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SYNOPSIS

Manipulation and control of atomic/molecular response by electromagnetic fields is one
of the central themes of quantum optics research in recent years [1-15]. These control
strategies rely on quantum coherence and interference in multi-level atomic/molecular
systems that are coherently driven by two or more electromagnetic fields [1-4]. In this
context, phenomena such as electromagnetically induced transparency (EIT),
electromagnetically induced absorption (EIA), coherent population trapping (CPT),
amplification without inversion (AWI) etc. have been discussed in great details [1-5].

Apart from generating renewed interest in the understanding of subtle effects in coherent
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photon-atom interactions, these studies have created a new technological frontier based
on photon engineering in a dressed atomic medium. Current interest in this area is driven
by several important metrological applications, i.e., atomic frequency standards,
miniaturized atomic clock, ultra-precision atomic magnetometry, atomic frequency offset
locking, which are primarily derived from sub-natural linewidths of the dark resonances
associated with EIT and CPT phenomena [5-7]. In more recent years, increasing attention
is being paid to several other closely related phenomena which include for example,
subluminal and superluminal light propagation, storage of light, quantum information
processing and also the search for metamaterials, i.e., innovative systems that display
negative refractive index [8-10].

The present thesis deals with coherent dynamics of multi-level atomic/molecular
systems and its manifestation in the observation of several of the above referred
phenomena, i.e., EIT, EIA, AWI and negative refractive index, together with the issues
connected with spontaneously generated coherence (SGC), Kerr nonlinearity and the
effect of finite bandwidths of driving fields. The major part of the thesis is concerned
with theoretical aspects of coherent laser-atom/molecule interaction and predictions of
novel effects arising from the field induced coherence and interference. These studies
have been done in the framework of master equation and the systems investigated are
three- and four-level atoms in various level configurations, i.e., A, double A, tripod, N-
resonance etc [10]. Hyperfine manifolds of D; and D, transitions of alkali atoms are
primarily used for constructing these level schemes. In order to provide a flavor of the
coherent pump-probe spectroscopy for precision measurements, a few experimental

results are also reported for a medium of alkali atoms [11].
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The thesis is organized in nine chapters according to the various atomic/molecular
systems studied and the quantum coherence phenomena associated with them.

Chapter-1 presents a brief introduction to the subject of quantum coherence and
interference in driven multi-level systems and their manifestations in tailoring optical
properties of an atomic/molecular medium [1-10]. The underlying concepts, the current
status of the field and the fascinating applications of these phenomena in basic and
applied sciences are briefly discussed here. The contents of this chapter, thus, provide
both the motivation and the basis for the work presented in the subsequent chapters.

Chapter-2 provides the discussion on the master equation framework used for
addressing the interaction of multi-level system with coherent multi-frequency
electromagnetic field. A prototype system for investigating quantum coherence and
interference phenomena is a three-level atomic system in A, V or = configurations [1-5].
An explicit derivation of the semiclassical master equation in electric dipole and rotating
wave approximations is discussed here for a three-level atomic system interacting with
two external coherent fields and incoherent vacuum fields. The total system of atom and
vacuum reservoir is described by a Hamiltonian in the second quantized form whereas
the external fields are assumed to be classical. The technique of projection operators is
used to eliminate the field modes and obtain the master equation for reduced atomic
density operator from the Liouville equation. The discussion is then generalized for
various four-level schemes of interest. Permanent dipole moments associated with
molecular transitions provide pathways for multi-photon transitions and consequently
their inclusion in the master equation is of paramount importance while dealing with

coherent pump-probe spectroscopy of molecular systems [12]. In this context, we
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develop and discuss the necessary master equation framework for a three-level molecular
A system with permanent dipole moments and undergoing M- and N —photon
transitions on pump and probe resonances. The master equation applicable to pertinent
level schemes is then used as a starting point for analysis of steady state as well as time
dependent behaviour of quantum systems and associated interference effects in the
subsequent chapters. Connection to the experimental systems is established by averaging
atomic/molecular response over Maxwell-Boltzmann velocity distribution.

Chapter-3 deals with the study of coherent pump-probe spectroscopy of three-
level molecular A system with permanent moments. The motivation for these studies is
provided by the very recent interest in EIT in the molecular domain [13]. A particular
issue that is unique for molecules is the existence of diagonal or permanent dipole
moments. It is therefore interesting to explore the role of permanent dipole moments on
the observation of EIT and its connection to the issue of subluminal and superluminal
light propagation. Master equation for a three-level A system including the permanent
dipole moments is used to obtain analytical expressions for m+n photon EIT and
dispersion for a medium of stationary as well as Doppler broadened molecular medium.
Contrary to the earlier reported work [13], we observe no amplification in 2+2 photon
process when the sign of the permanent moments is reversed. Reasons for these
contrasting observations are discussed. Our study shows that the permanent moments
essentially damp the laser-molecule Rabi frequency to result in narrower EIT line width
and larger group velocity index. These effects are further enhanced when the order of the
multi-photon process is increased. While considering the multi-photon EIT mediated by

permanent dipole mechanism, it is important to include the effect of virtual mechanism.
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This issue is discussed by considering the special case of 2+1-photon EIT. The discussion
presented in this chapter, thus, provides an integrated view of coherent pump-probe
spectroscopy of a medium of dipolar molecules and its comparison with atomic case.
Chapter-4 presents detailed analysis of coherent pump-probe spectroscopy of A
system with an additional adjacent excited level. The level scheme thus consists of two
simultaneous A resonances with common ground levels and excited by the same pair of
pump and probe fields, i.e., degenerate double lambda (DDL) resonance [6]. This level
configuration is the simplest of the four-level systems and is experimentally relevant
since it occurs naturally in all coherent spectroscopy experiments on D; and D,
transitions of alkali atoms owing to the close spacing of excited hyperfine levels. Detailed
theoretical analysis is performed using relevant Master equation. The probe absorption
spectrum and dispersion in the absence and presence of Doppler broadening are
discussed. This analysis shows that the two simultaneously excited A resonances result in
peculiar interference effects in the probe absorption spectrum and dispersion. These are
illustrated using model four-level DDL scheme formed in D, transition of Rb. In
particular for stationary atoms we observe the suppression of the sub-natural resonance
and the possibility of probe amplification under specific field-atom interaction
parameters. Electromagnetically induced transparency (EIT) in a DDL system is studied
and the effect of the neighbouring level on the shape, linewidth and position of EIT
profile is discussed. The discussion is further augmented by the study of six-level model
as applicable to D, transition of ®Rb. The analysis presented in this chapter thus provides
a realistic theoretical description of pump-probe spectroscopy of hyperfine transitions of

alkali atoms. The chapter is completed with a discussion on an experimental scheme
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employed for dressed state spectroscopy of DDL system in a Doppler broadened medium
of *Rb atoms using two commercial single mode external cavity diode lasers. The
experimental results are discussed in the light of the theoretical model [11].

Chapter-5 presents a detailed analysis and discussion on the phenomenon of
amplification without inversion (AWI) [4] observed in the DDL system of Chapter-4. It is
shown here that a four-level DDL system under specific conditions can exhibit AWI
without the need of incoherent pumping [10]. The dependence of AWI on atom-field
interaction parameters and spontaneous emission rates is investigated. It is observed that
the AWI resonance can be tuned in a broad frequency range by varying pump detuning
and its strength is maximized when the detuning is half the frequency separation between
excited levels. AWI is observed to be critically dependent on the low frequency
coherence established between the pair of ground levels and is observed to persist even
after the inclusion of Doppler averaging. Approximate analytical expression for probe
absorption is derived to corroborate the numerical results and to discuss the contrasting
behavior, i.e., absorption vS. AWI, in the model DDL system in D; and D, transitions of
*’Rb. The discussion on AWI is further augmented using quantum jump formalism,
which provides useful insight into the underlying mechanism responsible for
amplification.

Chapter-6 deals with theoretical analysis of interference effects in general four-
level configurations, i.e., tripod system [14] and N-resonance [3,10], driven by three
coherent fields, i.e., pump, probe and control lasers, from the point of view of controlling
of the coherent dynamics and its manifestations. For the tripod system, the behaviour of

the pair of EIT resonances as a function of laser-atom interaction parameters is
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investigated with an objective of controlling the EIT linewidths [14]. In case of N-
resonance, we discuss issues pertaining to the inversion in dressed states, observation of
more than one transparency window and switching between two different regimes of
coherent laser atom interaction: EIT and EIA, by controlling the laser parameters. These
effects are attributed to the population trapping in the dark state, competition between
inherent A and V systems and transfer of coherence. The role of spontaneously generated
coherence (SGC) on the linear and non-linear response of N-system is investigated, and
the transformation of EIA into EIT and enhancement of Kerr nonlinearity along with
suppression of absorption are discussed. On the experimental front, a set-up developed
for realizing EIT resonance in N-system in Doppler broadened Rb atoms is discussed.
Experimental results on EIT in N-resonance and its comparison with EIT in A system
show that the EIT signal in N-resonance is significantly narrower than that in a A system.
This observation is in agreement with the observation that N-resonance is superior to a A
resonance, which makes the former system more attractive for applications relating to
time and frequency standards.

Chapter-7 deals with the investigations of laser phase fluctuations [15] on the
coherent dynamics of four-level systems with N-resonance as an example. N-resonance
has been chosen specifically for these studies since the ‘dark’ resonances associated with
it are of particular importance for atomic frequency standards. An important issue that
has a direct bearing on the experiments is how finite bandwidths of the driving lasers
affect the steady state as well as the time dependent spectroscopic properties of N-
resonance. While such studies in three-level configurations have been done extensively

[15] and are shown to have pronounced effects on the linewidths of the EIT and CPT
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resonances, very little work is reported on N-resonance, probably due to the complex
configuration of levels and coupling fields. The present chapter addresses this very
problem employing the master equation approach. We assume here that the finite
bandwidths arise from the phase fluctuations of the laser fields, the statistics of which is
described in terms of the Wiener-Levy diffusion model. We derive an exact master
equation for phase averaged atomic density operator using the theory of multiplicative
stochastic processes. Numerical results for the steady state and time dependent
populations are obtained for 3-photon and 2+1-photon resonance conditions for finite
bandwidth of lasers and cross-correlations. In a similar manner the effect of phase
fluctuations on the EIT and EIA resonances has been investigated [10]. We observe that
in general the phase fluctuations tend to broaden and even destroy the sharp resonances,
and dampen the Rabi oscillations; however the extent of this effect is critically dependent
on the phase fluctuations associated with the three fields. It is also found that the
introduction of cross-correlation helps to revive the coherent behaviour to some extent,
albeit depending on correlation between specific pairs of coherent fields.

Chapter-8 is devoted to exploratory investigations on the observation of negative
refractive index in four-level systems interacting with three coherent fields, a probe, a
control and a rf field [8,10]. In the framework of Master equation and Classius-Mossotti
relation, we obtain relative permittivity and permeability for a dense medium of such
atoms. Analysis reflects the existence of probe frequency domains where permittivity and
permeability can become simultaneously negative. The use of dispersion property of the

negative refractive index to control the group velocity of the probe beam from subluminal
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to superluminal is also discussed. Importance of coherent preparation in achieving
negative refractive index in the optical frequency domain is highlighted in this work.
Finally the important conclusions of the present study and scope for future work

are briefly summarized in Chapter-9.
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CHAPTER 1

INTRODUCTION

Coherent control is one of the leading themes of quantum optics research that is
rich in new and counter-intuitive phenomena. The control strategies here are derived
from the phenomena of quantum coherence and interference established in multilevel
atomic systems driven coherently by two or more electromagnetic fields. In particular,
the control of optical response of an atomic/molecular medium and manipulation of light
propagation through such a medium has received considerable attention [1-4]. Some of
the best known examples of this research are Autler-Townes (AT) splitting [5-9],
coherent population trapping (CPT) [10-13], electromagnetically induced transparency
(EIT) [14-39], electromagnetically induced absorption (EIA) [40-52] and lasing without
population inversion (LWI) [53-79]. These phenomena are characterized by ultra-narrow
linewidths, and modified linear and nonlinear susceptibilities. While on one hand these
phenomena help to understand the subtle quantum effects in laser-atom interactions, they
on the other hand provide useful platform for development of quantum technologies, e.g.,

frequency stabilizer [80-82], miniaturized atomic clock [83-87], precision magnetometer
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[88-91], laser cooling [92,93] and quantum information processing [94,95]. In very recent
years the research in this area has expanded in several new and exotic directions which
include for example, subluminal and superluminal light propagation [96-114] and search
for systems exhibiting negative refractive index [115-131].

The main objective of this thesis is to investigate the phenomenon of quantum
coherence and interference in optical processes with the objective of achieving control of
the interaction between atomic or molecular systems and electromagnetic fields. This
chapter discusses briefly the basic physics underlying these optical phenomena and
provides a perspective of their applications. The discussion presented here forms the

basis for research work presented in the subsequent chapters.

1.1 Coherence and Interference in Atom-Field Interaction

Coherence is fundamental to the quantum optical phenomena. An atomic system
interacting with a coherent electromagnetic field retains a distinct phase relationship with
the field as long as the incoherent processes, i.e., decays due to spontaneous emission or
collisions, do not override the atom-field interaction dynamics. The problem then can be
addressed in the framework of quantum mechanics, where superposition and interference
play an important role. The essential features of this quantum description are usually
discussed by considering a finite-level atom interacting with a classical electromagnetic
field. Such idealized n—level systems can be realized experimentally by identifying
suitable hyperfine levels or Zeeman sublevels in simple atoms, e.g., alkali atoms. Two-
and three-level atomic systems are paradigm of these studies, although general n—level

systems (n > 3) provide opportunities to study more complex quantum dynamics as we
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see later. The energy levels and atom-field interaction parameters relevant for the
discussion of two- and three-level atoms are schematically shown in Fig. 1.1 and 1.2

respectively.

.......... ‘f. Fig. 1.1: Two-level atom coherently
driven by a laser field of Rabi
frequency «. A is the detuning of
laser from atomic transition frequency.
2 y 1s the radiative decay rate associated

with | 2> - | 1> transition.

Fig. 1.2: Level scheme representation of (a) A (b) V and (c) E systems. Here
A (A,) and 2¢,(2a,) are respectively the detuning and Rabi frequency of the pump

(probe) laser field and y; is radiative decay rate associated with |I> - | j> transition.

The quantum mechanical framework necessary for description of finite-level
systems interacting with two or more lasers and with vacuum of radiation field is
explicitly developed in Chapter-2. In what follows, the essential results concerning
coherence and interference in atomic media and pertaining to the scope of this thesis are

reviewed.
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1.1.1 Rabi Oscillations and Dressed States
For a two-level atom interacting with classical electromagnetic field,
E = E, cos(at), the atom-field dynamics is described by Hamiltonian,
H=H, +V, (1.1)
where H, is the field-free Hamiltonian and V =—-d . E is the interaction in electric

dipole approximation. Here E and @ are respectively the electric field and frequency of

radiation field, and d is the transition dipole moment associated with |1>—>|2>

transition. Atom-field dynamics is then determined by the Rabi frequency (2«r) and
detuning (A ) defined as

20=d.E/h, A=0, -0, (1.2)
where ,, is the atomic transition frequency. For a loss-less system, the ground and

excited level populations exhibit out of phase oscillations, i.e., Rabi oscillations. The

oscillation frequency is given by the generalized Rabi frequency defined as

= (4a” + )", (1.3)
Incoherent decay (2y ) results in damping of the Rabi oscillations, and for o >y
coherence can persist over several Rabi periods. The model of two-level atom interacting

with monochromatic radiation field also permits to introduce the dressed states |l// i> ,1.e

the eigen states of the atom + field Hamiltonian H , of energies ¢, such that

A [Q A
R+|> ; |>

ly.)= £, =(A+Q,)/2. (1.4)

The dressed states can be observed using the techniques of coherent pump-probe

spectroscopy. As a part of research work reported in this thesis, suitable experimental
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techniques were developed to identify relevant dressed states corresponding to coherent

interaction of a strong pump with hyperfine levels of D, transition in alkali atoms.

1.1.2 Autler-Townes Splitting

Autler-Townes (AT) splitting refers to the splitting of the absorption line due to
dressing of an atom by a coherent radiation field [5]. Three-level systems as shown in

Fig. 1.2 provide the requisite platform for observation of AT splitting. For example, in

Fig. 1.2(a), transition |2>—>|3> is dressed by a strong pump (control) laser of Rabi
frequency 2¢, and the resulting dressed states are interrogated by a weak probe laser that
is scanned in the vicinity of |1> - |3> transition. Probe absorption spectrum is then a
doublet corresponding to the dressed state transitions |1> - |1//i>. Frequency separation

between these two resonances is given by Q. = (A” +4a;)""? (cf. Eq. (1.4)) and their half

widths are

v +D[,_ A,
r,= 1 , 1.5
) 2 [+QRJ (1)

where y, =y, +7;, and D is a measure of Doppler width of the medium [6]. One thus
observes that for A =0, both resonances have equal linewidth (I', =T" ), while for
|A| >>q one of the resonances can be made of sub-Doppler or even sub-natural

linewidth. AT splitting provides a useful way to obtain the properties of an
atom/molecule interacting with near resonant radiation [1-6]. Recently AT doublet has
also been studied in reference to high order nonlinear processes [7], quantum beats and

quantum well structures [8] and in molecular systems [9]. The prospect of obtaining
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ultra-narrow linewidth (cf. Eq. (1.5)) has been employed for development of tunable

atomic frequency offset locking (AFOL) schemes [80-82].

1.1.3 Coherent Population Trapping
Susceptibility (y) of a two-level atomic medium interacting with a
monochromatic field is largely dominated by absorption, i.e., Im(y) [1-4]. Thus this

system is unsuitable for applications in nonlinear optics. A three-level system interacting
with two coherent fields gives rise to a range of coherent phenomena including CPT and
EIT which suppress the resonant absorption [10-39]. The result is a very large dispersive
optical nonlinearity which can also be used to control the propagation of light through the
medium. The difference between AT and CPT/EIT is closely connected with the
difference in the behaviour of two- and three-level systems undergoing resonant
excitations. While AT doublet is related only to the development of atomic coherence,
EIT and CPT are the results of quantum interference between absorption pathways in a
multilevel system [10-19]. It is therefore possible to discriminate AT and EIT on the
basis of Fano type interference in the latter mechanism [20] and threshold coupling [21].
A significant feature of EIT and CPT is that they afford sub-natural resolution even in a
Doppler broadened medium [22-32].

The basic principle of CPT lies in the use of laser-induced coherences to generate
a dark state formed from the coherent superposition of two long lived bare atomic states
[10-12]. Consider for example a three-level system in A configuration (cf. Fig. 1.2 (a)).

When «, ~a,, both the fields participate in the dressing of the medium and the
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diagonalization of the total Hamiltonian results into the formation of a bright (coupled)

state |C> and a dark (non-coupled) state | NC>, ie.,
IC)=(a, /)| 1)+ (e, / r)|2), (1.6a)

INC) = (e, /ap)|l) (e, [ 7)]2) , (1.6b)

1/2

where a; = (] +a§) . The dark state is uncoupled from the excited state, i.e.

<3|d . E| NC> — 0 and therefore after being pumped into this dark state, atoms cannot be

excited by either of the laser fields. This optical pumping process removes all the

population from |C> and traps it into | NC> eventually. This results in the formation of an

ultra-narrow ‘dark’ resonance; where the word ‘dark’ is used to denote its non-absorptive
nature. These dark resonances are of particular interest for several applications such as
efficient nonlinear processes [13], amplification without inversion (AWI) [53-79], atomic
frequency standards [80-91], laser cooling [92,93], quantum information processing

[94,95] and control of light propagation within a medium [96-114].

1.1.4 Electromagnetically Induced Transparency
EIT is a special case of CPT where the probe field is much weaker compared to
the pump field. It represents cancellation of linear susceptibility at the two-photon

resonance condition (A, =A.) via destructive quantum interference; thus rendering an

otherwise optically opaque medium transparent [14-18]. The classical analogy of EIT
with coupled harmonic oscillators has been demonstrated by Alzar et al. [19]. EIT can be

described in terms of two processes that work in tandem to create transparency in the



Chapter 1
® ®

media: formation of two dressed states by the strong pump and destructive interference in
the probe absorption to these states. For o, << «,, Eq. (1.6) can be simplified to obtain
1) =[a|NC) +a,|C)]/ a; ~|NC), (1.7)
implying that the ground state is decoupled from the excited state. Atoms prepared in this
state do not interact with the probe field and hence its absorption in the media vanishes.
Though EIT and CPT appear to be interrelated, there are some distinct differences
between the two processes. CPT is associated with the change in populations only, while
EIT depends on the optical response of the medium. Further EIT is an instantaneous
process (time scale ~1/ ¢, ), while the response time of CPT is much slower i.e. of the
order of several radiative lifetimes or optical pumping timescales [14-16].
In case of a Doppler broadened atomic medium, EIT may be thought of as arising
from the AT doublets corresponding to atoms of velocity v which modifies the pump

detuning A, to A, +Kk.v due to Doppler shift where k is the wave vector. Consider for
example the case when A =0. For zero velocity group of atoms, the AT doublet is
symmetric with respect to A, =0. For all other velocity groups due to Doppler shift one

of the AT components is drawn arbitrarily close to the central frequency while the other
one is pushed away. The averaging of all these AT doublet spectra results into an ultra-

narrow transparency window at A =0, which corresponds to EIT resonance. This

representation of EIT is convenient in arriving at the linewidth of EIT in a Doppler
broadened atomic medium as given by Javan et al. [35-37].

For a three-level A system under weak saturation the half width of EIT is given

by Ty = [21,,(1+5)/y]" with y =y, =y, and s=a’y /2T, W where 2W, is the
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Doppler width of the medium [34-37]. Importance of I, which determines the
coherence lifetime of the system, is clear from this expression. Note here that the A
system has minimum coherence dephasing rate compared to V and = systems, and as a
consequence ultra-narrow linewidth EIT can be obtained in a A system compared to the
other configurations [38,39]. Interest in EIT stems from its wide range of applications in
enhancement of nonlinear processes [14-16], quantum information control [17], LWI [53-
79], AFOL [80-82], time and frequency standards [83], laser cooling and trapping [93],
Bose-Einstein condensate [93], super- and sub-radiance [95], slowing [96-98] and storage

[99] of light, and realization of negative refraction [126-131].

1.1.5 Electromagnetically Induced Absorption

In contrast to EIT, EIA corresponds to the enhanced absorption of light around
resonance due to constructive quantum interference between the excitation amplitudes
[40-50]. There are two underlying physical mechanisms for EIA, transfer of coherence
(TOC) and transfer of population (TOP) [41]. In a closed system when the pump and
probe beams have different polarizations, TOC gives rise to EIA. Here EIA is associated
with creation of light induced Zeeman coherences in the excited state and their transfer to
ground state by spontaneous emission [40,41]. This happens in the absence of ground
state population trapping under the condition that lasers couple two degenerate atomic
levels and that the angular moment of the excited state is higher than that of the ground
state [41]. EIA can also arise when TOP mediated by collisions from the ground state to a
reservoir (a nearby level that does not interact with the pump) is greater than that from

the excited state. Such EIA is observed in an open system, when the pump and probe
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beams have same polarizations [42]. It is important to note that unlike EIT, EIA can only
occur in systems which behave as open A systems and in the absence of population
trapping [41-43]. Such systems can show both positive and negative dispersion. Further,
absorption in these systems is reported to have a peak at the line centre accompanied with
negative dispersion [43].

Most of the studies on EIA and conversion of EIT to EIA have been done using
two-level degenerate systems and N- system [40-44]. In these contexts, the effect of
Doppler broadening, coupling powers and temporal evolution of EIA have been studied
both theoretically and experimentally [44-49]. EIA phenomenon has also been
investigated to realize negative group velocity of light producing superluminal light

pulses which may be helpful in storage of light [50-52].

1.2 Role of Incoherence

Incoherence in the laser-atom interaction dynamics is usually introduced by two
distinct ways. First is the incoherent processes such as spontaneous emission and
collisional decays associated with the medium, while the second is a fallout of intrinsic
phase fluctuations associated with the driving field which gives it a finite bandwidth.
Generally incoherence leads to destruction of atom-field phase relationship and adversely

affects the quantum coherence and interference established in an atomic medium.

1.2.1 Collisional Relaxation

The collisional relaxation processes encountered in a typical vapour cell

experiments are of two categories: phase changing and velocity changing collisions. As

10
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the name suggests phase changing collisions cause change in the phase of atomic states
thereby preventing the maintenance of coherent excitation. Therefore these collisions
adversely affect EIT/CPT linewidths [132-136]. To counter this effect buffer gas and
anti-relaxation coatings are used in the experiments. Buffer gas prevents relaxation by
slowing down the diffusion of atoms thereby increasing their transit time across the laser
beam. In contrast the velocity changing collisions can produce sharper EIT/CPT signals
[136]. Velocity changing collisions are elastic collisions which can reduce/increase the
velocity of atoms, thereby shuffling them between different velocity groups spanning
over the Doppler profile. This increases the transit time and hence the Raman coherence
lifetime. Further this causes more atoms to participate in coherence build up thereby
aiding optical pumping. The narrowing of spectral lines by these collisions is termed as
Dicke narrowing and is more pronounced when the mean free path between velocity

collisions is smaller than the wavelength of light [137].

1.2.2 Spontaneously Generated Coherence

Spontaneous emission is a major limiting factor in the observation of coherent
processes [1]. However a counter-intuitive phenomenon called spontaneously generated
coherence (SGC) occurs in a degenerate or near degenerate level system where the
interference between spontaneous emission channels from the same excited level to
closely spaced ground levels or from two close lying excited levels to a ground level
gives rise to an additional coherence in the medium [138]. SGC arises due to interaction
of the closely spaced levels with the vacuum of electromagnetic field and has marked

effect on the dynamics of a system. The essential conditions for obtaining SGC are

11
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closely spaced level structure and non-orthogonal dipole matrix elements. SGC has been
investigated in context of disappearance of dark state [138], spectral line narrowing and
enhancement [139], dynamically controlled photonic band-gap structure [140], enhanced

Kerr nonlinearity [141], charged quantum dots [142], AWI [143] etc.

1.2.3 Laser Phase Fluctuations

In coherent laser matter interaction the fields are idealized as monochromatic and
pure sinusoid. However, in practice even the most stable laser is not truly monochromatic
since random fluctuations in the field are a source of finite bandwidths. Considerable
work has been reported in the literature on the effect of finite bandwidths of driving
lasers on the coherent dynamics of two- and three-level systems [144-156]. In these
works laser phase fluctuations are modeled as Gaussian white noise and theoretical
models based on multiplicative stochastic processes have been developed to analyze the
effect of bandwidths of lasers and any cross-correlation that may exist between the pump
and probe fields [144-160].

For three-level systems it has been observed that the phase fluctuations in general
broaden or destroy the coherence established in the medium [144-150]. The cross-
correlation between the pump and probe fields can be effectively used to recover the
coherent behavior, however, this recovery is dependent on the type of three-level
configuration whether A, V or = [146]. These studies point to the possibility of
observing quantum coherence and interference based phenomena with finite bandwidth

lasers provided the pump and probe beams are generated from the same laser source.

Similar studies in the context of four-level configurations are scanty [157,158] and that

12
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provides opportunities to investigate these issues in the context of complex quantum

dynamics.

1.3 Scope and Perspectives

Quantum coherence and interference based phenomena have gone beyond the
proof of principles. They have been increasingly employed in the development of
quantum devices and also to explore newer frontiers of physics. A brief review of these

areas pertinent to the present thesis is covered in this section.

1.3.1 Ultra-Precision Measurements

The narrow dark resonance generated in EIT and CPT provides a useful platform
for ultra sensitive measurements which are of great interest in the field of metrology [83-
91]. In the context of time and frequency standard, which is defined in terms of the
separation between ground hyperfine levels of '**Cs (9.192631770 GHz), ultra-narrow
EIT/CPT resonances generated in room temperature Cs vapour cells provide an excellent
reference frequency for the development of miniaturized atomic clock [85-87]. There
exist two major advantages in using CPT/EIT for atomic clock development. Firstly,
these clocks are passive frequency standards, i.e., they do not require microwave cavity
for excitation of the ground hyperfine levels of '**Cs, unlike the Cs vapour or even cold
atom fountain clocks. This passive approach supports substantial miniaturization of the
device. Secondly they afford significant reduction in the light shift under appropriate
conditions of frequency modulation. EIT/CPT based clocks are compact and portable.

Typical frequency stability reported for this type of clocks is ~3x107'" (at 1 s of

13
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integration time) [85], which make them useful in communication and in improved global
positioning systems (GPS). Also a micro-fabricated atomic clock with a volume of 9.5
mm’, fractional frequency instability of ~2.53x 10" (at 1 s of integration time) has been
demonstrated by Knappe et al. [87].

The other application is ultra-sensitive magnetometers based on the measurement
of Zeeman shifts in atomic spectra and correlation of these shifts with the local magnetic
field [88-91]. The typical Zeeman shifts in alkali atoms is ~ 4-6 Hz/nT. Experimental
measurement of these Zeeman shifts using ultra-narrow dark resonances is central to the
development of ultra-sensitive atomic magnetometer [88-91]. A chip scale Rb
magnetometer with a sensor of 12 mm’, sensitivity of 50 pT/Hz"? at 10 Hz bandwidth
has been demonstrated by Schwindt et al. [90]. Theoretical limit of sensitivity of such

magnetometers is ~1 fT/Hz'"?

. Ultra sensitive magnetometers offer numerous applications
in medical field, measurement of planetary magnetic field, earthquake detection, tests of
the fundamental symmetries of nature and many more [91].

Yet another important application in the domain of frequency standard is atomic
frequency offset locking (AFOL) where an ultra-narrow EIT/CPT resonance is generated
using a pair of pump and probe lasers satisfying two-photon resonance condition in D; or
D, transition of alkali atoms and the probe laser is then stabilized on the EIT/CPT
resonance. This scheme establishes a fixed frequency offset between probe and pump
lasers, and the value of the offset is exactly equal to the transition frequency between two

ground levels of the A system for example. Frequency stability of EIT/CPT based AFOL

schemes is much superior to that of the conventional master-slave laser systems [80-82].

14
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1.3.2 Amplification without Inversion

The conventional population inversion condition for achieving lasing action arises
from the equilibrium between stimulated absorption and stimulated emission processes. It
is in general very difficult to achieve inversion condition at large frequencies, e.g. in
extreme UV and X-ray regions, due to cubic dependence of spontaneous emission rate on
frequency. The requirement of inversion can be circumvented by coherent preparation of
atomic media and utilizing the non absorptive behaviour of EIT and CPT phenomena,
and thereby making it possible to achieve AWI and LWI. AWI refers to observation of
probe laser amplification in an atomic system where a coherent pump laser acting on one
transition circumvents the population inversion condition for an adjoining transition
connected by the weak probe [53-79]. LWI refers to the process of AWI plus an
additional cavity to achieve lasing action. Interest in AWI and LWI stems from their
potential application in generation of low threshold short wavelength lasers [53-59].
Further these radiation sources are expected to have interesting statistical properties such
as narrower intrinsic linewidths and amplitude squeezing [60-65]. Also of interest are the
issues that include LWI in quantum electrodynamics [66], nanostructures [67], and super-
and sub-radiance [68].

Several schemes for the observation of AWI and LWI have been proposed [53-
61] and successfully experimented [69-72]. It is widely accepted that inversionless gain
in these systems is a consequence of many mechanisms [53-61]. The first one is related to
recoil induced lasing where the asymmetry between shifts of stimulated emission and
absorption is used to obtain frequency regions where the emission process dominates the

absorption in the absence of population inversion. The second one is the inversion in the
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dressed state or CPT basis [54-60]. The third mechanism is devoid of any hidden
inversion and is a direct consequence of quantum interference. AWI in this situation
arises due to the excitation of low frequency coherence in the medium. There exist many
studies concerning the role of incoherent pumping [74-76] that compensates for the
cavity and other losses, and the effect of homogenous as well as inhomogenous

broadening [77-79] of the active medium in the achievement of the inversionless gain.

1.3.3 Slow, Fast and Stopped Light

Quantum interference phenomena give rise to steep change in dispersion of a

medium, i.e, Re(y) in the vicinity of the ensuing resonances. The unusual variations of
the refractive index n (w) of the medium then can be used to modify the group index

(n, ) of the medium,
n, =n.(o)+oldn (0)/do], (1.8)

so that the group velocity,v, =c/n,, can be manipulated to achieve fast, slow and

9>
stopped light [96-114]. Specifically at the EIT condition, the term dn, /de® can be made
large and positive thereby giving rise to large group index and generate slowing of a
pulse traveling in such a medium. A drastic reduction in speed of light has been
demonstrated by Hau et al. [103]. Ultra slow light has promising applications in
enhancing the efficiency of nonlinear processes, laser radars, telecommunications, and
development of optical buffers and adjustable optical delays [103-107]. It is also possible
to stop a light pulse completely when the group velocity is changing with time. In this

case the information carried by the pulse is temporarily transferred to the medium
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[108,109]. Pulses can then be “revived” with their original information intact [108-110].
Apart from its application in communications this phenomenon can also be used for
storage of light [99], in quantum information and computing as ‘atomic memories’ [111].
The other promising applications of varying the group velocity are in amplification of
pondermotive dipole forces [106] and all optical switching [107].

On the other hand if the term dn, /de is large and negative, for e.g. in an EIA

media, the group index (Nn,) can become negative [50-52]. This implies that the pulse
propagation in the medium is much faster than the velocity of light, i.e., v, >c. In other

words, the anomalous dispersion region can be used for superluminal light propagation

which may be helpful in communications and storage of light [111-114].

1.3.4 Negative Refraction

The fabrication of negative refractive index material, i.e., a medium exhibiting
negative permittivity and permeability simultaneously, has attracted extensive attention in
recent years [115-131]. These materials are also termed as left-handed materials (LHMs);
the name derived from the fact that in such a medium the electric vector, the magnetic
vector and the wave vector of a plane monochromatic wave form a left-handed
coordinate frame. Since the pioneering work of Veselago [115,116], interest in these
systems has grown enormously owing to the possibility of performing unusual and non-
intuitive optics. Some of the exotic applications of LHMs are sub-wavelength imaging,
reversed Doppler shift, reversed Snell’s law, obtuse angle for Cherenkov radiation,
photon tunneling, electromagnetic cloaking and subluminal light propagation [115-121].

Most of the LHMs have been artificially realized in the microwave region by using
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metallic split ring resonators and metallic wires, photonic crystals with periodicity much
smaller than or of the order of the wavelength of the electromagnetic radiation [122,123].

Coherently driven multi-level atomic systems are promising and simpler
candidates for realization of negative refractive index in the optical region [126-131].
With optimum choice of Rabi frequencies and detunings, it is possible to achieve large
negative refractive index over a wide probe frequency band. EIT based systems are useful
for cancelling the absorption in the medium [126-131]. Further the dispersion properties
of such a medium can be used to control the group velocity of the probe beam from

subluminal to superluminal [114].

1.3.5 Enhancement of Nonlinear Processes

The growing interest in enhancement of nonlinear processes stems from its
several applications such as four-wave mixing, gigantic Kerr nonlinearities, generation of
highly efficient optical parametric oscillator and quantum information processing [161-
172]. 1t is interesting to note that while EIT is synonymous with the vanishing of linear
susceptibility, the nonlinear susceptibility of the medium can undergo constructive
interference which improves the conversion efficiency in four wave mixing [161,162].
The increased efficiency of nonlinear mixing processes is of interest in efficient
frequency up-conversion, phase conjugation, control of phase matching and coherent
Raman scattering [161-166]. It plays an important role in the generation of squeezed light
when the intensity fluctuations in the probe are transferred to fluctuations in conjugate
beam, resulting in a high intensity squeezed light [167,168]. It also concerns the area of

ultra-cold atoms and Bose-Einstein condensates where standard quantum limit is an
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important experimental factor [169,170]. An important nonlinear phenomenon is Kerr
nonlinearity where the phase of an optical field is proportional to the intensity of another
field. This is directly related to large cross phase modulation (XPM) [171,172]. Kerr
nonlinearity offers numerous applications in information processing, generation of optical
solitons, nondemolition measurements, quantum logic gates and generation of entangled
states [164-166].

The major challenge in the observation of resonant nonlinear processes is that the
nonlinear susceptibilities are much weaker than the linear susceptibilities. To this end the
phenomena of EIT comes to help, since near the EIT resonance the linear susceptibility is
completely cancelled. Consequently there is reduced resonant absorption, optimized
phase matching condition due to zero dispersion and constructive interference for

nonlinear susceptibility [161-166].

1.4 Organization of the Thesis

The present thesis deals with coherent dynamics of multi-level atomic/molecular
systems and its manifestation in the observation of several of the above referred
phenomena, i.e., EIT, EIA, AWI and negative refractive index, together with the issues
connected with SGC, Kerr nonlinearity and the effect of finite bandwidths of driving
fields. While major part of the thesis is concerned with theoretical studies, some work on
experimental coherent pump-probe spectroscopy is also reported here. The investigations
carried out in this thesis are organized in the following manner:

Chapter-2 provides the discussion on the master equation framework used for

addressing the interaction of multi-level system with coherent multi-frequency
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electromagnetic field. An explicit derivation of the semi-classical master equation in
electric dipole and rotating wave approximations is discussed here for a three-level
atomic system interacting with two external coherent fields and vacuum of radiation
field. The treatment is generalized for four-level schemes of interest. Further
generalization is achieved in the context of three-level molecular systems with permanent
dipole moments for examining quantum coherence and interference in such systems.
Chapter-3 deals with coherent pump-probe spectroscopy of three-level molecular
A system with permanent dipole moments. Motivation for these studies is provided by
the very recent interest in EIT in the molecular domain. We explicitly show here the
absence of amplification in 2+2-photon process for reversal in the signs of permanent
moments, as reported earlier [173]. The effect of permanent dipole moments on the
observation of EIT and its connection to the issue of subluminal and superluminal light
propagation is analyzed. The role of virtual mechanism in 2+1-photon EIT is further
examined. This chapter thus provides an integrated view of coherent pump-probe
spectroscopy of a medium of dipolar molecules and its comparison with atomic case.
Chapter-4 presents detailed analysis of coherent pump-probe spectroscopy in A
system with an additional adjacent excited level. The level scheme thus consists of two
simultaneous A resonances with common ground levels and excited by the same pair of
pump and probe fields, i.e., degenerate double lambda (DDL) resonance. Theoretical
results are obtained for probe absorption spectrum and dispersion in the absence/presence
of Doppler broadening to observe peculiar interference effects. These are illustrated using
model schemes in D, and D, transitions of *Rb. The chapter is completed with

experimental results on the dressed state spectroscopy in a Doppler broadened medium of
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¥7Rb atoms. The results of this chapter thus provide a realistic description of pump-probe
spectroscopy of hyperfine transitions of alkali atoms.

Chapter-5 presents a detailed analysis and discussion on the phenomenon of AWI
in the DDL system. It is shown here that a four-level DDL system under specific
conditions can exhibit AWI without need of incoherent pumping. The dependence of
AWI on atom-field interaction parameters, spontaneous emission rates, low-frequency
coherence and Doppler velocity distribution is investigated. Approximate analytical
expression for probe absorption is derived to corroborate the numerical results and to
discuss the contrasting behavior, i.e., absorption vS. AWI, for the model DDL systems in
D; and D, transitions of S’Rb. The discussion on AWI is further augmented using
quantum jump formalism, which provides useful insight into the underlying mechanism
responsible for amplification.

Chapter-6 deals with theoretical analysis of interference effects in general four-
level configurations, i.e., tripod system and N-resonance, driven by three coherent fields
from the viewpoint of controlling of their coherent dynamics and its manifestations.
Tripod system is studied to demonstrate the observation of ultra-narrow double dark
resonances. Some specific issues addressed in context of N system include switching
between EIT and EIA, role of SGC and enhancement of the Kerr nonlinearity. Also
reported here are the experimental results on EIT in N system and its comparison with a
A system in a medium of Doppler broadened *’Rb atoms.

Chapter-7 deals with the investigations of laser phase fluctuations on the coherent
dynamics of four-level systems with N-resonance as an example. The problem is

formulated in the framework of master equation and multiplicative stochastic processes
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and the effect of finite bandwidths of lasers and their cross-correlation on three-photon
and 2+1-photon resonance is examined. It is observed that the phase fluctuations tend to
broaden and destroy the sharp resonances, and dampen the Rabi oscillations; however the
extent of this effect is critically dependent on the phase fluctuations and cross-
correlations associated with the three fields. The effect of phase fluctuations on the EIT
and EIA resonances is also reported here.

Chapter-8 is devoted to exploratory investigations on the observation of negative
refractive index in four-level systems interacting with three coherent fields, a probe, a
control and a rf field. In the framework of master equation and Classius-Mossotti
relation, we obtain relative permittivity and permeability for a dense medium of such
atoms to show the existence of probe frequency domains where permittivity and
permeability can become simultaneously negative. The use of the dispersion property of
the negative refractive index to control the group velocity of the probe beam from
subluminal to superluminal is also discussed.

Finally the important conclusions of the present study and scope for future work

are briefly summarized in Chapter-9.
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CHAPTER 2

@ ®
MASTER EQUATION APPROACH TO
LASER- MATTER INTERACTION

@ ®

2.1 Introduction

There exist several approaches to describe the interaction of a finite-level atom
with radiation field. Conventional Schrodinger equation is valid only when the behaviour
of interest occurs in time duration much shorter than the level life times. Another
framework is Bloch equation approach where the relaxation processes are incorporated
phenomenologically, i.e., longitudinal and transverse relaxations to describe population
redistribution and damping of Rabi oscillations respectively. Master equation approach,
which is followed throughout this thesis, treats the interaction of atom with external
radiation field and the vacuum on the same footing thereby providing the first principle
description of relaxation processes.

The master equation, also known as quantum Liouville equation (or Von-

Neumann equation), describes the time evolution of a quantum system while taking into
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account the effects of environment in terms of reduced density operator. The total system
of atom and vacuum reservoir (bath) is described by a Hamiltonian in the second
quantized form whereas the external fields are assumed to be classical. The technique of
projection operators is used to eliminate the field modes and obtain the master equation
for reduced atomic density operator. Reduced density operator corresponds to a sub-
system of interest (here atomic system) of a larger system (atom + reservoir) obtained by
tracing over the reservoir.

