in othervariables (pressure and ve-

locity) generated by the advancing heat front are observed by Shestakov also. However, the

results of our radiation hydrodynamic code does not show these features. As shown in figure

6.8, the heat wave does not move beyond the shock wave and consequently all the variables are
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Figure 6.7: Profiles of the scaled thermodynamic variables at t = 4.879 nsfor the point explosion
problem including radiation interaction forγ = 5/4. Total energy16.9 × 1016 ergs is deposited at t=0
in the innermost mesh.

unperturbed ahead of the shock front. The reason behind thisdifference is the use of heat con-

duction approximation by RMV and Shestakov. For the well known Marshak wave propagation

problem [67],[109], it is found that diffusion approximations lead to a deeper penetration of

radiation into the medium. However, this does not happen when full radiation transport is taken

into account. Further, in the heat conduction approximation, radiation energy density does not

evolve independently to reach a distribution in equilibrium with material temperature. The heat

flux ~Hf = − 4ac
3σ0
ρ−2T 6.5~∇T , because of its temperature dependence, peaks beyond the region

where |~∇T | begins to decrease. For very high energy deposition, the heat front apparently

moves ahead of the shock front due to pre-heating by radiation conduction. We are attempting

a quantitative characterization of this phenomenon.
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Figure 6.8: Profiles of the scaled thermodynamic variables at t = 0.5145 ns for the point explosion
problem including radiation interaction forγ = 5/4. Total energy235 × 1016 ergs is deposited at t=0 in
the first mesh.

6.3.2 Asymptotic convergence analysis of the code

Asymptotic convergence analysis is performed for conducting verification analysis of the code.

The asymptotic convergence rate quantifies the convergenceproperties of the software imple-

mentation (code) of a numerical algorithm for solving the discretized forms of continuum equa-

tions [78].

In the Lagrangian formalism as used in our code though the mesh sizes vary non uniformly

with time, the mass of a mesh remains constant. For any variable ξ computed for a given mesh

of mass∆mi and uniform time step∆tl, the fundamentalansatzof pointwise convergence

analysis is that the difference between the exact and the computed solutions can be expanded as

a function of the mass and temporal zone sizes:

ξ∗ − ξl
i = ǫ0 + A(∆mi)

p +B(∆tl)
q + C(∆mi)

r(∆tl)
s +O((∆mi)

p, (6.11)

(∆tl)
q, (∆mi)

r(∆tl)
s)
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whereξ∗ is the exact value,ξl
i is the value computed on the grid of zone mass∆mi and time

step∆tl, ǫ0 is the zeroth order error, A is the spatial/mass-wise convergence coefficient, p is the

mass-wise convergence rate, B is the temporal convergence coefficient, q is the temporal con-

vergence rate, C is the spatio- temporal convergence coefficient and r+s is the spatio-temporal

convergence rate.

Our code verification for both planar and spherical cases consider the global mass-wise and

temporal convergence separately.

6.3.2.0.1 Global mass-wise convergence analysisWe employ theansatzthat the norm of

the difference between the exact and computed solutions forthe same time step∆t is

‖ ξ∗ − ξc ‖= A(∆m)p. (6.12)

Since the exact solutionξ∗ is unknown for the radiation hydrodynamics problem, we replaceξ∗

by ξf whereξf is the value obtained for a very fine mesh (∆mf = ∆m/κ3 and∆m = ρ∆r).

The valuesξm andξi are also obtained for∆mm = ∆m/κ and∆mi = ∆m/κ2 respectively.

Hence the mass-wise convergence rate p is obtained from the the following errors:

‖ ξf − ξc ‖= A(∆m)p, (6.13)

‖ ξf − ξm ‖= A(∆m/κ)p, (6.14)

‖ ξf − ξi ‖= A(∆m/κ2)p. (6.15)

Applying logarithm to both sides and plotting the logarithmof the norm of the errors as a func-

tion of the logarithm of the mesh width, the slope of the line gives the mass-wise convergence
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rate p.

log ‖ ξf − ξc ‖= logA+ p log(∆m), (6.16)

log ‖ ξf − ξm ‖= logA+ p log(∆m/κ), (6.17)

log ‖ ξf − ξi ‖= logA+ p log(∆m/κ2). (6.18)

For N number of meshes, theL1 norm is defined as

‖ ξ2 − ξ1 ‖1= ∆m ΣN
i=1 | ξ2 − ξ1 |

andL2 norm as

‖ ξ2 − ξ1 ‖2=
√

∆m ΣN
i=1 | ξ2 − ξ1 |2.

