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xv 

photon-atom interactions, these studies have created a new technological frontier based 

on photon engineering in a dressed atomic medium. Current interest in this area is driven 

by several important metrological applications, i.e., atomic frequency standards, 

miniaturized atomic clock, ultra-precision atomic magnetometry, atomic frequency offset 

locking, which are primarily derived from sub-natural linewidths of the dark resonances 

associated with EIT and CPT phenomena [5-7]. In more recent years, increasing attention 

is being paid to several other closely related phenomena which include for example, 

subluminal and superluminal light propagation, storage of light, quantum information 

processing and also the search for metamaterials, i.e., innovative systems that display 

negative refractive index [8-10].  

The present thesis deals with coherent dynamics of multi-level atomic/molecular 

systems and its manifestation in the observation of several of the above referred 

phenomena, i.e., EIT, EIA, AWI and negative refractive index, together with the issues 

connected with spontaneously generated coherence (SGC), Kerr nonlinearity and the 

effect of finite bandwidths of driving fields. The major part of the thesis is concerned 

with theoretical aspects of coherent laser-atom/molecule interaction and predictions of 

novel effects arising from the field induced coherence and interference. These studies 

have been done in the framework of master equation and the systems investigated are 

three- and four-level atoms in various level configurations, i.e., Λ, double Λ, tripod, N-

resonance etc [10]. Hyperfine manifolds of D1 and D2 transitions of alkali atoms are 

primarily used for constructing these level schemes. In order to provide a flavor of the 

coherent pump-probe spectroscopy for precision measurements, a few experimental 

results are also reported for a medium of alkali atoms [11]. 
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The thesis is organized in nine chapters according to the various atomic/molecular 

systems studied and the quantum coherence phenomena associated with them. 

Chapter-1 presents a brief introduction to the subject of quantum coherence and 

interference in driven multi-level systems and their manifestations in tailoring optical 

properties of an atomic/molecular medium [1-10]. The underlying concepts, the current 

status of the field and the fascinating applications of these phenomena in basic and 

applied sciences are briefly discussed here. The contents of this chapter, thus, provide 

both the motivation and the basis for the work presented in the subsequent chapters.  

Chapter-2 provides the discussion on the master equation framework used for 

addressing the interaction of multi-level system with coherent multi-frequency 

electromagnetic field. A prototype system for investigating quantum coherence and 

interference phenomena is a three-level atomic system in Λ, V or Ξ configurations [1-5]. 

An explicit derivation of the semiclassical master equation in electric dipole and rotating 

wave approximations is discussed here for a three-level atomic system interacting with 

two external coherent fields and incoherent vacuum fields. The total system of atom and 

vacuum reservoir is described by a Hamiltonian in the second quantized form whereas 

the external fields are assumed to be classical. The technique of projection operators is 

used to eliminate the field modes and obtain the master equation for reduced atomic 

density operator from the Liouville equation. The discussion is then generalized for 

various four-level schemes of interest. Permanent dipole moments associated with 

molecular transitions provide pathways for multi-photon transitions and consequently 

their inclusion in the master equation is of paramount importance while dealing with 

coherent pump-probe spectroscopy of molecular systems [12]. In this context, we 
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develop and discuss the necessary master equation framework for a three-level molecular 

Λ system with permanent dipole moments and undergoing −m  and −n photon 

transitions on pump and probe resonances. The master equation applicable to pertinent 

level schemes is then used as a starting point for analysis of steady state as well as time 

dependent behaviour of quantum systems and associated interference effects in the 

subsequent chapters. Connection to the experimental systems is established by averaging 

atomic/molecular response over Maxwell-Boltzmann velocity distribution.  

Chapter-3 deals with the study of coherent pump-probe spectroscopy of three-

level molecular Λ system with permanent moments. The motivation for these studies is 

provided by the very recent interest in EIT in the molecular domain [13]. A particular 

issue that is unique for molecules is the existence of diagonal or permanent dipole 

moments. It is therefore interesting to explore the role of permanent dipole moments on 

the observation of EIT and its connection to the issue of subluminal and superluminal 

light propagation. Master equation for a three-level Λ system including the permanent 

dipole moments is used to obtain analytical expressions for nm +  photon EIT and 

dispersion for a medium of stationary as well as Doppler broadened molecular medium. 

Contrary to the earlier reported work [13], we observe no amplification in 2+2 photon 

process when the sign of the permanent moments is reversed. Reasons for these 

contrasting observations are discussed. Our study shows that the permanent moments 

essentially damp the laser-molecule Rabi frequency to result in narrower EIT line width 

and larger group velocity index. These effects are further enhanced when the order of the 

multi-photon process is increased. While considering the multi-photon EIT mediated by 

permanent dipole mechanism, it is important to include the effect of virtual mechanism. 
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This issue is discussed by considering the special case of 2+1-photon EIT. The discussion 

presented in this chapter, thus, provides an integrated view of coherent pump-probe 

spectroscopy of a medium of dipolar molecules and its comparison with atomic case.  

Chapter-4 presents detailed analysis of coherent pump-probe spectroscopy of Λ 

system with an additional adjacent excited level. The level scheme thus consists of two 

simultaneous Λ resonances with common ground levels and excited by the same pair of 

pump and probe fields, i.e., degenerate double lambda (DDL) resonance [6]. This level 

configuration is the simplest of the four-level systems and is experimentally relevant 

since it occurs naturally in all coherent spectroscopy experiments on D1 and D2 

transitions of alkali atoms owing to the close spacing of excited hyperfine levels. Detailed 

theoretical analysis is performed using relevant Master equation. The probe absorption 

spectrum and dispersion in the absence and presence of Doppler broadening are 

discussed. This analysis shows that the two simultaneously excited Λ resonances result in 

peculiar interference effects in the probe absorption spectrum and dispersion. These are 

illustrated using model four-level DDL scheme formed in D2 transition of 85Rb. In 

particular for stationary atoms we observe the suppression of the sub-natural resonance 

and the possibility of probe amplification under specific field-atom interaction 

parameters. Electromagnetically induced transparency (EIT) in a DDL system is studied 

and the effect of the neighbouring level on the shape, linewidth and position of EIT 

profile is discussed. The discussion is further augmented by the study of six-level model 

as applicable to D2 transition of 85Rb. The analysis presented in this chapter thus provides 

a realistic theoretical description of pump-probe spectroscopy of hyperfine transitions of 

alkali atoms. The chapter is completed with a discussion on an experimental scheme 



Synopsis 
 

xix 

employed for dressed state spectroscopy of DDL system in a Doppler broadened medium 

of 87Rb atoms using two commercial single mode external cavity diode lasers. The 

experimental results are discussed in the light of the theoretical model [11]. 

Chapter-5 presents a detailed analysis and discussion on the phenomenon of 

amplification without inversion (AWI) [4] observed in the DDL system of Chapter-4. It is 

shown here that a four-level DDL system under specific conditions can exhibit AWI 

without the need of incoherent pumping [10]. The dependence of AWI on atom-field 

interaction parameters and spontaneous emission rates is investigated. It is observed that 

the AWI resonance can be tuned in a broad frequency range by varying pump detuning 

and its strength is maximized when the detuning is half the frequency separation between 

excited levels. AWI is observed to be critically dependent on the low frequency 

coherence established between the pair of ground levels and is observed to persist even 

after the inclusion of Doppler averaging. Approximate analytical expression for probe 

absorption is derived to corroborate the numerical results and to discuss the contrasting 

behavior, i.e., absorption vs. AWI, in the model DDL system in D1 and D2 transitions of 

87Rb. The discussion on AWI is further augmented using quantum jump formalism, 

which provides useful insight into the underlying mechanism responsible for 

amplification.  

Chapter-6 deals with theoretical analysis of interference effects in general four-

level configurations, i.e., tripod system [14] and N-resonance [3,10], driven by three 

coherent fields, i.e., pump, probe and control lasers, from the point of view of controlling 

of the coherent dynamics and its manifestations. For the tripod system, the behaviour of 

the pair of EIT resonances as a function of laser-atom interaction parameters is 
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investigated with an objective of controlling the EIT linewidths [14]. In case of N-

resonance, we discuss issues pertaining to the inversion in dressed states, observation of 

more than one transparency window and switching between two different regimes of 

coherent laser atom interaction: EIT and EIA, by controlling the laser parameters. These 

effects are attributed to the population trapping in the dark state, competition between 

inherent Λ and V systems and transfer of coherence. The role of spontaneously generated 

coherence (SGC) on the linear and non-linear response of N-system is investigated, and 

the transformation of EIA into EIT and enhancement of Kerr nonlinearity along with 

suppression of absorption are discussed. On the experimental front, a set-up developed 

for realizing EIT resonance in N-system in Doppler broadened Rb atoms is discussed. 

Experimental results on EIT in N-resonance and its comparison with EIT in Λ system 

show that the EIT signal in N-resonance is significantly narrower than that in a Λ system. 

This observation is in agreement with the observation that N-resonance is superior to a Λ 

resonance, which makes the former system more attractive for applications relating to 

time and frequency standards. 

Chapter-7 deals with the investigations of laser phase fluctuations [15] on the 

coherent dynamics of four-level systems with N-resonance as an example. N-resonance 

has been chosen specifically for these studies since the ‘dark’ resonances associated with 

it are of particular importance for atomic frequency standards. An important issue that 

has a direct bearing on the experiments is how finite bandwidths of the driving lasers 

affect the steady state as well as the time dependent spectroscopic properties of N-

resonance. While such studies in three-level configurations have been done extensively 

[15] and are shown to have pronounced effects on the linewidths of the EIT and CPT 
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resonances, very little work is reported on N-resonance, probably due to the complex 

configuration of levels and coupling fields. The present chapter addresses this very 

problem employing the master equation approach. We assume here that the finite 

bandwidths arise from the phase fluctuations of the laser fields, the statistics of which is 

described in terms of the Wiener-Levy diffusion model. We derive an exact master 

equation for phase averaged atomic density operator using the theory of multiplicative 

stochastic processes. Numerical results for the steady state and time dependent 

populations are obtained for 3-photon and 2+1-photon resonance conditions for finite 

bandwidth of lasers and cross-correlations. In a similar manner the effect of phase 

fluctuations on the EIT and EIA resonances has been investigated [10]. We observe that 

in general the phase fluctuations tend to broaden and even destroy the sharp resonances, 

and dampen the Rabi oscillations; however the extent of this effect is critically dependent 

on the phase fluctuations associated with the three fields. It is also found that the 

introduction of cross-correlation helps to revive the coherent behaviour to some extent, 

albeit depending on correlation between specific pairs of coherent fields.  

Chapter-8 is devoted to exploratory investigations on the observation of negative 

refractive index in four-level systems interacting with three coherent fields, a probe, a 

control and a rf field [8,10]. In the framework of Master equation and Classius-Mossotti 

relation, we obtain relative permittivity and permeability for a dense medium of such 

atoms. Analysis reflects the existence of probe frequency domains where permittivity and 

permeability can become simultaneously negative. The use of dispersion property of the 

negative refractive index to control the group velocity of the probe beam from subluminal 
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to superluminal is also discussed. Importance of coherent preparation in achieving 

negative refractive index in the optical frequency domain is highlighted in this work. 

Finally the important conclusions of the present study and scope for future work 

are briefly summarized in Chapter-9. 
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CHAPTER 1 

INTRODUCTION 

 

Coherent control is one of the leading themes of quantum optics research that is 

rich in new and counter-intuitive phenomena. The control strategies here are derived 

from the phenomena of quantum coherence and interference established in multilevel 

atomic systems driven coherently by two or more electromagnetic fields. In particular, 

the control of optical response of an atomic/molecular medium and manipulation of light 

propagation through such a medium has received considerable attention [1-4]. Some of 

the best known examples of this research are Autler-Townes (AT) splitting [5-9], 

coherent population trapping (CPT) [10-13], electromagnetically induced transparency 

(EIT) [14-39], electromagnetically induced absorption (EIA) [40-52] and lasing without 

population inversion (LWI) [53-79]. These phenomena are characterized by ultra-narrow 

linewidths, and modified linear and nonlinear susceptibilities. While on one hand these 

phenomena help to understand the subtle quantum effects in laser-atom interactions, they 

on the other hand provide useful platform for development of quantum technologies, e.g., 

frequency stabilizer [80-82], miniaturized atomic clock [83-87], precision magnetometer 
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[88-91], laser cooling [92,93] and quantum information processing [94,95]. In very recent 

years the research in this area has expanded in several new and exotic directions which 

include for example, subluminal and superluminal light propagation [96-114] and search 

for systems exhibiting negative refractive index [115-131]. 

The main objective of this thesis is to investigate the phenomenon of quantum 

coherence and interference in optical processes with the objective of achieving control of 

the interaction between atomic or molecular systems and electromagnetic fields. This 

chapter discusses briefly the basic physics underlying these optical phenomena and 

provides a perspective of their applications. The discussion presented here forms the 

basis for research work presented in the subsequent chapters.  

 

1.1 Coherence and Interference in Atom-Field Interaction 

Coherence is fundamental to the quantum optical phenomena. An atomic system 

interacting with a coherent electromagnetic field retains a distinct phase relationship with 

the field as long as the incoherent processes, i.e., decays due to spontaneous emission or 

collisions, do not override the atom-field interaction dynamics. The problem then can be 

addressed in the framework of quantum mechanics, where superposition and interference 

play an important role. The essential features of this quantum description are usually 

discussed by considering a finite-level atom interacting with a classical electromagnetic 

field. Such idealized −n level systems can be realized experimentally by identifying 

suitable hyperfine levels or Zeeman sublevels in simple atoms, e.g., alkali atoms. Two- 

and three-level atomic systems are paradigm of these studies, although general −n level 

systems )3( >n  provide opportunities to study more complex quantum dynamics as we 
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see later. The energy levels and atom-field interaction parameters relevant for the 

discussion of two- and three-level atoms are schematically shown in Fig. 1.1 and 1.2 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quantum mechanical framework necessary for description of finite-level 

systems interacting with two or more lasers and with vacuum of radiation field is 

explicitly developed in Chapter-2. In what follows, the essential results concerning 

coherence and interference in atomic media and pertaining to the scope of this thesis are 

reviewed. 

Fig. 1.1: Two-level atom coherently 
driven by a laser field of Rabi 
frequency α . Δ  is the detuning of 
laser from atomic transition frequency. 
γ  is the radiative decay rate associated 
with 12 →  transition. 

Fig. 1.2: Level scheme representation of (a) Λ  (b) V and (c) Ξ systems. Here 
cΔ ( pΔ ) and cα2 ( pα2 ) are respectively the detuning and Rabi frequency of the pump 

(probe) laser field and ijγ  is radiative decay rate associated with ji →  transition. 
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1.1.1 Rabi Oscillations and Dressed States 

For a two-level atom interacting with classical electromagnetic field, 

)cos(0 tEE ω= , the atom-field dynamics is described by Hamiltonian, 

VHH o += ,                                                                                                           (1.1) 

where oH  is the field-free Hamiltonian and EdV •−=  is the interaction in electric 

dipole approximation. Here E  and ω  are respectively the electric field and frequency of 

radiation field, and d  is the transition dipole moment associated with 21 →  

transition. Atom-field dynamics is then determined by the Rabi frequency )2( α  and 

detuning (Δ ) defined as 

=/2 Ed •=α ,     ωω −=Δ 21 ,                                                                                (1.2) 

where 21ω  is the atomic transition frequency. For a loss-less system, the ground and 

excited level populations exhibit out of phase oscillations, i.e., Rabi oscillations. The 

oscillation frequency is given by the generalized Rabi frequency defined as 

2/122 )4( Δ+=Ω αR .                                                                                                 (1.3) 

Incoherent decay ( γ2 ) results in damping of the Rabi oscillations, and for γα >  

coherence can persist over several Rabi periods. The model of two-level atom interacting 

with monochromatic radiation field also permits to introduce the dressed states ±ψ , i.e. 

the eigen states of the atom + field Hamiltonian H , of energies ±ε  such that 

=±ψ 2
2

1
2 R

R

R

R

Ω
Δ±Ω

Ω
ΔΩ ∓∓ ,           2/)( RΩ±Δ=±ε .                                (1.4) 

The dressed states can be observed using the techniques of coherent pump-probe 

spectroscopy. As a part of research work reported in this thesis, suitable experimental 
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techniques were developed to identify relevant dressed states corresponding to coherent 

interaction of a strong pump with hyperfine levels of D2 transition in alkali atoms.  

 

1.1.2 Autler-Townes Splitting 

Autler-Townes (AT) splitting refers to the splitting of the absorption line due to 

dressing of an atom by a coherent radiation field [5]. Three-level systems as shown in 

Fig. 1.2 provide the requisite platform for observation of AT splitting. For example, in 

Fig. 1.2(a), transition 32 →  is dressed by a strong pump (control) laser of Rabi 

frequency cα2  and the resulting dressed states are interrogated by a weak probe laser that 

is scanned in the vicinity of 31 →  transition. Probe absorption spectrum is then a 

doublet corresponding to the dressed state transitions ±→ ψ1 . Frequency separation 

between these two resonances is given by 2/122 )4( ccR α+Δ=Ω  (cf. Eq. (1.4)) and their half 

widths are 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω
Δ+

=Γ±
R

cD ∓1
2

3γ ,                                                                                          (1.5) 

where 32313 γγγ +=  and D  is a measure of Doppler width of the medium [6]. One thus 

observes that for =Δ 0, both resonances have equal linewidth ( −+ Γ=Γ ), while for 

α>>Δ  one of the resonances can be made of sub-Doppler or even sub-natural 

linewidth. AT splitting provides a useful way to obtain the properties of an 

atom/molecule interacting with near resonant radiation [1-6]. Recently AT doublet has 

also been studied in reference to high order nonlinear processes [7], quantum beats and 

quantum well structures [8] and in molecular systems [9]. The prospect of obtaining 
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ultra-narrow linewidth (cf. Eq. (1.5)) has been employed for development of tunable 

atomic frequency offset locking (AFOL) schemes [80-82].  