Master equation formulation is developed for a single atom within the space of
some modest number of atomic states, i.e., essential state basis. The electromagnetic
radiation field is considered classical and monochromatic. While a realistic source may
have phase as well as amplitude fluctuations, we defer the discussion relating to
incorporation of these effects to later chapters. The interaction of external radiation field
with atoms is considered in the electric-dipole approximation and rotating wave
approximation (RWA). Together with external field, the atomic system also interacts
with the vacuum of radiation, i.e., the reservoir (bath). It is considered that reservoir is
very large and its state is not affected by atomic coupling. Thus the reservoir density
operator is time independent. Atoms and the reservoir are considered to be initially
uncorrelated. This refers to adiabatic approximation; the consequence of which is that the
state of the atomic system depends only on the instantaneous values of Hamiltonian
matrix elements and not on the entire history of excitation. The analysis is performed in
the Born approximation, i.e., assuming that the coupling between the atom and reservoir
is weak and the relaxation time of the reservoir is much faster so that any correlation

between the two is quickly lost. Thus the reservoir essentially does not change the state of
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the atom but only produces a minor time dependent perturbation of initial population
distribution. Finally the relaxation processes are considered to be Markovian, i.e., they

have infinitesimally brief correlation times.

2.2 Derivation of the Master Equation for Three-level Systems

2.2.1 Hamiltonian
We consider a closed three-level atomic system in A configuration as shown in
Fig. 1.2(a). Here two ground levels |1) and |2) are connected with an excited common
level |3) by means of two near-resonant monochromatic radiation fields of frequencies
Q, and €,. The energy of level |z> is ho, and o, =o, —w, is the frequency of
|i) —| j) transition. The total Hamiltonian of the system is given by
H=H,+H,+H ,;+H,,/), (2.1)

where H,, H,, H,, and H,_ () are the atomic, bath, atom-bath interaction and atom-

ext

field interaction Hamiltonians respectively given in atomic units (e=#=c=1) as

3
H,=YwA, H,=Ywbb, H,=-d-
=1 k

‘l‘m
ey

(2.2)

i !

3
Here A, =|i)(j| are the atomic operators with > 4, =1. |i) is the eigenstate of atomic
i=1

Hamiltonian H ,. The atomic operators satisfy the following commutation relation:

[4,,4,]1=4,5, 4,5, (2.3)

i iq%p — o

Also the commutation relations of the boson operators b, and b, are given as

[b,,b1=6,,  [b,.b]=[b;.51=0. (2.4)
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The dipole moment operator is defined as d = X.d,|i)(j|, where d, =(ild| ) is the
i,j ’

transition dipole moment of |i) —| /) transition. We choose d, to be real. The reservoir

and external fields are expressed as

E= i (27 1V)"?2, .b, exp(ik .7)+ H.C, (2.5)

B - %Eg (6) exp{i(, . 7 — 1)} + %EZ () exp{—i(k, .7 — 0} + H.C, (2.6)

where &, is polarization vector, ¥ is quantization volume, Ej(t) is driving field

— —

amplitude, & and &, are wave vectors, and H.C stands for the hermitian conjugate.

Spatial variations of fields can be neglected under the dipole approximation to obtain

Ezi%(Zﬂk/V g .b,+H.C, (2.7)

E._, =[E, () exp(iQt) + E, () exp(iQ,t) + H.C]/ 2. (2.8)
The atom-bath interaction Hamiltonian is given as

H = %[gm(Als + Ay)b, + %ng (Ays + Ay )b, + H.C], (2.9)

g, =—i(akIV)?s .d,; (j=12). (2.10)
Similarly the atom-field interaction Hamiltonian can be obtained as

H,, ={dy - E()e™ (A + Ay) +dys - Ey (1) (Ayy + A3,) + H.C]I 2., (2.11)
H,+ H,, expresses the behaviour of atom subjected to an analytically described semi-
classical radiation field. The remaining part H, + H ,, describes uncontrollable random
fluctuations in the Hamiltonian. H ,, may be simplified under RWA to obtain

H = %gklAmbk + &2 Azb; + gztlb;Als + gltzb;Azs . (2.12)
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The physical meaning of RWA lies in neglecting energy non-conserving terms such as

Ayb;, Apb, etc., ie., terms involving simultaneous atomic excitation (decay) and

photon creation (destruction). RWA on H_, is done in the next subsection.

2.2.2 Time Evolution of the System
The statistical property of atom interacting with two fields is described by density

operator p, ,(¢) which satisfies the following quantum-Liouville equation

dp,.s ()1 dt =—i[H, p,, ;O] =iL, (1), (2.13)
where L is the Hermitian operator called Liouville operator defined as

L....=[H,...] and L' =L. (2.14)
For further analysis we divide the Hamiltonian into two parts: the first (H,) is the

unperturbed part with respect to interaction Hamiltonian H ,, + H,, and the second

ext
(H,) is the unperturbed part with respect to atom-bath interaction Hamiltonian H ,,, i.e.

H =H,+H,, H,=H,+H,+H_(1). (2.15)
We now introduce operators o;(f) and o,(f) defined as

o,()=U, (10) p,.;(OU,(t0), (i=12). (2.16)
Here U, is the time evolution operator defined as

U.(t,7) :Texp{—jdt’ H,.(t')}, (i=12), 2.17)
where T is the Dyson time operator. The unitary transformations given by this time

evolution operator lead to two interaction pictures. From Eq. (2.17) we have

U, (¢, 7) = exp[—iH, (t - 7)], (2.18a)
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U,(t,7)=T exp{— i[de' H, (f)}. (2.18b)
Differentiating Eq. (2.18b), we obtain

dUu,(t,7)ldt =—i[H, + H,,(t)]U,(t,7). (2.19)
We now define the operator V' (¢z,7) as

V(t,7) =expEH,t)U,(t,7) expiH,7), (2.20)
which gives the following relation between U, and U, ,

U,(t,7)=U, 1,0V (¢, 7)U, (z,0) . (2.22)
Differentiating Eq. (2.20), we obtain

av(t,7)ldt=—iH,, )V (¢t 1), (2.22)

i (0) = Uy (6.0) H,,,()) U, (1.0). (2.23)

ext

The formal solution of the Eq. (2.22) can be obtained as
V(t,7)= Texp{— idi' H.,, (t')} . (2.24)

Using Eq. (2.16), (2.18) and (2.21) we obtain the relation between o,(¢) and o, () as
o,(t)=V"(t,0) oy,(¢) V(2,0). (2.25)

Differentiating Eq. (2.25) we recover Liouville equation for o, (¢) as follows:

do,(t) ] dt —i[H ,5,(t), 0, ()] = —iL ,5,0,(1) , (2.26)
where
H 1, (6) = U, (¢,0) H ., (1) U,(2,0) . (2.27)

The Liouville equation (2.26) contains variables of both the system of interest (atomic

sub-system) as well as irrelevant reservoir part. For most statistical results full knowledge
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of o,(¢t)is not required. Further the reservoir is very large which can neither be
controlled nor is accessible for direct measurements. Therefore we isolate the relevant

atomic part o ,,(¢) from the irrelevant part o,(z) by taking trace of o, () over reservoir

variables. The decisive criteria to determine the relevant part is >> T, where

relevant irrelevant !

r are the relaxation times. The reduced density operator o ,,(z) corresponding to the
atomic subsystem is given as

0 42(t) =Try (0, (7)), (2.28)
where T7r, indicates the trace over reservoir variables. We now assume that the reservoir
is initially at thermal equilibrium at temperature 7. In this case the reservoir follows a

Boltzmann distribution

0,;(0)= 1;[[1— exp(=4;)]exp(=4,b/b,), (2.29)
where 4, =, I k,T, with k; as the Boltzmann constant. It can be easily proved that

Tr,(0,(0))=1. (2.30)
Note that as 7, — 0, the average number of photons, <nk> =1/[exp(4,)—1] — 0 for any
mode. Therefore at 7, — 0 it can be assumed that

o(0) =[{OR ({0} . (2.31)
We further assume that the system and reservoir are initially uncorrelated so that

5,(0) = 0,,(0)5,(0). (2:32)

The formalism becomes more succinct by introducing two orthogonal projection

operators P and Q defined as

P..=GTr,... (2.33)
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where the basis states are included in P, and Q is represented by sum over the
remaining states. The projection operators satisfy the following relations

P’=P, 0°=0, PO=0P=0 and P+Q=1. (2.34)
The operator G satisfies 77, (G) =1. Using Eq. (2.28) we have,

Po,(t) =GTr(0,(t))=Go , (). (2.35)
Thus at time 7 =0 we can easily shown that,

Poc,(0)=0 and (1-P)o,(0)=(0,(0)-G)o ,(0), (2.36)
where we have used the fact that o,,(0) and o,(0) commute with each other. Choosing
G =0,(0) in Eq. (2.35) and (2.36) we get,

Po,(t)=0,(0)o ,(1), (2.37)

(1-P)o,(0)=00,(0)=0. (2.38)
From Eq. (2.26) we have,

dPo,(t)! dt =—i{PH ,;,(t)(P+ Q)o,(t) — Po,(t)H 5, ()} (2.39)
Using the properties of projection operators (c¢f. Eq. (2.34)) we obtain the equation of
motion for Po, () as

dPo,(t)/ dt =—iPL ,,(t)Po,(t) —iPL ()00, (?). (2.40)
Similarly the equation of motion for Qo,(¢) can be derived as

dQo,(t)! dt =—iQL ,;,(t)Po,(t) —iQL ;,(t)00,(¢) . (2.41)
The formal solution of Eq. (2.41) is given as

00, (1) =T exp(=i;dt' OL 1, (1) Q) 0, (0)

-ij;dleexp{—i}dﬂQLABZ(f)Q}QLABZ(zl)Paz ) .

i

(2.42a)
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Now since Qa,(0) =0, the above equation can be simplified to get
Qo,(t) = _ingTeXp(_ i.[dt’QLABZ(t')Q)QLABZ (7)Po,(7). (2.42D)
Using the above expression of Qo,(¢) in Eq. (2.40), we obtain

dPo,(t)! dt +iPL ,,(t)Po,(t) + PL ,;, (t)jdt U(t,7)OL ;,(r)Po,(r) =0, (2.43)
Ut,7) = Texp(— i[df' OL,, (t’)Qj. (2.44)

We now apply the Born approximation, i.e., 7, <<7, where 7, is the typical time

during which correlation with bath subsystem exists and 7, characterizes the evolution
of operator p,(¢) due to interaction with the reservoir
U(t,7)=1. (2.45)

Changing variables of integration in Eq. (2.43) and using Born approximation, we have
dPo,(t)ldt +iPL ,,(t)Po,(t) + j dr PL ;,(t)OL ,z,(t —7)Po,(t—7)=0. (2.46)
0
Now using Eg. (2.25) and the fact that [P,V (z,0)] = 0 we obtain

Po,(t)=PV(t,0)o,(t)V " (¢,0) =V (t,0) Po,()V " (¢,0) . (2.47)

Differentiating Eq. (2.47), and making use of Eq. (2.22) and (2.46) we can show that

dPo,(t) . .
LA i1, @), PO+ PL (P 0+
t (2.48)
({ dr PL ,(t) OL ,, (t —7)Poy(t — r)) =0.
In the interaction picture Eq. (2.12) takes the form
HABl(t) = U1Jr (Z,O) HAB Ul(t’o) J Ul (I,O) = eXp(_iHlt) : (2-49)

We now list some mathematical identities which are needed for further analysis

31



Chapter 2
=

@) exp(—14)Bexp(14) :B+,1[A,B]+§[A,[A,B]]+....

() Tr{o,(0)b; b 3= ()5 -
© Trdo, )b} =(1+(n))5, .
(@ Trid{o, Q)b }=Tr{o, ()b b;}=0.
Using Eq. (2.3), (2.4) and identity (a) we can easily show that
U, (t,0)g,,45,0,U,(t,0) = g,, () Ayyb,, U (¢,0)g,,45,b,U,(2,0) = g,,(¢) A,b,, (2.50a)
Uy (t,0)g0b; 43U (1.0) = g0 (0D, Ay Uy (£,0)g,,0; 45U, (1,0) = g, (1)b Ay, (2.50b)
where
8 () = g expli(@ws, —w )1l &42(1) = g €XPi (@3, — 0 )1]. (2.51)
Using Eq. (2.50) and (2.51) in Eqg. (2.49) we obtain,

HABl(t) = Zk:gkl(t)Aslbk + ng(t)ASZbk + g;:l(t)b/:Als + gltZ (t)b;Azs . (2.52)

Now since H ,,, is hermitian and <{0}‘bk‘{0}> :<{O}

b

{O}> =0, it can be shown that
PL,,(1)Poy(1)=0, Poy(t)=0,(0)o,(?). (2.53)

Using Eq. (2.53) and G =0,(0) in Eq. (2.48) we obtain
do,(t)/dt+ i[Hext,l’ o]+ gdf Trg{L ()L 1y (t = 7)0;(0)0 , (t —7)}=0. (2.54)

Using Eq. (2.14) we can expand the terms inside the integral of Eq. (2.54) as

Trg{L s () Ly (t —7)05(0)0 (¢ — 1)}

=Trg[H 1y (1) [H 4s (t = 7), 04 (0) T, (£ — 7)]

=Try{H 4y () H 1y (t —7)05(0)0 s (1 —7) — H 4, (1 = 7) 05 (0) 0, (t = 7) H 1, (1)
—H 5 (0)04(0)0 (=) H 4, (t —=7) + 05 (0)0 (1 = 7) H 4, (1 — 7) H 4, (1)}

(2.55)

The four terms of Eq. (2.55) can be simplified using identities (b) — (e) as follows:
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Trg{H 15 () H 451 (¢ —7)05(0)0 , (t —7)} =

% |gk1|2 (1 + <nk >)ei(%_(0k)TA31A13 + |gkl|2 <”k >€_i(w31_wk)rA13A31
+ |gk2 |2 (1 + <”k >)ei(%r% )TA32A23 + |gk2 |2 <”k >eii(%r% )TA23A32 (2.562)
+g ;1g k2 <”k >e g gl (H)AlsAsz

+ gkzgkl<nk >ewreil%2tel%(tif)A23A31

o u(t—17),

Try{H 4 (t —7)0,(0)0 4 (t —7)H 5, (2)}

= % |gk1|2 (1 + <”k >)ei(w3rwk)TA130,41 (t—7)Ay + |gk1|2 <”k >eii(w3rwk)TA310,41 (t—71)4y,

+ |gk2 |2 (1 + <nk >)ei(%27wk)TA230'A1 (t—1)A4; + |gk2 |2 <”k >eii(w3rwmAszo-A1 (t—7)4,  (2.56b)
+ gltlng (1 + <nk >)eiiwei%2teii%1(kr)Also'/u (t—1)4;

+ gl:zgkl(l"" <nk>)e—ia)krei(031te—iw32(t—r)Azso.Al (t . T)A31v

Trg{H 45, (1)05(0)0 o (1 —T)H ;50 (1 — 7)}

= %|gk1|2 (1 + <nk >)eii(%liwk)TA130'A1 (t—1)A; + |gk1|2 <”k >ei(a)3liwk)TA310'A1 (t—1)Aj4
+ |gk2 |2 (1 + <”k >)eii(%27wk)TA230'A1 (t—1)A4; + |gk2 |2 <”k >ei(w327wk)TA320'A1 (t—17)4, (2.56c)
+ gl:lng (1 + <nk >)eiWkr€_iw3lteia)32(t_r)Also-Al (t—1)4,,

+ g;zgkl(l"" <nk>)eiwkre—iw32teiw31(t—r)AZSGAl (f _ T)Aala

Tri{o(0)0 ,(t = T)H 45 (1 = 7) H 1, (1)}

§|gkl|2(1+ <nk >)ef"(“’3r”k)TA31Al3 + |gkl|2<nk >e"(“’3r“’k)’A13A31
+ |gk2 |2 (1 + <nk >)ef"(“’327“’k)1A32A23 + |gk2 |2 <nk >e"(“’327“’k)’A23A32 . (2.56d)
+g, gk2<nk >e_i“’k’ei“’32te_i”)31(’_r) A4,

* —iT iyt —iwy (1-T)
+gk2gk1<nk>e e e Ay Ay

=0,(t-7)

It can be shown that as 7, -0, 4, > and n, — 0. Neglecting those terms in
Eq. (2.56) which oscillate as * (w;, — @,,) and substituting in Eqg. (2.55), we obtain

Trp{L p,(t) L 1y (t = 7)0 5 (0)o 1y (£ — 7)}
= % |gkl|2 (1 + <”k >) (e[(wgrwk)r [y, 430 4 (t—7)]+ eﬁ.(%rwk)r[o'm (t—7)A4y, A13])

+ |gk1|2 <nk > (ei(wgrwk)r [O-Al (t-7) A13 J A31] + g7 Cum)s [AlS J A310_A1 (t— T)])
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+ |gk2|2(l+ <”k >) (ei(wgrwk)r[Aaz s Ay o (E—7)] + eii(%ziw‘)T[O—Al (t—1)4;,, Azs])

) . ' (2.57)
+ |gk2| <nk> (el(wsz_wk)r[am (t—7) Ay, A3, ] + e_l(wgz_wk)r[Azsv Ao 4 (t - 7')])

We now apply the Markov approximation by choosing time such that

T, <<t <<7, and t >> (1/ w,,),(1/ @,,) so that we can substitute # —>o0. Further in this

approximation we can write o ,(t—7)=0,(¢) inside the integral of Eq. (2.54). The

integrals appearing in Eq. (2.54) are of the type

]Eexp(iixt)dt =7o(x)+iP.(1/x), (2.58)

where P is the principal value. We now define the decay constants as

Va1 :%|gkl|2(1+<nk>)ﬂ-§(a)3l_a)k)' Y13 :%|gkl|2<nk>7[§(a)3l_wk)' (2.592)

V2 = §|gk2|2(1+<nk>)7[5(w32 — ), V3= §|gk2|2<nk>7z5(w32 — @), (2.59b)

and frequency shifts as

1+
Q, =P, Zlgkllz ) 0, =P g, ) (2.60a)
y— @, k Wy — O
1+
Q, =P Z|gk2|2 <nk> Q,,=P Z|gk2| < > (2.60b)

iy — @ iy — O
Using Eq. (2.57) — (2.60) in Eq. (2.54), we obtain the equation of motion for o, () as

do )/ dt+i[H,,, (1), 0, ()] + 7’31{ [ 431, 4130 1 ()] + [0 1 (0) 4y, A13]}
+ 713 { [0.4(0) A, Ay ]+ [ A3, 4310 4 (t)]} T 73 { [4s,, A0 ()] + [0 1 () 43, Azs]}
+ 723 { [0 (1) Ay, A3p 1+ [Ap3, A0 11 (t)]}+ iQSl{ [A31, 4130 4 ()] = [0 1 (1) 4y, Als]}
+i€); { [0 0 (0) A3, Ayl - [ A5, A0 4 (t)]}"' i€y {[Asz s Aps0 41 ()] = [0 41 () Asg Azs]}
+1€y { [0 (1) Ays, A3 ] = [Ay3, 4350 1 (f)]} =0
(2.61)
Now we revert back to the original representation, i.e.,
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pa(0)= Ul(t10)o-Al(t)U1+ (¢,0) = exp(=iH,t) o , (1) expiH,z). (2.62)
Thus it can easily shown that,

dp ()1 dt +i[H ;, p, ()] +i[H ., (1), p, ()]
+ 71 (A (t) = 24130 () Agy + (1) A3z) + 115 (A1p 1 (1) = 2450, (1) Ay + P, (1) Aiy)
+ 730 (A3 0,4 (1) = 2450, (0) Agp + 04 (1) Ag) + 723 (App 0, (1) = 24550, (1) Ay + p 1 (1) Ay5)
+iQy [ Ay, 0 4 ()] = iQ15[ A1y, 0 1 (O] + Q[ Asg, 0 4 ()] iQ 5[ A, 0,1 (£)] = 0.

(2.63)

The last four terms of Eq. (2.63) contribute to the first order dispersion force between two

atoms and hence can be neglected. Thus the master equation of the system is

dp, @)/ dt+i[H ,+H, (1), p, ()]

+ 17 4upa () =24,p,(0) 4, +p, ()4} =0; (i =31 13,32, 23). (2.64)

Further the decay terms y,, and y,, correspond to non-radiative high energy collisions
which are unlikely in our domain of study. The low energy non-radiative decays I, and

I',; , which correspond to damping between the two dipole forbidden ground states, can

be added similar to y,. Thus we finally obtain,

dp,(0)1dt+ia[Ay, p (O] +io[Ay, p,(D]+iws[ Ay, p, (O] +iH,, (), £ ()]
+7; (4,p,4(t) - 2AjipA (t)Aij +p,()4;) (2.65)
+ Fij (AiipA (t) - 2AjipA (t)Avj TP, (t)Aii) =0.

We now apply the transformation,
pr) =exp(-ile) p,,(£) exp(li), (2.66)
(=QA,+Q,A4, =Q, +(Q, —-Q)4,, —Q 4., (2.67)
to obtain the following equation of motion
dp(t)/dt = —i(A, = A )[4y, p(O] —iA [Ay, p(O)]-iH,,,(t), p,(t)] - decay terms (2.68)

where
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The detunings of the probe and control fields from the respective atomic transitions are
A, =wy-Q, A =w,-Q,. (2.70)

From the definition of external field Hamiltonian in Eq. (2.11) we have

1 - it iyt 3 —iQyt iQot
Heth(t):_E{dlli[e . A +e Ay ]+ dyle “ Ay, +e" 45,1} 2.71)

{E ()™ + E,(1)e'™ + E| (t)e™™™ + E, (t)e "'},
Here E,(t) =E exp(—ip;t) where ¢, is the phase of the EM field. For now we choose
E () to be real with no fluctuations i.e. ¢, =0. The effect of phase fluctuations is
discussed separately in Chapter-7.
Applying RWA in Eq. (2.71) to neglect the rapidly oscillating terms of the form
expE20)r), expE2Q,r), exp@(€, £, )¢) etc. to obtain
H,,,(t)=—a,(4s + 43) —a (A + 45,) - (2.72)

Here 2o, and 2¢, are the Rabi frequencies of pump and control fields defined as

a,=dyE 12, a,=dy-E,l2. (2.73)

2.2.3 Master Equation for A, V and E Systems

The detailed analysis presented in Sec 2.2.2 can now be used to arrive at the final
form of the master equation for a three-level A system. Substituting Eq. (2.72) in Eq.

(2.68) we obtain the relevant master equation as

dpldt =—i[H ,, p]— Vs, (Ass0 — 2413045, + pAss) — Var (Assp — 2 A5 045, + PA33) 2.74)

— [y (Ay 0 — 24, pA5 + pAyy) — Ty (A p — 2.4, Ay, + pAiy).

where H  is the semi-classical Hamiltonian of the system under RWA given as
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HO = _ap (A13 + ASl) - ac (AZS + A32) + (Ap - AC)AZZ + ApA33 ' (2'75)
The procedure can be generalized to obtain master equation relevant for V system
(cf Fig. 1.2(b)) as

dpldt=—ilH,, pl= 7y (4pp —24,p4, + PAy,) = V51 (Assp — 2413 pAy + pAs;)

—Tyu(Appp — 2450 04 + PAyy) — Uy (A — 2 Ay Ay + pAss)- (2.76)
The semi-classical Hamiltonian of V system is
H,=-a,(4;+ 43) —a (A, + 4,) + A Ay + A Ay, (2.77)
with Rabi frequencies and detunings defined as follows:
a,=dyE 12, a,=dyE, 12, A =0, -Q,, A =0, -Q,. (2.78)

Similarly the master equation for cascade (=) system (cf. Fig. 1.2(c)) can be obtained as
dpldt=—i[H,, p]— ¥, (Aypp — 24,04, + pAyy) = V3 (Asep — 24,3045, + pAss). (2.79)
The semi-classical Hamiltonian of the system is
H,=-a,(4, + 4y) —a (Ay + Ag) + (A, + A ) Asg + A Ay, (2.80)
with Rabi frequencies and detunings defined as

a,=dyE 12, @, =dyE,12, A =a,-Q, A =0,-Q,. (2.81)

2.3 Master Equation for Four-Level Systems

Fig. 2.1 shows the schematic representation of four-level systems, i.e., degenerate
double lambda (DDL), tripod and N type configurations, investigated in subsequent
chapters. Master equations relevant for the discussion of atom-field dynamics in these

cases are given below:
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Fig. 2.1: Schematic representation of four-level system in (a) DDL, (b) tripod and
(c) N configuration. Here y, and T respectively represent radiative and non-

radiative decay rates associated with transition |i) —|;). The Rabi frequencies

are in general denoted by 2«, and 24, and detunings are denoted by A, and 6,
depending on the system. See text for details.

2.3.1 Degenerate Double Lambda System
Level configuration for this system is given in Fig. 2.1(a). The system consists of

a pair of ground levels |1), |2) and a pair of excited levels |3), |4) that are driven by a

common pair of pump and probe lasers. The separation between excited levels is
specified by §. For a given pump (probe) laser intensity there exist two pump (probe)

Rabi frequencies 2«, (24,) and 2a,(2/4,). The master equation for the system is

dpldt=—i[H,, pl= 73, (430 — 2413045 + pAs;) = V1 (Asyp = 24, PA + pAsy)
— V32 (A3 = 2 Ay A5y + PAsg) = V4o (Apup — 245,041 + PA,,) (2.82)
=1 (A p — 241,045, + pAy,) =10, (Ao — 245, A4, + pA)

—Ta(App — 243 pA43 + pAy) — Uay (A0 — 2445045, + pAss).-
The semi-classical Hamiltonian of the system under RWA is given as

H{) =— (A24 + A42) - :81 (A14 + A41) —Q, (A23 + Asz) - ﬁz (A13 + A31)

(2.83)
+(0, —Ay) Ay + Oy Agg + 6, Ay,
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with Rabi frequencies and detunings defined as
ay=dy-E 12, p=dyE, 12, ay=dy-E 12, p,=dy.E, 2, (2.84)
Sp=wy-0, A=0,-0, S, =0y -0,, A =0,-0,. (2.85)
2.3.2 Tripod System

Level configuration for this system is given in Fig. 2.1(b). The system consists of

triplet ground state and an excited state interacting with a coherent trichromatic field. The

Rabi frequencies (detunings) of pump, control and probe beams are 2«,(A,), 2a, (A,)

and 2, (A,) respectively. The master equation for the system has the form

dpldt =—i[H,, p]l= 74 (Aup = 241,pA4 + pAss) = Vi (A p = 245 pAs + pA4s)
—V13(Ap — 24y pAss + pAs) — Ty (A p — 245 p4, + pAiy)
— D (A p — 24y pAis + pAy) — Uy (Ao p — 24,45, + pAy,) - (2.86)
=Dy (Ao p = 245 pAps + pAy,) = Uy (Ao p — 241,045, + pAs;)
— Dy (A3 p = 2455043, + PAs;).

The semi classical Hamiltonian of the system under RWA is given as

H, =—o (A, + Ay) =0, (Ay + Apy) — o3 (Ayy + Ayg)

(2.87)

+ (Al - Az)Azz + (Al - Ae,)A33 + A1A44’

with Rabi frequencies and detunings defined as
a,=dy, E 12, a,=dy E,12, a;=dy,E,I2, (2.88)
A=y =8, A=wp—C%h,  Aj=0,-Q;. (2.89)

2.3.3 N- Resonance System

Level configuration of the system is given in Fig. 2.1(c). Transitions |1) —|3),
1) —>|4) and |2) —|4) are excited by three laser fields of Rabi frequencies (detunings)

20, (A)), 2a,(A,) and 2, (A;). The master equation for the system is
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dpldt =—i[H,, p] =75 (Asp = 2413045 + pAsy) = Vi1 (Assp = 241, p Ay + pA4y)
— V(A3 p = 2455 P43y + PAg) = V4o (Asap — 245, PAs, + PAL)
— Dy (Ao p = 241, pA5 + pAy) =Ty (A = 245 pAy + pAL)
Dy (App — 243 pAss + pAy) = T3y (Aysp — 24,3045 + pAsy)-

(2.90)

The semi classical Hamiltonian of the system under RWA is given as
H, =—o(As+ A4y) —a, (A, + Ay) — 05 (Ayy + Ap) + (A, —A) Ay + Ay Ay + AL A, (2.91)
with Rabi frequencies and detunings defined as
o, =dyE12, a,=d,.E,12, a,=d,+E,2, (2.92)
A=w,-Q, A=0,-Q, A=0,-Q,. (2.93)
The master equation applicable to pertinent level scheme is used as a starting

point for analysis of steady state as well as time dependent behaviour of these quantum

systems and the associated interference effects.

2.4 Master Equation for Dipolar Molecular Systems

For a dipolar molecule, quantum coherence and interference can be substantially
modified by the permanent dipole moments associated with molecular levels. Permanent
dipole moments provide additional pathways for multi-photon transitions and
consequently their inclusion in the master equation is of paramount importance while
dealing with coherent pump-probe spectroscopy of molecular systems [173-180]. In this
context, we develop and discuss the necessary master equation framework for a three-
level molecular A system with permanent dipole moments and undergoing m —and n —
photon transitions on pump and probe resonances. Here the time independent RWA

Hamiltonian for interaction of external field with molecular systems cannot be obtained
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as straight forwardly as in the atomic case. The theoretical techniques to treat the
permanent dipole moments in laser-molecule interaction problems are well established by
Meath and his coworkers [181-189].

We begin by considering a three-level A system (cf. Fig. 1.2(a)) relevant in the

context of dipolar molecules so that d,, =(i|d|i)#0, i.e., non-vanishing diagonal dipole

matrix elements. The time evolution of state amplitudes a(t)‘k =a, (t) in the Schrodinger

representation and under the dipole approximation can be written as

da(t)/ dt =—ilE—u.E, la(t), (2.94)

where the wave function of the system is w (¢) = iak (t)| k), and
k=1

a(t) o 0 0 dy 0 dy
a(t)=| a,(t) |, E=|0 @, 0, wu=|0 d,, dy|. (2.95)
ay(t) 0 0 0y dy dy dy

Here d,(d,) are the permanent (transition) dipole moments. We assume that the
external field strength is given as

E,(t)=e,c, cos(wt+p,)+ee, cos(ot+¢,), (2.96)
where 8p,a)p,ép,(/)p (¢.,w.,¢,.) are the strengths, frequencies, polarizations and

phases of the probe (control) field respectively. As is reported in earlier works [181-189]
Eq. (2.94) is transformed into an interaction representation by an operator X such that,

a(t) = Xb(1), (2.97)

(t")dr', (2.98)

ext

Xjk = 5jk eXp[_i(a)k - lgk)t] eXp(iUkk)b(t) o U = dkk.t[E
0

where 9, (k =12,3) are arbitrary phase factors.
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The Schrodinger equation in the transformed representation thus takes the form
db(t) ! dt = —iH" (t)b(?) (2.99)

H) =—d,E, expli(w, - o, + 3, —9)lexpli(v;, —v,;)] and H, =43 (2.100)

jext

We assume that control transition involves coupling of m control photons and
zero probe photons while probe transition involves coupling of » control probe photons
and zero control photons. Applying RWA we neglect far off resonant terms to obtain

v 0 —C, exp(iA,yt)
H'()=|0 9, —C. exp(Ast) |. (2.101)
—C,exp(—idgt) —C.exp(=iAst) 9%

C,=ndye,e,(J,(z9) ) exp[-i(z} sing, —np,)], (2.102)
C. =mdye.e.(J,(259)] 257 ) exp[-i(zf sing, —mg, )], (2.103)
28 =pse6,l @, 25 = &8, @, (2.104)
Ay =& -G -oy)+now,, A,=(%-9 -w,)+mao,, (2.105)
w,=d;—d;, o,=0-0,. (2.106)

An important point to be noted here is that the dynamics is dependent on the difference in

the permanent moments () associated with the problem. We now define the arbitrary

phase factors as 4 =0, &=y —nw, and 4 =4 ~w;, +mae, to remove the time

dependence of the Hamiltonian. Thus the effective Hamiltonian that describes the field-

molecule interaction for a molecular A system under RWA can be obtained as

0 0o -Q,
H=| 0 A, -A -Q,| (2.107)
- Qpn - QC”’I AP
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The field-molecule couplings (€2) are given in terms of the Bessel functions J, (z) as

(p)
Q =2na Mexp[—z(zl‘g”sm(pp ng,)l, (2.108)

pn p

Q,, =2ma, ’"( 23 ) exp[-i(z¥) sing, —mg))], (2.109)
z¢

4
where 2¢, and 2«, are the Rabi frequencies as defined in atomic problem, i.e.,
a,=dy.ee,l2h, a, =dy.ec, |2h. (2.110)
The generalized n— and m — photon detunings for probe and control fields are given by
A, =wy—no,, A, =0, -mo,. (2.111)
The connection to the atomic system (m =n=1) can be established by putting
u; =0 in Eq. (2.104), (2.108) and (2.109) to obtain Q , =, and Q,, =a,. Thus Q_,
and Q  are the generalized m —and » —photon molecular analogues of pump and probe
Rabi frequencies of the atomic problem. The role of the factors J, (z’)/z# and
J (281 25) is in damping of the laser-molecule coupling [180].
We now introduce the molecular operators A, =|i)(j|, (i,j=1,2,3) similar to
atomic operators where 4, satisfy the relation in Eq. (2.3). Thus we can express H as
H=-Q A~ A4, —Q Ay —Q Ay + (A, —A ) Ay +A Ay (2.112)
The time evolution of the system is therefore given by the master equation

dpldt=—i[H, p]—y3,(A3sp — 2413045 + pAss) = V5o (A0 = 2455045, + pAys)

(2.113)
— (A0 = 24, p45 + pAyy) =11y (A p — 24, 041, + pA).

Eg. (2.112) and (2.113) thus provide the description of field-molecule interaction

dynamics in case of dipolar molecules.
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CHAPTER 3

COHERENCE AND INTERFERENCE IN
THREE-LEVEL DIPOLAR MOLECULE

3.1 Introduction

Theoretical and experimental investigations of quantum coherence and
interference are dominated by atomic systems, and in particular by alkali atoms where a
suitable three-level scheme can be conveniently constructed using the hyperfine manifold
of Dy or D, transitions. In comparison the research in EIT in molecular domain has
picked up only in more recent years [173-180]. The major difficulties in this research
include relatively small magnitudes of the transition dipole moments and the existence of
several decay channels that may prevent establishment of pump induced coherence in a
molecular medium [175,176]. The later problem, i.e., EIT in open system, has been well
studied in the atomic domain [37] and the conclusions drawn there are applicable to

molecular systems as well.
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A particular issue that is unique for molecules is the existence of diagonal or
permanent dipole moments. The role of permanent dipole moments on laser-molecule
interactions has been explored extensively by Meath and his group [181-189]. These
works show that the permanent moments significantly modify the laser-molecule
coupling leading to several interesting multi-photon and non-linear optical effects. For
EIT in molecular domain, it is therefore interesting to explore the role of permanent
moments on the development of coherence and ensuing interference in coherently driven
molecular systems. Recently Zhou et al. [173] have addressed this problem theoretically
in the context of a molecular A system undergoing m + n photon transition by pump and
probe fields. Their analysis however considers a medium of stationary molecules and
therefore is not applicable to typical EIT experiments that are carried out in gas cells
where the effect of Doppler broadening is of important concern. The authors have also
reported the observation of gain without inversion in 2+2-photon excitation for change in
the sign of the difference of the permanent moments of the excited and ground levels.
This observation requires further investigation in the light of discussions on A system in
atomic domain. Intimately connected with this is the issue of subluminal and
superluminal light propagation in the medium of dipolar molecules.

In this chapter we discuss coherent pump-probe spectroscopy of molecular A
system with permanent dipole moments, and provide analytical results for pump induced
coherence in such a medium and its manifestation on the observation of EIT. The
analysis of EIT and related phenomena in molecular systems has been done on the
backdrop of coherent spectroscopy in the atomic domain [34-37]. The model considered

here is a three-level A system undergoing permanent dipole moment assisted m — and

45



Coherence and interference in three-level dipolar molecule

n—photon transitions by pump and probe lasers respectively. We first consider the
molecular medium consisting of stationary molecules and further generalize the results to
a Doppler broadened medium. The analytical results are supplemented by numerical
calculations. While the work presented here clarifies erroneous observations made in Ref.
[173], it further establishes a connection between EIT and other related phenomena in
atomic and molecular media. The importance of virtual mechanism in the treatment of
multi-photon absorption based EIT phenomenon is discussed by taking an example of
2+1-photon EIT in dipolar molecules. The discussion presented in this chapter, thus,
provides an integrated view of coherent pump-probe spectroscopy of a medium of dipolar

molecules and its comparison with atomic case.

3.2 Theoretical Formulation

We consider a dilute gaseous medium of dipolar molecules that are idealized as

three-level A system as shown in Fig. 3.1.

‘3) Fig. 3.1: Schematic representation of three-
level A system. Transitions |2)—(3) and

|1) —|3) are driven by pump and probe lasers

of frequencies @, and @, respectively. The

laser-molecule couplings and detunings of the
pump (probe) fields are Q,, (Q,,) and A,

(A,) respectively. Here m and n represent

the number of photons associated with the
pump and probe transitions respectively.
2} Radiative and non-radiative decay rates

associated with [i) —>|j) transition are
‘1> denoted by y, and T, respectively.
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A strong pump (control) laser of electric field E_(t) =e,&, cos(w.t + ¢.) is used to
drive the transition [2)—|3) and a weak probe laser of electric field E ()=

e,&,Cos(w,t+¢,) is scanned across |1>—>|3> transition. Due to the presence of
permanent dipole moments (d,), control and probe field can induce in general m—

photon and » —photon transitions respectively on |2) —|3) and [1) —|3), where m, n >

1. The generalized m— and »n— photon Rabi frequencies (detunings) of pump and probe

fields are O, (A.) and Q  (A,) respectively as defined in Eq. (2.108) — (2.111). For

now we consider the multi-photon transitions are mediated only by the permanent dipole
mechanism. The complexity arising from virtual mechanism is discussed in Sec. 3.5.
The time evolution of this system is governed by the master equation (2.113).

This equation can be cast in a c-number representation to obtain the following equations

for p, =(ilAj)=p;. (i,j=123).

dpy 1 dt ==21,p,,+ 20,05, + 2731033 — iQ;n P+, Oy, (3.1a)
dpy, | dt =21, 0, — 205100y + 2V sy — 12, Pos +IQ. 05, (3.1b)
dpg, 1 dt ==2(y3+73,) Prs+ iQ:m Pra—1Q,, P +inmp23 —iQ, Ps, (3.1¢)
dpy | dt =—(T, + 1)) +i(A, = A )]y =12, 05+, 031, (3.1d)
dpy | dt =(rg, + 73, +T5) +iA 103 =Y (035 — 1)+, 0, (3.1e)
dpyy | dt =—(13, + 131+ Toy) +iA 15, =i, (P33 — )+, P, (3.1f)

Of interest in pump-probe spectroscopy is the appropriate steady state

polarization, imaginary and real parts of which are related to the probe absorption and
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dispersion respectively. While in general recourse may be taken to numerical solutions,
steady state solutions of p, can be obtained perturbatively up to the first order of Q

We first note that the closed system is constrained by the condition ,bll+ ,1')22+ ,1.)33 =0,
i.e. oy + Py + Py =1. Substituting @, by k0, and p, = p{ + kp{’ in Eq. (3.1a-f)
where pf}.”’ is the »™ order coherence and «x is the perturbation parameter, we obtain the

relevant nth order terms as

P =127 Tpa+ 10, (G + 7201 v, (3.2a)
P =[2r,Ta+1Q,[ Tl v, (3.2b)
P33 = 12 (3.2¢)
P = =i, (% — P ) (s + ) —iA ], (3.2d)
P8 ==Y, [b(p2 — p0) i€, p S, (3.26)
where
V3=Vt Va2, (3.33)
a=[(ys+Ty)° + A1/ 2(y, +T,)1, (3.3b)
b=T, +F21+i(Ap —-A,), (3.3c)
c=yy+1, +iA ), (3.3d)
y=2y,0,+T,)a+Q,, (7/31 +200,+15,). (3.3e)

For weak probe field the Bessel function J, (z%’) in Eq. (2.108) can be approximated as

S ») 9y
J,(z) = Z 1) (ZD 12)*" ~ M

ok (n+k)! n! (3.4)
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so that the probe field-molecule coupling Q , takes the form

()

m= MGXp[—i(Zg) sin ®,— I’l(ﬂp)] . (35)

Note here that phases ¢, and ¢, in Eq. (2.108) and (2.109) are explicitly retained in the
formulation of the problem. In what follows, we assume ¢, = ¢, =0 as in the work of
Zhou et al. [173]. The equations governing the atomic EIT can be obtained by putting
u; =0 inEq. (3.1) - (3.2).

The model developed here and used further for discussion of absorption spectrum
and dispersion is for general m +n photon transition in a three-level A system. However

the practical values of m and » that are relevant for experiments are < 2, owing to the

difficulties associated with the multi-photon processes of orders > 2.

3.3 Absorption Spectrum and Dispersion

The susceptibility () of the medium is related to pump induced polarization p.,.

