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Synopsis

Inertial Confinement Fusion (ICF) is a process where thetolear fusion reactions are
initiated in a fusion fuel (e.g., DT, DD, DHeetc) by compressing it to tremendous densities
and temperatures by focusing high power laser or chargettipabeams on the surface of
the pellet or via X-rays in a hohlraum [1]. The inertia of theslf pellet helps in confining it
long enough to produce more fusion energy than is expendeeting and containing it. The
twin requirements of heating and confinement is represeoyeithe Lawson criterion which
is obtained by balancing the fusion energy release agdirstiergy investment in ablating,
compressing, heating the fuel to thermonuclear tempersiamd the energy lost through radia-
tion. In the laboratory, ICF plasmas provide us with veryhhitgnsities and temperatures, i.e.,
extreme conditions normally obtained in the interior ofrstaf good theoretical understand-
ing of the physical processes taking place in ICF plasmaveldped, experiments related
to ICF can be designed with confidence. Numerical simulaisoa very convenient tool in
this regard. Starting with the appropriate initial conaliis, we can predict the outcome of an
experiment by properly accounting the material propeuies conservation laws. Energy de-
position by charged particles and neutrons, energy exehbatyveen ions and electrons, and
interaction between radiation and material are the prireagrgy transport mechanisms within
a thermonuclear plasma. In the present thesis, an improwei@inof charged particle energy
deposition has been developed by considering large angll@b scattering, nuclear scatter-
ing and collective plasma effects. The same model is thed tsees-evaluate the concept of
internal tritium breeding in high density ICF pellets. Threg@-dimensional model consisting of
rate equation for total number of nuclides, detailed eneggosition and all possible energy
loss mechanisms is used to study the thermonuclear buractkastics of compressed DT mi-
crospheres. For validating radiation diffusion codes, aealytical benchmark results for the
non-equilibrium Marshak diffusion problem in a planar slgphere and spherical shell of finite

thickness are derived using two independent methods, pamelLaplace transform method
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and the eigenfunction expansion method. In order to lizedhe radiation transport and mate-
rial energy equation, the heat capacity is assumed to begropal to the cube of the material
temperature. This assumption is made to relax the physicaéat of the problem such that a
detailed analytical solution can be obtained and provié@éulsest problems for radiative trans-
fer codes, since those codes handle an arbitrary tempedgpendence of the heat capacity. As
the zero dimensional model lacks spatial variation, whéch pre-requisite for studying shock
propagation, pellet implosion and explosion, etc, fullplmit one-dimensional 3T Lagrangian
hydrodynamic code is developed. Radiation transport emué solved using the discrete or-
dinates method and coupled with hydrodynamic code. Thedescbave been used to study
a range of significant problems in ICF. The work describedis thesis is divided into seven

chapters.
Chapter 1

In this chapter we introduce the various physical procekeshydrodynamic ablation,
shock compression, radiation transport, thermonucleatiogn and burn propagation, etc. oc-
curring in ICF pellets. The analytical and numerical tecuais/methodologies commonly used
for studying these mechanisms are described along with thege of applicability. We also
bring out the motivation behind the work presented in thisstt and its impact on current

understanding of the subject.
Chapter 2

The details of the charged particle and neutron energy depoare described in this chap-
ter. The calculation of energy leakage probability is gaheed to include nuclear scattering,
large angle Coulomb scattering and collective plasmasiféc general, these processes reduce
the thermalization distance in the plasma and increasedhgdn of energy deposited to ions.
The fraction of the charged patrticle energy that is absollyethe ICF pellet is an important
parameter determining the ignition condition. For pelleés comparable to the thermalization

range of fusion products, a part of the energy will escapgétiiet. This fraction was calculated
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Figure 1:Thermalization distance of deuterons Vs. plasma temperatua deuterium plasma of ion
number density 189/cm? for the three cases of energy loss: 1. only to electrons,&treins and ions
and 3. including nuclear scattering.

by Krokhin and Rozanov [3] by considering energy transfdy ¢o electrons. Later, Cooper
and Evans improved this calculation by including energgdfer to ions within the small angle
binary collision approximation [4]. The effects of nucléateractions have not been taken into
account previously as it is negligible for small scatteramgles. However, when the incident
charged particle energy is large (as in the case of the pprmituced in B-He? reaction) and
for higher plasma temperatures, the effect of nuclearewagf is important [5]. In this chap-
ter, we evaluate the effects of elastic nuclear scattetarge angle Coulomb scattering and
collective plasma effects on the fraction of energy leaknogn the pellet, thereby improving
the earlier results by Cooper et al [4]. As a representatihase results, we show the effect
of including all the above mentioned energy deposition ma@dms on thermalization distance
and energy leakage probability in figures 1 and 2 respeygtiveIsimple approach for energy
deposition by neutrons due to nuclear interaction with dmsiis also developed using a multi

group model.
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Figure 2:Energy leakage probability of deuterons Vs. pellet radiusdeuterium plasma at temperature
0.1 MeV and ion number density Ucm? for the three cases of energy loss: 1. only to electrons, 2.
electrons and ions and 3. including nuclear scattering.

Chapter 3

This chapter deals with the application of the improved gneleposition model to analyze
Internal Tritium breeding and thermonuclear burn charasttes of compressed D-T micro-
spheres. The D-T fusion reaction has a much higher cros®sexmpared to D-D reaction
at lower temperatures. As a result, the ignition tempeeatudeuterium (D) fusion targets can
be significantly reduced with the addition of small quaestof tritium (T). Due to beta-decay,
with half life of 12.5 years, tritium does not occur in natueed hence has to be produced
artificially. For instance, neutrons from the D-T reacti@mneduce tritium in a Li-blanket sur-
rounding the fusion reactor via the {f) reaction with lithium. Production of large quantities of
tritium by such means is technologically challenging, andh& internal breeding of tritium in
D-T pellets is a useful concept [6]. As one of the channels-@ Eeaction produces tritium, a
proper pellet design, with a small concentration of tritjwan be made such that its concentra-

tion at the end of the burn is same or more than the initial entration. The small amount of
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initial tritium, thus, acts as a catalyst during the cours@sion burn. The simulation model
considers the rate of decay or buildup of the six nuclidesI{}e’, He!, p, n) participating in
the 4 reactions: D-D (proton channel), (D-D) (neutron cley(D-T) and (D-Hé). Energy
balance equations for ions, electrons and radiation, withe three-temperature model, includ-
ing all the energy exchange processes, determine the tipgdent temperatures. Finally, the
hydrodynamic disassembly of the pellet determines thenértieourn. An accurate formula for
the Maxwellian averaged fusion cross-sections for all the feactions, valid up to 500 keV
temperatures has been used [7]. We consider an optimat petiéguration of density=5000
gm/cm¥, pR =12.5 gm/cm where R is the pellet radius, tritium fraction x= 0.0112, and ion,
electron, and radiation temperatures given by T.= 10 keV and T= 1 keV, respectively, an-
alyzed by Eliezer et al [6]. While this pellet showed tritilbreeding within the assumptions
made by Eliezer et al, it failed to show breeding when invé&senpton scattering and pho-
ton losses were taken into account. However with the impit@reergy deposition model by
charged particles and neutrons and using the improved tasvar fusion reaction rates it is
found that the pellet breeds tritium even under extreme itiong of radiation loss. As a repre-
sentative of these results we show the variation in T ratia fasmction of time on including all
the energy loss mechanisms in figure 3.

Using the above described zero dimensional three tempenatadel which considers all the
energy deposition mechanisms like small and large angléo@duscattering, nuclear scattering
and collective plasma effects, the effect of varying vasipellet parameters like its density,
fraction of tritium added and initial temperature on therbfraction and tritium breeding ratio
is studied. We conclude that for sufficient burning of thdgiednd for tritium to behave as a

catalyst, the following optimum pellet configuration is aesary:

¢ the initial pellet density> 3500gm/cc

e initial plasma temperature 4 keV
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Figure 3: Tritium breeding Vs. time for the DT pellet. Curve-1 refessbremsstrahlung loss only,
Curve-2 includes inverse bremsstrahlung as well, CurvecBidles, in addition, inverse Compton scat-
tering and Curve-4 is similar to curve-3, but without pholosses.

e fraction of tritium added lies between 0.005 and 0.02 i.€908< x < 0.02

The zero-dimensional model is also applied for studyinghieemonuclear burn character-
istics of compressed D-T microspheres. Fusion yields ie cdssolume and central ignition
have been considered. Yields have been obtained for DTipellelifferent masses and densi-
ties having a range of initial temperatures. As a represigataf the obtained results, the yield
vs. density of a 1(ug pellet having various initial temperatures is shown infiggd. The fusion
yields are found to increase a%* for lower densities and then rise steeply and finally sagstat
Higher is the initial pellet temperature, more is the fusyigld because of the increase in DT
and DD fusion reactions as a function of temperature. Alsdha initial pellet temperatures
increase, the fusion yield attains saturation values feelgellet densities. For an initial pel-
let temperature of 1.8 keV, there is no steep rise in the fugield even for densities as high
as 10,000 gm/cc showing the importance of ignition tempeeain thermonuclear fusion. For

central ignition, the code has been modified to include thra propagation into the outer cold
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Figure 4:Yield vs. density for 1Qug DT pellets having various initial temperatures.

fuel, bootstrap heating and subsequent increase in fusi@ctions leading to higher gain in
fusion energy. Comparison with the results of a one-dineai3T Lagrangian hydrodynam-
ics code [8] shows good agreement which supports the fattlibagh the zero dimensional
model lacks spatial resolution, tracking the number dexssdnd energetics of the nuclides is
sufficient for obtaining the energy released in fusion [9eTotted curves show the same for
central ignition with only inner 1% of the pellet at 10 and 20 keV respectively.

Chapter 4

Radiant energy transport plays an important role in detangithe state and motion of the
medium. In the earlier chapters, radiation interaction tbeen considered in terms of Brem-
strahlung and inverse Compton scattering only. It is pdsdioanalyze radiation interaction
in a more rigorous manner by solving the time dependent tiadidransport equation. The
time dependent non-equilibrium radiation transport eiguas non linearly coupled to the ma-
terial energy equation [10], [11]. Also the material prdpes have complex dependence on
the independent variables. As a result, the time depentdental radiation transport prob-

lems are commonly solved numerically. Several numericdhous are in use for this purpose,
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namely the discrete ordinates, finite volume, Monte Canjdoria stochastic-deterministic, or
the approximate methods like the Eddington approximath@at conduction or the diffusion
approximations. Benchmark results for test problems acessary to validate and verify the
numerical codes [2]. Analytical solutions producing egplexpressions for the radiation and
material energy density, integrated densities, leakagewts, etc. are the most desirable. In
the literature, considerable amount of efforts have beefhepfor solving the Radiation Trans-
port problem analytically. Marshak obtained a semi-amadysolution by considering radiation
diffusion in a semi infinite planar slab with radiation inertt upon the surface [12]. Assuming
that the radiation and material fields are in equilibriung gnoblem admits a similarity solu-
tion to a second order ordinary differential equation whas solved numerically. The results
were extended for non-equilibrium radiation diffusion Isgaming that the specific heat is pro-
portional to the cube of the temperature. This assumptiealized the problem providing a
detailed analytical solution. Using the same linearizat® radiation diffusion equations were
solved for spherical and spherical shell sources in an taefimiedium. All available results on
the non-equilibrium radiative transfer problems in plaaad spherical geometry consider sys-
tems having infinite or semi-infinite extension. Benchmankslving finite size systems have
been limited either to the heat conduction or equilibriuffiudion approximation [13]. In this
chapter, new benchmark results have been generated fdatrali and verifying radiation dif-
fusion codes in both planar and spherical geometries. Aigalysolution to the non-equilibrium
Marshak diffusion problem in a planar slab, sphere and spddeshell of finite thickness is pre-
sented. Using two independent methods namely the Laplansform method and the eigen
function expansion method, the radiation and materialggnéensities are obtained as a func-
tion of space and time. The variation in integrated energysiies and leakage currents are
also studied. In order to linearize the radiation transpod material energy equation, the heat
capacity is assumed to be proportional to the cube of therrabtemperature. The steady state

energy densities show linear variation along the depth efpllanar slab, whereas non-linear



u (x,7)

=10 and 100

1.0 1.5 2.0
Scaled position (x)

Figure 5: Transient analytical (symbols) and numerical (line) rédiaenergy densities in a spherical
shell with radiation incident on the inner surface.

dependence is observed for the spherical shell. The acalygnergy densities show good
agreement with those obtained from finite difference metmidg small mesh width and time
step. As a representative of the obtained results, we shaledscadiation energy densities for
a spherical shell in figure 5. Initially, the material enedgnsity is found to lag behind the

radiation energy densities and finally equilibrate as timeeeds.

Chapter 5

The zero dimensional model is successful in obtaining thaiate yields and reaction
dynamics going on in time. However, to study more complexesses like shock propagation
in ICF plasmas, pellet implosion and explosion either inraatidrive fusion or via x-rays in a
hohlraum for the indirect drive, the actual spatial vagatis to be considered. Thus, to have a
better understanding of the processes taking place in entrerclear plasma, at least one di-
mensional hydrodynamic simulation study need to be perdrnm this chapter, a fully implicit
one dimensional Lagrangian hydrodynamic code has beerogp@ekin planar, cylindrical and

spherical geometries. The medium is divided into a numbeneshes and Lagrangian differ-
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ential equations for conservation of mass, momentum andygaee solved in each mesh. All
the meshes are connected and the velocities at the end afndstep are obtained by solving
a tri-diagonal system of equations. The hydrodynamic systeequations are closed by using
the equation of state (EOS) corresponding to the matermth& melting curve of the elements
play an important role in the early stages, we have studiedn#lting curve of Cu and Al and
the effect of dopants on the melting point using classicadlecdar dynamic simulations (in-
cluded in appendices C and D respectively). The code is wsebtain the results for Sod’s
shock tube problem in planar geometry [14], Sedov’s selilampoint explosion problem in
spherical geometry [15] and Noh’s problem in both spherdeal cylindrical geometries [16].
For the high energy density systems, the flow of energy frodmateon to matter cannot be
neglected and the total energy of the material changes beaduadiation interaction in addi-
tion to that due to hydrodynamic compression. In order t@dles properly the dynamics of
the radiating flow, it is necessary to solve the full time-glegent radiation transport equation
as very short time scales corresponding to a photon flighe tier the mean free path are to
be considered [10]. Two methods commonly used are nonibquih diffusion theory and
radiation heat conduction approximation [17]. The fornsevalid for optically thick bodies,
where the density gradients are small and the angulartlision of photons is nearly isotropic.
The conduction approximation is only applicable when niated radiation are in local ther-
modynamic equilibrium, so that the radiant energy flux igpordional to temperature gradient,
and for slower hydrodynamics time scales. Use of Eddingtéactor for closing the first two
moment equations is yet another approach followed in radidtydrodynamics. The full ra-
diation transport equation has been solved using the desordinates method [18]. The time
dependent radiation transport equation for one group msdelved by discretizing it in angle
and space. The angular difference coefficients and the wattdthed to the angles (obtained
according to Gauss quadrature) define the angular disatietizwhereas the finite difference

version in space is obtained by integrating over a cell. Trogrewith the exponential difference
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scheme, the fluxes for all the meshes are obtained using th@weboundary condition and the
symmetry of the flux at the centre of the sphere. The rate o&tiad energy absorbed by unit
mass of the material in each of the fixed mesh is finally obthiii&e code is then used to study
the Marshak wave problem in planar and spherical geometyarfsl Olson [19] derived an
analytical solution of the non-equilibrium Marshak wavelgem in a one-dimensional planar
geometry in the diffusion approximation. The non-equilion Marshak wave problem consists
of a semi-infinite, purely absorbing, and homogeneous nmediccupyingd < z < oco. The
medium is at a zero temperature with no radiation field priesteiime 0. Attimet=0, atime
independent radiative flux; = c/4 impinges upon the surface at z = 0. Opacity is assumed to
be a constant independent of temperature and the specifishaportional to the cube of the
temperature, i.e., @=a T3. As a representative of these results, we show the scaléaticad
and material energy densities as functions of positionénsiab at different times far = 0.1

in figure 6. For numerical simulation we have chosen opagjty100 cnT! and mesh width
Az = 10~3cm in order to maintair,Az = 0.1. Comparison with the analytical results shows
good agreement after a large time, whereas there is slighgttement at earlier times. As
the analytical results are obtained for the Marshak diffagroblem whereas our results em-
ploy the full radiation transport, slight difference atleartimes is expected because of larger
penetration for diffusion approximation. An analyticalgmn is derived for the steady state
Marshak diffusion in spherical geometry with the plasmaimg\a constant opacity{, =5.58
cm~1) and neglecting the heating and cooling rates. Steady stated radiation temperatures
within the sphere obtained from the radiation transportecatk compared to the analytical

solution.
Chapter 6

In this chapter, the radiation transport and hydrodynamackes described in chapter 5 are
coupled together to obtain a fully implicit radiation hydsmamics code. The coupled radiation

hydrodynamics code is applicable when the radiative tearesfid the interaction between the
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Figure 6:Linear plot of the radiation energy density and materiatgyeensity as functions of position
in the slab at different times. The symbols represent thyce solutions.

radiation and the material have a substantial effect on thatistate and motion of the medium
[17]. The radiation energy density and pressure are néjgign comparison to those corre-
sponding to the materials for non-relativistic radiatiogrdfodynamics. However, the radiant
heat transfer in the medium is significant because the radizrgy flux is comparable to the
material energy flux. Thus the continuity equation and theaéqn of motion remains un-
changed as the radiant energy density and the work done kadiegion pressure forces are
neglected. A term describing the radiation absorption ang&on is introduced into the en-
ergy equation. The solution method is described in the shesiletail and is clearly depicted
in the flowchart given in figure 7. The time step index is deddig ‘nh’ and ‘dt’ is the time
step taken. The iteration indices for electron temperatumck total pressure are expressed as
‘npt’ and ‘npp’ respectively. ‘Errorl’ and ‘Error2’ are thieactional errors in pressure and

temperature respectively whereas ‘etal’ and ‘eta2’ arsela@ceptable by the error criterion.

Using this radiation hydrodynamic code, the problem of &hmopagation in Al foil is

studied in planar geometry. In the indirect drive inerti@hinement fusion, high power laser
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beams are focused on the inner walls of high Z cavities orraahis, converting the driver
energy to x-rays which implode the capsule. If the x-ray fritve hohlraum is allowed to fall
on an aluminium foil over a hole in the cavity, the low Z maé¢absorbs the radiation and ab-
lates generating a shock wave. Using strong shock waveythtberradiation temperature in the
cavity T,. can be correlated to the shock velocity The scaling law derived for aluminium is
T, = 0.0126u%%, whereT, is in units of eV and., is in units of cm/s for a temperature range of
100-250 eV [20]. Comparison between the numerically oletdishock velocities for different
radiation temperatures and the scaling law for aluminiuowsood agreement in the temper-
ature range where the scaling law is valid. The point explogroblem with heat conduction
is also studied in spherical geometry. P. Reinicke and J.ektgr-Vehn (RMV) analyzed the
problem of point explosion with nonlinear heat conduction &n ideal gas equation of state
and a heat conductivity depending on temperature and gensit power law form [21]. The
problem combines the hydrodynamic (Sedov) point explogiith the spherically expanding
nonlinear thermal wave. The RMV problem is a good test tord@tee the accuracy of coupling
two distinct physics processes: hydrodynamics and radiaiffusion. We generate the results
for the point explosion including radiation interactionngsour fully implicit radiation hydro-
dynamics code. As a representative of these results, we teomormalized density, pressure,
velocity and temperature obtained from our radiation hggiramic code in figure 8. The kink
in p/p1 and a sharp drop ifi'/7; at a distance of 0.57 cm are observed which shows that the
heat front lags behind the shock front in this case. The smeatiation of temperature near
the origin shows the effectiveness of radiative energysfierfrom regions of high temperature.
But for the unperturbed power law density profile ahead ofsineck front, profiles of other

variables are somewhat similar to point explosion probldthaut heat conduction.

Asymptotic convergence analysis is performed for condggctierification analysis of the
code. The asymptotic convergence rate quantifies the qgenee properties of the software

implementation (code) of a numerical algorithm for solvihg discretized forms of continuum
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including radiation interaction foy = 5/4. Total energyl6.9 x 10'% ergs is deposited at= 0 in the
innermost mesh.

equations [22]. Our code verification for both planar andesjglal cases consider the global
mass-wise and temporal convergence separately. Spatialbas temporal convergence rates
are~1 as expected from the difference forms of mass, momentuneaadyy conservation
equations.

Chapter 7

Finally, we conclude the thesis in this chapter. The studased out and the important
results obtained are summarized. The limitations and thediscope of the work is also dis-
cussed.

Four appendices have been included at the end of the thesis:

1. Adaptive Cash-Carp Runge Kutta (RK) method for solviregg@DEs.

2. Error arising from the discretization of mass, momentwmah @nergy conservation equa-

tions.

3. Melting curve of metals using classical molecular dyreniMD) simulations.



16

4. Effect of Site Selective Ti substitution on the MeltingmdMP) of CuTi Alloys.

In summary, the important highlights of the work are as fwBoAn improved model of charged
particle and neutron energy deposition is developed toyaadhternal T breeding and ther-
monuclear burn characteristics of compressed D-T pellatso, new analytical benchmark
results have been derived for radiation diffusion in plasad spherical geometries. A fully
implicit 1D Lagrangian hydrodynamics code is developed ajpplied to significant problems
in ICF. We have performed Classical MD simulations to obd of metals and alloys as they
are important for EOS determination and use in hydrodynaimcilations.
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Introduction

1.1 Motivation

Hot dense plasmas are encountered in high-energy densysigshscenarios such as Iner-
tial Confinement Fusion (ICF), strong explosions, astrgptat systems, shock waves, etc.
Such systems are obtained at pressures exceeding 1Mbamargl @lensities greater than
10*erg/cm? [1]. They consist of three kinds of particles, namely thesioglectrons and pho-
tons [2]. The self equilibration times of ions and electrans much smaller~ 1013 s) com-
pared to the time taken by ions and electrons to attain the samperature~ 107 s) [3, 4].
So, distinct energy and temperature is assigned to theitgrgtspecies and the evolution of
energy density for such a plasma is described using the-tameperature (3T) equations. How-
ever, if the time scale of interest is larger than the electom temperature equilibration time,
a single material temperature can be defined for the two caere of the plasma fluid. When
energy is deposited locally, it gives rise to local perttidoes in density, pressure and temper-
ature. These disturbances then propagate away from theesburtransporting energy to the
other regions [3]. The two principal energy transport moaleshydrodynamic motion (sound
waves or shock waves) and radiation transport (RT). Th@fustoducts in ICF (charged parti-
cles and neutrons) mainly deposit their energy to the iormitgh collisions whereas radiation

energy preferably heats the electrons.
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The equations for conservation of mass, momentum and eaéygy with the Equation of
State (EOS) define the hydrodynamic motion of the plasmaT#g radiation transport equa-
tion defines the radiation intensity as a function of spaaktane in the interacting medium.
Solving the problem of radiation transport is difficult basa the equation is integro-differential
in character and can take various forms (elliptic, parabalihyperbolic) in different mediums
[5]. Simplifying assumptions are made to obtain analyts@utions in some cases. As the
photon density is a function of seven independent variabhese for position, two for direc-
tion of flight, one for energy and one for time, simulatinglneatiation transport problems is
challenging. Significant storage and computational corilés involved in resolving all of
these dimensions on a spatial, temporal, angular and egeidyyRadiative phenomena occur
on time scales that differ by many orders of magnitude froomsécharacterizing hydrodynamic
flow. This leads to significant computational challengeshim ¢fficient modeling of radiation
hydrodynamics [6, 7].

The motivation behind the work in this thesis is to study tf@ementioned energy trans-
port mechanisms in detail. New analytical solutions havenba@erived and numerical codes

developed for the purpose.

1.2 Theoretical background

Dynamical phenomena such as shock waves, radiation waasrial ablation, etc. are essen-
tial for the production of high-energy density conditiotsthe achievement of inertial fusion
and to the simulation of astrophysical phenomena [2]. Theletsoand codes developed in
this thesis are applied to hot dense plasmas generated labibeatory using inertial confine-
ment fusion approach. In this section, we discuss the palsiocesses taking place in an ICF
plasma. The techniques and methodologies for studyingggritaw through hydrodynamic

motion and radiation transport is also introduced. Anagjtsolutions available only for a few
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simple problems are discussed and various numerical meihagse for the complicated ones
are compared. We also discuss about atomistic simulatioaldtaining the melting points of
metals and alloys which plays a major role in choosing th@@ronaterial properties (EOS) at

lower temperatures, for example, the initial stages of ICF.

1.2.1 Concept of inertial confinement fusion

Hans Bethe discovered in 1931 that nuclear fusion is theggirenergy source of stars. As
the conventional fuels have limited resources, nucleaoifukas the potential of turning into
the energy source of the future because of its ecologicalsafety advantages [8]. In order
to fuse two light nuclei which are positively charged anasgly repel each other, high tem-
peratures are required to overcome the Coulomb repulsjon{3961, a Livermore scientist,
John Nuckolls, realised that the powerful light beam of aspdllaser could be used to achieve
the energy densities necessary to produce very high cosipnss Inertial Confinement Fusion
(ICF) is a process where thermonuclear fusion reactionsdrated in a fusion fuel (e.g., DT,
DD, DHe€’, etc) by compressing it to tremendous densities and teryegsaby focusing high
power laser or charged particle beams on the surface of thet pevia X-rays in a hohlraum
[1]. The inertia of the fuel pellet helps in confining it longaugh to produce more fusion
energy than is expended in heating and containing it. The tequirements of heating and
confinement is represented by the Lawson criterion whictbtained by balancing the fusion
energy release against the energy investment in ablaimgpiessing, heating the fuel to ther-
monuclear temperatures and the energy lost through radialti » is the ion density and is
the confinement time, the Lawson criterion states that> 10'* s/cc for D-T reactions and
nt > 10' s/cc for D-D reactions when the reaction rate is evaluatesliiéable temperatures
(10 keV for D-T and 100 keV for D-D). An alternative way of defig the Lawson criterion
is the product of the fuel densifyand pellet radius R. Efficient thermonuclear burn occurs if

pR > 3g/cm? so that 1/3 rd of the fuel pellet burns before its disasseniiilg most important
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Figure 1.1:Target sector of a typical ICF pellet.

guantity determining whether a reaction would take placedairis the reaction cross-section
(o) which measures the probability per pair of particles f@ tbaction to occur. Cross section
is defined as the number of reactions per target nucleus ptetiraa when the target is hit by
a unit flux of projectile particles. Ifi4 is the ion density of species A whiles is the density
of species B, then the rate at which fusion reactions occgiven by R g = nang < ov >
where< ov >= [ [ f(U4)f(Up)o(vrer)vradiadip indicates an average over the velocity dis-
tributions of both species with the relative velocity, =| v4 — U5 |. The velocity distributions
characterizing a plasma fuel in thermal equilibrium at agerature T is given by the Maxwell-

Boltzmann distributiory (¢) = (%Z;T)*g/2 exp(—;]:};’;) wherek g is the Boltzmann’s constant.

A typical ICF pellet consists of a hollow shell capsule withauter ablator layer of 1.67 mg
plastic and a fuel layer of 1.68 mg (cryogenic) solid DT. Tleo radius of the shell is slightly
less than 2 mm and its aspect ratio is about 10 as shown in figur& he central cavity is filled

with DT vapour, which forms the ignition hot spot after thepiwmsion [9].

The various stages followed in inertial confinement fusiococpss are:
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1. Laser/Particle beam or x-ray driven ablation

When laser light is incident on the outer surface of a fusieltep, the material is trans-

formed into the plasma state and expands outward from thigcgu The density of the

plasma is highest close to the capsule surface and lowdrefuatvay. If the density of

the plasma is greater than the critical density, laser besammo more penetrate into the
capsule. The driver energy is transported from the outeomnsgf the plasma corona into
the ablation surface via classical electron conductioh($uperthermal) electron trans-
port and radiation transport. Particle beams on the othed lpanetrate in the medium
upto their range and deposit their energy into the ions aectreins. An alternative is the
indirect drive approach in which laser energy is first absdrim the inner walls of the

hohlraum coated with high Z material which emits x-rays. Xkrays fall on the capsule

at the centre of the hohlraum and leads to the ablation of titer surface. 70-8% of

the laser light is converted to x-rays.