 

1.1.3 Coherent Population Trapping 

Susceptibility )(χ  of a two-level atomic medium interacting with a 

monochromatic field is largely dominated by absorption, i.e., Im )(χ  [1-4]. Thus this 

system is unsuitable for applications in nonlinear optics. A three-level system interacting 

with two coherent fields gives rise to a range of coherent phenomena including CPT and 

EIT which suppress the resonant absorption [10-39]. The result is a very large dispersive 

optical nonlinearity which can also be used to control the propagation of light through the 

medium. The difference between AT and CPT/EIT is closely connected with the 

difference in the behaviour of two- and three-level systems undergoing resonant 

excitations. While AT doublet is related only to the development of atomic coherence, 

EIT and CPT are the results of quantum interference between absorption pathways in a 

multilevel system [10-19]. It is therefore possible to discriminate AT and EIT on the 

basis of Fano type interference in the latter mechanism [20] and threshold coupling [21]. 

A significant feature of EIT and CPT is that they afford sub-natural resolution even in a 

Doppler broadened medium [22-32].  

The basic principle of CPT lies in the use of laser-induced coherences to generate 

a dark state formed from the coherent superposition of two long lived bare atomic states 

[10-12]. Consider for example a three-level system in Λ  configuration (cf. Fig. 1.2 (a)). 

When cp αα ~ , both the fields participate in the dressing of the medium and the 
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diagonalization of the total Hamiltonian results into the formation of a bright (coupled) 

state C  and a dark (non-coupled) state NC , i.e.,  

2)/(1)/( TcTpC αααα += ,                                                                            (1.6a) 

2)/(1)/( TpTcNC αααα −= ,                                                                         (1.6b) 

where 2/122 )( pcT ααα += . The dark state is uncoupled from the excited state, i.e. 

03 →• NCEd  and therefore after being pumped into this dark state, atoms cannot be 

excited by either of the laser fields. This optical pumping process removes all the 

population from C  and traps it into NC  eventually. This results in the formation of an 

ultra-narrow ‘dark’ resonance; where the word ‘dark’ is used to denote its non-absorptive 

nature. These dark resonances are of particular interest for several applications such as 

efficient nonlinear processes [13], amplification without inversion (AWI) [53-79], atomic 

frequency standards [80-91], laser cooling [92,93], quantum information processing 

[94,95] and control of light propagation within a medium [96-114].  

 

1.1.4 Electromagnetically Induced Transparency 

EIT is a special case of CPT where the probe field is much weaker compared to 

the pump field. It represents cancellation of linear susceptibility at the two-photon 

resonance condition ( cp Δ=Δ ) via destructive quantum interference; thus rendering an 

otherwise optically opaque medium transparent [14-18]. The classical analogy of EIT 

with coupled harmonic oscillators has been demonstrated by Alzar et al. [19]. EIT can be 

described in terms of two processes that work in tandem to create transparency in the 
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media: formation of two dressed states by the strong pump and destructive interference in 

the probe absorption to these states. For cp αα << , Eq. (1.6) can be simplified to obtain 

NCCNC Tpc ~/][1 ααα += ,                                                                        (1.7) 

implying that the ground state is decoupled from the excited state. Atoms prepared in this 

state do not interact with the probe field and hence its absorption in the media vanishes. 

Though EIT and CPT appear to be interrelated, there are some distinct differences 

between the two processes. CPT is associated with the change in populations only, while 

EIT depends on the optical response of the medium. Further EIT is an instantaneous 

process (time scale ~ cα/1 ), while the response time of CPT is much slower i.e. of the 

order of several radiative lifetimes or optical pumping timescales [14-16]. 

In case of a Doppler broadened atomic medium, EIT may be thought of as arising 

from the AT doublets corresponding to atoms of velocity v  which modifies the pump 

detuning cΔ  to v•+Δ kc  due to Doppler shift where k  is the wave vector. Consider for 

example the case when 0=Δc . For zero velocity group of atoms, the AT doublet is 

symmetric with respect to 0=Δ p . For all other velocity groups due to Doppler shift one 

of the AT components is drawn arbitrarily close to the central frequency while the other 

one is pushed away. The averaging of all these AT doublet spectra results into an ultra-

narrow transparency window at 0=Δ p , which corresponds to EIT resonance. This 

representation of EIT is convenient in arriving at the linewidth of EIT in a Doppler 

broadened atomic medium as given by Javan et al. [35-37].  

For a three-level Λ system under weak saturation the half width of EIT is given 

by 2/1
21 ]/)1(2[ γα scEIT +Γ=Γ  with 3231 γγγ ==  and 2

21
2 2/ Dc Ws Γ= γα  where DW2  is the 
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Doppler width of the medium [34-37]. Importance of 21Γ , which determines the 

coherence lifetime of the system, is clear from this expression. Note here that the Λ  

system has minimum coherence dephasing rate compared to V and Ξ  systems, and as a 

consequence ultra-narrow linewidth EIT can be obtained in a Λ  system compared to the 

other configurations [38,39]. Interest in EIT stems from its wide range of applications in 

enhancement of nonlinear processes [14-16], quantum information control [17], LWI [53-

79], AFOL [80-82], time and frequency standards [83], laser cooling and trapping [93], 

Bose-Einstein condensate [93], super- and sub-radiance [95], slowing [96-98] and storage 

[99] of light, and realization of negative refraction [126-131].  

 

1.1.5 Electromagnetically Induced Absorption 

In contrast to EIT, EIA corresponds to the enhanced absorption of light around 

resonance due to constructive quantum interference between the excitation amplitudes 

[40-50]. There are two underlying physical mechanisms for EIA, transfer of coherence 

(TOC) and transfer of population (TOP) [41]. In a closed system when the pump and 

probe beams have different polarizations, TOC gives rise to EIA. Here EIA is associated 

with creation of light induced Zeeman coherences in the excited state and their transfer to 

ground state by spontaneous emission [40,41]. This happens in the absence of ground 

state population trapping under the condition that lasers couple two degenerate atomic 

levels and that the angular moment of the excited state is higher than that of the ground 

state [41]. EIA can also arise when TOP mediated by collisions from the ground state to a 

reservoir (a nearby level that does not interact with the pump) is greater than that from 

the excited state. Such EIA is observed in an open system, when the pump and probe 
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beams have same polarizations [42]. It is important to note that unlike EIT, EIA can only 

occur in systems which behave as open Λ  systems and in the absence of population 

trapping [41-43]. Such systems can show both positive and negative dispersion. Further, 

absorption in these systems is reported to have a peak at the line centre accompanied with 

negative dispersion [43].  

Most of the studies on EIA and conversion of EIT to EIA have been done using 

two-level degenerate systems and N- system [40-44]. In these contexts, the effect of 

Doppler broadening, coupling powers and temporal evolution of EIA have been studied 

both theoretically and experimentally [44-49]. EIA phenomenon has also been 

investigated to realize negative group velocity of light producing superluminal light 

pulses which may be helpful in storage of light [50-52].  

 

1.2 Role of Incoherence 

Incoherence in the laser-atom interaction dynamics is usually introduced by two 

distinct ways. First is the incoherent processes such as spontaneous emission and 

collisional decays associated with the medium, while the second is a fallout of intrinsic 

phase fluctuations associated with the driving field which gives it a finite bandwidth. 

Generally incoherence leads to destruction of atom-field phase relationship and adversely 

affects the quantum coherence and interference established in an atomic medium.  

 

1.2.1 Collisional Relaxation 

The collisional relaxation processes encountered in a typical vapour cell 

experiments are of two categories: phase changing and velocity changing collisions. As 
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the name suggests phase changing collisions cause change in the phase of atomic states 

thereby preventing the maintenance of coherent excitation. Therefore these collisions 

adversely affect EIT/CPT linewidths [132-136]. To counter this effect buffer gas and 

anti-relaxation coatings are used in the experiments. Buffer gas prevents relaxation by 

slowing down the diffusion of atoms thereby increasing their transit time across the laser 

beam. In contrast the velocity changing collisions can produce sharper EIT/CPT signals 

[136]. Velocity changing collisions are elastic collisions which can reduce/increase the 

velocity of atoms, thereby shuffling them between different velocity groups spanning 

over the Doppler profile. This increases the transit time and hence the Raman coherence 

lifetime. Further this causes more atoms to participate in coherence build up thereby 

aiding optical pumping. The narrowing of spectral lines by these collisions is termed as 

Dicke narrowing and is more pronounced when the mean free path between velocity 

collisions is smaller than the wavelength of light [137]. 

 

1.2.2 Spontaneously Generated Coherence 

Spontaneous emission is a major limiting factor in the observation of coherent 

processes [1]. However a counter-intuitive phenomenon called spontaneously generated 

coherence (SGC) occurs in a degenerate or near degenerate level system where the 

interference between spontaneous emission channels from the same excited level to 

closely spaced ground levels or from two close lying excited levels to a ground level 

gives rise to an additional coherence in the medium [138]. SGC arises due to interaction 

of the closely spaced levels with the vacuum of electromagnetic field and has marked 

effect on the dynamics of a system. The essential conditions for obtaining SGC are 



Chapter 1 

12 

closely spaced level structure and non-orthogonal dipole matrix elements. SGC has been 

investigated in context of disappearance of dark state [138], spectral line narrowing and 

enhancement [139], dynamically controlled photonic band-gap structure [140], enhanced 

Kerr nonlinearity [141], charged quantum dots [142], AWI [143] etc.  

 

1.2.3 Laser Phase Fluctuations 

In coherent laser matter interaction the fields are idealized as monochromatic and 

pure sinusoid. However, in practice even the most stable laser is not truly monochromatic 

since random fluctuations in the field are a source of finite bandwidths. Considerable 

work has been reported in the literature on the effect of finite bandwidths of driving 

lasers on the coherent dynamics of two- and three-level systems [144-156]. In these 

works laser phase fluctuations are modeled as Gaussian white noise and theoretical 

models based on multiplicative stochastic processes have been developed to analyze the 

effect of bandwidths of lasers and any cross-correlation that may exist between the pump 

and probe fields [144-160].  

For three-level systems it has been observed that the phase fluctuations in general 

broaden or destroy the coherence established in the medium [144-150]. The cross-

correlation between the pump and probe fields can be effectively used to recover the 

coherent behavior, however, this recovery is dependent on the type of three-level 

configuration whether Λ , V or Ξ  [146]. These studies point to the possibility of 

observing quantum coherence and interference based phenomena with finite bandwidth 

lasers provided the pump and probe beams are generated from the same laser source. 

Similar studies in the context of four-level configurations are scanty [157,158] and that 
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provides opportunities to investigate these issues in the context of complex quantum 

dynamics. 

 

1.3 Scope and Perspectives 

Quantum coherence and interference based phenomena have gone beyond the 

proof of principles. They have been increasingly employed in the development of 

quantum devices and also to explore newer frontiers of physics. A brief review of these 

areas pertinent to the present thesis is covered in this section.  

 

1.3.1 Ultra-Precision Measurements 

The narrow dark resonance generated in EIT and CPT provides a useful platform 

for ultra sensitive measurements which are of great interest in the field of metrology [83-

91]. In the context of time and frequency standard, which is defined in terms of the 

separation between ground hyperfine levels of 133Cs (9.192631770 GHz), ultra-narrow 

EIT/CPT resonances generated in room temperature Cs vapour cells provide an excellent 

reference frequency for the development of miniaturized atomic clock [85-87]. There 

exist two major advantages in using CPT/EIT for atomic clock development. Firstly, 

these clocks are passive frequency standards, i.e., they do not require microwave cavity 

for excitation of the ground hyperfine levels of 133Cs, unlike the Cs vapour or even cold 

atom fountain clocks. This passive approach supports substantial miniaturization of the 

device. Secondly they afford significant reduction in the light shift under appropriate 

conditions of frequency modulation. EIT/CPT based clocks are compact and portable. 

Typical frequency stability reported for this type of clocks is ~3×10−11 (at 1 s of 
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integration time) [85], which make them useful in communication and in improved global 

positioning systems (GPS). Also a micro-fabricated atomic clock with a volume of 9.5 

mm3, fractional frequency instability of ~2.53×10−10 (at 1 s of integration time) has been 

demonstrated by Knappe et al. [87]. 

The other application is ultra-sensitive magnetometers based on the measurement 

of Zeeman shifts in atomic spectra and correlation of these shifts with the local magnetic 

field [88-91]. The typical Zeeman shifts in alkali atoms is ~ 4-6 Hz/nT. Experimental 

measurement of these Zeeman shifts using ultra-narrow dark resonances is central to the 

development of ultra-sensitive atomic magnetometer [88-91]. A chip scale Rb 

magnetometer with a sensor of 12 mm3, sensitivity of 50 pT/Hz1/2 at 10 Hz bandwidth 

has been demonstrated by Schwindt et al. [90]. Theoretical limit of sensitivity of such 

magnetometers is ~1 fT/Hz1/2. Ultra sensitive magnetometers offer numerous applications 

in medical field, measurement of planetary magnetic field, earthquake detection, tests of 

the fundamental symmetries of nature and many more [91].  

Yet another important application in the domain of frequency standard is atomic 

frequency offset locking (AFOL) where an ultra-narrow EIT/CPT resonance is generated 

using a pair of pump and probe lasers satisfying two-photon resonance condition in D1 or 

D2 transition of alkali atoms and the probe laser is then stabilized on the EIT/CPT 

resonance. This scheme establishes a fixed frequency offset between probe and pump 

lasers, and the value of the offset is exactly equal to the transition frequency between two 

ground levels of the Λ system for example. Frequency stability of EIT/CPT based AFOL 

schemes is much superior to that of the conventional master-slave laser systems [80-82]. 

 



Introduction 

15 

1.3.2 Amplification without Inversion 

The conventional population inversion condition for achieving lasing action arises 

from the equilibrium between stimulated absorption and stimulated emission processes. It 

is in general very difficult to achieve inversion condition at large frequencies, e.g. in 

extreme UV and X-ray regions, due to cubic dependence of spontaneous emission rate on 

frequency. The requirement of inversion can be circumvented by coherent preparation of 

atomic media and utilizing the non absorptive behaviour of EIT and CPT phenomena, 

and thereby making it possible to achieve AWI and LWI. AWI refers to observation of 

probe laser amplification in an atomic system where a coherent pump laser acting on one 

transition circumvents the population inversion condition for an adjoining transition 

connected by the weak probe [53-79]. LWI refers to the process of AWI plus an 

additional cavity to achieve lasing action. Interest in AWI and LWI stems from their 

potential application in generation of low threshold short wavelength lasers [53-59]. 

Further these radiation sources are expected to have interesting statistical properties such 

as narrower intrinsic linewidths and amplitude squeezing [60-65]. Also of interest are the 

issues that include LWI in quantum electrodynamics [66], nanostructures [67], and super- 

and sub-radiance [68].  

Several schemes for the observation of AWI and LWI have been proposed [53-

61] and successfully experimented [69-72]. It is widely accepted that inversionless gain 

in these systems is a consequence of many mechanisms [53-61]. The first one is related to 

recoil induced lasing where the asymmetry between shifts of stimulated emission and 

absorption is used to obtain frequency regions where the emission process dominates the 

absorption in the absence of population inversion. The second one is the inversion in the 
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dressed state or CPT basis [54-60]. The third mechanism is devoid of any hidden 

inversion and is a direct consequence of quantum interference. AWI in this situation 

arises due to the excitation of low frequency coherence in the medium. There exist many 

studies concerning the role of incoherent pumping [74-76] that compensates for the 

cavity and other losses, and the effect of homogenous as well as inhomogenous 

broadening [77-79] of the active medium in the achievement of the inversionless gain.  

 

1.3.3 Slow, Fast and Stopped Light 

Quantum interference phenomena give rise to steep change in dispersion of a 

medium, i.e, )Re(χ  in the vicinity of the ensuing resonances. The unusual variations of 

the refractive index )(ωrn  of the medium then can be used to modify the group index 

( gn ) of the medium,  

]/)([)( ωωωω ddnnn rrg += ,                                                                                  (1.8) 

so that the group velocity, gnc /vg = , can be manipulated to achieve fast, slow and 

stopped light [96-114]. Specifically at the EIT condition, the term ωddnr /  can be made 

large and positive thereby giving rise to large group index and generate slowing of a 

pulse traveling in such a medium. A drastic reduction in speed of light has been 

demonstrated by Hau et al. [103]. Ultra slow light has promising applications in 

enhancing the efficiency of nonlinear processes, laser radars, telecommunications, and 

development of optical buffers and adjustable optical delays [103-107]. It is also possible 

to stop a light pulse completely when the group velocity is changing with time. In this 

case the information carried by the pulse is temporarily transferred to the medium 
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[108,109]. Pulses can then be “revived” with their original information intact [108-110]. 

Apart from its application in communications this phenomenon can also be used for 

storage of light [99], in quantum information and computing as ‘atomic memories’ [111]. 

The other promising applications of varying the group velocity are in amplification of 

pondermotive dipole forces [106] and all optical switching [107]. 

On the other hand if the term ωddnr /  is large and negative, for e.g. in an EIA 

media, the group index ( gn ) can become negative [50-52]. This implies that the pulse 

propagation in the medium is much faster than the velocity of light, i.e., cg >v . In other 

words, the anomalous dispersion region can be used for superluminal light propagation 

which may be helpful in communications and storage of light [111-114]. 

 

1.3.4 Negative Refraction 

The fabrication of negative refractive index material, i.e., a medium exhibiting 

negative permittivity and permeability simultaneously, has attracted extensive attention in 

recent years [115-131]. These materials are also termed as left-handed materials (LHMs); 

the name derived from the fact that in such a medium the electric vector, the magnetic 

vector and the wave vector of a plane monochromatic wave form a left-handed 

coordinate frame. Since the pioneering work of Veselago [115,116], interest in these 

systems has grown enormously owing to the possibility of performing unusual and non-

intuitive optics. Some of the exotic applications of LHMs are sub-wavelength imaging, 

reversed Doppler shift, reversed Snell’s law, obtuse angle for Cherenkov radiation, 

photon tunneling, electromagnetic cloaking and subluminal light propagation [115-121]. 

Most of the LHMs have been artificially realized in the microwave region by using 
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metallic split ring resonators and metallic wires, photonic crystals with periodicity much 

smaller than or of the order of the wavelength of the electromagnetic radiation [122,123].  