Following the treatment for atomic pump-probe spectroscopy [34-37] we define

@)
z=§[”3;2—("v’], i~ 8)

pn
where N is the molecular density, k=2x/4 is the wave vector, A is the transition
wavelength and v is the velocity of molecules. Unlike Zhou ez al. [173] we have used the
form of Eq. (3.6) for susceptibility, the consequences of which will be clear in what

follows. Absorption ( 4) and refractive index (77) of the weak probe is given as

A=1m(y), n=Re(y). (3.7)
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We first focus on stationary molecules as in Ref. [173]. From Eq. (3.2) we may note that

(0)

P ~1and p ~ p@ ~0. Eq. (3.2e) then simplifies to

p(l) - % (Zl(g))n_l [Ap —A, _i(r12 + r21)]
B 27 m-D) (T, + D) +i(A, —A )G + T +iA )+ Q2

(3.8)

where we have explicitely used the form of Eq. (3.5) for Q, valid at low probe

intensities. 4 and 77 experienced by the weak probe then is calculated by using Eq. (3.6)
— (3.8). The pole structure of Eq. (3.8) reveals that it consists of two resonances whose

energy (frequency) positions (A, = A,) and half- widths (I",) are given as

A =(A, 4R +402)/2, (3.9a)
1+ <

7/3 — Ac er
[ =8y —— |+ 2|1 ——
) 2[ A’ +4Q° ] 2 A2 + 402

Eqg. (3.9) gives the expression for Autler-Townes (AT) doublet [6] for the molecular

A |+t (3.9b)

problem generalized for m—photon transition induced by the pump field. The

transparency between these two resonances is an EIT, albeit for a medium of stationary
molecules. When the control field is at m — photon resonance with |2) —|3) transition,
i.e, A, =0, the doublet is symmetric with respect to A =0 and both resonances have

equal half-widths that is essentially governed by the decay rates associated with the

problem. Further under the conditions 7, 735, |€2,,,| >> 115, [y and QF >> .1, 7,1, the

absorption of the probe beam for A, =0 is given by

Ax S, +r21)(Qfm _Azp) + A2p73]

3.10
A A (3.10)
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The maximum probe absorption is obtained at the energy of the AT resonance i.e. at A

=+|QQ

, Which implies A|max ~ &l y,. The EIT half-width (T',,;) corresponds to the half-

width of transmission window between the AT doublets i.e.,

A(Ap =Ty ) =¢&12y,, (3.11)
which gives the following equation for A ,
A -0, +73)X +Q, =0. (3.12)

The solution of Eq. (3.12) can easily be obtained as

2
A :773[2sl +1+ . /4s, +1], 5, =Q% 172 (3.13)

Therefore, the half-width of EIT for a stationary atom is given by

Q

cm

Q

cm

—y,12  for >>y, (8, >>1), (3.14a)

FEIT =

=Q2 1y, for

Qcm

<<y (8 <<1). (3.14b)

Zhou et al. [173] have studied the doublet and the transparency window between the
components of the doublet given by Eqg. (3.9) and (3.14). Note here that from Eq. (3.5) —

(3.8), the doublet spectrum is independent of the permanent dipole moments associated

with the probe transition [1) —|3) . Therefore the sign of the absorption spectrum cannot

be reversed in any n—photon probe absorption spectrum by changing the sign of

Ms(=dy —d,) . Hence for any given A system the probe will always be absorbed and
not amplified irrespective of the sign of ,,. We thus show here that the observation of

Zhou et al. [173] regarding the amplification of the probe (4 <0) for 4, <0 in the 2+2-

photon EIT is erroneous. One may also provide a simple physical argument to refute the
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observation of gain in 2+2-photon EIT. Consider for example a situation where =0,
which may be obtained near the zero of the Bessel function J,(z{))=0. In this case
probe laser sees the unperturbed transition |1) —(3) and it gives rise to an absorption
profile of linewidth y, + 17, at A, =0 (¢f. Eq. (3.8)). As per Zhou et al., this absorption
profile will reverse its sign for the change of sign of x4, (EQ. (19) of Ref. [173]). This is

unacceptable since transition |2) —|3) is not at all dressed by the pump laser, and

therefore probe absorption spectrum must correspond to normal two-photon absorption.

The reason for this erroneous result may be traced to the choice of Q

, made by

Zhou et al. [173]. For 1+1-photon EIT, they use Q . =d,,¢, while for 2+2-photon EIT

the form used is Q ,, =[d,,d,, /(2w —a)gl)]glf. The later form of Q- is from the work

4
of J.C. Petch et al. [161] who have obtained it for a three-level atomic system. Since
atoms do not have permanent dipole moments, two-photon transition can take place only

by the virtual level mechanism. Consider now a three-level scheme of Fig. 3.1 for atoms,

where the probe laser of frequency w, = ,, /2 induces a two-photon transition |1) —|3)
and |2> acts as a virtual level. The amplitude for this process is proportional to
[d,d,; 12, —a)31)]5f,, which is essentially the form of © . for two-photon transition.

On the contrary for molecules with 24, #0, the two-photon transition |1) —>|3) takes

place by permanent dipole mechanism, wherein the excited level may be viewed as the

virtual level of dipole moment z,. Consequently the two-photon amplitude in this case

IS proportional to ,Ltl3d13{;‘12,/ ®,, which is the correct form of Q . for two-photon
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process in the present case. With this form of Q . it may be seen that sy, cancels
identically in the expression of probe absorption spectrum. In general for any n— photon

transition mediated only by the permanent dipole mechanism, the correct form of Q. is

given by Q  as may be seen from Eqg. (3.5). The effect of 44, on probe absorption
spectrum therefore vanishes for any m +n photon EIT. The corollary of this result is that
the general behaviour of m+n photon EIT is governed only by m. Also note here that in

the true spirit of a A system, we must ideally have d,, =0. In this situation Q__ used by

peff
Zhou et al. [173] becomes zero and that leads to infinite absorption which is unphysical.
The requirement of d,, =0 for the observation of EIT arises from the considerations
outlined in the next section.

The effect of permanent moments on the widths of Autler-Townes doublet (I",)

and EIT (I,;) may be discussed using Eq. (3.9b) and (3.14). For 1+1-photon EIT the

effect of permanent dipole moments is to damp the laser-molecule coupling and that
results in decrease in the separation between the Autler-Townes doublet and in narrowing
of EIT resonance. Thus for a given pump intensity, the EIT resonance in dipolar

molecules is expected to be narrower than its atomic counterpart provided the radiative
decay rates are the same. Similarly the progressive decrease in I, with increase in the

order of the m — photon process is evident from Eq. (3.14). These general features are

seen in Fig. 3.2(a), where we have shown the comparison of absorption profiles for m =1
(28 =0 and z{ #0) and m =2 (z{ #0). The corresponding dispersion profiles are
plotted in Fig. 3.2(b). The data chosen for these calculations is similar to that used in Ref.

[173], i.e., for HCN — HNC isomerization [190] as summarized in Table-1 except that
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we have used I;,=I,,#0. The transition dipole moments for the pump and probe

transitions are considered as 0.01 a.u. [173]. For simplicity we scale the parameters of

Rabi frequencies and detunings in terms of y =y, = 7,,.

5 10 -10 -5 0 5

10 5 0
Ap/ y

Fig. 3.2: (a) Probe absorption (4) and (b) dispersion (7) as a function of probe
detuning (A ) for &, =5y, A, =0and T}, =T, =10y . The dashed curve is for
one-photon (m =1) atomic case (z{) =0) while the solid curve is its molecular
analogue with z{) =2.37. The dotted curve is for two-photon (m =2) molecular

case with z{) =4.74. The medium is assumed to consist of stationary molecules
and A is in the units of &. The spectra are independent of » .

Table 1: Energy and permanent dipole moment for HCN — HNC isomerization [190]

Molecular state (v,, v,, v;) Energy (cm™) d,(a.u.)
|1> (0,0,0) of HCN 0 1.17
|2> (0,0,0) of HNC 5023.15 -1.17
|3> (3,1,0) of HCN 10323.7 1.18

10

Of particular importance in Fig. 3.2(b) is the slope of the dispersion profile, i.e.,

dnldw,=-dnldA, in the EIT region, since it is related to the group velocity index
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[35-37], i.e. n,=n, +w,(dn ldw,) where n =1+n is the refractive index. For

m=1, we find that dn/dw, is higher for z{) =0 in comparison to that for z{ =0.

Further the slope becomes steeper for m =2, thereby exhibiting higher group velocity
index. We may therefore conclude that the permanent moments lead to two identifiable

effects, i.e., narrowing of the EIT linewidth and increase in the group velocity index.

3.4 Doppler Averaging

Thermal motion of molecules modify the detunings A, and A as A, =A_ +k.v
and A, =A +k.v. Therefore in order to obtain EIT in the Doppler broadened
molecular medium, Eq. (3.6) is integrated over the Maxwell-Boltzmann distribution of

molecular velocities [6].

G(V) = exp[—(w - w,)?/12D?], (3.15)

1
J2rD?
where D is a measure of the Doppler width of the medium.

Fig. 3.3 compares the effect of Doppler broadening on 1+1-probe absorption
spectra in atomic and molecular case. Doppler averaging causes broadening of the AT
resonances creating a narrow EIT resonance at the two-photon resonance condition

A, =A,. Itisclear from Fig. 3.3 that the presence of permanent dipole moments results

in narrower EIT resonance and steeper dispersion which corresponds to larger group
velocity index. These effects are further enhanced for multi-photon EIT (m>1) as is

discussed in the next subsection.

55



Coherence and interference in three-level dipolar molecule
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Fig. 3.3: Effect of Doppler averaging on the probe absorption and dispersion
spectra for the data of Fig. 3.2. The Doppler width (FWHM) is 2%, =100y .
Here the dashed curve is for one-photon (m =1) atomic case while the solid

curve is its molecular analogue with z$ =2.37.

3.4.1 Linewidth of EIT in a Doppler Broadened Medium

The effect of Doppler averaging on atomic EIT has been discussed in details by
Javan et al. [35-37]. They have developed a useful analytical procedure for obtaining

approximate form of EIT linewidth for case of resonant pump beam. This procedure can

be applied identically to the molecular problem for A, = 0. The underlying assumptions
are W,>>y, Q, >1T,=I, and Q’ >>yT, where W, is the Doppler half-width

(2w, =2.35D). Following Javan et al. [35-37], Gaussian velocity distribution in Eq.
(3.15) may be replaced by Lorentzian velocity distribution f(kv) such that

W,z

T

(3.16)

Eqg. (3.16) is justified by the fact that the central distributions of Lorentzian and Gaussian

distributions are similar when the former distribution is multiplied by a factor of vz In2.
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The susceptibility of Doppler broadened medium is therefore given as

(Y] ( kV)

7= c§f<kv)["3;2 ]d(kv). (3.17)

pn

For this analysis we do not consider p{> ~1 but use exact form of Eq. (3.2¢) to obtain

@ _

2Q2 X
P = B2+ 92, 7) ——VF} (3.18a)

l
bc 92 y[ (y +T,, —iA,)

Replacing A, > A +k.vand A, > A +k.v,andfor A, =0, we have

i€) n ZQZ X
P (k) == 2 y[(zrzmA @A+ ) - Hr—yrkv)} (318b)

G=be+Q, = (20, +iA, )y + Ty +iA, +ikv) + Q2 (3.18c)

()2 (k) yt (k)
2(y+T,) 2y

(3.18d)

Eq. (3.17) can be considered as a contour integration in the complex plane. There

are five poles of this expression. In the upper half plane there are three poles located at
v=[A (Q,-T5—K)+i(Xy+Toy+ T, )T +A) (from G), kv=iW, (from
f(kv)) and kv =i(Q%, y/2L,,)" (from ). In the lower half plane there are two poles,
kv =—iW, (from f(kv)) and kv =—i(Q y/2I,,)"* (from y). We consider the contour in
the lower half plane and define the susceptibility as
X=X+ (3.19a)
i =—2m Residue (kv=—iW,), y, =2 Residue( = —zM). (3.19b)

For the pole at kv =—il¥,, we obtain

n=— 2’5 [, — 22) —ih W)l —iA k) (3.20)
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{_ ®
where
[, ==20,W.+Q% v, L=@W, I+, XV + KWy, (3.21a)
I, =20,W,+Q2 , I, = 2T, W, (2T, W, + Q2 y) — 4T, Q% v, (3.21b)
I, =20, W) +2Q° v. (3.21c)

Similarly for the pole at kv = —i\/Q? y/2T,, = —im, we have,

iEQ? W,
T (R SARI) (A (3.22)
171 2
where
m =y Q2 y 120, ,  my=mIy+Q —AX )Y +Xm, (3.23a)

my =2m,T, +Q?

cm !

m, ==20,, +Q° Im,. (3.23b)

The imaginary parts of y, and y, can therefore be obtained as

7=- 2151 [(1, - A, — AW, (3.24a)

" Qcm

2= 5o =y~ (3.240)
1°2 1

Since probe absorption is maximum at A, =HQ_ |, x| =—(E/LW,) W, - y)

—£T, W, /1. This implies 4 =y

and g,| = =&/W,.The EIT width therefore

max
corresponds to the condition

A(A, =T,y) =E12W,. (3.25)
Under assumptions m, >>»,T,,,Q,, and replacing QZ, — A, > Q7 'in I, and m, we get

2 2 2 6
A4 _ Qcm (2F21WD +Qcm7/) AZ 2F Qcm — 0 . (3.26)

P y WDZ p ]/W 2
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The final expression for the half-width of EIT in a Doppler broadened molecular medium

is therefore given as

r 4 2?2 oT 1/2
Typ = —2Q% (1+5) 1+(1+ > Zj z[—ﬂﬂfm(us)} , (3.27)
4 1+5s) y
2
Q.
g= B0 7 (3.28)
2L, W}

The expressions (3.27) — (3.28) are identical to the atomic EIT [35,36] with a difference;
the atomic Rabi frequency () is replaced by its molecular analogue (Q2,,). The
parameter s defined in Eq. (3.28) is the saturation parameter and it exhibits dependence

on u,, again through Q_ . The permanent moments thus result in reduction in the

V2L, 1y, i.e., a linear

dependence on laser-molecule coupling. The damping effect of Bessel functions

Q

cm

saturation parameter. For s <<1, Eq. (3.27) leads to I, =

[188,189] is then evident in narrowing of the EIT linewidth.

We have tested the validity of Eq. (3.27) by comparing its predictions with exact
numerical calculations. In these calculations we take the general form of p,, as given by
Eq. (3.8) and integrate it numerically over the given Doppler velocity distribution (c¢f. Eq.
(3.15)). We chose 2a, =10y and 2, =100y for these calculations, which is consistent
with the molecular EIT experiments [175,176]. The results are shown in Fig. 3.4 for n=1
and m=1,2. We see in Fig. 3.4 that the analytical result of Eq. (3.27) is in excellent
agreement with the numerical calculations. Note here that at the zeroes of the Bessel

functions, Q_, vanishes and consequently the medium is not dressed resulting in the

absence of EIT. We have therefore evaluated numerically I',,, in their neighborhood.
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0.6

Fig. 3.4: T, as a function of z{) ina
Doppler broadened molecular medium
for a, =5y, A, =0, T,=T, =107y
and 2, =100, . The solid and dotted

curves correspond to I, as calculated
using Eg. (3.27) for m=1 and 2
respectively. Numerically calculated
values of I, are shown by solid
(m=1) and hollow (m=2) circles.
The behavior is symmetric for

() ()
Zyy > —Zy .

Lo Iy

(c)
Zy3

The general observation from Eq. (3.27) and Fig. 3.4 is that the permanent

moments damp the Rabi frequency «, and that results in a sharper EIT in molecular

case. Further for a fixed pump laser intensity EIT gets sharper as the order of the multi-

photon process is increased. It is pertinent to discuss here the role of decay rate in the

formation of EIT and in its linewidth. From Eq. (3.27) it is clear that for weaker I",, a

sharper EIT can be obtained in the Doppler broadened medium. In essence T, is the
Raman coherence time in a A system, which is very essential for the observation of EIT.

This necessarily means that |2) is not strongly coupled to |1) by radiative transition and

I, , I',, are essentially contributed by collisions in the medium.

3.4.2 Dispersion at EIT Resonance
We now obtain the slope of the dispersion profile at the peak of the EIT resonance

(A, =0) ina Doppler broadened medium. Using Eqg. (3.20) - (3.23) the real parts of y,

and y, can be obtained as
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A,

2= =8l + Wik, (3.29)
12

. Q2 W,

2= %AP[% ~ A )+ mym,]. (3.29h)
177917702

The derivatives of the above Eq. (3.29) at resonance (A , =0) are given as

dy, _ &y dy, | _ SNA, I, 197, (3.30)
dA L dA A ’

p A170 p

A,=0

where the approximations used are 2W,I,,,2m,I’,, < QZ . The dispersion of the medium

is given by = y, + x,. Therefore we finally obtain the slope of EIT at resonance as

dp _ dn & s

do, dA, Q) Js+1

.. s
~

cm

for s>>1,

v S |7 for s<<l. (3.31)
Q. W, \ 2T,

We have examined the validity of Eq. (3.31) by comparing the analytical results with

numerical calculations as shown in Fig. 3.5.

5

Fig. 3.5: Slope of the dispersion
profile (dn/dw,) at the peak

of EIT resonance (A, =0). Other
details are same as in Fig. 3.4.
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Note here in Fig. 3.5 that in the vicinity of zeros of the Bessel functions, slope of
the dispersion profile rises steeply and in this region large group index can be achieved.
This region therefore can be of potential interest for achieving slow light propagation. At
the zeros of the Bessel function, however, the molecular medium is not dressed. This

situation corresponds to return of the medium back to its original dispersion properties.

3.5. Role of Virtual Mechanism

It is well known that in a dipolar molecule a general m —photon transition is
supported by both permanent dipole moment and virtual mechanism. Inclusion of virtual
mechanism in two-photon transitions provides two competing pathways connecting the
initial and final levels, and that leads to observable effects in two-photon spectroscopy
[187-189]. It is therefore important to consider the virtual mechanism for multi-photon
transition along with the permanent dipole mechanism in the context of EIT in dipolar
molecules. Since for a general m +n photon EIT the theoretical analysis is too complex,

we have examined here the case of 2+1-photon EIT, where the pump field dresses

|2> —>|3> transition by two-photon excitation, while the weak probe is near one-photon
resonance with |1) —|3) transition (cf. Fig. 3.1). In order to include the effect of virtual

mechanism we assume a set of levels |k> of energy E,, which act as virtual levels for

two-photon transition. Since the probe field is considered weak, two-photon transition via
virtual mechanism is assumed to take place only due to the strong pump.
Following the treatment of Meath and Jagatap [189], the Hamiltonian (H )

describing the interaction of pump and probe fields with a three-level A system together
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with additional levels |k}, k =45,... g is given by

(3+q) H B
HE® = . (3.32)
BT C

Here H is the Hamiltonian of three-level A system as given by Eq. (2.112), B isa 3xgq
matrix consisting of laser-molecule couplings corresponding to the virtual levels |k> B
is the adjoint of B and C isa gxg diagonal matrix such that
B, =-Q,01-6,), (i=1273) (3.33a)
Cu =A+A, —A,, (3.33b)

where the field-molecule couplings and detunings follows from Eq. (2.108) — (2.111) as

(c)
Q, -2, % (f;'f ) exp[-i(z{sing, —,)], (3.34a)
Zik
af) =d,ee12, A =0,-0,. (3.34b)

In obtaining equations (3.32) — (3.34), it is assumed that the pump field acts only on

|2) >|3) transition and induces two-photon absorption (A, = @,, —2@,) via permanent
dipole as well as virtual mechanisms, while the probe field acting on [1) —(3) transition

induces one-photon transition (A, =w, -®,). The effective Hamiltonian (HT) is

therefore given as

0 0 -Q,
H? =H-BC"B" =0 A -A -Q,
- Q;l - Qi*z A;;

= _Qp1A13 - Q:;1A31 - Q;21423 - Q:;Asz + (Alp - A'c)Azz + A'pA33’ (3-35)

where
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® ®
o, -0 +y e (3.36a)
k k
A=A, -@, A=A +@,-a, (3.36h)
[ [
o =), @,=)—, 3.36¢
e morE -

and Q ,(€,,) are the probe (pump)-molecule coupling with n=1 (m=2). Time

evolution of the system is then given by Eq. (2.113) with H replaced by H¢ .
Comparing Eq. (2.112) with Eq. (3.35), we observe that the inclusion of the
virtual mechanism can modify the EIT dynamics in a significant way. Firstly the pump-

molecule coupling Q'_, is a sum of the contributions of both permanent dipole and
virtual mechanisms involving pertinent dipole matrix elements &, and 4, associated
with |2), |3) and |k). For large dipolar molecules €, can be significantly different

from Q_, [187-189] and that has considerable effect on the observed EIT linewidth (cf:

Eq. (3.14) and (3.27)) as well as on the group velocity index (c¢f- Eq. (3.31)). Secondly the

inclusion of virtual levels results in the shifts (@, and @,) in molecular resonance
frequencies [189], which reflect in the frequency position of the EIT resonance. Note
here that @, is the energy shift of level |3) so that )} =, —a@, and the modified probe
detuning is A’ =@, —@ —@, =A, —a,. In a similar manner the level |2) is also shifted
to w,=w,—m, so that the modified pump detuning becomes A! = @}, —2w, = A, —
@, +@,. In the absence of virtual levels the EIT condition is A, =A_, which is now

given by A’ =A. and that implies the frequency shift in the EIT resonance due to the
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presence of virtual levels is @,. The origin of this shift is in the coherent coupling of the
virtual levels with A system and its magnitude is dependent on x, , d, and A,. It may
be mentioned here that analogous shifts in the EIT position of A system due to the

presence of a few additional adjacent levels are reported in the atomic domain [191].

Thus the inclusion of virtual mechanism leads to modification of the laser-molecule

coupling which has a bearing on I';;; and dn/dw, and results in the frequency shift of

EIT resonance also.

3.6 Configuring a Three-level Molecular System

In the preceding sections, we have used molecular data pertinent to HCN — HNC
isomerization to discuss a three-level dipolar molecular system. In order to help
experimentalists to explore various issues concerning coherence and interference in three-

level dipolar molecules, we have identified suitable schemes with s, <0 and z4; >0.

These level schemes are given in Tables-2 and -3 respectively.

Case 1: p, <0

Table-2(a): Energy, permanent dipole moment and lifetime of selected levels in ‘LiH
molecule [192-195].

Molecular state ~ Energy (cm™) 4. (a.u.) Lifetime ()
)  XZ,v'=0J"=0 0 2314 .
2)  XT,v'=1J"=0 1359.71 2.357 21.77 x 1073
3) Az, v=4J=1 27252.91 -0.211 30.00 x 10°
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®
Table-2(b): Frank Condon factor and transition dipole moment of transitions associated
with levels of Table-2(a) [196]

Transition Frank Condon factor d;(@u.)
| 1> <_)|3> 0.0570 0.1378
|2> <_)|3> 0.1030 0.1997

Case 2: y, >0

Table-3(a): Energy, permanent dipole moment and lifetime of selected levels in ‘LiH
molecule [192-195]

Molecular state Energy (cm™) d.(a.u.) Lifetime (s)
1) X'E, v'=21J"=0 0 1.2645 4.49 x 10°
2) XS, v'=22J"=0 237.71 0.7063 7.98 x 107
|3> AT V=14 J =1 11852.61 1.4130 35.60 x 10°°

Table-3(b): Frank Condon factor and transition dipole moment of transitions associated
with levels of Table-3(a) [196]

Transition Frank Condon factor d, (au.)
D) o3 0.0911 0.4130
|2> <_)|3> 0.0624 0.3277

The level configurations of Tables-2 and -3 can be used to explore experimentally

the coherence and interference in dipolar molecules.
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CHAPTER 4

COHERENCE IN DEGENERATE DOUBLE
A SYSTEM

4.1 Introduction

Alkali vapors are well suited for atomic coherence and interference experiments.
These atoms have appropriate cross-sections, high vapor pressures at room temperature to
allow significant absorption and a simple level structure with transitions between ground
and excited states lying in visible and near infrared regions. Further single mode lasers
are commercially available to drive their resonance transitions. In particular three-level A
or V schemes can be conveniently constructed using D; and D, transitions of alkali
atoms. The supremacy of A scheme for preserving coherence in atom-field interaction
makes it a preferred platform for realizing ultra-narrow CPT/EIT signal. In actual
practice, however, the experimental situation becomes complicated owing to close
spacing of excited hyperfine levels in D; or D, transition and consequently the dynamics

of a chosen A system can be altered significantly by the presence of adjacent levels. This
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issue has been recognized and discussed in some works. Earliest among these is the work
by Schlossberg and Javan [197], which deals with the modifications of nonlinear gain
characteristics of coherently prepared system due to closely spaced level structure. Xia et
al. [198] have theoretically investigated EIT in a A system with close lying hyperfine
levels. They observed that the extra off-resonance level only slightly modifies the EIT
system and an EIT corresponding to pure A system can be obtained by tuning the laser
fields to the centre of gravity of relevant hyperfine levels. Mazets et al. [199] have
calculated the correction to propagation of normal mode of EIT in a A system arising due
to the presence of additional excited level. Ye and Zibrov [200] have attributed the
distorted shape of EIT resonance in experiments with A system in D, transition of ®’Rb
atoms to the asymmetry of the AT doublet originating from detuned hyperfine level.
Similar asymmetry in EIT line profile has been reported by Kale et al. [201]. Wong et al.
[202] have shown that presence of an additional excited hyperfine level in a A system
gives rise to several non-linear processes, which result in a very rich structure of
resonances in the pump-probe spectroscopy of D; transition of sodium. Recently Chen et
al. [191] have investigated numerically a six-level system in D, transition of ®'Rb to
show that the multi-level coupling results in frequency shift of the EIT line centre. These
observations point to the need of a detailed analysis of the problem concerning the role of
adjacent levels in development of coherence and interference in a multilevel atomic
system, and in particular in a A system.

In this chapter we investigate coherent pump-probe spectroscopy of a three-level
A system with a close lying excited level particularly in the context of EIT and related

phenomena. The level scheme thus consists of a pair of ground levels connected to a pair
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of excited levels by pump and probe lasers. We describe this level configuration as
‘degenerate’ double lambda (DDL) resonance to contrast with double A resonance that
involves four lasers. Recently such a system has been studied in context of phase
dependent fluorescence spectrum [203] and effect of SGC on quantum interference
effects [139]. The work presented here provides a realistic description of pump-probe

spectroscopy of hyperfine transitions of alkali atoms.

4.2 Theoretical Formulation

We consider a typical situation encountered in the pump-probe spectroscopy of A
system as depicted in Fig. 4.1 for D, transition of ®*Rb atom. A strong pump laser excites

the hyperfine transitions 5s,,,F =3 —5p,,,F'=2,3 and the probe laser accesses the

transitions 5s,,,F =2 —5p,,,F'=2,3.

4 ] )
(121)
5 F'3 7 A (A 8(8) ) 4 . ) .
Pazt (63) § ¢ faliel Sl { Fig. 4.1: Schematic representation of
2 29 ;53 f \ 5 ‘3,) DDL system formed in the hyperfine
1T =773 Sy 16 manifold of D, transition of *®Rb

atom. The bracketed entries represent
the separation between adjacent
hyperfine levels in MHz. The four-

Loy
A V]

) ala)  pi(B) level subset forming the DDL
o T2 scheme are [1), [2), [3) and |4).
3 iy v 2
3s12F (3036 r”,r'f,"ffrﬂ \;;41 “‘73;{)‘;
2 L v

Ve
The problem of adjacent additional close lying excited level is clear in Fig. 4.1.

The four-level subset that is relevant for discussion here consists of the levels

1) =|F=2),|2)=|F=3), [3)=|F'=2) and |4) =|F' =3) such that only non-vanishing
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dipole matrix elements are d,, =~/7/18u,, dy, =~14/454,,, d,, =+/5/63u,,, d,, =
J5/181,, Where u,, is the dipole moment for D, transition of ®*Rb [204]. The
excitation scheme is thus a DDL system, i.e, consisting of two simultaneously excited A
resonances, A" and A® constituted by levels |1),|2),|4) and |1),|2),|3) respectively.
The frequency separation between the excited levels is S =w,; =@, —®, and S = 63.4
MHz for ®*Rb D, transition [204]. The Rabi frequencies (detunings) of pump and probe

lasers for each three-level system A are denoted by a,(A;) and g (0,) as defined in

Eq. (2.84) — (2.85). Since A" and A® are driven by same pair of pump and probe fields,
the detunings satisfy the relation

5,—8,=A,—A,=S. (4.1)
The master equation of the system given by Eqg. (2.82) is cast in a c-number

representation to obtain the following equations for p; = p;,

dpy [ dt = =21, o =18, (P = Par) =18, (013 — P31) + 2001055 + 2731055 + 2741944 (4.20)

Aoy At ==Ky 0y +i0 04y +10, 031 = 18102 — 15,923 (4.2b)
Aoy, /At =i, 05 — 18,034 +18, (011 — Pis) = K201 (4.2¢)
dpy At =ia,p, +i1B (P11 = Pas) = 1B2Pss — K3Pur (4.2d)

dpy, [ dt = 21, pyy = 20, Py =10 (P20 = Pa2) =102, (P35 = P32) + 273953 + 2 104 (4.2€)

dos, At =i, (., — Pg3) HiS,01 — KiPsp — 10405, (4.2f)
do, ldt =1, (P, — Pus) F1BP1 — KsPar — 10,043, (4.29)
dpg At =ia,(pys = P3,) +1B,(P1s = Par) = 2V3P35 + 2L g3 Pus (4.2h)
dog /At =lapyn =1, P + 16101 — 15204 — KePuz s (4.21)
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Aoy, [ dt =10, (05 = Pi) +1B1(Prs = Pur) = 27 4Pas + 2L3y P35, (4.2))

where the coefficients «,, (i=12...6) are defined as follows:

K =0,+0, +i(0,—4A), &, =y,+I,+i0,, K;=y,+I,+id, (4.33)
K, =73+, +iA,, Ks =y, + 1, +iA, K, =y, +y,+IiS, (4.3b)
V3 =Vat+ Vs +1s, Vo=Vt Vet (4.4)

Absorption ( A) and dispersion (77) of the weak probe can be obtained as

A=Im(P), 7n=Re(P), (4.5)
where the polarization P is defined as

P =(ouran! B)+ (Pl o) (46)
Here p, and p,, are the induced polarizations on |1) —|3) and |1)—|4) transitions

respectively. Note here that all Rabi frequencies and detunings (cf. Eq. (2.84) and (4.1))

are not independent. Consequently A and 7 are studied in terms of the laser-atom

interaction parameters of subsystem A", i.e., £, o, &, and A,.

4.3 Perturbative Analysis and Dressed States

Eq. (4.2a) — (4.2)) can be solved numerically using standard techniques. However

for a weak probe laser, steady-state solutions for p; can be obtained perturbatively up to

firstorder in g, and g, . The relevant coherences are given as follows:

pg) =[~a,B,k; (pl(f) - ,0352)) -, fik, (pl(f) -

LYLE (ﬂlpég) + ﬂzpég))]/cv

,05.2)) + 0‘1:32’(2/742(3)) + azﬂl’(spég) (4.72)

@ _ (0) (0) (0) 0 _

Pa = a5 (B0 + oo’ ) +il B, (s + alz)(Pn - pa(g)) - poa, (pry pz(lg))

71



Chapter 4
=

+ ,320!1062,05(3)) - By (5 + af)Ps(g)] /IC, (4.7b)

pﬁ) =[x, (ﬂzpég) + ﬂlpgl))) +Hi[ B (yxc, + azz)(pl(f) - pﬁ)) - B, (p1(f) - ,0§§’) (4.7¢)

+ﬂ1ala2p3(2) - B, (x%, +0622),0§(3))]/C,
C = KKk, + oKk, + K. (4.8)
The zero order terms are given in Appendix-1. For the purpose of discussion

related to this section, we equate p ~1and p{” ~0 in Eq. (4.6) - (4.7) and obtain

P= (S, = A)[O1Vay + 0oy uy —1yay (74 + 1) =1y (5 +17,)]
+(a, /ﬂlﬂz)(ﬂf?/u + ﬂ22741) - a127/31 - a22741 — (T, + L)y (7 + 1) (4.9)
+ 7 (75 + 1)1 =1Ly + Ty0) (6175 + 0,741)}H C,

C =0 = Ay + )y, +10y) = 6,0, +i0,(y5 +T,) +i0,(y, +17,)]
+ (T, + )0, (5 + 1) + 6, (7, +F12)]+a1252 +a2251 (4.10)
- i{alz(73 +10,) + a22(74 +10,) + (T + )7 + 1) (4 +10,) — 6,6, 13-

For DDL configuration, the pump field dresses the levels |2), 3) and |4), and as a

consequence probe absorption spectrum consists of three resonances corresponding to the

transitions |1> — ,, Where y;, (1=12,3) are the dressed states of the problem. Dressed
state energies (¢, ) and linewidths (I’;) of the corresponding resonances can be obtained

from the zeroes of Eq. (4.10). Now expressing J, and A, by &, and A, respectively (cf.

Eg. (4.1)) in Eq. (4.10), we seek the roots A, = ¢, +iT, (k =1, 2, 3) of the cubic equation

513+ p0512+qc61+rc :O; (411)
re= S[alz + (T +T) (g + )]+ A (7 + ) [(ys +T,) —iS]+ ialz (75 +17,) (4.12)
+ iaz2 (7, + 1)+, + Ty ) (s + 1) (74 +10,),
q. = _[0512 + 0‘5 + (73 + 1) (g + 1) + (T + Ty ) (75 + 7, +210,) — A S] (4.13)
+i[A (5 + 74 +210,) + S(y, + 210, +T,)]
P, =—[S+A +i(y; +y, +3, +1,)]. (4.14)
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It is difficult to obtain simplified closed form analytical solution of Eq. (4.11). Therefore

we obtain approximate ¢ and I, under some limiting conditions. In the discussion that

follows, dressed states are arranged such that ¢, > ¢, > ¢,. The first obvious limiting case
is ar, ~ 0, i.e., when the pump field essentially dresses |2) —|4) transition. The dressed
state energies £® and the half-widths of resonances T\” are given as
g =N -&)2, TO=[(T, +T)A-A 1 E)+(r, +T,)A+A T E)]/2  (4.158)
e =M +E)I2, T =[([, + )@+ A 1 E) + (7, +T)A-A 1 E)/2 (4.15D)
e =8, ¥ = (y, + 1) (4.15¢)
& =8 +aa] | (4.16)
Here 9 are the energies of the dressed states 3 of the two-level system |2) — |4)
and &” coincides with |3). Eq. (4.15a) — (4.15b) thus correspond to the AT doublet of
|2) —>|4). Note here that Eq. (4.15) provides approximate analytical expressions for ¢;
and T, for A, <0. It is straightforward to see that for |A,>>0 probe absorption

spectrum consists of a sub-natural linewidth resonance at 6, = A, and two resonances of

natural linewidth at 6,~0 and &, =S. The second limiting case is o, ~0, i.e.,
preferential dressing of | 2) —|3) transition. In this case & and I are given as
& =0, ¥ =(y,+1,) (4.17a)
e =S+(A, —&E)2, T =[(T, + D) A=A, 1 &) + (1, + T ) A+ A, 1 E,)]1 2 (4.17h)

65 =S+ (8, +&)12, T =[(T, + ) A+ A, 1 &) + (75 + 1) A=A, 1 £)1/ 2 (4.17¢)
& =N +4a; . (4.18)
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Here &3 are the energies of the dressed states w3 of the two-level system |2) —|3).

Eq. (4.17a) — (4.17c) serve as approximate expressions for g and I, when A, >S and

for |A1|2 S, the resonance at o, ~ A, has sub-natural linewidth. Eq. (4.17b) — (4.17c)
correspond to the AT doublet of |2) —|3).

The region of interest from experimental point of view is 0<A, <S, i.e., when
pump field dresses the transitions |2) — |3),|4) simultaneously. In this domain of pump
detuning, approximate analytical expressions for &, and I, can be obtained when
alA,+alA, =0. This case corresponds to the situation where pump detunings for

respective transitions are adjusted in accordance with their Rabi frequencies. In this case

dressed state energies ¢; and widths I’ are

€1=[S—\/52+40{2]/2, I=y,+1,, (4.19a)
2 2
&=A,, T, ~[ 0‘2 (74 +13p) +2(F12 + L ){(rs +1,)" —AA} ] (4.19b)
a® +(yg + 1) +2(yy + )0, +T,) —AA,

£, =[S+VS?+4a?]/2, T,=(r,+TL,). (4.19¢)

where a® =af +a? and we have assumed y, =y, =y, for simplicity. Note here that
none of the dressed state energies corresponds to the energies of bare atomic states owing
to simultaneous dressing of |2) —|3),|4) transitions and that the dressed state resonance
at o, = A, has sub-natural linewidth. Thus in the region 0 <A, <S the problem amounts

to the three-level generalization of two-level AT splitting. In general for a DDL system

the resonance appearing at &, ~ A, has sub-natural linewidth. In DDL system o, = A,

also implies 6, = A, (cf. Eq. (4.1)), i.e., the probe detuning at which Raman resonance
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condition is approximately satisfied for A® and A simultaneously. Fig. 4.2 shows the
variation of ¢, and I; as a function of A, obtained from the numerical solution of Eq.
(4.11) for the model DDL system of ®Rb. The correlation of & with £ and £ is

explicitly shown in Fig. 4.2(a). It is interesting to note that in the region 0 <A, <S all
dressed state resonances can have sub-natural linewidths (cf. fig. 4.2(b)). Fig. 4.2 is

compared with their analogous plots of AT doublets for A®” and A® systems in Fig. 4.3.

150 : . 1.00

100
0.75F

0.25}f

-100 )
-100 -50

100 150 100 -50 100 150

0 50
A, (MHz)

OAl (MHz)5 °
Fig. 4.2: Variation of (a) dressed state energies and (b) widths of dressed level
transitions with pump detuning (A,) for &, = 10 MHz. All y; are assumed to be

equal and they add to natural linewidth 2I", =6.067 MHz. The incoherent decay

ratesare I, =T, =I,, =T,; =0.02 MHz.

150f 1.00

100f
0.75F

g ~ 050
0 ~
ol 0.25}
(@)
-100 . . . . 0.00 : .
-100 -50 0 50 100 150 -100 -50 0 50 100 150
A, (MHz) A, (MHz)

Fig. 4.3: Variation of (a) energies and (b) widths of AT doublet with pump detuning
for A® (solid lines) and A® (dashed lines) systems. The data is same as in Fig. 4.2.
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Typical probe absorption (dispersion) spectra, A(7) vs. o, for DDL system are
shown in Fig. 4.4. We may observe that the dressed state resonance at J, = A, is always

of sub-natural linewidth, as has been explicitly shown by considering the special cases.

0.4}
0.4}
0.2} 0l
A(n) A(n)
0.0 0.0
0.2} (a)’ 2 (b)
50 0o, MH2) 50 100 50 0, ) 50 100
41 Fig. 4.4: Probe absorption (solid
line) and dispersion (dotted line) for
a, =10 MHz. Frames (a) - (c)
0.2¢ correspond to A, =— 40, 20 and 100
A(n) MHz respectively. Other data are
same as in Fig. 4.2. The half-widths
0.0 of the dressed state resonances (from
left to right) in units of T, are (a)
0.066 0.954, 1.0 (b) 0.850, 0.172,
0L (©) . ' ' 0.992 and (c) 0.997, 0.985, 0.042.

-50 0 5, (MH2) 50 100

4.4 Suppression of Subnatural Resonance

An interesting observation in a DDL system is suppression and reappearance of
sub-natural resonance (at &, ~ A,) for a combination of A, and ¢,. Fig. 4.5 shows a

representative behaviour of dressed state resonances and dispersion profiles. VVanishing of

sub-natural resonance (cf. Fig. 4.5(b)) and its reappearance is clearly seen in this figure.
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0.4F 0.4F

0.2}
A(n)

0.0

0.2}
e | Am)

0.0

-0.2F (a) -0.2} (b)

-50 0 50 100
d, (MHz)

Fig. 4.5: Probe absorption (solid
line) and dispersion (dotted line)
for a, =10 MHz. Frames (&) to (c)
correspond to A, = 25, 38.37 and
50 MHz respectively. Note here
the suppression and reappearance
L - of the sub-natural resonance in
02} (c) : frames (a) to (c).

50 100

-50 0
& (MHz)

Note here that the resonance at o, = A, corresponds to the excitation |1> >Y,.
4

Now expressing v, = Zci|i>, where ¢, are appropriate mixing coefficients, we may
i=2

obtain the dipole moment for the transition |1) -y, as
d(Ly,) =(1|d|y,)=c,d;; +¢,dy,, (4.20)
where c; are obtained by diagonalizing the Hamiltonian of Eq. (2.83) with g, =4, =0.

While this is difficult in general, we make use of the correlation of two-level and three-

level dressed states to develop the physical idea underlying the suppression of the sub-

natural resonance. Since , correlates with y{> = ¥ ¢®|i) and ¥ = ¥ i), we
i=2.3 i=2,4
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may approximate ¢, and ¢, by c{> and ¢! respectively and obtain

d@y,) = Ay (& +A,) 128, —dy /(& - AL 1 2€, . (4.21)
Eq. (4.21) suggests that d(1,y,) can be made vanishingly small over a range of A, for a
given «,, since A, (<,) is related to A,(&;). This vanishing of the dipole moment
d(Ly,) is therefore responsible for suppression of the subnatural resonance. In order to

test this premise, we have numerically obtained the dressed states |1//i> and evaluated the
dipole matrix elements d(Ly;), (i=1 2, 3) in DDL system of ®*Rb for o, =10 MHz. The

results of these calculations as a function of A, are plotted in Fig. 4.6.

Fig. 4.6: Variation of square of the

dipole matrix element (1(d|y;)

calculated for o, =10 MHz.
Curves 1, 2 and 3 correspond to the
dressed states |y, ), [w,) and |w;)

respectively.

-100 -50 0 50 100 150
A, (MHz)

Note in Fig. 4.6 that in the neighborhood of A, =38.37 MHz, d(1,y,) — 0 and it
is in this region that we observe suppression of the subnatural resonance in Fig. 4.5.
Interestingly for «, =10 MHz, Eq. (4.21) predicts that minimum of d(1,y,) to occur at
A, #39.41 MHz, which is close to the value of A, observed in Fig. 4.5. Suppression of
sub-natural resonance may therefore be viewed as a result of coherence and interference

developed in simultaneous excitation of |2) — |3),|4) transitions.
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4.5 Electromagnetically Induced Transparency

An analysis of EIT linewidth similar to that by Javan et al. [35-37] is too
unwieldy for a DDL system. Consequently we numerically evaluate A and 7 using Eq.
(4.5) — (4.6), and average them over Maxwell-Boltzmann velocity distribution. In these

calculations we do not assume p’ =1 and p{” =0 in Eq. (4.7), but develop and use

necessary equations for all p{” (cf. Appendix-1). For A® subsystem in Fig. 4.1,

susceptibility of the medium vanishes identically at o, = A; which gives rise to a sharp
EIT resonance in the absorption spectrum. Note here that in DDL system o, =A,;
corresponds to 6, =A,, which means that the Raman resonance condition is satisfied

simultaneously for both A® and A® . The resultant EIT, therefore, is a superposition of
two EIT resonances depending on the coherence established in the medium.
We first examine the situation when the pump laser is at exact resonance with

F=3—>F'=2 sothat A, =S =63.401 MHz. Doppler averaged absorption spectrum in
this case for a, =10 MHz is shown in Fig. 4.7, which consists of a sub-natural EIT
resonance at o, = A,, but it differs from the EIT in a three-level A system in some ways.
An inspection of Eq. (4.9) shows that P ~0, but not exactly zero at 8, = A, as in a three-
level A system. The susceptibility of DDL system remains finite though small at o, = A,
and as a consequence A does not go to zero at o, = A, (cf. Appendix-2). The minimum of
the transparency window is also shifted away from o, = A,. Such frequency shift has

been observed in earlier works [191]. In Fig. 4.7 this shift is 0.296 MHz. This effect is

more pronounced for small S since A~ 5;” at two-photon resonance.
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0.6f ,
(\ Fig. 4.7: Doppler averaged

. . probe absorption spectrum (solid

line) for e, =10 MHz, A, =S

04r s (=63.401 MHz), T, =T, =0

and 2W, = 515 MHz. The dotted

P | curve is the corresponding
0.2} Do Y (I spectrum for a stationary atom.

