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  SYNOPSIS 

In recent years, Accelerator Driven Systems (ADSs) have attracted worldwide attention due 

to their superior safety characteristics as compared to critical reactors and their potential to 

incinerate Minor Actinides (MAs) and transmute Long Lived Fission Products (LLFPs). In a 

critical reactor, the number of neutrons produced by fission is exactly balanced by the 

number lost by leakage and absorption in various materials in the reactor. This balance is 

responsible for maintaining reactor power at any desired level. In sub-critical reactors, the 

number of neutrons produced by fission is less than that lost by leakage and absorption and 

hence, such reactors need an external neutron supply in order to maintain a constant power 

level. This external supply of neutrons comes from the interaction of a high energy proton 

beam with a heavy atom nucleus such as lead through a process known as spallation. 

Such systems, first proposed for production of fissile material, were not pursued mainly due 

to the technological difficulties associated with building the required high power (about 1 

GeV energy and few hundred mA current) proton accelerators, and developing suitable 

targets and windows which could withstand the severe thermal and radiation environment 

associated with such high power beams.  The other reason was that uranium prices did not 

increase significantly so as to make accelerator breeding economically attractive.  In the mid 

nineties, the Nobel laureate Carlo Rubia proposed ADSs for energy production using 

thorium fuel in a self sustaining cycle and requiring relatively modest power accelerators 

(about 1 GeV energy and 10 mA current). This initiated a renewed interest in sub-critical 

systems, and has presently caught the attention of the world for the equally important role of 

nuclear waste transmutation.  
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Indian interest in ADS is primarily related to the planned utilization of our large thorium 

reserves for future nuclear energy generation. Thorium has an added advantage that it 

produces much less quantities of long-lived radioactive wastes as compared to uranium.   

The main R&D efforts are related to development of accelerator technologies leading to 

construction of a high energy high current accelerator. A major effort is also directed 

towards target and window technologies. Basic research activities in the area of the sub-

critical reactor physics include new measurements and evaluations of nuclear data both at 

traditional reactor energies as well as at high energies, development of computer codes for 

describing the interaction of high energy protons with targets, and new Monte Carlo codes 

for predicting the properties of the sub-critical cores including the effects of fuel burn-up. 

Theoretical studies on new and more suitable definitions of parameters such as sub-critical 

reactivity, reactivity worth and the parameter sk in addition to effk are being carried out. 

Considerable theoretical and experimental effort is being devoted to developing methods for 

measuring and monitoring the sub-criticality of an ADS. The fission power in an ADS is 

directly proportional to the neutron source strength and inversely proportional to the degree 

of sub-criticality. To get a high power, the sub-criticality should be low. However if the 

reactor is operated too close to criticality, it may go critical due to addition of reactivity 

during operating transients such as xenon decay or decay of Pa233 to U233. Thus, sub-critical 

reactivity is an important parameter from the point of view of ADS operation. It decides not 

only the accelerator current that will be required to produce the desired power but also the 

margin of safety available. Measurement and continuous monitoring of this parameter in 

operating ADS reactors will be an essential safety requirement.  

Several low power experiments (Kitamura et al., 2004; Kloosterman and Rugama, 2005) 

have been performed for evaluating various methods (deterministic as well as stochastic) for 
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measuring the sub-critical reactivity in ADS. The well known pulsed neutron method and a 

recently proposed method viz., the source jerk method are the deterministic methods that 

have been studied in these experiments  There have also been suggestions regarding use of 

noise techniques for monitoring the sub-criticality of ADS (Behringer and Wydler, 1999; 

Carta and D’Angelo, 1999; Munoz-Cobo et al., 2001). Similar experiments are planned to be 

carried out in the Purnima sub-critical facility at BARC. 

Noise methods have long been used for measurement of reactor kinetics parameters and as 

diagnostic tools for monitoring the health of a nuclear power plant. It is conceivable that 

noise techniques would find similar applications in ADS. For this reason, theoretical and 

experimental studies on ADS noise methods have appeared since the late nineties. The 

earliest theoretical studies on various noise techniques for ADS (Pazsit and Yamane, 1998; 

Kuang and Pazsit, 2000; Behringer and Wydler, 1999) assumed that the neutron producing 

source events in an ADS form a Stationary Poisson Point Process (SPPP). Each such event 

(spallation) was assumed to produce neutrons with a large multiplicity distribution.   

However, the principal difference between critical reactor noise and ADS noise is due to the 

statistical properties of the source. Unlike the source due to radioactive decay present in 

ordinary reactors, the accelerator produced neutron source in an ADS cannot be assumed to 

be a Poisson process. Moreover, the source may be pulsed. It was first pointed out by 

Degweker (2000, 2003) that a new theoretical approach is required to describe noise in 

ADS.  

In the present thesis, we discuss theoretical work aimed at developing noise methods for 

measurement of the sub-criticality in the light of the new theoretical approach mentioned 

above. The scope and content of the theory has been considerably expanded by us 

(Degweker and Rana, 2007; Rana and Degweker, 2009; Degweker and Rana, 2011; Rana 
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and Degweker, 2011). A diffusion theory based analogue Monte Carlo method (Rana, Singh 

and Degweker, 2013) has been developed for simulating the noise experiments planned at 

BARC. These are the new results presented in this thesis. The thesis is divided into seven 

chapters as elaborated below. 

1. Introduction and Overview 

Chapter I is a brief introduction to the ADS concept. The concept of ADS and its evolution 

over the years is discussed. A survey of the theoretical and experimental studies on such 

systems is presented.  

2. Reactor Noise in Traditional Reactors and ADS 

Chapter II gives a general introduction to the subject of reactor noise and presents an 

overview of theoretical methods employed for studying the subject. The Kolmogorov 

forward and backward equations are discussed and the probability generating function 

method for obtaining their solutions is described. The Bartlett formula for source dependent 

problems is presented. A discussion on the space dependent effects in reactor noise is 

included as also the theoretical approaches to this problem.  The Langevin method, which is 

an alternative theoretical approach for studying reactor noise problems, is discussed.  

Measurement of the variance to mean ratio in counting intervals, the Rossi alpha function, 

the Auto Correlation Function (ACF) or the Cross Correlation Function (CCF), of the 

number of counts in one or two detectors, or in the frequency domain, the Power Spectral 

Density (PSD) or the Cross Power Spectral Density (CPSD) are some of the commonly used 

experimental methods for noise analysis. The theory is used to obtain expressions for these 

quantities which include various parameters such as the sub-critical reactivity, delayed 

neutron fraction and neutron lifetime. The parameters are extracted by fitting measured 
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quantities to these expressions. A discussion of various experimental procedures used for 

analyzing reactor noise and the connection of the theory with these procedures for extracting 

reactor physics parameters is also included.  

This is followed by a review of the various theoretical studies on Reactor Noise in ADS. The 

earliest theoretical studies on various noise techniques for ADS (Pazsit and Yamane, 1998; 

Kuang and Pazsit, 2000; Behringer and Wydler, 1999) did not account for either periodic 

pulsed source or for its non-Poisson character. By a Poisson source we mean that the arrival 

times of protons or ions (and therefore the injection times of neutron bunches) constitute a 

stochastic Poisson point process. For such sources, the Bartlett formula is valid whether the 

source is stationary as in ordinary radioactive sources or even if it is pulsed, with finite or 

infinitesimal width.  

On the other hand if the arrival times do not constitute a Poisson point process, the 

previously described and commonly used theoretical approaches such as the Kolmogorov 

forward equation or the Bartlett formula are inapplicable and we call such sources as non-

Poisson sources. These features were considered by Degweker (2000, 2003) treating the 

individual pulses as Dirac delta functions, uncorrelated with one another.  In these papers, it 

was shown that reactor noise in ADS is different from that in critical or radioactive source 

driven sub-critical systems due to non-Poisson character of the periodically pulsed source. 

Various noise descriptors, such as Rossi alpha, Feynman alpha (or variance to mean), PSD 

and CPSD were derived.  

The method developed for treating non-Poisson sources consisted of obtaining the 

probability generating function (pgf) of detected counts for a single neutron injected in a 

source free medium. Using the multiplicative property of pgfs for different source events, 

the pgf for the case of an arbitrary source was obtained. This property is due to the 
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independent propagation of chains initiated by different source neutrons and is a 

consequence of the linear character of the neutron transport and multiplication. 

A similar treatment was subsequently used by Ballester & Munoz Cobo (2005a). Using a 

space dependent model the authors derived CPSD for sub-critical assemblies driven by 

external non-Poisson source. The results were validated (Ballester & Munoz Cobo, 2005b) 

against the data gathered in MUSE-4 experiments to investigate the application of the 

Feynman-alpha method using an external pulsed source as a sub-criticality level monitoring 

technique. They also made an attempt to study the influence of the non-Poisson nature of the 

pulsed source. Pazsit et al. (2005) and Kitamura et al. (2005) included periodic pulsing but 

with a Poisson source. They considered the pulse to be of finite width of rectangular and 

Gaussian shapes and also included the effect of delayed neutrons. 

3. Finite Pulses and Correlations between Different Pulses 

In Chapter III, we extend the scope of the earlier papers (Degweker, 2000, 2003) to include 

the possibility of correlations between different pulses and finite pulses of different shapes. 

A possible reason for the non-Poisson nature of the source is identified as being due to 

fluctuations in the beam current. Measurements of the number of protons per shot during the 

TARC experiments (Abanades et al., 2002) clearly show that the fluctuations in the current 

are much too large so as to be described by a Poisson distribution.  

At any instant of time, the probability per unit time for a spallation (neutron producing 

reaction) event to occur is taken to be proportional to the instantaneous proton (ion) current 

( )I t at that time. ( )I t  itself is treated as a stochastic process which is moreover having a 

periodic modulation corresponding to the pulsed nature of the proton (ion) beam. The source 

is thus treated as a doubly stochastic Poisson point process. Each pulse can have any shape 

but calculations are done for the two commonly occurring shapes – rectangular and 
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Gaussian. Thus, this approach allows us to extend the earlier formulation based on delta 

function pulses to take care of finite pulses as well as correlations between different pulses. 

The development in this chapter is restricted to the case of prompt neutrons only.  

Expressions for v/m, Rossi alpha, ACF and PSD are obtained for the cases of Gaussian and 

rectangular pulses. The correlations in the source fluctuations introduce additional terms 

which could confuse interpretation of alpha measurements by the variance method. The 

Rossi alpha and PSD methods might perform better in this case. The finiteness of the pulse 

width introduces small corrections to the formulae for delta function pulses.  

4. Theory of Reactor Noise in ADS with Delayed Neutrons 

In Chapter IV, we develop the theory further to include delayed neutrons and derive 

Feynman alpha and Rossi alpha formulae by considering the source to consist of periodic 

pulses (delta functions) with non-Poisson statistics, but without correlations between 

different pulses. By carrying out calculations of the Feynman alpha and Rossi alpha for 

typical experimental parameters, it is shown that the delayed neutron effects become 

important in those situations where the prompt and delayed neutron timescales are not very 

distinct  and the formulae derived by us would serve as corrections even on prompt neutron 

timescales.  The derived formulae provide important corrections for delayed neutron effects 

to the formulae obtained earlier. 

We find that in addition to the terms due to source and fission chain correlations, the 

formulae contain periodic variations in the uncorrelated terms. The terms representing 

neutron chain correlations in the formulae have forms similar to that given in the literature 

and have been expressed by us in terms of the properties of the zero power transfer function. 

The term due to source correlations is different from that appearing in recently published 

formulae because of the non-Poisson character of accelerator-based sources.  
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An analysis of the results of experiments in the KUCA facility (Pazsit et al., 2005) using our 

formulae also clearly shows the presence of a source contribution to the Feynman Y 

function. Such a contribution is not expected for D-D or D-T sources since neutron 

production in these reactions is in singlets (i.e., there is no bunching) and can be explained 

due to the non-Poisson character of the ion beam. In the absence of delayed neutrons, the 

expressions reduce to the form derived in an earlier paper (Degweker, 2003), as they should. 

Subsequently, we also include correlations between different source pulses.  It is assumed 

that source can be described as a periodic sequence of delta function non-Poisson pulses, 

with exponential correlations. Feynman alpha and Rossi alpha formulae are derived for such 

a source taking into account the effect of delayed neutrons.  

Calculation of the Rossi alpha formula for typical experimental parameters shows that if the 

external source fluctuations are correlated with correlation times greater than or of the order 

of the prompt neutron decay times, it will be difficult to use methods such as Rossi alpha.  

It is therefore important to study the current fluctuation statistics of ion beams from 

accelerators, either theoretically or experimentally.  

5. The Langevin Approach to Reactor Noise in ADS 

Behringer and Wydler (1999) considered the Langevin approach for ADS noise, but they 

used a modified Schottky prescription to include the Noise Equivalent Source (NES) for 

source fluctuations. This formulation is valid only for Poisson sources. Thus the pulsed non-

Posisson character of the source is not brought out in their paper. Another paper based on the 

Langevin approach for ADS noise is due to Pazsit and Arzhanov (1999). They however have 

presented a treatment using the Langevin approach in the context of power reactor ADS 

noise.  
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In Chapter V, we develop the Langevin approach to reactor noise in ADS. Apart from being 

simpler, the Langevin approach allows treatment of feedback effects arising in ADS with 

significant power as well as other noise sources if any. We examine if it is possible to treat 

zero power neutron fluctuations in an ADS with non-Poisson source using this formulation. 

We show that this is possible and for this purpose, the external source fluctuations cannot be 

treated only as an NES or only as an external parametric fluctuation but rather as a 

combination of an internal noise described by the Schottky formula and as an external 

fluctuating function. This way, non-Poisson sources of all kinds can be treated.  

We first demonstrate, for two models of the source studied by us earlier, that it is possible to 

obtain the correct expressions for various noise descriptors using the Langevin approach 

with Schottky prescription for fission, detector, and capture events but with a separate 

treatment for ADS source fluctuations. In both these cases we show that our earlier results 

by the more rigorous method are reproduced.  The demonstration is important as it fixes the 

recipes required for treating a new system (ADS, in this case) using the heuristic Langevin 

approach. 

The method is then applied to treat the more general problem of zero power ADS noise viz., 

correlated non-Poisson pulsed sources with finite pulse width including delayed neutrons. 

The rather complicated nature of this problem makes the calculations by the pgf method 

wholly intractable and this necessitates the use of a simpler approach. We find that the 

Langevin method fits the bill. We obtain the PSD of the noise as the Langevin method is 

simplest to use in the frequency domain. This is the main new result presented in this 

chapter. 
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6. Simulation of Noise Experiments in Sub-critical Systems by Diffusion Theory Based 

Analogue Monte Carlo  

Various low power experiments are being planned (Rasheed et al., 2010) to be carried out at 

Bhabha Atomic Research Centre (BARC) with the aim of demonstrating pulsed neutron and 

noise methods for measuring the sub-critical reactivity of ADS. One of the aims of the 

experiments would be to verify the theory of reactor noise in ADS developed by us and 

interpret the results in terms of the theory. The system planned is a natural uranium sub-

critical assembly moderated by water or high density polyethylene. The maximum effk of 

such a system is expected to be about 0.9. At such a low value of effk , noise experiments for 

determining alpha are likely to face difficulties in interpretation due to modal contamination 

effects at such low values of the effk . By the time the higher modes have died out and the 

fundamental mode decay of the correlation sets in, very few correlated counts remain and 

the background noise dominates. However, for both types of experiments it is possible to 

select certain detector positions where the modal contamination of many of the higher modes 

immediately above the fundamental mode can be eliminated.  

As part of the planning of the experiments, a simulation of the kind of results that might be 

expected with different detector locations and counting and analyzing setups is necessary, 

particularly in view of the difficulty mentioned above. Simulations with standard code 

packages (MCNP, 1987; MONALI 1991) are not appropriate because of several non-

analogue features built into such codes. These need to be modified into completely analogue 

simulation codes. Munoz Cobo et al. (2001) coupled the high energy code LAHET with 

another Monte Carlo code MCNP-DSP and simulated cross power spectral density between 

the proton current signal and a neutron detector signal for a typical fast energy amplifier 

configuration. While LAHET simulates the spallation process and transport of charged 
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particles, MCNP-DSP is used to simulate the counting statistics from neutrons counters. 

Pozzi et al. (2012) have developed a variant of MCNP, called MCNP-PoliMi. The code can 

simulate correlated statistics of neutrons and photons. It can also handle the effect of delayed 

neutrons. However, completely analogue computations are very time consuming. There have 

been attempts to remedy (Máté Szieberth and Gergely Klujber, 2010) some of these 

problems by special methods of correcting tallies which give not only the correct value of 

the first moment but also of the second moment. The simulation is still having many time 

reducing features and takes less time compared to purely analogue simulations.  

But the purpose of simulations of proposed experiments is often not to obtain the ‘correct’ 

value of say the variance to mean ratio but rather to obtain the kind of results that are 

expected. For example one may be interested in knowing the magnitude of this quantity for 

given values of system parameters such as effk , detection efficiency etc., and how it 

compares with the background random noise for a given counting time or the magnitude of 

the space dependent effects, delayed neutron contributions and dead time effects that 

invariably appear in the experiment. All this is possible only if the simulation is completely 

analogue and, as mentioned above, such simulation requires long computing times.   

In Chapter VI, we describe an analogue Monte Carlo code developed by us for carrying out 

such simulations. The simulator generates a detailed time history of counts in the detector so 

that any method of analysis can be carried out. Since analogue MC takes very long 

computing time, instead of carrying out a simulation to  yield results equivalent to transport 

theory, we attempt to reproduce results equivalent to few-group diffusion theory, which 

requires much less time. While few-group diffusion theory may not be as accurate as exact 

MC simulations, it will be adequate for the purpose mentioned above. Moreover, it is always 

possible to substitute the diffusion equivalent simulation with a transport equivalent 
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simulation in regions where diffusion theory is not valid. We discuss the basic theory of the 

simulation method and some results of our simulations. We describe some simple reactor 

models for which analytical diffusion kernels can be used very effectively to get some of the 

required results. We also describe a numerical approach based on the finite differenced 

diffusion equation which is applicable to more general situations.  

The few group diffusion theory based analogue MC code for simulating reactor noise 

experiments is used to study the problem of suitable location (at the intersection of the zeros 

of the symmetric modes) of the neutron detectors to avoid contamination due to contribution 

from higher modes. A simplified model of one of the proposed Purnima sub-critical 

assemblies is used for the purpose of the study. We simulate the ACF and Feynman alpha 

experiments. The value of alpha obtained from the simulation agrees well with the value 

obtained from the analytical solution for the geometry. The simulations show that proper 

location of detectors gives an almost single exponential (fundamental mode) response 

making alpha measurements by the noise methods possible even in deeply sub-critical 

systems.  

7. Summary and Conclusions 

Chapter VII gives a brief summary of the results presented in the thesis and the main 

conclusions drawn.  

Reactor noise in ADS is different from ordinary reactors due to the different statistical 

characteristics of the driving source. Since Reactor Noise techniques are potential candidates 

for sub-criticality measurement / monitoring of ADSs, it is important that these are put on a 

sound theoretical footing. A beginning was made in this direction by Degweker through two 

pioneering papers (Degweker, 2000, 2003) in which the individual pulses are treated as 
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Dirac delta functions, uncorrelated with one another. The theory treated all neutrons as 

prompt. 

In this thesis we (Degweker and Rana, 2007; Rana and Degweker, 2009; Degweker and 

Rana, 2011; Rana and Degweker, 2011) present developments carried out to include the 

effects of finite pulses, delayed neutrons and correlations between different pulses of the 

source. Formulae for Rossi alpha, Feynman alpha (or variance to mean), PSD and CPSD 

have been derived. While much of the work is based on the probability generating function 

approach, for the more complicated problems, we have successfully developed the simpler, 

though somewhat heuristic, Langevin approach to ADS noise theory. A novel method (Rana, 

Singh  and Degweker, 2013) for simulating noise experiments (planned to be carried out at 

BARC) using diffusion based analogue Monte Carlo, and some interesting results on the 

spatial dependence of noise in ADS, thus obtained, are also discussed in the thesis. 
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CHAPTER 1 
____________________________________

Introduction and Overview 

Accelerator Driven Systems (ADSs) are being studied around the world for energy 

production using thorium and for nuclear waste transmutation. Such systems are attractive 

due to their superior safety characteristics as super criticality related accidents can be avoided 

in a well designed ADS. India also has a program on R & D of ADS which includes 

development of technologies for high energy high current accelerators, targets and windows 

and the basic research activities in the area of reactor physics.  

One of the important issues related with the operation of an ADS is measurement and 

monitoring of its sub-criticality. Studies are being carried out around the world towards 

developing suitable methods for the purpose. Among the various methods proposed for this 

purpose, there have been suggestions (Behringer and Wydler, 1999; Carta and D'Angelo, 

1999; Munoz-Cobo et al., 2001) regarding use of noise techniques. A considerable amount of 

theoretical work has been carried out towards understanding Reactor Noise in ADS (Pazsit 

and Yamane, 1998a,b; Kuang and Pazsit, 2000; Behringer and Wydler, 1999; Degweker, 

2000, 2003). The theoretical formulation of Degweker (2000, 2003) is different in so far as it 

treats the ADS source as a non-Poisson source, which is a major departure from conventional 

reactor noise theory. 

Various experimental studies (Soule et al., 2004; Carl-Magnus Persson et al., 2005) at low 

power have been carried out for evaluating both deterministic as well as stochastic methods 

for measuring the sub-critical reactivity in ADS. Similar experiments are planned (Rasheed et 

al., 2010) to be carried out in the upcoming Purnima sub-critical facility at BARC as a part of 
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the Indian program on R & D of ADS. Apart from demonstrating pulsed neutron and noise 

methods for measuring the sub-critical reactivity of ADS, the experiments aim to verify the 

theory of reactor noise in ADS mentioned above, and to interpret the results in terms of the 

theory.  

The work described in the thesis generally relates to the problem of sub-criticality 

measurement by the noise technique and also in particular to the proposed experimental 

program of the Purnima sub-critical facility. The thesis extends the scope and content of the 

theory of noise in ADS (Degweker and Rana, 2007, 2011; Rana and Degweker, 2009, 2011). 

The thesis also describes the development of a diffusion theory based analogue Monte Carlo 

code (Rana et al., 2013) for simulating the noise experiments being planned at Purnima.  

1.1 ADS: A historical background  

The earliest suggestion of using accelerator produced neutrons for breeding fissile material 

from fertile isotopes (referred to as electronuclear breeding) can be traced back to Glenn 

Seaborg around 1940. However, due to requirements of high energy and high current 

accelerators it did not pick up. The discovery of the spallation process (Goeckerman and 

Perlman, 1948) opened up the possibility of producing fissile material on large scale. Around 

1950, USA started the program of Materials Testing Accelerator (MTA) [Van Atta C.M., 

1977] for producing fissile materials Pu239 and U233 from fertile materials. The program was 

finally terminated around 1954 with the discovery of large uranium reserves in the United 

States. Other countries such as Canada also performed theoretical studies on the subject 

(Bartholomew, 1965). A project proposal called Intense Neutron Generator (ING) was made 

in 1960s. Feasibility studies on electronuclear breeding were also performed in Russia in 

1970s (Davidenko, 1970).  
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Another application of accelerator based neutron sources was for nuclear waste 

transmutation. The idea was to convert long lived sources of radio-toxicity (Plutonium, Minor 

Actinides, Long Lived Fission Fragments) into stable or short lived materials. Steinberg et al. 

(1964) carried out the earliest transmutation studies in thermal reactors having high neutron 

flux. Subsequent studies (Gregory and Steinberg, 1967; Claiborne, 1972; Beaman and 

Aitken, 1976; Croff et al., 1980; Steinberg et al., 1979) on the subject investigated 

transmutation in liquid-metal fast breeder reactors (LMFBR's) and accelerator based 

enrichers and transmuters.  

More recently, Bowman (1992) and Venneri et al. (1993) carried out studies on Accelerator-

Driven Transmutation of Waste (ATW) at Los Alamos. The proposed sub-critical system was 

designed to transmute both fission products and higher actinides using a thermal neutron flux 

of about 1016 n/cm2/sec. Another recent development has been the TARC (Transmutation by 

Adiabatic Resonance Crossing) experiment (Abanades et al. 2002) at CERN for 

demonstration of transmutation of Tc99 and I129 by using the high resonance cross sections of 

the nuclides and the Adiabatic Resonance Crossing principle.  

1.2 Present interest in ADS 

There has been an increased interest in recent years in the use of accelerator based neutron 

sources to drive sub-critical blankets  for the purposes of thorium utilization and waste 

transmutation [referred to as accelerator driven system (ADS)], particularly after the 

proposals from the CERN group led by Carlo Rubia. The fast energy amplifier (Rubia, C. et 

al. 1995) is one of their proposed designs for power production using thorium. The proposal 

is based on much lower power accelerator (a proton cyclotron with 1 GeV -12.5 mA beam) 

than the earlier ones. Lead acts as spallation target, coolant and radiation shield. The beam 

window, which separates the vacuum in accelerator from the reactor vessel (RV), is cooled 
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by lead whose circulation in the RV is maintained by natural convection. The reactor does not 

have control rods and the power is controlled by varying the proton beam current. Initially, 

the system was proposed as a sub-critical device for power production using thorium fuel in a 

self sustaining cycle. During operation, thorium gets converted into U233 which compensates 

for decrease in reactivity due to depletion of initial fissile material and build up of fission 

products. Thus, long cycles of operation are possible after which the full core is replaced; the 

fuel being replaced with (Th-U233) MOX from second cycle onwards. Presently, fast ADS 

systems cooled by liquid lead or lead bismuth eutectic (LBE) and driven by low power 

accelerators (as in the energy amplifier) are being studied primarily for waste transmutation. 

As a consequence of the renewed interest in ADS, several countries (Abderrahim et al. 2001; 

Kapoor, 2001; Mukaiyama et al., 2001; Gohar and Smith, 2010; Shvedov et al. 1997) have 

drawn roadmaps for development of ADS. India has also a program (Kapoor, 2001) for 

development of ADS which, besides waste transmutation, aims at thorium utilization for 

nuclear power production. We present a brief discussion of the work being carried out in 

these two areas. 