. Ablative shock compression

As the outer surface of the pellet ablates, due to rocketanain ablative pressure is
generated inwards. A spherical shock wave moves inwardsamgresses the fuel. In
order to obtain higher shock compressions, a series of weatks rather than one strong

shock is used.

. Thermonuclear ignition and burn propagation

Thermonuclear ignition and burn of a plasma occurs whernrmateneating by fusion
products exceeds all energy losses such that no furthemexkteeating is necessary to
keep the plasma in the burning state [9]. For a DT pellet énimtg equal amounts db?
andT?, the ignition temperature is 5 keV or higher. Ignition can be achieved through
various schemes, viz. volume ignition, hot spot/ centraitign and fast ignition. In

volume ignition, the whole of the fuel is compressed anddubéd fusion conditions at
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the end of the compression phase so that ignition startseinvtiole pellet. The driver
energy requirement is very high 60MJ for volume ignition. In hot-spot or central
ignition concept, the fuel moves inwards with increasinpeities as the driver deposits
its energy. The result of this acceleration is that the irpset of the fuel is compressed
into a higher temperature adiabat 5-10 keV) than the outer part of the fuel (L keV).
Both parts will be compressed to high densities, but therimoé spot will be slightly
less dense than the outer part. In the hot spot concept tmedbuhe fusion material
begins in the central hot spot. The alpha particles are magsponsible for depositing
the fusion energy into the outer layers. If the hot spot sizgreater than the critical
radius, a thermonuclear burn front propagates into outier foel producing high gain.
At these very high densities, the energetic alpha partigtesluced in the DT fusion
reactions are absorbed in this central region heating itiichggher temperatures and
causing the fuel to burn even more rapidly. As the centralksparns, alpha particles are
deposited in the adjacent fuel, bringing it to ignition tesrgtures. This process continues,
leading to a thermonuclear burn wave that propagates odtway the cold compressed
fuel surrounding the ignited pellet core, consuming théifua very rapid thermonuclear
microexplosion. After only a few picoseconds a significaatfion of the imploded pellet
fuel has burned before the pellet disassembles. As the @ssipn of hot material is
more energy consuming than the cold material, and becaasariaterial needs to be
heated in the hot spot scheme, it provides better gains hétladlditional advantage that
the external dense and cold fuel layer provides better comigmt. In the fast ignition
scheme, the capsule is precompressed by a conventiongbldsg (ns) laser to produce
a high density corep( ~ 300-400 g/cc) [10]. The core is then ignited using a short
pulse (fs) ultra intensey 10** W /cm?) particle beam. The advantage of the fast ignitor
concept is that compression and ignition are separateeihenabling higher gain from

a lower driver energy input, possibly allowing higher talleces in target fabrication. The
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Bum

Figure 1.2:Various stages followed in Inertial Confinement Fusion.

various stages of an ICF pellet implosion and burn is showigure 1.2.

The most important fusion reactions occuring in a thermtarplasma containing? and

T% are:

D,? +D;* — Hey® +1no' +3.269 MeV, (1.1)
D2+ D> — T +pi' +4.033 MeV, (1.2)
D2 + T* — Hey +1np' +17.589 MeV, (1.3)
Hey® + Dy? — Hey? +pi' 4 18.353 MeV. (1.4)

DT reaction has the highest reactivity in the whole tempgeainterval below 400 keV. The

second most probable reaction is DD at temperatures belkeM2@hile it isDHe? for 25 < T

< 250 keV as shown in figure 1.3. Advanced fusion fuels invaj\hgdrogen isotopes and light
nuclei (such as helium, lithium and boron) are particulamkgresting as they do not involve
any radioactive fuels or neutrons and only releases chargeitles. One such reaction is the

proton-boron reaction

pil + Bs'! — 3He,* +8.6 MeV, (1.5)

which has reactivity equal to that of DFlat about 250 keV and that of DT at about 400keV.
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Figure 1.3:Maxwell-averaged reactivity Vs. temperature for reactiofiinterest to inertial confinement
fusion. Reproduced with permission from reference [9]

A key point in achieving fusion is a homogeneous compressubich means aiming for a
perfectly symmetric implosion. But it is difficult to achiewa spherically symmetric compres-
sion because of the instabilities. Among hydrodynamicaibiities, the Rayleigh-Taylor (RT)
and Richtmyer-Meshkov (RM) instabilities play a role in I@ut of these two, the RT instabil-
ity is the most dangerous one. The RT instability occurs wdnéghter fluid tries to accelerate
a denser fluid. During the spherical implosion of an ICF pgeRd instability arises when the
ablated low density plasma pushes a cold high density fuerds. Also, at the end of the im-
plosion, the pressure in the hot fuel increases therebyl@rateg the pusher shell imploding
the fuel mass. If the fuel density is lower than the pushesiigrihe pusher material mixes into

the fuel due to RT instability thus affecting the thermomaclburn of the fuel [11],[12],[13].
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1.2.2 Hydrodynamics

The state of a moving fluid whose thermodynamic propertieskaiown can be defined in
terms of velocity, density, and pressure as functions oitiposand time [4]. The continuity
equation or the equation of mass conservation signifiesttigthange in density within a
volume element is because of fluid flow into or out of this eletné p is the density and is

the velocity, then the above equation is
P Na=0 (1.6)
Dt ’
Where% = % + 4.V. The equation of conservation of momentum is equivalentaafsin’s
second law and attributes the acceleration to the appliegdo If P is the pressure, then
.D/L_[: —>

The equation of conservation of energy is equivalent to tts¢ faw of thermodynamics and

states that the change in specific internal enéf@yf a given fluid element is a result of the work
of compression done on the element by the surrounding medinchthe energy generated by
external sources.

%f + P% =Q, (1.8)
whereV = 1/p is the specific volumey) is the energy generated by external sources per unit
mass of the material per unit time. In order to close the alsygéem of five equations with
six unknowns, the thermodynamic properties of the fluid asuimed to be known through the
Equation of State (EOS) given iy = P(p,T) andE = E(p, T).

The hydrodynamic equations become acoustic equationsliegthe propagation of sound

waves in the limiting case, where changes in dendityand pressuré P accompanying the
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fluid motion are very small in comparison with the averageigalof density, and pressure
Py, and where the flow velocities are small in comparison withgpeed of soune,.. The en-
ergy of a sound wave is a quantity of second order, propatitmnthe square of the amplitude
pc? [1]. If the medium is disturbed very strongly in an extremshort time, as in the case of
energy deposition by driver, the disturbance propagatesie neighbouring regions approxi-
mately with the speed of sound which is proportional to thesse root of the density, ~ p'/2.
Hence the disturbance propagates faster in the high deegitgns than in low density regions.
The perturbation profile of a fast propagating disturbanaeetling into a lower density region
steepens resulting in a shock wave which is supersonic the imedium ahead of it [8]. Figure
1.4 a) shows a shock wave moving with speedn a fixed frame of reference with a static
medium ahead of the shock. It is convenient to work in the &dixed to the shock wave so
that the medium ahead of the shock moves towards it with theksspeed as shown in figure

1.4 b). The conservation laws are then given in one dimeakform by

dp 0
% T %(PU) =0, (1.9)
Q( y+94p+ =0 (1.10)
gt P T gt TP T '
0 u? ) uw> P
—(pFE — — EFE+—4+—)|=0. 1.11

In the limit of an infinitesimally thin discontinuity, we olin the Rankine-Hugoniot relations

Pollo = pP1ui, (1.12)
Py + pougy = Py + pru3, (1.13)
p 2 p 2
B+l _p 10 (1.14)
po 2 g 2

The Hugoniot curve is locus of all thermodynamic statesiabtiby single shock compres-

sions. As illustrated in the P-V diagram of figure 1.5, the binigt curve lies above that of
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Figure 1.4:Hydrodynamic variables behind and ahead of a shock wave finex) frame of reference
and b) frame of reference moving with the shock.

adiabatic compression. The area under the curve is eqoivi@eéhe work done to compress
the material. While the temperature and pressure acrosshitek will rise indefinitely with
the strength of the shock, the compression or density chapg®aches an asymptotic limiting
value ofz—é = % For a monoatomic gas (specific heat ratie- Cp/Cy = 5/3), this ratio is
4, for a diatomic gasy(= 7/5), itis 6, and so on. In reality, at high temperatures andques,
the specific heats and specific heat ratios are no longeramdristcause of molecular dissoci-
ation and ionization. Even in this case, the density ratioai@s finite and it does not exceed
11-13. As a series of weak shocks approach an adiabat, thedesoe to compress the fuel is
lower. An isentropic compression also prevents in heatiegiel so that it is easier to contain

the fuel for a longer time.

Numerical problems involving simple gas flows can be solvedically and used as tests
for validating hydrodynamic simulation codes written feudying more complicated processes
[14]. A steady plane-parallel adiabatic shock, with itspstenction changes in density and
temperature [7] is a classic test problem for hydrodynaroaes with the analytical solution
known (Rankine Hugoniot). Such a shock can be produced ncafigrby a piston, i.e., by
giving the inner zone boundary a constant outward veloéityther standard hydrodynamics

test is the shock tube [15]. The point explosion problem asiself-similar analytical solution
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Figure 1.5:P-V diagram for shock and adiabatic compression.

in spherical geometry [16]. The Noh problem has also beevedahnalytically for spherical
and cylindrical cases [17].

Hydrodynamic simulation is performed by dividing the syst® be studied into meshes,
discretizing the hydrodynamic equations in these regionssolving them numerically [18].
As the meshes are attached to the moving material in the hggna formulation, the mass
within a mesh remains constant. However, in the Euleriarerse) the meshes are fixed in
space with material moving from one mesh to the other. Thedragan scheme is conceptu-
ally simple and the entire time history of all the field vatedat a material point can be easily
tracked and obtained. Though it is difficult to track the timstory data of any material point
or boundary, large deformations can be easily handled ifctherian scheme. The equations
can be discretized either using finite difference (FD), éivblume (FV) or the finite element
(FE) methods [19]. In the finite difference method (FDM),idatives are approximated as fi-
nite difference using Taylor’'s expansion and neglectirghbr order terms. Local truncation
errors are introduced in the solution depending on the aryfissrm neglected in the series. In

finite volume method (FVM) on the other hand, instead of peis¢ approximations on a grid,
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average integral value on a reference volume is considesiag Gauss theorem. The FVM is
applicable to integral form of conservation law and is a redtahoice for heterogeneous ma-
terial as each grid cell can be assigned different mateaameters. In finite element method
(FEM), the variables are expanded in terms of basis funatiith a partition of the domain

in a finite dimensional subspace. It is flexible and appliedbf complicated geometries. For
the Lagrangian finite difference method, one may use thaaixptheme in which the thermo-

dynamic variable at the present time step is obtained fromaaviedge of the previous time

step values. Implicit schemes on the other hand rely onmglaisystem of equations at each
time step as the variable values are dependent not only mopeetime step values but also
on the present values of the adjacent meshes [20]. Apprdxigithe time step as a backward
difference leads to explicit scheme whereas forward orraédifference results in an implicit

scheme. Although the explicit scheme is computationaitypde, it has a serious drawback that
the time step should be very small (less than the time takendmyind signal to traverse the grid
spacing) for the solutions to be stable [21]. As a simultaisesystem of equations is solved in

the implicit scheme, it takes more computational time peetstep than the explicit scheme.

The molecular structure of a fluid results in dissipativecesses like viscosity and heat
conduction which creates an additional, non-hydrodyndnaitsfer of momentum and energy.
They appear only where there are large gradients in the floahlas as in a shock front and are
responsible for the increase in entropy. All numerical pohaes describing shock structures
must have some degree of dissipation like viscosity or headaction to control the numerical
instability by smearing the shock within a few mesh widthse Mon-Neumann procedure [22]
artificially adds a new viscous term whereas the high resosluhethods use an upwind scheme
based on the exact Godunov [23] or an approximate [24] Riensatver. The high resolution
methods inherently possess the needed dissipation thrinvegtype of differencing operator

used to approximate the governing equation [25].
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1.2.3 Radiation transport

In the radiation field, energy is carried by point masslessges called photons. Each photon
travels with the speed of light ¢ and carries an enengyhere h is the Planck’s constant and
v is the frequency of the electromagnetic field associated thi¢ photon. A radiation field in
space is described by the distribution of the intensity dfaton w.r.t., frequency, to space and
to the direction of radiant energy transfer and is exprebgetthe photon distribution function
f(v, 7, Q, t) [4]. Then the number of photons in the frequency intevéd v + dv, contained
at time t in the volume elemenft™ at the point”, and having a direction of motion within an
element of solid angle@ about a unit vectof? is given by f (v, 7, 0, t)dvdidS}. The spectral
radiation intensityl, (7, Q. t) = hvef (v, 7, Q, t)dvdidS) represents the radiant energy in a unit
spectral interval, passing per unit time through unit avat) direction of energy propagation
contained within unit solid angle about the vecfbrThe photons interact with the background
material by emission and absorption during electronicditaons from one energy state to an-
other in atomic systems, like electron-ion plasmas. Alt&tmic transitions can be divided
into three groups using the continuity criterion or the deseness of the energy spectrum of
the initial and final states of the atomic system. These graw@ bound-bound, bound-free and
free-free transitions. A free electron traveling throulgé electric field of an ion in an ionized
plasma can either emit a photon without losing all its kinetergy and remain free or it can
absorb a photon and acquire additional kinetic energy. g free-free transitions are called
Bremsstrahlung and has a continuous emission and absogectra. For a fully ionized
plasma, Bremsstrahlung transitions are the most dominanhamism of radiation absorption
and emission. The radiative transfer equation is a parifi@rdntial equation for the radiation
intensity and describes a non-equilibrium radiation fidldermodynamic equilibrium in matter
is usually established very rapidly, and it is thereforesilale to consider the material to be in
a state of local thermodynamic equilibrium (LTE) at eachnpoif space and at each instant of

time. The state of the material is then described by two patars, such as temperature and
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density. The time dependent, multi-frequency, non-elguidim radiation transport equation is

given by

101(v, 7,0, 1)

e + Q-VI(v, 7 fhp4%ryT+%ﬂ@ﬁQw:

oq(v, 7, t)B(v,T) +05// £dydv/, (1.15)

along with the material energy equation

T (7, t . .
Cyv (7, T)a (1) _ //JG(F, v, [I(7, Qv t) — B/, T)dYdV, (1.16)
where the Planck’s function iB(v, T') = 8”0’;” exp(hy/lkBT)fl. o, IS the opacity (inverse of ab-

sorption mean free path) and is the scattering cross-section. Here, speed of light=
2.9979 x 10® m/s, Planck’s constant:) = 6.62 x 1073! J.s and Boltzmann’s constant
(kp) = 1.38 x 1072 J/K. Though the temperature is most familiarly expresseckinin (K),

it is convenient to express it in keV where 1eV=11,600K.

The external source of radiation enters through the boyndarditions. The first term in
eqgn. [1.15] is a time rate of change term. This time derieaisvrelated to several loss terms
in phase space on the LHS and gain terms on the RHS. The sezmoman the LHS is a loss
term due to photons streaming out of an element of phase .spheethird term is a loss term
due to photons absorbed into the background material arttessh out of the phase space.
The absorption term appears as a source term in the mateeajyeequation. The first term
on the RHS is a radiative source due to the background teroperaf the material (hence a
corresponding loss term appears on the RHS of the otheriegual he last term represents
increase in photon intensity in the directifrdue to scattering from other angles [5].

Analytical solutions of the above equations are difficultept for the simplest of cases. The
equation for the specific intensity is integro-differehitienature and non-linearly coupled to the

material equation so that devising an appropriate numesateeme is also difficult. To generate
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solutions to physically interesting problems, it is neegg$o make some approximations.
The most common approximation is the multi frequency appnaxon in which the fre-
quency variable is divided into G groups and group specitienisity, group Planck function,
etc. are defined. The group averaged absorption opacitefoemed by multiplying with
physically meaningful weighting functions. The Planck me@acity is obtained by weighting

against the Planck’s function and is accurate in the opyithin, emission dominated limit.

op(F,T) = / U“}Z?ZBT(;&? v (1.17)

The Rosseland mean opacity is valid for an optically thicktesn in which the specific heat is

small and the speed of light is large.

OB(w.T) 4
or(7,T) = J o —dv (1.18)

1 0BT '
fcra(F,y) o~ v

The Rosseland mean is accurate if the problem is highlysifuand slowly varying in time.
The Rosseland and Planck means may vary by an order of mdgnituifferent temperature
density regimes. In this thesis, the group averaged Rosselgacities have been used as they
have been shown to be more accurate in the presence of strmpgtature gradients.

The next level of simplification is the Grey approximationexin the opacities are fre-
guency independent so that the above RT equation may beatgegover all frequencies to
obtain the Grey radiation transport equation.

In the diffusion approximation, the angular variable isretiated by finding equations for
the first two terms in a spherical harmonics expansion. It9s assumed that the angular de-
pendence of the specific intensity is adequately repreddnytéhe first two terms of a Legendre
polynomial expansion. Assuming a constant radiative flbg,diffusion equation is obtained.
This approximation is valid for problems where the flux isnheotropic.

In the heat conduction approximation, the radiation intgrag a space point in the medium
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is assumed to be at the local material temperature at that. poithis case the equilibrium heat
conduction equation is used for obtaining energy transfer.

The other approximations normally used are the quasidafuapproximation, Eddington
approximation, etc.

Radiation transport and diffusion equations are eithevesbdeterministically usingy,
Sy, etc. methods or stochastically by Monte Carlo methodshéndieterministic methods, the
radiation transport equations are discretized in spaoe, aind angle and then solved iteratively.
Several numerical methods are in use for solving the raidtansport equation, namely the
discrete ordinates [26], finite volume [27], Monte Carlo J[28ybrid stochastic-deterministic
[29],[30], or the approximate methods like the Eddingtopragimation [31], heat conduction
[32] or the diffusion approximations [33], [34], [35]. Nawkeless, analytical approaches have
decisive advantages regarding accuracy, speediness amefinal implementation compared
to numerical methods and are important for their validaf@s]. Also, better insight can be
gained through the mathematical form of an analytical smutompared to a discrete numeri-
cal solution. The orthogonal expansion technique [37]e@iefunction approach [38], Laplace
transform and separation of variables [39], finite integrahsform method, etc. are some of
the commonly used methods for obtaining analytical sohgitw the radiation conduction and

diffusion problems in several systems.

1.2.4 Atomistic simulation

An essential input to the hydrodynamic simulations is a Kedge of the material EOS which
usually takes the form of pressure P and energy E as funatifothsnsityp and temperature T.
The pressure and internal energy of a material can be copsids the sum of cold and thermal
terms. The cold or elastic term&(and E,.) are related to the interaction forces between the
atoms of the material and is important below 1 eV. The theterat is related to the temperature

T of the body and consists of contribution from the latticesdPr; and Er;) and electrons
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(Prg andErg) [40]. Therefore, the EOS can be written as

P =PF.+ Prp+ Prg, (1.19)

E=FE,+ Ers + Erp. (1.20)

Depending on the composition, density and temperaturdribation from each of the terms
vary [41]. For low Z materials, ions make a significant cdmition at any densities and temper-
atures. For high Z materials, at temperatures aboi® eV, most of the pressure comes from
the free electrons and the key variable is the ionizatiote stehe thermodynamic properties of
a system can be obtained from molecular dynamics by comsgldre interaction between the
atoms of the system. At the initial states of ICF implosiorewlphase transition from the solid
to liquid phase occurs, accurate knowledge of the meltimgtor various pressures is essential
for choosing the proper EOS to be used for the hydrodynammalsition. It has been observed
both experimentally and through numerical simulation thatouter & 20.m) of the ablator
material (e.g., Be) will be melted by radiation preheatjvgtibsequent material melted by the
initial shock [42]. The solid liquid phase boundary commyokriown as the melting curve is an
important part of the phase diagram and is widely used in pighsure physics, inertial confine-
ment fusion, material science, astrophysics and geopdiysiences. Melting curves of metals
can be obtained experimentally by the Diamond Anvil Cell MAwvhich is a static method or
by the dynamic methods consisting of laser or ion beam diaation, etc. However it is dif-
ficult to design experiments because of the high pressukseamperatures involved. Various
simulation methods like the Lindemann’s law, dislocatioediated melting, classical and ab
initio Molecular Dynamics (MD) etc. are in use to complemtitg experiments. The classical
MD method [43] is very convenient as a large number of atomnspared to ab initio MD can

be simulated using an empirical potential which properlyadide the interatomic interactions.

In molecular dynamics simulations, the time evolution ofyatem of interacting particles
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is determined by the integration of the equations of moti@uch measurements allow the
computation of relevant macroscopic variables such agikioe potential energy, pressure,
diffusion constants, transport coefficients, structuitdes, spectral density functions, distri-
bution functions, etc. [44]. In classical molecular dynesnfMD) simulation, the trajectories
of atoms and molecules are determined by numerically splihie Newton’s equations of mo-
tion for a system of interacting particles where the forcesvieen the particles is determined
by the interatomic potentials. The most widely used modelaoulate the interactions is the
Lenard-Jones (LJ) potential which is a pair potential. Hesvepair potentials are insufficient
for describing the properties of metals as the cohesiveggrara crystal is mainly described
by the many-body interactions or by a volume dependent gait [Pure pair interactions also
imply that the surface relaxes outwards instead of inwasds abserved in experiments. The
embedded atom method (EAM) potential circumvents thesbl@nes by viewing each atom
in a solid as embedded in a host comprising all the other atdrhe total energy is the sum
of the embedding and pair potential energy [46]. EAM potdatare generated by fitting to
experimental data or results of ab initio calculations. dxding to the EAM theory, the total
energy of a system of N atoms is described as the energy eefoiembed these N atoms into
the homogeneous electron gas caused by surrounding atasia gbrrection of energy from

two-body interactions [47]. Thus this total internal enecgn be expressed as
1
Eyor = Z Fi(pi) + 3 Z Z G (1i5), (1.21)
7 1 jFi

whereF;(p;) is the embedding energy required to place atom i in an eleckeasityp;, ¢;;(r;;)
is the two-body potential between atoms i and;j,is the separation distance related to the

specified pair of atoms i and j, apgldenotes the host electron density at atom i due to all other
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Figure 1.6:Radial distribution function (RDF) of Cu before and afterltimg.

atoms and is given by

pi=>_ friy), (1.22)

j#i
wheref(r;;) is the electron density of the individual atom j.

The melting point is determined using the one-phase me#dfjdyherein the melting point
is identified from sharp increase in atomic volume, diffsstmefficient and energy as temper-
ature is varied. Also, as the long range order is lost oncdimgebccurs, the height of the
first peak of RDF decreases drastically and RPR after 2-3 small humps. The RDF de-
scribes how the atomic density varies as a function of degtdrom the atom and is given by
g(r) =n(r)/(4xr?*Arp) wheren(r) is the number of atoms at a distance r within a shell of
thicknessAr andp is the average number density. The heights of the peakdsityeinumber
of first, second, etc., nearest neighbours. Similarly thettpm of RDF peaks reflects the neigh-
bour distances. Earlier, a similar study of alloying bcc Rth\8i has been performed and the

increase in melting point is explained in terms of the RDFde=ight [49]. For Cu, at a tem-
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Figure 1.7:Jump in the diffusion coefficient (D) of Cu at melting point.

perature of 1440K, the intermediate and long distance peksi-Cu RDF are seen to slowly
merge out indicating that melting has occured (figure 1.6 jimp in diffusion coefficient for

Cu is shown in figure 1.7 wherein the melting point 1340K ig¢atked using arrows.

1.3 Survey of the work done prior to this thesis

Plasma heating by charged particles and neutrons, enechpege between ions and electrons
and radiative losses are the primary mechanisms detergniheignition conditions in a ther-
monuclear plasma [3]. These processes have been modetled varying degrees of rigor in
detailed computer simulations of both inertial and magr&infinement fusion schemes [9, 50].
Experimental proof of these theoretical predictions meagiuhe energy loss of heavy ions in
fully ionised hydrogen plasma were given by Hoffmaetral [51]. It is well known that most of
the energy of the fusion products should be deposited twtieein order to obtain higher fusion
gains [52]. However, increase of electron temperaturlgeeitiue to direct energy deposition

or via energy transfer from ions, leads to radiation lossas fthe plasma. The fraction of the



52

charged particle energy that is absorbed by the ICF peléet important parameter determining
the ignition condition. For pellet sizes comparable to therinalization range of fusion prod-
ucts, a fraction of the energy will escape the pellet. Krakdmd Rozanov [53] calculated the
thermalization distance and energy leakage probability charged particle in a fully ionized
plasma at a uniform temperature and density by consideneggg transfer to electrons only.
Later, Cooper and Evans improved this calculation by incgeénergy transfer to ions within

the small angle binary collision approximation [54].

Advanced fusion fuels lik®D, DHe?, DLi", etc. are very appealing from the point of view
of radiological cleanliness, but they are very difficult tgpkoit because of their ultrahigh igni-
tion temperatures [52]. Recently Eliezgral [55] have shown that the ignition temperature in
deuterium fusion targets can be significantly reduced vinéhaddition of very small amounts
of tritium [56]. This is because DT fusion has a larger cr@sgisn in comparison to DD fusion
at lower temperatures. There is also a possibility of a gatalegime for tritium burning where
external addition of tritium is not needed because the amoeeded is bred internally. How-
ever, Gsponer and Hurni [57] showed that by taking radiagiéects such as inverse Compton
scattering fully into account, the maximum burn tempematfra highly compressed DD pellet
is reduced from about 300 keV to only 100 keV. This decreaderitemperature leads to a
substantial reduction in the burn fraction. They conclutted if the radiation effects are prop-
erly taken into account, internal T breeding does not oceuhé pellet. Fralewt al studied
thermonuclear burn in DT microspheres at high densitiesodnt@ined numerical results char-
acterizing the burn for a broad range of initial conditiosswg a 1D 3T Lagrangian simulation
code and cross-checked the results with a separate nolibeigu code which solves radiation

transport using Monte Carlo method [60].

Analytical solutions to radiation transport involve salgithe radiation diffusion or trans-
port equation through a steady interacting medium. In teediure, considerable amount of

efforts have been applied for solving the Radiation Trangpmblem analytically. Two com-
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mon diffusion problems having analytical solutions areletion to radiative equilibrium and
radiative cooling of a sphere [14]. Marshak obtained a semailytical solution by considering
radiation diffusion in a semi infinite planar slab with ratba incident upon the surface [61].
Assuming that the radiation and material fields are in elguailim, the problem admits a similar-
ity solution to a second order ordinary differential eqaatihich was solved numerically [62].
The results were extended for non-equilibrium radiatidfudion by assuming that the opacity
is temperature independent and the specific heat is propattio the cube of the temperature
[63], [64]. This assumption linearized the problem promgla detailed analytical solution. As
the radiative transfer codes are meant to handle an aspiarmperature dependence of the ma-
terial properties, the obtained solutions serve as usefilgroblems [65], [66], [67]. Using
the same linearization, 3T radiation diffusion equatiomsersolved for spherical and spherical
shell sources in an infinite medium [2]. All available resudin the non-equilibrium radiative
transfer problems in planar and spherical geometry consigitems having infinite or semi-
infinite extension. Benchmarks involving finite size syssdmave been limited either to the heat

conduction or equilibrium diffusion approximation [6889], [36].