6.3.2.0.2 Global temporal convergence analysisSimilar to the mass-wise convergence

analysis, theansatzemployed is that the norm of the difference between the exactand com-

puted solutions for the same mass of the mesh∆m is

‖ ξ∗ − ξc ‖= ǫm +B(∆t)q whereǫm is the mass-wise error which dominates over the temporal

error and hence needs to be accounted. However, the exact solution ξ∗ being unknown,ξ∗ is

replaced byξf whereξf is the value obtained for a very small time step (∆tf = ∆t/τ3). The

valuesξm andξi are similarly obtained for∆tm = ∆t/τ and∆ti = ∆t/τ2 respectively. Replac-

ing ξ∗ by ξf , ǫm on the R.H.S. gets cancelled as all the variablesξf , ξi, ξm, ξc, etc., are obtained

for the same value of mass of a mesh. Thus the temporal convergence rate q is obtained from

the following equations:

log ‖ ξf − ξc ‖= logB + q log(∆t), (6.19)

log ‖ ξf − ξm ‖= logB + q log(∆t/τ), (6.20)

log ‖ ξf − ξi ‖= logB + q log(∆t/τ2). (6.21)

A plot of the logarithm of theL1 andL2 norms of the errors in total internal energy for
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Figure 6.9:(a) Spatial convergence rate for theL1 norm (b) Temporal convergence rate for theL1 norm
(c) Spatial convergence rate for theL2 norm and (d) Temporal convergence rate for theL2 norm obtained
for the error in the thermodynamic variable internal energy(E) for the problem of shock propagation in
Al foil.

both spatial/mass-wise and temporal convergence are shownin figure 6.9 for the problem of

shock propagation in aluminium foil. In all the cases the convergence rates are≃ 1 as expected

from the discretization of the mass, momentum and energy conservation equations (as explained

in the appendix). Similar convergence rates (≃ 1) are observed for the other thermodynamic

variables like velocity, pressure, density and temperature. Similarly, for the spherical case of

point explosion problem with radiation transport, the spatial and temporal convergence rates are

≃ 1 for theL1 norm as depicted for the total internal energy in figure 6.10.
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6.3.3 Semi-implicit method

In the semi-implicit scheme, eqn. [5.5] is retained andP
1/2
i is expressed asP 1/2

i = (Pi + P̃i)/2

whereinP̃i is the pressure at the end of the time step. Starting with the previous time step values

for P̃i, the position and velocity of each mesh is obtained andP̃i is iteratively converged using

the EOS. As the variables are obtained explicitly from the known values, there is no need to

solve the tridiagonal system of equations for the velocities of all the meshes. Again, the energy

flowing to the meshes as a result of radiation interaction is obtained by solving the transport

equation once at the start of the time step, and hence the iterations leading to temperature

convergence are absent.

The performance of the implicit and semi-implicit schemes are compared by studying the

convergence properties and the CPU cost for the problem of shock wave propagation in alu-

minium. The convergence properties are examined by obtaining the absoluteL2-Error in the

respective thermodynamic variable profile versus the fixed time step value. The absoluteL2-
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Figure 6.11:L2-Error/mesh in velocity Vs. time step for the shock wave propagation problem in
aluminium with∆t/∆x = 5 × 10−3 µs/cm. Convergence rate is higher for the implicit scheme.

Error in the variable f (velocity, pressure, density or temperature) is defined as

L2-Error = [
N
∑

j=1

(fj − f e
j )2]1/2, (6.22)

where the dataf e
j constitute the exact solution for∆t −→ 0. The summation is taken over the

values in all the meshes.

In figure 6.11. theL2-Error per mesh for velocity i.e.[
∑N

j=1(fj − f e
j )2/number of meshes]1/2,

is plotted as a function of the time step by keeping the ratio of time step to mesh size i.e.∆t/∆x

constant at5 × 10−3µs/cm. As the solution of the implicit scheme is found to converge lin-

early, the results obtained from the implicit method using asmall time step of∆t = 10−8µs and

mesh width of2 × 10−6 cm is chosen as the exact solution. Both the implicit and semi-implicit

schemes show linear convergence, though the convergence rate is faster for the implicit scheme

showing its superiority in obtaining higher accuracies.