Coherently driven multi-level atomic systems are promising and simpler 

candidates for realization of negative refractive index in the optical region [126-131]. 

With optimum choice of Rabi frequencies and detunings, it is possible to achieve large 

negative refractive index over a wide probe frequency band. EIT based systems are useful 

for cancelling the absorption in the medium [126-131]. Further the dispersion properties 

of such a medium can be used to control the group velocity of the probe beam from 

subluminal to superluminal [114]. 

 

1.3.5 Enhancement of Nonlinear Processes 

The growing interest in enhancement of nonlinear processes stems from its 

several applications such as four-wave mixing, gigantic Kerr nonlinearities, generation of 

highly efficient optical parametric oscillator and quantum information processing [161-

172]. It is interesting to note that while EIT is synonymous with the vanishing of linear 

susceptibility, the nonlinear susceptibility of the medium can undergo constructive 

interference which improves the conversion efficiency in four wave mixing [161,162]. 

The increased efficiency of nonlinear mixing processes is of interest in efficient 

frequency up-conversion, phase conjugation, control of phase matching and coherent 

Raman scattering [161-166]. It plays an important role in the generation of squeezed light 

when the intensity fluctuations in the probe are transferred to fluctuations in conjugate 

beam, resulting in a high intensity squeezed light [167,168]. It also concerns the area of 

ultra-cold atoms and Bose-Einstein condensates where standard quantum limit is an 
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important experimental factor [169,170]. An important nonlinear phenomenon is Kerr 

nonlinearity where the phase of an optical field is proportional to the intensity of another 

field. This is directly related to large cross phase modulation (XPM) [171,172]. Kerr 

nonlinearity offers numerous applications in information processing, generation of optical 

solitons, nondemolition measurements, quantum logic gates and generation of entangled 

states [164-166].  

The major challenge in the observation of resonant nonlinear processes is that the 

nonlinear susceptibilities are much weaker than the linear susceptibilities. To this end the 

phenomena of EIT comes to help, since near the EIT resonance the linear susceptibility is 

completely cancelled. Consequently there is reduced resonant absorption, optimized 

phase matching condition due to zero dispersion and constructive interference for 

nonlinear susceptibility [161-166]. 

 

1.4 Organization of the Thesis 

The present thesis deals with coherent dynamics of multi-level atomic/molecular 

systems and its manifestation in the observation of several of the above referred 

phenomena, i.e., EIT, EIA, AWI and negative refractive index, together with the issues 

connected with SGC, Kerr nonlinearity and the effect of finite bandwidths of driving 

fields. While major part of the thesis is concerned with theoretical studies, some work on 

experimental coherent pump-probe spectroscopy is also reported here. The investigations 

carried out in this thesis are organized in the following manner: 

Chapter-2 provides the discussion on the master equation framework used for 

addressing the interaction of multi-level system with coherent multi-frequency 
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electromagnetic field. An explicit derivation of the semi-classical master equation in 

electric dipole and rotating wave approximations is discussed here for a three-level 

atomic system interacting with two external coherent fields and vacuum of radiation 

field. The treatment is generalized for four-level schemes of interest. Further 

generalization is achieved in the context of three-level molecular systems with permanent 

dipole moments for examining quantum coherence and interference in such systems.  

Chapter-3 deals with coherent pump-probe spectroscopy of three-level molecular 

Λ system with permanent dipole moments. Motivation for these studies is provided by 

the very recent interest in EIT in the molecular domain. We explicitly show here the 

absence of amplification in 2+2-photon process for reversal in the signs of permanent 

moments, as reported earlier [173]. The effect of permanent dipole moments on the 

observation of EIT and its connection to the issue of subluminal and superluminal light 

propagation is analyzed. The role of virtual mechanism in 2+1-photon EIT is further 

examined. This chapter thus provides an integrated view of coherent pump-probe 

spectroscopy of a medium of dipolar molecules and its comparison with atomic case. 

Chapter-4 presents detailed analysis of coherent pump-probe spectroscopy in Λ  

system with an additional adjacent excited level. The level scheme thus consists of two 

simultaneous Λ  resonances with common ground levels and excited by the same pair of 

pump and probe fields, i.e., degenerate double lambda (DDL) resonance. Theoretical 

results are obtained for probe absorption spectrum and dispersion in the absence/presence 

of Doppler broadening to observe peculiar interference effects. These are illustrated using 

model schemes in D1 and D2 transitions of 85Rb. The chapter is completed with 

experimental results on the dressed state spectroscopy in a Doppler broadened medium of 
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87Rb atoms. The results of this chapter thus provide a realistic description of pump-probe 

spectroscopy of hyperfine transitions of alkali atoms. 

Chapter-5 presents a detailed analysis and discussion on the phenomenon of AWI 

in the DDL system. It is shown here that a four-level DDL system under specific 

conditions can exhibit AWI without need of incoherent pumping. The dependence of 

AWI on atom-field interaction parameters, spontaneous emission rates, low-frequency 

coherence and Doppler velocity distribution is investigated. Approximate analytical 

expression for probe absorption is derived to corroborate the numerical results and to 

discuss the contrasting behavior, i.e., absorption vs. AWI, for the model DDL systems in 

D1 and D2 transitions of 87Rb. The discussion on AWI is further augmented using 

quantum jump formalism, which provides useful insight into the underlying mechanism 

responsible for amplification.  

Chapter-6 deals with theoretical analysis of interference effects in general four-

level configurations, i.e., tripod system and N-resonance, driven by three coherent fields 

from the viewpoint of controlling of their coherent dynamics and its manifestations. 

Tripod system is studied to demonstrate the observation of ultra-narrow double dark 

resonances. Some specific issues addressed in context of N system include switching 

between EIT and EIA, role of SGC and enhancement of the Kerr nonlinearity. Also 

reported here are the experimental results on EIT in N system and its comparison with a 

Λ  system in a medium of Doppler broadened 87Rb atoms.  

Chapter-7 deals with the investigations of laser phase fluctuations on the coherent 

dynamics of four-level systems with N-resonance as an example. The problem is 

formulated in the framework of master equation and multiplicative stochastic processes 
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and the effect of finite bandwidths of lasers and their cross-correlation on three-photon 

and 2+1-photon resonance is examined. It is observed that the phase fluctuations tend to 

broaden and destroy the sharp resonances, and dampen the Rabi oscillations; however the 

extent of this effect is critically dependent on the phase fluctuations and cross-

correlations associated with the three fields. The effect of phase fluctuations on the EIT 

and EIA resonances is also reported here. 

Chapter-8 is devoted to exploratory investigations on the observation of negative 

refractive index in four-level systems interacting with three coherent fields, a probe, a 

control and a rf field. In the framework of master equation and Classius-Mossotti 

relation, we obtain relative permittivity and permeability for a dense medium of such 

atoms to show the existence of probe frequency domains where permittivity and 

permeability can become simultaneously negative. The use of the dispersion property of 

the negative refractive index to control the group velocity of the probe beam from 

subluminal to superluminal is also discussed.  

Finally the important conclusions of the present study and scope for future work 

are briefly summarized in Chapter-9. 
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CHAPTER 2 

MASTER EQUATION APPROACH TO 

LASER- MATTER INTERACTION 

 

2.1 Introduction 

There exist several approaches to describe the interaction of a finite-level atom 

with radiation field. Conventional Schrodinger equation is valid only when the behaviour 

of interest occurs in time duration much shorter than the level life times. Another 

framework is Bloch equation approach where the relaxation processes are incorporated 

phenomenologically, i.e., longitudinal and transverse relaxations to describe population 

redistribution and damping of Rabi oscillations respectively. Master equation approach, 

which is followed throughout this thesis, treats the interaction of atom with external 

radiation field and the vacuum on the same footing thereby providing the first principle 

description of relaxation processes.  

The master equation, also known as quantum Liouville equation (or Von-

Neumann equation), describes the time evolution of a quantum system while taking into 
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account the effects of environment in terms of reduced density operator. The total system 

of atom and vacuum reservoir (bath) is described by a Hamiltonian in the second 

quantized form whereas the external fields are assumed to be classical. The technique of 

projection operators is used to eliminate the field modes and obtain the master equation 

for reduced atomic density operator. Reduced density operator corresponds to a sub-

system of interest (here atomic system) of a larger system (atom + reservoir) obtained by 

tracing over the reservoir.  

Master equation formulation is developed for a single atom within the space of 

some modest number of atomic states, i.e., essential state basis. The electromagnetic 

radiation field is considered classical and monochromatic. While a realistic source may 

have phase as well as amplitude fluctuations, we defer the discussion relating to 

incorporation of these effects to later chapters. The interaction of external radiation field 

with atoms is considered in the electric-dipole approximation and rotating wave 

approximation (RWA). Together with external field, the atomic system also interacts 

with the vacuum of radiation, i.e., the reservoir (bath). It is considered that reservoir is 

very large and its state is not affected by atomic coupling. Thus the reservoir density 

operator is time independent. Atoms and the reservoir are considered to be initially 

uncorrelated. This refers to adiabatic approximation; the consequence of which is that the 

state of the atomic system depends only on the instantaneous values of Hamiltonian 

matrix elements and not on the entire history of excitation. The analysis is performed in 

the Born approximation, i.e., assuming that the coupling between the atom and reservoir 

is weak and the relaxation time of the reservoir is much faster so that any correlation 

between the two is quickly lost. Thus the reservoir essentially does not change the state of 
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the atom but only produces a minor time dependent perturbation of initial population 

distribution. Finally the relaxation processes are considered to be Markovian, i.e., they 

have infinitesimally brief correlation times. 

 

2.2 Derivation of the Master Equation for Three-level Systems 

2.2.1 Hamiltonian 

We consider a closed three-level atomic system in Λ configuration as shown in 

Fig. 1.2(a). Here two ground levels 1  and 2  are connected with an excited common 

level 3  by means of two near-resonant monochromatic radiation fields of frequencies 

1Ω  and 2Ω . The energy of level i  is iω  and jiij ωωω −=  is the frequency of 

ji →  transition. The total Hamiltonian of the system is given by  

)(tHHHHH extABBA +++=  ,                                                                              (2.1) 

where AH , BH , ABH  and )(tHext  are the atomic, bath, atom-bath interaction and atom-

field interaction Hamiltonians respectively given in atomic units )1( === ce  as 

ii
i

iA AH ∑=
=

3

1
ω ,       k

k
kkB bbH ∑= +ω ,        EdH AB •−= ,          extext EdH •−= .      (2.2) 

Here jiAij =  are the atomic operators with =∑
=

3

1i
iiA 1. i  is the eigenstate of atomic 

Hamiltonian AH . The atomic operators satisfy the following commutation relation: 

qipjjpiqpqij AAAA δδ −=],[ .                                                                                      (2.3) 

Also the commutation relations of the boson operators +
kb  and kb  are given as 

jkkj bb δ=+ ],[ ,       0],[],[ == ++
kjkj bbbb .                                                                  (2.4)  
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The dipole moment operator is defined as ∑=
ji

ij jidd
,

, where jdidij =  is the 

transition dipole moment of ji →  transition. We choose ijd  to be real. The reservoir 

and external fields are expressed as 

( ) ,.)exp(/2 2/1 CHrkibVkiE kk
k

+∑= ••επ                                                             (2.5)

,.)}(exp{)(
2
1)}(exp{)(

2
1

222111 CHtrkitEtrkitEEext +Ω−−+Ω−−= ••              (2.6) 

where kε  is polarization vector, V is quantization volume, )(tE j  is driving field 

amplitude, k  and jk  are wave vectors, and H.C stands for the hermitian conjugate. 

Spatial variations of fields can be neglected under the dipole approximation to obtain 

( ) ,./2 2/1 CHbVkiE kk
k

+∑= •επ                                                                              (2.7)

.2/].)exp()()exp()([ 2211 CHtitEtitEEext +Ω+Ω=                                                (2.8) 

The atom-bath interaction Hamiltonian is given as 

],.)()([ 3223231131 CHbAAgbAAgH k
k

kk
k

kAB ++∑++∑=                                        (2.9) 

( ) )2,1(,/2 3
2/1 =−= • jdVkig jkkj επ .                                                                (2.10) 

Similarly the atom-field interaction Hamiltonian can be obtained as 

2/].)()()()([ 32232233113113
21 CHAAetEdAAetEdH titi

ext ++++−= ΩΩ
•• .              (2.11) 

extA HH +  expresses the behaviour of atom subjected to an analytically described semi-

classical radiation field. The remaining part ABB HH +  describes uncontrollable random 

fluctuations in the Hamiltonian. ABH  may be simplified under RWA to obtain  

23
*

213
*
1322311 AbgAbgbAgbAgH kkkkkkk

k
kAB

++ +++∑= .                                         (2.12) 
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The physical meaning of RWA lies in neglecting energy non-conserving terms such as 

+
kbA31 , kbA13  etc., i.e., terms involving simultaneous atomic excitation (decay) and 

photon creation (destruction). RWA on extH  is done in the next subsection. 

 

2.2.2 Time Evolution of the System 

The statistical property of atom interacting with two fields is described by density 

operator )(tBA+ρ  which satisfies the following quantum-Liouville equation 

)()](,[/)( tiLtHidttd BABABA +++ =−= ρρ ,                                                              (2.13) 

where L is the Hermitian operator called Liouville operator defined as  

,.......][....... HL =  and   LL =+ .                                                                           (2.14) 

For further analysis we divide the Hamiltonian into two parts: the first )( 1H  is the 

unperturbed part with respect to interaction Hamiltonian extAB HH +  and the second 

)( 2H  is the unperturbed part with respect to atom-bath interaction Hamiltonian ABH , i.e. 

BA HHH +=1 ,             )(2 tHHHH extBA ++= .                                               (2.15) 

We now introduce operators )(1 tσ  and )(2 tσ  defined as 

)0,()()0,()( tUttUt iBAii +
+= ρσ ,      ( =i 1,2).                                                        (2.16) 

Here iU  is the time evolution operator defined as  

)2,1(,)(exp),( =
⎭
⎬
⎫

⎩
⎨
⎧

∫ ′′−= itHtdTtU
t

ii
τ

τ ,                                                         (2.17) 

where T  is the Dyson time operator. The unitary transformations given by this time 

evolution operator lead to two interaction pictures. From Eq. (2.17) we have 

)](exp[),( 11 ττ −−= tiHtU ,                                                                             (2.18a) 
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⎭
⎬
⎫

⎩
⎨
⎧

∫ ′′−=
t

tHtdiTtU
τ

τ )(exp),( 22 .                                                                        (2.18b) 

Differentiating Eq. (2.18b), we obtain 

),()]([/),( 212 ττ tUtHHidttdU ext+−= .                                                              (2.19) 

We now define the operator ),( τtV  as 

)exp(),()exp(),( 121 τττ iHtUtiHtV −= ,                                                                (2.20) 

which gives the following relation between 1U  and 2U , 

)0,(),()0,(),( 112 τττ += UtVtUtU  .                                                                          (2.21) 

Differentiating Eq. (2.20), we obtain 

),,()(/),( 1, ττ tVtiHdttdV ext−=                                                                             (2.22) 

).0,()()0,()( 111, tUtHtUtH extext
+=                                                                         (2.23) 

The formal solution of the Eq. (2.22) can be obtained as  

⎭
⎬
⎫

⎩
⎨
⎧ ′∫ ′−= )(exp),( 1, tHtdiTtV ext

t

τ
τ .                                                                         (2.24)  

Using Eq. (2.16), (2.18) and (2.21) we obtain the relation between )(1 tσ  and )(2 tσ as 

)0,()()0,()( 12 tVttVt σσ += .                                                                                 (2.25) 

Differentiating Eq. (2.25) we recover Liouville equation for )(2 tσ as follows: 

)()](),([/)( 22222 tiLttHidttd ABAB σσσ −=− ,                                                        (2.26) 

where  

)0,()()0,()( 222 tUtHtUtH ABAB
+= .                                                                       (2.27)  

The Liouville equation (2.26) contains variables of both the system of interest (atomic 

sub-system) as well as irrelevant reservoir part. For most statistical results full knowledge 
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of )(2 tσ is not required. Further the reservoir is very large which can neither be 

controlled nor is accessible for direct measurements. Therefore we isolate the relevant 

atomic part )(2 tAσ  from the irrelevant part )(tBσ  by taking trace of )(2 tσ  over reservoir 

variables. The decisive criteria to determine the relevant part is irrelevantrelevant ττ >> , where 

τ  are the relaxation times. The reduced density operator )(2 tAσ  corresponding to the 

atomic subsystem is given as 

))(()( 22 tTrt BA σσ = ,                                                                                              (2.28) 

where BTr  indicates the trace over reservoir variables. We now assume that the reservoir 

is initially at thermal equilibrium at temperature eT . In this case the reservoir follows a 

Boltzmann distribution 

)(exp)]exp(1[)0( jjj
j

jB bb+−∏ −−= λλσ ,                                                                (2.29)  

where eBjj Tk/ωλ =  with Bk  as the Boltzmann constant. It can be easily proved that 

1))0(( =BBTr σ .                                                                                                 (2.30) 

Note that as →eT 0, the average number of photons, 0]1)/[exp(1 →−= kkn λ  for any 

mode. Therefore at →eT 0 it can be assumed that  

}0{}0{)0( =Bσ .                                                                                                (2.31) 

We further assume that the system and reservoir are initially uncorrelated so that  

)0()0()0( 22 BA σσσ = .                                                                                           (2.32) 

The formalism becomes more succinct by introducing two orthogonal projection 

operators P  and Q  defined as 

...... BGTrP =                                                                                                          (2.33) 
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where the basis states are included in P , and Q  is represented by sum over the 

remaining states. The projection operators satisfy the following relations 

0,, 22 ==== QPPQQQPP   and  1=+ QP .                                             (2.34) 

The operator G satisfies =)(GTrB 1. Using Eq. (2.28) we have, 

)())(()( 222 tGtGTrtP AB σσσ == .                                                                        (2.35) 

Thus at time 0=t  we can easily shown that, 

0)0(2 =σP  and )0())0(()0()1( 22 AB GP σσσ −=− ,                                            (2.36) 

where we have used the fact that )0(2Aσ  and )0(Bσ  commute with each other. Choosing 