Radiation transport and its interaction with matter viagsian, absorption and scattering of
radiation have a substantial effect on both the state anehtii®n of materials in high tempera-
ture hydrodynamic flows occurring in inertial confinemerdifun (ICF), strong explosions and
astrophysical systems [4]. Researchers are continuousliing on devising new numerical
schemes for simulating radiation hydrodynamics. In ordefdscribe properly the dynamics of
the radiating flow, it is necessary to solve the full time-glegent radiation transport equation
as very short time scalegg~ [/cort, ~ \,/c corresponding to a photon flight time over a
characteristic structural lengthor over a photon mean free path) are to be considered [70].
Two methods commonly used are non-equilibrium diffusiceotty [71], [72] and radiation heat
conduction approximation [4]. The former is valid for oty thick bodies, where the density

gradients are small and the angular distribution of photemearly isotropic. The conduction
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approximation is only applicable when matter and radiaéiomin local thermodynamic equi-
librium, so that the radiant energy flux is proportional tmperature gradient, and for slower
hydrodynamics time scales [4]. Use of Eddington’s factocfosing the first two moment equa-
tions is yet another approach followed in radiation hydroaiyics [73]. Earlier studies on the
non-equilibrium radiation diffusion calculations shovattthe accuracy of the solution increases
on converging the non-linearities within a time step andeasing benefit is obtained as the
problem becomes more and more nonlinear and faster [34]}, [8&m developed an implicit
Lagrangian formulation to handle multi-material hydrodgmc problems involving shocks and
rarefaction waves [74]. Although high resolution methoolsdimulating pure hydrodynamic
flows are well established [75], their extension to coupbatiative regimes have only recently
begun [71],[73]. P. Reinicke and J. Meyer-ter-Vehn (RMValgzed the problem of point ex-
plosion with nonlinear heat conduction for an ideal gas &qoaf state and a heat conductivity
depending on temperature and density in a power law form [T&k problem combines the
hydrodynamic (Sedov) point explosion with the sphericakpanding nonlinear thermal wave.
The RMV problem is a good test to determine the accuracy oploaoy two distinct physics
processes: hydrodynamics and radiation diffusion. LateShestakov presented the results of
point explosion with heat conduction using a coupled hygnaanic diffusion code [77]. Bates
et al compared the time accuracy and convergence propertiesed, tnixed explicit-implicit
schemes for simulating nonrelativistic, radiative hydnoamic phenomena in the equilibrium
diffusion limit [72]. Verification of codes are also perfoech using the asymptotic convergence

analysis [78] or modified equation analysis [79].

1.4 Scope of the thesis

The work in this thesis focuses on understanding the mesheof energy transport by charged

particles, neutrons, photons, etc. in an interacting mmadilihe temperatures we consider are
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high enough so that material stresses and strains do noapjayle in the dynamics of the sys-
tem. We have improved the present energy deposition moddlarfjed particles by including
large angle Coulomb scattering, nuclear scattering andatole plasma effects. Thermaliza-
tion distance is reduced resulting in lesser energy esgdpm the pellet. We also resolve the
controversy regarding the possibility of internal tritilbreeding. It is observed that on using
the improved energy deposition model, internal tritiumdalieg occurs even on accounting for
inverse Compton losses. Based on T breeding ratio and deutéurn fraction, the optimum
pellet parameters have been obtained for which T is bredhallg. The zero dimensional model
IS next used to obtain the fusion yields in DT pellets havingrage of densities and tempera-
tures and are found to agree with the results of 3T Lagrangyanodynamics code. The zero
dimensional model is also modified in order to apply it to calngnition where only a central
region of the pellet is heated to ignition temperaturesnlweve propagates outwards into the
cold fuel, thus producing fusion energies. As the intecactf radiation with the medium is
one of the most important energy transport mechanism, tradiransport has been analyzed
in detail in this thesis. Radiation has been considered a®ans of photons interacting with
the medium by getting absorbed, scattered and emitted. ddiation transport equation de-
fines the time and space dependent radiation intensity.UBeaaf its coupling to the material,
it is integro-differential and highly non-linear. In thisdsis, we have made some simplifying
assumptions to obtain detailed analytical solutions. Tighly enriches our understanding of
this important energy transport mechanism. The Eigenfonatxpansion method has been
successfully applied to the non-equilibrium radiatiorfufon problem in finite systems. The
Laplace transform method also independently providesdheesanalytical results. As the dif-
fusion approximation is valid for small density gradientgldor a medium whose properties
are isotropic, this is a reasonable approximation for @fifichick plasmas. Near the edges,
suitable boundary conditions take care of the anisotropge# on the implicit Lagrangian for-

mulation of Kiem, a fully implicit 1D Lagrangian hydrodynaes code is developed. The code
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is used for studying the shock tube problem in planar, powptasion problem in spherical
and Noh problem in both spherical and cylindrical geomstrienumerical radiation diffusion
code is developed based on the finite difference method antisere generated for a finite and
infinite planar slab, and a spherical shell. The radiatiangport equation is solved using the
discrete ordinates method and the code is used for studyaljiarshak wave problem in both
planar and spherical geometries. A fully implicit radiatioydrodynamics code is developed by
coupling hydrodynamics and radiation transport togetférs code is applied to the problem
of shock propagation in Al foil and shock velocities are camgal with empirical values. Sim-
ilarly, the point explosion problem with heat conductiorsiadied and compared with Meyer
ter Vehn’s problem. Asymptotic convergence analysis ofdbée is next performed to verify
it. Finally, in the appendix, melting curve of metals Cu andhAve been determined using
classical molecular dynamics simulation. As Equation at&{EOS) is an integral part of the
radiation hydrodynamics code, selection of the proper EO&portant for obtaining correct
results. The EOS applicable in the solid phase cannot be fosdle liquid phase and vice
versa. As a result, a knowledge of the melting points foraugipressures, i.e., melting curve
of materials is essential. Effect of alloying Cu with Ti isalstudied: melting point is found to
decrease linearly for random and microstructure dopingever the arrangement of the initial

structure determines the same for selective doping.



Energy deposition of charged par-
ticles and neutrons in an inertial

confinement fusion plasma

2.1 Introduction

Charged particles mainly deposit energy in a plasma vigiel@sulomb interactions with ions

and electrons, though nuclear scattering also contridotésn heating. For low density and
high temperature plasmas, Coulomb interactions can beogiopated as small angle binary
collisions [80], however, large angle scattering needsednluded for high densities and
low temperatures [82]. The effect of nuclear interactioagsennot been taken into account
previously as it is negligible for small scattering anglewever, when the incident charged
particle energy is large, as in the case of the proton pratlic®? — He?® reaction, and for

higher pellet densities, the effect of nuclear scattersgriportant [83]. Collective plasma
effects arise when the plasma is considered as a dieleaddaum without bringing into picture

its internal particle behaviour and the energy loss in apéafom distant collisions is obtained
with the continuum approximation [84]. In this chapter, vemgralize the calculation of energy
leakage probability to include nuclear scattering, langgl@ Coulomb scattering and collective
plasma effects. In general, these effects reduce the thieatian distance in the plasma and
increase the fraction of energy deposited to ions. We algeldp a simple approach for energy

deposition by neutrons due to nuclear interaction with times

57
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2.2 Theoretical model

In this section, we develop the theoretical methodologyofataining the total stopping power
and energy leakage probability of fusion products in a futlgized plasma. A multigroup

model for energy deposition by neutrons is also developed.

2.2.1 Charged particle energy deposition

The charged fusion products interact with the ions and mastin the medium via small and

large angle Coulomb scattering in addition to nuclear adgons.

2.2.1.1 Coulomb scattering

The Fokker-Planck equation which was originally derivedreat the Brownian motion of
molecules, has been widely used to evaluate the collision t¢ the Boltzmann equation for
describing small-angle binary collisions of the invergeare type of force [81]. Considering
the effects of both large and small angle scattering, theggriess per unit length of path of
a fast charged particle of mass, laboratory frame energy = %va and charge Ze, which
moves through a hot plasma with ions of mass chargeZ;e and number density; at a

temperaturd’ is given by [82]

dF m
— = —2mm Z *Z,%e
dx mh Le m B

(Fi(y1) In Ay + O(y1”*) In[1.123(y1)]), (2.1)

where

Fuln) = () = (L+ =06 (1) + —o(un), (2.2)

mq
mln Ab
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with

2 ma E
= — . 2.3
n m kgl (2.3)

Collective plasma effects are represented by the secomdakeqn. [2.1], namely

O(y;?) In[1.123 (y1)] where©(y,?) is a step function whose value is identically 0 fot < 1

and 1 fory,% > 1.

Further,k s is the Boltzmann constant(y,) = 2 foyl fﬁ% and¢’(y,) are the error func-

tion and its derivative, respectively. The Coulomb lodaritterm is defined as [82]

InA, =In ( dAD ) (2.4)

min

The Coulomb logarithm is a measure of the importance of sarajle binary collisions relative
to large-angle scattering. The large-angle scatteringoeameglected only when the Coulomb
logarithm is of order 10 or greater. However, it cannot belexgd for moderately coupled
ICF plasmas in the intermediate regin®e< inA, < 10). For the non-degenerate regime, the

Debye length\ , and minimum distancé,,;,, are defined as

kBTelec
Ap = ) ——% 2.5
D 471—77/5[6@62 ) ( )

whereT,,.. andn... are the electron temperature and number density resplgctvnel

Appin, = \/pl2 + ( n )2. (2.6)

er Urel

Here,i = h/2m is the reduced Planck’s constant and= iz—f wherem,. is the reduced mass

T"rel
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andv,; the relative velocity. Sd,,,;,, can be finally expressed as

o ZZe*(m+my),, hlm+mi).,
dWW—VB 2 ) +%m12mE)} (2.7)

However, when considering the energy loss to electréns, can be accurately approximated

as

2

ZZye? \° h
dmin - + :
3kBTelec 2 V 3kBTelecmelec

(2.8)
Similarly, sincey,? < 1 for electrons Fi(y;) can be approximated as
Fily) ~ —pr® (2.9)
1\Y1) = 3ﬁy1 . .

2.2.1.2 Nuclear scattering

In computing the energy deposition or loss by heavy chargeticges in a plasma, in addition
to the Coulomb interactions with the electrons and ions]eardorces elastic scattering plus
nuclear Coulomb interference are also to be considered.nliblear forces-nuclear Coulomb
interference term is assumed to be independent of the tetperand density of the medium,
the approximations are equivalent to the case when thettangéei are at a temperature T=0.
This approximation is good enough for the incident enerlgiee compared to the target tem-

perature.

The contribution to energy loss due to elastic nuclear egag has been modeled in terms

of stopping power [85], which can be written as

dE_<AE>

% — TT, (2.10)

where< AFE > is the average energy loss per collision and the transpahriree path\; =
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(nio7)~!. The transport cross sections is expressed as

or = m/ os(v)(1 —v)dv, (2.12)

(m+mq)? J_,

where 2w, (v) denotes the differential cross-section for scatterindeangs ' (). Eqn. [2.10]
implicitly assumes that energy loss via nuclear scatteaisg takes place predominantly due
to small angle collisions. For the calculations reportethis paperg for different charged

particles slowing down in a deuterium plasma is taken frorebeyet al [85].

2.2.1.3 Total stopping power

The total stopping power can be expressed as

dE  (dE (R)+ dE (R>+ dg\ W
de  \dz ; dz / dz J,

= AyEYE' 4+ A(EYE™' + An(B)E, (2.12)

where the subscripts d, e and N denote Coulomb scattering ifvas, electrons and nuclear

scattering, respectively. The ionic term is explicitly @by
AdE) =Y —2mj22zj264%(ﬂ(yj) In Ay + O(y;2) In[1.123(y;)]). (2.13)
j J

The summation over j goes over all the types of ions in theepplasma. Similarly, the elec-

tronic and nuclear terms are

A(B) = —2mnge 22726 2 o [ Meteck 3/21 A (2.14)
e = — 2T Nelec e € 5 — 7 1l Ape, .
: Melec 3ﬁ kaTelec ’

AN(E) = — anUTj- (215)
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The energy loss rate given by eqn. [2.12] can be used to deier@ the parameters such as
thermalization distance, energy leakage probability aaction of energy deposited to ions as

will be discussed in the following sections.

2.2.2 Neutron energy deposition

The rate of neutron interactions in a plasma is givemby,¢ wheren, is the number density
of ions, o; is the total cross-section for interaction of neutrons wticlei andy is the neutron
flux [86]. In order to calculate the fraction of neutron enedgposited to the ions, we divide

the energy range of neutrons from 17 to 0 MeV iptQ.. = 30 energy groups. Then for thg"

group,
nop, = Pe(g) X Sy, (2.16)

whereP,(g) is the probability that a source neutrongii't group will collide with the ions. The
source of neutronsg,, in the g energy group, consisting of the external neutron source and

the neutrons slowed down from higher energy groups, is:

g
Sy =Y 110s g gGgr + Seat o, (2.17)

g/=1

whereo, ,_. , is the scattering cross-section for a neutron to chang@gierm groupg/ to g.
If a single neutron of energ¥, is produced by fusion per unit volume per second in the ICF

pellet, the fraction of energy deposited in the pellet is

dmazx

; 1
fkj - 50 Z N1 Cheating—g X ¢g7 (218)

g=1

Whereoeating—q iS the heating cross-section of a neutron in gffegroup. The neutron flux

¢, of the g group is obtained from a knowledge of neutron fluxes of allgtevious groups.
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Using eqns. [2.16] and [2.17] we get

g—1
(nlatg - Pc(g>N10'5 g— g)¢g - Pc(g)(z ny o gl— g¢gl + Sezt 9)7 (219)
gl=1
with the collision probability given by [87]
3 —2n10¢
P(g)=1- W[2(Rnlatg)2 — 1+ (14 2Ny0yg R)e 20l (2.20)

where R is the pellet radius. The neutron flux in the first group is ot#d by assuming that
slowing down source to that group is zero as there are noo@utsf higher energy. Cross-
sections for neutron interaction are taken from Bare¢tal [88]. This multigroup neutron

energy deposition model is used in the next chapter to editha fraction of neutron energy

deposited in a fusion plasma.

2.2.3 Energy leakage probability

First of all, the distance traversed by the charged parti¢lg,, £), to slow down from energy

Ej to E is obtained from egn. [2.12] as:

s(Ey, B) = / : AW/ [Ag(WYW = + A (W)W L + Ay (W)W]. (2.21)

Ey

We can now calculate the fraction of the charged particleggnhescaping from the pellet of
radius R. If the charged patrticle is produced with uniformlability in the sphere R, the escape

probability can be calculated using the integral [53] (agwied by Krokhin and Rozanov)

3 R 5 1 E(T)
= — d d 2.22
1 2R3/opp/_1“E0’ (2.22)

wherekEy is the initial charged particle energy and E(r) the energgrafaversing a distance
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Figure 2.1:Charged particle leakage probability

r from the point of birth to the spherical surface. The par@mecan be expressed in terms
of the radial distance from the centre, the radius R and the cosinef the angle between the

path and the line passing through the centre as shown in fgylire

r=pp+ /R —p*(1— p2). (2.23)

To obtainEﬁo as a function of r we solve the differential equation

dE

— = AdB)ET + A(BE)E™ + An(E)E (2.24)

numerically using the initial condition thd(r) = E, at r=0. We use quadratic interpolation

for intermediate values of r for evaluating

2.3 Results and discussions

In figure 2.2, we show the energy of 3.5 MeV deuteron as a fandaif distance traversed in a
deuterium plasma at temperature 0.1 MeV and number deltsify/ cm? for energy deposition

via 1) Coulomb scattering only to electrons, 2) Coulombtscatg to both ions and electrons,
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Figure 2.2:Energy of deuteron Vs. distance traversed in a deuteriusnpaat temperature 0.1 MeV
and ion number density0?¢ /cm? for the three cases of energy loss: 1. only to electrons, ettreins

and ions and 3. including nuclear scattering.
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Figure 2.3:Thermalization distance of deuterons Vs. plasma temperatia deuterium plasma of ion
number densityl02¢ /cm? for the three cases of energy loss: 1. only to electrons,etreins and ions

and 3. including nuclear scattering.
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Figure 2.4:Thermalization distance of deuterons Vs. plasma ion deisia deuterium plasma at a
temperature of 0.1 MeV for the three cases of energy lossnl{.to electrons, 2. electrons and ions and
3. including nuclear scattering.
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Figure 2.5:Energy leakage probability of deuterons Vs. pellet radiua deuterium plasma at temper-
ature 0.1 MeV and ion number densit§?° /cm? for the three cases of energy loss: 1. only to electrons,
2. electrons and ions and 3. including nuclear scattering.
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and 3) nuclear as well as Coulomb scattering. Figure 2.3 gndsfi2.4 show the thermalization
distance, i.e., the distance traversed by the chargedcigabiefore attaining the background
plasma temperature, as a function of the plasma temperatgr@umber density respectively
for the above three cases. Finally, figure 2.5 depicts theggrieakage probability for the

different pellet radii. These results indicate that Coubostattering, including large angle
contribution and collective effects [82], and nuclear sr@tg have significant contributions to

energy deposition in the plasma.

The increase in the fraction of charged particle energy siégabto the ions leads to higher
fusion gains [11] as energy deposited to the electrons [eaadiation losses from the plasma.
Increase in plasma temperature results in an increase iearuscattering leading to higher
energy deposition to the ions. Also, the effect of large arigbulomb scattering (which leads
to energy deposition mainly to the ions) increases withaasig density. In figure 2.6 (a), the
fraction of charged patrticle (deuteron) energy depositetthé ions in deuterium plasma as a
function of plasma temperature and number density is shawiigure 2.6 (b), the thermaliza-
tion distance of a 3.5 MeV deuteron in deuterium plasma asetifon of plasma density and
temperature is plotted. Deuteron deposits more energy enaeat and colder plasma showing

a reduction in the thermalization distance.

Next, we consider a DT plasma with equal amounts of D and Taljitea particles produced
in the reaction redeposit their energy into the burningargiof the pellet and leads to bootstrap
heating. The range of a 3.5MeV alpha particle as a functiothefplasma temperature for
various plasma densities are shown in figure 2.7. Thoughtrenalization distance decreases
with increasing density for a particular temperature, gngge which is the product of density
and thermalization distance, is found to increase with iieris figure 2.8, we plot the plasma
temperature as a function of fraction of alpha particle gneleposited to the ions for various
plasma densities. As the electron temperature increasé@sci@asingly large fraction of alpha

energy is deposited into the ions. This fraction also ineesdor higher plasma densities.
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Figure 2.6:(a) Fraction of charged particle (deuteron) energy depdsi the ions in deuterium plasma

as a function of plasma temperature and logarithm of the murdénsity. (b) Thermalization distance
of a 3.5 MeV deuteron in deuterium plasma as a function ofnpéagemperature and logarithm of the

number density.
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Figure 2.7:Range of alpha particles Vs. electron temperature for uardensities.
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Figure 2.8: Plasma temperature Vs. fraction of alpha energy depositédnis for various plasma
densities.
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2.4 Summary

We have incorporated the effects of large angle Coulomhesaag, plasma collective interac-
tion and nuclear scattering to obtain the energy leakageagibty from a pellet of size com-
parable to the thermalization distance. It is found thatethergy leakage probability decreases
significantly compared to the case when energy depositimmntdue to small angle Coulomb
scattering alone is taken into account. A simple multigrouglel is developed for correctly
accounting the energy deposition by neutrons into the pasiVe also generate extensive re-
sults for thermalization distance of deuteron in a deuteniasma at a range of densities and
temperatures and compare with those obtained by consipiess to ions and electrons only.
Variation in the range and fraction of alpha particle enatgposited to ions in a DT plasma is

also studied for various plasma densities and temperatures



Internal trittum breeding and

thermonuclear burn characteris-
tics of compressed D-T micro-
spheres using zero-dimensional

model

3.1 Introduction

The ignition temperature of a thermonuclear fusion reacisofound to decrease on adding a
small amount of tritium (x- 0.0112) to deuterium fusion pelleéd{T'y). For lower fuel temper-
atures €10 keV), the D-T reaction proceeds at a rate almost two orofersagnitude larger
than that characterizing the D-D reaction [3, 9]. Hence,raleoto minimize the ignition tem-
perature, tritium is added to deuterium fusion pellets @icstiometric ratio (50:50). However
tritium inventories in futuristic fusion reactors based anrent stoichiometric DT proposals
are very high, which poses a significant radiological prob[€]. Also, the breeding of tri-
tium in external tritium blanket and its separation is quibenplicated. The concept of internal
tritium breeding in which a small amount of tritium in deutan fusion pellet reduces the ig-
nition temperature and also acts as a catalyst is very luerf8]. The conditions necessary

for realizing tritium breeding crucially depend on the ayyedeposition and loss rates from the

71
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plasma. Radiation losses due to inverse Compton scat@nohghoton losses have been shown
to affect the tritium breeding in a major way [57]. Therefare re-evaluate this problem using
a zero-dimensional model with the improvement in chargetigl@ and neutron energy depo-
sition mechanisms discussed in the earlier chapter. Ircti@pter, we also analyze the catalytic
regime for tritium by changing the fraction of tritium (x).h€& initial density and temperature
of the pellet are also found to influence the ignition comdis in a major way. A density-
temperature regime is found where internal tritium bregdincurs even on including all the
radiative loss mechanisms like bremsstrahlung and in@osepton scattering. We obtain the
optimum pellet parameters for which the deuterium burntioads high in addition to tritium

in the pellet behaving as a catalyst. The fusion yields of pelets having equal amounts of D
and T (50:50) are obtained using the zero-dimensional médssion yields in case of volume,
and central ignition have been considered. For volumeigniields have been obtained for
DT pellets of different masses and densities having a rahigéial temperatures and are found
to vary asp?® for spheres of fixed mass m. For central ignition, the codebleas modified to
include the burn propagation into the outer cold fuel, bivafsheating and subsequent increase
in fusion reactions. Comparison with the results of a omeettisional 3T Lagrangian hydrody-
namics code shows good agreement which supports the fadhthagh the zero dimensional
model lacks spatial resolution, tracking the number dexssdand energetics of the nuclides is

sufficient for obtaining the energy released in fusion.

3.2 Simulation model

A time dependent calculation of the fusion process @f g, pellet can be performed using a
simple zero-dimensional model in which the spatial vasiais ignored. The energy produced
in a fusion reaction is carried by the products in a ratio isely proportional to their masses.

The energetic fusion products then deposit this energydadhs and electrons of the back-
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ground plasma via Coulomb scattering. The neutrons defgssienergy in the medium as they
have a larger mean free path. The rate equations of the esgmsent in the highly compressed
and heated thermonuclear plasma are solved along with #rgyebalance equations for ions,
electrons and radiation [58]. At this high densities andgeratures, photons interact with the
medium via Bremsstrahlung and inverse Compton scatterkggwe are considering a fully
ionised plasma in this model, the effect of bound-bound anahb-free transition is neglected.
Most of the phenomena important in normal gases disappleatr@n attachment, dissociative
recombination, excitation and deexcitation of atoms anteoues, electrical breakdown, etc.
do not occur in a fully ionized plasma. Also, the encountexsMeen the charged particles
become simpler, as inverse square forces are more precalelylable than the complicated
interactions of systems containing bound electrons [59]e fladius of the pellet is assumed
to expand with sound speed times the burn fraction so thainhthal stagnation phase is ac-
counted for and fusion occurs until the pellet disassemlbtethis model, the delay time in the
energy deposition by fusion-born particles is not accadinédso, the mechanism of suprather-
mal fusions induced by high energy ions is neglected. Byewtglg the finite time needed
to slow-down the fusion products, the energy evolution dgeeoverestimated, whereas, by
neglecting the suprathermal fusions, the actual fusiongpasvunderestimated. However, the
energy equations governing the plasma evolution are sstldrder accurate. Two-dimensional
space-time dependent codes embodying simulation of alintehanisms will be needed for
an accurate design of the targets, but target physics afekitgsres are well described by the
present model. The neutron and proton channels of the DEioeascur with50% probability.

The total number of particlesyy, of species k, is governed by the equation

AN,
— = 3.1
7 (3.1)

. 1
Zak‘]Nj(l)Nj@) < 0oU > V,
J
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where V is the volume of the heated plasmagv >; is the Maxwell averaged reaction rate of
reaction j andz,’ is the number of particles of species k created or destray#uei reaction j.
Eliezer. et al used< ov >; values at different temperatures from [89]. The four magacr
tions, given by eqns. [1.1]-[1.4] and six species %, He3, T4, Hi, Hej and n}, are considered

in the calculation. The equation of energy balance for isrggven by

3d 1 P 1
5 77 NionTion) = Zkaﬂwk EjNjyNjo)x < 0v > & = < = NionTiondT R (t)c ¢:77(32)

whereT,,, is the ion temperaturey; is the energy yield of reactiondy’ is the fraction ofE;
carried by the product kf” is the fraction of the energy of the product k created in tlaetien
j that is deposited into the plasma ioi#3, is the ion electron energy exchange tert) is the

pellet radius¢, is the sound speed and,,, is the total number of ions,

zon Z Nk> (33)
where k varies from 1 to 5 @s= 6 stands for neutrons.

The equation for energy balance for electrons is given by

3 d 1
th Netee elec ZZ 1—fk WkJE N ](Q)X <0V >j =

i T
-PLe PB 2 1

— — — Po— NyedecAn R (t)cs—, 3.4
AT c lec TelecAm ()CV (3.4)

whereN,,.. is the number of electrong,,.. is the electron temperaturgy is the Bremsstrahlung
term andF, is the inverse Compton scattering term. The ion-electranignexchange term is

given by

N 7—‘7;071, k V _Te ec k V
P(keVem® /s) = 1.69 x 107Ny Y In A 2,25 (keV) = Tuce(keV)
k

3.5
mi Telec(kGV)l'S ’ ( )
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wherem,, and Z, are the mass number and the charge of nuclei k, respectiieéyCoulomb

logarithm for ion-electron collision is [90]

Nelee -
In Ay, = 23 — ln[(%)o'S’ZkTelec(eV) 15, (3.6)

The Bremsstrahlung loss term including the inverse bremasising term incorporated in [57]

IS given by

Telec -

T,
Pg(keVem® /s) = 2.94 x 107" Nejee X Y~ N Zy” X Toiee(ke V)™ x G(v) = @37
L elec

with

2 (T, +1.03 X Tuee)

T
GOl =7 (T, +2.54 x Toiee) (38)

However, the Bremsstrahlung loss term decreases in theotasgenerate plasmas [91] [92].

Also the inverse Compton scattering term is
20 32 2 4
Po(keV/s) = 1.67 x 107 x g’/ﬂ“e T Netee(Teree — 1), (3.9)

wherer, = 2.81794 x 10~!3 cmis the classical electron radius. In the mechanical esipan
term, the speed of sound is computed using % wherep is the density; = 5/3 and P is

the total pressure? = %(N,»WT,»OH + NeecTuee) The radius of the pellet is governed by
R(t) = R(t — At) + nc;At, (3.10)

wheren = 2 x ¢(t) for ¢(t) < 0.5 andn = 1 for ¢(¢) > 0.5
with the burn fractions(t) = 1 — Np(t)/Np(0).

It is assumed that the ratio of Coulomb logarithms for ionglextrons is approximately
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equal to 1.2 for each ion at all temperatures and densitiegh&r elastic nuclear scattering is
neglected and the term involving error functior(%f)i is approximated as unity. Thus Eliezer
et al[58] use the formula

) 1 wkjEj
fil = / aw

wk E] Tion

—1

1.6, W My Neg
14 3/2 elec\1/2 elec 3.11
ﬁ(Telec> ( my ) meNZ—Z ( )

for the fraction of energy deposited to ions. We note thatdbreect numerical factor in the
above equationis 1.11 instead of 1.6 used by them. For aifuliged single component plasma,
like deuterium, this fraction is independent of plasma dgn3he fraction of neutron energy
deposited in the plasma, as used by Elieted [58], ispR/(pR + 13.72) andpR/(pR + 3.92)

for 14 MeV and 2.45 MeV neutrons, respectively [93]. With thetailed model described in

2.2.1, the fractiory,’ is obtained as

fi— (3.12)

wkjEj 2
o x/ iAW)+ Ay (W)W
waEg - ﬂon

Tion Ag(W) 4+ Ac(W) + An(W)W?2
Further, we use the neutron energy deposition model of 2vEhign 2.2.2, and the more accu-

rate fits for the Maxwell averaged reaction rates [94].

We have used Hurwitz’s three temperature model [57] for #ite equation for the radiation

temperature:

dl, P
= —B + PC - R10587 (313)

4opT?
OBl TV

where the photon energy loss rate in keV/s is

3
Rpee — 1.8069 x 102 x 228

0 T,'V, (3.14)

whereop = 5.67 x 107 Wm—2K~* is Stefan-Boltzmann’s constant. The rate equations for
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number of ions and electrons and the energy balance eqs#tioions, electrons and radiation
have been solved using the adaptive Cash Carp Runge Kuttendhat described in appendix

A.

