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SYNOPSIS 

1. Introduction 

Aerosols in the atmosphere affect climate and human health. Changes in the atmospheric 

concentrations of aerosols alter the energy balance of the climate system. They affect the 

absorption, scattering and emission of radiation within the atmosphere and at the Earth’s surface. 

The resulting positive or negative changes in energy balance due to these factors are expressed as 

radiative forcing, which is used to compare warming or cooling influences on global climate. 

Aerosols also influence cloud life time and precipitation. Anthropogenic contributions to 

aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a 

cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W/m2 (due to reflection 

of sunlight that reaches earth’s surface back into space by aerosols) and an indirect cloud albedo 

forcing of -0.7 [-1.8 to -0.3] W/m2 (due to the change in the cloud properties by aerosols). Both 

effects increase the amount of sunlight that is reflected to space without reaching the surface 

(IPCC, AR4 SYR, 2007). Aerosols from volcanic eruptions contribute an additional episodic 

cooling term for a few years following an eruption. These same particles that affect climate also 

impact the quality of the air that we breathe and the health of all living organisms, both outdoor 

and indoor environments. Common examples of the adverse health effects of aerosols among 

humans are the higher incidence of bronchial infections during periods of high aerosol loading, 

and short- and long-term adverse reactions to the toxicity of pollution particles. Hence, 

quantifying natural and human-induced (anthropogenic) emissions, transport, atmospheric 

processing, and aerosol sinks is crucial.  



xiii 
 

The key to predicting the effects of aerosols on air quality and climate change, and health 

effects lies in improving our understanding of key processes, in long-term monitoring, and in 

improved predictive capabilities through models. Aerosol effects are complicated because of 

variation in sources, particle sizes, chemical compositions, and dynamic evolutionary 

characteristics. In view of these, considerable interest has grown in understanding the evolution 

of particle size, number and composition of aerosol particles from various natural and 

anthropogenic sources in recent years. Usually aerosol emissions from multiple sources occur in 

a highly inhomogeneous manner being distributed randomly in time and space. Freshly emitted 

aerosols near the emission source undergo evolution due to various aerosol microphysical 

processes and their number concentrations are reduced to background levels rapidly in the 

atmosphere due to large atmospheric dilution. The near source characteristics, be it number or 

mass emission factors, provide only indices of potential for effects, and the actual effects are 

more closely related to the characteristics of emitted particles which ultimately persist in the 

atmosphere and their subsequent interaction with background aerosols. Thus, along with near 

source characterization, it is equally important to estimate its far field consequence, namely, 

contribution to particle number loading factors to aerosol background. Since direct 

measurements of far field contributions from a given source are hugely difficult due to enormous 

atmospheric dilutions, it should essentially rely on model estimates. Furthermore, the problem of 

understanding the evolution lies in the fact that one cannot easily perform experiments with real-

world conditions in order to understand how it behaves if certain parameters of the system are 

changed. Hence, approximate analytical solutions and numerical computer simulations are 

needed to quantify the effective contribution of emission sources to background aerosols. These 

solutions (simple formulae) are proposed as modifiers of the emission factors, and hence they are 
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called as ‘source term modifiers’. They provide an important analysis tool in the study of 

coagulation of dispersing aerosols in the atmosphere at early time scale or near the emission 

sources.  

The present work aims at developing analytical and numerical models, and their solutions 

to estimate the fraction of particles that persist in the atmosphere to form background aerosols. 

Coagulation is an important growth process for the aerosol particles in a high-concentration 

system. It occurs when two particles collide and stick together, reducing the number 

concentration but conserving the mass concentration of particles in the atmosphere. Simulating 

coagulation in a model is important, since if coagulation is neglected, erroneously large aerosol 

number concentrations will be predicted. Even if the total aerosol mass concentration in a model 

is correct, the mass concentration will be spread among too many particles. The 

condensation/evaporation processes, being number conserving, are beyond the scope of this 

study. Hence, in the present study, the combined action of coagulation and dispersion is 

investigated through suitable microphysical models.  

2. Scope of the work 

The combined action of coagulation and dispersion reduces the total particle number 

concentration significantly in a high concentrated release of aerosol particles near the source. 

The fraction of particles surviving the coagulation in the puff or plume is termed as ‘survival 

fraction’. The survival fraction for various release scenarios is obtained in this study by solving 

the coagulation-dispersion equation using analytical and numerical techniques. The goal has 

been broken into two specific objectives: 

1. Obtaining simpler expressions or approximations for the survival fraction for puff and 

plume releases, and 
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2. Estimation of important metrics like total number concentration, average particle size, 

etc., in the case of continuous volumetric releases. 

Although a large number of studies are available on aerosol coagulation as well as 

dispersion/diffusion taken separately, the joint problem has received far less attention. 

Furthermore, most of the work on the Smoluchowski coagulation equation has been concerned 

with the time dependent spatially homogeneous situation. The present study, however, introduces 

the spatial heterogeneity in the system to account for the dispersion/diffusion process. This 

renders the problem difficult for obtaining the solutions both numerically and analytically. The 

primary processes considered in the present study are (i) coagulation, and (ii) atmospheric 

dispersion.  

The study problem is formulated by considering simultaneous action of these two 

processes by constructing coagulation-dispersion equation which is a second order non-linear 

integro-differential equation. To overcome the difficulty of handling dispersion along with 

coagulation, due to the non-linearity introduced by the latter process in the model, certain 

approximations are made either at the level of formulating the equation itself or at the level of 

developing solutions. However, the numerical solutions to these models are obtained without any 

approximations, and hence they are considered as the exact solutions for these models.  

Using these models, analytical approximate formulae for the survival fraction are 

obtained for the puff and plume releases. In some cases where the analytical approximations are 

difficult, the numerical solutions are fitted to obtain the survival fraction formula. In the case of 

continuous volumetric release, asymptotic analytical solutions for the total number concentration 

and average particle size are obtained using the two-species coagulation model. The temporal 
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evolution of the particle number concentration and its size distribution are obtained from the 

numerical solutions.  

3. Description of the research work 

 The formulations of the problem, different analytical and numerical models to solve the 

coagulation-dispersion equation, their solutions are explained in this section. The problem is 

formulated by considering the two important processes coagulation and dispersion responsible 

for the aerosol evolution in the early release phase as mentioned in the previous sections. 

3.1. Puff releases 

Two different analytical approaches are used for estimating the number survival fraction 

of an aerosol puff released instantaneously. They are, 

1. Uniformly mixed-expansion model, and 

2. Diffusion approximation model. 

3.1.1. Uniformly mixed-expansion model 

The uniformly mixed-expansion model (Nathans et al, 1970, and Turco & Yu 1997, 

1998) treats the dispersion process through a relatively simple model which assumes a uniformly 

mixed volume element expanding under a prescribed rate in time. In this model, the 

approximation is made at the level of formulation of the equation. The simplifying feature of this 

model is that it altogether replaces the space dependent nature of the dispersion process by a 

purely time dependent term which, for the case of constant and homogeneous coagulation 

kernels, renders it exactly solvable by analytical techniques. However, one has to employ 

numerical techniques to solve this model for complex problems.  
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Numerical methods are developed as a part of this study to solve the coagulation-

dispersion equation. The most important part of this numerical model is obtaining the solution to 

the coagulation equation. Several approaches to solve the coagulation equation numerically have 

been developed over the years. The most employed general method and its variants for 

simulating aerosol dynamics is based on dividing the particle size domain into sections as 

developed by Gelbard et al (1980). The model used in the present work, Nodal method (Prakash 

et al, 2003), is a modification of the sectional method developed by Gelbard et al (1980) and an 

extension of a coagulation nodal method by Lehtinen and Zachariah (2001). In this method, the 

finite-sized sections of the sectional model have been reduced to discrete points called ‘nodes’ on 

the size domain. It is assumed that particles exist only at these nodes, which are evenly spaced on 

a logarithmic size scale. This assumption simplifies the computation by limiting the number of 

parameters. If the new particle volume falls between two nodes, then it is split into adjacent 

nodes by a size-splitting operator under the constraint of mass conservation. This model can 

handle the following Brownian coagulation kernels: 

1. Free-molecular kernel, 

2. Continuum kernel, 

3. Fuchs kernel. 

The numerical code has the options to include the effect of fractal nature of the aerosol particles 

also. This coagulation module forms the core part of the numerical code. By combining this 

coagulation numerical module with any other numerical module of the physical processes, the 

general dynamic equation for the evolution of aerosols can be solved. 
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To solve the uniformly mixed-expansion model, the numerical code is appropriately 

modified to account for the puff dispersion. The puff dispersion part is handled by using 

equivalent volume expansion rate for a particular system, and the numerical solutions are then 

obtained by combining these numerical models appropriately. A case study is carried out for an 

energetic aerosol puff release with high temperature and pressure. This study is carried out to 

simulate the early phase of the evolution of aerosol particle characteristics in an expanding cloud 

due to the aerial detonation of a solid explosive with radioactive material. The puff volume 

increases due to adiabatic expansion, and the required volume expansion rate and the 

temperature transient are obtained from the relationships between the equation of state 

parameters. With these inputs, the numerical code is run for a problem time of 234 

microseconds. The volume of the puff reaches to 1.39 m3 (diameter = 1.385 m) at the end of the 

adiabatic expansion.  

 The initial total number concentration in the puff is 1.66 x 1026 particles/m3; at the end of 

the simulation period (t = 234 sec), the particle number concentration reaches to ~2.9 x 1016 

particles/m3. The average particle diameter of the aerosol cloud reaches the value of ~239 nm in 

this case. The code also outputs other important particle characteristics such as particle size 

distribution of the aerosol cloud. The study shows that if the local population of aerosols in a 

puff is subject to dilution by mixing with ambient air, the particle concentration decreases more 

rapidly and coagulation is quenched. Hence, the dispersion or dilution acts to increase the total 

number of particles that survive coagulation, and dispersion determines the fraction of the 

particles initially present that is likely to survive after a fixed time.  
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3.1.2. Diffusion approximation model 

The second approach, diffusion approximation model, explicitly postulates diffusion as 

the mechanistic basis of dispersion and allows for spatial gradients. The diffusion term then 

replaces the purely time dependent term in the volume expansion model, and it is called as 

diffusion-coagulation model. Since it is difficult to solve this diffusion-coagulation model 

exactly even for constant coagulation kernels, approximation at the level of solutions is 

developed. The approximation implicitly assumes that spatial distribution function is essentially 

given by pure diffusion laws, and the coagulation alters the spectral function and the total 

number concentration. The scope of this model is limited to constant and free-molecular 

coagulation kernels, and the aim is to obtain simple and practically useful analytical formulae for 

various aerosol characteristics like survival fraction or source term modifier (defined as the 

fraction of space and volume integrated number of original particles surviving in the puff at any 

time), average particle size, and particle size distribution.  

To this end, a diffusion–coagulation model is formulated for the evolution of a spatially 

inhomogeneous aerosol puff with an assumption of initially Gaussian distributed particle number 

concentration having spatially homogeneous size spectrum. The analytical solutions have been 

obtained for constant and free-molecular coagulation kernels by combining prescribed diffusion 

approximation with Laplace transforms and scaling theory, respectively. These yield a simple 

formula for survival fraction (F(t)) which combines the variables of the problem in to a single 

parameter A as shown below:  

ሻݐሺܨ  ൌ
ଵ

ሾଵା஺ ఓሺ௧ሻሿሺభ ሺభషഀሻ⁄ ሻ 
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where, ߤሺݐሻ ൌ 1 െ
ଵ

ටଵାସ஽௧ ௕బ
మ⁄
, and ܣ ൌ

ோథబ
ഀேబ

భషഀሺଵିఈሻ

ଶሺଶగሻయ మ⁄ ஽௕బ
. For constant coagulation kernel,  = 0, and 

R = K/2; for free-molecular kernel,  = 1/6, and R = 6ඥ݇ܶ ⁄ߩ . D is the particle diffusion 

coefficient, b0 is the initial puff width, N0 is the initial total number concentration, and K is the 

constant coagulation coefficient. It may be noted that the quantity A captures all the basic 

parameters of the problem in a single expression.  

The diffusion-coagulation equation is also solved by the comprehensive numerical model 

based upon the nodal method (described above in section 3.1.1) capable of simulating the 

simultaneous processes of aerosol coagulation and atmospheric dispersion. In this model, the 

diffusion part is solved by appropriate finite difference methods. The exact numerical results are 

compared with the approximate analytical formulae for the survival fraction, size spectrum, and 

effective size of particles. In the case of free-molecular kernel, scaling theory is used to convert 

the integro-differential equation into a set of coupled ordinary differential equations. The ODE 

for the total number concentration is then solved by finite difference methods. Although the 

analytical results for the temporal variations of the survival fractions follow similar trends as 

numerical predictions, they show systematic deviations up to about 25% under strong 

coagulation (larger values of A). This calls for improvement in the analytical approach beyond 

prescribed diffusion approximation. Nevertheless, the analytical solutions yield simple formulae 

for quickly estimating the survival fractions for the number concentrations of particles injected 

into the open environment from puff releases.  

A special case of the above mentioned problem is to have its size spectrum varying in 

space in a complex fashion. The combination of analytical approximation method proposed 

above and numerical techniques can in principle be used for obtaining essential results even 
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when the spectrum is spatially inhomogeneous. This is demonstrated by taking the case of a 

distribution, in which bigger particles are scattered to farther distances in a centro-symmetric 

spherical cloud, as if they are formed by an explosive process. The total number concentration is 

assumed to be a Gaussian distribution in space. With these assumptions, the diffusion-

coagulation model is solved by using prescribed diffusion approximation theory. Although 

tedious, the resulting nonlinear equation for survival fraction can be integrated to a quadrature 

using Mathematica (Wolfram Research, Inc., 2005). The final formula for the Laplace 

transformed spectral function is very complex and the actual size distribution needs to be 

obtained by Laplace inversion. This cannot be easily done analytically over the entire spectrum. 

A simple numerical Laplace inversion algorithm in Mathematica is used to obtain the inversion 

of Laplace transformed particle size spectrum using a 15 point Legendre polynomial expansion 

technique by Bellman et al. (1966) and Narayanan and Ramadurai (1992). 

3.1.3. Diffusion approximation model with coagulation-induced flattening effect 

As mentioned in the previous section (3.1.2), the analytical approximation is further 

improved by taking a closer look at the formulation and the solution procedure. For puff releases, 

the study is restricted to the case of a constant, representative, diffusion coefficient chiefly 

because it renders itself amenable to exact analytical solution that is useful for benchmarking the 

functional form of solutions in more complex situations. A comparison of the previous 

approximate analytical solution with the accurate numerical solutions of the diffusion-

coagulation equation indicated that the simple formula always yielded lower survival fractions 

than the numerical values. This is mainly because of the restrictive assumption on the evolution 

of the variance. In reality, there will be a rapid depression of concentration at the centre of the 

puff due to higher particle concentrations there. This would appear as a distribution, flattened at 
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the top. When this distribution is expressed as a renormalized Gaussian it would result in an 

apparently enhanced variance of the distribution. It is called as the ‘coagulation-induced 

flattening effect’. This effect is accounted in the new approximation scheme for puff and plume 

situations by a systematic mathematical procedure based on Fourier space analysis. 

The solution approach consists of constructing moment equations from the Fourier 

transformed equation for the evolution of number concentration and variance of the spatial 

extension of puff in terms of either time or downstream distance. The original diffusion-

coagulation equation is then reduced to a simpler coupled set of ordinary differential equations. 

These equations capture the essential elements of the coagulation-dispersion problem and carry 

information on the important variables such as the particle number concentrations and puff 

dimensions. Although still nonlinear, these equations are solved relatively more easily since 

redundant space and size variables have already been eliminated. Analytical solutions are 

obtained for special cases; when this is not feasible, numerical solutions are generated in terms of 

the relevant combination of dimensionless parameters.  

The puff model, applicable to instantaneous releases is solved within a 3-D, spherically 

symmetric framework. An asymptotic analytical formula is obtained for the number survival 

fraction ൫߰ሺ∞ሻ൯ for a puff of initial width (b0) consisting of (N0) particles as, 

 ߰ሺ∞ሻ ൌ
ଵ

ሾଵାሺହ஺ ସ⁄ ሻሿర ఱ⁄  

where, A is the parameter defined for the constant coagulation coefficient in the section 3.1.2. 

The present solution (4/5th law) is seen to agree closely with the exact numerical solution of the 

diffusion-coagulation equation even for large values of A. 
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3.2. Plume releases 

Unlike the situation in respect of pure dispersion problems, the extension from puff to 

plume for continuous releases is far from simple when nonlinear reactions such as coagulation 

are considered. The diffusion approximation with coagulation-induced flattening effect described 

in the section 3.1.3 is utilized to study an important class of problem, i.e., plume releases. The 

plume case, corresponding to continuous releases, is discussed within a 2-D framework under the 

assumptions of constant advection velocity (U) and space dependent diffusion coefficient 

expressed in terms of turbulent energy dissipation rate (). In general, the diffusion coefficients 

of the particles follow the atmospheric eddy diffusion coefficients, which in turn are expressed 

either as space dependent functions (r4/3 formula, Richardson, 1926), or time dependent functions 

(t2 formula, Batchelor,1952). But, invoking space varying diffusion coefficients is essential for 

continuous 2-D plume releases, since these do not admit of non-zero ultimate survival fractions 

for any assumed constant diffusion coefficient. Hence for plume releases, the case of a diffusion 

coefficient that varies as a function of the downstream distance analogous to the t2 law above is 

considered. 

A steady-state dispersion-coagulation equation for the evolution of the number 

concentration is set-up under the assumptions of constant coagulation kernel and cylindrical 

symmetry of the plume. The dispersion-coagulation equation is then converted to a set of 

coupled ordinary differential equations using the diffusion approximation mentioned above. 

These coupled ODEs are solved by numerical methods using Mathematica. For plume of initial 

width (0) emitting S0 particles per unit time, the survival fraction formula is obtained by fitting 

the numerical solutions. The asymptotic survival fraction ൫߰ሺ∞ሻ൯ in this case (fitted formula for 

the plume model) is then given by, 
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߰ሺ∞ሻ ൌ
1

ሾ1 ൅  ሿ଴.଻଺ܤ1.32

where, ܤ ൌ
௄ௌబ

଺√ଷ௎ఙబ
ర య⁄ ሺ஼ఌሻభ య⁄

, and C is a constant. 

The survival fraction obtained using the above formula is compared with the formula 

obtained for the case of weak coagulation (߰ሺ∞ሻ ൌ ሺ1 ൅  ሻିଵ) which includes turbulentܤ

diffusion. The formula for the weak coagulation is obtained (B <<1, small B limit) which does 

not involve the coagulation-induced flattening effect. From the comparison, one can observe that 

these two formulae are agreeing in the limit of small B values. However, the fitted formula from 

the numerical solutions which accounts for the coagulation-induced flattening effect can be used 

for the entire range of the parameter B from very low to high. That is, from weakly coagulating 

system to strongly coagulating system. 

The implication of these results such as robustness with respect to uncertainties in the 

choice of the initial data and applications for a few practically important problems such as 

vehicular emissions, forest fires, etc are also discussed in this study. While there is no alternative 

to full numerical computations for detailed information on aerosol distributions, the summary 

formulae presented here could still serve as useful guidelines for establishing the relative 

importance of processes in implementing these models. The main advantage of these simple 

formulae is the quick computation of the survival fraction in comparison to the numerical 

solutions which it takes few hours. In the case of plume model, the results demonstrate a certain 

level of robustness of the ultimate particle loading rates with respect to the initial data on the 

initial number emission rates and atmospheric turbulence energy dissipation rates, which is 

reassuring in view of the practical difficulties in obtaining these data accurately.  
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3.3. Continuous volumetric releases 

For instantaneous and homogeneous aerosol releases, the problem gets simplified 

because the particle concentration is uniform within the volume of interest. However, obtaining 

analytical solutions is not an easy task when a continuous source term is added to the coagulation 

equation. Analytical solutions are available in the literature only for simple and homogenous 

kernels like constant, gelation, free-molecular, (u + v) kernels, etc but there are no analytical 

solutions for the non-homogeneous kernels like Fuchs kernel. Adding complexity to this problem 

is the inclusion of the fractal nature of the particles. This study is being carried out to understand 

the evolution of important metrics such as total number concentration and size distribution of 

nanoparticles undergoing Brownian coagulation in a continuous source injection mode in an 

indoor environment.  

Exact numerical solutions for this case are obtained through suitable modification to the 

numerical code used for the previous studies, and the simulations are based on the general 

dynamic equation for the aerosol coagulation process along with a continuous source term. A 

source term is added to the coagulation equation to account for the continuous particle injection. 

The numerical model is then suitably modified to take into account the appropriate definitions of 

the mobility and the area equivalent radii required for the Fuchs kernel for fractal agglomerates. 

Other aerosol processes like removal by ventilation and deposition are also added in this model. 

The simulations are carried out with various options like, i) coagulation kernel, ii) source 

injection rates, iii) fractal nature of the particles, and iv) ventilation removal rates. From these 

studies, it is found that the rate of coagulation process along with the source injection rate plays 

important role in determining the aerosol particle characteristics, and the following interesting 

observations are made. The total particle number concentration reaches a peak value in a short 
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time and then it gradually decreases, even though the source is continuously emitting the 

particles. The size spectrum at the source is lognormal with single mode, but it evolves to 

bimodal distribution from a single mode in the injected volume. Numerous possible release 

conditions are simulated by varying few input parameters like source injection rates, count 

median diameter, fractal dimension etc.  

Since classical similarity formulations do not work for the case of continuous injection 

and exact numerical methods are computationally quite intensive, there is a fundamental need to 

look for alternative computational simpler formulations, which may not be as rigorous as the 

classical coagulation equation, but which captures the essential features of the processes. For this 

purpose a simplified two-species model which entails the essential features of coagulation 

process under continuous injection by formulating differential equations for the number 

concentrations in the primary (injected particle) mode and the secondary mode nonlinearly 

coupled through overall mass conservation law is formulated. The simplified model considers 

coagulation of two species in the system, the first species (A) is the primary nanoparticles 

emitted continuously by a source and the second one (B) is all the particles other than the first 

species. In essence, two size groups are assigned, the first is the injected source size and the 

second is the effective size that constantly evolves in time, of the previously injected particles. 

The species A and B in the system undergoes both heterogeneous and homogeneous coagulation. 

In this model, time dependent coagulation coefficient for the heterogeneous coagulation between 

the two size groups is introduced. The set of equations in this model with the given initial 

conditions are solved easily using the differential equation solver of the Mathematica. Further, 

the simplified equation is amenable to asymptotic analysis to obtain large time results. The main 

advantage of this two-species model is the computation time. The numerical approach of 
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integration of the coagulation equation using realistic kernels is computationally quite intensive 

and requires considerable investment of time to obtain long time results under different 

parametric scenarios. To obtain asymptotic results, the numerical code has to be run for few 

hours (>2 hours) in a single core desktop computer whereas it takes less than a minute to obtain 

the same results using the simplified two-species model. 

Further, a comprehensive numerical study of the coagulation process in a well-mixed 

aerosol chamber with a constant source term of nanoparticles has been carried out to analyze and 

place into perspective the experimental observations made by Seipenbusch et al. (2008) related 

to the accidental release of nanoparticles into workplace air. When allowing for a fractal nature 

of particles, the numerical simulation reproduces the salient features of the experimental 

observations of Seipenbusch et al. (2008) such as the peaking effect in the time variation of the 

total number concentration and formation of a bimodal distribution. The model results are further 

discussed from the point of view of the aerosol metrics required for toxicological assessment. 

Furthermore, an experimental system is designed and assembled for carrying out studies in the 

case of continuous volumetric releases. The experimental results are then compared with the 

numerical and two-species model results. 

4. Conclusions 

 A key question for assessing the impact of anthropogenic aerosols on the environment 

pertains to the estimation of the fraction of particles that persist in the atmosphere to form 

background aerosols. Among the various factors that contribute to this, coagulation is an 

important and numerically the most difficult issue to handle. The study addresses this question 

by combining coagulation with dispersion and different emissions scenarios to understand the 

long time and far field behaviour of aerosol size spectra and number concentrations. To this 
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end, numerical and analytical models have been developed for modeling aerosol evolution in 

the atmosphere, emitted from localized sources under the combined action of coagulation and 

dispersion. In particular, the study introduces the concept of survival fractions as a means of 

predicting the atmospheric number loading factors of particles released from localized sources.  

 For puff emissions, an approximate analytical formula, termed as 4/5th law, is obtained for the 

survival fraction which is in close agreement with accurate numerical solutions. This formula 

combines the coagulation and diffusion variables into a single parameter and provides a simple 

estimator of modifier for the source emission factor.  

 The study addresses the question of plume emissions from localized sources in the presence 

of atmospheric turbulence. It provides simple scaling relations for the survival fractions and the 

number loading factors. When the source is intense, it is shown that the atmospheric ultimate 

number loading factor (S(∞)) is relatively insensitive to the original number emission rate 

(~S0
1/4), and the turbulent energy dissipation rate (~.  

 The detailed numerical study for the volumetric releases brings forth several important 

features of coagulation of particles injected continuously into an air space. Fractal dimension, 

initial particle size, injection rate, and ventilation are identified as key variables that influence 

the evolution of particle characteristics. An asymptotic law (t) for the decay of number 

concentration is derived using a simple analytical model. Simulations combined with analytical 

results using simplified model indicate an asymptotic decay of number concentration in the 

form   4.0*** ~ ttN  which is in marked contrast with the well known t-1 behavior for systems 

with a one-time aerosol injection. The above results have implications for an assessment of 

toxicological risk as well as in planning of safety measures in the context of industrial 

processing and applications of nanoparticles. 
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Chapter 1. Introduction 

1.1. Background  

Aerosols have profound effect on the nature of the atmospheric environment. The 

visibility, the colour of the sky, electrical conductivity of the atmosphere and cloud formation are 

some of the day-to-day phenomena that are governed by aerosols. In recent times, large concern 

has arisen due to their potential role in inducing global warming or cooling and climate change 

as well as in affecting human health. Although aerosols existed in the atmosphere for times 

immemorial due to natural sources such as sea sprays, windblown dust, volcanic eruptions and 

large-scale forest fires, the human activity related with the use of fossil/renewable fuels to meet 

the increased energy needs of the large population has led to a voluminous increase in the 

anthropogenic aerosol contribution into the atmosphere. Power plant plumes, biomass burning, 

industrial emissions, vehicular exhausts, aircraft emissions, and intense fireworks during festive 

seasons are the important anthropogenic sources that contribute to the atmospheric aerosols. The 

effects of these particles depend not only on their concentrations and regional distributions, but 

also on the chemical compositions, and particle sizes. These parameters in turn depend on the 

mode of emissions. For example, aerosol produced by direct ejection into the atmosphere, called 

as primary aerosols are inorganic and are generally large in sizes. On the other hand, those 

produced by physico-chemical processes within the atmosphere called as secondary aerosols are 

extremely fine. The global production rates of primary and secondary aerosols are estimated to 

be in the range of (3000-6000) and (100-300) Tg/yr respectively (Seinfeld & Pandis, 2006). 

The increasing importance of atmospheric aerosol studies stems from the fact their spatial 

and temporal variations alter the energy balance of the climate system at both regional and global 
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levels. This is by way of altering absorption, scattering and emission of solar radiation in the 

Earth-atmosphere system depending on the size distribution and chemical composition of the 

aerosols. These changes are expressed in terms of "radiative forcing" which is a measure of the 

influence attributable to a given factor in altering the balance of incoming and outgoing energy 

in the Earth-atmosphere system. Positive forcing tends to warm the system while negative 

forcing tends to cool it. It has been estimated that anthropogenic contributions (primarily 

sulphate, organic carbon, black carbon, nitrate and dust) to atmospheric aerosols together 

produce a cooling effect, with a total direct radiative forcing of -0.5 W/m2 (range: -0.1 W/m2 to -

0.9 W/m2). This is due to reflection of sunlight that reaches Earth’s atmosphere back into space 

by aerosols. Furthermore, an indirect cloud albedo forcing of -0.7 W/m2 (range: -0.3 W/m2 to -

1.8 W/m2) from the change in the cloud properties by aerosols contribute an additional cooling 

term. Both these effects increase the amount of sunlight that is reflected to space without 

reaching the surface (IPCC, AR4 SYR, 2007). It has also been noted that the estimates of aerosol 

contributions have the largest uncertainty among the various factors which contribute to global 

warming/cooling. These uncertainties, in part, are due to our inadequate knowledge of the source 

terms, mixing state and compositions of emitted particles.  

These same particles that affect climate also impact the quality of the air that we breathe 

and the health of all living organisms, both outdoor and indoor environments. Common 

examples of the adverse health effects of aerosols among humans are the higher incidence of 

bronchial infections, reduced lung functions, increased respiratory symptoms, and cardiovascular 

diseases during periods of high aerosol loading. In addition to natural and anthropogenic sources 

of ultrafine particles in the ambient air, certain workplace conditions also generate nanoparticles 

(particles in the size range of <100 nm) that can reach much higher exposure concentrations, up 



3 
 

to several hundred micrograms per cubic meter, than is typically found at ambient levels. Recent 

workplace environment studies show that the occupational exposure to the engineered 

nanoparticles results in higher health risk to the personnel working in this environment 

(Oberdorster et al, 2005). These workplace exposures can occur during production, handling, and 

waste disposal of nanomaterials.  