)0(BG σ=  in Eq. (2.35) and (2.36) we get, 

)()0()( 22 ttP AB σσσ = ,                                                                                          (2.37) 

0)0()0()1( 22 ==− σσ QP .                                                                                   (2.38) 

From Eq. (2.26) we have, 

)}()()())(({/)( 22222 tHtPtQPtPHidttdP ABAB σσσ −+−= .                                (2.39) 

Using the properties of projection operators (cf. Eq. (2.34)) we obtain the equation of 

motion for )(2 tPσ  as 

)()()()(/)( 22222 tQtiPLtPtiPLdttdP ABAB σσσ −−= .                                            (2.40)  

Similarly the equation of motion for )(2 tQσ  can be derived as 

)()()()(/)( 22222 tQtiQLtPtiQLdttdQ ABAB σσσ −−= .                                          (2.41) 

The formal solution of Eq. (2.41) is given as 

.  )()()(exp

)0())(exp()(

12120 21

0 222

1

tPtQLQtLQtdiTdti

QQtQLtdiTtQ

AB
t

AB

t

t

t
AB

σ

σσ

∫
⎭
⎬
⎫

⎩
⎨
⎧ ′∫ ′−−

∫ ′′−=
                              (2.42a) 
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Now since =)0(2σQ 0, the above equation can be simplified to get 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∫ ′′−−=
t

AB

t

AB PQLQtQLtdiTditQ
0

2222 )()()(exp)( τσττσ
τ

.                             (2.42b) 

Using the above expression of )(2 tQσ  in Eq. (2.40), we obtain 

0)()(),()()()(/)( 22
0

2222 =∫++ τστττσσ PQLtUdtPLtPtiPLdttdP AB

t

ABAB ,        (2.43)  

⎟
⎠
⎞

⎜
⎝
⎛ ′∫ ′−= QtQLtdiTtU AB

t
)(exp),( 2

τ
τ .                                                                    (2.44) 

We now apply the Born approximation, i.e., AB ττ <<  where Bτ  is the typical time 

during which correlation with bath subsystem exists and Aτ  characterizes the evolution 

of operator )(tAρ  due to interaction with the reservoir 

1),( =τtU .                                                                                                            (2.45) 

Changing variables of integration in Eq. (2.43) and using Born approximation, we have 

0)()()()()(/)( 22
0

2222 =−−∫++ τσττσσ tPtQLtPLdtPtiPLdttdP AB

t

ABAB .         (2.46) 

Now using Eq. (2.25) and the fact that =)]0,(,[ tVP 0 we obtain 

)0,()()0,()0,()()0,()( 221 tVtPtVtVttPVtP ++ == σσσ .                                         (2.47) 

Differentiating Eq. (2.47), and making use of Eq. (2.22) and (2.46) we can show that 

.0)()()(

)()()](),([)(

11
0

1

1111,
1

=⎟
⎠
⎞

⎜
⎝
⎛ −−∫

+++

τσττ

σσσ

tPtQLtPLd

tPtiPLtPtHi
dt

tdP

AB

t

AB

ABext

                                         (2.48) 

In the interaction picture Eq. (2.12) takes the form 

)0,()0,()( 111 tUHtUtH ABAB
+= ,      )exp()0,( 11 tiHtU −= .                                     (2.49) 

We now list some mathematical identities which are needed for further analysis 
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(a)   ....]],[,[
!2

],[)exp()exp(
2

+++=− BAABABABA λλλλ  

(b)   kkkkkBB nbbTr ′′
+ = δσ })0({  . 

(c)   ( ) kkkkkBB nbbTr ′
+
′ += δσ 1})0({ . 

(d)   0})0({})0({ == +
′

+
′ kkBBkkBB bbTrbbTr σσ . 

Using Eq. (2.3), (2.4) and identity (a) we can easily show that 

kkkk bAtgtUbAgtU 31113111 )()0,()0,( =+ ,   kkkk bAtgtUbAgtU 32213221 )()0,()0,( =+ ,   (2.50a) 

13
*
1113

*
11 )()0,()0,( AbtgtUAbgtU kkkk

+++ = ,  23
*

2123
*

21 )()0,()0,( AbtgtUAbgtU kkkk
+++ = ,  (2.50b) 

where 

])(exp[)( 3111 tigtg kkk ωω −= ,   ])(exp[)( 3222 tigtg kkk ωω −= .                           (2.51)  

Using Eq. (2.50) and (2.51) in Eq. (2.49) we obtain, 

2321313223111 )()()()()( AbtgAbtgbAtgbAtgtH kkkkkkk
k

kAB
+∗+∗ +++∑= .                       (2.52) 

Now since 1ABH  is hermitian and 0}0{}0{}0{}0{ == +
kk bb , it can be shown that 

0)()( 11 =tPtPLAB σ ,  )()0()( 11 ttP AB σσσ = .                                                                     (2.53)  

Using Eq. (2.53) and )0(BG σ=  in Eq. (2.48) we obtain 

0)}()0()()({)](,[/)( 11
0

111,1 =−−∫++ τσσττσσ ttLtLTrdtHidttd ABAB

t

ABBAextA .   (2.54) 

Using Eq. (2.14) we can expand the terms inside the integral of Eq. (2.54) as 

)}.()()()0()()()0()(
)()()0()()()0()()({

)]()0(),([,)([
)}()0()()({

111111

111111

111

111

tHtHttHttH
tHttHttHtHTr

ttHtHTr
ttLtLTr

ABABABABABAB

ABABABABABABB

ABABABB

ABABABB

ττσσττσσ
τσσττσστ

τσστ
τσστ

−−+−−−
−−−−−=

−−=
−−

   (2.55) 

The four terms of Eq. (2.55) can be simplified using identities (b) – (e) as follows: 
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It can be shown that as →eT 0, ∞→jλ  and 0→kn . Neglecting those terms in 

Eq. (2.56) which oscillate as )( 3231 ωω −±  and substituting in Eq. (2.55), we obtain 
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We now apply the Markov approximation by choosing time such that 

AB t ττ <<<<  and )/1(),/1( 3231 ωω>>t  so that we can substitute ∞→t . Further in this 

approximation we can write )()( 11 tt AA στσ =−  inside the integral of Eq. (2.54). The 

integrals appearing in Eq. (2.54) are of the type 

)/1()()exp(
0

xiPxdtixt r±=±∫
∞

πδ ,                                                                          (2.58) 

where rP  is the principal value. We now define the decay constants as 

( ) )(1 31
2

131 k
k

kk ng ωωπδγ −∑ += ,         )( 31
2

113 k
k

kk ng ωωπδγ −∑= ,          (2.59a) 

( ) )(1 32
2

232 k
k

kk ng ωωπδγ −∑ += ,         )( 32
2

223 k
k

kk ng ωωπδγ −∑= ,          (2.59b) 

and frequency shifts as 
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k k
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113  ,                (2.60a) 
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n
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ωω32

2
223 .              (2.60b)  

Using Eq. (2.57) – (2.60) in Eq. (2.54), we obtain the equation of motion for )(1 tAσ  as 

{ }
{ } { }
{ } { }

{ } { }
{ } .0)](,[],)([
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132233223123
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(2.61)  
Now we revert back to the original representation, i.e., 
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)exp()()exp()0,()()0,()( 111111 tiHttiHtUttUt AAA σσρ −== + .                                (2.62) 

Thus it can easily shown that, 

.0)](,[)](,[)](,[)](,[
))()(2)(())()(2)((
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12223133321111313331
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(2.63) 

The last four terms of Eq. (2.63) contribute to the first order dispersion force between two 

atoms and hence can be neglected. Thus the master equation of the system is 

).23,32,13,31(;0})()(2)({
)](),([/)(

==+−+
++

ijAtAtAtA
ttHHidttd

iiAijAjiAiiij

AextAA

ρρργ
ρρ

                        (2.64) 

Further the decay terms 13γ  and 23γ  correspond to non-radiative high energy collisions 

which are unlikely in our domain of study. The low energy non-radiative decays 12Γ  and 

21Γ , which correspond to damping between the two dipole forbidden ground states, can 

be added similar to ijγ . Thus we finally obtain, 

.0))()(2)((

))()(2)((
)](),([)](,[)](,[)](,[/)( 333222111

=+−Γ+

+−+
++++

iiAijAjiAiiij

iiAijAjiAiiij

AextAAAA

AtAtAtA

AtAtAtA
ttHitAitAitAidttd

ρρρ

ρρργ
ρρωρωρωρ

  (2.65) 

We now apply the transformation, 

)exp()()exp()( tittit Aρρ −= ,                                                                             (2.66) 

33122121222111 )( AAAA Ω−Ω−Ω+Ω=Ω+Ω= ,                                                  (2.67) 

to obtain the following equation of motion 

−−Δ−Δ−Δ−= )](),([)](,[)](,)[(/)( 24422 ttHitAitAidttd Aextpcp ρρρρ decay terms (2.68) 

where 
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)exp()()exp()(2 titHtitH extext −= .                                                                     (2.69) 

The detunings of the probe and control fields from the respective atomic transitions are 

131 Ω−=Δ ωp ,  232 Ω−=Δ ωc .                                                                            (2.70) 

From the definition of external field Hamiltonian in Eq. (2.11) we have 

},)()()()({

]}[][{
2
1)(

2121

2211

*
2

*
121

3223233113132

titititi

titititi
ext

etEetEetEetE

AeAedAeAedtH

Ω−Ω−ΩΩ

ΩΩ−ΩΩ−

+++

+++−=
                          (2.71) 

Here )exp()( tiEtE jjj ϕ−=  where jϕ  is the phase of the EM field. For now we choose 

)(tE j  to be real with no fluctuations i.e. 0=jϕ . The effect of phase fluctuations is 

discussed separately in Chapter-7.  

Applying RWA in Eq. (2.71) to neglect the rapidly oscillating terms of the form

)2exp( 1tΩ± , )2exp( 2tΩ± , ))(exp( 21 tΩ±Ω± etc. to obtain 

)()()( 322331132 AAAAtH cpext +−+−= αα .                                                            (2.72) 

Here pα2 and cα2  are the Rabi frequencies of pump and control fields defined as 

2/113 Edp •=α ,      2/223 Edc •=α .                                                                   (2.73)  

 

2.2.3 Master Equation for Λ, V and Ξ Systems 

The detailed analysis presented in Sec 2.2.2 can now be used to arrive at the final 

form of the master equation for a three-level Λ  system. Substituting Eq. (2.72) in Eq. 

(2.68) we obtain the relevant master equation as 

).2()2(
)2()2(],[/

11122111122221122221

33322333323331133331

AAAAAAAA
AAAAAAAAHidtd o

ρρρρρρ
ρρργρρργρρ

+−Γ−+−Γ−
+−−+−−−=

 (2.74) 

where oH is the semi-classical Hamiltonian of the system under RWA given as 



Master equation approach to laser-matter interaction 

37 

332232233113 )()()( AAAAAAH pcpcpo Δ+Δ−Δ++−+−= αα .                             (2.75)  

The procedure can be generalized to obtain master equation relevant for V system 

(cf. Fig. 1.2(b)) as 

      ).2()2(
)2()2(],[/

33322333322223322223

33311333312221122221

AAAAAAAA
AAAAAAAAHidtd o

ρρρρρρ
ρρργρρργρρ

+−Γ−+−Γ−
+−−+−−−=

  (2.76) 

The semi-classical Hamiltonian of V system is  

332221123113 )()( AAAAAAH pccpo Δ+Δ++−+−= αα ,                                         (2.77) 

with Rabi frequencies and detunings defined as follows: 

2/113 Edp •=α ,  2/212 Edc •=α , 131 Ω−=Δ ωp , 221 Ω−=Δ ωc .                       (2.78)  

Similarly the master equation for cascade (Ξ ) system (cf. Fig. 1.2(c)) can be obtained as 

).2()2(],[/ 33322333322221122221 AAAAAAAAHidtd o ρρργρρργρρ +−−+−−−=  (2.79) 

The semi-classical Hamiltonian of the system is 

223332232112 )()()( AAAAAAH pcpcpo Δ+Δ+Δ++−+−= αα ,                             (2.80) 

with Rabi frequencies and detunings defined as 

2/112 Edp •=α ,  2/223 Edc •=α ,  121 Ω−=Δ ωp ,  232 Ω−=Δ ωc .                     (2.81) 

 

2.3 Master Equation for Four-Level Systems 

Fig. 2.1 shows the schematic representation of four-level systems, i.e., degenerate 

double lambda (DDL), tripod and N type configurations, investigated in subsequent 

chapters. Master equations relevant for the discussion of atom-field dynamics in these 

cases are given below: 
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2.3.1 Degenerate Double Lambda System  

 Level configuration for this system is given in Fig. 2.1(a). The system consists of 

a pair of ground levels 1 , 2  and a pair of excited levels 3 , 4  that are driven by a 

common pair of pump and probe lasers. The separation between excited levels is 

specified by S . For a given pump (probe) laser intensity there exist two pump (probe) 

Rabi frequencies 12α ( 12β ) and 22α ( 22β ). The master equation for the system is 

).2()2(
)2()2(
)2()2(

)2()2(],[/

33344333344443344443

11122111122221122221

44422444423332233332

44411444413331133331

AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAρAAAAHidtd o

ρρρρρρ
ρρρρρρ
ρρργρρργ

ρρργρργρρ

+−Γ−+−Γ−
+−Γ−+−Γ−
+−−+−−

+−−+−−−=

(2.82) 

The semi-classical Hamiltonian of the system under RWA is given as 

,)(
)()()()(

4413322211

31132322324114142241

AAA
AAAAAAAAHo

δδδ
βαβα

++Δ−+
+−+−+−+−=

                    (2.83) 

Fig. 2.1: Schematic representation of four-level system in (a) DDL, (b) tripod and 
(c) N configuration. Here ijγ  and ijΓ  respectively represent radiative and non-

radiative decay rates associated with transition ji → . The Rabi frequencies 
are in general denoted by iα2  and iβ2 , and detunings are denoted by iΔ and iδ
depending on the system. See text for details. 
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with Rabi frequencies and detunings defined as 

2/241 cEd •=α ,  2/141 pEd •=β ,   2/232 cEd •=α ,   2/132 pEd •=β ,           (2.84) 

 pωωδ −= 411 ,      cωω −=Δ 421 ,       pωωδ −= 312 ,       cωω −=Δ 322 .                (2.85) 

2.3.2 Tripod System  

Level configuration for this system is given in Fig. 2.1(b). The system consists of 

triplet ground state and an excited state interacting with a coherent trichromatic field. The 

Rabi frequencies (detunings) of pump, control and probe beams are 12α ( 1Δ ), 22α  ( 1Δ ) 

and 32α ( 3Δ ) respectively. The master equation for the system has the form 

     ).2(
)2()2(
)2()2(
)2()2(
)2()2(],[/

3332233332

33311333312223322223

22211222211113311113
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ρρργρρργρρ

+−Γ−
+−Γ−+−Γ−

+−Γ−+−Γ−
+−Γ−+−−
+−−+−−−=

  (2.86) 

The semi classical Hamiltonian of the system under RWA is given as 

,)()(
)()()(

44133312221

433434224241141

AAA
AAAAAAHo

Δ+Δ−Δ+Δ−Δ+
+−+−+−= ααα

                                             (2.87) 

with Rabi frequencies and detunings defined as 

 2/1141 Ed •=α ,   2/2242 Ed •=α ,   2/3343 Ed •=α ,                                        (2.88) 

1411 Ω−=Δ ω ,      2421 Ω−=Δ ω ,      3433 Ω−=Δ ω .                                             (2.89) 

2.3.3 N- Resonance System  

Level configuration of the system is given in Fig. 2.1(c). Transitions 31 → ,

41 →  and 42 →  are excited by three laser fields of Rabi frequencies (detunings) 

),(2 11 Δα )(2 22 Δα and 32α ( 3Δ ). The master equation for the system is  
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  (2.90)  

The semi classical Hamiltonian of the system under RWA is given as 

   ,)()()()( 4423312232422434114231131 AAAAAAAAAHo Δ+Δ+Δ−Δ++−+−+−= ααα (2.91) 

with Rabi frequencies and detunings defined as 

2/1131 Ed •=α ,   2/2142 Ed •=α ,   2/3243 Ed •=α ,                                          (2.92) 

1311 Ω−=Δ ω ,      2412 Ω−=Δ ω ,       3423 Ω−=Δ ω .                                             (2.93) 

The master equation applicable to pertinent level scheme is used as a starting 

point for analysis of steady state as well as time dependent behaviour of these quantum 

systems and the associated interference effects.  

 

2.4 Master Equation for Dipolar Molecular Systems  

For a dipolar molecule, quantum coherence and interference can be substantially 

modified by the permanent dipole moments associated with molecular levels. Permanent 

dipole moments provide additional pathways for multi-photon transitions and 

consequently their inclusion in the master equation is of paramount importance while 

dealing with coherent pump-probe spectroscopy of molecular systems [173-180]. In this 

context, we develop and discuss the necessary master equation framework for a three-

level molecular Λ system with permanent dipole moments and undergoing −m and −n

photon transitions on pump and probe resonances. Here the time independent RWA 

Hamiltonian for interaction of external field with molecular systems cannot be obtained 
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as straight forwardly as in the atomic case. The theoretical techniques to treat the 

permanent dipole moments in laser-molecule interaction problems are well established by 

Meath and his coworkers [181-189].  