3.3 Internal tritium breeding

For analyzing the problem of internal T breeding/XT, pellets, we consider an optimal pellet
configuration of density = 5000 gm/cm?, pR = 12.5 gm/cm? where R is the pellet radius,
tritium fraction x=0.0112, and ion, electron, and radiatiemperatures given by, = T¢ec = 10
keV andT, = 1 keV, respectively, analyzed by Eliezet al. While this pellet showed tritium
breeding within the assumptions made by Eliezeal, using the Maxwell averaged reaction
rates versus temperature as obtained by Feldbacher [&8]ed to show breeding when inverse
Compton scattering and photon losses were taken into atddowever with the improved en-
ergy deposition model by charged particles and neutronsiaimg) the improved formulas for
fusion reaction rates [94] it is found that the pellet bretedisim even under extreme conditions
of radiation loss.

Figure 3.1 shows the variation in the fraction of a) chargadige energy deposited to the
ions as a function of time for the model used by Eliezteatl and the detailed model discussed in
this chapter as given by equations 3.11 and 3.12, resphctarel b) neutron energy deposited
to the ions. In figure 3.2, we compare the ion temperaturelseapdllet burns. The ions reach
much higher temperatures which results in larger fractiberergy being deposited to the
ions when the above discussed energy deposition model &5 usdigure 3.3, we show the
time dependent tritium build up in the target. Figure 3.4 pames the time dependent fusion
power for the approximate and detailed models, respeytiaat the total energy produced are
2.905 x 10% keV /cm® and3.212 x 10%* keV /cm? for the two cases. Similarly, tables 3.1 and

3.2 summarize the various results obtained with differadtation loss mechanisms for the two
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no direct and directand reduced
radiation inverse inverse  photon
interaction bremsstrahlung Compton losses
Maximum temperatures in keV

Tion 310.90 318.20 146.90 115.20
Teree 197.70 201.70 73.90 64.22
T, - 16.90 26.16 64.22
Burn fraction 0.45 0.45 0.40 0.38
Ratio of tritium content

Initial 1.00 1.00 1.00 1.00
Minimum 0.56 0.60 0.59 0.59
Maximum 2.91 3.02 1.42 1.05
Final 2.33 2.38 0.79 0.64

Table 3.1: Maximum ion, electron and radiation temperatures (in kelh@ with the burn fraction
and tritium breeding ratio in the DT pellet for the model usgcEliezeret al. Column 1 refers to only
bremsstrahlung loss in the two temperature model, ColunmelRdes inverse bremsstrahlung as well in
the three temperature model, Column 3 includes, in addittmerse Compton scattering and Column 4
is similar to Column 3, but without photon losses.

different energy deposition models.

Using the above described zero dimensional three tempenatadel which considers all the
energy deposition mechanisms like small and large angléo@uduscattering, nuclear scattering
and collective plasma effects, the effect of varying vasipellet parameters like its density,

fraction of tritium added and initial temperature on therbfraction and tritium breeding ratio

is studied.

3.3.1 Effect of pellet density on tritium breeding ratio and deuterium

burn fraction

The initial density of the DT pellet determines the burn fiae of deuterium and also the
breeding ratio of tritium. For the purpose of simulation vemsider a pellet of radius 2om,
initial ion and electron temperature 10 keV, initial radhat temperature 1 keV and tritium

fraction x = 0.0112. If the initial pellet density is less th&000 gm/cc, tritium breeding is not
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Figure 3.1:Fraction of a) charged particle energy deposited to the @nghe pellet burns. Curve-1
shows the case when energy deposition to ions and electimsodsmall angle Coulomb scattering
alone is considered. Curve-2 considers energy depositiolarge angle Coulomb scattering, collective
effects and nuclear interactions using the improved Malksxadraged reaction rates . b) neutron energy
deposited to the ions as the pellet burns. Curve-1 is olataising the fitted formula and Curve-2 is that
for the model discussed in this chapter using the improvegvidi averaged reaction rates.
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Figure 3.2:lon temperatures Vs. time in the DT pellet for a) the modetusgEliezeret aland b) the
model described in this chapter. Curve-1 refers to bremisising loss only, Curve-2 includes inverse
bremsstrahlung as well, Curve-3 includes, in additiongise Compton scattering and Curve-4 is similar
to Curve-3, but without photon losses.



81

NN W
o (V)] o
— T T 1

Tritium ratio
[—
)]
L]

—_
=]

0.5} i
0 5 10 15 20
Time(ps
a) (ps)
3 L] L] L]
2
1
g 2t 3 -
B
g
=
=
o s 10 15 20
b) Time (ps)

Figure 3.3:Tritium breeding Vs. time for the DT pellet for a) the modekdsby Eliezeret al and b)
the model described in this chapter. Curve-1 refers to bseatdung loss only, Curve-2 includes inverse
bremsstrahlung as well, Curve-3 includes, in additiongise Compton scattering and Curve-4 is similar
to curve-3, but without photon losses.



82

6x10™ :
—
£
S
>

© 4x10™ -
5
2

2.2x10™ -
=)
S
5
—

0 5 10 15 20
Time (ps)

Figure 3.4:Fusion power generated Vs. time for the case of energy egeldhvia bremsstrahlung,
inverse bremsstrahlung and Compton scattering. Curvefdr ithe model used by Eliezeat al and
Curve-2 for the model described in this chapter.

no direct and directand reduced
radiation inverse inverse photon

interaction bremsstrahlung Compton losses
Maximum temperatures in keV

Tion 448.40 459.20 259.90 203.00
Teiee 176.50 179.50 84.31 65.67
T, - 16.76 27.41 65.69
Burn fraction 0.48 0.48 0.47 0.45
Ratio of tritium content

Initial 1.00 1.00 1.00 1.00
Minimum 0.57 0.61 0.61 0.61
Maximum 2.59 2.62 2.20 1.82
Final 2.33 2.34 1.59 1.16

Table 3.2:The various fuel burnup parameters for the improved eneeppsition model discussed in
this chapter.
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possible i.e., the amount of tritium left in the pellet afte burn is less than the amount we
started with [figure 3.5(a)]. However, above a density of§fh/cc, tritium acts as a catalyst
and results in more efficient deuterium burning [figure 3b(Ibhe deuterium burn fraction is
defined asy, = (Np iitial — ND final)/ND initial » WhEreNp initial iS the total number of deuterons
in the pellet initially andNp, 5,1 iS the number left in the pellet after the burn. The burn foact

steeply decreases with decreasing density as depictedine fig5(b).

3.3.2 Effect of initial temperature of ions and electrons

Below a certain initial temperature of the pellet (both i@m&l electrons are assumed to be at
the same temperature initially), the losses exceed thg@gmpeoduction and the pellet does not
burn. The rate of fusion reactions decrease on decreasgngitial plasma temperature within
the pellet and this leads to slow burnup and reduced praztudi tritium [figure 3.6(a)]. A
pellet of radius 25:m, density 5000 gm/cc, initial radiation temperature 1 ke\d amtium
fraction x = 0.0112 is considered. Below 4 keV, the reactioesome so slow that within the
pellet disassembly time the rate of fusion reactions remaegligibly small. As a result the
deuterium burn fraction is also found to decrease steeplgedacing the initial temperature

below 6 keV [figure 3.6(b)].

3.3.3 Effect of tritium fraction (x) in the pellet

For a pellet of radius 2xm, density 5000 gm/cc, initial ion and electron temperatr&éV
and initial radiation temperature 1 keV, as the fractionrtiutm (x) in the pellet is decreased
below 0.005, it is no more able to ignite the deuterium so tihaturn becomes slower. Also
the deuterium burn fraction keeps on decreasing as thentritontent is decreased. However,
it is also observed that increasing the tritium fractiondr&y 0.03 does not increase the burn
fraction any further and the initial amount of tritium in thellet is also not replenished [figure

3.7(a) and (b)]. Finally, from the above studies on the vegipellet parameters like its density,



84

: ) ! © —=3000gm/ccH
—+=—3500gm/cc
20} —=—4000gm/ccH
—=—5000gm/cc
—=—6000gm/cc
e = — 7000gm/cc
w® 1°
—
IS
2
T 1.0
}_
0.5
1 1 1
0 5 10 15 20
Time (ps)
(a)
05 B ) v ) v ) v ) v 1 -
04} 4
o)
Y
0.3} e
1 i 1 i 1 i 1 i 1
3000 4000 5000 6000 7000
) Density (gm/cc)

Figure 3.5:(a) Tritium breeding ratio versus time f&rT, pellets having different initial pellet densities.
(b) Deuterium burn fraction as a function of the pellet dsnsi
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Figure 3.6:(a) Tritium breeding ratio versus time fo¥T, pellets having different initial plasma tem-
peratures. (b) Deuterium burn fraction as a function of il plasma temperatures.
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initial temperature and fraction of tritium added, we camd that for sufficient burning of the
pellet and for tritium to behave as a catalyst, the followpalet configuration is necessary:
initial pellet density = 3500gm/cc, initial plasma temgera = 4 keV and fraction of tritium

added lies between 0.005 and 0.02 0e005 < 2 < 0.02

3.4 Zero dimensional model for central ignition

The gain of a DT pellet can be improved by heating only there¢negion to ignition tempera-
ture, under conditions that the spherical thermonuclear imave then propagates out, igniting
the rest of the fuel. To obtain the fusion yields in centradlyited pellets, using the zero dimen-
sional model, modifications to the rate and energy equatomsequired.

In central ignition only a central portion of the pellet ofdras R; is heated to very high
temperatures whereas the outer region is cold. Rgbe the outer radius of the pellet. Ther-
monuclear reaction starts in the inner pellet and the rasliads expanding. Two separate
regions can be distinguished: first the inner radius exptimdsigh the outer cold DT fuel till it
reaches the outer radius, second the burn front has preguhtgathe outer radius and now the
whole pellet expands freely. The second region is the sartieaaifor volume ignition, whereas
in the first region, the inner radius expands against an mit@ressure due to the cold outer
region. The thermonuclear burn front propagates via thendgion and the high temperature
thermal conductivity, so that the velocity of the burn frasmthe maximum of two velocities,
Umae = max(us, ur) Whereu, is the velocity of the detonation wave, whilg is the velocity
of the thermal wave. The approximate analytical expressionthese velocities are obtained
by applying the strong explosion approximation in a homegeis gas mixture [95]. If R is the

radius of the expanding burn front, f& < R, the detonation wave velocity is

v — \/(7 +1)2(y = 1)Cy JT. (3.15)
3v—1
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Figure 3.7:(a) Tritium breeding ratio versus time foXT,. pellets having different initial tritium fraction
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whereC, = 3 ’jﬁA LantZT.1cc js the specific heat at constant volumes the specific heat ratio

andT = T,.. = T;,, is the temperature behind the burn front. Also the thermaleweelocity
is [96]
2.149 x 107%A T%5

. 2 4 7 3.16
ur(zy, T) (1+2)(1+0.2917)InN;. = ( )

wherex, = pR is the burn-up parameter ahdA,. is the Coulomb logarithm defined in eqn.
3.6. For equimolar DT (50:50), average mass number 2.5, average atomic numbef = 1
andCy = 115.678 M.J/g. Hence the detonation and thermal velocitiesAre 3.7 x 107/T

andur(x,, T) = 2.08 X 105 T both in cm/s. The maximum of the two velocities,,, =

max{us, ur} is chosen for our calculations. The thermonuclear burn vpaepagates initially

as the thermal wave and later as the detonation wave.

As long as the inner radius has not reached the outer radihe @eellet, the outer cold fuel
iIs assumed to remain undisturbed, i.e., the outer radius doechange and the densities and
temperatures are maintained at the initial values. Thetegquéor energy balance for ions is

now modified to

3d 1
2d NzonT‘wn szk wk]EN 1) §(2) X < 0ov > V

P» N. T. N. T
_ 1€ _ 4 RQt s non non _ 10 10 ,
A ( Vv v, )

(3.17)

where N,,, T;, andV,, are the total number of ions, ion temperature and volume @fotlter
pellet. N;,, is the total number of ions in the burn region and increasdit thie inner pellet

radius becomes equal to the outer radius. Similarly, thatoufor energy balance for electrons
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IS given by
3d N
ia(NelecTelec) = Z Z(l — Jx )Wk: Eij(l)Nj(2)
ik
1 Be PB NelecTelec NeoTeo
X < ov >jv+ v —7—P0—47TR2(t)umm( v — v ), (3.18)

whereN,,, T., andV, are the total number of electrons and electron temperatutieei outer
pellet. The total number of particles of D and T change nog belcause of the fusion reactions
but also because of the addition of nuclides from cold outel. During a time step\¢, let the
inner radiusk; expand byA R. Since the outer region contains only D and T (ratio 50:5&), f

k=1 and 3,
3R?’AR

Nf =N+ —5

Nk totat (3.19)

where N ;... IS the total number of nuclides of species k within the whatégh. The super-
scripts n and n-1 denote the present and previous time stepsveespectively. Similarly, for
the electrons,

3R?’AR
NeT;ec = NeT;;cl + TNe,totab (320)

wherelV, .4 iS the total number of electrons within the whole pelletialiy. Again, for energy

conservation to hold, a portion of energy from the inner @é@atgion bootstrap heats the region

of volume4r R2AR. If M, is the mass number of thé" nuclide, then the final temperature is
7;7;;1(21@:1,5 M Ny~ + Tz‘o(Zk:m 3R;3ARMka,toml)

T, = - . (3.21)
Zk:l,S Mka:

Similarly, the electron temperature is modified as

Tgec _ elec elec N 3 ' (3 - 22)

elec

Tn_an_l + Teo(%]\fe,mtal}
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Figure 3.8:Yield Vs. density for 1Qug DT pellets having various initial temperatures.

In figure 3.8, the dashed lines show the fusion energy gesterag., the yields as a function of
density for central 10 percent of the pellet at 10 and 20 kehéneas the rest of the pellet at 1
keV.

The zero dimensional model is used to obtain the fusion gidpellets having a range of
densities and temperatures withu@ and 10ug masses. Higher is the initial pellet temperature,
more is the fusion yield because of the increase in DT and Ddibfureactions as a function
of temperature. Also, as the initial pellet temperaturesdase, the fusion yield attains satu-
ration values for lower pellet densities. The results otg#diare compared with the numerical
results from a 3T Lagrangian simulation code and good ageeers obtained. This shows that
though the zero dimensional model lacks spatial resolutracking the number densities and
energetics of the nuclides is sufficient for obtaining thergy released in fusion. Figure 3.8
shows the fusion yields in kJ obtained for 18 DT pellet for a range of densities from 1 to
10,000 g/cc. Higher is the initial pellet temperature, misréne fusion yield because of the
increase in DT and DD fusion reactions as a function of teatpee. Also, as the initial pellet

temperatures increase, the fusion yield attains satuaraatues for lower pellet densities. The
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Figure 3.9:Yield Vs. density for 1ug DT pellets having various initial temperatures.
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Figure 3.10:Yield Vs. temperature for 10g DT pellets having various initial densities.
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values are also obtained for different initial temperasuvéthe pellet. Figure 3.9 shows the
same values for a g pellet. For an initial pellet temperature of 1.8 keV, thisrao steep rise

in the fusion yield even for densities as high as 10,000 gsiiceving the importance of igni-
tion temperature in thermonuclear fusion. Details of thregerature dependence of the yield
for various densities for the 10g pellet are shown in figure 3.10. Upto 100 gm/cc, the fusion
yields are found to be low and rises slowly with temperat@eyond this value the yields are
found to increase sharply with the initial pellet temperasuand attain values of 1000 kJ. Be-
yond 1000 gm/cc, such high fusion yields are obtained evetofe initial temperatures like

3 keV. This study quantitatively depicts the requiremeritsitial density and temperature for
efficient thermonuclear burn in fusion pellets. Efficiergthpower lasers need to be developed

to attain such high densities and temperatures.

3.5 Summary

In this chapter, the improved model of energy depositionswell and large angle Coulomb
scattering, nuclear scattering and collective plasmaesfieas been used to re-evaluate a recent
proposal for Tritium breeding in DT fusion pellets. Tritiubneeding is found to occur even
when all the radiative loss mechanisms like the Bremsstrahland inverse Compton scattering
effects are fully accounted for. This improved model of gyedeposition has been used to
obtain an optimum pellet configuration in terms of initiallpetemperature, density and tritium
fraction. In this regime, tritium acts as a catalyst, hetpseiducing the ignition temperature and
the deuterium in the pellet burns sufficiently before thdgielisassembles. Modifications are
made in the model to include central ignition of a DT pellaisien yields for a range of initial

densities and temperatures of the pellet are found to agtedhwese available in the literature.



Generating new analytical bench-
marks for non-equilibrium radia-

tion diffusion in finite size systems

4.1 Introduction

In the earlier chapters, a fully ionized plasma was consiiep that the effect of bound-bound
and bound-free transitions were neglected while considdte interaction of radiation with
the medium [59]. Also, the radiation intensity was assunoelet spatially uniform [58]. For
partially ionized plasmas with spatial variation, the ediin transport equation needs to be
solved along with the material energy equation. Non-elguiim radiation diffusion is an im-
portant mechanism of energy transport in Inertial Confing@nkeision, astrophysical plasmas,
furnaces and heat exchangers. We devote this chapter tonghastant topic of radiation dif-
fusion and derive new analytical solutions to the non-elgilm Marshak diffusion problem
in a finite planar slab, spherical shell and sphere. The t@mnian integrated energy densities
and leakage currents are also studied. In order to linettrezeadiation transport and material
energy equation, the heat capacity is assumed to be propaktio the cube of the material
temperature [63]. The steady state energy densities shearlvariation along the depth of the
planar slab, whereas non-linear dependence is observfepherical shell. Non-equilibrium
diffusion codes can be more easily validated and verifiethagthese new benchmark results

because there is no need to consider a slab or spherical mediery large size for avoiding

93
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boundary effects. Analytical expressions for all the gilest of interest can be obtained for

finite slab/shell width and parameter values relevant totpral problems.

4.2 Analytical solution

Using two independent methods, viz., the Laplace transimethod and the Eigen function
expansion method, expressions for radiation and materefy densities as a function of space

and time is derived for a finite planar slab, spherical shredl sphere.

4.2.1 Planar slab

We consider a planar slab of finite thickness which is purboabing and homogeneous occu-
pying0 < z <[. The medium is at zero temperature initially. At time t=0,amstant radiative
flux (Fj,.) is incident on the surface at z=0 as shown in figure 4.1. N#iglg hydrodynamic
motion, the one group radiative transfer equation (RTEhendiffusion approximation and the

material energy balance equation (ME) are [6]

OE,(z,t) 0 ¢  O0E.(z1)

o5 g[Saa(T) s | = coo(T)[aT*(2,t) — E.(2,1)], (4.1)
Cy(T) aTé? ) = co,(T)[E,(2,1) — aT*(z,1)], (4.2)

whereFE,(z,t) is the radiation energy density, T(z,t) is the material terafure,s,(7) is the
opacity (absorption cross section), c is the speed of ligistthe radiation constant, ardd, (7"

is the specific heat of the material.

The Marshak boundary condition on the surface at0 is given by

2 ) 0E.(0,t) 4 4.3)

En(0,8) = (30a[T(0,t)] 0= ol
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Finc

z=0 z=l z

Figure 4.1:Flux incident on the left surface of a slab of thickness!

And that atz =l is

2 OFE,(1,t)
E.(l,t = 0. 4.4
0+ (o) o =0 @9
The initial conditions on these two equations are
E.(z,0)=T(z0) =0. (4.5)

To remove the nonlinearity in the RTE (Eqgn. [4.1]) and ME (Efh2]), opacityo, is assumed
to be independent of temperature and specific i§4tl") is assumed to be proportional to
the cube of the temperature. i.€}/(7) = aT?. The RTE and the ME are recast into the

dimensionless form by introducing the dimensionless irdeent variables given by

daco,

= 30,2,7=( )t. (4.6)

«v

The new dependent variables are given by

wien) = (2D o = & [T, @)
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With these new variables, the RTE and ME take the dimensssritem

ou,.(x, T) B Pu,(x,7)
c or N Ox?
O (,7)

or

+ U (2, 7) — up(z, 7),

= U (2, 7) — Up(z, T),

with the initial conditions

ur(z,0) =0,

U (z,0) = 0.

And the boundary conditions on the surfaces are

2 Ou,(0,7
u,(0,7) — ﬁ#) =1,
2 Ou,(b, T
u. (b, T) + 7 (9(x ) =0,

whereb = /30,1 and the parameteris defined as

4.2.1.1 Laplace transform method

To solve Egs. (4.8) - (4.13), we introduce the Laplace tr@amsfaccording to

Fo) = [ areso),

to obtain

0?u,(z, s)
Ox?

est,(x, s) — = Up(z, 8) — U, (x, ),

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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St (x, 8) = Up(x,8) — Um(x, 5), (4.17)
) 2 9u,(0,5) 1
u-(0,s) N T (4.18)
i 2 0u,(b,s)
r(b;s) + N (4.19)

The solutions of Egs. (4.16)-(4.19) in s space are obtaised a

3sin[3(s)(b — )] + 2v/35(s) cos[B(s) (b — x)]

uy(x,s) = , 4.20
(z.5) s[3sin(3(s)b) 4+ 4v/36(s) cos(B(s)b) — 432(s) sin(B(s)b)] (4:20)
i (2, 5) = 3sin[6(s)(b — x)] + 2v/36(s) cos[B(s) (b — x)] (@21
m s(s + 1)[3sin(B(s)b) + 4v/36(s) cos(3(s)b) — 43%(s) sin(B(s)b)]
wheref(s) is given by
B(s) = ———[1 + (s + 1)]. (4.22)

s+1

Before solving for the radiation and material energy déesiby invertingu,(z, s) and
um(z, s), we first obtain the small and largdimits of ,.(z, 7) andu,,(x, 7) from the large and

small s limits of egns. [4.20] and [4.21] respectively. Wsthe theorems

Jim [5(6)] = (7] .29
s (5)] = Jim [£(7)] (@.29
we have
ur(2,0) = Uy, (x,0) =0, (4.25)
b — 3z
(2, 7 — 00) = Up (T, T — 00) — 5 Z—:bi—i\/gg : (4.26)

Thus according to eqn. [4.25], at the initial instant, bdie material and radiation energy
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densities are zero inside the slab. Eqn. [4.26] assertsathafinite time the radiation and
material energy density equilibrate among themselves.ddew because of the finite thickness
of the slab, flux leaks out of the right edge so that the eneemgsities vary linearly along the
length of the slab.

The solutions fow,.(z, 7) andu,,(x, 7) follow from ..z, s) andu,, (z, s) by inverting them

using the Laplace inversion theorem

f(r) = 1 /Cdse”f(s), (4.27)

- 2mi

where the integration contour is a line parallel to the imagy s axis to the right of all the
singularities off(s).The contour is closed in the left half plane so that the lagmi circle
gives a zero contribution. Both,(z,s) andu,,(x, s) are single valued functions and hence
there are no branch points. However, there are an infinitebeumof poles obtained from the

roots of the transcendental equation

3sin(B(s)b) + 4v/38(s) cos(5(s)b) — 46%(s) sin(B(s)b) = 0,

or, tan(3(s)b) = M (4.28)

C4P(s) =3
For the semi infinite slab, because of the multiple valuesldsthe functions obtained by
Laplace transform, inverting them using the inverse Lapkaansform required evaluation of
contributions from all the branch cuts. This resulted iregrals which had to be computed
numerically [64]. The oscillations in the integrand resdlin difficulty in their convergence.
The advantage of solving the finite problem is that becausthefsingle valuedness of the
Laplace transformed functions, the inversion is very senprhe sum of the residues at the
singularities (poles) give the required solution. The sooft the transcendental equation has

been obtained using MATHEMATICA [97] as shown in the grapliigdire 4.2.

Corresponding to each root 6f s), there exists two values of s, i.e., two simple poles. The
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—tan[ps)]
—f(B)

5 B(s) 10

Figure 4.2:Finding the roots of the transcendental equatian(3(s)) = f(3) = fﬁfffg

poles are obtained from solution of egn. [4.22] as

o= TP+ VEF T TP~ 45 (4.29)

According to the residue theorerﬁc dse®™ f(s) = 2mix(sum of the residues at the singulari-
ties). The residue at s=0 gives the asymptotic (steady) Sakation for the radiation and mate-

rial energy densities as.(x, 00) = u,,(x, 00) = % which is also obtained by equating

0u(z.7) and 24=(7) in Egs. (4.8) and (4.9) to zero, solvifgs =) — 0 and obtaining the

values of the constants from the BC given by Eqgs. (4.12) ari8}4

The contribution to the time dependent part comes from tigedri order poles. Adding
residues from all the poles give us the complete space areldapendence of the radiation

energy density as

() — 3b +2v3 — 3z e " [3sin(B(sn) (b — x)) + 2v/33(s,) cos(B(sn) (b — z))) 30
SR D D PR R T I S
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with

Q(sn) = 3b+ 4V3 — 462(s,)b, (4.31)

and

R(s,) = 4V383(5,)b + 83(s,). (4.32)

Similarly, the solution for the material energy density is

33)

U (z, T) =

3b 4 2v/3 — 3z Z e T[3sin(B(s,) (b — z)) + 2v38(s,) cos(B(s,) (b — x))l4
3+ 413 Sl + 1)[@( ) os(3(s,)b) — R(s,)sin(3(s,)b)] T2

We also consider the=0 case which arises when the speed of light is taken to batafin
so that radiation is not retarded initially. At infinite tim@he radiation and material energy

densities assume the same spatial dependence as-fOrcase.

b+2v3—
up(z, T — 00) = Up (T, T — 00) — 3b+2v3 3I. (4.34)
3b+4/3
However, forr = 0, ass — oo for ¢ = 0, we obtaing = ¢ wherei = /—1. Thus,
inh(b — 2 h(b —
w(z, ):351n (b ) + 2+/3 cosh(b .CE)’ (4.35)
7 sinh(b) + 4+/3 cosh(b)
U (z,0) = 0. (4.36)

Thus the material energy density is zera at 0 as predicted by the initial condition. However,
because of the absence of retardation effects, the radliatiergy density attains a finite value
consistent with the incoming flux of radiation. This behavsin agreement with that obtained

in the case of a semi infinite planar slab for the no retardatase.