The aerosol pollution in the atmosphere is generally monitored, for the purposes of air 

quality assessments, by mass concentration measurement using devices such as grab samplers 

and cascade impactors. Various regulatory agencies specify air qualities based on this mass 

concentration. The particles are identified according to their aerodynamic diameter, as either 

PM10 (particles with an aerodynamic diameter smaller than 10 µm) or PM2.5 (aerodynamic 

diameter smaller than 2.5 µm). World Health Organization (WHO) specifies the following 

guideline values for the air pollution levels based on particulate mass,   

 Annual meang/m3) 24-hour meang/m3) 

PM2.5 10 25 

PM10 20 50 

 
Table 1.1: Guideline values for particulate matter (PM) 

However, there is emerging evidence that additional quantification by number, size and surface 

area is needed to better characterise health relevant exposure as well as optical effects in the 

context of climate change (Oberdorster et al, 2000; Lighty et al, 2000; Ramachandran & Rajesh, 

2007). Even very low mass concentrations of nanosized materials in the air represent very high 

particle number concentrations, as is well known from measurements of ambient ultrafine 

particles (Hughes et al, 1998). For example, a low concentration of 10 μg/m3 of unit density 20-

nm particles translates into > 1 × 106 particles/cm3. In an average urban aerosol size distribution, 

most of the particles are in the nuclei mode (5-100 nm) by count but most of their mass is split 
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between accumulation (0.1-2 m) and coarse (> 2 m) particle modes. As a result, mass based 

measurements direct greater focus on coarser particles, thereby missing the significance of the 

nanoparticles. To strike a right balance, increasing attention is being paid to characterize air 

pollution sources in terms of their particle number emission characteristics in the nanoparticle 

size range <100 nm (nuclei mode) by using advanced instrumentation such as mobility analysers 

(Lighty et al, 2000). 

Nanoparticles are produced copiously near the sources. These particles are rapidly 

dispersed in the atmosphere as a result of which their number concentrations are reduced to 

background levels due to large atmospheric dilution. However, in the course of the dispersal 

between source and receptor, aerosols undergo evolution due to condensation of water vapour 

and coagulation, and their ambient concentrations are not necessarily proportional to those 

measured at the sources. Hence, source and ambient measurements must be paired in time to 

establish reasonable estimates of source/receptor relationships. However, it is next to impossible 

to actually measure the contribution of the given source to the persisting contribution to the 

background aerosols. Since direct measurements of far-field contributions from a given source 

are hugely difficult due to enormous atmospheric dilutions, it should essentially rely on model 

estimates. Additionally, there is a need to understand persisting aerosols changes if certain 

atmospheric and source characteristics are changed. Hence, mathematical models have an 

irreplaceable role to play in source impact characterizations and it is important to examine these 

models and their solutions more closely. 

Most generally, atmospheric aerosol evolution models combine dilution effects due to 

advection and dispersion mechanisms with physical transformation processes. The dominant 

aerosol microphysical processes are nucleation, coagulation, vapour condensation/evaporation, 
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and plate out/wash out mechanisms (Jacobson & Seinfeld, 2004; Aloyan, 2009; Albriet, 2010). 

Nucleation is the process of forming new particles from a purely gaseous precursor phase. 

Coagulation occurs when two particles collide and stick together. During this process, the 

particles may undergo coalescence or aggregation depending on whether they are liquid droplets 

or solid particles. Both these processes reduce the number concentration but conserve the mass 

concentration of particles in the atmosphere. It also changes the particle size distribution due to 

the formation of larger particles thereby affecting their residence times in the atmosphere.  

Condensation is the process by which an aerosol particle grows with the accretion of monomers 

or individual vapour molecules to an already existing particle. Condensation/evaporation 

processes are essentially number conserving processes, which mainly affect the size spectrum, 

but do not create or destroy particles. These processes can be split into two, near-source and far-

source phenomena based on the spatial domain from the source to ultimate background. In the 

far-source domain, condensation and dispersion will dominate the other particle processes, and 

they influence the particle properties in the atmosphere. The significance of coagulation process 

reduces drastically in regions far away from the sources as the aerosols are diluted in the 

atmosphere. In the near-source domain, coagulation is primarily responsible for depletion of 

number concentration and evolution of size distribution. 

In few cases like vehicular emissions, there has been a certain debate as to whether it is 

worthwhile to include coagulation at all (Zhang & Wexler, 2002; Zhu et al, 2002; Jacobson & 

Seinfeld, 2004). This is because the number concentrations at these emission points are low due 

to the removal of particles in the exhaust pipe, and large atmospheric dilution. However, it is 

realised that coagulation is very important in the cases of large scale emission sources like forest 

fires, biomass burning, volcanic releases, aircraft emissions, explosive releases, where very high 
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number concentration is seen at the emission points (Radke et al, 1995; Fiebig et al, 2003; Hobbs 

et al, 2003; Turco & Yu, 1997; Nathans et al, 1970). There exist several other topical sources on 

which systematic studies are only beginning to emerge: mosquito coils, candles and incense 

sticks used extensively in Asian homes (Li et al, 1992; Zai et al, 2006) and large scale display of 

fire-works during community celebrations (Mönkkönen et al, 2004) are some examples that may 

be mentioned in this context. To quantify the process of transformation of these aerosols from 

source to environment, it is necessary to combine the dispersion process with coagulation 

mechanism.  

A natural question that arises in this context is: what fraction of the number of particles 

emitted at the source point eventually form a part of the background aerosols, subsequent to the 

joint action of dispersion and coagulation?. For this purpose, we introduce the concept of 

‘survival fraction’, which is closely related to the concept of ‘survival probability’ introduced by 

Pierce et al (2009). The survival fraction is defined as the fraction of particles emitted from a 

source ultimately surviving coagulation and dispersing into background. This fraction will be a 

function of original emission rate, size, and atmospheric turbulence and dilution factors. This 

quantity also captures the relative importance of the coagulation vis-a-vis atmospheric 

dispersion. The survival fraction can be viewed as environmental "source modifier" function for 

particle releases from localised sources. While the survival fraction estimates the fraction of 

particles ultimately surviving in a puff or a plume, the concept of the source modifier function 

provides an effective factor by which the source term has to be reduced while modeling its 

"persisting" contribution to the background aerosols.  Another important quantity useful in this 

context is the "number loading factor", which provides a measure of the effective injection rate 

of persisting particles in the atmosphere. It is obtained by multiplying the source modifier with 
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the source number emission rate. Also, one can make use of the available mass emission rates 

(Rodriguez & Cuevas, 2007; Ichoku et al., 2008; Garcia-Nieto, 2006; Gramotneva et al, 2003; 

Janhall et al, 2010) of the sources to estimate the initial number emission rates and there from 

obtain the final number loading factors using the source modifier function. The ultimate survival 

of the emitted particles is fundamentally a result of competing effects of dilution that tends to 

preserve total number of particles, vis-a-vis coagulation, which tends to reduce the number of 

particles. While each of these effects has been well studied individually, there exists very little 

treatment of the combined action. Hence, it is endeavored in this thesis to develop predictive 

models to estimate the impact of sources on aerosol concentrations in the ambient environment.  

The mathematical treatment of the combined problem of coagulation and dispersion 

necessarily brings in the question of spatial heterogeneity in aerosol systems, especially at the 

emission points of localized sources. The extent of this heterogeneity will depend upon several 

source related and local atmospheric factors and need to be addressed on a case to case basis. 

Even if one sets up detailed equations involving all the factors, such an equation will be highly 

data intensive and the results will once again be approximate depending upon the lacunae in the 

necessary data inputs. In this connection, simpler generic models based only on the most 

significant parameters, will be far more fruitful as they will have the capability to provide 

analytical expressions for the source modifiers. With this view, the present study addresses the 

issue by treating coagulation and atmospheric dispersion in their simplest forms, to derive the 

essential results. The condensation/evaporation processes is excluded as being not central to the 

theory of number evolution since these processes are basically number conserving.  
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1.2. Literature Survey  

Most of the classical work on the aerosol coagulation phenomena has been concerned 

with the time dependent, spatially homogeneous situation. Similarly, classical literature on 

dispersion does not generally take coagulation into account (Holmes & Morawska, 2006). 

However, in recent times several models have been developed to delineate air pollution effects of 

sources and sinks in the atmosphere by taking the combined effect of dispersion, coagulation and 

removal into account. Aloyan et al (1997) discussed in detail a coagulation-dispersion model to 

handle transport of coagulating particles in the atmosphere. This work addresses complex 

distribution of aerosols at various atmospheric layers and develops an adjoint formalism to 

identify sources from aerosol distributions. Wexler et al (1994) developed numerical methods to 

solve the aerosol dynamic equation for modeling urban and regional particle transport in 

conjunction with the Eulerian gas-phase dispersion model. This study shows that the coagulation 

is only significant in locations with higher aerosol loading. Sheih (1977) used a finite difference 

model that incorporated the mechanisms of coagulation and gravitational sedimentation in the 

equation of diffusion to predict the particulate size distribution downstream from an urban area 

source. He found that coagulation effects dominate in the near source region. Hudischewskyj and 

Seigneur (1989) developed a comprehensive numerical model that takes into account gas phase 

and aerosol phase pollutant concentration in a plume, especially to address the scattering of light 

by sulphate aerosols. Kerminen and Wexler (1995) studied the interdependence of the basic 

aerosol phenomena and mixing in plumes generated by industrial point sources through 

numerical modeling. Brock et al (2002) measured the evolution of sub-micron particle size 

distribution in the plumes downwind of coal-fired power generation plants, and found that there 

was a significant particle growth in these plumes. Based on these measurements, they performed 
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two analyses: one to calculate the apparent fraction of plume sulfur incorporated into the 

particles and the other to examine the size dependence of particle growth. 

The large scale numerical studies cited above are computationally intensive, with 

considerable numerical difficulties for obtaining solutions. Also, these studies do not specifically 

address the question of particle survival fractions and do not throw specific insight on the 

sensitivity of the resulting aerosol distributions on the source- and environment-related input 

parameters. To address these issues, one is required to introduce somewhat idealized models that 

maintain the essential elements of the processes, yet that can be traced analytically. To 

understand the structure of solutions in such systems, Slemrod (1990) proved the existence of 

solutions of the coagulation-diffusion equation for the case of constant coagulation kernel and 

diffusion coefficient. Explicit exact solutions are possible only for a few specific cases (Herrero 

& Rodrigo, 2005, Simons, 1987) that too in one dimension. Simons (1987, 1992, 1996) 

conducted a series of studies on the solution of one-dimensional steady state coagulation-

diffusion equation. He obtained solutions for the above-mentioned system with size dependent 

diffusion coefficient and coagulation kernel by invoking the validity of self-preserving 

distribution for sufficiently large times (Simons, 1987, 1996). For the case of constant diffusion 

coefficient and constant coagulation kernel, he solved the coagulation-diffusion equation without 

assuming a similarity solution (Simons, 1992). Simons and Simpson (Simons & Simpson, 1988) 

combined scaling theory with moment method to reduce the coagulation-diffusion equation in 3-

dimensions to simpler nonlinear form of recombination-diffusion equation, which, however, 

cannot be solved analytically. 

Being non-linear, coagulation-diffusion equation does not have exact analytical solutions. 

Hence, to elicit functional forms of the solutions, certain approximations have been made either 
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at the level of formulating the equation itself or at the level of developing solutions. In the former 

category, one sometimes encounters what may be termed as "Uniform expansion models" 

(Nathans et al, 1970; Turco & Yu, 1997). This model assumes a uniformly mixed volume 

element expanding under a prescribed rate in time. The prescription for the expansion rate may 

be arrived at either from deeper mechanistic considerations (as in the case of explosive releases) 

or from heuristic correlations based on broad physical considerations (as in the case of diffusive 

processes). The simplifying feature of this model is that, it altogether replaces the space 

dependent nature of the dispersion process by a purely time dependent term, which is exactly 

solvable for the case of constant kernel. However, for complex kernels like Fuchs kernel, one has 

to use numerical techniques. Nathans et al (1970) used this uniformly mixed volume expansion 

model to simulate the evolution of particle size distribution in an expanding cloud formed due to 

nuclear air burst. The volume and temperature transients of the expanding cloud for this case 

were obtained from the literature (Glasstone, 1962; Nathans et al, 1970). Brownian motion of the 

particles with and without slip correction was considered for the coagulation in this study. A 

study by Turco and Yu (1997, 1998) dealing with the coagulation and dispersion of aerosols 

emitted by high-altitude aircraft plumes also belongs to this category. Similarly, in the case of 

forest fire models, many researchers consider coagulation as an important process and used this 

uniformly mixed volume expansion model to estimate the final average particle size and the size 

spectrum which finally becomes a part of the background aerosols (Radke et al, 1995; Fiebig et 

al, 2003; Hobbs et al, 2003). 

In spite of great analytical advantages, uniform expansion models have certain 

drawbacks. First, of course, concerns the choice for the law of expansion, which remains 

essentially empirical, when coagulation is brought in since the expansion rates of the air parcels 
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may not be the same as that of particles. More important disadvantage of this model is the 

limitation in respect of its applicability of steady sources. While one can formulate an expanding 

volume for an instantaneous release, it is difficult to extend it for a standing plume existing in a 

steady state. It may be possible in principle to develop an equivalent form in steady-state but it is 

not available at present and is unlikely to be simple.  

In the simplest case of constant coagulation kernel, the coagulation-diffusion equation for 

the total particle number concentration can be shown to reduce to a form that is often known in 

the literature as reaction-diffusion equation. These are still nonlinear and arise in the study of 

kinetics of evolution of two interacting species simultaneously undergoing diffusion and 

recombination (Rosen, 1984; Thomas & Imel, 1987; Cheng et al, 1989; Byakov & Stepanov, 

2006). In recent times, several new applications viz., (i) remote detection of alpha radiations 

using ion transportation technology (Naito et al, 2007), (ii) atmospheric ion balance dynamics 

(Mayya & Hollander, 1995), (iii) primary biological effects of ionizing radiations (Byakov & 

Stepanov, 2006), and (iv) aerosol coagulation and dispersion in the atmosphere from localized 

sources (Turco & Yu, 1997), have renewed the interest in the study of reaction/recombination-

diffusion equation. Variants of recombination-diffusion equation have also been used for 

describing multiple species free-radical recombination (Wojcik & Tachiya, 2004), and pattern 

formation (Lee et al, 1994). 

The reaction-diffusion or recombination-diffusion equation were solved by many 

researchers in the past by assuming approximate analytical solutions. By applying prescribed 

diffusion approximation at the level of developing solutions, a simple solution to the 

recombination-diffusion equation was provided about 100 years ago by George Jaffe (Jaffe, 

1913, 1940). Jaffe approximation assumes that the spatial dispersion of the species is controlled 
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by diffusion laws at all times while the recombination term influences essentially the survival 

fraction, defined as the number of ions/particles that survive recombination/coagulation. 

Subsequently, alternative approaches were attempted with a view to provide better solutions 

(Ganguly & Magee, 1956; Wilhelm, 1967). Kramers (1952) obtained exact solution to the 

problem of ion survival in the presence of external electric field by neglecting diffusion 

altogether. However, when electric fields are absent or very weak, diffusion cannot be neglected 

nor can it be taken as perturbative since it is the most dominating dispersal mechanism. Rosen 

(1984) provided a Brownian dynamics description of the reaction-diffusion equation and 

obtained bounds for the survival fraction. His formulation is not readily useful for practical 

applications. Wilhelm (1967) attempted a hybrid approach of combining diffusion with 

recombination, which have been employed by some authors (Byakov & Stepanov, 2006) 

recently. However, Wilhelm’s solutions are not reliable in view of a major anomaly in his 

mathematical transformation and physically unacceptable asymptotic results. In view of these, 

Jaffe solution still remains the most useful analytical solution to the field-free reaction-diffusion 

problem. 

In the case of continuous volumetric releases, several analytical and numerical studies 

have been carried out for a variety of aerosol systems with continuous source injection. Barrett & 

Mills (2002) studied the evolution of an aerosol system undergoing coagulation with constant 

kernel, removal, and continuous source injection by obtaining approximate analytical solutions 

under the assumption that the size distribution is always unimodal and lognormal. Schneider & 

Jensen (2009) discussed the importance of the coagulation process on the basis of a steady-state 

solution of the coagulation model. Numerical simulations were also carried out in the past to 

estimate the particle size and its distribution during continuous release of nanoparticles in 
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different systems. Landgrebe & Pratsinis (1989) studied the interplay of reaction rate (source 

release rate) and aerosol coagulation rate in the free-molecular regime using a numerical model. 

They observed the formation of bimodal size distribution depending on the ratio of primary 

particle formation and particle removal by coagulation. Kim et al. (2003) investigated particle 

growth specific to a plasma reactor by using a discrete-monodisperse model for various process 

conditions related to the production of monodisperse particles. This study also showed the 

formation of a bimodal distribution under specific conditions when including the effect of a 

particle charge distribution.  

In fact, there is a certain paucity of knowledge regarding the asymptotic and steady-state 

behaviour of solutions to the coagulation equation with a continuous source term. Some 

theoretical studies (White, 1981; Crump & Seinfeld, 1982;  Davies et al, 1999, Lushnikov, 2010) 

have generally focused on the question of boundedness of solutions to the coagulation equation 

for certain types of idealized kernels, but have not addressed the interesting question as to the 

conditions for sustaining a finite (non-zero) asymptotic concentration by a steady source.    

1.3. Scope of thesis 

While there exist many studies, both analytical and numerical, dealing with coagulation 

and dispersion in the context of air pollution, the basic issue of quantifying the impact of the 

emissions from sources in contributing to the persisting aerosol concentrations in the 

environment has remained unaddressed. This thesis addresses this issue precisely from a 

theoretical perspective. The framework adopted is based on solving the combined coagulation 

and dispersion equation to predict number concentrations in a concentrated release of aerosol 

particles from sources. To provide generic solution to the problem, the concept of survival 

fraction is formulated and various relationships are derived using a combination of analytical and 
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numerical techniques for various release scenarios. The goal has been broken into two specific 

objectives: 

1. Obtaining correlations for the survival fraction as a function of source strength, 

spatial expansion of the source, dispersion parameter and coagulation coefficient for 

instantaneous, explosive and plume releases, and 

2. Estimation of important metrics like total number concentration, average particle size, 

etc., in the case of continuous volumetric releases. 

Numerical programs have been developed for solving the second order differential 

equation for diffusion in space coupled with the non-linear integro-differential formulation of 

coagulation in particle size variables. The analytical solutions have been compared with 

numerical solutions. In some cases where the analytical approximations are found to be difficult, 

asymptotic analysis is carried out to assess the possible functional forms of the survival fraction 

and the parameters of these forms are determined by fitting the numerical solutions. In the case 

of continuous volumetric release, the temporal evolution of the particle number concentration 

and its size distribution are obtained from the numerical solutions. Numerical methods are unable 

to throw insight into long time behaviour for which asymptotic analytical solutions are obtained 

by proposing a two-group model. An experimental study is also carried out to validate some of 

the models by injecting nanoparticle aerosols continuously into a closed chamber. In this case, 

aerosols are generated inside the chamber using nichrome hot wire generator and their kinetics is 

studied using a Condensation Particle Counter (CPC), and Scanning Mobility Particle Sizer 

(SMPS). Upon combining the theoretical methods with observations, a method of estimating the 

near source number emission rates and particle sizes have been devised.  
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1.4. Organization of this thesis 

The outline of this work is described as follows. Chapter II (theoretical framework) starts 

with a discussion on the aerosol coagulation process. It introduces various types of coagulation 

kernels, and methods of obtaining solution to the coagulation equation. It also briefly describes 

the coagulation of dispersing aerosol systems. Chapter III describes about the formulation of 

different models to obtain the survival fraction for the instantaneous releases. Further, it shows 

how the analytical and numerical approximation formulae are obtained using different models, 

their applications, results and summary. Chapter IV describes the methodology to obtain survival 

fraction for the steady-state plume releases using improved diffusion approximation model. It 

further shows the application of the survival fractions to obtain the ultimate number loading 

factor for practical cases. Chapter V deals with continuous volumetric releases. It demonstrates 

the ability of numerical model to predict the important metrics that control the evolution of 

aerosol characteristics in this case. A simplified analytical model is formulated to estimate the 

asymptotic behavior of the total number concentration, and compared with the numerical results. 

This chapter includes the experimental study of continuous releases in a closed chamber, and 

comparison of its results with the simulations. Chapter VI summarizes the results and also 

discusses the conclusions obtained from the study.   
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Chapter 2. Theoretical framework 

2.1. Introduction 

Many important physical properties of natural or manmade aerosol particles such as light 

scattering, electrostatic charges, and toxicity, as well as their behavior involving physical 

processes such as diffusion, condensation, and thermophoresis, depend strongly on their size 

distribution. An important aerosol behavior mechanism affecting the size distribution of aerosol 

particles is coagulation. Aerosol particles suspended in a fluid may come into contact because of 

their Brownian motion, or as a result of their relative motion produced by external forces (e.g., 

gravity, hydrodynamic forces, electrical forces, etc.). The result is a continuous decrease in 

number concentration and an increase in particle size. In the case of solid particles, the process is 

called agglomeration or coagulation, and the resulting particle clusters are known as 

agglomerates. The theory of coagulation was originally devised for colloids (particles in liquids) 

and was later extended to aerosols (Smoluchowski, 1916). In many basic and applied fields (e.g., 

synthesis of nanostructured material via gas-phase synthesis, atmospheric aerosols), the 

evolution of the particle size distribution because of coagulation is of fundamental importance 

and interest. The coagulation process is described in detail in this chapter.  

2.2. Coagulation Kernel 

Aerosol coagulation is caused by relative motion among particles. A basic quantity 

governing the coagulation process is the coagulation kernel (K(u, u')), which describes the rate at 

which particles of size u coagulate with particles of size u'. These kernels are symmetric in 

nature, i.e. K(u, u') = K(u', u). The coagulation kernel is defined as the ratio between the flux of 

particles of size u' on the surface of a stationary particle size u and the total number 
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concentration at very large distance. The kernels incorporate the kinetic mechanisms and 

interparticle forces that are responsible for the coagulation process. Depending on these 

parameters and the physics of collisions, several forms of coagulation coefficients have been 

derived. When the relative motion is because of Brownian motion, the process is called 

Brownian coagulation. When the relative motion arises from external forces such as gravity or 

electrical forces, or from aerodynamic effects, the process is called kinematic coagulation. 

Kinematic coagulation includes gravitational coagulation, turbulent coagulation, electrostatic 

coagulation, etc. Some of the well-known coagulation kernels are discussed in this section. 

2.2.1. Brownian Coagulation 

The Brownian coagulation kernel can be derived either by the kinetic theory of gases, or 

by the continuum diffusion theory according to the particle size. Generally, the Knudsen number 

(Kn = /r), with  as the mean free path length of the surrounding gas molecules and r as the 

particle radius, is used to define the particle size regime. Particles much smaller than the mean 

free path length of the gas molecules behave like molecules (Kn > 50), and the kinetic theory of 

gases must be used to derive the collision kernel. In the meanwhile, for the particles much larger 

than the mean free path of the gas molecules (Kn < 1), the continuum diffusion theory should be 

used.  

2.2.1.1. Brownian coagulation in the free-molecular regime 

In the free-molecular regime, the drag force exerted by fluid on suspended particles is 

small and hence these particles are decelerated very slowly. In effect, particles move along 

rectilinear trajectories between collisions, which occur at distances much larger than their size 

similar to the case of gas molecules. As a result, the aerosol particle behaviour in the fluid can be 

treated using the classical kinetic theory of gases. The coagulation kernel in this free-molecular 
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regime is obtained by multiplying the collision cross-section with the relative velocity of the 

colliding fragments. Considering a particle of volume u surrounded by particle volume u’, the 

relative thermal RMS velocity between the two particles is given by ට࢜ഥ࢏
૛ ൅ ࢐ഥ࢜

૛, where, ࢏࢜ ൌ

ඥૡࢀ࢈࢑ ⁄࢏࢓࣊  is the thermal velocity of particle of size i in air, kb is the Boltzmann constant, T is 

the temperature, and mi is the mass of the particle. In this regime, the collision cross-section of 

the particles of radii ri and rj is the actual geometric cross-section given by, ࣊൫࢏࢘ ൅ ൯࢐࢘
૛
. Then, 

the coagulation kernel in this regime can be written as, ࢓ࢌࡷ൫࢏࢘, ൯࢐࢘ ൌ ࢏࢘൫࣊ ൅ ൯࢐࢘
૛
ට࢜ഥ࢏

૛ ൅ ࢐ഥ࢜
૛. In 

terms of volume variable, this coagulation kernel (Kfm (u, u’)) is written as: 
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where, ui is the volume of the particle of radius ri, and  is the particle density. 

2.2.1.2. Brownian coagulation in the continuum regime 

In the continuum regime, particles move in the fluid through the process of Brownian 

motion. In this case, the kernel in this regime is found by solving the time-dependent diffusion 

equation around a stationary spherical absorber in an infinite medium with suspended particles. 

The direction of particle motion changes over a length scale that is a small fraction of the particle 

size. This leads to particle transport and collisions through random walk that is characteristic for 

the continuum diffusion process. In the continuum regime, where the Knudsen number is smaller 

than about 1, Kco (u, u’) is derived by the continuum diffusion theory as follows: 

,࢛ሺ࢕ࢉࡷ ሻ′࢛ ൌ
૛ࢀ࢑

૜ࣆ
൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯ ቀ

ሻ࢛ሺࢉ࡯

૚࢛ ૜⁄ ൅
ᇱሻ࢛ሺࢉ࡯

ᇱ૚࢛ ૜⁄ ቁ      (2.2) 

where, Cc(u) = 1+Kn(u){1.142+0.558 exp[-0.999/Kn(u)]} is the gas slip correction factor (Allen 

& Raabe, 1982). 
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2.2.1.3. Brownian coagulation in the transition regime 

The entire transition regime is characterized by Knudsen numbers in the range of 

~1<Kn<50. In the transition regime, the coagulation rate is described neither by the continuum 

diffusion theory nor by the simple kinetic theory. The coagulation kernel in this regime can be 

obtained by either one of the following:  

1. flux matching method, 

2. solution of the Fokker-Planck equation. 

 The flux matching method is first used by Fuchs to obtain the coagulation kernel for the 

entire size regime. Fuchs (1964) found a semi-empirical solution of the collision kernel by 

assuming that outside of a certain distance, namely, an average mean free path of an aerosol 

particle, the transport of particles is described by the continuum diffusion theory including the 

slip correction, and that inside the distance, the particles behave like in a vacuum and the 

transport is described by the kinetic theory. The two theories were brought together by matching 

the fluxes at the radius of the absorbing sphere. This so-called flux matching was the basis for 

most of the following theories because of its phenomenological approach and the guarantee that 

the collision kernel is valid over the entire size regime. All theories dealing with an absorbing 

sphere use a correction function first calculated by Fuchs. This function is mainly expressed as 

an enhancement of the collision kernel for the continuum regime including the slip correction:  

,࢛ሺ࢚࢘ࡷ ሻ’ݑ ൌ
௨’ሻ,࢛ሺ࢕ࢉࡷ

ᇲ࢛࢘శ࢛࢘
ᇲ࢛࢛ࢾᇲశ࢛࢘శ࢛࢘

ା
ೠ’ሻ,࢛ሺ࢕ࢉࡷ

ೠ’ሻ,࢛ሺ࢓ࢌࡷ
 
        (2.3) 

where, ru and ru’ are the radii of the particles with volume u and u’ respectively, anduu' is the 

distance between the collision surface and the regime dividing surface. Fuchs (1964) proposed, 

for a single particle, 
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where, du is the particle diameter and u is the mean free path of the particle, and for a pair of 

particles, 

ᇱ࢛࢛ࢾ ൌ ඥ࢛ࢾ
૛ ൅ ᇱ࢛ࢾ

૛           (2.5) 

 Many efforts were made to substitute the extremely complicated integral nature of the 

Fuchs kernel using simpler form of the flux-matching type kernels (Otto et al, 1999). The 

simplest choice is uu’ = 0, i.e., to perform flux matching directly at the collision surface, which 

leads to the harmonic mean coagulation kernel: 
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       (2.6) 

Dahneke (1983) described the diffusion process as a mean free path phenomenon. To 

obtain the coagulation coefficient, Dahneke also matched the two fluxes but at a distance which 

is the mean free path of the particles, and proposed 

ᇱ࢛࢛ࢾ ൌ
૛࢛࢛ࡰᇲ

ᇲതതതതതത࢛࢛࢜
           (2.7) 

where, ࢛࢛࢜ᇱതതതതതത is the average velocity. By comparing various theories on the collision kernel in the 

transition regime, Otto et al (1999) recommended Dahneke’s theory to be used partially for its 

simplicity and partially for its accuracy.  

 Flux matching method is a simplification. In reality, the character of particle motion does 

not change from ballistic to random walk abruptly, but rather gradually. A theoretically more 

sound approach to calculate the coagulation kernel in the transition regime is to solve Fokker-

Planck equation. One of the solutions is given by Sahni (1983a, b): 
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where, ߢ ൌ
௄೎೚ሺ࢛,࢛ᇱሻ

௄೑೘ሺ࢛,࢛ᇱሻ
. 

 In the present study, we employ Fuchs kernel, one of the most widely used coagulation 

kernel for the entire particle size regime. 