We begin by considering a three-level Λ system (cf. Fig. 1.2(a)) relevant in the 

context of dipolar molecules so that ≠= ididii 0, i.e., non-vanishing diagonal dipole 

matrix elements. The time evolution of state amplitudes )()( tata kk
=  in the Schrodinger 

representation and under the dipole approximation can be written as  

)(][/)( taEEidttda ext•−−= μ ,                                                                            (2.94) 

where the wave function of the system is ∑=
=

3

1
)()(

k
k ktatψ , and  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

(t)
(t)
(t)

)(

3

2

1

a
a
a

ta ,         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

        0         0
0                0
0         0       

ω
ω

ω
E ,      

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

2322

1311

        
           0

       0     

ddd
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μ .               (2.95) 

Here iid ( ijd ) are the permanent (transition) dipole moments. We assume that the 

external field strength is given as 

)cos(ˆ)cos(ˆ)( ccccppppext tetetE ϕωεϕωε +++= ,                                             (2.96) 

where pppp e ϕωε ,ˆ,,  ( cccc e ϕωε ,ˆ,, ) are the strengths, frequencies, polarizations and 

phases of the probe (control) field respectively. As is reported in earlier works [181-189] 

Eq. (2.94) is transformed into an interaction representation by an operator X  such that, 

)()( tXbta = ,                                                                                                         (2.97) 

)()exp(])(exp[ tbitiX kkkkjkjk υϑωδ −−= ,   ∫ ′′=
t

extkkkk tdtEd
0

)(υ ,                       (2.98) 

where )3,2,1(, =kkϑ  are arbitrary phase factors. 
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The Schrodinger equation in the transformed representation thus takes the form 

)()(/)( tbtiHdttdb b−= ,                                                                                        (2.99)  

)](exp[])(exp[ iijjijjiextij
b
ij itiEdH υυϑϑωω −−+−−=   and  i

b
iiH ϑ= .            (2.100)  

We assume that control transition involves coupling of m  control photons and 

zero probe photons while probe transition involves coupling of n  control probe photons 

and zero control photons. Applying RWA we neglect far off resonant terms to obtain 
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1313 pp

ppp
nppp nzizzJednC ϕϕε −−= ,                               (2.102) 

 )]sin(exp[)/)((ˆ. )(
23

)(
23

)(
2323 cc

ccc
mccc mzizzJedmC ϕϕε −−= ,                               (2.103) 

 ppp
p ez ωεμ /ˆ13

)(
13 ⋅= ,                 ccc

c ez ωεμ /ˆ23
)(

23 ⋅= ,                                           (2.104) 

pnωωϑϑ +−−=Δ )( 311331 ,      cmωωϑϑ +−−=Δ )( 322332 ,                             (2.105) 

iijjij dd −=μ ,   jiij ωωω −= .                                                                             (2.106) 

An important point to be noted here is that the dynamics is dependent on the difference in 

the permanent moments )( ijμ  associated with the problem. We now define the arbitrary 

phase factors as 01 =ϑ , pnωωϑ −= 313  and cmωωϑϑ +−= 3232  to remove the time 

dependence of the Hamiltonian. Thus the effective Hamiltonian that describes the field-

molecule interaction for a molecular Λ  system under RWA can be obtained as 
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The field-molecule couplings ( Ω ) are given in terms of the Bessel functions )(zJk  as  

)]sin(exp[)(2 )(
13)(

13
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13

pp
p

p
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ppn nzi
z
zJn ϕϕα −−=Ω ,                                                (2.108) 

)]sin(exp[)(2 )(
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c

c
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ccm mzi
z

zJm ϕϕα −−=Ω ,                                                (2.109) 

where pα2  and cα2 are the Rabi frequencies as defined in atomic problem, i.e.,  

2/ˆ13 ppp ed εα •= ,         2/ˆ23 ccc ed εα •= .                                                      (2.110) 

The generalized −n  and −m  photon detunings for probe and control fields are given by  

pp nωω −=Δ 31 ,                  cc mωω −=Δ 32 .                                                     (2.111)  

The connection to the atomic system )1( == nm  can be established by putting 

=ijμ 0 in Eq. (2.104), (2.108) and (2.109) to obtain ppn α=Ω  and ccm α=Ω . Thus cmΩ  

and pnΩ  are the generalized −m and −n photon molecular analogues of pump and probe 

Rabi frequencies of the atomic problem. The role of the factors )(
13

)(
13 /)( pp

n zzJ  and 

)(
23

)(
23 /)( cc

m zzJ  is in damping of the laser-molecule coupling [180].  

We now introduce the molecular operators jiAij = , ( =ji, 1,2,3) similar to 

atomic operators where ijA  satisfy the relation in Eq. (2.3). Thus we can express H as 

332223
*

2331
*

13 )( AAAAAAH pcpcmcmpnpn Δ+Δ−Δ+Ω−Ω−Ω−Ω−= .                     (2.112) 

The time evolution of the system is therefore given by the master equation 
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ρρρρρρ
ρρργρρργρρ

+−Γ−+−Γ−
+−−+−−−=

  (2.113) 

Eq. (2.112) and (2.113) thus provide the description of field-molecule interaction 

dynamics in case of dipolar molecules. 
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CHAPTER 3 

COHERENCE AND INTERFERENCE IN 

THREE-LEVEL DIPOLAR MOLECULE  
 

3.1 Introduction 

Theoretical and experimental investigations of quantum coherence and 

interference are dominated by atomic systems, and in particular by alkali atoms where a 

suitable three-level scheme can be conveniently constructed using the hyperfine manifold 

of D1 or D2 transitions. In comparison the research in EIT in molecular domain has 

picked up only in more recent years [173-180]. The major difficulties in this research 

include relatively small magnitudes of the transition dipole moments and the existence of 

several decay channels that may prevent establishment of pump induced coherence in a 

molecular medium [175,176]. The later problem, i.e., EIT in open system, has been well 

studied in the atomic domain [37] and the conclusions drawn there are applicable to 

molecular systems as well.  
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A particular issue that is unique for molecules is the existence of diagonal or 

permanent dipole moments. The role of permanent dipole moments on laser-molecule 

interactions has been explored extensively by Meath and his group [181-189]. These 

works show that the permanent moments significantly modify the laser-molecule 

coupling leading to several interesting multi-photon and non-linear optical effects. For 

EIT in molecular domain, it is therefore interesting to explore the role of permanent 

moments on the development of coherence and ensuing interference in coherently driven 

molecular systems. Recently Zhou et al. [173] have addressed this problem theoretically 

in the context of a molecular Λ system undergoing nm +  photon transition by pump and 

probe fields. Their analysis however considers a medium of stationary molecules and 

therefore is not applicable to typical EIT experiments that are carried out in gas cells 

where the effect of Doppler broadening is of important concern. The authors have also 

reported the observation of gain without inversion in 2+2-photon excitation for change in 

the sign of the difference of the permanent moments of the excited and ground levels. 

This observation requires further investigation in the light of discussions on Λ system in 

atomic domain. Intimately connected with this is the issue of subluminal and 

superluminal light propagation in the medium of dipolar molecules. 

In this chapter we discuss coherent pump-probe spectroscopy of molecular Λ 

system with permanent dipole moments, and provide analytical results for pump induced 

coherence in such a medium and its manifestation on the observation of EIT. The 

analysis of EIT and related phenomena in molecular systems has been done on the 

backdrop of coherent spectroscopy in the atomic domain [34-37]. The model considered 

here is a three-level Λ  system undergoing permanent dipole moment assisted −m  and
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−n photon transitions by pump and probe lasers respectively. We first consider the 

molecular medium consisting of stationary molecules and further generalize the results to 

a Doppler broadened medium. The analytical results are supplemented by numerical 

calculations. While the work presented here clarifies erroneous observations made in Ref. 

[173], it further establishes a connection between EIT and other related phenomena in 

atomic and molecular media. The importance of virtual mechanism in the treatment of 

multi-photon absorption based EIT phenomenon is discussed by taking an example of 

2+1-photon EIT in dipolar molecules. The discussion presented in this chapter, thus, 

provides an integrated view of coherent pump-probe spectroscopy of a medium of dipolar 

molecules and its comparison with atomic case. 

 

3.2 Theoretical Formulation 

We consider a dilute gaseous medium of dipolar molecules that are idealized as 

three-level Λ system as shown in Fig. 3.1. 

 

 

 

 

 

 

 
 

 

 

Fig. 3.1: Schematic representation of three-
level Λ  system. Transitions 32 →  and 

31 →  are driven by pump and probe lasers 
of frequencies cω  and pω  respectively. The 
laser-molecule couplings and detunings of the 
pump (probe) fields are cmΩ )( pnΩ  and cΔ

)( pΔ  respectively. Here m and n  represent 
the number of photons associated with the 
pump and probe transitions respectively. 
Radiative and non-radiative decay rates 
associated with ji →  transition are 
denoted by ijγ  and ijΓ respectively.  
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A strong pump (control) laser of electric field )cos(ˆ)( ccccc tetE ϕωε +=  is used to 

drive the transition 32 →  and a weak probe laser of electric field =)(tEp

)cos(ˆ pppp te ϕωε +  is scanned across 31 →  transition. Due to the presence of 

permanent dipole moments ( iid ), control and probe field can induce in general −m

photon and −n photon transitions respectively on 32 →  and 31 → , where >nm,

1. The generalized −m  and −n  photon Rabi frequencies (detunings) of pump and probe 

fields are cmΩ )( cΔ  and pnΩ )( pΔ  respectively as defined in Eq. (2.108) – (2.111). For 

now we consider the multi-photon transitions are mediated only by the permanent dipole 

mechanism. The complexity arising from virtual mechanism is discussed in Sec. 3.5.  

The time evolution of this system is governed by the master equation (2.113). 

This equation can be cast in a c-number representation to obtain the following equations 

for *
jiij ji ρρρ == , ( =ji, 1,2,3). 

3113
*

33312221111211 222/ ρρργρρρ pnpn iidtd Ω+Ω−+Γ+Γ−= ,                                 (3.1a) 

3223
*

33322221111222 222/ ρρργρρρ cmcm iidtd Ω+Ω−+Γ−Γ= ,                                 (3.1b) 

3223
*

3113
*

33323133 )(2/ ρρρρργγρ cmcmpnpn iiiidtd Ω−Ω+Ω−Ω++−= ,                     (3.1c) 

3123
*

21211221 )]()[(/ ρρρρ cmpncp iiidtd Ω+Ω−Δ−Δ+Γ+Γ−= ,                               (3.1d) 

21
*

1133
*

3112313231 )(])[(/ ρρρργγρ cmpnp iiidtd Ω+−Ω−Δ+Γ++−= ,                      (3.1e)

12
*

2233
*

3221313232 )(])[(/ ρρρργγρ pncmc iiidtd Ω+−Ω−Δ+Γ++−= .                      (3.1f) 

Of interest in pump-probe spectroscopy is the appropriate steady state 

polarization, imaginary and real parts of which are related to the probe absorption and 
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dispersion respectively. While in general recourse may be taken to numerical solutions, 

steady state solutions of ijρ  can be obtained perturbatively up to the first order of pnΩ . 

We first note that the closed system is constrained by the condition 0332211 =++
•••

ρρρ , 

i.e. 1332211 =++ ρρρ . Substituting pnΩ  by pnΩκ~  and )1()0( ~
ijijij ρκρρ +=  in Eq. (3.1a-f) 

where )(n
ijρ  is the nth order coherence and κ~ is the perturbation parameter, we obtain the 

relevant nth order terms as  

 yaρ cm /)](2[ 3112
2

213
)0(

11 γγ +ΓΩ+Γ= ,                                                                   (3.2a) 

 yaρ cm /]2[ 12
2
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)0(
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yρ cm /12
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])/[()( 213
)0(

33
)0(

22
)0(
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23
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33

*)1(
31 cmcmpn bcibi Ω+Ω+−Ω−= ρρρρ ,                                             (3.2e) 

where 

32313 γγγ += ,                                                                                                       (3.3a) 

 )](2/])[( 213
22

213 Γ+Δ+Γ+= γγ ca ,                                                                     (3.3b) 

 )(2112 cpib Δ−Δ+Γ+Γ= ,                                                                                   (3.3c) 

 pic Δ+Γ+= 123γ ,                                                                                               (3.3d) 

)2()(2 211231
2

21123 Γ+Γ+Ω+Γ+Γ= γγ cmay .                                                     (3.3e) 

For weak probe field the Bessel function )( )(
13

p
n zJ  in Eq. (2.108) can be approximated as 
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so that the probe field-molecule coupling pnΩ  takes the form 

)]sin(exp[
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α
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=Ω −
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.                                                         (3.5) 

Note here that phases pϕ  and cϕ  in Eq. (2.108) and (2.109) are explicitly retained in the 

formulation of the problem. In what follows, we assume 0== cp ϕϕ  as in the work of 

Zhou et al. [173]. The equations governing the atomic EIT can be obtained by putting 

0=ijμ  in Eq. (3.1) – (3.2). 

The model developed here and used further for discussion of absorption spectrum 

and dispersion is for general nm +  photon transition in a three-level Λ system. However 

the practical values of m  and n  that are relevant for experiments are ≤ 2, owing to the 

difficulties associated with the multi-photon processes of orders >  2.  

 

3.3 Absorption Spectrum and Dispersion 

The susceptibility )(χ  of the medium is related to pump induced polarization .31ρ  

Following the treatment for atomic pump-probe spectroscopy [34-37] we define 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ω
=

pn

k )v()1(
31ρξχ ,             3

318
3 λγ
π

ξ N⎟
⎠
⎞

⎜
⎝
⎛=  ,                                                          (3.6) 

where N  is the molecular density, λπk /2=  is the wave vector, λ  is the transition 

wavelength and v is the velocity of molecules. Unlike Zhou et al. [173] we have used the 

form of Eq. (3.6) for susceptibility, the consequences of which will be clear in what 

follows. Absorption ( A) and refractive index (η) of the weak probe is given as 

)Im(χ=A ,        )Re(χη = .                                                                                   (3.7) 
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We first focus on stationary molecules as in Ref. [173]. From Eq. (3.2) we may note that 

1)0(
11 ≈ρ  and 0)0(

33
)0(

22 ≈≈ ρρ . Eq. (3.2e) then simplifies to  

2
1232112

2112
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1)(
13)1(

31 ))](()[(
)]([
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)(
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z
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−
−= −

−

γ
α

ρ ,                       (3.8) 

where we have explicitely used the form of Eq. (3.5) for pnΩ  valid at low probe 

intensities. A and η  experienced by the weak probe then is calculated by using Eq. (3.6) 

– (3.8). The pole structure of Eq. (3.8) reveals that it consists of two resonances whose 

energy (frequency) positions ( ±Δ=Δ p ) and half- widths ( ±Γ ) are given as 

2)4( 22
cmcc Ω+Δ±Δ=Δ± ,                                                                                  (3.9a) 
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Eq. (3.9) gives the expression for Autler-Townes (AT) doublet [6] for the molecular 

problem generalized for −m photon transition induced by the pump field. The 

transparency between these two resonances is an EIT, albeit for a medium of stationary 

molecules. When the control field is at −m photon resonance with 32 →  transition, 

i.e., 0=Δc , the doublet is symmetric with respect to 0=Δ p  and both resonances have 

equal half-widths that is essentially governed by the decay rates associated with the 

problem. Further under the conditions 21123231 ,,, ΓΓ>>Ωcmγγ  and 213123
2 , ΓΓ>>Ω γγcm  the 

absorption of the probe beam for 0=Δc  is given by  

2
3

2222
3

222
2112

)(
]))([(

 
γ

γξ

ppcm

ppcmA
Δ+Δ−Ω

Δ+Δ−ΩΓ+Γ
≈ .                                                                   (3.10) 
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The maximum probe absorption is obtained at the energy of the AT resonance i.e. at pΔ

= cmΩ± , which implies 3max
/γξ≈A . The EIT half-width ( EITΓ ) corresponds to the half-

width of transmission window between the AT doublets i.e., 

32/)( γξ=Γ=Δ EITpA ,                                                                                        (3.11) 

which gives the following equation for pΔ , 

0)2( 422
3

24 =Ω+Δ+Ω−Δ cmpcmp γ .                                                                             (3.12) 

The solution of Eq. (3.12) can easily be obtained as 

[ ]1412
2 11

2
32 +±+=Δ ssp

γ ,   2
3

2
1 / γcms Ω= .                                                         (3.13) 

Therefore, the half-width of EIT for a stationary atom is given by 

2/3γ−Ω=Γ cmEIT      for  3γ>>Ωcm   ( >>1s 1),                                              (3.14a)             

         3
2 / γcmΩ=            for  3γ<<Ωcm   ( <<1s 1).                                              (3.14b) 

Zhou et al. [173] have studied the doublet and the transparency window between the 

components of the doublet given by Eq. (3.9) and (3.14). Note here that from Eq. (3.5) – 

(3.8), the doublet spectrum is independent of the permanent dipole moments associated 

with the probe transition 31 → . Therefore the sign of the absorption spectrum cannot 

be reversed in any −n photon probe absorption spectrum by changing the sign of

)( 113313 dd −=μ . Hence for any given Λ system the probe will always be absorbed and 

not amplified irrespective of the sign of 13μ . We thus show here that the observation of 

Zhou et al. [173] regarding the amplification of the probe ( 0<A ) for 013 <μ  in the 2+2-

photon EIT is erroneous. One may also provide a simple physical argument to refute the 
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observation of gain in 2+2-photon EIT. Consider for example a situation where 0≈Ωcm , 

which may be obtained near the zero of the Bessel function =)( )(
232
czJ 0. In this case 

probe laser sees the unperturbed transition 31 →  and it gives rise to an absorption 

profile of linewidth 123 Γ+γ  at 0=Δ p  (cf. Eq. (3.8)). As per Zhou et al., this absorption 

profile will reverse its sign for the change of sign of 13μ  (Eq. (19) of Ref. [173]). This is 

unacceptable since transition 32 →  is not at all dressed by the pump laser, and 

therefore probe absorption spectrum must correspond to normal two-photon absorption.  

The reason for this erroneous result may be traced to the choice of peffΩ  made by 

Zhou et al. [173]. For 1+1-photon EIT, they use ppeff d ε13=Ω  while for 2+2-photon EIT 

the form used is 2
31212312 )]2/([ ppeff dd εωω −=Ω . The later form of peffΩ  is from the work 

of J.C. Petch et al. [161] who have obtained it for a three-level atomic system. Since 

atoms do not have permanent dipole moments, two-photon transition can take place only 

by the virtual level mechanism. Consider now a three-level scheme of Fig. 3.1 for atoms, 

where the probe laser of frequency 2/31ωω =p  induces a two-photon transition 31 →  

and 2  acts as a virtual level. The amplitude for this process is proportional to

2
31212312 )]2/([ pdd εωω − , which is essentially the form of peffΩ  for two-photon transition. 

