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SYNOPSIS

There is increasing worldwide concern on account of the growing stockpile of high level 

radioactive waste produced in nuclear reactors which constitutes a potential threat to future 

generations due to its long lived radio toxicity. Accelerator driven sub-critical systems (ADSs) 

[Nifenecker, et al., 2001] have caught the attention of scientific community worldwide in recent 

years as a possible solution to the problem of nuclear waste. It is believed that ADSs can 

transmute radioactive waste faster and safer than conventional nuclear reactors and also produce 

useful energy. Indian interest in ADSs is primarily related to their application to large scale 

utilization of thorium.

Due to their sub-critical mode of operation, ADSs must be fed continuously with neutrons from 

an external source.  In most proposed ADSs (Rubia, C., 1995; Abderahim A.H., 2005) the source 

neutrons are produced by the spallation process, wherein a high energy (typically about 1 GeV) 

proton beam interacts with a heavy target. Though the idea of using high power proton 

accelerators (~1 GeV, 300 mA) to drive a sub-critical blanket for breeding fissile material or for 

waste transmutation is quite old (Bowman et al., 1992; Venneri et al., 1993), there has been a 

renewed interest in ADSs after the proposal of C. Rubbia (1995) based on accelerators with 

relatively modest power ( ~ 1 GeV, 10 mA).

This has led to the setting up of R&D programs for ADS development in several countries 

(Abderrahim, 2001; Kapoor, 2001; Mukaiyama et al., 2001; Gohar Y. and Smith D.L., 2010) 

including India. Development of high power accelerators, and suitable targets and coupling these 

with the sub-critical reactor are the main focus areas of these efforts. On the reactor front, the 

R&D effort is mainly geared towards development of accurate simulation tools, nuclear data and 
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experiments oriented towards understanding the physics of accelerator driven sub-critical 

reactors (which is quite different from that of critical reactors) and methods for determining the 

degree of sub-criticality. 

Several experiments devoted to reactivity monitoring of ADS have been carried out around the 

world. The major important subcritical experiments have been done at YALINA (Carl-Magnus 

Persson et al., 2005) and MUSE (Soule et al., 2004). In MUSE, a large number of reactivity 

measurement methods applicable in zero or low power systems, such as the Feynman-alpha and 

the Rossi-alpha methods, and pulsed neutron source methods were investigated. Different

techniques showed that the interpretation of the kinetic behavior of subcritical systems with the 

aim of reactivity determination requires at least to some extent the inputs from theoretical 

calculations.

In India, the main R&D activities are related to development of accelerator technologies leading 

to construction of a high energy high current accelerator. A major effort is also directed towards 

target and window technologies. The Reactor related R&D effort includes basic research 

activities in the area of the sub-critical reactor physics, development of new computer codes and 

nuclear data for analysis of ADSs,  conceptual design studies of ADSs for thorium utilization and 

experimental program for understanding the physics of ADSs and for developing methods for 

measuring and monitoring the sub-criticality of ADS. 

A considerable amount of theoretical work (Pazsit and Yamane, 1998; Pazsit et al., 2005; 

Degweker, 2000, 2003) has been carried out for understanding reactor noise in ADSs and its 

application to measurement of the degree of sub-criticality. Many physics experiments are 
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proposed (Rasheed et al., 2010) in PURNIMA sub-critical facility and one of the aims of the 

proposed experiments would be to verify the theory and interpret the results in terms of the 

theory.  The system planned is a natural U sub-critical assembly moderated by water or high 

density polyethylene and driven by a D-D or D-T neutron generator. The maximum Keff of the 

assemblies is expected to be about 0.9. 

In the present thesis we discuss theoretical work aimed at developing computer codes for 

analysis of sub-critical systems including design and interpretation of experiments described 

above. Placement of detectors at suitable locations to minimize modal effects in pulse neutron 

and noise experiments is very important (Rugama et al., 2002). For getting the idea of suitable 

locations, we have developed new methods to evaluate time eigenvalues of neutron diffusion 

equation and zeros of alpha modes are possible locations of detectors. We have also developed 

space time kinetics computer code for the analysis of neutron flux evolution in pulse neutron 

experiments and also for the analysis of any reactivity initiated transient in ADS. A transport 

theory based analogue Monte Carlo method has also been developed (Singh and Degweker, to be 

submitted for publication) for simulating the noise experiments planned at BARC. 

The thesis is organized in seven chapters as elaborated below.

Chapter 1 is a brief introduction to the ADS concept. The concept of ADS and its evolution over 

the years is discussed. A survey of the theoretical and experimental studies on such systems is 

presented. 

In chapter 2, we begin our discussion with a brief discussion of numerical methods in reactor 

physics such as the Monte Carlo method, and those based on solving the linear Boltzmann 



4

transport equation which is the governing equation for neutron transport and its multiplication in 

a reactor and to obtain the neutron distribution in energy, angle and space variables. We also 

discuss an approximate form of the transport equation viz., the diffusion equation which is the 

equation we are concerned with in this thesis. The power distribution in a nuclear reactor core is 

usually obtained by solving  -eigenvalue problem for the multi-group neutron diffusion 

equations for critical systems and a source problem for sub-critical systems (ADSs). While in 

general the highest  -eigenvalue (which is the Keff of the system) and the corresponding 

eigenfunction are enough for estimation of core reactivity and power distribution, there are 

situations in which other eigenvalues and eigenfunctions are also required. There are yet other 

situations which require solution of another type of eigenvalue problem commonly referred to as 

the alpha-eigenvalue problem. 

We present a literature survey of the research on methods for solving the diffusion equation 

using the finite difference method, to obtain fundamental and higher eigenvalues and 

eigenfunctions corresponding to both types of eigenvalue problems mentioned above. We also 

present a survey of various Monte Carlo approaches available in literature for simulating pulsed 

neutron and noise methods for experimental determination of the degree of sub-criticality of 

accelerator driven subcritical reactors.

In chapter 3, we focus on the determination of the alpha modes (time-eigenvalues) using our 

experience with the calculation of the 3-D  -modes (Verdu et al., 1994). In alpha eigenvalue 

problem (Bell and Glasstone, 1970; Lathouwers, 2003), the eigenvalue  appears in the form of 

a (positive or negative) 1/v absorber. The  -modes are important in developing modal neutron 

kinetics where these modes form the expansion bases for neutron flux under perturbation. They 
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are also important in the context of monitoring reactivity of ADS and also for identification of 

suitable detector locations in pulse neutron experiments. Here we present some numerical 

schemes developed by us for the evaluation of alpha modes of diffusion equation. 

Two new methods (Singh and Degweker, 2009) of obtaining dominant prompt alpha modes 

(sometimes referred to as time eigenfunctions) of the multigroup neutron diffusion equation are 

discussed. In the first of these, we initially compute the dominant K-eigenfunctions and K-

eigenvalues (denoted by 1, 2, 3 …etc; 1 being equal to the Keff) for the given nuclear reactor 

model, by method based on sub space iteration (SSI) technique (Modak and Jain, 1996; Modak 

and Gupta, 2007; Doring et al., 1993), which is an improved version of power iteration method. 

Subsequently, a uniformly distributed (positive or negative) 1/v absorber of sufficient 

concentration is added so as to make a particular eigenvalue i equal to unity. This gives ith alpha 

mode. This procedure is repeated to find all the required alpha-modes. In the second method, we 

solve the alpha-eigenvalue problem directly by SSI method. This is clearly possible for a sub-

critical reactor for which the dominant alpha-eigenvalues are also the largest in magnitude as 

required by the SSI method. Here, the procedure is made applicable even to a super-critical 

reactor by making the reactor model sub-critical by the addition of a 1/v absorber. Results of 

these calculations for a 3-D two group PHWR test-case are given. These results are validated 

against the results as obtained by a different approach based on Orthomin algorithm (Modak & 

Gupta, 2006). The direct method based on the sub-space iteration strategy is found to be a simple 

and reliable for obtaining any number of alpha modes. Also comments have been made on the 

relationship between fundamental  and k-eigenvalues.



6

In the eigenvalue problems discussed in chapter 3, we have assumed that all neutrons are prompt. 

In chapter 4, we focus on neutron diffusion equation with prompt and delayed neutrons. For 

complete description of a pulsed neutron experiment, delayed neutrons should be taken into 

account (Singh and Degweker, 2011) in defining the eigenvalue problem. Substituting an 

exponential time dependence of the flux (as in the case of the alpha modes) results in the 

“delayed-alpha” eigenvalue problem, (also referred to as natural modes). Corresponding to each 

alpha-mode there is one prompt mode and six delayed modes. An expansion in these modes is 

more appropriate for describing transients in which delayed neutron effects are to be included. In 

this chapter, we extend the numerical schemes of our previous chapter for the evaluation of 

alpha- modes of diffusion equation including delayed neutrons. There have been a few studies 

for obtaining (Hoogenboom, 2002) alpha-modes with the inclusion of delayed neutrons. These 

evaluations have been limited to only fundamental modes. In this chapter we have the proposed 

method to evaluate higher alpha modes.

It has been known for quite some time that space –dependent calculations of reactor transients 

are required in certain situations in order to accurately predict the power behavior and the spatial 

distribution of neutron flux. This is more so in the case of sub-critical reactors where the flux 

distribution departs rather strongly from the fundamental mode flux distribution.

In chapter 5, we describe the development of a three dimensional space time kinetics code 

[KINFIN] which solves the few group time dependent diffusion equation with delayed neutrons. 

The spatial discretisation is done using the finite difference method in which the space can be 

divided into rectangular meshes. A centre mesh finite differencing method is used for the spatial 

derivatives. The time integration is carried out using the backward Euler scheme. Thermal 
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hydraulic feedback effects can be taken into account (Singh et al., to be submitted for 

publication). For sub-critical systems, kinetics problems in the presence of a source can be 

solved. Validation of KINFIN by comparison of the results with existing 3-Dimensional PHWR 

and LWR benchmarks (Judd and Roubin, 1981) also form a part of this chapter. 

Finally we describe the modification of KINFIN to calculate the time dependent adjoint 

functions in the presence of an external source [which in the adjoint calculation is a detector 

cross section]. Modified code can calculate the backward functions
1
( , , ;1,1)zG E tr, , 

2
( , , ;1,1)zG E tr, or ( , , ;1)zG E tr, and the forward function ( , , , )E t r  which are required to 

evaluate the various integrals to compute the Rossi alpha and the Feynman Y, functions 

respectively.

As a part of the planning of experiments in the Purnima sub-critical facility, Rana et.al (2013)  

have carried out simulations of the proposed noise experiments using a Monte Carlo based 

neutron diffusion code developed for this purpose. These simulations have provided valuable 

information about the feasibility of the proposed experiments and the kind of accuracy that can 

be expected from such measurements. However, a more realistic description of the experiments 

will be provided by transport theory based analog Monte Carlo (Máté Szieberth and Gergely 

Klujber 2010). In chapter 6 we discuss the development of such a code (Singh and Degweker, to 

be submitted for publication) specifically intended for simulating the noise based experiments 

such as Rossi-alpha and Feynman-alpha. The code is based on the delta neutron tracking method 

(also called Woodcock and Coleman method) which results in fast and relatively simple handling 

of complex geometries. The code has been validated with a few K-eff and noise benchmark 
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problems. In this chapter we have given the results of simulation of the proposed ADS noise 

experiments at the PURNIMA facility obtained using our code. 

Chapter 7 gives a brief summary of the results presented in the thesis and the main conclusions 

drawn. 

The thesis describes the development of new methods for solving alpha-eigenvalue problems in 

multi-group diffusion theory with and without delayed neutrons to obtain fundamental and 

higher modes and computer codes developed based on these methods. It also describes the 

development of other codes which will be useful in simulating transients in ADSs, and for 

simulating various experiments planned for measurement of the degree of sub-criticality in ADS 

by pulsed neutron and noise methods.

An attempt was made to calculate higher prompt and delayed modes using the sub-space 

iteration methods but was not very successful. This is due to the fact that with the inclusion of 

delayed neutrons in the diffusion equation and elimination of the precursor variables, the 

eigenvalue problem is no longer linear. It would be interesting to develop a method for 

computing higher prompt and delayed modes which do not suffer from these difficulties.

In the analogue Monte Carlo code for simulating various experiments, we have simplified our 

problem by treating the energy variable by the method of groups and by assuming isotropic 

scattering. Further work in this direction would be to develop a code capable of continuous 

energy treatment with anisotropic scattering.
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CHAPTER 1

_____________________________________

Overview on Accelerator Driven Sub-critical System (ADS)

Meeting the rapid increase in global energy demand is a major challenge to the world 

community. According to the IEA, the global demand for energy (IEA, 2011) will grow more 

than 33% by 2035. This large expansion cannot be met by the limited fossil fuel reserves alone. 

Moreover there are concerns of emission of green house gases due to burning of fossil fuels

resulting in global warming and climate change (IAEA, 2011). Nuclear power can make an 

important contribution in reducing greenhouse gases while delivering energy in increasingly 

large quantities required for global economic development.  This has resulted in a revival of 

interest in nuclear energy. But production of nuclear energy through conventional critical 

reactors is also not devoid of problems. Safety, proliferation and management of nuclear waste 

are major issues related to the presently operating critical reactors. 

Various innovative reactor designs addressing these issues are under development. An innovative 

reactor concept which is increasingly getting worldwide interest is the Accelerator Driven 

System. The ADS has superior safety characteristics as compared with critical reactors and can 

work as a fissile material breeder, a waste transmuter and as an energy amplifier. 

Indian interest in accelerator driven systems (ADSs) has an additional dimension (Degweker et 

al., 2007a), which is related to the planned utilization of our large thorium reserves for future 

nuclear energy generation. Studies done by several researchers (Rubia et al., 1995; Degweker, 

2001, 2002; Bowman, 2000; Furukawa, 1997) around the world have shown the achievability of 
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self-sustaining thorium-uranium cycles in ADSs. Globally, thorium is 3–4 times more abundant

(IAEA-TECDOC-1450, 2005) than uranium and India in particular, has much larger thorium

reserves compared to that of uranium. Thorium however does not contain any fissile isotope. The 

fertile Th232 has to be converted into the fissile U233 by neutron irradiation. In an ADS, the 

accelerator delivers additional neutrons over and above those coming from fission. Therefore the 

thorium fuel cycle in ADSs can be expected to give higher breeding and hence appears to be an 

attractive alternative for long term energy production. Moreover, the Th cycle generates much 

lower quantities of long lived radiotoxicity waste (IAEA Safety Standards, 2005).

These attractive features of ADSs have given a fillip to research activities in several countries    

(Abderrahim et al., 2001; Kapoor, 2001; Mukaiyama et al., 2001; Gohar and Smith, 2010) aimed 

towards development of high power accelerators, spallation targets and sub-critical reactor 

physics concepts. On the reactor front, the R&D effort is mainly geared towards development of 

accurate simulation tools, generating new nuclear data and conducting experiments oriented 

towards understanding the physics of accelerator driven sub-critical reactors. A programme and 

roadmap for development of ADSs has also been drawn up in India. This includes development 

of a high energy high current proton accelerator, development of target technology and basic 

theoretical and experimental studies in ADS reactor physics and nuclear data.

Evolving a suitable method of reactivity monitoring in ADSs is one of the areas of experimental 

reactor physics research. Besides deterministic methods such as pulsed neutron and source jerk 

methods, noise based methods are also being evaluated for this purpose. A considerable amount 

of theoretical work (Pazsit and Yamane, 1998a,b; Pazsit et al., 2005; Degweker, 2000,2003) has 

been carried out for understanding reactor noise in ADSs and its application to measurement of 
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the degree of sub-criticality. Several zero power experiments (YALINA, MUSE) devoted to 

reactivity monitoring of ADS have been carried out around the world and a number of reactivity 

measurement methods such as the Feynman-alpha and the Rossi-alpha methods, and pulsed 

neutron source methods were investigated. In BARC many such physics experiments are planned 

(Rasheed et al., 2010) in the newly created BRAHMMA sub-critical facility, at the Purnima 

laboratory. These experiments will be helpful in validation of reactor physics analysis tools and 

ADS related theoretical concepts developed in BARC. 

The thesis discusses the theoretical work and computer code development performed for the 

design and analysis of experiments planned for determination of sub-criticality at the Brahma 

facility mentioned above.  Deciding suitable locations of detectors, so that the effects of higher 

harmonics are minimal, is one of the problems addressed in this context. Knowledge of the zeros 

of the alpha-eigenmodes is required for fixing suitable locations of the detectors. In the thesis,

we describe methods developed for calculation of alpha eigenmodes of the neutron diffusion 

equation. The other development pertains to simulation of deterministic and noise experiments 

for sub-criticality measurement. For this purpose we have developed a space time kinetics code

based on diffusion theory. Though this is a deterministic code it can be used not only for the 

analysis of pulse neutron experiments but also for simulation of noise experiments. The diffusion 

theory code can also be used for simulating transient in power reactors (critical or ADS) as it 

also incorporate various feedback effects. Since a more accurate description is provided by the 

Monte Carlo method, we have also developed a transport theory based analogue Monte Carlo 

code (Singh and Degweker, 2014) specially developed for simulating the noise experiments 

planned at BARC. A description of this development is also contained in the thesis. 
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1.1. Spent fuel and its management

Handling and storing nuclear waste is one of the major obstacles in nuclear energy development. 

As per IAEA there are primarily three major classes of nuclear waste (IAEA technical report 

2009; Ripani, 2013) which require attention for safe storage and disposal. The first category is 

Low level waste (LLW) having enough radioactivity content (annual dose rate to members of 

public < 0.01 mSv) to require action for the protection of people, but not so much that it requires 

shielding during handling, storage or transportation. The second category is Intermediate level 

waste (ILW) which because of its radioactivity content, (particularly of long lived radionuclides 

less than 4000 Bq/g of alpha-emitters) requires a greater degree of containment and isolation and 

requires disposal at greater depths. In the third category, we have the High level waste (HLW) 

containing large amounts of short and long-lived radio nuclides requiring both cooling and 

shielding which poses a great challenge with regard to storage and disposal.

Most of the HLW originates from the spent fuel of nuclear power plants. As per an estimate

(Salvatores and Palmiotti, 2011) LWR spent fuel with a burnup of 33 GWd/t after a cooling of 

10 years, consists of about 95.5% uranium, 0.2% short-lived fission products (Cs137, Sr90), 0.2% 

long-lived fission products (I129, Tc99, Zr93, Cs135), 0.8% plutonium, and 0.2% minor actinides 

(neptunium, americium, and curium). The half lives of these radio nuclides vary in the range 

between minutes and millions of years. For the first few hundred years, the spent fuel 

radiotoxicity (measure of hazard) is dominated by fission products. In the long run radiotoxicity 

of spent fuel arises from long lived plutonium, neptunium, americium and curium and also from 

some long-lived fission products such as iodine and technetium isotopes. 
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1.1.1. Nuclear waste management options

Finding a solution to the problem of nuclear waste management has been one of the thrust areas 

in nuclear energy research in last few decades. Several spent fuel management options have been 

suggested, varying from the direct disposal concept to proposals for reprocessing and recycling a 

various spent fuel components. The three major back-end fuel cycle options currently under 

consideration by various countries are: a once through fuel cycle option with direct disposal of 

spent fuel as HLW; reprocessing fuel cycle (RFC) with mixed oxide (MOX) recycle of U and Pu 

in light water or fast breeder reactors and disposal of minor actinides and fission products; an 

advanced fuel cycle, an extension of RFC in which the minor actinides and long lived fission 

products are partitioned and transmuted (P&T) to reduce the long-term radio toxicity. These 

options have different advantages and disadvantages and pose different challenges that vary in 

complexity to the management of nuclear wastes.

Partitioning and transmutation

To deal with the problem of disposal of nuclear wastes, plans have been made to permanently 

store them in solid state in deep geological formations. However, there is concern that geologic 

formation might change over millions of years and as a consequence it might turn out to be a 

potential risk to human society. Another long-term risk with repository burial is the possible 

leaching of the stored waste by underground water and its entry into the biosphere. As an 

alternative, a basically different strategy called partitioning and transmutation is also being 

explored.
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Transmutation in fast reactors

Effective transmutation of long-lived actinides can be better achieved in fast reactors as 

compared to thermal reactors because the fast neutrons have a higher ratio of fission to capture 

probability as compared to thermal neutrons. Several feasibility studies (Wakabayashi, et al. 

1997; Wakabayashi and Higano, 1998) have been performed in the recent past to investigate 

suitability of a fast reactor core for TRU and FP transmutation. But the general conclusion from 

these studies show that since safe reactor operation of fast reactors is crucially dependent on the 

delayed neutron fraction and negative fuel temperature (Doppler) reactivity coefficient which are 

rather low for minor actinides, critical fast reactors can be loaded with limited amount of minor 

actinides and they are not suitable for rapid transmutation of minor actinides. 

ADSs for waste transmutation and breeding 

Accelerator Driven Systems (Rubia et al., 1995; Stefan, 2003; Bowman et al., 1992) have been 

suggested to accomplish several tasks including transmuting minor actinides and fission products

produced as a result of nuclear energy generation. ADSs can also breed fissile materials for 

subsequent use in critical or sub-critical systems. Many countries have proposed ADS concepts 

for power production utilizing thorium-based fuel to take advantage of some of its benefits, 

including greater natural abundance, proliferation resistance and significantly lower production 

of transuranic elements. For these reasons, many countries are carrying out theoretical and 

experimental studies to develop, demonstrate and exploit accelerator-driven systems technology 

for nuclear waste transmutation and power generation.
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1.2. ADS historical background

The roots of the ADS concept can be found in the research works done on accelerator based

fissile material breeding in early 1950s by Glenn Seaborg, E.O Lawrence and W.B Lewis, V.I. 

Goldanski, R.G. Vassylkov (Van Atta, 1977; Bartholomew, 1965; Vassylkov et al., 1978).  Later

there were studies on the Fertile-to-Fissile Conversion Program (Russel et al., 1988) with

collaborative efforts of various laboratories. The idea of using spallation process directly to breed 

fissile material or transmutation of actinides and long lived fission products did not last long due 

to technological difficulties and high costs. In late 1980s and early 1990s, C. Bowman (Bowman 

et al., 1992) and H. Takahashi both independently came out with the idea of ADS promising to

use high-energy proton beam from an accelerator to produce spallation neutrons which in turn 

would drive a sub-critical blanket. While Bowman conceived a thermal system for transmutation 

and energy production, Takahashi,s PHOENIX (Van Tuyle et al., 1991) project was based on a 

fast spectrum sub-critical blanket for incineration of actinides. The interest in ADSs got a major 

boost with the research work done by a group led by Carlo Rubbia (Rubia et al., 1995) who 

conceived the idea of the Fast Energy Amplifier, which is a Th-U fuelled sub critical reactor 

using lead as coolant, driven by external neutrons coming from spallation in Pb induced by a 

high energy (1 GeV) proton accelerator having a current of about 10 mA.