2.2.2.Kinematic Coagulation 

Kinematic coagulation occurs because of relative particle motion caused by mechanisms 

other than Brownian motion. The following three important kinematic coagulation processes, 

gravitational, turbulent, and electrostatic coagulation, are presented in this section. 

2.2.2.1. Gravitational Coagulation  

Particles of different sizes will settle at different rates under the influence of gravity and 

thereby create relative motion between them, which leads to collision and coagulation. This 

mechanism is called gravitational coagulation. The collision kernel by gravitational coagulation 

is expressed as the following equation when the slip correction factor is neglected: 
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where, ࢿሺ࢛,  ሻ is the collision efficiency defined as the ratio of actual collision cross-section to′࢛

the geometrical cross-section which can be expressed as follows: 

,࢛ሺࢿ ሻ′࢛ ൌ  
૜࢟૛
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૛          (2.10) 

if ࢛࢘ ൑ ,ᇱ࢛࢘ ࢟ ൌ ࢛࢘  and if ࢛࢘ ൐ ,ᇱ࢛࢘ ࢟ ൌ   .ᇱ࢛࢘

When both the Brownian and gravitational coagulations are significant, the two collision 

kernels KB(u, u’) and KG(u, u’) are commonly added to predict the behavior of the aerosol 

system. This simple addition is due to the assumption that these two processes are independent of 

each other. However, Simons et al (1986) obtained a combined kernel and showed that these two 

processes are not independent. Their study showed that the combined effect of Brownian and 
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gravitational coagulations increases the rate of coagulation compared with the sum kernel in the 

size range of 0.1-1 m. On the contrary, Qiao et al (1998) reported that weak Brownian 

diffusion, the effect of which is nonlinearly coupled with gravity, can act to decrease the 

coagulation rate.  

2.2.2.2. Turbulent Coagulation  

In many physical situations, the flow field in a fluid is turbulent. There are two ways in 

which turbulence causes collisions between neighboring particles. First, there are spatial 

variations of the turbulent motion. Because of this process, collision mechanism is 

conventionally called “shear mechanism”. Second, each particle moves relative to the air 

surrounding it, owing to the fact that the inertia of a particle is different from that of an equal 

volume of air. Because the inertia of a particle depends on its size, neighboring particles of 

unequal size will have different velocities and this will also lead to collisions. This mechanism is 

called “accelerative or inertial mechanism”. Saffman and Turner (1956) derived the following 

collision kernel by combining the shear mechanism (ws) and the accelerative mechanism (wa):  
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  (2.11) 

where, ru is the radius of particle volume u, f is the fluid density, p is the particle density,  is 

the turbulent energy dissipation rate, vf is the root mean square (rms) fluid velocity, and  is the 

kinematic viscosity of the fluid. w is the relative particle velocity where, the suffices a and s 

indicates the accelerative and shear mechanisms. The particle relaxation time (u) for a particle 

volume u is defined as:  
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where,  is the dynamic viscosity of the fluid, and Ccu is the Cunningham slip correction factor 

for a particle of volume u. The average acceleration of eddies in the dissipation range ቀ
ࢌ࢜ ࡰ
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ቁ
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The first and second terms in the square root term on the right-hand side of Eq. (2.11) represent 

the shear mechanism and accelerative mechanism, respectively. However, under more vigorous 

turbulence or with larger particles, the approaching particles may no longer be entrained 

completely by the smallest eddies, so they will have less correlated velocities. Recently, Kruis 

and Kusters (1997) analyzed this problem using a turbulence spectrum, which describes both the 

viscous sub range and the inertial sub range.  

2.2.2.3. Electrostatic Coagulation  

Charged particles may experience either enhanced or retarded coagulation rates 

depending on their charges. For a unipolar aerosol, it is necessary to consider electrostatic 

dispersion (i.e., the tendency of charged particles of the same sign to move away from each 

other). This dispersion tends to reduce the concentration of an aerosol, for example, by causing 

particles to deposit on the walls of any containing vessel or nearby surface. In the presence of 

particle charging, the collision kernel of particles must be corrected by:  

,ݑ௘ሺܭ ሻ′ݑ ൌ
௄೙ሺ௨,௨ᇱሻ

ௐ
          (2.14) 

where, the subscript ‘n’ designates neutral particles. The Fuchs stability function W is given by 

(Fuchs, 1964): 
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where, z1 and z2 are the numbers of unit charges contained in particles, and e is the electron 

charge. For > 0 (like charge), W > 1 and coagulation is retarded from that for neutral particles. 

Conversely, for   < 0 (unlike charge), W< 1 and coagulation is enhanced.  

2.3. General Coagulation Equation 

Let us consider a system of polydisperse aerosols where a wide range of particle sizes is 

present. Particles of various sizes collide with each other results in the alteration of particle size 

distribution as shown in Fig. 2.1. Since the coagulation kernel (Kj,k-j) describes the rate at which 

particles of size j coagulate with particles of size (k-j), the rate of formation of size k is given by, 

 For the formation of particles of size k, various combinations of sizes j and (k-j) .࢐ି࢑࢔ ࢐࢔࢐ି࢑,࢐ࡷ

are possible, where the value of k may vary between 1 and (k-1). Then, the rate of formation of 

particles of size k is the summation of all agglomerations resulting in particle size k and is given 

by, 
૚
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the summation. The rate of loss of particles of size k by collision with all other particles is, 
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where, n is the number concentration at time t, the suffices j and k indicate the particle sizes, and 

Kk,j is the coagulation kernel between particle sizes k and j. The resultant equation (Eq.(2.16)) is 

called as discrete coagulation equation.  

 Eq.(2.16) cannot be solved analytically in its most general form, solutions can be 

obtained assuming constant coagulation coefficients. This approximation is applicable to the 

early stages of coagulation of a monodisperse aerosol system (or rapidly coagulating system). 
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Although polydispersity is an inherent consequence of coagulation process, one often considers a 

situation for pedagogical point of view involving the evolution of monodisperse aerosols. 

Smoluchowski (1916) derived the discrete coagulation equation for an initially monodisperse 

aerosol system by solving the diffusion equation around a single particle, and by obtaining the 

flux of other particles toward it. The key assumptions in this problem formulation are that          

i) particles adhere at every collision (due to binary collisions) and that particle size changes 

slowly, and ii) initially particles of equal size are present in a unit volume of the medium. 

Assuming Kk,j = K, and summing the entire equation (Eq.(2.16)) over the entire range of particle 

size k, the rate equation for the total number concentration is given by, 
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where, ࡺሺ࢚ሻ൫ൌ ∑ ࢑࢔
ஶ
૚ ሺ࢚ሻ൯ is the total number concentration of the particles, K (= 8dpD) is the 

Brownian coagulation coefficient in the continuum regime for equal sized particles, D is the 

diffusion coefficient of the particles, and dp is the particle diameter. By integrating Eq. (2.17), the 

total number concentration is determined as a function of time as follows: 
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where, N0 is the particle number concentration of size k (k = 1, monodisperse) at time t = 0. The 

particle size distribution at any time t is then obtained by solving the discrete coagulation 

equation (Eq.(2.16)),   
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where, nk is the number concentration of particle size k at time t, and 02 KN is the 

characteristic coagulation time. From this expression, it is shown that the original monodisperse 

system will evolve necessarily into polydisperse system. Seen in this sense, coagulation is a 
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fundamental mechanism that creates polydispersity from initially monodisperse particles, say 

critical nuclei formed from the vapour phase.  

 
Fig.2.1: Coagulation process - Schematic diagram 

The discrete coagulation equation (Eq.(2.16)) can be written in the following continuous 

form by considering the quantity n(u, t) as the continuous particle size distribution function at 

time t, 
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where, K(u, u’) is the coagulation kernel for two particles of volume u’ and u. In this 

formulation, K(u, u’) contains all the physics of the problem as it is calculated by taking the 

cluster structure (fractal or compact), the bulk forces (gravitational, hydrodynamic, etc.,) as well 

as the inter-cluster interactions (Van der waal-Hamaker, electrostatic, etc.,) into account. The 

first term in the right-hand side of Eq.(2.20) represents the increase in particles with volumes 

between u and (u+du) from the combination of particles of volume u-u’ and u’. The second term 

u-u’ 

u’

u u+u’

Gain Loss
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in the right-hand side of this equation represents the loss of particles with volumes between u and 

(u+du) resulting from the coagulation of particles of volume u and u’. Thus this equation gives 

an expression for the net rate of change of particles whose volumes lie between u and (u+du). 

The coagulation process is schematically shown in Fig. 2.1. 

Methods of solving a coagulation equation were summarized by Hidy and Brock (1972), 

and Williams and Loyalka (1991). These methods range from the discrete (computationally 

intensive) and sectional models in which Eq. (2.20) is transformed into a number of differential 

equations, to the less accurate monodisperse models described in the previous sub-section. 

Approximate solutions can be found using the method of moments. Exact solutions for 

asymptotic limiting cases can be obtained with the self-preserving theory. Stochastic methods 

like Monte Carlo techniques are also used to solve the coagulation equation. 

2.3.1. Sectional Method  

Because solving the coagulation equation with a direct numerical method is impractical 

owing to its time-consuming property, several approximate methods have been developed. The 

most employed general method and its variants for simulating aerosol dynamics is based on 

dividing the particle size domain into sections as developed by Gelbard et al (1980). This model 

solves a one-dimensional form of the aerosol general dynamic equation by dividing the particle 

size domain into a finite number of sections by particle volume, and by calculating the addition 

and subtraction of particle mass to each section. The model assumed that particles kept their 

spherical shape during growth; therefore the volume sections corresponded to sections of particle 

size. However, substantial progress has been made in developing models that account for 

irregular particle shape through fractal dimensions. The volume and surface area of irregularly 

shaped particles are chosen as the two particle size dimensions. Then the two-dimensional 
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aerosol dynamic equations are solved by extending a one-dimensional sectional technique to the 

two-dimensional space (Xiong and Pratsinis, 1993). A two-dimensional particle size distribution 

function is defined as n(u, a, t), where, n(u, a, t) du da is the number density of particles having a 

volume between u and u+du and a surface area between a and a+da at time t. The rate of change 

in n (u, a, t) due to coagulation can be obtained by extending the classical coagulation theory to 

the two-dimensional space u, a as:  
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where, v0 and a0 are the volume and surface area, respectively, of the primary particle, which is 

the smallest possible particle (e.g., a molecule or a monomer). Eq.(2.21) is a two-dimensional 

partial integro-differential equation that needs to be solved numerically. The sectional method 

proves to be both computationally efficient and numerically robust, especially in dealing with 

aerosols having an extremely large size spectrum.  

2.3.1.1. Nodal Method 

Based on the sectional model approach, a nodal form of the size distribution has been 

assumed wherein the total volume range for the aerosol is divided into nodes as opposed to 

discrete sections. This method is termed as nodal method (Prakash et al, 2003), a modification of 

the sectional method developed by Gelbard et al (1980) and an extension of a coagulation nodal 

method by Lehtinen and Zachariah (2001). In other words, the bins of finite width in the 

sectional model have been squeezed to zero width nodes in the nodal method (the finite-sized 

sections of the sectional model have been reduced to discrete points called ‘nodes’ on the size 
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domain), with the constraint that particles reside only at the nodes. The nodes are evenly spaced 

on a logarithmic size scale, and this assumption simplifies the computation by limiting the 

number of parameters.  

Within each node, the integral average of the aerosol property is assumed constant. A 

collision leads to ‘scattering into’ a higher size node and ‘scattering out’ from the initial size 

node. Coagulation is assumed here to be a binary collision, which introduces transfer of particles 

from one size node into another. No fragmentation is considered, therefore no “up-scattering” 

(transfer into smaller nodes) is allowed. Because of the assumption of homogeneous aerosol 

concentration over the spatial domain, it can be modeled without considering spatial 

discretization. This nodal method is implemented by using an efficient, stable, and accurate 

semi-implicit algorithm (Prakash et al, 2003). The advantage of using a semi-implicit equation 

instead of a fully-implicit method is that it allows immediate (fast), and volume conserving 

solutions. As described by Prakash et al (2003), it is an efficient numerical model for the solution 

of nucleation, surface growth, and coagulation problems.  

Generally, in an aerosol system the particle sizes range from ~1 nm to about 10 µm. On 

the volume scale this size range corresponds to ~10−27 m3 to ~10−15 m3. To cover the 12 orders of 

magnitude for the volume range, the nodes are spaced linearly (with equal spacing) on a 

logarithmic scale. The particles exist only at these nodes evenly spaced on a logarithmic size 

scale at all times (Fig. 2.2). Geometry spacing factor (q) is defined as the spacing between the 

nodes, and it is given by,
i

i

u

u
q 1 . Using a geometric spacing factor of less than 2 would increase 

the accuracy; however, computational requirements increase substantially, with only a small 

increase in accuracy. With the geometric factor of 2, there are 10 size nodes per order of 

magnitude in the particle diameter space. In order to cover the above particle size range, 40 size 
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nodes are required. Figure 2.2 illustrates the division of nodes on a logarithmic scale. If the new 

particle volume falls between two nodes, then it is split into adjacent nodes by a size-splitting 

operator under the constraint of mass conservation. At every coagulation step, the size-splitting 

operator redistributes the particles back to nodes. By combining this coagulation numerical 

module with any other numerical module of the physical processes, the general dynamic 

equation for the evolution of aerosols can be solved. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2: Illustration of node spacing on a logarithmic volume space where q is the geometric 

spacing factor. The heights of the nodes correspond to the volume of the node (not drawn to 

scale). 

2.3.2. Self-Preserving Theory  

One of the interesting features of coagulation known to date is that the shape of the size 

distribution of suspended particles undergoing coagulation often does not change after a long 

time and the distribution becomes self-preserving. Friedlander (2000) proposed the theory of 

૜࢛         ૛࢛      ૚࢛              ࢔࢛        ૚ି࢔࢛                   ૝    log scale࢛        

ui = q ui-1 
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self-preserving spectra based on the method of similarity transformations, which in essence seeks 

scaling solutions to Eq.(2.20) for the case of homogeneous kernels. The idea of scaling assumes 

that the number concentration, which is a function of two variables, can be expressed as a 

function of single variable at large times, providing one scales the cluster sizes in terms of a 

characteristic size such as the mean size of the evolving spectrum. Conventionally, in the self-

preserving formulation, the dimensionless particle volume is defined as:  

ߟ ൌ
ேሺ௧ሻ௨

థሺ௧ሻ
           (2.22) 

and the dimensionless size distribution density function is defined as:  
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          (2.23) 

Friedlander and Wang (1966) obtained the following equation for the Brownian coagulation in 

the continuum regime:  
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where, ܽ ൌ ׬ ଵߟ ଷ⁄ஶ

଴
߰ሺߟሻ݀ߟ and ܾ ൌ ׬ ଵିߟ ଷ⁄ஶ

଴
߰ሺߟሻ݀ߟ .  

Friedlander and Wang (1966) derived analytical solutions of Eq. (2.24), shown in Eqs. (2.25) and 

(2.26), for small  regime and for large  regime, respectively:  

߰ሺߟሻ ൌ
଴.ହ଴଼଺

ఎభ.బల
ଵߟ൫1.758݌ݔ݁ ଷ⁄ െ ଵିߟ1.275 ଷ⁄ ൯      (2.25) 

߰ሺߟሻ ൌ  ሻ         (2.26)ߟሺെ0.95݌ݔ0.915݁

Eq.(2.24) can be solved numerically for the entire  range. The results obtained by 

Friedlander and Wang (1966) are in good agreement with the results of numerical simulations by 

Vemury et al (1994), who solved the coagulation equation (Eq. 2.16) using the sectional method 

of Landgrebe and Pratsinis (1990). Lai et al (1972) used the above technique to derive the self-
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preserving size distribution for the free molecule regime. Wang and Friedlander (1967) applied 

the same method to the Brownian coagulation either with slip correction or with simultaneous 

shear flow.  

Existence of scaling solution does not necessarily guarantee that a system with arbitrary 

initial distribution will attain it. In fact, if the initial distribution has power law tails (Mulholland 

& Baum, 1980), it is found that the asymptotic spectrum will not approach the scaling regime for 

certain types of kernels. However, for narrower initial distributions, scaling is supposed to be 

valid. Table 2.1 gives some examples of scaling solutions for various types of kernels. 

K(u, u’) ࢛ഥ(t) ࣒ሺࣁሻ Remarks 

1 t ݁݌ݔሺെߟሻ - 

uu’ ሺ1 െ ሻݐ଴ݑ
ିଵ ିߟହ ଶ⁄  ሻ t < tc = 1/u0ߟሺെ݌ݔ݁

൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯൫ି࢛૚ ૜⁄ ൅ ૚ି′࢛ ૜⁄ ൯ t ିߟଵ.଴଺݁݌ݔ൫െିߟଵ ଷ⁄ ൯ - 

 
Table 2.1: Examples of scaling solutions for various coagulation kernels 

The coagulation equation is well studied (Ernst, 1986) using scaling theory for 

homogeneous kernels of the following type,  

K(u, u’) =  K(u, u’)         (2.27) 

Eq.(2.27) implies that K(u, u’) = (uu’)f(u/u’), where, f(u/u’) is an arbitrary function and  is 

the degree of homogeneity. is a measure of the coagulation rate of two equal, large clusters. 

When one of the coagulating clusters is much larger, K(u, u’) is assumed to have the form 

,࢛ሺࡷ  (2.28)           ,࣎’ݑࣆ࢛~ሻ′࢛

with ࣆ ൅ ࣎ ൌ ,ࢻ u’ >> u. The indices ,ࢻ ࣎ and ,ࣆ ≡ ࢻ െ  are sufficient to characterize the ࣆ

coagulation equation for homogeneous kernels. Van Dongen and Ernst (1985) provide upper 
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bounds viz., ࢻ ൑ ૛ and ࣎ ൑ ૚, by setting constraint on the maximum cross-section for the 

coagulation of large-large and large-small clusters, respectively. The index ࣆ can take up any 

value. When ࣆ ൐ 0, large-large interactions dominate (Class I systems, Fig.2.3). When ࣆ ൏ 0, 

large-small interactions dominate (Class III systems, Fig.2.3). When ࣆ ൌ ૙, the interations of a 

large cluster is insensitive to the size of its partner and a marginal-type behavior occurs (Class II 

systems, Fig.2.3). Some of the commonly used kernels in coagulation theory are presented in 

Table 2.2.  

S. No. K(u, u’) Remarks 

1 ൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯൫ି࢛૚ ૜⁄ ൅ ૚ି′࢛ ૜⁄ ൯ 
Smoluchowski kernel for Brownian coagulation  

( = -1/3;  = 0) 

2 ൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯
૛
ሺି࢛૚ ൅ ૚ሻ૚ି′࢛ ૛⁄  

Brownian coagulation in free-molecular regime 

( = -1/2;  = 1/6) 

3 ห࢛૛ ૜⁄ െ ૛′࢛ ૜⁄ ห൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯
૛
 

Coagulation by gravitational settling 

( = 0;  = 4/3) 

4 ൫࢛૚ ૜⁄ ൅ ૚′࢛ ૜⁄ ൯
૜
 

Coagulation in shear flow 

( = 0;  = 1) 

 ′࢛࢛ 5
Polymerization  

( = 1;  = 2) 

 
Table 2.2: Some commonly used coagulation kernels 

An important property of the coagulation equation is that it shows a discontinuous 

transition at a finite time for kernels with ࢻ ൐ 1. This arises because when ࢻ ൐ 1, interactions 

between large clusters dominate to such an extent that a single infinite sized cluster gets formed 

in a finite time. The transition is known as gelation transition and occurs in polymers. This is not 

relevant for aerosols because of their low density. Aerosol kernels generally belong to Class II 
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and Class III domains. Figure 2.3 shows the different classifications, including the domain of 

gelation transition, in ࣆ,   .space ࣎

                                                                           

 

 

 

 

 

 

 

 

 

 

- Gelation region 

- Unphysical region 

Fig. 2.3: Schematic classification of coagulation kernels (Van Dongen & Ernst, 1985) 

The sol-gel transition is commonly observed in colloidal systems but the aerosol-aerogel 

transition is very rare and the first experimental observations were reported by Lushnikov et al 

(1990). The dynamics of aerosol gelation with K(u, u’) ~ uu' was studied by many researchers in 

the past (Ernst & Pratsinis, 2006; Ziff, 1980), and exact analytical solutions are available for the 

sol-gel transition systems (Lushnikov, 2004). Apart from this gelation kernel, shear-induced 

coagulation in the viscous regime (commonly used in aerosol dynamic simulations) also leads to 

gelation. Shear-induced coagulation for  =1 is a limiting case for which a more precise analysis 

 = 2
                                                                  
Class I: >0 
(large-large interactions  
Dominate) 
                                                             1 
 
 
 
 
Class II: =0 
                                                             0                                 1                                
 
 
Class III: <0 
(large-small interactions dominate) 
 
 
 

 = 1

 = 2 
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is undertaken, and Lushnikov and Kulmala (2002) investigated analytically coagulation rates of 

the form K(u, u’) ~ uau'b+ ubu'a, where, a+b=and a>=b.  

2.3.3. Moment Method  

Although the self-preserving size distribution theory played a very important role for 

researchers in understanding the coagulation mechanism, one shortcoming of the theory is its 

inability to resolve the size distribution for the time period before an aerosol attains the self-

preserving size distribution. Therefore, it was still necessary to resort to numerical calculations. 

However, during coagulation, the size distribution of particles changes by the interaction of 

particles in so many size classes at each time step that the computing time becomes excessive for 

the calculation of the change of size distribution of particles. To overcome this problem and to 

accelerate the computations, much effort has been made. Cohen and Vaughan (1971) succeeded 

in reducing the coagulation equation to a set of ODEs for the moments of size distribution. By 

choosing a specific functional form for the distribution of the particle size, they were able to 

calculate the parameters of the size distribution as a function of the three leading moments. This 

method, known as the moment method, has the advantage of simplicity while providing 

important information on the change of the size distribution of aerosol. Therefore, the moment 

method has been widely applied in the simulation of aerosol coagulation.  

2.3.4. Monte Carlo Method 

 In this method, coagulation process is considered as a stochastic process, and modeled by 

keeping track of all particles in the system or through a probabilistic simulation. It considers the 

system as a statistical ensemble where each event has a known probability described by the 

collision frequency function. The Monte Carlo simulation of coagulation is based on a 
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Markovian model where the physical and velocity space is omitted and instead the collisions are 

modeled as transitions in a Markov chain. It is broadly classified into two types, 

1. Time-driven Monte Carlo: here the time step (t) is chosen before the simulation event, and 

the simulation technique is used to decide which events will be realized within this time. 

2. Event-driven Monte Carlo: the time between the events is calculated based on the known 

event probability, and then a single event is selected to occur and the time is advanced.  

Many algorithms are available to implement this method. Constant Volume Monte Carlo 

(CVMC) simulation (Shah et al, 1977) and Constant Number Monte Carlo (CNMC) simulation 

(Zhao et al, 2007) are the two simulation algorithms widely used. The advantage of this method 

is that it is easy to implement numerically for problems with complex kernels. However, the 

computation time is one of the limitation to this method. 

2.4.  Coagulation in dispersing aerosol systems 

Aerosol dispersion modelling is concerned with predicting the concentration distributions 

of source particles introduced into the atmosphere and its subsequent dispersion downwind. Most 

generally, atmospheric aerosol particle evolution models combine dilution effects due to 

advection and diffusion mechanisms with physical transformation processes such as nucleation, 

coagulation, vapour condensation/evaporation, and plate out/wash out mechanisms (Jacobson & 

Seinfeld, 2004; Aloyan, 2009; Albriet et al., 2010). Many of these models use two separate 

modules, one for atmospheric transport (ex. Gaussian plume model) and another for aerosol 

dynamic processes, and these models are solved together, in step-wise manner, by numerical 

methods. In the present study, we consider the two most significant mechanisms governing the 

near-source aerosol behaviour, viz. coagulation and dispersion. 

The general evolution equation for a coagulation-dispersion system is then given by, 
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where,  be the number of particles with volumes lying between u  and duu   per 

unit volume of the fluid at position r  and time t. The first term on the RHS represents the 

dispersion process that includes advection and diffusion. Two basic approaches are in use to 

describe dispersion in a turbulent fluid: Eulerian and Lagrangian. The Eulerian approach refers to 

dispersion in which the behaviour of species is described relative to a fixed coordinate system. 

When the motion of the fluid is turbulent, there is usually a significant augmentation of mass 

transfer from regions of high to low mass fraction of a particular component. The influence of 

this mechanism is usually referred as turbulent dispersion, and is entirely dominant over 

molecular diffusion in the atmospheric boundary layer. Dispersion of pollutants in the 

atmosphere is a random process, it is impossible to predict the instantaneous concentration due to 

highly irregular three-dimensional turbulent motions of the atmosphere. Ensemble averaging the 

instantaneous diffusion equation makes it possible to find solutions to turbulent diffusion 

problem. Eq.(2.30) is the basic diffusion equation for non-reactive contaminants, ignoring 

molecular diffusion: 
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 (2.30) 

where, ),,( trun is the ensemble-averaged number concentration, v  is the average wind velocity, 

and variables with primes represent their turbulent parts. The correlation ),,('' trunv is ensemble-

averaged turbulent advection term, and is called turbulent mass flux, caused by wind 

fluctuations, analogous to the molecular mass flux. These turbulent components dominate the 

diffusion of the pollutant particles in the atmosphere. 

dutrun  ),,(
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The diffusion equation of Eq.(2.30) for mean concentration is not closed. To solve 

Eq.(2.30) to get mean concentration, ),,( trun , an equation for the turbulent diffusion term needs 

to be added. The simplest and probably the most widely used closure approach in turbulent 

diffusion is first-order closure, based on the gradient transport hypothesis. According to this 

hypothesis, turbulent mass fluxes are proportional to the gradient of the mean concentration. This 

is true for most situations in the surface layer, with several exceptions, such as in convective 

conditions (Arya, 1999). Thus, ),,( '' trunKnv   ,where, K is turbulent diffusivity. Turbulent 

diffusivities have to be specified for the complete closure and solutions of Eq.(2.30) can be 

obtained for any desired initial, boundary, and source conditions. 
 

In stationary and homogeneous turbulent atmospheric flow, eddy diffusivities are not 

expected to be dependent on time and space. In Cartesian co-ordinate system, for the specified 

constants, Kx, Ky, and Kz, and for an instantaneous point release, the solution of Eq.(2.30) is 

expressed as 
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where tK xx 22  , tK yy 22  , and tK zz 22   are called dispersion coefficients in the x, y, z 

directions, and are functions of dispersion time. Eq.(2.31) shows that the concentration 

distributions in the x , y , z directions are Gaussian in shape. 

The second and third term on the RHS of Eq.(2.29) represents coagulation and removal 

processes respectively. The last term, S (u,r,t), is the source term defined as the mean number of 

particles injected per unit volume of space per unit time per unit particle volumes around u, and 

the following basic parameters affect the source release scenario, 

i) source type (instantaneous or plume release), 



39 
 

ii) spatial distribution of the source particles (homogeneous or heterogeneous), and 

iii) particle size distribution (either monodisperse or polydisperse). 

The variations in the above parameters lead to different release scenarios and models. 

Given the above considerations, the focus of this work is to provide simple, albeit approximate, 

approaches for estimating the fraction of particles formed at the source that eventually survive 

coagulation to persist in the atmosphere as background aerosols. For homogeneous and 

instantaneous, burst release conditions, the dispersion process is modeled using volume 

expansion model. In the case of inhomogeneous puff and plume releases at ambient conditions, 

diffusion model is used to obtain analytical and numerical solutions. For the case of continuous 

and homogeneous releases, approximate and asymptotic analytical solutions are obtained using a 

simplified two-group model; accurate solutions are obtained using numerical models. 
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Chapter 3. Survival fraction for instantaneous releases 

3.1. Introduction 

 Among the dispersion processes, instantaneous releases occupy a fundamental position. 

When the dispersion and transformations are linear, one can develop solutions by the method of 

Green’s functions. However, when nonlinear processes are present, each release scenario needs 

to be addressed separately. The instantaneous releases can be further classified as, 

i) Burst releases with initial rapid expansion, and  

ii) Puff releases with gradual diffusion. 

In this chapter, analytical and numerical techniques to obtain survival fraction formulae for these 

instantaneous release conditions are presented. 

3.2. Survival fraction for burst releases 

In recent times, the possibility of deployment of radiological dispersal devices (RDDs) by 

malevolent groups or the accidental release of radionuclides has raised considerable concerns 

among the public. A radiological dispersal device is a device that spreads radioactive material in 

the environment with malicious intent. It is the combination of a conventional explosive device 

(for example, TNT) with radioactive materials that can be obtained from industrial, commercial, 

medical and research applications. Aerosol particles (both radioactive and non-radioactive) are 

generated from the detonation of these radiological dispersal devices. In order to predict certain 

important parameters at the receptor location (such as surface contamination, time-integrated air 

concentrations, and dose rates) due to these releases, it is necessary to model the transformation 

of particle size distributions during their dispersion in the atmosphere. International Atomic 

Energy Agency (IAEA) launched a programme called EMRAS (Environmental Modelling for 
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Radiation Safety) to focus on the predictive capability of environmental models used in 

assessment of radioactive contamination in urban settings, including dispersion and deposition 

events, short- and long-term contaminant redistribution following deposition events, and 

potential countermeasures or remediation efforts for reducing human exposures and doses. 