The solutioru,.(z, 7) andu,, (z, 7) for e = 0 is obtained by inverting Eqs420) and ¢.21)
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using inverse Laplace transform as in the general caseawitl). The difference from the

e # (0 case is that only one pole is obtained corresponding to @&\albetai.e.s = _,3?(25()511-

4.2.1.2 Eigenfunction expansion method

To solve egns. [4.8] - [4.13] using eigenfunction expansitethod, we write the solution as
the sum of an asymptotic (i.e., infinite time) and a transpant. Let us denote the asymptotic
solutions for radiation and material energy densitieatfy:) andu? () respectively. Similarly

the transient parts are denoteddjyz, 7) andu! (z, 7). Then,

u (2, 7) = ud(z) + ul(z, 1), (4.37)

U (7, 7) = U (1) + ul (7, 7). (4.38)

Obtaining the asymptotic solution

After infinite time, bothu,(x, 7) andu,,(x, 7) attain the asymptotic value so th?é% =0

and 227 — (. Thereforeu, (x,7) = u,,(x, 7) and hence from eqn. [4.8],

O®u,(x,7)

g =0 (4.39)

The solution is(x, 7) = ¢ + dz. The values of the constants ¢ and d can be obtained from the

BC given by egns. [4.12] and [4.13]. Omitting the algebra, ébtained solution is

_2+\/§b—\/§x

0
u,(x,7) = Y (4.40)

T

Obtaining the transient solution
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The equations for the transient pawfgz, 7) andu! (x, ) are

gau}«(a:, T) OPul(x,7)

1 1
o = o2 +u,, (x,7) — u.(z,7), (4.412)

(9u}n(x,7') ! 1
— 5 = u,(z,7) — u,, (z, 7). (4.42)

with the initial conditions

ul(z,0) = —u?(:ﬂ) (4.43)
u}n(a:, 0) = —u?n(x) (4.44)
(4.45)

and the homogeneous BC on the surfaces are

1
u(0,7) — %%2’7) o, (4.46)
2 Oul(b
ul(b,7) + ﬁ%’ﬂ —0. (4.47)
The eigen value equation (EVE) is given by
9 5
902 +3¢=0 (4.48)

whereg is the eigenvector and is the eigenvalue. BCs amare

2 0¢(0,7)

»(0,7) — ﬁ o =0, (4.49)
2 0¢(b,7)
6l 7) + =g =0, (4.50)

The EVE can be solved and we can determine an infinite set ofalared and orthogonal eigen

functions and corresponding eigen values. Thus correspord a particular eigen value we
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have

o,
0x?

b
/ Om () Pn(x)dr = O, mym = 1,23, ... (4.52)
0

+ B2p, =0, (4.51)

As these form a complete set, we expand the solutions in tefthese eigen functions:

u(z,7) = Z an (T) (), (4.53)
ul (x,7) = Z b (T) (), (4.54)

where the expansion coefficients(7) andb,(7) have to be determined. From the orthogonal

and normalization conditions ef,(z) we have

b
ay,(7) :/0 Gp(2)ul(z, 7)d, (4.55)

b
bn(T):/O b ()0l (2, 7)dz. (4.56)

Multiplying both sides of eqns. [4.41] and [4.42] with,(z), integrating over x from O to b,
and using the boundary conditions at the surfaces viz. edn6], [4.47], [4.49] and [4.50]
along with eqgns. [4.55] and [4.56], we obtain ODEs involvihg expansion coefficients, (7)
andb,, (7).

day(T)
dr

+ (14 8% an(1) — ba(1) =0, (4.57)

db,(T)
dr

3

+b,(7) — a,(1) =0, (4.58)
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with the initial condition on the expansion coefficients as
b
n(0) == [ onlaul(a)ds, (4.59)
0
b
b,(0) = —/ G (1)l (7)dx. (4.60)
0

The solution of the EVE, i.e., egn. [4.98] is given by

o(z) = Asin(fz + B) = C*[sin(fz) + \2/—% cos(fx)]. (4.61)

From the normalization condition of the eigenfunciome., fob ¢*(x)dz = 1 and the BC onp

at x=0 (Eqn. [4.49]), the value of the normalization constambtained as

. 12/
¢ = \/4\/55 + (68 + 803)b + (442 — 3) sin(20b) — 4v/3 cos(206b)

(4.62)

The eigen values are obtained by applying the BCpoire., eqns. [4.49] and [4.50]. The

conditions are

. 2
sinB — ﬁ pcosB = 0, (4.63)
(coq ) — %ﬁsin(ﬁb))sinB + (sin(8b) + % peog 3b))cosB = 0. (4.64)

We will have nontrivial solutions if the system in sinB andBas singular so that the determi-
nant of coefficients vanishes. This condition gives us thees@anscendental equation viz. eqn.
[4.28] for the eigenvalug. As in the Laplace transform method, the eigenvalues ararodd
as roots of this equation. For a particular eigenvaliethe ODESs involving the expansion co-
efficientsa, (7) andb,, (1) are solved using MATHEMATICA and,,(x) is obtained from eqgn.
[4.61]. Summing the contribution from all the eigenvaluegdhe transient solutions for scaled

radiation and material energy densities using eqns. [4B8][4.54]. Adding the steady state
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Figure 4.3:Flux incident on the inner surface of a spherical shell otinradiusR; and outer radius

Ry.

solution to the transient part gives the final solution.

4.2.2 Spherical shell

Analogous to the planar slab problem, in spherical geomeéconsider a spherical shell of

inner and outer radik, and R, respectively (figure 4.3). Under the same assumptions,avith

time independent radiative flux,.) incident on the inner surface of the shell, the one group

radiative transfer equation (RTE) in the diffusion approation and the material energy balance

equation (ME) in spherical geometry are

OB, (r,t) ig[ r’c OE,.(r,t)
ot r20r 30,(T) Or

| = coo(T)[aT*(r,t) — E.(r,1)],

C(T) aTg; D cou(T)E(r,t) — aT ()],

with the same notations as used in Subsec. 4.2.1

The Marshak boundary condition on the inner surface-atR; is given by

2 OE,(Ry,t) 4
Er(Rlat) - (30'a[T(R1,t)]) or - CEnc-

(4.65)

(4.66)

(4.67)
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And that atr = R, is

~ 0. (4.68)

ET<R2,t>+( : )aEr(Rg,t)

304[T(Rs,t)] or

With new dimensionless variables introduced in Subsec.14tBe RTE and ME take the

dimensionless form

Ouy(z,7) 1 0, y0u.(z,7)

€ or - ?a_x(x o )+um(x,7') _ur(va)u (469)
w = ur(x> 7_) - um(x> 7_)7 (470)
or
with the initial conditions
ur(z,0) =0, (4.71)
Um(z,0) = 0. (4.72)

And the boundary conditions on the surfaces are

2 Ou,(Xq,

uT(X17T) - ﬁ% - 17 (473)
2 Oup (X,

U/T(XQ, T) -+ ﬁ%m = 0, (474)

wherer = v/30,r. Changing variable, (z, 7) tow(x, 7) = u,(z, 7)z andu,, (z, 7) to g(z, 7) = un(z, 7)z,

the equations simplify to

dula,7) _ Puwlz,7) i
= +g(x,7) —w(z, 1), (4.75)
0g(x, 1)

or

=w(z, ) — gz, 7). (4.76)
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4.2.2.1 Laplace transform method

Applying Laplace transform, the solution in s space areiobthas

up(z,s) = 5(21)37 sin(ﬁ(s)iic + B), (4.77)
U (1, 8) = us(f_f ) : (4.78)

with the constants A and B obtained from the BCs

iaﬂr(Xl, 8) . 1

(X1, s) — \/57 =3 (4.79)
2 0, (Xo,
i (Xa, 8) + 75% —0. (4.80)

Then the Laplace transformed radiation energy densitywisgoy

o VBN~ VB0 sn(3(5)(6s — ) — 20 (B )]y g0
sx[S(s)sin B(s)(Xy — X1) — T(s) cos(B(s)(Xe — X71))] ’ '

with

S(s) = (40%(s) — 3) X1 X — 2V3(Xo — X3) + 4, (4.82)

and

T(s) = 48(s)(Xs — X1) + 4V306(s) X1 X5 (4.83)

As in the case of the finite planar slab, the solutionsiddr:, 7) anduw,, (=, 7) follow from

u-(z, s) andu,,(x, s) by inverting them using the Laplace inversion theorem. Amite num-
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ber of poles are obtained from the roots of the transcenbeqtetion

4v/36(8) X2 X1 + 48(s)( Xy — X1)

tan(3(s)(X2 — X1)) = (48(s)2 = 3) X1 X5 — 2V/3(Xy — X1) + 4

(4.84)

Summing over the residues at all the poles, the radiatiorggriensity is obtained as

VBXEXZ + X2x(2 — V3X))
r[2X}? — V3XEXo +V3X,1 X3+ 2X3)

+Z ( (2— f X2 ) sin(B3(sn) (X — x)) — 2B(50) X5 cos(B(s) (Xo — )] WfXQ)M 85)

up(z,7) =

Y (s,)sin 3(s,) (X — X1) + Z(s,) cos(B(s,)(Xe — X7))] 5,2 3BLen)

with

Y (sn) = 48%(s,) (X3 + X7) + 4V38(5,) X1.X2(Xo — X1), (4.86)

and

Z(sn) = 46%(5,) X1 Xa(Xo — X1) — 3X1 Xo(Xo — X)) — 2V3(X? + X2). (4.87)

Similarly, the solution for the material energy densityidals the same form as that for the

radiation energy density with an extta, + 1) in the denominator of the second term.

4.2.2.2 Eigenfunction expansion method

In a manner similar to the finite planar slab, the solutiorssuaned to be the sum of an asymp-

totic (i.e., infinite time) and a transient part given by eqds37] and [4.38].

Obtaining the asymptotic solution
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The asymptotic solution is

0 0 VBXTXS + Xia(2 - V3X,)
Uy (2) = Uy, () = ,
r(2X} — V3XPXo +V3X, X3+ 2X3)
Qup(z) _ duf,(x) _ 3XPXF(Xi — Xp) — 2VBXPXF(XT + X3)
O O 12(2X2 — V3X2 X, +V3X X3 +2X3)2

The outgoing flux from the surface of the sphere j+ in the agptplimit is

O(X) 2 3u2(X2,T) 4X12
U - — = ,
nYB o 2X2 — \/BX2X, + V3X| X2 + 2X2
and the flux j- coming out of the inner surface is
2 oul(X
W00 + — 2T

N

4X0 +3XIX3 — 4VBXI Xy +4V3XPX2 — 6X7 X3 +3X2X5 —4X]

(2X? — V3X2X, + V33X, X2 +2X3)2

Obtaining the transient solution

The equations for the transient pamfgz, 7) andu. (x, 7) are

1 1
gaur(x,T) 10 anuT(x’T)

- - 1 1

87’ - .1'2 81'( 83: )+um(w’7) UT(.Z',T),
(9u71n(a:,7') 1 1

or —ur(.l“,T) —um(.iL“,T),

with the initial conditions

up (7, 0) = —u,)(z),

[e=]

Uy (2, 0) = =y (),

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)
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with the homogeneous BC on the inner and outer surface

2 oul(Xy,7)

u(Xy,7) = 25 =0, (4.96)
1
ul(Xa, 1) + %%ﬁw) — 0. (4.97)
The eigen value equation (EVE) is given by
10, ,0
ﬁ%wa_i) + 526 = 0. (4.98)
BCs ong are
2 0p(X
o(Xy) — 7 ¢é(,x )y, (4.99)
2 0p(X
O(X>) + 7 ¢éx2) = (4.100)

The EVE can be solved and we can determine an infinite set afaaed and orthogonal

eigen functions and corresponding eigen values. Thussyporeling to a particular eigen value

we have
1 5 0y, 2.
?ax( Ey —) + B¢, =0, (4.101)
X2
G (2) P (2) 4722 dT = Sy, mym = 1,2,3, ... (4.102)
X1

Following the same steps as for the finite planar slab, bygrateng over the volumé@)ﬁ with

x going from X, to X, we obtain the solution of the eigenvalue equation as

c (Xz — 2) sin(8X5) + 2%2 cos(X2)

—_— 1 \/g
o(x) = " sin(fz) + cos(fx) 2X:23ﬁ sin(8X,) — (Xo — %) cos(fX2)

. (4.103)
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I:inc

Figure 4.4:Radiation flux incident on the outer surface of a sphere.

with C* = AcosB. From the normalization condition of the eigenfuncioice., f 2(z)4matde = 1,

the value of the normalization constant is obtained as

1
cr = . (4.104)
47‘(‘f [(Xo— \/_ ) sin B(X2— m)—l—”\jgﬂ cos B(Xo—x)]?

2X2ﬂ sin(BXz2)—(X2—35) cos(8X2)]2

From the b.c. o, the same transcendental equation (eqn. [4.84]) as in thiatatransform
method is obtained for the eigenvalge Finally, the scaled radiation and material energy

densities are obtained.

4.2.3 Sphere

We consider a sphere of radius R with a radiative flux incidenthe outer surface as shown in
figure 4.4 The radiation transport and material equatiortregsame as eqns. [4.69] and [4.70].

The boundary conditions on the surface and centre are giwven b

2 Ou.(X,7)

u,-(0, 7) = finite. (4.106)
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4.2.3.1 Laplace transform method

In a manner similar to the spherical shell, the Laplace foansed radiation energy density is

given by
2 .
i (z, 8) = \./gX sin(B(sn)7) . (4.107)
se[(v3X — 2)sin(B(5,)X) + 26(5,) X cos(BX)]
The transcendental equation in this case is
20 (sn)X
t n)X) = ——r-—. 4.108
an(B(sn) X) = S (4.108)
The radiation energy density is obtained as
SnT 3 X
ur(,CL', 7_) 14 Z e ﬁSIH(ﬁ(Sn). ) e (4109)
~ s,2[V/3cos(B(s,)X) — 26(sn) sin(B(s,) X )] =52~
4.2.3.2 Eigenfunction expansion method
The asymptotic solution is obtained as
up(x) = up, () = 1, (4.110)

and as in the finite spherical shell, we obtain the solutiothefeigenvalue equation as

B 16 sin(fx)
¢lz) = \/7?[25)( —sin(26X)] x (4.111)

with the same transcendental equation 4.108 for the eigjg The scaled radiation and
material energy densities are also obtained in a mannelasitaithe planar slab and spherical

shell.
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4.3 Results and discussions

4.3.1 Planar slab

For the finite planar slab, at early stages@.01) the radiation energy density falls rapidly from
the left surface where radiation is incident as shown in 8gub. As time proceeds, the values
of energy densities increase and the variation with digt&eeps on attaining linearity. At in-
finite time, the steady state values are linear with posiéismgiven by eqn. [4.26]. Similarly,
the material energy density initially exhibits slight nbmear variation and finally attains the
linearity (figure 4.6). The non-linear variation at earlpgts occurs due to net absorption of
energy by the initially cold material (as.(x,0) = w,,(z,0) = 0). Initially, the material en-
ergy density is found to lag behind the radiation energy diessand finally equilibrate as time
proceeds (beyong=10). In this work, all the results have been obtained by ictemsg contri-
bution from the first 30 roots of the transcendental equafidre value of opacity, is chosen
to be 100 and equals 0.1. For a heat wave traveling into a thin plate ancposite planar slab,

a similar linear variation in temperature with distance whserved though difference existed
in the space and time dependent behaviour due to heat camaagproximation [98],[99].

The first derivatives w.r.t. position of the analytical raiitbn and material energy density are
plotted in figures 4.7 and 4.8. As the radiation and matenat@y densities decrease with x, the
derivative has negative values. The derivative has a greagative value at the left compared
to the right zone. As both radiation and material energy itiesskeep on increasing with time
due to radiation diffusion, magnitude of the gradient dases for the left and increases for the

right sides. The gradient of both radiation and materiatgyndensities obtain a constant value

of 3;;’:/5 = —0.30217 after infinite time showing that there is a constant leakagéur from
the right surface due to the finite thickness. This resuliffer@nt from the semi-infinite slab
result where at infinite time, the entire halfspace is at sstaont temperature with a uniform

radiation field and hence there is no gradient and no flux [63].
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Figure 4.5:Scaled radiation energy density(x,7) Vs. position (x) in the slab of scaled thickness
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Figure 4.6:Scaled material energy density, (z, 7) Vs. position (x) in the slab at different times for
e =0.1.
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Figure 4.7:Space derivative of scaled radiation energy dengity(x, 7)/0x Vs. position (x) in the
slab at different times.
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Figure 4.8:Space derivative of scaled material energy dengity, (x,7)/0x Vs. position (x) in the
slab at different times.
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Figure 4.9:Leakage currentd_ (1) and.J (1) from the left and right surfaces of the slab respectively.

The current of radiation leaking out from the left and rightfaces of the slab are

T (1) = un(0,7) + 32427 and J, (1) = u.(b, 7) — %2427 The leakage currents are
plotted as a function of time in figure 4.9. It is found thatulgb J_(7) is negative initially,
it attains a constant positive value of 0.30217 after sdtura J, () is zero initially as the
incident flux has not reached the right face. However it risgédly and reaches a saturation
value of 0.6978. The energy densities and leakage curretits keft and right surfaces are also
related as:,(0,7) + u,.(b,7) = LandJ_(7) + J. (1) = 1.

The averaged or integrated radiation and material enengsitiles are given by

(1) = fob u,(z,7)dr and i, (1) = fob um(z, 7)dr respectively. The steady state inte-
grated value is 0.5 as seen from figure 4.10. The integratddrimlaenergy density is also
found to lag the radiation energy density at early times malliy the two equilibrate.

To check the consistency of the final results, we add Eqs) &@ (4.9) and integrate over

x from O to b, yielding

b Oup(x, ) Oup(z,T) b 0u,(x, T) ou,(b,7)  Ou.(0,7)
T 9 m ) d — T ) d — s Y - T Y
/0 = 5, /0 02 T T g or
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Figure 4.10i1ntegrated radiation,. (7)) and material energy densities,{ (7)) in the slab as a function
of scaled timer.

60%(7) N Oy (T) _ Ou, (b, T) B Ou,.(0,7)

or or ox or (4.112)

Using the expressions for the energy densities, their fesvdtives in space and the integrated

guantities, we find that both the left and right hand sidescedo

esnT 3 - 3
2 Gy amemEE % [ty (1 = cos(B(sn)p)) +2v3sin(B(s.)b)] (¢ +

snl-l-l) proving the consistency of the obtained solutions.

As there are infinite number of residues, the exact soluabtained only on adding all of
them. However, the contribution from the poles decreasg sfearply. To study convergence,
we plot percentage error as a function of number of rootsefrémscendental equation consid-
ered. As seen from figure 4.11, Zzerror in the value of.,.(0, 2.5) is observed on considering
only the first two roots i.e., the steady state result anditesior the two non zero poles. The er-

rors arising due to non inclusion of higher order terms isenoitially as the higher order poles



118

N

Percentage error in u (x,T)

Figure 4.11Percentage error in the radiation energy density, 7) in the slab as a function of number
of roots considered (N).
contribute only at very small times because of the expoaktarm. The error falls sharply to
a negligible value (0.00%) on considering the contribution from the first 6 roots ifest 11
poles. More accurate results can be obtained by addinguesidom higher order poles.
Figure 4.12 shows the plot of radiation energy densjty, 7) as a function of space and
time fore = 0. Contrary to the results for finite, the radiation energy density attains a finite
value even at very early times due to the absence of retardefiects. However, the material

energy density shows the same trend as for finite

4.3.2 Spherical shell

For the spherical shell, initially£0.01) the radiation energy density falls rapidly from the i
ner surface (scaled radiu§, = 1) where radiation is incident towards the outer surfacel¢sca
radiusX, = 2) as shownin figure 4.13. Though the trend is similar to thaglalab, the values
of the scaled energy densities are less. Also, contraryetpldmar case, the variation in energy

densities remain sharper in the inner meshes compared tmtheones and the variations in
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Figure 4.12:Scaled radiation energy density(z, 7) Vs. position (x) in the slab of scaled thickness
b = 1 at different times foe = 0.

energy densities are not linear with position even afteimitig steady state. This is evident
because the mass of the material to be heated in the radigilaod direction increases. Sim-
ilar to the planar slab, the material energy density lagsnaketihe radiation energy densities at
early stages and finally reaches equilibrium (beyondlO) [figure 4.14]. Magnitude of deriva-
tive of analytical radiation and material energy densiteysain higher in the inner meshes as
compared to outer ones at all times [figures 4.15 and 4.1@.|&dkage currents from the inner
2 Ou,(X1,7)

and outer surfaces of the spherical shell.arer) = v, (X1, 7) + ===,

Jo (1) = up(Xo, 7) — %W.

The variation inJ(7) is similar to planar slab though the values are less. Howévér)
remains negative throughout as radiation always diffusésards in order to maintain the flux
boundary conditions (figure 4.17). As the derivatde.(x, 7)/0x is more negative for inner
radii, u, (X1, 7) + u,.(X2,7) < 1 which leads toJ, (7) + J_(7) < 1. For the case considered,
X; =1landX, =2, itis found thau,(X;,7) < 1. AsJ_(7) = 2u,.(X,7) — 1, henceJ_(r)

IS negative. The averaged or integrated radiation and rahtergy densities are given by
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Figure 4.13:Scaled radiation energy density.(x,7) Vs. position (x) in a spherical shell of scaled
inner radiusX; = 1 and outer radius{y = 2 at different times foe = 0.1.

(1) = f;? u,(x, 7)dma?dz and i, (1) = f;(f um(z, 7)4mz*dz. and plotted in figure 4.18.
The integrated material energy density is also found toHagadiation energy density at early
times but finally the two equilibrate to a value of 0.25.

To check the consistency of the final results, we add Eqs9)46d (4.70) and integrate
over x from X; to X,, yielding

2 Qu(z, ) O, T) 5 Ou,(Xa, 7)
r\4; m L, —4 X2 r 5
/X 1 (e e YAratdr = 4n( 2

X
. XEW). (4.113)

Using the expressions for the energy densities, we find thidit the left and right hand sides

reduce to the same expression proving the consistency obtfagned solutions.

As for the planar slab, convergence of relative error inatdn energy density for spherical
shell on increasing contribution from higher order polegoisnd to follow the same trend.
However, the values of relative errors are slightly highet% for «,.(0,2.5) for contribution

from first 2 roots) than the planar slab as shown in figure 4Tlus for these finite systems,
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Figure 4.14:Scaled material energy density, (x, 7) Vs. position in a spherical shell of scaled inner
radiusX; = 1 and outer radius{s = 2 at different times foe = 0.1.
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Figure 4.15:Space derivative of scaled radiation energy density(x, 7)/0x Vs. position (X) in the
spherical shell at different times.
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Figure 4.16:Space derivative of scaled material energy dengity, (x, 7)/0x Vs. position (x) in the

spherical shell at different times.
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Figure 4.17Leakage currents_(7) and.J, (7) from the inner and outer surfaces of the spherical shell

respectively.
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Figure 4.18:Integrated radiationy(.(7)) and material energy densities, (7)) in the spherical shell
as a function of scaled time
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Figure 4.19Percentage error in the radiation energy densityt, 7) in the spherical shell as a function
of number of roots considered (N).
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Figure 4.20:Scaled radiation energy density(z, 7) Vs. position (x) in a sphere of scaled radius X=
0.5.
energy densities in terms of series solutions are found mvarge quickly and depending on

the required degree of accuracy, the number of poles to b&dened is decided.

4.3.3 Sphere

The scaled radiation and material energy densities for arspsf scaled radius x=0.5 are shown
in figures 4.20 and 4.21. Both the scaled radiation and nah&nergy densities attain a steady
state value of 1 implying that the sphere finally attains #@megerature of the incident radiation

as expected. The material energy density lags behind thetiadenergy density as usual and

the results are found to be consistent.

4.4 Summary

In this chapter, the time dependent non equilibrium radradiiffusion problem has been solved

analytically for finite planar slab, spherical shell andesghwith a constant radiation flux inci-
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Figure 4.21:Scaled material energy density(x,7) Vs. position (x) in a sphere of scaled radius X=
0.5.

dent on the surface. The observed trend in temporal andagpatiation of energy densities,
leakage currents, integral quantities, etc. has beenierplghysically. The results obtained
in this work can serve as new and useful benchmarks for notilagum radiation diffusion

codes in both planar and spherical geometries. The samedudtiyy can be applied to any

other finite size systems like layered media with variousnolamy conditions.
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One dimensional hydrodynamic,
radiation diffusion and transport

simulation

5.1 Introduction

The zero dimensional model is successful in obtaining tlopgr reaction yields and reaction
dynamics going on in time. However, to study more complexesses like shock propagation
in ICF plasmas, pellet implosion and explosion either in r@dai drive fusion or via x-rays
in a hohlraum for the indirect drive, the actual spatial &aon is to be considered. Thus, to
have a better understanding of the processes taking plee¢h@rmonuclear plasma, at least
one dimensional hydrodynamic simulation study need to éopeed. In this chapter, we
develop a fully implicit one dimensional hydrodynamic cadehe Lagrangian geometry for
planar, cylindrical and spherical cases. We validate trededao planar geometry using the
benchmark results of shock tube problem [15] and in sphlegigametry using Sedov’s point
explosion problem [16]. Results for Noh'’s problem have &lsen generated in both spherical

and cylindrical geometries [17].

As the temperature of a material increases, the radiatierggrkeeps on increasing at a rate
greater than the material energy [4]. At high temperatutesjnternal energy of the material
changes because of radiation interaction in addition todbe to hydrodynamic compression.

To obtain the energy flowing from radiation to matter, theiaidn transport equation needs
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to be solved. We develop a finite difference radiation difnscode and generate results for
the finite and infinite planar slabs and also a finite sphesiall. Radiation transport equation
has also been solved numerically using the discrete oeBnatethod and results generated
for Marshak wave propagation in both planar and sphericaingtries. As the hydrodynamic

motion is slow compared to radiation diffusion or transptite material is assumed to be static

while solving the radiation intensity within the medium.

5.2 Implicit finite difference scheme for solving the hydrog-
namic equations

5.2.0.1 Grid structure

For hydrodynamic calculations using a Lagrangian grid,ntfeelium is divided into a number
of cells as shown in figure 5.1. The coordinate of the i th wveidelenoted by:; and the region
between th¢i — 1) andi'® vertices is the'" cell. The density of thé" grid is p; and its mass

is given by
m; = éx p;x (rd =1 ), (5.1)

with ¢ = 1,7, (4/3) x mandéd = 1, 2, 3 for planar, cylindrical and spherical geometries respec-
tively. Velocity of thei’* vertex is denoted by; and P, V;, Tionis Tetec,is Eion,i and Ege.; are
the total pressure, specific volume, temperature and thafgpmternal energy of ions and

electrons in theé mesh respectively.
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Figure 5.1:Grid structure.

5.2.0.2 Lagrangian step
During a time intervalA¢, the vertices; of the cells move as (with an error in positioiAt)?)

T =1 +u;At, (5.2)

whereu; is the average of velocity values at the beginning and entdet.agrangian step,

andu; , respectively.

5.2.0.3 Discretized form of the hydrodynamic equations

In the Lagrangian formulation of hydrodynamics, the massagh cell remains constant thereby

enforcing mass conservation.

The Lagrangian differential equation for the conservatbmomentum is :

du -

Here, the total pressure is the sum of the electron and i®sspres i.eP = P;,,, + P.c..

In ICF plasmas, the Debye length is much less than the efectrean free path so that
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there is no charge separation over the length scale of st} This allows us to assume that
electron fluid and ion fluid charge densities and velocitiesemual. Thus the plasma behaves

as a single fluid though the ions and electrons posses diffemperatures.

Eqn. [5.4] can be discretized, for the velocityat the end of the time step, in terms of the

pressures’/*and P/} in thei'" and (i + 1) meshes after half time step [74];

(PYF — P*)At

pi+1(7"z'+1/2 — 1) + pi(ri — 7"@'71/2)‘

U; = U; —

(5.5)

The velocity in the™™ meshi; is determined by the pressure in ffeand (i + 1)* meshes
and hence all the meshes are connected. Mass conservatiatioaocan be used to eliminate
the pressures at half time step to obtain an equation rglétm present time step velocities in

the adjacent meshes as follows:

The equation describing conservation of mass is

dp _

= —p(V.10), (5.6)

wherep is the mass density of the medium. This equation can be tewiih terms of pressure

H H dP _ ([ dP dp _ 2dp o dP H H R
using the relations;- = <d_p)S =% = c; 5 wherec, = <d_f’>s is the adiabatic sound speed.

Therefore, egn. [5.6] becomes
= —ZpV.i. (5.7)
This can be written for all the one dimensional co-ordingsteims as

— = —cip——ru, (5.8)
r

wherea = 0, 1, 2 for planar, cylindrical and spherical geometries. Thisagun can be dis-
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cretized to obtain the change in total pressure along a ba@gaa trajectory in terms of the

velocity u; at the end of the time step [74]:

1 Tqai—TQ_ &i, At
P =P+ g, — pic?, x [ ey (5.9)
T Ti = Ti-1 2
and
1/2 1 Tia ai—l—l — Tiaai At
PZ-+/1 = i1 + Qi1 — Pz‘+10§,¢+1 a X [ = = (5.10)

i+1/2 Titr =T 2
Here,q; is the quadratic Von Neumann and Richtmyer artificial vidyda the i mesh [22]:

k(piz;)?
Vi

(0 511)

q; =

where/: (~ 3) is a dimensionless constant. Using eqns. [5.9] and [5.5){’and P/} in eqn.