1.3. Basic principles of ADS

The basic idea of ADS (Rubia et al., 1995; Kadi and Revol, 2001) is to couple a subcritical core 

with neutrons coming from a spallation neutron source produced by impinging high energy 

proton from an accelerator (Linac or Cyclotron) on a heavy metal target. Spallation is a well-

known nuclear reaction in which energetic particles (e.g. protons) interact with the target nucleus 
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producing high energy secondary particles (neutrons, protons, mesons, gammas). These particles, 

besides depositing a large amount of energy and generating spallation products in the target, 

release a large number of neutrons in the sub critical medium when they leave the target. The 

main safety advantages of ADSs are increased margin to prompt criticality and reduced 

dependence on delayed neutrons and reactivity feedbacks. These attractive features of ADSs 

offer a great promise for effective management of nuclear waste and safe nuclear power 

generation.

1.3.1. Spallation neutron sources

Typical industrial-scale ADS designs, having thermal power ratings in the range of 500 MWth to 

1500 MWth are considered.  To have adequate criticality safety margins typical Keff values are 

generally chosen in the range 0.95-0.98. For the ADSs, the level of sub-criticality (Erikssona & 

Cahalan, 2002) being suggested is at least an order of magnitude larger (typically ~10$ 

subcritical or Keff<0.98) because reactivity feedbacks will not be as effective a means in source-

driven systems as they are in critical systems. Moreover stronger reactivity effects, from what is 

experienced in critical reactors, are necessary to have an effect on the source-driven system. In 

thermal ADSs, because of fission product reactivity load, a lower value of Keff is chosen.

A rough estimate of neutron source strength which can drive an 800 MWth (Keff=0.95) reactor 

shows that the required source strength will be about 3x1018 neutron/sec. Such a strong source is 

not possible through any radioactive-decay type source. Achieving such a strong neutron source 

is however possible using the spallation reaction.  At 1 GeV each proton will on the average 

expel 25 neutrons. Thus, the required proton intensity would roughly amount to 1.2x1017

protons/sec, which equals a beam current of roughly 20 mA or 20 MW of beam power. Though a 
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beam power of 20 MW is not available today, recent advances in accelerator technology promise 

the availability of such beam power in future. 

1.4. Theoretical research in the area of ADSs

1.4.1 Computer codes and nuclear data

Reactor physics theories, nuclear data and computational methods developed for critical reactors 

need to be modified or adapted for applicability for ADS. The analysis of ADSs requires  

computer codes, capable of handling the transport of high energy hadrons (protons, neutrons, 

pions etc) in addition to those required for treating low energy (<10 MeV) neutronics. In the 

high energy physics area, the commonly used codes are LAHET, FLUKA and CASCADE (Prael

and Madland, 2000; Ferrari and Sala, 1996; Kumawat and Barashenkov., 2005). These codes 

calculate the neutron yield per proton, the neutron energy spectrum, the heat deposition in the 

target and the creation of the spallation products.  Criticality, neutron transport and 

multiplication, fuel depletion and generation of fission products are generally dealt with core and 

burn-up simulation codes based on deterministic and stochastic low energy transport codes based 

on nuclear data from ENDF files. Monte Carlo depletion codes such as MCNPX with 

CINDER’90 depletion capability, MCB, Monteburns (Cetnar et al., 1999; Poston et al., 1999)

and other codes have been developed for analyzing the neutronics of ADSs and core follow-ups. 

In BARC also, development of continuous energy Monte Carlo code McBurn has been carried 

out (Ghosh and Degweker, 2004) for analysis of ADS. The greater use of Monte Carlo codes for 

statics and burnup calculations reflects both the increasing computing power available and the 

need to predict Keff (or Ks) accurately throughout the burnup cycle as both the power that can be 

produced as well as the safety margin available are dependent upon these predictions. Multi-
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group diffusion theory kinetics codes (Singh K.P. et al., 2011) have been recently developed 

keeping in view its application for steady state and transient analysis of ADSs. The SIMMER-

III/IV (Maschek et al., 2000; Yamano et al., 2003) codes are under development for analyzing 

transients and accidents in critical waste incinerating reactors and in ADSs. 

Augmentation of existing nuclear data files to include minor actinides and isotopes related to Th 

cycle is required as these nuclides have been studied less compared to the nuclides in U cycle. 

For target nuclides the nuclear data at higher neutron energies extending up to hundreds of MeV 

is required for ADS applications as opposed to critical reactors. Various laboratories and 

institutes are working towards developing (Takanori et al., 2011; Koning et al., 2007) a new

nuclear data for ADSs. High-resolution nuclear data are being generated using neutron time-of-

flight techniques in advanced facilities such as the 150 MeV electron LINAC (800 MHz, 10-400 

m flight paths, 10 meV to 20 MeV neutron energy region) at Geel, Belgium, the 800 MeV proton 

LINAC at Los Alamos National Laboratory (20 Hz, spallation, <500 keV neutrons, 20 m path 

length). In CERN (CERN n TOF) new measurements of cross-sections using the neutron time-

of-flight facility for applications to ADSs have provided an impetus towards generating new 

nuclear data.

1.4.2. Weighting Function and Reactivity Definitions

In conventional reactors the information about reactivity is derived from their effective 

multiplication constant which is also the largest eigenvalue of neutron transport/diffusion 

equation. However, the fundamental eigenvalue and eigenstate may not be suitable parameters to 

describe source-driven subcritical multiplying systems, since the stationary neutron distribution 

is strongly dominated by presence of the source and it can be very different from the 
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fundamental critical eigenstate. Here it is worth mentioning that though the parameter Keff retains 

its significance as a measure of the margin of subcriticality, neutron multiplication may be a 

useful parameter, which can be used to characterise the properties of the entire system i.e.

material, geometry and source. The corresponding multiplication factor Ks defined below has 

been introduced in this connection.

Weighting function is very important for defining reactivity and other parameters which are used 

in point kinetics equation and its proper value may improve the accuracy of point-kinetics 

computations. If the reactor is almost critical during the transient, the optimal weighting function 

is very close to the steady-state adjoint flux (Ott and Neuhold, 1985).  In addition to the standard

weighting function, the “unity” and the ‘‘adjoint alpha mode’’ have also been considered as 

weighting functions in the literature (Gandini, 1997; Gandini and Salvatores, 2002; Sandra Dulla 

et al., 2006; Kobayashi, 2005; Makai, 2008) for ADS studies and depending on the weighting 

function new definitions (Gandini, 1997; Gandini and Salvatores, 2002; Sandra Dulla et al., 

2006) of reactor parameters have been introduced. 

1.4.3. Source importance factor 

In ADS, the external neutron source get amplified by a factor M called source multiplication 

factor. In the evaluation of M, the source importance factor plays very important role. The source 

importance factor (φ*) is defined as the ratio of the average importance of a source neutron to the 

average importance of fission neutron. 
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For a subcritical system with an external source at steady state, the neutron multiplication M and 

the subcritical multiplication factor sK are defined in the present study as follows:

F S
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
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where s (r,E) is the neutron flux in the subcritical system at position r(x, y, z) and energy E, 

s(r, E) is the external neutron source, F and S are the total number of produced fission and source 

neutrons, respectively, per unit time, VOL is the whole system volume,  is the average number 

of fission neutrons per fission reaction, and f (r,E) is the fission cross-section.

In terms of the sK the fission power can be written simply as s
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terms of the effK , the expression for power includes the source importance factor and is given by                 
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.  Equating the two expressions for power, it is seen that the source importance 

factor can be related to the effK and sK as follows:
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1.4.4. Noise theory in ADS

The behaviour of neutrons in a nuclear reactor can be represented as a stochastic process. 

Observation of the fluctuations and their correlation of the neutrons in a system are used to 

measure kinetics parameters of a reactor.  Based on this principle, noise techniques have been 
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suggested (Behringer and Wydler, 1999; Carta and D’Angelo, 1999; Munoz Cobo et al., 2001)

for monitoring the sub-criticality of ADS. Since noise methods do not require any perturbation of 

the system, they might be more suitable in situations where perturbations (Degweker and Rana, 

2007) are not desirable. Early theoretical studies on various noise techniques for ADS (Pazsit 

and Yamane, 1998a,b; Behringer and Wydler, 1999) assumed the neutron producing source 

events in an ADS to form a Stationary Poisson Point Process  with each such event (spallation) 

producing neutrons with a large multiplicity distribution.  A new theoretical approach 

considering periodic pulsing and non-Poisson character of the source was proposed by 

(Degweker, 2000, 2003). The theory has, since then, been considerably expanded (Degweker  

and Rana,  2007; Rana and Degweker, 2009, 2011). 

1.4.5. Studies on waste transmutation

There have been theoretical studies devoted towards advanced solutions related to waste 

transmutation based the use of accelerator-driven reactor systems to burn the Minor Actinides 

(MAs) Np, Am, and Cm and Long Lived Fission Products (LLFP). Most of these studies have 

been towards assessing the potential of such system, on the basis of a physics analysis of the 

main phenomena involved. Rubbia et al. (1995) showed that an accelerator could directly drive a 

sub-critical power reactor and that the neutron spectrum from a lead moderator would sweep the 

capture resonances of transuranic isotopes and consume long-lived wastes. Bowman et al, and 

Venneri et al., (Bowman et al., 1992; Venneri et al., 1993) have carried out studies on 

Accelerator-Driven Transmutation of Waste (ATW) at Los Alamos. The system is based on 

transmutation of both fission products and higher actinides using a thermal neutron flux of about 

1016 n/cm2/sec.
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Studies on long lived fission product transmutation in ADSs have also been carried out by 

several other researchers (Nishihara et al., 2001, 2008; Tachi et al., 2009; Yokoyama et al., 

2009). Theoretical studies (Song et al., 2004; Yang et al., 2004) of simultaneous transmutation of 

minor actinides and long lived fission product in ADS were carried out in a 1 GWth hybrid 

power extraction reactor (HYPER) and in Argonne National Laboratory on Accelerator 

Transmutation of Waste System (ATW) of 840 MWt power. The studies have shown that ADSs 

can burn significant amounts of all minor actinides and long lived fission products in readily 

controlled manner contrary to fast critical reactors. 

Researchers under various thorium utilization programmes are investigating whether ADS can 

speed up the deployment of the 233U-Th fuel cycle by breeding 233U, which does not exist in 

nature. In India, ADSs can play key role in its 3-stage programme to develop a sustainable Th-U 

fuel cycle. In the recent years, various types of accelerator-driven transmutation technologies 

have been studied (Abanades and Perez- Navarro, 2007; Adam et al., 2007; Mukaiyama et al., 

2001; Seltborg and Wallenius, 2006) to produce energy and transmute radioactive wastes.

1.5. Experimental Studies

Several experiments (Andriamonje et al., 1995; Soule et al., 2004; Carl-Magnus Persson et al., 

2005; Kitamura et al., 2006) for selecting a suitable method for sub-criticality monitoring of 

ADS have been conducted around the world and several more are planned. Other parameters 

pertaining to operation of a future ADS have also been studied/planned in FEAT and TRADE 

experiments (Andriamonje et al., 1995; Imel et al., 2004). Recently the Guinevere experimental 

facility in Belgium has become operational (Billebaud et al., 2009). Experiments aimed towards 
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measurement and monitoring of sub-criticality and evolution of procedures for operation of an 

ADS are planned in this facility.

Generally the methods of reactivity determination are based on point kinetics model with some 

spatial correction applied to the evaluated value for inferring the sub-criticality. In the reactor 

noise methods the natural fluctuations in detector counts have potential information about sub-

criticality. Similar experiments for demonstrating pulsed neutron and noise methods for sub-

criticality measurement are planned in the upcoming Purnima facility at the Bhabha Atomic 

Research Centre (BARC), India. A brief description of these methods is summarized is below.

1.5.1. Pulsed Neutron Source (PNS) experiments

In sub-critical system, it is possible to determine the reactivity of the core by analysing the decay 

in detector response after a neutron pulse insertion. The methods used for analyzing a PNS 

experiment are slope fit method (Keepin, 1965) and area ratio method (Sjostrand, 1956). MUSE 

experiments (Soule et al., 2004) show that space and energy effects may introduce some bias in 

the results and detailed computer simulations should be used to take into account the spatial and 

energy effects. The PNS experiments in YALINA (Carl-Magnus Persson et al, 2005) were found 

in good agreement with those obtained by Monte Carlo calculations. The experiments showed 

that the slope fit method gives better results compared to area ratio method. However, in deep 

sub-criticalities, it may be difficult to find the correct slope.    

1.5.2. Source Jerk method

Source jerk method (Keepin, 1965) is a dynamic method based on the utilisation of a time 

dependent external source for reactivity determination. In such technique, the external source is 

suddenly removed from the initial steady state condition, where there is the equilibrium of both 
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the delayed neutron precursors and the prompt neutron concentrations. Assuming a subcritical 

core at constant power driven by an external source, a neutron flux level somewhere in the core 

will be 0n . Suddenly, the external neutron source is removed very quickly. Then, the neutron flux 

changes rapidly to a asymptotic level 1n . The reactivity in dollars is given by

 0 1

1

($)
n n

n





The efficiency of source jerk experimental techniques for assessing a subcritical level was tested

in RACE experiments (Jammes, Christian C. et al., 2006) by causing transient through the 

neutron generator shutdown (SJ-Gen) and standard source jerk technique (SJ-Cf) using the     

Cf-252 source.  Among the methods used for reactivity determination, source jerk method 

provided less satisfactory results.

1.5.3. Noise experiments

Noise methods using Rossi alpha, Feynman alpha and CPSD (Soule et al., 2004) have been 

studied in MUSE experiments. The Rossi alpha and Feynman alpha methods were found suitable 

for low sub-criticalities. CPSD measurements demonstrated the inference of alpha through the 

break frequency. Rossi alpha measurements have been carried out at the Kyoto University 

Critical Assembly (KUCA) by using a D–T pulsed neutron source (Kitamura et al., 2006). Since 

the authors used a solution technique that is based on the Laplace transform, the formula derived 

by them contains infinite series expansion structure of the oscillating term. Therefore, it was 

difficult to fit the formula to the experimental data and only the correlated term was used to 

extract the value of alpha. 
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CHAPTER 2

_____________________________________

Review of Computational Methods in Physics of Critical &
Sub- critical Systems

The reactor physics of ADSs is quite different from that of critical reactors.  This is due to the 

presence of the spallation source, which results in a different spatial and energy distribution. 

whereas in critical reactors the fundamental eigenmode prevails, in ADSs (Carta and D’Angelo,

1999; Rineiski et al., 2005; Degweker, et al., 2007) other modes also arise due to the fact that the

spallation neutrons have different energy and spatial distributions different than that of fission 

source.  Moreover, ADS cores are characterised by a very low fraction of delayed neutrons and 

by a low Doppler reactivity coefficient. In consequence these cores have very different dynamic 

response to any reactivity/source perturbation. The degree of sub criticality is one of the 

principal reactor parameters of ADSs because this not only assures criticality safety; it has a 

bearing on the energy gain and decides the accelerator power necessary for producing the design 

power of the ADS. Therefore, for proper design of ADSs, it is very important to accurately 

predict the sub-critical reactivity throughout the core life.  

For these reasons, the methodologies and computer codes developed for critical reactors may be 

inadequate in their present form, and hence it is required to develop of new simulation tools. 

Development of on-line reactivity monitoring techniques and their qualification by sound 

computational and experimental methods will also be necessary.  



36

Various techniques are used for determining the reactivity of subcritical systems as discussed in 

chapter-1 are based on measurement of fundamental alpha of the system. The reactivity predicted 

by these methods has a strong dependence on detector location due to presence of higher modes. 

Misawa et al. (1990) have shown that in a subcriticality measurement with the Feynman-aalpha

method, it is important to quantify the effects of higher order alpha-modes. Higher alpha-modes 

are important in developing modal neutron kinetics where these modes form the expansion bases 

for neutron flux due to any perturbation. 

Considering the importance of alpha modes, there has been considerable work done in the past

(Dhal et al., 1983; Modak and Gupta, 2003; Sahni, D.C. et al., 1992; Paranjape, S.D. et al., 1993)

to evaluate the same. The alpha modes evaluated by these researches are either limited to simpler 

one dimensional one energy group cases or limited to only few dominant prompt alpha modes. In 

our research work we have developed schemes which can efficiently evaluate higher prompt

eigenvalues/eigenmodes and also evaluate higher delayed time eigenvalues/eigenmodes. The 

evaluation methodologies of higher prompt and delayed alpha-modes are discussed in detail in 

chapters 3&4.

Simulation of the deterministic and noise experiments for sub-criticality measurements and to 

analyse any reactivity initiated transient full three dimensional space time kinetics code is 

required. Though there are several such codes popularly in use for space time kinetics 

applications for critical reactors, the motivation behind the development of 3-dimensional space 

time kinetics code is to analyze the dynamical behavior of ADSs. The deterministic code 

developed can not only be used for the analysis of pulse neutron experiments but also for 

simulation of noise experiments. In chapter 5 we have brought out the theoretical bases for   3-D 
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space time code and results of benchmark problems to validate the code. We have also developed 

thermal model which can be useful for analyzing feedback effects. 

As discussed in chapter-1, noise based techniques are more suitable method for assessment of 

sub-criticality. As part of the planning noise based experiments, a prior knowledge of the kinds 

of results that might be expected with different detector locations, counting and analyzing setups 

will be useful. Simulation of such experiments can accurately be done by Monte Carlo method. 

Simulations with standard existing code packages are not appropriate because of several non-

analogue features built into such codes. For this reason we developed our own Monte Carlo code 

specifically intended to simulate noise based experiments and the detailed description is given in 

chapter-6. 

In present chapter we present an overview of the computational reactor physics methods used for 

critical and sub-critical reactor analysis. We also introduce the time eigenvalue problem of the 

neutron diffusion equation which helps in the design and planning of experiments for sub-

criticality determination. 

2.1. Methods in computational reactor physics 

Calculation of the reactivity, neutron flux, reaction rates and fission power distribution are of 

pivotal importance in the design of critical and sub-critical reactors. Several codes based on 

deterministic as well as stochastic approaches viz., transport theory, diffusion theory and Monte 

Carlo methods are in use. Diffusion theory is an approximation to transport theory, and the 

Monte Carlo method is a statistical approach based on random sampling. Each of these methods 

has its strengths and weaknesses in the areas of application mentioned above. 
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Reactor Physics calculations begin with the processing of nuclear data files in what is called the 

Evaluated Nuclear Data File (ENDF) format to produce multi-group or continuous energy data 

files for use in transport theory or Monte Carlo codes. Often readily available multi-group or 

continuous energy data files such as the Wims cross section data library or the ACE format 

libraries for use in continuous energy Monte Carlo calculation may be a starting point. Though 

the Monte Carlo calculations for the full reactor core can be carried out in one step and give 

good estimates of quantities such as the Keff, detailed power distribution in the core and its 

variation with burn-up and during transients can be determined quickly only by deterministic 

methods. These are, even today, carried out in a series of steps which are described in the next 

section, since it is not possible at the present time to perform three dimensional whole core 

calculations using multi-group transport theory without homogenization. However it may be 

mentioned that in recent years, due to phenomenal increase in computing power, there have been 

suggestions/attempts to solve the multi group transport equation in a single step without 

homogenization (Hernandez et al., 2013).

2.2. Neutron transport equation 

The neutron distribution inside a reactor core is well described by the linear Boltzmann transport 

equation. It is basically a statement of neutron balance in small volume element of phase space 

d3r. In its integro differential form it can be written as (Bell and Glasstone, 1970)

t ext

' ' '' ' ' ' ' ' '
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4 0 0

1 (r,E, , t)
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The Eq.(2.1) is a complicated equation not only because it is an integro-differential equation in 

seven variables but also because of cross sections being extremely complex functions of energy 

and position for any realistic reactor problem. For this reason the problem is solved in a series of 

steps and approximations like multi group formalism, lattice – pin cell calculation and assembly 

homogenisation and finally diffusion theory approximation.

2.2.1. Multi-group formalism

In multigroup formalism neutron transport equation is made computationally suitable by dividing 

complete neutron energy range into G number of discrete intervals. Indexing of these intervals is 

chosen so that group g contains neutrons with energies g g 1E E E   . The structure of multigroup 

discretisation can be written as

 G G 1 g g 1 1 00 E E E E E E                   

Neutron balance within group g can be obtained by integrating Eq.(2.1) over the group energy 

range and can be expressed as under

' ' ' '

' '
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g g g g
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Various terms in Eq.(2.2) are defined as below:

g (r, , t)  =

g 1

g

E

E

(r, ,E, t)dE



 

and assuming separation of energy and angle variables ie; (r,E, , t)  = (r,E, t) f(r, )  , group 

constants used in Eq.(2.2) are defined as under
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2.2.2. Lattice level calculations

Various numerical methods have been devised for obtaining the quantities of interest to the 

reactor systems by solving the multigroup neutron transport/diffusion equation. The calculations 

are done by discretizing each of the variables involved. The discretization of energy gives rise to 

the group structure as mentioned in the previous section, the discretisation of the spatial variables 

results in what is commonly referred to as the spatial mesh and the discrete neutron directions are 

defined by asymmetric quadrature set. Moreover differential scattering cross sections are 

expressed in terms of the orthogonal Legendre polynomials. There is variety of numerical 

methods like discrete ordinates (DSN), spherical harmonics (PN), method of characteristics and 

collision probability method (Bell and Glasstone, 1970) popularly used in transport calculations.  

Transport calculations are done at the lattice level and diffusion theory codes are used for full 

core calculations. Transport theory based lattice codes WIMSD and CLUB (Askew, J.R. et al.,

1966; Krishnani, P.D., 1992) are used to calculate neutron flux distribution and an infinite 

medium multiplication factor. Evaluated multi- group nuclear data ENDF/B-6 and geometrical as 

well as material descriptions of unit cell all together form the input data for the code to solve 
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transport equation. The flux and volume weighted homogenised macroscopic cross-sections of 

the lattice cell obtained are used for full core calculations. 

2.3. Core calculations using diffusion theory

One generally uses neutron diffusion equation for reactor core calculations. The neutron 

diffusion equation does not account for the angular dependence of the flux. Neutron flux in space 

is assumed to be slowly varying and source is assumed to be isotropic. The diffusion theory 

model of neutron transport has played a crucial role in reactor theory since it is simple and 

sufficiently realistic to study many important design problems. Though the approximations used 

to derive neutron diffusion equation may not be valid in conditions of heterogeneity, anisotropy 

and strong absorption, some of these problems are taken care at lattice level transport calculation. 

The multi group diffusion equation is obtained using Fick’s law of neutron diffusion as given 

below. 

J D  

Here D is the diffusion coefficient, such that 
t s t r

1 1
D

3( )
 
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The validity of Fick’s law is dependent on the conditions given below:

1. Region is  ~3 mean free paths away from either a neutron source or a surface of a 

medium boundary

2. Medium is weekly absorbing and strong scattering

3. Scattering is weekly anisotropic 

4. The neutron flux is a slowly varying function of position

Using Fick’s law, multigroup neutron diffusion equation can be written as under
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We get the following equation
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2.3.1. Solution of multi-group neutron diffusion equation 

Neutron density in a reactor will be independent of time in either a critical reactor or a sub-

critical reactor driven by external neutron source. Time independent neutron diffusion equation 

with external source can be written by equating the time derivative of flux to be zero as under:

' ' ' '
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From here onwards for convenience we have dropped explicitly displaying the space variable.