Although, gross calculation suggests that actual doses to the public are negligible, the 

psychological effects are considerable. Many experimental studies were also attempted out in the 

past in a closed aerosolization chamber, and outdoor simulation test to investigate the aerosol 

particle formation and their atmospheric transport from the RDDs (Harper et al, 2007; Lee et al, 

2010). Study of estimating the health hazards resulting from RDDs has been carried out by 

Andersson et al (2008). A brief description of aerosol particles formation and its evolution due to 

a RDD is given below. 

A RDD essentially contains conventional explosive, radioactive, and structural materials. 

The detonation of the explosive material will result in a rapid increase in volume and release of 

energy usually at high temperature and pressure. A detonation wave is caused by rapid 

compression of the substance in a shock wave, which rapidly compresses and heats the substance 

so the reaction can proceed at a high rate. Detonation involves a supersonic exothermic front 

(shock wave) accelerating through a medium that eventually drives a shock front propagating 

directly in front of it. Following the detonation wave-front, the products of detonation (C, CH4, 

N2, CO2, CO, etc., obtained due to the chemical reactions) form a cloud and expand isotropically. 

The gaseous products formed during the explosion undergo chemical reaction at high 

temperature, which leads to overall change in the chemical composition within the cloud. The 

condensable gaseous products in the cloud nucleate to form primary multi-component aerosol 

particles due to the reduction in the cloud temperature. This cloud containing aerosols expands at 
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a rate determined by the equation of state of the detonation products. Aerosols released in such 

high concentrations into the atmosphere from low yield conventional explosives undergo 

simultaneous coagulation and volume expansion before influenced by the other atmospheric 

transport processes such as advection and turbulent diffusion. In the present study, a simplified 

approach (uniformly mixed volume expansion model) is used to simulate the combined effect of 

these two processes on the evolution of aerosol number concentration and size distribution in the 

puff.  

3.2.1. Uniform expansion model 

Uniform expansion model was introduced by Nathans et al (1970) to estimate the particle 

size distribution in clouds from nuclear airbursts. This model treats the dispersion process 

through dilution model, which assumes a uniformly mixed volume element expanding under a 

prescribed rate in time. It has been used in the context of estimating the properties of particulates 

emitted by high-altitude aircrafts, volcanoes (Turco & Yu, 1997), and large-scale forest fires 

(Radke et al, 1995; Fiebig et al, 2003). Turco and Yu (1997) demonstrated that the total number 

of particles in an evolving aerosol plume or cloud is limited in a predictable way by the 

competing rates of coagulation and atmospheric dispersion, and is generally independent of the 

details of particle nucleation or growth. These studies show that the particle characteristics are 

independent of the initial total number, and depend on the average coagulation kernel and plume 

dispersion rate. Using this simplified phenomenological model, the temporal evolution of the 

total number of aerosols generated by localized sources can be calculated, as well as their size 

distribution and local concentrations.   
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3.2.2. Formulation of problem 

Let us consider an instantaneous burst release of aerosol particles from an aerial 

detonation of conventional explosive like TNT. The aerosol particles are assumed to be 

homogeneously distributed in the puff volume. Further, it is assumed that the removal rates are 

negligible in the near-time and -space domain of this system. Inserting in Eq.(2.29) a term that 

represents dispersion as entrainment and mixing of ambient air into a puff, and assuming 

uniform mixing of the aerosols within the local puff volume, the aerosol continuity equation 

(2.29) can be written 

 
dt

tVd
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(3.1) 

where, n(u, t) is the number of particles of volumes lying between u and u+du at time t, V(t) is 

the volume of the system at time t. The simplifying feature of the volume expansion model is 

that, it altogether replaces the space dependent nature of the dispersion process by a purely time 

dependent term. The first and second term on RHS represents the growth and loss terms due to 

coagulation process. The third term on RHS represents the dispersion process governed by the 

dilution term (   dttVd log ). In the case of constant and homogeneous coagulation kernels, 

Eq.(3.1) is exactly solvable, and the solutions for the total number concentration are given by 

Nathans et al (1970) and Turco and Yu (1997, 1998). However, Eq.(3.1) is not analytically 

solvable if a complex coagulation kernel like Fuchs kernel is used in the model. This kernel is 

used in the present study to account for the transition regime effects, and hence numerical 

techniques (nodal method described in Section 2.3.1.1) are employed to solve the aerosol 

dynamics model. 
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 For the case of constant kernel, Eq.(3.1) is easily solvable and the total number 

concentration at time t is given by (Nathans et al, 1970), 

    
    thN

tg
tN
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01
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3
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is the initial total number concentration. 

3.2.3. Results and Discussion 

The present study refers to an airburst scenario, i.e., assuming that the TNT explosion 

takes place at a height well above the ground so that the influence of the ground dust particles is 

negligible. When the explosive is detonated, the initial volume of the cloud is just equal to the 

volume of the explosive material. The temporal variation of the temperature and volume due to 

the adiabatic expansion of the cloud are obtained using the numerical model for the equation of 

state variables (Sreekanth, 2011; See Appendix – A for details). The numerical solutions are 

obtained until the cloud temperature and pressure reaches the ambient values. Figure 3.1 shows 

that the temperature of the cloud reaches to the ambient temperature (300 K) in 243 sec. At this 

point of time, the cloud expands to a volume of 1.39 m3; assuming spherical geometry, the 

corresponding diameter of the cloud is estimated as, 1.385 m. During this period, the cloud 

pressure rapidly reduces from 1.5 x 105 atm to 1 atm. Expressions are obtained for the temporal 

evolution of volume and temperature by fitting the numerical values using the polynomial curve 

fitting routine of Mathematica (Wolfram Research Inc., 2005). The expression obtained for the 

temperature evolution is one of the inputs required to calculate the Fuchs coagulation kernel. The 
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other one for volume is an important input to the volume expansion model to estimate the 

dilution rate. 
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Fig. 3.1: Temperature and volume of the cloud during adiabatic expansion (Explosive mass 

considered in this case is 2000 g of T.N.T with a loading density of 1.5 g/cm3) 

The temporal evolution of the total particle number concentration and average particle 

diameter in the puff due to adiabatic expansion are shown in Fig. 3.2. The aerosol particles are 

initially formed by homogeneous nucleation of the condensable gaseous species of the device 

material in a very short span of time (Nathans et al, 1970). Thus, the initial total number 

concentration in the puff is estimated to be 1.66 x 1026 particles/m3 from the condensable mass 

fraction, assuming an average initial particle diameter of 1 nm. At the end of the simulation 

period (t = 243 sec), the particle number concentration and the average particle diameter of the 
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aerosol cloud reaches to ~2.9 x 1016 particles/m3 and ~239 nm respectively. The final particle 

size distribution of the aerosol cloud at t = 243 sec is shown in figure 3.3. It shows that an 

initially monodisperse system evolves to a peaked polydisperse size distribution with a peak 

value at ~200 nm. All these particle characteristics together will serve as very important inputs 

for the atmospheric aerosol transport models, which estimate the atmospheric particle 

concentration and its ground deposition. 
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Fig. 3.2: Temporal evolution of total number concentration and average particle diameter in a 

burst release 

The results from the volume expansion model show that when the aerosol particles in a 

cloud is subject to dilution by mixing with ambient air, the particle concentration decreases more 

rapidly and coagulation is quenched. Hence, dispersion or dilution acts to increase the total 
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number of particles that survive coagulation after a finite interval of time, and the interplay 

between coagulation and dispersion determines the fraction of the particles initially present that 

is likely to survive after a fixed time.  

10 100 1000 10000
100

102

104

106

108

1010

1012

1014

1016

1018

 

 

P
a

rt
ic

le
 n

u
m

b
e

r 
c

o
n

c
e

n
tr

a
ti

o
n

, d
N

 /d
lo

g
d

 (
#/

m
3 )

Particle diameter, d (nm)

 

Fig. 3.3: Final aerosol particle size distribution in the cloud at t = 243 sec  

3.3. Survival fraction for puff releases  

 While uniformly mixed-volume expansion models or what may loosely be termed as 

dilution models (Radke et al, 1995; Turco & Yu, 1997; Fiebig et al, 2003) capture the combined 

effect of coagulation and dilution on lowering the number concentration to some extent, they 

cannot be related to basic atmospheric diffusion processes. In contrast to this, the prescribed 

diffusion approximation model used diffusion equation instead of volume expansion and 



48 
 

approximate analytical solutions are obtained involving atmospheric and aerosol parameters, for 

the case of single puff release. This model explicitly postulates diffusion as the mechanistic basis 

of dispersion and allows for spatial gradients. Since it is difficult to solve this equation exactly 

even for constant coagulation kernels, approximations are developed at the level of solutions. 

This not only helps one to obtain practically useful analytical formulae, but also provides a 

systematic basis for assessing the equivalence or otherwise of the uniformly mixed-expansion 

model and diffusion-coagulation model.  

3.3.1. Diffusion approximation model 

Jaffe (1913, 1940) originally introduced the diffusion approximation to the solution in the 

theory of ion-recombination for obtaining simple formulae for the survival fraction of ions in 

alpha particle columns. It has been effectively used in the context of particle charging using 

alpha radiation sources (Mayya & Hollander, 1995). Its application to coagulation-diffusion 

appears natural considering the fundamental similarity (binary nature) between recombination 

and coagulation processes. In fact, Peliti showed that a mass conserving process such as the 

coagulation-diffusion process described by the reaction AAA   belongs to the same 

universality class as the annihilation process (i.e. recombination-diffusion) described by 

 AA Ø (Peliti, 1986). The underlying symmetry between the two processes has been further 

discussed by Lin (Lin, 1991). It must be noted that unlike two-species recombination processes, 

the coagulation process involves size spectrum which leads to an infinite number of coupled 

equations for the infinite number of interacting species. The extension of Jaffe technique to this 

situation involves applying the prescribed spatial diffusion approximation to each of these 

species.   
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3.3.1.1. Formulation of problem 

Let us consider the case of an instantaneous release of spherical puff from a point source 

in a relatively calm atmosphere. The initial distribution of particles will be spatially 

inhomogeneous both in respect of total number concentration and size spectrum. It is assumed 

that there is no advection in the atmosphere. This is not a serious constraint in the present 

treatment since it is possible to transform the equation into pure diffusive equations through a 

Lagrangian framework, i.e. in a coordinate system moving along the mean advection velocity. It 

is assumed that the release event is quite rapid and particles are formed during the early phase of 

the dispersion of the puff. From this instant, the puff begins to diffuse in space and 

simultaneously, the particles begin to coagulate. The interplay between coagulation and diffusion 

determines the fraction of the initial number of particles surviving after a long time.  

Let dutrun  ),,(  be the number of particles with volumes lying between u  and duu   per 

unit volume of the fluid at position r  and time t . Then the general equation governing the 

evolution of n  in the presence of coagulation, diffusion and removal is given by, 
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  (3.3) 

where, D(r,t) is the space dependent diffusion coefficient, K(u,u’) is the coagulation kernel 

between the particles of volume u and u’ and (u) is the removal rate of particles. In a turbulent 

atmosphere, the diffusion coefficients for the particles released from the point sources are 

generally expressed as either space dependent functions or as time dependent variables. Early 

work of Richardson (Richardson, 1926) suggested the now well known r4/3 formula. On the other 

hand, studies of Batchelor (Batchelor, 1952) have suggested t2 dependence. Recent numerical 
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studies (Ott & Mann, 2000) seem to point at the superiority of space dependent formula over the 

time dependent approach. However, the present problem is treated under the framework of 

constant diffusion coefficient.  

There are several expressions for the coagulation kernel depending upon the particle size 

range and the processes leading to the coagulation of particles. Some of the well discussed 

problems in the literature generally considered the case of homogeneous kernels satisfying 

scaling relationships of the form, )',( )' , ( uuKuuK   , where  is a scaling parameter,  

is an exponent which is a measure of the degree of homogeneity of the kernel. For Brownian 

coagulation, 0  and for free molecular kernel, 61 . However in the context of 

atmospheric coagulation, it has been noted that the constant kernel defined by averaging over the 

size distribution adequately represents the coagulation process. As noted by Turco and Yu (1997) 

for all practical purposes constant kernel reproduces the evolution of the size spectra quite 

accurately. A detailed analysis is performed for constant coagulation kernel in the first part of 

this section and then extended for free molecular kernel in the latter part. Additionally it is to be 

noted that the initial phase of the puff evolution occurs within timescales of a few tens of 

minutes and hence the removal process from the atmosphere is neglected, which occurs in time 

scales of several hours. Hence aerosol removal rate, )(u , is set to zero.   

3.3.1.2. Method of solution 

Analytical solution for constant kernel 

From the above assumptions, the simplified diffusion-coagulation equation is, 
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where D, K are size and space independent. Let us define the Laplace transform with respect to 

the particle volume variable u as, 

dutrunputrpn 



0

),,(]exp[),,(~ ,         (3.5) 

where,  p is the conjugate parameter with respect to u.   

Upon taking the Laplace transform of Eq.(3.4) on both the sides and using convolution theorem, 

it reduces to a differential equation,  
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    (3.6) 

where, N(r, t) is the total number concentration at a spatial point r, defined as  
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        (3.7) 

Upon setting p=0 in Eq.(3.6), and noting Eq.(3.7), the following equation for N(r, t) is obtained: 
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       (3.8) 

Eqs.(3.6), (3.8) together with initial and boundary conditions (see below) are completely 

equivalent to the original integro-differential coagulation equation for constant K. It may be 

noted that the integral term of the coagulation equation is now removed and Eq.(3.6) is 

essentially a non-linear partial differential equation with respect to time t  with the “volume-

conjugate variable (p)” appearing as essentially a parameter. Further, the equation for the total 

number concentration N(r,t) has the same mathematical form as the diffusion-recombination 

equation (Mayya & Kotrappa, 1982, Mayya & Hollander, 1995) for ions. This analogy is not just 

limited to N(r,t) but is also valid for the detailed spectral function ),,(~ trpn . To see this, Eq.(3.6) 

is transformed by defining a new auxiliary function 
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),,(~),(),,( trpntrNtrpZ           (3.9) 

Upon replacing ),,(~ trpn  with ),,( trpZ in Eq.(3.6) and simplifying using Eq.(3.8), one obtains,  
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       (3.10) 

A physical interpretation of the auxiliary function ),,( trpZ  is as follows.  Since the 

Laplace transformed concentration ),,(~ trpn  is a measure of the cumulative number 

concentration present below a volume of the order 1/p, and N(r,t) is the cumulative number 

concentration over all sizes, ),,( trpZ is the cumulative number concentration above a size 

~(1/p).  

Eq.(3.10) combines both Eq.(3.6) and (3.8) and satisfies the condition, 

0),,0( trZ .            (3.11) 

Also, upon using Eq.(3.5) and Eq.(3.9), the volume concentration may be defined as  
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ptrpZptrpndutruuntr .                (3.12) 

Upon differentiating Eq.(3.10) with respect to p and plugging Eq.(3.11), the required volume 

conservation result is obtained. In sum, Eq.(3.10) is an elegant and compact representation of 

diffusion-coagulation equation for constant kernel.  

The prescribed diffusion approximation of Jaffe (Jaffe, 1913, 1940) is now applied to 

Eq.(3.10) for obtaining analytical solutions.  As the name suggests, the approximation implicitly 

assumes that spatial distribution function is essentially given by pure diffusion laws, and the 

coagulation (or recombination in the case of ions) alters essentially the spectral function and the 

total number concentration. Further, for mathematical tractability, let us assume a spherically 

symmetric Gaussian puff having a spatially homogeneous size spectrum. i.e., 
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where, Na is the total number of particles contained in the puff, b0 is the width of the puff and u0 

is the mean size of the particles at t=0. The choice of the exponential volume spectrum stems 

from the fact that it forms the universal scaling solution (self-preserving spectra) for the case of 

constant kernel (Friedlander & Wang, 1966). The size integrated number concentration function 

at t=0 is given by  
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Upon taking the Laplace transform of Eq.(3.13) above with respect to u,  
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Upon combining Eqs.(3.9), (3.14), (3.15), the following initial condition for ),,( trpZ  at t=0 is 

obtained: 
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If coagulation is absent, Eq.(3.10) is purely diffusive and its solution ( ),,( trpZ diffusive ) for 

the initial condition in Eq.(3.16) would have remained a spherically symmetric Gaussian at all 

times, with variance increasing linearly with time. Upon denoting the purely diffusive solution 

by ),,(~ trpg  (i.e. Laplace transform of the space-size distribution, g(u, r, t)), we have 
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where, Dtbtb 4)( 2
0
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In the presence of coagulation, the mathematical statement of the Jaffe (prescribed diffusion) 

approximation is,  

),(),,(~),,( tpftrpgtrpZ  ,                                            (3.18)  

where, ),( tpf  is the spectrum modifier function due to coagulation. The key assumption is that 

this function depends only on time and not on space variable. Upon setting t=0 in Eq.(3.18) and 

comparing Eqs.(3.16), (3.17) the initial condition is obtained as, 

1)0,( pf                       (3.19)  

Upon substituting Eq.(3.18) in Eq.(3.10), the Eq.(3.10) becomes, 
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One can note that the second term on the LHS of Eq.(3.20) exactly cancels with the first term on 

the RHS since ),,(~ trpg  satisfies the diffusion equation. The remaining part constitutes strictly 

speaking, an inexact equation. However, for the purpose of evaluating the spectrum modifier 

function, ),( tpf , it can be interpreted as an equation in a space averaged sense as was originally 

demonstrated by Jaffe. Hence, both sides of Eq.(3.20) are multiplied by 4  r2 dr and integrate it 

over all r. Let us note the following identities: 
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This yields the following nonlinear, ordinary, differential equation for ),( tpf : 
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Upon substituting the expression for b(t) from Eq.(3.17), Eq.(3.22) may be easily integrated to 

yield, 
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where, 
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It may be noted that the quantity A captures all the basic parameters of the problem in a single 

expression.  

Upon combining ),( tpf  with Eq.(3.18) one can obtain the approximate solution for Z(p,r,t): 
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From the definition of Laplace transform, note that  

0),,(~   lim  trpnp                        (3.27) 

Upon applying this limit to Eq.(3.26) and noting Eq.(3.9), one obtains the expression for the size 

integrated number concentration N(r, t) as 
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It may be noted that one would obtain the same solution as Eq.(3.28) independently by solving 

Eq.(3.8) directly for N(r,t) with Jaffe approximation. This reassures us the internal consistency 

between the two approaches.  

Upon combining Eqs. (3.26), (3.28), and (3.9), the required solution is obtained as 
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Upon carrying out the Laplace inversion of Eq.(3.29), the space-size spectrum of the particles is 

obtained as follows: 
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The quantity of practical interest is the space-integrated size spectrum, rather than the detailed 

spatial distribution of the particles contributing to background aerosols. Upon integrating 

Eq.(3.30) over all space, the time evolution of the size spectrum, denoted by ),( tu , is given by   
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Upon taking the asymptotic limit, and noting that (∞)=1, one obtains the following formula for 

the ultimate size spectrum of particles injected into the background: 
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A comparison of Eq.(3.32) with the original size spectrum contained in Eq.(3.13) indicates that 

while the exponential form of the size distribution has remained, the pre-factor has decreased and 

the characteristic size (the denominator inside the exponential term) has increased from u0 to 

u0(1+A).  
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Let us now define an important quantity, F(t), as the fraction of space and volume 

integrated number of original particles Na surviving in the puff at time t, or simply the survival 

fraction. F(t) is obtained by integrating Eq. (3.31) with respect to u and dividing by Na and it is 

given by,  
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and the asymptotic survival fraction is (t∞) 

A
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As expected, the diffusion-coagulation process admits of a non-zero survival of particles after 

infinite time. Of the total Na particles with a mean size u0 emitted from the puff, a fraction 

NaF(∞) survives and becomes a part of the background aerosols with a size u0(1+A). Hence, this 

may appropriately be considered as the source modifier term for the total particle concentration.  

Similar analysis is carried out for the case of mono-disperse initial distribution in the 

puff. If u0 is the initial volume, the initial spatial and volume distribution may be given by a 

Gaussian form,  

  )(exp
 

)0,,( 0
2

0
2

3
0

3/2
uubr

b

N
run a  


                  (3.35) 

Applying the Laplace transform and prescribed diffusion approximation, the Laplace 

transform of the size spectral function may be solved as  
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Upon inversion, one can obtain a discrete size spectra represented by  
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The delta function series implies the occurrence of particles having integer multiple of 

monomers. The terms multiplying the delta functions, viz.,       21  kk
a tAtAN  , yield the 

amplitude of occurrence of these. The series sums up correctly to the total (all sizes considered) 

number of particles Na F(t), where F(t) is the survival fraction given by,   
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F(t) has the same form as that for exponential initial distribution, which confirms that it is 

independent of initial distribution.       

It is interesting to compare Eq.(3.38) with the following formula obtained by Turco and 

Yu (1997) using the model of a uniformly mixed-expanding cloud. In their notation,  
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where,  
t

T
dt

tV

K

N
0

0 1

2

1
. 

In the above, Npo is the total number of particles in the initial volume, Ni(t) is the number of 

particles with i monomers at time t, K0 is the constant coagulation kernel and V(t) is the volume 

of the aerosol puff at time t. The survival fraction in this case is obtained by integrating the 

Eq.(3.39) with respect to size over the entire range of i from 1 to infinity, and dividing by the 

initial total number concentration (Npo). This survival fraction is similar to our formula if the puff 

volume V(t) is identified by the following relationship (See Appendix - B) 

     232
0 4 2 DtbtV   .                                (3.40) 
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This equivalence demonstrates that, within the framework of Jaffe approximation, the solution to 

the diffusion-coagulation problem is consistent with the uniformly mixed-expansion model of 

Turco and Yu; however, the present approach additionally provides definite pre-factors involving 

the physical parameters of the processes. The exponential size spectrum obtained here 

(Eq.(3.32)) is also consistent with their finding (Turco & Yu, 1998), providing the quantitative 

basis (Eq.(3.40)) for the puff volume for the case of diffusive expansion is identified. However, 

uniformly mixed-expansion models cannot fully replace the diffusion-coagulation models in 

view of their (as well as Jaffe approximation) systematic deviation in respect of the numerical 

results (Section 3.3.1.3). 

 A realistic aerosol cloud is most likely to have its size spectrum varying in space in a 

complex fashion. The approximation technique proposed above, can in principle, be used for 

obtaining essential results even when the spectrum is spatially inhomogeneous. It can be 

demonstrated by taking the case of a distribution, in which bigger particles are scattered to 

farther distances in a centro-symmetric spherical cloud, as if they are formed by an explosive 

process. The rough justification for this would be that due to larger mass, they have larger 

stopping distances and hence would be thrown farther. For example, if particles of diameter dp 

are thrown with initial velocity v0 they would stop at radial distance, 32
0

2
00 uvdvvr p   , 

where  is the relaxation time. Hence, 23ru  . For mathematical convenience, let us round it off 

as 2
00  )( rruu   (where  is a constant) without further justification. The total number 

concentration is assumed to be a Gaussian distribution in space. With this, the inhomogeneous 

distribution is written as  
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The overall size spectrum is obtained by integrating this over all space: 
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The above expression represents a well behaved spectrum having a peak at 2cm uu   where uc 

is characteristic size defined as,  

2
0 bu c             (3.43) 

The Laplace transform of Eq.(3.41) with respect to particle volume yields: 
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where, a volume conjugate function, 

    2111 cpup            (3.45) 

is introduced for notational simplicity. It may be noted that Eq.(3.44) is still a Gaussian in space, 

made possible by our choice of the spectral function.  

Since the initial distributions for Z-equation would involve differences between two 

Gaussians of different widths, it is somewhat cumbersome to apply Jaffe approximation to this 

equation and hence the approximation is directly applied to Eq.(3.44). i.e., in the spirit of 

prescribed diffusion, 

),( ),,(~),,(~ tpftrpntrpn diffusive  

It may be recalled that ),,(~ trpn diffusive  is the evolution of the Gaussian under purely diffusive 

expansion and f(p,t) is the spectral modifier function under the additional action of coagulation, 

to be determined. The subsequent steps are similar to those carried out for homogeneous 

spectrum (Eq.(3.19)-(3.22)). Although tedious, the resulting nonlinear equation for f(p,t) can be 



61 
 

integrated to a quadrature. The details are not shown here, and the final formula for the Laplace 

transformed spectral function ),(~ p is provided as, 
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where, 
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The parameter A is exactly as defined in Eq.(3.24). The actual size distribution needs to be 

obtained by Laplace inversion. This cannot be easily done analytically over the entire spectrum. 

A simple numerical Laplace inversion algorithm in Mathematica (Wolfram Research, Inc., 2005) 

is developed to obtain the inversion of Eq. (3.46) using a 15 point Legendre polynomial 

expansion technique by Bellman et al. (1966) and Narayanan and Ramadurai (1992). The 

convergence of ),( p was found to be quite rapid. 

Analytical Solution for Free-molecular kernel 

An analytical solution to Eq.(3.3) cannot be obtained by Laplace transform technique for 

the free-molecular kernel having the form: 
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alternative approach is to apply scaling theory and reduce the integro-differential equation to a 

set of coupled differential equations, as was done by Simons and Simpson (1988). The solutions 

to the resulting equations can then be approximated by using prescribed diffusion approximation. 

Assuming a solution of self-preserving form (Simons & Simpson, 1988), 
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where, ),( tr is the volume fraction of particulate matter given by 

),(),(),( trVtrNtr  ,   

),( trN is the number concentration, ),( trV is the mean particle volume at position r and time t. 

G(w) is the scaling function satisfying the constraints, 
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G(w) satisfies an integro-differential equation whose analytical solutions are available in the 

literature (Ruckenstein & Chi, 1974). Substituting (3.48) in Eq. (3.3), and taking zeroth and first 

moments of Eq.(3.3) with respect to u, one obtains (Appendix - C) 
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For spherical symmetry with an initial Gaussian distribution of the volume fraction (r,0) the 

solution of Eq.(3.50) yields a Gaussian solution at all times exactly. 
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where,  is the total volume of all the particles at time t=0, b(t) is the width of the plume at time 

t (Eq.(3.17)).  

Apply Jaffe approximation to Eq. (3.51) by following the same prescriptions as in the constant 

kernel case. i.e., 
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where,  )(exp
)( 

),( 22
33/2

0 tbr
tb

N
trg 


 is the diffusive solution and F(t) is the survival 

fraction to be determined. The initial condition for the problem is given by 
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where N0 is the total number at time t=0, b0 is the initial width of the plume. The prescription 

Eq.(3.53) transforms Eq.(3.51) to the following “inexact” equation to be interpreted in the space-

integrated sense:  
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Upon integrating Eq. (3.54) over the entire space, one obtains 
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Solution of Eq. (3.55) is given by, 
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where, (t) has the same form as given in Eq.(3.25) and 

 
 

  0
2/3

1
00

22

1 R

Db

N
A


  




.                                (3.57) 

For free-molecular kernel,
6
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R 6  (Simons and Simpson, 1988).    

 The asymptotic survival fraction is given by, 
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As in the case of a constant kernel, Eq.(3.58) again suggests the dependence of survival fraction 

on a single parameter A. Also, Eq.(3.58) is similar to the solution given by Turco and Yu (1999), 

with an additional feature that the quantity A is now expressed (Eq.(3.57)) in terms of known 

basic parameters.  

 It is noted that in arriving at this formula two approximations are used namely, self-

preserving (scaling) solution and Jaffe’s prescribed diffusion approximation theory. To test 

which of these approximations is more error prone, one can forgo the prescribed diffusion 

approximation to test the validity of scaling theory under dispersing conditions by numerically 

solving the differential equations (Eqs.(3.50), (3.51)). Along with the numerical solution of the 

full integro-differential equation, now there are two more comparisons, viz., test of only 

prescribed diffusion (no scaling), and scaling with prescribed diffusion, for the free-molecular 

kernel. Hence, in this case, the diffusion-coagulation equation (Eq.(3.51)) in three-dimensional 

systems under the assumption of azimuthal symmetry, may be written explicitly as  
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The above equation is solved by finite difference schemes described in the next sub-section. This 

question does not arise for constant kernel since Laplace transform was exactly possible. In what 

follows, a systematic numerical study of the various equations are carried out and compared with 

various analytical solutions. 

Numerical solutions 

In the present study, the integro-differential equation (3.3) is solved for spherical 

symmetry in 3-D by combining two numerical techniques, finite difference method for diffusion 

and nodal method for coagulation (Prakash et al, 2003). The particles are distributed in two-
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dimensional grids, one in space using Gaussian distribution function, and other in the particle 

volume domain. Eq.(3.3) is solved for both constant and free-molecular kernel. 

The diffusion part of the Eq.(3.3) in spherical co-ordinates (assuming azimuthal 

symmetry) is solved by using finite difference technique. Although several schemes are available 

in the literature, such as the explicit, implicit and the Crank-Nicolson for solving parabolic 

partial differential equations, a general scheme is implemented by combining all of these. The 

boundary of the problem domain has been extended sufficiently far to encompass the expanding 

cloud. The code can handle both mono- and poly-disperse initial particle size distribution. The 

output of the code contains survival fraction and particle size spectral function at any particular 

time. 