P Y The gray curve is the Doppler
averaged absorption spectrum
for I}, =T,, = 0.02 MHz.

O'O.’.’ . ..‘“:......’:““. .“‘ ..
-20 0 20 40 60 80

Another point that may be noted from Fig. 4.7 is that EIT line shape is
asymmetric as has been reported experimentally [200,201]. For 6,=A, =S, A® sub-
system is at exact Raman resonance (&, =A, =0) while A" sub-system is at detuned
Raman resonance. EIT in Fig. 4.7 may therefore be considered as an EIT of A® system
which is perturbed by the EIT of A" sub-system. The extent of such asymmetry is
dependent on o, /@, =d,, /d,, and S. In the present case d,,/d,, =+/7/2 and as a
consequence there exists observable distortion in the shape of the resultant EIT. Inclusion
of collisional decay (I7,) tends to reduce the asymmetry of the EIT profile, albeit with
increase in its linewidth. Consider now the situation corresponding to suppression of
stationary state absorption. Doppler averaged absorption spectrum for a representative
case is shown in Fig. 4.8. Formation of an EIT resonance at &, = A, is evident in this
figure. As expected the Doppler averaged refractive index undergoes sharp change in the
region of EIT resonance as is evident in Fig. 4.8.

We now study the dependence of linewidth of EIT (I;;;) on pump intensity. In

this context, we consider A, =0, and obtain T, and T} corresponding to DDL and
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A® systems. For A, =0, A® is at exact resonance while A® is detuned (A, =-S) with
respect to pump frequency. These results are shown in Fig. 4.9. Note here that for ¢, >10

MHz, T, > T, whereas for o, <10 MHz, T, <T& for the data chosen in Fig. 4.9.

0.6

Fig. 4.8: Effect of Doppler
broadening on the probe absorption
(black line) and dispersion (gray
line) for the case where the sub-

0.4}

.l natural resonance in the absorption
Aln) spectrum of a stationary atom
0.0p (dotted line) is suppressed. Here
a, =10 MHz, A, =38.37 MHz,
-0.2¢ I,=T,,=0.02 MHz and 2W, =
515 MHz.
-0.4 s : : .
-20 0 20 40 60 80

8, (MHz)

Fig. 4.9: EIT linewidth (measured
in terms of the natural linewidth) as
a function of pump Rabi frequency
(q) when A, = 0, I}, =T, =0.02
MHz and 2W, =515 MHz. The
solid and hollow circles represent
results for A® and DDL systems
respectively. Inset highlights the
region of low pump saturation.

0 1.0 2.0 3.0 4.0
a, (MHz)

In the absence of analytical results for I'.;, we seek the explanation of the

observed behaviour on the backdrop of EIT ina A system. Javan et al. [35-37] and Ye et
al. [200] have shown that for a A system EIT is a consequence of competition between

coherent optical pumping rate (R) and collisional relaxation rate (T,,) between dipole

forbidden ground levels and the EIT condition is given by R>T,,. Applying the analysis
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of three-level A® system (cf. Eq. (3.27)), one observes that for low pump saturation
% = 2a,\T,, /T, whereas for high pump saturation T =a? /W, . For DDL system
one needs to take into account the optical pumping rates R® and R for sub-systems
A" and A respectively. Considering these two sub-systems independent, we may write
RY ~ ¢ IT, and R® ~ T, IT? +S?, when A, =0. The total optical pumping rate R

—

for DDL system then may be given as R=R®(1+Z), where Z is the incremental

addition to R® due to simultaneous excitation of A® . Note here that R # RY + R®,

due to interference effects arising from the concurrent excitation of two A systems.

Therefore for low pump saturation we may write the linewidth of EIT in DDL system
as T, =TW[1+Z]"2. We thus see that T, <&, which is consistent with the
observations in Fig. 4.9. On the other hand for high pump saturation, drawing parallel
with A system, we may write T, ~ (& +a?) /W, ~T 5 (L+d2, /d2,). Consequently
[y, >TY forlarge a,, as is observed in Fig. 4.9. Although the discussion provided here

is qualitative, it suffices to provide a physical insight in the observations of Fig. 4.9. In

Fig. 4.10 we show the behavior of Ty, and TS asa function of A,.

1.35}
1—‘EIT . . .

L0l Fig. 4.10: EIT linewidth for
o A® (solid circles) and DDL system
= (hollow circles) as a function of
= 125t pump detuning A,. Other data are

a, =20 MHz, T, =T, =0.02 MHz

' r®

W
%0 30 0 30 60 90
A, (MHz)
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It is seen that T assumes minimum value at A, =0 as expected. However T
IS minimized at A, that is somewhat close to the centre of gravity of the excited levels.
We may add that I';; is studied here at the backdrop of three level model [35,36], where
the collisional decay of population is accounted by I, and I,;. Such a description of the
ground state relaxation mechanism for a A or a DDL system holds true for a rarefied
alkali vapour medium (10 mbar) without any buffer gas. We have simply assumed
I, =T, =20 kHz, which is also representative of the time of flight of atoms in a typical
pump-probe spectroscopy experiment [200,201]. The situation is changed dramatically
when buffer gas is introduced in the vapour cell. Figueroa et al. [134] have considered
pure dephasing kind of ground state relaxation in such a collision rich environment.
Theoretical results presented here are therefore more likely to be replicated in a low
pressure alkali vapour medium.

It is worthwhile to comment here on the non-radiative decay rates associated with
the excited levels. Since for dilute alkali vapours without buffer gas, I,,,T,; << 73,7,
[202], we find that these nonradiative decays have negligible effect on the outcome of the
pump-probe spectroscopy. The result of the coherent pump probe spectroscopy is thus
primarily dependent on the Raman coherence time, which is governed by non-radiative

decay rates associated with the ground levels.

4.6 Coherent Spectroscopy in Six-Level Configuration

In the model calculations presented above, we considered only two excited levels

(F"=2,3) of the hyperfine manifold of 5p,,, since only these levels are simultaneously
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connected to the ground levels (F =2, 3) owing to the dipole selection rule. It may be of
interest to discuss here the effect of additional levels |5)=|F'=4) and |6) =|F'=1) on
the coherent pump-probe dynamics. In such a six-level model (cf. Fig. 4.1), level |6> is
not expected to participate in the development of pump-induced coherence since d,s =0.
Pump laser however can dress |2) —|3),|4),|5) transitions simultaneously and that may
lead to some observable effects although d,. =0. The two additional non-vanishing
dipole matrix elements in this case are d, =+/9/144,, and d,; =~/3/104,,. Probe

absorption in this situation is a quadruplet spectra corresponding to dressing of

|2) —|3),]4),|5) transition. In the presence of Doppler broadening EIT resonance

appears at two-photon resonance condition similar to DDL system. We have investigated
the six-level scheme numerically to find no effect of additional levels on the vanishing of

the sub-natural resonance (cf. Fig. 4.5). This is consequence of the fact that d(1,y,)
retains the form of the type given by Eq. (4.21) owing to d,, =0. Doppler averaging of

six-level model, however, shows some visible effects on the EIT resonance. The

noticeable effects are shift of EIT resonance and increase in I'y; when additional levels
|5) and |6) are included in the four-level model. This increase can again be attributed to

the effect of additional levels on coherent optical pumping. In the six-level model, pump

laser dresses |2)—|3),|4),|5) transitions simultaneously, however since d,; =0,

effective optical pumping rate decreases and that causes increase in I';; compared to the

four-level model. This increase in EIT width becomes more pronounced at higher pump
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intensities. The effect of additional levels on EIT positions and their linewidths is

summarized in Table-4.

Table-4: Comparison of EIT positions and widths in A, DDL and six level

configurations for A, =0

a EIT position (MHz) I /T,
AW DDL 6-level model AW DDL 6-level model

5 0 0.123 0.43 0.252 0.215 0.246
10 0 0.331 1.48 0.528 0.526 0.775
15 0 0.607 2.25 0.830 0.896 1.490
20 0 0.965 3.36 1.167 1.315 2.507
25 0 1.402 4.8 1.543 1.785 3.631
30 0 1.918 6.53 1.960 2.310 4.908

4.7 Experimental Realization of Simultaneous Dressing

In order to provide a flavor of the coherent pump-probe spectroscopy for
precision measurements we report here our experimental results on dressed state

spectroscopy in ®’Rb [205] where $=156.95 MHz. The four level scheme forming the
DDL system comprises of |1)=|5s,,F =1), |2)=|5s,,F =2), |3)=[5p,,F'=1) and

|4)=[5p,,F'=2).

4.7.1 Experimental Scheme

A schematic of experimental set up is shown in Fig. 4.11. Two commercial
Sacher Lasertechnik external cavity diode lasers (ECDL 1 and 2) with maximum output

powers of 105 mW and 45 mW are used as control and probe lasers. Both lasers operate
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near ®’Rb D, transition (780 nm) and have a linewidth ~1 MHz. The two beams have a
typical diameter of 0.36 mm. Optical isolators are used to avoid optical feedback. A weak

part (~100 uW) of ECDL1 beam is used for saturation absorption spectroscopy (SAS).

SAS+
Locking

Pump -— pes Rbvapor Beam
Beam cell dump

[
ECDL 1 2 %
. o BS S/ | —
AOM
Double & /
N/
Pass

Coupling
Beam @
ecoL 2 ol /
. Probe DSO
Beam

SAS

Fig. 4.11: Schematic of experimental set up for coherent pump-probe spectroscopy.
Here ECDL.: external cavity diode laser, SAS: saturation absorption spectroscopy, Ol:
optical isolator, BS: beam splitter, A/2: half wave plate, AOM: acousto optic modulator,
PBS: polarizing cubic beam splitter, PD: photodiode and DSO: digital storage
oscilloscope. The pump, coupling and probe beams are shown by black, dark gray and
light gray lines respectively. For the present experiment the coupling beam is turned off.
SAS is used for subsequent stabilization and calibration of control laser
frequency. To convert the SAS signal to suitable frequency discriminator we modulate
the laser current by applying a very small sinusoidal voltage and demodulate the
photodiode signal through a lock-in amplifier (L1A). This gives first derivative spectrum
of the SAS signal and the laser is locked on the zero point of first derivative signal by
electronic feedback to the piezo actuator (PZT) of the ECDL. Very small current

modulation does not affect the linewidth of the control laser, hence causing minimum

effect on the experimental outcome. The remaining beam of the control laser is split into
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two parts, a part is used as pump beam and the other part is passed through an acousto
optic modulator (AOM) for optical frequency conversion thus generating a coupling
beam of desired detuning. AOM is used in a double pass configuration to avoid the
problem of physical displacement of beam while tuning its frequency as well as in
providing flexibility to control the coupling laser detuning. AOM frequency is tuned by
applying external voltage to the voltage control oscillator (VCO) of the driver unit. For

the present experiment ina A system coupling beam is turned off. This beam is used for

N-system experiments as discussed in Chapter-6.
A small part of ECDL2 is also used to generate SAS for frequency calibration and
the remaining part is used as the probe beam. Pump beam is locked at a specified

detuning A, and its intensity is varied to obtain Rabi frequency ¢, in the range of 5 - 50

MHz. Probe beam is further split into two unequal parts, one weak (~110 puW) and the
other strong (~180 uW). Pump beam and weaker part of the probe beam are passed co-
propagating through a Rb vapour cell of 2 cm diameter and 5 cm length in orthogonal
linear polarization configuration. The vapour cell is kept at room temperature and is
wrapped with a g- metal shield to reduce the effect of stray magnetic field. The stronger
part of probe beam is sent counter-propagating through the cell. These three beams
overlap over a length of ~1.5 cm in the sample cell.

In this arrangement, the co-propagating probe and coupling beams participate in
the dressed state spectroscopy, while the counter-propagating part of the probe beam
helps to eliminate the first order Doppler effect as seen by the weaker part of the probe
beam. This technique is similar to SAS and is used here to reduce Doppler background

which improves the signal to noise ratio (contrast) of the dressed level spectrum. After
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the exit of the beams from the vapour cell, probe beam is separated using a polarizing
beam splitter (PBS) and detected on a photodiode. The dressed state resonances are
obtained using amplitude modulation technique. This experimental arrangement extracts
weak signals and provides nearly Doppler-free probe absorption signals, albeit with

somewhat broader linewidths.

4.7.2 Results and Discussion

Pump laser is locked at different hyperfine and crossover components of ®’Rb

5s,,F =2—>5p,,,F'=1,2,3 manifold by a frequency stabilized servo loop and the
weak probe is scanned across 5s,,F =1—5p,,,F'=0,1,2. The probe spectrum is

recorded on a 1 GHz digital storage oscilloscope. The powers of pump and probe beams
are 1.9 W/cm? and 0.08 W/cm? respectively. The control beam detuning (A,) varies from

— 557 MHz to 265 MHz. However with shift from the central frequency, the power of
control beam decreases and reduces to as low as 870 uW at the detuning of =557 MHz.
An important technique employed in this experiment is the phase sensitive
detection of probe absorption. Pump beam is modulated at 30 kHz using AOM and
modulation transfer to the probe beam is measured using phase sensitive detection
technique. The modulation frequency of the pump laser is set as the reference signal for
lock in amplifier (L1A). This indirect modulation transfer to probe beam is strongly
dependent on pump-probe interaction which is directly related to susceptibility. Therefore
the demodulated output appears only at those frequencies where both beams interact. If
the pump beam is locked in a highly off-resonant condition the modulation depth is weak

hence the signal strength reduces. Hence the probe beam is kept at a high power of 110
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MW which can take modulation even at such low frequencies. This technique not only
extracts weak signal from large background noise but also provides a clean and nearly
Doppler free probe spectrum. However the disadvantage here is that the demodulated
spectrum has broader linewidths compared to the unmodulated probe signal. A typical
probe absorption spectrum for red detuned pump field is shown in Fig. 4.12. Here the

pump laser is locked at 5s,,,F =2 — 5p,,,F' =2 transition. The fixed frequency of the

pump laser, as locked above is further shifted appropriately using AOM so that the effect
of pump detuning on the dressed levels can be studied in details. In Fig. 4.12 this shift is

108 MHz which implies A, = 265 MHz. The absorption spectrum exhibits a triplet,
which is a signature of dressing of 5s,,,F =2 —5p,,,F'=1,2 by the pump laser. This

result thus emphasizes the importance of taking into account nearby resonant level in

dressed state spectroscopy.

Fig. 4.12: Dressed state spectroscopy of
¥Rb D, transition. (i) Probe saturation
absorption spectrum where the various
resonances are  marked as  (1):
F=1->F'=2, (2): crossover between
F=1->F'=12, (3): crossover between
F=1->F'=02,4): F=1->F'=1, (5):
crossover between F=1—>F'=0,1 and
(6): F=1—>F'=0. (ii) Probe intensity
(<A) in the presence of pump laser of
intensity of ~1.9W/cm? and A, ~265 MHz.

' . ; | The resonances a, b and c are at 6,= — 86,
-200 0 200 400 )
2(Mre) 89 and 263 MHz respectively.

Intensity (arb. units)

For red detuned pump field, level |5> (5p,,,F'=3) is far off-resonant and does

not participate in dressing of the medium. However for large blue detuned pump, the

system corresponds to six-level A type system as was discussed in the Sec. 4.6. A
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representative behaviour of this situation is shown in Fig. 4.13. Here the pump beam is

locked at 5s,,,F =2 —5p,,,F'=3 and is further up-shifted by 200 MHz using AOM
(A, =—467 MHz). The dressed state spectrum in this case consists of more than three

resonances due to dressing of 5s,,F =2 — 5p,,,F'=1,2,3 transition by the pump beam.

Fig. 4.13: Dressed state spectroscopy
of D, transition of 3’Rb for A, ~— 467
MHz. (i) Probe saturation absorption
spectrum and (ii) probe intensity (-A)
in the presence of pump laser of
intensity of ~ 1.9W/cm% The
resonances a, b, ¢c and d correspond to
0, ~ —212, -52, 95 and 195 MHz

respectively.

Intensity (arb. units)

-400 -200 200 400

0
8,(MHz)

As discussed in theoretical treatment of Sec. 4.3 we observe that the separation

and line widths of the dressed resonances are critically dependent on «,. While an
increase in ¢, tends to increase the separation between the resonances, it also increases

their widths and that results in the smearing of the absorption spectrum. Though our
experimental results qualitatively agree with the theoretical modeling the quantitative
comparison is complicated due to various experimental restrictions, for e.g. there is an
uncertainty in determining the effective pumping Rabi frequency which depends on the
focusing of pump beam, change in pump intensity along the cell and its spatial shape in
the radial direction. The stability of pump laser locking and uncertainty in exact matching
of pump and probe lasers also affect the observed spectrum. Further the large probe
power and modulation transfer detection technique contribute to the increased linewidths

of the dressed resonances as compared to that expected from the theoretical analysis.
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CHAPTER S

AMPLIFICATION WITHOUT INVERSION
IN DEGENERATE DOUBLE A SYSTEM

5.1 Introduction

Quantum coherence and interference in driven multi-level atomic systems are
central to a number of interesting and counter intuitive phenomena that are important in
the understanding of subtle effects in coherent photon-atom interactions and also in
several practical applications [1-17]. One such phenomenon that has attracted much
attention is amplification without inversion (AWI) or lasing without inversion (LWI) [53-
79]. The underlying physics and extra-ordinary interest pertaining to AWI and LWI are
discussed in Chapter-1.

In this chapter we investigate AWI in a degenerate double lambda (DDL) system
of Chapter-4. Hyperfine manifold of D; transition of ®’Rb is used as a model system to
discuss the effect of pump induced coherence on the absorption of the weak probe beam.

The system is observed to exhibit AWI very close to two-photon resonance as a result of
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interference between two simultaneously excited lambda resonances. AWI is found to be
critically dependent on pump detuning and low frequency coherence established between
the pair of ground levels. Approximate analytical expression for probe absorption is
derived to corroborate the numerical results and to discuss the contrasting behavior, i.e.,
absorption instead of AWI for the model DDL system in D, transition of ®’Rb. This

distinctive behavior is further enhanced on inclusion of Doppler broadening.

5.2. Model and Numerical Results

We consider a DDL system (cf. Fig. 2.1(a)) formed by the hyperfine manifold of
D, transition of ®’Rb. The four-level subset that forms the DDL scheme is |1>z
|5s,, F=1), |2)=]5s,, F=2), |3)=|5p,, F'=1) and |4)=|5p,, F'=2) such that the
only non-vanishing dipole matrix elements are d,, = s, /+/6, d,, = ,um\/% and d,; =
d,, :ym/ﬁ, where u, is the transition matrix element associated with D, transition
[204]. Pump laser is used to dress the hyperfine transitions 5s,,,F =2 —5p,,,F' =12
and probe is scanned across 5s,,,F =1—5p,,,F' =12 transition. For D; transition of
Rb, S =814.5 MHz and the natural linewidth (2, ) of the transition is 5.75 MHz [204].
We consider dilute atomic vapour medium so that I, I,;, I3, I;; <<TI,.

Absorption (A) and dispersion (77) of the weak probe are defined in Eq. (4.5).

Clearly A>0 represents probe absorption while A<0 corresponds to amplification of
the probe beam by the coherently prepared atomic system. Fig. 5.1 shows the steady state

probe absorption spectrum for a situation where the strong pump (o, =20 MHz) is
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detuned (A, =430 MHz) in such a way that its frequency lies midway between levels |3)
and |4), and a weak probe (3,= 0.1 MHz) is tuned across |1) — |3),|4) transition. We
observe that at 6, =0 and S the probe beam is absorbed while close to two-photon
resonance, o, = A,, it is amplified. In particular in Fig. 5.1, amplification occurs at
6, =429.89 MHz. This small deviation (< 5%) from exact two-photon resonance is
observed in all calculations, especially when «, > T, . As was discussed in Chapter-4, the
two-photon resonance condition is simultaneously satisfied for both A®and A® at

o, = A, , albeit approximately.

0.4} Fig. 5.1: Steady state probe absorption
spectrum calculated for «, =20 MHz,

£, =0.1 MHz and A, =430 MHz. This

0.2 data corresponds to «, =20 MHz, g, =
A 0.045 MHz and A, =-384.5 MHz. All
JL J L 7y are assumed to be equal and they add

0.0 ‘ to natural linewidth 2r, =5.75 MHz.

The incoherent decay rates are
I, =0, =1kHz.

_02 N 1 N 1 N 1 N 1
0 300 600 900
d, (MHz)

For the same set of parameters, steady state populations in the bare atomic levels

(pi,1=1-4) are plotted in Fig. 5.2. It is observed that p,, >> p,,, p,, implying that

there is no population inversion in the bare states and therefore the observation of gain at

two-photon resonance is indeed AWI. We further obtain the dressed states,

lw), (i=1,2,3), formed by the coherent coupling of |2)—|3),]4) transitions and

compare their populations (p, ) with p,;. While this data is not explicitly shown here,
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we observe that the behavior is very similar to that in Fig. 5.2 indicating absence of

inversion in the dressed states.

1.0
T Y
0.8} v p11
0.0016
U) -
S 0.6f R Fig. 5.2: Steady state populations
s 0000 in the bare atomic levels for the
294l B data used in Fig. 5.1. Inset shows
o 0.0004 33 )
— the expanded view of o, and p,,.
-200 0 200 400 600 800 1000
0.2} l @
p22
1 L
0.0 p33 p44
0 200 400 600 800
8, (MH2)

Further clarity to the origin of AWI is brought by studying the amplification as a

function of pump detuning A,. For variation of A, in the range 0<A, <S, the
amplification observed near two-photon resonance (&, ~ A,) is plotted in Fig. 5.3. We
see that the gain is maximized at AT™ =407.25 MHz, i.e., A, =S/2, and it decreases on
either side of AT™ to become zero as A, approaches 0 and S . Note here that for A, =0
and S, the pump laser is at exact resonance with |1) —|4) and |1)—|3) transitions

respectively. The results of Fig. 5.3 indicate that the observed AWI is a result of

interference between two competing A resonances. For A, ~0, the A® resonance is
expected to be significantly stronger than the far detuned A® resonance (A, =-S). On
the other hand for A, S, A" resonance weakens substantially in comparison to A®

resonance (A, =0). At intermediate detuning, A, =S/2, both the A resonances are of
equal strength and that leads to maximization of the observed AWI. There however exists

a range of A, (250 to 550 MHz in Fig. 5.3) for which the interference between two A
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resonances results in probe amplification. Fig. 5.4 shows dependence of pump intensity
(ay) on AWI. For 0 << 20 MHz, AWI exhibits close to quadratic dependence and

thereafter saturation behaviour.

0.00F7 . 0.00f oo
-0.05} "
S -0.04} . < ,
" :
%- ‘ . % 0.10} .
= ; .
< o.08} " ',,' = ...
. o 0.15 Tt ee .
e
01255 350 = 450 550 ' 2 4 i
A, (MHz) ° O o mHz) 60
Fig. 5.3: Effect of pump detuning on AWI. Fig. 5.4: Dependence of AWI on
Other data are same as in Fig. 5.1. The pump Rabi frequency. Other data
dotted line is only indicative of the trend. are same as in Fig. 5.1.

The importance of coherence between dipole forbidden levels in the observation

of AWI may be seen from Fig. 5.5 where the gain is plotted as a function of incoherent
decay rates T, (=T,,) and I;,(=T,;). AWI decreases rapidly to zero as T, is increased,
while it is relatively insensitive to I5,. The low frequency coherence established in the

ground hyperfine levels is thus an important factor in the observation of AWI.

0.00F eo@----------: @ @ *

S (M)

‘ Fig. 5.5: Variation of AWI with the
g-o.os- : incoherent decay rate (i): I, (=T,,)
I and (ii): Iy, (=T,;). For curve (i)
2-010} | I,(=I,;)=0 and for curve (ii)
< ! ) o [,(=T,)=0. Other data are same

: W e as in Fig. 5.1.

-0.15} : RUPTE
oo
0:0 0?2 Oj4 0:6 0?8 1:0
T, T, (MHz)
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5.3 Perturbative Analysis

Probe absorption and dispersion in a DDL system under weak probe limit has
been discussed in Chapter-4. Here we look for the atom-field parameters contributing to

AWI in this limit. Perturbative analysis of Eq. (4.2), when substituted in Eq. (4.6) yields

I5=i(;(1+;(2+;(3), (5.1)
2=l 1) = P+ (ra  )(0T - pid). (5.2)
X2 = PG (5.3)
23 =L(Brau] Boiy) P+ (Borin ! Biics) P31, (5.4)
¢ = (@l Porc,) + (uy | ixs) - (5.5)

The form of Eq. (5.1) suggests that we need to consider only Re(y,), Re(y,) and

Re(y,), since A=Im(P). Relative contribution of these terms is shown in Fig. 5.6,

where we observe that Re (y,) essentially contributes at 5, = A,.

0.4 ' 1.6x10"
o 0.0
0. : 8.0x10°

N
T

O.OJL Neal,, o e

0 200 800 0 700 800 0 200 300
5, (MHz) 6, (MHz) s, (MHz)

Fig. 5.6: Variation of Re(y,), Re(y,) and Re(y,;) with probe detuning for
the parameters of Fig. 5.1.

The behavior observed in Fig. 5.6 can be explained based on the steady state
polarizations and populations in zeroeth and first order given in Chapter-4 and Appendix-

1. These may be used to obtain the general expression for A that is valid for arbitrary
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values of laser-atom interaction parameters, albeit at weak probe intensity. These
expressions are explicitly provided in Appendix-2. To obtain physical insight into the

problem, we consider here the region of pump detuning that maximizes AWI, i.e., the
region where |A,|,[A,|>> &y, @, 7. This restriction also implies |5, |5,|>> oy, @, 7,
since AWI is observed to occur close to two-photon resonance. At such large detunings,

the excitation is weak and that corresponds to the situation where o> ~1 and p = p

= p& ~0 (cf. Fig. 5.2). In this domain of interest, an inspection of Eq. (5.2) shows that
the contribution of Re(y,) is sum of two Lorentzians peaked at 6, =0 and S, and its

contribution to A is negligible near two-photon resonance (5, =4,). Also the

contribution of y, can be neglected since oY = f (07, P&, p\2). The probe absorption

thus assumes a simpler form,

A=Re(y,) = Re(py))Re(c) - Im(p3)) Im(5). (5.6)
It may be further seen from Eq. (5.5) that Re(c) oc A whereas Im(¢) oc A", and as a
consequence for large pump detuning, we may write

A=—1m(py)Im(), (5.7)
where Im(pf?) is given by Eq. (A3.3) in Appendix-3 and

o, a2 0,
(4+F12) +52 B, 31(73+F12) +52

Im(g) = 741 (5.8)

B
The two terms of Eq. (5.8) correspond respectively to A® and A® resonances. Without
loss of generality, we may assume I3, =T,;, I}, =1,, and y, =y, =y, sothat y, +y, =
2(T, +1I3,) and simplify Eq. (5.7) under the condition of two-photon resonance, i.e.,

0,—A, =06,—A,=0. Note also from the numerical results of Sec. 5.2 that AWI is
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maximized when A, =S/2, which also implies that A, =-S/2. Under these

approximations, we finally obtain the following expression for absorption at &, = A, ,

AG, =8 <512 =T,aIMM, +sz(i§ 7 (5.9)
Z=T,5+2(, +T,, +T,) (e + ), (5.10)
My =(dy /dy) = (dys /dy,), (5.11)
M, = (d,,/d,,) — (dy /dy,). (5.12)

We have thus expressed the competition between two simultaneously excited A

resonances in terms of the relevant dipole matrix elements. Since all other quantities
except M; and M, are positive definite, the sign of A is governed by the relative
magnitudes of dipole moments. Specifically, for amplification to occur the relevant

dipole moments need to be such that M, and M, have opposite signs. For D, transition
of ®Rb [204], M, =0.553and M, = —1.236, and as a consequence A<0 at &, ~A,, as
is seen in the numerical calculations. The dependence of AWI on ¢, (cf. Fig. 5.4) is
closely predicted by Eqg. (5.9). For low pump intensities, ie., (&’ +al)<
I,S%/2(T, +T,+T;,), Eq. (5.9) predicts that Aoc o whereas at high pump intensities
the term 2(T, +T;, + T, ) (e + ) begins to contribute and leads to the saturation of
AWI. It may also be seen from Eq. (5.9) that AWI is very sensitive to T}, since AocT, .
In comparison the effect of I, comes into play only at high pump intensities and even

there the effect is marginal since I3, <I',. This analysis is consistent with the behaviour

observed in Fig. 5.5. Low frequency coherence associated with the ground levels is thus
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more important compared to that in the excited levels.

On the contrary from Eq. (5.9) one observes that if M;M, >0, then A>0, and
that corresponds to the situation where the probe is absorbed at o, = A;. This prospect
prompts us to employ it to a model DDL system in D, transition of ®’Rb, 55,,F=1,2—>
5p,,F'=0,1, 2,3. The relevant electric dipole allowed transitions which simultaneously
connect the ground hyperfine levels to upper hyperfine levels are 5s,,F=12—
5p,,F' =1, 2. We therefore consider |1)=|F =1), [2)=|F =2), |3)=|F'=1) and |4) =
|[F'=2). Here S=156.95 MHz and the relevant dipole moments are d,=d,, =

Up,N5112 d23:yD2/\/% and d,, =, /2, where gy, is the transition matrix

element of D, transition [204]. We observe here that M, = M, = -0.553, which as a
consequence must yield A>0. In Fig. 5.7 we have plotted the numerically calculated
absorption spectrum for the DDL system in D, transition, where we indeed see that, the

probe is absorbed instead of being amplified at two-photon resonance condition &, ~ A, .

Fig. 5.7: Probe absorption spectrum
for DDL system formed in D,

04k transition of ®’Rb. Here S =156.95
MHz,a, =20 MHz, p =01 MHz
A and A, =80 MHz, which corresponds

to @, =8.94 MHz, g, =0.1 MHz and
A,=-76.95 MHz. All y; are

assumed to be equal and they all add
\ l to 2T, = 6.066 MHz, and T, = I, =
0.0 . — , 0.001 MHz.
-100 0 100 200

8, (MHz)

0.2}

We may mention here that the DDL system in ®’Rb is merely a representative

case. DDL system can be formed in other alkali atoms also, where the separation between
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excited levels is much smaller, for e.g., (361.58, 63.401) MHz in (D, D,) transitions of
®Rb and (26.1, 1.507) MHz in (D1, D) transitions of °Li. In these systems the contrast
behaviour of amplification and absorption observed for D; and D, transitions respectively
is expected to be more pronounced. In order to ascertain the S *dependence of AWI, we
show in Fig. 5.8 the probe absorption in case of a model DDL system in D, transition of

®Li. We indeed observe enhanced AWl at &, ~ A, ~S/2.

0.6
0.3} Fig. 5.8: AWI in D; transition of °Li
A for (al’a2 'ﬂl’ﬂZ’S’Al’zrn): (4!

3.58, 0.01, 0.003, 26.1, 14, 5.87)
0.0k MHz. The incoherent decay rates are
I, =T, =0.001 MHz.

-0.3}

20 0 20 20
8, (MHz)

At this juncture it is important to comment on the frequency position at which the
amplification is observed. This information may be obtained from the dressed state
energies of the system. While the dressed state energies are obtained in Sec. 4.3 for some
specific cases, e.9. oA, +a’A, =0, we observe that for 0< A, <S and o, a, << S, the
approximate energies are given as

S~ Salz +A737, A + alez +0‘22A1 S+ _30522 + 4,737,

1~ 2 2 =1 2 2 ’ 2 2 '
a +a; —AS+y,y, AA, —a) —a,; =37, ay +a; +A,S+ysy,

(5.13)

As discussed in Chapter-4, the first and third roots in Eq. (5.13) correspond to the

resonances appearing in the proximity of atomic resonances |1) —|4) and [1) — |3)
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respectively, whereas the second root corresponds to the frequency where amplification is
observed (cf. Fig. 5.1). The amplification thus does not occur exactly at exact two-photon

resonance, i.e., &, = A, but is shifted depending on the strength of the Rabi frequencies.
For A, =430 MHz and «, =20 MHz the correction to the exact two-photon resonance is

—0.11 MHz, which is consistent with the observations in Fig. 5.1.

5.4. Doppler Averaging

We now consider the atomic motion to include the Doppler effect on the observed
AWI. To this end, we integrate the probe absorption spectrum over the Maxwell-
Boltzmann distribution of atomic velocities. Further we consider co-propagating pump
and probe, and Rb vapor with Doppler width of 250 MHz and 500 MHz. These Doppler
widths correspond to vapour temperature of 75 K and 298 K respectively. The effect of

Doppler broadening on the probe absorption spectrum of Fig. 5.1 is shown in Fig. 5.9.

0.015F 0.008F
0.010}
0.004}
A
0.005¢ A
0.000¢
0.000}
cy (b)
-0.005¢ R R R R R -0.004Lt R R R R R
-200 0 200 400 600 800 1000 -20 0 200 400 600 800 1000
d, (MHz) 8, (MHz)

Fig. 5.9: Effect of Doppler broadening on the probe absorption spectrum of
Fig. 5.1. 2W, =250 MHz and 500 MHz for frames (a) and (b) respectively.

Note here in Fig. 5.9 that with increase in the temperature of the medium, the bare

atomic resonances at 6, =0 and ¢, =S broaden and they begin to contribute steadily to
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the probe absorption near &, ~A,. The increase in the baseline absorption therefore

results in steady decrease in AWI. The progressive decrease in the height of the

amplification peak with increase in Doppler width is shown in Fig. 5.10. Nevertheless,

even at room temperature we observe noticeable AWI in the calculations.

0.000

Amplification

-0.021F

-0.007}

-0.014}F

200 200 600
2W, (MH2)

Fig. 5.10: Variation of
amplification with Doppler
width. Other data are same
as in Fig. 5.1.

In order to contrast the behavior of the DDL system of D; transition with that of

D, transition under Doppler averaging, we show in Fig. 5.11 the effect of Doppler

broadening on the absorption spectrum of Fig. 5.7. Absorption spectrum here is a familiar

profile that corresponds to the EIT resonance as was studied in Chapter-4. These

observations highlight the remarkable features of a coherently driven DDL system.

0.015 ﬂ (\
0.010}
A
0.005}
0.000 A A 2
-100 0 100 200

d, (MHz)
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Fig. 5.11: Effect of Doppler
broadening (2W, =510 MHz)
on the probe absorption
spectrum for the data of Fig.
5.7.
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AWI resonance under Doppler averaging (cf. Fig. 5.9) exhibits finite linewidth

(Tpw1) » which is a strong function of the pump intensity as may be seen from Fig. 5.12.

al Fig. 5.12: Variation of the width

of Doppler averaged AWI

al resonance with pump intensity
B (). Here 2W, =500 MHz and
2| other data are same as in Fig.

5.1. Inset shows the linear
behaviour of I',,, at low pump
intensities.

0 15 30 45 60
a, (MHz)

While the complexities involved in the four-level system do not permit us to
obtain a closed form solution for AWI half-width (I',,,), it may be interesting to
compare the observed behavior of I',,, with that of the linewidth of an EIT spectrum.
For a three-level A system, the linewidth of EIT follows Eq. (3.27). Analogous behaviour
is observed in Fig. 5.12 for I'y,,. For «, <10 MHz, T',,, varies linearly with respect to

a,, while for «, > 10 MHz, the dependence is quadratic.

5.5. Quantum Jump Approach to AWI

Physical insight into the problem may be obtained by employing the quantum
jump approach proposed by Cohen Tannoudji [206]. This approach has been used in
several works to identify the processes responsible for amplification of the medium [206-
208], and also in the studies of absorption mechanism in a four-level N system [209] and

dissipative dynamics in quantum optics [210].
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For the system under consideration we define the manifold £(N,,N,) of atom +

laser system such that
¢(N, N,) = {343, Ny, N, ), 2Ny, N, +2), L N, +1,N, )}, (5.14)
where N, and N, refer to the number of photons associated with the probe and pump
fields, and notation {3,4} is used to denote simultaneous excitation of |3) and |4) by

both pump and probe fields. Time evolution of the atomic system is viewed as coherent
evolution within a manifold as determined by four Rabi frequencies and detunings, and
quantum jumps to a neighboring manifold is governed by the dissipative processes.

Different manifolds ¢ (N, N,) relevant for the present discussion are shown in Fig. 5.13.

G(Ny+1,N,-1)

4.0 +1, N, - 1)

G(N3-1,N,+1)

G(Ny,N,-1) ¢ Va2 '?-:} [ dN;LN,)
|4, Iy, By — 1) - o

|4’N1_1:N1}

S~

—_— Ly T T~
LA, + LA, - 1wy |20, N L2, Y L LA
3.8, 2, -1} |3, 07 = 1,27,

Fig. 5.13: Different manifolds of atom + photon system for a DDL scheme.
Coherent coupling between the states within a manifold is characterized by
Rabi frequencies as shown by solid arrows. Quantum jumps are governed by
incoherent processes which cause jump of the system from one manifold to
other. These radiative and non-radiative dissipative processes are shown by
wavy and dashed lines respectively.
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Spontaneous emissions from {3,4} to |1) and |2) make the system to jump from
the manifold {(N,,N,) to the manifolds (N, -1, N,) and ¢(N,, N, —1) respectively,
while the collisional decay processes characterized by rates I, and T, bring it to the
manifolds (N, +1, N, -1) and ¢(N,-1, N, +1) respectively. The incoherent decay
rates I,,, I',; do not change the manifold of the system.

We now define the coherent period (i, j) in a given manifold ¢'(N,, N,) such that
the system enters the manifold in the state |i) and leaves it from state | j) by quantum

jumps. Of the 9 periods involved in the present problem, only four periods, i.e., (1,2),
(2,1), (1, {3,4}) and ({3,4},1) contribute to the change in N, . Here the periods (1,2) and
(2,1) correspond respectively to stimulated Raman loss and gain processes respectively,
while (1,{3,4}) and ({3,4},1} correspond to probe absorption and stimulated emission
processes respectively. The mean change in the number of probe and pump photons is

related to the probability P(i, j) of observing a coherent period (i, j) such that
PG, ))=P()P(jli), (5.15)

where P(j/i) is the conditional probability that given the period has started in ||> it
ends in | j) and P(i) is the probability that a randomly chosen period starts in |}, i.e.,
P(i) =2 P(1)Qar | Jstart) - (5.16)
J

Here Q(ig../ ) 1S the conditional probability of starting a period in ||> given that the

start

previous period has started in | j> and Y P(j) =1. The conditional probability is given by
i

Q(istart | jstart) = % P(k | j)Eki ' (517)
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where > Q(igu | Jgar) =1 for all jg,, and = is the jump probability, i.e., probability

that the quantum jump starts from |k> of a given manifold and ends in ||> of a

neighboring manifold. From Fig. 5.13 it is clear that

[1]

5i = Oy Eji =0y

3i :51i&+§2i@’ E4i :51i&+§2i@' (5-18)

3 73 4 Va

[1]

Using Eq. (5.17) — (5.18) it is easy to show that Q({3,4}| J...)=0 for all j.
Consequently P({34})=0 and P({3,4}1)=0. Now denoting by (AN,) the mean

change (decrease) in the number of photons, we find
(AN,)=P(1,2) - P(21) + P(1,{3,4}). (5.19)
The conditional probability P(j/i)required for evaluation of <AN1> is given by
P(j/i)=G J.I\cij (o) de, (5.20)
where G; is the total departure rate from |j> via a quantum jump, i.e.,
G, =2I,,G, =2I3,, G, =2y, and G, =2y,, and c;(z) is the probability amplitude of
finding an atom in | j) attime t+7 when it started its coherent evolution in |i) at time t,

i.e., ¢;(z)=(j|exp(-iHz|i). The effective non-Hermitian Hamiltonian [211] relevant

to the atomic system of Fig. 5.13 is given as

—iFlz 0 _ﬂz _ﬂl

H,, = 0 (6,-4)-iTy, ~ % B (5.21)
-5, —Q, 8, =173 0
_ﬂl -, 0 é‘1_i7/4
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The equations of motion for c; (z) can therefore be obtained as,

Cu(r) = -T,C, +iA,C, +iAC.,, (5.22a)
Ci2(r) = [T, +i(6, — A)IC,, +ia,Cyy +ia,Cy (5.22b)
Cia(r) =if,C, +i,C,y — (7, +6,)Cas (5.220)
Cis(z) =iBC, +itC,, — (7, +16,)C.., (5.22d)

These equations are solved with initial conditions C;(r =0)=0¢;. We use
adiabatic elimination technique to obtain C; (cf. Appendix-4), which are then used to

calculated P(j/i) and P(i, j). Without the loss of generality we take G, =G, =G,, and

write P(1,{3,4}) as

(5.23)

Pinterference !

P(,{34}) = c;34F>(1)°f|c13 (r) +cy, (z')|2 dr =P(L3)+P(L4) +

where P

interference

is the interference term arising from the simultaneous absorption

processes |1) —|3),/4) and is defined as

P

interference

= 2G,,P(1) [ Re(C}y(r)c, (7))d 7. (5.24)

Eq. (5.19) then takes the form

(AN,)=P(1,2) - P(21) + P(13) + P(L4) + (5.25)

P terference -
and the probe absorption is given by Aoc(AN1>. AWI therefore corresponds to the
situation Where<AN1> <0. In Fig. 5.14 we show explicitly the relative contributions of the
terms on the right side of Eq. (5.25) in the spectral region where AWI is observed. We

see here that while P (1,2), P(2,1), P (1,3), P (1,4) are positive, P

interference

IS negative and
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this particular contribution is responsible for the observation of AWI in the DDL system.
As a counter example, we show in Fig. 5.15 the behavior of the various terms

contributing to (AN, ) for a DDL system of ’Rb D, transition.