[5.5] are eliminated to obtain a tridiagonal system of eiunat for

where

is1(csip1AL)? i
;= p +12((C Kl ) X — T’L—i—l 7 (513)
P 7“)1’ 7“2-+1/2(7"z'+1 —Ti)

pit1(Csip1A)? « y
2(pAr); 7"?+1/2(7“i+1 — 1)
i(coiAL)? P
pg((c < ) = , (5.14)
PAT); 7“2-_1/2(7"1' —Ti1)
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) . 2 o
Cz‘ _ pZ(CsﬂAt) % . Tzfl (515)
Q(pAT)Z Tifl/g(ri - Ti—l)
At
D; = u; — W[Piﬂ + Git1 — P — qil, (5.16)
with
(PAT)i = pisa(Tivae — 1i) + pi(ri — Ti1/2). (5.17)

The energy equations, for the ions and electrons, expréssedns of temperature are

8ﬂon alzion 8V o Ijion av
ACv = v o = v o e (5-18)
and
airelec aEjelec av o Pelec av
Pl Cveace—g =+ 5l =~ ¢ the (5.19)

where E;,,, andE,,.. are the specific internal energies and V is specific volurig. is the

ion-electron energy exchange term given by

Pie(Tergs/cm?® /pus) = 2.704 x 10" e Nion
irion - Telec
T1.5

elec

M™7Z? x InA, (5.20)

with ion and electron temperatures expressed in keV. Fyrthg..’ and ‘n;,," are the number
densities of electrons and ions, M is the mass number andh& isitarge of the ions. Here the
Coulomb logarithm for ion-electron collision is [90]

A = max{1, (23 — In[(nge)Z T51))} (5.21)

elec
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with 7,,.. expressed in eV. The discrete form of the energy equatiarisrie and electrons are

won,i T ion,l on,i 1 7'1’]@_1 ion 7 Vion,i '
and
n,k—1  ~mn,k—1 n— n,k—1
Tn,k _ qmk—1 Pi CVelec,i(Telec%i - Telec,i )
eleci — “elecy + n,k—1
ALH!"
Pn,szl 571,]4:71 n,szlAVn,k
_ ( elec +Ae£ilc[n 26621 7 4 Ijiﬂe,kfl/Hin,k’fl (523)
where
n,k ~mn,k—1
_ pi7 CVvyeleci
g = L _Teleed 5.24
1 Atn ) ( )
OF;
ol = (et 5.25
won ( av )7, Y ( )
OF,
n,k—1 elec\n,k—1
? — L . 526
elec ( av )z ( )

(5.27)

with ‘n” and ‘k’ denoting the time step and iteration indexspectively.

5.2.1 Results

We have investigated the performance of the scheme usirfgltbeiing benchmark problems:
Shock tube problem
The shock tube is the most convenient and widely used toaldtaining high temperatures
in the laboratory and for studying the chemical physics dfega It is essentially a device in
which a plane shock wave is produced by the sudden burstinagl@Ephragm which separates
a gas at high pressure from one at lower pressure [15]. Afeebtrsting of the diaphragm a

compression wave is formed in the low pressure gas, thislisapteepening to form a shock



134

Contact surface C

rarefaction tail T t
rarefaction head H Shock front F
4 ! : 3/ 2 Lo
'‘Expansio] ! '
fan i ‘
[e] i X
(@) !
c,~ C,mU, = | .U, . u
4 3 1
(b)
P4 p1
P>P>P, =) P=P, L—8 —

Figure 5.2:(a) The (x,t) diagram in a shock tube. (b) Velocities of thanfs relative to the shock tube
and (c) lllustrative pressure profiles at time t.

front. Simultaneously, an expansion or rarefaction wavereadack into the high-pressure
gas with sound speed where the pressure fall is smooth. d~gdr(a) is an (x,t) diagram for
a shock wave in a tube in which the driver gas at high pressyna the region 4 is being
expanded through the expansion fan to a lower presButeehind the contact surface in the
region 3. The limits of the expansion fan are formed by thedhmad tail of the rarefaction
wave. Region 2 denotes the region between the shock front@amict surface whereas the
region 1 is undisturbed low pressure region. At a time t feifgg this event the velocities of
the fronts relative to the shock tube are shown in figure 5 2while the pressure profiles are

shown in figure 5.2 (c).

It is convenient to consider the gas motion in relation to sheck front and hence we

consider the equations for conservation of mass, momentaheaergy in terms of velocity
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measured in shock-fixed coordinates.

P2U2 = P11 =1, (5.28)

Py + pavi = Pr + prof, (5.29)

p2vo(Hy + %v%) = prv1(Hy + %vf), (5.30)
V1 = Ug — Uy, Vg = Ug — Us. (5.31)

where H is the enthalpy per unit mass, is the shock velocity relative to the tube,s the

density and: is the particle velocity relative to the shock tube. For asidyas the enthalpl/

IS given by
2
H-p+Ll_ < (5.32)
p m—1
o i U (5.33)
pn—1) p

whereFE is the specific internal energyijs the local sound speed andis the specific heat ratio.
The shock strength is defined as the fractional change irspresiue to shock compression,

i.e.,s = (P, — P)/ P sothat eqns. (5.28)-(5.31) can be explicitly written as

P2:P1(1+S), (534)
1+g*s
- 5.35
P2 Pll g5 ( )
(14+s)(1+gs)
Co = Cl\/ 11 g+3 s (536)
Us = up + 1/ 1+ gts, (5.37)
s
=u + 6 ——, 5.38
B e 3
+1
=_ (5.39)

2m '
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where it has been assumed thatremains unchanged even after the shock compression. At

contact discontinuity which separates regions 2 and 3, #&srflux is zero. Hence,
P3 = Py, uz = up = u, (5.40)

whereu, is the speed of the contact discontinuity. It moves with #a@e velocity as the two
gases on either side of it. Behind CD, a trailing fan of racefa wave moves towards left with
the head of the RW fan moving with velocity — u, = ¢4 towards left, whereas the tail end
moves with velocitycs; — uz. Inside the fan region, the expansion occurs isentrogicalth

thatu + % is conserved. Thus,

263 204
Uus + — Uy -+
Ya—1 Yo — 1
. —1
l.e.,c3 = ¢4 — f}/42 Us. (541)

Having knownc;, we can writeP; and ps using adiabatic relatio®’; « p3* and sound speed

YaPs
p3 "

2 _
03—

Va4 —1

c P
P3 = P4(_3)1/a7ﬂ3 = P4(_3)1/747 a= 2

5.42
o P, (5.42)

assuming thai, remains unchanged even after rarefaction. The self-gisdlation inside the

RW fan region can be written as

Yo— 12 2
c= -+ Cy, 5.43
A1t 1 ( )

c P
P = Py(=)"" p= pa(5)"", (5.44)

Cy Py
w=uy+ 247 ¢ (5.45)

va—1

Assuming the lower pressure gas also to be at rest at t=Ohthek strength s can be obtained
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by solving the following algebraic equation:

bs o
b:w,p:(ﬂ)a. (5.47)

2c4m1 Py

The axial distance is obtained by the product of the velegiin the respective regions and
the given time t. For verifying the results obtained from cade with the analytical results,
we consider ideal gas of D-T with specific heat ratio 5/3 fiNgthin a tube of length 20 cm.
At time t=0, the diaphragm is at the centre of the tube i.ex=di0 cm. On the left side of
the diaphragm, the driver gas is at a density of 1 gm/cc ansspre 0.12 Mbar. The test gas
on the right is at a pressure of 0.012 Mbar and density 0.1 gni/ke internal energy of both
sides is 0.18 Tergs/gm. The tube is divided into 200 meshds @&thickness 0.1 cm. Figure
5.3 shows the density, pressure, velocity and internalggres a function of distance at a time

10us. Comparison with the analytical results (solid lines)is@ahown.
Sedov’s self similar point explosion problem

The self similar problem of a strong point explosion was foleted and solved by Sedov
[16]. The problem considers a perfect gas with constantispéeats and density, in which
a large amount of energy E is liberated at a point instantasigoThe shock wave propagates
through the gas starting from the point where the energyéased. For numerical simulation,
the energy E is assumed to be liberated in the first two medtesprocess is considered at a
larger time t when the radius of the shock fradtt) >> ry, the radius of the region in which
energy is released. It is also assumed that the stage of doegw is sufficiently early so that
the shock wave has not moved too far from the source. Thistagtethat the shock strength
is sufficiently large and it is possible to neglect the inigias pressuré’, or counter pressure in

comparison with the pressure behind the shock wave [4].

Under the above assumptions, the gas motion is determinéalbyndependent variables,
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Figure 5.3:Comparison of the variables obtained from the simulatioia éathe pure hydrodynamic
case (points) with the analytical solutions (lines) for sheck tube problem.
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viz, amount of energy released E, initial uniform dengigy distance from the centre of the
explosion r and time t. The dimensionless quangity /R serves as the similarity variable.

The motion of the wavefront R(t) is governed by the relatiops

R =2y, (5.48)

Po

wheref, is an independent variable. The propagation velocity ostiexk wave is

2 E
us = () PR (5.49)
Po

The parameters behind the shock front using the limitinghtdas for a strong shock wave are

2
_ . 5.50
(%51 7+1U ( )
2
P = 2 5.51
1 ’}/"— 1p0us7 ( )
+1
pL=po——, (5.52)
v—1
P
T — —— - 5.53
L G Decy (5-53)

whereCy, is the specific heat at constant volume ang C'»/C'y, is the ratio of specific heats.
The distributions of velocity, pressure and density wthe radius are determined as functions
of the dimensionless variabte= r/R. Since the motion is self-similar, the solution can be

expressed in the form

u=u(t)a(&), P=Pi(t)P&), p=pp(&), (5.54)

wherei, P andp are new dimensionless functions. The hydrodynamic equstiohich are a
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system of three PDE'’s, are transformed into a system of thwaéi@ary first-order differential
equations for the three unknown functionsP andj by substituting the expressions given by
eqgn. [5.54] into the hydrodynamic equations for the spladlsicymmetric case and transform-
ing from r and t ta¢. The boundary condition satisfied by the solution at the kiff@nt (- = R
oré =1)is@ =P = p=1. The dimensionless parametgr which depends on the specific
heat ratioy is obtained from the condition of conservation of energylated with the solu-
tion obtained. Also, the distributions of velocity, pressulensity and temperature behind the
shock front are generated numerically using the hydrodycsmoode without taking radiation
interaction into account. Ideal D-T gas of densgity= 1 gm/cc andy = 1.4 is filled inside a
sphere of 1 cm radius with the region divided into 100 radiakhes each of width 0.01 cm.
The initial internal energy per unit mass is chosem@sTergs/gm for the first two meshes and
zero for all the other meshes. An initial time stepl6f® ;s is chosen and the thermodynamic
variables are obtained after a tirh2 us. As in the case of the problem of shock propagation
in aluminum, the total energy equation is solved assumiag éfectrons and ions are at the
same temperature (the material temperature). In figureviedcompare the distribution of the
functionsP/ Py, u/uy, p/p1 andT'/T; with respect to r/R obtained exactly by solving the ODEs
as explained above (solid lines) with the results generfted our code (dots). Good agree-
ment between the numerical and theoretical results is ebdeAs is characteristic of a strong
explosion, the gas density decreases extremely rapidlyeasove away from the shock front
as seen from figure 5.4. In the vicinity of the front the pressiecreases as we move towards
the centre by a factor of 2 to 3 and then remains constant wkehe velocity curve rapidly
becomes a straight line passing through the origin. The ¢eatpres are very high at the centre
and decreases smoothly at the shock front. As the partittée @entre are heated by a strong

shock, they have very high entropy and hence high tempesatur
Noh’s problem

Noh’s problem in spherical and cylindrical coordinatessists of a sphere or cylinder of
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Figure 5.4:Comparison of the scaled variables obtained from the stiounlalata in the pure hydro-
dynamic case (points) with the self similar solutions @néor the point explosion problem. Specific
internal energy> = 10° Tergs/gm is deposited in the inner two meshes-and1.4.

uniform densityp, and radius initially. At t=0, all the interior points start moving raally

towards the centre with a given uniform velocity. The hydrodynamic equations governing

an isentropic flow in one dimension is given by

dp dp ou Nu

o Tug el +——) =0, (5.55)
ou ou oP

Pl Tug )+ 5-=0, (5.56)
oS oS

5 Tug =0, (5.57)

wherep(r,t), P(r,t), u(r,t) andS(r,t) are respectively, the density, pressure, velocity and en-
tropy of the medium at point r at time t. N =0, 1 and 2 for plaregtjndrical and spherical
geometry. In egn. [5.57], the flow has been assumed to becidve®d nonconducting so that
the entropy remains constant along the moving trajectogyfafid element. The problem was

solved analytically by W. F. Noh for an ideal gas and for a ngeaeral equation of state by
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Roy A. Axford using LIE group transformation [17, 100].

At time t=0, all the points move radially towards the centnel anmediately a shock wave
is reflected from the centre for> 0. This shock wave continues moving outwards compressing
the medium behind it. Thus, at any instant of time t, the whetgon is divided into two zones,
the shocked zone and the unshocked zone. The spatial profitee flow variables at any

instant of time are

+1
P11 = PO(L)N+1a (5.58)
v—1
Py = —uguspr, (5.59)
Jo—y (5.60)
v—1
uy = —%‘1), (5.62)

behind the shock front. At the shock front, the values are:

+1
ps = po( L)V, (5.63)

v—1
P, =0, (5.64)
Us = Ug- (5.66)

And ahead of the shock front,
Upt

plr.t) = po(1 = ==)", (5.67)
Py, =0, (5.68)

By =0, (5.69)
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for a givenuy. The uniform velocityu, with which the points move towards the centre is taken
to be 1 ecm/pusec i.e., ug = 1 em/pusec, initial density py = 1 gm/cc and~y = 5/3. Then the
velocityu, = 1/3 ecm/pusec, so that at = 0.6 usec, the shock front appears at r=0.2 cm. Using
the fully implicit hydrodynamic code, the spatial profiletioe flow variables are obtained at
t = 0.6 usec with 100 meshes each having a width of 0.01cm. The spatiatitglprofile for a
sphere and spatial temperature profile for a cylinder asraaldrom the simulation as well as

the analytical values are plotted in figure 5.5.

5.3 Finite difference method for solving the radiation diffu-

sion equation

In this section, we present the finite difference solutiotheradiation diffusion equation cou-
pled to the material energy equation defined in the previbapter. As the radiation diffusion
is faster than hydrodynamic motion, the medium is assumedrtmin static during the time

required to attain the steady state.

Planar slab

We assume that the opacity is temperature independent aimg &t capacity is proportional
to the cube of the temperatur€j, = o73(z,t). Then, for a material energy density=
aT*(z,t) and radiation fluxt'(z,t) = —iaEg—(j’t), the radiation and material energy density

equations along with the boundary conditions for a finité slbthicknesd are

OF,(z,1) N OF(z,t)

g 5 co,(0(2,t) — E.(z,1)), (5.70)
%% = eo.(E.(z,t) — 0(z,1)), (5.71)
CE,(0,1) + 2F(0,1) = 4F}., (5.72)

cE,(1,t) — 2F(1,t) = 0. (5.73)
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Time differencing is performed using a fully implicit backvd Euler scheme. Spatial dis-
cretization is performed on a staggered mesh where the emdigmt spatial variable z and the
flux F are evaluated at cell edges and the energy densitiessesyt cell averages at the cell cen-

ters. The finite difference equations for the radiation aademal energy densities are obtained

as [64]
g, 1 047
1+ —2 Yy Bt —(Frtl _prtly—~ P4 212 gn 5.74
( +’Ya+reaa),y n +cAzi( i+1/2 171/2) il T’Z+’Ya+€0a i ( )
grrt= o gn, O pni1 (5.75)
Ya T €04 Yo + €04 7

wherey, = 1/(cAt) andAz; = 2112 — zi—1/2. The energy density is assumed to be a piece-
wise linear function in space and we define two fluxes at thieedgle, one from the left and

one from the right.

9c EML Erl

ntl ri+1/2 i
'F},i+1/2 - _30_a AZZ ) (576)
n+1 n+1
pr+l 2c Em‘+1 - Er,z'+1/2 (5.77)
ri+1/2 30@ AZZ‘_H . .

The edge value of the radiation energy density is a weightexhge of the cell center quantities.
Finally a tridiagonal system of equations is obtained ferrddiation energy density at time n+1

as

Azifl/Q
AZ’H—I/Q

B 1+ + 3008202 1/937a(1 + 00/ (Va + €04))| BT

_ Azi71/2

302AZZ‘AZ¢71/2% g

Ertl = 30,0202 197, B + b
’ "Ya —'— Go-a

rai+1

5.78
AZ’H—I/Q ( )

whereAz; 1/, = %(Azi + Az;1). Applying the BCs for the first and last cell, the radiation
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energy density equations for the first cell is

Az 4 1 o
1+2 4 30,821 Az 974 (1 L EH - BNt
[ + (A23/2 + 30'aA23/2) + 90, 210823/27 ( + Ya + 60_@)] r,1 r,2
o 8 Az 4
= 30,Az1 A (BT — —Fe -1 5.79
et S/ ( n " Ya + €04 1) * (& (AZ?)/Q * 3UaAz3/2) ( )

And that for the last cell is

Azy 2 1 o
1 - 30, Az Azy_ (1 a Entl
L+ (2AZN71/2 - 3O-aAZN71/2) T 30ahanAan-yya(l ¥ Ya + eaa>] N
Oa
—EMt ) =30, A2y Azy_1ja7a(Ely + — o). (5.80)

Spherical shell

In this section, we derive the finite difference equatiom®fataining the radiation and mate-
rial energy densities for a spherical shell of inner radiysnd outer radiug,. Using the trans-
formationZ.(r, t) = E,(r, t)r and’ = aT*(r, t)r, the flux is defined a8'(r, ) = — ;< 2200,

Then the equations for transformed radiation and matenaigy densities and the boundary

conditions are

OFE!(r,t) N OF(r,t)

o o = oall(rt) = By (r1)), (5.81)

1 /
LD (i1~ 0'r), (5.82)

C
1 2 , 2F(Ry,t)  4F.
(E + m)Er(Rlat) T3 R ¢ (5.83)
1 2 , 2 F(Ry,t)

(E - 3aaR§)E’"(R1’t) TR 0. (5.84)

Using finite differencing in space and time as done for tha@lslab, the tridiagonal equation
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for energy density (in terms of the transformed varialfesindd’) of the inner cells is

Arifl/Q g 1

_Em{rl 1 3 QA iA . . 1 a mJ.r

ri—1 + [ + Ari+1/2 + 950 r r 1/27 ( + Ya + €0y )] T,
Ar;_ n n SO2ATIAT 197

SN2 el g AR AT B+ 12 g, (5.85)
Arigip ’ Ya 1 €04

From the BC on the surface of the first and last cell, we obterejuation relating the energy

densities for the first cell as

1425 Rl(igj;iffg Ao B0uAr Ary (1 + ﬁ)]yﬁ R e
— SUaArlAry,/g’ya(E’Zl + Pyafi )+ 24?“ I 3A1T1 AT ]. (5.86)
a a RioaArys " Arg;aRi | RioalAry)s
Similarly, the equation for the last cell is
1+ (gizj{v;l_/?g(;zt;ii_f]%g + BJGATNATN,l/Q'y(l + ﬁ)]y:}}l
—E’:’Elfl = 30aArATN_1/27a (B} 5 + 0u0% ). (5.87)

Ya t €04

5.3.1 Results
5.3.1.1 Planar slab

Finite planar slab

The radiation and material energy densities obtained froitefdifference analysis are plot-
ted in figures 5.6 and 5.7 along with the analytical resultafslab of widthh = 1. To obtain a
normalized solution that is comparable to analytical sofytwe choosé;,,. = ¢/4 , so thatt,
andd directly correspond ta, andu,, respectively. The numerical results obtained from finite
difference analysis are found to converge for a mesh wikith= 5.7733 x 10~° cm. A time

step of At = 3.33 x 107! s is chosen upto a scaled time= 0.1. Beyond this time, a coarser
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Figure 5.6:Scaled radiation energy density(x, 7) Vs. position (x) in the slab of scaled thickness b=1
at different times foe = 0.1. The symbols stand for analytical values whereas linessgmt the results
obtained from finite difference method.

time step ofAt = 3.33 x 10~!2 s is found to be sufficient for obtaining the converged values
The numerical results are found to agree with the analytinak with an errox 1% at early

stages{ = 0.01). The error reduces further as time progresses.

Infinite planar slab

The same finite difference diffusion program for the finitanar slab is used for obtaining
the radiation and material energy densities for an infiéb.sThe main modification is that the
radiation energy density in the last cell is zero, ilg};'' = 0 as radiation can never reach the
other end of the infinite slab. In figure 5.8, the scaled malteamd radiation energy densities
have been plotted as a function of the scaled depihin the slab. The results agree with those

obtained by Su and Olson [64] both numerically and semiydically.
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Figure 5.7:Scaled material energy density, (=, 7) Vs. position (x) in the slab at different times for
e = 0.1. The symbols stand for analytical values whereas lineesemt the results obtained from finite
difference method.

Scaled energy densities

1
c z-depth into slab

Figure 5.8:Scaled radiation,.(z, 7) and material energy density,, (z, 7) Vs. slab depth at different
times fore = 0.1. The symbols stand for analytical values whereas linesesgmt the results obtained
from finite difference method.
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Figure 5.9:Scaled radiation energy density(z, 7) Vs. position (x) in a spherical shell of scaled inner

radius X; = 1 and outer radius{y = 2 at different times foe = 0.1. The symbols stand for analytical
values whereas lines represent the results obtained frae diifference method.
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Figure 5.10:Scaled material energy density, (x, 7) Vs. position in a spherical shell of scaled inner

radius X; = 1 and outer radius(y, = 2 at different times foe = 0.1. The symbols stand for analytical
values whereas lines represent the results obtained frate diifference method.
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5.3.1.2 Spherical shell

Numerical results for energy densities in the spherical sine obtained from finite difference
analysis using the same mesh width and time step as useckefptahar slab. Good agreement
between the analytical and numerical results establiskiaheity of finite difference radiation
diffusion in spherical geometry. Magnitude of derivatiieamalytical radiation and material
energy densities remains higher in the inner meshes as cethpa outer ones at all times

[figures 5.9 and 5.10].

5.4 Discrete ordinates method for solving the radiation tras-
port equation

In the Gray approximation, or one group model, the time ddpetiradiation transport equation

in a stationary medium is

1OI(7,(,1)  « o or(T)B(T)
- QVI(7 Q T I(rQt) = —-—=~
c ot \Y (7‘, ’t)+(0R( )+JS) (7‘, >t) An
Os - A/ ~/
— [ I(7, €Y, t)d2 5.88
+ 2 L1 @, (5.88)

where (7, Q,t) is the radiation intensity, due to photons moving in the ation 0, at space
pointi”and time t. Herergz(7T') is the one group radiation opacity, which is assumed to be cal
culated by Rosseland weighing, at electron temperaturbelsibscript of ;... is dropped for
convenience). As already mentioned, B(T) is the radiatioergy flux emitted by the medium
which is given by the Stefan-Boltzmann’s Id\(T') = acT*. The radiation constantis ~ 137

if Tis in keV and c inecm/us. This formula for the emission rate follows from the locadith
modynamic equilibrium (LTE) approximation, which is assdnn the present model. The
scattering cross-section, representing Thomson scattering is assumed to be isotopi in-

dependent of temperature. In the Lagrangian frameworkatiation transport equation for a
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planar medium is

Eﬂ%(%) + M% + (or(T) + 05)I (2, pu, t) = or(T)B(T)

1
+% / (. wt, t)dput, (5.89)
—1

wherel(z, u1,t) is the radiation intensity along a direction at an angle *(u) to the x axis.
The termp%(i) in this equation arises due to the Lagrange scheme usedvingthe hydro-

dynamic equations.

Backward difference formula for the time derivative gives

oI+ N . okl gk
R N L)
o 1 n,k—1
-0—58 I™F () dpt + — I"eAt) ™. (5.90)

-1

Here, ‘n” and 'k’ denote the time step and iteration index temperature respectively. This
iteration arises because the opaeity(7") and the radiation emission ratg(7") B(T') are func-
tions of the local temperature T. The converged spatial &atpre distribution is assumed to be
known for the hydrodynamic cycle for the previous time st8tarting with the corresponding
values ofor(T') and B(T) , denoted bygo and B™Y, the radiation energy fluxes are obtained
from the solution of the transport equation (Eqn. [5.90heTnethod of solution, well known
in neutron transport theory, is briefly discussed belowsTéused in the electron energy equa-
tion of hydrodynamics (Eqgn. [6.3]) to obtain a new tempeamtlistribution and corresponding
values ofa};jl and B™!. The transport equation is again solved using these nemaists and

the iterations are continued until the temperature distidim converges.

Finally the transport equation can be expressed in congenv@rm in spherical geometry
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as
ﬂa( 2]nk) g[w]_,_a_fmk:@(r ) (5.91)
r20r o r L '
with
o=op " 4 (eAt) ! + oy, (5.92)
n,k—1 pn k-1 n,k—1
Q(r,p) = + + %/ I”k”(,u/)du/—% pp " 1(cAt) , (5.93)
1

where, the second term in eqn. [5.91] accounts for angutstréoution of photons during free
flight. This term arises as a result of the local coordinastesy used to describe the direction
of propagation of photons. If this term is omitted, egn. [3./@duces to that for planar medium

and therefore a common method of solution can be applied.

A slightly more accurate linearization [101] can be introdd in Egs. [5.90] and [5.91] by
replacingB™*~! with B™*. Then, a first order Taylor expansion can be used for the appeo
tion Bk = Bkl 4 (9B/OT)™ = Y(T™k — T™k=1) from which (T™* — T™*~1) can be elim-
inated using eqgn. [6.3]. The convergence of this modifiechmefor treating the non-linearity
of the Planck function may be better compared to the simetation method. However, for the

problems considered in this thesis we have successfully tingeiteration method.

To solve eqn. [5.91], it is written in the discrete angle able as [26]

m O 2
/;2 (97‘( QIm) + ﬁ(amﬂ/z]mﬂm - am71/2]m71/2) +ol, = Qn, (5.94)

m

where the indices ‘n” and ‘k’ on | have been suppressed. Herefens to a particular value of
in the angular range [-1,1] which is divided into M direct®orThe parametey,, is the weight
attached to this direction whose value has been fixed acaptdi the Gauss quadrature and

am+1/2 are the angular difference coefficients, and 7, /» are the intensities at the centres
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and the edges of the angular cell respectively. The angigiiated balance equation for photons

is satisfied if the &-coefficients” obey the condition
En]‘{:l[@erl/ZIerl/Q - Oémfl/2lm71/2] =0. (5.95)

As photons traversing along= +1 are not redistributed during the flight, thecoefficients

also obey the boundary conditions
061/2 = aM+1/2 =0. (596)
For a spatially uniform and isotropic angular flux, eqn. f§.@elds the recursion relation

Um41/2 = Qp—1/2 — W Hm, (5.97)

as the intensity (r, i) is a constant in this case.

The finite difference version of eqn. [5.94] in space is dsttiby integrating over a cell

of volumeV; bounded by surfaces,.., /, whereV; = 4 f:fll/; rldr=22(r?, , — 13 ,)and

Aig12 = 4mr?y, . The discrete form of the transport equation in space antéasghus ob-

tained as

L, 2(Aip12 — Aiz1)2)
Ai Im 7 - Ai— Im i—
% [Aiv1/2Dm,iv1/2 1/2Dmi-1/2] + T

X [am+1/2]m+1/2,i - Oémfl/QImfl/Q,i] + 0l = Qmga. (5.98)

The cell average intensity and source are given by

1 Tit1/2
Li= —47r/ 7L, (r)dr, (5.99)
‘/i Ti—1/2
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and

1

Tit1/2
Qm,i = 747T / r2Qum (r)dr, (5.100)
@ Ti—1/2

respectively, where ‘i’ specifies the spatial mesh.

As mentioned earlier, planar geometry equations are oddafrthe terms involvingy,, .+ 2
are omitted and the replacemenfs= r; 1/, — 7,12 and A;;,» = 1 are made. Thus, both
geometries can be treated on the same lines using this apprdde difference scheme is
completed by assuming that the intensity varies exporignbatween the two adjacent faces

of a cell both spatially and angularly so that the centereenisity /,,,; can be expressed as

[102]:
1
I = Imi—1/2 €xp [_5(72‘“/2 - 7‘171/2)], (5.101)
1
Imﬂ' = ]m,i+1/2 eEXD [+§(Ti+1/2 — 7‘1',1/2)], (5102)

where the radii; ., » andr;_; » are expressed in particle mean free paths. These relahoms s

that

131,2- = Lni—1/2Dm,iv1/2; (5.103)

for the spatial direction. Similarly, for the angular ditiea one gets

Ism = In—1/2ilms1/24- (5.104)

Use of these difference schemes guarantees positivity tifeangular fluxes it),,, ; are posi-
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tive. The symmetry of the intensity at the centre of the splieenforced by the conditions
Ivivi—maje = Imaje, m=1,2,...... , M)2. (5.105)
Dividing the spatial range into L intervals, for a vacuum bdary atr; ., >, we have
Lniiip =0, m=1,2 ... M/2 (5.106)

i.e, at the rightmost boundary the intensities are zero liodigections pointing towards the

medium. Alternately, boundary sources, if present, cam la¢sspecified.