The discrete form of the coagulation part of the Eq.(3.3) is given by  
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where i,j is the coagulation kernel and χijk is the size-splitting operator. Eq.(3.60) is solved by 

Nodal method (described in Section 2.3.1.1). At every coagulation step, the size-splitting 

operator redistributes the particles back to nodes. The size-splitting operator (χijk) is defined as, 
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Sensitivity studies are carried out by varying the geometry spacing factor (q) after 

coupling the coagulation module with the diffusion. It is observed that the total number 

concentration is unaffected but the size spectrum shifts towards the larger particle sizes. To 
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understand the extent of this error for homogeneous size spectrum and constant kernel, the 

Laplace transformed equations (3.6) and (3.8) are solved numerically using the differential 

equation solver of Mathematica (Wolfram Research, Inc., 2005). A simple numerical Laplace 

inversion algorithm is developed to obtain the inversion of the results of Eqs.((3.6), (3.8)) using a 

15 point Legendre polynomial expansion technique by Bellman et al. (Bellman et al., 1966) and 

Narayanan and Ramadurai (1992). The convergence of ),( u  was found to be quite rapid. 

There was a reasonable, if not complete, agreement of the size spectra obtained with the nodal-

finite difference technique for the geometry spacing factor q~2.0, although the accuracy 

increased for smaller q values. In the present study q is taken as ~2.0. 

3.3.1.3. Results and Discussion 

It is well-known that when only coagulation is present, the survival fraction in a puff, 

given by, 
1

0

2
1)(







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tKN

tF  (N0 is mean initial concentration) continuously decreases with 

time, eventually reaching zero. In contrast, when diffusion is present, particles in a 3D puff 

survive coagulation, asymptotically. These results are illustrated in Fig.3.4.   
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Fig.3.4: Illustration of number survival fraction of aerosol particles in a puff due to coagulation 

with and without diffusion. 

Fig. 3.5 shows detailed comparison of the time evolution of the analytical and numerical 

survival fraction F(t*) for the given set of assumptions (constant kernel, constant diffusion 

coefficient, homogeneous size spectrum and initial size distribution - monodisperse). It is seen 

that F(t*) becomes almost constant beyond t* ( 2
0/ bDt ) =10 units. Within analytical 

approximation, the asymptotic survival fraction (F(∞)) can be predicted through a single 

parameter A (Eq.(3.24) for constant kernel), which combines all the variables, such as the 

coagulation kernel, plume dimension and the initial number of particles and diffusion coefficient. 

Larger the value of A, stronger will be the effect of coagulation in reducing the number 

concentration as compared to diffusive dispersion, and hence smaller will be the survival 

fraction.  
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Fig.3.5: Analytical and numerical solutions for the variation of survival fraction with time for 

various values of A (constant kernel, homogeneous size spectrum, initial size distribution - 

monodisperse) 

As seen in Fig.3.5, the analytical and numerical survival fractions show broad agreement 

with each other in respect of their overall temporal and parametric dependencies. However, 

quantitative differences exist which increase as the coagulation mechanism increasingly 

dominates over diffusion. Thus, the difference is about 2% for F(∞)=0.8 (strong diffusion, 

A=0.2) and the difference is 25% for F(∞) =0.2 (strong coagulation, A=5.0). These results show 

that (i) the Jaffe solutions are less and less accurate for higher values of A, and (ii) given the 

similarity between the Jaffe solutions and those of the uniformly mixed-expansion model, the 

latter cannot exactly replace the diffusion-coagulation model.  

 The variation of survival fraction with time for the case of free-molecular coagulation 

kernel, homogeneous size spectrum (initial size distribution – monodisperse) is shown in Fig. 
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3.6. The maximum error between numerical solution of integro-differential equation (Plot A) and 

analytical solution (Plot C) obtained by Jaffe- approximation is 22% at t*=3 units (for A=3). This 

deviation is due to the limitation of the prescribed diffusion approximation and not due to scaling 

assumption because the numerical solution to the equation obtained after scaling (Plot B) 

matches more closely with the numerical solution of the original integro-differential equation.  
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Fig.3.6: Analytical and Numerical solutions for the variation of survival fraction with time for 

various values of A (free-molecular kernel, homogeneous size spectrum, initial size distribution - 

monodisperse) 

Fig. 3.7 shows the comparison of the particle size spectrum at t* = 10 obtained by 

analytical and numerical methods along with the Turco’s formula (given in the Eq. (3.39)). In 

this case, the particles are monodisperse of size 50 nm initially. While, as expected, the results of 
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Turco and Yu agree with our analytical result, both show a small but distinct deviation from the 

numerical result.  
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Fig.3.7: Aerosol particle size distribution for monodisperse, spatially homogeneous size 

spectrum at scaled time, 2
0

*  btDt   =10. (A =1.0, constant kernel) 

Similar comparison between the numerical solutions and the analytical results for an 

initial exponential size spectrum and for a value A=1 are shown in Fig. 3.8. Plot-A in the figure 

refers to the original spectra. The numerical solutions include (i) direct solution to the integro-

differential formulation (Plot C) and (ii) solution to the Laplace transformed equation and 

inversion, using Mathematica (Plot D). As mentioned, the two numerical approaches agree 

closely at smaller sizes and differ slightly at larger sizes. The analytical result (Plot B) shows 
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deviation from the numerical solutions at smaller sizes and tends to closely follow the 

Mathematica based solutions at large sizes.  
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Fig.3.8: Aerosol particle size distribution for polydisperse, spatially homogeneous size spectrum 

at scaled time, 2
0

*  btDt  =10. (A =1.0, constant kernel) 

The evolution of average relative particle diameter with time for the constant and free-

molecular cases are shown in Figs. 3.9 and 3.10 respectively. Since the removal processes are 

not included in this model the volume fraction remains constant, and the average asymptotic 

particle size is given by,      3/1
0 /  Faa . For example, considering a value of A=1, one 

obtains F(∞)= 0.5, and hence an aerosol puff having an initial average diameter of 50 nm would 
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eventually attain an average particle diameter of 63 nm as it disperses to form a part of the 

background aerosol.  
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Fig.3.9: Evolution of average particle size with time for A=1.0 (constant kernel) 

  

 While the analytical results show reasonable agreement with numerical solutions when A 

is small, systematic deviations are seen at larger values of A. This calls for improvement in the 

analytical approach beyond Jaffe approximation. Nevertheless, the analytical solutions yield 

simple formulae for quickly estimating the survival fractions for the number concentrations of 

particles injected into the open environment from puff releases. 
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Fig.3.10: Evolution of average particle size with time for A=3.0 (free-molecular kernel) 

3.3.2. Diffusion approximation model with coagulation-induced 

flattening effect 

While the approximate solutions obtained by the prescribed diffusion approximation 

model in the previous section agreed with numerical solutions for small values of the coupling 

parameter between coagulation and diffusion, it deviated from the numerical solutions 

considerably under strong coagulation. The simple formula for larger A values always yielded 

lower survival fractions than the numerical values. This is mainly because of the restrictive 

assumption on the evolution of the variance of the spatial concentration distribution of the puff 

as the function of time. It is assumed to evolve linearly as dictated by diffusive spreading. In 

reality, there will be a rapid depression of concentration at the centre of the puff due to higher 

particle concentrations there. This would appear as a distribution, flattened at the top. When this 
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shape is expressed as a renormalized Gaussian it would result in an apparently enhanced variance 

of the distribution. This is called as the ‘coagulation-induced flattening effect’. This effect is 

accounted by a systematic mathematical procedure based on Fourier space analysis. This model 

is termed as ‘Improved diffusion approximation model’, and aims at improving the previously 

obtained analytical approximation through a closer look at the formulation and the solution 

procedure. 

3.3.2.1. Formulation of problem 

Upon taking the origin as the centre of the puff, Eq.(3.8) may be recast, in terms of 

dimensionless variables, 0
3
0

* / NNb=N , 2
0/ bDt=τ , 0/br=ρ , as 

        2*23*2
*

22
,

τρ,NAτρ,N=
τ

N 





      (3.61) 

where,  is the radius vector, and the operator 2 refers to spherically symmetric diffusion 

operator in  variable only. Let us define 3-dimensional Fourier transform of  τρN ,* with 

respect to its radial coordinate  as, 

       ρdρkiN=τk,φ 3* 2πexp,


        (3.62) 

where, k is the transform variable. 

Upon taking Fourier transform of Eq.(3.61) using Eq.(3.62), one obtains, 

   
 

    k'dτkkφτkφ
A

τk,φk=
τ

τk,φ

k'

3
23

2 ,','
2π

2
 




     (3.63) 

Eq.(3.63) is a non-linear integro-differential equation. The variance of the spatial distribution is 

precisely accounted for by the coefficient of k2 terms in the k-space expansion. By treating the 

variance as free function yet unknown, it may be determined by matching the coefficients of k2 
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terms in a systematic expansion procedure. Hence a new approximation scheme in terms of two 

unknown functions is proposed as, 

     







 τξ

k
τψτk,φ

4
exp

2

         (3.64)  

which, in essence, replaces the classical Jaffe approximation,      







 4τ1

4
exp

2

+
k

τψτk,φ . 

In Eq.(3.64),  τ ,  τξ  represent the survival fraction (    



0

3

0

,
1

rdtrN
N

τ ) and the variance 

(scaled in terms of b0
2) of the distribution, respectively. The initial conditions are, 

10 =)ψ( , and   10 =ξ          (3.65) 

Substituting Eq.(3.64) in Eq.(3.63) and comparing the coefficients of k0 and k2, one may obtain 

   τψ
τξ

A
=

τ

ψ(τ) 2
23

2





         (3.66) 

   τψ
ξ

A
+=

τ

ξ(τ)

21
4




         (3.67) 

Eq.(3.66) and (3.67) are a coupled set of equations for the survival fraction and the 

variance of the distribution. The original PDE (Eq.(3.61)) has been reduced to a system of 

nonlinear ODEs for two dependent variables, in this approximation.  

By a careful inspection, one may note that the second term on the RHS of Eq.(3.67) 

represents the coagulation-induced flattening effect. The Jaffe approximation would have been 

equivalent to neglecting this term which would have yielded the free diffusion law,   4τ1+=τξ .   

3.3.2.2. The ultimate survival fraction: asymptotic limit for  

The asymptotic solution for from the Eqs. (3.66) and (3.67) in the limit  ∞, is 

obtained as follows: It may be noted that in view of the positivity of  and ,  is a 
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monotonically decreasing and  is a monotonically increasing, function of time. This permits one 

to replace the coordinate  0  with the  coordinate  1  and seek relationship 

between  and  directly by dividing Eq.(3.66) by Eq.(3.67). This leads to the equation: 













21
2/3

2

4

2








A

A

d

d
         (3.68) 

with    and the initial condition is   11  Further, under the following 

transformations,   

1y , and 2/1 z           (3.69) 

the nonlinear equation (3.68) reduces to the following linear equation: 

Ay

z

dy

dz 1

4
 ,  10  y          (3.70) 

The initial conditions will be as follows: 

The fact that = 1   z (= 0) = 1; similarly, the fact that = 0) = 1   y= 0) = 1. 

Hence, z = 1 when y = 1 is the initial condition for Eq.(3.70). This is a simple first order equation 

whose solution satisfying the above initial condition is 

4/54/1

5

4

5

4
1 y

AA
zy 



           (3.71) 

Since = ∞ correspond to z = 0, the asymptotic value of y is obtained by setting z = 0, and 

transforming back to the original variables,  

 
5/4

4

5A
1

1











+

=ψ puff          (3.72) 
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This is the improved analytical formula for the ultimate survival fraction for the spherical puff, 

called as the 4/5th law. It may be easily seen from Taylor expansion of Eq.(3.72) that it reduces to 

the classical Jaffe formula for small A (1/(1+A)).  

Fig. 3.11 shows the comparison of the 4/5th formula with numerical solution of the PDE 

(Eq.(3.61)) as well as the earlier formula, 1/(1+A). One may note that the new formula is in far 

better agreement with the numerical solution of the full problem as compared to the earlier 

formula without the flattening effect.  
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Fig. 3.11. Comparison of various solutions for the ultimate survival fraction of particles in a 

spherical puff as a function of the parameter A. The present solution (4/5th law) is seen to agree 

closely with the exact numerical solution of the coagulation-diffusion equation. 



78 
 

3.3.2.3. Transient analysis 

To obtain temporal variation, let us start with Eq.(3.66) and note that 2/1ξ=z . Then 

     τz=
dτ

dψ 322Aψ 
          (3.73) 

The above non-linear equation is converted to the following equation independent of ξz or   by 

transformation of variables, 

 
    34/54/5

3

5A

4
1

2A








 ψτψ+

τψ
=

dτ

dψ 
       (3.74) 

This may be reduced to a quadrature relating an integral over to .  

A typical temporal variation of the survival fraction for (A=10) is shown in Fig. 3.12. It 

may be seen that this quantity reaches its asymptotic limit quickly (~1) as expected.  
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Fig. 3.12. Temporal variations of the survival fraction for a 3-D spherical puff (A = 10) 
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Similarly, Fig. 3.13 shows the variation of  τξ  as well as the purely diffusive variance as a 

function of time for A=10. Again, from this figure, it may be noted that the coagulation-induced 

flattening effect on variance occurs early in time, and at later times,  almost parallel to the 

pure diffusive variance. 
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Fig. 3.13. Effect of coagulation-induced flattening on the temporal evolution of variance   of 

the spatial distribution of a spherical aerosol puff (A = 10) 
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3.3.2.4. Spatial variation of average particle mass inside puff 

 The average particle mass (  τρ,m ) (scaled w.r.t to the initial particle mass) is obtained 

from the ratio of the dimensionless mass concentration (  τρ,M * ) of the aerosol and the 

dimensionless total number concentration (  τρ,N* ) given by, 

   
  ,*

*

N

τρ,M
=τρ,m           (3.75) 

From Eq.(3.4), it may be easily shown that the mass concentration satisfies the free diffusion 

equation  

   



,MD=

,M *2
*





          (3.76) 

having the solution 

    
  2/32/3

2
*

4τ1

4τ1/exp

+π

+ρ
=τρ,M


.          (3.77) 

From the Fourier inversion of Eq.(3.64), the total number concentration is given by, 

    
   τψ
τξπ

τξρ
=τρ,N

2/32/3

2
* /exp 

        (3.78) 

Upon substituting Eqs.(3.77) and (3.78) in Eq.(3.75), one obtains 

   
        


















τξ+
ρ

τψ+

τξ
=τρ,m

1

4τ1

1
exp

4τ1
2

2/3

2/3

      (3.79) 

Since   )41( τξ due to coagulation induced flattening, the term multiplying 2 inside the 

exponential on the RHS of Eq.(3.79) is always positive. Hence, the average mass per particle 

will be highest at the centre of the puff and will decrease radially. This is as expected since the 

coagulation rate will be highest at the centre of the puff leading to larger particles as compared to 

peripheral regions of the puff. As the puff expands, the average particle mass would tend to 



81 
 

approach its asymptotic value at all radial points of the puff. These aspects are illustrated in Fig. 

3.14 which shows the evolution of the average particle mass with respect to time at various radial 

distances of the puff, starting with an initially monodisperse mass distribution. An application of 

the improved diffusion approximation model is shown in the following section. 
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Fig. 3.14. Evolution of average particle size segregation of particles in a Gaussian puff (A = 10) 

3.3.2.5. Application of the improved diffusion approximation model to 

vehicular emissions 

The spherical puff model is an ideal case for the problems like explosive releases, 

fireworks, etc., but lack of data on the input parameters for these cases restricts us in applying the 
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results. Vehicular emission is one of the major contributors of ultrafine particles (nanoparticles) 

in urban areas among the various sources mentioned in the introduction. It contributes 

significantly to the aerosol number concentration at the local scale by emitting primary soot 

particles (fine particles are combustion-induced) and forming secondary nucleated particles 

(ultrafine particles are dilution-induced). Most of the aerosol emission and transport studies for 

vehicular emission sources divide the study area into two distinct stages namely ‘tailpipe-to-

road’ and ‘road-to-ambient’ based on different mixing forces (dilution ratio). The first stage 

‘tailpipe-to-road’ is influenced by the traffic-generated turbulence which is a function of vehicle 

dimension and exit velocity of the exhaust gases from the tailpipe. The total time duration of 

‘tailpipe-to-road’ stage is around 3 seconds (3-10 minutes for ‘road-to-ambient’); the dilution 

ratio during this period is ~ 1000 (10 for ‘road-to-ambient’) (Zhang & Wexler, 2004). It is found 

that the nucleation process completes at very early stage, i.e., before 0.1 second (Du & Yu, 

2008). Hence, coagulation is the major aerosol processes will be acting at later stage (0.1-3 

seconds) of this ‘tailpipe-to-road’ dilution in the absence of condensation. There is thus a need to 

understand the effect of coagulation of aerosol particles during the puff dilution.  

Vehicular releases may be approximately considered as a series of puff releases, emission 

point being at the end of the exhaust pipe. In the initial stage of dilution (‘tailpipe-to-road’), a 

typical total number concentration of 1010 #/cm3 contain both combustion-induced (50-60 nm) 

and nucleation-induced (2-5 nm) particles (Albriet et al, 2010). Coagulation kernel (K) of      

~10-8cm3/sec is considered for the calculations. Assuming a spherical aerosol puff of width 10 

cm, the initial total number in the puff is estimated to be 5.24x1012. The diffusion coefficient D is 

estimated by comparing the volumes of the two different models (one from the diffusion theory 

and other from the dilution ratio measurements for vehicular emissions in the very early dilution 
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stage (Du & Yu, 2008)), and it is found to be in the range of (70-300) cm2/sec. For a weak 

dilution, i.e., D=70 cm2/sec, the value of the parameter A is 1.19. With a typical value of A 

=1.19, the asymptotic survival fraction from Eq.(3.72) is 0.48. Thus, the effective total number in 

the puff/cloud at a large downwind distance is ~50% less than the initial number. This shows that 

the effect of coagulation is marginal in reducing the total number of particles injected into the 

atmosphere from vehicular emissions.   

3.4. Summary 

The uniformly mixed volume expansion model is simple to implement using numerical 

methods provided the volume expansion rate is known a-priori. The coagulation-diffusion model 

contrasts with the uniformly mixed expansion models developed by earlier investigators since it 

explicitly accounts for spatial inhomogeneity of particle concentrations, and it does not require 

any explicit volume expansion rate. This model holds good for diffusion dominated regime of 

aerosol transport. The improved diffusion approximation model (improved model developed 

over diffusion approximation model) brings out the special effect of the coagulation-induced 

flattening of the spatial concentration profiles because of which particle sizes will be larger at the 

centre of a Gaussian puff. Using this model one can obtain a formula for the ultimate number 

survival fraction as     5/-4451 A+=ψ puff   where,   0
2/3

0 2π4 DbKNA   for a puff of initial 

width b0 consisting of N0 particles. This approximate analytical formula, termed as 4/5th law, 

obtained for the survival fraction is in close agreement with accurate numerical solutions. It is a 

simple formula that combines the variables of the problem into a single parameter, and proposed 

as modifiers of emission factors. Thus, the study provides approximate analytical solutions to 

predict survival fractions for the number concentrations of particles injected into the open 

environment from puff releases.  
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Chapter 4. Survival fraction for the plume releases  

4.1. Introduction 

Unlike the situation in respect of pure dispersion problems, the extension from puff to 

plume for continuous releases is far from simple when coagulation is considered. In purely 

dispersing linear systems, a plume can be considered as a limiting train of equally spaced puffs 

and therefore the distribution of the plume may be obtained as a linear superposition over all the 

puffs; however when coagulation is involved, one has to account for inter-puff interactions in 

addition to the intra-puff effects. One would therefore expect somewhat different results for the 

resulting distributions. There has been considerable discussion regarding Lagrangian descriptions 

of puffs as analogues of plume behavior (Seinfeld & Pandis, 2006) for reacting systems. The 

plume releases, corresponding to continuous releases, is discussed within a 2-D framework under 

the assumptions of constant advection velocity (U) and space dependent diffusion coefficient 

expressed in terms of turbulent energy dissipation rate (). Essentially, only the early phase 

inhomogeneous coagulation process during dispersal is considered; the homogeneous processes 

such as interaction with pre-existing background particles or the formation of new particles from 

the gases emitted from the sources due to photo-oxidation in the atmosphere after the dispersal is 

complete, are excluded. Besides this, the condensation/evaporation of volatile vapours onto and 

from the source particles during the early dispersal phase is not included since these are 

essentially number conserving processes, which mainly affect the size spectrum, but do not 

create or destroy particles.  

The present approach (based on improved diffusion approximation model) involves 

construction of moment equations for the evolution of number concentration and variance of the 



85 
 

spatial extension of plume in terms of either time or downstream distance. These equations are 

solved simultaneously and a simple formula is obtained to evaluate survival fraction in the 

context of plume (continuous) releases under the assumption of a constant coagulation kernel.  

4.2. Problem formulation 

Consider a continuous emission source such as an incense stick, candle or forest fire as 

the source region. Let us assume that particles are formed in a combustion zone of circular cross-

section and are transported by advection due to wind having a speed U along X-axis. Let the 

initial radius of the combustion area be 0, which can be taken as the standard deviation of the 

radial distribution of particles within a Gaussian distribution framework. The evolution equation 

for a coagulation-diffusion system is given by, 

 

'r,t)du)n(uK(u,u'r,t)n(u,

r,t)du'ur,t)n(u)n(uu',uK(u+r,t)n(u,D(r,t)=truUn
t

r,t)n(u, u













0

0

,'                  

,',''
2

1
.)],,(.[

 

(4.1) 

where,  dutrun ,,  is the number of particles with particle volumes lying between u  and du+u  

per unit volume of the fluid at position r  and time t , K(u, u’) is the coagulation kernel between 

the particles of volume u and u’, D(r,t) is the space dependent diffusion coefficient and U(r,t) is 

the advection velocity. For puff releases, the study is restricted to the case of a constant, 

representative, diffusion coefficient chiefly because it renders itself amenable to exact analytical 

solution that is useful for benchmarking the functional form of solutions in more complex 

situations. In general, the diffusion coefficients of the particles follow the atmospheric eddy 

diffusion coefficients, which in turn are expressed either as space dependent functions (r4/3 

formula, Richardson, 1926), or time dependent functions (t2 formula, Batchelor, 1952). As will 
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be seen in this study, invoking space varying diffusion coefficients is essential for continuous    

2-D plume releases, since these do not admit of non-zero ultimate survival fractions for any 

assumed constant diffusion coefficient. Hence for plume releases, the case of a diffusion 

coefficient that varies as a function of the downstream distance analogous to the t2 law above is 

considered.  

 Ideally, one may use the Fuchs generalized kernel for K(u,u’) in the entire size range. 

However, as argued by Turco and Yu (1999), for practical purposes, an effective constant kernel 

is employed that essentially captures the coagulation of the particles in the dominant size range 

of the original particles. This would render K as a function of time only, which greatly helps in 

recasting the equation. It may be noted that during the entire process of coagulation, this time 

dependent kernel hardly changes beyond a factor of 3 and hence for all practical purposes, one 

can assume a representative constant kernel predominantly corresponding to the coagulation rate 

at the early part of the evolution of the released particles.  

Let the area integrated steady mass emission rate in the plume be M0 (kg per s) and the 

corresponding particle number emission rate carrying the mass be S0 (particles per second). In 

combustion sources, large number of chemical species will be formed at the hot zone of the 

source some of which, mainly of low vapour pressure materials, will form critical nuclei as the 

plume cools downstream. These nuclei will grow very quickly due to the condensation of 

remaining vapours as the plume cools down further as well as due to rapid coagulation of the 

critical nuclei. Within a short downstream distance from the hot zone, most of the condensable 

vapour would have been exhausted and stable clusters would have been formed. The 

characteristic initial radius (rc) of these clusters would be about 5-10 nm (Lighty et al, 2000). For 

the present, let us assume that rc is the effective initial size parameter of particulates which carry 
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the mass loading due to the emission source (It turns out later that the results are relatively 

insensitive to the choice of rc). Then the number emission rate to mass emission rate is related 

through the formula 

3
00 )3/4( cm rSM            (4.2)  

It is postulated that the onset of the dispersal process along with further coagulation from 

a point located at some downstream distance from the source beyond which no new particles are 

formed. This location is referred as the origin of the X-axis. Unlike the 3-D puff case, the plume 

case is generally treated within a 2-D diffusion framework. This is based on ignoring diffusion 

along the wind direction under the implicit assumption that the axial Peclet number is quite 

large; one then treats dispersion process by considering advection along the flow direction and 

diffusion in the cross-wind direction. However, the cross-wind diffusion coefficients are 

generally assumed to increase with the downstream distance in a power law fashion. Most 

commonly, one expresses the diffusion coefficients through the relationship 

dx

xdU
xD

)(

4
)(

2
           (4.3) 

where, 2(x) is the variance of the plume width in the cross-wind direction. As mentioned in the 

introduction, the variance is taken as power-laws either of distance or of time. Most commonly 

used power-law is the cubic law (Ott & Mann, 2000): 

3
0

2
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2 )/()/(4)( UxCUxDx          (4.4) 

where, is the initial width, D0 is the particle diffusion coefficient in the source region and C is 

a constant, and  is the turbulent energy dissipation rate. With the above, D(x) assumes the form: 
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Assume cylindrical symmetry of the plume and set-up a steady-state dispersion 

coagulation equation for the evolution of the particle volume integrated total number 

concentration, under the assumption of a constant kernel. Then Eq.(4.1) becomes, 
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where, x and r are the spatial coordinates in the downwind and crosswind direction respectively. 

The initial particle distribution is given as  
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In terms of dimensionless variables    rxN
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where, W(x) is the dimensionless variance of the plume width: 
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with the initial condition  
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As in the puff case, a Fourier space solution is developed by defining a 2-D Fourier Transform 

(FT) on the radial variable: 

   ''2πexp ' 2* rdrki)r(x,N=k)φ(x,


       (4.12) 
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Upon taking the FT of Eq.(4.8)  
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Gaussian approach in the puff case is adopted to solve the Eq.(4.13), since the function (W(x’)) 

does not have radial dependence. As earlier, the following ansatz is used that accounts for the 

coagulation induced flattening effect on the evolution of the variance of the plume: 

   4/ )(exp )( 2kxxkx,           (4.14) 

where, )(x  is the survival fraction and )(x is the variance (non-dimensional) of the spatial 

dispersion of particles in the cross-wind plane. By substituting Eq.(4.14) in Eq.(4.13), and 

collecting terms within the k2 order, one obtains the following set of equations: 
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4.3. Survival fraction for constant diffusion coefficient  

For illustrating the analytic solvability of the plume model, one may ignore cubic 

dispersion and assume only constant diffusion coefficient:  One then has, x
U

D
xW
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04
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 . Upon substituting this in Eq.(4.16), the coupled nonlinear ODEs (Eq.(4.15) & 

Eq.(4.16)) can be integrated analogous to the 3-D case. One obtains an exact, albeit implicit, 

relation between the survival fraction and the downstream distance as follows: 
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where, B is the crucial dimensionless parameter, defined as  
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Although this cannot be reduced any further, graph between x and  can be generated by 

evaluating the integral for various values of  from which x may be estimated.  

An important feature of the solution given in Eq.(4.17) is that the survival fraction tends 

to zero as x tends to infinity. It can be shown from asymptotic expansion that for large values of 

the RHS of Eq.(4.17), the survival fraction approximates to the formula 
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which is also known as classical Jaffe result in columnar ion recombination theory. As may be 

seen,  tends to zero as x tends to infinity irrespective of the value of diffusion coefficient. 

However this monotonic reduction occurs very slowly and in practice turbulent diffusion effects, 

which are necessarily present in the atmosphere, will take over beyond some distances.  

Eq.(4.17) is a closed form solution wherein downwind distance (x) is expressed as an 

integral function of , which may be easily evaluated with Mathematica (2005). Figure 4.1 

shows a comparison of the Eq.(4.17) and Jaffe solution with the numerical solution of the PDE 

(Eq.(4.6)). Again the prediction from the present analytical formula is almost indistinguishable 

from the accurate numerical results. In 2D, the survival fraction eventually should tend to zero 

since, unlike in 3D, there do not exist enough diffusive pathways to escape recombination. The 

difficulty arises in extending this model from puff to plume geometry due to intermixing of 

puffs. 
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Fig. 4.1: Comparisons of different approaches for the temporal variations of the survival fraction 

for a cylindrical column (d = 2) for the case with B =10.   

 

4.4. Survival fraction for the case of turbulent diffusion  

In view of the above, incorporation of turbulent diffusion is inescapable to provide 

estimates of the survival fraction of particles in plumes which disperse into background. One 

then has to necessarily solve the cubic variance equation given in Eq.(4.9). 

Supposing the initial constant diffusion coefficient is very small (this has been justified 

by actual numerical computation as well) compared to the rapidly increasing quadratic diffusion 

coefficient, the second term in Eq.(4.9) can be neglected and the Eq.(4.9) can be written as 
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As in the earlier case, the second term in Eq.(4.21) represents the contribution of 

coagulation-induced flattening to the evolution of the plume variance. It is worth noting that the 

case of non-constant diffusion problem also possesses a single coupling parameter , analogous 

to A in the constant D case (for puff releases) discussed in Section 3.3 of Chapter 3.   