On the contrary for molecules with 013 ≠μ , the two-photon transition 31 →  takes 

place by permanent dipole mechanism, wherein the excited level may be viewed as the 

virtual level of dipole moment 13μ . Consequently the two-photon amplitude in this case 

is proportional to ppd ωεμ /2
1313 , which is the correct form of peffΩ  for two-photon 
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process in the present case. With this form of peffΩ  it may be seen that 13μ  cancels 

identically in the expression of probe absorption spectrum. In general for any −n  photon 

transition mediated only by the permanent dipole mechanism, the correct form of peffΩ  is 

given by pnΩ  as may be seen from Eq. (3.5). The effect of 13μ  on probe absorption 

spectrum therefore vanishes for any nm +  photon EIT. The corollary of this result is that 

the general behaviour of nm +  photon EIT is governed only by m. Also note here that in 

the true spirit of a Λ  system, we must ideally have =12d 0. In this situation peffΩ used by 

Zhou et al. [173] becomes zero and that leads to infinite absorption which is unphysical. 

The requirement of =12d 0 for the observation of EIT arises from the considerations 

outlined in the next section.  

The effect of permanent moments on the widths of Autler-Townes doublet )( ±Γ  

and EIT ( EITΓ ) may be discussed using Eq. (3.9b) and (3.14). For 1+1-photon EIT the 

effect of permanent dipole moments is to damp the laser-molecule coupling and that 

results in decrease in the separation between the Autler-Townes doublet and in narrowing 

of EIT resonance. Thus for a given pump intensity, the EIT resonance in dipolar 

molecules is expected to be narrower than its atomic counterpart provided the radiative 

decay rates are the same. Similarly the progressive decrease in EITΓ  with increase in the 

order of the −m  photon process is evident from Eq. (3.14). These general features are 

seen in Fig. 3.2(a), where we have shown the comparison of absorption profiles for =m 1 

( =)(
23
cz 0 and ≠)(

23
cz 0) and =m 2 ( ≠)(

23
cz 0). The corresponding dispersion profiles are 

plotted in Fig. 3.2(b). The data chosen for these calculations is similar to that used in Ref. 

[173], i.e., for HCN → HNC isomerization [190] as summarized in Table-1 except that 
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we have used 02112 ≠Γ=Γ . The transition dipole moments for the pump and probe 

transitions are considered as 0.01 a.u. [173]. For simplicity we scale the parameters of 

Rabi frequencies and detunings in terms of 3231 γγγ == . 

 

 

 

 

 

 

 

 

 

 

Table 1: Energy and permanent dipole moment for HCN →  HNC isomerization [190] 

 Molecular state ( 321 ,, ννν ) Energy (cm-1)  iid (a.u.)  

1  (0,0,0) of HCN 0   1.17  

2  (0,0,0) of HNC 5023.15           –1.17  

3  (3,1,0) of HCN 10323.7   1.18 

 

Of particular importance in Fig. 3.2(b) is the slope of the dispersion profile, i.e., 

pp dddd Δ−= // ηωη  in the EIT region, since it is related to the group velocity index 

Fig. 3.2: (a) Probe absorption ( A) and (b) dispersion (η ) as a function of probe 
detuning ( pΔ ) for γα 5=c , =Δc 0 and γ3

2112 10−=Γ=Γ . The dashed curve is for 

one-photon ( =m 1) atomic case ( =)(
23
cz 0) while the solid curve is its molecular 

analogue with =)(
23
cz 2.37. The dotted curve is for two-photon ( =m 2) molecular 

case with =)(
23
cz 4.74. The medium is assumed to consist of stationary molecules 

and A is in the units of ξ . The spectra are independent of n .  
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[35-37], i.e. )/( prprg ddnnn ωω+=  where η+= 1rn  is the refractive index. For 

,1=m  we find that pdd ωη /  is higher for ≠)(
23
cz 0 in comparison to that for =)(

23
cz 0. 

Further the slope becomes steeper for =m 2, thereby exhibiting higher group velocity 

index. We may therefore conclude that the permanent moments lead to two identifiable 

effects, i.e., narrowing of the EIT linewidth and increase in the group velocity index.  

 

3.4 Doppler Averaging 

Thermal motion of molecules modify the detunings cΔ  and pΔ  as =Δc v•+Δ kc  

and v•+Δ=Δ kpp . Therefore in order to obtain EIT in the Doppler broadened 

molecular medium, Eq. (3.6) is integrated over the Maxwell-Boltzmann distribution of 

molecular velocities [6]. 

]2/)(exp[
2

1)v( 22
02

D
D

G ωω
π

−−= ,                                                                 (3.15)  

where D  is a measure of the Doppler width of the medium.  

Fig. 3.3 compares the effect of Doppler broadening on 1+1-probe absorption 

spectra in atomic and molecular case. Doppler averaging causes broadening of the AT 

resonances creating a narrow EIT resonance at the two-photon resonance condition

cp Δ=Δ . It is clear from Fig. 3.3 that the presence of permanent dipole moments results 

in narrower EIT resonance and steeper dispersion which corresponds to larger group 

velocity index. These effects are further enhanced for multi-photon EIT ( 1>m ) as is 

discussed in the next subsection.  
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3.4.1 Linewidth of EIT in a Doppler Broadened Medium 

The effect of Doppler averaging on atomic EIT has been discussed in details by 

Javan et al. [35-37]. They have developed a useful analytical procedure for obtaining 

approximate form of EIT linewidth for case of resonant pump beam. This procedure can 

be applied identically to the molecular problem for 0=Δc . The underlying assumptions 

are 2112, Γ=Γ>>Ω>> cmDW γ  and 21
2 Γ>>Ω γcm  where DW  is the Doppler half-width 

)35.22( DWD = . Following Javan et al. [35-37], Gaussian velocity distribution in Eq. 

(3.15) may be replaced by Lorentzian velocity distribution )v(kf  such that 

22 )v(
/)v(
kW

Wkf
D

D

+
=

π .                                                                                             (3.16) 

Eq. (3.16) is justified by the fact that the central distributions of Lorentzian and Gaussian 

distributions are similar when the former distribution is multiplied by a factor of 2lnπ .  

Fig. 3.3: Effect of Doppler averaging on the probe absorption and dispersion 
spectra for the data of Fig. 3.2. The Doppler width (FWHM) is =DW2 100γ . 
Here the dashed curve is for one-photon ( =m 1) atomic case while the solid 
curve is its molecular analogue with =)(

23
cz 2.37. 
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The susceptibility of Doppler broadened medium is therefore given as 

)v()v()v(
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31 kdkkf
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ρξχ .                                                                             (3.17) 

For this analysis we do not consider 1)0(
11 ≈ρ  but use exact form of Eq. (3.2e) to obtain 
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Replacing v•+Δ→Δ kcc  and v•+Δ→Δ kpp , and for 0=Δc  , we have 
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Eq. (3.17) can be considered as a contour integration in the complex plane. There 

are five poles of this expression. In the upper half plane there are three poles located at 

)/()]()([v 22
21

2
21

2
21

222
21

2
pcmppcmp ik Δ+ΓΩΓ+Γ+Δ+Δ−Γ−ΩΔ= γγ  (from G ), DiWk =v  (from

)v(kf ) and 2/1
21

2 )2/(v ΓΩ= γcmik  (from y). In the lower half plane there are two poles, 

DiWk −=v  (from )v(kf ) and 2/1
21

2 )2/(v ΓΩ−= γcmik  (from y). We consider the contour in 

the lower half plane and define the susceptibility as 

21 χχχ += ,                                                                                                        (3.19a)  

)v( Residue21 DiWki −=−= πχ , ( )21
2

2 2/v Residue2 ΓΩ−=−= γπχ cmiki .     (3.19b)  

For the pole at DiWk −=v  we obtain 
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where 

 γ22
211 2 cmDWl Ω+Γ−= ,          22222

212 )2( DppcmD WWl Δ+Δ−Ω+Γ= ,                       (3.21a) 

2
213 2 cmDWl Ω+Γ= ,         γγ 2

21
2

21214 4)2(2 cmcmDD WWl ΩΓ−Ω+ΓΓ= ,                   (3.21b) 

γ22
215 22 cmDWl Ω+Γ−= .                                                                                        (3.21c) 

Similarly for the pole at 121
2 2/v imik cm −=ΓΩ−= γ  we have,

 

))]()[(
2 41

2
3

211

2

2 ppp
Dcm immim

mml
Wi

Δ−Δ−Δ−
Ω

=
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where 
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2

1 2/ ΓΩ= γcmm ,      2
1

2222
2112 )2( mmm ppcm Δ+Δ−Ω+Γ= ,                                (3.23a) 

2
2113 2 cmmm Ω+Γ= ,       1

2
214 /2 mm cmΩ+Γ−= .                                                  (3.23b) 

The imaginary parts of 1χ  and 2χ  can therefore be obtained as 
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Since probe absorption is maximum at cmp Ω±=Δ , ))(/( 22
211max1 γξχ cmDD WWl Ω−Γ−=′′  

and 121max2 / lWDΓ−=′′ ξχ . This implies ./
maxmax DWA ξχ =′′= The EIT width therefore 

corresponds to the condition 

DEITp WA 2/)( ξ=Γ=Δ .                                                                                        (3.25) 

Under assumptions cmm ΩΓ>> ,, 211 γ  and replacing 222
cmpcm Ω→Δ−Ω  in 2l  and 2m  we get 
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The final expression for the half-width of EIT in a Doppler broadened molecular medium 

is therefore given as 
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γ

.                                                                                                          (3.28) 

The expressions (3.27) – (3.28) are identical to the atomic EIT [35,36] with a difference; 

the atomic Rabi frequency )( cα  is replaced by its molecular analogue )( cmΩ . The 

parameter s  defined in Eq. (3.28) is the saturation parameter and it exhibits dependence 

on 23μ  again through cmΩ . The permanent moments thus result in reduction in the 

saturation parameter. For <<s 1, Eq. (3.27) leads to γ/2 21ΓΩ≈Γ cmEIT , i.e., a linear 

dependence on laser-molecule coupling. The damping effect of Bessel functions 

[188,189] is then evident in narrowing of the EIT linewidth.  

We have tested the validity of Eq. (3.27) by comparing its predictions with exact 

numerical calculations. In these calculations we take the general form of 31ρ  as given by 

Eq. (3.8) and integrate it numerically over the given Doppler velocity distribution (cf. Eq. 

(3.15)). We chose γα 102 =c  and γ1002 =DW  for these calculations, which is consistent 

with the molecular EIT experiments [175,176]. The results are shown in Fig. 3.4 for =n 1 

and =m 1,2. We see in Fig. 3.4 that the analytical result of Eq. (3.27) is in excellent 

agreement with the numerical calculations. Note here that at the zeroes of the Bessel 

functions, cmΩ  vanishes and consequently the medium is not dressed resulting in the 

absence of EIT. We have therefore evaluated numerically EITΓ  in their neighborhood. 
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The general observation from Eq. (3.27) and Fig. 3.4 is that the permanent 

moments damp the Rabi frequency cα  and that results in a sharper EIT in molecular 

case. Further for a fixed pump laser intensity EIT gets sharper as the order of the multi-

photon process is increased. It is pertinent to discuss here the role of decay rate in the 

formation of EIT and in its linewidth. From Eq. (3.27) it is clear that for weaker 21Γ  a 

sharper EIT can be obtained in the Doppler broadened medium. In essence 1
21
−Γ  is the 

Raman coherence time in a Λ system, which is very essential for the observation of EIT. 

This necessarily means that 2  is not strongly coupled to 1  by radiative transition and 

12Γ , 21Γ  are essentially contributed by collisions in the medium. 

 

3.4.2 Dispersion at EIT Resonance 

We now obtain the slope of the dispersion profile at the peak of the EIT resonance 

( 0=Δ p ) in a Doppler broadened medium. Using Eq. (3.20) – (3.23) the real parts of 1χ  

and 2χ  can be obtained as 

Fig. 3.4: EITΓ  as a function of )(
23
cz  in a

Doppler broadened molecular medium
for γα 5=c , =Δc 0, γ3

2112 10−=Γ=Γ

and =DW2 100 γ . The solid and dotted
curves correspond to EITΓ  as calculated
using Eq. (3.27) for =m 1 and 2
respectively. Numerically calculated
values of EITΓ  are shown by solid
( 1=m ) and hollow ( 2=m ) circles.
The behavior is symmetric for

)(
23

)(
23

cc zz −→ . 
)(

23
cz
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The derivatives of the above Eq. (3.29) at resonance ( =Δ p 0) are given as 
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where the approximations used are 2
21121 2,2 cmD mW Ω<ΓΓ . The dispersion of the medium 

is given by 21 χχη ′+′= . Therefore we finally obtain the slope of EIT at resonance as 

 12 +Ω
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ω
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ξ

                       for   1>>s , 

         
212ΓΩ
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γξ

Dcm W
       for   1<<s .                                                               (3.31) 

We have examined the validity of Eq. (3.31) by comparing the analytical results with 

numerical calculations as shown in Fig. 3.5.  

 

  

 

 

 
 
 

Fig. 3.5: Slope of the dispersion 
profile )/( pdd ωη  at the peak 
of EIT resonance )0( =Δ p . Other 
details are same as in Fig. 3.4. 

)(
23
cz
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Note here in Fig. 3.5 that in the vicinity of zeros of the Bessel functions, slope of 

the dispersion profile rises steeply and in this region large group index can be achieved. 

This region therefore can be of potential interest for achieving slow light propagation. At 

the zeros of the Bessel function, however, the molecular medium is not dressed. This 

situation corresponds to return of the medium back to its original dispersion properties. 

 

3.5. Role of Virtual Mechanism 

It is well known that in a dipolar molecule a general −m photon transition is 

supported by both permanent dipole moment and virtual mechanism. Inclusion of virtual 

mechanism in two-photon transitions provides two competing pathways connecting the 

initial and final levels, and that leads to observable effects in two-photon spectroscopy 

[187-189]. It is therefore important to consider the virtual mechanism for multi-photon 

transition along with the permanent dipole mechanism in the context of EIT in dipolar 

molecules. Since for a general nm +  photon EIT the theoretical analysis is too complex, 

we have examined here the case of 2+1-photon EIT, where the pump field dresses 

32 →  transition by two-photon excitation, while the weak probe is near one-photon 

resonance with 31 →  transition (cf. Fig. 3.1). In order to include the effect of virtual 

mechanism we assume a set of levels k  of energy kΕ , which act as virtual levels for 

two-photon transition. Since the probe field is considered weak, two-photon transition via 

virtual mechanism is assumed to take place only due to the strong pump.  

Following the treatment of Meath and Jagatap [189], the Hamiltonian )( )3( qH +  

describing the interaction of pump and probe fields with a three-level Λ  system together  
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with additional levels k , =k 4,5,… q  is given by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
+

CB
BH

H q)3( .                                                                                               (3.32) 

Here H  is the Hamiltonian of three-level Λ system as given by Eq. (2.112), B  is a 3 q×  

matrix consisting of laser-molecule couplings corresponding to the virtual levels k , +B

is the adjoint of B  and C  is a qq×  diagonal matrix such that  

 )1( 1iikikB δ−Ω−= ,   ( =i 1,2,3)                                                                          (3.33a)

cpkkkC Δ−Δ+Δ= ,                                                                                            (3.33b) 

where the field-molecule couplings and detunings follows from Eq. (2.108) – (2.111) as 

)]sin(exp[)(2 )(
)(

)(

cc
c

ikc
ik

c
iki

ikik zi
z
zJ ϕϕα −−=Ω ,                                                        (3.34a) 

2/ˆ)(
ccik

c
ik ed εα •= ,    ckk ωω −=Δ 2 .                                                                   (3.34b)  

In obtaining equations (3.32) – (3.34), it is assumed that the pump field acts only on 

32 →  transition and induces two-photon absorption ( cc ωω 232 −=Δ ) via permanent 

dipole as well as virtual mechanisms, while the probe field acting on 31 →  transition 

induces one-photon transition )( 31 pp ωω −=Δ . The effective Hamiltonian )( effH is 

therefore given as 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

Δ′Ω′−Ω−

Ω′−Δ′−Δ′

Ω−

=−= +−

pcp

ccp

p
eff BBCHH

*
2

*
1

2

1
1 0

00
 

 332232
*
223231

*
1131 )( AAAAAA pcpccpp Δ′+Δ′−Δ′+Ω′−Ω′−Ω−Ω−= ,                   (3.35) 

where  
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∑
ΩΩ

+Ω=Ω′
k kk

kk
cc C

32
22  ,                                                                                     (3.36a) 

1ϖ−Δ=Δ′ pp ,    12 ϖϖ −+Δ=Δ′ cc ,                                                                  (3.36b) 

∑
Ω

=
k kk

k

C

2
3

1ϖ ,    ∑
Ω

=
k kk

k

C

2
2

2ϖ ,                                                                        (3.36c) 

and 1pΩ ( 2cΩ ) are the probe (pump)-molecule coupling with 1=n  ( 2=m ). Time 

evolution of the system is then given by Eq. (2.113) with H  replaced by effH . 

Comparing Eq. (2.112) with Eq. (3.35), we observe that the inclusion of the 

virtual mechanism can modify the EIT dynamics in a significant way. Firstly the pump-

molecule coupling 2cΩ′  is a sum of the contributions of both permanent dipole and 

virtual mechanisms involving pertinent dipole matrix elements ijd  and ijμ  associated 

with 2 , 3  and k . For large dipolar molecules 2cΩ′  can be significantly different 

from 2cΩ  [187-189] and that has considerable effect on the observed EIT linewidth (cf. 

Eq. (3.14) and (3.27)) as well as on the group velocity index (cf. Eq. (3.31)). Secondly the 

inclusion of virtual levels results in the shifts ( 1ϖ  and 2ϖ ) in molecular resonance 

frequencies [189], which reflect in the frequency position of the EIT resonance. Note 

here that 1ϖ  is the energy shift of level 3  so that 133 ϖωω −=′  and the modified probe 

detuning is 113 ϖωωω −Δ=−−′=Δ′ ppp . In a similar manner the level 2  is also shifted 

to 222 ϖωω −=′  so that the modified pump detuning becomes −Δ=−′=Δ′ ccc ωω 232

21 ϖϖ + . In the absence of virtual levels the EIT condition is cp Δ=Δ , which is now 

given by cp Δ′=Δ′  and that implies the frequency shift in the EIT resonance due to the 
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presence of virtual levels is 2ϖ . The origin of this shift is in the coherent coupling of the 

virtual levels with Λ system and its magnitude is dependent on ikμ , ikd  and kΔ . It may 

be mentioned here that analogous shifts in the EIT position of Λ  system due to the 

presence of a few additional adjacent levels are reported in the atomic domain [191]. 