Numerical solution method

Over the years several schemes for solution of multigroup neutron diffusion equation have been 

developed and computer code packages made based on these methods. Notable among these 

methods are the nodal method (Lawrence, R.D., 1986), the finite difference method (Duderstadt 

and Hamilton, 1976; Lewins and Ngcobo, 1996) and the finite element method (Kang and 

Hansen, 1973). In the present work we have chosen a standard finite-difference approach. In the 

finite difference method, the second spatial derivative term is descretised in number of meshes 

each having uniform properties within it. The result of the finite difference discretisation is that 
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the partial differential equations are converted to a set of algebraic equations and for very fine 

mesh structure the method converges to the exact solution. 

Two forms of finite difference theory equations (i) ‘Corner mesh’ equations and (ii) ‘centre mesh 

equations’ (Cacuci, D.G., 2010) are in use. We have used the centre mesh approximation for 

descretisation of diffusion equation in our research work. A derivation of the set of algebraic 

equations obtained using the scheme is given in Appendix 2A. The time dependent and steady 

state multigroup diffusion equation take the form of Matrix equations as given below:

                             
ext

1
F A S (2.5)

V t


   


   

                         
extA F S (2.6)      

                
M is the matrix containing diffusion, removal and scattering terms and F is the matrix containing 

fission terms. The element of  are arranged in such a way that all fluxes for group 1 precede 

those for group 2 and so on. A, M, F ,  are NGxNG matrices and  and extS is NGx1 column 

vector.

 - Eigenvalue problem

The Eq.(2.6) admits stationary solutions for a critical reactor ( extS =0) which implies exact 

balance between production and removal. However, we can restore this balance for any system 

by dividing the fission source by a suitable quantity . In that case Eq.(2.6) is rewritten as 

                                                    
1

A F   


                                                                           (2.7)

The set of solutions of Eq.(2.7) are called the  -modes and the corresponding values of  are 

called the  -eigenvalues.  The highest eigenvalue is the Keff of the system and the corresponding 

eigenfunction  gives the flux distribution in a critical reactor.
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Iterative solution procedure

The eigenvalue Eq.(2.7) is solved by power iteration (Duderstadt and Hamilton, 1976) method.

There are two iterative processes involved in the evaluation of eigenvalue and eigenflux. One is 

called as the outer iteration or source iteration to evaluate the source distribution/eigenvalue with 

the obtained neutron flux until source distribution/eigenvalue converges. The other is called as 

the inner iteration for obtaining the flux distribution under the fixed source distribution. Starting 

with an initial ‘guess’ flux vector and a given eigenvalue we first obtain the ‘fission source’ by 

evaluating the RHS of Eq.(2.7). The resulting source problem

                                                 (0)A S            

is solved to obtain the new flux vector. This then used to obtain a new value of  . Using these

two a new fission source is obtained and the next iteration begins. It is easily seen that the above 

procedure is equivalent to repeatedly multiplying upon a guess vector with the matrix 1A F   and 

normalizing. This is the standard algorithm to obtain eigenvalue of 1A F . The solution of 

(n )A S  is obtained by an iterative procedure. This is known as inner iteration. These set of 

linear equations are solved by various methods like Jacobi, Gauss-Seidel, conjugate gradients, 

Krylov subspace method. We have chosen the popular Gauss Seidel method for solution of 

system of neutron flux equations. The various iterative equations involved are given below:
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Solution of inhomogeneous diffusion equation in the presence of external source is important for 

evaluation of flux/power distribution in sub-critical reactor and this can be achieved by suitably 

modifying the iterative procedures used of eigenvalue evaluation. It is to be noted that contrary 

to eigenvalue problem wherein the ratio of fission source and lambda is maintained constant, in 

source problem only fission source is updated in outer iterations.

  
2.4. Time eigenvalue of neutron diffusion equation

Solution of the eigenvalue problem discussed in previous section is required for studying the 

criticality behaviour and for obtaining the stationary power distribution in nuclear reactors. 

Supercriticality, criticality or sub-criticality of a reactor is determined by the value of the largest 

value of  often called fundamental lambda-eigenvalue which is identified with the effective 

multiplication factor Keff. Besides the lambda-eigenvalue problem, there is another eigenvalue 

problem commonly referred to as the prompt time-eigenvalue or alpha-eigenvalue problem (Bell 

and Glasstone, 1970). In this problem, the eigenvalue appears in the form of a (positive or 

negative) 1/v absorber. 

2.4.1. Prompt alpha eigenvalue 

To define prompt  -eigenvalue problem, the space-energy and time dependent neutron flux is 

assumed to be exponentially varying in time as given below:

                                                     g g(r, t) (r) exp( t) (2.11)   

If the Eq.(2.11) is substituted in the multi-group time dependent diffusion equation Eq.(2.5), we 

obtain on separating the time variable from the space and energy variables, 
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F A (2.12)

v
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The values of   for which non trivial solutions exist are called the  -eigenvalues and the 

corresponding solutions are the  -modes. 

2.4.2. Prompt and delayed alpha eigenvalue 

The time-dependent multi group neutron diffusion equation describing the flux distribution in 

various energy groups in a reactor in the presence of 6 groups of delayed neutrons is
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Eq.(2.13) and Eq.(2.14) can be written more compactly using the removal and fission operators 

as follows                         
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To define the prompt and delayed  -eigenvalue problem, the space-energy and time dependent 

neutron flux is assumed to be exponentially varying in time as given below 

          

g g(r, t) (r) exp( t) (2.17)   

                              0
t
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If the Eq.(2.17) and Eq.(2.18) are substituted in multi-group time dependent diffusion equation 

and Eqs.(2.15) and (2.16),  we obtain on separating the time variable from the space and energy 

variables, 

i i di
p

i i

F
(1 ) F A (2.19)
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The values of for which we obtain non trivial solution for flux and precursor concentration are 

called the  -eigenvalues and the corresponding solutions are called the  -modes. 

2.5. Solution of space time kinetics equation

Time dependent spatial power distribution is required for the transient and safety analysis of 

reactors and this is normally obtained by solving the coupled time dependent multigroup neutron 

diffusion equation and equations for the precursor concentration as expressed by Eqs.(2.15) and 

(2.16). The numerical solution of these equations is obtained using various methods which have

been discussed in detail in a book entitled “Nuclear reactor Physics” by W.M Stacey (Stacey,

2001). The solution methods (Sutton and Aviles, 1996) that are broadly categorised as: direct 

methods, space-time factorisation methods. In direct methods, neutron diffusion equations are 

converted to a set of first-order differential equations in each volume element and that can be 

solved by the finite difference method over small time interval for all volume elements and 

energy groups. During each of the time steps certain parameters are kept constant enabling the 

time dependent diffusion equation to be transformed into steady state equation. Indirect methods 

involve a factorization of the flux into space and time parts. 

If we combine Eqs(2.15) & (2.16) and writing the group fluxes and precursor densities at every 

mesh point as a column vector  and writing the terms of the multigroup neutron and delayed 
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neutron precursor balance equations at each spatial point as a matrix H , the space time neutron 

kinetics equations can be written as a coupled set of ordinary differential equations

                                                          H                                                                             (2.20)

Forward-Difference Method

The simplest approximate solution to Eq.(2.20) is obtained by a simple forward difference

algorithm,

( 1) ( ) t H(p) ( )p p p     

where,  ( 1)p  , ( )p denote the values of column vector  at time 1pt  and pt and

1t t p pt   . 

This algorithm suffers from a problem of numerical stability. Stable solution requires very small 

time steps. Numerical stability of the solution depends on fundamental and higher eigenvalues of 

operator H.  It has been proved that for ensuring stability of the solution, (1 )n t  should 

be less than unity where ( 2)n n  are higher eigenvalues of the operator H. Numerical studies 

have shown (Stacey W. M., 2001) that Δt necessary for convergence should be less than the 

reciprocal of g g
a(v ) which forces very small time steps (~10-7 sec) because of large neutron 

velocities in fast group.

Backward-Difference Method

The numerical stability problem associated with the preceding method can be all but eliminated 

by the backward-difference algorithm:

1( 1) [ t H(p 1)] ( )p I p     

The method is unconditionally stable. The difficulty with the backward-difference method arises 

from the necessity of inverting a matrix at each time step. Thus, although much larger time steps 
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can be taken with the implicit method than with the explicit method, the computation time

needed for the matrix inversions may more than offset this advantage. The size time step used in 

the backward-difference method is usually limited by the effect of truncation error accuracy of 

the solution rather than by numerical stability.

Alternating direction implicit method

For multidimensional problems, the matrix inversion associated with the impIicit methods poses 

a formidable and time-consuming task. To reduce the time required for this matrix inversion, 

another technique is the alternating direction implicit (ADI) method. The basis of the ADI 

method is to make the algorithm implicit for one space dimension at a time and to alternate the 

space dimension for which the algorithm is implicit. Weight et al. (1971) have introduced an 

approximate solution of the multigroup neutron diffusion kinetics equations with delayed 

neutrons in two-dimensional geometry by matrix splitting methods based on an ADI scheme. 

However, this conventional ADI method is unstable for heterogeneous problems unless 

extremely small time steps are used. Recently, the suitability of the ADI method for parallel

computation has been demonstrated by Chen et al. (1992). This method becomes extremely 

attractive for parallel computer applications. Since, it is based on the solution of a system of 

independent block-tridiagonal matrix equations that can be solved in parallel by improving the 

stability of the ADI method.

Improved Quasistatic method

The most popular of the indirect method is improved quasi-static method (IQS). In this method 

the time and space dependent neutron flux is expressed as the product of a shape function, 
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( , , )r E t which is slowly varying in time and a purely time dependent amplitude function, ( )T t . 

In this method, we have to follow a normalization condition as given below.

                                         
*

3( , , ) ( , , )

( )

r E t r E t
d rdE

V E

 
 constant 

*( , , )r E t is the adjoint flux that must be found via solution of the steady state adjoint diffusion 

equation during each time increment. After putting the time and space part of neutron flux in 

time dependent neutron diffusion and precursor concentration equations, the transient problem is 

expressed as an amplitude equation and a delayed precursor equation as given below.

( ) ( ) ( )
( )

( )

( ) ( )
( ) ( )

( )

i i
i

i i
i l l

dT t t t
T t C

dt t

dC t t
C t C t

dt t

  

 

 
   
 

   



The shape equation resembles the steady state diffusion equation. The kinetic parameters 

(Stacey, 2001) are defined in terms of direct and adjoint fluxes. 

2.6. Monte Carlo methods

As seen in previous sections, deterministic transport or diffusion calculations require various 

approximations at different stages. The Monte Carlo method not only can handle the complex 

reactor geometry exactly and treat the neutron energy as a continuous variable. These codes are 

capable to mimic exact physical phenomena in the reactor. As a consequence Monte Carlo based

simulation methods are more accurate. Hence Monte Carlo methods are much more appropriate

for the analysis of ADSs because the tolerance in predicting quantities such as ks, keff throughout 

the burnup cycle is much lower. Here it is also important to mention that for noise based 
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reactivity assessment method, the analog Monte Carlo methods with point-wise cross-sections 

can provide lot of information that are seldom available with deterministic codes.

There is, an extensive literature devoted to Monte Carlo which provides a sound theoretical basis 

(Hammersley and Handscomb, 1967; Lux and Koblinger, 1991).  Neutron transport calculations 

by Monte Carlo Methods (Forrest and William, 1984) are performed by following a large 

number of individual particle histories from birth to death with the help of number of probability 

distribution functions and scoring the results to form average quantities. The sampling process is 

carried out by generating pseudorandom numbers uniformly distributed on the unit interval. By 

applying a suitable transformation these are then transformed to obtain sample value of the 

desired variable over the range of interest and distributed according to the relevant probability 

distribution. A Monte Carlo calculation for a neutron transport problem consists of selecting a 

small number of source neutrons and observing their paths through a system. Neutrons are 

assumed to travel in straight lines between collisions. Distance between collisions is calculated 

from the mean free path. In analog Monte Carlo, the when a collision occurs, the decision 

concerning absorption is made probabilistically; if outcome is indeed absorption, the particle 

history is terminated, and if not, the particle history is continued. Any scoring during the 

random-walk consists of adding one to an appropriate tally bin. 

In non-analog Monte Carlo, the PDF's derived from physical laws are altered, i.e. particle 

behaviour is biased to improve the chances of an eventual particle score in some place of 

interest. To avoid biasing the results, a particle weight is defined and this weight is altered in 

such a way as to conserve probability. It is the weight which is tallied for a particular event 

rather than one. Thus, in analog Monte Carlo, all particles which undergo a particular event 
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contribute a score of one to the tally of interest; in non-analog Monte Carlo, particle scores for 

particular events consist of the particle weight which may have been adjusted many times during 

the random-walk. The advantage of non-analog Monte Carlo is that more particles (with reduced 

weights) can be directed toward a phase space region of interest, increasing the number of 

particles contributing to a particular tally.

Considering the importance of reactivity monitoring in ADSs as discussed in chapter 1, there is 

increasing trend in the use of Monte Carlo methods in the recent years to simulate the 

experiments aimed at reactivity determination of sub-critical system. Ficaro and Wehe (1994),

Valentine and Mihalczo, (1996) have successfully used analog Monte Carlo technique for reactor 

noise simulations. We also have developed an analog Monte Carlo Simulator to simulate pulse 

neutron and reactor noise experiments. Here it is worth mentioning that the reactor noise 

simulations by analog Monte Carlo technique in general take a long computation time. Recently 

Szieberth and Kloosterman (2004, 2010 a,b) have developed a theory and methods to apply the 

non-analog Monte Carlo simulations to neutron noise measurements by modifying conventional 

variance reduction techniques to make the non-analog Monte Carlo method possible for reactor 

noise simulations.
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CHAPTER 3

____________________________________

Iterative Schemes for Obtaining Dominant Alpha-modes of 
Neutron Diffusion Equation

In chapter-2 we have described time eigenvalue of multigroup neutron diffusion equation and its 

importance in modal neutron kinetics, identification of suitable detector locations for noise based 

and pulse decay experiments conducted for reactivity determination. In this chapter we present

some numerical schemes for the evaluation of alpha modes of diffusion equation. In section 3.1, 

the existing methods for the solution of alpha eigenvalue problems are briefly reviewed. In 

section 3.2, two newly developed methods are described. In section 3.3, numerical results

obtained using these schemes are presented. In section 3.4, the relation between fundamental -

eigenvalue, -eigenvalue and prompt neutron generation time is discussed. We show that the 

relation is universal provided the generation time is defined appropriately.

3.1. Review of existing methods to find  and  modes

The methods that have been developed can be classified into two classes: 1) Methods which 

exploit the fact that extreme (largest or smallest) eigenvalues are needed, and 2) other methods 

which are unrelated to this fact. The two classes are described separately in sections 3.1.1 and 

3.1.2.
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3.1.1. Methods for extreme eigenvalues

In case of λ-eigenvalue problem, usually one is interested in computing the largest λ-value called 

keff, next few dominant λ-values and corresponding eigenvectors. In -eigenvalue problem as 

defined in chapter-2 by Eq.(2.12) (assuming that ’s are real, which is generally true for 

dominant modes in diffusion theory), in general,  can be positive or negative. Algebraically the 

largest eigenvalue corresponds to the fundamental mode. It is positive, zero and negative for 

super-critical, critical and sub-critical reactor.  If the reactor is sub-critical, all -values are 

negative. In that case, the dominant -values of interest are those with smallest magnitudes, 

corresponding to the slowest decay in time.  It is possible to rewrite the  and  eigenvalue 

problems given by Eqs.(2.7) and (2.12) as:

                                 1A F                                                                                                   (3.1)     

                 1 1 1
[A F] V ( )   


                                                                                         (3.2)

For any physically realizable set of multigroup parameters, it is proved (Wachspress, E.L., 1966)

that there is a unique real, positive eigenvalue of operator 1A F
[Eq.(3.1)] which is greater in 

magnitude than any other eigenvalue. Though in general higher lambda eigenvalues can be 

complex, however we are often interested in only few dominant lambda eigenvalues and 

eigenfunction of physically realizable reactors which are generally positive. 

So far as alpha eigenvalues are concerned, we have assumed that all alpha’s are real, which is 

generally true for dominant modes in diffusion theory. In general fundamental alpha can be 

positive or negative depending upon sub-crititicality or supercriticality of a reactor. For a 

subcritical reactor fundamental alpha is negative, so all other higher time eigenvalues are 
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expected to be negative. Since the eigenvalues of 1 1[A F] V  are ( 1/ ) , hence we expect all 

eigen values of 1 1[A F] V  [ Eq.(3.2)] to be positive. The largest eigenvalue and eigenvector of 

these operators can be found by the Power Iteration method.

The Power Iteration method

It is well-known that the largest eigenvalue of any matrix P (with positive eigenvalues) can be 

found by Power Iteration (PI) method. In this method, one starts with a guess vector x. It is 

multiplied by P and normalized, repeatedly. The resulting vector gradually approaches the 

eigenvector of P corresponding to largest eigenvalue.

Use of PI for  eigenvalue problem

In order to implement PI for Eq.(3.1), one needs a capability to multiply any flux vector x by the 

matrix operator 1A F . This can be done (Duderstadt and Hamilton, 1976) as follows. First y = Fx 

is computed, which is fission source vector. Then, for finding A-1y, one solves the following 

external source problem Eq.(3.3) using several methods such as Gauss Siedel, Krylog sub-space 

and LU decomposition method. However we have used Gauss Siedel method for solving the 

following equation:

                                            Az y                                                                                           (3.3)

Here y is the source vector and the computed solution z is the flux vector. z is the required 

quantity 1A F x. Hence PI can be implemented to find the fundamental -mode. In fact, the PI 

method is the most common routine method used to find fundamental -mode solution of        

Eq.(3.1).
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Use of PI for   eigenvalue problem

In order to implement the PI for Eq.(3.2), one should be able to compute 1 1[A F] V x  for any 

guess flux vector x. For this, first, 1y V x is computed. Then, 1[A F] y is computed by 

solving an external source problem in multiplying medium defined by

                                                (A F)z y                                                                                (3.4)

by using neutron diffusion code. Here y is the source vector and the computed solution z is the 

flux vector. z is the required quantity 1 1[A F] V x  . Hence, PI method can be implemented to 

find the most dominant mode. However, fundamental mode of Eq.(3.2) corresponds to largest    

(-1/) only for sub-critical reactors (Lathouwers, 2003). Thus, the method would be applicable 

only for sub-critical reactor. However, as will be seen later in section 3.2.2, this restriction can be 

removed and PI method can be used even for super-critical reactor.

Evaluation of next dominant  and  modes

The above procedure to implement matrix vector product (by external source calculations) has to 

be supplemented with additional techniques to obtain a set of dominant modes of the matrix 

rather than just the fundamental mode. This has been done in three different ways in the 

literature as described below:

i) Elimination method: After finding fundamental mode by PI’s, the contribution of 

fundamental mode is removed from guess vector. The continuation of PI’s then leads 

to next dominant mode having second largest eigenvalue. The procedure is continued 

to find next dominant modes. This method has poor convergence for closely spaced 
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eigenvalues. Roy et al. (Roy et al., 1990) have used this scheme to find dominant -

modes of a PHWR model in diffusion theory.

ii) Sub-Space Iteration method (SSI): One starts with a set of ‘p’ independent guess 

vectors rather than just one guess vector. The number p is slightly bigger than the 

number of required modes. By using the capability of finding product of matrix with 

these vectors, one first determines the sub-space spanned by dominant p eigenvectors. 

The p dominant eigenvectors can be easily obtained later by solving a small sized   

( )p p matrix eigenvalue problem. This scheme has been used by Doring et al., 

Verdu et al., Modak et al. and Modak and Jain (Doring et al., 1993; Verdu et al.,

1994; Modak et al., 1994; Modak and Jain, 1996) to find dominant -modes of neutron 

diffusion equation. The SSI method has much better convergence properties than 

elimination method.

iii) Arnoldi Method: This is a Krylov sub-space method. It also requires a capability to 

compute product of matrix (whose eigenvalues are to be found) with any given 

vector. Verdu et al. (Verdu et al., 1999) have used Arnoldi method to find dominant -

modes of diffusion equation while Warsa et al. (Warsa. et al., 2004) have used it to 

find dominant -modes of 3-D transport equation. Lathouwers (Lathouwers, 2003)

has found dominant -modes of multi-group transport equation in which the matrix 

vector multiplication was found by solving external source problem in multiplying 

media. This method, however, does not seem to have been applied to the simpler case 

of -modes of diffusion equation.
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3.1.2. Other methods 

The method based on Orthomin(1) algorithm belongs to this class. It was introduced by Suetomi 

and Sekimoto (Suetomi and Sekimoto, 1991) as an efficient alternative to power iteration method 

to find fundamental -mode. It is based on minimization of the norm of residual error vector by a 

gradient method. Modak and Gupta (Modak and Gupta, 2006, 2007) have shown that it can be

used to find higher -modes as well as -modes of diffusion equation by simply changing the 

initial guess vector.

Being based on completely different principles, Orthomin(1) method has some advantages and 

disadvantages relative to the methods in section 3.1.1. In Orthomin(1), the fact that extreme 

eigenvalues are needed is irrelevant. The evaluation of a selected higher mode does not require 

prior evaluation of any lower mode. Different eigensolutions can be computed completely 

independently by trying different guess vectors. Closely spaced eigenvalues do not have any 

direct effect on convergence. The disadvantage is that it is difficult to ensure that no eigenvalue 

is missed. Secondly, the robustness of algorithm needs to be studied for a range of cases. The -

modes obtained by Modak and Gupta (Modak and Gupta, 2007) by Orthomin(1) have been used 

to validate the proposed methods.

3.2. Proposed schemes for  - modes

The two proposed schemes are discussed in sections 3.2.1 and 3.2.2.  The first scheme, called 

“1/v absorber method”, is based on prior evaluation of -modes. The second scheme finds -

modes directly using the sub-space iteration method. 
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3.2.1. The 1/v absorber method

In this method, we solve the eigenvalue problem by solving a sequence of lambda eigenvalue 

problems. For a particular eigenvalue i, Eq.(2.12) given in chapter-2 can be written as: 

                                       i(A / V) F                                                                             (3.5)

However, this equation is identical to the -eigenvalue problem [Eq.(2.7) in chapter-2]  if i is 

replaced by 1.0 and A is replaced by i(A / V) . This shows that i is a number such that 

additional absorption by an amount i / V makes some eigenvalue i equal to unity. This is true 

for all eigenvalues i. Based on this, following procedure can be used to find  modes. 