Eqs. (4.20) and (4.21) cannot be solved exactly. However, when the coupling parameter 

 is small (<<1, weak coagulation), one can ignore coagulation-induced flattening of the plume 

and hence neglect the second term in Eq.(4.21). Under this assumption     W=ξ , the survival 

fraction is given by, 
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    (small  limit)       (4.23) 

Upon taking the limit of →∞, the asymptotic survival fraction is given by, 
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In general for arbitrary , the coupled ODEs have to be solved numerically which can be easily 

executed using packages such as Mathematica (Wolfram Research, Inc., 2005). Since the 

quantity of crucial importance is the asymptotic survival fraction which will be a function of 

only one parameter, this quantity is numerically computed over a wide range of . For practical 

applicability, a function is fitted to these values, having a mathematical form analogous to that 

rigorously obtained in the puff case to maintain consistency between the formulae. The fitted 

formula for the plume model is 

 
  76.0 32.11

1





plume .  (fitted)       (4.25) 

Fig.4.2 shows the fitted expression along with the plot of Eq.(4.24) over a wide range of 

 varying from 0 to 105. Upon multiplying  plume with the particle number emission rate (S0) 

at the source region, the ultimate number loading rate,  S , of particles to the atmospheric 

background, which eventually survive intra-plume coagulation can be obtained.    

The model has an important implication in respect of the dependency of the ultimate 

number loading rate on the initial data. For the purpose of illustration, the fitted exponent (0.76) 

in Eq. (4.25) is replaced by 0.75 (=3/4). Then for large , the ultimate number loading rate to the 

aerosol background may be expressed as  

  4/14/3
0

4/34/1
00 ~)(  UKSSS plume    ( >> 1)     (4.26) 

This is a remarkable result which implies that the ultimate number loading rate is 

relatively insensitive ( 4/1
0~ S ) to the assumed value of original number emission rate. An 

uncertainty by a factor of 100 in the choice of S0 would only alter the loading rate by a factor of a 
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little over 3. Similar is the situation in respect of . These weak dependencies provide certain 

robustness to the formulation and make it possible to estimate the loading factors within far 

lower ranges of uncertainties than the uncertainties associated with the original parameters. 
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Fig.4.2: Survival fraction in the plume as a function of  (turbulent diffusion case) 

4.5. Coagulation in a spatially inhomogeneous plume: Origin of 

bimodal size distribution 

In the previous chapters, the focus is essentially on the evolution of the total number 

concentration, without having to obtain detailed size distributions. When particles are nucleated 

from finite size sources, their concentration will be highest at the centre of the source and would 

decrease rapidly at the periphery. As noted in the context of studying the coagulation induced 
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flattening, due to spatial inhomogeneity, coagulation will be most pronounced at the centre of the 

source giving rise to larger particles after a short time, as compared to those at the periphery. 

This differential coagulation rate will result in a bimodal distribution of particle sizes. We 

illustrate the possibility of this phenomenon below by a simple model that captures the essence 

of spatial inhomogeneity and coagulation. 

 Let us consider a circular combustion source of radius a, (say, a circular tip of burning 

wood) kept in a flow field having small advection velocity normal to the source plane. In the 

earlier treatments, we assumed Gaussian profiles for the spatial distributions under an implicit 

understanding that the diffusion process will eventually render all distributions into a Gaussian 

shape, after sufficient time. When diffusion is weak, the spatial number concentration profile will 

have the shape of a nearly flat top near the source. This shape represents high and uniform 

concentration in the central regions and a rapid fall near the periphery. Although one may 

construct a large number of mathematical functions having this shape, for simplicity the 

following form is choosen 
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
 
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s

ar
NrNrN erfc 0)0,( 00

         (4.27) 

where, N0(0) is the number concentration at the centre of the circle, and s is a constant. 

Let us assume that these particles are monodisperse having volumes,u0. Due to the flow 

field, these particles will be advected along say, X- direction normal to the plane of the source, 

and then let us denote time as t = x/v, where v is the advection velocity. Let us assume that there 

is no lateral diffusion. In other words, we are going to consider only an early time process of a 

high concentration aerosol whose coagulation time scale is far smaller than the diffusion time 

scale, near the source region. If the lateral diffusion is ignored, then particles at different radial 

points will coagulate at different rates dictated by their concentration, N0(r). Let us denote their 
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size distribution at a radial distance r from the centre-line as n(r,u,t). If the initial concentrations 

are very large, then the size distribution will attain self-preserving form (similarity form) having 

r -dependent characteristic parametters. From the standard similarity theory, this may be 

expressed as,  
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where, N(r,t) is the size integrated number concentration at r, t: 
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and g() is the scaling function having the property: 
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Since we are considering nano-particles, their coagulation process may be adequately 

described by free-molecular kernel. Depending upon the fractal dimension of the particles, it will 

possess a homogeneity index , (1/6 < < 1/2). 1/6 corresponds to compact clusters and 1/2 will 

be that for fractal dimension less than 2. Also, for a scaling kernel, similarity theory yields the 

result: 
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where, K0 is an effective coagulation coefficient.  

As time progresses (i.e. as the particles move away from the source), coagulation will 

become weaker and weaker and dispersion will eventually overtake the coagulation effect. More 

significantly, due to dispersion, the particles will be mixed in space resulting in an effective size 

distribution across the entire plume. Let us say that this happens after a time, say tc. The size 

distribution over the entire plume after time t (< tc) is obtained by integrating Eq.(4.28) over all r. 
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In order to evaluate the integral, we need to assume a form for the scaling function g(). 

This function generally satisfies an ordinary, nonlinear integro-differential equation and 

excepting for constant kernel no analytical forms are available. However, these functions have 

been numerically evaluated for Brownian and free-molecular kernels (Friedlander, 2000). The 

characteristic feature of this function is that it has a well-defined peak and is skewed to the right. 

Hence, for practical purpose it may be approximated by a normalized lognormal distribution, 

with two free parameters. 
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The application of the additional constraint (Eq.(4.30b)) leads to the relation 
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Hence, g() will have one free parameter which will vary depending on the type of the 

coagulation kernel. In the foregoing, we use it as a free parameter to illustrate the effect. Let us 

now evaluate Eq.(4.32) by using Eqs.(4.27), (4.31), (4.33), (4.34). For typical calculation, the 

following parameters are assumed:  = 1/6, g = 1.5, s = 0.1a (a = 1). The time parameter is 

rendered dimensionless by defining  

    tNK  01 00            (4.35) 

The integration (Eq.(4.32)) is carried out numerically using Mathematica software, for different 

values of .  The results are shown in Fig.4.3.  

It is seen from the figure 4.3 that the system gradually develops a second mode as 

increases. This mode broadens with time eventually becoming a long tail of the first mode.  
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Fig.4.3: Evolution of bimodal size distribution in a spatially inhomogeneous plume 
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Although not shown in the figure, several simulations are carried out using various values of the 

parameters. The features of the bimodal phenomenon are somewhat insensitive to the form of the 

functions chosen. Generally, the sharpness of the second mode increases as the scaling function 

becomes narrower, (when g is decreased) and as the initial concentration distribution gets 

tighter (as the s parameter is reduced). An increasing  index causes the second peak to appear 

earlier apart from broadening it.  

Although highly qualitative and phenomenological, the foregoing analysis illustrates that 

the bimodality induced by spatial heterogeneity is a simple consequence of differential 

coagulation growth rates of the particle sizes in different regions of a finite sized particle source. 

This would be especially more pronounced at early times when the concentrations are high. One 

can expect that this process will be ubiquitously present in combustion sources or sources 

operating by vapour condendsation processes, which will rapidly cease as the plume disperses 

with distance. The distributions emerging out of the combined effect can only be modeled on a 

case-to-case basis by taking the source distributions and disperion characteristics. In this section, 

it is merely demonstrated the possibility of spatial inhomogeneity as a factor to be considered in 

understanding bimodality (see next chapter) and we relegate further work on this topic to future 

studies. 

 4.6. Applications of the model to Forest fires  

In the case of combustion aerosols, the freshly emitted particle number concentration lies 

in the range of (1011-1014) #/cm3 near the combustion sources or the plumes of less age (Lighty et 

al, 2000). The forest fires are the large combustion sources that affect the climate drastically over 

large areas. It is found that the length of the headfire is in the range of few hundreds of meters to 

few kilometers (Hobbs et al, 2003), and it may be discontinuous in nature. Hence a plume width 
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of 1000 m (1 km) is considered for this study. The mass emission rate is taken as 1000 kg/sec 

(Ichoku & Kaufman, 2005). The corresponding number emission rate to this mass emission is 

calculated to be ~2.0 x 1024 #/sec (Eq.4.2) by considering the average particle diameter of 10 nm 

and a density of 1 g/cm3. The atmospheric turbulent kinetic energy dissipation rate () is taken as 

5.0 x 10-4 m2/sec3, and the constant (C) used in the turbulent diffusion model is around 0.8 

(Chen, 1974; Pandey & Pandey, 2007; Ott & Mann, 2000). A typical wind velocity of 2 m/sec is 

considered for this case study. With these input values, the value of the parameter  is 1.31x105, 

and the asymptotic survival fraction (Eq.(4.25)) is ~1.1 x 10-4. It may be noted that the Jaffe type 

solution (Eq.(4.24)) yields a much lower survival fraction of 7.7 x 10-6 which clearly 

demonstrates that coagulation induced flattening has a significant effect in intense, large and 

extended time sources such as forest fires. The total particle injection rate becomes 2.2 x 1020 

#/sec. One may estimate the corresponding number averaged particle diameter injected into 

background as ~200 nm.  

The robustness of the result in respect of the initial data on number emission rate may 

also be illustrated as follows. Considering the case discussed above, if S0 = 2.0 x 1020 (lower by a 

factor of 104) and other parameters remained the same, then =13.1, the survival fraction 

 plume =0.11. However the ultimate number loading rate  S  would still be about 2.1 x 1019 

#/sec, which is only one order lower than the previous value. Similarly one can show that if 

increased by factor of 1000,  S  would reduce only by about a factor of 10. These 

illustrations indicate that it is not quite crucial to have very accurate values for some of the 

“difficult to estimate” initial parameters for predicting the number of particles contributed by 

strong continuous sources to the atmosphere that persist as background aerosols. While it is  

recognized that there is no alternative to full numerical computations for detailed information on 
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aerosol distributions, the summary formulae presented here could still serve as useful guidelines 

for establishing the relative importance of processes in implementing these models. 

4.7. Summary   

The present study addresses the question of plume emissions from localized sources in 

the presence of atmospheric turbulence. It provides simple scaling relations for the survival 

fractions and the number loading factors. In the case of plume model, the results demonstrate a 

certain level of robustness of the ultimate particle loading rates with respect to the initial data on 

the initial number emission rates and atmospheric turbulence energy dissipation rates, which is 

reassuring in view of the practical difficulties in obtaining these data accurately. For plume of 

initial width 0 emitting S0 particles per unit time, the formula for the survival fraction obtained 

by fitting the numerical solutions is obtained as     76.0 32.11   plume where, 

  3134
00  36  CUKS  and C is a constant (~0.8). Further, it is shown that the atmospheric 

ultimate number loading factor (S(∞)) is relatively insensitive to the original number emission 

rate (~S0
1/4), and the turbulent energy dissipation rate (~when the source is intense. It is 

hoped that it might be possible to test some of the results by both direct numerical simulations 

and experimental measurements in future studies.  
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Chapter 5. Coagulation of nanoparticle aerosols 

released continuously into a well stirred chamber  

5.1. Introduction 

The presence of sources of anthropogenic nanoparticles, particularly in the indoor 

atmosphere of workplaces and schools, is of considerable concern with regard to their impact on 

human health. One characteristic feature of nanoaerosols is their dynamic evolution with respect 

to concentration and size distribution during the time of transport from the source to the receptor 

due to various mechanisms. In a recent study, Schneider et al. (2011) discuss the importance of 

such modifying factors for the metrics used to estimate the potential hazard of ENPs and, indeed, 

efforts are increasing to understand how such aerosols evolve in the indoor environment 

(Seipenbusch et al, 2008, Schneider & Jensen, 2009, Schneider et al, 2011).  

The factors responsible for changes in the number concentration and size distribution of 

an aerosol include homogeneous and heterogeneous coagulation, as well as particle removal due 

for example to ventilation or wall losses. These mechanisms are linked to the characteristics of a 

nanoparticle source, interaction with preexisting particles, as well as the transport, mixing and 

dilution conditions specific to a given environment. Although well understood in principle, it is 

not at all a trivial task to develop meaningful models and to estimate changes, even the order of 

magnitude of changes, in aerosol size distribution for a given situation; and it is even more 

difficult to distill general conclusions which will be relevant for a broader type of situation. For 

this reason, one often resorts to scenarios.  

One such scenario of particular relevance to engineered nanoparticles involves their 

continuous emission into a confined space or a chamber, from a volume source. Several 
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analytical and numerical studies have been carried out for a variety of aerosol systems with 

continuous source injection (Barrett & Mills, 2002; Schneider & Jensen, 2009; Landgrebe & 

Pratsinis, 1989; Kim et al. 2003). The details of these studies are discussed in the Literature 

survey section of Chapter 1. While these studies provide general insight into the phenomena to 

expect, and of course demonstrate that simulation techniques are well established, they do not 

offer insights into long time system behaviour and interplay of various mechanisms. Also, they 

fall short of providing general conclusions relevant for workspaces, i.e. large enclosed volumes 

of air with constant aerosol sources. It is still of considerable interest to explore the relative 

influence of various factors driving such systems, and to obtain a better understanding, e.g. of 

when multimodal aerosol distributions evolve, the relative importance of the modes, etc. 

In this context, there exist interesting experimental observations of aerosol evolution for a 

scenario in which nanoaerosol is continuously injected at different rates into a large, well mixed 

volume of air, with and without the presence of a background aerosol (Seipenbusch et al, 2008). 

One such observation is the occurrence of a transient peak in the total number concentration 

during filling of the chamber, as well as indications of an asymptotic stabilization of the total 

chamber concentration due to the interplay between freshly injected aerosol and the removal of 

particles by coagulation or ventilation. It is of considerable practical interest to know under what 

conditions the concentration would eventually stabilize in the chamber, and how this would 

depend on source strength and removal rate parameters. Similarly, the conditions for the aerosol 

to develop a distinct secondary large-particle mode need to be explored because this has a direct 

impact on the coagulation processes taking place.  

Some of the features observed in these experiments are not easily explained or 

reproduced by straightforward models using constant coagulation kernels, because the dynamics 
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of such systems must exhibit pronounced size dependent features. It is therefore necessary to 

extend the simulation to realistic coagulation kernels and also examine other effects such as 

changes in collision radius of particles due to the formation of large fractal aggregates. Given 

these motivations, the application of a discrete numerical simulation covering the entire particle 

size regime to investigate solutions to the general dynamic equation with a constant source term 

and a constant removal term by ventilation is described. Coagulation is treated on the basis of the 

practically relevant Fuchs kernel and allowing for the growth of fractal particles. A two-group 

analytical model is developed to assess the asymptotic behaviour of the nanoparticles injected 

into a closed chamber. Laboratory experiments are carried out to validate these models. 

5.2. Formulation of the problem 

Let us consider a scenario adapted to the experiments described by Seipenbusch et al. 

(2008) in which nanoparticles are released continuously into a large volume. The aerosol system 

evolves by continuous injection of particles at a constant rate, by coagulation, and by removal / 

dilution with clean air at a constant rate. It must be pointed out that spatial inhomogeneity 

(Kasper, 1984) is more of a rule than an exception when particles are released from localized 

sources, and the complexity of addressing these problems has been discussed in previous 

chapters. Particularly, the effect of spatial inhomogeneity on the size distribution is discussed in 

the section 4.5 of the chapter 4. However, if the aerosol is mixed rapidly through mixing 

elements such as fans or induced ventilation, one may, to a first approximation, treat the aerosol 

concentration as spatially homogeneous at all times. Then the rate of change of aerosol 

concentration in the chamber is given by 
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where K(u, u’) is the coagulation kernel (m3s-1) between particles of volumes u and u’, n(u, t) is 

the number concentration (m-3), v is the ventilation rate  (s-1), d(u) is the removal rate due to 

wall/surface deposition processes, QVVtuS s )(),(   is the particle number injection rate of the 

source (m-3s-1), sV  is the source volume flow rate to the chamber (m3s-1), V is the volume of the 

chamber (m3), and Q is the number concentration at the source (m-3). The initial number 

concentration in the chamber is assumed to be zero (n(u, 0) = 0). The first term in the RHS of 

Eq.(5.1) represent continuous source injection, the second and third terms represent coagulation, 

and the fourth for ventilation and size dependent removal processes.  

Supposing, for the sake of simplicity, one makes an assumption that the coagulation 

coefficient may essentially be approximated by an effective constant, i.e. K (u, v) = K. Further 

we assume that the removal rate due to deposition is negligible as compared to ventilation. Then, 

one obtains the following nonlinear equation from Eq.(5.1) for a constant source term: 

NtN
K

S
dt

tdN  )(
2

)( 2          (5.2) 

where, the total number concentration is defined as,   



0

 ),( dutuntN . For the initial condition 

N(0) = 0, the solution to this equation may be easily obtained by quadrature as follows:  

    
    




















22

222/1

2424 2exp

2424 2exp2
)(





AKAKtAK

AKAKtAK

K

A

K
tN    (5.3) 

where, 
K

SA
2

2
 . 

At large times, the above expression tends to a steady-state given by, 
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In the absence of removal processes, the solution of the Eq.(5.2) is given by, 
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This leads to a steady-state concentration,
2/1

2
)( 


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

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K

S
N .  This is an interesting result that 

deserves attention. In the absence of ventilation removal, one expects the mass concentration to 

diverge to infinity after sufficiently long time because of the continuous injection of particles.  

However, the presence of the coagulation manages to limit the number concentration to a finite 

value for constant kernel. This raises a question as to whether a finite number concentration will 

be sustained for size dependent kernels?. The assumption of a constant kernel is reasonable for 

homogeneous problems involving one time injection of monodisperse particles. In contrast, 

under continuous injection, the number concentration will be dictated by the fact that the injected 

nanoparticles will be scavenged by the coagulated large particles and the rate of this scavenging 

increases with particle size. Constant kernel is a too simplistic an assumption to handle this effect 

and to address the question raised above, it is necessary to go for the next level of approximation, 

achieved by formulating the two-group model. 

5.3. Two-group model 

In order to provide quantitative insights into the temporal behaviour of the total number 

concentration, the approach of Jeong and Choi (2003) is followed and a simplified two-group 

model of the coagulation problem under continuous injection is proposed. Let us assume that 

essentially the behaviour can be described by the interactions between the particles of two 

different size groups; the first one corresponds to the mean particle volume of the injected 

nanoparticles (v1), and the second group to the mean particle volume of the part of the size 
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spectrum of the already coagulated particles (v2(t)) (i.e. excluding the first group). The entire 

spectrum of the second group is represented by a single effective size determined by mass 

conservation. This approach is somewhat similar to the two-group model proposed by Jeong and 

Choi (2003) for the case of coagulation of coalescing particles. Unlike their formulation, we do 

not consider coalescence. The two-group model results in a purely differential formulation of the 

coagulation equation which can be easily subjected to mathematical analysis, also at long times. 

Let N1(t) be the number concentration of the particles of the first group having constant size v1, 

and N2(t) be the number concentration of the particles of second size group of volume v2(t) at any 

given time t. Then, the total number concentration   tN  is given by, 

     tNtNtN 21            (5.6) 

The evolution of N1(t) and N2(t) proceeds via the coagulation processes described by three kernel 

types, i) the coagulation coefficient K11(v1,v1) among particles of first size group, ii) the 

coefficient K12{v2(t),v1} for the coagulation between first group size particles of volume v1 and 

second size group particles of volume v2(t), and iii) the coagulation coefficient K22{v2(t),v2(t)} 

between the second size group particles themselves. The effect of externally maintained 

ventilation is included by introducing a size independent removal term. With this, one can write 

down the following equations for the process of evolution of N1(t) and N2(t): 
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The evolution equation for the total number concentration (Eq.(5.2)) is now split into two 

separate evolution equations (Eq.(5.7) & Eq.(5.8)). In Eq.(5.7), the first term on the RHS is the 

number of particles injected into the study volume per unit time per unit volume, the second term 
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represents the loss of particles from the first group due to homogeneous coagulation. The loss 

term will not involve the usual factor 1/2 because of the following reason. There will be 

)(21 2
111 tNK coagulation events between the primary particles themselves per unit time and since 

two particles are lost in each event and the coagulated particle is lost from this group to the 

higher group, the loss rate in the first group will be  )(21*2 2
111 tNK  = )(2

111 tNK . The third 

term on the RHS represents loss of first-size-group particles due to the interaction with the 

second-size-group particles. Similarly, in the second equation (Eq.(5.8)), the first term (gain 

term) in the RHS represents the contribution due to homogeneous coagulation of first size group 

particles, and the second term in the RHS represents the loss of the second size group particles 

due to their homogeneous coagulation. Heterogeneous coagulation between the first and second 

size group particles does not contribute to the change in the concentration of second-size-group 

particles. These two equations need to be supplemented with the mass conservation law which 

will provide equation for v2(t) as follows:  

Let (t) be the total volume concentration (of both size groups) in the air space (i.e., mass 

concentration divided by particle density). Since coagulation is a volume (mass) conserving 

process,  (t) increases linearly with time because of steady and continuous injection satisfying 

the following equation.  

   tSv
dt

td 
 11           (5.9) 

However,  (t) is related to v2(t) and v1 through the following closure equation, 

       tvtNvtNt 2211           (5.10) 

From Eqs. (5.9) and (5.10), one can obtain the following relation for the volume of the second 

size group,   
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The initial conditions for this model are, 

        00 ;00 ;00 ;00 221  vNN        (5.12) 

Although the above set of equations is nonlinear and complex, it is attractive because it 

can be easily solved for any type of kernel using differential equation solver packages such as 

Mathematica. More importantly these equations are amenable to asymptotic analysis in order to 

elicit the long time behaviour of the solutions analytically.  

5.3.1. Additive coagulation kernel 

In order to illustrate the usefulness of the two-group model, we first apply it for a size 

dependent, yet relatively simple, coagulation kernel such as the (u+v) kernel, which is 

analytically solvable. The additive coagulation kernel ((u + v) kernel) arises in the study of cloud 

droplet coalescence (Bertoin, 2002; Scott, 1968; Berry, 1967; Hidy & Brock,), gravitational 

clustering in the universe (Sheth & Pitman, 1997), and phase transition for parking (Chassaing & 

Lochard, 2001). This kernel has the following form, 

   vuvuK ,            (5.13) 

where, is a constant.  

By substituting the Eq.(5.13) in Eqs.(5.7) & (5.8), one can obtain, 
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The evolution equation for total number concentration can be obtained from Eqs.(5.14) & (5.15) 

by using the relations,      tNtNtN 21  ,and         1122 vtNttvtN  , and is given by, 
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dt

tdN   )(
)(

1         (5.16) 

Let us non-dimensionalise the above equation by introducing the following dimensionless 

variables, 
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where,   11111  2, vvvKK  , from Eq.(5.13). By substituting the parameters defined in 

Eq.(5.17) in Eqs.(5.16) & (5.9), the following set of  equations can be obtained: 
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Eq.(5.18) and (5.19) together form the complete set of equations for the total number 

concentration. It may be easily verified that one arrives at the same set of equations starting from 

the unapproximated coagulation equation (Appendix - D), for the kernel under consideration. In 

view of this and the fact that the equations are simple to solve, the predictions from this case 

provide valuable guiding results on the general behaviour for more complex, size dependent 

kernels. Let us examine the behaviour of this system when  = 0. In this case, the Eq.(5.18) 

becomes, 
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where, * is replaced by 2*t . The solution of the Eq.(5.20) is obtained by quadrature and given 

as, 
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Let (t*-t') = x, then the Eq.(5.21) can be written as, 

    dxxtxtN
t

 





 

*

0

*** 2
4

1
exp         (5.22) 

Since major part of the contribution to the integral will arise from points near x ~ 0, we may 

assume  x << t* in the integrand above in which case Eq.(5.22) is reduced to, 
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From Eq.(5.23), the asymptotic number concentration (as *t ) is, 

 
*

** 2

t
tN    (for =0)        (5.24) 

Eq.(5.24) shows an important result that the total number concentration decays as t*-1 in the 

absence of removal processes. 

 For nonzero , the analytical solution is not very convenient as it involves higher 

mathematical functions. In view of this, Eqs.(5.18) & (5.19) are solved together using the 

numerical solver of Mathematica. For various removal rates, the temporal variation of total 

number concentration is plotted in Fig. 5.1. One notes that for  = 0, the concentration falls 

monotonically with time. A fit to the graph for large times shows that N*~1/t*, which is in 

agreement with analytical theory (Eq.(5.24)). When a slight ventilation removal is present, the 

concentration tends to approach a nonzero steady state. The value of this steady state increases 

with ventilation for  = 0.01, 0.1, 0.6 and decreases for higher ventilations (e.g.  = 2.0, 10.0). 

This is an interesting result that predicts a critical ventilation parameter for which the steady-

state particle concentration will be maximum.   
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Fig. 5.1: Temporal evolution of the scaled concentration (N*(t*)) for various removal rates (*) 

 In order to understand this somewhat intriguing result, we solve the equation analytically 

for the special case of steady-state (i.e., d/dt* = 0). The following steady-state solutions may 

easily be obtained from Eq.(5.18, 5.19):   
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21

2





N   (Steady-state number concentration)     (5.25) 

 ** 21      (Steady-state volume/mass concentration)    (5.26) 

This example clearly demonstrates in a simple way that the steady-state concentration is 

achievable only in the presence of removal processes as shown in the Eq.(5.25). From Eq.(5.25), 

it can be shown that steady-state concentration attains a peak value for a removal rate 

  707.021*  . This removal rate is called as critical ventilation rate. Beyond the critical 
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ventilation rate, the concentration decreases as expected (Fig.5.2). Considering the practical 

importance of this result in ventilation design for removal of high particle concentration in 

workplace environments, it is pertinent to explore the consequence for other kernels. More 

detailed discussion on this topic is presented in Section 5.5.1.4 (for the case of Fuchs coagulation 

kernel). 
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Fig. 5.2: Steady-state number concentration vs. removal rate in the case of (u + v) type kernel 

5.3.2. Fuchs coagulation kernel 

 Fuchs coagulation kernel is very often used in the study of Brownian coagulation process, 

and it is applicable for the entire particle regime (from free-molecular regime to continuum 

regime). Since the Fuchs kernel has a form of complex function unlike the additive kernel 

mentioned above, the analysis is carried out by numerical methods to obtain complete solution of 
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Eqs.(5.7) & (5.8). However, the asymptotic behaviour of this system is obtained analytically as 

follows: 

Since the particle sizes of the first group (primary) do not change with time, the 

homogeneous coagulation coefficient will be a constant quantity, say 21
12
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given by the free-molecular limit of the Fuchs kernel. Here, df is the fractal dimension, k is the 

Boltzmann constant, T is the temperature,  is the air viscosity, r0 is the radius of the individual 

spherule of volume v0, and  is its density. In the asymptotic limit of long times, the 

characteristic volume v2(t) of the second group particles will be large and hence the Fuchs kernel 

corresponding to their mutual coagulation will approach the continuum Smoluchowski kernel     
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3

8
, 2222

kT
tvtvK  ) which will be again a constant regardless of time. On the other hand, 

the heterogeneous coagulation coefficient (K12) between first group and second group particles 

will be time dependent according to the formula, 
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To render the equation more transparent for mathematical analysis, it is advantageous to 

introduce non-dimensional variables (some of them as in the text) as follows: 
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With these notations and by using the appropriate asymptotic limits of the Fuchs kernel, Eqs. 

(5.7-5.11) may be written in the following simpler form:  
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Let us now hypothesize that, after sufficiently long time, the concentrations )(1
 tN and

)(2
 tN vary according to the following power laws: 

  tatN  )(1 , )1(                (5.32) 

  tbtN  )(2      as t      (5.33) 

where, a, b are positive quantities. We do not impose any restriction on  ,  (they are positive 

or negative depending on whether )(1
 tN , )(2

 tN  are increasing or decreasing) except that 

)(1
 tN cannot increase faster than linearly (i.e. 1 ) so that )( tu in Eq. (5.31) (the size of the 
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secondary group) always remains a positive quantity. This implies, from Eq. (5.31), that 

asymptotically,  


 * ttbtu    as          ~)(

11 
        (5.34) 

Upon using Eqs.(5.31)-(5.33), Eqs. (5.29) and (5.30) transform to the following equations:  

 nnn tkbatata
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Let us first argue that cannot be greater than . Supposing the opposite were true, 

(i.e.   , then the first term on the RHS of Eq. (5.36) will dominate over the second term at 

large times. In that case, 




2*21*  
2

1
~ tatb


          (5.37) 

and upon matching the exponents one obtains, 

12   .           (5.38) 

Similarly, matching the pre-factors of both sides of Eq. (5.37), one obtains 


b

a

2

2

           (5.39) 

But the condition   implies that  22  which together with the condition obtained in Eq. 

(5.38) yields the constraint 

1 .           (5.40) 

But  cannot be negative since it violates the constraint (Eq.(5.39)) on the pre-factor requirement 

which should be positive. Hence, cannot be greater than . One can also arrive at the same 

conclusion by plugging Eqs. (5.38) and (5.39) in Eq. (5.35) and examining the condition under 
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which exponent of the leading term (third term on RHS of Eq.(5.35)) matches with the exponent 

(0) of the source term.   