1.2.1 Waste transmutation 

Considering long term safety, IAEA has defined six classes of radioactive waste (IAEA, 

2009). The spent nuclear fuel, generated as a result of nuclear power production, falls in the 

class of High Level Waste (HLW). This HLW can broadly be divided into two categories: 

1. The TRUs, which include Plutonium and Minor Actinides (Am, Cm and Np), form 

about 1% (Nifenecker et al., 2001) of the spent fuel of a typical PWR. These 

nuclides are formed by neutron capture reactions in the fuel and have long half lives 

(24000 years for Pu239). 
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2. Fission Fragments (FFs) form about 4% (Nifenecker et al., 2001) of the spent fuel 

and, based on their half lives, are divided into two categories namely Long Lived 

Fission Fragments (LLFFs) having half lives of more than 1000 years e.g. Tc99, I129 

and Medium Lived Fission Fragments (MLFFs) e.g. Sr90, Cs137 having half lives of 

about 30 years. 

The degree of potential risk associated with HLW is represented in terms of a quantity known 

as radio-toxicity. It is defined (IAEA, 2002) as “the activity or quantity of radio-nuclides in 

spent fuel or HLW multiplied by their effective dose coefficients accounting for radiation and 

tissue weighting factors by ingestion, inhalation and absorption”. 

During first few hundred years after its discharge, the major contribution to the radio-toxicity 

of spent fuel is from short-lived fission products (Cs137 and Sr90), and subsequently from 

TRUs (NEA-OECD, 2004). Since the fission products have larger mobility compared to 

actinides, waste management strategies to reduce the long term risk from the MAs should 

also consider long lived fission products such as I129, Tc99 and Cs135.  

The conventional method of waste management is its storage in deep geological repositories. 

An alternate method for waste management is partitioning (separation of long lived radio-

nuclides from the HLW by a chemical process) and transmutation (IAEA-TRS 435, 2004).  

Transmutation in Fast Reactors 

Average cross sections of MAs for typical thermal and fast spectrums indicate that fission to 

capture ratio is higher for the latter (NEA-OECD, 1999). Thus, incineration of MAs is more 

efficient in fast systems. Though, LLFPs have high capture cross sections in thermal systems, 

from neutron economy point of view, it is favorable to use fast systems for their 

transmutation. Several studies (NEA-OECD, 2002; Wakabayashi, 1997; Tommasi, 1995; 
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Bays et al., 2009; Ackerman, 1997) have been carried out on recycling of Pu and MAs in fast 

reactors. The addition of minor actinides adversely affects reactor safety parameters such as 

effective delayed neutron fraction, Doppler coefficient and coolant void coefficient of 

reactivity in a liquid-metal cooled reactor. This puts a constraint on the quantity of TRUs to 

be loaded in critical fast reactors (Wakabayashi, 1997; Tommasi, 1995; Bays et al., 2009).     

Transmutation in ADS  

Based on the foregoing discussions it is clear that critical reactors loaded with a large fraction 

of MA fuel will be difficult to operate safely. Accelerator Driven Systems (ADS) have been 

proposed (Bowman, 1992; Rubia et al., 1995) to address the safety issues.     

Since an ADS is always in sub-critical state, criticality related accidents can be avoided in a 

well designed system. Moreover, the response of an ADS to insertion of reactivity is much 

more benign than that due to similar insertions in a critical reactor; the ADS clearly has an 

advantage in that it can be loaded with considerably larger MA fuel than a fast reactor, 

without the need to add any fertile component, and therefore has a much higher rate of 

incineration over that in fast reactors.  

1.2.2 Thorium utilization 

Thorium fuel cycles drew a lot of attention in the 1970s (IAEA TECDOC 1319; Rosenthal, 

1970; Haubenreich and Engel, 1970; Beck and Pincock, 2011) due to limited uranium 

reserves estimated at that time. However, due to various reasons, including discovery of new 

uranium reserves (Van Atta, 1977), the programs did not pick up and came to a stop. India 

has continued its efforts in this direction; an example being work for the design and 

development of the Advanced Heavy Water Reactor (AHWR). The reason for this is of 
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course its large thorium reserves and the unique three stage nuclear power programme 

(Kakodkar, 2008). 

Self sustaining thorium cycles in ADS 

The ADS designs, proposed by Rubia et al. (1995) and Bowman (1992) for energy 

production using thorium and nuclear waste transmutation, initiated new interest in thorium 

utilization around the world. Since then, lot of studies on the subject (Bowman, 2011; Nuttin 

et al., 2012; Coates and Parks, 2010; Cheol Ho Pyeon et al., 2011; Bergelson et al., 2007; 

Lindley and Parks, 2012; Juraj Breza et al., 2010; Si Shengyi, 2009; Adonai Herrera-

Martı´nez et al., 2007; Degweker, 2001a), both with respect to critical and sub-critical 

systems, have been carried out.  

Studies on self sustaining thorium cycles in ADS have been carried out by Rubia et al. 

(1995), Bowman (1997), Furukawa et al. (1997) and subsequently by Kadi and Adonai 

(2006), Bowman (2000), Degweker (2001b). The studies show that thorium-uranium cycle, 

which is not easily self sustaining in critical reactors due to low burn-ups achievable, is much 

easier to sustain in ADS. 

Once through cycles 

The reprocessing of spent fuel in a thorium-uranium cycle is associated with high costs due to 

U232 contamination. In-situ breeding and burning of U233 is an attractive alternative. Bowman 

and coworkers have studied (Bowman and Venneri, 1993; Bowman, 1997, 2000) molten salt 

systems in once through mode. Other fuel systems in fast and thermal spectrum cycles have 

also been studied (Cisneros et al., 2012; Szuta and Wojciechowski, 2010). Studies on PHWR 

and fast spectrum ADS by Degweker et al. (2001b, 2010) show that such systems can be 
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operated in once through cycle with an initial seed fuel which can be natural uranium in 

PHWRs and plutonium in fast reactors. 

1.3 The external neutron source 

Due to the requirements of high source strengths of about 1015-1018 n/s, radioactive neutron 

sources (based on ,nα  and ,nγ reactions) cannot be used for driving the sub-critical reactor. 

The neutron sources based on high energy deuteron beams (Ridikas and Mitting, 1998) have 

the major drawback of causing very strong activation of accelerator structures. Electron 

accelerators can produce high neutron source strengths (Devan et al., 2006; Gohar et al., 

2004; Beller, 2004) and are compact in size. However, the energy efficiency of an electron 

based source is rather low (Nifenecker et al., 2003). There have been proposals (Gohar et al., 

2004; Beller, 2004; Brolly and Vertes, 2004) regarding use of electron LINAC based neutron 

sources in experimental or research ADS facilities. Another source that has been used for 

experimental systems is the D-D or D-T fusion based neutron generator. For driving a sub-

critical power reactor, spallation seems to be the best practical method for producing 

neutrons.   

1.3.1 The spallation source 

Spallation refers to interaction of high energy (typically about 1 GeV) protons with target 

nuclei (Nifenecker et al., 2003). Due to very high energy (small d’Broglie wavelength) of the 

projectile, it can be treated as classical particle. The proton interacts with individual nucleons 

which in turn collide with other nucleons and a cascade develops. Some of these nucleons 

may escape from the nucleus. These nucleons have high energies and may cause further 

spallation reactions in other nuclei of the target. This stage is commonly referred to as 

intranuclear cascade. At energies below 150 MeV, the classical description does not hold and 

a quantum mechanical treatment is required to describe this pre-equilibrium stage. Finally the 
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nucleus reaches equilibrium and decays by emitting neutrons and protons through 

evaporation process or by fission. The spectrum of neutrons emitted during this stage is 

similar to the fission. There is however a high energy tail in the overall spallation spectrum 

due to neutrons emitted in the intra-nuclear cascade 

The distribution of the residual nuclei, called the spallation products, and the number of 

emitted neutrons depends on the target nuclei and the energy of the incident particle. For a 

given target, the number of emitted neutrons increases with energy of the projectile. The 

number of neutrons emitted per unit energy however increases with proton energy up to about 

1-2 GeV and decreases subsequently. The reason is that at low energies, the particle looses 

much of its energy to electronic excitations while at higher energies other non-productive 

reactions such as neutral pion production start dominating. The number of neutrons produced 

per unit energy is an important quantity since it is related with the energy gain of an ADS. 

Experimental studies (Andriamonje et al., 1995) have been carried out in this regard.  

The possible spallation targets are lead, bismuth, thorium, uranium, tantalum and tungsten. 

Due to very high heat deposition density by proton beam (about few kW/cc) and very high 

radiation damage (about 100 DPA or more per year), circulating liquid targets are preferred. 

Thus, liquid lead and lead-bismuth eutectic (LBE) are considered to be the main choice for 

the purpose. The proposed MYRHHA facility (Abderrahim, 2005) in Belgium will use liquid 

LBE as spallation target.  

1.4 Physics studies in ADS: A review  

1.4 .1 Theoretical studies 

Computer codes and nuclear data  

Simulation of Accelerator Driven Systems (ADS) can be conveniently divided into two parts: 

one involving description of the interaction of high energy protons with the target and the 
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other involving the low energy (< ~10 MeV) neutronics of the sub-critical core. The 

quantities of interest obtained in the first part are the number of spallation neutrons produced 

per proton and their spectrum, the heat deposited in the target and the distribution of the 

spallation products. LAHET, FLUKA and CASCADE (Prael and Madland, 2000; Ferrari and 

Sala, 1996; Kumawat and Barashenkov, 2005) are examples of the codes used for the 

interaction of high energy protons with the target. The core neutronics codes on the other 

hand are expected to perform calculations for criticality, sub-critical multiplication, power 

distribution, neutron transport, fuel burn-up, fission products evolution and finally kinetics 

for discussing transients and safety. Multi-group transport/ diffusion theory codes (Sa. Kondo 

et al., 1992; Suzuki et al., 2005; Singh et al., 2009, 2011) and continuous energy Monte Carlo 

codes (Catsaros et al., 2009; Ghosh and Degweker, 2004) for reactor physics analysis fall in 

this category.  

Unlike critical reactors (fast or thermal), neutron energies in an ADS can extend up to 

hundreds of MeV. Nuclear data for nuclides involved in the thorium-uranium cycle and for 

minor actinides are also not as well developed as for the uranium cycle. This requires 

augmentation of existing nuclear data files. Experimental and theoretical studies (Sugawara et 

al., 2011; Koning et al., 2007) with regard to measurement of cross sections, 

sensitivity/uncertainty analysis and extension of existing nuclear data files are being carried 

out by various groups. In this respect, a neutron Time of Flight (nTOF) facility (Abbondanno 

et al., 2002) has been constructed at CERN and has become operational since 2002. 

Degree of sub-criticality and ADS power 

For commercial applications such as electricity generation, waste transmutation and fissile 

material breeding, the power of an ADS is an important quantity. While in critical reactors 

the maximum power is decided by the heat removal capacity of the coolant system, the 
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fission power in an ADS is directly proportional to the external neutron source strength and 

inversely proportional to the degree of sub-criticality of the core (Nifenecker et al., 2003). 

Thus, for a given source strength (which is proportional to the proton beam current), the 

power output can be maximized by minimizing the sub-criticality level. However, at small 

sub-criticality levels, there are chances of reactor attaining criticality due to reactivity 

addition under operating transients such as xenon decay or decay of Pa233 to U233. The sub-

criticality level should thus be decided based on a balance between requirements of proton 

current and margin of safety available. The power distribution in an ADS is also different 

from that in critical reactors and depends on the degree of sub-criticality (Rubia et al., 1995).  

Source multiplication and sk concept 

In a sub-critical finite system, the number of secondary neutrons due to a neutron created at 

the center will not be the same as that due to a neutron created at the boundary. This has led 

to the concept of source multiplication factor sk  (Gandini and Salvatores, 2002) which is 

defined as the ratio of number of fission neutrons produced to the total number of neutrons 

produced due to fission and external source. In other words, the number of fission neutrons 

produced with external source 0S  present is given as:  

0 /(1/ 1)sS k −  n/s 

We also know that the number of fission neutrons produced in a sub-critical system 

(characterized by multiplication factor effk ) with external source of strength 0S is given as: 

0 * /(1/ 1)effS kφ −  n/s 

Here, *φ  is the ratio of average importance of source neutrons to that of fission neutrons and 

is commonly known as source importance factor. 

Equating the above expressions, the importance of external source can be obtained as: 
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1 1* 1 / 1
eff sk k

φ
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

The sk value depends on the properties of the reactor core and characteristics (position, 

energy) of the external source as it is obtained by solving transport equation with external 

source. effk together with the  source importance factor gives us information about reactor 

power and its level of sub-criticality. The source multiplication factor sk  can directly be used 

to obtain reactor power but is not very useful as a measure of departure from criticality. 

New definitions of various reactor parameters 

The neutron flux in a sub-critical core is peaked at the centre and falls exponentially as one 

moves away from the core (Andriamonje et al., 1995). Thus, the usual procedure of deriving 

reactor kinetics equations i.e. using solution of an adjoint criticality equation as a weighting 

function cannot be used due to the presence of higher modes. Various suggestions (Gandini, 

1997; Gandini and Salvatores, 2002; Sandra Dulla et al., 2006; Kobayashi, 2005; Makai, 

2008) have been made in this regard. Depending on the choice of weighting function, new 

definitions of reactor parameters have been introduced such as subK  (Gandini, 1997; Gandini 

and Salvatores, 2002) and sk (Sandra Dulla et al., 2006) but it still remains an open question 

to define a proper weighting function which fits in the framework of conventional reactor 

parameters.  

Studies related to measurement of parameters 

The sub-critical reactivity is an important parameter from the point of view of ADS 

operation. It decides the accelerator current that will be required to produce the desired power 

as well as the margin of safety available. Measurement and continuous monitoring of this 

parameter in operating ADS reactors will be an essential safety requirement. Theoretical and 
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experimental studies (Abderahim, 2005; Soule et al., 2004; Carl-Magnus Persson et al., 2005; 

Baeten et al., 2010) are being carried out around the world for developing suitable methods 

for this purpose. Noise techniques have also been suggested (Behringer and Wydler, 1999; 

Carta and D’Angelo; 1999 Munoz Cobo et al., 2001) for monitoring the sub-criticality of 

ADS. Since noise methods do not require any perturbation of the system, they might be more 

suitable for the purpose (Degweker and Rana, 2007). The earliest theoretical studies on 

various noise techniques for ADS (Pazsit and Yamane, 1998a, b; Kuang and Pazsit, 2000; 

Behringer and Wydler, 1999) assumed the neutron producing source events in an ADS to 

form a Stationary Poisson Point Process (SPPP) with each such event (spallation) producing 

neutrons with a large multiplicity distribution.  A new theoretical approach considering 

periodic pulsing and non-Poisson character of the source was proposed by Degweker (2000, 

2003). The theory has, since then, been considerably expanded by us and forms a major part 

of this thesis (Degweker and Rana, 2007, 2011; Rana and Degweker, 2009, 2011).  

1.4 .2 Experimental studies 

In order to develop suitable methods for measurement and monitoring the sub-criticality of 

ADS, low power experiments (Andriamonje et al., 1995; Soule et al., 2004; Carl-Magnus 

Persson et al., 2005; Kitamura et al., 2006; Imel et al., 2004) have been carried out. Other 

parameters pertaining to operation of a future ADS have also been studied/planned in FEAT 

and TRADE experiments (Andriamonje et al, 1995; Imel et al, 2004). Recently the Guinevere 

experimental facility in Belgium has become operational (Billebaud et al., 2009). 

Experiments aimed towards measurement and monitoring of sub-criticality and evolution of 

procedures for operation of an ADS are planned in the facility. 

 

 



37 
 

Pulsed Neutron Source (PNS) experiments 

By studying the prompt neutron decay after a neutron pulse insertion in a sub-critical system, 

it is possible to determine the reactivity of the core. The methods used for analyzing a PNS 

experiment are slope fit method (Keepin, 1965) and area ratio method (Sjostrand, 1956). 

MUSE experiments (Soule et al., 2004) show that space and energy effects may introduce 

some bias in the results and detailed computer simulations should be used to take into 

account the spatial and spectral effects. The PNS experiments in YALINA (Carl-Magnus 

Persson et al., 2005) were found in good agreement with those obtained by Monte Carlo 

calculations. The experiments showed that the slope fit method gives better results compared 

to area ratio and source jerk methods. However, when applied to deep sub-criticalities, it may 

be difficult to find the correct slope.     

Noise experiments 

Noise methods using Rossi alpha, Feynman alpha and CPSD have been studied in MUSE 

experiments (Soule et al., 2004). The Rossi alpha and Feynman alpha methods were found 

suitable for low sub-criticalities. CPSD measurements demonstrated the inference of alpha 

through the break frequency. Rossi alpha measurements have been carried out at the Kyoto 

University Critical Assembly (KUCA) by using a D–T pulsed neutron source (Kitamura et 

al., 2006). Since the authors used a solution technique that is based on the Laplace transform, 

the formula derived by them contains infinite series expansion structure of the oscillating 

term. Therefore, it was difficult to fit the formula to the experimental data and only the 

correlated term was used to extract the value of alpha. Similar experiments for demonstrating 

pulsed neutron and noise methods for sub-criticality measurement are planned in the 

upcoming Purnima facility at the Bhabha Atomic Research Centre (BARC), India. 
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CHAPTER 2 
____________________________________  

Reactor Noise in Traditional Reactors and ADS 

The subject of reactor noise has been studied for a long time – indeed it is as old as reactor 

physics itself. Reactor noise methods are important in the sense that one can obtain dynamic 

information from measurements at steady state. The subject can broadly be divided in two 

parts viz., zero power reactor noise and power reactor noise. Zero power reactor noise arises 

due to the inherently random interactions of neutrons with nuclei and the fission chain 

multiplication produced correlations and is used to measure kinetic parameters such as 

prompt neutron lifetime and reactivity. A number of theoretical and experimental techniques 

have been developed for the purpose. Power reactor noise on the other hand studies the 

neutronic and other fluctuations associated with vibration of fuel and control rods due to 

turbulent coolant flow, voids and temperature fluctuations, and is used for online monitoring 

of the health of the power plant. The recent interest in accelerator driven sub-critical systems 

(ADS) and the necessity of monitoring their degree of sub-criticality has created a renewed 

interest in noise methods. In this chapter, we review the subject of noise in critical reactors. 

We also present a review of noise theories in ADS. We consider only zero power systems in 

this thesis.      

2.1 Noise in critical reactors   

2.1.1 Experimental methods 

The output of a detector, monitoring the neutron population of a reactor in its steady state, 

will have fluctuations around a mean value and is referred to as noise. The experimental 
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methods in reactor noise aim at getting information about reactor kinetics parameters by 

analyzing such fluctuations. Number of experimental methods (Williams, 1974; Saito, 1979) 

have been developed and are reviewed in the following section. 

2.1.1.1 Rossi alpha technique 

Bruno Rossi (1944) observed that, due to the presence of fission chains, critical assemblies 

are self modulated and could be used for measurement of prompt neutron decay time. The 

method is based on measurement of the probability 2 1 2( )P t t dt  of detecting a neutron 

between times 2t  and 2 2t dt+  given that there has been a detection at some earlier time 1t . 

Theoretical analysis (Orndoff, 1957; Babala, 1967) shows that in the point model, 

( )
2

2 1 2 0 2 2

( 1)( )
2 1

p

p

k
P t t dt N e

k
ατεν ν α

ν
−−

= +
−

 

where 2 1t tτ = − , 0N is the average count rate, pk  is the prompt neutron multiplication factor, 

α  is prompt neutron decay constant, ε  is detector efficiency, ν  and ( 1)ν ν −  are first and 

second moments of number of fission neutrons respectively.  

The experimental procedure was first developed by Orndoff (1957) and was based on 

continuous registration of delayed coincidences of counts. The author made measurements of 

α on Godiva (a U235 based bare critical assembly) and its plutonium equivalent. Another 

procedure proposed by Brunson (1957) measured time interval distribution between 

successive counts. The experimental procedure developed by Stribel (1963) was based on 

multi-channel analyzer wherein neutron counts were used to trigger a channel sweep. 

However, the measurements did not agree with the Rossi alpha formula. Later on Babala 

(1967) derived expression for 2 1 2( )P t t dt  for the experimental procedure adopted by Stribel 

(1963) and showed that the difference was due to smaller amplitude of the exponential term.  
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2.1.1.2 Feynman alpha (variance to mean ratio) technique 

This method was proposed by Feynman et al. (1956) and was used by the authors to measure 

the second moment of the number of neutrons in thermal fission of U235.  The method 

consists of measuring number of counts in a time interval tΔ . The number of counts in tΔ  is 

measured repeatedly and used to calculate the variance and the mean. The ratio v/m is plotted 

as a function of tΔ . By fitting the plot to an expression for v/m (Bennett, 1960), information 

about the reactor kinetic parameters can be obtained. 

1

2
1

v 2 ( 1) 11 1
itJ

i
i

eY
m t

αεν ν
αν

−+

=

⎛ ⎞− −
= + −⎜ ⎟

⎝ ⎠
∑  

where J is the number of delayed neutron groups and ( ) /i i i iY AG α α= . ( )G s  is the zero power 

transfer function and iA  and iα  are its residues and  poles respectively. Subsequently, 

Albrecht (1962) carried out v/m measurements and analyzed the results in two group 

structure of delayed neutrons. It was concluded that the effect of delayed neutrons should be 

considered in measurement of prompt neutron lifetime.  

2.1.1.3 Correlation function and power spectral density methods  

The most commonly used techniques in reactor noise analysis are based on Auto Correlation 

Function (ACF) and Power Spectral Density (PSD) methods. The ACF of a fluctuating signal 

( )N t is defined as: 

1( ) lim
2

( ) ( )NN T

T

TT
N t N t dtφ τ τ

→∞
−

= +∫  

If one considers correlation between two different noise signals (e.g. neutron density and 

detector current), the function is called Cross Correlation Function (CCF). 
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For zero power reactor noise, the expression for ACF is related to reactor kinetics parameters 

as follows (Williams, 1974): 

1( ) ( )
2

i
NN f i i

i
N Y e α τφ τ ελ δ τ α −⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∑  

where the first term is due to the detector noise and the second term is due to fission chain 

correlations.  

For small values ofτ , the main contribution comes from the prompt neutrons and accordingly 

the above expression for ACF can be approximated as:  

1

2
( 1)( ) ( )
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α τεν νφ τ ελ δ τ
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Dragt (1966a) analyzed current from ion chamber by ACF and was able to evaluate reactor 

kinetics parameters with high accuracy. 

The PSD is defined as the Fourier Transform of ACF and is a measure of the power of the 

noise signal per unit of frequency. Similarly, the Fourier transform of CCF is called Cross 

Power Spectral Density (CPSD). 

( ) ( ) i
NN NN e dωτφ ω φ τ τ−

∞

−∞

= ∫  

Performing the Fourier transform we obtain: 
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In the neighborhood of 1α , the above expression can be approximated to the form: 

2 2( )NN
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Kinetic parameters have been determined (Kuramoto et al., 2007) in IPEN/MB-01 research 

reactor by PSD technique. Suzuki (1966) suggested a method of measuring absolute power of 
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a reactor by PSD measurements. Due to increase in sensitivity of the measurements at low 

powers, it was suggested that the method can be implemented in research reactors.   

At high frequencies, the contribution of detector noise (the first term) increases and the PSD 

measurements become difficult. The two detector covariance method suggested by Nomura 

(1966) does not have the first term and overcomes this difficulty. Such measurements 

(Rugama et al., 2003) in MASURCA at CEA showed better results compared to those 

obtained by single detector PSD analysis due to low signal to noise ratio in the latter coming 

from strong inherent spontaneous fission source.   

2.1.1.4 Other methods  

A variant of Feynman-Y technique has been proposed by Bennett (1960) and is commonly 

referred to as Bennett variance technique. Based on computation of variance from cross-

correlation of count rates in two successive time intervals, the author derived an expression 

for variance to mean ratio which does not diverge as reactor approaches criticality. Similar to 

correlation function method, a method based on polarity correlation function has been 

proposed (Veltman and Kwakernaak, 1961; Dragt, 1966b). Other methods for measurement 

of prompt neutron decay constant include the interval distributions method (Babala, 1966) 

and the dead time method (Srinivasan, 1967; Srinivasan and Sahni, 1967). The Cf252 method 

was developed and studied intensively by Mihalczo (1974, 1990) for measuring degree of 

sub-criticality.    

2.1.2 Basics of noise theory of critical reactors 

The inherent neutron noise in a low power reactor can be considered theoretically as a 

Markov process. Markov processes are the stochastic processes which are characterized by 

the fact that the conditional probability of a system being in a certain state at a certain time 
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nt , given that it was in some state at an earlier time 1nt − , is uniquely determined and does not 

depend on its state prior to 1nt − . If 1( , )P X t is the probability of the system being in state X at 

time t and 2 2 1 111( , , )P X t X t  is the transition probability of the system going from state 1X  at 

time 1t  to the state 2X at time 2t , all other states can be determined as follows:  

1

1 2 2 2 2 1 1 1 1 111( , ) ( , , ) ( , )
X

P X t P X t X t P X t=∑  

Thus, the Markov processes are completely described by the two probability functions 

1( , )P X t and 2 2 1 111( , , )P X t X t . It can be shown that these probabilities are related through what 

is known as the Chapman Kolmogorov equation: 

2 2 1 1 2 2 1 111 11 11( , , ) ( , , ) ( , , )
X

P X t X t P X t X t P X t X t=∑  

A Markov process is called homogeneous if the transition probability 2 2 1 111( , , )P X t X t  

depends only on the time difference 2 1t tτ = − . For such processes, if it can be assumed that 

for small τ  the transition probability can be written as follows: 

2 1 2 1 2 1( ) ( ) ( ) ( )T X X X X W X X Oτ δ τ τ= − − +  

then the Chapman Kolmogorov equation can be written (Van Kampen, 1983) as a differential 

equation in time as given below.  

2 1 2 1 2 2 1( ) ( ) ( ) ( ) ( )
X

T X X W X X T X X W X X T X Xτ τ ττ
∂ ⎡ ⎤= −⎣ ⎦∂ ∑  

This equation is known as the Master equation and is a statement of gain-loss for the 

probability of a state. 
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At zero power, there are no feedback effects and we get a linear equation. Starting with 

Chapman Kolmogorov equation and using probability balance equations, ‘forward’ and 

‘backward’ equations can be derived for a point reactor model (Arcipiani and Pacilio, 1980).  