0.0

(%]
2
E
3 A
= 05
o
(]
= -
©
o
o
201 Pmterference (a) (b)
1 . 1 . 1 10k 1 . 1 . 1
429.8 429.9 430.0 420.8 429.9 430.0
6, (MHz) s, (MHz)

Fig. 5.14: (a): Relative probabilities of coherent periods and (b) relative
absorption (in terms of (AN, )) at &, = A, for the data of Fig. 5.1.

A , 10F
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©
Qo
o
o0 0.5
(0]
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©
24
Pinterference (a) (b)
4t 1 . 1 . 1 0.0 . 1 . 1 .

Fig. 5.15: (a): Relative probabilities of coherent periods and (b) relative
absorption (in terms of (AN,)) at 5, = A, for the data of Fig. 5.7.

We observe in Fig. 5.15 that |P, e < P(L3) + P(L4) at &, =A,, which results

in absorption instead of AWI. It is thus clear that the interference in one-photon

absorption processes is primarily responsible for the observation of AWI.
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CHAPTER 6

COHERENCE AND INTERFERENCE IN
DOUBLE DARK RESONANT SYSTEMS

6.1 Introduction

Coherent pump-probe spectroscopy of double dadknesd systems has received
considerable attention in recent times. Some ofiiteresting four-level configurations
discussed in the literature are N-resonance, Y,tifpt/pe and tripod systems [26-31].
The presence of additional atomic states and exin&rol fields has marked effect on the
coherent dynamics of such systems and pose antadeaof control over more physical
variables. These systems are associated with teenaiion of ultra-narrow ‘double
dark’ resonances, i.e. splitting of dark state mesge associated with EIT. Double dark
resonant systems have been studied in contextseDeppler and sub-natural narrowing
[26-31], coherent hole burnings [212,213], optisalitching [214-217], slow and fast
light [218-220], enhanced cross phase modulatiod Kerr nonlinearity[219-222],

squeezed vacuum survival [223], AWI [224] and numasrother applications [225-227].
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A tripod system is an extension of a three-lexelsystem where an additional
transition from a nearby ground level is drivenabdthird control field [28-30]. The main
issue examined here is the demonstration of dodblk resonances i.e. two EIT
windows in this system and control of their linethisl The other system studied in this
chapter is a four level system in N-configuratidhree-photon resonance in this system
is reported as a promising alternative to CPT rasoa for atomic frequency standards
[227]. An interesting feature of N system is thatcan show EIA, EIT and AWI
depending on the tri-chromatic field parameters438 We study the effect of driving
fields on the optical response of this system,i@aerly in the context of inversion in
dressed states, observation of more than one a8y window and switching between
EIT and EIA. The effect of spontaneously generatglserence (SGC) on the linear and
nonlinear response of N system is also investigalée chapter is concluded with an

experimental study of EIT in N system and its corigmen with A system.

6.2 Double Control EIT Resonancesin Tripod System
6.2.1 M odel and Basic Formulation

We consider a tripod systerdf(Fig. 2.1(b)) where leveldl), [3) and|4) form
the usualA system such that a pump laser of frequefizyexcites|1) - [4) transition
and a probe laser of frequen€y, is tuned acrost3) - |4) resonance. Level) is an
additional ground level that is connected to theited level |4) by a control laser of

frequencyQ, . Such a system can be realized within the Zeenwmifoid of alkali atoms

placed in magnetic field and using appropriate qmdéions of the excitation fields. The
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Rabi frequencies of pump, control and probe beam2a,, 2a, and 2a, respectively

(cf. Eg. (2.88)) and the relevant detunings are defimedq. (2.89). The system is

characterized by radiative decay ra®g,, 2),, and 2),;. There exist additional non-

radiative decay rate@l’;, (i, j = 1 2,3), i.e., those involving the three ground levelse Th

time evolution of this system is governed by thestea Eq. (2.86). The elements of

density operator satisfy the following equations:
do, /At ==2I 0, —i10,(01 = Pus1) 27 1005 + 20 31053 + 2V 110
do,/dt =-bpo,-ia,p,+iap,,
do,/dt =-b,p, a0, +ia,0,,
doy,/dt=—ia,(o,— p.,) 10,0, —1a;0,—-b,0,,
do,, 1dt = 20,00, = 21,0, =10, (00 = Pu2) * 20 200a5 + 2V 40L04 s
do,,/dt =-b,0,, —ia.0,, +ia,p,,,
do,,/dt =—ia,0,, —1a,(0,, — P.,) —10 0,5 —b0,,,
dog, /dt =21 00, + 21 .0,, = 21 305 = 105(Pas = Puz) + 2V 4304
doy, ot =—ia .0, — 10,05, = 105035 = Pus) —DsPs4
Aoy, [ dt = =10, (04 = Pra) =105(Psp = 024) =105(Psz = P31) = 2V 4Puss
where various coefficients, (i = 1 2.6yre defined as
b=r+F-i(A,-4,), b =r+0,-i(A-4,), b=M+y-iA,
b, =T, +T,—i(A,-A,), b =M, +y, —iA,, b, =, +T, —iA,,

rl:r12+rl3' r2:r21+r23' r3:r31+r32' y4:y4l+y42+y43'

(6.1a)
(6.1b)
(6.1c)
(6.1d)
(6.1€)
(6.1f)

(6.19)

(6.1h)
(6.1i)

(6.1))

(6.2)

(6.3)

In what follows we are interested in steady stdisogption of the weak probe field
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=Im(p,:V.s! ;) . Where p,, is the induced polarization o) - |3) transition. For

weak probe field, i.ea, << a,,a,, analytical solution forp,, can be obtained as

_aap,pl +ab,pl +ibh, (o - pu)l

Q — a)4
Pes bbb, +a’b, +aZb, ®)
p(O) — Iaz[(b1b3 + a, )(pﬁ) pz((z))) + a; (/01((1)) pﬁ) )] (6 4b)

“ bbb, +arh; + a3, '
PO = iay[(bb; +a?) (o — ) + a3 (PS - Pid )] (6.40)

bybrb; +arb, +aszb,
The steady state populations of the system arengivédppendix-5. Detailed analysis

shows thatoly =1, p® = 0, (i, j # 3) and hence

Pig = a5(py =iy ) (v ~isy), (6.5)
pr = (M +)M, +5) - (A, —A)A, -4A,), (6.6a)
O = (M +T)A, —A) + (ML, +T5)(A, —A4y), (6.6b)
o =0,(p; +a®)—aih, - aiD, — (T, + V)0 , (6.6¢)
s, =(M,+y,)p +a?(T,+T)+a?(F +T,)+ A0, , (6.6d)

where a? = a/ + a’. For coherent spectroscopy in vapour cells coimgidilute atomic
gas, collisional relaxation rates are negligibereforel’; can be neglected to obtain,

as(8, —A5)(4; —4,)

M - .
P55 = Qo + a2, — D@7 +a2) + (B, — )8y~ 8) (B —i7;)

(6.7)

Further in the absence of control laset, € A, =0), Eq. (6.7) gives the familiar result for

a three-levelA\ system [6], i.e.

,04%) =a,(A, -4y /[0'12 =iy, +ih;)(4, - Ay)]. (6.8)
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The dressed state resonances for a tripod systéhe inbsence of Doppler broadening,

thus, appear ah; = &;,, &, and &, which are the roots of following equation

L -ND, +D,)+A,(A N, —af —ad)+aih +afA, =0. (6.9)
For a/ system¢f. Eq. (6.8)), there exist two dressed state res@wlocated at

A, =D X +4al)]2, (6.10)
Note that for a tripod system the susceptibilitynisaes identically atA,=A, and

A, =A, (cf. Eqg. (6.7)), and these correspond to the positidite/o EIT resonances.

6.2.2 Results and Discussion

We calculate the probe absorption spectrum/oand tripod systems for a range
of Rabi frequencies and detunings using the radiatata of B transition off’'Rb atoms.
Non-radiative decay rates are taken to be 1 kHzesponding to the transit time in
typical experiments conducted in vapour cells withbuffer gas. Typical results for

representative atom-field interaction data are shawFig. 6.1. ForA system, there

appear two dressed state resonances,agiven by Eq. (6.10), and an EIT resonance at

A;=A,. For tripod system, there exist three dressede stasonances at;,;, =

(A, £/ +4a7)/2 and g, ~ A, whena, <a,. Further the system exhibits two EIT
resonances af\, =A, and A, =A, (cf. Fig. 6.1(b)). A special case of the tripod system

corresponds to the equal detuning of the pump amtral lasers, i.e.A, =A,. In this

case one observes two dressed state resonan()ﬁ§iayA21 +4a7)/2, and a single EIT

at A, =A,.
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Fig. 6.1: Probe absorption spectrum for (&) system with(a,, A,) =(5, 0) MHz,
and (b) tripod system witla,, A, a,, A,) =(5, 0, 1, 3) MHz. The dotted and solid
curves (scaled up by 50) in each frame correspongpectra in the absence
(2W, =0) and presence2l; =510 MHz) of Doppler broadening.

We now focus on the quantity of interest whichhe finewidth (".,) of EIT
resonance. In Fig. 6.1, the EIT resonance inAheystem had ., ~0.034', whereas
the linewidths of two EIT resonances in the tripsgstem, i.e.,l'; (A, =4, )and
M (8,=4,), are ~0.03Z, (nearly equal to that forA system) and ~I0,
respectively. The possibility of observing an uti@row EIT profile by use of a control

laser field makes the tripod system interestingpplications related to metrology. For

A, =A,, a single EIT resonance of width ~0.034appears at\, = A, =A, similar to

that in a/A system ¢f. Fig. 6.1(a)). It is thus possible to manipulate pinobe response of
a /\ system by inclusion of an additional control fielthe control laser Rabi frequency
has a dramatic effect on the EIT resonances inpadrsystem. Fig. 6.2 shows the

behaviour of EIT resonances as a functiomf It is seen in Fig. 6.2 thdt_ (A, =4, )
and I, (A; = A, ) are both of sub-natural linewidth at low strengthpump and control

fields, and their linewidths are proportional tepective field strengths. On increasing
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the control field strength, both EIT resonancesallem, however,, (A, =4, )
increases at a much faster rate compared ip(A, =A, . The broadening in both
resonances is asymmetric with respect to their dereters, particularly at large, . It is
interesting to note from Fig. 6.2 that while bolie t£1T resonances broaden, they do not
overlap even at large, and there always exists a narrow absorption wingohetween

two EIT resonances. Interestingly linewidth of thissorption window can be made sub-

natural or even ultra-narrow by increasing the karteld strength ¢f. Fig. 6.2(d)).

0.006 0.006
0.004} 0.004}
A A
0.002} (@) 0.002} (b)
0.000f . . . . . 0.000f
0.006 0.006
0.004} 0.004}
A A
0.002} ©) 0.002} (d)
0.000} . . ! U . . 0.000} X X . - ,
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
A, (MHz) A, (MHz)

Fig. 6.2: EIT in a tripod system as a function of contralldi strengtha,.
Here (a,,A,,A,) =(5, 0, 3) MHz. 2W, =510 MHz, y,, = V,, = V,, =1.017
MHz. a, =1, 5, 10 and 40 MHz for frames (a) to (d) resp&dyiv

We now examine the behaviour of EIT linewidth fdpaod system in the light of

three-level A system. Fig. 6.3(a) and 6.4(a) show the variatb&IT linewidths with
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control Rabi frequencyd, ) for fixed a,,a;,A, and A,. We observe thall . (A, =4, )

is a much weaker function of control intensitiesnpared tol (A, =4, )

3 0.0340

0.0016f 40.0338

\ 40.0336

0.0014F ° 40.0334
./ L
. 2

Mot /r

Jo.0332
~~e
0 20 20 o — 40 0 20 B0 0%
a, (MHz) A, (MHz)

Fig. 6.3: EIT widths as a function of (a) control Rabi fremqay and (b) control field
detuning. Herea, =5 MHz. For frame (a)(A,, A,) =(0,3) MHz and for frame (b)

(a,,A;) =(1,50) MHz. The gray and black curves representd&I&, =A, and A, =A,
respectivelyNote thescale forl;; (A, =4, )on the right hand side of frame (b).

0 20 40 60 200 100 0 100 200
a, (MHz) A, (MHz)

Fig. 6.4. EIT widths as a function of (a) control Rabi freqey and (b) control field
detuning. Here a, =20 MHz. For frame (aY4,, A,) =(0, 20) MHz and for frame

(b) (a,,A;)=(15, 100) MHz. The gray and black curves repregdiitat A, =A,
and A, = A, respectively.

At lower intensities of control lasef,.; (A, =4, remains almost constant. This

implies that at lowew,, I'; (A, =4,) is a function of pump strengtdn, only. At higher
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a,, both the strong fields contribute to its widtti§ behaviour is more evident in Fig.
6.4(a) wherea, >a,. Contrarily ', (A, =4, ) closely follows the behaviour predicted
in a A system. For low pump intensity, i.eq, <<a,, lg:(A;=4,) Dazm,
which gives a linear dependence am,. On the other hand whemr, >>a,
M. (A, =A4,)0a? and that corresponds to the region where the alppiemping rate
aZlT starts to exceedl, and the susceptibility of the atomic medium exsitsiquare

dependence om,, where a, ~W,/l;/T, is the saturation intensity. The crossover

between the two curves in Fig. 6.3(a) and 6.4(g@yesent the case when control and

pump fields are of equal strengths which causgs(A, =A,) =T (A, =4, . Un}il this
crossoverl (A, =4, )is constant and after this point bath and a, contribute to its
width. When a,>>a, (A, =4,) increases much faster, almost parallel with
Mot (A, =4,) i.e., the stronger fieldr, has the major contribution to its width.

Fig. 6.3(b) and 6.4(b) shows the dependence ofabftld detuning QA,) on the
width of the two EIT windows for fixear,, a,, a, andA,. Itis seen thaf (A, =4, )
exhibits a stronger dependence fn compared to . (A, =A; )Note here that in Fig.
6.3(b), Mg (A, =4,) <I: (A, =4, ) sincea, <a,. While T'; (A, =4,) remains fairly
constant,l.; (A; =4, )is minimum atA, =A, and shows quadratic dependence/gn

Further both the EIT resonances exhibit minimumthvidt the respective two-photon

resonance conditions. Interestingly in the vicinity A, = A, both EIT widths undergo

rapid changes resulting in a discontinuous behavavl, = A, . As discussed before, at
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A =A,, the two EIT resonances become degenerate andethdts inl"; (A, =A)) =
M (A;=4,). In Fig. 6.3(b) and 6.4(b) this condition is si¢d at A, =50 and 100

MHz respectively and consequently the behaviolEldfat these points are not shown.

6.3 Pump-Probe Spectroscopy of N-Resonance System

6.3.1 Variantsof N System
We consider here a typical example of N system éartiny D transition of’Rb

as shown in Fig 2.1(c). The four level subset fogrthe N scheme ai@) =|5s,,,F =1),

2) =|5s,,F =2), |3)=|5p,, F'=1) and |4)=|5p,, F'=2). Depending on choice of
probe field three completely different configuraigocan be realized within the manifold.
Model A: In this configuration fieldE; is used as the probe. The scheme can be
identified as an ideal three-leveh system for EIT comprising ofl) - |4) and

|2) - |4) transitions driven by strong punip, and a weak prob&, respectively. This

system is perturbed by an additional strong fig|dcoupling|1) - |3) transition.

Model B: In this scheme the field&E, is used as the probe. Here a V system formed by
transitions|l) - |3) and|1) - |4) is driven by an additional fieldE, .
Model C: Here two strong field€, and E, dress the transitiong) - |3) and|2) - |4)

respectively. The resulting dressed states areegrbly a weak probe lasdt, scanned

across|l) - |4) transition. The scheme can be thought of as twasigneependent ‘two-

level systems|1) - |3) and|2) - |4) being coupled by the weak probe.
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Note that in models A and B the probe field shaxeommon level with one of

the strong fieldsE, which results in the observation of EIT or EIAtae two-photon
resonance conditiond, =A, and A, =A, respectivelywhereas in model C probe field

shares a common level with both the strong fieltdgtv yields interesting characteristics

in the absorption and dispersion profiles.

6.3.2 Theoretical Formulation

Master equation of the system is given by Eq. (RWBich is cast in c-number

representation to obtain the following equations:

doy,/dt =-a,0, —ia,(0i; =~ Py) ~10,(P — L)

(6.11a
+ 200100 + 2V31055 + 2V 31004

do,/dt =-a,p, —ia,p, +ia,p, +ia,p,,, (6.11b)
do,/dt =—1a,(0,, — Pa3) — A0, H1A 0,3, (6.11c)
do,/dt=—ia,(o, - p.,)—ia.0,—a,0, +ia,p,, (6.11d)
do,, [ at = 20,00, — 8Os —105(0ss = Puo) T 2Vs2Ps3t 2V40Lus s (6.11e)
do,/dt =—ia,0, —a,p,+ia,0,, (6.11f)
do,, /dt =—ia,0, —10;(0,, = Ps) — Ag0s (6.119)
oy, 1At =10, (03— Pa1) — 81055 + 21 13044 (6.11h)
do, /dt =ia,p, —ia,p, —i10,05, — 8,0, (6.11i)
do,, 1ot =i1a,(0y = Pu) Y1500 = Pu) + 20 30055 — Qs s - (6.11))

where the Rabi frequencies,( and detunings4, are defined in Eq. (2.92) and (2.93),

and the coefficients, are defined as follows:
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a =2r,, a,=l,+0,, +i(A,-A,) =2, a,=l,+M,—-iA =&,
a,=l,+I,—iA,=as, a, =2, a, =M, +,—i(8,-A,+A)=a],
a, =, +,—-iA,=a,, a, =2, a,=M,+I,+i(A -4, =a;,
as=20,, Co= Vo + Vo + T Cy = Var+ Vi + s (6.12)

Under the weak probe approximation the relevaneparices of the medium for the three

model schemes are obtained as follows:

(&) Model A
pi3 = allaa,pf) +i{(af +aa,)(ph - pid) + aa,pN 1 Ay, (6.13a)
P =-ial(ad, +a;) (P} - pid) - ai (P - P Au, (6.13b)
P =a.a,la,(pf) - P) +ay (o - P Ay, (8d
A, =aa@,+ala,+ala,  A,=a3a,+a/a,+ala,. (6.13d)
(b) Model B
Ps) = ayfaa,pf) +i{(a; +ana,) (P - p%F) —a ap5N By, (6.14a)
piy =—aa:la, (oY - pi) +a, (% — L)l Byz, (6.14b)
P =-iayl(aa, +al)(pf - pid) +ai (el — P9/ By, (6.14c)
Buy = gy, + 058y, + A58, By, = 22,2, + @38, + alay,. (6.14d)
(c) Model C
pil = al(af —a;)(a.pf -apl)+a(ampf +aa.0) (6.153)
+H{(a@.a, +atas +aza) (Pl - pid M/ Cy,
Pl =-ia(p P 8, P =-ia,(pF - p)] 8, (6.15b)
Cy =a@a.a;+a; +a; —207a; +af (a@, +a,a,) + a5 (ag; +aa;).  (6.15c)

120



Coherence and interference in double dark resonant systems

=

Populations for the three models are giverAppendix-6. AbsorptionA and refractive
index /7 of the weak probe are given by=Im(P), 7 = Re®) where P = (ply,,/a, )

(08Qy,. 1a) and (p2y,, ! a,)for models (A), (B) and (C) respectively.

6.3.3 Absor ption Spectra

(a) Absorption in Model A
Fig. 6.5 shows the calculated probe absorptiontspét absence and presence of
inhomogeneous broadening for a few representatiteeg of field strengths. Steady state

spectra is characterized by three dressed statesedoby the coherent coupling of

1) - |3) and|1) - |4) transitions by two strong fieldE, and E,. These dressed states
can therefore be obtained from the eigenstates fstem formed by leveld), |3) and
|4). For A, =A,, these dressed states are given in Table-5. Hessetl statey, at

A, =A,(=A,) corresponds to resonant bright resonance.

4.0x10°

\
1
\
0.3} 1
' 3.0x10°F
\
\
1

A
2.0x10°}

1.0x10°}

0.0L—

A, (MHz)

Fig. 6.5 Probe absorption spectrum for model A. H&e=A, =0, (a,,a,)=(5,5),
(1,5) and (5,1) MHz for solid, dashed and dotteddirespectively. The decay rates are
Vs, = Va, =1.115 MHz, y,, =0.134 MHz, y,, =0.669 MHz andr,, =I,, =T, =T, =

1 kHz. Frames (a) and (b) correspond to the spewctthe absence 2\, =0) and
presence 2\, =510 MHz) of inhomogeneous broadening
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Table-5: Dressed states of model A féy; = A,

Dressed state energy Dressed state eigen vector

A, 0, = a,|3) - ay|4)
17T 2
al +aZ

(B,7&)12 51_

‘xa AT

A iA2)| Jxa 51(51 *4,)

=5, +4(a; +a?)

From Table-5 it is clear that relative amplituddgte three dressed resonances
depends on the ratio of field strengts and a,, and the transition dipole moment of
excited states to the probe ground stabe Since fo’Rb d,, <<d,,, amplitude of the
state, is directly related toa; whereas that of the other two dressed resonanees a
related toa,. This is in agreement with the observed changkeights of the dressed

resonances with change in field strengths as shiowfig. 6.5(a). Fig. 6.6 shows the

effect of A, and A, on the probe absorption spectra whera, .

0.4 0.4
(@) (b)

00k e L. e e 00k i e e

0 50 - 0
A, (MHz) A, (MHz)

Fig. 6.6: Absorption in absence (dotted line) and presemscdid( line) of
Doppler broadening. Herdga,, a,) =(5,5) MHz and @, A,) = (0, 50) and
(-50, 50) for frames (a) and (b) respectively. Bbéid curves are scaled up
by 50. Other data are same as in Fig. 6.5.
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In the steady state nearly all the populationassferred to the probe ground level

|2>. This fulfills the prerequisite for EIT and hentea thermal broadened media one

observes a narrow EIT @, =A,. The effect of fieldE, on the A system (1) [3) ,|4))

becomes significant whea, >a, as may be seen the dotted curve in Fig. 6.5(bje He

EIT is retained but with much smaller amplitude andrger width. Further it is observed

that EIT always appears &, = A, irrespective of the detuning, (cf. Fig. 6.6).

(b) Absorption in Model B

In the absence of inhomogeneous broadening absorgpiectra exhibits a triplet

formed by dressing ofl) - [4) and |2) - |4) transitions by two strong field&, and

E,. Representative probe absorption spectraMp# A, are shown in Fig. 6.7.
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0.02f

0.00

0.004
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0.000
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123

Fig. 6.7: Probe absorption spectrum
for model B. HereA, =0, A, =20
MHz and (@,,a,)=(5,5), (1,5) and
(5,1) MHz for frames (a), (b) and (c)
respectively. The solid and dotted
lines correspond to the spectra in the
absence and presence of Doppler

broadening. Other data are same as
in Fig. 6.5.
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Though the analytical dressed states by # A, are difficult to obtain, it can be

argued that fora, >a, there is preferential dressing of two-level systéin. [4).

Hence the dressed spectrum constitutes an AT dougle (A, £A% +4a’)/2 (cf.

dotted curves in Fig. 6.7(a) and (c)). The thiréssed resonance appears at the three-

photon resonance conditialy, = A, — A, [227]. Analytical form of dressed states can be
obtained under the conditiof, = A, and are given in Table-6. The dressed st@eat
A, =A,(=4,) is called dark resonance.

Table -6: Dressed states for model B fa, = A,

Dressed state energy Dressed state eigen vector

A, _ah)-a,|2)

W=
b Jat+a?
(B,F¢,)/2 2

Yoo =20, | ——[h*a;

52_
EZ(EZiAZ) | > | >

ffz(ffz tA4,)

=&, +4(a; +a?)

In the presence of Doppler broadening observatiamamsparency or absorption
resonance in the medium depends on relative stiemjtthe two strong fields. While,
increases the absorption, tends to make the medium transparent. Hencexior a,
and A, = A, the Doppler averaged spectra do not show any cteaistics of EIT or EIA.
When a, <a,, an EIT resonance is obtained at the two-phot@ona@nce condition
A=A, (cf. in Fig. 6.7(b)). Whera, >a,, an EIA resonance appears &f=A, (cf.
Fig. 6.7(c)). Further unlike the previous modegasgty state population in this case is not

trapped in the probe ground state, but is sharedess level§1) and|2).

124



Coherence and interference in double dark resonant systems

(c) Absorption in Model C
We now concentrate on model C which is most intergsof the three
configurations. In the absence of inhomogeneouad®ning probe absorption spectra is

a quadruplet formed by dressing of the four baatest In general two pairs of dressed

states are formed by dressing of two-level systiins |3) by E, and|2) - |4) by E,.
The corresponding dressed states &g = (A, A +4a7)/2 and S,, =(A,+

A% +4aZ2)12. These four dressed states are probed by figldesulting in absorption

atA,=§5,-§, §-S,,5,-S and S, -S,. Fig. 6.8 shows probe absorption spectra for
fixed detunings and varying field strengths. Notereh that the scheme under

consideration is a combination of/e (|,/2),|4)) and a V(|1 3),4)) system, each

driven by its own strong control field but having@mmon probe field.

0.10f () 0.10f (b)
A
A 0.05}
0.05¢
0.00 .
0.00 ) : )
-100 -50 0 50 100
A, (MHz)
0.10f (c)
Fig. 6.8: Probe absorption spectra for
A (A, A,) =(0,50) MHz. 2W, =0 and
0.05¢ .
510 MHz for dotted and solid curves.
Here (a,, a;) =(10,50), (10,10) and
(50,10) MHz for frames (a), (b) and
0.00 ; (c) respectively. The solid curves
! have been scaled up by 10.
-100 -éO 160
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When a, <a,, N\ system is stronger and nearly all the steady gt@peilation is
distributed in the probe ground state and excited statg8) (o, =0.43 andp;, = 0.42).
In this condition one observes four absorptive mesces in the absence of
inhomogeneous broadening as shown in Fig. 6.8(a)en\a, = a,, the resonant V
system is relatively stronger and the maximum pafiuh is transferred to Ieve}l2>

(0,,=0.6). Thus there is inversion between sd&}eand one of the dressed resonances

arising from coherent coupling ¢2)  |4) transition by control fieldE,. This results in

the amplification as observed in Fig. 6.8(b) — {d)e effect of thermal averaging is to fill
in the transparency region between the four dress®ds resulting into the formation of
three EIT resonances as shown in Fig. 6.8(a). it benoted here that the inversion in

the dressed states is not retained in the Dopptaged spectrum.

6.3.4 Switching Between EIA and EIT in Model C

Depending on relative strengths of the two stroe@l$ one observes both EIA
and EIT in this configuration as shown in Fig. 6T%is provides an interesting prospect
of controlling light propagation from subluminal superluminal in the medium. When
a,=a, and A, =A,, the inherentA and V systems are at equal footing. In this case a
narrow EIA resonance flanked by two transparengyores is obtained af\, =A, = A,
as shown in Fig. 6.9(a). Ag; is increased, the dominatingy system creates a narrow

transparency window within the EIA resonance wihilereasing the amplitude of the

adjacent transparency windows as is shown in Fi§(by For a,>>a, three EIT
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resonances are obtained. (Fig. 6.9(c)) as was discussed in the previousestilms1. The
creation of EIA is due to the buildup of low freauey coherence between the excited
states and its transfer to the ground state bytapenus emission. Switching between
EIA to EIT can therefore be attributed to TOC [48+4n the medium. Similar to EIT

linewidth, EIA linewidth decreases with increaséMy as shown in Fig. 6.10.

0.14} (a) N 0.10f

0.07} ol o 0.05}

: 0.0}
20 20

0.00} "

20 A (?/IH ) A ((I?/IH ) 20
Z Z
0.08 2 2

(©)

Fig. 6.9: Switching between EIA
A l A o and EIT in model C.2V/, = 0 and
Y S A S 510 MHz for dotted and solid
curves. HereA, =A, =0, (a,,a,) =
(5,5), (5,6) and (5,10) MHz for
frames (a), (b) and (c) respectively.

0.00t

0.3r
Fig. 6.10: Narrowing of EIA
021 resonance with increase in
A . ! Doppler width. HereA, = A, =0,
] 2 a,=a,=5 MHz. 2W, =0, 100,
o4 — 3 250, 500 and 600 MHz for curves
L 4 1, 2, 3, 4 and 5 respectively.
N U
0.0E A N N
-20 0 A2 (MHz) 20 40
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6.4 Spontaneously Generated Coherencein N system

6.4.1 Theoretical Formulation

We consider an experimental situation of closedystesn in configuration C for
the present study. When the levéls and |2) are closely spaced, the two spontaneous
decay channelsy,, Vs,) and (v,,, V) give rise to coherent superposition of the two
ground states resulting in establishment of SGGher medium. Since electric dipole
moments @.,,d,,) and d,,,d,,) need not be orthogonal, the ang2sand &, between
the two pairs of induced dipole moments play theidieg role in SGC. The alignment of

dipole moments is defined in terms of paramet®rs- (631-632)/‘(631-632)‘ =cosf, and

GDZ:(641-642)/‘(641-642)‘:cosﬁz. In such a caseb,\/y,),, and ®,./y,y,, are the

SGC parameters which represent the quantum ineerdéer effects resulting from the
cross coupling between spontaneous emissions char({® - |1),[3) - |2)) and
(|4) - |1).|4) - |2)) respectively. Under the condition that each fidiives only one
transition, the Rabi frequencies of the drivingdgare related to the alignment of dipole
moments asz; = @, sing, :alm and Oz = 0,4 SiNG, = az(g)\/@ . It may be
noted that when the dipole moment$,(d,,), (d,;,d,,) are near paralleld, =, =1
representing the maximum SGC effect. However fogdaenergy spacing of the ground

states, the oscillatory terms average out to zéxpo= ®, =0 and SGC effect vanishes.

The presence of two SGC channels modify the masfeation of systentf{. Eqg. 2.90) as

do/dt = =i[H,, p] - decayterms+ 20,/ ), ys, (Asp A, + Ao Ay)

(6.16)
+ 20, ViV (AP Ay + AP A
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The difference between Eq. (2.90) and Eg. (6.1@8)esinclusion of last two SGC terms.
The elements of density operator satisfy the saguetéons 6.11(a) — (j) witle, - a°,

except the ground state coherence equation 6.%4(ich is modified as follows:

d . . .
gtlz =—a,0, —IO’?,OM +Ialsp32 +|azsp42 + 2¢1\/ VaiVs2 P33t 2¢)2\/ VarVa2 Paa - (6-17)

6.4.2 Perturbative Analysis
Steady-state solutions fq@; can be obtained perturbatively up to third order i
probe field strengthwr; to obtain relevant atomic coherences as
PCy = XNHadas +8,(a7)’ +as(as) %}, o =ias (0 -pg) /8, (6.183)
P Cy =iXPaz{aa, - (a7)” +(a3) %}, w2 =105(05 —pid) &y, (6.18b)
pCy =iXPa{aas+(a9)’ -(a) %}, pECy = XParas(a; +ay), (6.18¢)
P Cy = aza3 (0™ = PP Hads = (a7)” +(a3) %}

+ XMHaaza, +a,(a”) +a,(as) %} (6.19)
+Hias[pa (8, +ag)aca; - pli{a,(ar)? +a,(a3)’ +aaa ],

P8 =ila(pi® - p) a5 pii Pl &g, (6.20)
ps =ilas (p5” - pi?) + a5 plP1l ay, (6.21)
PYC, =a’as (pi™ - pi™(ad) - (a3)? +aa} + XPajas (a, +ay) (6.22)
+iaj[pl M ay(ar)? +a,(a3)® +ag.as) —acas pl P (a, +ay)l,
PYC, =a{(a])” —(a)) NapS™® —aspl™) +asa, (aa pl™
+a.as 05 ) +ilas (P47 = pli ) ad.as + (a7) s (6.23)
+(a3)’at + XPag{aas —(ab) +(a3),
X =20, Y, 08 + 20,4y, 05 (6.24)
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The relevant zero and higher order populationssaree as in the case without SGE (
Appendix 6) witha, - a°.

The response of the atomic medium to the probeal fisl governed by the
polarization P =g xE,(t) where E,(t)=[E,expHiQ,t)+E,exp{Q,t)]/2 and
x=x"+3E2x?. For an ensemble o, atoms we may write the polarization of the

medium asP =N,[d,,0,,exp{Q.,t) +d,,0,,exptiQ,t)], whered,,=d,,. The first and

third order susceptibilities of the atomic mediuam¢herefore be obtained as [220]

x© = Na|dl4|2p§11) @ - Na|dl4|4pﬁ)

: . 6.25
e has 12 1%(as)® (6.25)

Here Re(y™) and Im(y™) represent the linear absorption and dispersiothefweak

probe field. Refy®) corresponds to Kerr index of the medium whereag )

accounts for the nonlinear absorption coefficiefprobe field.

6.4.3 Results and Discussion

We now examine the effect of SGC on probe absarpiémd relate its
consequences to the Kerr nonlinearity of the mediwe first focus on the case when
a,=a, and A, =A,=0. Fig. 6.11 shows the effect of SGC on the linpanbe
absorption spectra for a representative situatitg. 6.11(a) shows the triplet dressed
states and EIA resonance in the absence of S&E(Séc. 6.3.4). The inclusion of two
SGC channels has a marked effect on itdblf# ®, or only one SGC channel is taken
into account, the probe field sees different sttien@f the two control fields, hence the

medium exhibits four dressed resonances in thenabsef inhomogeneous broadening
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with a considerable decrease in absorpt@nKig. 6.11(b)). Further EIA observed in the

Doppler broadened medium is transformed into tttEl resonances, out of which the

EIT resonance at\, =A, =A, =0 is much sharper which manifests into an enhanced

change in susceptibility of the medium. For = ®,, a° =a; and this results in triplet

absorption spectra in the absence and an EIA resena the presence of Doppler

broadening as is shown in Fig. 6.11(c). Howeverptesence of SGC results in reduced

absorption as compared the case without SGC. EitR 6hows the effect of SGC

channels ony® and y® of the medium for the data of Fig. 6.11. It is eb®d that Kerr

nonlinearity gradually increases along with a daseein linear/nonlinear absorption with

the increase in SGC parametedy and ®,. Kerr nonlinearity for maximum SGC

becomes almost double to the case without SGC.
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Fig. 6.11: Linear absorption
spectra fora, = a, =10 MHz and

A, =A, =0. The dotted and solid
curves represent the spectra in the
absence W, =0) and presence of
Doppler broadening 2W, =510
MHz). Frames (a) — (c) correspond
to (¥, d,) = (0,0), (0.9,0.0) and
(0.99, 0.99) respectively.
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Fig. 6.12: Linear absorptionim(y® and dispersionRe(y” s. A, are shown by
dotted and solid curves respectively in frames—<#&}). Nonlinear absorptiotm(x® )

and Kerr nonlinearity Re(y® )vs. A, are shown by dotted and solid curves
respectively in frames (d) — (fle,,®,) =(0,0) for frames (a),(d); (0.9,0.0) for frames
(b),(e) and (0.99,0.99) for frames (c),(f). Othatadare same as in Fig. 6.11.

An important point to note from Fig. 6.12 is thdtetenhancement of Kerr

nonlinearity is same whethéip,, p,) =(0.9,0.0) or(p,, p,) =(0.99,0.99). Whenp, < p,
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or when only one SGC channep,(# 0) is taken into account the enhanced Kerr
nonlinearity is accompanied with a decrease inalim®nlinear absorptioref; Fig. 6.12
(b), (e)). However for maximum SGC in both the atels (p, = p, =0.99) the linear and
nonlinear absorption increases in the region ofaanbment as compared to the case

without SGC. Hence when control fields are of eqgstkengths, one can obtain

suppression of absorption and large enhancemelkefnonlinearity with the increase
in the cross coupling between radiative decay cbisn(8) - |1),[3) - |2)).

When a, = a, the maximum steady population is distributed irels |1) and|3) .
However whena, < a,, i.e. the inherent V system is weaker, maximumuytaton is
transferred to the probe ground sthI)e This population trapping causes makes the

medium transparent. Further in this case the Kenlinearity is increased by a factor of
10 as is shown in Fig. 6.13. The enhanced Kerr ineafity enters the nonlinear
transparency window with increase in SGC paramefBnsgs one can attain enhanced

Kerr nonlinearity with almost no absorption by amtitng the field and SGC parameters.

1.2

0.12f

0.06f

¥ (arb. units)
X2 (arb. units)
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Fig. 6.13: Im(x®)(dotted curve) andRe(y® Xsolid curve)vs. A, for
a,=1 MHz. (®,P,)=(0,0) and (0.99,0.99) for frames (a) and (b)
respectively. Other data are same as in Fig. 6.11.
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Fig. 6.14 shows the effect of SGC gr’ and xy©® for a, <a, and off-resonant
control field. In this case the Kerr nonlinearity @énhanced by almost 75 times for
maximum SGC; however it is accompanied with anaase in absorption. In this case,

SGC helps in obtaining narrow EIT resonances imptiesence of Doppler broadening.
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Fig. 6.14: Im(y®)and Re(y® ) vs. A, are shown by dotted and solid curves
respectively in frames (a) — (c(x® and Re(x® )vs. A, are shown by dotted
and solid curves respectively in frames (d) — Kfere (a,, a, F (1,10) MHz and
(A, A;) =(0,10) MHz(®,,®,) =(0,0) for frames (a),(d); (0.9,0.0) for frames (&),
and (0.99,0.99) for frames (c),(f).
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From Eq. (6.18) — (6.23) it is clear that the cemeesp?, p2, p2, 9 and
hence p®, 0%, P2, p@, P, 02, p®(i=1-4) are zero in the absence of SGC
(X{?=0) but become finite in its presence. These colm®then modify the first and

third order probe polarizationgf; and o). A closer inspection of these terms reveals
that the major contribution to the response of dt@mic media is the buildup of low
frequency coherence terp? . Thus the change in optical response of the mecinch

enhancement of Kerr nonlinearity can be attributedhe two SGC channels and the

interference between them which causes generatiexta coherences in the medium.

6.5EIT in A and N System: Experimental

We now discuss our experimental results on EIT\irand N configurations. We

consider here the N system of model A, i.e. whEgeis the probeE, is the pump and

E, is the coupling (control) beam. The level schemseduin the present experiment

correspond to Ptransition of®’Rb as shown in Fig. 6.15. The experimental setsup i
same as that shown in Fig. 4.11. For EIT experis)ent avoid the additional counter-
propagating probe beam which was used in the diestis¢e spectroscopyf( Sec. 4.7)
and measure the probe absorption signal directbbtain EIT. This helps in obtaining a
narrower EIT linewidth as compared to the dressait Spectroscopy signal.

In case of theA system formed by leveld), |2) and|4), we first obtain EIT

signal at exact pump resonance and in the absdrbte coupling beam. A typical EIT

scan is shown in Fig. 6.16. Here the pump lasstabilized on5s,,,F =2 - 5p,,F'= 1
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hyperfine transition i.eA, =0. In this configuration, when the probe laser iarsed

across the excited hyperfine manifold, a transparemindow appears af\, =0. This

narrow ‘dark’ resonance is flanked by two veloc#glective resonances. The velocity

selective resonances appear due to non-resonatdt@exc of different velocity group of

atoms by the pump beam. The observed width of thie&sonance is ~ 3 MHz, which is

substantially lower than the natural line widthl(84Hz) of ®’Rb D; transition. Under

optimized experimental conditions the line widthtbé ‘dark’ resonance can be further

narrowed to ~ 1 MHz. This type of ultra-narrow neance can act as an ideal frequency

discriminator in the field of metrology.

;
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Fig. 6.15: Energy-level diagram for EIT
experiment if'Rb D, line. The bracketed
entries represent the separation (in MHz)
between adjacent levels. The system is
formed with probe and pump lasers tuned
to F=1-F'=1 and F=2- F'=1
transitions. For realization of N system an
additional coupling field is tuned to
F =2 - F'=2 transitions. The detunings
of the coupling, pump and probe lasers are
A, A, and A, respectively.

Fig 6.16: EIT in A configuration of D
transition of ®’Rb where pump is exactly
resonant with 5s,,F=2 - 5p,,F'= 1
transition. (i) Probe saturation absorption
spectrum of5s,,,F =1 - 5p,,,F' transition,
where the resonances are as marked in Fig.
4.15. (ii) Probe intensity in the presence of
the pump laser withd, =0 and Rabia, ~

17 MHz. The EIT signal atA, = Ohas a

linewidth (FWHM) of ~3 MHz (obtained by
, Lorentz fitting).
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For EIT in N system the coupling beam is turnedtéere the pump and coupling
beams are derived from the same diode laser usingGM. Pump beam is locked at
crossover resonance betweds,,F =2 - 5p,,F' = I&ansitions using frequency
modulation spectroscopy (FMS) and the coupling béam8 MHz up-shiftedhrough
AOM, which impliesA, =0 and A, = —78.5 MHz. EIT is recorded i and N systems
together by scanning the probe laser over appraphgperfine transitions. The powers
of pump, coupling and probe beams are 1 mW, 2.5an@/70 pW respectively. It may
be noted here that this configuration gives ris&€kd in A system under non-resonant

condition (A, #0). It is well known that the width of EIT i\ system withA, #0 is

expected to be substantially higher than thatZigr=0 [14-16]. This however is not a
limitation since we can compare the EIT signal othbthese systems under identical
experimental conditions to draw inference on theegal features. A representative result
is shown in Fig. 6.17. It is clear from Fig. 6.1t EIT in A system occurs at the two
photon resonance conditioh, =A,, while for N system it is observed at three-photon
resonance conditiod, =A, —A,, which reduces to 2+1-photon resonance =0
[227]. This is satisfied fo\, =—78.5 MHz ¢f. Fig. 6.17). We may observe here that the
width of EIT in N system (~5 MHz) is significanthyarrower than that i\ system (~16
MHz). This agrees with the general observation thatEIT is N resonance is superior to
that in A system and that makes it more attractive for appbns relating to time and
frequency standards.