The jth  -eigenvalue j is found as follows. First of all, j dominant -modes ( 1, 2, … j ) for a 

given reactor model are found out by any one of the three methods listed in section 3.1. In the 

present work, the SSI method as described by Modak and Jain (Modak and Jain., 1996) was used. 

Then, certain guess value of j is chosen which can bring j closer to unity and removal cross-

sections of all materials in all groups are changed by i / V . The j number of -modes are again 

calculated by SSI. If j is not unity, guess value of j is appropriately modified and the procedure 

is repeated till j is close to 1.0 within certain error criterion. The corresponding j is desired 

eigenvalue and the flux distribution is the -eigenvector.

All the above procedure is repeated for desired values of j = 1, 2, 3,…..,J. With this, J alpha 

modes are obtained. The starting guess for j can be inferred from the approximate formula j = 

(j – 1)/ l with a reasonable value of lifetime l. This method is laborious since several -mode 

calculations are needed. It may not work for extremely large sub-criticalities because the 
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absorption cross section can become negative and hence inner iterations in SSI may not 

converge. Moreover this method is based on the assumptions that there is one to one 

correspondence between the  and -modes. This assumption might not be valid in all situations. 

3.2.2. The modified power iteration method               

3.2.2.1. Scheme for sub-critical reactor 

Let us assume that the reactor being modeled is subcritical so that all alpha eigenvalues are 

negative. The dominant values are those with smallest magnitude (or slowest decay). The 

eigenvalue equation is considered in the form of Eq.(3.2) in section 3.1.1. Thus, it is an 

eigenvalue problem for the matrix M= 1 1[A F] V  . The eigenvalues of M are (-1/) which are 

all positive and largest values of (-1/) form the dominant modes to be computed. In general, 

any of the three methods in section 3.1.1 can be used to find eigenvectors of M. Here, the SSI 

method is used since it is very efficient. This requires a capability to evaluate of product of M 

with any given flux guess vector x of size NG.  As mentioned in section 3.1.1, this can be 

achieved by solving an external source problem in multiplying medium given by Eq.(3.4).          

M is a square matrix of order ( NG NG ), where N is number of mesh points and G is number of 

energy groups. In practical 3-D problems of multigroup diffusion equation, NG is very large. It is 

difficult to explicitly form the matrix M by inversion. Moreover, M will be a full matrix and its 

storage is difficult. On the other hand, while solving a source problem to find Mx, the sparsity of 

A and F is exploited. Thus effect of M on a vector is found without explicitly forming M.  

3.2.2.2. Extension for Super-critical reactor 

As mentioned earlier, the above scheme cannot be used straightaway for supercritical reactors for 

two reasons. Firstly, at least one of the dominant alpha eigenvalues will be positive while many 
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others will be large negative. The positive value need not be larger in magnitude than all the 

negative eigenvalues. Hence, the dominant modes required do not have largest/smallest 

magnitude.  Therefore, neither power iteration nor any of the three methods mentioned in section 

3.1.1 can be used to find the dominant modes. Secondly, the external source problem in 

multiplying medium given by Eq.(3.4) has no solution if the medium is super-critical.

This problem of super criticality is avoided by subtracting (/v) from both sides of the

 eigenvalue Eq.( 2.12) where  is a suitable real constant.

This gives:

    
( )

[ (A ) F ]
V V

  
      (3.6)                                                                                 

By choosing a suitable value of  one can assure the sub-criticality of reactor.  Thus, (  ) is 

negative for all modes. Then the procedure in section 3.3.1 can be used. Solution of eigenvalue 

Eq.(3.6) then gives  (  ) as eigen values. From this  eigen values can be calculated by 

adding.

3.2.3.   Iteration steps

The full iteration scheme to obtain dominant alpha eigenvalues and eigenvectors is as follows:

(a) Let‘s’ be the number of  -modes to be found out. We choose p number of linearly 

independent vectors 1 2 3, , ,...... p
m m m mx x x x each containing NG elements. Here p is chosen 

such that it is more than‘s’. Here s and p both are much smaller than NG. The sub-script 

m is iteration index. For initial guess, the value of m is one. Let Xm denote an NG p

matrix formed by 1 2 3, , ,...... p
m m m mx x x x as columns.
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(b) Let M stands for the term { [A –F]-1} in Eq.(3.2).  M and 1V are ( NG NG ) matrices. 

The matrix 1
m(MV X ) is found out without explicitly knowing 1(MV ) . The scheme runs 

as follows. The first column of 1(MV ) is estimated as detailed below:

Compute the ( 1)NG vector 1 1
mV x . Now an external source of magnitude 1 1

mV x is 

assumed to be present in different meshes and energy groups. A source calculation is 

done using standard diffusion code and the steady state fluxes in all meshes and G energy 

groups are obtained. Steady state fluxes in all meshes and energy groups form the first 

column of 1
m(MV X ) . Similarly other column vectors matrix 1

m(MV X ) are estimated. 

Thus after ‘p’ external source calculations, full matrix 1
m(MV X ) is known. It is NG p   

matrix

(c) The matrix Am= 1 T
m(MV X ) 1

m(MV X ) is calculated. Am a small ( )p p matrix.

Complete eigenvalue problem Am Qm=Qm m is solved. Qm is square matrix of order p 

formed by normalized eigen vectors of Am. Here m is a diagonal matrix containing 

eigenvalues of Am as diagonal elements.

(d) The matrix Tm=Qm( m )-1/2 is evaluated.

(e) The matrix Xm+1=
1

m(MV X ) . Tm is estimated. The columns of this matrix form a  set of 

‘p’ orthonormal vectors denoted by 1 2 3
1 1 1 1, , ,..... p

m m m mx x x x   

(f) Steps (b-e) form one sub-space iteration.

(g) Step (f) is repeated till eigenvalues m and 1m are sufficiently close. At this stage, 

suppose (n-1)th  iterations are over. After (n-1)th iteration Xn is known at the end of      
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step( e). From this, 1
n(MV X ) is found out. The non-symmetric matrix B of order pXp, 

given by B= Xn
T 1

n(MV X ) is found out. The full eigenvalue problem for matrix B is 

numerically solved.    

                                                    BU U                                                                         (3.7)      

                                                                             
U is a ( )p p square matrix containing the eigenvectors of B as columns, while the 

diagonal matrix  contains the eigenvalues of B, which are also the required eigenvalues 

of matrix 1(MV ) . The eigen values of 1(MV ) will be in the form of 
1

( )
i

 from which 

i can be found out.

(h) The matrix C = 1
n(MV X ) U is evaluated. Its columns are the required eigen vectors of 

matrix 1(MV ) .

(i)  The required dominant eigenvectors of 1(MV ) are now already known. The elements of 

these column vectors represent the fluxes in all meshes and energy groups. 

In the above scheme, the required number of dominant eigenvectors is obtained without any 

explicit evaluation of adjoint modes. In contrast, in the elimination method the adjoint modes are 

also required to find higher modes. Moreover, in sub-space iteration, all the required modes are 

calculated simultaneously. It is much more economical than the 1/v absorber method.     
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3.3. Numerical results

3.3.1. Problem description   

In this section we present numerical results obtained by the two schemes described above. The  

 -eigenvalues and eigenfunctions of a 3-D realistic PHWR model given by Judd and Rouben

(Judd and Rouben, 1981) are evaluated. This test case consists of two radial fuel zones in the XY 

plane surrounded by reflector (Figure-3.1). In the axial Z direction, the reactor extends up to 600 

cm and has uniform material properties. There is no reflector in axial Z direction. The two-group 

cross-sections for two fuel zones and reflector given by Judd and Rouben (Judd and Rouben,

1981) are listed in Table-3.1. The spatial discretisation is done by using a total of 3240 meshes in 

XYZ geometry. Only one type of mesh structure (18x18x10) has been considered. The neutron

velocities in fast and thermal groups are 107 cm/sec and 3x105 cm/sec respectively. The two 

group fission spectrum is 1 21.0 0.0and   .

3.3.2. Results

3.3.2.1. Standard benchmark (near-critical case)

A total of nine dominant  -eigenvalues were calculated for the model (section 3.3.1) by both 

the proposed methods. The first 9  -modes had also to be calculated while implementing the 1/v 

absorber method. All the computed  and  -eigenvalues are given in the Table-3.2. In the 1/v 

absorber method, which is a parameter search method, we have obtained eigenvalues only up to 

4 significant digits. All the 9 -values computed in these studies agree with those given by 

Modak and Jain (Modak and Jain, 1996). The -values computed by the two proposed methods 

also agree well with each other and with those given by Modak and Gupta (Modak and Gupta,
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2007). The shapes of thermal flux in first, third and ninth  -modes in mid XY plane of the 

PHWR model have been plotted and are shown in Figures 3.2, 3.3 and 3.4.

It may be mentioned that the shapes  -modes are similar to those of corresponding -modes. 

The initial guess flux vectors for starting the iteration process (step a of section 3.2.3) were taken 

to be roughly similar to that of corresponding -modes. It is found that even randomly generated 

vectors numbers can be used as initial guess vectors. However, the convergence in that case is 

slower.

3.3.2.2 Highly sub-critical case

A case study for estimation of  -eigenvalues for a highly sub-critical reactor was also done. The 

PHWR test case was modified to make it highly sub-critical by reducing the value of fission 

spectrum 1 from 1.0 to 0.7. The 2 was kept 0.0 as before. Though it is right to correct ν rather 

correcting χ to recreate criticality but because the value of χ in two groups is 1.0 and 0.0 and 

value of νΣf in second group is 0.0, the effect of altering χ is same as altering ν. We have 

evaluated three dominant - modes as well as -modes for this highly sub-critical reactor by SSI 

method. It is seen that even in this case of high sub-criticality, the shape of fundamental  -mode 

is similar to that for the test reactor model with Keff = 1.00355. On the other hand, the shape of 

 -mode for sub-critical reactor (Figure-3.5) is significantly different from shape in the test-case. 

Flux in  -mode of a highly sub-critical reactor is higher in reflector region than in the inner 

fuel region. This observation agrees with the earlier work by Modak and Gupta (Modak and 

Gupta, 2007). The peculiar flux shape is expected on physical grounds because while neutrons 

are rapidly lost by absorption in highly sub-critical core, they survive for a long time in the heavy 

water reflector. Moreover subtraction of ( / v) from removal cross-section in the reflector region 
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may make the effective removal cross-section very small or even negative and consequently 

enhancing the flux in the reflector region.

In all the calculations reported here, the point wise relative flux convergence criterion as well as 

the eigenvalue convergence criterion was 10-7. 

The modified power iteration based on sub-space iteration has very good convergence properties. 

If there are ‘p’ given vectors, the convergence of ith mode depends on 1( / )p i  . The problem 

due to closely spaced eigenvalues in the elimination/subtraction method is drastically reduced. 

Of course, Arnoldi method has also been shown to be highly efficient scheme for which free 

software is available. However, all ‘p’ calculations are completely independent and can be 

carried out in parallel. Thus SSI is very suitable for Coarse Grain paralleization and can give 

good speed-up. 

3.4. Relation between fundamental k and  and definition of prompt neutron 
generation time 

A relation between the Keff of a system, denoted by K and the fundamental eigenvalue  is 

often used to estimate K from the measured values of  by either pulsed neutron or noise based 

experiments. The relation is:

(k 1) / k
 


(3.8)

The validity of this relation has been questioned for among others, highly subcritical systems

(Perdu et. al., 2003). This is no doubt due to a simplistic calculation of the neutron lifetime i.e. 

without proper weighting, which is also true of the normal MCNP calculation of the neutron 

lifetime. For their analysis of pulsed neutron experiments at Yalina (Persson et al., 2005) 
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compute both k and  using MCNP and use Eq. (3.8) to define the neutron generation time. 

Even with proper adjoint weighting the relation Eq.(3.8) might not hold if the k and  modes 

are very different. However, we show that by use of a suitable weighting function in different 

contexts, we can define a generation time such that Eq.(3.8) is valid even if shapes of k and  -

modes are vastly different.

Assume that the flux is in the fundamental alpha mode. If we take the scalar product of Eq.(2.12) 

in chapter-2 (section 2.3) with any arbitrary vector  we get  the following   relation 

( ,A )
1

( ,F )
1

( , ) /( ,F )
V

      
      

(3.9)

If weight function  is chosen such that

1
A F

K
    (3.10)

i.e. as the adjoint eigenfunction of the fundamental lambda-mode, relation Eq.(3.8) follows with 

the following definition of  the generation time ( note that
( ,F )

K
( ,A )

 


 
  )

1
( , ) /( ,F )

V
      (3.11)                                     

then K in the Eq.(3.8) is same as Keff of the system. Hence if we choose weight function  to be 

the fundamental adjoint  -mode and   to be fundamental  -mode, the value of prompt 

neutron generation time  can be calculated with the help of Eq.(3.11) and the validity of the 

relation between  and K Eq.(3.8) can be established. Alternatively, if the flux is in the 
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fundamental lambda mode and we choose the adjoint alpha eigenfunction as the weighting 

function, by using similar argument, we can establish the validity of Eq.(3.8)

We have estimated prompt neutron generation times for standard PHWR test case and also for 

the highly sub-critical reactor system using Eq.(3.11) and checked the validity of Eq.(3.8). These 

results are given in Table-3.3.  obtained from Eq.(3.8) and Eq.(3.11) agrees exactly for near-

critical case as well as for sub-critical case.
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Figure-3.1: XY representation of PHWR test reactor
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Figure-3.2: Shape of first alpha-mode in mid XY-plane
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Figure-3.3: Shape of third alpha-mode in mid XY-plane
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Figure-3.4: Shape of ninth alpha-mode in mid XY-plane
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            Figure-3.5: Shape of fundamental alpha-mode for highly sub-critical reactor

Table-3.1: Two group nuclear data in different regions of PHWR test reactor

   Cross-section                  Region-1                      Region-2                    Region-3   

        Type                         (inner fuel)                   (outer fuel)                 (reflector)

         D1                           1.2640E-00                   1.2640E-00              1.3100E-00

         D2                           9.3280E-01                   9.3280E-01              8.6950E-01

        1
f                           0.0000E-00                   0.0000E-00              0.0000E-00

       2
f                            4.5620E-03                   4.7230E-03              0.0000E-00

         1
r                            8.1540E-03                   8.1540E-03              1.0180E-02

        1
r                             4.1000E-03                   4.0140E-03              2.1170E-04

        1 2                          7.3680E-03                   7.3680E-03              1.0180E-02 
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Table-3.2: Comparison of alpha-eigenvalues obtained from different methods

Mode No.                                          * (sec-1)                  ** (sec-1)                   *** (sec-1)                                              

                                                           power iteration              1/v absorber           Modak & Gupta

     1                         1.003555             4.06193                          4.06                               4.06182                           

     2                        0.990110           -11.11236                       -11.11                            -11.11245                                   

     3                        0.990110           -11.11239                       -11.11                            -11.11245                      

     4                        0.973204           -31.24028                       -31.24                            -31.24051                                

     5                        0.966964           -36.70895                       -36.71                                   ---                                                       

     6                        0.964895           -38.89598                       -38.90                                  ---                                                

     7                        0.960096           -45.78450                       -45.80                            -45.78395                                                     

     8                        0.960095           -45.78456                       -45.80                                  ---                         

     9                        0.938221           -71.42670                       -71.40                                  ---                                                     

Table-3.3: Prompt neutron generation time by two different methods

Case                                                                       Prompt neutron

                                                                                          generation time (sec)

                                                                                  c                             d

PHWR test reactor

                k=1.003555                                        0.000872086              0.000872099

        Highly sub-critical reactor

                k=0.702488                                        0.002003580                0.002003590
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CHAPTER 4

____________________________________

Iterative Schemes for Obtaining Dominant Prompt and 
Delayed Alpha-modes of the Neutron Diffusion Equation

The eigenvalue problems discussed in chapter 3 assume that all neutrons are prompt. For a 

complete description of a pulsed neutron experiment, however, the delayed neutrons should be 

taken into account in defining the eigenvalue problem. An expansion in these modes is more 

appropriate for describing transients in which delayed neutron effects are to be included. There 

have been a few studies for obtaining (Hoogenboom, 2002) alpha modes with the inclusion of 

delayed neutrons. However these evaluations have been limited to only fundamental modes. In 

this chapter we have the proposed method to evaluate higher prompt and delayed-alpha modes.

Substituting an exponential time dependence of the flux (as in the case of the alpha modes) 

results in the “delayed-alpha” eigenvalue problem, (also referred to as natural modes). 

Corresponding to each alpha mode there is one prompt mode and six delayed modes. In this 

chapter describe the numerical methods for the evaluation of alpha modes of diffusion equation 

including delayed neutrons. In section 4.1, we describe the method to evaluate fundamental alpha 

mode with delayed neutrons. In section 4.2, we discuss the method to evaluate higher alpha 

mode with delayed neutrons. In section 4.3, validation of the proposed method to evaluate higher 

alpha mode have been discussed. Numerical schemes for demonstration of the method are

discussed in section 4.4.
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4.1. Method to evaluate fundamental  with delayed neutrons

Eq.(2.19) given in chapter 2 can be rearranged to form an eigenvalue problem as under

   i i di
p

i i

(1 ) F (A ) 0
( ) V

    
         

                                                                              (4.1)

In Eq.(4.1), the factor i i di
p

i i

(1 )
( )

   
     

 can be interpreted as effective fission spectrum 

which is not normalized to unity. Eq.(4.1) can be written as a modified lambda-eigenvalue 

problem (with  =1.0):

                               ' '1
A F  


                                                                                                                          (4.2)

Where,            '(A ) A
V


           and              'i i di

p
i i

(1 ) F F
( )

   
        

   

By assuming some initial guess value of , we can solve Eq.(4.2) by the usual power iteration 

method to obtain the fundamental -eigenvalue of the Eq.(4.2). The value of  is repeatedly 

adjusted till the fundamental -eigenvalue of the Eq.(4.2) becomes unity.

The initial guess of alpha can be found by solving in-hour Eq.(4.3) given below.

                    
1 ( )

N
i i

i i

  
 

  
                                                                                       (4.3)

The reactivity  in this equation can be obtained from the solution of unmodified form of the -

eigenvalue problem given by Eq.(4.2). By unmodified form, we mean Eq.(4.2) in which  =0.0 

and di is equal to p .
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Eq.(4.3) can be solved by polynomial solver and the roots of the polynomial give us the initial 

guess value of  . These values of  can be classified into two categories. Those of the order of 

decay constants of delayed neutron groups correspond to delayed modes. There is one value of 

 which is much larger in magnitude than the decay constants. It corresponds to the prompt  -

mode.

The scheme for finding  is implemented as follows:

1. We make an initial guess of the value of  using Eq.(4.3).

2. We solve Eq.(4.2) using a standard criticality code to find the highest eigenvalue  and 

the corresponding eigenvector.

3. If the eigenvalue is 1.0, then the guess value of  is the desired eigenvalue and the 

iteration is stopped.

4. If eigenvalue is not 1.0 then depending upon the value of , we reduce or increase the 

value of  and find another estimate for the highest value of  using the criticality code. 

The search procedure to find  can be facilitated by the Regula Falsa algorithm.

5. We repeat the step 3 until we get  equal to 1.0 to within 1.0E-05.

The steps 1-5 above are repeated for each  -value which is solution of Eq.(4.3). This gives us 

prompt as well as delayed  -modes corresponding to the fundamental spatial mode.
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4.2. Method to evaluate higher  modes

A numerical method for calculating the higher  -modes has been developed. It makes use of the 

well-known subtraction method or elimination method to find higher modes of the -eigenvalue 

problem. This is explained in the Appendix 4A.

1. We first choose an initial guess value for alpha. The initial guess values for the prompt 

and delayed modes are taken from the solution of the in-hour equation,  is calculated 

using the Kth eigenvalue of the unmodified lambda eigenvalue problem. The generation 

time is assumed to be the same as for the fundamental mode. This does not cause any 

difficulty as we are only obtaining an initial guess value of alpha.

2. Using the guess value of , obtain K and *
K   and the eigenvalue K corresponding to 

the modified eigenvalue problem Eqs.(4.1) and (4.2) by a elimination method ( explained 

in Appendix 4A ). If the value of K equals 1.0 stop the calculation, otherwise make new 

guess on alpha and again find K . The value of alpha for which the corresponding K is 

1.0 to within a specified accuracy, gives the final estimate of alpha and the corresponding 

K and *
K are the desired alpha-modes. 

3. Step 2 is repeated for each guess value of  that was found in step 1. This gives one

prompt mode and as many delayed modes as is the number of delayed groups.

4.3. Validation of the proposed method

To test the validity of the methodology for obtaining prompt and delayed-modes, described 

above, a simple  1-D problem with two energy groups and one group of delayed neutron is 
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solved using the proposed method as well as by a direct diagonalization of the matrix obtained 

after finite differencing of the diffusion equation for the problem. The number of matrix 

elements is small for the problem described above and this makes it possible to evaluate 

eigenvalue and eigenvectors directly.

The set of Eqs.(2.15) and (2.16) given [chapter-2] with two energy groups and one delayed 

neutron group can be written as a matrix eigenvalue equation as follows:

                                                             H                                                                  (4.4)

where H is 3Nx3N matrix including fission, diffusion, removal, scattering and delayed neutron 

terms and  is 3Nx1 column vector representing two group fluxes and precursor concentration 

in all N meshes. 

                                                  

1

2

C

 
 

   
 
 

                                                                           (4.5)

  and

              
1 f1 1 1 f1 1

2 1 2 2 2

f1 f 2

v ((1 ) A ) v (1 ) v I

v v A 0

I


      
   
    

                                                (4.6)

Here 1 2 f 1 f 2, , , I   are NxN diagonal matrices corresponding to the 1st or 2nd group 

containing the respective cross section pertaining to a particular mesh, A1, A2 are the NxN 

matrices containing diffusion and removal terms.
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The one dimensional slab reactor chosen for the purpose of testing is 450 cm thick and is 

represented by 18 meshes. In transverse directions leakages are assumed to be zero. With two 

energy groups and one group of delayed neutrons H is a 54x54 matrix. The two group cross-

section data and delayed neutron data are summarized in Table-4.1. Since the matrix is small in 

size, the eigenvalue Eq.(4.4) is easily solved by a standard computer program. Orthogonal 

similarity transformations are used to reduce the matrix H in Hessenberg matrix and QR 

algorithm is used to compute the eigenvalues and eigenvectors of matrix H.

In Table-4.2 we compare the alpha eigenvalues for four prompt and four delayed modes by the 

direct diagonalization method and the proposed iterative method described in the previous 

section. The close agreement between the results by the two methods clearly shows the 

effectiveness of the proposed method. 