2.1.2.1 Kolmogorov forward equation 

This approach was first used by Courant and Wallace (1947) who derived expressions for 

standard deviation by considering distributed sources in a reactor whose power was assumed 

to be either steady or changing periodically. Subsequent studies on the subject were carried 

out by Matthes (1962), Norelli et al. (1975), Dalfes (1966), Pazsit (1987) and Degweker 

(1994). In the point model (Arcipiani and Pacilio, 1980; Dalfes, 1966; Norelli et al. 1975), 

one writes the probability equation for state of the reactor at time t t+ Δ in terms of its state at 

time t .       

We start with the Chapman-Kolmogorov equation: 

( , | , ) ( , | , ) ( , | , )
l

P n t m s P n t l P l m sτ τ=∑  

and set dtt −=τ for deriving the forward equation. 
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where S is the source strength, cλ , fλ are the capture, fission probabilities per neutron per 

unit time and )(νp is the probability that a fission reaction produces ν  neutrons.   Expanding 

the term on the LHS up to first order in dt , we can obtain the following equation: 

( , ) ( 1) ( 1) ( 1) ( ) ( 1)

( 1, ) {( ) } ( , )

c f

f c

dP N t N P N N p P N
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+ − − + +
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 We define the probability generating function (pgf) as: 

( , ) ( , ) N

N
F x t P N t x=∑  

We can rewrite the above equation in terms of the pgf as follows: 
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∂
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∂

∂ λλ  

Various moments are obtained by successive differentiation with respect to x  and 

setting 1x = . 

Using forward equation approach in point model, Norelli et al. (1975) set up reactor kinetics 

equations and obtained analytical solutions for different cases. Dalfes (1966) derived 

expressions for correlation function and PSD of detector output for a subcritical reactor 

driven by a Poisson source. 

2.1.2.2 Kolmogorov backward equation 

The backward equation approach was first used by Pal (1958) and Bell (1965) and has been 

significantly developed by Matthes (1966), Munoz-Cobo and Verdu (1987) and Pazsit 

(1987). In the point model (Arcipiani and Pacilio, 1980), one writes the probability equation 

for state of the reactor at time t  given its state at some earlier time s . The Chapman-

Kolmogorov equation is written with the intermediate time point dss +  considering all the 

possible processes in the interval ds .        

For deriving the backward equation, we choose dss +=τ  & m=1 
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The equation for the pgf is obtained by multiplying by xn and summing over n 

( , | , ) ( , | 1, ) ( ) ( , | 1, )

( , | 1, ) { ( ) } ( , | , )
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F x t m s mF x t m s m p F x t m s
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∂
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Suppose m=1 and S=0 i.e. a single initial neutron in a source free medium. The above 

equation then becomes 

),1|,()(),1|,()(),1|,( stxFstxFp
s

stxF
cffc λλνλλ

ν

ν +−+=
∂

∂
− ∑  

where we have used the following relation due to of independence of chains 

),1|,(),|,( stxFsmtxF m=  

By considering a multivariate joint distribution for neutrons and detector counts and 

following Kolmogorov forward equation approach, Pacilio et al. (1976) developed a unified 

theory of reactor neutron noise analysis techniques. 

In the space energy dependent formulation, discussed below, the backward equation is almost 

invariably used due to its simplicity. This equation closely resembles the adjoint neutron 

transport equation. 

2.1.2.3 The Bartlett formula 

The normal procedure for deriving moments of any observable (say detector counts) in a 

multiplying medium with an external source consists of either writing forward Master 

equation with source or using the backward Master equation approach. In this method, first 

the backward Master equation is solved to find the pgf due to a single particle. The pgf for 

the case of external source is then obtained by using the Bartlett formula (Bartlett, 1955).        

Suppose we have a Poisson source switched at time s . There can be k source events 

( 1,2,..., )k = ∞ at 1 2, ,..., kt t t with probability:  



47 
 

1[ ( )] exp{ ( )} ....
! ( ) ( )

k
kdtdtS t s S t s

k t s t s
−

− −
− −

 

The pgf from each of these events is ( , |1, )iF x t t and that due to all the k  events can be 

written (using the property of independence of neutron behavior) as follows:  

1 2( , |1, ) ( , |1, )...... ( , |1, )kF x t t F x t t F x t t  

Multiplying the two expressions and summing over all possibilities of source events, we get 

the resultant pgf. 
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For a steady source, the lower limit can be taken to be−∞ . 

2.1.2.4 Space energy dependence 

The earliest space dependent theory was developed by Pal (1958) who obtained an integral 

equation for pgf ( , , ; , , )fG z R t r v t of number of neutrons in some region R  of the reactor at 

time ft  starting from a single neutron at time t  in region r  with velocity v . The author also 

derived equations for first and second moments. Bell (1965) developed integro-differential 

equation forG . Dropping the explicit dependence of G on R and ft , the equation can be 

written as follows:   
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It was shown by the author that the equation is adjoint to the Boltzman transport equation. 

Asymptotic solutions for sub-critical and super-critical systems were obtained and found to 

be consistent with physical arguments. Matthes showed that the space-energy dependent 
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backward equation is adjoint to the transport equation. Munoz-Cobo and Verdu (1987) 

derived stochastic transport equation including delayed neutrons. They obtained expressions 

for Feynman Y function and studied the effect of delayed neutrons on it.   

Based on probability distribution of neutrons in phase cells, Matthes (1962) developed the 

forward equation for space-energy dependence. He derived ACF formula for output of a 

detector placed in a reactor. Pazsit (1987) derived forward and backward equations from a 

single equation representing Markovian property of the process. The author however pointed 

out the difficulties in getting higher order moments. Degweker (1994) developed a new 

formalism for describing the stochastic neutron transport by the forward approach. The 

formalism is based on the probability of having N neutrons in the entire reactor with each 

neutron lying in a phase space cell located at any point in phase space. It was shown that the 

first moment of the equation is the usual transport equation for the singlet density while 

higher moments yield equations for the doublet and higher multiplet densities.  

2.1.2.5 The Langevin approach 

The Langevin method for studying reactor noise problems was introduced in the point model 

by Cohn (1960) and was applied to space dependent problems by Moore (1964) and has been 

developed considerably by Sheff and Albrecht (1966), Ackasu and Osborn (1966) and Saito 

(1967).  The method looks upon reactor noise as being the response of a linear system to a 

random source commonly referred to as the noise equivalent source (NES). The equations of 

the linear system are the usual kinetics equations for the variables referring to the mean 

values while the noise characteristics of the NES are determined by the so called Schottky 

prescription.  Let us consider a simple point model with one group of delayed neutrons and a 

detector. The Langevin equations giving the neutron number ( )N , the number of precursors 

( )C and the detection rate ( )D are given by  
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 ( ) ( )f p c d c s N
dN N C S s t
dt

λ ν λ λ μ ν⎡ ⎤= − + + + +⎣ ⎦  (2.1) 

 ( )f d c C
dC N C s t
dt

λ ν μ= − +  (2.2) 

 ( ) ( )d D
dZ D t N s t
dt

λ= = +  (2.3) 

where fλ , cλ  , dλ  are probabilities per unit time of fission, capture, detection respectively, 

cμ is delayed neutron precursor decay constant,  sν is the number of neutrons in each source 

event, pν  is number of prompt neutrons, dν is number of delayed neutrons, D  is the 

detection rate, Z  is the number of counts accumulated in a detector over a time t  and Ns , Cs , 

Ds  are noise equivalent sources for neutrons, delayed neutron precursors and detection 

respectively.  

The NES is a white noise whose magnitude is determined by the Schottky prescription. 

According to this, each of the processes such as absorption, fission, source, etc contribute a 

white noise to the NES.  The contribution of the power spectral density of the NES due to 

each of these reactions is given by 2q m  where q  is the change in the number of particles 

(corresponding to that equation, neutrons, precursors etc) in one reaction and m  is the mean 

reaction rate of that reaction. Similarly, the cross power spectral density between NES for 

two different particles has a contribution given by i jq q m  where iq  and jq  are the change in 

the number of particles of type i  and j  in the reaction and m  is the mean reaction rate of that 

reaction (Cohn, 1960). Using this prescription, we can write the following statistical 

properties for the NES terms of Eqs. (2.1) – (2.3) 

 ( ) ( ) ( ) 0N C Ds t s t s t< >=< >=< >=  (2.4) 

 2 2( ) ( ') [( ) ( ) ( 1) ( ) ( ) ( )] ( ')N N c d f p c ss t s t N t N t C t S t t tλ λ λ ν μ ν δ< >= + + − + + −  (2.5) 

 2( ) ( ') [ ( ) ( )] ( ')C C f d cs t s t N t C t t tλ ν μ δ< >= + −  (2.6) 
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 ( ) ( ( ) ( )D D ds t s t N t t tλ δ′ ′= −  (2.7) 

 ( ) ( ') [ ( 1) ( ) ( )] ( ')N C f p d cs t s t N t C t t tλ ν ν μ δ< >= − − −  (2.8) 

 ( ) ( ( ) ( )D N ds t s t N t t tλ δ′ ′= − −  (2.9) 

 ( ) ( ') 0C Ds t s t< >=  (2.10) 

If we are dealing with a stationary system, the mean values of the variables in Eqs. (2.1)- 

(2.10) are independent of time. Writing Eqs. (2.1-2.3) in terms of the fluctuations about the 

mean values for a stationary system, we have 

 ( ) ( )f p c d c N
dn n c s t
dt

λ ν λ λ μ⎡ ⎤= − + + +⎣ ⎦  (2.11) 

 ( )f d c C
dc n c s t
dt

λ ν μ= − +  (2.12) 

 ( ) ( )d Dd t n s tλ= +  (2.13) 

where , ,n c d stand for the fluctuations of the neutron number, precursor number and the 

detection rate over their mean values i.e. ( ) ( )n t N t N= − , ( ) ( )c t C t C= −  and ( ) ( )d t D t D= −  

respectively. 

The Langevin approach can be used for obtaining any noise descriptor but gets more 

complicated in the time domain if the problem involves several variables. In such cases the 

Langevin approach is particularly suitable for doing calculations in the frequency domain i.e., 

for obtaining the power spectral density of detection rate. For this, we recall that according to 

the Weiner-Khinchin theorem (Van Kampen, 1983), the PSD is proportional to the mod-

square of the Fourier transform of the signal, in this case the fluctuation of the detection 

rate ( )d t . To determine the PSD of ( )d t , we Fourier transform Eq. (2.13) and write 

 2*( ) ( ) *( ) ( ) 2 Re[ *( ) ( ) ] *( ) ( )d d D D Dd d n n n s s sω ω λ ω ω λ ω ω ω ω< >= < > + < > + < >   (2.14) 

Fourier transforming Eq. (2.7) [w.r.t. to the time difference 't t− ], we get the following 

contribution (known as the detector noise) to the PSD. 
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 d Nλ  (2.15) 

Fourier transforming Eqs. (2.11) and (2.12) and solving the resulting algebraic equations, we 

get  

 
1( ) ( ) ( ) * ( )

*( ) *( )
x i s T s
x Ts
ω ω ω ω
ω ω

−= − + Λ ≡
=

 (2.16) 

where x  and s  stand for the vectors 
n
c
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and N

C

s
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 respectively and Λ is the matrix in terms 

of which Eqs. (2.11) and (2.12) can be written as 

 dx x s
dt

+ Λ =  (2.17) 

i.e., 
( )f p c d c

f d c

λ ν λ λ μ

λ ν μ

⎛ ⎞⎡ ⎤− +⎣ ⎦⎜ ⎟Λ = −
⎜ ⎟−⎝ ⎠

 and we have written T  for the matrix 1( )iω −+ Λ .  

Now we can write the contribution from the first term of (2.14) as 

 ( ) ( ) 11
00

00
*( ) ( ) [ *( ) ( ) ] ( )t tn n x x i iω ω ω ω ω ω ω

−−⎡ ⎤< >= < > = + Λ Σ − +Λ⎢ ⎥⎣ ⎦
 (2.18) 

where we have used the index 0  for the neutron variable and 1 for the precursor variable and 

where ( ) *( ) ( )ts sω ω ωΣ =< >  is spectral density matrix of the NES i.e. the Fourier transform 

of the covariance matrix of the NES. The individual elements of ( )ωΣ  can be simply 

obtained by taking the Fourier transform of Eqs. (2.5), (2.6) and (2.8) w.r.t. 't tτ = −  and we 

get 

 
2 2

2

( ) ( 1) ( 1)

( 1)
c d f p c s f p d c

f p d c f d c

N N C S N C

N C N C

λ λ λ ν μ ν λ ν ν μ

λ ν ν μ λ ν μ

⎛ ⎞+ + − + + − −
⎜ ⎟Σ =
⎜ ⎟− − +⎝ ⎠

                (2.19) 

Finally, we obtain the contribution of the second term of Eq. (2.14). We write,  

 * *
00 012 Re[ *( ) ( ) ] 2 Re[ { ( ) ( )} ( ) ]d D d N C Dn s T s T s sλ ω ω λ ω ω ω< > = < + >               (2.20) 
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The second term in Eq. (2.20) above vanishes in view of Eq. (2.10) while the first term can be 

written down using (2.9) to yield   

 
* 2

00 00
2

2 Re[{ ( ) ( ) }] 2 Re{ }

2 Re[ ( )]
d N D d

d

T s s N T

N G i

λ ω ω λ

λ ω

< > = −

= −
                                   (2.21) 

as the contribution due to the middle term of Eq (2.14) where ( )G iω can be recognized as the 

zero power transfer function. The PSD of the detection rate is obtained by adding (2.18), 

(2.21) and the detector noise term (2.15). 

The Langevin method described above can be extended to problems of reactor noise 

including power reactor noise where the noise source is external and moreover may not be 

white. The white noise source assumption is specific to the internal noise description through 

the Schottky prescription but is not generic to the Langevin approach.  Due to its non-Poisson 

character, the ADS source cannot be described by the Schottky formulae. However, by 

choosing the fluctuation character of the source appropriately, it is still possible to use the 

Langevin approach. This is illustrated in chapter V in both the time and frequency domain.  

In the context of zero power noise, some authors (Williams, 1974; Difiliippo, 1988) have 

questioned the validity of the Langevin formulation and the recipes based on the Schottky 

prescription to give correct results in all situations. While the Langevin approach is less 

fundamental than the probability balance equation methods (Kolmogorov forward or 

backward equations, pgf etc) [Williams, 1974], Ackasu and Stolle (1989) have argued that the 

Schottky prescription is derivable from the Master equation and with a proper vector 

formulation involving all relevant variables of the problem, yields correct results in all 

situations for second moments. 
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2..2 Review of noise theories in ADS 

2.2.1 Early studies on theory of reactor noise in ADS 

As mentioned earlier, in addition to the well known deterministic methods such as pulsed 

neutron method and source jerk method, noise techniques were also suggested for monitoring 

the sub-criticality of ADS (Behringer and Wydler, 1999; Carta and D’Angelo, 1999; Munoz 

Cobo et al., 2001). In view of this, theoretical studies on various noise techniques for ADS 

(Pazsit and Yamane, 1998a,b; Kuang and Pazsit, 2000; Degweker, 2000; Behringer and 

Wydler, 1999; Munoz Cobo et al., 2001) were initiated. 

In the earlier publications (Pazsit and Yamane, 1998a,b; Kuang and Pazsit, 2000; Behringer 

and Wydler, 1999), the authors  assumed that the ADS source was a continuous Poisson 

source and that the main difference from traditional reactors was that in each source event 

spallation reaction produces a large number of neutrons having a multiplicity distribution 

with a large mean and a large second factorial moment. Theoretically speaking, such a 

situation is very similar to that of a spontaneous fission source and has been studied in detail 

by Munoz Cobo and Difilippo (1988). 

However, the principal difference between critical reactor noise and ADS noise is due to the 

statistical properties of the source. Unlike the source due to radioactive decay present in 

ordinary reactors, the accelerator produced neutron source in an ADS cannot be assumed to 

be a Poisson process. Moreover, the source may be pulsed. The initial studies did not account 

for these effects.  

Behringer and Wydler (1999) assumed that the arrival of the protons is Poissonian distributed 

in time and neglected periodic appearance of source pulses. They also assumed that the 

number of protons in a pulse is Poisson distributed. They used simple probability balance 
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equation to derive the formula for variance. It was concluded that, in addition to the fission 

chain correlations, fluctuations in the burst of spallation neutrons contribute to the increased 

variance above that for a pure Poissonian process. Pazsit and Yamane (1998a) derived 

variance to mean formula by using a master equation technique. Source characteristics were 

assumed to be same as that in the model of Behringer and Wydler. The authors also included 

the effect of delayed neutrons (Pazsit and Yamane, 1998b; Kuang and Pazsit, 2000). It was 

shown that in deep subcritical reactors, the large source multiplicity enhances the amplitude 

of the prompt term of variance to mean formula which can be used for monitoring the 

reactivity. 

2.2.2 Studies with periodic pulses 

Periodically pulsed sources were treated by Degweker (2000, 2003), Munoz Cobo et al. 

(2001), Pazsit et al. (2005) and Kitamura et al. (2005). Munoz Cobo et al. (2001) proposed a 

method for on line sub critical reactivity monitoring based on the measurement of the cross 

power spectral density (CPSD) between the proton current signal and a neutron detector 

signal. They considered the source to be a periodic sequence of delta function pulses with a 

fixed number of protons per pulse and derived an expression for CPSD. Numerical 

calculations were done for a typical fast energy amplifier configuration and the value of 

effk was obtained by break frequency method. The results were also compared with Monte 

Carlo simulations. Pazsit et al. (2005) and Kitamura et al. (2005) also considered the 

periodicity of the source. They considered the pulse to be of finite width of rectangular and 

Gaussian shapes. They also included the effect of delayed neutrons.  
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2.2.3 Studies with non-Poisson sources 

Basis for the possibility of non-Poisson behavior of the ADS source 

Radioactive sources present in critical reactors consist of large number of radioactive atoms, 

of which, relatively small number decay independently in the time scales of interest and 

therefore can be deemed to be stationary Poisson sources (Uhrig, 1970). However, such a 

description may not necessarily hold for accelerator produced neutron sources. It has been 

suggested (Pazsit et al., 2004) that since the continuous arrival of charged particles may be 

treated as a Poisson process, if the same is periodically chopped, the resulting particle stream 

may be looked upon as a periodically pulsed Poisson source. The argument is valid for a 

perfectly steady machine. A practical accelerator on the other hand, is expected to show small 

fluctuations in current which can lead to the non-Poisson distribution of number of particles 

in a pulse (Degweker and Rana, 2007). Moreover, accelerators produce particles in the form 

of short bunches at periodic intervals rather than at random. There may also be correlations 

introduced during production of protons.  Thus, irrespective of the type of accelerator used 

for the purpose, it cannot be tacitly assumed that the source events would constitute a 

Stochastic Poisson Point Process. To give an empirical evidence of the non-Poisson character 

of the ADS source, we present below observations on some experimental results.   

The TARC experiments    

One of the measurements carried out during the TARC experiment (Abanades et al., 2002) 

was number of protons per shot; each shot being about 14 s separated from the previous shot. 

The magnitude of the fluctuations in the number of protons per shot in the experiment was a 

few percent which is much larger than would be expected for a Poisson source. For small 

current fluctuations, the accelerator may be treated as linear system with Gaussian current 

fluctuations having exponential correlation. Simulation of such a process for various 
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correlation times was carried out by us (Degweker and Rana, 2007) and a comparison with 

the TARC experiment showed that the measured results appear to be closest to an 

uncorrelated Gaussian process thereby implying that correlation times if any are short 

compared to 14 seconds. Thus, the number of protons in a pulse cannot be considered to be 

Poisson distributed. 

The KUCA experiments 

In their paper on the calculation of pulsed Feynman alpha formulae and their experimental 

verification, Pazsit et al. (2005) have presented experimental results obtained at the KUCA 

facility showing variation of the Feynman Y function with counting interval for different 

levels of sub-criticality (or alpha). From this data, it is possible to deduce the asymptotic 

values (i.e. for large counting intervals on the prompt decay time scale) of the Y function.   

Fig. 2.1 shows the variation of the asymptotic Y values obtained this way with the inverse of 

alpha estimated in the above mentioned paper.  In the graph (a) we show a power law fit, 

while in (b) we show a quadratic fit. While both fits are equally good, the power shown is not 

2 as is expected on the assumption of a Poisson source. In Fig. 2.1(b), the fitted curve passes 

through the origin. The quadratic term is due to fission chain correlations while the linear 

term indicates a non-Poisson source contribution. Since the D-D or D-T reaction produces 

neutrons in singlets, the origin of the source correlation can be only due to the non-Poisson 

characteristics of the ion beam. 

Other experiments 

A third piece of evidence of the non-Poisson character of accelerator based neutron sources 

can be seen in the experimental study by Hiroshi Taninaka et al. (2011). The authors have 

carried out Feynman alpha measurements with a pulsed D-T source. It has been reported that 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28TANINAKA%2C+Hiroshi%29
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instabilities in the accelerator current result in a divergent variance to mean ratio and the 

formula based on Poisson source assumption underestimates the value of alpha. 

Theory of ADS noise with non-Poisson sources 

Degweker (2000, 2003) argued that the usual procedure (using forward equation approach or 

writing down backward equation for single particle induced moments and then using Bartlett 

formula for source induced moments) for deriving reactor noise formulae are invalid with 

such sources. The method suggested for treating non-Poisson sources is described below.  

Let 1 2( , , )G z z t be the pgf of detecting counts in a short interval around time 0 and counts in a 

short interval around time τ  due to single neutron injected in a source free medium at time t . 

If it is assumed that bursts of neutrons appear at times nt with a multiplicity distribution ( )ρ ν  

and the last of these bursts occurs at 0t  then the ones prior to this will occur at 0 1/t f− , 

0 2 /t f− and so on. Here f is the frequency of the accelerator. Using the multiplicative 

property of pgfs for different source events, the pgf for the case of an arbitrary source is 

obtained. This property is due to the independent propagation of chains initiated by different 

source neutrons and is a consequence of the linear character of the neutron transport and 

multiplication. The resultant pgf is: 

( )( )1 2 0 1 2 0
0 0

( ) ( , , / ) , , /
n n

G z z t n f F G z z t n fν
ρ

ν

ρ ν
∞ ∞

= =

− = −∑∏ ∏  

Since measurement intervals are generally not synchronized with the source pulses, 0t  is a 

uniformly distributed (between 1/ fτ − andτ ) random variable. Averaging over 0t , the pgf 

becomes: 

( )( )1 2 0 0
01/

, , / ,
nf

g f F G z z t n f dt
τ

ρ
τ

τ
∞

=−

= −∏∫  
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By differentiating with respect to 1z and 2z , and setting 1 2 1z z= = , one obtains the Rossi alpha 

formula. 

[ ] [ ]2 2
/ 21

2 2 1 1 1/(0, ) e e ( 2 )e
2 1

f f
f ffd

f

f mf e m m m Y
e

τ τα τ α τ
α ατ

α

λτ
α

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
−

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= + + − +⎨ ⎬−⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
 

The individual pulses were treated as Dirac delta functions, uncorrelated with one another. 

Various noise descriptors, such as Rossi alpha, Feynman alpha (or variance to mean), Power 

Spectral Density (PSD), Cross Power Spectral Density (CPSD), were derived. It was shown 

that the large neutron emission multiplicity of the spallation source is mainly responsible for 

the enhanced variance compared to critical reactors and the correlated component of the noise 

is reduced due to regularity of the source pulses. The author (2003) pointed out anomaly in 

the CPSD formula derived by Munoz Cobo et al. (2001) and showed that if one uses the 

method of joint pgf for current and neutronic signals, the cross-covariance is identically zero. 

The scope and content of the noise theory (Degweker, 2000, 2003) has been considerably 

expanded by us (Degweker and Rana, 2007, 2011; Rana and Degweker, 2009, 2011) and is 

described in detail in the following chapters. 

Later on Ballester and Munoz Cobo et al. (2005, 2006) have also considered the periodic 

nature of the source and its non-Poisson character. By considering pulsed neutron source 

along with the spontaneous fissions in the fuel, they derived a generalized relationship 

between the pgfs of the kernel and the source.  

 

 

 



59 
 

(a) y = 37018x1.6939

R2 = 0.9992

0

0.5

1

1.5

2

2.5

3

3.5

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Inverse alpha (sec)

V/
m

-1

 

 

(b) y = 149683x2 + 201.2x
R2 = 0.9988

0

0.5

1

1.5

2

2.5

3

3.5

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Inverse alpha (sec)

V/
m

-1

 

Fig. 2.1 Variation of the v/m with inverse of the decay constant. The points are based on the 

experimental results presented in by Pazsit et al. (2005). In the graph (a) we show a power 

law fit while in (b) we show a quadratic fit. While both fits are equally good, the power 

obtained is not 2 as is expected on the assumption of a Poisson source. The quadratic fit 

passes through the origin and the linear term indicates a non-Poisson source contribution. 
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CHAPTER 3 
____________________________________  

Finite Pulses and Correlations between  

Different Pulses 

As discussed in chapter 2, a theory of Reactor Noise in ADS assuming a general non-Poisson 

periodically pulsed source of neutrons was constructed by Degweker (2003). In this chapter, 

we generalize the non-Poisson character of the source to include the possibility of 

correlations between pulses and derive formulae for Rossi alpha and Feynman alpha.  We 

also take up the case of pulses of finite widths by considering rectangular and Gaussian pulse 

shapes. We present numerical results based on the derived formulae to illustrate the 

importance of correlations between pulses in typical experimental conditions. The effect of 

finite width of source pulses is also illustrated.  

Pazsit et al. (2005) have also considered finite width pulses in the context of reactor noise in 

ADS but for Poisson sources. The formulation in the present chapter is different in that the 

source is assumed to be non-Poisson with exponential correlation between pulses. In section 

3.2, we consider the case of correlated non-Poisson delta function source pulses. The case of 

finite width pulses is discussed in section 3.3. Our analysis is restricted to the experimental 

situation in which the counting interval is opened at a time point that is essentially random 

since this has been shown to be experimentally better for extracting parameters of interest 

(Pazsit et al., 2005). We do not consider the effect of delayed neutrons. Hence, the formulae 

are valid only for time scales which are short compared to the delayed neutron precursor 

lifetimes and all quantities (such as k, ν, etc.) are to be regarded as prompt.  
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3.1 The doubly stochastic Poisson point process 

If )(tI is the ion current, the probability of a neutron producing event (spallation, D-D or D-T 

reactions) in a short time dt  can be written as  

( ) ( )I t t dtΕ  

where, ( )tΕ is the deterministic variation of the current (periodically occurring pulses). Since 

this is the probability at any time and independent of any occurrences at other times, we can 

write for the probability of obtaining s source events at times 1 2, ,...., st t t as follows: 

1 2 1 1( , ,...., ) ( ) ( )....... ( ) ( ) exp[ ( ) ( ) ]s s s sQ t t t E t I t E t I t E t I t dt
+∞

−∞

= − ∫      (3.1) 

As mentioned before, we assume )(tI as an exponentially correlated Gaussian stochastic 

process. Since, for averaging various functions we have to perform a double averaging; one 

over the variables s and st and the second over the stochastic variable ( )I t , we have a doubly 

stochastic Poisson point process (Saleh, 1978). We shall use such a description in a later 

section. The explicit form for the functions sQ  (Van Kampen, 1983) given above will not be 

required in the subsequent discussions as we shall see that it is only the averages of products 

of the beam current at various times that will be required. 