Thus the inclusion of virtual mechanism leads to modification of the laser-molecule 

coupling which has a bearing on EITΓ  and pdd ωη /  and results in the frequency shift of 

EIT resonance also.  

 

3.6 Configuring a Three-level Molecular System 

In the preceding sections, we have used molecular data pertinent to HCN→ HNC 

isomerization to discuss a three-level dipolar molecular system. In order to help 

experimentalists to explore various issues concerning coherence and interference in three-

level dipolar molecules, we have identified suitable schemes with 013 <μ  and 013 >μ . 

These level schemes are given in Tables-2 and -3 respectively.  

 

   Case 1: <13μ 0  

Table-2(a): Energy, permanent dipole moment and lifetime of selected levels in 7LiH 

molecule [192-195]. 

 Molecular state Energy (cm-1) iid (a.u.) Lifetime (s)  

1  00v1 =′′=′′Σ+ JX  0 2.314  ∞  

2  01v1 =′′=′′Σ+ JX  1359.71 2.357  21.77 ×  10-3 

3  14v1 =′=′Σ+ JA  27252.91    – 0.211  30.00 × 10-9 
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Table-2(b): Frank Condon factor and transition dipole moment of transitions associated 

with levels of Table-2(a) [196] 

Transition Frank Condon factor ijd (a.u.) 

31 ↔  0.0570     0.1378  

32 ↔  0.1030 0.1997

 

   Case 2: >13μ 0 

Table-3(a): Energy, permanent dipole moment and lifetime of selected levels in 7LiH 

molecule [192-195] 
 Molecular state Energy (cm-1) iid (a.u.) Lifetime (s)  

1  021v1 =′′=′′Σ+ JX 0 1.2645  4.49 ×  10-3 

2  022v1 =′′=′′Σ+ JX  237.71 0.7063  7.98 ×  10-3 

3  114v1 =′=′Σ+ JA  11852.61 1.4130  35.60 × 10-9 

 

Table-3(b): Frank Condon factor and transition dipole moment of transitions associated 

with levels of Table-3(a) [196] 

Transition Frank Condon factor  ijd  (a.u.)  

31 ↔  0.0911 0.4130 

32 ↔  0.0624 0.3277

 

The level configurations of Tables-2 and -3 can be used to explore experimentally 

the coherence and interference in dipolar molecules.  
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CHAPTER 4 

COHERENCE IN DEGENERATE DOUBLE 

Λ SYSTEM 

 

4.1 Introduction 

Alkali vapors are well suited for atomic coherence and interference experiments. 

These atoms have appropriate cross-sections, high vapor pressures at room temperature to 

allow significant absorption and a simple level structure with transitions between ground 

and excited states lying in visible and near infrared regions. Further single mode lasers 

are commercially available to drive their resonance transitions. In particular three-level Λ 

or V schemes can be conveniently constructed using D1 and D2 transitions of alkali 

atoms. The supremacy of Λ scheme for preserving coherence in atom-field interaction 

makes it a preferred platform for realizing ultra-narrow CPT/EIT signal. In actual 

practice, however, the experimental situation becomes complicated owing to close 

spacing of excited hyperfine levels in D1 or D2 transition and consequently the dynamics 

of a chosen Λ system can be altered significantly by the presence of adjacent levels. This 
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issue has been recognized and discussed in some works. Earliest among these is the work 

by Schlossberg and Javan [197], which deals with the modifications of nonlinear gain 

characteristics of coherently prepared system due to closely spaced level structure. Xia et 

al. [198] have theoretically investigated EIT in a Λ  system with close lying hyperfine 

levels. They observed that the extra off-resonance level only slightly modifies the EIT 

system and an EIT corresponding to pure Λ system can be obtained by tuning the laser 

fields to the centre of gravity of relevant hyperfine levels. Mazets et al. [199] have 

calculated the correction to propagation of normal mode of EIT in a Λ system arising due 

to the presence of additional excited level. Ye and Zibrov [200] have attributed the 

distorted shape of EIT resonance in experiments with Λ system in D2 transition of 87Rb 

atoms to the asymmetry of the AT doublet originating from detuned hyperfine level. 

Similar asymmetry in EIT line profile has been reported by Kale et al. [201]. Wong et al. 

[202] have shown that presence of an additional excited hyperfine level in a Λ system 

gives rise to several non-linear processes, which result in a very rich structure of 

resonances in the pump-probe spectroscopy of D1 transition of sodium. Recently Chen et 

al. [191] have investigated numerically a six-level system in D2 transition of 87Rb to 

show that the multi-level coupling results in frequency shift of the EIT line centre. These 

observations point to the need of a detailed analysis of the problem concerning the role of 

adjacent levels in development of coherence and interference in a multilevel atomic 

system, and in particular in a Λ system.  

In this chapter we investigate coherent pump-probe spectroscopy of a three-level 

Λ system with a close lying excited level particularly in the context of EIT and related 

phenomena. The level scheme thus consists of a pair of ground levels connected to a pair 
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of excited levels by pump and probe lasers. We describe this level configuration as 

‘degenerate’ double lambda (DDL) resonance to contrast with double Λ  resonance that 

involves four lasers. Recently such a system has been studied in context of phase 

dependent fluorescence spectrum [203] and effect of SGC on quantum interference 

effects [139]. The work presented here provides a realistic description of pump-probe 

spectroscopy of hyperfine transitions of alkali atoms. 

 

4.2 Theoretical Formulation 

We consider a typical situation encountered in the pump-probe spectroscopy of Λ  

system as depicted in Fig. 4.1 for D2 transition of 85Rb atom. A strong pump laser excites 

the hyperfine transitions 3,2535 2/32/1 =′→= FpFs  and the probe laser accesses the 

transitions →= 25 2/1 Fs 3,25 2/3 =′Fp .  

 

 
  
  
 
 
 
 
 
 

 

The problem of adjacent additional close lying excited level is clear in Fig. 4.1. 

The four-level subset that is relevant for discussion here consists of the levels 

21 =≡ F , 32 =≡ F , 23 =′≡ F  and 34 =′≡ F  such that only non-vanishing 

Fig. 4.1: Schematic representation of 
DDL system formed in the hyperfine 
manifold of D2 transition of 85Rb 
atom. The bracketed entries represent 
the separation between adjacent 
hyperfine levels in MHz. The four-
level subset forming the DDL 
scheme are 1 , 2 , 3  and 4 . 
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dipole matrix elements are 213 18/7 Dd μ= , 214 45/14 Dd μ= , 223 63/5 Dd μ= , =24d  

218/5 Dμ , where 2Dμ  is the dipole moment for D2 transition of 85Rb [204]. The 

excitation scheme is thus a DDL system, i.e, consisting of two simultaneously excited Λ  

resonances, Λ(1) and Λ(2) constituted by levels 1 , 2 , 4  and 1 , 2 , 3  respectively. 

The frequency separation between the excited levels is 3443 ωωω −==S  and =S 63.4 

MHz for 85Rb D2 transition [204]. The Rabi frequencies (detunings) of pump and probe 

lasers for each three-level system Λ(i) are denoted by iα ( iΔ ) and iβ  ( iδ ) as defined in 

Eq. (2.84) – (2.85). Since Λ(1) and Λ(2) are driven by same pair of pump and probe fields, 

the detunings satisfy the relation 

S=Δ−Δ=− 2121 δδ .                                                                                              (4.1) 

The master equation of the system given by Eq. (2.82) is cast in a c-number 

representation to obtain the following equations for *
jiij ρρ = , 

4441333122213113241141111211 222)()(2/ ργργρρρβρρβρρ ++Γ+−−−−Γ−= iidtd ,(4.2a) 

23224131241121121 / ρβρβραραρκρ iiiidtd −−++−= ,                                         (4.2b) 

3123311234121231 )(/ ρκρρβρβραρ −−+−= iiidtd ,                                              (4.2c) 

4134324411121141 )(/ ρκρβρρβραρ −−−+= iiidtd ,                                              (4.2d) 

4442333232232422412221111222 22)()(22/ ργργρραρραρρρ ++−−−−Γ−Γ= iidtd ,(4.2e)

3413241223322232 )(/ ραρκρβρραρ iiidtd −−+−= ,                                             (4.2f) 

4324251214422142 )(/ ραρκρβρραρ iiidtd −−+−= ,                                             (4.2g) 

4443333311323223233 22)()(/ ρργρρβρραρ Γ+−−+−= iidtd ,                             (4.2h) 

43641213142223143 / ρκρβρβραραρ −−+−= iiiidtd ,                                            (4.2i) 
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3334444411414224144 22)()(/ ρργρρβρραρ Γ+−−+−= iidtd ,                               (4.2j) 

where the coefficients iκ , ( 6...2,1=i ) are defined as follows: 

)( 1121121 Δ−+Γ+Γ= δκ i ,     21232 δγκ i+Γ+= ,      11243 δγκ i+Γ+= ,              (4.3a) 

22134 Δ+Γ+= iγκ ,               12145 Δ+Γ+= iγκ ,      iS++= 436 γγκ ,                (4.3b) 

3432313 Γ++= γγγ ,               4342414 Γ++= γγγ .                                                   (4.4) 

Absorption ( A ) and dispersion (η) of the weak probe can be obtained as 

)~Im(PA =  ,    )~Re(P=η ,                                                                                      (4.5) 

where the polarization P~  is defined as 

)/()/(~
2313114141 βγρβγρ +=P .                                                                               (4.6) 

Here 31ρ  and 41ρ  are the induced polarizations on 31 →  and 41 →  transitions 

respectively. Note here that all Rabi frequencies and detunings (cf. Eq. (2.84) and (4.1)) 

are not independent. Consequently A  and η  are studied in terms of the laser-atom 

interaction parameters of subsystem Λ(1), i.e., 1β , 1α , 1δ and 1Δ . 

 

4.3 Perturbative Analysis and Dressed States 

Eq. (4.2a) – (4.2j) can be solved numerically using standard techniques. However 

for a weak probe laser, steady-state solutions for ijρ  can be obtained perturbatively up to 

first order in 1β  and 2β . The relevant coherences are given as follows: 

,/)](

)()([
)0(

232
)0(

24132

)0(
34312

)0(
43221

)0(
44

)0(
11211
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11322

)1(
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Ci ρβρβκκ
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+−
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       (4.7a) 
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,/])( )0(
34

2
1311

)0(
43212 Cρακκβρααβ +−+                                                        (4.7b) 

,/])(

)())(([)([
)0(
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2
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)0(
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)0(
11212

)0(
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)0(
11

2
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)1(
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C

i

ρακκβρααβ

ρρααβρρακκβρβρβκαρ

+−+

−−−+++=
 (4.7c) 

3
2
22

2
1321 κακακκκ ++=C .                                                                                     (4.8) 

The zero order terms are given in Appendix-1. For the purpose of discussion 

related to this section, we equate ≈)0(
11ρ 1 and 0)0( ≈ijρ  in Eq. (4.6) – (4.7) and obtain  

,/)})(()](
)()[())(/(

)]()()[{(~

412311211212341
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2
231
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141
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γγγγγδγδδ
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       (4.9) 

]}.))()[(()()({

)]()()[(

)]()())()[((

211241232112124
2
2123

2
1

1
2
22

2
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Γ++Γ++−Γ+Γ+Δ−=

i

iiC

    (4.10) 

For DDL configuration, the pump field dresses the levels 2 , 3  and 4 , and as a 

consequence probe absorption spectrum consists of three resonances corresponding to the 

transitions iψ→1 , where iψ , ( 3,2,1=i ) are the dressed states of the problem. Dressed 

state energies ( iε ) and linewidths ( iΓ ) of the corresponding resonances can be obtained 

from the zeroes of Eq. (4.10). Now expressing 2δ  and 2Δ  by 1δ  and 1Δ  respectively (cf.  

Eq. (4.1)) in Eq. (4.10), we seek the roots )3,2,1(, =Γ+= ki kkk ελ of the cubic equation  

01
2

1
3

1 =+++ ccc rqp δδδ ;                                                                                      (4.11) 

),)()(()(

)(]))[(()])(([

1241232112124
2
2

123
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112312411241212

2
1

Γ+Γ+Γ+Γ+Γ++
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γγγα
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ii

iiSSr c     (4.12)
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2112412431

112432112124123
2
2

2
1

Γ+Γ++Γ++Δ+
Δ−Γ++Γ+Γ+Γ+Γ+++−=

γγγ
γγγγαα

Si
Sqc              (4.13) 

)]3([ 2112431 Γ+Γ+++Δ+−= γγiSpc .                                                                (4.14) 
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It is difficult to obtain simplified closed form analytical solution of Eq. (4.11). Therefore 

we obtain approximate iε  and iΓ  under some limiting conditions. In the discussion that 

follows, dressed states are arranged such that 321 εεε >> . The first obvious limiting case 

is 0~2α , i.e., when the pump field essentially dresses 42 →  transition. The dressed 

state energies )0(
iε  and the half-widths of resonances )0(

iΓ  are given as  

2/)( 11
)0(

1 ξε −Δ= ,   2/)]/1)(()/1)([( 11124112112
)0(

1 ξγξ Δ+Γ++Δ−Γ+Γ=Γ        (4.15a) 

2/)( 11
)0(

2 ξε +Δ= ,  2/)]/1)(()/1)([( 11124112112
)0(

2 ξγξ Δ−Γ++Δ+Γ+Γ=Γ        (4.15b) 

S=)0(
3ε ,                  )( 123

)0(
3 Γ+=Γ γ                                                                    (4.15c)  

2
1

2
11 4αξ +Δ= .                                                                                                    (4.16) 

Here )0(
2,1ε  are the energies of the dressed states )0(

2,1ψ  of the two-level system 42 →  

and )0(
3ε  coincides with 3 . Eq. (4.15a) – (4.15b) thus correspond to the AT doublet of  

42 → . Note here that Eq. (4.15) provides approximate analytical expressions for iε  

and iΓ  for 01 ≤Δ . It is straightforward to see that for 01 >>Δ  probe absorption 

spectrum consists of a sub-natural linewidth resonance at 11 Δ≈δ  and two resonances of 

natural linewidth at 01 ≈δ  and S=1δ . The second limiting case is 0~1α , i.e., 

preferential dressing of 32 →  transition. In this case )(S
iε  and )(S

iΓ  are given as 

 0)(
1 =Sε ,                      )( 124

)(
1 Γ+=Γ γS                                                              (4.17a) 

2/)( 22
)(

2 ξε −Δ+= SS , 2/)]/1)(()/1)([( 22123222112
)(

2 ξγξ Δ+Γ++Δ−Γ+Γ=Γ S (4.17b) 

2/)( 22
)(

3 ξε +Δ+= SS , 2/)]/1)(()/1)([( 22123222112
)(

3 ξγξ Δ−Γ++Δ+Γ+Γ=Γ S (4.17c) 

2
2

2
22 4αξ +Δ= .                                                                                                   (4.18) 
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Here )(
2,1
Sε  are the energies of the dressed states )(

2,1
Sψ  of the two-level system 32 → . 

Eq. (4.17a) – (4.17c) serve as approximate expressions for iε  and iΓ  when S≥Δ1  and 

for S≥Δ1 , the resonance at 11 Δ≈δ  has sub-natural linewidth. Eq. (4.17b) – (4.17c) 

correspond to the AT doublet of 32 → . 

The region of interest from experimental point of view is S≤Δ≤ 10 , i.e., when 

pump field dresses the transitions 4,32 →  simultaneously. In this domain of pump 

detuning, approximate analytical expressions for iε  and iΓ  can be obtained when 

01
2
22

2
1 =Δ+Δ αα . This case corresponds to the situation where pump detunings for 

respective transitions are adjusted in accordance with their Rabi frequencies. In this case 

dressed state energies iε  and widths iΓ  are  

2/]4[ 22
1 αε +−= SS ,    121 Γ+=Γ dγ ,                                                            (4.19a) 

12 Δ=ε  ,                       ⎥
⎦

⎤
⎢
⎣

⎡
ΔΔ−Γ+ΓΓ++Γ++

ΔΔ−Γ+Γ+Γ+Γ+
Γ

21211212
2

12
2

21
2

12211212
2

2 ))((2)(
})){(()(~

dd

dd

γγα
γγα , (4.19b) 

2/]4[ 22
3 αε ++= SS ,    )( 123 Γ+=Γ dγ .                                                        (4.19c) 

where 2
2

2
1

2 ααα +=  and we have assumed dγγγ == 43  for simplicity. Note here that 

none of the dressed state energies corresponds to the energies of bare atomic states owing 

to simultaneous dressing of 4,32 →  transitions and that the dressed state resonance 

at 11 Δ≈δ  has sub-natural linewidth. Thus in the region S≤Δ≤ 10  the problem amounts 

to the three-level generalization of two-level AT splitting. In general for a DDL system 

the resonance appearing at 11 Δ≈δ  has sub-natural linewidth. In DDL system 11 Δ≈δ  

also implies 22 Δ≈δ  (cf. Eq. (4.1)), i.e., the probe detuning at which Raman resonance 
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condition is approximately satisfied for )1(Λ  and )2(Λ  simultaneously. Fig. 4.2 shows the 

variation of iε  and iΓ  as a function of 1Δ  obtained from the numerical solution of Eq. 

(4.11) for the model DDL system of 85Rb. The correlation of iε  with )0(
iε  and )(S

iε  is 

explicitly shown in Fig. 4.2(a). It is interesting to note that in the region S≤Δ≤ 10  all 

dressed state resonances can have sub-natural linewidths (cf. fig. 4.2(b)). Fig. 4.2 is 

compared with their analogous plots of AT doublets for )1(Λ and )2(Λ systems in Fig. 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 4.2: Variation of (a) dressed state energies and (b) widths of dressed level 
transitions with pump detuning ( 1Δ ) for =1α  10 MHz. All ijγ  are assumed to be 
equal and they add to natural linewidth =Γn2 6.067 MHz. The incoherent decay 
rates are =Γ=Γ=Γ=Γ 43342112 0.02 MHz.  