Now, let us similarly argue that cannot be less than .  If the converse is true (i.e. 

  , the second term on the RHS in Eq.(5.36) will dominate over the first term, and hence,  
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The exponent and pre-factor matching implies that  
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
          (5.42) 

and the sign of the pre-factor (b) is positive which is acceptable. However, the above result 

1  is not consistent with Eq.(5.35). The first term (i.e. unity = 0)( t ) on the RHS of Eq. 

(5.35) can only be matched by the third term providing 

0  nn           (5.43) 

With the result 1 , one can obtain (from Eq.(5.43)) the relation n21  which implies 

that 1  (since   11  fdn ). This violates the starting premise that   , i.e. 1 . 

Hence by contradiction, cannot be less than 

In view of the above, the only possibility is that   . In order to determine this value, 

match the source term in Eq.(5.35) with the remaining terms which lead to Eq.(5.43). With 

  , this immediately yields the result 

12

1

2 





fdn

n          (5.44) 

The corresponding pre-factor from Eq.(5.35), yields 

11
1  kab n            (5.45) 
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and from Eq.(5.36), 

2
22 kba             (5.46) 

Eq.(5.44) determines uniquely the power of the leading terms in the asymptotic behaviour of 

)(1
 tN , )(2

 tN . The total number concentration may be given by, 

 )12/(1

21  )(~)()()(
  fd

tbatNtNtN       (5.47) 

This completely determines the law of asymptotic behaviour of the number concentration of 

particles for the problem of coagulation with continuous injection in the absence of removal. 

 From Eq.(5.44), for the case of a fractal dimension df =1.75, the value of the exponent 

)(    works out to be -0.4 and hence the total number concentration is expected to decay as 

4.0
 .~)(

 tconsttN , for df =1.75        (5.48) 

Hence for the Fuchs kernel too, the number concentration will approach zero in the absence of 

removal, albeit more slowly (exponent of -0.4 instead of unity) as compared with (u+v) kernel. 

This effect has been validated by the numerical simulation of the original integro-differential 

coagulation equation (Eq.(5.1)), as discussed in the next section. 

5.4. Numerical model 

The evolution of the size distribution is simulated by the nodal method as described in 

Section 2.3.1.1. The discrete form of the coagulation part of Eq.(5.1) is given by  
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Ki,j is the coagulation kernel for the interacting particles of size i and j, and χijk is the size-

splitting operator given by  
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where, ui is the volume of the particle at the ith node, and i, j and k are the corresponding particle 

sizes. At every coagulation step, the size-splitting operator redistributes the particles back to 

nodes to conserve the mass. The aerosol size distribution of the freshly injected nanoparticles 

(the source) is described by a log-normal distribution in terms of a series of discrete particle 

nodes, with the number of particles in each node representing the particle number concentration 

integrated between two consecutive nodes. 

The most widely used Fuchs coagulation kernel K(ri, rj) that accounts for transition 

regime effects is employed. It is given by,   
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wherein ri is the radius of the particle of size i, Di is the particle diffusion coefficient, i is the 

mean distance from the centre of a sphere reached by particles leaving the sphere’s surface and 

traveling a distance of particle mean free path i, and vi is the mean thermal speed of a particle. 

These parameters are given by 
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where, k is the Boltzmann constant, T is the temperature, a is the air viscosity, and Gi is the slip-

flow correction which further depends on the Knudsen number of the particle. 
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Implicit in the traditional derivation of rate kernels for clusters is the assumption that they 

are compact objects, which may be approximated by equivalent spheres. This is no longer found 

to be true. Fractal-like agglomerates are formed due to coagulation of solid primary particles. 

Experimental studies on the structure of metal smoke indicated that particle aggregates may be 

better described by fractal geometry. Fractals are self-similar objects; a small part, when 

magnified, appears exactly like the original cluster. Also, the clusters are spongy, having voids 

on all length scales. For real aggregates, self-similarity breaks-down at length scales of the order 

of the monomer size. Hence, the fractal description is adequate for clusters which are much 

larger than their constituent monomers. In brief, fractal clusters differ from compact clusters in 

the following important aspect. For a compact cluster, one can assign a constant density () such 

that its mass (M) is related to its radius (R) by 

M =  R3           (5.53) 

Compact objects can have voids; but these give rise to size independent porosities and hence size 

independent effective densities. For fractals, on the other hand, the porosity monotonically 

increases (the effective density decreases) with the cluster size. The mass therefore scales as a 

fractional power of the size, i.e., 

M = constant Rdf          (5.54) 

where, df is the fractal dimension of the cluster (df <=3). For metal smoke, df = 1.74. The above 

equation implies that the effective density of the cluster decreases as  

 = constant R-(3-df).          (5.55) 

 Two important models, viz., diffusion-limited aggregation (DLA), and cluster-cluster 

aggregation (CCA) models have been put forward in order to understand the origin of fractality. 

In the DLA model valid at low monomer concentrations, a given seed particle grows by the 
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successive accretion of monomers. The probability of a monomer being added at a given surface 

site is proportional to the Fickian flux, ܥ׏. ො݊, where, C is the monomer concentration field 

satisfying the Laplace’s equation ׏ଶܥ ൌ 0 outside the aggregate, with the irreversible sticking 

condition, C = 0 on the surface. Since the Fickian flux is higher at points having greater 

curvature, tips formed due to fluctuations tend to grow more rapidly than the shallower regions 

of the cluster. This leads to a progressive increase in the fractional void space as the cluster 

builds up, giving rise to a fractal object. Computer simulations of this model yield a fractal 

dimension of 2.5, which agrees with that obtained in laboratory experiments with colloids. It has 

been shown that the electrical charge on monomers has no effect on the cluster structure. 

 In the cluster-cluster aggregation model, many clusters are formed simultaneously in the 

suspension and the clustering of these clusters occurs. This is more like what happens in a high-

density aerosol as is implied in the coagulation equation. The inter-penetrability between a 

cluster and another cluster is much less than that between a monomer and a cluster, and hence 

larger voids are left in CCAs than in DLAs. Therefore, CCAs are far more ramified objects. In 

this case, the computer simulations give a fractal dimension of 1.78 which is close to that 

observed for smoke aggregates. 

 Implications of fractality to aerosols are manifold. In the coagulation equation, the rate 

kernels have to be re-derived for fractal clusters. In order to include the effect of particle 

morphology (i.e. fractality) in Fuchs kernel, the particle radius (ri) in Eq.(5.51) is replaced by the 

collision radius of the agglomerate of volume ui, which is taken as the fractal radius (rf,i) given 

by (Matsoukas & Friedlander, 1991) 

fd
isif Nrr 1

,             (5.56) 
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where, ri is the volume-equivalent radius defined as radius of a sphere with the same volume and 

density as the agglomerate, rs is the radius of each individual spherule, Ni is the number of 

individual spherules or primary particles in the agglomerate, and df is the agglomerate fractal 

dimension. The particle diffusion coefficient, the Knudsen number, and the mean distance 

traveled by the particles (i) are evaluated at the mobility radius using the prescription proposed 

by Jacobson (2005). 

Indoor particles are generally removed by the combined action of wall deposition and 

ventilation mechanisms. The former has a complex dependence on size, atmospheric turbulence, 

surface characteristics and room geometry, which has been a topic of considerable research 

interest in recent years. In contrast, removal by ventilation occurs at a uniform rate for all sizes 

and is independent of environmental parameters other than the air-exchange rate or ventilation 

rate. (Recall that a well-stirred reactor is assumed at all times.) From the perspective of capturing 

the peculiar effects that might arise because of the removal process combined with coagulation 

under continuous injection, we consider the simpler case of ventilation removal only. 

5.5. Results and Discussion  

5.5.1. Evolution of total particle number concentration 

 The numerical method described in the previous section is used to study the temporal 

evolution of total number concentration, particle size distribution, and average particle size 

during simulation periods of ten hours each. The following parameter sets are considered to 

construct the evolution scenarios: 

- 2 fractal dimensions  (1.75 and 3.0; i.e. “branched” and “compact”), 

- 3 source injection rates (2 x108, 2 x109 and 2 x1010  m–3sec–1), assumed to be constant in 

time, 
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- 2 initial particle size distributions (count median diameters (CMDs) 15 and 30 nm; constant 

g of 1.3) 

- Ventilation rate (0, 0.15, 4 (“normal”), and 10 h-1 (“high”)).  

Temperature and pressure are fixed at 300 K and 1 atm respectively.  

The total particle number concentration is one of the major metrics used to estimate the 

toxicological hazard of particles in the workplace environment. Its dependency on the above 

parameter sets is therefore of central interest. 

5.5.1.1. Effect of particle fractal dimension on the total concentration 

It is by now well established that droplets evolve as compact spheres with df = 3 while 

solid particles evolve as more or less branched, fractal aggregates depending on the mode of their 

generation and the chemical nature of particles. Fractality of particles tends to increase the value 

of the coagulation kernel thereby enhancing the coagulation rate at a given particle concentration 

(Maynard & Zimmer, 2003, Jacobson, 2005). In the present study, two extreme cases are 

considered, one with fractal dimension 3.0 and the other with 1.75, in order to examine the effect 

of fractal dimension on the evolution of particle characteristics in the absence of any removal 

process. Although not unique, the choice of 1.75 corresponds to the fractal dimensions seen in 

cluster-cluster aggregation models (Schneider & Jensen, 2009). This value has been used by 

other investigators as well. It is further assumed that the fractal aggregates are made up of 

spherules of 5 nm diameter. The formation of these fractal aggregates takes place at an early 

stage near the aerosol source before the actual measurements could take place. In the present 

simulations, the initial particles (measured near the injection point) are assumed to be aggregates 

comprised of such 5 nm dia. spherules. As mentioned, two initial size spectra of the fractal 

aggregates, viz., 15 and 30 nm CMDs are examined, and the particle size distribution is assumed 
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to be lognormal with a GSD of 1.3. The numerical model was suitably modified to take into 

account the appropriate definitions of the mobility and the area equivalent radii (Jacobson, 2005) 

required for the Fuchs kernel for fractal agglomerates. 

The temporal evolution of the total particle number concentrations for df = 3 and 1.75, 

with other parameters fixed as above, are shown in Fig. 5.3. In both cases, the concentration 

initially increases rapidly as the chamber fills, reaches a peak and then tends to decrease with 

time as coagulation sets in. The simulation for compact particle morphology (df =3.0) shows that 

the peak concentration of 2.2 x 1012 m–3 occurs after about 50 min. In the case of fractal particles 

(df =1.75), the total number concentration of 1.37 x 1012 m–3 peaks at around 25 min. Apparently 

both the peak concentration and the time of its occurrence are reduced considerably, in fact 

nearly cut in half, for fractal particles (df =1.75) as compared to compact particle df =3.0.  
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Fig.5.3. Effect of particle fractal dimension on the total number concentration. The ventilation 

rate is zero. 
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The initial steep increase, which is almost linear in time, is mainly due to steady injection 

coupled with the fact that significant coagulation is yet to take effect. After some time when the 

number concentration has increased sufficiently, coagulation sets in. The increase in the 

coagulation rate decreases the rate of rise of the number concentration. During this time, 

significant numbers of secondary particles will also be formed due to coagulation. Subsequently, 

the coagulation process will be dominated by primary-primary, primary-secondary and 

secondary-secondary particle interactions. Since the coagulation kernel for the primary-

secondary interactions increases in value with the size of secondary particles, the injected 

primary particles will be removed at an increasingly rapid rate as time progresses. Seen in 

another way, one can visualize an overall increase of the effective coagulation coefficient for the 

entire size spectrum with time. This mechanism leads to the peak in the number concentration. 

The Fuchs kernel which calculates the coagulation rate for the entire size regime is able 

to capture the peaking effect of the total number concentration; in contrast, a constant 

coagulation kernel which does not account for size-dependent effects will be unable to produce 

this kind of system behavior. Although not shown, a similar peaking behaviour is found for most 

of the commonly used, size dependent kernels including the free-molecular kernel and the 

continuum kernel.  

After peaking, the concentration gradually decreases. In fact, when the ventilation rate is 

zero – a parameter discussed in more detail later on -, this trend of decreasing concentration 

appears to continue indefinitely, at least within the simulation time period. This strongly points 

to a fundamental behavior of coagulating systems, that asymptotically they would tend to zero 

number concentration, in spite of steady injection, perhaps even regardless of injection rate. As 

shown in the Section 5.5.1.2, the concentration appears to fall at least as fast as 33.0*~ t  for the 
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case of df = 1.75, the exponent being independent of the strength of the source, where *t  is the 

scaled time. In fact there are strong indications, obtained by analysing a simplified 2-group 

version of the coagulation model that the long time decay might be   4.0*** ~ ttN . 

One may anticipate the conclusion of an ever-decreasing concentration from the fact that 

in the absence of any removal mechanism, the average secondary particle sizes will increase 

indefinitely with time and the ever increasing rate of primary-secondary coagulation will 

dominate the depletion of number concentration. Basically, the effective coagulation coefficient 

for the entire aerosol system continually increases which cannot be balanced by the source term.  

However, in the case of constant kernel, the effective coagulation coefficient is a constant and 

the continuous injection rate balances coagulation rate thereby leading to a non-zero steady state. 

These results are noteworthy since they advise against the use of a constant kernel throughout the 

process in cases where the size distribution broadens continuously with time. 

5.5.1.2. Effect of source strength on the total concentration 

Here we consider different source strengths with otherwise fixed parameters identical to 

those of the preceding section; in particular the ventilation rate is zero. According to figure 5.4, 

an increased injection rate both increases the peak in total number concentration and reduces the 

peaking time sharply. For example, the total number concentration reaches its maximum around 

8 minutes for an injection rate S = 2x1010 particles per m3 and sec, compared to 80 minutes for a 

100 times lower injection rate. 
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Fig.5.4: Effect source injection rate on the total number concentration of particles with df =1.75. 

The ventilation rate is zero. 

In the following, possibilities of capturing the effect of varying source strengths on the 

total concentration in a single plot is examined through an appropriate scaling transformation of 

variables. It must be noted up front that similarity transformations under steady-injection 

conditions do not exist, even for scaling kernels: hence the question of a similarity 

transformation does not arise for a non-scaling kernel such as the Fuchs kernel. Nevertheless one 

may attempt to scale the number concentrations and the time in terms of respective characteristic 

variables referring to the primary particle sizes. Suppose let us define a characteristic number 

concentration ),( 00 uuKSNc  and a characteristic time ),( 1 00 uuKStc  , where, u0 is the 

volume of the particle corresponding to the CMD of the size distribution of the source injected 
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into the system. We may then obtain a dimensionless number concentration and dimensionless 

time as follows: 

cNtNtN )()( **            (5.57) 

cttt *            (5.58) 

Fig. 5.5 shows plots of N*(t*) vs. t* for various source injection rates in the absence of any 

removal processes in the system. Quite interestingly, all the plots for different injection rates in 

this graph collapse to a single curve. This is a useful result which shows that the prediction of the 

total number concentration for any source injection rate can be obtained through these scaling 

parameters, provided all removal processes operating in the system are negligible.  
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Fig.5.5: Non-dimensionalized representation of total concentration N*(t*) vs. time for various 

source injection rates. The ventilation rate is zero. 
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A power-law fitting to the tail of Fig. 5.5 shows that for df = 1.75, the concentration appears to 

fall as 33.0**  .~ tconstN at around 20~*t . However, since numerical simulation for longer times 

is computationally very intensive it is difficult to establish whether asymptotic limit has been 

attained at time *t about 20. The exponent is still different from the theoretical prediction of -0.4 

(Eq.(5.48)). To understand the origin of this difference, numerical solutions to the set of the 

simplified equations (5.29-5.31) have also been obtained for the Fuchs kernel using the 

differential equation solver in Mathematica. These solutions closely agree with the asymptotic 

predictions of the long-time decay exponents for various df 's ranging from 1.5-3, thereby 

confirming the formula (Eq.(5.44)). However, it is found that the asymptotic law sets in at very 

large times, i.e., for scaled times t* greater than about 1000. Around t*~20, the decay exponent is 

still about -0.34, hence very close to the value observed in our simulations of the integro-

differential equation. Considering that numerical simulation of the original coagulation equation 

for scaled times beyond 20 becomes increasingly time consuming, the predicted exponents of the 

simplified differential formulation may be taken as representative of the true asymptotic 

behaviour of the aerosol number concentration for continuous injection without external 

removal.   

It should be pointed out that the power law 4.0*t dependence for the monotonic decrease 

in concentration with continuous injection is far slower than the decrease following a one-time 

(instantaneous source) injection, which is well known to merge asymptotically into a t–1 

dependence. In terms of real variables, the asymptotic number concentration will be 

  4.07.0
11

3.0   .~  tKSconsttN  for continuous injection, and   11 ~  tKtN for one-time injection. 

These relations show that the pre-factor for continuous injection will depend upon the source 

strength, unlike the latter case in which the number concentration after long time no longer 



130 
 

depends upon the initial concentration. This latter property of a rate of decrease independent of 

initial conditions is sometimes utilized (e.g. Koch et al, 2008) to establish an aerosol 

concentration standard; i.e., a system with a predictable particle concentration which becomes an 

inherent property of the aerosol and does not depend on its initial size or concentration. Our 

finding implies that one cannot generally establish such a standard on the basis of steady 

injection.  

5.5.1.3 Effect of initial particle size on the total concentration 

 Fig. 5.6 shows the effect of the size of the source particles. The comparison is made 

between two CMDs, 15 nm and 30 nm, while keeping all other parameters constant; in particular 

the ventilation rate is zero. For source particles with CMD = 30 nm, the total number 

concentration peaks earlier (t = 18 min) at a peak concentration which is lower by a factor of 

~0.7 as compared to particles with CMD = 15 nm. However, at about 150 minutes, the 

concentration for 30 nm particles crosses over and thereafter tends to remain higher by about 

25%. Thus larger source particles have a greater persistence at long times.  
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Fig.5.6: Effect of source particle size on the total number concentration. Source strength and 

fractal dimension are constant at S=1.67x109 m–3 s–1 and df =1.75. 

5.5.1.4. Effect of the removal rate due to ventilation on the total concentration 

Fig. 5.7 compares the temporal evolution of the total particle number concentration at 

increasing ventilation rates with the case of no removal (v=0) corresponding to the scenarios of 

the previous sections. The other parameters are as given earlier.  
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Fig. 5.7: Effect of ventilation rate on the total number concentration. S = 2x108 m-3s-1; df = 1.75 

Most importantly, the figure shows that (within our parameter range) ventilation always 

causes the total number concentration to reach an asymptotic steady state, while in the v=0 case 

there is a continuous decline as discussed earlier. The higher the dilution (applicable for dilution 

rates above the critical ventilation rate defined later in this section), the lower the final plateau 

and the less prominent the initial concentration peak. The principal reason for this apparent 

stabilization of the concentration even at these ventilation rates is the dilution of very large 

secondary particles. Without dilution, the ageing aerosol contains an increasing number of very 

large agglomerates (This is discussed on more detail in Section 5.5.2). The ever increasing size 

and number of these secondary particles leads to a growing loss of freshly injected primary 

particles due to heterogeneous coagulation in such a way that the total concentration tends to fall 
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continuously. Thus a small amount of ventilation suffices to remove enough larger particles from 

the airspace to slow down heterogeneous coagulation sufficiently to balance it with injection of 

new aerosol. On the other hand, strong dilution appears to also affect the primary particle 

concentration sufficiently to reduce the asymptotic plateau.  

Interestingly, Fig.5.7 shows a cross-over between the cases of v =0 and 0.15 h-1, with the 

low-dilution case leading to higher concentrations after the peak than no dilution at all (Recall 

that in Fig.5.7 all parameters are kept constant except the ventilation rate). Thus, Fuchs kernel 

too seems to predict a critical ventilation rate at which the stabilized concentration is maximum, 

between insufficient suppression of heterogeneous coagulation on the one hand and too much 

primary aerosol dilution on the other. 

This finding has significant implications for control strategies of a nanoparticle leak in 

the workplace. Introducing a ventilation rate below this critical value may be counterproductive 

from the point of view of nanoparticle reduction. In fact it is seen from Fig.5.7 that a dilution of 

4 h-1 is required at the prevailing source injection rate, in order to maintain the aerosol 

concentration within about 1011 m-3. A higher source injection rate of 2 x 109 m-3s-1 (curves not 

shown here), would require a ventilation rate >15 h-1, amounting to 15 turn-overs of the chamber 

volume per hour, to bring down the total number concentration. Note that such high ventilation 

rates would also bring the flow conditions in the chamber close to those of a well-stirred reactor. 

5.5.2. Evolution of particle size  

5.5.2.1. Evolution of the particle size distribution 

The experimental study of Seipenbusch et al. (2008) has clearly established the formation 

of a bimodal size distribution under continuous aerosol injection. It is interesting to examine 

model predictions with regard to the effect of various parameters on the evolution of the size 
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spectrum and in particular on the appearance of the secondary size mode which cannot be 

generated with constant-kernel coagulation simulations. It is worth to mention here that the 

bimodal distribution may also be produced near the source due to the effect of spatial 

heterogeneity (See Section 4.5 of Chapter 4). However, in the present model, we assume that the 

aerosols released into the chamber is having unimodal (lognormal) size distribution. Further, it is 

assumed that these aerosols are uniformly mixed well in the chamber. The effect of source 

strength, choice of fractal dimension and CMD are again investigated. 
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Fig. 5.8: Evolution of particle size spectrum for compact particles with df = 3.0 (S = 2x109 m-3s-1, 

CMD=15 nm; zero ventilation rate) 

Fig.5.8 shows the evolution of particle size spectra for the case of a constant injection 

rate S=2 x 109 m-3s-1 with compact spherical particles (df = 3.0) with an initial size of 15 nm. The 
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simulations are carried out with v = 0. The size distribution remains unimodal at early times (up 

to~ 1 hr) and the second mode appears to gradually evolve at a later stage. While the first peak 

remains nearly stationary at the primary size, a distinct second peak, although of much smaller 

height as compared to the first mode, appears after about 5 hours and then continues gradually to 

move to larger sizes. This secondary mode becomes less prominent at lower injection rates (not 

shown in the figure).  
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Fig. 5.9: Evolution of particle size spectrum for fractal particles with df = 1.75. (S = 2x109 m-3s-1, 

CMD=15 nm; zero ventilation rate) 

The secondary mode forms earlier if we consider particles of a fractal nature (Fig. 5.9). 

For df = 1.75 it appears at t = 2 h around the particle diameter of 110 nm. With increasing time, 

the mode flattens and extends to larger diameters as one would expect from a self-preserving-
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size-distribution-like behavior. Another interesting feature of the fractal particles is the 

continuous decrease of the primary peak with time, while for compact particles (Fig.5.8) the first 

mode height remains almost unchanged. Also the secondary mode shifts more rapidly to higher 

sizes for fractal particles. The above features appear more markedly at higher injection rates 

(Fig.5.10). 
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Fig. 5.10: Evolution of particle size spectrum for fractal particles at a higher injection rate of S =  

2 x 1010 m-3s-1. (df – 1.75, CMD=15 nm; zero ventilation rate) 

In Fig. 5.11 the effect of a larger primary particle size (30 nm) for the case of a fractal 

kernel is also examined. Compared to Fig. 5.11, the 30 nm case shows a more prominent 

secondary mode. On the whole, it appears that lower fractal dimensions lead to a more 

distinctive secondary peak (which it is further enhanced for larger primary particle sizes) due to 
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the increased value of the coagulation kernel. This is perfectly consistent with the more rapid 

decline in concentration for df = 1.75 already observed in Fig. 5.3 – although there for zero 

ventilation rate. The impact of the secondary peak on the overall spectrum will be discussed in 

more detail in the following section. 
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Fig. 5.11: Evolution of particle size spectrum for a larger initial particle size CMD=30 nm. (S =   

2 x 109 m-3s-1, df – 1.75, zero ventilation rate) 

5.5.2.2. Evolution of the mean particle size 

Fig. 5.12 shows the evolution of average particle diameter for a variety of cases discussed 

in the preceding sections. Although the mean particle size has only limited value in 

characterizing bimodal particle systems as they are encountered here, it does provide information 

about the prominence of the secondary size peak compared to the primary aerosol injected into 
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the chamber. The figure illustrates how widely the mean particle diameter can differ over the 

course of 10 h, depending on the scenario. All the simulations shown in Fig.5.12 are with zero 

ventilation except the fourth curve from the top. 
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Fig.5.12: Evolution of mean particle diameter with time for various combinations of parameters. 

Not surprisingly, the particle diameter increases more rapidly with source injection rate, 

lower ventilation (up to a point!) and for particles of lower fractal dimension. For example, an 

increase of the source injection rate by a factor of 10 (from 2x108 to 2x109) is easily outweighed 

by a reduction in df from 3 to 1.75. When comparing the two lowest curves of Fig. 5.12, the 

respective size increases are about 3-fold for the spherical particles vs. nearly 9-fold for the 

fractal particles. For the fractal particles, an increase of the source injection rate by a factor of 
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100 (from 2x108 to 2x1010) increases the final size after 10 h by about 50x, from roughly 130 nm 

to 800 nm. 

5.5.2.3. Evolution of the surface area concentration 

As pointed out by Schneider et al (2011), the surface area concentration is another 

important metric apart from the number and mass concentrations. For solid particles evolving as 

fractal aggregates, the total surface area will be conserved in the same way as the mass of the 

aggregate during the coagulation process. As a result, the total surface area concentration (A(t)) 

may be expressed in terms of the total volume concentration (t) as follows: 
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Similarly for instantly coalescing droplets the surface area concentration can be estimated 

by the formula 
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where, a1 is the surface area of the primary mode particles.   

In both these cases, the surface area metric is not an independent quantity, but is related 

to the particle number concentration and mean sizes, which in turn may be obtained from the 

simplified equations given in the two-group model.  

Jeong and Choi (2003) considered a general case of change of surface area concentration 

in systems having finite coalescence time () originally formulated by Koch and Friedlander 

(1990). Within their framework the two situations mentioned above pertain to = ∞ (solid 

particles), and liquid droplets).  For a general case, one is required to establish a separate 

equation for A(t) in addition to those for N1(t) and N2(t). Non-zero and finite coalescence times 
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are important for aerosols injected into in a high temperature reactor system; however, these may 

not be quite relevant to particles injected into ambient environment. In view of this, the formulae 

given above are sufficient to estimate A(t) for practical purposes of releases to workplace and 

ambient environments.   

5.5.3. Comparison with experimental results 

5.5.3.1. Experiment carried out by Seipenbusch et al (2008) 

When allowing for a fractal nature of particles, the present numerical simulations 

reproduce some of the salient features of the experimental observations of Seipenbusch et al. 

(2008). The most significant of these is the peaking effect in the total number concentration. We 

compare the observed value of the peak number concentration and the time of occurrence of the 

peak with that predicted by the simulations. The source emission rate measured in the 

experiments is 1.67 x 108 #/(m3sec) of platinum nanoparticles and the estimated size of the 

primary particles (as seen by their first mode) is 15 nm. Since the chamber volume is 2 m3, the 

emission rate of the platinum hot wire generator is estimated to be 3.34 x 108  #/sec. Upon 

combining this data with the simulation results (Fig.5.5) showing the variation of the scaled 

concentration as a function of scaled time, we may calculate the peak concentration to be 2.6 x 

1011 #/m3 and the time of occurrence of this peak to be 50 minutes. This is fairly in agreement 

with the experimental value of the peak concentration of 2.1 x 1011 #/m3 occurring after 30 

minutes in Seipenbusch et al. (2008, Fig.(4)). In the simulations, we have used the primary 

particle density as the platinum density (21450 kg m-3) and the agreement improves if one uses 

lower densities, as is expected if the primary particles are not fully compact.  

Similarly, Seipenbusch et al. (2008) obtained a value of about 1.5 for the ratio of the peak 

number concentration to that attained after about 250-minutes (nearly steady-state). For a 
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ventilation rate of 0.15 per hour used in their experiments, the simulation also yields a value of 

1.5 for this ratio. Although the exact agreement may be fortuitous, it may be stated with 

confidence that the model predictions compare reasonably well with the experimental data for 

the total number concentration.  

The simulation results also provide qualitative support to the occurrence of a bimodal 

size distribution demonstrated in the experimental studies cited above. However, the 

experimental results have shown a secondary mode peak comparable in magnitude to the first 

peak at an injection rate of ~108 particles/(m3sec) after about 120 minutes, which is not 

supported by simulations. Similarly, the experiments have shown a more rapid decrease in the 

primary mode concentration than the simulations, and the secondary mode is larger than the first 

mode during the early stages (up to 2 hrs). Although it is not possible to reconstruct the reasons 

for this disagreement, certain non-ideal factors such as the finite time required for the expansion 

and mixing of the plume during injection into the chamber could have played a role in 

accentuating the modal results. Possibly, the injection of unimodal particles in the form of a 

spatially inhomogeneous plume can also lead to a bimodal distribution. In fact, we have noted 

that in a spatially inhomogeneous aerosol plume, the particles at the centreline of the plume will 

grow to larger sizes than at the periphery due to coagulation (Chapter 4), which can result in 

pronounced bimodality as the plume gets mixed subsequently due to increased turbulence in the 

chamber. As this effect may add to the prominence of the second mode in experimental systems, 

it needs to be examined separately.  