3.2 Correlated Gaussian pulsed source 

We assume that the pulses are short compared to all other time scales in the problem and may 

be represented as a sum of delta functions. Moreover, the neutron source pulses have an 

exponential correlation in intensity.  
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3.2.1 Rossi alpha formula 

We assume that the first count occurs at 0t =  and the second one at t τ= . The occurrence of 

the last source pulse at 0t  is randomly distributed between 1/ f− and 0 . Following Degweker 

(2003), the expression for the Rossi alpha can be written as follows: 

0
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where QF  and RF  are the pgfs of the distributions P and R defined by Degweker (2003) 

while 1G  is the pgf of the distribution P for 1n = and by the independence of neutrons, 

clearly 1 ( , )nG x τ is the corresponding pgf for arbitrary n . We write expressions for QF  and RF  

taking into account the fact that there are correlations between pulses, as follows: 
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where ,....),( 10 NNP  is the joint probability distribution of the source leading to production of 

0 1, ,...N N etc. neutrons at the corresponding times. We have used the standard notation [x] to 

denote the largest integer less than or equal to x. Using these equations, it is possible to write 

down the derivatives required in Eq. (3.2) in terms of the derivatives of 1G  evaluated at x=1. 

The pgf 1G  is given by 

)1)(1(1
)1(1),(

1
1 xeY

xetxG t

t

−−+
−

−= −

−

α

α

                   (3.5) 

where αννλ 2/)1(1 −= fY   

Using Eq. (3.5), we obtain the following expressions for the first two derivatives of 1G : 
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tetG α=′ ),1(1             (3.5a) 

tt eeYtG αα −−−=″ )1(2),1( 11           (3.5b) 

The number of neutrons in a source event is due to the compounding of the number of 

protons in a bunch and the number of spallation neutrons. The compounded pgf can be 

written as 

)](),([),( , yfxfFyxF spspjpiNN ji
=            (3.6) 

Differentiating with respect to x and y and setting x=y=1, we get 

1i pi spN N mν=< > =                                                                                                            (3.6a) 

2 2 2
1 ' exp( | | / )i j pi pj spN N N N m i j fν β=< > = +Γ − −                                                         (3.6b) 

2

2( 1) ( 1) ( 1) ( 1)i i j j pi pi sp pi sp spN N N N N N N mν ν ν− = − =< − > + − =                                 (3.6c) 

 where 2'Γ  is the variance of the number of neutrons produced in a pulse and β  is the decay 

constant of the source correlations. We obtain, 
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Integration and summation are again straight forward and we finally obtain, 
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The presence of the last term is due to correlations in the source fluctuations. For f>>β i.e., 

for correlation times which are short compared to the time between successive neutron 

pulses, this term vanishes and the formula reduces to that derived by Degweker (2003). When 

the frequency f is large compared to alpha and beta, the uncorrelated term tends to its usual 

form for uncorrelated sources while the correlated term remains the same. Thus, for large 

frequencies we have, 
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This shows that even for large frequencies, the above distribution does not reduce to the 

random source distribution.  

3.2.2 The Variance to Mean Ratio 

The expression for the variance to mean ratio is derived as usual by integration of the 

expression (3.8) as follows: 
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where  m  is the mean given by 1( )f t T ; 1 1( ) /df t m fλ α=  being the mean count rate.  

We obtain, 
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For high frequencies, the above formula reduces to  
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(3.12)                       

The reduction of the variance due to the regularity of the pulses should be noted. The other 

point worth noting here is the appearance of an enhancement of the variance due to 

correlations in the number of source neutrons from successive pulses. 

3.2.3 The ACF and PSD 

We visualize the times of absorption of neutrons in a detector as a stochastic point process 

(Van Kampen, 1983) described by the functions ),...,( 21 ss tttQ . Suppose absorption of a 

neutron in the detector produces a total charge q which may be a random number and results 

in a time response given by h( )τ (the response function of the detector operating in the 
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current mode and assumed deterministic), defined such that h( )τ is non zero only for τ > 0 

and ∫
∞

=
0

1)( ττ dh . 

The mean current and the ACF are then given by 
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where the bar indicates overall averaging while < > indicates averaging over the distribution 

of the number of charges per neutron detection and 
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In writing Eqs. (3.13) and (3.14), we have used the fact that 1 1( )f t is independent of t1 while 

2 2 1( )f t t−  depends only on 2 1= t -tτ due to stationarity of the process. If we use the 

expression for 2f  [Eq. (3.8)] in Eq. (3.14) and the expression for 1f  (see section 3.2.2 above) 

in Eq. (3.13), we can write the following formula for the auto covariance: 
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Taking the Fourier transform of the above equation it is clear that the PSD can be written as 

follows: 
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where H(ω) is the PSD of the detector response and )(ω℘ is the Fourier transform 

of
2

2 ),0( if −τ . Before taking the Fourier transform of Eq. (3.8) we note that the two terms in 

the second line of Eq. (3.16) represent a periodic and even function of τ  having period f/1  

and can therefore be expanded into a Fourier cosine series.  
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The constant term cancels with
2

i− . The other terms give a discrete spectrum i.e. a sum of 

delta functions at frequencies fnπ2± whose strength is given by 
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Fourier transformation of the other terms is as usual and finally we get the following 

expression for the PSD 
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(3.20) 

The first term is the usual detector white noise. The second term is a series of discrete lines 

due to the periodic nature of the uncorrelated terms in the Rossi alpha and autocorrelation 
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function and is caused by the periodic source pulses. Such a term is not present in the usual 

PSD method. The third term is the usual response of the reactor to a white noise source and is 

usually sought to determine alpha. The fourth and fifth terms have the same functional form 

as the third but are obtained due to the non-Poisson character of the source. The last term is 

also due to the non-Poisson character of the source and shows the effect of correlations 

between different source pulses. The magnitude of various terms in the above expression 

follows the same pattern as that of the Rossi alpha function. 

Similarly, expressions for cross correlation function and cross power spectral density can be 

derived (Degweker and Rana, 2007). 

3.3 Effect of finite spread of source pulse 

3.3.1 The Rossi alpha formula 

Degweker (2003) has shown that the pulse widths of a source bunch are very short for typical 

RF proton accelerators producing spallation neutrons to be of any consequence in the noise 

characteristics of interest. Nevertheless, there could be situations where this might be 

important. One case is that of an experimental deuteron beam source such as the MUSE 

facility where the width is significant compared to the die away time. For such situations, 

Pazsit et al. (2005) have considered Gaussian and rectangular pulse shapes and used the 

Laplace transform approach to carry out the rather complicated mathematics. For the case of 

Poisson processes, one can use the Bartlett formula with a source intensity which is time 

varying in a periodically pulsed fashion. For non Poisson source events, it is not immediately 

clear how to generalize our approach for delta function pulses to the case of finite pulse 

widths. We treat the neutron source (spallation) events as a doubly stochastic Poisson point 

process and derive an expression for 2f . As regards detailed calculations for obtaining 2f , and 
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/v m  for Gaussian and rectangular pulses, we use a variant of the approach taken by Pazsit et 

al. (2005). 

The pgf for getting one count in a small interval 0τd at time 0 and another τd  at time τ due to 

one neutron at time t in a source free medium is denoted by 1 2( , , )G z z t . Then the required pgf 

is given by  
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The required Rossi alpha function can now be written by differentiating successively with 

respect to 1z and 2z  
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Since Q is symmetric in the interchange of any of its arguments, we can write the above 

functions as follows: 
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where 1ϕ  and 2ϕ are the average source event rate and the two point source event density 

respectively given as usual by.  
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It is fairly easy to show that the first and second derivatives of G are given by (Kitamura et 

al., 2006) 
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Introducing (3.1) in (3.26) and (3.27) we can write 
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where we have written the (deterministic) variation of the current E(t) as a periodic sum of 

narrow pulse shape functions )( ntt −ε around tn . The latter represents the pulse shape 

(obtained by chopping or bunching of the ion current). With the assumption of an 

exponentially correlated process for the current fluctuations, we can rewrite the above 

expressions for 1f  and 2f   as follows:  
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where, 2 2 2I IΓ =< > − < > .  

The main difference between non-Poisson bunches and Poisson bunches had been noted by 

Degweker (2003) and was due to the absence of the mn =  term in the first line of the second 

of the above two equations whereas here we seem to be summing over all values of n  and m .  

To understand this effect, we look at the term representing the correlations between 

fluctuations in current. If β/1  is small compared to time differences within a bunch, we have 

perfectly uncorrelated (i.e. Poisson) statistics of the protons and as such we get the same 

results as those by Pazsit et al. (2005). However, for the opposite case, there is an additional 

contribution to the variance. If we further assume that β/1 is small compared to 1/f, then the 

term is zero for all nm ≠ but is non zero and equal to 2Γ for nm = . This corresponds to the 

situation wherein there is no correlation between successive pulses and was considered by 

Degweker (2003) assuming delta function pulses. Finally, we may have the situation in which 

β/1 is not small compared to f/1 .  

Assuming a finite spread in the protons within a bunch and that the bunches are non-Poisson, 

we evaluate the above integrals for the case of correlation time β/1  being much larger than 

the pulse width but much smaller than 1/f. Evaluations for the other two cases (correlation 

time much smaller than the pulse width and correlation time much larger than the pulse 

width) have also been carried out by us (Degweker and Rana, 2007). 
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Rectangular pulses 

The rectangular pulses are defined by 

( ) /t gε σ=  for 0 t σ< < ; ( ) 0tε =  otherwise 

We assume that the square pulse triggers at time t0 and has a width of σ . The one time 

probability or the count rate is simply given by  

0 0

0 0 0

/0 0 0

1 0 0 0
11/ / 1/

1 1 1t n f t
t t t

d sp
nf t n f f t t

f I g f e dtdt e dtdt e dtdt
σ σσ

α α α

σ

λ ν
σ σ σ

− + +−∞

=− − − −

⎡ ⎤
=< > + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫ ∫ ∫ ∫ ∫ ∫ (3.32) 

Thus the integration over one period gives a factor of α in the denominator: 

1
1

d sp dI g f fmf
λ ν λ
α α

< >
= =        (3.33) 

where 1 pm I gν=< >  is the mean number of neutrons per pulse. For finding the two time 

probability density or Rossi alpha, the integration and summation involved in second line of 

the expression for 2f  [Eq.(3.31)] is similar to the one for 1f  and we get the following 

contribution to 2f .  

2 ( 1) ( 1)
2 2

sp f sp spdI g f e ατν ν ν λ ν νλ
α α

−
⎡ ⎤− −< >

+⎢ ⎥
⎢ ⎥⎣ ⎦

                           (3.34) 

In the first line of expression for 2f [Eq. (3.31)], we have uncorrelated and correlated terms. 

For the first term (uncorrelated), the integrations over 1t , and 2t  factorize. Moreover each of 

these factors which are functions of 0t , are periodic with period f/1 having a phase 

difference of ( )[ ] 1 /f fδ τ τ= + − . We can therefore expand each of the factors in a Fourier 

series. The product is also a Fourier series related to the Fourier series of the individual 

factors. Integration over 0t can then be carried out term by term. We write the two factors as 

0( )G t  and 0( )G t δ+  where 0( )G t is obtained as follows: 
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0( )G t  = 
0

0

/

0 /

1t n f
t

n t n f

e dt
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σ

− +∞

= −
∑ ∫  = 

0
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( 1)
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e e
e

α ασ
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−

   for t0<-σ    (3.35a) 

         =  
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0 0

/ 0

1 /

1 1t n f
t t

n t n f t

e dt e dt
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α α

σ σ
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= −
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( 1) 1 (1 )
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t f
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f

e e e e
e

α ασ α
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αασ ασ

−

−

−
+ −

−
  for 0t σ> −  

 (3.35b) 

Expanding each of these factors (which are functions of t0) in Fourier series we can integrate 

over 0t as follows 

0 0

0 0
2 2 ( )

0 0 0 0
1/ 1/

( ) ( ) i n ft i m f t
n m

n mf f

G t G t dt a a e e dtπ π δδ
∞ ∞

+

=−∞ =−∞− −

+ = ∑ ∑∫ ∫  

                                  0

0
2 ( )2

0
,1/

i ft n mi m f
n m

n mf

a a e e dtππ δ +

−

= ∑∫                                                      (3.36) 

Only terms for nm −=  have a non zero value, and hence, 

0 2
0

0 0 0
11/

2( ) ( ) (2 )n n
nf

aG t G t dt a a cos n f
f f

δ π τ
∞

−
=−

+ = +∑∫                                    (3.37)                        

We can compute the coefficients na , 0a  using Fourier formula & the above expressions for 

0( )G t   

0

0
2

0 0
1/

( )i n ft
n

f

a f e G t dtπ−

−

= ∫         (3.38) 

Integration is straight forward and we get 

n na a− =
2

2 2 2 2

2(1 cos( )
( )

n

n n

f ω σ
σ ω α ω

−
+

, where nω = 2nπf and       (3.39a) 

2
2

0 2

fa
α

=           (3.39b) 

Substituting the values of n na a−  and 2
0a  in Eq. (3.37) and using Eq. (3.31), we get the 

following contribution from the uncorrelated term: 

 
2 2 2 2 2

2
2 2 2 2 2

1

4 (1 cos( )) cos( )
( )

d sp n n

n n n

I g fλ ν α ω σ ω τ σ
α σ ω ω α

∞

=

< > ⎡ ⎤−
+⎢ ⎥+⎣ ⎦

∑                            (3.40) 
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As far as the second term (correlated) is concerned, our assumption about the correlation time 

β/1  being much smaller than f/1 implies that terms for which mn ≠ will give zero 

contribution. For n=m we can set 1exp 21 =−− tt . [Since this case shows no correlations 

between the number of protons (ions) in successive pulses, it will correspond to the results 

obtained earlier by Degweker (2003)]. The contribution of this term can then be written as  

1 2

0
2 ( )2 2

0 1 0 2 0 1
01/

( / ) ( / ) t t
sp d

nf

f dt t t n f t t n f e e dt dtα α τν λ ε ε
∞ ∞∞

−

=− −∞ −∞

Γ − + − +∑∫ ∫ ∫                  (3.41) 

0 0 0 0

1 2 1 2

0 0 0 0

1 2

0 0

/ /0

0 1 2 1 2
12 1/ / / 1/2 2 2

0 0 0
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∫ ∫ ∫

 

2 2 2 2

2

11sp d g f e e
ασ

ατν λ
ασα σ

−
−Γ ⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

                                                                                     (3.42) 

Adding (3.34), (3.40) and (3.42), the final expression for 2f  becomes 
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n n n

sp f sp sp sp dd

I g f
f

g fI g f ee e
ασ

ατ ατ

λ ν α ω σ ω τ
σ

α σ ω ω α

ν ν ν λ ν ν ν λλ
α α ασα σ

∞

=

−
− −

< > ⎡ ⎤−
= +⎢ ⎥+⎣ ⎦

⎡ ⎤− − Γ ⎡ ⎤< > −
+ + + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

∑
       (3.43) 

The Feynman Y function can be obtained (Degweker and Rana, 2007) from the expression 

for 2f  using the relation in Eq. (3.10) and we get:  
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2 2 2 2 2 2
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                          (3.44) 
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Gaussian pulses 

The Gaussian pulses are defined by 

2

2( ) exp
22

g ttε
σπσ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

The pulses are assumed to be centered at 0 /t n f+ and having a width (S.D.)σ . The 

summation is over all integral values of n since even pulses which appear later than 0 (orτ ) 

will have leading edges which lie before these times. 

2
0

2

( )
0 0

2
1 0
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2
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t
d sp

nf

f I g f dt e e dtασλ ν
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Substituting 0u=t-t +n/f   
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    1d sp dI g f m fλ ν λ
α α

< >
= =                                                                                             (3.46) 

Thus the integration over one period gives a factor of α in the denominator. 

For finding Rossi alpha formula we note that the integration involved in second part of the 

expression for 2f  [Eq. (3.31)] is similar to the one for 1f  and gives us the following term 
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                                                                  (3.47) 

The uncorrelated component in the first line of the expression for 2f  [Eq. (3.31)] can be 

written as 

2 2
1 0 2 0

2 21 2
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0 0 0

( )2 2 2 2 2 2
0 1 2
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For solving Eq. (3.48), we again use the Fourier series expansion technique described in 

detail for rectangular pulses. In the present case 

0( )G t  = 

2
0

2
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0

21
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mt t
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e e dtασ

πσ

− +
∞ −
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∑ ∫       (3.49) 

and hence we get for na , the Fourier coefficient 
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Setting 0u=t-t +m/f , we can write 
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Thus,  
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+

, and  
2

2
0 2

fa
α

=       (3.52) 

Substituting n na a− , and 2
0a  in Eq. (3.37) and using Eq. (3.31), we get the following 

contribution: 

22 2 2 2 2 ( )2
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∑         (3.53) 

On making the substitutions fntu /0 +−= 11 tt −=′  and 22 tt −=′ and substituting the Gaussian 

form for the pulse shape function, the correlated component of 2f  [Eq. (3.41)] after slight 

algebraic manipulation becomes 
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2 2 2 2
( )2 21 2 1 2

1 22 2
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1exp ( ) ( )
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∫ ∫ ∫   (3.54) 

Performing the integration over u gives 
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The integrations over 21 , tt ′′  can be carried out using the substitutions 2121 , ttyttx ′−′=′+′=  to 

give 
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The expression can be evaluated in terms of the error function to give 
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  (3.57) 

The final expression for 2f can be obtained by adding (3.47), (3.53) and (3.57) 
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The corresponding Feynman Y function (Degweker and Rana, 2007) is given as 
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3.4 Numerical results  

In Fig. 3.1, we show the variation with the delay time τ of the Rossi alpha function of Eq. 

(3.8). The input parameters roughly correspond to the analysis of the MUSE experiment 

discussed in Ballester and Munoz-Cobo (2005). For spallation, we have taken the TARC 
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experimental conditions as regards to fluctuations, but adjusted the pulsing rate and source 

strength to be the same as for the D–T MUSE experiment. Since measurements of the 

fluctuations of the D+ ion beams are not available, we have assumed for our calculations a 

/ mσ  = 0.01, i.e. 1% (and / mσ  = 0.1, i.e. 10%) fluctuation in the beam current. The three 

sets of graphs in the figure correspond to the casesβ α<< , β α≈  andβ α>> . It is obvious 

that if α  and β  are of about the same magnitude or ifβ α<< , it is likely that noise 

experiments might yield β  which may be mistaken forα ! Only in the caseβ α>> , i.e. 

where the source fluctuations can be treated as white, do we get a variation of the Rossi alpha 

which will give the correct value ofα . 

Finiteness of the pulse width has a smoothening effect on the Rossi alpha function. This is 

illustrated in Fig. 3.2 which shows a comparison of the uncorrelated part of the Rossi alpha 

function. 

3.5 Conclusion 

The finiteness of the pulse width adds small corrections to the delta function based formulae. 

The correlations in the source fluctuations introduce additional terms which could confuse 

interpretation of alpha measurements by the variance method which is likely to suffer most 

from the presence of other sources of fluctuations. The Rossi alpha, correlation and spectral 

density methods might perform better in this case. 
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Figure 3.1: Variation of different terms of the Rossi alpha formula [Eq. (3.8)] withτ . B, C, 

D, and E refer to the second, the third, the fourth and the sum of the second and fourth terms, 

respectively. The three sets of graphs (a)–(c) are forβ α<< , β α≈  andβ α>>  respectively. 
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Figure 3.2: Comparison of the (uncorrelated part) Rossi alpha formula for delta function and 

rectangular shaped pulses. The two are identical except close to an integral multiple of the 

pulse period. In the former we get a sharp cusp whereas for the latter we get a smooth curve 

in these regions. 
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CHAPTER 4 
____________________________________  

Theory of Reactor Noise in ADS with  

Delayed Neutrons  

In this chapter, we extend the theory of reactor noise in ADS by taking delayed neutrons in to 

account. We describe the source using non-Poisson periodic delta function pulses and derive 

formulae for Rossi alpha and Feynman alpha (or variance to mean) by following a method 

based on resultant pgf of counts (Degweker, 2000). The possibility of correlations between 

different pulses is also considered. Numerical results based on the derived formulae are 

presented to illustrate the importance of delayed neutrons in typical experimental conditions.    

An earlier study on the effect of delayed neutrons on ADS (driven by a pulsed source) noise 

characteristics has been performed by Kitamura et al. (2005). This study is based on the use 

of the Bartlett formula which is valid for Poisson sources. The formulation in the present 

chapter, as in our earlier chapter, is different in so far as it applies to non-Poisson sources. In 

section 4.1 we consider the case of un-correlated non-Poisson source pulses. The case of 

correlated pulses is treated in section 4.2.   

4.1 No correlation between different pulses 

4.1.1 The variance to mean ratio (Feynman alpha) formula 

We define ( , )G z t as the pgf of the number of counts in an interval[ ]0,T  , due to one neutron 

at time t . As discussed in section 2.2.3 of chapter 2, if at times nt we get bursts of neutrons 
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having a multiplicity distribution given by ( )ρ ν and if the last of these bursts occurs at time 

0t , we can write the resultant pgf of counts as follows: 

( )( )0 0
01/

, / ,
T

nT f

f F G z t n f T dtρ

∞

=−

−∏∫                                                                                      (4.1) 

where ( )F xρ stands for the pgf of the multiplicity distribution of the number of neutrons 

produced by a proton bunch i.e. of ( )ρ ν . Using this pgf, equations for source induced first 

1( )M and second 2( )M factorial moments of the number of counts in the interval 0 to T can 

be deduced by repeated differentiation with respect to z  and setting 1z = . Thus, we obtain 

( )'
1 1,

T

m fm G t dt
−∞

= ∫                                                                                                              (4.2) 

( )
1 2

2 2
2 1 0 1 0 2 0 1 2

1/

'(1, / ) '(1, / ) "(1, ) ' (1, )
T T

n nT f

M f m G t n f G t n f dt f m G t m G t dt
≠− −∞

= − − + +∑∫ ∫       (4.3)   

where 1m and 2m stand for the first and second factorial moments of the multiplicity 

distribution of neutrons produced by a proton bunch and f is the pulse repetition frequency. 

The variance to mean ratio can be obtained as usual from m and 2M . 

Backward equation for the Green’s function G 

To evaluate m  and 2M , we need to have expressions for ' (1, )G t  and '' (1, )G t . For this 

purpose, the backward equation technique for ( , )G z t [Pal 1958] is utilized. The backward 

equation without delayed neutrons was written down by Degweker (2000). The one with 

delayed neutrons can be derived along the lines given by Pal (1958). The following equation 

is a straight generalization to several groups of delayed neutrons. 

      1( ) ( ( , ), ,... )a c d f N
G G t z f G z t I I
t

λ λ λ χ λ∂
− = − + + +
∂

                                                      (4.4) 
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where       ( ' ) ( )( , ') 'i i

T
t t T t

i i
t

I e G z t dt eμ μμ − − − −= +∫  

1( , ,... )Nf x y y is the pgf 1

1

1 1
, ,...

,... ( , ,... )N

N

mmn
N N

n m m
x y y p n m m∑ ; ( , )ip n m  being the probability of 

finding n neutrons and im delayed neutron precursors of the ith group at time t , μ is 

precursors decay constant of the ith group and ( )tχ is unity in the interval [ ]0,T , and zero 

outside. 

We get the first and second factorial moments by differentiating with respect to z and 

setting 1z = .  
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where, 
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(4.8)             

where the first two terms on the right hand side are referred to as the prompt-prompt, prompt-

delayed correlations, respectively and the last two terms are referred to as delayed-delayed 

correlations.  

If we write ( 1) ( 1) ( 1) 2
i i j ip d d d p d

i i j i i
ν ν ν ν ν ν ν ν ν ν

≠

− = − − − − −∑ ∑∑ ∑  

then 
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S t G G G t e dt G

G t e dt G

G t e dt G t e dt

μ

μ

μμ

ν ν λ ν ν λ μ

ν ν λ μ

ν ν λ μ μ

− −

− −

− −− −

≠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟+ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛
+ ⎜ ⎟⎜

⎝ ⎠⎝

∑ ∫

∑ ∫

∑∑ ∫ ∫ 2'G
⎛ ⎞⎞

−⎜ ⎟⎟⎜ ⎟⎠⎝ ⎠

      (4.9) 

It is clear that all terms other than the first are of order β  or 2β . Since the contribution of 

prompt-delayed and delayed-delayed correlations to the final result is negligible, we consider 

only the first term in the following derivations. 

Therefore, we get  

2
2 ( ') ( 1) 'fS t Gν ν λ= −                                (4.10)   

Both '(1, )G t and ''(1, )G t  obey the final condition '(1, ) ''(1, ) 0G T G T= = . 

Note that the last term in Eq. (4.5) and the last three terms in Eq. (4.6) are the adjoint (or 

backward) equation source terms. The difference between the two equations lies only in these 

source terms and hence both the equations have a common Green’s function given by  

                                                      ( ')j t t
j

j

A eα −∑                                                                (4.11a) 

where jα  are roots of the inhour equation, 

                                          0i

i i

p
p
β ρ
λ

⎛ ⎞
Λ + − =⎜ ⎟+⎝ ⎠
∑                                                 (4.11b) 

and ( 1) /eff effk kρ = −  and / effl kΛ =  is the generation time.  

If we define ' /j jA A= Λ , we note that the left side of Eq. (4.11b) is the inverse of the zero 

power transfer function ( )G s  and '
iA  are the residues of the transfer function i.e.  