Figure 6.12. shows that the faster convergence in the implicit method is attained at the cost
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Figure 6.12:CPU cost Vs. time step for the shock wave propagation problemin aluminium with mesh
width ∆x = 2 × 10−4 cm.

of slightly higher CPU time. However the cost in CPU seconds become comparable in the two

schemes for smaller time steps.

6.4 Summary

In this chapter, we have developed and studied the performance of fully implicit radiation hydro-

dynamics scheme. The time dependent radiation transport equation is solved and energy trans-

fer to the medium is accounted exactly without invoking approximation methods. To validate

the code, the results have been verified using the problem of shock propagation in aluminium

foil in the planar geometry and the point explosion problem with heat conduction in the spher-

ical geometry. The simulation results show good agreement with the theoretical solutions. For

the purpose of verification, asymptotic convergence analysis is applied to both the problems of

shock propagation in aluminium and the point explosion problem including full radiation trans-

port. The temporal and mass-wise convergence rates are found to be≃ 1 in agreement with
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the fact that the thermodynamic variables velocity, pressure, density, temperature and internal

energy have an errorO(∆m) for constant time steps andO(∆t) for a fixed mesh width on

discretizing the respective conservation equations. Convergence rate is higher for the implicit

compared to the semi-implicit scheme. For larger time steps, more accurate results are obtained

from the implicit method at the cost of higher CPU time.



7
Concluding remarks on this thesis

7.1 Summary and conclusions

In this thesis we have focussed on improving the present models for analyzing energy trans-

port in partially and fully ionized plasmas. Considerable improvement has been made to the

currently available energy deposition model of charged particles in ICF plasma. Inclusion of

large angle Coulomb scattering, nuclear scattering and collective plasma effects are observed

to affect the results. For both alpha particles and deuterons depositing energy in a fully ionized

deuterium plasma, more energy is deposited to the ions thereby decreasing the thermalization

distance, reducing the leakage probability and thus makingignition and burn more promising.

This energy deposition model has been clubbed with the zero dimensional model for analyzing

time development of a highly compressed and heated DT fusionpellet. Three separate cases

have been considered.

Firstly, we reanalyze the problem of internal tritium breeding. As the fusion cross-section of

D-T reaction is orders of magnitude higher than D-D at about 5keV, presence of T in the fusion

pellet helps in lowering the ignition temperature. It was found in the literature that a small frac-

tion of T (x=0.0112) in the deuterium pellet acts as a catalyst and helps in reducing the ignition

temperature. However the proper inclusion of all the loss mechanisms like Bremsstrahlung and

inverse Compton scattering increased the density and temperature requirements and internal T
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breeding was no more possible for the pellet considered. On using the detailed energy deposi-

tion model, multigroup treatment for neutron energy deposition and improved reactivity fits, we

showed that for the same pellet parameters, internal T breeding is possible even on including

all the loss mechanisms.

Secondly, we obtained optimum values of initial pellet density, temperature and fraction of

tritium in the pellet for which internal tritium breeding occurs.

Thirdly, the fusion yields have been obtained for DT pelletshaving equal amounts of D and

T for a wide range of densities and temperatures. Two separate schemes have been considered

viz., volume and central ignition. For volume ignition, thezero-dimensional model produces

results in agreement with those obtained in the literature using 1D Lagrangian code. We modi-

fied the zero dimensional model to study central ignition with only central 10% of the pellet at a

high temperature. The central region expands at the thermalor detonation wave velocity against

a pressure exerted by the outer cold fuel. Although the yields are found to be lower for the same

initial temperature for central ignition, gains are higherabove a certain density in comparison

with volume ignition as expected.

Bremsstrahlung emission and absorption of radiation occurs due to free-free transitions of

electrons in the vicinity of an atom or ion. In addition, bound-free and bound-bound transitions

are also responsible for absorption and emission of photonsin the medium. To properly account

all these mechanisms in a partially ionized plasma, accurate fits for Rosseland opacities as a

function of plasma densities and temperatures are suppliedas input to the radiation transport

equation coupled to the mass, momentum and energy conservation equations for the material.

In order to obtain analytical solutions to the radiation transport equation, a few simplifying

assumptions are made. The material is assumed to be static, opacity is temperature independent

and the specific heat is proportional to the cube of the material temperature. The equations

are linearized because of these assumptions. Analytical expression for radiation and material

energy densities as a function of space and time are obtainedfor the finite planar slab, sphere
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and spherical shell using both the Laplace transform and eigen function expansion method.