The amplitude of the EIT resonance depends onxperagmental parameters such

as the field strengths and the density of the atdfos achieving the largest absorption
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reduction, the power of the coupling, pump and prdi@ams needs to be carefully
monitored, and the probe beam is taken to be seffly weak to eliminate the saturation
of atoms while maintaining appropriate signal tasearatio. It is also important to note
that while the pump and coupling strengths afféwet frequency positions of dressed

states, they do not change the EIT resonance fnegue

Fig 6.17: Comparison of EIT in three-
() and four-level systems. (i) Probe
saturation absorption spectrum (i)
probe intensity in the presence of
pump laser forA system and (iii) in
(i) the presence of pump and coupling
lasers for N system. The widths of EIT
for A and N system are 16 and 5 MHz
respectively. See text for detalils.

Intensity (Arb. Units)

-400 -200 A, (MH2) 0 200

We expect that improved optimization of the beame sind shape, laser focus,
alignment, and intensity; and automated digitadjrency locking of pump and coupling
lasers can help in further narrowing the EIT resmeawhile increasing its amplitude.
This ultra narrow EIT resonance can prove usefdtaéquency offset locking where one
can stabilize the probe laser on the peak posiibthe EIT signal. This is done by
locking the probe laser on the first derivative dpegm of EIT resonance. This atomic
frequency offset locking (AFOL) technique providestter frequency stability than
saturation absorption spectroscopy [82]. Furthereliminates the need of direct
modulation of laser frequency and the spectrallag®m is limited only by the linewidths

of the laser systems.
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CHAPTER 7

PHASE FLUCTUATIONS IN COHERENT
DYNAMICS OF N-RESONANCE

7.1 Introduction

In coherent pump-probe spectroscopy experimentsraktechniques are used to
generate the requisite multi-frequency fields, ,e.;mdependent lasers [80-82],
independent but phase locked lasers [83] and sidisbaf a single laser [101] etc. An
important problem that has a direct bearing orettperimental outcome is how the finite
bandwidths of driving lasers and their cross-catrehs affect the coherent dynamics of
multi-level systems. The laser bandwidth is relatedstochastic correlations of each
frequency fluctuation with itself and cross-cortiela between two fluctuating fields
depends on the experimental techniques used forgéeeration.

It is well known from the study of two-level systetmat the phase fluctuations in
laser fields are a major cause of deterioratiothefcoherent optical processes. The effect

of excitation bandwidths on resonance fluorescdidd] and Autler-Townes doublet
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[145] was studied by Agarwat al. Dalton and Knight [146] have reported a detailed
analysis of the effects of laser bandwidths andgsieorrelations on the coherences of a
three-level system driven by two coherent fieldsisTwork shows that whether atomic
coherences are dephased or not depends on thebls#widths and correlations, and
also on the atomic level configurations, i.A., V and =. The same group has analyzed
the effect of unequal phase fluctuating laser fietch CPT in ladder and\ schemes
[147]. They have reported that uncorrelated laseldd destroy CPT and damp the
narrow coherence hole in the fluorescent intensitywever if the fields are critically
cross-correlated atomic coherences are much léssted and a significant degree of re-
trapping occurs [147]. The effect of finite bandttisl on optical double resonance (ODR)
spectra and second-order intensity correlation tfans was studied numerically and
analytically by Lawande and co-workers [148,149)efle also exist studies on the effect
of phase fluctuations on EIT, LWI, refractive indexhancement and entanglement
generation [150-156]. While numerous papers hawyaed the effect of laser phase
fluctuations on the optical response of three-lesydtems [144-156], relatively little
work is reported on multilevel systems [157,158gis€hhauet al. [157] have shown
that in a doubleA non inversion laser, pump-field phase diffusioadi to a fluctuating
oscillation frequency of coherence and hence resitioe laser gain. A general condition
for population trapping has been obtained in a fieuel system by Osman [158]. In
particular no such work has been reported on Nesysprobably due to the complex
configuration of the levels and coupling fields.

In this chapter we examine the effect of phasetdlaions on the response of

three- and 2+1-photon resonance in terms of stetadg and time dependent populations
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as well as EIT/ EIA resonance in a N system. Thmé&work of multiplicative stochastic

processes [159,160] is used to obtain master equ&br the phase averaged density
matrix. Phase fluctuations are modeled as Wiengy-Ldiffusion processes i.e. phase
noise is assumed to be the integral of white fraquenoise. The distinctive features of
steady state and time dependent behavior of theerayander three-photon and 2+1-
photon resonance conditions and for fluctuatinddéieare explicitly discussed. The

results are illustrated using the N syster’6&’ ion (or®’Sr atom) as discussed in Ref.
[227]. Further the effect of phase fluctuations BIT/EIA resonance is discussed in

reference with model C of Chapter-6.

7.2 Theoretical Formulation

We consider a four-level systerdf.(Fig. 2.1(c)) in N-configuration interacting
with three monochromatic laser fields which arern@sonant with respective atomic
transitions. The coherent dynamics of the systemewscribed by the master equation

(2.83a). The Rabi frequencies of the three fields @ =d,E, /2, a,=d,E, /2 and
a,=d,E;, /2. We assume that the driving fields,(t), (j=1,2,3) arise from the
stochastic nature of phases and are described by

E,()=E.exp(-igit), ¢,0) =9, (7.1)
where non-stochastic amplitudels;, are positive real numbersp,, are uniformly
distributed phase variables agij t @je the stochastic phase variables. We make the

rather standard assumption that the phages follgw a Wiener-Levy diffusion process
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[159,160]. The phase fluctuations statistics isttiiaracterized by the following random

equation of motion:

B,(t)= (1), (7.2)

with g (t) as a Gaussian white noise satisfying the followingperties:
u;(t) =0, (7.3a)

M (), () = 2y, Ot —t) =],

o (7.3b)
= 2ycicj 5(t _t’) I # Ji

where 2y, is the bandwidth of lase®;, and 2y, represent the cross-correlation that
may exist between the lasef3, and Q. Here and subsequently, ‘bar’ denotes the
ensemble average with respect to the distributibthe random procesg; t (. )Cross

correlations arise when two lasers interact sinmelbausly with the atom. They may also
arise naturally if the two fields are different nesdof the same laser or if the second field
is produced by splitting and frequency conversiammtf the other laser beam. For critical

correlation of driving fields we have

Vg = (Ve + V)1 2. r.4
In order to obtain the atomic observables averayed phase fluctuations, we generalize
the procedure used by D’'Souetal. [148] for the study of laser fluctuation effects i

ODR spectra. The advantage of Weiner-Levy modegbladse fluctuations is that it is

possible to derive the master equation for dergitgrator averaged over the ensemble of
phase fluctuations. To this end we introduce thesformed density operatdy "*as
WPE(t) =expiY)exp(=iZ) p(t) exp(Z), (7.5)

Y = p¢l+q¢2+s¢3' Z :¢1A’;3+(¢2_¢3)A22+¢2A44' (76)
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Differentiating Eq. (7.5) we obtain the followinguation forW P*

dW P/ dit = =i (e, + e, + SU)WP* —i[Z,WP*] + e e (dp/ dt)e”. (7.7)
The equation of motion foW"* is thus given as

dWPe/dt =[L, —ig(p+L) =i (q+L,) —i(s— L) WP, (7.8)

LW =iay[ Ag+ Ay, W] +iap[ Ay + Ay WERT Hiag[ Ay + Ap W]
—IA [ A WPF] =i(B, = Dg)[ A WPFT =18, [ Ay WP - i { AW ™S (7.9)
—2AWPEA +WPRA Y T {A 0 - 2AWPEA +WPEA },

LWP® =[ A, WPS], LWP® =[A, + A, WP, LWP*® =[A, W], (7.10)
Eq. (7.8) is a special case of a multiplicativechtstic differential equation. Our next
step is to obtain the master equation for transéorrdensity operator y** =\ P
averaged over distributions of phase varialges , (j)=1,2,3). Sinceg, t( )represent
o -correlated Gaussian processes, it is possiblepfyahe theory of multiplicative
stochastic processes [159,160] to obtain an exadtigon equation fory "™ t( ) To this
end we write Eqg. (7.8) as

dWP®/dt ={B, =iz (t)B, =i, (t)B, =i, (t) BJWP*, (7.11)
where B, are fixed operators defined as follows:

B,=Ly B=p+lL, B,=q+L, B=s-L,. 12)

In the interaction representation Eq. (7.11) sifigdito

dv(t)/ dt = —iw(t)v(t), (7.13)
where
v(t) = e WPE(),  w(t) = e M [14(t) B + 1,(1)B, + 145(t) Ble™ . (7.14)

Formal solution of Eq. (7.13) can be written imterof time-ordered exponential as
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v(t) =T exp{-i ] d7 W()}v(0) (7.15)

whereT is the time ordering operator. Taking the averdagem (7.15) with a fixed value

of v(0) and using the fact that averaging commutes witle tordering we obtain

- t
v(t) =Texp{—ijdr W(T)} v(0). (7.16)
0
The characteristic function of a stochastic vagablis defined as

G(k) = exp(kx) = [ dxexp(kx)P(X), (7.17)

where P(x) is probability distribution ofx . Taking logarithm of Eq. (7.17), we obtain

In G(k) = §M<<xm>> , (7.18)

m=1 Ml
where ({...)) are the cumulants [160]. For Gaussian processesimulants beyond the
second order are zero. The first cumulant is jostaverage value. Using Eq. (7.18) in

(7.16) we obtain

- _t - 1 t t
v(it) =T exp{— ifdr w(r) — = dt,[dt, <<W(tl)W(t2)>>}V(0)
0 20 0
- (7.19)
=T exp{— [dt, [dt, W(tl)w(tz)}v(O),
0 0
where we have use% =0. In this case the second cumulant is equal tcséo®nd
order correlationw(t,)w(t,) . Differentiating Eq. (7.19), we have

dv(D)/ dt = -] d7 WOOW(D) V(L) (7.20)

Reverting back to the original representation weiob

dWP* / dt = {BO —Jdrs 3B, exp@,r) i O, - 1)B, exp(—Bor)}W = (7.21)

i=1j=1
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Using Eq. (7.3) in (7.21) we obtain terms like
t
2y, [dr B exp(B,7)B; exp(-B,7)d(7) = y.BB; . 7.22)
0

Now using Eq. (7.22) and the fact tHgts commute we finally obtain

deqs(t)/dt :[BO _yclBlz _VCZBZZ _yc3B§

(7.23)
- 2yc1czBle - 2yc]c3BlBS - 2yc a:3BzBa]W Pae (t)’
which is equivalent to the master equation
d)(pqs/dt :[Lo _ycl(p+ I—1)2 _ycz(q + Lz)z _ycs(s_ Ls)z _2yc1c2(p+ Ll) (7 24)

(q + Lz) - 2yc1c3( p+ Ll)(s_ L3) - 2yc2c3(q + Lz)(s_ Ls)])(pqs-

X "* may be directly used to compute one-time expeautatalues of atomic operators.

7.2.1 Numerical Analysis
Master equation (7.24) can be cast in a c-numbgresentation by taking the
matrix elements of the density operapp?®(t) between the atomic states to obtain
dX P/ dt = M X P (7.25)
where X® is a column vector with 16 components given Xy, :<i‘)(p“5| j) and
M P* is a 16x16 matrix whose elements are giveAgpendix-7. The general solution of
the matrix equation (7.25) can be written as

= &2 [\7I<pqs' kaqs] pgs past
X(t) Z‘Uk eXp@k ), (7-26)

kk  CM*
whereU > andV,”* are respectively the eigenvectorsMf® and M,”* corresponding

to eigenvaluef®. V\** and M * are the transpose " and M ** respectively.
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Coefficients C/* = (V,**.U*) are normalization constants. These eigenvalues and

eigenvectors can be easily obtained numerically.gémeral, eigenvaluesi’® are
complex with negative real part. The computationatdmic averages and intensity-
intensity correlation functions involves the distriion y°®. For y°®, a steady-state
exists which corresponds to the existence of aamsiglue A°° =0. With p=q=s=0

this method is quite similar to the one used byt@abnd Knight [146] for obtaining the

populations which are related to one time averagesvever proper choice of parameters
(p,q,s) in the density matrix y** leads to simplification of off-diagonal atomic
averages which can be used to obtain atomic cobeseand fluorescent spectra. For e.g.

the fluorescent spectra require the distributign®, y°° and y*.

7.2.2 One Time Aver ages

Consider the averages of operaté(s which correspond to atomic populations,

(Ac©) =Tr Aco(D)] = Tr[ A, exp(Y) exp(Z)W (1) exp(-iZ)
=Trlexp(Y)exp(iZ) A, expiZ)W "*(t)] (7.27)
=Trlexp{i(pg, + @, + s¢,)} AW **(1)].

Since expHiZ) A, exp{Z) = A, we choosep =q=s=0 to take average over the phase
distribution and obtair(Akk(t)>:Tr[Akk)(OOO(t)]. Similarly the average of off-diagonal

operatorA, can be obtained as

(A1) =Tr[A,p(1)] =Tr[A, exp(Y) exp(Z)W **(t) exp(-iZ)]
=Trlexp(Y)exp(Z) A, expEiZ)WPE(t)] (7.28)
=Trlexp{i(pg, +a@, + s@,)} expli(P, — P5)} AW P ()],
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where we have used the cyclic property of traceaijman and identity (a) in Chapter-2.
We now choosep=0, g=-1 ands=1 to obtain<A12(t)> =Tr[Ax " (t)] . Similarly
the phase averaged expectation values of the atfigliagonal operatorsA, (j#k )

involve distributions withp, g, s #0 can be obtained as follows:

20) =TI A OL, (Au®) =TrIAX O], (As®) =TI Ay ()],

AL) =TrTAXCO], (AlD) =TITAX W], (ALD) = TrI A ()],

<

<

(o) = TrLAx O] A®) = TITAX O], (Au(®) = Tr[ Ay ()],
< (A (A

20) =TT AX()],

() =TITAX O], (Ag()) =TT A ()]

(7.29)
Thus within the phase diffusion model, fluctuatiocan be treated exactly.
Further the two-time correlation functions can lbeamed from one-time expectation

values of the atomic operators by invoking the quisnregression theorem.

7.3 Effect of Phase Fluctuationson Three- and 2+1- photon

Resonances

While the driving fields can be chosen arbitrarity;, this analysis we consider the

case of°Ca’ ion [227], whereE, and E, are strong fields and the ground ley&l is
connected to a metastable ley8) by weak field E; (cf. Fig. 2.1(c)). This scheme
represents the type of system encountered in atolmiks, where transitiofl) — |3) is

the clock transition of’Ca’ ion or®’Sr atom [227]. Here leveld), |2) and|3) are stable
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(metastable) while the sta4) is unstable unlike th¥Rb system studied in the previous

chapter. Champenoé al. [227] have pointed out that due to the instabilifystate|4>,
the narrow lines at three-photon resonance ingyssem can only be explained in terms
of population trapping and not transfer of coheee(iOC). To compare our results with
Ref. [227], the only decay channels consideredhis section arg/,, and y,,. The
system exhibits narrow resonances when the follgwio conditions are satisfied,
(i) Three-photon resonance condition

A,-A,-A =0and A, 70, (7.30)
in which stateg2) and|3) are resonantly coupled by three-photon process, a
(i) 2+1-photon resonance condition

A,-A,=0 andA, =0, (7.31)
where the stated) and|2) are coupled by two-photon process while statesnd|3)

are coupled by one-photon process. We now foculhesteady-state and time dependent

behavior of the atom under the above two conditions

7.3.1 Steady - State Population Distribution

(@) Three-Photon Resonance
For a clear perception of the three-photon resanaoadition it is pertinent here
to discuss briefly the dark state in the absengghate fluctuations. Though it is difficult

to obtain closed analytic expressions of the deessates, fora, <<a,,a, coupling

between statetl) and|3) can be treated perturbatively by introducing fingt order
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perturbation parameter, / A, <<1. The dressed states of the two-level systBm- |3)

are [¢,) = J(QrFA,)/2Q; [DF(Qr£4,)/2Q,|3) corresponding to the energies
£, = (D, +Q,)/2 whereQ, =2 +4a? . Thus fora, # 0 and |, >> @, we have
W) =n@,/8,)0-[3)], &=8,+a2in, (7.32a)
@) =n[|)+(@/a)3)], & =-ain, (7.32b)
where 1, =A,/ \Ja? +/2 is the normalization constant. Statgg,) and |2) are

resonantly coupled by an effective two-photon pssc27]. Coupling between states

@) and |4) is a,a,/D,. Dressed states of N system therefore corresponthe

eigenvectors of Hamiltonian of the system formedelwels|2>, l,l/+> and|4> , e,
A, -A, 0 -a,
H=| 0 A +allh, aa,lh . (7.33)
-a, aa,l A A,

The effective dark state of the system correspdodghree-photon resonance at

A, =A,-A, and the corresponding dressed state eigen vector i

Wo) = (@, 1ap,)2) +[w,)]. (7.34)

The other two dressed (bright) states of the system

ala,n a. aa,n
=n - L2 1+ S —12)+ L2 3 +|4 (7.35)
‘wBLBZ> BLB{ Azl(Al_‘gBlBZ)| > Al_‘gBl,BZ| > Al(Al_‘gBl,BZ)| > | >}

which correspond toeg,,, = ((Al +0,) (D, +D,)7 + 4((afa22 102) - agz))/z. Here

— 2.2 p2,2 _ 2.2 2 2 2 2
n, =Aa;/ara; +Na; and Ng1 g2 _Al(Al_‘gBLBZ)/\/alaz +Aa; +A1(A1_£BLBZ)

are the normalization constants.
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From Eq. (7.32) — (7.34) it is clear that under Weak coupling condition i.e.

a, /A, <<1, dark statgy, ) =|3). Therefore under steady state almost all the ojoul
is transferred to statb3> while the remaining states are correspondinglptgmThis
results in a sharp resonance, the linewidth of twiscdependent ofe’a, / Xa,)” [227].

The complete trapping of population in st&8e is referred to as dark resonance.
Fig. 7.1 displays the populatioré£> (i=1-4) as a function ofA, at the three-

photon resonance condition wheg =y, = y,; and y,;; = 0. The data chosen is same

as in Ref. [227]. In the absence of phase fluobusticf. curve A), the steady state of the

system is characterized by two resonances, a shiampe-photon resonance at

A, =N, -1, corresponding to almost complete transfer of patinn to statd3) and a
broad two-photon resonance At =A,. Note in Fig. 7.1 that at two-photon resonance
condition, the maximum population is in st@ and this is what is expected in a three-

level A system [146,147] formed by the leveds, |2) and|4) in the present problem.

Fig. 7.1 thus permits a direct comparison of thieaver of three-photon resonance in N
system and two-photon resonance/Ansystem under identical phase fluctuations. The
effect of phase fluctuations on these resonancespiesented by curves B — D in Fig.
7.1. It is clear from Fig. 7.1 that the three-photesonance is strongly affected by laser
bandwidths. Higher bandwidths lead to strong suggio@ of the population in the
metastable level, while increasing the populationshe other levels. Thus the phase
fluctuations dephase the atomic coherences thedebiroying the sharp resonance. It

then follows that to obtain ultra-narrow three-mghotabsorptive resonance using three
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independent lasers laser bandwidths must be exlyearaerow. For example, for the data
of Fig. 7.1 the population in levéB) decreases to 96% and 84% for laser linewidtHs of
kHz and 5 kHz respectively. It may also be seemffag. 7.1 that the suppression in the

two-photon resonance is relatively insensitiven® increase in laser bandwidths.

1.0

0 4 a (MHz) 8 12 0 4 a (MHz) 8 12

Fig. 7.1: Effect of laser bandwidths on level populationslemthree-photon
resonance condition. Frames (a) — (d) correspotigetpopulations in levels

1), |2), |3) and|4) calculated for §,,a,,a,)=(0.025, 5.0, 1.25) MHz,
(A, A,)=(5, 8) MHz and §,,,y,,)=(9.375, 0.625) MHz. Curves A-D in
each frame correspond to bandwidtpis = ., = y.; =0, 5, 20 and 50 kHz
respectively and all the cross-correlation are meslito be absent.

In Fig. 7.1 all laser bandwidths were assumed teedpeal. Fig. 7.2 shows the
effect of individual laser bandwidths on the bebawf two-photon and three-photon

resonances respectively when no cross-correlaggiss between the lasers. We observe
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that the three-photon resonance is affected blasdr bandwidths equally. On the other
hand, the suppression of two-photon resonancepsrdient only ory,, and y,, similar
to its behaviour in &\ system.

0.20

0.05

0.00}

(d)

2.8 2.9 3.0 3.1 3.2
A, (MHz)

Fig. 7.2: Effect of individual laser bandwidths on the patigns of leveld1) and
|3) calculated for ¢,,a,,a;) = (0.025, 5.0, 1.25) MHZ(A,,A,) =(5, 8) MHz and

(Va1 Var) = (9.375, 0.625) MHz. Frames (a),(c) and (b)/{dhlight the behavior
in the vicinity of two- and three-photon resonancespectively. Curves A — D in
each frame correspond tg/(, V.., V.s) = (0,0,0), (10,0,0), (0,10,0) and (0,0,10)
kHz respectively. All cross-correlations are assdrebe zero.

The effect of cross correlationg(;) in reviving the populations is shown in Fig.

7.3 where we have shown the two- and three-phasomances when any two fields are

critically correlated. It is well known that fol system if the driving fields are critically
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correlated, the two-photon coherences are unaffdeydaser fluctuations and coherence
minimum persists [146]. This behavior may be seeRig. 7.3(a) and (c) where complete
revival is observed whew_,., = ()., +V.; ).L2Note also that the two-photon resonance
is insensitive to cross-correlations,., and y.,.,. The three-photon resonance, however,
behaves very differently from the two-photon resw® as is seen from Fig. 7.3(b) and
(d). Firstly y.,., and y,,., help to revive three-photon resonance, but oniyigdy even

when the relevant fields are critically correlat&condly the effect of,_,., is opposite,

i.e., it results in deterioration of the resonamstead of its restoration.

0.05

238 2.9 3.0 31 3.2

0.08F

0.00f

8 9 28 2.9 3.0 31 3.2
A, (MHz) A, (MHz)

7
Fig. 7.3: Effect of cross-correlations on the populatiodesils|1) and|3). The basic
atom-field interaction data is same as in Fig. Frames (a), (c) and (b), (d) highlight
the behavior in the vicinity of two- and three-ptotresonances respectively. In each
frame the curve A is foy,; =y, =0 and serves as the reference. For curves B - E,
Y = Voo = Vs =10 kHz and(V.y.n, Veres» Veoes) =(0,0,0), (10,0,0), (0,10,0) and (0,0,10)
kHz respectively. Here each pair of fields is assdro be critically correlated.
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The distinctive features of three- and two-photesonances of N system under

laser phase fluctuations may be discussed in teritthe coherences associated with
various processes. The coherenzg between Ievel$2> and|3> is responsible for three-
photon resonance, while the coherenzg between Ievel$1> and|2> is related to two-
photon resonancé\, =A,. Atomic coherenceso,, and p,, are associated with the
corresponding diagonal terms, and [J, given in Eq. (A7.15) and Eqg. (A7.11) of
Appendix-7 with p=gq=s=0, i.e.

O, =105 =D * D)+ Vo + Vo t Via = 2Verer ¥ 2Vers ~ ZVees (7.36)

O, =i(A; =D,) Vo + Vs = 2Vnea (7.37)

Thus the phase fluctuations modify the detuningsystem asp, — A, +iy,,

(k=1,3) and A, - A,-iy,,. It is clear from these equations that the thrieetgn
resonance is affected by alf, equally, while the two-photon resonance is broaden
only by y., and y.,. This is consistent with the observations madenfieig. 7.2. The
revival of the two-photon resonance for criticadlyrrelated fields, i.e.y,, + V.; = 2V, 55

is obvious from Eq. (7.37) and is shown in Fig.(@)3and (c). On the contrary such exact

cancellation is not possible in case of three-photsonancec{. Eq. (7.36)). Thus/,,.,
and y,,., revive the three-photon resonance only partiadBe curves C and E of Fig.

7.3(b),(d). As expected the revival is better forai bandwidths of the three lasers. For

example the population in metastable s13§>erevives to 97% fow,; =V, =1 kHz (not
shown here). One may also note from Eq. (7.36) thateffect of y_., is exactly

opposite to that of/,., and y.,., i.€., it does not cancel the effect gf and y,.,, but
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rather adds. This results in further suppressiothade-photon resonance as is exhibited

by curve D of Fig. 7.3(b), (d). This analysis shoWmt cross-correlation of lasers

coupling one of the common levels, i.fl) and|4), help to restore the resonance, and

consequently these frequencies can be derived frogingle laser source to obtain

relatively sharp three-photon absorption resonance.

(b) 2+1-Photon Resonance
We now consider the 2+1-photon resonance which $pecial case of three-
photon resonance. The difference between 2+1- laneg{photon resonance is that when

the former condition is satisfied, the steady stagponse of the system is characterized
by the A system formed by levelgl), |2) and |4) alone. This manifests into a

remarkable difference in the response of the systeder the two resonance conditions.
In the absence of phase fluctuations the dynamidfieo system may be conveniently

discussed in terms of dressed states ofAhgystem given in Table-6. Here the dark state

W, is a coherent superposition of levels and |2), and the energy of this state is
E=N0,(=4,). For a, >a,, the dark state essentially retains the charauftézvel |2> :
This dark state is resonantly coupled@a exhibiting an effective two-level behavior. At

long times, however, the system is damped duefteesbnant coupling ofB) with other

two dressed states of th system and the rate of this damping is responddylehe

width of 2+1-photon resonance [227]. Fig. 7.4 shales effect of laser bandwidths on

the populations<K> (i=1 - 4)for 2+1-photon resonance condition. In the abserice

phase fluctuations, almost all population is shdretiveen Ievel$2> and|3> (cf. curve
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A in Fig. 7.4). Note that, fowr, < a, the steady state population is shared between the
levels|1) and|3). The effect of bandwidths of driving fieldg,( # ) @n the absence of
correlations §,,; = ) may be seen from the curves B, C and D of Fi§. We observe

here that an increase in the laser bandwidths teesul broadening of 2+1- photon

resonance with no significant change in its height.

0.05}

0.018F\.

. . 0.000} _ -
7 8 9 7 8 9
A, (MH2) A, (MH2)

0.0k

Fig. 7.4: Effect of laser phase fluctuations on the levgdyations under 2+1-
photon resonance condition. Frames (a) — (d) cporas to the populations in

levels [1), |2), [3) and|4) calculated for &,,a, a;) =(0.025, 5.0, 1.25)
MHz, (A,,A,) =(0,8) MHz and §/,,,y,,) = (9.375, 0.625) MHz. Curves A — D
in each frame correspond to bandwidths= )., = y.; =0, 5, 20 and 50 kHz
respectively and all the cross-correlation are meglito be absentf; =0).
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The effect of individual laser bandwidths on thepplations of levelsl) and|3)
is shown in Fig. 7.5. It is observed that all bardths y,; affect the populations of levels
|2) and|3) in equal measure. Howevgr, has a relatively weaker effect thag, and
Y. on the populations of leve|$) and|4) . The resonance is only slightly broadened in

the vicinity of 2+1-photon resonance as shown @ Fi5(a). Nonetheless the populations

of these levels are very small and hence this trésof little consequence.

0.09¢

0.03f

7.6 7.8 8.0 8.2 84 7.6 7.8 8.0 8.2 8.4
A, (MHz) A, (MHz)

Fig. 7.5: Effect of individual laser bandwidths on the patidns of levels1) and
3) calculated for ¢,,a,,a;) = (0.025, 5.0, 1.25) MHz(A,,A,) =(0, 8) MHz and
(Va1 Var) = (9.375, 0.625) MHz. Shown is the behavior ie thcinity of 2+1-photon
resonance. Curves A — D correspond j9,(.,, V.s) = (0,0,0), (10,0,0), (0,10,0) and
(0,0,10) kHz respectively and all cross-correlagiane assumed to be zero.

Thus comparing the behavior of three-photan Fig. 7.2(b),(d)) and 2+1-photon
resonancesc{. Fig. 7.5) under identical laser bandwidths, it nieyconcluded that both
these resonances are deteriorated under finitevadtits, however the manner in which
this effect is exhibited is different, i.e., supgs®n for three-photon resonance while

broadening for 2+1-photon resonance. The role @$sicorrelations when the laser fields
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are critically correlated is shown in Fig. 7.6. @gation J,,.; play a stronger role in
reviving the populations of levell) and |4) than ),,,. However of interest are the
populations of the level®?) and|3) connected by 2+1-photon coupling, where it is seen
that bothy,, ., and y,,., are effective in restoring the linewidth of thessaance albeit

partially. The cross-correlatiop.,.,, however, is found to exhibit detrimental effeEhe

effect of laser bandwidths and cross-correlatierthiis similar to that observed in three-
photon resonance, and is in tune with Eq. (7.36)hé absence of phase fluctuations, the
damping of the two-state coherent dynamics is nesipte for the linewidth of the 2+1-
photon resonance [227]. As is discussed in Sec2,7iBe laser phase fluctuations
contribute an additional damping mechanism and tlesults in broadening of the
resonance. The cross-correlations on the other legpkar to revive the coherent

dynamics to some extent, which helps in restorfmglinewidth to some extent.

0.09p

7.6 7.8 8.0 8.2
A, (MHz2)

Fig. 7.6: Effect of cross-correlations on the populationsevkls|1) and|3) in

the vicinity of 2+1-photon resonance. The basiomaf®ld interaction data is
same as in Fig. 7.4. Curve A is fgr, = J/;; =0 and serves as the reference. For

curves B — E\y;; = V., = Vi =10 kHZ and (V2. Vesess Vees) = (0,0,0), (20,0,0),

(0,10,0) and (0,0,10) kHz respectively. Here eaaih gf fields is assumed to be
critically correlated.
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7.3.2 Time Dependent Behaviour of Population Distribution

Time evolution of the atomic populations under gphoton and 2+1-photon
resonance conditions for a N system has been igegst in details in Ref. [227]. We
present here the case studies which help us torstade the manner in which the phase

fluctuations affect the three- and 2+1-photon rasmes. For three-photon case, the time

evolution of populations<K>,(i =1-3) is shown in Fig. 7.7 for two different initial

conditions. In Fig. 7.7(a) — (c) the atom is coes@l to be in the ground Ievefel)

initially. In the absence of phase fluctuationsrgguA) the dynamical behavior of the
system is analogous to quantum jumps i.e., an alrb@nge of population from one

energy level to another, with loss or gain of amuen of energy [228,229]. In the short
time scale (18-10° s) close to half the population is transferredtasi steady state),
i.e., steady state of the intrinsit system. Subsequently in longer time scale®(&p
population is transferred to the metastable dastesB), i.e., the steady state of N
system, through three-photon coupling. In the stesdte, almost all population resides
in the dark state. It may be seen from Fig. 7.74#3) that the phase fluctuations do not

affect the behavior of the system in the trans{enl0° s) or intermediate (1Ds) time

scale. The effect of phase fluctuations is howeeen in the slow time scale, wherein we

find leakage of population from levéd) to levels|1) and|2) (curve B). Inclusion of

critical cross-correlations helps to restore thpylation, albeit only partially (curve C).

Fig. 7.7(d) — (f) shows the time dependent behawiben initial state is the metastable

state|3>. In the absence of phase fluctuations, systenairemn the initial state at all

times (curve A). However the presence of phasduhat®ns results in redistribution of
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population in the slow time scale (curve B). Thess-correlations help to revive the

original behavior only partially (curve C). Incream the laser bandwidths thus reduce

the population ir13> while the critical cross-correlations resultts partial restoration.
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Fig. 7.7: Time evolution of populations at three-photon resme calculated for
(a,,a,,a;)=(0.025, 5.0, 1.25) MHz, &,,A,,A;)=(5,8,3) MHz and (y,;, V) =

(9.375, 0.625) MHz. For frames (a) — (c) the initiandition is set as level) while
for frames (d) — (f) it is leve|3). Curves A — C correspond @y, Vep: Vess Vercas
Vees Vomsa) =(0,0,0,0,0,0), (10,10,10,0,0,0) and (10,10,10,1aa0kHz respectively.
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The observations made on the steady state threéespheesonance under

fluctuating laser fields are consistent with Figz.7Fig. 7.8 shows the time evolution of

the population$K> , (I = 1-3) for 2+1-photon resonance condition.
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Fig. 7.8: Time evolution of populations in leve|$) , |2) and|3) at 2+1-photon
resonance calculated foA(, A,,A;)=(0, 8, 8) MHz. For frames (a) — (c) the
initial condition is set as level) while for frames (d) — () it is levgB) . Curves
A — C correspond tqy.,, Veos Veas Verens Verear Veoes) = (0,0,0,0,0,0), (10,10,10,0,0,0)
and (10,10,10,10,10,10) kHz respectively. Otheadae same as in Fig. 7.7.
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The atom is considered to be initially in Iev]&) for frames (a) — (c). In the

absence of phase fluctuatiorts$. curve A), in the time scale of £Gs, the system jumps

from |1) to|2) which is the trapped state of the system. Thereafter the system exhibits

two-state coherent dynamics involving lev¢® and|3) as may be seen from out of

phase Rabi oscillations of these levels. Howeveséhoscillations are damped by off-

resonant coupling o|B> and beyond I8s the system attains steady state population. The

effect of finite bandwidths of laser is to furthdamp the Rabi oscillations and cause only
a marginal deviation in the steady state resultv@iB). The transient behavior (<18)
is unaffected by the bandwidths.

Inclusion of cross-correlations at their criticallwes helps to restore the coherent
behavior to a limited extent (curve C). The criticeoss correlations do not revive the
coherent Rabi oscillations completely unlike theasly state populations which are
almost completely revived. Very similar observatonay be made from Fig. 7.8(d) — (f),

where we have exhibited the time dependent behaifidthe system when the atom is

initially taken in level |3). Fig. 7.8 thus explicitly shows that the lasendaidths

primarily affect the coherent dynamics of the efifex two-level system with little
change in the steady state populations. The additidamping arising from the phase
fluctuations is reflected in the increased linewidf 2+1-photon resonance and very little
change in its height. This is consistent with theseyvations made on the steady state
2+1-photon resonance under fluctuating laser fields

For the sake of completeness we have also stulkéedftect of phase fluctuations

and cross correlations on intensity-intensity clatien functions. In absence of phase
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fluctuations the intensity-intensity correlationnfitions show the expected oscillations
through bunching and anti-bunching cycles decaymgheir steady-state value 1. The
phase fluctuations tend to reduce the amplitudethede oscillations but do not change

the basic structure of the curves.

7.4 Effect of Phase Fluctuations on Absor ption

In this section we examine the effect of laser phifisctuations on the absorption

spectra of N-system specifically on EIA resonanse consider model C of Chapter-6

for this analysis where the weak probe laBgrdrives|1) — |4) transition. This model is

chosen as a representative of EIT/EIA resonance$ gystem. A similar behaviour is
observed for the other models also and hence motrsihere. The density operatgr®®

is used to compute the one-time expectation vahdieke off-diagonal atomic operators
averaged over the ensemble of the phase fluctisatisngiven in Eq. (7.29A typical

result for the effect of the independent laser tthations on the EIA resonance for the
data of Fig. 6.9(a) is shown in Fig. 7.9. This figushows that the effect of phase
fluctuations on EIA resonance is in sync with tHfe@& on populations. The effect of

phase fluctuations on the EIT resonances is similar

Fig. 7.9: Effect of individual laser
bandwidths on the EIA resonance
calculated fora, =a, =5 MHz and

0.08f A =03=0. (Va, Verr Ves) =(0,0,0),

(0.1,0,0), (0,0.1,0), (0,0,0.1) and
(0.1,0.1,0.1) MHz for curves 1 — 5

respectively. All cross-correlations
are assumed to be zero.

0.04f

0.00| ;
20 10

0 10 20 30
A, (MHz)
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In general the laser phase fluctuations broaden destroy the EIA/EIT
resonances, however the extent of this effect iscaly dependent on the phase
fluctuations associated with the pump, probe andtrob laser. For example, phase
fluctuation y_, in the laserE;, which forms the V sub-system of the N-resonange,
found to be of very little consequence. However flhetuations associated with thi
sub-system i.e. the probe and pump lasgrs énd y,,) matter a lot. Curve 5 shows the
case when all the lasers have equal bandwidthse@s from Fig. 7.9 curve 3 and 5 are
almost identical which proves that the major supgian of the EIA resonance is caused

by the fluctuations in the probe laser. The effegcindividual cross-correlations on EIA

resonance with fluctuating driving fields is shoinrfig. 7.10.

Fig. 7.10: Effect of cross-correl&ns or
the EIA resonance. The basic atdieid
interaction data is same as in Fig..7.9
Va=Ve=Ve3=0.1 MHz and, ¢,
Verss Veoes) = (0,0,0), (0.1,0,0), (0,0.Q)
and (0,0,0.1) MHz for solid, dottedray
dashdotted and dashed cun
respectively. Here each ipaf fields is
assumed to be critically correlated.

0.015¢ I \

0.010f

0.005f
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Introduction of cross-correlations helps to reuviie resonances, but here also the

extent to which that happens depends on the spamifiss-correlations. For example,

cross-correlation between the two strong lageys further spoils the EIA/EIT resonance

similar to its effect on populations. The corredag between the probe and pump

(control) laser helps in reviving the resonancet Guthese two cross correlations, the
one between the two fields forming the inheréntsystem, i.e.,y,,.; helps to a much

greater extent in the revival as is shown by dastede in Fig. 7.10.
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CHAPTER 8

COHERENCE INDUCED NEGATIVE
REFRACTIVE INDEX IN FOUR-LEVEL
ATOMIC MEDIUM

8.1 Introduction
The propagation of electromagnetic wave in a medium is governed by its

refractive index n, =./& 4, . Here & and g, are relative dielectric permittivity and

permeability which in general are complex functions of frequency. Depending on the
value of refractive index, all the available media/materials can be characterized into four

quadrants as shown in Fig. 8.1. Conventional optical materials belong to the first

quadrant. These are known as right handed materials since electric vector E , magnetic

vector H and wave vector k form a right handed coordinate frame in them. The second

and fourth quadrants constitute non-propagating evanescent waves. While the gaseous
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and solid plasma materials belong to the second quadrant, materials which can be

structured to behave like magnetic plasma belong to the fourth quadrant.

g H

Electrical Plasma Ordinary Optical materials

Fig. 8.1: Quadrant diagram
& <0,4 >0 &>04>0 illustrating the classification
> of materials based on the

£
values of &, and £, .

g <01 <0 g >0, <0

Negative Refractive Index Magnetic Plasma

Most interesting materials which offer possibilities of controlling light

propagation within a medium belong to the third quadrant. These materials are
characterized by simultaneous negative &, and g and are referred to as negative
refractive index (NRI) materials, double negative materials, backward wave media

(having negative group velocity), left-handed materials (LHMSs) or metamaterials. E, H

and k form a left-handed triad of vectors in NRI media. Further the Poynting vector is in
opposite direction to wave propagation and hence the group velocity direction, which
modifies the conventional route of refraction, diffraction and scattering of waves in these
materials. The existence of LHMs was predicted by Veselago in 1968 [115]. He showed
that LHMs do not violate any fundamental physical law and some of the most
fundamental electromagnetic properties in these materials are opposite to that of ordinary
materials, resulting in unusual optics. Some of the counter-intuitive electromagnetic and
optical effects exhibited by these materials are reversed Snell’s law, reversed Doppler
shift, an obtuse angle for Cherenkov radiation, anomalous refraction, sub-wavelength

focusing, negative Goos-Hanchen shift, intense enhancement of the local fields, distinct
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phase matching conditions and nonlinear response, photon tunneling etc. [115-121]. Due
to nonexistence of such materials naturally this field did not captured the attention of
researchers for a long time. However following the demonstration of the key practical
application of LHM i.e. perfect lens by Pendry in 2000 [117] the interest in these
materials has grown tremendously. He showed that a NRI slab can focus all Fourier
components and amplify evanescent modes allowing a complete reconstruction of a point
source to a perfect point image, thus making it possible to achieve, in principle, unlimited
resolution without any loss of energy [117]. Since then LHMs have become one of the
frontline research area. The captivating optical properties of LHM not only bring new
conceptual horizons in the basic understanding of physics but make them a potential
candidate for diverse applications such as sub-wavelength imaging and beam refocusing,
electromagnetic cloaking, slow and stopped light, stimulated Raman scattering, enhanced

bio-sensing, quantum computation, in acoustics, photonics etc. [115-121].

8.2 Approaches for Realization of Negative Refraction Index

Several fascinating approaches have been developed for fabrication of LHMs.
Most of the LHMs have been artificially realized in the microwave region using
transmission line simulation, nanostructures, assembling composite lattice of metallic
split ring resonators and metallic wires, or by using anomalous propagation properties of
light in two-dimensional photonic crystal structures with periodicity of the order of or
much smaller than the wavelength of the electromagnetic field [122,123]. All such
materials, also known as artificial metamaterials, require delicate manufacturing of

spatially periodic structures. Very recently Yoon et al. [124] have demonstrated NRI by
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exploiting inertia of electrons in semiconductor two-dimensional electron gases which
promises to open a path to miniaturization in the science and technology of these
materials.

Of particular interest is the realization of NRI in optical region. However in this

region refraction is always accompanied with absorption. Further it is difficult to realize

negative . with low loss, since magnetic dipole response to an oscillating magnetic
field is smaller than the electric dipole response by a factor of «?, where a, ~1/137 is

the fine structure constant. Several elegant suggestions such as magneto cross coupling
technique or chirality induction have been made to alleviate this problem. A chiral media
is an optically active media capable of producing negative refraction of circularly
polarized wave [125]. Coupling a magnetic dipole transition coherently with an electric
dipole transition may lead to electromagnetically induced chirality, which can show NRI
with suppressed absorption without requiring negative permeability [118]. However such
media suffer from losses due to environmental effects. Another proposal suggested a
qguantum optical approach in which, under certain conditions, electric-dipole and
magnetic-dipole transitions in a multilevel EIT atomic/molecular system exhibit NRI
[126-131]. As has been established in previous chapters EIT based dispersive media do
not suffer from absorption at resonance, and offer low transmission losses even at high
frequencies.