                                              
'

( ) i

i i

AG s
s α

=
+∑             (4.11c) 



85 
 

where 

                                             1
( )

i

i i

s
G s s

β ρ
λ

⎛ ⎞
= Λ + −⎜ ⎟+⎝ ⎠

∑            (4.11d) 

From Eq. (4.11c), '(0) /i i
i

G A α=∑ . Also, from Eq. (4.11d), (0) 1/G ρ= − . Combining these 

two relations yields  

               
'

1/i

i i

A ρ
α

= −∑             (4.11e) 

Hence it is possible to write the solutions of Eqs. (4.5) and (4.6) as follows 

                                    [ ]( ')'(1, ) ( ') 'j

T
t t

j d
j t

G t A e t dtα λ χ−=∑ ∫                                          (4.12) 

                                     ( ')
2''(1, ) ( ') 'j

T
t t

j
j t

G t A e S t dtα −=∑ ∫                                               (4.13) 

Solving the integral in Eq. (4.12), the result can be shown to be 

( )'(1, ) 1j jt Tj
d

j j

A
G t e eα αλ

α
−= −∑  for 0t <  

            ( )( )1 j T tj
d

j j

A
e αλ

α
− −= −∑   for 0 t T< <  

        0=                                                                                                                      (4.14) 

We will not solve the integral in Eq. (4.13) because the future derivations will not require it. 

The Feynman alpha formula 

Having written down expressions for the first and second moments of the single neutron pgf 

'G and "G , we now proceed to evaluate the expressions for the source induced moments 

given by (4.2) and (4.3). 

The average number of counts in the interval [0, ]T , or the (source induced) first moment can 

be written down using Eq. (4.2) and the solution of Eq. (4.5) given above. 
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1 '(1, , )
T

m fm G t T dt
−∞

= ∫  

      ( ) ( )
0

( )
1

0

1 1j j j

T
t T T tj j

d d
j jj j

A A
fm e e dt e dtα α αλ λ

α α
− − −

−∞

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∫ ∫  

      1
j

d
j j

A
fm Tλ

α
= ∑                                                                                                  (4.15) 

Therefore the average count rate is given by 

1 1( ) j
d

j j

A
f t fm λ

α
= ∑                             (4.16) 

This expression is similar to the one without delayed neutrons that was obtained in chapter 3. 

Before evaluating Eq. (4.3), we make a slight change in it to simplify further calculations. 

The double summation in the first term excludes 1 2n n= . However, we include this term and 

subtract it from the second term in Eq. (4.3). With this change, we can rewrite the expression 

for  2M  given by Eq. (4.3) as a sum of three terms: 

2
2 2

1 2 1 1 0 0
1/

"(1, ) ( ) ( '(1, )) '(1, / )
T T T

nT f

fm G t dt f m m G t dt f m G t n f dt
−∞ −∞ −

⎡ ⎤
+ − + −⎢ ⎥⎣ ⎦

∑∫ ∫ ∫               (4.17) 

The three terms in the above expression will be denoted by[ ]I , [ ]II and [ ]III respectively.                        

( ')
1 1 2[ ] "(1, ) ' ( ')

T T T
t t

j
jt

I fm G t dt fm dt dt A e S tα −

−∞ −∞

= = ∑∫ ∫ ∫       (4.18) 

Interchanging the order of integration, we have 

1 1 2[ ] "(1, ) ( ') '
T T

j

j j

A
I fm G t dt fm S t dt

α−∞ −∞

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫ ∫  

 ( ) ( )
2 20

' ( ')
1

0

( 1) 1 ' 1 'j j j

T
t T T tj j j

f d d
j j jj j j

A A A
fm e e dt e dtα α αν ν λ λ λ

α α α
− − −

−∞

⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎡ ⎤
⎜ ⎟= − − + −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑ ∑∫ ∫  
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2
1

1 1 2( 1)
k i i kT T T T

j i k
f d

j i kj i k k i i k

A A A e e e efm T
α α α α

ν ν λ λ
α α α α α α α

− − − −⎛ ⎞ ⎡ ⎤− − − −
= − − − +⎜ ⎟ ⎢ ⎥⎜ ⎟ +⎣ ⎦⎝ ⎠

∑ ∑∑          (4.19) 

The above expression can be written in a form given by Williams (1974) 

[ ]I =
2 2

1
11

iT
j

f d i
j ij i

A efm T Y
T

α

λ ν λ
α α

−⎛ ⎞ ⎛ ⎞−
−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑                                                                (4.20a) 

where we have introduced the notation iY for 

2

( )( 1)2
( )

i i
i

i

AGY αν ν
αν

−
=         (4.20b)          

( ) ( )

2 2
2 1

2 20
( )2

2 1
0

[ ] ( ) ( '(1, ))

( ) 1 1j j j

T

T
t T T tj j

d d
j jj j

II f m m G t dt

A A
f m m e e dt e dtα α αλ λ

α α

−∞
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−∞

= −

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟= − − + −⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∫

∑ ∑∫ ∫
 

      2 2
2 1

1 1 2( )
( )

j jk kT TT T
j k

d
j k j k j k j k

A A e e e ef m m T
α αα α

λ
α α α α α α

− −− −⎛ ⎞− − − −
= − − − −⎜ ⎟⎜ ⎟+⎝ ⎠

∑∑                     (4.21)       

As in Eq. (4.20a), this expression can be written in terms of iY as follows: 

22 2
2 1( ) 1[ ] 1

( 1)

iT
d

i
i i

f m m T eII Y
T

αν λ
αν ν

−⎛ ⎞− −
= −⎜ ⎟

− ⎝ ⎠
∑                                                                      (4.22) 
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1 0 0
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nT f

III f m G t n f dt
−

⎡ ⎤
= −⎢ ⎥⎣ ⎦

∑∫               (4.23) 

If 0t is between –1/f and 0, then 

For 0t <  

0'(1, / )
n

G t n f−∑ ( ) 0( / )

0

1 j jT t n fj
d

j nj

A
e eα αλ

α

∞
− −

=

= −∑ ∑  

                             
( ) ( )0
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1

1
j j

j

t Tj d
f

j j

A
e e

e
α α

α

λ

α
−

−
= −

−
∑                (4.24) 
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For 00 /t n f T< − < , 
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Thus,  
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(4.27b)                       

This expression, as earlier, can be written in terms of iY as follows: 
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                 (4.28) 

Now, since variance to mean ratio 2v 1 M m
m m
= + − , from Eqs. (4.20a), (4.22) and (4.28), the 

final expression for variance to mean ratio can be written as follows 
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f

⎡ ⎤
⎢ ⎥
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Replacing jA by '
jA  and employing Eq. (4.11e), the final expression for v

m
 becomes 
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where we have used the relations d fλ ελ=  and 1

fνλ
= Λ  

Also we have redefined iY  as  

                                    
'

2

( )( 1)2
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i i
i

i

AGY αν νε
αν

−
=  

In the above expression, first part of the first term represents the usual uncorrelated 

component and the second part represents the correlated component. The second and third 

terms are oscillating in nature and appear due to the periodicity of the source. 

It can be seen that the correlated terms have the same form as described by Williams (1974). 

The correlated term is different from that for a random source in that it contains the 

term 2
2 1m m−  rather than 2m . The subtraction of the square of 1m reduces the correlated 

component of the noise. This reduction may be ascribed to the regularity of the source pulses. 

If there are no delayed neutrons, summations are removed, 1 ,i k i kA A α α α= = = =  and iY are 

replaced by 2 2

( 1)ν ν

ν α

−  

Thus the expression for variance to mean ratio without delayed neutrons becomes               
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          (4.31) 

Where we have used 1 ( 1) / 2fY λ ν ν α= −  

Thus, in the absence of delayed neutrons, the expression for variance to mean ratio reduces to 

the form derived earlier by Degweker (2003), as it should.                       

In Appendix I, we have derived expression for the v/m  ratio taking into account the terms 

involving prompt-delayed and delayed–delayed neutron correlations. There are six additional 

terms in the variance formulae having a functional variation with time similar to the usual 

variance formula, corresponding to the six precursor decay constants. 

4.1.2 The two time probability density (Rossi alpha) formula 

We introduce the pgf 1 2( , , )G z z t of detecting counts in a short interval around time 0 and 

counts in a short interval around time τ due to one neutron at time t . This obeys the backward 

equation. The Rossi-alpha formula can be derived by introducing the Master equation 

technique for 1 2( , , )G z z t [Kitamura et al., 2005]. 
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where 

( ' ) ( )( , ') 'i it t t
i i

t

I e G z t dt e
τ

μ μ τμ − − − −= +∫  

     1( ) 1tχ = , in an interval 0dt around 0t =  

and  

    2 ( ) 1tχ = , in an interval dτ around t τ=  
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Since the short interval is infinitesimal, we only consider the possibility that there are either 0 

or 1 counts in these intervals. 

We get the first and second factorial moments by differentiating with respect to z1and z2 and 

setting 1 1z =  and 2 1z = respectively.  
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            (4.34b) 

As described earlier, neglecting the prompt-delayed and delayed-delayed correlations 

1 22 ( ') ( 1) p f z zS t G Gν ν λ= −  

The solution of (4.33) can be shown to be  
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To get the source induced moments, we simply replace Eq. (4.1) with the following 
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01/

, , / ,
nf

f F G z z t n f T dt
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ρ
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∞

=−

−∏∫  

On differentiating with respect to z1 and z2 and setting z1=z2=1, we get the following 

expression for the Rossi alpha 
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   (4.35) 

The three terms that are required to be evaluated for calculating the (source induced) second 

moment become 
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From Eq. (4.35), 
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 From Eq. (4.35), 
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From Eqs. (4.36), (4.37) and (4.38), the final expression for Rossi-alpha with delayed 

neutrons becomes 

( ) ( )

22 2
2 1

2 1

2
( [ ]/ ) ( ([ ] 1)/ )2 2

1 /

( )
2 ( 1)

2 ( 1) 1

i

i i

i

jd
i i f

i j j

f f f fi i
d f

i

Af m mf Y e m

Yfm e e
e

α τ

α τ τ α τ τ
α

λ ν α λ
α ν ν

αν λ
ν ν

−

− − − +
−

⎡ ⎤⎛ ⎞ −
= +⎢ ⎥⎜ ⎟⎜ ⎟ −⎢ ⎥⎝ ⎠⎣ ⎦

+ +
− −

∑ ∑

∑
                                          (4.39) 

Replacing jA by '
jA  and employing Eq. (4.11e), the final expression for Rossi Alpha 

becomes 
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Again, as in the case of variance to mean ratio, we have the term 2
2 1m m− , arising due to non-

Poisson character of the source, and the oscillating terms due to the periodic nature of the 

source. 
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If there are no delayed neutrons, the above expression reduces to 
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                      (4.41) 

Thus, we see that the Rossi alpha expression (4.39) reduces to the form derived earlier by 

Degweker (2003). 

In Appendix II, we have derived expression Rossi alpha taking into account the terms 

involving prompt-delayed and delayed–delayed neutron correlations. It appears from these 

formulae that in the Rossi-alpha formula, in addition to the well known exponentials with 

decay constants given by the roots of the inhour equation, there are six other exponentials 

corresponding to the six delayed neutron precursor decay constants.  

4.1.3 Numerical Results 

We have done calculations of the Feynman alpha and Rossi alpha for typical ADS 

experimental parameters given in Table 4.1.  

Figs. 4.1-4.3 show the variation of v/m  with the length of the counting interval. Fig. 4.1(a) 

shows the results on prompt neutron time scale while Fig. 4.1(b) shows the results on the 

delayed neutron time scale. On the latter scale, we see a prompt jump followed by a slower 

rise. From these graphs it can be seen that the contribution of delayed neutrons is significant.  

Fig 4.1(c) shows the contribution due to source correlations. The magnitude of this term is 

small compared to that due to fission chain correlations for the parameters assumed and the 

level of sub-criticality. However, under different circumstances, this could become large and 
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even the dominant contributor to the Feynman Y function. Fig. 4.1(d) represents the 

contribution of the oscillatory term due to the periodicity of the source. 

The same sets of graphs are shown in Fig. 4.2 but with a prompt neutron lifetime of about 1 

ms, typical of a heavy water reactor.  The important point to note is that the prompt and 

delayed neutron time scales overlap; they are not distinctly separated like in case of Fig. 4.1. 

As a result we do not see a sharp prompt jump in the v/m on delayed neutron time scales. The 

significance of this is that in trying to extract alpha from a plot of v/m or Y versus counting 

interval, it is necessary to include corrections due to delayed neutron terms. The four sets of 

graphs in Fig 4.3 again correspond to the case of a heavy water reactor but with lower level 

of sub-criticality. Here once again the two time scales overlap and the important point to note 

is that the magnitude of  v/m  is more as it should be.  

In Figs. 4.4-4.6, we show for different sets of parameters listed in table 4.1, the magnitude of 

various terms of the Rossi Alpha formula with delay time. An interesting feature is that a plot 

of the logarithm of the correlated term with time separation results in two sharply defined 

lines for the light water case where the prompt and delayed time scales are well separated but 

for the heavy water case, there is a smooth transition from the prompt to the delayed region. 

It can be seen from Fig. 4.4(c) that in this particular case, the magnitude of the term arising 

due to source correlations is very small compared to other terms which is why the 

contribution of this term appears negligible when plotted along with other terms (see Figs. 

4.4(a), 4.5(a), and 4.6(a)).  

4.2 Correlation between different pulses 

4.2.1 The two time probability density (Rossi alpha) formula 

The counting gate system assumed for deriving the Rossi alpha formula is shown in Figure 

4.7. If at times nt  we get bursts of neutrons having a multiplicity distribution given 



97 
 

by 1 2( , ,..., )Nρ ν ν ν and if the last of these bursts occurs at time 0t , we can write the resultant 

pgf of counts, to get the source induced moments, as follows: 
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On differentiating w.r.t. z1 and z2 and setting z1=z2=1 we get the following expression for the 

Rossi alpha 
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where 2Γ  is the variance of the number of neutrons produced in a pulse and ς  is the decay 

constant of the source correlations.                           

The 1 2n n≠ term can be written as  
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First summation in the above equation, can be written as 
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Changing order of summation in the first summation, we can write 
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In first of the above summations, substituting 1 2n n m= +  and in the second one 2 1n n m= + , 

we get 
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Thus from Eq. (4.43), the 1 2n n≠ term becomes 
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Substituting this in Eq. (4.42), the expression for Rossi alpha becomes 
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The first, second and fifth terms have been solved in section 4.1.2 and are as follows 
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where we have used 
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( )G s  is zero power transfer function and iA  are the residues of the transfer function i.e.  
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The third term in Eq. (4.44) can be written as  
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>  and keeping in mind the fact that 
1
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second term in the above expression is split in two parts and the final form of the third term 

in Eq. (4.44) becomes 
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Similarly, the fourth term in Eq. (4.44) can be written as 
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Substituting Eq. (4.45)-(4.49) in Eq. (4.44) and simplifying, we get the following expression 

for Rossi-alpha  
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The first term has two parts one coming from the source multiplicity and the second due to 

the chain multiplication. The second term is the uncorrelated term i.e. coming from two 

neutrons unrelated to one another. It however has a periodic character rather than the usual 

constant form due to the periodicity of the source. The presence of the last term is due to 

correlations in the source fluctuations. For ς  >> f, i.e., for correlation times which are short 

compared to the time between successive neutron pulses, this term vanishes and the formula 

reduces to that derived in section 4.1.2. 

If there are no delayed neutrons, summations are removed, 1 ,i k i kA A α α α= = = =  and iY are 

replaced by 2 2

( 1)ν ν

ν α

−  

Thus the expression for Rossi-alpha without delayed neutrons becomes 
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   (4.51) 

where αννλ 2/)1(1 −= fY . 

Thus, in absence of delayed neutrons, the expression for the Rossi-alpha reduces to the form 

[Eq. (3.8)] derived in chapter 3, as it should. 

4.2.2 The variance to mean ratio (Feynman alpha) formula 

The expression for the variance to mean ratio (the counting gate system is shown in Figure 

4.10) is derived as usual by integration of the expression for Rossi alpha [Eq. (4.50)], as 

follows: 

2
0

v 21 ( ) (0, )
T

m T f d
m m

τ τ τ= − + −∫                                                                                        (4.52) 

where m is average number of counts in the interval[0, ]T , or the (source-induced) first 

moment and, as described in section 4.1.1, is given as 

1
j

d
j j

A
m fm Tλ

α
= ∑                                                                                                              (4.53) 

The integration is somewhat tricky since 2f  is a piecewise continuous function and has to be 

handled by breaking the range into periods of size1/ f . All the terms of the Feynman formula 

will be same as in our previous paper but for the term arising due to source correlations i.e. 

the 2Γ  term of 2f . 

As discussed in section 4.1.1 earlier, the contribution of first two terms of 2f  to the Feynman 

formula is as follows:   
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Let us consider the 2Γ  term of 2f i.e.  
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The integration of the first term is straightforward and gives the following contribution 

to v/m : 
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                           (4.56) 

For integrating the second term in Eq. (4.55), we break the integration range as follows 

/[ ]

2 2
1 ( 1) / [ ]/

( ) (0, ) ( ) (0, )
m f TfT

m m f fT f

T f d T f dτ τ τ τ τ τ
= −

− + −∑ ∫ ∫  

Integration leads to the following contribution to the Feynman formula 
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(4.57)        

From Eq. (4.54), (4.56) and (4.57), the final expression for the Feynman formula becomes       



104 
 

( )

2
2 1

1

2

( ) /2
1

( ) / ( ) /

1

2

1

( )
( 1) ( / )

v 11 1 1
1 1

( 1) /

[ ]1 2[ ] [ ] 1

i

i

i i

f
j j

T j
d

fi
i i

f f

j j
j

j
d

j j

m mm
A

eY em m T
e e

A

fTfT fTA
fTm

fT

m

α

α ς

α ς α ς

λ
ν ν α

ν λ
α

ν ν α

λ
α

ν

−

− +

− + − −

⎡ ⎤−
+⎢ ⎥−⎢ ⎥

⎛ ⎞ ⎢ ⎥−
= + −⎜ ⎟ ⎢ ⎥⎛ ⎞Γ⎝ ⎠ + −⎢ ⎥⎜ ⎟− −⎛ ⎞ ⎝ ⎠⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ + − +⎢ ⎥+ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ −⎢ ⎥⎣ ⎦

+

∑
∑

∑

∑

( )

( )( )

( [ ]/ ) ( ([ ] 1) / ) /

/

/ / [ ]/

/

( ) /
/

( ) /

2 2

1

1
( 1) ( / ) 1

1 1 1
1

1
(1 )

( 1) /

i i i

i

i i

i
i

i

T fT f T fT f f
d i

f
i ij j

j

f f fT f
i

f
i

f
f

f

d
i

i
j j

j

Y e e e
A T e

T e e e
f e

e e
e f

Y
m T A

α α α

α

α α ς

ς

α ς
α

α ς

λ
αν ν α

α

α

λ ν

ν ν α

− − − + −

−

−

−

− +

− +

⎡ ⎤+ − −⎢ ⎥
− −⎢ ⎥⎣ ⎦

⎛ ⎞+ − ⎛ ⎞−⎜ ⎟− ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

−
−−

Γ
+

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

∑∑

∑
∑

( )
( )

( ) ( ){ }
( )( )

/ [ ]/ [ ]/

2 //

[ ]/
[ ]/

/ / [ ]/

( ) /

1 [ ]
11

1 [ ] /

1 1 1
1

1
(1 )

i

i i

i

f fT f fT f

ff

fT f
T fT f

i
i

f f fT f
i

i

f

e e fT e
ee

e e T fT f

T e e e
f e

e

ς ς ς

ςς

ς
α

α α ς

ς

α ς

α
α

α

α

− − −

−−

−
−

− − −

−

− −

⎡ ⎤⎧ ⎫
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎛ ⎞−⎪ ⎪⎛ ⎞⎢ ⎥⎜ ⎟−⎪ ⎪⎜ ⎟⎢ ⎥⎜ ⎟−⎝ ⎠ −⎪ ⎪⎝ ⎠⎢ ⎥⎩ ⎭
⎢ ⎥
⎢ ⎥+ − − −
⎢ ⎥⎣ ⎦

⎛ ⎞− − −⎜ ⎟+
⎜ ⎟ −⎝ ⎠

+
−

( )
( )

( ) ( )( ){ }

/

/ [ ]// [ ]/

2 //

[ ]/
[ ]/

11 [ ]
11

[ ] / 1

i

i

f

f fT ff fT f

ff

fT f
T fT f

i
i

e ee fT e
f ee

e T fT f e

ς ςα ς

ςς

ς
αα

α

− −− −

−−

−
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎡ ⎤⎥⎧ ⎫⎛ ⎞⎢ ⎢ ⎥⎥⎪ ⎪⎜ ⎟⎢ ⎢ ⎥⎥⎪ ⎪⎝ ⎠⎪ ⎪⎢ ⎢ ⎥⎥⎨ ⎬⎢ ⎢ ⎥⎥⎛ ⎞−⎪ ⎪⎛ ⎞−⎢ ⎢ ⎥⎥⎜ ⎟− −⎪ ⎪⎜ ⎟⎢ ⎢ ⎥⎥⎜ ⎟−⎝ ⎠ −⎪ ⎪⎝ ⎠⎢ ⎢ ⎥⎩ ⎭
⎢ ⎢ ⎥
⎢ ⎢ ⎥+ − − −
⎢ ⎢ ⎥⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥

                                                                                                                        (4.58) 

If there are no delayed neutrons, summations are removed, 1 ,i k i kA A α α α= = = =  and iY are 

replaced by 2 2

( 1)ν ν

ν α

−  

Thus, the expression for Feynman formula without delayed neutrons becomes 
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Thus, in the absence of delayed neutrons, the expression for the Feynman formula reduces to 

the form [Eq. (3.11)] derived in chapter 3, as it should. 

4.2.3 Numerical results 

We show in Figs. 4.8 and 4.9 the variation with the delay time τ of the Rossi alpha function 

for light water and heavy water systems respectively. The parameters used to plot Figure 4.8 

are taken from Kitamura et al. (2006) and are given in set 1 of table-4.2. The parameters 

2
2 1m m−  and 2Γ  (defined as 2 2

2 1 1m m mΓ = − + ) are evaluated by considering fluctuations in 

ion current. Here in all the cases, current fluctuations are about 1%.  It can be seen from the 

figure that Rossi alpha function oscillates with time and has a decaying part in the beginning 

which later on becomes non-decaying. Since strength of the external source is very small, 

source fluctuations are close to Poisson and hence have negligible contribution.  

Figs. 4.9(a), 4.9(b) and 4.9(c) correspond to three different cases viz.  ς <<α, ς  ~ α and 

ς >>α respectively. The assumed parameters, corresponding to a typical heavy water system, 

are listed under set 2 in Table 4.2. The source characteristics correspond to a typical D-T 
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source (Soule et al., 2004). Figs. 4.9(a) and 4.9(b) show that if ς ~α or ς  << α, it is likely 

that noise Experiments might yield ς  which may be mistaken for α! Only in the case of 

ς >>α i.e. where source fluctuations can be treated as white do we get Rossi Alpha which 

will give correct α..  

Fig. 4.9(d) shows the contribution to Rossi alpha due to correlations in the source fluctuations 

and that due to source multiplicity plus fission chain. From the figure it can be seen that if we 

have heavy water systems, correlations in the source fluctuations will be particularly 

important if their correlation time is comparable or larger than that of prompt neutrons. For 

short correlation times this effect is not important.   

Figs. 4.11(a) and 4.11(b) show variation of total and different terms of the /v m  formula with 

the length of the counting interval on prompt and delayed neutron lifetime scales 

respectively. The parameters used to plot the graphs are listed under set 1 of Table 4.2 and 

correspond to a typical light water system. From Figure 4.11(a), it is seen that the /v m  

appears to saturate and hence use of formula with only prompt neutrons may be adequate for 

analyzing the experimental results. In Figure 4.11(b), the contribution of delayed neutrons is 

however seen.  

Figs. 4.12(a) and 4.12(b) show variation of total and different terms of the v/m formula with 

the length of the counting interval on prompt and delayed neutron lifetime scales 

respectively. The parameters used to plot the graphs are listed under set 3 of Table 4.2 and 

correspond to a typical heavy water system. From the Fig. 4.12(b) it can be seen that, unlike 

Fig. 4.11(b), the prompt and delayed neutron lifetime scales are not distinctly separable. Thus 

if one tries to extract alpha from a plot of /v m  versus counting interval, it is necessary to 

include corrections due to delayed neutron terms.   
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4.3 Conclusion 

The importance of the delayed neutron contributions will be most clearly felt in those 

situations where the prompt and delayed time scales are not very distinct and the formulae 

derived by us would serve as corrections even on prompt neutron time scales. While the 

periodic variation with the period of the driving source is similar to that obtained by other 

authors, the source correlation term has a different magnitude. This is due to the non-Poisson 

character of the source.  