These results, obtainable to the required degree of accuracy by adding more terms in the series

solution, serve as new benchmark problems for time dependent radiation diffusion codes.

One dimensional codes are developed for hydrodynamics, radiation diffusion and transport

simulation. Hydrodynamic simulation in performed in an implicit manner by obtaining the

velocities of all the vertices at each time step. It is validated in all the three geometries using

shock tube, point explosion and Noh problem. Radiation diffusion equation is next solved using

the finite difference method and results generated for planar slab and spherical shell for which

analytical results have been generated. Finally, radiation transport equation is solved using the

discrete ordinates method and results generated for Marshak wave propagation in planar and

spherical geometries.

Finally, implicit hydrodynamics program is coupled with radiation transport to obtain a

fully-implicit 1D Lagrangian radiation hydrodynamic code. Results obtained for shock propa-

gation in Al foil is found to agree well with the scaling law obtained from strong shock relations.

For lower input energies, the position of the shock front andthe heat front are found to coincide

with those obtained both analytically and numerically for point explosion with heat conduction.

7.2 Limitations of this work

All the models, analytical solutions and codes have been developed in 1D which simplifies the

problems considerably. In all cases, symmetry of the variables is assumed in the other two

dimensions. This assumption may not be valid for practical systems so that 2D and 3D models

need to be considered.

In the temperature and density regime that we consider, the plasma is non degenerate. We

have not studied the effect of electron degeneracy which mayarise in some cases relevant to

ICF at very high densities and low temperatures.
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Though we have qualitatively explained the reason for the heat front not moving ahead

of the shock front in the transport formalism, a qualitativeanalysis of the same has not been

performed.

The problem of shock propagation in Al foil performed with the radiation hydrodynamic

code has been considered for incident temperatures below 300 eV. If more intense radiation (>

1keV) is incident on the foil, more interesting phenomena like radiative shock propagation can

be observed.

7.3 Future scope

The analytical derivations for finite systems can be extended to two or three dimensions using

separation of variables along with the eigenfunction expansion method. Also, instead of a

constant flux of radiation being incident on the surface, benchmarks can be generated for a time

varying radiation pulse incident on finite systems. Writingimplicit radiation hydrodynamic

code in two and three dimension will be an useful extension ofthis work. Radiative shocks

having separate ion and electron temperatures can be studied using the radiation hydrodynamics

code by considering radiation pressure and momentum terms also. Mechanism of Rayleigh

Taylor Instabilities can be studied using molecular dynamics simulation.



A Runge-Kutta method for solving

the ODEs

Runge-Kutta methods are used for obtaining the solution of asingle or a set of ordinary differ-

ential equations which achieve the accuracy of a Taylor series approach without requiring the

calculation of higher derivatives [110]. In this method, the solution of an ordinary differential

equation of the form
dy

dx
= f(x, y) (A.1)

can be cast in the generalized form

yi+1 = yi + φ(xi, yi, h)h, (A.2)

whereφ(xi, yi, h) is called an increment function, which can be interpreted asa representative

slope over the interval.yi+1 andyi are the new and old values of the unknown respectively. The

increment function can be written in general form as

φ = a1k1 + a2k2 + ........ + ankn, (A.3)
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where the a’s are constants and the k’s are recurrence relationships

k1 = f(xi, yi), (A.4)

k2 = f(xi + p1h, yi + q11k1h), (A.5)

k3 = f(xi + p2h, yi + q21k1h + q22k2h), (A.6)

kn = f(xi + pn−1h, yi + qn−1,1k1h + qn−1,2k2h + ........ + qn−1,n−1kn−1h), (A.7)

where the p’s and q’s are constants. By employing different number of terms n in the increment

function, various types of Runge-Kutta methods can be devised. Fornth-order Runge-Kutta

method, the values of a’s, p’s and q’s are evaluated by setting eqn. [A.2] equal to terms in

a Taylor series expansion. Fourth order Runge-Kutta methods are the most popular and as

the result of the derivation contains less number of equations than the number of unknowns, an

infinite number of versions are possible. The classical fourth-order RK method is the following:

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h (A.8)

where

k1 = f(xi, yi), (A.9)

k2 = f(xi +
1

2
h, yi +

1

2
k1h), (A.10)

k3 = f(xi +
1

2
h, yi +

1

2
k2h), (A.11)

k4 = f(xi + h, yi + k3h). (A.12)

The graphical depiction of the slope estimates for the fourth order Runge-Kutta method are

shown in figure A.1. For a system of n equations, n initial conditions are to be known at the

starting value of x. The method presented above employs a constant step size h, however in the

region of abrupt change the result would be inaccurate. The region of abrupt change requires

small step size whereas the region of gradual change requires larger ones. This problem is
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Figure A.1:Schematic of slopes for fourth order Runge Kutta Method.

overcome by obtaining an error estimate by computing two RK predictions of different orders.