An iterative method is used to solve the transport equabtdreiat the scattering term. The
radiation densities at the centre of the meshes are takentfie previous time step, thereby
providing the source explicitly. The intensitiég, ; for all meshes do not occur in eqn. [5.98]
asaj, = 0. Then the intensitiegs/,; are eliminated from this equation using the upwind
schemel;,,, = I, ;. Starting from the boundary condition, viz. eqn. [5.106jne [5.98]
and egn. [5.103] can be used to determine these two intes$dr all the spatial meshes 'i’.
Thereafter together with egn. [5.104], the intensitiesdibthe negative values qf,, can be
solved for. At the centre, the reflecting boundary condigiven by eqn. [5.105] provide
the starting intensities for the outward sweeps througthallspatial and angular meshes with

positive values of,,.

This completes one space-angle sweep providing new essmoatadiation energy flux (at

the mesh centres) given by:

Epf =Y wmlni/ > wn (5.107)

where the sum extends over all directions M. The mesh-amvgéegs are repeated until the

scattering source distribution converges to a specifiedracg. The rate of radiation energy
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absorbed by unit mass of the material in ffemesh is

e = o [ER— BN o, (5.108)

7 (2

thus providing the material temperatures in tHemesh at that time step using the material

energy equations, viz.

[O ) aT‘ion +8Ewna_v
PEVien=a T "oV ot

] - O-R(TelEC>[ER(T7 Telec) - B(Telec)] + -Pie (5110)

|=—P..  (5.109)

airelec aEﬁelec a_v
ot ov ot

p[OVelec

by ignoring hydrodynamic motion, i.e., considering the hessto be fixed.

54.1 Results

We have investigated the performance of the scheme usisg ttenchmark problems:

Marshak wave problem

In figure 5.11, we plot the scaled radiation and material gghetensitiesu,.(x, 7) and
um(x,7) as functions of position in the slab at different timesder 0.1. For numerical simu-
lation we have chosen opacity = 100cm ! and mesh widtl\z = 10~3¢m in order to main-
taino,Az = 0.1. Comparison with the analytical results show good agre¢meiater times,
whereas there is slight disagreement at earlier times. dsulalytical results are obtained for
the Marshak diffusion problem whereas our results empleyftii radiation transport, slight
difference at earlier times is expected because of largestpation for diffusion approximation.
Foro, = 0.558cm ™, and mesh width\z = 0.1792cm, the comparison between the analytical
and numerical solution for the scaled radiation tempeedffjr/T;,.)* and material temperature
(T, ) Tine)* are shown in figures 5.12 and 5.13 respectively.

Steady state radiative heat fluxThe steady state radiative heat flux through a finite planar
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Figure 5.11:Linear plot of the radiation energy density and materialrgnelensity as functions of
position in the slab at different times. The symbols repredee analytical solutions.
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Figure 5.12:Linear plot of the scaled radiation temperature dendity'7;,.)* as functions of position
in the slab at different times. The symbols represent thiyarel solutions.
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Figure 5.13 Linear plot of the scaled material temperature denéity /7;,.)* as functions of position
in the slab at different times. The symbols represent thiyce solutions.

slab containing a Grey absorbing and emitting gas of optiepthr is given by

op(Ty —T})
FPpr=—=_-7 5.111
T R(t) 9 ( )
where the interpolation distance R(t) is given by 37/4 + (7/4)/(1 + 3.80707). 7 is the
optical thickness of the mediumg is the Stefan Boltzmann constafii, and 75, are the tem-

peratures on two sides of the slab. This expression is aecto®.3% [103]

For the purpose of numerical simulation, we consider a sfaibaterial 0.5 cm thick, of
densityp = 10 g/cc, specific heat0'?ergs/g/eV and initial temperature of 100eV driven by a
blackbody at 4keV. The value of opacityds = 10cm ! and the blackbody boundary condi-
tion is applied at 0.05cm. This slab has an optical thickrégss= 5. As observed in figure
5.14, initially the radiation flux is high on the incident fage and falls off with distance. As
time progresses, it penetrates more into the slab with atsligop on the surface. Finally, at

1.37 x 1079 s, the steady state value ®fi76 x 10%ergs/cm? /s is attained which is in good
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Figure 5.14:Radiation flux Vs. position at consecutive times. The symliepresent the solutions
generated by Wilson [104]

agreement with the theoretical valueso$1 x 10?°ergs/cm? /s obtained from eqn. [5.111] and
also with earlier numerically obtained value 064 x 10*ergs/cm?/s [104]. A time step of
1019 s and a mesh width &5 x 10~ cm has been used for these simulations. The radiation
energy density and temperature as a function of positiorsiaogvn in figures 5.15 and 5.16,

respectively.

Marshak wave problem in spherical geometryin the literature, though there are plenty
of results on radiation transport in planar geometry, thaggherical geometry is scarce. Hon-
rubia has generated results for Marshak wave propagataiiem in spherical geometry using
1D-radiation hydrodynamics code called SARA that implycgolves the multigroup radiation
transport equations [93]. We generate results for radiadiod material energy densities in a
sphere using opacity = 100cm ™! and mesh width\z = 10~ cm as for the planar case. The
radius of the sphere is chosen to be 0.05 cm and a time indeperadiiative flux= ¢/4 falls on
the surface of the sphere. The plots for scaled radiatiomeatdrial energy densities are similar

to planar case at earlier times. At steady state, the radiamnd material temperatures become
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equal to 1 and is almost constant throughout the spherei@sish®o loss from the centre. In the
planar case, as there is loss from the other side of the fialbe &t steady state, the temperatures
are found to decrease away from the incident surface. Thetsder spherical geometry are
shown in figure 5.17. Let us consider a simplified case whetmtian is not emitted by the
material. We derive an analytical solution for the steadyestinder diffusion approximation
with the plasma having a constant opacity and neglectingp¢la¢éing and cooling rates. In this

case, the time independent diffusion equation without simmsterm is

V(== VI) = —co,l. (5.112)
30,
In spherical coordinates,
c 0?1 201

_ 4+ 2= —co,l 5.113
30, [87"2 + r 87"] 7 ( )

0PI 201
or, — +-—— — 3021 =0 5.114
or? i ror Oa ( )

as the opacity, is assumed to be a constant. Let us change the variable Intd{erice,

I=1J/r, (5.115)
or 101 J
2 A1
or ror r?’ (5.116)
0?1 20J 10*J 2J
d—=—-———+-———+—. 5.117
an or? r2or ror: 3 ( )
Substituting in eqn. [5.114], the time independent ditfisequation in J becomes
0?J
57~ 302] =0, (5.118)

which is a second order differential equation with constadfficients. The solutions to this

equation arexp(++v/30,) and exp(—+v/30,) i.e.,exp(Az) and exp(—Az) with A = v/30,,.
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Hence, the solutions for | a2 and ®2C-2") | inear combinations of the solution yield

T

2embAr) gnd 2°h7) s the solutions. As the solutiensh(\r) diverges at r=0, the solution
forlis As#h(”) with A as the multiplication constant. In diffusion theotlge flux of radiation

falling on the sphere is given by

4
I Dol  acTy, (5.119)

1 2 T T4
atr =R

whereT;,. is the incident radiation temperature and R is the radius®ftphere. If T(r)is the

radiation temperature at a distance r from the centre, then

Asinh
acT(r)t = 2SO (5.120)

T

and
acly  Asinh(AR) DA A sinh(AR)
1 = R + [R cosh(AR) 72 . (5.121)
Dividing,

T(r) = Ty[2 i SInh(AT) 1174 (5.122)

9 sinhé)\R) + D(Acosh(AR) — sinh}(%)\R)) r

Steady state scaled radiation temperatures within therspitgained from our radiation
transport code (for order 2 and 4 in the discrete ordinateébmdeon switching off the emission
term) are compared to the analytical solution in figure 5R8sults obtained for lower order

agrees better with the analytical results as expected.
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5.5 Summary

In this chapter we develop numerical codes for hydrodynamotion of the medium, radia-

tion diffusion and transport and validate them using amedyor semi-analytical results. The
Lagrangian hydrodynamic code is solved implicitly by solyithe system of equations for the
velocities in the adjacent meshes at each time step. Theisad#e to reproduce analytical
results in all the three geometries. Results obtained flomfinite difference radiation diffu-

sion program agrees with the analytical results derivetiénetarlier chapter for finite systems
and also for the infinite planar slab. Radiation transpouagiqn is solved using the discrete
ordinates method and compared with available results. Mewlts are also obtained for radia-
tion transport through a sphere. These codes serve asgtpdint for developing the radiation

hydrodynamics code in the next chapter.
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Fully implicit 1D radiation hydro-
dynamics: validation and verifica-

tion

6.1 Introduction

Radiation hydrodynamics is a dynamical description of flmalterial interacting with electro-
magnetic radiation and is appropriate whenever radiatavems the transport of energy and
momentum in the fluid [105]. In the earlier chapter, we depalodes for determining the ra-
diation field in a material when its state, i.e., temperaané density distributions are known.
At moderate densities and temperatures, the radiatiomgensity and radiation pressure are
negligible in comparison with the energy and pressure oflthd. As the velocity of light is
much greater than the fluid velocity, the energy flux in thedflund the radiant energy flux can
become comparable, even if the radiant energy density i©iiass than the energy density of
the fluid. At high enough temperatures, the radiant pressome@nates as it is proportional to
the fourth power of the temperature whereas the materialspre is directly proportional to
the temperature [4]. In this chapter, we develop a fully iciptadiation hydrodynamics code
applicable for systems where radiative transfer and intena between radiation and the fluid
have a substantial effect on both the state and motion of #tbum. The results obtained from
this fully implicit radiation hydrodynamics code in the p geometry agrees well with the

scaling law for radiation driven strong shock propagatioaluminium [107]. Good agreement

167
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is obtained between the numerical results for the pointasiph problem with radiation interac-
tion and the point explosion with heat conduction as obthimeMeyer ter Vehn [76]. Having,
thus, benchmarked the code, self convergence of the methadtime step is studied in detail
for both the planar and spherical problems [78]. Spatial e as temporal convergence rates
are~ 1 as expected from the difference forms of mass, momentuneaad)y conservation
equations. This shows that the asymptotic convergenceofatee code is realized properly.
Earlier studies on the non-equilibrium radiation diffusicalculations show that the accuracy
of the solution increases on converging the non-linearivwithin a time step and increasing

benefit is obtained as the problem becomes more and moreneanhnd faster [34], [35].

6.2 Implicit radiation hydrodynamics

Radiation hydrodynamic simulation is performed by coupline implicit finite difference hy-
drodynamics with discrete ordinates radiation transpbitthe low radiation energy density
regime, radiation momentum deposition to the material tsmportant so that radiation is cou-
pled only to electron energy equation via absorption andsiom processes. In this case, the
terms O(u/c) can be neglected from the hydrodynamics asase#diation transport equations.
Also, the equations for conservation of mass and momentaraireunchanged as the radiation
energy density and work done by the radiation pressuresaeeneglected. A term describing

the radiation absorption and emission is introduced inécellectron energy equation as

aTyelec aEﬂelec a_v
ot ov ot

] o _Peleca_v
Vot

p[c\/elec + UR(Telec) [ER(Ta Telec) - B(Telec)] + Be' (61)

The discrete form of the energy equations for ions and &lastare
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n,k—1
PEFIAL

n,k n— n,k—1 n,k ie n,k n,k—1
7_;071,7: = irion; - (‘Pion,i A‘/z + W + 62071 A‘/’L )/CVion,i7 (62)
and
n,k—1 ~n,k—1 n—1 n,k—1
nk _ gmk—1 Pi OVelec,i(Telec,i - Telec,i )
Telec,i — Telecyi + Ath,k’fl
n,k—1 n,k—1 n,k—1\ nk—1 n,k

JR7' n,k n,k—1 (Pl7 + 0 l7 )p7 AV n,k—1 n,k—1

+ ) E ,Z o Bi7 o elec elec i 7 + ]gie, Gi, 7 (63)
where
pn,k n,k—1
n,k—1 ) Velec,i n,k—1 ~m,k—1
Gyt = S o O (6.4)
OF;
SNl = (e, 6.5
ion ( oV )z ( )
oF,
n,k—1 elec\n,k—1
elec :( ave )z ) (66)
n,k— n,k—

CURZ' f= 4ac(Telec,i1)37 (67)

with ‘n” and ‘k’ denoting the time step and iteration indexspectively. Also, the constants
a(= 4op/c), op and c denote the radiation constant, Stefan-Boltzmanm'staat and the speed

of light respectively. Stefan-Boltzmann's law,(7.;..) = acT?

elec?

has been used explicitly in

these equations.

In the high energy density regime, the total pressut@ is P,,, + P + Proq- Here the
radiation pressure is given#¥,, = U/3with U(r, t) = % J 1(2)d2 being the radiation energy
density. Also, the total energy is the sum of the radiatiosh mwaterial energies.

We begin the simulation by dividing the sample volume intbriieshes of equal width.

The initial position and velocity of all the vertices are defil according to the problem under

consideration. Also the initial pressure, temperatureiatetnal energy of all the meshes are
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entered as input.

For any time step, the temperature of the incident radiatiaibtained by interpolating the
data for the radiation temperature as a function of timerfdbe case of shock propagation in
aluminium sheet or an ICF pellet implosion in a hohlraum).thé thermodynamic parameters
for this time step are initialized using their correspomgdualues in the previous time step. It
is important to note that the velocity in Eqns. [5.3] and [5.16] and position in egn. [5.2]
are the old variables and remain constant unless the peeasditemperature iterations for this

time step converge.

The temperature iterations begin by solving the radiatramgport equation for all the

meshes which gives the energy flowing from radiation to matte

The 1D Lagrangian step is a leapfrog scheme where new ragelatities; arise due to
acceleration by pressure gradient evaluated at half tiege 3this leads to a time implicit algo-
rithm. The first step in the pressure iteration starts byiaglthe tridiagonal system of equations
for the velocity of all the vertices. The sound speed is olgdifrom the equation of state (EOS)
of that material. The new velocities and positions of alltkeices are obtained which are used
to calculate the new density and change in volume of all theh@® The total pressure is ob-
tained by adding the Von Neumann and Richtmeyer artificistosity to the ion and electron
pressures and solving the energy equations which takeadctunt both the energy flow from
radiation and the work done by (or on) the meshes due to eipa(® contraction). The en-
ergy equations for ions and electrons are solved using tiresmonding material EOS which
provides the pressure and the specific heat at constant gabfithhe material (both ions and
electrons). The hydrodynamic variables like the positaensity, internal energy and velocity
of all the meshes are updated. The convergence criteridhddotal pressure is checked and if
the relative error is greater than a fixed error criterios,itaration for pressure is continued, i.e,
the code goes back to solve the tridiagonal equations taothia velocities, positions, energies

and so on. When the pressure converges according to theceiteion, the convergence for
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the electron temperature is checked in a similar manner. nids@amum value of the error in
electron temperature for all the meshes is noted and if tilisevexceeds the value acceptable
by the error criterion, the temperature iterations areiooed, i.e, transport equation, tridiago-
nal system of equations for velocity, etc, are solved, uhglerror criterion is satisfied. Thus
the method is fully implicit as the velocities of all the viegs are obtained by solving a set of
simultaneous equations. Also, both the temperature ars$re are converged simultaneously
using the iterative method. Once both the pressure and ranojpe distributions converge, the
position of the shock front is obtained by noting the pressiivange and the new time step is

estimated as follows:

The time stepAt is chosen so as to satisfy the Courant condition which dem#rat it is
less than the time for a sound signal with veloeifyo traverse the grid spacinyz, ‘*A—ﬁt <C
where the reduction factor C is referred to as the CourantxeunThe stability analysis of Von

Neumann introduces additional reduction in time step dulkdanaterial compressibility [106].

The order of the5,, approximation may take the values 2, 4, 6 and 8. All the regusented

in this chapter have been generated usip@pproximation of order 4.

The above procedure is repeated up to the time we are irgdrgstollowing the evolution
of the system. The solution method described above is gldagicted in the flowchart given in
figure 6.2. The time step index is denoted by ‘nh’ and ‘dt’ is ttme step taken. The iteration
indices for electron temperature and total pressure anesged as ‘npt’ and ‘npp’ respectively.
‘Errorl’ and ‘Error2’ are the fractional errors in pressared temperature respectively whereas

‘etal’ and ‘eta2’ are those acceptable by the error criterio
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Figure 6.1: Section of a cylindrical hohlraum with a hole in the wall onigfhan aluminium foil is
placed.

6.3 Results

6.3.1 Investigation of the performance of the scheme usingebchmark

problems
6.3.1.1 Shock propagation in Aluminium

In the indirect drive inertial confinement fusion, high powaser beams are focused on the inner
walls of high Z cavities or hohlraums, converting the drigaergy to x-rays which implode the
capsule. If the x-ray from the hohlraum is allowed to fall anauminium foil over a hole

in the cavity, the low Z material absorbs the radiation anidtals generating a shock wave as
illustrated schematically in 6.1. Using strong shock wawoty, the radiation temperature in
the cavityT, can be correlated to the shock velocity The scaling law derived for aluminium
is T, = 0.0126u293, whereT;, is in units of eV and., is in units of cm/s for a temperature range

of 100-250 eV [107].
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For the purpose of simulation, an aluminium foil of thicke€s6 mm and unit cross section
is chosen. It is subdivided into 300 meshes each of wadth10~—* cm. An initial guess value
of 10~ " s is used for the time step. The equilibrium density of Al is2gim/cc. In the discrete
ordinates method four angles are chosen. As the tempeataiaed for this test problem is
somewhat low, the total energy equation is solved assurhiaigeiectrons and ions are at the
same temperature (the material temperature). The EOS asgER0d opacity for aluminium

are given by

p= Y ey (6.8)
v—1

op =" T HRY VR, (6.9)

HereV = 1/p is the specific volume angd =1+ v/(x — 1) is the adiabatic index. These
power law functions, of temperature and density, whetrel2.5 in units of 10 g”cm?=3 s~ 2keV *,
[=5 in units of g"2em!=3rEeV THE 1= 1.145,v = 0.063, ug = 3.8 andvy = 1.5 are the fit-

ting parameters, are quite accurate in the temperature @ngterest [108].

Using the fully implicit radiation hydrodynamics code, anmoer of simulations are carried
out for different values of time independent incident rédiafluxes or temperatures. Corre-
sponding shock velocities are then determined after thaydetinitial transients. In figure 6.3.
we show the comparison between the numerically obtainedksielocities for different radi-
ation temperatures (points) and the scaling law for aluamm(line) mentioned earlier. Good

agreement is observed in the temperature range where tiggdeav is valid.

Figure 6.4. shows the various thermodynamic variablesvétecity, pressure, density and
material temperature after 2.5 ns when the radiation prsifitevn in figure 6.5 is incident on the
outermost mesh. This radiation temperature profile is aneeeas to achieve nearly isentropic
compression of the fuel pellet. The pulse is shaped in suclkathat the pressure on the

target surface gradually increases, so that the geneitabe#t sses in strength. From figure 6.4.
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we observe that the outer meshes have ablated outwards aveileck wave has propagated
inwards. At 2.5 ns, the shock is observed at 0.5 mm showingla ipegpressure and density. As
the outer region has ablated, they move outwards with higdtitees. The outermost mesh has
moved to 1.2 mm. The meshes at the shock front move inwardsisgmegative velocities.
Also the temperature profile shows that the region behindhbeshock gets heated to about
160 eV. In figure 6.6. we plot the distance traversed by thelsfront as a function of time for
the above radiation temperature profile. The shock velatisnges from 3.54 to 5.46n/ 11s
at 1.5 ns when the incident radiation temperature increas230 eV.

All the runs in this study were done on a Pentium(4) compudeirty 1GB of RAM oper-
ating at 3.4 GHz.
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Figure 6.2:Flowchart for the Implicit 1D Radiation Hydrodynamics. tdemh’ is the time step index
and ‘dt’ is the time step taken. The iteration indices forcalen temperature and total pressure are
‘npt’ and ‘npp’ respectively. ‘Errorl’ and ‘Error2’ are thHeactional errors in pressure and temperature
respectively whereas ‘etal’ and ‘eta2’ are those acceptapthe error criterion.
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Figure 6.3:Comparison of simulation data (points) with scaling lawmé)i relating shock velocity with
the radiation temperature for aluminium.

6.3.1.2 Point explosion problem with heat conduction

P. Reinicke and J. Meyer-ter-Vehn (RMV) analyzed the pnobté point explosion with non-
linear heat conduction for an ideal gas equation of statesameht conductivity depending on
temperature and density in a power law form [76]. The probtembines the hydrodynamic
(Sedov) point explosion with the spherically expandinglim@ar thermal wave. The RMV
problem is a good test to determine the accuracy of couplimgdistinct physics processes:
hydrodynamics and radiation diffusion. Later on, Shestgk@sented the results of point ex-
plosion with heat conduction using a coupled hydrodynarifaglon code [77]. We generate
the results for the point explosion including radiatiorenaiction using our fully implicit radia-
tion hydrodynamics code. In the heat conduction approxonathe energy equation is written

as

—(pE) + V.(i(pE + P)) = —V.Hy, (6.10)
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Figure 6.4: Profiles of the thermodynamic variables: (a) velocity, (b3gsure, (c) density and (d)

temperature in the region behind the shock as a function sitipo at t = 2.5 ns. The region ahead of
the shock is undisturbed and retain initial values of théaldes. The incident radiation temperature on
the Al foil is shown in figure 6.5.
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where the heat fluflf — —yVT and the conductivity is of the forny = yop®™ 7% where
X0, o and b, are constants. The conductivity can be related to Rossealpadity as fol-
lows: ﬁf = —ﬁﬁER in the heat conduction approximation. Nowy = «7* and there-
fore, Hy = —%<°V'T, so thaty = %<, The Rosseland opacity is assumed to vary with
density and temperature ag = oop™7". Substituting the functional dependencies of con-
ductivity and Rosseland opacity into the equation relatimg two, we obtaini, = —m and

bp = n + 3. For the problem under consideration,= —2 andb, = 6.5. So, the Rosseland
opacity used in our code isp = 0op?T>° with oy = 51_;3 As in the RMV problem, the ini-
tial gas density is assumed to pe= gor* with k = —(6by — 1)/(2by — 2ap + 1) = —2.111

in this case. The thermodynamic variables are related byidbéal gas equation of state,
% = NkT = RT = (v — 1)E =T'T. If energy is in unit ofl0'® ergs, pressure ih0'¢ ergs/cc,

temperature in keV and density in gm/cc, then we cari'setg, = xo = 1.

The normalized density, pressure, velocity and tempegadbtained from our radiation
hydrodynamic code foty = 5/4 at 4.879 ns for a total energy 6.9 x 10'° ergs deposited
in the first mesh are shown in figure 6.7. The results agreetiwitbe published by RMV and
those generated by Shestakov. The kinkjip; and a sharp drop ifi’/7; at a distance of
0.57 cm are observed which shows that the heat front lagsite¢he shock front in this case.
The smooth variation of temperature near the origin shoeeffectiveness of radiative energy
transfer from regions of high temperature. But for the utyeed power law density profile
ahead of the shock front, profiles of other variables are sdraesimilar to point explosion

problem without heat conduction.

For energy deposition @f35 x 10'¢ ergs, the heat front is found to move ahead of the shock
front at 0.5145 ns in RMV problem. The perturbations in othariables (pressure and ve-
locity) generated by the advancing heat front are obserye8hestakov also. However, the
results of our radiation hydrodynamic code does not shosetlieatures. As shown in figure

6.8, the heat wave does not move beyond the shock wave anequagly all the variables are
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Figure 6.7: Profiles of the scaled thermodynamic variables at t = 4.87¢nshe point explosion
problem including radiation interaction for= 5/4. Total energyl6.9 x 106 ergs is deposited at t=0
in the innermost mesh.

unperturbed ahead of the shock front. The reason behindiffesence is the use of heat con-
duction approximation by RMV and Shestakov. For the welMindlarshak wave propagation
problem [67],[109], it is found that diffusion approximaris lead to a deeper penetration of
radiation into the medium. However, this does not happemviliéradiation transport is taken
into account. Further, in the heat conduction approxinmatiadiation energy density does not
evolve independently to reach a distribution in equilibriwith material temperature. The heat
flux Hy = —%p*QTﬁf’ﬁT, because of its temperature dependence, peaks beyondjtbe re
WhereWT\ begins to decrease. For very high energy deposition, theflee apparently
moves ahead of the shock front due to pre-heating by radiaboduction. We are attempting

a quantitative characterization of this phenomenon.
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problem including radiation interaction for= 5/4. Total energy235 x 106 ergs is deposited at t=0 in
the first mesh.

6.3.2 Asymptotic convergence analysis of the code

Asymptotic convergence analysis is performed for condigoteerification analysis of the code.
The asymptotic convergence rate quantifies the convergaoperties of the software imple-
mentation (code) of a numerical algorithm for solving thecdetized forms of continuum equa-
tions [78].

In the Lagrangian formalism as used in our code though thérsiegss vary non uniformly
with time, the mass of a mesh remains constant. For any Yagaimmputed for a given mesh
of massAm; and uniform time step\¢;, the fundamentahnsatzof pointwise convergence
analysis is that the difference between the exact and theetad solutions can be expanded as

a function of the mass and temporal zone sizes:

& — &= ey + A(Am;)P + B(AY)? + C(Am;)"(AL)* + O((Am,)?, (6.11)

(At)?, (Am;)"(At)%)
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where¢* is the exact values! is the value computed on the grid of zone mass; and time

stepAt,, € is the zeroth order error, A is the spatial/mass-wise cayarare coefficient, p is the
mass-wise convergence rate, B is the temporal convergastictent, g is the temporal con-
vergence rate, C is the spatio- temporal convergence deeffiand r+s is the spatio-temporal

convergence rate.

Our code verification for both planar and spherical casesidenthe global mass-wise and

temporal convergence separately.

6.3.2.0.1 Global mass-wise convergence analysig/e employ theansatzthat the norm of

the difference between the exact and computed solutiorthéosame time stefdt is

16" =& [I= A(Am)P. (6.12)

Since the exact solutigft is unknown for the radiation hydrodynamics problem, weaegt*
by &; where¢; is the value obtained for a very fine meski, = Am/x* and Am = pAr).
The valuest,, and¢; are also obtained foAm,, = Am/x and Am; = Am/k?* respectively.

Hence the mass-wise convergence rate p is obtained frorhéHeltowing errors:

I €5 = & [I= A(Am)P, (6.13)
15 = &m lI= A(Am/k)", (6.14)
1€ = & l= A(Am/k?). (6.15)

Applying logarithm to both sides and plotting the logaritbithe norm of the errors as a func-

tion of the logarithm of the mesh width, the slope of the limeeg the mass-wise convergence
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rate p.

log || & — & ||=log A + p log(Am), (6.16)
log || &5 — &m || = log A + p log(Am/k), (6.17)
log || &5 — & ||=log A+ p log(Am/k?). (6.18)

For N number of meshes, tHg norm is defined as

&2 =& lh=Am XY, | & =& |

andL, norm as

l& =& lb=vAmZL, [&—& >

6.3.2.0.2 Global temporal convergence analysisSimilar to the mass-wise convergence
analysis, theansatzemployed is that the norm of the difference between the exadtcom-
puted solutions for the same mass of the m&shis

| € — & ||= em + B(At)? wheree,, is the mass-wise error which dominates over the temporal
error and hence needs to be accounted. However, the exatibadl* being unknown£* is
replaced by, where¢; is the value obtained for a very small time stép f = A¢/73). The
valuest,,, and¢; are similarly obtained foAt,, = At/7 andAt; = At/7? respectively. Replac-
ing £* by &4, €, on the R.H.S. gets cancelled as all the variables;, &, &, etc., are obtained
for the same value of mass of a mesh. Thus the temporal canvegate q is obtained from

the following equations:

log || & — &, ||=log B + q log(At), (6.19)
log || & — & ||= log B + q log(At/T), (6.20)
log || & — & ||[=1log B +¢q log(At/TQ). (6.21)

A plot of the logarithm of thel.; and L, norms of the errors in total internal energy for
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Figure 6.9:(a) Spatial convergence rate for the norm (b) Temporal convergence rate for fhenorm
(c) Spatial convergence rate for the norm and (d) Temporal convergence rate forfagorm obtained
for the error in the thermodynamic variable internal endig)yfor the problem of shock propagation in

Al foil.

both spatial/mass-wise and temporal convergence are simofigure 6.9 for the problem of

shock propagation in aluminium foil. In all the cases thevesgence rates are 1 as expected

from the discretization of the mass, momentum and energyswation equations (as explained

in the appendix). Similar convergence rates) are observed for the other thermodynamic

variables like velocity, pressure, density and tempeeat@imilarly, for the spherical case of

point explosion problem with radiation transport, the sda@nd temporal convergence rates are

~ 1 for the L; norm as depicted for the total internal energy in figure 6.10.
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6.3.3 Semi-implicit method

In the semi-implicit scheme, eqn. [5.5] is retained @l¢’ is expressed aB'/*> = (P, + ;) /2
whereinP; is the pressure at the end of the time step. Starting withréadqus time step values
for P;, the position and velocity of each mesh is obtained Bnid iteratively converged using
the EOS. As the variables are obtained explicitly from thevim values, there is no need to
solve the tridiagonal system of equations for the velogitieall the meshes. Again, the energy
flowing to the meshes as a result of radiation interactiorbisiaed by solving the transport
equation once at the start of the time step, and hence thagiaes leading to temperature

convergence are absent.