The realization of negative refraction in EIT based A system was first proposed

by Oktel et al., however with a stringent condition that the middle state (|2> in Fig. 1.2

(@) is involved in both magnetic transition and electric transition at the same frequency

[126]. A much realistic four-level EIT system was studied by Thommen and Mandel
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[127] for the existence of left-handedness within a restricted domain of parameters and
the requirement of degeneracy of the four levels. Further they suggested that atomic
hydrogen and neon are good candidates for such experiments [127]. Since then several
multilevel schemes based on based on quantum coherence and interference have been
studied to realize NRI [128-131]. This method of coherently prepared atomic media
offers various advantages such as realization of NRI in optical frequency range, electric
and magnetic responses at atomic level and isotropic macroscopic electromagnetic
structure as compared to artificial metamaterials.

In the chapter we demonstrate the use of laser induced coherent preparation of
atomic medium to obtain simultaneous negative &, and g, with minimal absorption in

four-level systems in two different configurations interacting with trichromatic coherent
field. Such systems can be realized within the hyperfine energy level or Zeeman manifold

of alkali atoms. The advantage of rf field coupling over the conventional three level A
scheme [126] is the additional control of £ by regulating the rf field parameters. Further
the rf field provides flexibility for adjusting frequency, depth and dispersion of the EIT
resonance. We obtain &, and z, for a dense atomic medium in the framework of master
equation and Classius-Mossotti relation. Local field corrections (arising due to dipole-
dipole interaction of the neighboring atoms) to the susceptibilities of the medium enhance
the magnetic response and play an important role in reducing the absorptive losses. Our
analysis shows that negative &, and £ can be realized simultaneously in certain probe
frequency regions with transparent propagation due to EIT. The use of the dispersion
property of the negative refractive index to control the group velocity of the probe beam

from subluminal to superluminal is also discussed.
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8.3 Description of the Models

We consider two A type four-level schemes coupled by three coherent fields as

shown in Fig. 8.2.

Fig. 8.2: Schematic representation of four-level systems coherently driven by three
laser fields: control, rf and probe of Rabi frequencies 2a,, 2, and 2« respectively.

The corresponding detunings are A., A, and A, . Radiative and nonradiative decay

rates associated with ||> —>| j> transition are denoted by y; and I respectively.

Model (a): The scheme is similar to the DDL system studied in Chapters-4 and -5 with

an additional rf field coupling the excited levels as shown in Fig. 8.2(a). Here transitions
1) —|4) and |2) —|3) are driven by control and probe lasers of Rabi frequencies 2¢,
and 2« respectively. The electric dipole forbidden transition |3) —|4) is driven by a rf

field of Rabi frequency 2, . The relevant electric and magnetic dipole moments are

A

d,; =(ild| j) and m, =(i||j) where d and f are the electric and magnetic dipole
operators respectively. The detunings of control, rf and probe fields are A, = @,, —Q,
Ay =@, —Qy and A, =aw,, —Q, respectively. This scheme was earlier studied by Fu et

al. [230] to show switching between EIT and EIA depending on the field detunings.
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Model (b): This scheme consists of a triplet ground state [1), |2)and |3) and an excited
state |4) . Here transitions |1) —|4), |3) —|4) and |1) —|2) are driven by probe, control
and rf fields of Rabi frequencies 2, 2, and 2a; respectively. The detunings of these
fields from the corresponding atomic resonances are A =w,;-Q,, A, =@, —Q, and

Ay = @, —Q . This scheme has been earlier studied in context of rf induced dynamic

Stark effect [231], experimental realization of double dark resonances [232], sub-Doppler

resonances [232,233] and other quantum interference effects [234].

8.4 Realization of Negative Refractive Index in Model (a)

8.4.1 Theoretical Formulation

In this section we obtain relative permittivity and permeability for a dense atomic

medium in the framework of master equation and Classius-Mossotti relation.

(a) Density Matrix Equations and Coherences

The time evolution of the system is described by the following master equation,
[
dp/dt = _g[Ho’ P]_ izj;?/ij (Aip =27 pA; + phA;) — izj;rij (Aip —2A;0A; + pA;), (8.1)
where y; and T represent the radiative and non radiative decay rates associated with

transitions ||> —>| j> .The semi classical Hamiltonian of the system under RWA is

Ho=—a (A, + A41)_05p(A23 +Ay) —ay (Ay + Ay)

(8.2)
+(Ac _Arf _Ap)AZZ +(Ac _Arf)ABS +ACA44'

The elements of the density operator satisfy the following equations:
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doy ldt==-21, 0, i (P — Pa1) + 205000 + 20 01Pua s (8.3a)
doy, ldt=—f,p, —ia,p; +ia p,;, (8.3b)
doy /At =—ia,p, — f,05 e, py +Hia oy, (8.3c)
doy, ldt=—ia (o — pu) — i s — T30, (8.3d)
dp,, [ dt =21, 0, = 215,05 =10t (Pg3 = Psy) + 273,053 (8.3e)
Aoy [ dt =l (py — P33) = T400 — 10 P4 (8.3f)
Aoy, 1At =l py —iay Py — T50, +ia, 04, (8.30)
Aoy, [ dt =~ (03, = P53) = 2(Vap + T34) P33 =10 (P24 = Puz) + 2043004 (8.3h)
dpoy, ldt =i, p,y —ia Py — 1 (P33 — Pus) = T6Pus (8.30)
dpy, 1At =icr (P = par) + 2Lg pys iy (P34 = Pi3) = 271+ Tig) Paa s (8.3))

where the coefficients f, are defined as

fi=T,+, +i(A, — Ay _Ap)' f, =T ++ys + T +1(A —Ay),
fo =T + 7+ T +iA, fo =Ty + 75+ +iA,
f5=F21+7/41+F43+i(Ap+Arf)1 fo =V +To +yy+ T +iA, . (8.4)

For weak probe laser steady state solutions of Eq. (8.3) can be obtained as follows:

o _ ol oy pig +H{(f,fs +al)(pf) — pi) + ey pia 3] o 8.5
1032 - * * 2 2 * - p23 ] ( . a)
ff, fo +a;fi+a.f,
 _ a,l f:acpg) —i{(f, f, +a; )Pl(g) T o0 (pé(z)) - ,Oég))}] _ o 8.5h
P2 = x| 2 2¢* =P o (8.5b)
fif,fo +a;f+alf,
P =ia[(f, 1+ ag )k — pd) - al (Pl - P R, (8.5¢)
pl(g) =—a. o[ fe*pl(f) + f3,03(g) —(f;+ fs*)pﬁ)]/ F, (8.5d)
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P = TulVasVas + Doalas + Vel e — ity J; + e {ivJs - | 660
J2(Tay = Tg + 2753+ &l 1 (73 + Tg) + @t Js (720 + 7)1 F

PS5 ==l jiCy + & (s + Jova) - 2len 21/ F,, (8.6b)

Pia ==y (7 + Do) + @ (i bs = Jo7a) — @i 311 F,, (8.6¢)

P =1-py - psd = pii’ (8.6d)

where

ji=Rel(f,f; +a2)/R],  j,=Re(R)/F?|, i=Rel(f,f;+af)/R]l,  (87a)
F="fff +a’f,+a’f,, (8.7b)

F, =—alal j2(T, + 30, +7.,) +a’a{i, (T, + 30, + 74)
— I2V sy + T (—2y5 =Ty + Tg3) + Dy (74y + Tz — 373, — o)1}
+atg Jil(T + 205) (75 +T0) + D (73, + Do)+ @ s
(T + ) (7 + Tag) + (Do + Ty ) (Vanlag + 730V a1 + 73l a)]-

(8.7¢)

(b) Electric and Magnetic Response

The atomic coherences can be used to analyze the possibility of observing NRI in

the medium. Transitions |2) —|3) and |1) — |2) are driven by electric and magnetic field
of the weak probe respectively. Therefore the coherences related to the electric and
magnetic response are o and péll) respectively. The induced electric dipole moment of
an atom due to the interaction with probe field is given by
P.(@,) =Tr(pd) = dyypf +dppf. (8.8)
Electric and magnetic response of the medium can also be given in terms of

electric polarizability «, and magnetizability ¢, . We choose the probe field Ep parallel
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to the electric dipole moment 623 (= 632) so that «, is a scalar quantity. «, is related to
the induced dipole moment as I5e(a)p) :goaeﬁp(a)p) where ¢, is permittivity of free

space. We therefore obtain,

o, |9l P2 69

° 2gha,
Similarly magnetization P, is given as
Pa(@,) =Tr (5 1) = Myppf + Mol s 115Py () = 2By (@), (8.10)
where g, is permeability of free space, and I§p is the magnetic field given by
B, =k, xE,/m,. (8.11)
We further assume that magnetic dipole moment is perpendicular to the induced electric

dipole moment, i.e. My, is parallel to k, x E, sothat B, =E_/c and therefore we have,

a. = My, 0y 4,COY _ (8.12)

m 2ha,

The electric and magnetic Classius-Mossotti relations connect the macroscopic and
microscopic variables of a media. For macroscopic polarization electric susceptibility of
the medium can be obtained as

Ze=Nea,/1-Ne,/3). (8.13)

The relative electric permittivity of the medium is therefore given as

£, :M_ (8.14)
1-Ne, /3
Similarly relative permeability of the medium can be obtained as follows:
1+2Ne,, /3
== Fm = 8.15
1" Na, /3 (8.15)
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where N is the atomic density. In order to modify &, and g, simultaneously the
foremost condition is that the electric and magnetic dipoles should oscillate at the same
frequency, which implies that w,, and @,, should be equal to the probe frequency. The
relevant electric and magnetic dipole moments chosen for the subsequent studies are
2.534x10% Cm and 1.312x 10 J/T respectively which correspond to ®’Rb atom.

For a dilute atomic vapor the microscopic local fields are very weak and hence
neglected. However under this condition it is impossible to obtain negative permittivity
and permeability as clear from Egs. (8.9) — (8.15). Thus we consider a dense atomic
media of closely packed atoms (N =10%° m™) where dipole - dipole interactions i.e the
Lorentz-Lorenz local fields play a crucial role in the response of the medium. Finally for

a left-handed media the absorption coefficient and refractive index are defined as

A=2zIm[- & ] and n =Re[-& 1] respectively. The group velocity of the

medium (v, =c/n) becomes negative in certain frequency range of NRI. Thus by the
tailoring the group index n, =n, (®,)+ o,[dn (®,)/dw,] one can tune the velocity of

probe propagation from subluminal to superluminal.

8.4.2 Results and Discussion

We first consider that the control and rf fields are at resonance. Fig. 8.3 shows the
effect of control strength on the permittivity, permeability and refractive index of the

media. For «, =0, the system effectively becomes a cascade type system comprising of

levels |2> |3> and |4> therefore no coherence is established between levels |1> and |2>
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(1, =0). This implies «,, =0 (cf. Eg. (8.12)) and hence g, =1. Thus left handedness of

the medium is not possible in the absence of control field.

-1.995¢

-2.005F

0 710 0 10 20 20 10 0 10 20

Fig. 8.3: Probe field dependence of (a): Re(e,), (b): Im(g,), (c): Re(x,), (d):
Im(4,), (€): n, and (f): A. Here A, =A; =0, a, =5y, y; =y and [}; =0.001y.

a, =y (solid curve), 5y (dashed curve) and 10y (dotted curve). @,, and w,, are
indicated for solid curve in frame (e).
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We observe that control field strength is proportional to the maximum amplitude
of NRI and frequency range over which both & and g are negative. This is due to
broadening of EIT resonance at A /=0 with increase in «,. We denote the frequency of
maximum NRI as @,, and w,, (cf. solid curve in Fig. 8.3(¢)). Further from Fig. 8.3(e) it
is clear that in the region A >w, and A <w,, refractive index increases with
decreasing probe frequency (dn, /dw, = —dn, /dA ) showing anomalous behavior. Thus
v, becomes negative in this region which indicates superluminal propagation. On the
other hand for ,, <A, <®,,, group index n, >>1 indicating subluminal velocity. Thus

in the NRI region one can control the propagation of probe beam with proper choice of

laser atom interaction parameters. In the probe region A S < @, , the refractive index rises
steeply compared to the region A >, , which means that the velocity of light can be

made much faster than c. Further in the vicinity of @,, absorption coefficient is

negative. This region is of interest for obtaining probe amplification in the NRI media.
Another interesting observation is that one can tune the transparency region, and

hence w,,, w,, and the range of NRI by controlling field detunings as shown in Fig. 8.4.

This is an important advantage of coherent preparation method over artificial fabrication

to realize NRI. Fig. 8.5 shows the dependence of rf field strength («,,) on refractive

index and absorption coefficient. For «, =0, the system can be considered as two
independent two-level systems comprising of levels [1)-|4) and [2)—|3). In this

condition also, p,, =0 which implies &, =0 and hence £ =1. Thus it can be concluded

that left handedness is possible in this scheme only if both electric and magnetic coupling
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are present simultaneously. Further from Fig. 8.5(a) it is evident that as the rf field
strength increases the maximum value of negative N, attained increases. Fig. (8.3) — (8.5)

thus which highlight the importance of choosing optimum values of field strengths and

detunings to obtain desired NRI values and range.

NN Fig. 8.4: Refractive index versus
) probe detuning for «, =«a, =10y.

Solid and dashed lines correspond
c to (Ac'Arf):(O! 207/) and (20710)

20}
respectively. Other data are same as
in Fig. 83. ®,=-6.2y and
20.58 y for solid and dashed curves.
CUnl
-40F__, . . . .
-40 20 0 20 40
A Iy

n

B0 20 40 0 10 20 10 20 30

Fig. 8.5: Probe field dependence of (a): refractive index and (b): absorption
coefficient. Here A, =A, =0, o,=10y, a, =y (solid curve) and 10y

(dashed curve). Other data are same as in Fig. 8.3.

The effect of control and rf field parameters on the range of NRI and maximum
value of n_ achieved is summarized in Table-7. It is observed that a very large NRI value

can be obtained when the rf field is detuned.
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Table-7: Dependence of strengths and detunings of control and rf fields on the range and

maximum amplitude of negative refractive index

a, oy A, Ay Range of negative &, and z, n. (max)
y 57 0 0 ~6.25y to 7.05y -3.28
5 57 0 0 -9.94y to 11.54y -3.26
10y 5 0 O ~13.95y to 15.73y -3.54
1000 y 0 0 ~10.72y to 11.29y —2.86
10y 10y 0 0 ~17.62y to0 19.89y -3.74
10y 10y 20y O  —-13.99y to 13.76y, 20.34y to 29.02y  -9.57
10y 10y 0 20y -34.06y to —6.18y, —0.35y t0 9.03y -39.12

8.5 Realization of Negative Refractive Index in Model (b)

8.5.1 Theoretical Formulation

The interaction Hamiltonian of this system under RWA is given as

Ho =—ay (A, + Ay) —a (A, + Ay) _ap(A34 +A;)

(8.16)
—Ay Ay, - (Ac _Ap)AE)S —A A,
The elements of the density operator satisfy the following equations:
dpy, /dt = =21, +T5) o1y — o (P, = Por) — 10 (P1y = Pu1) (8.172)
+ 211005 + 2151055 + 27 31 Puas
dpy, dt = =i (on — P22) = 9191+ P4 (8.17b)
Aoy [ dt = =0, 05—l Py +ia Py +i0t Py, (8.17c)
doy, /At ==t (o1 — pu) =1, P13 = Qs o1y +i Py (8.17d)
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dp, Idt =20, p, +ia (0, — Prn) =20y +Tp) oy + 215, s, (8.17¢)
Aoy /At =lay pr3 — 9,055 — 1,0 (8.17f)
do,, At =iay py, —ia ) —10, Py — G504, (8.179)
Aoy [ dt = 21,011 + 2T p5 00 = 2(Uay + Tyy) Pag — 1, (034 = P43) + 27 4344 (8.17h)
dpoy, [ dt =—ia,p, — i, (P33 — Pas) — G Pz4 (8.171)
Aoy, [dt =ia, (P — pu) +ia,(Pz = Pus) = 2V a1+ 743) Paa» (8.17))

where the coefficients g, are defined as
0, =0, +1 5+, + T, +iA,, 9, =0, +0+ 5+, +i(A —A,),
Os =D, + 0+ 74 +7us HiA O, =+ + T + 0 +i(A A —Ay),
O =0, + s+ 7y + 7, +HiA,,, O =0y + 0, + 7y + 7 +iA. (8.18)
Under the weak probe approximation the solutions of Eq. (8.17) are obtained as
© _

o _ ap[g4acpl(z?) + |{(gz g4 + arzf )(p33 pz(lg)) + O pég)}] _ p:g)*’ (8193)

® 059,96 + @94 + 1t Gg

o _ ap[acg4(p§g) — P)) + G sy’ — 19,9605 ] _ 3.19b
Pz = 2 2 " = Par (8.190)

929496 + ac g4 + arf 96
Py == [(9,9; + ) oy — pia) — e (o) — P31/ Gy, (8.19c)
P = (950 = p) + 9, (P =PI/ Gy, (8.19d)
Pl(f) :{a:“ff 152 Iy +15,) + aczarzf [JsTs07as = JaJe (Day + T50)] = (acz Ja (8.204)
t7nt 743)(F23F31 + 1,00 + F21r32) - arzf j6(F31 + r32)(7/41 + 743)}/ G,,

© g 4 4 :2 2 2g:

Py =lacay Jo (Do +Tg) +agai {s[Tany s + (Tay + Tg)(Vay + 743)]
— JaJs(Ty +T55)3— (0%2 Ja+ 740+ Vas) Uil + Tl +T,10%) (8.20b)

- arzf Jo oy + T (Vay +743) — acz J1als07433 Gy,
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pz(lg) :{ac‘laff Js2 (g +T5,) — aczarzf {Js[lsy (T — T + 1) + T (T —

(8.20c)
L, — )= Jade Ty + )= j, (T Ty + Tl + T, 1) HG,,
P8 =1-p - Pl =PI (8.200)
where
G, =0,0:0s + & 0s + 25 0;, J, =Rel(9,9, +a;)/G], (8.21a)
js =Re(G,) /|67, js = Re[(9,95 + @)/ G,], (8.21b)

G, = _[054054 j52(F13 + 74+ 205 + 20 + (acz Jatyat 743)[05§‘ acz Js(Tpg + Ty + 1)

¢ rf
- arzf je (2F31 + 2F32 + 1H13 + rzs)] - (FZl + an)(rls + r3l) - 1H32 (FlS + FSl) - rlZ
(T + Ty +T3,)] - acz (J,— arzf Js)[Upslgy + (Dps + T )y + Iy (g + T + 743)
+ arzf acz Js (Tog + Iy + ) + arzf Jo(Ugy + Ty + 745)1 + arzf acz Js[ Uy (7453 = Ty)

— Ty (T + T + ¥ag) — gt Jg (Ty + Ty + 73)], (8.21¢)
The electric and magnetic polarizability of the medium are obtained as

2
a :M a :M_ (8.22)

© 2&ha, " 2ha,
In this model the dipole synchronization restriction requires w,; = @,,. The relevant

dipole moments and the atomic density are chosen similar to that in model (a).

8.5.2 Results and Discussion

For «, =0, this configuration can be considered as two independent two-level
systems comprising of levels |1)—|2) and |3)—|4). Thus no coherence is established
between levels |1) and [3) which means «, =0 (cf. Eq. (8.22)). Hence negative

refraction is not possible. However when «,, =0 the response of the system is similar to
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that of a three-level A system formed by levels 1), |3) and |4) where one can find

probe regions exhibiting NRI [126]. Fig. 8.6 show the effect of control strength on &,

4., n. andA.
1t :
6}
i : A
5| [ 2T
(O] l 14 K E
Tl P E]
3 2t
st @ ol (b)
6 4 20 2 4 6 b6 4 2 0 2 4 6
10F 20

()

30 20 1o 0 10 20 30 30 20 10 0 10 20 30
Ap/y Ap/'Y

Fig. 8.6: Probe field dependence of (a): Re(e¢,), (b): Im(e&,), (c): Re(x,), (d): Im(x,),
(e): n, and (f): A. Here A=A, =0, a, =5y, a, =y (solid curve), 5y (dashed curve)
and 10y (dotted curve). @, and @_ are indicated for the solid curve in frame (e).

182



Coherence induced negative refractive index in four-level atomic medium
=

There exist two maxima in the NRI region located at A ) =w, and A, = w_ (cf.

Fig. 8.6(e)). For A, >w, and A <w_, refractive index N, increases sharply with
increase in A thereby indicating anomalous behavior. Comparing Fig. 8.6(e) — (f) we
can identify the frequency regions where n, <0 and A~0, which is of significant
interest experimentally. Interestingly in the region A ~_ we observe A<O and that

corresponds to the amplification of the probe beam. Fig. 8.7 shows the effect of control
and rf detunings on the refractive index of the media. Similar to the previous model, here

also one can tune the range and amplitude of NRI by controlling the field detunings.

T )

2l Fig. 8.7: Refractive index versus

) probe detuning for «,=«, =10y.

= The solid and dashed curves

-4t correspond to (A.,A,)=(0, 20y)
and (20 y, 0) respectively.

-6}

-40 20 0 20 20

Al

Fig. 8.8 show the effect of rf strengths and detunings on n, and A. From Figs.

8.6(e) and 8.8(e) it is clear that the range and maximum amplitude of NRI increases with
increase in strengths of both the fields. The effect of laser atom interaction parameters on

NRI is summarized in Table-8.

Finally a comment on the group velocity (v, ) in this coherently driven system is
appropriate at this stage. Here v, >0 in the region w_ <A < w,, while v, <0 in the

anomalous dispersion region. This provides a prospect for observing both subluminal and
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superluminal light propagation in the media similar to the previous model.

10 20
Ap/y

Fig. 8.8: Dependence of probe detuning on (a): refractive index and (b): absorption
coefficient. Here A_=A, =0, o, =5y, a, =y (solid curve), 6y (dashed curve)

and 10y (dotted curve).

Table-8: Dependence of strengths and detunings of control and rf field on the maximum

value and range of negative refractive index

a, oy A Ay Range of negative ¢, and 4, n, (max)
y S5 0 0 —6.53y 10 6.53y -3.34
5 5 0 0 -12.11y to 12.11y -4.28
10y 57 0 0 ~17.88y t0 17.88y -4.73
5 vy 0 0 -11.03y to 11.03y -4.07
5 6y 0 0 -12.55y to 12.55y -4.36
50 10y 0 0 ~14.85y t0 14.85y -4.73
57 5y 20y O  —4.65y to17.32y, 22.68y to 27.46y -6.14
57 5y 0 20y —21.49yto0—-20.94y, -9.39y to 10.92y —4.92
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CONCLUSIONS AND FUTURE SCOPE OF
THE WORK

9.1 Conclusions

Quantum coherence and interference provide an interesting outlook for designing
strategies for control of optical response of atomic/molecular medium. This theme has
been the main focus of the work reported in this thesis. We have considered here three-
and four-level atomic/molecular systems in various configurations, i.e., A, double-A,
tripod, N-resonance etc. under multi-chromatic coherent interaction. Specific issues
addressed here are electromagnetically induced transparency (EIT), electromagnetically
induced absorption (EIA), amplification without inversion (AWI), spontaneously
generated coherence (SGC), Kerr nonlinearity and the effect of laser phase fluctuations.
Also examined are the issues relating to permanent dipole moments in molecular
systems, subluminal and superluminal light propagation, and realization of negative

refractive index (NRI) in coherently prepared atomic medium. While the thesis mainly
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concentrates on the theoretical development of light-matter interaction and analysis of the
aforementioned effects, few experimental results are also reported to provide a flavor of
coherent pump-probe spectroscopy. Thesis begins with Chapter-1 which provides a brief
introduction to spectroscopy in a coherently prepared atomic medium. The requisite
theoretical background is developed in Chapter-2 and specific studies are reported in
Chapter-3 to Chapter-8. Main findings and conclusions of the work included in this thesis
are as follows:

In our work on three-level dipolar molecules in A configuration reported in
Chapter-3, we have provided an integrated view of coherent pump-probe spectroscopy of
a medium of dipolar molecules. The objective here is to investigate the effect of diagonal
dipole moments on the coherent response of the system, particularly in the context of AT
doublet, EIT, dispersion and its connection to the issue of subluminal and superluminal
light propagation. These issues have been discussed for medium of stationary molecules
as well as Doppler broadened molecular medium. The presence of permanent dipole
moments provides a mechanism for multi-photon absorption processes, and therefore the
coherent dynamics of A system is discussed in terms of m—and n — photon absorption
mediated by pump and probe fields respectively. Our study shows that the outcome of the
general (m+n)- photon pump-probe spectroscopy is independent of n and is solely
determined by m. Recently Zhou et al. [173] have reported amplification without
inversion in this system for reversal in the sign of the difference of the permanent
moments of the excited and ground levels connected by the probe field for n=2. We
explicitly show that the prediction of Zhou et al. is erroneous and trace the underlying

reasons for arriving at such a result. Our analysis shows that the permanent dipole

186



Conclusions and future scope of the work
=

moments essentially damp the laser-molecule Rabi frequency to result in narrower EIT
linewidth and larger group velocity index. These effects are further enhanced when the
order of the multi-photon process is increased. We have further included the virtual
mechanism in the treatment of multi-photon absorption based EIT phenomenon. Analysis
based on 2+1-photon EIT shows that the inclusion of virtual mechanism has two effects:
firstly it leads to modification of the laser-molecule coupling which has a bearing on EIT
width and group velocity index, and secondly it results in the frequency shift of the EIT
resonance. In order to test several of these effects experimentally, we have proposed two
schemes of A systems based on the molecular data of "LiH.

In Chapter-4 we have investigated coherent pump-probe spectroscopy of an
atomic medium in A configuration with a closely placed adjacent excited level driven
coherently by a pump and a probe laser. The presence of additional level results in two
simultaneous A resonances with common ground levels, i.e., degenerate double lambda
(DDL) resonance. Such resonances arise naturally in coherent pump-probe spectroscopy
of D; and D, transitions of alkali atoms due to hyperfine interaction. We have used a
DDL system formed using the hyperfine manifold of D, transition of ®*Rb for detailed
analysis of this problem. We have established the dressed states associated with this
problem and used them to identify the sub-natural resonances. We observe that the
system can exhibit at least two sub-natural resonances in the dressed state spectroscopy.
Another remarkable feature observed is the suppression of the sub-natural resonance
under specific atom-field interaction parameters. This suppression is attributed to the
coherence and ensuing interference developed in simultaneous excitation of two two-

level systems with a common ground level. Doppler averaging of the probe absorption
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spectrum gives rise to an EIT resonance, which differs in character from that of a A
system. The effect of the neighboring level on the shape, linewidth and position of EIT
resonance is discussed. The linewidth of EIT spectrum as a function of pump Rabi
frequency shows two distinctive regions. For low pump saturation the EIT linewidth of
DDL system is lower than that of a A system, whereas for high pump saturation the
trend is reversed. This behavior is discussed in terms of the increase in the optical
pumping rate due to the presence of a nearby level. The discussion is further augmented
by the extension of the DDL scheme to a six-level level model as applicable to D,
transitions of alkali atoms. The analysis presented here thus provides a realistic
theoretical description of pump-probe spectroscopy of hyperfine transitions of alkali
atoms. The chapter is completed with a discussion on experimental results on dressed
state spectroscopy of DDL system in a Doppler broadened medium of ’Rb atoms.
Chapter-5 is dedicated to the studies on quantum interference and its
manifestation in the observation of AWI in a DDL system using master equation and
quantum jump formalisms. A model DDL system formed using hyperfine manifold of D,
transition of 3’Rb atom is discussed here as an example. It is shown here that near two-
photon resonance, the probe is amplified without any inversion in the bare atomic levels
and dressed levels. The inversionless amplification is a result of interference between two
simultaneously excited A resonances and it exhibits a strong dependence on the low
frequency coherence established in the pair of ground levels. We show that AWI in the
present case is strongly dependent on the pump detuning, which governs the relative
excitation amplitudes of two simultaneously excited A resonances. Consequently for the

model system of D; transition of ®’Rb, AWI is tunable and it is maximized when the
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pump detuning is at half the frequency separation between excited levels. This is in
contrast to the earlier works on three-level A resonances, where AWI is shown to occur
when pump and probe lasers are near resonant with the respective transitions. Further
AWI is observed to persist in the presence of inhomogenous broadening, albeit with
deterioration at large Doppler widths. The results are substantiated with a closed form
analytical expression for probe absorption obtained perturbatively in the weak probe
limit. The analytical expressions permit to express AWI in terms of the relative
magnitudes of the dipole matrix elements involved in the problem. The analysis is
extended to the DDL system in D transition of ®’Rb to explain the contrasting behavior
of absorption instead of AWI, which develops into a full grown EIT after Doppler
averaging. Quantum jump formalism is used to provide useful insight into the inherent
physical mechanism responsible for AWI. This analysis shows that the interference
between one-photon absorption processes is primarily responsible for AWI in the present
system.

Chapter-6 deals with the analysis of interference effects in two four-level
configurations, i.e., tripod system and N-resonance, interacting with coherent tri-
chromatic field consisting of a pump, a probe and a control. The presence of additional
resonant transition and field offers enhanced degrees of freedom for controlling the
coherent dynamics and optical properties of the medium. The parametric dependence of
dressed states and pair of EIT resonances in the tripod system are studied with an
objective of controlling their linewidths, and the existence of an ultra-narrow absorptive
resonance is demonstrated. N-system is studied to examine the choice of probe field in

tailoring the response of the atomic medium. Some appealing traits studied are inversion
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in dressed states, observation of multiple transparency windows and switching between
EIT and EIA by controlling the field parameters. These effects are attributed to the
competition between inherent A and V systems, and transfer of coherence (TOC) in the
medium. Observation of both EIA and EIT provides an interesting prospect of controlling
the light propagation from subluminal to superluminal with appropriate choice of field
parameters. Further we have studied the effect of SGC on the linear and nonlinear
response of the N- system. It is shown that the SGC transforms EIT to EIA and vice-
versa, enhances the Kerr nonlinearity of the medium while suppressing the absorption.
Further it is observed that enhanced Kerr nonlinearity enters the minimal absorption
window with increase in SGC parameters and a large Kerr nonlinearity can be obtained
for detuned driving fields. The chapter is completed with experimental results on
comparison of EIT width in A and N systems. EIT signal in N-system is shown to be
significantly narrower than that in A system.

Chapter-7 addresses the issue of laser phase fluctuations in the pump-probe
spectroscopy of N-system. The laser phase variables are modeled by Wiener-Levy

diffusion process to specify the bandwidths (y,,1=12,3) and cross-correlations
(7:ej» 1# ]) that may exist between a pair of laser fields. The problem is analyzed in the

framework of master equation and multiplicative stochastic processes. The technique
developed here is general and can be applied to study the effect of phase fluctuations on
populations, spectrum and intensity-intensity correlation function etc. for any arbitrary
four-level system. Results are presented for steady state and time-dependent populations
of levels under three-photon and 2+1-photon resonance conditions using the model N-

system of “°Ca* ion [227]. It is observed that both three-photon and 2+1-photon
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resonances are strongly affected by the phase fluctuations associated with all lasers,
however, the manner in which the resonances are influenced is different, i.e., suppression
of three-photon resonance and broadening of 2+1-photon resonance. The effect of cross-

correlations between the laser fields is found to exhibit two distinctive effects. The cross-
correlations between the adjacent pair of lasers, i.e. 74, and .,.3, help to restore the

resonances. However in contrast to the three-level A system, this revival is only partial

even when the fields are critically correlated. On the other hand, the cross-correlation
Vacs between the lasers that are not coupled through a common level is observed to
affect the resonances adversely. The observed behavior is explained in terms of the

relevant atomic coherences and their dependence on ; and y,;. The steady state results

are complimented by time dependent studies. In case of three-photon resonance, the
phase fluctuations lead to leakage of population from the metastable level and this effect
is only partially corrected when the fields are critically correlated. On the other hand in
case of 2+1-photon resonance, the phase fluctuations tend to damp the two-state coherent
behavior with little change in the steady state population distribution. The coherent
behavior is revived to a limited extent when the relevant fields are critically correlated.
The study of phase fluctuations is further extended to EIT/EIA resonances. We observe
that the while the phase fluctuations in all three driving lasers participate equally in the
destruction of 2+1-and three-photon resonances, it is the fluctuations in the probe laser
field that is crucial to EIT/EIA resonances. The critical cross correlations between two
driving lasers coupled to a common level help in the revival in both the studies, however

the cross correlation y,,., between the lasers forming the intrinsic A system plays a
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stronger role in the revival of probe absorption. These results, we believe, are useful in
the context of coherent spectroscopy of N-system with finite laser bandwidths.

Chapter-8 examines the prospect of realizing negative refractive index (NRI) in
the optical region using coherently driven medium consisting of multi-level atoms. We
have considered four-level atomic system in two different configurations coherently
driven by a control, a probe and an additional rf field. The rf field provides auxiliary
control of magnetic permeability and flexibility for adjusting frequency, depth and
dispersion of EIT resonance. In the framework of master equation and Classius-Mossotti
relation, the relative permittivity and permeability are obtained for a dense medium of
such atoms. We show here that these models exhibit simultaneous negative permittivity
and permeability in certain frequency domains. Further by controlling the detunings of
the control and rf fields, it is possible to tune the maximum value of NRI and the
corresponding range in these configurations. The results are substantiated by discussing
the possibility of subluminal and superluminal light propagation using anomalous

dispersion in NRI media.

9.2 Future Scope of the Work

This thesis embodies studies on quantum coherence and interference effects in
three- and four-level atomic/molecular systems and their ramifications. We believe that
the work reported here provide opportunities for newer studies in this field.

Work reported here on the coherent pump-probe spectroscopy of molecular
systems with permanent dipole moments builds the concrete background for testing

multi-photon EIT, which is of significant current interest to the experimentalists. To this

192



Conclusions and future scope of the work
=

end, we have identified suitable molecular configurations in ‘LiH molecule, which can be
conveniently used by the experimentalists. Also of interest are the other phenomena such
as subluminal and superluminal light propagation and negative refractive index in the
medium of dipolar molecules. Work reported here on EIT, EIA and AWI in four-level
atomic systems is important in the context of several contemporary applications such as
metrology, optical switching and quantum information processing. The effect of SGC is
another important issue, which can be explored in the studies relating to higher order
optical nonlinearity and also in the domain of AWI. We have provided here a complete
treatment for phase fluctuations in four-level systems, which is of significant interest in
the development of time- and frequency standards. At the same time, we may point out
that there exists a need to develop a complete treatment for laser amplitude fluctuations in
the domain of coherent pump-probe spectroscopy of multi-level atomic systems. Inherent
in these studies are the issues connected with amplitude noise to phase noise conversions
and vice versa in such systems. We have explored here some issues relating to the
observation of negative refractive index in coherently prepared atomic medium. This
issue is gathering a significant momentum in very recent years and we believe that it will
be one of the thriving areas in theoretical and experimental quantum optics in very near

future.
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APPENDIX-1

Zero Order Polarizations of Degenerate Double A System

The zero order coherences under the perturbative approach are obtained as follows:

Pl =-a,l(rss +a3) (3 — pi3) — o (0% = pid NI G, (AL1)

Pl =ial(Kixs + o) (o —pid) — o (o3 — PN C,, (A1.2)

Pls =ananlrs (P = pi) + x5 (pz) =2 NI Gy, (AL3)
where

C, = KKk, + QL K + LK, (Al.4)

Coefficients «,, (i =1...6) are as defined in Eq. (4.3). Similarly pi(io’ are given as,

0) _ 4 4 22 2 2 2 2

Py =T, o8 + (13 +a58,) (s + 01 §5) — Tl — g o 6 (I, +T,5)1/ C, (AL5)
o _ 2 2 2 2 2 2 2.2

P33 = { (53 —05251)1]3 +a;[y, (S —a¢) + o (gzé/s —a;0,¢7)]} C,, (AL.6)
o _ 2 2 2 2 2 2 2.2

Pas =405 (& — oy Oy + o [15(8 — iy 6) + a5 (6,65 — o a5 67)1H G, (ALY)

P =1=p3) = P = pud (AL8)

where
& =Re(C)/C], & =Rellsrs +a3)/Cl, & =Rel(ir, +a)/C], (AL9)

C, = (T + Do) ¥ + @l v3ls + 74, + 15 ($565 — &) — Doy Lyl +
+ 05 (&, = /STy + 73) (7 + 0 85) + (Tyy — 5 )Ty + 741)]
+ 0 (&5 = 4 E)Co + 1) (s + 2585) + (T = 758 ) (T + 7))
+afal (T, + Ty ) (T + ).