The Runge-Kutta Fehlberg or embedded RK method uses a fifth order RK method that employs

the function evaluations from the accompanying fourth-order RK method.
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B
Error arising from the discretiza-

tion of mass, momentum and en-

ergy conservation equations

The position of a mesh at time t i.e.,r̃i can be written in terms of the position at the previous

time ri by Taylor series expansion as

r̃i = ri + ui∆t +
ai(∆t)2

2
+ O(∆t)3. (B.1)

In the radiation hydrodynamics code, termsO(∆t)2 has been neglected in writing eqn. [5.2].

So, the error in position isO(∆t)2. Also,u = dr
dt

and hence the error in velocity isO(∆t).

Similarly, in writing Eqs. 5.9 and 5.10, i.e the equation forconservation of mass in discrete

form, since the gradient of velocity is written as a forward difference formula, the error in

pressure isO(∆t) for a constant mesh width i.e., the temporal convergence rate≃ 1 andO(∆m)

for a constant time step, i.e., the spatial/mass-wise convergence rate≃ 1. From the discrete form

of the energy equations, i.e., eqn. [6.2], etc., it is observed that the temporal error in internal

energy isO(∆t) and mass-wise error isO(∆m).
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C
Melting curve of metals using

classical molecular dynamics sim-

ulations

The melting curves of Cu and Al have been generated using one-phase classical molecular dy-

namics simulation employing the parallel molecular dynamics simulation packageDL−POLY

[111] together with the crystalline and molecular structure visualisation program XCrySDen

[112]. The embedded atom method potential of Cai and Ye has been used to account for the

interactions between atoms [47]. We consider cubic super cells consisting of11 × 11 × 11 con-

ventional FCC unit cells, which corresponds to5324 atoms. Three dimensional parallelopiped

periodic boundary conditions are applied on the super cellsto eliminate the surface effects and

reproduce the bulk properties. The Berendsen isothermal-isobaric (NPT) ensemble is used to

achieve constant temperature and pressure conditions [113]. The relaxation times for the ther-

mostat and barostat are 1.0 and 3.0 ps, respectively, and thepressure is fixed at 0 atm. We use

the Verlet leapfrog scheme for integrating the Newton’s equations of motion [114] with a time

step of 0.001 ps for all cases. Simulations are done for a total of 10,000 time steps, where the

first 4000 steps are used for equilibration and the remaining6000 for statistical averaging. In

order to ascertain that only one image of a particle interacts with another particle, the cut off

distances for force calculations is chosen to be smaller than half the size of the supercell. A

cutoff distance of 10̊A is used for all the simulations. The melting curves obtained for Cu and

Al using MD simulations are plotted in figure C.1 and figure C.2respectively.
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Figure C.1:Melting curve for Cu.
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The melting curve obtained from our MD simulation for Cu is found to agree well with the

quasi ab initio MD study by Belonoshko [49]. Belonoshkoet al have investigated the melting

point of Cu using MD simulation employing the Sutton-Chen model for the interatomic inter-

action. This interaction has been fitted to reproduce results from first-principles self-consistent

total-energy calculations within the local-density approximation using the full potential linear-

muffin-tin-orbital method. The melting points obtained by Moriarty [115] using ab initio calcu-

lations agree well upto 100 GPa pressures and there is good agreement with the experimentally

obtained laser-heated diamond cell results [116]. The steep slope of Cu confirms the key role

of d-shell electrons in determining the temperature dependence of high pressure melting curve.