4.4. Numerical studies for demonstration of the method

4.4.1. Problem description   

In this section we describe the problem undertaken for demonstrating the method for computing 

the fundamental and higher alpha-modes with delayed neutrons.  The pressurized heavy water 

reactor (PHWR) model problem described by Judd and Rouben (Judd and Rouben, 1981) is used

for this purpose. The model problem consists of two radial fuel zones surrounded by a reflector 

(Figure-4.1). In the axial Z-direction, the reactor extends up to 600 cm and uniform material 

properties. There is no reflector in axial Z-direction. Three cases are studied for the purpose of 

the demonstration. The first is a study involving two energy groups and one delayed neutron 

group and is based exactly on the original problem description given by Judd and Rouben. The 

second study is in three energy groups and six delayed neutron groups and brings out the effect 
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of the difference in the spectra of prompt and delayed neutrons. Finally we have studied this 

three energy group case for a sub-critical reactor. The reactor is made sub-critical by increasing 

the burn-up of the fuel zones. 

4.4.2. Evaluation of Alpha modes 

4.4.2.1. Alpha modes in two energy groups

The two-group cross-sections for two fuel zones and reflector given by Judd and Rouben are 

listed in Table-4.3. The spatial discretisation is done by using a total of 3240 meshes in XYZ 

geometry. Only one type of mesh structure (18x18x10) has been considered. The neutron 

velocities in fast and thermal groups, the prompt and delayed neutron used for this calculation, 

fission neutron spectra and one group delayed neutron fraction and precursor decay constant are 

shown in Table-4.4. In the two group calculation, the fission neutron spectrum for delayed 

neutrons is assumed to be same as that for prompt neutrons. Figure-4.2 gives general shapes of 

modes in radial and axial directions. 

A total of eight dominant  -eigenvalues, corresponding to the first four prompt and the first four 

delayed modes were calculated. All the computed prompt and delayed  -eigenvalues, are given 

in Table-4.8. The entries in brackets are the initial guess values used (corresponding to the roots 

of in-hour equation). The entries without braces are the converged values obtained by the 

parameter search method. The thermal components of the prompt and delayed  -modes in the 

central x-y plane of the reactor are shown in Figures-4.3-4.6. It can be seen that the difference 

between the prompt and the delayed modes is greater for the higher modes and this difference is 

most visible in the reflector region.
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4.4.2.2. Alpha modes in three energy groups

To examine the effect of the softer spectrum of delayed neutrons (which cannot be seen in two 

energy groups) we have calculated three group diffusion theory parameters. The burn-ups in the 

two zones were adjusted such that the keff of the core in the three group calculation is close to 

that of the two group value. Two cases have been analysed. In first case we have considered one 

group of delayed neutrons and in the second case 6 groups of delayed neutrons have been 

considered. The three group cross-section for the two fuel zones and the reflector are given in 

Table-4.5. Delayed neutron data used are displayed in Table-4.6. The three group neutron 

kinetics data, the prompt and delayed neutrons spectrum used for this calculation are presented in 

Table-4.7. 

For the case of one group of delayed neutrons, a total of eight dominant  -eigenvalues, 

corresponding to four prompt and four delayed modes were calculated. These are presented in 

Table-4.9. For the case of six groups of delayed neutrons, a total of 28 dominant  -eigenvalues 

corresponding to four prompt and 24 delayed modes were calculated. The 28 prompt and delayed 

 -eigenvalues are presented in Table-4.10. Two dimensional plots of thermal components of the 

prompt and delayed  -modes are displayed in Figures-4.7-4.10. From the figures it can be seen 

that the prompt and delayed modes are quite different. It can also be seen that the difference 

between prompt and delayed modes is more pronounced in the higher prompt and delayed 

modes.

4.4.2.3. Alpha-modes in three energy groups for a sub-critical reactor: Results

The third case study is for estimation of  -eigenvalues for a sub-critical reactor. The PHWR test 

case was modified to make it sub-critical by increasing the value of burn up in two zones. Three 

group cross-sections for two fuel zones and reflector given in Table-4.11. All other kinetic 
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parameters and delayed neutron data were kept same as given in Tables-4.6 and 4.7. We have 

obtained four prompt  -modes and 24 delayed modes for the sub-critical reactor as in the 

previous sub-section. The eigenvalues are presented in Table-4.12. Figures 4.11-4.14 show the 

two dimensional plots for the prompt and delayed modes. The difference in the nature of prompt 

and delayed modes is more pronounced for fundamental as well as for higher modes of sub-

critical reactors. The fundamental prompt and delayed modes differ in the central as well as in 

the reflector regions of the core the case of a sub-critical reactor.



82

Figure-4.1: XY representation of PHWR test reactor
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Figure-4.2: Shape of various modes in radial and axial directions
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Figure-4.3: Fundamental prompt and delayed mode (2 group PHWR model,
                                   one group of delayed neutron) in X-direction
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Figure-4.4: Second prompt and delayed mode (2 group PHWR model, one group of
                              delayed neutron) in Y-direction
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Figure-4.5: Third prompt and delayed mode (2 group PHWR model, one group of
                                delayed neutron) in X-direction
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Figure-4.6: Fourth prompt and delayed mode (2 group PHWR model, one group of
                              delayed neutron) in Z-direction
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Figure-4.7: Fundamental prompt and delayed mode (3 group PHWR model,
                                     one group of delayed neutron) in X-direction
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Figure-4.8:  Second prompt and delayed mode (3 group PHWR model, one group of 
                              delayed neutron) in Y-direction
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Figure-4.9: Third prompt and delayed mode (3 group PHWR model, one group of 
                   delayed neutron) in X-direction
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Figure-4.10: Fourth prompt and delayed mode (3 group PHWR model, one group of
                               delayed neutron) in Z-direction
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Figure-4.11: Fundamental prompt and corresponding first delayed modes (3group PHWR  
                      model, 6 group of delayed neutron) in X-direction: a case of sub-critical  reactor
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Figure-4.12: Second prompt mode and corresponding first delayed mode (3group PHWR 
                       model, 6 group of delayed neutron) in Y-direction: a case of sub-critical reactor



88

0 2 4 6 8 10 12 14 16 18 20
-150000

-100000

-50000

0

50000

100000

150000

prompt

delayed

T
he

rm
a

l f
lu

x

Mesh number in X-direction

Figure-4.13: Third prompt mode and corresponding first delayed mode (3group PHWR 
                    model, 6 group of delayed neutron) in X-direction: a case of sub-critical reactor
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Figure-4.14: Fourth prompt mode and corresponding first delayed mode (3group PHWR
                model, 6 group of delayed neutron) in Z-direction: a case of sub-critical reactor



89

Table-4.1: Two group nuclear and delayed neutron data used for validation

Cross-section type Values
D1 1.2640E-00
D2 9.3280E-01

1
f 0.0000E-00

2
f 4.5620E-03

1
r 8.1540E-03

2
r 4.1000E-03

1 2 7.3680E-03

0.0065  0.084  s-1

Table-4.2: Comparison of prompt and delayed modes for validation

S.No  -eigenvalue Prompt alpha Delayed alpha
Matrix
method

Iterative 
method

Matrix
method

Iterative 
method

1 0.98698 -23.834 -23.84 -0.0562 -0.0561
2 0.93516 -89.789 -89.77 -0.0768 -0.0770
3 0.85898 -195.31 -195.3 -0.0808 -0.0807
4 0.76976 -334.57 -334.6 -0.0822 -0.0824

Table-4.3: Two group nuclear data for PHWR model

   Cross-
section Type

Region-1
(inner fuel)

Region-2
(outer fuel)

Region-3   
(reflector)

D1 1.2640E-00 1.2640E-00 1.3100E-
00

D2 9.3280E-01 9.3280E-01 8.6950E-
01

1
f 0.0000E-00 0.0000E-00 0.0000E-

00
2
f 4.5620E-03 4.7230E-03 0.0000E-

00
1
r 8.1540E-03 8.1540E-03 1.0180E-

02
2
r 4.1000E-03 4.0140E-03 2.1170E-

04
1 2 7.3680E-03 7.3680E-03 1.0180E-

02
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Table-4.4: Two group kinetics data

Group Number Group 
velocities(cm/sec)

Prompt spectrum Delayed spectrum

            1 1.0x107 1.0 1.0
            2 3x105 0.0 0.0

         Delayed neutron fraction (β)  = 0.0065, Decay constant (λ ) = 0.084 sec-1

Table-4.5: Three group nuclear data for PHWR model
(Near critical case)

Region-1
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.413000E+00 1.2419000E+00 8.879800E-01

g
r

6.554500E-02        1.1445000E-02 4.976200E-03

g
f 4.626100E-03         2.5413000E-04 5.565100E-03

1g 7.259560E-02         6.3543000E-02             0.0000000E+00

2g 0.0000000E+00 2.5696100E-01 9.530700E-03

3g 0.0000000E+00 8.2040000E-05 3.704080E-01

Region-2
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.413700E+00 1.2426000E+00 8.8839000E-01

r
g

6.554500E-02        1.1445000E-02 4.8859000E-03

fg 4.6280000E-03 2.8054000E-04 5.6811000E-03

1g 7.2550600E-02       6.3546000E-02 0.0000000E+00

2g 0.0000000E+00 2.5682300E-01 9.6041000E-03

3g 0.0000000E+00 0.8192900E-04 0.3703834E+00

Region-3
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.517800E+00 1.2538000E+00 8.3990000E-01

r
g

8.185600E-02 1.2126000E-02 1.1557000E-04

fg 0.000000E+00 0.000000E+00 0.000000E+00

1g 0.000000E+00 8.2083000E-02 0.0000000E+00

2g 0.0000000E+00 0.0000000E+00 0.000000E+00

3g 0.0000000E+00 4.4884000E-05 0.000000E+00



91

    

Table-4.6: 6 group delayed neutron data

Group 1 2 3 4 5 6

Β 0.000215 0.00142 0.00127 0.00257 0.00075 0.00027

λ (sec-1) 0.0124 0.0305 0.111 0.301 1.1 3.0

Table-4.7: 3 group kinetics data

Group Number Group Velocities Prompt spectrum Delayed spectrum

            1 1.95E+09 0.74522 0.0

            2 9.15E+06 0.25478 1.0

            3 3.18E+05 0.0 0.0

Table-4.8: PHWR model in 2 groups (one group of delayed neutron)

S.No k-Mode Alpha-mode
without del neutron

Eigenvalue alpha-mode
with one group of 
delayed  neutron

prompt Delayed
1 1.003555 4.061 -3.565

(-3.583)
0.0955

(0.0956)
2 0.9901115 -11.1126 -18.752

(-18.335)
-0.0508

(-0.05079)
3 0.9901113 -11.1126 -18.335

(-18.335)
-0.0508

(-0.05079)
4 0.9732065 -31.24 -38.56

(-37.9935)
-0.06793

(-0.067927)

Values in the bracket is the guess value
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Table-4.9: PHWR model in 3 energy groups (one group of delayed neutrons)
(Near critical case)

S.No k-Mode Alpha-mode
without del neutron

Eigenvalue alpha-mode
with one group of 
delayed  neutron

Prompt Delayed

1 1.001275 1.885 -7.841
(-7.892)

0.0171
(0.02019)

2 0.9918013 -11.837 -21.02
(-21.83)

-0.048
(-0.04694)

3 0.9918013 -11.837 -21.02
(-21.83)

-0.048
(-0.04694)

4 0.976771 -35.165 -44.49
(-44.033)

-0.06645
(-0.06594)

Values in the bracket is the guess value

Table-4.10: prompt and delayed alpha eigenvalues (for the PHWR model) in 3 energy 
                  groups (6 groups of delayed neutrons, near critical case)

Mod
e

Prompt Delayed

1 -8.2901 0.0211 -0.013534 -0.05851 -0.18028 -0.9557 -2.8111

2 -21.16 -0.01205 -0.026102 -0.09804 -0.24933 -1.04595 -2.9417

3 Do do do do do do do
4 -44.55 -0.012287 -0.02881 -0.1057 -0.2758 -1.07355 -2.97292
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Table-4.11: Three group nuclear data for PHWR model
(sub critical case )

  

Region-1
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.41280E+00 1.24170E+00 8.87900E-01

r
g 6.55430E-02 1.14480E-02 4.99470E-03

fg 1.90313E-03 1.01794E-04 2.26815E-03

1g 7.26091E-02 6.35420E-02 0.00000E+00

2g 0.00000E+00 2.57001E-01 9.51170E-03

3g 0.00000E+00 8.21140E-05 3.704230E-01

Region-2
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.41320E+00 1.24210E+00 8.883900E-01

r
g 6.55460E-02 1.14410E-02 4.953900E-03

fg 4.62720E-03 2.61910E-04 5.681100E-03

1g 7.25506E-02 6.35460E-02 0.0000000E+00

2g 0.0000000E+00 2.56823E-01 9.6041000E-03

3g 0.0000000E+00 0.8211400E-04 0.3704230E+00

Region-3
Data Neutron energy Group

g=1 g=2 g=3
Dg 2.517800E+00 1.2538000E+00 8.3990000E-01

r
g 8.185600E-02 1.2126000E-02 1.1557000E-04

fg 0.000000E+00 0.000000E+00 0.000000E+00

1g 0.000000E+00 8.2083000E-02 0.0000000E+00

2g 0.0000000E+00 0.0000000E+00 0.0000000E+00

3g 0.0000000E+00 4.4884000E-05 0.0000000E+00



94

Table-4.12: Prompt and delayed alpha eigenvalues (for the PHWR model) in 3 energy 
groups [6 groups of delayed neutrons, sub-critical case]

Mode Prompt delayed
1 -43.225     -0.01228      -0.02877     -0.01055     -0.2753         -1.07303        -2.9723      
2 -56.96 -0.01232 -0.02933 -0.09804 -0.1073 -1.08307 -2.9804
3 do do Do do do do do
4 -79.09 -0.01223 -0.02965 -0.10828 -.2871 -1.08540 -2.9848
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CHAPTER 5

_____________________________________

Development of a 3-D Space Time Kinetics Code with 
Feedback

Prediction of reactor behavior during transient is one of important requirements for design and 

licensing of a nuclear reactor. Most popular of the available methods is point kinetic method 

which can analyze successfully many of the reactor transients. The codes MRIF, SECMOD 

(Ballaraman and Trasi, 1981; Secker, Jr., 1969) are based on the assumption that spatial flux 

shape does not change with time. For small reactors, this model may not lead to large errors in 

estimates of peak power densities. But in large reactors as well as in ADSs where space time 

effect is very important in determining fission power/temperature distribution in the reactor, the 

method does not provide accurate analysis. The motivation behind the development of 3-

dimensional space time kinetics code is to analyze the dynamical behavior of large ADSs. Apart 

from power ADS analysis, it helps in simulating pulse neutron and noise experiments as shown 

in next chapter.

There is variety of numerical methods for solving space time kinetics equation. We have already 

provided a brief review of some of the methods popularly in use in chapter 2. With the advent of 

fast computation capability direct methods for solution of the space time kinetics equations are 

perhaps the most straightforward of the procedures for solving the time-dependent few group 

diffusion equation. We have developed a 3- dimensional reactor space time reactor kinetics code 

KINFIN (Singh K.P. et al., 2014) based on direct integration method. The validation of the 

method has been carried out by comparison of the results with existing 3-Dimensional PHWR 
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and LWR benchmarks. We have also developed thermal model which can be useful for 

analyzing feedback effects. 

5.1. Theoretical model

In direct integration method, problem space is partitioned into a finite number of elemental 

volumes as described in Chapter 2 (section 2.2.2). Based on this spatial partitioning, one may 

then obtain spatially-discretized forms of coupled diffusion and precursor equations. Transient 

finite difference methods are simply the extension of the well known procedures for solving the 

static diffusion equation as described in Appendix 2A of Chapter 2. Using same discretization 

technique, the space time multigroup diffusion equation with delayed neutrons can be written as 

under 
     

dN
1

p i di i
i 1

d
V (1 ) F M C (5.1)

dt





      

i
i i i d

dC
F C (i 1, N ) (5.2)

dt
       

where = (t) and iC = iC (t)

Combining Eqs.(5.1) and (5.2) we get

1 d
V H (5.3)

dt
 

 

where  is (G+Nd) element column vector and H is ((G+Nd)x(G+Nd)) operator matrix. We use 

a simple first order implicit scheme for evaluating the time derivative.  Implicit time-differencing 

of Eq.(5. 3) leads to 

l 1 l
l 1 l 1 1 lH (I V tH)

t


   

      


The implicit solutions are unconditionally stable and therefore permit the use of relatively large 

values of time step. However the solution of equation requires a very expensive matrix inversion 
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at each time step. So as in case of steady state calculation here also we apply iterative method 

for obtaining solution. The equations are modified to the iterative forms as given below:

  

l 1 l
1 ( )

V
t


   




dN
l 1 l 1 l 1

p i di i
i 1
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

       

'
l 1 l G

l 1 g l 1i i
i i i f g '
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(C C )
C

t


 

    
 

l l 1
l 1 i i
i

i

C t F
C

1 t


    
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  
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
   




d dN Nl 1 l
l 1 l 1di i i i di i
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1 t 1 t


 

 

      
      

      

  

d dN Nl 1 l
l 1 l 1 ldi i i i di i

p
i 1 i 1i i
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v t 1 t v t 1 t


 

 

      
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d dN N l

l 1 ldi i i i di i
p

i 1 i 1i i

I t I C
(M ) (1 ) F ( )F (5.4)

v t 1 t v t 1 t


 

      
                

                                                                       

Eq.(5.4) is similar to solving a source problem ( ' 'M F S   )

where, ' I
M (M )

v t
 


, 

dN
' di i i

p
i 1 i

t
F (1 ) F ( )F

1 t

   
   

  , 
dN l

l i di i

i 1 i

I C
S

v t 1 t

 
  

   

Initial starting source is given as under:

0 0
i iC F   , 

dN d 0
0 0 i i i

i 1 i

CI
S

v t 1 t

 
  

    ,   Here 0 critical steady state flux distribution

5.2. Description of computer code KINFIN

Computer code ‘KINFIN’ is finite difference based reactor kinetics code written in FORTRAN-

77. The code is based on mathematical model as described in section 5.1. ‘KINFIN’ can simulate 

transient and steady state scenarios in reactors of rectangular pitch.  The code can be used for 
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analyzing transients in PHWRs, LWR and sub-critical reactors.  It can take variable meshes in 

X-Y-Z direction and also can simulate prompt and delayed neutrons in any group. One, two and 

three dimensional core models can be easily represented by using appropriate boundary 

conditions. Few group nuclear data generally computed by transport theory code WIMS, reactor 

core dimensional description mostly in the form of mesh width in X-Y-Z direction are major 

input data of the software. The time dependent insertion of reactivity devices in the core is 

modeled by changing the nuclear data of affected meshes where these reactivity devices pass 

through.   

5. 3. Application to three dimensional reactor problems without feedback

5.3.1. The Three-dimensional PHWR Kinetic Problem (Judd and Rouben, 1981)

The description of the problem

This benchmark problem models a super delayed-critical transient for a very small reactivity 

insertion rate.  The asymmetric insertion of reactivity devices is taken as protection system to 

arrest the transient. The reactivity initiated accident has been modeled by linear decrease in the 

thermal absorption cross-section. The absorber rods begin to move in horizontal (-Y) direction at 

0.6 sec. The transient is studied for a total time of 2.5 sec. Maximum ~6.5 mk positive reactivity 

is added in the reactor. The geometrical and material descriptions of the initial and perturbed 

core of the benchmark are depicted in Figures 5.1-5.5. The relevant nuclear data for the problem 

is given in Tables-5.1&5.2.

The positive reactivity insertion due to the LOCA is simulated by decreasing the thermal 

absorption cross-section in regions 5, 6, 10, 11, 17, 18, 22 and 23 in the following way:
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1

2

1

1.0E 04 (cm.s) for t 0.4sec

t 8.88889E 06 (cm.s) for t 0.4sec





            

The negative reactivity due to asymmetric insertion of shutdown devices is simulated by adding 

1
2 6.15E 04 cm   to the thermal absorption cross-section in regions 2, 4, 7, 9, 12, 14, 16, 

18, 19 and 21-24. The absorber insertion starts at 0.6 sec with a constant velocity of 520 cm sec-1

in the Y-direction. The moving absorber boundary is parallel to the X-Z plane. The change in 

cross-section is additive whenever perturbation overlap. The combined result of the positive 

reactivity due to the LOCA and the negative reactivity due to the asymmetric insertion of 

shutdown devices makes the transient a super delayed-critical transient. 

Results and discussions

The three dimensional code KINFIN was used to model the PHWR problem described in 

Section-5.3.1. Different node sizes were used in the code, 60 cm inside the core and 30 cm near 

the reflector. The reactor core and reflector region (780*780*800 cm) were represented by a total 

3240 meshes. Though the code has an option for estimating the suitable time step depending 

upon power variation, the uniform time step of 1 milli second has been chosen for all flux/power 

calculation during transient. Average power of reactor and thermal flux shapes during transient 

were compared with results given by code CERKIN (Judd and Rouben, 1981). The static

multiplication factors (Table-5.3) estimated by both methods are in close agreement. The thermal 

and fast fluxes at various time points were estimated by KINFIN. The values were in close 

agreement with the values as estimated by CERKIN code. Figure-5.6 shows the variation of 

average power density as a function of time for this transient obtained by KINFIN and CERKIN. 
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5.3.2 The LMW problem 

The description of the problem

This problem (Langenbuch, et al., 1977) is related with an operational transient in a LWR for a 

very small reactivity insertion rate in square geometry. This problem has been solved taking 

prompt neutrons in two energy groups and 6 delayed neutron precursors groups. The core 

configuration and the control rods positions are shown in Figures-5.7 & 5.8. The core is 

composed of two kinds of fuel regions surrounded by water reflector. The relevant nuclear data 

for the problem is given in Tables-5.4. The control rods of the rod group 1 are inserted from the 

upper water reflector to the axial mid-plane of the core, and the control rods of the rod group 2 

are set in the upper axial reflector in the initial state. Transient is initiated by withdrawing the 

control rods of the rod group 1 at the constant speed of 3 cm/sec until they are fully withdrawn. 

At 7.5 sec into the transient, the control rods of the group 2 start to move in at the same speed 

and continue to move in for 40 sec. 

Results and discussions

The quarter core was represented in code KINFIN. The core dimension in X-Y directions are 220 

cm whereas in Z-direction it extends up to 200 cm. The uniform mesh size of 10 cm has been 

chosen to represent the quarter core in KINFIN. A total of 1210 meshes are used to represent the 

quarter core.

The reference solution was calculated by the CUBBOX code with a time step of 0.125 sec. The 

time variation of the average power as well as the power densities at some places of the reactor 

was compared. The time variation of average power density in the core has been plotted in 
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Figure-5.9. Table-5.5 gives the comparison of the average power as predicted by KINFIN and 

for CUBBOX.

5.4.  Inclusion of feedback effects

Analyses of nuclear reactor safety have increasingly required coupling of full three dimensional 

neutron kinetics core model with system transient thermal hydraulics code. The objective of 

thermal- hydraulic model is to obtain fuel pellet, clad and coolant temperature distribution under 

steady state and transient conditions. The results will be used for calculating reactivity feedback 

due to voiding and Doppler effect. The thermal hydraulic feedback mechanism is primarily 

provided through cross sections to the space time neutron kinetics code that are temperature and 

density dependent. Through the space time kinetics code the power distribution in the reactor is 

estimated and the estimated power distribution is the input to thermal hydraulic module. The 

temperature effects are described by considering distinct temperatures corresponding 

respectively to the coolant fuel and clad. This enables reactivity feedback to include all the major 

contributions, namely, moderator temperature/density effects and fuel temperature effects and 

thus permits a more realistic description of various transients in critical or sub critical ADS 

reactors.