(A1.10)

These coherences and populations are used in the analysis of Sec. 4.5 and 5.3.
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APPENDIX-2

Absorption and Dispersion in Degenerate Double A System

Absorption and dispersion in a DDL system are related to real and imaginary
components of P (cf. Eq. (4.5)). Using Eq. (4.5) — (4.8) we obtain,

P =(p, +ip,) /(u +iu,), (A2.1)

P = a12731 +0‘227/41 + (D + D) s (s + 1) + 7a (75 +13,)]

a (A2.2)
— (01731 +0,741) (6, —A,) _#(ﬁl Yat+ 5 7/41)
BB,
P, = (T +150)(017ay + 00740) + a1 (Vs +102) + 7u (75 + T2)1(0, = A) (A2.3)
U —0515 +0(25 + (0 = AD(ys + 1) (4 +1hy) = 6,6,] (A2.4)
+ (0, + )5 +T32)0, + (7, +13,) 0,1,
U, = (6 —A)[(rs +10,)0, + (7, +13,)5,] _0512 (rs+1,) - 0‘22 (rs+1,) (A2.5)

— (T + L) + Tp) (v, +10,) = 6,6,

Therefore absorption and dispersion can be obtained as follows:

A=[(0,-A )2{(74 +10,)74l(7s +F12)2 +52]+ (73 + 1) 77, +F12)2 + 512]}

5, - a7 T T (1)) 55 At Bir)
— A7 (73 + 1) 6, + 74 (74 + 1) 236,
+ (T +5) (s + 1)yl (rs +T0)? + 8,1+ (75 + D)yl + T,)° + 613
aly (7 +T0)° + 851+ a5y [(7y +T0)° + 671+ 2(75 + T,) (7, +Top)

+(I, + 1) a
(051731+052741) [(rs + 1) (s +13,) — 5§]ﬂ1ﬂ2(ﬂ1731+ﬁ2741)

1772

+[a12(}/3+1"12)+a22(;/4+1"12)]{a12731+a227/41 ﬁlﬂz (ﬂl 731"‘/62741)}]/(“ +u )

(A2.6)
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n =[(o, _A1)2{51741[(73 +r12)2 +522] + 0,747, +F12)2 + 512]}

0512741[(73 +F12)2 + 522]"‘ a22731[(7/4 +F12)2 +512] +26,0, (0512731 + a227/41)

—(0,—A)) oa
' . +[(}/3+F12)(}/4+F12)—5152]ﬁ(ﬂ12}/31+,6’22}/41)
12

+ (I, + 1—‘21)2{517/41[(73 + 1—~12)2 + 522] + 0,7y, + F12)2 + 512]}

2[052251741(73 +17,) + 0(1252}/31(]/4 +17,)]

+ (I, +T,) o
* “ _[(73+F12)§1+(74+F12)52]ﬂ1,82 (ﬁ12731+:322741)
172

(1812731 + ﬂ227’41)}] /(ul2 + uzz)a

aQ,

B

2 2 2 2
+(a, 0, +a, 51){051 Vot Oy )a —

(A2.7)

ul2 + uz2 ={(0, = A)[(y; +I;)o, + (7, +F12)52]—a12(73 +13,) _a22(74 +13,)
= (T + L)y + D) (g +13,) — 5152]}2 +{0{1252 + 0{2251 +(0,—A)
[(7rs +T)(y, +10,) = 0,0, 1+ (T, + To)[(ys +1,)0, + (7, + F12)52]}2-

(A2.8)

From equations (A2.6) — (A2.8) it is clear that at two-photon resonance condition
6,=A,;, A— 0 and nn — 0. These expressions prove that susceptibility of DDL system
remains finite though small at 6, = A, i.e., A does not go to exact zero at 8, = A, which

causes the shift in EIT from exact two-photon resonance (cf. Sec. 4.5).
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APPENDIX-3

Low Frequency Coherence in Degenerate Double A System

Of particular interest in the analysis of AWI is the low frequency coherence p(l)

© _ 50 _

0
= Pa3

In the limit of weak excitation, pl( =1l and p,, =P =

~ 0, we may write

Py = (4 +ig)IC, (A3.1)

where

¢ = (_alﬂl{[522 + (75 +F12)2][0(12 =6, = A) + (T, + Ty (y, +T,)]
- 0!22[5152 + (s + 1) (7, + TR (A3.2)
(o, > ay, B> P, AL > AL, 0, <> 8,, 75 <> 74),s

¢, = (alﬂl{[522 +(ys+ 1—‘12)2][(51 — Ay, +1,) +6,(I, +13,)]
+ azz [0,(7s +T12) = 6, (74 +T)13) (A3.3)
(o © @y, B0 5,0, > 65, AL o Ay 73 © 7)),

C ={(6, - AD[(rs +T1,)0, + (7, +13,)6,] —0(12(73 +13,) _azz (74 +13,)
— (0 + ) [ + 1) (74 +r12)_5152]}2 "‘{05125 +0‘25 +(6,—-4) (A3.4)

[(rs + 1) (v +1hp) = 6,6,]1+ (T, + T)[(rs +13,) 0, + (7, +F12)52]} :

Using Egs. (5.3) and (5.5) we have,

g_[ﬁy (7, + 1) +ﬁ]/ (73 +Th) J
- 41 31
B (74+F12)2+512 b, (73+F12)2+522 (A3.5)
_i(al ) 5, 2, 5, j
B “ (7/4+F12) "‘52 ﬂz * (73+F12)2+522 ’
Re(z,) = Re(p5)) Re(s) — Im(pf)) Im(g) . (A3.6)

At two-photon resonance condition &, = A, and for o, >>a,,@,, 75, 74,17, we obtain
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(74"‘ 12) o, (75 +13,)
Re(¢) = ~ts_2el =2 222 50, A3.7
(6)= ﬁl 512 ﬂz — Va1 522 ( )
1 1
|m(§)—_z7415 _ﬂ 731 (A3.8)
1 p

Thus A(S, = A,) = —Im(p) Im(¢).
We assume TI,, =T, I},=I, and y,=y,=y,. AWI is maximized when
A, =S/2, which also implies that A, =—-S/2. Under these approximations and at the

two-photon resonance condition we can obtain Im(¢) and Im( o5} ) as

Im(g) =74 (a8, — . 3,) | S (A3.9)

(p(l)) 233(F12 + ) (B —a,3,) +16Saya, (v + T, ) (@, B, — o B,) (A3.10)
= 2 2 2N72 202 _2ve .
[ST(T, + 1) +4(yy + T + ) (ay + )] + 57 (a; — )

These expressions are used in the analysis of Sec. 5.3 to obtain the expression for

probe absorption at the two-photon resonance condition (cf. Eqg. 5.9).
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APPENDIX-4

Probability Amplitudes for Quantum Jump Approach

Probability amplitudes C; relevant to the analysis of Sec. 5.5 are obtained under
the assumptions g, f, << a,,a, and y,,y, >>I',, 1, B, B, so that y,,y, represent the
fastest time scales in the system. Thus for t >1/y,,1/y, it is possible to eliminate fast

oscillating variables C,; and C,, as compared to slow variables C,; and C,,. Under this

adiabatic elimination, we obtain

éi3(T) Iéi4(7) =0. (A4.1)
C,;=1(8,C, +a,C,) (y;+16,), (A4.2)
Ci, =1(BCy +aCpy) (y, +i0)). (A4.3)

Using the above equations in Eq. (5.22) we get the following coupled equations:

Ci(r) =-0,Cy(r) - 9,Ci,(7) (A4.4)
Ciz(r) = —0,C;,(7) — 0,C;,(7) (A4.5)
2 2 2 2
4 =T, + :231742+ 2ﬁ2732_i{ :281512+ :232522}, (A4.6)
Yito  y3+6, YitOr  y3+6,
q, = 021ﬁ1742 n azzﬂﬁ/z _ i{ 0521ﬂ1512 n azzﬂzéé}’ (A4.7)
VatOr Y3+, VatOr Y3+,
2 2 2 2
Q=15 + ?1}/42 + ?2}/32 _i[A1_51+ ?1512 + ?2522}' (A4.8)
Vit y3t+0; Vit v t0,

Eg. (A4.2) - (A4.5) can be easily solved under the initial condition C;(0) = &; .
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APPENDIX-5

Steady State Populations in Tripod System

Considering all the non-radiative decays to be equal i.e. T}, =T", we obtain the

populations in tripod system as,

PO =T [30(y, +h, +2h, +h)+2(hh, —h2)+(h,—h,)r,1/ 3, (A5.1)

P =T [30(y, +h, +2h, +h)+2(hh, —h?)+(h, —h,)r,]1/3, (A5.2)

P =T [30(h, +2h, +hy) + 2(hh, —h)]]/ 3, (A5.3)

P =1-pi = pid = pid (A5.4)
where

* 2 *x 2
h =a’ Re[MJ, h, = —ala? Re(é}, h, = a? Re(Mj . (A5.5)
N}

3, 3,

3 =3r%(4h, +8h, +4h, +3y,)+ 2Ty, (h, +h,—h,)) + (8T + y,;)(hh, —hZ),  (A5.6)

I =bb,b, +alb, +alb,, (A5.7)
where the coefficients b;, (i=1...6) are defined in Eq. (6.2). These population terms are

used in the analysis of Sec. 6.2.1.
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APPENDIX-6
Steady State Populations in N System
For Model A
pl(f) = 1—‘21[(1—‘341—‘43 - 1—‘3F4) + X3 (F34 + F43) + (F3X4 + 1—‘4)(2) + Xe? - X2X4]/ X1 (A6-1)
,Oég) = [(Xs? = XX, ) ([ + 74y + V) + 1o (Tl us = IG1,)
+ XUy an + Ty + Tgg (T + 75,) + 1oy (D +740) } (A6.2)
+ X (T, (T + 7732) + 7aolas) + X, (T (T + 742) + 730 0a) 1/ %4,
pe(,g) = 2F21[X§ — XXy + T, (X, + Xs) +1H43(X3 +X )/ %, (A6.3)
pﬁ) = 21H21[X32 — XXy + 5 (X5 + X, ) + T (X + X5)1/ %, (A6.4)
where
X = (X32 = XX, )(Tp + 30 + gy + 74p) + (T + Ty ) (T3, Ty = I515,)
+ X, [Ty (T + 742) + T, (T, + 215 +773,)] (A6.5)
+ X [T (Tyy + 745) + Ty (g + 7p) + Tyg (T + 21 + 73,)
+ Dy (T + 205 + 740)] + X [Cyg (T + 73,) + T3 (T, + 205, + 74,)],
2 2
X, = —a; Re(Mj, X, = ot Re[i) X, =—a’ Re(Mj : (A6.6)
X5 5 X
Xs = 8,890, + 04 8g + 4,8, . (A6.7)
For Model B
pl(](.)) =[ (Yo +7a2 = Y2 = 2Y5 = Ya) + (Y, Y4 — y;) + 050 (Vg + 732) (A6.8)
Y5 (Daya, + Taglan) = Ya Loy + Tuava )1/ ¥,
pég) = (Vay + 742 = Y2 = 2Ys = Ya) + (Y, Y4 — Y32) + 000 (Ve + 732) (A6.9)

+ Y5 (Day g + Tyaar) = Yo (syap + Dygva0) 1 Yy
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P =Tul(YoYs = ¥2) ~Tia(Ys + ¥a) =Ty (¥, + Y/ s, (A6.10)
P =T3l(Y,Ys = ¥3) ~ T (Y + ¥) =T (Y, + ¥/ i, (A6.11)
where
Y= (20 + s + L)Y, Y, — yez) + 0, (Vo + 74— Y2 —3Y5 = 2Y,)
A (Fa + 74 = 2Y, =3Y3 = Ya) + Dol s (g + 70 = Y5 = Va) (A6.12)
+ 0 s (Vo + 730 = Yo = Ya) + (TyaVan + T5742) (Y5 — ¥s)
+ (0341 + T3 (Ys = Vi)
2 2
y, =—a’ Re(Mj’ y, = alal Re(i} y, =—a’ RQ(M (A6.13)
Ys 5 Ys
Ys =a,8,8,, + a22a4 + a??au : (A6.14)
For Model C
pl(f) = [, (1, = T5,Tg) + a1222r21F4 + 0{120(;2223 (T + T = 742) (A6.15)
+ 053223{F3 (T + T, = 742) — s (s, + T5) Y/ 24,
pég) = [, (TG0, — T Ts) + alzzz{r4 (T, +750) + Ty} (A6.16)
+ 0‘5 2,15 + a12a§ 2,2,(T, + 75 + 131/ 74,
ps(g) = [a1222F21F4 + 0‘32 21, + a12a322223(F21 +7a+t )l 2, (A6.17)
,022) = [a1222F21F34 + a§ZSF12F3 + 0(120{3? 2,250, + 74, +T3)1/ 2, (A6.18)
pgzj) = [Zé”{FaD -5l + 051222 (2T, +T5,)} - Zéj)a?,zzs I+ Zalzkz) + Zij)
aols + Vaglas —Tiplay — 1L, + a3,223 (ra — T + 53+ (Zéj) + Zéj)) (A6.19)
{0l + 1ol s = Vgl us = Va5 + 0‘1222 (732 =274 +132)}) 2,
D = [z, — (28" + 2 M, + ) + 2800 2, (14 — Ty + 1)
P33 41y 5 6 Mas\hppTly 5 O Lo\Vgp — 1y T1y
+ Zéj) (0512227/42 + a1222F21 - a32 z,l,, + 2afk2a3223) (A6.20)

+ Zz(lj)aszzs (2L, + T +y + Tl 24,

202



Appendix-6

[ _ ®
D=z, - (2D + 2OV, + ) + 290022, (1 + Ty —Tp)
Pas 4 Lag 5 6 MasllpT1y 4 03L3\V3p T1a =1y
- Ze(sj){alzzz (7s + T, +200,) + 0‘5 2,15+ 20‘12220‘; Z5} (A6.21)
- Zéj)alzzz (rap + Ty =y —205))1/ 24,
o0 = ~(oi0 4 0+ ). (A2
where
2, = (I, + (G, = T,0,) + O!fzz[n (T + 205 + ) + T (I + 745)]
+ a3 2[5 (T, + 20, + Ty = 745) + Tig (T = 72, = 34)] (A6.23)
+ 20‘120‘322223(F12 0 + 1+ 0, = Ve — 7a0)s
I.+I I,+T
Z, = : 212 2! Z3= . 22l 2! (A6.24)
([ +10,)" +AY (I, +T5)" +AG
20 = oy, Re(p) 1) 20 = i Re(ol) 1 25) (6.25)
2" =, Im(p0) , (j =123) (A6.26)

The populations in the three model schemes are used in the analysis of Sec. 6.3 and Sec

6.4.
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Non-Zero Elements of Matrix Mras in N system

pas _ pgs _
M1,3 - M3,l -

pgs _ pas _
Ml,g - M9,1

pas _ ng POS _
M1,4 —M4,1 =

pas _ pas _
M1,13 - MlS,l -

MEF =M
M =Mgs =
er,]gs =2[,,
M sp,is =203,

pas  _
Mll,lG - 21_‘43'

Here ¢, (k=12,...16) are related to terms @, defined in Eq. (6.12) as follows:

pgs _
I\/|5,7 -

pas
M 210 —

pas _
M5,8 -
pas _
M 214 —

— M PO —
= Me,s =

pas
M 6,14 —

pgs _ pgs _
M7,5 - M9,ll -

pgs pas _
=M 10,2 — =M 311 —

pgs _ pgs _
M8,5 - IVI9,12 -
pas _ pgs _
I\/|14,2 - M3,15 -
pgs _ pgs
MS,G - MlO,lZ -

pas pas
=M 14,6 — =M 715 T

er,)fls =24,

Msp,ﬁ =2V,

pgs  _
MlG,ll - 2F34'

o=, +a(p,q,s), (k=1,6,11,16),

@, =a,+a(p,q-1s+1),

=a,+a(p-1q,s),

$,=8,+a(p,q-1s),

=a;+a(p,q+1s-1),

o, =a,+a(p-1Lqg+1s-1),

=a;+a(p,q,s-1),

Ml’ﬁj =M =Mgh, =iy,
M1plq§ = Mfii Mlng iy,
Mbs =Mfh = Mgh, =—ia,,
Mlg(,l; = Mﬁ; = Ml%(,]i =la,,
Mlg?io = Mllﬁe = Ml%c,i =-ias,
Ml%c,]i = MST(SS = Ml%?; =ia;,

er,qug =2V 4>
'Vlep,i'Z =2V 435

pas _ _
Mk ==

204

(A7.1)
(A7.2)
(A7.3)
(A7.4)
(A7.5)
(A7.6)
(A7.7)
(A7.8)

(A7.9)

(A7.10)
(A7.11)
(A7.12)
(A7.13)
(A7.14)
(A7.15)

(A7.16)
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$=8,+a(p+1q,s), (A7.17)
=2 +a(p+Lq-1s+1), (A7.18)
$, =a, ta(p+Lq-1s), (A7.19)
P =as+a(p,q+ls), (A7.20)
Pu=a,+a(p,q,s+1), (A7.21)
s =as+a(p-1q+1s), (A7.22)
a(P,0,8) = P Ve + 4" Vez +5 Ve + 2PAV 102 T 2PSV crcs + 2057 cocs (A7.23)

These elements are used for the analysis of three and 2+1-photon resonances in Sec. 7.3.

205



BIBLIOGRAPHY

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

The theory of coherent atomic excitation: Vol. 1. Simple atoms and fields; Vol. 2.
Multilevel atoms and incoherence. B.W. Shore, Wiley-Interscience publication,
New York (1990); B.W. Shore, Acta Physica Slovaca 58, 243 (2008).

Quantum Optics. M.O. Scully and M.S. Zubairy, 6™ edition, Cambridge
university press, New York (2008).

Quantum optics: an introduction. M. Fox, 3™ edition, Oxford university press,
New York (2009).

The light fantastic. I.R. Kenyon, Oxford University press, New York (2008).

B. Renaud, R.M. Whitley and C.R. Stroud Jr., J. Phys. B: At. Mol. Opt. Phys. 9,
L19 (1976).

G. Vemuri, G.S. Agarwal and B.D.N. Rao, Phys. Rev. A 53, 2842 (1996).

J. Niu, L. Pei, X. Lu, R. Wang, L.-A. Wu and P. Fu, Phys. Rev. A 84, 033853
(2011).

M. Wagner, H. Schneider, D. Stehr, S. Winner, A.M. Andrews, S. Schartner, G.
Strasser and M. Helm, Phys. Rev. Lett. 105, 167401 (2010).

E. Ahmed and A.M. Lyyra, Phys. Rev. A 76, 053407 (2007).

206



Bibliography

g

[10]

[11]

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

Coherent population trapping in laser spectroscopy. E. Arimondo, edited by E.
Wolf in Progress in optics, Elsevier Science, Amsterdam, vol. XXXV, chap. V,
258 (1996).

G. Alzetta, A. Gozzini, L. Moi and G. Orriols, Nuovo Cimento Soc. Ita. Fis. B
36, 5 (1976).

P.M. Radmore and P.L. Knight, J. Phys. B: At. Mol. Opt. Phys. 15, 561 (1982).
B.Lu, W.H. Burkett, M. Xiao, Opt. Lett. 23, 804 (1998).

J.P. Marangos, J. Mod. Opt. 45, 471 (1998).

M. Fleischhauer, A. Imamoglu and J.P. Marangos, Rev. Mod. Phys. 77, 633
(2005).

S.E. Harris, Phys. Today 50, 36 (1997).

M.D. Lukin and A. Imamoglu, Nature 413, 273 (2001).

K.J. Boller, A. Imamoglu and S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
C.L.G. Alzar, M.A.G. Martinez and P. Nussenzveig, Am. J. Phys. 70, 37 (2002).
P.M. Anisimov, J.P. Dowling and B.C. Sanders, Phys. Rev. Lett. 107, 163604
(2011).

T.Y. Abi-Salloum, Phys. Rev. A 81, 053836 (2010).

Y. Zhu and T.N. Wasserlauf, Phys. Rev. A 54, 3653 (1996).

Niharika Singh, Q.V. Lawande, R. D’Souza, A. Ray and B.N. Jagatap, Pramana
-J. Phys. 75, 1151 (2010).

D. McGloin, D.J. Fullton and M.H Dunn, Opt. Comm. 190, 221 (2001).

T. Li, M.-J Lu and J.D. Weinstein, Phys. Rev. A 84, 023801 (2011).

N. Gavra, M. Rosenbluh, T. Zigdon, A.D. Wilson-Gordon, H. Friedmann, Opt.

207



Bibliography

g

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Comm. 280, 374 (2007).

C. Goren, A.D. Wilson-Gordon, M. Rosenbluh and H. Friedmann, Phys. Rev. A
69, 063802 (2004).

Niharika Singh and B.N. Jagatap, AIP Conf. Proc. 1391, 16 (2011).

S.-J. Li, X.-D. Yang, X.-M. Cao, C.-D. Xie and H. Wang, J. Phys. B: At. Mol.
Opt. Phys. 40, 3211 (2007); Phys. Rev. Lett. 101, 073602 (2008).

Niharika Singh, R. D’Souza, Q.V. Lawande and B.N. Jagatap, Asian J. Phys. 20,
221 (2011).

M.G. Bason, A.K. Mohapatra, K.J. Weatherill and C.S. Adams, J. Phys. B: At.
Mol. Opt. Phys. 42, 075503 (2009).

S. Du, P. Kolchin, C. Belthangady, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 100,
183603 (2008).

A. Sargsyan, C. Leroy, Y.P.-Leroy, D. Sarkisyan, D. Slavov and S. Cartaleva,
Opt. Comm. 285, 2090 (2012).

C.Y. Ye, A.S. Zibrov and Y.V. Rostovtsev, J. Mod. Opt. 49, 391 (2002).

A. Javan, O. Kocharovskaya, H. Lee and M.O. Scully, Phys. Rev. A 66, 013805
(2002).

H. Lee, Y.V. Rostovtsev, C.J. Bednar and A. Javan, Appl. Phys. B 76, 33 (2003).
Y. Rostovtsev, I. Protsenko, H. Lee and A. Javan, J. Mod. Opt. 49, 2501 (2002).
D.J. Fullton, S. Shepherd, R.R. Moseley, B.D. Sinclair and M.H Dunn, Phys.
Rev. A 52, 2302 (1995).

J.R. Boon, E. Zekou, D. McGloin and M.H. Dunn, Phys. Rev. A 59, 4675

(1999).

208



Bibliography

g

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

A. Lezama, S. Barreiro and A.M. Akulshin, Phys. Rev. A 59, 4732 (1998).

C. Goren, A.D. Wilson-Gordon, M. Rosenbluh and H. Friedmann, Phys. Rev. A
67, 033807 (2003); 69, 053818 (2004).

A.V. Taichenachev, A.M. Tumaikin and V.I. Yudin, Phys. Rev. A 61, 011802
(1999).

C. Goren, A.D. Wilson-Gordon, M. Rosenbluh and H. Friedmann, Phys. Rev. A
68, 043818 (2003).

C.Y. Ye, A.S. Zibrov, Y.V. Rostovtsev and M.O. Scully, J. Mod. Opt. 50, 2605
(2003).

E. Tilchin, A.D. Wilson-Gordon and O. Firstenberg, Phys. Rev. A 83, 053812
(2011).

L.S. Molella, R.-H Rinkleff and K. Danzmann, Phys. Rev. A 72, 041802 (2005).
H.S. Moon, S.K. Kim, K. Kim, C.H. Lee and J.B. Kim, J. Phys. B: At. Mol. Opt.
Phys. 36, 3721 (2003).

P. Valente, H. Failache and A. Lezama, Phys. Rev. A 67, 013806 (2003).

J. Dimitrijevic, D. Arsenovic and B.M. Jelenkovic, New J. Phys. 13, 033010
(2011).

A.M. Akulshin, A. Lezama, A.l. Sidorov, R.J. McLean and P. Hannaford, J.
Phys. B: At. Mol. Opt. Phys. 38, L365 (2005).

A.M. Akulshin, A. Cimmino and G.I. Opat, Quantum Electron. 32, 567 (2002).
A.M. Akulshin, A.L. Sidorov, R.J. McLean and P. Hannaford, Laser Physics 15,
1252 (2005).

Lasing without inversion and electromagnetically induced transparency. S.

209



Bibliography
=

Alam, SPIE, Bellingham Washington (1999).

[54] B.W. Shore, Contemporary physics 36, 15 (1995).

[55] J. Mompart and R. Corbalan, J. Opt B: Quantum Semiclass. Opt. 2, R7 (2000).

[56] J. Mompart, C. Peters and R. Corbalan, Phys. Rev. A 57,2163 (1998).

[57] O. Kocharovskaya and P. Mandel, Quantum Opt. 6, 217 (1994); Phys. Rev. A,
42,523 (1990).

[58] O. Kocharovskaya, P. Mandel and Y.V. Radeonychev, Phys. Rev. A 45, 1997
(1992).

[59] O. Kocharovskaya, Hyperfine Interactions 107, 187 (1997); Phys. Rep. 219, 175
(1992).

[60] D. Braunstein and R Shuker, J. Phys. B: At. Mol. Opt. Phys. 42, 125401 (2009);
Phys. Rev. A 68, 013812 (2003).

[61] G.S. Agarwal, Phys. Rev. A 44, R28 (1991); Phys. Rev. Lett. 67, 980 (1991).

[62] K.M. Gheri and D.F. Walls, Phys. Rev. Lett. 68, 3428 (1992); Phys. Rev. A 45,
6675 (1992).

[63] S.-Y.Zhuand M.O. Scully, Phys. Rev. Lett. 76, 388 (1996).

[64] M.O. Scully, S.-Y. Zhu and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).

[65] Y. Zhu, A.I. Rubiera and M. Xiao, Phys. Rev. A 53, 1065 (1996).

[66] M. Marthaler, Y. Utsumi, D.S. Golubev, A. Shnirman and G. Schon, Phys. Rev.
Lett. 107, 093901 (2011).

[67] M.D. Frogley, J.F. Dynes, M. Beck, J. Faist and C.C. Philips, Nature materials 5,
175 (20006).

[68] G.A.Koganov, B. Shif and R. Shuker, Opt. Lett. 36, 2779 (2011).

210



Bibliography

g

[69]

[70]

[71]

[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]

[81]

[82]

[83]

[84]

[85]

G.G. Padmabandu, G.R. Welch, I.N. Shubin, E.S. Fry, D.E. Nikonov, M.D.
Lukin and M.O. Scully, Phys. Rev. Lett. 76, 2053 (1996).

S. Ya. Kilin, K.T. Kapale and M.O. Scully, Phys. Rev. Lett. 100, 173601 (2008).
A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L.
Velichansky and H.G. Robinson, Phys. Rev. Lett. 75, 1499 (1995).

J. Kitching and L. Hollberg, Phys. Rev. A 59, 4685 (1999).

S.E. Harris, Phys. Rev. Lett. 62, 1033 (1989).

A. Imamoglu, J.E. Field and S.E. Harris, Phys. Rev. Lett. 66, 1154 (1991).

G. Grynberg, M. Pinard and P. Mandel, Phys. Rev. A 54, 776 (1996).

V. Ahufinger, J. Mompart and R. Corbalan, Phys. Rev. A 61, 053814 (2000).

A. Hajibadali, K. Abbasian, Sh. Rahmatallahpur, Optik 123, 1035 (2012).

Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).

G. Vemuri and G.S. Agarwal, Phys. Rev. A 53, 1060 (1996).

H.S. Moon, L. Lee, K. Kim and J.B. Kim, Appl. Phys. Lett. 84, 3001 (2004).
S.C. Bell, D.M. Heywood, J.D. White, J.D. Close and R.E. Scholten, Appl. Phys.
Lett. 90, 171120 (2007).

Y.B. Kale, A. Ray, R. D’Souza, Q.V. Lawande and B.N. Jagatap, Appl. Phys. B
100, 505 (2010).

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

I. Novikova, D.F. Phillips, A.S. Zibrov, R.L. Walsworth, A.V. Taichenachev and
V.I. Yudin, Opt. Lett. 31, 622 (2006); Opt. Lett. 31, 2353 (20006).

J. Vanier, Appl. Phys. B 81, 421 (2005); J. Vanier, M. Levine, S. Kendig, D.

Janssen, C. Everson and M. Delaney, Int. Freq. Control Symposium, p.1 (2004).

211



Bibliography

g

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]
[95]
[96]

[97]

[98]

[99]

J. Kitching, S. Knappe and E.A. Donley, IEEE sensors journal, 11, 1749 (2011).
S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L.-A Liew and J.
Moreland, Appl. Phys. Lett. 85, 1460 (2004); S. Knappe, P.D.D. Schwindt, V.
Shah, L. Hollberg and J. Kitching, Opt. Express 13, 1249 (2005).

M. Stahler, S. Knappe, C. Affolderbach, W. Kemp and R. Wynands, Europhys.
Lett. 54, 323 (2001).

M.H. Acuna, Rev. Sci. Instrum. 73, 3717 (2002).

P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching , L.-A Liew and
J. Moreland, Appl. Phys. Lett. 85, 6409 (2004).

D. Budker and M. Romalis, Nature physics 3, 227 (2007).

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste and C. Cohen-Tannoudji,
Phys. Rev. Lett. 61, 826 (1988).

M. Bienert and G. Morigi, New J. Phys. 14, 023002 (2012).

M. Bayer, Nature Physics 4, 678 (2008).

R. Rohlsberger, H.C. Wille, K. Schlage and B. Sahoo, Nature 482, 199 (2012).
R.W. Boyd, J. Mod. Opt. 56, 1908 (2009).

Fast light, slow light and left-handed light. P.W. Milonni, Series in Optics and
optoelectronics, Institute of Physics Publishing, Bristol and Philadelphia (2004).
Slow and fast light. R.-W. Boyd and D.J. Gauthier, edited by E. Wolf, in
Progress in optics, Elsevier Science, Amsterdam, vol. 43 (2002); R.W. Boyd and
D.J. Gauthier, Science 326, 1074 (2009).

D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth and M.D. Lukin, Phys.

Rev. Lett. 86, 783 (2001).

212



Bibliography

g

[100]

[101]

[102]

[103]

[104]

[105]
[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

M.S. Bigelow, N.N. Lepeshkin and R.W. Boyd, Science 301, 200 (2000).

M.M. Klein, M. Hohensee, Y. Xiao, R. Kalara, D.F. Phillips and R.L.
Walsworth, Phys. Rev. A 79, 053833 (2009).

A.B. Matsko, O. Kocharovskaya, Y.V. Rostovtsev, G.R. Welch, A.S. Zibrov and
M.O. Scully, Adv. At. Mol. Opt. Phys. 46, 191 (2001).

L.V. Hau, S.E. Harris, Z. Dutton and C.H. Behroozi, Nature 397, 594 (1999).
A.H.S.-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T.
Hill, D.E. Chang and O. Painter, Nature 472, 69 (2011).

M.D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).

S.E. Harris, Phys. Rev. Lett. 85, 4032 (2000).

B.S. Ham, J. Mod. Opt. 49, 2477 (2002).

O. Kocharovskaya, Y.V. Rostovtsev and M.O. Scully, Phys. Rev. Lett. 86, 628
(2001).

Yi.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen and [.A. Yu, Phys.
Rev. Lett. 108, 173603 (2012).

A.S. Zibrov, A.B. Matsko, O. Kocharovskaya, Y.V. Rostovtsev, G.R. Welch and
M.O. Scully, Phys. Rev. Lett. 88, 103601 (2002).

J.P. Marangos, Nature 406, 243 (2000).

L.J. Wang, A. Kuzmich and A. Dogariu, Nature 406, 277 (2000).

G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski and R.W. Boyd, Science
312, 895 (20006).

G.S. Agarwal, T.N. Dey and S. Menon, Phys. Rev. A 64, 053809 (2001).

V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

213



Bibliography

g

[116]

[117]
[118]
[119]
[120]
[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

[130]

[131]

[132]

V.G. Veselago, L. Braginsky, V. Shklover and C. Hafner, J. Comput. Theor.
Nanosci. 3, 189 (2006).

J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

S.A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005) and references therein.

J.B. Pendry and D.R. Smith, Phys. Today 57, 37 (2004).

J.B. Pendry, D. Schurig and D.R. Smith, Science 23, 1780 (2006).

K.L. Tsakmakidis, A.D. Boardman and O. Hess, Nature 450, 397 (2007).

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser and S. Schultz, Phys.
Rev. Lett. 84, 4184 (2000).

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C.M. Soukoulis, Nature
423, 604 (2003).

H. Yoon, K.Y.M. Yeung, V. Umansky and D. Ham, Nature 488, 65 (2012).

S. Zhang, Y.S. Park, J. Li, X. Lu, W. Zhang and X. Zhang, Phys. Rev. Lett. 102,
023901 (2009).

M.O. Oktel and O.E. Mustecaphoglu, Phys. Rev. A 70, 053806 (2004).

Q. Thommen and P. Mandel, Phys. Rev. Lett. 96, 053601 (2006).

J.C. Liu, J. Zhang, J. Liu and G. Jin, Phys. B: At. Mol. Opt. Phys. 42, 095402
(2009).

X.M. Su, H.X. Kang, J. Kou, X.Z. Guo and J.Y. Gao, Phys. Rev. A 80, 023805
(2009).

X.-Yu Yang and Y.-Yuan Jiang, Opt. Comm. 285, 2161 (2012).

K.I. Osman and A. Joshi, Opt. Comm. 285, 3162 (2012).

C. Goren, A.D. Wilson-Gordon, M. Rosenbluh and H. Friedmann, Phys. Rev. A

214



Bibliography

g

[133]
[134]
[135]
[136]
[137]
[138]
[139]

[140]

[141]

[142]

[143]

[144]
[145]

[146]

[147]

[148]

72,023826 (2005).

X. Yang and S. Zhu, Phys. Rev. A 78, 023818 (2008).

E. Figueroa, F. Vewinger, J. Appel and A.L. Lvovsky, Opt. Lett. 31, 2625 (2006).
J.G. Coffer, M. Anderson and J.C. Camparo, Phys. Rev. A 65, 033807 (2002).
M.A. Kumar and S. Singh, Phys. Rev. A 79, 063821 (2009).

R.H. Dicke, Phys. Rev. 89, 472 (1953).

J. Javanainen, Europhys. Lett. 17, 407 (1992).

D. Wang and Y. Zheng, Phys. Rev. A 83, 013810 (2011).

J.W. Gao, Q.Q. Bao, R.G. Wan, C.L. Cui and J.H Wu, Phys. Rev. A 83, 053815
(2011).

W.-J. Jiang, X. Yan, J. Song, H.-b Zheng, C. Wua, B.-y Yin and Y. Zhang, Opt.
Comm. 282, 101 (2009).

M.V.G. Dutt, J. Cheng, B. Li, X. Xu, X. Li, P.R. Berman, D.G. Steel, A.S.
Bracker, D. Gammon, S.E. Economou, R.-B Liu and L.J. Sham, Phys. Rev Lett.
94, 227403 (2005).

Y. Bai, H. Guo, H. Sun, D. Han, C. Liu and X. Chen, Phys. Rev. A 69, 043814
(2004).

G.S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).

G.S. Agarwal and P.A. Narayana, Opt. Comm. 30, 364 (1979).

B.J. Dalton and P.L. Knight, J. Phys. B: At. Mol. Phys. 15, 3997 (1982); Opt.
Comm. 42, 411 (1982).

B.J. Dalton, R. McDuff and P.L. Knight, Optica Acta 32, 61 (1985).

R. D’Souza, Q.V. Lawande and S.V. Lawande, Opt. Comm. 50, 342 (1984).

215



Bibliography

g

[149]

[150]
[151]
[152]
[153]
[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

S.V. Lawande, R.R. Puri and R. D’Souza, Phys. Rev. A 33, 2504 (1986); S.V.
Lawande, R. D’ Souza and R.R. Puri, Phys. Rev. A 36, 3228 (1987).

P.A. Lakshmi and S. Swain, J. Mod. Opt. 38, 2031 (1991).

J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, J. Physique 45, 637 (1984).
K.D. Quoc, V.C. Long and W. Leonski, Phys. Scr. T147, 014008 (2012).

S. Sultana and M.S. Zubairy, Phys. Rev. A 49, 438 (1994).

S.-Q. Gong, Z.-Z. Xu and S.-H. Pan, J. Mod. Opt. 42, 1397 (1995).

Y. Xiao, T. Wang, M. Baryakhtar, M.V. Camp, M. Crescimanno, M. Hohensee,
L. Jiang, D.F. Phillips, M.D. Lukin, S.F. Yelin and R.L. Walsworth, Phys. Rev.
A 80, 041805 (2009).

S. Qamar, S. Qamar and M.S. Zubairy, Opt. Comm. 283, 781 (2010).

M. Fleischhauer, M.D. Lukin, D.E. Nikonov and M.O. Scully, Opt. Comm. 110,
351 (1994).

K.I. Osman, Opt. Comm. 88, 364 (1992).

N.G. Van Kampen, Physica 74, 215; 239 (1974); Stochastic processes in physics
and chemistry. N.G. Van Kampen, 3" edition, North Holland, Amsterdam
(2007).

Quantum statistical properties of radiation. W.H. Louisell, Wiley, New York
(1973).

J.C. Petch, C.H. Keitel, P.L. Knight and J.P. Marangos, Phys. Rev. A 53, 543
(1996).

Z. Zhang, X. Xue, C. Li, S. Cheng, L. Han, H. Chen, H. Zheng and Y. Zhang,

Opt. Comm. 285, 3627 (2012).

216



Bibliography

g

[163]
[164]
[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

S.P. Tewari and G.S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).

H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).

H. Wang, D. Goorskey and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).

J. Wu, J.-B. Liu, H. Li, X.Y. Lu and A. Zheng, Opt. Comm. 285, 1424 (2012).
R. Slusher, L. Hollberg, B. Yurke, J. Mertz and J. Valley, Phys. Rev. Lett. 55,
2409 (1985).

T. Peyronel, O. Firstenberg, Q-Y Liang, S. Hofferberth, A.V. Gorshkov, T. Pohl,
M.D. Lukin and V. Vuleti¢, Nature 488, 57 (2012).

J.P. Poizat and P. Grangier, Phys. Rev. Lett. 70, 271 (1993).

J. Guena, M. Lintz and M.-A Bouchiat, J. Opt. Soc. Am. B 22, 21 (2005).

M.A. Anton, O.G. Calderon, S. Melle, I. Gonzalo and F. Carrefio, Opt. Comm.
268, 146 (20006).

M.A. Anton, F. Carreno, O.G. Calderon, S. Melle and I. Gonzalo, Opt. Comm.
281, 6040 (2008).

F. Zhou, Y. Niu and S. Gong, J. Chem. Phys. 131, 034105 (2009).

G. Ma, B. Shi, Y. Yao, H. Guo and W. Liu, J. Mod. Opt. 57, 390 (2010).

A. Lazoudis, T. Kirova, E.H. Ahmed, L. Li, J. Qi and A.M. Lyyra, Phys. Rev. A
82, 023812 (2010).

A. Lazoudis, T. Kirova, E.-H. Ahmed, P. Qi, J. Huennekens and A.M. Lyyra,
Phys. Rev. A 83, 063419 (2011).

J. Qi, F.C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L.M. Narducci,
R.W. Field and A.M. Lyyra, Phys. Rev. Lett. 88, 173003 (2002).

L. Li, P. Qi, A. Lazoudis, E. Ahmed and A.M. Lyyra, Chem. Phys. Lett. 403,

217



Bibliography

g

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]
[187]

[188]

[189]

[190]

[191]

[192]

262 (2005).

H. Li, H. Chen, M.A. Gubin, Y.V. Rostovtsev, V.A. Sautenkov and M.O. Scully,
Laser Phys. 20, 1725 (2010).

Niharika Singh, Q.V. Lawande, R. D’Souza and B.N. Jagatap, J. Chem. Phys.
137, 104309 (2012).

W.J. Meath and E.A. Power, J. Phys. B: At. Mol. Opt. Phys. 17, 763 (1984);
Mol. Phys. 51, 585 (1984).

M.A. Kmetic and W.J. Meath, Phys. Lett. A 108, 340 (1985); Phys. Rev. A 41,
1556 (1990).

M.A. Kmetic, R.A. Thuraisingham and W.J. Meath, Phys. Rev. A 33, 1688
(1986).

S. Nakai and W.J. Meath, J. Chem. Phys. 96, 4991 (1992).

A.E. Kondo, W.J. Meath, S.H. Nilar and A.J. Thakkar, Chem. Phys. 186, 375
(1994).

A. Brown and W.J. Meath, J. Chem. Phys. 109, 9351 (1998).

B.N. Jagatap and W.J. Meath, J. Opt. Soc. Am. B 19, 2673 (2002).

W.J. Meath, B.N. Jagatap and A.E. Kondo, J. Phys. B: At. Mol. Opt. Phys. 39,
S605 (20006).

W.J. Meath and B.N. Jagatap, J. Phys. B: At. Mol. Opt. Phys. 44, 205401 (2011).
J.M. Bowman, S. Irle, K. Morokuma and A. Wodtke, J. Chem. Phys. 114, 7923
(2001).

Y. Chen, X.G. Wei and B.S. Ham, Opt. Express 17, 1781 (2009).

W.C. Stwalley and W.T. Zemke, J. Chem. Phys. Ref. Data 22, 87 (1993).

218



Bibliography

g

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

W.T. Zemke and W.C. Stwalley, J. Chem. Phys. 73, 5584 (1980).

H. Partridge, S.R. Langhoff, W.C. Stwalley and W.T. Zemke, J. Chem. Phys. 75,
2299 (1981).

W.T. Zemke, J.B. Crooks and W.C. Stwalley, J. Chem. Phys. 68, 4628 (1978).
W.T. Zemke and W.C. Stwalley, J. Chem. Phys. 68, 4619 (1978).

H.R. Schlossberg and A. Javan, Phys. Rev. 150, 267 (1966).

H. Xia, S.J. Sharpe, A.J. Merriam and S.E. Harris, Phys. Rev. A 56, R3362
(1997).

L.LE. Mazets, B.G. Matisov, E. Cerboneschi and E. Arimondo, Phys. Lett. 229, 77
(1997).

C.Y. Ye and A.S. Zibrov, Phys. Rev. A 65, 023806 (2002).

Y .B. Kale, A. Ray, Niharika Singh, Q.V. Lawande and B.N. Jagatap, Eur. Phys.
J. D 61, 221 (2011).

V. Wong, R.W. Boyd, C.R. Stroud, Jr., R.S. Bennink and A.M. Marino, Phys.
Rev. A 68, 012502 (2003).

H.-T. Tan, H.-X Xia and G.-X. Li, J. Phys. B: At. Mol. Opt. Phys. 42, 125502
(2009).

D.A. Steck, http://steck.us/alkali data, Revision 2.1, 1 (2008).

Niharika Singh, Y.B. Kale, A. Ray and B.N. Jagatap, Indian J. Phys. 84, 1119
(2010).

C. Cohen-Tannoudji, B. Zambon and E. Arimondo, J. Opt. Soc. Am. B 10, 2107
(1993).

J. Mompart and R. Corbalan, Opt. Comm. 156, 133 (1998); Eur. Phys. J. D 5,

219



Bibliography

g

[208]
[209]
[210]

[211]

[212]

[213]
[214]
[215]
[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

351 (1999).

J. Mompart, R. Corbalan and R. Vilaseca, Opt. Comm. 147, 299 (1998).

W.-H. Xu and J.-Y. Gao, Phys. Rev. A 67, 033816 (2003).

M.B. Plenio and P.L. Knight, Rev. Mod. Phys. 70, 101 (1998).

Atom-photon interactions: basic processes and applications. C. Cohen-
Tannoudji, J.D.-Roc and G. Grynberg, Wiley-VCH, Weinheim (2004).

Y. Chen, X.G. Wei and B.S. Ham, J. Phys. B: At. Mol. Opt. Phys. 42, 065506
(2009).

X.-X. Tian, D.-K. Lia and J.-H. Wu, Opt. Comm. 283, 2561 (2010).

S.E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).

M. Yan, E.G. Rickey and Y. Zhu, Phys. Rev. Lett. 64, 041801 (2001)

L. Zhao, G. Yang and W. Duan, Opt. Lett. 37, 2853 (2012).

X-Li Song, A.-J. Li, L. Wang, Z.-H. Kang, J. Kou, B. Zhang, C.-L. Wang, Y.
Jiang and J.-Y. Gao, Phys. Rev. A 79, 053857 (2012).

C.-Li Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang and Jin-Hui Wu, Phys. Rev. A
76, 033815 (2012).

T.N. Dey and G.S. Agarwal, Phys. Rev. A 76, 015802 (2007).

C. Hang and G. Huang, Opt. Express 18, 2952 (2010).

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao and K. Peng, Phys. Rev. A
77,023824 (2008).

J. Sheng, X. Yang, H. Wu and M. Xiao, Phys. Rev. A 84, 053820 (2011).

J.L. Ding, B.P. Hou and S.J. Wang, J. Phys. B: At. Mol. Opt. Phys. 43, 225502

(2010).

220



Bibliography

g

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

S.-C. Tian, R.-G. Wan, Z.-H. Kang, H. Zhang, Y. Jiang, H.-N. Cui and J.- Yue
Gao, J. Opt. Soc. Am. B 29, 881 (2012).

R.-G. Wan, J. Kou, L. Jiang, S.-Q. Kuang, Y. Jiang and J.-Y. Gao, Opt. Comm.
284, 1569 (2011).

T. Abi-Salloum, S. Meiselman, J.P. Davis and F.A. Narducci, J. Mod. Opt. 56,
1926 (2009).

C. Champenois, G. Morigi and J. Eschner, Phys. Rev. A74, 053404 (2006).

W. Nagourney, I. Sandberg and H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986).
R.J. Cook and H.J. Kimble, Phys. Rev. Lett. 54, 1023 (1985); R.J. Cook, Physica
Scripta. T21, 49 (1988); Quantum jumps. R.J. Cook, edited by E. Wolf, in
Progress in optics, Elsevier, Amsterdam, vol. XXVI11, chap. V, 363 (1990).

G. Fu, X. Li, Z. Zhuang, L. Zhang, L. Yang, X. Li, H. Li, N.B. Manson and C.
Wei, Phys. Lett. A 372, 176 (2008).

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N.B. Manson, D. Suter and C. Wei,
Phys. Rev. A 72, 053801 (2005).

C.Y. Ye, A.S. Zibrov, Y.V. Rostovtsev and M.O. Scully, Phys. Rev. A 65,
043805 (2002).

A.V. Sharypov, A.D. Wilson-Gordon, Opt. Comm. 282, 3591 (2009).

M.D. Lukin, S.F. Yelin, M. Fleischhauer and M.O. Scully, Phys. Rev. A 60,

3225 (1999).

221



	FRONT PAGES.pdf
	A FRONT PAGES.pdf
	B FRONT PAGES.pdf
	C FRONT PAGES.pdf
	D FRONT PAGES.pdf
	E FRONT PAGES.pdf
	F FRONT PAGES.pdf
	Contents.pdf

	FRONT PAGES 1.pdf
	SYNOPSIS.pdf
	Synop.pdf
	I LIST OF FIGURES.pdf
	J LIST OF TABLES.pdf

	ALL CHAPTERS.pdf
	CHAPTER 1_Corrected_-Final.pdf
	CHAPTER 2 FINAL.pdf
	CHAPTER 3 _corrected_-Final.pdf
	CHAPTER 4 _corrected_-Final.pdf
	CHAPTER 5 _corrected_-Final.pdf
	CHAPTER 6 _corrected_-Final.pdf
	CHAPTER 7_corrected_-Final.pdf
	CHAPTER 8 _corrected_-final.pdf
	CHAPTER 9 _corrected_-final-.pdf

	ALL APPENDIX, REF.pdf
	Appendix-1.pdf
	Appendix-2.pdf
	Appendix-3.pdf
	Appendix-4.pdf
	Appendix-5.pdf
	Appendix-6.pdf
	Appendix-7.pdf
	REFERENCES.pdf