The performance of the implicit and semi-implicit schemes @mpared by studying the
convergence properties and the CPU cost for the problemafksivave propagation in alu-
minium. The convergence properties are examined by obtitie absolutd.,-Error in the

respective thermodynamic variable profile versus the fixee step value. The absolufe-
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Figure 6.11: Ly-Error/mesh in velocity Vs. time step for the shock wave pggtion problem in
aluminium withAt/Axz = 5 x 1073 us/cm. Convergence rate is higher for the implicit scheme.

Error in the variable f (velocity, pressure, density or temgture) is defined as
N
Ly-Error= ) (f; = f{)’]'/?, (6.22)
7j=1

where the datg; constitute the exact solution fdxt — 0. The summation is taken over the

values in all the meshes.

In figure 6.11. thd.,-Error per mesh for velocity i.e{Zj.V:l(fj — f£)?/number of meshés?,
is plotted as a function of the time step by keeping the rétiomee step to mesh size i.&\t/Ax
constant ab x 10~2us/cm. As the solution of the implicit scheme is found to converige |
early, the results obtained from the implicit method usisgrll time step of\t = 10~% s and
mesh width oR x 10-¢ cm is chosen as the exact solution. Both the implicit and sewplicit
schemes show linear convergence, though the convergededs faster for the implicit scheme

showing its superiority in obtaining higher accuracies.

Figure 6.12. shows that the faster convergence in the imhplethod is attained at the cost
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of slightly higher CPU time. However the cost in CPU seconelsoone comparable in the two

schemes for smaller time steps.

6.4 Summary

In this chapter, we have developed and studied the perfarenafifully implicit radiation hydro-
dynamics scheme. The time dependent radiation transpoatieq is solved and energy trans-
fer to the medium is accounted exactly without invoking @ppmnation methods. To validate
the code, the results have been verified using the probleramkspropagation in aluminium
foil in the planar geometry and the point explosion probleitinweat conduction in the spher-
ical geometry. The simulation results show good agreeméhtthe theoretical solutions. For
the purpose of verification, asymptotic convergence aigigapplied to both the problems of
shock propagation in aluminium and the point explosion fenmhincluding full radiation trans-

port. The temporal and mass-wise convergence rates are foupe~ 1 in agreement with
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the fact that the thermodynamic variables velocity, presstdensity, temperature and internal
energy have an errad(Am) for constant time steps and(At) for a fixed mesh width on
discretizing the respective conservation equations. @gance rate is higher for the implicit
compared to the semi-implicit scheme. For larger time st@se accurate results are obtained

from the implicit method at the cost of higher CPU time.



Concluding remarks on this thesis

7.1 Summary and conclusions

In this thesis we have focussed on improving the present lddeanalyzing energy trans-
port in partially and fully ionized plasmas. Considerabtgorovement has been made to the
currently available energy deposition model of chargedigias in ICF plasma. Inclusion of
large angle Coulomb scattering, nuclear scattering andatole plasma effects are observed
to affect the results. For both alpha particles and deugedepositing energy in a fully ionized
deuterium plasma, more energy is deposited to the ionskihelecreasing the thermalization
distance, reducing the leakage probability and thus maiginiggon and burn more promising.
This energy deposition model has been clubbed with the zerergional model for analyzing
time development of a highly compressed and heated DT fysetlet. Three separate cases
have been considered.

Firstly, we reanalyze the problem of internal tritium breed As the fusion cross-section of
D-T reaction is orders of magnitude higher than D-D at abdweg\g presence of T in the fusion
pellet helps in lowering the ignition temperature. It wasrid in the literature that a small frac-
tion of T (x=0.0112) in the deuterium pellet acts as a catays helps in reducing the ignition
temperature. However the proper inclusion of all the losshaaisms like Bremsstrahlung and

inverse Compton scattering increased the density and tatope requirements and internal T
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breeding was no more possible for the pellet considered. Stguhe detailed energy deposi-
tion model, multigroup treatment for neutron energy dejpmsiand improved reactivity fits, we
showed that for the same pellet parameters, internal T brgésl possible even on including

all the loss mechanisms.

Secondly, we obtained optimum values of initial pellet dgngemperature and fraction of

tritium in the pellet for which internal tritium breeding aers.

Thirdly, the fusion yields have been obtained for DT pell@sing equal amounts of D and
T for a wide range of densities and temperatures. Two sepachiemes have been considered
viz., volume and central ignition. For volume ignition, thero-dimensional model produces
results in agreement with those obtained in the literatsnegulD Lagrangian code. We modi-
fied the zero dimensional model to study central ignitiorhveibly central 10% of the pellet at a
high temperature. The central region expands at the thennaigtonation wave velocity against
a pressure exerted by the outer cold fuel. Although the giaté found to be lower for the same
initial temperature for central ignition, gains are highéove a certain density in comparison

with volume ignition as expected.

Bremsstrahlung emission and absorption of radiation @cdue to free-free transitions of
electrons in the vicinity of an atom or ion. In addition, badinee and bound-bound transitions
are also responsible for absorption and emission of phatahge medium. To properly account
all these mechanisms in a partially ionized plasma, acetfitst for Rosseland opacities as a
function of plasma densities and temperatures are supgdiedput to the radiation transport
equation coupled to the mass, momentum and energy consaregfuations for the material.
In order to obtain analytical solutions to the radiatiomsport equation, a few simplifying
assumptions are made. The material is assumed to be s yois temperature independent
and the specific heat is proportional to the cube of the nategmperature. The equations
are linearized because of these assumptions. Analytigaieegion for radiation and material

energy densities as a function of space and time are obtéoneke finite planar slab, sphere
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and spherical shell using both the Laplace transform anenefgnction expansion method.
These results, obtainable to the required degree of agcbyaadding more terms in the series

solution, serve as new benchmark problems for time depémdeéiation diffusion codes.

One dimensional codes are developed for hydrodynamicstiad diffusion and transport
simulation. Hydrodynamic simulation in performed in an o manner by obtaining the
velocities of all the vertices at each time step. It is vakdan all the three geometries using
shock tube, point explosion and Noh problem. Radiatiorudifin equation is next solved using
the finite difference method and results generated for plgiaé and spherical shell for which
analytical results have been generated. Finally, radidtemsport equation is solved using the
discrete ordinates method and results generated for Mamshge propagation in planar and
spherical geometries.

Finally, implicit hydrodynamics program is coupled withdration transport to obtain a
fully-implicit 1D Lagrangian radiation hydrodynamic cadResults obtained for shock propa-
gation in Al foil is found to agree well with the scaling lawtaimed from strong shock relations.
For lower input energies, the position of the shock front #redheat front are found to coincide

with those obtained both analytically and numerically foirp explosion with heat conduction.

7.2 Limitations of this work

All the models, analytical solutions and codes have beeeldped in 1D which simplifies the
problems considerably. In all cases, symmetry of the visals assumed in the other two
dimensions. This assumption may not be valid for practigalesns so that 2D and 3D models
need to be considered.

In the temperature and density regime that we consider,|#sa is non degenerate. We
have not studied the effect of electron degeneracy which anigg in some cases relevant to

ICF at very high densities and low temperatures.
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Though we have qualitatively explained the reason for thet frent not moving ahead
of the shock front in the transport formalism, a qualita@relysis of the same has not been
performed.

The problem of shock propagation in Al foil performed witrethradiation hydrodynamic
code has been considered for incident temperatures beldw\2df more intense radiation>(
1keV) is incident on the foil, more interesting phenomeha hadiative shock propagation can

be observed.

7.3 Future scope

The analytical derivations for finite systems can be extdridéwo or three dimensions using
separation of variables along with the eigenfunction esganmethod. Also, instead of a
constant flux of radiation being incident on the surface chemarks can be generated for a time
varying radiation pulse incident on finite systems. Writingplicit radiation hydrodynamic
code in two and three dimension will be an useful extensiothisf work. Radiative shocks
having separate ion and electron temperatures can beduslrgg the radiation hydrodynamics
code by considering radiation pressure and momentum telsos &echanism of Rayleigh

Taylor Instabilities can be studied using molecular dyre@nsimulation.



2 Runge-Kutta method for solving

the ODEs

Runge-Kutta methods are used for obtaining the solutionsifigle or a set of ordinary differ-
ential equations which achieve the accuracy of a Tayloeseapproach without requiring the
calculation of higher derivatives [110]. In this methode 8olution of an ordinary differential

equation of the form

dy
— =f Al
I = [%Y) (A.1)
can be cast in the generalized form
Yi+1 = Vi + ¢(Xia i, h)h7 (A2)

where¢(x;, v, h) is called an increment function, which can be interpreted eepresentative
slope over the interval;;, ; andy; are the new and old values of the unknown respectively. The

increment function can be written in general form as

qb = a1k1 + agkg + o + ankn, (A3)
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where the a’s are constants and the k’s are recurrenceoredaips

ky = f(xi, vi), (A.4)

ko = f(x; + pih, yi + quikih), (A.5)

ks = f(x; + p2h, i + da1kih + qaokoh), (A.6)

ky = f(x; + pa1h, yi + dno11kih + guo1okeh + o + dn-1n-1kn_1h), (A.7)

where the p’s and 's are constants. By employing differemiver of terms n in the increment
function, various types of Runge-Kutta methods can be devid-orn'*-order Runge-Kutta
method, the values of a’s, p’s and g’s are evaluated by getigm. [A.2] equal to terms in
a Taylor series expansion. Fourth order Runge-Kutta metlaod the most popular and as
the result of the derivation contains less number of eqoatiban the number of unknowns, an

infinite number of versions are possible. The classicaltfearder RK method is the following:

Vit1 = Vi + %(kl + 2ky + 2k3 + ky)h (A.8)
where

ky = f(xi, vi), (A.9)

ky = f(x; + %h, Vi + %klh), (A.10)

ky = f(x; + %h,yi + %kgh), (A.11)

ky = f(x; + I, y; + ksh). (A.12)

The graphical depiction of the slope estimates for the foortder Runge-Kutta method are
shown in figure A.1. For a system of n equations, n initial abods are to be known at the
starting value of x. The method presented above employsstatstep size h, however in the
region of abrupt change the result would be inaccurate. €gon of abrupt change requires

small step size whereas the region of gradual change reqgiairger ones. This problem is
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Figure A.1:Schematic of slopes for fourth order Runge Kutta Method.

overcome by obtaining an error estimate by computing two Réietions of different orders.
The Runge-Kutta Fehlberg or embedded RK method uses a fddr &K method that employs

the function evaluations from the accompanying fourtheof@dK method.
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Error arising from the discretiza-
tion of mass, momentum and en-

ergy conservation equations

The position of a mesh at time t i.&;,can be written in terms of the position at the previous

timer; by Taylor series expansion as

(At)?
G

f’i =71+ uiAt + O(At)g (Bl)

In the radiation hydrodynamics code, terig\t)? has been neglected in writing egn. [5.2].
So, the error in position i©(At)?. Also,u = ¢ and hence the error in velocity 3(At).

Similarly, in writing Egs. 5.9 and 5.10, i.e the equation ¢onservation of mass in discrete
form, since the gradient of velocity is written as a forwaitfedence formula, the error in
pressure i$)(At) for a constant mesh width i.e., the temporal convergeneeratandO(Am)
for a constant time step, i.e., the spatial/mass-wise cgenee rate- 1. From the discrete form
of the energy equations, i.e., egn. [6.2], etc., it is obsehat the temporal error in internal

energy iSO(At) and mass-wise error {3(Am).
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Melting curve of metals using
classical molecular dynamics sim-

ulations

The melting curves of Cu and Al have been generated usingbase classical molecular dy-
namics simulation employing the parallel molecular dyremsimulation packagb._ POLY
[111] together with the crystalline and molecular struetursualisation program XCrySDen
[112]. The embedded atom method potential of Cai and Ye has bsed to account for the
interactions between atoms [47]. We consider cubic suplsragnsisting ofl1 x 11 x 11 con-
ventional FCC unit cells, which correspondsii24 atoms. Three dimensional parallelopiped
periodic boundary conditions are applied on the super tekdiminate the surface effects and
reproduce the bulk properties. The Berendsen isothersoalaric (NPT) ensemble is used to
achieve constant temperature and pressure condition§ [Th8 relaxation times for the ther-
mostat and barostat are 1.0 and 3.0 ps, respectively, amtebsure is fixed at 0 atm. We use
the Verlet leapfrog scheme for integrating the Newton’sagigms of motion [114] with a time
step of 0.001 ps for all cases. Simulations are done for &d6t0,000 time steps, where the
first 4000 steps are used for equilibration and the remaiG0@p for statistical averaging. In
order to ascertain that only one image of a particle interagth another particle, the cut off
distances for force calculations is chosen to be smallar badf the size of the supercell. A
cutoff distance of 18 is used for all the simulations. The melting curves obtdifer Cu and

Al using MD simulations are plotted in figure C.1 and figure €&&pectively.
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The melting curve obtained from our MD simulation for Cu isifal to agree well with the
qguasi ab initio MD study by Belonoshko [49]. Belonoshddoal have investigated the melting
point of Cu using MD simulation employing the Sutton-Chend®idfor the interatomic inter-
action. This interaction has been fitted to reproduce re$uwin first-principles self-consistent
total-energy calculations within the local-density apgneation using the full potential linear-
muffin-tin-orbital method. The melting points obtained bpharty [115] using ab initio calcu-
lations agree well upto 100 GPa pressures and there is goedragnt with the experimentally
obtained laser-heated diamond cell results [116]. Thepsteme of Cu confirms the key role
of d-shell electrons in determining the temperature depeoel of high pressure melting curve.
The melting curve for Al agrees well with the experimental®P.17] results. The results ob-
tained from ab initio MD using the hysteresis and the Z-métfid 8] are found to be slightly
higher at higher pressures. The results obtained for betimétals agree well with Diamond

Anvil Cell and with ab initio MD simulation results like theykteresis or Z-method.
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Role of site-selective doping on
J melting point of CuTi alloys: A
classical molecular dynamics sim-

ulation study

D.0.1 Introduction

Effect of site-selective substitution of Ti in Cu on the tima stability of CuTi alloy is inves-
tigated using classical molecular dynamics simulatiorth \#mbedded Atom Method poten-
tials. It has been observed experimentally that meltingtoafiall the naturally occurring stable
phases of CuTi alloys do not show a definite trend with grath@kase in Ti concentration.
To understand the phenomenon, super cells of CuTi alloy @nstaicted where Cu atom is
substituted by Ti randomly and at selective sites. For randobstitution, the melting point de-
creases linearly with increase in Ti concentration. A namotonous dependence is seen when
Cu atoms at selective sites are replaced by Ti. For a paatidalping concentration, the melting
point shows a wide range of variation depending on the orflatamic arrangement, and can
be fine tuned by selecting the sites for substitution. Thetians in melting points in different
cases are explained in terms of the peak height, width antiggosf the corresponding radial
distribution functions. Finally, it is verified that inifiatructures of the naturally occurring CuTi
alloys are responsible for the non-definite trend in theiitimg points.

Melting point of simple metal alloys (AB-type intermetaltompounds) is roughly equal to
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the average of the melting points of the constituent elem@rit9]. But a number of transition
metal alloys tend to have melting points below the averadethental melting points and no
strong correlation with elemental variables such as hdaftsrmation of the alloy or volume
changes upon alloying is found [119]. In this work, thermtabdity of CuTi alloys has been
linked with local environment of the host and dopant atontstae characteristics of the radial
distribution function (RDF) are employed to address cartaegularities in the existing phase
diagram. The cell volume of some alloys increases compartdt in its pure phase due to the
larger radius of the dopant atoms. Melting point of theseyalldecrease if the melt occupies
larger volume than its solid phase. CuTi alloy belongs ts ttategory and the melting point
of CuTi alloy should decrease as Ti concentration increaBes the phase diagram of CuTi
alloy shows decrease in melting point, from 1356 K to 1158 iKafloying by Ti only below

a certain concentration (20 % {tu,Ti) [120]. Beyond this limit, stable phases are found at
much elevated temperatures. Melting point gradually iases from 1158 K to 1273 K as
the Ti concentration increases for stable phasesUikel'i, CusTi,, CuyTiz and CuTi (50 %).
Therefore linear dependence of melting point on Ti con@giatn is not observed. This anomaly
in the melting curve can be explained by performing simalaion thermal stability of CuTi

alloy having various arrangements of dopant atoms.

Structures of CuTi alloys having different Ti concentrasdave been generated by random
or selective substitution of Ti in perfect fcc Cu supercellse origin of the cartesian coordinate
system is taken to be the centre of the supercell. The pddeu supercell is generated using
the program genlat.f in utility oDL_POLY. The Cu atoms are placed one after the other

starting from the (-,-,-) octant towards the (+,+,+) octant

For random doping of Cu atoms with Ti, random numbers (dejpgndn the concentra-
tion) lying within the supercells are generated for x, y armbardinates. The Cu atom whose
coordinates are nearest to the random numbers are reppdédtoms. The initial configura-

tions generated for 5 % and 25 % Ti (number percentages) avensin figure D.1 (a) and (b)
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Figure D.1:Random doping of Cu with (a) 5% and (b) 25% Ti.

respectively.

Microstructures of Ti having various sizes are also geeératithin the Cu supercells. Sin-
gle microstructures of different concentrations are gateer by replacing all the Cu atoms with
Ti atoms inside spheres of varying radii at the centre of tierastructures i.e., (0,0,0). figure
D.2 (a) shows the negative octant of the supercell with singtrostructure doping of 5.5973%
Tiin Cu. For substituting 8 microstructures, all Cu atomadywithin spheres of different radii
centered at (-L,-L,-L), (-L,-L,+L), (-L,+L,-L), (+L,-L k), (-L,+L,+L), (+L,-L,+L), (+L,+L,-L)
and (+L,+L,+L) with L=10.84% are replaced by Ti atoms. Similarly, 9 microstructures are
obtained by replacing the Cu atoms within the sphere at tiggnain addition to the spheres
used for 8 microstructures (figure D.2 (b)).

Selective doping is done in a variety of ways: For a concéntraf 5 % Ti, first Cu atom
among every 20 atoms is replaced by Ti till all the 5324 atorescavered. The selectively
doped CuTi alloy generated in this way is called selective &t&m1. Similarly for a concen-
tration of 10 % Ti, first Cu atom among every 10 atoms is repldneTi. This alloy is named
as selective 10 % atom1. A type named atomz2 is generated lachegp 2 atoms at a time. So,
for a concentration of 5 % Ti, first two Cu atoms among every #ing are replaced by Ti.
Thus, selective 33.33 % atoml is generated by replacingafinsing every 3 Cu atoms with Ti

and selective 33.33 % atom6 by replacing first six among ei/@1@u atoms with Ti. Selective
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Figure D.2: Negative octant of supercell with (a) single microstruetof 5.5973% Ti and (b) 9 mi-
crostructures of Ti, each of radiusAzwith 19.6% Ti.

Figure D.3: Selective doping of Cu with 25% Ti for two Ti-arrangementamely, (a) atom1 and (b)
atom4.

25% atoml and atom4 are shown in figure D.3 (a) and (b) respécti

The natural CuTi alloy structures, viz. CuTi [121] a0dTi, [122] are also generated using
the program genlat.f. The number of atoms of Cu and Ti and gesitions within the unit cells
are obtained from ICSD database [123](file no. 103128 fori@n@ 15807 forCuTi,). The
EAM potential by Hong has been used for simulating the CudidiL24].



207

D.0.2 Results and Discussions
D.0.2.1 Random doping

The melting temperature for Cu is reported as 1200K in anezatudy employindL._POLY
with Sutton Chen potential [48]. However, we get 1340 K whagfiees better with the experi-
mental result of 1356K. For random doping, melting pointrdases linearly as Ti concentration
increases. Since the atomic radius of TiRis higher than that of Cu (1.5%), cell volume in-
creases when a Ti atom replaces a Cu atom. The increasece |adrameter of the CuTi alloy
is found to obey the empirical Vegard’s law, which, for a givemperature, is a linear relation
between lattice constant and concentration of the coesiitelements [125] (see figure D.4).
As a result, the average distance between Cu atoms incraadese Cu-Cu bond strength de-
creases. This is clearly reflected in figure D.5 which shows0iK RDF for the Cu-Cu bond.
It is observed that the heights of the RDF peaks decreasayifiths at half maxima (FWHM)
increase and the peak positions shift to the right. As maeticearlier, decrease in RDF peak
height is directly linked to the reduction in number of nesareighbours. Also, increase in cell
volume leads to shifting of RDF peak to the right. Thus fordam doping, the average Cu-
Cu bond strength and hence melting point decreases lineaudppant concentration increases

(inset of figure D.5).

D.0.2.2 Microstructural doping

For most of the practical cases, doping of clusters of séaévans is more probable compared
to atom by atom substitution. Therefore, micro-structwfeseveral Ti atoms are created within
the Cu lattice. For a single microstructure, the Cu-Cu bdnehgth decreases linearly with
increase in Ti concentration as shown in figureD.6. Thisss a¢flected in the linear decrease
of melting point (inset of figure D.6). Similarly, for 8 micstructure doping, the RDF peak

height decreases linearly (figure D.7) and a gradual degreawelting point is observed (see
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Figure D.5: RDFs for Cu-Cu bond in the case of random doping of Cu with Tiset shows linear
variation in melting point (M.P.) as a function of the numpercent of the dopant Ti in Cu.
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Figure D.6:RDFs for Cu-Cu bond in case of single microstructure dopihGwwith Ti. Inset shows
linear variation in melting point as a function of the numpercent of the dopant Ti in Cu.

inset of figure D.7). Exactly similar trends are observed®fonicrostructure doping.

D.0.2.3 Selective doping

The systematic variation in melting point on changing thedcentration as observed for ran-
dom and microstructural doping is no longer seen in caselet®e dopant substitution. Both
dopant concentration and the site of substitution are respte for determining the melting
point of the alloy. As already pointed out, Ti atoms can beoiticed into Cu lattice in various
ways to generate different atomic arrangements havingaime slopant concentration. When a
Ti atom replaces a single Cu atom in a unit (atom1), meltingtabecreases with Ti concentra-
tion up to 20 % as in the case of random substitution (insegafé D.8). Then the melting point
increases for 25% Ti. As shown in figure D.8, upto 20 % Ti cotredion, the height of the first
RDF peak decreases, become broader and position shifts tmtit showing a loss in symme-
try of the structure. But for 25% of Ti concentration, thetflRDF peak becomes narrower and

attains its maximum value. Its position does not shift fartimndicating stronger Cu-Cu bonding
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Figure D.7:RDFs for Cu-Cu bond in case of 8 microstructure doping of Gt i. Inset shows linear
variation in melting point as a function of the number petadrihe dopant Ti in Cu.

for the structure as compared to 20 % Ti. Therefore, highingefioint observed in case of 25
% atom1l case can be understood in terms of the height, widtipasition of the RDF peak. In
a similar manner, the low melting point found in case of 33@38tom1 case can be understood
by the loss in Cu-Cu bond strength which is clearly evideomfithe corresponding short and
broad RDF peak. Finally, peak height increases and becoareswer for 50 % Ti which re-
sults in increase in melting point. Similar kind of non-mamwus behaviour of melting point
with dopant concentration can be seen for selective atona2am6 cases. Only the late rise
in melting point can be seen for different dopant conceisnadlepending on the initial atomic

arrangement.

The correlation between the melting point and charactesisif the RDF peak established
here is important for the following reason. For an alloy nécessary to quantify the interaction
between the host atoms as well as between the host and ddapard. aEspecially, at higher
temperatures when atoms may be displaced from their equiligpositions, characteristics of

the RDF peaks can predict the symmetry of the atomic configurand the thermal behaviour
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Figure D.8: RDFs for Cu-Cu bond in case of selective doping of Cu with Toif@l). Inset shows
variation in melting points as a function of the number petc# the dopant Ti in Cu.
of the alloy.

The role of site selective doping on thermal stability canubequivocally established if
melting point is shown to change for different arrangemértapant atoms but having same
concentration. For that purpose, six different configoratiof 25% doped CuTi alloy having
different arrangements of Ti atoms in Cu lattice are com$tid Variation of the melting point
for different Ti arrangements is depicted in the inset ofiggD.9. The first, second and third
Cu-Cu RDF peaks for four arrangements, namely, atom1, gtatoth4 and atom6 are shown
in figure D.9. The melting point is seen to decrease upto atantthen increases for atom5
and atom6. The height of the first RDF peak also decreasesatpto4 showing a loss in
symmetry of the structure. However, for atom6, the RDF peaght increases and shifts to the

left showing a more compact structure thus explaining thesimse in melting point.
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Figure D.9:First three peaks of the Cu-Cu RDF for selective substitatialoping of Cu with 25% Ti
doping. Inset shows variation in melting points for differdi arrangements having 25% Ti concentra-
tion.

Finally, we plot the melting points against dopant concaian for different ways of doping,
namely, random, microstructural and selective doping (&d.10). For random, single, 8 and
9 microstructures, linear variation of melting point on ®hcentration is observed. However, in
case of microstructural doping, the melting points de@daster compared to random doping.
Selective doping (atom1l), on the other hand, does not sheltdar variation and the melting

point depends on the initial structure irrespective of thecentration.

D.0.2.4 Natural CuTi alloys

The link established so far, between melting points andattteristics of the RDF peaks of an
alloy, can be employed to understand the observed anomdheimelting curve of naturally
existing phases of CuTi alloys. Melting point as extractemhf the phase diagram of CuTi
alloy show non-monotonous dependence on Ti concentratiothe inset of figure D.11, the

calculated melting points of Cu and two of its naturally acmg alloys viz. CuTi andCuTi,
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Figure D.10:Melting points obtained for different types of substituidh doping of Cu with Ti.

are plotted and the corresponding RDF peaks are shown irefigurl. In line with the ex-
perimental phase diagram, melting point Vs. Ti concerdrafirst decreases and then again
increases. For example, substantial reduction in the mgetioint of naturally occuring CuTi
alloy (1210 K) is seen compared to pure Cu (1340 K). Meltinghpof CuTi, increases to
1360K for 66.6 % doping (see inset of figure D.11). The late nsmelting point with the in-
crease of Ti concentration arises due to higher orderingdst the atoms iQuTi, (14/mmm)
than CuTi (P4/nmmS) . This is reflected on the Cu-Cu bond gthewhich can be visualized
by the reduced RDF peak height of CuTi compared to pure Cuxpsated, RDF peak height

of CuTi, increases which explains its observed higher melting point

D.0.3 Conclusions

In summary, the role of site-selective substitution of TC on the melting point of CuTi alloy
has been investigated. Super cells of CuTi alloy havingesfiit arrangement of Ti atoms are

constructed. Results obtained by replacing Cu atoms byndamly, selectively and in the
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Figure D.11:First Cu-Cu RDF peaks for natural phases of CuTi alloy. Isbetvs variation in melting
point.

form of clusters are analyzed. We have established thatditian to the concentration, the
arrangement of dopant atoms in the host lattice plays aalivoke in determining the melting
point. A direct link between the melting point and charasters of the RDF peaks of the alloy
has been established. This facilitates to explain the tranian thermal stability in terms of
the bond strength between host as well as host and dopans aidhe alloy. The proposition
has been validated by explaining the anomaly in the meltingecseen in naturally occurring
phases of CuTi alloys having different crystal structui@se present study can be extended to

other alloys of its kind and is useful for predicting dopirigagegies for fabrication of the alloy.
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