The melting curve for Al agrees well with the experimental DAC [117] results. The results ob-

tained from ab initio MD using the hysteresis and the Z-method [118] are found to be slightly

higher at higher pressures. The results obtained for both the metals agree well with Diamond

Anvil Cell and with ab initio MD simulation results like the hysteresis or Z-method.
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D

Role of site-selective doping on

melting point of CuTi alloys: A

classical molecular dynamics sim-

ulation study

D.0.1 Introduction

Effect of site-selective substitution of Ti in Cu on the thermal stability of CuTi alloy is inves-

tigated using classical molecular dynamics simulations with Embedded Atom Method poten-

tials. It has been observed experimentally that melting point of all the naturally occurring stable

phases of CuTi alloys do not show a definite trend with gradualincrease in Ti concentration.

To understand the phenomenon, super cells of CuTi alloy are constructed where Cu atom is

substituted by Ti randomly and at selective sites. For random substitution, the melting point de-

creases linearly with increase in Ti concentration. A non-monotonous dependence is seen when

Cu atoms at selective sites are replaced by Ti. For a particular doping concentration, the melting

point shows a wide range of variation depending on the order of atomic arrangement, and can

be fine tuned by selecting the sites for substitution. The variations in melting points in different

cases are explained in terms of the peak height, width and position of the corresponding radial

distribution functions. Finally, it is verified that initial structures of the naturally occurring CuTi

alloys are responsible for the non-definite trend in their melting points.

Melting point of simple metal alloys (AB-type intermetallic compounds) is roughly equal to
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the average of the melting points of the constituent elements [119]. But a number of transition

metal alloys tend to have melting points below the averaged elemental melting points and no

strong correlation with elemental variables such as heats of formation of the alloy or volume

changes upon alloying is found [119]. In this work, thermal stability of CuTi alloys has been

linked with local environment of the host and dopant atoms and the characteristics of the radial

distribution function (RDF) are employed to address certain irregularities in the existing phase

diagram. The cell volume of some alloys increases compared to that in its pure phase due to the

larger radius of the dopant atoms. Melting point of these alloys decrease if the melt occupies

larger volume than its solid phase. CuTi alloy belongs to this category and the melting point

of CuTi alloy should decrease as Ti concentration increases. But the phase diagram of CuTi

alloy shows decrease in melting point, from 1356 K to 1158 K, on alloying by Ti only below

a certain concentration (20 % inCu4Ti) [120]. Beyond this limit, stable phases are found at

much elevated temperatures. Melting point gradually increases from 1158 K to 1273 K as

the Ti concentration increases for stable phases likeCu2Ti, Cu3Ti2, Cu4Ti3 and CuTi (50 %).

Therefore linear dependence of melting point on Ti concentration is not observed. This anomaly

in the melting curve can be explained by performing simulations on thermal stability of CuTi

alloy having various arrangements of dopant atoms.

Structures of CuTi alloys having different Ti concentrations have been generated by random

or selective substitution of Ti in perfect fcc Cu supercells. The origin of the cartesian coordinate

system is taken to be the centre of the supercell. The perfectfcc Cu supercell is generated using

the program genlat.f in utility ofDL−POLY. The Cu atoms are placed one after the other

starting from the (-,-,-) octant towards the (+,+,+) octant.

For random doping of Cu atoms with Ti, random numbers (depending on the concentra-

tion) lying within the supercells are generated for x, y and zcoordinates. The Cu atom whose

coordinates are nearest to the random numbers are replaced by Ti atoms. The initial configura-

tions generated for 5 % and 25 % Ti (number percentages) are shown in figure D.1 (a) and (b)
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Figure D.1:Random doping of Cu with (a) 5% and (b) 25% Ti.

respectively.

Microstructures of Ti having various sizes are also generated within the Cu supercells. Sin-

gle microstructures of different concentrations are generated by replacing all the Cu atoms with

Ti atoms inside spheres of varying radii at the centre of the microstructures i.e., (0,0,0). figure

D.2 (a) shows the negative octant of the supercell with single microstructure doping of 5.5973%

Ti in Cu. For substituting 8 microstructures, all Cu atoms lying within spheres of different radii

centered at (-L,-L,-L), (-L,-L,+L), (-L,+L,-L), (+L,-L,-L), (-L,+L,+L), (+L,-L,+L), (+L,+L,-L)

and (+L,+L,+L) with L=10.845̊A are replaced by Ti atoms. Similarly, 9 microstructures are

obtained by replacing the Cu atoms within the sphere at the origin in addition to the spheres

used for 8 microstructures (figure D.2 (b)).