We have chosen a simple thermal hydraulic model as the aim is to obtain various reactivity 

feedbacks to the space time kinetics code rather than a detailed thermal hydraulic analysis of the 

reactor. To demonstrate these effects, a typical tank type research reactor with pin/cluster type 

fuel elements rectangular cooled and moderated with heavy/light water was selected as a 

reference reactor. For other coolant such as Lead-Bismuth used in ADS, various correlations 

evaluating heat transfer coefficients have been included in the code. The theoretical thermal 
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hydraulic model and temperature evaluation methodology are discussed in the following 

sections.

5.4.1 Theoretical modeling

The reactor core is modeled by parallel cooling channels which can describe one or more fuel 

elements. The parallel channels are coupled hydraulically by the condition of equal pressure drop 

over all core channels. The assumptions in the modeling are as below

(i) The core fuel element and coolant channels are essentially intact

(ii) No heat transport between sub-channels

(iii) Pressure change induced by boiling in one sub-assembly does not affect  other sub-

assemblies

For the fuel heat transfer model, since heat conduction is of relatively small importance in the 

axial and circumferential direction for the class of problems under consideration, a radial one-

dimensional heat-flow model has been adopted, with the channel divided into axial segments, 

temperature calculations being performed for each of the segments in succession following the 

direction of coolant flow. The radial gaps between typical fuel elements envisaged would be 

filled with either gas or liquid metal. Following figure represents a typical fuel element and 

coolant clad corresponding to one sub-assembly. 

Figure: Cylindrical Fuel-Clad-Coolant system 
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The time-dependent radial temperature profile is obtained by solving the conduction equation 

(Todreas and Kazimi, 2011, Nikolay, 2009) in cylindrical geometry. 

The Fourier conduction equation for cylindrical fuel is

'''1
 Cp

T T T
r q

t r r r
         

                                                   (5.5)

where, ρ is density, Cp is specific heat and λ is the thermal conductivity.  To solve this equation 

by finite difference the fuel region is divided in N radial zones. Thermo dynamical properties 

averaged over temperature and space of each zone is taken into account for finite difference 

equation. Volume average temperatures i.e T1, T2, TN and corresponding average radius i.e. 1r , 

.., ir ,…, Nr are determined for each zone. For ith annular zone the average radius is defined 

as
2 2

1( )2
2

i ir r
ir

 .  Similarly effective conductivity λij between ith and jth zones are estimated.

Integrating (5.5) from  0r  to 1r r

                                                 
1

'''

1

2
Cp

T T
q

t r r
  

 
 

                                                               (5.6)

The L.H.S is the time dependent heat energy. The first term of R.H.S is the heat generation rate 

per unit volume in zone 1 and the second term is the heat loss rate to outer zone per unit volume. 

To develop finite difference equation we replace 
T

r
 


  by volume averaged  2 1
12

2 1

T T

r r
 


  in 

(5.6). where, T1 & T2 are volume averaged temperatures of zones 1 & 2. Similarly, 1r & 2r are 

average radii of zones 1 & 2. λij is the effective conductivity between ith and jth zones. For central 

zone of the fuel i.e. for i=1, the finite difference equation is given by
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1

1
'''1 1 1 2

1 1 121
1 2 1
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                                                (5.7)

For annular zones, integrating (5.5) from ir r to 1ir r .The indices k stands for kth time step.

of the fuel i.e. for zones i=2, 3, .. , N-1, the finite difference equation has the form

   
1

''' 1 1 1
1, , 11 2 2 2 2

1 11 1

2 2
Cp

i

k k k k k k
i i i i i i i i
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
  

 
  

      
              
          (5.8)

For outer zone of the fuel i.e. for i= N, the finite difference equation has the form

   
1

''' 1 1
1,1 2 2 2 2

1 ,1 1

2 2
Cp

i

k k k k k k
i i i i i i clad

i i i ik k
i i th FCi i i i

T T r T T T T
q

t t r r Rr r r r
 


 


 

     
               
                       (5.9)

where, ,th FCR is the effective thermal resistance between fuel-clad interface

,

/ 21 1 1
ln ln lnfuel fuel gap fuel gap clad

th FC
fuel N air fuel clad fuel gap

R R R
R

r R R

  
   

      
               

                       (5.10)

For clad to coolant heat transfer, the finite difference equation has the form

   
1

'''
1 2 2 2 2

, ,

2 2
Cp

i

k k k k k k
i i i clad clad coolant

i i k k
th FC th Cclad fuel clad fuel

T T T T T T
q

t t R RR R R R






      
                 
        (5.11)

where, ,th CR is the effective thermal resistance between clad-coolant interface.

,

1 1
ln

/ 2
clad

th C
clad clad clad clad eff

R
R

R R H 
 

   
                                                          (5.12)

effH is the heat transfer coefficient for clad-coolant  interface

5.4.2 Heat transfer coefficient

5.4.2.1 Single phase flow of the coolant

Heat transfer coefficient for single phase flow of coolant in the heated channel is expressed as

u
eff

e

N
H

D




                                                              (5.13)
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where, uN is Nusselt number, λ is thermal conductivity and eD is the effective hydraulic 

diameter of the flow channel.  Nusselt number is calculated using Dittus - Boelter correlation 

(Dittus and Boelter, 1930)

0.8 0.4
e0.023u rN R P                                                   (5.14)

where, Reynolds Number,  e
eVD

R





Prandtl Number,   p
r

C
P






And, 
4 Flow area

Wetted perimetereD




5.4.2.2 Two phase flow of the coolant

In case of two phase-flow of the coolant, the heat transfer coefficient has two component viz. 

convective part and nucleate boiling part (Chen, 1963). Therefore the total heat transfer 

coefficient is written as sum of two component i.e.

                               (5.15)

The convective part is a modified Dittus-Boelter correlation given by

 
0.8

0.41
0.023 fe

c rf
f e

G x D
h P F

D




 
   

                                          (5.16)

where,                                1F        for    
1

0.1
ttX


        
0.736

1
2.35 0.213

tt

F
X

 
  

 
   for  

1
0.1

ttX


                    and ,              

0.5 0.10.9
1

1
f g

tt g f

x

X x

 
 

                  
  

The steam flow quality x is defined as    m f

fg

h h
x

h


                     

2 c NBH h h  
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The heat transfer coefficient due to nucleate boiling is based on the Forster-Zuber (Forster and 

Zuber, 1955) equation with a suppression factor S

 0.79 0.45 0.49

0.24 0.75
0.5 0.29 0.24 0.24

0.00122 f
NB sat

f fg g

Cp
h S T P

h

 

  

 
    
 
                            (5.17)

where,                               
6 1.17

1

1 2.53 10 l

S
R

 

                                          1.25
elR R F

                                         sat wall satT T T  

                           and            wall satP P T P T  

5.4.3 Pressure difference along vertical fuel channels

Consider the coolant in a fuel channel as a mixture of liquid and vapor flowing upward. 

Assuming Gm and ρm as the mean mass flux rate and mean density of the homogenized liquid-

vapor mixture. The momentum equation for a vertical constant area flow channel has the form

 2

2 .cosm mm

e mm

fG GG pGm
mt z z D g

 

 
      

                                   (5.18)

where, f is friction factor and g is the acceleration due to gravity. De is the thermal hydraulics 

diameter of the flow channel.

5.4.3.1 Single phase pressure drop

In single phase liquid flow the physical property change along the heated channel can be 

assumed to be negligible. For constant flow area the mass flux (Gm) is constant and for ρm
+= ρl ≈ 

constant, the pressure drop due to acceleration is negligible.

   2
m m

e l

fG G

in out out in form l out inDp p Z Z p g Z Z       
                          (5.19)
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5.4.3.2 Two phase flow of the coolant

The pressure drop across a channel in which boiling takes place at z=ZB can be written as

     

   

2 2

2

2

2
2 2                      

outB

lo m mm m

e lm m

in B

lo lo m m m m

e l l

ZZ
f G GG G

in out l m B inD
out in

Z Z

f G G G G

out B loD
ii

p p gdz gdz Z Z

Z Z K

 


 

 



       

  

 


                (5.20)

This equation can be written as

acc gravity fric formp p p p p        

where,

                                                     2 2
m m

m m

G G
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Z Z

p gdz gdz    
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lo m m lo lo m m

e l e l

f G G f G G

fric B inD Dp Z Z 
    

                                                    2
2
m m

l

G G

form lo
ii

p K  

The frictional pressure loss term fricp is the pressure loss due friction from channel wall surface. 

lo
f is the friction factor for liquid only case while 

2

lo
 is the homogeneous friction pressure drop 

coefficient when the effect of viscosity is neglected.  The term formp is the pressure drop 

because of spacers and the factor K depend s upon the geometry/type of the spacers. The factor 

K has to be determined experimentally for the channel. The Friction Factor ( f ) depends upon  

flow velocity . Higher the flow rate higher will be the frictional pressure loss. For laminar flow 

i.e. Re< 2100, the friction factor is evaluated by

64
Ref 
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For turbulent flow in a smooth tube i.e. 2100< Re < 30000, the friction factor may be given by 

the Blasius relation

-0.250. 316 Ref 

for a smooth tube where 30000 < Re < 1000000, the friction factor is given by the McAdams 

relation

-0.20. 184Ref 

5.4.4 Thermo physical properties of materials

The present purpose of this report is only concerned within   thermo dynamical region where fuel 

and clad do not undergo any phase changes. Keeping this in mind the thermo-physical properties 

data were taken only for the solid alpha phase of fuel and cladding materials. The MATPRO-

recommended expression (IAEA-TECDOC-949, 1997) was used to calculate specific heat and 

thermal conductivity of metallic Uranium and Uranium dioxide (Table-5.6). Thermo physical 

property for cladding materials i.e. Al, Zr-2 and SS are summarized in (Table- 5.7). Correlations 

for saturation properties of Light and Heavy water (Crabtree and Siman-Tov, 1993) were used to 

evaluate thermo physical properties. Tables-5.8 & 5.9 lists the correlations for Light water and 

Heavy water respectively. Table-5.10 lists the correlations for thermo physical properties of 

LBE.
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Figure-5.1: Vertical cross section and material assignment

Figure-5.2: Horizontal cross section at Y=390 cm and material assignment
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Figure-5.3: Vertical Cross section at Z=0; region affected by absorber ( hached region)

Figure-5.4: Horizontal cross section at Z=390; absorber path shown as shaded region
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Figure-5.5: Vertical cross section at Z=600 cm; regions affected by absorber (hached)
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Figure-5.6: Average power density variation with time
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Figure-5.7: Cross sectional view and initial positions of absorber rods in LMW reactor

Figure-5.8: Final positions of absorber rods in LMW reactor
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Figure-5.9: Variation of average power densities with time

Table-5.1: Two group nuclear data for PHWR model

   Cross-section                  Region-1                      Region-2                    Region-3   
        Type                         (inner fuel)                   (outer fuel)                (reflector)

         D1                           1.2640E-00                   1.2640E-00              1.3100E-00
         D2                           9.3280E-01                   9.3280E-01              8.6950E-01

        1
f                          0.0000E-00                   0.0000E-00              0.0000E-00

       2
f                            4.5620E-03                   4.7230E-03              0.0000E-00

         1
r                            8.1540E-03                   8.1540E-03              1.0180E-02

        1
r                             4.1000E-03                   4.0140E-03              2.1170E-04

        1 2                          7.3680E-03                   7.3680E-03              1.0180E-02 
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Table-5.2: Two group kinetics data

Group Number Group 
Velocities(cm/sec)

Prompt 
spectrum

Delayed spectrum

            1 1.0x107 1.0 1.0
            2 3x105 0.0 0.0

Delayed neutron data
Type                 i                        i (sec-1)      

1                   4.170E-04              1.244E-02
2                   1.457E-03              3.063E-02
3                  1.339E-03               1.139E-01
4                  3.339E-03               3.079E-01
5                   8.970E-04               1.198E+00

                                      6                  3.200E-04               3.212E+00

Table-5.3: Steady state eigenvalues as estimated by KINFIN

     Time (sec)                                          Keff
0.0                                       1.00355
0.4                                               1.00972
1.35                                             1.00508       
2.10                                             0.99540 
2.50                                             0.99625

Table-5.4: Two group nuclear data for 3-D LMW

   Cross-section                  Region-1                      Region-2                    Region-3   
        Type                         (inner fuel)                   (outer fuel)                 (reflector)

         D1                           1.423913E-00                1.2640E-00              1.3100E-00
         D2                           3.563060E-01                9.3280E-01              8.6950E-01

        1
f                           0.0000E-00                   0.0000E-00              0.0000E-00

       2
f                            4.5620E-03                   4.7230E-03              0.0000E-00

         1
r                            8.1540E-03                   8.1540E-03              1.0180E-02

        1
r                             4.1000E-03                   4.0140E-03              2.1170E-04

        1 2                          7.3680E-03                  7.3680E-03              1.0180E-02 
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Table-5.5: Variation of average power densities with time

Table-5.6: Thermo physical property of fuel materials

Fuel Material
Density
(kg/m3)

Specific heat capacity, 
Cp (J/kg/K)

Thermal Conductivity,
λ (kW/ m/K)

Metallic Uranium
[MATPRO]

18900

for 300 K< T< 938 K
Cp=104.82+5.3686×10-3T+ 10.1823×10-5

T2

for 938 K < T< 1049 K
Cp = 176.41311

for 1049 K< T< 1405.6 K
Cp = 156.80756

λ=20.457+1.2047×10-2T-
5.7368×10-6 T2

UO2

[Finnemann, 
1991]

10240
Cp=162.3+0.3038T+2.391×10-4T2+ 6.404 

×10-8T3 2150
T-73.151.05+ 

Table-5.7: Thermo physical property of fuel materials

Cladding 
Material

Density
(kg/m3)

Specific heat capacity, 
Cp (J/kg/K)

Thermal Conductivity,
λ (kW/ m/K)

Aluminum 2700 0.91 2.176

Zircoloy-2 6504 Cp=252.54+ 0. 11474T      
λ = 7.51+ 2.09× 10-2T-1.45 ×10 -5T 2 +7.67 

×10-9 T3

SS-304 7900

For 300 < T < 1558 K,
Cp = 326 + 0.298 T - 9.56  × 10-

5 T2

For    T > 1558 K,
Cp = 558.228

For 300 < T < 1671 K
λ = 7.58 + 0.0189 T    W/m/K
For 1671 < T < 1727  K
λ = 610.9393 - 0.3421767 T
For T > 1727  K
λ = 20

Time Average power density(W/cc)

Local power density (W/cc)

CUBBOX KINFIN

(sec) KINFIN CUBBOX p11 p12 p13 p14 p11 p12 p13 p14

0 150.00 150 279.86 186.17 258.26 231.45 283.65 185.38 260.43 230.5

1 152.77 152.39 284.26 189.54 262.38 235.04 288.11 188.74 264.58 234.08

2 156.42 155.54 290.07 194.07 267.85 239.63 294 193.25 270.1 238.65

5 172.62 168.79 314.65 212.75 290.87 258.81 318.91 211.85 293.31 257.75

10 198.09 201.11 375.25 264.48 346.94 305.75 380.33 263.36 349.85 304.49

15 232.64 239.63 447.09 327.75 413.47 361.63 453.14 326.36 416.94 360.15

20 249.70 260.03 483.4 360.42 449.62 393.94 489.95 358.89 453.4 392.32

25 256.26 248.79 455.64 343.5 425.48 380.04 461.81 342.04 429.05 378.48

30 210.65 211.26 381.17 290.28 350.96 327.2 386.33 289.05 353.91 325.86

40 126.87 125.46 224.76 173.04 197.27 196.48 227.8 172.31 198.93 195.67

50 76.49 77.07 140.38 108.34 121.73 115.94 142.28 107.88 122.75 115.46

60 59.45 58.94 107.47 82.95 93.12 88.49 108.93 82.6 93.9 88.13
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Table-5.8: Summary of the correlations for saturation thermophysical properties of light water

Property, parameter Correlation constants

Saturation Temperature
(ºC)

2
  

1    
  A CX

sat BX DX
T 

 

X = log(P)

A = 179.9600321
                        B = -0.1063030

C = 24.2278298
                      D = 2.951e-04

Saturation pressure
(MPa)

 2

2 21.0
exp A CX EX

w BX DX FX
P  

  


X = T

A = -7.395489709 
B = 4.884152e-03

   C = 3.6337285e-02
D = 4.308960e-06 
E = 2.651419e-05
F = -4.14934e-09

Liquid density
(kg/m3)

2     l A BX CX   
X = 1.8T + 32

A = 1004.789042 
                        B = -0.046283
                       C = -7.9738e-04

Vapour density
(kg/m3)

2 3

2 3 41
  A CX EX GX

g BX DX FX HX
   

   


X = Tsat

   A = -4.375094e-04;
  B =-6.947700e-03  
C = 7.662589e-04

  D = 2.418897e-05  
  E = -5.963920e-06 
  F = -4.227966e-08
  G = 2.867976e-07 
H = 2.594175e-11   

Liquid Enthalpy
(kJ/kg)

  
2

2
  

1    
  A CX EX

l BX DX
H  

 


X = T     

A = 0.786889159
B = -0.001874457
C = 4.163042560

                     D = -3.334e-07
E = -0.007798602

Latent heat of vaporization
(kJ/kg)

x = T 

2 3         fgH A BX CX DX   

A = 6254828.560
  B = -11742.337953

                      C = 6.336845
                      D = -0.049241

Specific heat
(kJ/kg/K)

  
1    2   )A CX

BX DXCp 
 

X = T       

A = 17.48908904
B = -1.67507e-03
C = -0.03189591
D = -2.8748e-06

Thermal conductivity
(W/m/K)

2 3       A BX CX DX    
X = T  

A = 0.5677829144
B = 1.8774171e-03

                     C = -8.1790e-06 
D = 5.6629477e-09

Liquid dynamic viscosity
(kg/m/sec)

 1 2exp A CX
f BX DX 

 
X = T 

A = -6.325203964 
  B = 8.705317e-03   
   C = -0.088832314

          D = -9.657e-07

Surface Tension
(Nm/m)  

   (1.0  )BAX CX  
(373.99- )

647.15  TX 

      A = 235.8e-03 
B = 1.256 

  C = -0.625
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Table-5.9: Summary of the correlations for saturation thermophysical properties of heavy water

Property, parameter Correlation constants

Saturation Temperature
(ºC)

2 3   exp( )satT A BX CX DX   
X = log(P)

A = 5.194927982
B = 0.236771673
C = -2.615268E-03
D = 1.708386E-03

Saturation pressure
(MPa)

  exp( .log( ) )B
XPw A C X DX   

X = T+273.15

A = 95.72002
B = -8439.470752
C = -13.496506
D = 0.01201

Liquid density
(kg/m3)

2 (   )l A BX CX   
X =1.8T+32

    A = 1117.772605 
C = -8.42E-04
B = -0.077855

Vapour density
(kg/m3)

 2

2
A + CX  + EX
1 + BX + DX

=  expg

X = T

A = -5.456208705  
B = 2.386228E-03
C = 0.060526809
D = -1.15778E-05  
E = -1.11360E-04

Liquid Enthalpy
(kJ/kg)

2
log( )       CX

l XH A BX  

X = Tsat

A = -81.40815291 
B = 0.00274496 
C = 21.13005836

Latent heat of 
vaporization

(kJ/kg)

2        fgH A BX CX  

X = 371.49 - T     

A = 508093.6669 
B = 17006.921765
C = -1 1.009078

Specific heat
(kJ/kg/K)

2 3   (    )Cp A BX CX DX   
X = (1.8T + 491.67) ×10-4

A = 2.237124 
B = 122.217151
D = 13555.737878  
C = -2303.384060

Thermal conductivity
(kW/m/K)

λ= (A+BX+CX2+DX3)×10-3

X=(1.8T+ 491.67)×10-4     

A = -0.4521496 
B = 36.0743280
D = 924.0219962 
C = -357.9973221

Liquid dynamic 
viscosity

(kg/m/sec)

2 ( )  C D
l X X

µ A BX   

X =1.8T+32       

A = -1.111606e-04 
B = 9.46E-08
C = 0.0873655375 
D = 0.4111103409

Surface Tension
(N/m)  

σ= AXB(1.0 + CX)  

(371.49 - )
444.65    TsatX 

A = 2.44835759E-01
B = 1.269
C = -6.60709649E-01
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Table-5.10: Summary of the recommended correlations for thermophysical properties of molten 
LBE (p ~ 0.1 MPa)

Property, parameter Correlation
Temperature

range (K)
Estimated

error 
Melting temperature (K) Tmelt = 397.7 n/a 0.6

Latent heat of melting
(kJ/kg)

Qmelt = 38.6 n/a 0.2

Boiling temperature (K) Tboil = 1943 n/a 10

Latent heat of boiling
(kJ/kg)

Qboil = 854 n/a 2.0

Saturated vapour pressure 
(Pa)

Ps = 11.1 × 109exp(-22552/T ) 508-1943 50%

Surface tension  (N/m) = (437.1 – 0.066T ) × 10-3 423-1400 5.0%

Density (kg/m3) = 11096 – 1.3236T 403-1300 0.8%

Sound velocity (m/s) usound = 1773 + 0.1049T – 2.873 × 10-4T2 403-1300 -

Bulk modulus (Pa)
Bs = (35.18 – 1.541 × 10-3T

– 9.191 × 10-6 T2) × 109 430-605 0.05%

Isobaric specific heat
(J/kg/K)

Cp = 159 – 2.72 × 10-2T + 7.12 × 10-6T2 430-605 7%

Dynamic viscosity (Pa.s) = 4.94 × 10-4exp(754.1/T) 400-1100 5%

Electric resistivity (m) r = (86.334 + 0.0511 T) 10-8 403-1100 6%

Thermal conductivity
(W/m/K)

= 3.61 + 1.517 × 10-2T – 1.741 × 10-6T2 403-1100 5%
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CHAPTER 6

_____________________________________

Transport Theory Based Analog Monte Carlo for 
Simulating Noise Experiments in Sub-critical Systems

Experiments (Rasheed et al., 2010) are planned at the Bhabha Atomic Research Centre (BARC) 

with the aim of demonstrating pulsed neutron and noise methods for measuring the sub-critical 

reactivity of ADS. A new theory of Reactor Noise in ADS taking account of the non-Poisson 

character of the source has been developed at BARC (Degweker, 2000, 2003; Degweker et al.,

2007; Rana and Degweker, 2009). One of the aims of the experiments would be to verify the 

theory and interpret the results in terms of the theory.  The system planned is a natural uranium 

sub-critical assembly moderated by water or high density polyethylene (HDPE) and driven by a 

D-D or D-T neutron generator. The maximum keff of the assemblies is expected to be about 0.9. 