If correlation (between the number of neutrons emitted in different pulses) times are greater 

than or of the order of the prompt neutron decay times, it will be difficult to use methods such 

as Rossi alpha. It is therefore important to study the current fluctuation statistics of ion beams 

from accelerators, either theoretically or experimentally.  
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Table 4.1: Numerical parameters used to plot Figures (4.1) through (4.6) 

 
Values 

 

 
 
 
Parameters  

Set 1 
Light water system 

 

 
Set 2 

Heavy water system 

 
Set 3 

Heavy water system 

 

dλ  

fλ  

1α  

2α  

1A  

2A  

ν〈 〉  

( 1)ν ν〈 − 〉  

1m  

2m  

f  

Λ  
 

β  

λ  
ρ  

 

 

 3.3485X102 

 

 2.1686X104 

 

 1.4438X103 

 

 6.0676X10-2 

 

 5.3650X104 

 

 0.7181 
 

 2.4740 
 

 4.8965 
 

 5.0000X101 

 

 3.0040X101 

 

 5.0000X102 

 

 1.8639X10-5 

 

 6.500010-3 

 0.0800 

-0.0204 

 

 6.1164 
 

 3.9612X102 

 

 2.1066X101 

 

 1.2106 
 

 9.7682X102 

 

 3.17852 
 

 2.4740 
 

 4.8965 
 

 5.0000X101 

 

 3.0040X101 

 

 7.0000 
 

 1.0204X10-3 

 1.0200X10-3 

 1.2750 

-0.0204 

 

 6.1788 
 

 4.0016X102 

 

 1.1139X101 

 

1.1445 
 

 9.7707X102 

 

 1.2928X101 

 

 2.4740 
 

 4.8965 
 

 5.0000X101 

 

 3.0040X101 

 

 7.0000 
 

 1.0101X10-3 

 1.0200X10-3 

 1.2750 

-0.0101 
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Table 4.2: Numerical parameters used to plot Figures (4.8), (4.9), (4.11) and 4.12) 

 
Values 

 

 
 
 
Parameters  

Set 1 
Light water system 

 

 
Set 2 

Heavy water system 

 
Set 3 

Heavy water system 

 

dλ  

fλ  

1α  

2α  

1A  

2A  

ν  

( 1)ν ν −  

1m  

2
2 1m m−  

2Γ  

f  

Λ  
 

β  

λ  
ρ  

 

 

334.85 

 

21686 

 

1566.3 
 

0.0608 

 

53762.8 
 

0.66 
 

2.4740 
 

4.8965 
 

50.0 

 

0.25 

 

50.25 

500.0 

 

1.86X10-5 

 

7.0X10-3 

0.08 

-0.02213 

 

6.24 

 

404.2 

 

29.149 

 

0.061 

 

999.338 

 

0.662 
 

2.4740 
 

4.8965 
 

3.0X106 

 

9.0X108 

 

9.03X108 

10.0 

 

1.0X10-3 

 

7.0X10-3 

0.08 

-0.02213 

 

6.24 

 

404.2 

 

29.149 

 

0.061 

 

999.338 

 

0.662 
 

2.4740 
 

4.8965 
 

3.0X106 

 

9.0X108 

 

9.03X108 

500.0 

 

1.0X10-3 

 

7.0X10-3 

0.08 

-0.02213 
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Appendix I 

Additional terms in the Feynman alpha formula due to prompt-delayed and delayed-

delayed correlations 

In the main text we had evaluated only the first term in the integral for obtaining the source 

induced second moment  

1 2[ ] ( )
T

j

j j

A
I fm S t dt

α −∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫  

where 

( ' )2
2

2

( ' ) 2

( ' )( ' )

( ) ( 1) ' 2 ' '(1, ') ' '

( 1) '(1, ') ' '
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i
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i

ji

i j

T
t t

f p d f i
i t

T
t t

d f i
i t

T T
t tt t

d d f i j
i j i t t

S t G G G t e dt G

G t e dt G

G t e dt G t e dt

μ

μ

μμ

ν ν λ ν ν λ μ

ν ν λ μ

ν ν λ μ μ

− −

− −

− −− −

≠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟+ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
+ ⎜ ⎟⎜

⎝ ⎠⎝

∑ ∫

∑ ∫

∑∑ ∫ ∫ 2'G
⎛ ⎞

−⎜ ⎟⎟⎜ ⎟⎠⎝ ⎠

           (A.1) 

For evaluating the integral over the source for the other three terms we must first obtain 

( ' )'(1, ') 'i

T
t t

i
t

I G t e dtμμ − −= ∫                  (A.2) 

Instead of using explicitly the form (4.14) we use the form (4.12) and write the above integral 

as 

[ ]
'

( ' '')( ' ) ' ( '') ''ji

T T
t tt t

i j d
jt t

I e dt A e t dtαμμ λ χ−− −= ∑∫ ∫               (A.3) 

Interchanging the order of integration makes the evaluation easier and we finally obtain 

( ) ( )( ) 1 1
( ) ( )

j ji i t Tj j it T
d d

j jj i j j i

A A
I t e e e eα αμ μ μ

λ λ
α μ α α μ

−−= − − −
− −∑ ∑  for 0t <           (A.4) 

        ( ) ( )( )( )1 1
( ) ( )

ji T tj j iT t
d d

j jj i j j i

A A
e e αμ μ

λ λ
α μ α α μ

− −− −= − − −
− −∑ ∑   for 0 t T< <  
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Due to the formal similarity between (4.14) and expression (A.4) for ( )I t , the evaluation of 

the integral over the source becomes easier. With a little algebraic manipulation it is possible 

to write the combined contribution of all the above source terms to the variance as follows 

2 21 1( ) 1 ( ) 1
i lT T

pp pd dd pd dd
d f i i i d f l l

i li l

e eY Y Y Z Z
T T

α μ

λ λ ν λ λ ν
α μ

− −⎛ ⎞ ⎛ ⎞− −
− − − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑            (A.5) 

where 

2

( )( 1)2
( )

pp i i
i

i

A G
Y

αν ν
αν

−
= , 

 
2

2 2 2

( )4
( )

p dl l i ipd
i

l i i l

A G
Y

ν ν μ α
α α μν

=
−∑ , 

 
2

2 2
, , ,

( 1) )( )2 2
( )( ) ( )( )( )

dk dk k i jdd dk dl k l i i
i

j k l j ki k i l i i k i j i k i

A AA G
Y

ν ν μν ν μ μ α
α μ α μ α α μ α α α μ αν ν

−
= +

+ − − + +∑ ∑ , 

2

2 ( ) ( )pd
i p dl l lZ G Gν ν μ μ

ν
= − , 

and 

2 2

( 1)2 2( ) ( ) ( ) ( )
( ) 2

dd dk dl k dk dk
i l l l l

k kk l

Z G G G G
ν ν μ ν ν

μ μ μ μ
μ μν ν

−
= − + −

+∑ ∑ . 

The expression (A.5) should replace the term due to induced fission chain correlations (first 

term) of Eq. (4.29)  

Appendix II 

Additional terms in the Rossi alpha formula due to prompt-delayed and delayed-

delayed correlations 

In this case since the
1z

G and 
2zG  are simpler, the evaluation of various contributions is more 

straightforward. In addition to the prompt-prompt correlation term given in the main text, we 

get the following terms which must be added to the RHS of Eq. (4.39) 
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Fig. 4.1 Variation of different terms of the v/m  formula with the length of the counting 

interval. The parameters used to plot the graphs are listed under set 1 in table 4.1.  (a) Fission 

chain contribution on prompt neutron lifetime scale; (b) Fission chain contribution on delayed 

neutron lifetime scale; the contribution of delayed neutrons is to be noticed; (c) Contribution 

due to source correlations; (d) Oscillatory term due to the periodicity of the source. 
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Fig. 4.2 Variation of different terms of the v/m  formula with the length of the counting 

interval. The parameters used to plot the graphs are listed under set 2 in table 4.1. (a) Fission 

chain contribution on prompt neutron lifetime scale; (b) Fission chain contribution on delayed 

neutron lifetime scale; this being a heavy water reactor case, the two scales can be seen 

overlapping; (c) Contribution due to source correlations; (d) Oscillatory term due to the 

periodicity of the source 
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Fig. 4.3 Variation of different terms of the v/m  formula with the length of the counting 

interval. The parameters used to plot the graphs are listed under set 3 in table 4.1. (a) Fission 

chain contribution on prompt neutron lifetime scale; (b) Fission chain contribution on delayed 

neutron lifetime scale; again this being a heavy water reactor case, the two scales can be seen 

overlapping, also the magnitude is more than that in Fig. 2 because of lesser sub-criticality 

level; (c) Contribution due to source correlations; (d) Oscillatory term due to the periodicity 

of the source 
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Fig. 4.4 Variation of different terms of the Rossi Alpha formula with delay time. The 

parameters used to plot the graphs are listed under set 1 in table 4.1. (a) on prompt neutron 

lifetime scale; (b) on delayed neutron lifetime scale; (c) term arising due to source 

correlations. 
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Fig. 4.5 Variation of different terms of the Rossi Alpha formula with delay time. The 

parameters used to plot the graphs are listed under set 2 in table 4.1. (a) on prompt neutron 

lifetime scale; (b) on delayed neutron lifetime scale. 

 

             

Fig. 4.6 Variation of different terms of the Rossi Alpha formula with delay time. The 

parameters used to plot the graphs are listed under set 3 in table 4.1. (a) on prompt neutron 

lifetime scale; (b) on delayed neutron lifetime scale. 
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Fig. 4.7: Counting gate system for Rossi alpha measurements. The first count occurs in the 

interval dt around 0t =  and the second in the interval dτ around t τ= . The last source pulse 

that contributes to the counts occurs at 0t  and the ones prior to this will occur at 0 1/t f− , 

0 2 /t f− , … etc. 0t  is a random variable and has equal probability of occurrence between 

1/ fτ − , τ . Correspondingly, the earlier pulse will lie between 2 / fτ −  and 1/ fτ −  and so 

on. 

 

Fig. 4.8: Variation of different terms of the Rossi alpha formula (Eq. 4.50) withτ on prompt 

neutron lifetime scale. The parameters used to plot the graphs are listed under set 1 in Table 

4.2 corresponding to light water systems.  Also shown is the Rossi alpha function oscillates 

with time and has a decaying part in the beginning which later on becomes non-decaying. 

The correlated component (due to fission chain, source multiplicity and correlations in the 

source fluctuations) of Rossi alpha function falls exponentially. The contribution of the fourth 

term of the Rossi alpha function i.e. oscillating part of the term arising due to correlations in 

the source fluctuations is rather small to be significant in this case. 
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Fig. 4.9: Variation of different terms of the Rossi alpha formula withτ . The graphs a-c are 

for ς <<α, ς ~α and ς >>α respectively.  If ς ~α or ς  << α, it is likely that noise experiments 

might yield ς  which may be mistaken for α! Only in the case of ς >>α i.e. where source 

fluctuations can be treated as white do we get Rossi alpha which will give correct α. Fig. 4.9 

(d) shows contribution to Rossi alpha due to correlations in the source fluctuations and that 

due to source multiplicity plus fission chain. The parameters used to plot the graphs are listed 

under set 2 in Table 4.2 corresponding to heavy water systems. 
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Fig. 4.10: Counting gate system for /v m  measurements. The counting interval is[0, ]T . The 

last source pulse that contributes to the counts occurs at 0t  and the ones prior to this will 

occur at 0 1/t f− , 0 2 /t f− , …etc. 0t  is a random variable and has equal probability of 

occurrence between 1/T f− , T . Correspondingly, the earlier pulse will lie between 

2 /T f−  and 1/T f−  and so on. 

 

            

Fig. 4.11: Variation of total and different terms of the /v m  formula with the length of the 

counting interval. The parameters used to plot the graphs are listed under set 1 in Table 4.2. 

(a) On prompt neutron life time scale. It is seen that the /v m  appears to saturate and hence 

use of formula with only prompt neutrons may be adequate for analyzing the experimental 

results. (b) On delayed neutron life time scale; the contribution of delayed neutrons is 

however seen.  
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Fig. 4.12: Variation of total and different terms of the /v m  formula with the length of the 

counting interval. The parameters used to plot the graphs are listed under set 3 in Table 4.2 

corresponding to heavy water systems. Here the prompt and delayed scales are not very 

distinct and corrections due to delayed neutron terms will be necessary for analyzing 

experimental results. (a) On short life time scale. (b) On delayed neutron life time scale.  
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CHAPTER 5 
____________________________________  

The Langevin Approach to Reactor Noise in ADS   

In chapter 3, we described the non-Poisson source as a periodic sequence of delta function 

pulses with correlations between different pulses and derived expressions for Rossi alpha and 

Feynman alpha functions. Pulses of finite widths were also considered. By considering 

rectangular and Gaussian pulse shapes, Rossi alpha and Feynman alpha formulae were 

derived. However, the study was limited to the case of prompt neutrons. In chapter 4, we 

extended the theory of reactor noise in ADS by including delayed neutrons. The source was 

described using non-Poisson periodic delta function pulses and formulae for Rossi alpha and 

Feynman alpha were derived. The possibility of correlations between different pulses was 

also considered. The further extension of the theory to the more general case of correlated 

non-Poisson pulsed sources with finite pulse width including delayed neutrons becomes 

difficult as it involves mathematical complexity. Hence, we develop a simpler approach to 

reactor noise in ADS based on the Langevin method. We first demonstrate that it is possible 

to obtain the correct expressions for various noise descriptors using the Langevin approach 

with Schottky prescription for fission, detector, and capture events but with a separate 

treatment for ADS source fluctuations. We carry out the demonstration for one of the models 

of the source studied by us earlier. It is shown that our earlier results by the more rigorous 

method of pgf are reproduced.  The method is then applied to treat the more general problem 

of zero power ADS noise as described above.  

Behringer and Wydler (1999) have considered the Langevin approach for ADS noise, but 

they use a modified Schottky prescription to include the noise equivalent (NES) source for 

source fluctuations. Pazsit and Arzhanov (1999) have presented a treatment of source 
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fluctuations based on the Langevin approach in the context of power reactor ADS noise 

which also includes spatial effects. Kitamura et al. (2005), in their study on the effect of 

delayed neutrons on ADS noise, have treated finite width pulses. However, the study is based 

on the assumption of Poisson sources. We examine the possibility of treating zero power 

neutron fluctuations in an ADS with non-Poisson source using the Langevin formulation. We 

show that this is possible and for this purpose, the external source fluctuations cannot be 

treated only as a noise equivalent source or only as an external parametric fluctuation but 

rather as a combination of an internal noise described by the Schottky formula and as an 

external fluctuating function. This way, non-Poisson sources of all kinds can be treated.  

5.1 The Langevin theory of noise measurements 

5.1.1 Un-correlated delta pulsed source 

In this section, we assume that the pulses are short compared to all other time scales in the 

problem and may be represented as a sum of delta functions.  We assume no correlation 

between the pulses and that all neutrons are prompt. We assume that the counting intervals 

are not deliberately correlated with the incoming source pulses; i.e., we consider the case of 

stochastic pulsing. This means that the various noise descriptors are averaged over one period 

of the pulsed neutron source in addition to normal averaging due to the stochastic nature of 

the variables. This is the model Degweker (2003) had developed in detail using the pgf 

method and is described in section 2.2.3 of chapter 2. We write down the following Langevin 

equations for the number of neutrons ( )N t  at time t and the detection rate ( )D t  [or number 

of detected particles ( )Z t in the interval 0 to t]: 

 0( / ) ( )n N
n

dN N S t n f t s t
dt

α δ
∞

=−∞

= − + − − +∑             (5.1) 

 ( ) ( )d D
dZD t N s t
dt

λ= = +  (5.2) 
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where 

nS =  random variable representing number of neutrons in the nth pulse  

( )Ns t =NES for neutrons and includes capture and fission events  

( )Ds t =NES for detection  

α =  prompt neutron decay constant 

0t =  arrival time of one of the pulses  

dλ =  probability per unit time of detection 

Due to the assumption of stochastic pulsing, all quantities are to be averaged with respect to 

0t  over one period 0 1/T f= . Note however that we do not treat the fluctuations in source 

events by the Schottky prescription. Instead, we treat it as an external source of noise with the 

properties described in section 3.2.1 of chapter 3. The properties of the various noise sources 

are as follows: 

 ( ) ( ) 0N Ds t s t< >=< >=  (5.3) 

 
2( ) ( [( ) ( 1) ] ( )

[ ( 1) ] ( )
N N c d f

f

s t s t N N t t

N t t

λ λ ν λ δ

α ν ν λ δ

′ ′= + + − −

′= + − −
 (5.4) 

 ( ) ( ( )D D ds t s t N t tλ δ′ ′= −  (5.5) 

 ( ) ( ) ( )N D ds t s t N t tλ δ′ ′= − −  (5.6) 

 ( ) ( ) 0N n D ns t S s t S= =  (5.7) 

 1nS S m= =             (5.8) 

 2 2 2 2
1 2 1 1( )n m nm nmS S S S m m m mδ δ δ= + = + + −  (5.9) 

where  

,f cλ λ = probabilities per unit time of fission and capture respectively 
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1m =mean number of neutrons produced in one pulse 

2m = second factorial moment of 1m  

Eqs. (5.4), (5.5) and (5.6) are the usual Schottky formulae for vector Langevin method 

(Ackasu and Stolle, 1989) while Eqs. (5.7) through (5.9) are substituted for the external noise 

source due to source fluctuations in place of the Schottky formula for the source fluctuations. 

We may note in passing that if we had used the usual Schottky prescription for the source 

fluctuations, we would get the same results as for a Poisson source, i.e. what would be 

obtained by the forward Kolmogorov equation or by use of the Bartlett formula.  

Another important point to be noted is that, in the Schottky prescription, the average 

quantities such as N are (generally speaking) a function of t if we are dealing with 

nonstationary processes. Since the periodically pulsed source produces a nonstationary 

process, we should have a similar time dependence on the averaged values of the variables 

shown in Eqs. (5.4), (5.5) and (5.6). However, as noted above, the measurements are made 

with randomly triggered intervals, which implies a further averaging of all measured 

quantities, e.g., the ACF over one pulsing period. For this reason, as is shown below, only 

averages over one pulse period of the variables on the right side of Eqs. (5.4), (5.5) and (5.6) 

are required. Hence, all such averaged quantities, e.g.,
1/

0
( )

f
N f N t dt= ∫ , that are independent 

of time are deemed to be used on the right side of Eqs. (5.4), (5.5) and (5.6).  

Integrating Eqs. (5.1) and (5.2), we write: 

 

0

( ) exp[ ( )] ( ) ( )

exp[ ( )] exp[ ( )] ( )

t

n n N
n

tM

n N
n

N t t t S t t s t dt

nS t t t t s t dt
f

α δ

α α

−∞

=−∞ −∞

⎡ ⎤′ ′ ′ ′= − − − +⎢ ⎥
⎣ ⎦

′ ′ ′= − − − + − −

∑∫

∑ ∫
 (5.10) 

 
0

( ) [ ( ) ( )]
T

d DZ t N t s t dtλ ′ ′ ′= +∫  (5.11) 
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The summation in (5.10) extends to [ ]M ft=  for 0 ([ ] 1) /t t ft f> − +  and to [ ] 1M ft= +  for 

0 ([ ] 1) /t t ft f< − + . Taking averages of Eqs. (5.10) and (5.11), we get 

 0( ) exp[ ( )]
M

n

nN t S t t
f

α
=−∞

= − − −∑   (5.12) 

 
0

( ) ( )
T

dZ T N t dtλ ′ ′= ∫  (5.13) 

The average neutron count rate and number of counts in an interval  

On averaging over the location of the counting interval vis-à-vis the periodic pulses, we can 

write for the average number of neutrons at any randomly chosen point of time as 

 
0

1
0 0

1/

( | )
f

fmN f N t t dt
α−

= =∫  (5.14) 

Hence, the mean count rate at a randomly chosen time point and the mean number of counts 

in a randomly triggered interval of length T are given by 

 

1

1

d
d

d

fmD N

fm TZ

λλ
α

λ
α

= =

=
 (5.15) 

The Autocorrelation Function  

To obtain the ACF, we first compute 1 2( ) ( )D t D t< >  by averaging over 0t as follows: 

0
2

1 2 0 1 2 1 2 2 1 1 2
1/

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d D d D D D
f

D t D t f dt N t N t N t s t N t s t s t s tλ λ λ
−

⎡ ⎤< >= + + +⎣ ⎦∫
 (5.16) 

The last of the four terms in the integrand in Eq. (5.16) is a delta function and is simply 

written using Eq. (5.5) as  

 1
1 2 1 2( ) ( )d

d
fmN t t t tλλ δ δ
α

− = −           (5.17) 
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Of the two middle terms in the integrand in Eq. (5.16), the first can be evaluated using the 

form (5.10) for ( )N t  and the fact that the external source and the internal noise equivalent 

sources are uncorrelated: 

 

10 0

0 1 2 0 1 2
1/ 1/

0
2 2

0 1 2 1 2
1/

( ) ( ) exp[ ( )] ( ) ( )

exp[ ( )] exp[ ( )]

t

d D d N D
f f

d d
f

f dt N t s t f dt t t s t s t dt

f N dt t t N t t

λ λ α

λ α λ α

− − −∞

−

′ ′ ′= − −

= − − − = − − −

∫ ∫ ∫

∫
 (5.18) 

For 1 2t t> . In the first line of Eq. (5.18), we have used the relation (5.6) after averaging over 

one period. For 1 2t t< , the delta function gives a zero contribution and the above expression 

is zero. Likewise, we can show that the second of the middle terms in the integrand in Eq. 

(5.16) gives a contribution  

 2
2 1exp[ ( )]d N t tλ α− − −  (5.19) 

for 1 2t t<  and zero for 1 2t t> . Eq. (5.18) and expression (5.19) together imply a total 
contribution  

 
2

2 1
2 1 2 1exp[ | |] exp[ | |]d

d
fmN t t t tλλ α α
α

− − − = − − −  (5.20) 

The first term in the integrand in Eq. (5.16) can be evaluated using the form in Eq. (5.10) 

for ( )N t , and because the external and internal sources are uncorrelated, we obtain only the 

following two terms: 

 

1 2

1 2
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0
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ft ft

d n m
n mf

t t

d N N
f
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⎡ ⎤
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⎣ ⎦
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∑ ∑∫

∫ ∫ ∫
 (5.21) 

Before proceeding, we note that we can, without loss of generality, assume that 2 1t t> , 1 0t =  

and 2 1t tτ = − . The summation over n  is then up to 0 while the summation over m  goes up 

to the last source pulse before 2t  which could be either 2[ ]ft  or 2[ 1]ft +  depending upon the 
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value of 0t . We split the first term into two parts. In the first, we have a double summation 

with the n m=  term excluded. The second part has the term with n m= . The two terms can 

then be written using Eq. (5.9). As regards the second term, the evaluation is straight forward 

using the properties of the NES corresponding to neutrons. The expression (5.21) thus 

becomes 

20 [ ] 0
2 2

0 1 2 0 0 2 1 2 0
,1/

2

2

2exp[ ( )]exp[ ( )] ( )exp[ ( 2 )]

[ ( 1) ]
exp( ) (5.22)
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+ −
+ −

∑ ∑∫

   
Expression (5.22) is evaluated by Degweker (2003) [in fact most of the terms can be 

recognized as being the same], and we obtain 

2 2
/ 21

2 1 1 1/
[ ] [ ]exp ( exp ( ( 2 (1 ) )

2 1
fd

f
f m f fe m m Y m e

e f f
α ατ

α

λ τ τα τ α τ
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− −
−

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞
− + − − + + + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

(5.23) 

where αννλ 2/)1(1 −= fY  and we have written 1 2| |t tτ = − . The final expression for the auto-

correlation function is obtained by adding (5.17), (5.20) and (5.23). 

2 2
/ 21 1
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[ ] [ ]( ) exp ( exp ( ( 2 )
2 1

fd d
f

fm f m f ft t e m m Y m e
e f f

α ατ
α
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−

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞′− + − + − − + + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
(5.24) 

A number of points are worth noting. If 2 1t t< , we get a formula similar to (5.24) for the ACF 

with 1 2t tτ = − .  In other words, the ACF is symmetric with respect to 2t , 1t  and depends on 

the absolute value of 1 2t tτ = − . Secondly, expression (5.24) for the ACF is the same as the 

equation for the function 2f  described in section 2.2.3 of chapter 2 apart from the first delta 

function term representing the detector noise. Since the Rossi alpha formula is interpreted in 

terms of the probability of getting a second count in a (infinitesimally) short time interval 

around 2t  given a count at 1t , rather than averages of the product of the number of counts in 
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short intervals, the detector noise term is absent from the Rossi alpha formula. Thus, we also 

interpret (5.24) [minus the detector noise term] to be the expression for 2f .  

The Variance to mean 

From the expression for 2f , the variance can thus be derived in the same way as by Degweker 

(2003) and we expect to obtain the same result. The variance can also be obtained from (5.24) 

noting that  

 

2

2 1 2 1 22
0 0 0

0

( ) ( ) ( )

( )

T T T

T

D t D t dt dt D t dt
v Z Z
m Z D t dt

⎛ ⎞
< > − < >⎜ ⎟

− ⎝ ⎠= =
< >

∫ ∫ ∫

∫
                      (5.25) 

The detector noise term in (5.24) contributes unity to the variance to mean, and thus, we can 

look upon the unity in the v/m formula as being due to the detector noise. We have therefore 

demonstrated the applicability of the Langevin approach to Reactor Noise in ADS provided 

the external source is modeled explicitly rather than as an internal noise source given by the 

Schottky prescription. 

5.1.2 Correlated finite pulsed source including delayed neutrons 

We now consider the general case of correlated non-Poisson pulsed source with finite pulse 

width including delayed neutrons. As is well known, the Langevin approach is the simplest in 

the frequency domain and we exploit this simplicity. Hence, we restrict ourselves to the 

frequency domain and obtain the power spectral density as the mathematics for the time 

domain is rather intractable. We continue to make the assumption of stochastic pulsing in this 

section. 

The Langevin equations for this model can be written as follows 
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 ( ) ( ) ( )f p c d f i i N
i

dN N C S t s t
dt

λ ν λ λ λ μ⎡ ⎤= − + + + + +⎣ ⎦ ∑  (5.26) 

 ( )
i

i
f di i i C

dC N C s t
dt

λ ν μ= − +  (5.27) 

 ( )d D
dZ N s t
dt

λ= +  (5.28) 

where iμ , iC , diν  and ( )
iCs t  are decay constant, concentration, yield and NES respectively of 

ith group of delayed neutron precursors. The other symbols have the same meaning as in the 

previous section. 

The NESs are assumed to have the following statistical properties 

 ( ) ( ) ( ) 0
iN C Ds t s t s t< >=< >=< >=  (5.29) 

 2 2( ) ( ') [( ) ( 1) ] ( ')N N c d f p i i sps t s t N N C S t tλ λ λ ν μ ν δ< >= + + − + + −  (5.30) 

 ( ) ( ( )D D ds t s t N t tλ δ′ ′= −  (5.31) 

 ( ) ( ( )D N ds t s t N t tλ δ′ ′= − −  (5.32) 

 ( ) ( ') [ ( 1) ] ( ')
iN C f p di i is t s t N C t tλ ν ν μ δ< >= − − −  (5.33) 

 2( ) ( ') [ ] ( ')
i iC C f di i is t s t N C t tλ ν μ δ< >= + −  (5.34) 

 ( ) ( ') ( ')
i jC C f di djs t s t N t tλ ν ν δ< >= −  (5.35) 

 ( ) ( ') 0
iC Ds t s t< >=  (5.37) 

The inclusion of the last term in Eq. (5.30) for the correlation function of the noise equivalent 

source for the neutronic variable is to account for the fact that the source produces neutrons 

randomly even if it were a constant function rather than a periodically modulated stochastic 

process. 



130 
 

The external source is defined such that ( )S t dt  represents the probability of a spallation 

event occurring in time dt . To describe the source, we add one more equation for the number 

of protons (ions) in the target.  