Selective doping is done in a variety of ways: For a concentration of 5 % Ti, first Cu atom

among every 20 atoms is replaced by Ti till all the 5324 atoms are covered. The selectively

doped CuTi alloy generated in this way is called selective 5 %atom1. Similarly for a concen-

tration of 10 % Ti, first Cu atom among every 10 atoms is replaced by Ti. This alloy is named

as selective 10 % atom1. A type named atom2 is generated by replacing 2 atoms at a time. So,

for a concentration of 5 % Ti, first two Cu atoms among every 40 atoms are replaced by Ti.

Thus, selective 33.33 % atom1 is generated by replacing firstamong every 3 Cu atoms with Ti

and selective 33.33 % atom6 by replacing first six among every18 Cu atoms with Ti. Selective
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Figure D.2: Negative octant of supercell with (a) single microstructure of 5.5973% Ti and (b) 9 mi-
crostructures of Ti, each of radius 7Å with 19.6% Ti.

Figure D.3:Selective doping of Cu with 25% Ti for two Ti-arrangements, namely, (a) atom1 and (b)
atom4.

25% atom1 and atom4 are shown in figure D.3 (a) and (b) respectively.

The natural CuTi alloy structures, viz. CuTi [121] andCuTi2 [122] are also generated using

the program genlat.f. The number of atoms of Cu and Ti and their positions within the unit cells

are obtained from ICSD database [123](file no. 103128 for CuTi and 15807 forCuTi2). The

EAM potential by Hong has been used for simulating the CuTi alloy [124].
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D.0.2 Results and Discussions

D.0.2.1 Random doping

The melting temperature for Cu is reported as 1200K in an earlier study employingDL−POLY

with Sutton Chen potential [48]. However, we get 1340 K whichagrees better with the experi-

mental result of 1356K. For random doping, melting point decreases linearly as Ti concentration

increases. Since the atomic radius of Ti (2Ȧ) is higher than that of Cu (1.57̇A), cell volume in-

creases when a Ti atom replaces a Cu atom. The increase in lattice parameter of the CuTi alloy

is found to obey the empirical Vegard’s law, which, for a given temperature, is a linear relation

between lattice constant and concentration of the constituent elements [125] (see figure D.4 ).

As a result, the average distance between Cu atoms increasesand the Cu-Cu bond strength de-

creases. This is clearly reflected in figure D.5 which shows the 0K RDF for the Cu-Cu bond.

It is observed that the heights of the RDF peaks decrease, full widths at half maxima (FWHM)

increase and the peak positions shift to the right. As mentioned earlier, decrease in RDF peak

height is directly linked to the reduction in number of nearest neighbours. Also, increase in cell

volume leads to shifting of RDF peak to the right. Thus for random doping, the average Cu-

Cu bond strength and hence melting point decreases linearlyas dopant concentration increases

(inset of figure D.5).

D.0.2.2 Microstructural doping

For most of the practical cases, doping of clusters of several atoms is more probable compared

to atom by atom substitution. Therefore, micro-structuresof several Ti atoms are created within

the Cu lattice. For a single microstructure, the Cu-Cu bond strength decreases linearly with

increase in Ti concentration as shown in figureD.6. This is also reflected in the linear decrease

of melting point (inset of figure D.6). Similarly, for 8 microstructure doping, the RDF peak

height decreases linearly (figure D.7) and a gradual decrease in melting point is observed (see
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inset of figure D.7). Exactly similar trends are observed for9 microstructure doping.

D.0.2.3 Selective doping

The systematic variation in melting point on changing the Ticoncentration as observed for ran-

dom and microstructural doping is no longer seen in case of selective dopant substitution. Both

dopant concentration and the site of substitution are responsible for determining the melting

point of the alloy. As already pointed out, Ti atoms can be introduced into Cu lattice in various

ways to generate different atomic arrangements having the same dopant concentration. When a

Ti atom replaces a single Cu atom in a unit (atom1), melting point decreases with Ti concentra-

tion up to 20 % as in the case of random substitution (inset of figure D.8). Then the melting point

increases for 25% Ti. As shown in figure D.8, upto 20 % Ti concentration, the height of the first

RDF peak decreases, become broader and position shifts to the right showing a loss in symme-

try of the structure. But for 25% of Ti concentration, the first RDF peak becomes narrower and

attains its maximum value. Its position does not shift further indicating stronger Cu-Cu bonding
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for the structure as compared to 20 % Ti. Therefore, high melting point observed in case of 25

% atom1 case can be understood in terms of the height, width and position of the RDF peak. In

a similar manner, the low melting point found in case of 33.33% atom1 case can be understood

by the loss in Cu-Cu bond strength which is clearly evident from the corresponding short and

broad RDF peak. Finally, peak height increases and becomes narrower for 50 % Ti which re-

sults in increase in melting point. Similar kind of non-monotonous behaviour of melting point

with dopant concentration can be seen for selective atom2 toatom6 cases. Only the late rise

in melting point can be seen for different dopant concentration depending on the initial atomic

arrangement.