Though noise based experiments with such low keff are difficult because of modal effects, these 

can be performed with suitable location of detectors where modal effects are minimal. 

As part of the experimental planning, a prior simulation of the kinds of results that might be 

expected with different detector locations, counting and analyzing setups is necessary, 

particularly in view of the difficulty mentioned above. It would be necessary to know the 

magnitude of say the Feynman Y function for given values of system parameters such as keff, 

detection efficiency etc., and how it compares with the background random noise for a given 

counting time or the magnitude of the space dependent effects, delayed neutron effects, dead 

time effects that inevitably appear in the experiment. This allows us to assess the feasibility of 
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carrying out measurements of parameters such as sub-critical reactivity, the errors that will 

appear and hence the kind of accuracy that may be expected from such a measurement. All this is 

possible only if the simulation is completely analog. Simulations with standard code packages 

(Gupta, 1991; MCNP, 1987) are not appropriate because of several non-analogue features built 

into such codes.

Since analogue simulations are generally very time consuming, we developed a diffusion theory 

based noise simulator which could be implemented quickly and was much faster to run than a 

transport theory Monte Carlo code. Simulations using the diffusion theory code (Rana, et al., 

2013) have provided us with valuable information about the feasibility of the proposed 

experiments and the kind of accuracy that can be expected from such measurements. 

However, a more realistic description of the experiments will be provided by transport theory 

based analog Monte Carlo. In this chapter we discusses the development of such a code 

specifically intended for simulating the noise based experiments such as Rossi-alpha and 

Feynman-alpha. The simulator generates a detailed time history of counts in the detector so that 

any method of analysis can be carried out. The code is based on delta neutron tracking method

(Woodcock et al., 1965; Coleman, 1968) (also called Woodcock or Coleman method) which 

results in fast and relatively simple handling of complex geometries. The code has been validated 

with some criticality and noise benchmark problems. We also present results of simulation of the 

proposed ADS noise experiments at the PURNIMA facility obtained using the code. We also 

present a comparison with computed values of the Feynman alpha and Rossi alpha functions 

using a space-time kinetics code.
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In Section 6.1, we give a brief description of reactivity measurement by noise methods. We 

discuss the basic experimental procedures used in noise methods and the theoretical basis of 

these methods. In particular we obtain general expressions for the Rossi alpha and Feynman 

alpha distributions and describe the computation of these distributions using a space-time 

kinetics code. We also discuss a novel application of the space time kinetics code KINFIN 

described in chapter 5 for obtaining Rossi alpha & Feynman alpha distribution. In Section 6.2, 

we describe the Transport Monte Carlo code developed by us for simulation of noise 

experiments. In Section 6.3, we discuss validation of the code. The results obtained for Purnima 

sub-critical facility are presented in Section 6.4.

6.1. Reactivity determination by noise method

When a neutron is injected into a system from an extraneous source, it randomly undergoes a 

number of events such as fission, scattering, capture or detection. The time between nuclear 

events is also a random variable. In reactor physics, these neutron fluctuations caused by the 

above types of sources due to inherent nuclear effects are called zero power reactor noise. Zero 

power noise carries information about reactor parameters such as reactivity. Suggestions for 

using this inherent noise for measuring reactor kinetics parameters were made as early as the 

Manhattan project and noise based methods such as Feynman-alpha and Rossi-alpha, among 

others, were further developed during the 1950s and 1960s to determine the reactivity of a sub-

critical system (Saito, 1979). They are both based on the measurement of the second moment of 

the statistics of the detector counts. The methods have attracted renewed attention recently for 

measurement of sub-criticality of accelerator driven reactors. 
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In the following sub-section, we present a brief description of various noise methods for 

measurement of sub-critical reactivity and in   Section 6.1.1, we derive general expressions for 

the Rossi alpha and Feynman Y functions in terms of the stationary flux and the time dependent 

solution of the backward adjoint equation. Finally, in Section 6.1.2, we describe a method used 

by us for computing the Rossi alpha and Feynman Y functions using a space-time kinetics code.

6.1.1. Brief description of various methods

6.1.1.1. The Rossi alpha method

In the Rossi-alpha method (Williams, 1974) one seeks to measure the probability of obtaining a 

detector count in an infinitesimal time interval 2dt around time 2t given that a count has been 

recorded at an earlier time 1t . While, in general, this is a function of both the time variables 1t

and 2t , for a stationary system this is a function of the time difference 2 1t t   . The probability is 

traditionally measured by the use of delayed coincidence counting circuits (Saito, 1979) but with

modern fast electronics, it is possible to simply record the entire time history of counts in a 

detector and the required probability distribution can be obtained by an off-line analysis of the 

recorded data. The second count need not be recorded in the same detector and often the use of 

two detectors might be preferred; particularly in fast systems where the time separations are of 

the order of 1 micro second. 

It is clear that the probability consists of two parts: the first on account of neutrons which are 

uncorrelated with the one observed at t1 (the so called ‘accidental’ coincidences) and, the second 

due to neutrons which are correlated with the one observed at t1. In the point model (valid for 
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small systems and systems not too far from critical), it is possible to derive the following 

expression for this probability distribution:

                                                     P( ) A Bexp( )                                                             (6.1)

Where 2 1t t   The prompt neutron decay constant α is determined by fitting the measured 

distribution to the above function. The method works best in systems where the power is very 

low so that the contribution of the first term is not overwhelmingly large compared to that of the 

second term. At higher powers, the auto-correlation or cross-correlation function method 

described below is more suitable. As we will see in the next sub-section, the general space 

energy dependent theory gives a much more complicated formula which reduces to that given by 

Eq. (6.1)  in the point model (uni-modal approximation).

6.1.1.2. The auto correlation function method

This method is similar in principle to the Rossi alpha method but both the recording and analysis 

of the data are different. Here we seek to measure the auto correlation function (ACF) of the 

number of neutrons in the system at a given time with that at a later time. The ACF has a form 

similar to that given in Eq. (6.1) and alpha is inferred by fitting the data to Eq. (6.1). In practice, 

one measures Ni, the number of counts in successive short time intervals of width t labeled by 

the index i (or the current in an ion chamber sampled at times i t ), and forms the average: 

                                                  
n

i i j
i 1

1
N(t)N(t ) N N

n 


                                                        (6.2)       

where j t   is the separation between the two intervals and t is the width of each interval. 

The prompt neutron decay constant is estimated by fitting the measured ACF to an expression of 

the form given in Eq.(6.2) 
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6.1.1.3. The variance to mean (Feynman Alpha) method

In the Feynman-alpha method, one merely records the number of neutron counts registered in a 

detector in a large number of short time intervals each of length T (of the order of the prompt 

decay time i.e. inverse of alpha). The mean ( m ) and the variance V of the number of counts are 

calculated and the ratio /V m is determined. This is repeated for intervals of different lengths by 

varyingT . Thus, one obtains a table of the /V m or the relative variance for different values 

ofT .  In the point model, the ratio of the variance to the mean is given by the expression

                                                            / 1 TV m Y                                                                    (6.3)

Here Feynman function Y is defined by following relation

2

1 exp( )
1

( )
f

T

D T
Y

T

 
  

      

where D is the Diven factor and f the fission detection efficiency of the detector. The prompt 

neutron decay constant α is obtained by fitting the data to the theoretical expression given in 

Eq.(6.3).

6.1.2. Theoretical expressions for the Rossi alpha and Feynman alpha functions

In the section 6.1.1, we saw how the measured quantities are given by simple functions of time 

involving various reactor kinetics parameters and how the latter can be inferred by fitting the 

measurements to the Feynman alpha and Rossi alpha functions. These expressions are valid in 

the point model approximations, but the actual situation is quite complicated and can be well 

described by stochastic transport theory. We show this in the present section. The more 

important point we wish to make is that these functions can be actually computed using space-
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time kinetics codes suitably modified for this purpose. This provides with another method for 

validation of the results of our Monte Carlo simulator.

6.1.2.1. The Rossi alpha distribution

Let 1 2p(r, ,E, t;n ,n ) be the probability of the number of detections in two intervals of length 

1t and 2t around the times 1t and 2t ( 2 1t t ) due to a neutron injected at (r, ,E, t) . The 

corresponding probability generating function (PGF) is then defined by the following equation.

         21

1 2

nn
1 2 1 2 1 2

n ,n

G(r, , E, t; z , z ) p(r, , E, t; n , n )z z                                                            (6.4)

The PGF obeys the backward stochastic transport equation (Bell, G.I, 1965; Pal, 1958)    
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(6.5)

In equation (6.5), f is the PGF of the number of neutrons in a fission reaction. The PGF

S 1 2G (z ,z ) with a steady source S(r, ,E) of the Poisson type is given by the Bartlett formula

(Bartlett, 1955)

      S 1 2 1 2G (z ,z ) exp S(r, ,E, t)G(r, ,E, t;z ,z ) 1 drd dEdt                                      (6.6)                          

The Rossi alpha formula is obtained by differentiating Eq. (6.6) twice with respect to 1z and 

2z and setting 1 2 1z z 

  
1 2

2 1

1 2 1 2 z z 1 2

z 1 2 z 1 2

P(t , t )dt dt S(r, ,E, t)G (r, ,E, t;z ,z )drd dEdt

S(r, ,E, t)G (r, ,E, t;z ,z )drd dEdt S(r, ,E, t)G (r, ,E, t;z ,z )drd dEdt

   
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
 

  (6.7)
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where the derivatives w.r.t. 1z or 2z are to be evaluated at 1 2 1z z  . On differentiating Eq. 

(6.7) with respect to 1z or 2z and successively with respect to 1z and 2z and setting 1 2 1z z 

we obtain Eqs. (6.8), (6.9) and (6.10) for these derivatives i.e. the first and second moments

                                  
1

†
z d1L G                                                                                           (6.8)

                                      
2 2

†
z dL G                                                                                      (6.9)

1 2 1 2

†
z z f z z

(E ') (E ')
L G ( 1) G (r, ',E ', t;1,1)d 'dE ' G (r, ',E ', t;1,1)d 'dE '

4 4
                    (6.10)   

                                                                                                                                            
The equation for the flux due to the source can be written as follows using the ordinary stationary 
forward equation: 

                                                    L S                                                                              (6.11)

In Eqs. (6.8) - (6.11) we have used the symbols L and †L for the time dependent backward 

(adjoint) and forward transport operators defined below:
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where H and †H are the corresponding time independent transport operators. 

Using: i) the fact that the various terms on the RHS in Eq. (6.7) are scalar products between the 

source and the functions 
1z

G etc. ii) Eqs. (6.8), (6.9) and (6.10) iii) the properties of mutually 

adjoint operators, we can rewrite Eq. (6.7) as follows
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(6.14)                                                                                                                             

where, we have omitted the time variable for the flux, as we are considering a stationary Poisson 

source. The first term in Eq. (6.14) is merely the product of the average number of counts in the 

two intervals and is the uncorrelated term whereas the second term is due to fission chain 

correlations. It is this term that allows the estimation of  from Rossi alpha [or Auto Correlation 

Function (ACF)] measurements. Thus, it is possible to express the Rossi alpha function (and in a 

similar manner the Feynman Y function) in terms of the forward and adjoint solutions.  While 

the forward solution gives the stationary flux, the two adjoint solutions are the Green’s functions 

corresponding to a delta function adjoint source (i.e. a detection at times t1 and t2). Eq. (6.10) can 

be obtained (Rana and Degweker, 2011) if we assume that the functions 
1zG (r, ,E, t;1,1) can be 

represented as a single alpha mode corresponding to the fundamental mode.

6.1.2.2. The Feynman alpha method

The PGF G(r, ,E, t;z) for one interval probability function p(r, ,E, t;n) giving the probability 

of obtaining n counts in an interval of length T due to a neutron injected at (r, ,E, t) is defined 

by Eq. (6.15). 

                                                     
1 2

n
1

n ,n

G(r, ,E, t;z) p(r, ,E, t;n)z                                              (6.15)

By using Eq. (6.15) and following a method similar to that in Section 6.1.2.1, we obtain the Eq. 

(6.16) for the second factorial moment 2M of the number of counts in the interval T.
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The function G(r, ,E, t;1) is the solution of the adjoint (backward) transport equation with a 

source equal to d , the detector cross section in the time interval [0, ]t T and zero otherwise.

The first term is simply the square of the mean count rate 1M and (r, ,E, t)  is the stationary 

flux distribution in the presence of the external source. The variance to mean can be computed 

using Eq.(6.17).

                                               2
2 1 1 1/ ( ) /V m M M M M                                                      (6.17)

6.1.3. Computation of stochastic descriptors using a space-time kinetics code 

In Section 6.1.2, it was seen that it is possible to obtain the Rossi alpha and Feynman alpha 

functions from the stationary flux distribution in the presence of the external source and the 

solution of the time dependent adjoint equation in the presence of a source (detector cross section 

for the adjoint problem).  For this purpose we have used the three dimensional space time 

kinetics code [KINFIN]. The spatial discretisation in KINFIN is done using the finite difference 

method in which the space can be divided into rectangular meshes. A centre mesh finite 

differencing method is used for the spatial derivatives. The time integration is carried out using 

the backward Euler scheme. The code has provision to take thermal hydraulic feedback effects 

into account. For sub-critical systems, kinetics problems in the presence of a source can be 

solved. The code also has the capability to compute the time independent adjoint function.
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The code [KINFIN] was modified to obtain the solution of the time dependent adjoint equation 

in the presence of an external source (the detector cross section). With this modification, the 

code can calculate the backward functions
1zG (r, ,E, t;1,1) ,

2zG (r, , E, t;1,1) or zG (r, ,E, t;1)

and the forward function (r, , E, t)  which are required to evaluate the various integrals in Eqs. 

(6.14) and (6.16) for computing the Rossi alpha and the Feynman Y functions respectively. 

Results of our calculations of these functions using KINFIN are described in Section 6.3.2.

6.2. The transport Monte Carlo code

The analogue Monte Carlo method is most obvious choice for simulating a proposed noise 

experiment. In its most general form it does not impose restrictions on the geometry nor does it 

require discretisation of the space, energy angle and time variables. In this method, each particle 

is followed from its birth till death. By counting the number of detection reactions [say (n,α)] in 

the volume of the detector, we can simulate the counts in the detector and prepare a complete 

time history of detected neutron counts which can be further processed depending upon the 

requirement. At this stage, detector effects such as dead times etc can also be included. Thus the

outcome of a Monte Carlo numerical simulation is similar to a real experiment. In analog Monte 

Carlo method, when a collision occurs, the decision concerning events is evaluated 

probabilistically; if the outcome is indeed absorption, its history is terminated.

General Monte Carlo codes (MCNP, 1987; Gupta, 1991) that are used for criticality safety 

evaluations are typically meant for evaluation of integral reactor parameter such as keff and also 

for evaluation of flux. Even those that have time dependent features are not directly suitable due 

to several non-analogue features built into them and therefore cannot be used in reactor noise 
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applications. Either these codes should be modified (Szieberth and Klujber, 2010 a&b;

Yamamoto, 2011) or new code should be written to suit the new application. In this section, we 

describe such a code developed by us. To begin with, we have kept the modeling rather simple. 

Thus, we do not attempt the continuous energy treatment characteristic of MC codes. Instead, we 

rely on the multi-group method with cross sections taken from the WIMS library (Askew, et al.,

1966). The treatment of scattering is limited to isotropic scattering. An additional simplification 

is achieved by using the delta algorithm for tracking the neutron paths. Figure-6.1 gives the 

algorithm of the code. Details of the procedure followed from birth to removal are described in 

Sections 6.2.1 through 6.2.6. 

6.2.1. Random number generator used

In the computations based on Monte Carlo method, the generation of uniform pseudo-random 

numbers between 0 and 1 is of utmost importance. Since accuracy of the simulations based on 

Monte Carlo methods depends on random number, the randomness of the same will affect the 

results. In view of this, it is important that the random numbers should have high quality. The 

random number generator should pass all reasonable statistical tests of randomness and should 

be portable and fast. Random number generator should have higher cycle length and there should 

be minimal correlation between generated numbers.

Several algorithms for generating random numbers have been developed and are being used. A 

wide range of references and overviews (Marsaglia, 1985; Anderson, 1990; Park and Miller,

1988) about random number generators are available. Though there are congruential, Fibonacci 

and combination generators, we have used well-known and most widely used congruential 

generator proposed by Park and Miller (Park and Miller, 1988). The congruential generators are 
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simplest and fastest random number generators and the simulations based on analog Monte Carlo 

like ours, a fast generator of reasonable quality is desired. Minimal random number generator

algorithm has withstood the test of time. Several empirical tests of the randomness of its output 

have been published in literature and its important theoretical properties have been analyzed. A 

linear congruential sequence is a series of numbers based on the recurrence relation formula:

1( ) modn nZ aZ c m                                                        (6.18)

where ,a c and m are suitable integers called the multiplier, increment and modulus 

respectively. In the special case where c is taken as zero we have what is called as a

multiplicative generator. Many acceptable combinations of modulus and multiplier have been 

proposed. In our program, we have implemented the Minimal Standard Generator suggested by 

Park and Miller. The resulting sequence from m = 2,147,483,647 and a = 16,807 is 

recommended as the bare minimum for random number generators (though Park and Miller now 

recommend a = 48,271 for better statistical properties). The period for the generator is ~2x109

which is quite reasonable for our application. 

6.2.2. Sampling source variables

In a multi-group calculation three space variables ( , , )r x y z


, three direction 

cosines ( , , )x y z    


, the group index g and the time t are associated with each neutron as 

it is tracked. The calculation begins by sampling the above variables for an external source 

neutron. The source position must be sampled from the source distribution. However, in our 

problem the D-T source is very small in extent and is treated as a point source located at a fixed 

position.  
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The angular distribution is assumed to be isotropic, which is a very good approximation for D-T 

sources. The isotropic distribution is sampled by noting that the azimuthal angle  is uniformly 

distributed between 0 and 2 i.e. as / 2d  and the distribution of the polar angle  is 

as
1

sin
2

d  . In terms of the variable z the distribution is simply uniform between -1 and +1. 

Thus we draw two random numbers 1 2,  and obtain the direction cosines as follows

12 1z                                                                       (6.19a)

2
21 cos 2x z                                                      (6.19b)

2
21 sin 2y z                                                      (6.19c)

Another important technique for sampling the direction variables for an isotropic source is due to 

Von Numann (Von Numann, 1951).  The method avoids the need to compute the sine and cosine 

functions of the azimuthal angle and can be implemented using the following equations. 

2 2

2 2
cos

 
 





                                                     (6.20a)

2 2

2
sin


 




                                                       (6.20b)

where  and  are two uniformly distributed random numbers in the intervals (-1, 1) and (0, 1) 

respectively, 

For the D-T source, the group index is sampled simply as the highest neutron energy group. 

More generally the source is sampled from a discrete cumulative distribution function derived 

from the source spectrum. 
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Finally, the times of occurrence of each of the source events for the case of a Poisson source is 

sampled as follows

1

1
lnn nt t

S
                                                       (6.21)

where nt is the time of occurrence of the nth source event and S is the source strength. We 

choose 0 0t  .

6.2.3. Sampling distance to the next collision 

In an infinite homogeneous medium, the neutron path lengths are distributed according to the 

exponential distribution exp( )t t s ds  . By forming the cumulative distribution and inverting the 

same, we obtain the following formula for transforming from  distributed uniformly in [0, 1] to 

the exponential distribution

1
ln

t

s  


                                                         (6.22)

Once the distance is obtained, the position of the collision point is updated using the equation 

0r r s  
  

                                                            (6.23)

and the time is updated as follows

0 / gt t s v                                                             (6.24)

where 0r


is the current position, 0t is the current time and gv is the average neutron speed in 

group g.

6.2.3.1. The delta tracking algorithm

The expression Eq.(6.22) for the sampled distance to the next collision assumes an infinite 

homogeneous medium. A reactor is more likely to be made up of piece wise homogeneous 
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media. Such media are normally treated in one of the following two ways. The distance to the 

next collision is estimated according to the above formula using the cross section of the medium 

in which the particle is currently located. The distance to the surface from which the particle will 

exit the current medium is calculated by solving the equation of the line representing the neutron 

track and the bounding surfaces. In case this distance is greater than the estimated collision 

distance, the point of collision is accepted. In case it is less, then there are two possible ways. In 

one, the particle is transported to the point of intersection on the interface between the two media 

and a new collision distance (from this point into the adjoining medium) is estimated using the 

above equation with the cross section of the adjoining medium and the process is repeated till a 

collision point is accepted. Alternatively, a new collision distance (from the point of intersection) 

can be calculated as follows

1
' ( )

' t
t

s s u  


                                                        (6.25)

where 't is the cross section in the adjoining medium and u is the distance to the exiting 

surface. Again the process is repeated till a collision point is accepted. 

The estimation of path length in various regions of the geometry consisting of many 

homogeneous regions requires information about the distance to the nearest boundary surface, 

calculation of intercepts made by the line in the different regions that the neutron travels before 

collision.  All this makes the algorithm quite complex to model. It can also be very time 

consuming. 

All the complexities of conventional ray-tracing algorithm can be by passed by an alternate 

method known as delta tracking method (Woodcock et al., 1965; Coleman, 1968). To begin with, 
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the maximum total macroscopic cross-section of all materials in the geometry at the particle

energy is found. If this is called as m , then the distance to the next collision (irrespective of the 

cross section of the medium in which the particle is located) is sampled using 

1
ln

m

s  


                                                           (6.26)

If t is the actual cross section at the point of collision, the point is accepted as a collision site 

with a probability /t m  and rejected with a probability 1 /t m  . The method requires the 

program to only determine the medium at any given point which is much simpler than ray 

tracing. The method does not calculate track lengths in any region and hence it is not possible to 

estimate the track length flux using this method. However this is no limitation for our problem 

where we are interested only in the number of collisions in the detector that give rise to counts in 

it.

6.2.3.2. The geometry model and options available

The code uses geometry modeler based on combinatorial geometry logic. Combinatorial 

geometry describes general three-dimensional (3-D) material configurations by considering 

unions, differences, and intersections of simple bodies such as spheres, boxes, cylinders, etc. 

This method allows space to be subdivided into unique zones of arbitrary shape. In the code the 

task of assigning three-dimensional material configuration of the problem is accomplished in 

three distinct steps. First the regular body shapes to be used - rectangular parallelepiped, 

cylinder, sphere, etc. - their dimensions, location and orientation are defined. For a rectangular 

parallelepiped whose six plane surfaces are perpendicular to the co-ordinate axes, we specify the 

minimum and maximum values of x, y and z coordinates of the planes perpendicular to the 
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corresponding axis. A sphere is defined by radius and co-ordinates of centre.  For a right circular 

cylinder, we specify the radius, the centre and the projection of its height on x, y and z axes. 

After defining the necessary geometrical bodies, entire problem geometry is segmented into 

zones and materials are assigned to these zones. 