 ( ) ( ) ( )P
dP P E t I t s t
dt

λ= − + +  (5.38) 

where λ  is the probability per unit time for a proton (ion) to induce a spallation (neutron 

producing) reaction in the target, ( )E t  is shape function for periodic sequence of pulses, 

( )I t is randomly fluctuating proton current and ( )Ps t  is noise equivalent source for protons. 

Thus, the first term is the removal of protons by spallation while the second represents the 

addition of protons in the target region due to the incoming beam current. The last term 

represents a noise term corresponding to the proton removal process whose characteristics are 

given by the Schottky formula as follows: 

 ( ) 0Ps t< >=  (5.39) 

 ( ) ( ( )P Ps t s t P t tλ δ′ ′= −  (5.40) 

 ( ) ( ( )P N ss t s t P t tλν δ′ ′= − −  (5.41) 

The justification for the last of these equations is that removal of a proton leads to the 

production of  sν  spallation neutrons. As in chapter 3, the incoming current is modeled as the 

product of a periodically varying function consisting of narrow pulses of any shape (Gaussian 

or rectangular) and a stationary stochastic process.  

 
0 0( ) ( ) ( ) ( )

( ) ( )
n

E t I t t t nT I t

I t I i t

ε= − +

=< > +

∑
    (5.42) 

( )i t  has zero mean and we assume that it has an exponential auto correlation function i.e. 

 2

( ) 0
( ) ( ') exp( | ' |)

i t
i t i t t tβ

< >=

< >= Γ − −
 (5.43) 

Eq. (5.38) can be easily solved to give 
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 ( ) ( ) exp[ ( ')]{ ( ') ( ') ( ')} '
t

PS t P t t t E t I t s t dtλ λ λ
−∞

= = − − +∫  (5.44) 

Since the time given by the inverse of λ  is very short compared to all other times, we can 

replace the kernel in Eq. (5.44) by a delta function to finally yield 

 ( ) ( ) ( ) ( )PS t E t I t s t= +  (5.45) 

The functional form for these pulses is such that each of the pulses has an area (integral over 

time) equal to g so that the average source event rate is 0/S P g I Tλ= = < > .  

The PSD of the detection rate 

If we write ( ) /D t dZ dt= for the detection rate, then the measured quantity is the auto-

covariance function:  

2( ) ( ) ( ) ( ) ( )d t d t D t D t D t′ ′< >=< > − < >  

or its Fourier transform, the PSD. Fourier transforming Eq. (5.28), we can write the PSD as  

 2*( ) ( ) *( ) ( ) 2 Re[ *( ) ( ) ] *( ) ( )d d D D Dd d n n n s s sω ω λ ω ω λ ω ω ω ω< >= < > + < > + < >   (5.46) 

Contribution from the (Internal) NESs 

The PSD corresponding to the last term in Eq. (5.46) is simply written down using Eq. (5.31):  

 d Nλ  (5.47) 

which is the white noise contribution from the detector. Using Eq. (5.32), the PSD due to the 

middle term in Eq. (5.46) is 

 22 Re( ( ))d N G iλ ω−    (5.48) 

Following Ackasu and Stolle (1989) [see section 2.1.2.5 of chapter 2], we write the PSD of 

the first term in Eq. (5.46) due to the noise equivalent sources as follows: 

 ( ) ( ) 11

00
' ti iω ω

−−⎡ ⎤+ Λ Σ − +Λ⎢ ⎥⎣ ⎦
 (5.49) 
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where 'Σ  is the spectral density matrix of NES and external source and can be written as a 

sum of three parts. The first is due to the internal NESs (neutronic and precursor) and the 

second due to the external source. Since the latter is not at all correlated with the former, 

there are no cross terms. The third part is due to the proton noise equivalent source and its 

correlation with the neutronic noise equivalent source as given by Eqs. (5.40) and (5.41). We 

write the three parts explicitly as follows: 

( )( )

[ ]
[ ]
[ ] [ ]

1 6 1 6

' * * * *

1 2

1 00

* * *
2 00

1 2

( ) ( ) ( ) col ( ) ( ), ( )... ( ) ( ) ( ) ( ) .. ( )

*( ) ( ) *( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) (1 2 )

0, , 0

t
N C C N C C

N P P N P P s

ij ij

s s S S S S S S S S

I I E E

S S S S S S P

i j

ω ω ω ω ω ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω λ ν

Σ =< >=< + + >

= Σ +Σ + Σ

Σ =< >

Σ =< + + >= −

Σ = Σ = ∀ ≠
 

where  

Σ =  spectral density matrix of NES coming from the neutron and precursor contributions                   

(section 5.1.2.5 of chapter 2)  

1Σ =  spectral density matrix due to the external source fluctuations  

2Σ =  spectral density matrix due to the proton NES (and its correlation with the neutrons) 

The matrix Λ  defines the system of linear differential equations (5.26) and (5.27). The 

explicit forms of Σ  and Λ  are as follows: 

  2 2
00 ( ) ( 1)c d f p i i sN N C Sλ λ λ ν μ νΣ = + + − + +                                  (5.50) 

 2 ( 0)
ii f di i iN C iλ ν μΣ = + ≠  (5.51) 

 
0 0

( 1)
i i f p di i iN Cλ ν ν μΣ = Σ = − −  (5.52) 

 ( )
ij f di dj N i jλ ν νΣ = ≠  (5.53) 

 00 ( )f p c d pλ ν λ λ α⎡ ⎤Λ = − − + =⎣ ⎦  (5.54) 
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 0 j jμΛ = −  (5.55) 

 0i f di d iλ ν αΛ = − = −  (5.56) 

 ij i ijμ δΛ =  (5.57) 

It is fairly easy to write down the inverse of the matrix 1( )i Tω −+ Λ = , and we obtain 

 00
1 ( ) ( )k

k

T i G i
D

ω μ ω= + =∏  (5.58) 

 0

( )1 ( )
( )

dj
j dj k

k j j

G i
T i

D i
α ω

α ω μ
ω μ≠

= + =
+∏  (5.59) 

 0
1 ( )( )

( )
i

i i k
k i i

G iT i
D i

μ ωμ ω μ
ω μ≠

−
= − + =

+∏  (5.60) 

With this, we can evaluate the first part of (5.49) to finally yield 

 
2 2

2 0
00 2 2 2 2 2 2

,

2 ( )| ( ) | 2
( )( )

kk dk k k dk kl dk dl k l

k k lk k l

G i α μ α α α μ μ ωω
ω μ ω μ ω μ

⎛ ⎞Σ + Σ Σ +
Σ + +⎜ ⎟+ + +⎝ ⎠

∑ ∑    (5.61) 

where G is the zero power transfer function.   

Contribution from the (External) source fluctuations 

The matrix multiplication corresponding to the second part, namely, the contribution due to 

the external source 1Σ , is easily carried out since most of the elements are zero, and one 

obtains   

 2( ) ( )G iω ω℘  (5.62) 

where 1 00( ) [ ]ω℘ = Σ is the PSD of the external source averaged over one pulse period, which 

can be written as 
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0

0

0

0

0
0

0
2

0 0 0 0 0
, 0

0
2

0 0 0 0 0
, 0

1( ) ( ) ( ) exp( )

1exp( ) ( ) ( ) ( ) ( ) ( )

1exp( ) ( ) ( ) exp( | |) (5.63)

T

n m T

n m T

dt S t S t i d
T

i d t t nT t t mT I t I t I t dt
T

i d t t nT t t mT dt
T

ω τ ωτ τ

ωτ τ ε ε τ τ

ωτ τ ε ε τ β τ

∞

− −∞

∞

−∞ −

∞

−∞ −

℘ = < + >

⎡ ⎤= − + + − + < + > − < >⎣ ⎦

= − + + − + Γ −

∫ ∫

∑∫ ∫

∑∫ ∫
 

Gaussian Pulses 

We assume a narrow Gaussian form for the pulse shape having variance 2σ . The two 

Gaussians in the product will overlap significantly for only that value of m which is different 

from n by[ ] 1fτ + . Integration over t0 gives us a periodic function of τ whose form within 

one period is another Gaussian somewhat broader with a variance equal to 22σ . The PSD is 

thus given by 

 
2

20
22

( )1 exp exp( | |) exp( )
44n

nT i dτ β τ ωτ τ
σπσ

∞∞

=−∞ −∞

⎛ ⎞−
− Γ −⎜ ⎟
⎝ ⎠

∑ ∫  (5.64) 

We write the periodic function as a Fourier series: 

0

0

/ 22 2
0 0

2 22 2
0/ 20

( ) exp(2 / )1 2exp exp /
4 44 4

T

n n T

nT n i T n i d
TT

τ π τ π τ τ τ
σ σπσ πσ

∞ ∞

=−∞ =−∞ −

⎡ ⎤⎛ ⎞⎛ ⎞−
− = − +⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∫  (5.65) 

Since the pulses are narrow compared to the pulsing period, the limits of integration on the 

RHS can be replaced by ±∞  which then becomes the Fourier transform of a Gaussian. 

Hence, we obtain 

 
2

20
0 022

0

( )1 1exp exp[ ((2 / ) ]exp(2 / )
44n n

nT n T n i T
T

τ πσ π τ
σπσ

∞ ∞

=−∞ =−∞

⎛ ⎞−
− = −⎜ ⎟
⎝ ⎠

∑ ∑  (5.66) 

The PSD of Eq. (5.64) is now easily written as 

 
22

0
2 2

0 0

exp[ (2 / ) ]2( )
( 2 / )n

n T
T n T

πσβω
ω π β

∞

=−∞

−Γ
℘ =

+ +∑  (5.67) 
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Rectangular Pulses 

Here we assume a rectangular pulse of width σ  and height 1/σ . The result of averaging 

over t0 finally gives us a periodic function of τ whose form within one period is a triangular 

pulse extending from (say) σ−  to σ  and having a height of 1/σ . The PSD is thus given by  

 

0

0

0

0

20
2 2

20
2 2

( )
exp( | |) exp( )

( )
exp( | |) exp( )

nT

n nT

nT

n nT

nT
i d

nT
i d

σ

σ

στ β τ ωτ τ
σ σ

στ β τ ωτ τ
σ σ

∞

=−∞ −

+∞

=−∞

−⎛ ⎞− Γ −⎜ ⎟
⎝ ⎠

+⎛ ⎞+ − + Γ −⎜ ⎟
⎝ ⎠

∑ ∫

∑ ∫
 (5.68) 

where as before we can expand the periodic function in a Fourier series and we obtain an 

expression for the PSD similar to (5.67) with a different Fourier coefficient:  

 
2

0
2 2 2

0 0 0

1 cos(2 / )4( )
(2 / ) [( 2 ) ]n

n T
T n T n T

πσβω
πσ ω π β

∞

=−∞

−Γ
℘ =

+ +∑  (5.69) 

Contribution from the proton NESs 

In a manner similar to that used for obtaining (5.62), the proton NES and the correlation term 

with the neutronic NES corresponding to the matrix 2Σ  give the following contribution [the 

third of expression (5.49)]: 

 2(1 2 ) | ( ) |sP G iλ ν ω−  (5.70) 

Final Expression for the PSD 

The PSD of the detected signal can now be written by adding (5.47), (5.48), (5.61), (5.62), & 

(5.70): 

2 2
2 0

00 2 2 2 2 2 2
,

2
00

2 ( )| ( ) | ( ) (1 2 ) 2
( )( )

2 Re( ( )) (5.71)

kk dk k k dk kl dk dl k l
s

k k lk k l

d d

G i P

N G i N

α μ α α α μ μ ωω ω ν λ
ω μ ω μ ω μ

λ ω λ

⎛ ⎞Σ + Σ Σ +
℘ + − +Σ + +⎜ ⎟+ + +⎝ ⎠

− +

∑ ∑
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where it may be noted that the quantities , , ,iN C S P  appearing in Eq. (5.71) [through the Σ  

matrix defined by Eqs. (5.50) through (5.53)] are not independent but are related to each 

other through the stationary solution of Eqs. (5.26) and (5.27) for the averages as 

follows: /( )sp c d fN Sν λ λ λ ν= + − , /i f di iC Nλ ν λ=  and 0/S P g I Tλ= = < >  

The PSD for the general ADS noise problem given by Eq. (5.71) has not been obtained by us 

by the first principle methods due to the mathematical difficulties involved. The Langevin 

formulation makes it fairly tractable. Eq. (5.71) thus represents a new result not presented 

earlier. 

5.2 Conclusion 

The Langevin approach is capable of correctly describing the non-Markov process resulting 

from a non-Poisson source. We have shown that a complete description of the spallation 

neutron source is possible by treating it as a combination of an internal noise given by the 

Schottky prescription and another that is of external origin arising from the proton beam. We 

have obtained the PSD of the Reactor Noise in ADS by considering delayed neutrons, finite 

pulsed width and correlations if any between proton pulses.  
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CHAPTER 6 
____________________________________  

Simulation of Noise Experiments in Sub-critical 

Systems by Diffusion Theory Based Analogue 

Monte Carlo 

Low power sub-critical experiments are being planned (Rasheed et al., 2010) to be carried out 

at the Bhabha Atomic Research Centre (BARC) with the aim of demonstrating pulsed 

neutron and noise methods for measuring the sub-critical reactivity of ADS. Another aim of 

the experiments is to verify the theory of reactor noise in ADS developed by us and interpret 

the results in terms of the theory.  The system planned is a natural uranium sub-critical 

assembly moderated by water or high density polyethylene and driven by a D-D or D-T 

neutron generator. The maximum keff of the assembly is expected to be about 0.9. At such a 

low value of keff while it may be possible to carry out pulsed neutron experiment 

successfully, noise experiments for determining alpha are likely to face difficulties in 

interpretation due to much greater modal contamination effects. By the time the higher modes 

have died out and the fundamental mode decay of the correlation sets in, very few correlated 

counts remain and the background noise dominates. However, for both types of experiments, 

it is possible to select certain detector positions where the modal contamination of many of 

the higher modes immediately above the fundamental mode can be eliminated. In view of 

these difficulties, it is necessary to simulate the experiments and get an idea of the kind of 

results that might be expected with different detector locations and counting and analyzing 

setups. Simulations with standard code packages (MCNP, 1987; Gupta, 1991) are not 

appropriate because of several non-analogue features built into such codes. These need to be 
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modified into completely analogue simulation codes. Munoz Cobo et al. (2001) coupled the 

high energy code LAHET with another Monte Carlo code MCNP-DSP and simulated cross 

power spectral density between the proton current signal and a neutron detector signal for a 

typical fast energy amplifier configuration. While LAHET simulates the spallation process 

and transport of charged particles, MCNP-DSP is used to simulate the counting statistics 

from neutrons counters. Pozzi et al. (2012) have developed a variant of MCNP, called 

MCNP-PoliMi. The code can simulate correlated statistics of neutrons and photons. It can 

also handle the effect of delayed neutrons. However, completely analogue computations are 

very time consuming. There have been attempts to remedy (Máté Szieberth and Gergely 

Klujber, 2010) some of these problems by special methods of correcting tallies which give 

not only the correct value of the first moment but also of the second moment. The simulation 

is still having many time reducing features and takes less time compared to purely analogue 

simulations. 

In this chapter, we describe an alternate method of time reduction in analogue Monte Carlo 

through the development of a diffusion theory based analogue Monte Carlo simulator. The 

simulator generates a detailed time history of counts in the detector so that any method of 

analysis can be carried out. While few-group diffusion theory may not be as accurate as exact 

Monte Carlo simulations, it will be adequate for the purpose mentioned above. We discuss 

the basic theory of the simulation method and the results of our simulations on a simplified 

model of one of the proposed assemblies. In section 6.1, we describe a simple reactor model 

for which analytical diffusion kernel can be used very effectively to get some of the required 

results. Our approach is well suited to the study of few group time dependent diffusion 

equations. In section 6.2, we describe a numerical approach based on the finite differenced 

diffusion equation. The approach is general enough to be applicable to all problems of 

interest. In section 6.3, we discuss modal effects on noise experiments by following the 
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backward stochastic transport equation approach and expanding the probability generating 

functions in terms of the alpha modes of the adjoint equations. Results of our simulations are 

discussed in section 6.4 and in section 6.5 we present our conclusions. 

6.1 Analytical diffusion theory kernels 

6.1.1 Infinite medium kernel 

At the outset, we note that while the transport theory simulation by Monte Carlo is possible 

by using the transport kernel, the same is not easy in diffusion theory using the diffusion 

kernel. In transport, theory we are looking at the next collision and subsequently at what 

happens at the collision site. In diffusion theory, we are looking at the next significant event 

which is removal (an absorption or slowing down to the next group). A large number of 

intermediate transport steps would have been covered in the process (including diffusion in 

two or more neighboring media) before the final event. This is the reason that the diffusion 

kernel approach is faster but this is also the reason that it is more difficult to implement, since 

the particle does not follow a simple path. However, there are certain situations in which 

diffusion kernel can be used very effectively to reduce the number of simulation steps and 

hence the computing time. Suppose we have a reactor consisting of a number of large sized 

homogeneous zones such as core regions with different enrichments or core and reflector. 

Each of the regions is assumed to be large compared to the slowing down length or the 

diffusion length in that group.  In such a situation, at most of the points of the reactor, the 

neutron is likely to diffuse in a single region before absorption or slowing down and the 

infinite medium kernel is approximately valid.  In this sub-section, we obtain the infinite 

medium kernel and in subsequent sub-section, we derive simple corrections for a finite 

medium. 
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The quantity of interest in Monte Carlo simulation is the probability that a neutron will 

undergo removal in the small space-time interval dxdydzdt . This can be obtained (Rana et al., 

2013) by solving the one group time dependent diffusion equation with a single neutron 

(assumed to be located at 0x y z t= = = = ): 

 
2 2 2

3/ 2

1( , , , ) exp exp( / )
(4 ) 4

x y zP x y z t dxdydzdt t l dxdydzdt
l Dvt Dvtπ

⎛ ⎞+ +
= − −⎜ ⎟

⎝ ⎠
   (6.1) 

The marginal distribution for the time variable can be obtained by integrating over the space 

coordinates: 

 1exp( / )t l dt
l

−  (6.2) 

The conditional distribution for the space variables for a given value of time is obtained by 

dividing (6.1) by (6.2) to give: 

 
2 2 2

3/ 2

1 exp
(4 ) 4

x y z dxdydz
Dvt Dvtπ

⎛ ⎞+ +
−⎜ ⎟
⎝ ⎠

 (6.3) 

Eq. (6.3) indicates that the distribution can be written as a product of three Gaussians for the 

three coordinates each having zero mean and 2Dvt  as variance.  Eqs. (6.2) and (6.3) suggest 

the following algorithm for obtaining the next time and position of a removal event. We 

sample the time as an exponential distribution (having mean l ) and for the sampled value of 

the time, we sample the position coordinates as three independent Gaussians each with zero 

mean and 2Dvt  as the variance. 

6.1.2 Finite medium kernel: Method of images for bare homogenous reactor 

Rectangular parallelepiped 

While Eq. (6.1) is valid for an infinite medium, it is possible to use it also for a finite bare 

homogeneous reactor. For this, we recall the method of images for obtaining the potential due 

to a charge in a finite region bounded by an earthed conducting plane. Specifically, we refer 
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to the case of an infinite earthed plane P shown in Fig. 6.1. The presence of the image charge 

of equal magnitude and opposite sign at an equal distance behind the plane neutralizes the 

potential due to the real charge on the conducting plane and results in a zero potential at the 

plane and hence the correct solution on the left of P.  

In the case of a bare homogenous reactor, of rectangular geometry, we need to have a zero 

flux boundary condition at the reactor (extrapolated) boundary i.e. at all six faces of the 

parallelepiped. Such a geometry in electrostatics requires an infinite number of image charges 

due to the long range nature of the interaction. In the case of diffusion theory, since the 

reactor dimensions are usually much larger than a diffusion length, multiple images 

contribute very little and it is possible to do with one, three or seven images depending upon 

whether the point is near a face, edge or corner as illustrated in Fig. 6.2.  For the simplest 

case of the source being near a face, the probability density for points inside the medium (to 

the left of the system boundary) can be written as: 

 
2 2

3 / 2
1 | | | |( , ) exp exp exp( / )

(4 ) 4 4
P r t t l

l Dvt Dvt Dvtπ
⎡ ⎤⎛ ⎞ ⎛ ⎞− −

= − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

r r' r r''r
, (6.4) 

where r' and r''  are the coordinates of the source point and image point respectively. 

Note that on the boundary plane 2 2| ' | | '' |r r r r− = −
r r r r

 and hence the above expression vanishes 

identically as it should and thus simulates the zero flux boundary condition. The random 

variables , ,x y z  and t  can be sampled for the distribution given by Equation (6.4) by first 

sampling , ,x y z  and t  according to Eqs. (6.1-6.3) and then using a rejection technique.  If the 

sampled point falls outside the medium, the history is terminated. If it falls inside the 

medium, it is accepted with probability ( ) ( )2 2'' '
1 exp

4
x x x x

Dvt

⎛ ⎞− − −
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

 else the history is 

terminated.  
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6.2 Finite difference diffusion theory kernels 

The method described in the previous section works best for bare homogeneous reactors and 

can possibly be extended to situations involving one or two core zones and a reflector. Where 

there are several regions interwoven in a complex manner, the method described above will 

not work well. For such complicated problems involving several regions, numerical methods 

have to be used to obtain solution of the diffusion equations.  The finite difference method is 

one of the commonly used techniques for the purpose. Using this method, the following 

equation for the finite difference form of the multi-group time dependent diffusion equation 

can be derived (see the derivation in Appendix I): 
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where we have written sΣ  for the slowing down cross section. The equation is simply a 

statement of the decrease in number of neutrons in a mesh due to removal from the mesh by 

absorption, slowing down or diffusion leakage. We can rewrite the above equation in terms of 

the number of particles ijkN  in a mesh and using probabilities per unit time in place of 

macroscopic cross sections ( x xvλ = Σ ) as follows: 

( ) ( )

( ), (6.6)1 1 1 1 1 1

dNijk N Na s ijk r l f b u d ijkdt
N N N N N Nl i jk r i jk b ij k f ij k d ijk u ijk

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

= − + − + + + + +

+ + + + + ++ − + − + −

where  
, , /ijk ijk i j kN V vϕ=  
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and 
1 ( ) 1, , ( ) , , ( 1)/[ ( )]r ijk i jk i i j k i i j k iD D v h D h D hλ + + += +  

is the probability per unit time for a particle to diffuse out of the mesh to the mesh on the 

right. It may be noted that the various λ s are mesh dependent quantities though we have 

suppressed the mesh indices for the purpose of clarity. Similar equations for the other 

lambdas can be written down. By using a similar procedure, it is possible to obtain an 

equation like (6.6) for meshes which lie on the outer boundary of the reactor and have some 

missing neighbors from the finite differenced form of the diffusion equation for such meshes 

around them. 

If a large number of particles are present in each of the meshes, the first term on the right 

hand side of Eq. (6.6) represents the average rate of absorption and second set of six terms, 

the diffusion of particles from the central mesh (under consideration) to the neighboring 

meshes (the subscripts , , , ,r l f b u and d indicating right, left, front, back, top and bottom 

respectively of the given mesh) while the third set of terms represents the rate of return of 

particles from the neighboring meshes to the central mesh. With a single particle, clearly we 

can reinterpret Eq. (6.6)  as a probability balance equation with the coefficients  giving the 

probability per unit time of absorption, diffusion out of the central mesh into the neighboring 

meshes and vice versa.  

 
1 1 1 1 1 1

( ) ( )

( )

ijk
a s ijk r l f b u d ijk

l i jk r i jk b ij k f ij k d ijk u ijk

dP
P P

dt
P P P P P P

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ+ − + − + −

= − + − + + + + +

+ + + + + +
 (6.7) 

This probabilistic interpretation suggests the following algorithm for carrying out the 

analogue Monte Carlo simulation. We sample a random number from an exponential 

distribution [ exp( )ttλ− ]; t a s r l f b u dλ λ λ λ λ λ λ λ λ= + + + + + + +  being the total probability of 

interaction per unit time] to get the time of the next event. Whether it is an absorption, 

slowing down or diffusion out to the neighboring meshes is decided by the relative 
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probabilities (e.g. /a tλ λ ). In a typical multi-group scheme, the mesh indices and energy 

group of the source neutron would be sampled according to the space-energy distribution of 

the source. The neutron is then followed till it finally gets absorbed or leaks out of the 

system.  

It may be noted that the algorithm described in this section is somewhat different from that of 

Sadiku et al. (2006), wherein space and time are both treated by finite differences. 

Before concluding this section, we make a comment on the time savings expected in the 

diffusion Monte Carlo approach over the traditional transport Monte Carlo. The number of 

collisions required for a neutron to be removed is typically 25, 50 and 100 for light water, fast 

and heavy water reactors respectively. In transport Monte Carlo, these many collisions must 

be followed for each history. In the analytical approach of the previous sub-section, a single 

sampling of the distribution is enough and a very substantial saving in computer time is 

expected. In the numerical approach, the savings will depend upon the number of samplings 

required which will depend on how fine is the mesh and the number of energy groups and 

would not be as spectacular as in the analytical approach.   

6.3 Modal effects in noise experiments 

The space and energy dependence of neutron flux in a reactor gives rise to higher modes. 

These modes are responsible for contamination of measured values of alpha by noise 

experiments. A lot of theoretical studies have been carried out in the past (Munoz-Cobo et al., 

2011; Yamamoto, 2011) to investigate the effect of higher modes on noise measurements. 

Munoz-Cobo et al. (2011) have derived Feynman alpha and Rossi alpha formulae for 

stochastic and continuous neutron sources by taking higher alpha modes into account. The 

derived formulae are then compared with the point kinetics formulae in the fundamental 

mode approximation to deduce spatial correction factors. They have also included the 
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delayed neutrons. The derived formulae are validated experimentally. Yamamoto (2011) has 

estimated the Feynman alpha function by considering the higher alpha modes obtained by 

diffusion approximation and applying transport correction to low order modes. The results 

are compared with the values obtained by Monte Carlo simulation of the Feynman alpha 

method. It is concluded that in a deeply sub-critical system, variance to mean ratio is 

seriously contaminated by the higher order modes, and applying the conventional Feynman-

alpha formula may give a completely wrong result.  

Since the source is usually located at the centre of a symmetric reactor, it might appear that 

the anti-symmetric modes would not be present in the flux distribution and these would be 

automatically eliminated. While this is true in pulsed neutron experiments, a careful modal 

analysis of the noise method shows that elimination of the anti-symmetric modes requires 

also that the detectors be placed symmetrically. Moreover to eliminate the next higher 

symmetric modes, we locate the detectors at the intersection (common zeros) of the zeros of 

the symmetric modes. This way, all the first set of symmetric and first and second set of anti-

symmetric modes are eliminated and the first higher mode contributing to the detected noise 

signal is  from the second set of symmetric modes.  In what follows, we make an explicit 

mathematical demonstration of this result. 