The correlation between the melting point and characteristics of the RDF peak established

here is important for the following reason. For an alloy it isnecessary to quantify the interaction

between the host atoms as well as between the host and dopant atoms. Especially, at higher

temperatures when atoms may be displaced from their equilibrium positions, characteristics of

the RDF peaks can predict the symmetry of the atomic configuration and the thermal behaviour
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of the alloy.

The role of site selective doping on thermal stability can beunequivocally established if

melting point is shown to change for different arrangement of dopant atoms but having same

concentration. For that purpose, six different configurations of 25% doped CuTi alloy having

different arrangements of Ti atoms in Cu lattice are constructed. Variation of the melting point

for different Ti arrangements is depicted in the inset of figure D.9. The first, second and third

Cu-Cu RDF peaks for four arrangements, namely, atom1, atom2, atom4 and atom6 are shown

in figure D.9. The melting point is seen to decrease upto atom4and then increases for atom5

and atom6. The height of the first RDF peak also decreases uptoatom4 showing a loss in

symmetry of the structure. However, for atom6, the RDF peak height increases and shifts to the

left showing a more compact structure thus explaining the increase in melting point.
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Finally, we plot the melting points against dopant concentration for different ways of doping,

namely, random, microstructural and selective doping (figure D.10). For random, single, 8 and

9 microstructures, linear variation of melting point on Ti concentration is observed. However, in

case of microstructural doping, the melting points decrease faster compared to random doping.

Selective doping (atom1), on the other hand, does not show the linear variation and the melting

point depends on the initial structure irrespective of the concentration.

D.0.2.4 Natural CuTi alloys

The link established so far, between melting points and characteristics of the RDF peaks of an

alloy, can be employed to understand the observed anomaly inthe melting curve of naturally

existing phases of CuTi alloys. Melting point as extracted from the phase diagram of CuTi

alloy show non-monotonous dependence on Ti concentration.In the inset of figure D.11, the

calculated melting points of Cu and two of its naturally occurring alloys viz. CuTi andCuTi2
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Figure D.10:Melting points obtained for different types of substitutional doping of Cu with Ti.

are plotted and the corresponding RDF peaks are shown in figure D.11. In line with the ex-

perimental phase diagram, melting point Vs. Ti concentration first decreases and then again

increases. For example, substantial reduction in the melting point of naturally occuring CuTi

alloy (1210 K) is seen compared to pure Cu (1340 K). Melting point of CuTi2 increases to

1360K for 66.6 % doping (see inset of figure D.11). The late rise in melting point with the in-

crease of Ti concentration arises due to higher ordering between the atoms inCuTi2 (I4/mmm)

than CuTi (P4/nmmS) . This is reflected on the Cu-Cu bond strength which can be visualized

by the reduced RDF peak height of CuTi compared to pure Cu. As expected, RDF peak height

of CuTi2 increases which explains its observed higher melting point.

D.0.3 Conclusions

In summary, the role of site-selective substitution of Ti inCu on the melting point of CuTi alloy

has been investigated. Super cells of CuTi alloy having different arrangement of Ti atoms are

constructed. Results obtained by replacing Cu atoms by Ti randomly, selectively and in the
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form of clusters are analyzed. We have established that, in addition to the concentration, the

arrangement of dopant atoms in the host lattice plays a pivotal role in determining the melting

point. A direct link between the melting point and characteristics of the RDF peaks of the alloy

has been established. This facilitates to explain the variation in thermal stability in terms of

the bond strength between host as well as host and dopant atoms in the alloy. The proposition

has been validated by explaining the anomaly in the melting curve seen in naturally occurring

phases of CuTi alloys having different crystal structures.The present study can be extended to

other alloys of its kind and is useful for predicting doping strategies for fabrication of the alloy.
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