5.5.3.2. Experiments carried out using Nichrome hot wire generator 

In this section, we present experimental results of the study of aerosol evolution in a 

closed chamber with continuous source. The experimental setup is shown in Fig. 5.13. An 
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heated to higher temperature. Due to this, the material evaporates from the surface thus 

producing vapour continuously. Then, the vapour emitted by the coil condenses and nucleates to 

produce nanoparticles (primary source particles). The nichrome coil is placed inside a cubical 

chamber of volume 0.512 m3 with dimensions 0.8 m x 0.8 m x 0.8 m, and it is connected to a 

variable power supply. The chamber has inlet or outlet ports distributed over the chamber walls 

as shown in Fig. 5.13. The inlet ports are used for the electrical connection to the nichrome coil 

placed inside the chamber, and ventilation. Small sample flows (0.3 lpm) are extracted from 

outlet ports located in the chamber walls for the purpose of monitoring the aerosol size 

distribution, and concentration as functions of time. The chamber is also equipped with an 

external pump to flush it with filtered air in order to obtain a particle-free environment. Two 

small fans are operated inside the chamber to homogenise the concentration. The quality of 

mixing is tested by simultaneously measuring the temporal evolution of aerosol from two 

different sampling ports (one at the top, and other at the bottom of the chamber).  

The particle number concentrations are measured using Grimm Aerosol Spectrometer 

(model 1.108) and Grimm Scanning Mobility Particle Sizer (SMPS 5.403) which covers the size 

ranges 0.3–20 μm and 9.8–874.8 nm, respectively. The size distributions measured by SMPS 

consists of a Condensation Particle Counter (CPC, Grimm Series 5.400) and an intermediate 

length DMA (Grimm Vienna/Reischl type). The aerosol spectrometer works on the principle of 

scattering of light by the particles. The light source is a solid state laser and the scattering is 

measured using a set of compact photo-diodes having an effective area of the order of 0.12–0.5 

mm2 which have high sensitivity, high speed and a response over a spectral range of 320–1060 

nm. The sample flow rate of this system is 1.2 lpm. The GRIMM SMPS was used for the 

measurement of particles in the fine sizes. In this system, the size-classification is based on the 
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mobility of the particles in an applied electric field and the counting of particles is by CPC where 

they undergo condensational growth until they are sufficiently large to be detected optically 

(diameter growth factor −100 to 1000). These larger sized particle droplets cross a laser beam 

where each droplet scatters light onto a photo-diode. These signals are continuously counted, 

stored and converted to particles/cm3 which are displayed on the screen. The sampling flow rate 

of this model is 0.3 lpm. It should be noted, however, that the chemical nature of the particles has 

no importance for the present investigation because aerosol dynamic properties are governed 

entirely by size and concentration. 

The release scenario represents the release of nanoparticles from a moderately strong 

aerosol source (>106 cm3) into the well-stirred chamber continuously for ~ 2 hours. The voltage 

applied to the nichrome coil in the present experiment is 8.9 V. The voltage applied to the coil is 

verified at constant intervals to confirm whether the release rate is a constant or not. The size 

distribution is monitored over the entire duration of the experiment by SMPS (Fig. 5.14) from a 

sampling port located at top corner of the chamber. The SMPS takes 8 minutes to complete a 

single scan of the entire size spectrum. Since our SMPS measuring range starts from 9.85 nm, we 

are unable to measure the primary particle size emitted by the source. The first spectrum at t = 8 

min (3:37:39 PM curve in Fig. 5.14) shows that the primary particle spectrum lies below the 

lower detection limit, and hence the primary particle size at the source is assumed to be less than 

9.85 nm. A secondary peak at 15 nm due to the homogeneous coagulation of primary particles 

appears after eight minutes as shown in the next size distribution (3:45:15 PM curve). 

Subsequent measurements at a time interval of 8 min show the rapid emergence of a secondary 

peak which moves towards larger particle sizes. But their concentration (mode of the second 

peak) continuously decreases with time as shown in Fig.5.14. The formation of the secondary 
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peak is due to the homogeneous coagulation mechanism between the primary particles injected 

into the chamber as discussed in the Section 5.5.2. 
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Fig. 5.14: Temporal evolution of particle size spectrum (Each curve was obtained at an interval 

of ~8 minutes) 

The evolution of the total number concentration and mean particle diameter are shown in 

figures 5.15 and 5.16. From the Fig. 5.15, it is observed that the total number concentration 

increases rapidly to a peak value and then decreases slowly. The time taken to reach the peak 

concentration is 633 seconds. During this period, the number concentration increases linearly due 

to the source injection. The coagulation process is weak during this time period since the number 

concentration is low. Once the chamber attains sufficiently high aerosol number concentration, 
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significant rate of coagulation is initiated since the coagulation rate is proportional to the square 

of the number concentration.  

0 1000 2000 3000 4000
0

1x105

2x105

3x105

4x105

T
o

ta
l n

u
m

b
e

r 
c

o
n

ce
n

tr
at

io
n

, #
/c

m
3

Time, seconds

 numerical simulation
 experimental observation

 

Fig. 5.15: Evolution of total number concentration in the 0.5 m3 chamber - comparison of 

experimental results with numerical simulation 

Fig.5.15 shows that the theoretical predictions compares well with the experimental 

results during the initial period (upto 1500 seconds). After this duration, the experimental results 

show faster decay of total number concentration as compared to simulated results. This may be 

due to the increase in the coagulation rate. The coagulation rate increases because of the particle 

growth by vapour condensation (vapour being continuously emitted by the source) in addition to 

the coagulation. Also, the observed multiple peaks suggest that the nulceation bursts are taking 

place whenever the vapour concentration reaches above the saturation value in this system. 
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These processes (nucleation and condensation) are not accounted in the present numerical model, 

and hence the deviation of the predicted values from the experiments in the later part. 
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Fig. 5.16: Temporal evolution of particle diameter (geometric mean) in the 0.5 m3 chamber  

From the experimental measurements, one can predict the source emission rate using the 

non-dimensional variables defined in Eq.(5.28). Using the peak concentration and the time to 

reach peak concentration (3.98 x 105 #/cm3 and 633 seconds respectively) from the experiments 

and the characteristic concentration (Nc = Np/N
*) and time (tc = tp/t

*) from simulations, we 

estimated the source emission rate (S = Nc/tc) as ~ 1.2 x 109 #/(m3 sec). Then, the primary particle 

emission rate of this hot wire generator is estimated at ~ 6.0 x 108 #/sec. This result is in 

comparison with typical particle generation rates observed in hot-wire based particle generators 

(for example, the particle generation rate reported by Seipenbusch et al, 2008 is about 3.4 x 108 

#/s). This study demonstrates that the theory is useful in characterising particle emission rates 
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from sources using transient concentration buildup data in closed chambers. This opens up the 

possibility of an important application for assessing the particle emission rates of variety of fossil 

fuel based combustion sources used in domestic environments which are responsible for large 

scale indoor air pollution in rural areas. 

5.6. Summary 

A non-dimensional form has been found for the concentration decay N*(t*) in the limit 

t* of a coagulating system with constant source term. Simulations combined with analytical 

results using two-group model (Fuchs coagulation kernel) indicate an asymptotic decay of 

number concentration in the form   4.0*** ~ ttN  which is in marked contrast with the well 

known t-1 behavior for systems with a one-time aerosol injection.  

The detailed numerical study brings forth several important features of coagulation of 

particles injected continuously into an air space: 

Fractal dimension, initial particle size, injection rate, and ventilation are identified as key 

variables that influence the evolution of particle characteristics. It is shown that, indeed, the 

number distribution of this system gradually assumes a bimodal shape, with the larger mode 

attaining prominence more rapidly for fractal particles and at higher injection rates. In general, 

the overall concentration of a coagulating system with a constant source term attains a peak soon 

after nanoparticle emission starts, and then tends toward an asymptotic steady-state limit. An 

asymptotic law (t) for the decay of number concentration is derived using an analytical 

model (two-group model). 

The number concentration attains a peak when the air space is sufficiently filled with 

particles, followed by a gradual concentration, which is more pronounced for fractal aggregates 
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as compared to compact particles. Peaking occurs more rapidly at higher concentrations when 

source injection rate is increased. For the total number concentration these features agree well 

even quantitatively, with the experimental data observed by Seipenbusch et al. (2008). 

Ventilation of the air space, even a small amount of ventilation, causes the particle 

concentration to stabilize (i.e. converge toward a finite asymptotic value), as opposed to no 

ventilation which always seems to lead to an asymptotic concentration of zero regardless of 

source strength. Particle concentrations may thus be larger at low ventilation rates as compared 

to an unventilated space. Also, there appears to exist a concentration maximum for a certain 

ventilation rate. Little ventilation may therefore be a worse prevention measure for nanoaerosols 

than no ventilation at all. 

A prominent effect of applying coagulation dynamics to rapidly mixed systems having 

continuous injection, is the shift of aerosol mass from the nanoparticle regime into micrometer 

sized particles. This shift is stabilized by the presence of ventilation rate. The stabilizing effect of 

ventilation is due to dilution of the secondary particle concentration, which would - without this 

continued dilution - continue to grow with time in both concentration and particle size, thereby 

leading to an ever increasing rate of coagulation between the primary and secondary modes. 

Note that this very relevant feature of aerosol dynamic behavior in a workplace cannot be 

reproduced by simulation with a size-independent collision kernel. 

It was further found that the secondary mode occurs more prominently for fractal 

particles having larger initial sizes. Several of these results are qualitatively consistent with the 

experimental observations, but do not match quantitatively, possibly due to the presence of initial 

inhomogeneity of the aerosols during source injection.  
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Chapter 6. Summary and Conclusions  

 This chapter summarises the accomplishments of this work and provides a final overview 

on the study of coagulation of dispersing aerosol systems. It then offers suggestions for further 

research work. 

6.1. Summary 

A key question for assessing the impact of anthropogenic aerosols on the environment 

pertains to the estimation of the fraction of particles that persist in the atmosphere to form 

background aerosols. Among the various factors that contribute to this, coagulation is an 

important and numerically the most difficult issue to handle. The study addresses this question 

by combining coagulation with dispersion and different emissions scenarios to understand the 

long time and far field behaviour of aerosol size spectra and number concentrations. To this end, 

numerical and analytical models have been developed for modeling aerosol evolution in the 

atmosphere, emitted from localized sources under the combined action of coagulation and 

dispersion. This work presents the study of coagulation of the following dispersing aerosol 

systems: 

 instantaneous puff releases, 

 continuous plume releases, and 

 continuous and homogeneous volumetric releases.  

In this study, the following aspects are focused:  

1) Temporal – spatial variations of aerosol particle number size distributions,  

2) Temporal variations of total particle number concentrations, 
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3) Emission rates and fate of aerosol particles in the atmosphere, 

4) Factors influencing the particle number concentrations and its size distributions, and 

5) Modal structure of aerosol particles.  

Four mathematical models are developed and evaluated in this study. They are (the first three 

models are solved using analytical methods),  

1) Diffusion approximation model to obtain particle number survival fractions for puff 

releases.  

2) Improved diffusion approximation model with coagulation-induced flattening effect to 

obtain particle number survival fractions for puff and plume releases.  

3) Two-group aerosol particle model to investigate and characterize the indoor aerosol 

particles released continuously in to a closed environment.  

4) Comprehensive numerical model to obtain solutions to the coagulation-dispersion 

equation for the puff, plume, and continuous volumetric releases mentioned above. 

From these models,  

1)  simple useful formulae to estimate the effective source emission factors/survival 

fractions for puff and plume releases, and 

2) temporal evolution of aerosol characteristics for continuous volumetric releases  

are obtained. 

In particular, the study introduces the concept of survival fractions as a means of predicting the 

atmospheric number loading factors of particles released from localized sources such as 

instantaneous puff and continuous plume releases.  
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In the case of instantaneous puff releases, the analytical solutions have been obtained for 

constant and free-molecular coagulation kernels by combining prescribed diffusion 

approximation with Laplace transforms and scaling theory, respectively. While, the formulae for 

the survival fractions obtained within the framework of Jaffe approximation have similar 

functional forms as those obtained by earlier investigators based on a uniformly mixed-

expansion model, the present approach provides definite pre-factors involving the physical 

parameters of the processes. The results have been tested against numerical solutions developed 

by combining finite-difference with nodal method as well as using differential equation solver 

package of Mathematica. Although the analytical results for the temporal variations of the 

survival fractions follow similar trends as numerical predictions, they show systematic deviations 

up to about 25% under strong coagulation. This suggests that the expansion-coagulation models 

are not fully equivalent to diffusive-coagulation models except in the limit of Jaffe 

approximation.  

  An improved diffusion approximation model is introduced to improve the predictions of 

analytical solutions. The underlying assumptions in this model are, (i) representative constant 

kernel coagulation coefficient is used and (ii) dispersion is handled by a constant diffusion 

coefficient for spherical symmetric puffs and a down-stream distance dependent diffusion 

coefficient for plumes. The approach consists of constructing moment equations for the 

evolution of number concentration, mass concentrations and variance of the spatial extension of 

puff or plume in terms of either time or downstream distance. The equation for the variance 

includes a special effect due to coagulation induced flattening of the concentration in-

homogeneity in high concentration regions in addition to the normal atmospheric dispersion 

effect. From these equations, the number survival fractions surviving coagulation, are defined as 
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(i) for puffs: ratio of the particles present in the entire space at any given time with respect to 

initially emitted number of particles and (ii) for plumes: ratio of fluence rate of particles 

transported by advection across a given downstream distance reckoned with respect to the 

emission rate at the source region. The fraction of particles contributed by these sources to 

persist as background aerosols in the atmosphere are then obtained as the asymptotic limits of the 

survival fractions (  ψ ) either as time or downstream distance tends to infinity (as the case may 

be). For the puff case, we propose a formula, 

 
5/-4

4
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1 



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  for the asymptotic survival fractions. The implications of these 

results for a few practically important problems such as vehicular emissions, forest fires, etc are 

demonstrated.
 

  In the case of continuous and spatially homogeneous volumetric releases, a detailed 

numerical study is carried out to bring forth several important features of coagulation of particles 

injected continuously into an air space. The number concentration attains a peak, followed by a 

gradual concentration, which is more pronounced for fractal aggregates as compared to compact 

particles. Peaking occurs more rapidly at higher concentrations when source injection rate is 

increased. The limit concentration is nonzero finite only in the presence of ventilation, even for 
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very low ventilation rates. Furthermore, there exists a critical ventilation rate at which the steady-

state number concentration attains maximum value. It was further found that the secondary mode 

occurs more prominently for fractal particles having larger initial sizes. Several of these results 

are consistent with the experimental observations, but the presence of initial spatial 

inhomogeneity of the aerosols during source injection needs to be studied separately. The total 

concentration is found to scale reasonably well when expressed in terms of a characteristic 

concentration Nc=(S/K11)
1/2 and a characteristic time tc=(SK11)

-1/2, where S is the injection rate 

density (# m-3 s-1) and K11 (m
3 s-1) is the coagulation coefficient of injected particles. When the 

ventilation is zero, the simulations suggest that, following the initial peak, the scaled 

concentration N*(t*) continuously decreases by a power law ~ t* with   -0.33 for particles 

with fractal dimension of 1.75 and for t* < 20. Simulations combined with analytical results 

using simplified model (two-group coagulation model) indicate an asymptotic decay of number 

concentration in the form   4.0*** ~ ttN  , (t* > 1000) which is in marked contrast with the well 

known t-1 ( = -1) behavior for systems with a one-time aerosol injection.  

6.2. Conclusions 

The study brings out several important features of the coagulation-dispersion process 

affecting the evolution of particles released into environment. These include the effects of mode 

of release and the various aerosol and environmental parameters on particle number 

concentrations and effective sizes. In the case of burst releases, the study estimates the time 

scales in which the concentration falls, from a large initial value, to normal levels. Although it is 

too ideal to be of direct practical applications to radiological dispersal devices, it provides the 

basic formulations for stepping up onto the inclusion of other processes such as heterogeneous 

coagulation with ground dust. The concept of survival fraction and number loading factors 



155 
 

introduced in the context of puff and plume releases capture the essential quantity of 

environmental significance for anthropogenic sources. The formulae derived have great 

simplicity for practical evaluations and capture the essential parameters of the problem.  

One of the major challenges in simulating the aerosol number concentration and size 

distribution in regional and global atmospheric scales is the description of aerosol dynamics near 

sources of primary particles. Unfortunately, simulation of the rapid dilution of particles as they 

disperse away from their source together with their coagulation and removal is prohibitively 

expensive for regional and global chemical transport models. There is a need to be able to 

simulate the dominant behaviour of sub-grid aerosol dynamics (or near-source aerosol dynamics) 

without having to resolve processes at the individual plume level. The present study of 

coagulation of dispersing aerosols near the emission sources paves a concrete platform to address 

these issues. The source modifier functions obtained for the puff and plume releases may serve 

as a useful tool in reducing the computational time by eliminating the need to embark on detailed 

modeling at the near source region. The near-source aerosol dynamics may be incorporated as a 

lumped term modifying the source itself at sub-grid level for application in 3-D models.  

The results obtained from the continuous and homogeneous volumetric releases will have 

implications for an assessment of toxicological risk as well as in planning of safety measures in 

the context of industrial processing and applications of nanoparticles. They reinforce the notion 

that number concentration and the effective particle size standout as crucial metrics. Also, the 

broader results related to the effect of concentration and ventilation rate may yield modifying 

factors to be used in a predictive exposure model for workplace environment such as Advanced 

REACH Tool (ART) (Schneider et al., 2011). This however calls for more studies by combining 

realistic situations such as the effect of background particles, deposition rates, and the spatial 
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dispersion of the releases. It is also important to look for alternative, less time consuming models 

to yield reliable and quick results to address nanoparticle toxicological issues.  

6.3. Future work 

A. It is of considerable value to integrate the main results obtained in this thesis for puff and 

plume releases with detailed regional aerosol dynamics models to calculate the long term 

contributions from various emission sources to air pollution. In this context, the plume release 

problem enables us to obtain source term modifications (accounting for local coagulation effects) 

by using the information on the source area, mass emission rate and local atmospheric turbulence 

conditions. With these modified source term, one can study their long range mixing and 

dispersion by pure advection diffusion equations, without having to worry on intra-coagulation 

effects. 

B. Investigation of coagulation-diffusion dynamics of aerosol puffs/plumes interacting with the 

background aerosol particles is an important issue, which will be useful for the atmospheric 

aerosol transport models. An immediate application will be the development of first principle 

model for radon progeny attachment dynamics to a coagulating aerosol. This may be validated 

against various activity distributions of radionuclides measured in the environment. 

C. Numerical simulation can be further pursued for the uniformly mixed volume expansion 

model by including nucleation and condensation processes to the existing model. Addition of 

interaction with the background aerosols will lead to realistic estimate of the aerosol loading. 

Experiments are also required to validate these models. 

D. It is required to carry out detailed investigation on the asymptotic behaviour of the aerosols 

continuously injected into confined environments by including size dependent removal 
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processes. Although an experimental study has been made to examine the model results, many 

more experimental studies will be required to bring out the various processes taking place in an 

evolving aerosol system. The experimental observation of multiple aerosol concentration peaks 

is a case in point that cannot be explained by coagulation alone. It may be necessary to improve 

the models by including nucleation and condensation processes to handle these situations. As 

there exists very little past work in this area it offers a rich and relevant topic for future 

investigations.   
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Appendix – A 

Expressions for equation of state parameters of TNT explosion products 

Many attempts were made in the past to estimate the volume expansion rate of explosive 

clouds. Glasstone (1962) obtained empirical relations/expressions for the volume expansion rate 

for high energetic explosions by fitting the measured values for various device yields (applicable 

for high yield devices in the range of kilo- and mega-tons). Turco and Yu (1997) used various 

functional forms of volume expansion rate for the aircraft and volcanic plumes in their model. 

However, the volume expansion rates mentioned above are either very general in nature or 

specific to a particular physical process, and they are not applicable to the low yield explosive 

systems involving materials like TNT in the present work. Although significant amount of 

literature is available about the equation of state parameters, i.e., puff volume, pressure and 

temperature, their time dependence has not been found particularly for low yield TNT 

explosions. In the present study, these state parameters as a function of time are obtained by 

combining the theories of Taylor (1963), and Jones and Miller (1948) for the equation of state 

variables (Sreekanth, 2011).  

Consider a spherical gas cloud of radius R, mass M, temperature T, and pressure P 

expands adiabatically. Let dR be the increase in radius of the cloud, then the work done (dW) by 

the gas in expansion can be written as,  

ܹ݀ ൌ  (A1.1)                                      ܸ݀݌

.ܽܯ ܴ݀ ൌ  ଶܴ݀                     (A1.2)ܴߨ4 ݌

where, a is the acceleration. The pressure p is obtained from the JWL (Jones-Wilkins-Lee) 

equation as, 

ܲ ൌ ோభ௏ି݁ܣ ௏బ⁄ ൅ ோమ௏ି݁ܤ ௏బ⁄ ൅ ܥ ቀ
௏

௏బ
ቁ
ିሺଵାఠሻ

       (A1.3) 
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where, A = 371.2 GPa; B = 3.231 GPa; C = 1.045 GPa; ܴଵ = 4.15; ܴଶ= 0.95; ߱ = 0.30 are all 

constants and their values are given for T.N.T of density 1.5 g/cm3 (Zukas& Walters, 1997). 

Writing the acceleration a in terms of radial distance R as ܽ ൌ
ௗమோ

ௗ௧మ
, and substituting the 

Eq.(A1.3) in Eq.(A1.2),the volume of expanding spherical puff is given by, 

ܸሺݐሻ ൌ
ସ

ଷ
௧ܴߨ

ଷ                   (A1.4)  

where, Rt, the radius of the expanding puff is obtained by numerically solving the 

Eq.(A1.5)given below: 

ௗோ

ௗ௧
ൌ ට

ଶ஺భ

ଷ௦భ
ൣ ݁ି௦భோబ

య
െ ݁ି௦భோ

య
൧ ൅

ଶ஻భ

ଷ௦మ
ൣ݁ି௦మோబ

య
െ ݁ି௦మோ

య
൧ ൅

ଶ஼భ

ሺଷఠሻ
ൣܴ଴

ିଷఠ െ ܴିଷఠ൧  (A1.5) 

where,  ܣଵ ൌ
ସగ஺

ெ
, ଵܤ ൌ  

ସగ஻

ெ
, ଵܥ  ൌ

ସగ஼

ெ
ܴ଴
ଷሺఠାଵሻ

, ଵݏ  ൌ
ோభ

ோబ
య , ଶݏ  ൌ

ோమ

ோబ
య . 

By substituting the Eq.(A1.4) in Eq.(A1.3), one can obtain the pressure in the expanding puff as, 

ሻݐሺ݌ ൌ ݁ܣ
ିோభቀ

ೇሺ೟ሻ

ೇబ
ቁ
൅ ݁ܤ

ିோమቀ
ೇሺ೟ሻ

ೇబ
ቁ
൅ ܥ ቀ

௏ሺ௧ሻ

௏బ
ቁ
ିሺఠାଵሻ

      (A1.6)  

Similarly, an expression for the temporal evolution of the temperature in the expanding puff can 

be obtained by using the following relation for the equation of state variables (Jones and Miller, 

1948) given by, 

݌
௩ᇱ

ேᇱ
ൌ ܴܶ ൅ ܾଵ݌ ൅ ܿଵ݌

ଶ ൅ ݀ଵ݌
ଷ        (A1.7) 

where,v’ is the volume and N’ the number of moles at temperature T and pressure p of the 

gaseous products of the detonation of 1 mole of explosive. The values of the coefficients for 1.5 

g/cm3 loading density of TNT are ܾଵ = 25.4, ܿଵ = -0.104, ݀ଵ= 2.33x10-4. By rearranging the 

Eq.(A1.7) and writing the equation of state variables as a function of time, we get, 

ܶሺݐሻ ൌ
ଵ

ோ
ቂ݌ሺݐሻ

௏ሺ௧ሻ

ேᇱ
െ ܾଵ݌ሺݐሻ െ ሻݐሺ݌ଵܥ

ଶ െ ݀ଵ݌ሺݐሻ
ଷቃ      (A1.8)  
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Eq.(A1.8) can be applied to any amount of TNT explosive material with loading density 1.5 

g/cm3. Eqs. (A1.4), (A1.6) and (A1.8) provides the expressions for temporal evolution of the 

state parameters of the TNT explosive material. 

Note: 

The initial temperature and pressure of the cloud (at t = 0) is estimated to be 3400 K and 

1.5 x 105 atm respectively, obtained from the equation of state prescribed in the literature for a 

loading density of 1.5 g/cm3. The chemical reactions among the TNT detonation products (C, 

CH4, N2, CO2, CO, etc.,) continue till the temperature of this cloud reaches to 1600 K. Since it is 

easier to calculate the transients for a fixed composition of detonation products and also the fact 

that the volume change to this stage (also the time to reach 1600 K) is negligible (Jones & 

Miller, 1948), the simulations are carried out by assuming the initial temperature as 1600 K. The 

initial cloud volume is considered to be equal to the unexploded device volume.  
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Appendix – B 

Volume expansion rate of a diffusing puff 

Turco and Yu’s formula for the survival fraction is given by (Turco & Yu, 1997), 

   Ta NN
tF




1

1
          (A2.1) 

where,  
t

T

dt
tV

K

N 0

1

2

1
, and Na is the total number of particles in the initial volume, K is the 

constant coagulation kernel and V(t) is the volume of the aerosol puff at time t. Since the 

expansion of the puff is purely governed by the diffusion of aerosol particles contained in it, the 

volume expansion rate of this puff (V(t)) may be described as,  

    232
0 4 DtbtV             (A2.2) 

where,  is an unknown constant to be determined, b0 is the initial puff width, and D is the 

diffusion coefficient of the particles. 

Substituting Eq.(A2.2) in Eq.(A2.1) and rearranging, 
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where, 
2
0

4

b

Dt
 , and  
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The survival fraction formula derived using the diffusion approximation model is given by, 

 
 

  
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
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
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          (A2.4) 

By comparing equations (A2.3) and (A2.4), we get, 
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 2            (A2.5) 

Then, the volume expansion rate of the puff from Eq.(A2.2) is given by,  

     232
0 4 2 DtbtV                                   (A2.6) 

At t = 0, the actual puff volume, 

    3
0 20 bV                                   (A2.7) 
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Appendix – C 

Similarity formulation of diffusion-coagulation equation 

The coagulation-diffusion equation for a one-dimensional system is given by, 
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            (A3.1) 

Assume a scaling solutions of self-preserving form, 
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satisfying the constraints     1
00

 


dwwwgdwwg . 

Substituting the Eq.(A3.2) in Eq.(A3.1), 
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Let '
'

w
V

u
 and w

V

u
 , then '' Vdwdu  and Vdwdu  . Substituting this in Eq.(A3.3), we get, 
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For kernels of homogeneous type,  

   ',', wwKVVwVwK           (A3.5) 

Using this relation, Eq.(A3.4) is rewritten as, 
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Multiply by  wV 1  throughout the Eq.(A3.6), and integrating the entire equation from 0 to 

infinity with respect to w, 
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where,  dwwgwC 



0




 

The double integral in the second term of the RHS of the Eq.(A3.7) is shown below 

schematically: 

 

 

w 

 

 

                                         w’   

The first integral (innermost) with respect to w’ is integrated from 0 to w, and then the second 

integral (outer one) is integrated with respect w from the limits 0 to infinity. This integration is 

equivalent to integrating first w.r.to w from w’ to infinity, and then w.r.to w’ from 0 to infinity. 

This is schematically shown below: 

 

f (w,w’) 
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The integrals may be interchanged as, 
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Let w-w’ = X, then dw = dX, then the above integral becomes, 
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Replacing X by w,  
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Now, this integral is changed to the form that appears in the third term of the RHS by 

transformation of variables. Then the Eq.(A3.7) becomes, 
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  (A3.8) 

Taking the zeroth moment w.r.to w, i.e., substituting  = 0 in Eq.(A3.8), we get, 
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f (w,w’) 
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where,   1
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Since NV  , the Eq.(3.9) becomes, 
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Taking the first moment w.r.to w, i.e., when  = 1, Eq.(A3.8) becomes,
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                       (A3.11) 

The second and third terms on the RHS of the Eq. (A3.11) are equal once it integrated, and 

hence,  
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Appendix – D 

Equation for total number concentration in the case of    vuvuK ,  kernel 

 The rate of change of aerosol concentration in a chamber with continuous source 

injection is given by, 
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Let us consider the additive kernel of the following type, 

   vuvuK ,            (A4.2) 

where, is a constant. Substituting Eq.(A4.2) in Eq.(A4.1), and integrating the Eq.(A4.1) 

throughout with respect to the particle volume, we get, 
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where,   



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
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 ),( dutuStS , and the size dependent removal rate is neglected 

in this case. By noting from Appendix-C (transformation of Eq.(A3.7) to Eq.(A3.8)), Eq.(A4.3) 

can be transformed to, 
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Since   



0

' ),'(' dutunut , Eq.(A4.4) can be rewritten as, 
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The resultant equation after substituting the dimensionless variables defined in Eq.(5.17) in 

Eq.(A4.5) can be shown equivalent to that of Eq.(5.18) derived using two-group model. 
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