6.2.4. Sampling reaction events at a collision and tallying

Upon collision it is next required to determine the fate of the neutron. This is simply decided by 

the probability of various reactions such as fission ( /f t  ), capture ( /c t  ) or scattering 

( /s t  ). In case of scattering, (treated as isotropic) in our program, the procedure described in 

Section 6.2.2 is used to sample the direction cosines. It is also required to decide the group to 

which the neutron will be scattered. The probability for scattering to group 'g from group g

is , ' /s g g t  . 

In case of fission the number of neutrons is sampled from the discrete distribution ( )p  giving 

the probability of  neutrons being produced in a fission which is available for various nuclides 

in the literature (Jerome et al., 2010). Each of the fission neutrons is assigned the position and the 

time of the collision. The energies of each of the fission neutrons are sampled from the discrete 

(group) fission spectrum. The directions of each of the fission neutrons are sampled from the 

isotropic distribution as in Section 6.2.2.  In case of a capture, or incase the neutron escapes the 

reactor volume, the history is terminated. The collisions inside the detector volume that give rise 

to a detection reaction (eg. (n,p)) in a He-3 detector are recorded as detections and the particle 

history is terminated. 
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6.2.5. Estimation of the effective multiplication factor (keff)

Though the computer code has been written specifically intended to noise simulation, we have 

also included an option to evaluate keff as this is an important system parameter and also to check 

the correctness of geometry and overall computational algorithms by comparing with available 

benchmarks.  Evaluation of keff is done by finding the ratio of number of neutrons in successive 

generations. The total number source neutrons for successive generations are kept around the 

initial source neutrons. This is achieved by increasing or decreasing the probability of emission 

of source neutrons for next generation using the ratio of source neutrons in the current and 

previous generations. The initial few keff cycles are ignored in final estimation of average keff to 

ensure that the distribution of source neutrons has reached the fundamental mode.

6.2.6. Time history of counts and its processing

When a (user specified) large number of source particle (histories) has been executed we are left 

with the detection times. However these are not arranged in chronological order since there is 

always some overlap of chains. A chronological ordering of this data is carried out to obtain the 

time history of counts as would be obtained in an actual experiment. This is then processed to 

obtain the various descriptors such as Rossi alpha, Feynman alpha, etc. Dead time effects can 

also be incorporated as per the standard paralysable or non-paralysable dead times.

6.3. Validation of the code

Validation of noise simulation code has been done in a number of different ways. At one level, 

the code has been validated by computing the keff for a number of one-group criticality 

benchmark problems. At another level, noise parameters calculated by the code have been 

compared with the diffusion Monte Carlo code. Yet another validation has been provided by 
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comparing Feynman alpha and Rossi alpha functions obtained by the code with theoretical 

results obtained by the diffusion theory code KINFIN as discussed in Section 6.1.4.  

6.3.1. Comparison of Keff results by the Code with benchmarks

6.3.1.1. Analytical benchmarks

We have chosen a set of benchmark problems (Sood et al., 2003) with analytical solutions of the

keff eigenvalue problem of the neutron transport equation. This compilation consists of 75 

criticality problems for which very accurate k-effective values are available. A set of 7 problems 

(Problems 2, 4, 7, 8, 10, 46, 58) was selected. The chosen problems are for slab, cylindrical, and 

spherical geometries in one- and two-energy groups, one- and two-media. In all these problems, 

the neutron scattering is isotropic. Full geometrical description and cross section of the problems 

are given in a research paper by Sood et al. (Sood et al., 2003).  Table-6.1 gives a comparison of 

results obtained by our code with the analytical results given in the report (Sood et al., 2003).

We see that for all the problems studied by us, the agreement is within the standard deviation and 

provides a source of validation of the geometry and tracking subroutines of the code.

6.3.1.2. Keff of the World problem

Another problem we have analysed is the one energy group version of the “Keff-of the- world”

problem (Taro, Ueki & Forrest, B. Brown, 2002). The "K-effective of the World" problem was 

introduced by G. E.Whitesides in 1970. The basic idea behind the “Keff-of the- world” problems 

is to caution Monte Carlo code users that, even with the use of sophisticated codes, correct 

results can be obtained only if attention is paid to source convergence in the Monte Carlo 

iterations and to running a sufficient number of neutron histories to adequately sample all 

significant regions of the problem. 
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The system consists of a 7×7×7 array of identical cubes with the side length of 6 cm and 

macroscopic cross sections of t = 0.31997 cm-1, a = 0.09916 cm-1 and f = 0.22711 cm-1, 

placed at a pitch of 24 cm. The surfaces of the neighboring cubes are faced parallel to each other. 

The space between the cubes has macroscopic cross sections of t =0.05 cm-1,              

a =0.001cm-1 and f = 0 cm-1. The space up to 9 cm away from the outermost surfaces of the 

cubes has the same non-fissile cross sections. keff of this system by our code is computed to be 

(0.87617±0.00015) which is quite close to the value (0.87609 ±0.00028) given in literature.

Here the geometry is more complicated and the good agreement obtained by us gives further 

confidence in the integrity of the coding.

6.3.2. Comparison of noise descriptors by transport MC with diffusion MC and space-time 
kinetics

As a part of validation of the code, we have analysed a bare homogeneous reactor in the shape of 

a rectangular parallelepiped which is described by one group nuclear data with the source located 

at the centre. This problem has been solved by diffusion based Monte Carlo method            

(Rana, et al., 2013) to obtain to obtain reactor noise parameters by diffusion Monte Carlo code. 

We have compared our results with those obtained by Rana and Degweker (Rana and Degweker, 

2013).  The dimensions and other properties are listed in Table-6.2 and are chosen to roughly 

correspond to natural uranium fuelled and High Density Poly Ethylene (HDPE) moderated 

assembly likely to be used in the first phase of the experiments. For the bare assembly, the point 

of intersection of the zeros of the first set of symmetric modes is easily seen to be at the 

coordinates ( 14, 14, 20)   .
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Figure-6.2 shows a comparison between results of auto-covariance by diffusion and transport 

Monte Carlo with eight detectors centered at the coordinates. After exponential fitting the 

fundamental alpha was found to be 4252 ±61 sec-1 whereas the same as calculated by diffusion 

Monte Carlo (Rana and Degweker, 2013) was found to be 4342±104 sec-1.  Figure-6.3 shows 

plot of the variance to mean ratio (with the counting interval length) obtained by transport Monte 

Carlo. The results by transport Monte Carlo are quite close to that obtained by diffusion Monte 

Carlo. It is probably due to large size and homogeneous nature of the problem. Figure-6.4 shows 

the plot of auto-correlation obtained by space time kinetics code in adjoint mode. After 

exponential fitting the fundamental alpha was found to be 4219 sec-1.

6.4. Results for proposed PURNIMA experiments

6.4.1. The PURNIMA core and selected detector locations

A facility for carrying out experiments on the physics of ADS and for testing the simulation 

methods under development is being set up at PURNIMA laboratory, BARC. A 14-MeV 

neutron generator has been in existence in this laboratory for several years for performing fusion 

blanket neutronics studies. It consists of an accelerator, which produces a 200 mA current of 

deuterons accelerated to energy of 300 KeV. These deuterons fall on a Ti target loaded with 

tritium. The 14-MeV neutrons are produced by the D-T fusion reaction resulting in a continuous 

source of about 3x109 n/s. Efforts are on to increase its strength and to have pulsed mode of 

operation for pulsed neutron source-based experiments. A simple sub-critical assembly    

[Figure-6.5] of natural U and light water was chosen for the purpose of basic reactor physics 

experiments. It consists of U metal rods of 3.45 cm diameter clad in 1 mm thick Al placed 

horizontally in Al tubes arranged in a hexagonal lattice of pitch 5.6 cm. A central axial Al tube 
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houses the tritium target. The core length is 100 cm and a loading of 300 rods gives a kinf that is 

about 0.87.

6.4.2. Results of simulations using the Code

The full-scale 3-D heterogeneous geometry of PURNIMA facility has been modeled using our 

code. The model includes a 3D description of reactor vessel, actual fuel rod, clad and the tube 

through which fuel will be guided in the core.  It also describes the neutron source tube at the 

centre of the core. Three group neutron cross-section for fuel, clad, tube, moderator and air has 

been calculated by transport theory code WIMS. Though there is no binding in neutron energy 

group from code point view, we have chosen three group energy structures to account for fast 

(10 MeV-0.821 MeV), epithermal (0.821 MeV-0.625 eV) and thermal (0.625 eV- 0) neutrons.  

In this structure source neutrons having energy ~14 MeV are covered in first group.           

Figure-6.6 shows the plot of auto-covariance. Leaving the first data point, a single exponential 

fits the data well and gives a value of alpha 3338 sec-1 with a variance of ±164. The first data 

points may be contribution from higher symmetric modes which are not suppressed by 

placement of detectors.
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                    Figure-6.1: Flow chart of analog Monte Carlo code
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Figure-6.2: Comparison between results of auto-covariance by diffusion and transport
                Monte Carlo with eight detectors centered at the coordinates ( 14, 14, 20)   for

   a bare homogeneous reactor in the shape of a rectangular parallelepiped

Figure-6.3: Plot of the V/m ratio (with the counting interval length) obtained by
      transport Monte Carlo with eight detectors centered at the coordinates  
     ( 14, 14, 20)   for a bare homogeneous reactor in the shape of a rectangular 
      parallelepiped.
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Figure-6.4: Plot of auto-correlation obtained by space time kinetics code in adjoint mode.

                                  

Figure-6.5: Core layout of the proposed natural U and light water sub-critical assembly for the
                    experiments.
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Figure-6.6: Plot of the auto covariance of the count rate with the time separation

Table-6.1: Comparison of results obtained by Analog MC code with the analytical results

Case Geometry
Neutron 
energy 
group

Exact 
Results 
        
    Keff

Our code

  Keff       Std-dev

Problem 2 One media 
Slab

One 1.00000 1.00012      0.00012

Problem  4 Two media 
slab

One 1.00000 0.99997      0.00016

Problem  7 One media
cylinder

One 1.00000 0.99993      0.00013

Problem  8 One media
sphere

One 1.00000 1.00002     0.00020

Problem  10Two media 
cylinder

One 1.00000 0.99996     0.00016

Problem  46One media
sphere

Two 1.00000 1.00009     0.00022

Problem  58Two media
slab

Two 1.00000 1.00014     0.00031
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Table-6.2: Geometrical and nuclear data of the experimental facility

Width and height (a,b) 84 cm

Length 120 cm

D 0.879 cm

f 0.001 cm-1

c 0.00151

s 0.354
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CHAPTER 7

_____________________________________

Summary and Conclusions 

Accelerator-driven systems (ADS) have been considered as a viable option to deal with the 

transuranic elements generated mainly from nuclear reactors. For development of such system 

several countries have initiated research activities in the area of development of high power 

accelerators, suitable targets and new reactor physics concepts. For desired power gain and 

assured criticality safety margin, ADSs would require constant reactivity monitoring. Compared 

with a critical reactor, the reactivity measurement and monitoring in ADS is a more challenging 

issue. Since these systems will never go critical, the reactivity calibration methods applicable for 

critical reactors will not be possible to use for ADSs. Therefore around the world additional 

reactivity measurement techniques are being validated and qualified. Generally these techniques 

are based on analysing the neutron flux/detector response for a short neutron pulse and fitting the 

fall of detector response to exponential curve and inferring the reactivity. Reactor noise 

techniques are also considered to be suitable for determining reactivity. Theoretical analysis 

supported by experiments has revealed that detectors placed at different locations may indicate 

different reactivity due to presence of higher harmonics. Alpha-modes are useful for the analysis 

of spatial effects in reactivity measurement experiments. The knowledge of zeros of the alpha-

modes is important for identification of suitable detector locations. 

In our research work we have developed two schemes which can efficiently solve prompt time 

eigenvalue problems. We call these as the 1/v absorber and the modified power iteration 
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schemes. The latter technique appears to have some advantages over the other methods. Alpha 

modes are not directly estimated in the 1/v absorber method. We have to first evaluate -modes 

and then we have to guess for . This is a cumbersome process. The advantage of 1/v absorber 

method is that if a code for finding dominant -modes is available, it can be straightaway used to 

find -modes without any further development work. 

The modified power iteration based on sub-space iteration has very good convergence properties. 

If there are ‘p’ given vectors, the convergence of ith mode depends on 1( / )p i  . Hence the 

problem due to closely spaced eigenvalues in the elimination method is drastically reduced. Of 

course, Arnoldi method has also been to be highly efficient scheme for which free software is 

available. However, we wish to point out one advantage of sub space iteration scheme. The main 

computational effort in SSI is to carry out ‘p’ number of external source calculations in a sub-

critical medium. However, all ‘p’ calculations are completely independent and can be carried out 

in parallel. Thus one can implement a MASTER-SLAVE type of parallelization. Thus SSI is 

very suitable for Coarse Grain paralleization and can give good speed-up. On the other hand, in 

Arnoldi method the external source calculation have to be performed one by one and hence 

cannot be paralleized. It may be mentioned here that, the SSI method for  -modes (Modak and 

Jain, 1996) was paralleized on a distributed memory processor ANUPAM of BARC, Mumbai 

and gave excellent speed-up.

In the context of the long computing associated with multiple source calculations during each 

iteration. So the above scheme cannot be used straightaway for supercritical reactors. This 

problem of super criticality is avoided by subtracting (/v)Ф  from both sides of  the alpha eigen 

value equation. While it is enough to choose a magnitude such that the reactor is rendered 
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subcritical for the solution of the source problem, it might be profitable to use a larger value from 

the computational point of view, since the source iterations are expected to converge faster for a 

system that is far from criticality than one near criticality. Of course, this can also affect the 

dominance ratio and hence an optimum value of  can be found. The relation of this optimum 

value to the system properties as well as means to find such an optimum value is interesting 

problems for further study.  

In the thesis we have also discussed the validity of relation between fundamental and k. We 

have shown that by the use of an appropriate weighting function to define generation time, the 

validity can be extended to all situations. Numerical demonstration is provided by evaluating 

prompt neutron generation time for near-critical PHWR test case and also for a highly sub-

critical reflected reactor. It is seen that the relation between   and k ie;
( 1) /k k 




holds 

good irrespective of sub-criticality magnitude of the reactor.

For complete description of pulse neutron experiments, a method for obtaining  modes of the 

diffusion equation with delayed neutrons has also been developed. The method is based on the 

usual subtraction technique. Using this method, a model PHWR problem has been studied in two 

and three energy groups. In the case of the PHWR problem in two energy groups, the difference 

in prompt alpha modes and delayed alpha modes is not significant. This is due to the fact that in 

two energy groups, the fission spectra for prompt neutrons and delayed neutrons are identical. In 

three neutron energy groups the prompt and delayed neutron spectra are quite different and we 

observe a distinct difference between the prompt and the delayed modes.  Moreover, the 
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difference between the two is more pronounced for the higher modes as compared to that for the 

fundamental modes. 

The difference between prompt and delayed alpha modes is seen to be greatest in the reflector 

region. Since the alpha modes are equivalent to adding (subtracting) 1/v absorption, this is 

expected to have greatest effect in the reflector region since in this region absorption is minimum

and therefore any addition has greater effect. Finally, in case the reactor is sub-critical the 

difference between prompt and delayed modes is found to be significant even for the 

fundamental modes. Since the prompt modes and delayed modes are approximately like the 

alpha modes and lambda modes respectively, and since these are known to be very different from 

one another for highly sub-critical systems, this may be the reason for the greater difference in 

the case of sub-critical systems.

Using the subtraction technique, we have been able to evaluate the fundamental and three higher 

(prompt and delayed) modes. Higher order delayed modes could not be obtained due to 

convergence related difficulties. An attempt was made to calculate higher prompt and delayed 

modes using the sub-space iteration methods but was not successful. Even for the sub-space 

method, the modes have to be computed one at a time, which defeats the very purpose of the sub-

space iteration technique. Moreover the sub-space iteration method can be used for evaluation of 

delayed alpha modes only in sub-critical reactors. For a supercritical reactor, a 1/v absorption 

cross section is required to be added to make it sub-critical. Subsequently the coefficient of this 

1/v absorber is subtracted from the computed alpha eigenvalue. Since the delayed alpha 

eigenvalues are small in magnitude in comparison to the added 1/v absorber, subtraction of the 

same from the computed delayed alpha eigenvalue results in loss of accuracy due to round off 
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errors.  It would be interesting to develop a method for computing higher prompt and delayed 

modes which do not suffer from these difficulties.

In addition to alpha mode evaluation, we have also developed 3 dimensional space time kinetics 

code KINFIN to predict reactor behaviour during transient. The code is KINFIN based on direct 

integration method. The validation of the method has been carried out by comparison of the 

results with existing 3-Dimensional PHWR and LWR benchmarks. The code is proposed to be 

used in analyzing the neutron pulse experiments in PURNIMA facility. We have also developed 

thermal model which can be useful for analyzing feedback effects. 

As a part of the planning of noise and pulse experiments in the Purnima sub-critical facility and 

also for validation of the theory of finding zeros of alpha modes for detector location, we have 

developed a time dependent transport theory based analog Monte Carlo code. The simulator is 

capable of treating the geometries commonly occurring in nuclear reactors. The delta tracking 

method (also called Woodcock and Coleman method) is used, which results in fast and relatively 

simple handling of complex geometries. The code has been validated by comparing with 

criticality benchmarks and with results of the previous simulator code based on diffusion theory 

as well as with Feynman alpha and Rossi alpha calculations based on solutions of the forward 

and adjoint equations.  

We have also carried out simulation of a full 3-dimensional representation of one of the proposed 

designs of the Purnima sub-critical facility. The simulations show that proper location of 

detectors gives an almost single exponential (fundamental mode) response making alpha 

measurements by the noise methods possible even in deeply sub-critical systems. This is a 

confirmation of a result obtained using the diffusion theory based Monte Carlo simulator.
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In the analogue Monte Carlo code for simulating various experiments, we have simplified our 

problem by treating the energy variable by the method of groups and by assuming isotropic 

scattering. Further work in this direction would be to develop a code capable of continuous 

energy treatment with anisotropic scattering.

APPENDIX 2A

Steady state multigroup neutron diffusion equation can be expressed by following equation
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Eq.(2A.1) is integrated over rectangular mesh box i of volume Vi as shown in figure given 

below:

For a given cell we define the cell average flux of group g: 
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Using Gauss divergence theorem first term of equation Eq.(A.1) can be simplified as under:

First Term of Eq.(2A.1)
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where,     
 i nA = Area of surface in direction ‘n‘ of ith mesh 
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Derivative of flux in the direction normal to surface ‘n ‘ of ith mesh
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Here superscript ‘n’ denotes the neighbor of mesh i. ‘n ‘ can take value from (E, W, N. S, U, D) 

depicting directions ( East, West, North, South, Up, Down). For example  i(E)
gD is the diffusion 

coefficient in gth group of the mesh which is in East direction of mesh i.

Let us consider the flux at common surface  i EA is 1/2
g then with help of continuity equation one 

can write current from left and right hand side

1/2 i
g gi(E) i i(E)

g i
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h
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Now applying current continuity condition we get
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Here,  i
rh = i

xh (mesh width in East direction)

             i
rh = i

yh (mesh width in North direction)

For boundary nodes the term g g
ˆD n. are derived by putting boundary conditions on the 

boundary surfaces of the nodes In the boundary surfaces the leakages are evaluated by different 

formulations. In the boundary surfaces the leakages are evaluated as given below:

Let ith mesh be a boundary mesh ie; the surface  i WA be a boundary surface where flux is 

assumed to be zero. In this condition the leakage from this surface is expressed as under:
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                                                   Leakage
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Putting 1/2
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Second term (Removal term)
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Third term (Scattering term)
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For steady state case (critical reactors) the above formulations lead to a matrix equation as 

written below:

1
M F   



M is the matrix containing diffusion, removal and scattering terms and F is the matrix containing 

fission terms. Here for convenience the element of  are arranged in such a way that all fluxes 

for group 1 precede those for group 2 and so on. M, F,  are NGxNG matrices and  is NGx1 

column vector. These are expressed as below:

1

2
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1
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 
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 
 
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



 


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 
 
 
 
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


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
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1

2

G

[ ] [0] [0]

[ ] [0] [0]

[ ] [0] [0]

 
  
   
 
 
  





  



Here '
gf gg g

, , A


  are all diagonal matrices and gA ’s matrices containing diffusion and 

removal terms.

Appendix 4A

The elimination method to find higher -modes

Let n and *
m be the eigenfunctions of the lambda eigenvalue equation Eq.(4.A.1) and the 

corresponding adjoint Eq.(4.A.2) written below:

                                                        n n
n

1
A' F'  


                                                         (4.A.1)

                                                       't * ' t *
m m*

m

1
A F  


                                                        ( 4.A.2)

Here *
m is orthogonal to n and the orthogonality relation between them is 

                       *
m n*

m n

1 1
( ) F' 0   
 

     for  m n                                                            (4.A.3)          

The eigenvalues are real positive and they can be arranged as 0 > 1 >2 > 3 … and so on. The 

fundamental eigenvalue 0 and corresponding flux can be found by the well-known power 

iteration method. This is done by starting with a guess flux  and multiplying it repeatedly by   
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A-1F (and normalizing). The flux tends to 0 . The higher modes are obtained by continuing with 

power iterations but periodically subtracting contribution of already determined modes.

Let 0 1 2 n, , ,.....    be the direct modes and * * * *
0 1 2 m, , ,......    be the corresponding adjoint modes. 

If  and * are the starting (guess) flux and adjoint distributions respectively, then we can 

expand these in terms of the direct and adjoint modes as shown below

        0 0 1 1 2 2 3 3a a a a .......          …………..                                                               (4.A.4)

and

        * * * * *
0 0 1 1 2 2 3 3b b b b .......          …………                                                               (4.A.5)

where ak and bk are the expansion coefficients. The expansion coefficients can be expressed as:

            ak=

*
k

*
k k

F'

F'

   
   

and  bk=

*
k

*
k k

F'

F'

   
   

                                                                                                (4.A.6)                                          

The procedure to find higher modes is as follows:

1) First find 0 and *
0 by power iterations.

2) Start with a fresh guess . Find coefficients a1 and b1. Find revised guess flux as 

 – a1 0 . This removes component along the fundamental mode. Continue 

power iterations for direct equation with periodical filtering of fundamental mode. 

The iterations converge to next mode 1 .
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3) Start with a fresh guess * . Find revised guess flux as * – b1 
*
0 . Continue power 

iterations for adjoint equation with periodical filtering. This generates next mode 

*
1 .

4) Compute coefficients a2 and b2. 

5) Start with a fresh guess  . Find revised guess flux as  - a1 0 - a2 1 . This 

removes contribution of first two modes. Continue power iterations with periodic 

filtering of known modes. This generates 2 .

6) In a manner analogous to step 5, *
2 can be found.

The procedure can be continued till required higher modes K and *
K are obtained. One has to 

subtract contributions of already known modes 0 1 2 3 K 1, , , ......      .
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