Let 1 2( , , , ; , )p E t n nr Ω  be the probability of the number of detections in two intervals of 

length 1tΔ  and 2tΔ  around the times 1t  and 2t  ( 2 1t t> ) due to a neutron injected at ( , , , )E tr Ω .  

The corresponding pgf is given by the following equation: 

1 2

1 1

1 2 1 2 1 2
, 0

( , , , ; , ) ( , , , ; , ) n n

n n

G E t z z p E t n n z z
∞

=

= ∑r rΩ Ω                         (6.8) 

The pgf obeys the backward stochastic transport equation (Pazsit and Pal, 2007; Bell, 1965; 

Pal, 1958):  
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1 1 2 2 1 2

1 2
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In equation (6.9), f stands for the pgf of the number of neutrons in a fission reaction. 

If ( , , )S Er Ω is a steady source of the Poisson type, the pgf 1 2( , )SG z z with the source is given 

by the Bartlett formula (Bartlett, 1955): 

{ }1 2 1 2( , ) exp ( , , ) ( , , , ; , ) 1SG z z S E G E t z z d dEdt⎡ ⎤= − −⎣ ⎦∫ r r rdΩ Ω Ω        (6.10) 

The Rossi alpha formula is obtained by differentiating (6.10) twice with respect to 1z  and 

2z and setting 1 2 1z z= = : 

( )( )
1 2

2 1

1 2 1 2( , ) ( , , ) ( , , , ;1,1)

( , , ) ( , , , ;1,1) ( , , ) ( , , , ;1,1) (6.11)

z z

z z

P t t dt dt S E G E t d dEdt

S E G E t d dEdt S E G E t d dEdt

=

+

∫
∫ ∫

r r rd

r r rd r r rd

Ω Ω Ω

Ω Ω Ω Ω Ω Ω
 

On differentiating (6.9) with respect to 1z  (or 2z ) and twice with respect to 2z  and 1z , and 

setting 1 2 1z z= = , we obtain the following equations for these derivatives i.e. the first and 

second moments: 

1

†
1z dL G Σ=  (6.12) 

           
2

†
2z dL G Σ=  (6.13) 

1 2 1 2

† ( ') ( ')( 1) ( ', ', ;1,1) ' ' ( ', ', ;1,1) ' '
4 4z z f z z
E EL G G E t d dE G E t d dEχ χν ν Σ
π π

⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫ ∫r, r,Ω Ω Ω Ω  

                                                                                                                                             (6.14)                        

The equation for the flux due to the source can be written as follows: 

 L Sϕ =       (6.15) 

In Eqs. (6.12-6.15), we have used the symbols L  and †L  for the time dependent backward 

(adjoint) and forward transport operators defined below: 
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and where H and †H  are the corresponding time independent transport operators. Using the 

fact that the various terms on the RHS in Eq. (6.11) are scalar products between the source 

and the functions 
1z

G  etc., and Eqs. (6.12), (6.13) and (6.14), and the properties of mutually 

adjoint operators, we can rewrite (6.11) as follows: 

( )( )

1

2

1 2 1 2 1 2( , ) ( , , ) ( , , )

( ') ( ', ', ;1,1) ' '
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 (6.18) 

where we have omitted the time variable for the flux, as we are considering a stationary 

Poisson source. The first term in Eq. (6.18) is merely the product of the average number of 

counts in the two intervals and is the uncorrelated term whereas the second term is due to 

fission chain correlations. It is this term that allows the estimation of α from Rossi alpha [or 

Auto Correlation Function (ACF)] measurements. We expand the function
1z

G , in terms of the 

alpha modes †
nϕ of the adjoint equations obeying:  

 † † †n
n nH

v
αϕ ϕ=  (6.19)   

and that of the forward equation obeying                                            

 n
n nH

v
αϕ ϕ=  (6.20) 

as follows: 
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1

†( , , ;1,1) ( ) ( , )r, r,z n n
n

G E t a t EϕΩ Ω=∑  (6.21) 

and similarly the detector cross section(s):  

 
1 1( ) ( , )r,d n n

n
t t d EΣ δ ϕ Ω+= − ∑  (6.22) 

The coefficients can be written down using bi-orthogonality relation † 1( , )n n nmv
ϕ ϕ δ= of the 

eigen-functions to yield: 
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Substituting the expansions of Eqs. (6.21) and (6.22) in Eq. (6.12) and using Eq. (6.19), we 

get the following equation for )(tan :   
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1
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n d
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n n
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Solving the above equation, we finally obtain: 
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If the detectors are symmetrically located and at the intersection of the zeros of the first set of 

symmetric forward eigen-functions, it is clear that in (6.22), all anti-symmetric modes and the 

first set of symmetric modes do not contribute. Thus to a very good approximation we can 

write: 

 
1

1

0
†
0 0 1

†
0 0

1( , )
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z
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Similarly we can obtain the following expression for 
2
( , , ;1,1)zG E tr,Ω  
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Using Eqs. (6.26) and (6.26a), the second term of Eq. (6.18) becomes 
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where  
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0 0

( ')( ) ( ', ') ' '
4
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and 

 ( ) ( , )fF E d dEΣ ϕ= ∫r r,Ω Ω  (6.29) 

The time integration is carried out easily and we obtain the traditional Rossi alpha type 

expression:  
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What if the detectors are not located symmetrically though the source is symmetrically 

located?  To answer the question, we examine Eq. (6.18). The second term has a spatial 

integral over the flux and the product of two neutron importance functions. Since the detector 

is not symmetrically located, each of these factors would have anti-symmetric modal 

contributions. With regard to the product, two anti-symmetric factors give a symmetric factor 

and hence its integral weighted over the symmetric flux function does not vanish. Hence the 

time response would contain higher exponentials due to the anti-symmetric modes. 

Therefore, unlike in the pulsed neutron experiment, we cannot assume that if the source is 

located at the centre of a symmetrical reactor, the anti-symmetric modes would automatically 
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vanish. In the following section, we show confirmation of this result by simulation using the 

diffusion theory based simulator described in previous sections. 

6.4 Results 

Analytical diffusion theory kernel method 

We study the problem of suitable location of the neutron detectors to avoid contamination 

due to contribution from higher modes as much as possible. We assume a bare homogeneous 

reactor in the shape of a rectangular parallelepiped which is described by one group diffusion 

theory with the source located at the centre. The dimensions (inclusive of extrapolation 

distance) and other properties are listed in Table-6.1 and are chosen to roughly correspond to 

natural uranium fuelled and High Density Poly Ethylene (HDPE) moderated assembly likely 

to be used in the first phase of the experiments. For the bare assembly, the points of 

intersection of the zeros of the first set of symmetric modes are easily seen to be at the 

coordinates ( 14, 14, 20)± ± ± . For actual geometries, the problem of obtaining these locations is 

more complex and can be solved using the code developed by Singh et al. (2009).  

Fig. 6.4a shows a plot of the auto-covariance with eight detectors centered at the 

coordinates ( 14, 14, 20)± ± ± . We see that barring the first point all others fall on a single 

exponential.  Fitting an exponential to the remaining points gives us a value of 3897α =  s-1, 

which is close to the theoretical value of 3746 s-1.  The small difference between the 

estimated and theoretical values appears to be due to small but non-zero contributions from 

higher modes which are probably not fully suppressed by placement of the detectors. The 

first point, which is clearly an outlier, might be due to contribution from the second set of 

symmetric modes which are not at all suppressed by placement of detectors. Fig. 6.4b shows 

the ratio of variance to mean with counting interval. In Figs. 6.5a and 6.5b we show the 

results of the same simulation including the effect of delayed neutrons. We see from Fig. 6.5a 
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that beyond a separation time of about 1 ms i.e. about 4/α , the ACF is mostly on account of 

delayed neutrons and is approximately constant on the prompt neutron time scale. Subtracting 

the constant value gives us Fig. 6.5b. Again after leaving out the first point, we get an almost 

single exponential with 3723α = s-1. Thus, we clearly see that with the detectors located 

symmetrically at the intersection of the zeros the Rossi alpha or ACF response is almost 

entirely due to the fundamental mode.  

On the other hand in Fig. 6.6a, we locate the detectors symmetrically but at ( 10, 10, 0)± ± ±  

i.e. not at the zeros of the symmetric modes.  We see that a single exponential does not fit the 

data well and moreover the computed value of alpha is also not close to the theoretical value. 

In Fig. 6.6b, we locate the detector at the zero of the symmetric modes but only in one 

quadrant. Due to the reduced efficiency, the data are not as good as in Fig. 6.4 & 6.5 but more 

than that we see that neither a single exponential fits the data well nor the value of alpha, so 

derived, is anywhere near the theoretical value. The important point to be noted is that by the 

time we reach a time separation where the fundamental mode dominates, the correlations 

have more or less died out and the ACF is weak. Moreover delayed neutron effects start 

playing an important role and these have to be corrected for. This introduces additional 

uncertainty. The suppression of higher modes by proper selection of detector locations 

constitutes an important study for determining the sub-criticality in highly sub-critical 

systems. 

Finite difference method 

We study the problem of bare homogeneous reactor, described above, by finite diffusion 

theory based analogue Monte Carlo as mentioned in section 6.2. Simulations were carried out 

for meshes of two different sizes. In one case, coarse meshes of about 5 to 6 cm size were 

chosen while in other case fine meshes of about 2.5-3.5 size were considered.  
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Figs. 6.7a, 6.7b show a plot of the auto-covariance with eight detectors centered at the 

coordinates ( 14, 14, 20)± ± ±  for coarse and fine mesh structures respectively. Fitting an 

exponential to the data points gives us values of alpha to be 3902 and 3788 for coarse and 

fine mesh schemes respectively. Thus, the value of alpha obtained by fine mesh scheme is 

closer to the theoretical value. Figs. 6.8a and 6.8b show the ratio of variance to mean with 

counting interval for the coarse and fine mesh structure respectively. In Fig. 6.9 we show a 

comparison of the results (for fine mesh structure) with those obtained by analytical diffusion 

theory based kernels. It can be seen that the two are in agreement within ±4%. It may again 

be noted that mesh size does have an impact on the shape and maximum size of variance to 

mean ratio and the small difference can be ascribed to this effect.  

In Table 6.2, we show a comparison of simulation results for various parameters obtained 

using analytical kernel and finite difference kernels with exact values.  

By following the method described in section 6.3, it can be shown that maximum value of 

variance to mean ratio is given as:  

2( 1) ( , ) ( , ) ( )]

( , ) ( , )
f S

S d

E E I d dE

E E d dE

ν ν φ

φ

− ∫
∫

r r [ r r

r r r

Σ

Σ
, 

where 

†( ) ( ') ( ) 'SI E E dEχ ϕ= ∫r r, . 

Thus, to get an estimate of the maximum value of variance to mean ratio, direct and adjoint 

fluxes were calculated by running the finite difference diffusion theory code. The above 

expression was then used to estimate the maximum value.   

The maximum value of variance to mean ratio thus obtained was 2.09 (corresponding value 

of Feynman Y function i.e. Y-inf is 1.09) for fine mesh structure. Using the (input) value of 

alpha given in Table-6.1, together with this value for Y-inf, we find that the value of Y at 10 
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ms is 1.06 which may be compared with the value obtained by the (finite difference) 

simulator i.e. 1.064. Similarly, the value obtained for the coarse mesh structure was 2.19 

which corresponds to a value of 1.16 for Y at 10 ms.  This may be compared with the value 

obtained by the (finite difference) simulator i.e. 1.12. 

Dead time effects 

In this section, we study effect of detector dead-time on variance to mean ratio for the 

problem described in the previous section. Two types of detector dead-times have been 

considered namely non-paralyzable and paralyzable.  Figure-6.10 shows the variance to mean 

ratios for non-paralyzable dead-times of 2 and 4 micro seconds. The effect of dead-time can 

clearly be seen on the maximum value of variance to mean ratio. For a dead time of 2 micro 

seconds, the maximum value of variance to mean ratio is about 1.968 as compared to the 

value of 2.064 without dead-time effect. The count rate also reduces from 5070 to 4974 cps. 

In case of 4 micro seconds, the maximum value of variance to mean ratio reduces further to 

1.892 and the corresponding count rate is 4912 cps.  

Figure-6.11 shows the variance to mean ratios for paralyzable dead-times of 2 and 4 micro 

seconds. For a dead time of 2 micro seconds, the maximum value of variance to mean ratio is 

about 1.965 as compared to the corresponding value of 1.970 for non-paralyzable dead-time. 

The count rate in this case is 4972 cps. In case of 4 micro seconds, the maximum value of 

variance to mean ratio is 1.887 and the corresponding count rate is 4884 cps.  

6.5 Conclusion 

The few group diffusion theory based analogue Monte Carlo simulator gives a fairly realistic 

picture of the kind of results that may be expected with regard to the errors and the accuracy 

that may be expected from actual measurements.  
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Simulations of proposed Purnima sub-critical assemblies show that proper location of 

detectors gives an almost single exponential (fundamental mode) response making alpha 

measurements by the noise methods possible even in deeply sub-critical systems.  

Appendix I 

Derivation of flux at the boundary of a mesh 

The multi-group time dependent diffusion equation can be written as:  

2 1
g g ag g g h g h g h g fh h ext

h g h g h g

D S
v t

ϕϕ ϕ ϕ ϕ χ ν ϕ→ →
≠ ≠

∂
∇ −Σ − Σ + Σ + Σ + =

∂∑ ∑ ∑                    (A.1) 

The first term on the left hand side is the (negative of) neutron leakage, while the second and 

third terms are removal by absorption and by transfer to other groups respectively. The 

fourth, fifth and sixth terms are sources due to -transfer from other groups, -fission and -

external source respectively. All the quantities are per unit volume and per unit time around 

the point under consideration. To convert the diffusion equation into a finite difference 

equation, we introduce a rectangular mesh such that the nuclear properties within a mesh are 

constant. We label a mesh by its indices i, j and k along the x, y ad z directions respectively 

and the various nuclear properties such as diffusion coefficients, and various cross sections 

for absorption, fission, scattering accompanied by slowing down to lower energy groups will 

be labeled by the corresponding mesh indices. , ,i j kh h h  are the lengths of the sides of the 

rectangular mesh (i, j, k). By integrating over a mesh volume, the above equation becomes 

(using the divergence theorem for the leakage term): 

6

, , , ,
1

1g
g m i j k ag g g h g h g h g fh h ext i j k

m h g h g hm g

D dS V S V
n v t
ϕ ϕϕ ϕ ϕ χ ν ϕ→ →

= ≠ ≠

∂ ⎡ ⎤⎛ ⎞ ∂
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∑ ∑ ∑ ∑∫ ,      (A.2) 

where , ,i j k i j kV h h h=  is the volume of the mesh (i, j, k), the integration is over all the six 

surfaces of a mesh and n is a unit vector normal to the surface.  Each of the six integrals can 
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be written as the product of the average normal component of the current at the surface with 

the area of the surface. If there is no source (external, fission or slowing down), the above 

equation then becomes: 

6

1, ,

1 1g
g m ag g g h g

m h gi j k m g

D S
v n v t

ϕ ϕϕ ϕ→
= ≠
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∑ ∑                              (A.3) 

Henceforth we drop group indices as they are no longer required. To obtain expressions for 

the average currents on the six surfaces, we consider the mesh arrangements in the reactor as 

shown in Fig. 6.3. Each mesh is a rectangular region with uniform material properties. 

Material properties in the neighboring meshes might however be different. The average flux 

in the mesh (i, j, k) is denoted by , ,i j kφ  and the same is assumed to be the flux at the centre of 

the mesh. The corresponding average fluxes at the boundaries of the mesh are as indicated in 

the figure. Continuity of current is ensured by the flowing equation:  

1, , 1, , 2 , , 2 , ,

( 1) ( )

( ) ( )
/ 2 / 2

i j k i j k i j k i j k
r

i i

D D
J

h h
ϕ ψ ψ ϕ+ +

+

− −
= − = −                              (A.4) 

The same value of the flux at the boundary 2( )ψ  is used on the left and right side of the 

above equation to ensure continuity of the flux. 

From eq. (A.4), the following expression for the flux at the boundary is obtained: 

1, , ( ) 1, , , , ( 1) , ,
2

1, , ( ) , , ( 1)

i j k i i j k i j k i i j k

i j k i i j k i

D h D h
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+ +

+
=

+
                                       (A.5) 

Substituting this expression on the LHS of (A.4), current on the right edge ( rJ ) is given as: 

1, , , , ( 1) 1, , , , ( 1) , ,

( 1) 1, , ( ) , , ( 1)

2 ( )
( )

i j k i j k i i j k i j k i i j k
r

i i j k i i j k i

D D h D h
J

h D h D h
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+ + +

−
= −

+
                            (A.6) 

Similarly currents on all the six edges can be evaluated which in turn are used for getting 

expressions for leakages in x, y and z directions. By substituting the expressions for currents 

on the six faces, we obtain the following equation: 
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Table 6.1: Bare homogeneous reactor: geometrical and nuclear data 

Width and height (a, b) 84 cm 

Length (c) 120 cm 

Migration area M2 36 cm2 

k-inf  0.982 

k-eff  0.873 

k-eff (p) 0.867 

Infinite medium lifetime ( )l∞  40 μs 

Neutron lifetime ( )l  35.5 μs 

β 0.0065 

α 3746 s-1 
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Table 6.2: Comparison of various parameters obtained using analytical kernel  

and finite difference kernels with exact values  

Parameter Exact Analytical  FD (coarse) FD (fine) 

Keff (p) 0.8673 0.8676±0.0009 0.8706±0.0003 0.8676±0.0003

α (s-1) 3746  3897±35.4 3902±52.81 3788±55.68 

l (μs) 35.5  34.1 33.0 35.4 

 

 

Fig. 6.1: The problem of determining the potential (to the left of the plane P) due to a positive 

charge +q near the conducting plane P which is earthed can be solved by adding an image 

charge –q at an equal distance behind the plane. 
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Fig. 6.2: On the left we show the case of a single plane boundary with the medium on the left 

and vacuum on the right. A single negative image source on the right at the same distance 

from the boundary as the original source reproduces the zero flux boundary condition on B. 

For the two dimensional case shown on the right, we need three image sources to reproduce 

the zero flux boundary condition on B and BB. 

 

Fig. 6.3: Mesh arrangement in finite differencing scheme 
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(a) 

 

(b) 

Fig. 6.4 (a) Plot of the auto covariance of the count rate with the time separation with 

symmetrically placed detectors at the zeros of the first symmetric harmonics. After removing 

the first point, the single exponential fit is almost exact and gives a value of alpha close to the 

expected value. (b) Plot of the variance to mean ratio with the counting interval length with 

symmetrically placed detectors at the zeros of the first symmetric harmonics.  
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(a) 

 

(b) 

Fig. 6.5 (a) Plot of the auto covariance of the count rate with the time separation with 

symmetrically placed detectors at the zeros of the first symmetric harmonics with inclusion of 

delayed neutrons. Note that the auto covariance reaches an approximately constant value after 

1 ms due to delayed neutrons. (b) Plot of the auto covariance of the count rate with the time 

separation with symmetrically placed detectors at the zeros of the first symmetric harmonics 

after subtracting the delayed neutron contribution. The exponential fit is good and gives a 

value of alpha close to the expected value. 
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(a) 

 

(b) 

Fig. 6.6 (a) Plot of the auto covariance of the count rate with the time separation with 

detectors placed symmetrically but away from the zeros of the first symmetric harmonics. 

The exponential fit is not good nor does it give a value of alpha close to the expected value. 

(b) Plot of the auto covariance of the count rate with the time separation with detectors placed 

at the zeros of the first symmetric harmonics but in a single quadrant. The exponential fit is 

not good nor does it give a value of alpha close to the expected value. 
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(a) 

 

(b) 

Fig. 6.7 (a) Plot of the auto covariance of the count rate with the time separation with 

symmetrically placed detectors at the zeros of the first symmetric harmonics as simulated by 

few group diffusion theory based analogue Monte Carlo code with coarse mesh size. (b) Plot 

of the auto covariance of the count rate with the time separation with symmetrically placed 

detectors at the zeros of the first symmetric harmonics as simulated by few group diffusion 

theory based analogue Monte Carlo code with fine mesh size. 
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(a) 

 

(b) 

Fig. 6.8 (a) Plot of the variance to mean ratio with the counting interval length with 

symmetrically placed detectors at the zeros of the first symmetric harmonics as simulated by 

few group diffusion theory based analogue Monte Carlo code with coarse mesh size. (b) Plot 

of the variance to mean ratio with the counting interval length with symmetrically placed 

detectors at the zeros of the first symmetric harmonics as simulated by few group diffusion 

theory based analogue Monte Carlo code with fine mesh size. 
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Fig. 6.9: Plot of the variance to mean ratio with the counting interval length with 

symmetrically placed detectors at the zeros of the first symmetric harmonics- a comparison of 

the results obtained by analytical diffusion theory based kernels and simulation (for fine mesh 

structure) by few group diffusion theory based analogue Monte Carlo code.  
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Fig. 6.10 Variance to mean ratios for non-paralyzable dead-times of 2 and 4 micro seconds 
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Fig. 6.11 Variance to mean ratios for paralyzable dead-times of 2 and 4 micro seconds 
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CHAPTER 7 
____________________________________  

Summary and Conclusions  

As part of our program on R & D of ADS, we have carried out theoretical studies on the 

development of reactor noise methods for measuring sub-criticality of such systems. The 

principal difference between reactor noise in ADS and traditional reactors, as also between 

our approach and that followed by other authors (Pazsit and Yamane, 1998a,b; Kuang and 

Pazsit, 2000; Behringer and Wydler, 1999; Munoz-Cobo et al., 2001), lies in the 

characteristics of the external source. As elaborated in section 2.2.3 of chapter 2, there are 

reasons to believe that the accelerator produced neutron source cannot be assumed to be a 

Poisson process. An immediate consequence of this is that the commonly used approaches in 

traditional reactor noise theory such as the Kolmogorov forward equation and the Bartlett 

formula are not applicable to the study of reactor noise in ADS.  

Thus, it is necessary to have a different theoretical approach to the subject. In view of this, a 

theory of reactor noise in ADS considering periodically pulsed source and its non-Poisson 

character was developed earlier by Degweker (2000, 2003). The theory has been further 

developed in the thesis as outlined below. 

In chapter 3, we have characterized the non-Poisson source by considering exponentially 

correlated Gaussian statistics of the proton beam intensity. We have also treated pulses of 

finite widths by considering rectangular and Gaussian pulse shapes. Expressions for various 

noise descriptors have been obtained. In chapter 4, we have extended the theory to include 

the effect of delayed neutrons. The source is considered to be a periodic sequence of delta 

function pulses with non-Poisson character. Two cases have been considered. In one case it is 
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assumed that there is no correlation between different source pulses while in the other case 

we have considered a specific model viz. exponential correlation between the proton pulses. 

We have derived expressions for Rossi alpha and Feynman alpha formulae. For further 

extension of the theory of reactor noise in ADS to the more general case of correlated non-

Poisson pulsed sources with finite pulse width including delayed neutrons, we have followed 

the Langevin approach in chapter 5. We have obtained the PSD of the reactor noise in ADS 

for the general case described above.  

Experimental studies are planned (Rasheed et al., 2010) to be carried out in the upcoming 

Purnima sub-critical facility at BARC to study pulsed neutron and noise methods for 

measuring the sub-critical reactivity of ADS and to interpret the results in the light of the 

above theory. As a part of the planning of these experiments, we have developed a few group 

diffusion theory based analogue Monte Carlo code for simulating the proposed experimental 

set-up. The simulator incorporates delayed neutron effects and dead time effects. The 

development of the simulator and some results obtained are described in chapter 6.  

The main conclusions of our studies are as follows. 

The correlations in the source fluctuations introduce additional terms which could confuse 

interpretation of alpha measurements by the variance method. The variance method is likely 

to suffer most from the presence of other sources of fluctuations. The Rossi alpha, correlation 

and spectral density methods might perform better in this case. On the other hand, 

correlations between the numbers of neutrons emitted in different pulses give rise to extra 

terms. Calculation of Rossi alpha shows that if correlation times are greater than or of the 

order of the prompt neutron decay times, it will be difficult to use methods such as Rossi 

alpha. The importance of the delayed neutron contributions will be most clearly felt in those 

situations where the prompt and delayed time scales are not very distinct and the formulae 
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derived by us would serve as corrections even on prompt neutron time scales. The Langevin 

approach is capable of correctly describing the non-Markov process resulting from a non-

Poisson source. We have shown that a complete description of the spallation neutron source 

is possible by treating it as a combination of an internal noise given by the Schottky 

prescription and another that is of external origin arising from the proton beam. With such a 

description, we have obtained the PSD of ADS reactor noise complete with delayed neutrons, 

finite pulsed width, and correlations if any between proton pulses. The simulator gives a 

fairly realistic picture of the kind of results that may be expected with regard to the errors and 

the accuracy that may be expected from actual measurements. Simulations of proposed 

Purnima sub-critical assemblies show that proper location of detectors gives an almost single 

exponential (fundamental mode) response making alpha measurements by the noise methods 

possible even in deeply sub-critical systems. 

Further studies on the subject can be carried out along the lines given below.    

If noise methods are to be used for sub-criticality measurements, experimental studies on the 

statistical characteristics of the proton bunches should be carried out. Since the Feynman 

alpha method has been studied in several experimental facilities, it would be worthwhile to 

look for non-Poisson behavior of the source. A study of the variation of the Feynman Y 

function with the degree of sub-criticality would bring out the relative contributions from the 

external source and from the fission source. It is also important to study the current 

fluctuation statistics of ion beams from accelerators, either theoretically or experimentally. 

Our treatment of reactor noise in ADS is limited to very low power systems and we have 

completely disregarded the effects of thermal hydraulic feedbacks and other noise sources 

which are expected to be important in an operating power reactor. It will be worthwhile to 

investigate these effects. Finally, development of a robust procedure for diffusion in multi-

media, and which does not use numerical approximations such as finite differencing, remains 
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an interesting problem which needs to be studied further. A more accurate simulation of the 

process using time dependent analogue Monte Carlo is being attempted (Singh and 

Degweker).      
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