Fig. 4.3: Variation of (a) energies and (b) widths of AT doublet with pump detuning
for )1(Λ (solid lines) and )2(Λ  (dashed lines) systems. The data is same as in Fig. 4.2. 
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Typical probe absorption (dispersion) spectra, A (η ) vs. 1δ  for DDL system are 

shown in Fig. 4.4. We may observe that the dressed state resonance at 11 Δ≈δ  is always 

of sub-natural linewidth, as has been explicitly shown by considering the special cases. 

 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

4.4 Suppression of Subnatural Resonance 

An interesting observation in a DDL system is suppression and reappearance of 

sub-natural resonance (at 11 Δ≈δ ) for a combination of 1Δ  and 1α . Fig. 4.5 shows a 

representative behaviour of dressed state resonances and dispersion profiles. Vanishing of 

sub-natural resonance (cf. Fig. 4.5(b)) and its reappearance is clearly seen in this figure.  

Fig. 4.4: Probe absorption (solid 
line) and dispersion (dotted line) for 

=1α 10 MHz. Frames (a) – (c) 
correspond to =Δ1 – 40, 20 and 100 
MHz respectively. Other data are 
same as in Fig. 4.2. The half-widths 
of the dressed state resonances (from 
left to right) in units of nΓ  are (a) 
0.066 0.954, 1.0 (b) 0.850, 0.172, 
0.992 and (c) 0.997, 0.985, 0.042.
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Note here that the resonance at 11 Δ≈δ  corresponds to the excitation 21 ψ→ . 

Now expressing ic
i

i∑=
=

4

2
2ψ , where ic  are appropriate mixing coefficients, we may 

obtain the dipole moment for the transition 21 ψ→  as  

14413322 1),1( dcdcdd +== ψψ ,                                                                   (4.20) 

where ic  are obtained by diagonalizing the Hamiltonian of Eq. (2.83) with 021 == ββ . 

While this is difficult in general, we make use of the correlation of two-level and three-

level dressed states to develop the physical idea underlying the suppression of the sub-

natural resonance. Since 2ψ  correlates with ∑=
= 3,2

)()(
2

i

S
i

S icψ  and ∑=
= 4,2

)0()0(
2

i
i icψ , we 

Fig. 4.5: Probe absorption (solid 
line) and dispersion (dotted line) 
for =1α 10 MHz. Frames (a) to (c) 
correspond to =Δ1  25, 38.37 and 
50 MHz respectively. Note here 
the suppression and reappearance 
of the sub-natural resonance in 
frames (a) to (c). 
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may approximate 3c  and 4c  by )(
3

Sc  and )0(
4c  respectively and obtain 

11114222132 2/)(2/)(),1( ξξξξψ Δ−−Δ+≈ ddd .                                             (4.21) 

Eq. (4.21) suggests that ),1( 2ψd  can be made vanishingly small over a range of 1Δ  for a 

given 1α , since 2Δ ( 2ξ ) is related to 1Δ ( 1ξ ). This vanishing of the dipole moment 

),1( 2ψd  is therefore responsible for suppression of the subnatural resonance. In order to 

test this premise, we have numerically obtained the dressed states iψ  and evaluated the 

dipole matrix elements )3,2,1(),,1( =id iψ  in DDL system of 85Rb for =1α 10 MHz. The 

results of these calculations as a function of 1Δ  are plotted in Fig. 4.6. 

 

 

 

 

 

 

 

Note in Fig. 4.6 that in the neighborhood of =Δ1 38.37 MHz, 0),1( 2 →ψd  and it 

is in this region that we observe suppression of the subnatural resonance in Fig. 4.5. 

Interestingly for =1α 10 MHz, Eq. (4.21) predicts that minimum of ),1( 2ψd to occur at 

≈Δ1 39.41 MHz, which is close to the value of 1Δ  observed in Fig. 4.5. Suppression of 

sub-natural resonance may therefore be viewed as a result of coherence and interference 

developed in simultaneous excitation of 4,32 →  transitions.  
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Fig. 4.6: Variation of square of the 
dipole matrix element id ψ1  
calculated for =1α 10 MHz. 
Curves 1, 2 and 3 correspond to the 
dressed states 1ψ , 2ψ  and 3ψ  
respectively.  
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4.5 Electromagnetically Induced Transparency 

An analysis of EIT linewidth similar to that by Javan et al. [35-37] is too 

unwieldy for a DDL system. Consequently we numerically evaluate A  and η  using Eq. 

(4.5) – (4.6), and average them over Maxwell-Boltzmann velocity distribution. In these 

calculations we do not assume 1)0(
11 =ρ  and 0)0( =ijρ  in Eq. (4.7), but develop and use 

necessary equations for all )0(
ijρ  (cf. Appendix-1). For )1(Λ  subsystem in Fig. 4.1, 

susceptibility of the medium vanishes identically at 11 Δ=δ  which gives rise to a sharp 

EIT resonance in the absorption spectrum. Note here that in DDL system 11 Δ=δ  

corresponds to 22 Δ=δ , which means that the Raman resonance condition is satisfied 

simultaneously for both )1(Λ  and )2(Λ . The resultant EIT, therefore, is a superposition of 

two EIT resonances depending on the coherence established in the medium.  

We first examine the situation when the pump laser is at exact resonance with 

2'3 =→= FF  so that ==Δ S1 63.401 MHz. Doppler averaged absorption spectrum in 

this case for =1α 10 MHz is shown in Fig. 4.7, which consists of a sub-natural EIT 

resonance at 11 Δ=δ , but it differs from the EIT in a three-level Λ  system in some ways. 

An inspection of Eq. (4.9) shows that ≈P~ 0, but not exactly zero at 11 Δ=δ  as in a three-

level Λ  system. The susceptibility of DDL system remains finite though small at 11 Δ=δ  

and as a consequence A  does not go to zero at 11 Δ≈δ  (cf. Appendix-2). The minimum of 

the transparency window is also shifted away from 11 Δ=δ . Such frequency shift has 

been observed in earlier works [191]. In Fig. 4.7 this shift is 0.296 MHz. This effect is 

more pronounced for small S  since 2
1~ −δA  at two-photon resonance.  
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Another point that may be noted from Fig. 4.7 is that EIT line shape is 

asymmetric as has been reported experimentally [200,201]. For S=Δ= 11δ , )2(Λ  sub-

system is at exact Raman resonance ( 022 =Δ=δ ) while )1(Λ  sub-system is at detuned 

Raman resonance. EIT in Fig. 4.7 may therefore be considered as an EIT of )2(Λ system 

which is perturbed by the EIT of )1(Λ  sub-system. The extent of such asymmetry is 

dependent on 232421 // dd=αα and S . In the present case 2/7/ 2324 =dd  and as a 

consequence there exists observable distortion in the shape of the resultant EIT. Inclusion 

of collisional decay ( 12Γ ) tends to reduce the asymmetry of the EIT profile, albeit with 

increase in its linewidth. Consider now the situation corresponding to suppression of 

stationary state absorption. Doppler averaged absorption spectrum for a representative 

case is shown in Fig. 4.8. Formation of an EIT resonance at 11 Δ≈δ  is evident in this 

figure. As expected the Doppler averaged refractive index undergoes sharp change in the 

region of EIT resonance as is evident in Fig. 4.8.  

We now study the dependence of linewidth of EIT ( EITΓ ) on pump intensity. In 

this context, we consider =Δ1 0, and obtain EITΓ  and )1(
EITΓ  corresponding to DDL and 

Fig. 4.7: Doppler averaged 
probe absorption spectrum (solid 
line) for =1α 10 MHz, S=Δ1  
( = 63.401 MHz), 02112 =Γ=Γ  
and 2 DW = 515 MHz. The dotted 
curve is the corresponding 
spectrum for a stationary atom. 
The gray curve is the Doppler 
averaged absorption spectrum 
for =Γ=Γ 2112  0.02 MHz.  
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)1(Λ  systems. For 01 =Δ , )1(Λ  is at exact resonance while )2(Λ  is detuned )( 2 S−=Δ  with 

respect to pump frequency. These results are shown in Fig. 4.9. Note here that for >1α 10 

MHz, )1(
EITEIT Γ>Γ , whereas for <1α 10 MHz, )1(

EITEIT Γ<Γ  for the data chosen in Fig. 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the absence of analytical results for EITΓ , we seek the explanation of the 

observed behaviour on the backdrop of EIT in a Λ  system. Javan et al. [35-37] and Ye et 

al. [200] have shown that for a Λ  system EIT is a consequence of competition between 

coherent optical pumping rate ( R ) and collisional relaxation rate ( 21Γ ) between dipole 

forbidden ground levels and the EIT condition is given by 21Γ>R . Applying the analysis 

Fig. 4.9: EIT linewidth (measured 
in terms of the natural linewidth) as 
a function of pump Rabi frequency 
( 1α ) when =Δ1  0, =Γ=Γ 2112 0.02 
MHz and =DW2 515 MHz. The 
solid and hollow circles represent 
results for Λ(1) and DDL systems 
respectively. Inset highlights the 
region of low pump saturation.  
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Fig. 4.8: Effect of Doppler 
broadening on the probe absorption 
(black line) and dispersion (gray 
line) for the case where the sub-
natural resonance in the absorption 
spectrum of a stationary atom 
(dotted line) is suppressed. Here 

=1α 10 MHz, =Δ1 38.37 MHz, 
=Γ=Γ 2112 0.02 MHz and =DW2  

515 MHz. 
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of three-level )1(Λ  system (cf. Eq. (3.27)), one observes that for low pump saturation 

=Γ )1(
EIT nΓΓ /2 211α  whereas for high pump saturation DEIT W/2

1
)1( α=Γ . For DDL system 

one needs to take into account the optical pumping rates )1(R  and )2(R  for sub-systems 

Λ(1) and Λ(2) respectively. Considering these two sub-systems independent, we may write 

nR Γ/~ 2
1

)1( α  and 222
2

)2( /~ SR nn +ΓΓα , when 01 =Δ . The total optical pumping rate R  

for DDL system then may be given as )1()1( Ξ+= RR , where Ξ  is the incremental 

addition to )1(R  due to simultaneous excitation of )2(Λ . Note here that ,)2()1( RRR +≠  

due to interference effects arising from the concurrent excitation of two Λ  systems. 

Therefore for low pump saturation we may write the linewidth of EIT in DDL system 

as 2/1)1( ]1[ −Ξ+Γ=Γ EITEIT . We thus see that )1(
EITEIT Γ<Γ , which is consistent with the 

observations in Fig. 4.9. On the other hand for high pump saturation, drawing parallel 

with Λ  system, we may write EITΓ DW/)(~ 2
2

2
1 αα + )/1(~ 2

24
2
23

)1( ddEIT +Γ . Consequently 

)1(
EITEIT Γ>Γ  for large 1α , as is observed in Fig. 4.9. Although the discussion provided here 

is qualitative, it suffices to provide a physical insight in the observations of Fig. 4.9. In 

Fig. 4.10 we show the behavior of EITΓ and )1(
EITΓ as a function of 1Δ .  

 

 

 

 

 

 

Fig. 4.10: EIT linewidth for 
)1(Λ (solid circles) and DDL system 

(hollow circles) as a function of 
pump detuning 1Δ . Other data are 

=1α 20 MHz, =Γ=Γ 2112 0.02 MHz 
and =DW2 515 MHz. 
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It is seen that )1(
EITΓ  assumes minimum value at 01 =Δ  as expected. However EITΓ  

is minimized at 1Δ  that is somewhat close to the centre of gravity of the excited levels. 

We may add that EITΓ  is studied here at the backdrop of three level model [35,36], where 

the collisional decay of population is accounted by 12Γ  and 21Γ . Such a description of the 

ground state relaxation mechanism for a Λ  or a DDL system holds true for a rarefied 

alkali vapour medium (10-6 mbar) without any buffer gas. We have simply assumed 

=Γ=Γ 2112 20 kHz, which is also representative of the time of flight of atoms in a typical 

pump-probe spectroscopy experiment [200,201]. The situation is changed dramatically 

when buffer gas is introduced in the vapour cell. Figueroa et al. [134] have considered 

pure dephasing kind of ground state relaxation in such a collision rich environment. 

Theoretical results presented here are therefore more likely to be replicated in a low 

pressure alkali vapour medium.  

It is worthwhile to comment here on the non-radiative decay rates associated with 

the excited levels. Since for dilute alkali vapours without buffer gas, 434334 ,, γγ<<ΓΓ  

[202], we find that these nonradiative decays have negligible effect on the outcome of the 

pump-probe spectroscopy. The result of the coherent pump probe spectroscopy is thus 

primarily dependent on the Raman coherence time, which is governed by non-radiative 

decay rates associated with the ground levels.  

 

4.6 Coherent Spectroscopy in Six-Level Configuration  

In the model calculations presented above, we considered only two excited levels 

)3,2( =′F  of the hyperfine manifold of 2/35p  since only these levels are simultaneously 



Chapter 4 

84 

connected to the ground levels )3,2( =F  owing to the dipole selection rule. It may be of 

interest to discuss here the effect of additional levels 45 =′= F  and 16 =′= F  on 

the coherent pump-probe dynamics. In such a six-level model (cf. Fig. 4.1), level 6  is 

not expected to participate in the development of pump-induced coherence since 026 =d . 

Pump laser however can dress 5,4,32 →  transitions simultaneously and that may 

lead to some observable effects although 015 =d . The two additional non-vanishing 

dipole matrix elements in this case are 225 14/9 Dd μ=  and 216 10/3 Dd μ= . Probe 

absorption in this situation is a quadruplet spectra corresponding to dressing of 

5,4,32 →  transition. In the presence of Doppler broadening EIT resonance 

appears at two-photon resonance condition similar to DDL system. We have investigated 

the six-level scheme numerically to find no effect of additional levels on the vanishing of 

the sub-natural resonance (cf. Fig. 4.5). This is consequence of the fact that ),1( 2ψd  

retains the form of the type given by Eq. (4.21) owing to =15d 0. Doppler averaging of 

six-level model, however, shows some visible effects on the EIT resonance. The 

noticeable effects are shift of EIT resonance and increase in EITΓ  when additional levels 

5  and 6  are included in the four-level model. This increase can again be attributed to 

the effect of additional levels on coherent optical pumping. In the six-level model, pump 

laser dresses 5,4,32 →  transitions simultaneously, however since =15d 0, 

effective optical pumping rate decreases and that causes increase in EITΓ  compared to the 

four-level model. This increase in EIT width becomes more pronounced at higher pump 
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intensities. The effect of additional levels on EIT positions and their linewidths is 

summarized in Table-4.  

Table-4: Comparison of EIT positions and widths in Λ , DDL and six level 

configurations for 01 =Δ  

1α  EIT position (MHz) nEIT ΓΓ /   

 )1(Λ  DDL 6-level model )1(Λ  DDL 6-level model 

5 0 0.123 0.43 0.252 0.215 0.246 

10 0 0.331 1.48 0.528 0.526 0.775 

15 0 0.607 2.25 0.830 0.896 1.490 

20 0 0.965 3.36 1.167 1.315 2.507 

25 0 1.402 4.8 1.543 1.785 3.631 

30 0 1.918 6.53 1.960 2.310 4.908 

 

4.7 Experimental Realization of Simultaneous Dressing 

In order to provide a flavor of the coherent pump-probe spectroscopy for 

precision measurements we report here our experimental results on dressed state 

spectroscopy in 87Rb [205] where =S 156.95 MHz. The four level scheme forming the 

DDL system comprises of 151 2/1 =≡ Fs , 252 2/1 =≡ Fs , 153 2/3 =′≡ Fp  and 

254 2/3 =′≡ Fp . 

4.7.1 Experimental Scheme 

A schematic of experimental set up is shown in Fig. 4.11. Two commercial 

Sacher Lasertechnik external cavity diode lasers (ECDL 1 and 2) with maximum output 

powers of 105 mW and 45 mW are used as control and probe lasers. Both lasers operate 
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near 87Rb D2 transition (780 nm) and have a linewidth ~1 MHz. The two beams have a 

typical diameter of 0.36 mm. Optical isolators are used to avoid optical feedback. A weak 

part (~100 µW) of ECDL1 beam is used for saturation absorption spectroscopy (SAS).  

 

 

 

 

 

 

 

 

 

 

 

 

SAS is used for subsequent stabilization and calibration of control laser 

frequency. To convert the SAS signal to suitable frequency discriminator we modulate 

the laser current by applying a very small sinusoidal voltage and demodulate the 

photodiode signal through a lock-in amplifier (LIA). This gives first derivative spectrum 

of the SAS signal and the laser is locked on the zero point of first derivative signal by 

electronic feedback to the piezo actuator (PZT) of the ECDL. Very small current 

modulation does not affect the linewidth of the control laser, hence causing minimum 

effect on the experimental outcome. The remaining beam of the control laser is split into 

Fig. 4.11: Schematic of experimental set up for coherent pump-probe spectroscopy. 
Here ECDL: external cavity diode laser, SAS: saturation absorption spectroscopy, OI: 
optical isolator, BS: beam splitter, λ/2: half wave plate, AOM: acousto optic modulator, 
PBS: polarizing cubic beam splitter, PD: photodiode and DSO: digital storage 
oscilloscope. The pump, coupling and probe beams are shown by black, dark gray and 
light gray lines respectively. For the present experiment the coupling beam is turned off. 
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two parts, a part is used as pump beam and the other part is passed through an acousto 

optic modulator (AOM) for optical frequency conversion thus generating a coupling 

beam of desired detuning. AOM is used in a double pass configuration to avoid the 

problem of physical displacement of beam while tuning its frequency as well as in 

providing flexibility to control the coupling laser detuning. AOM frequency is tuned by 

applying external voltage to the voltage control oscillator (VCO) of the driver unit. For 

the present experiment in a Λ  system coupling beam is turned off. This beam is used for 

N-system experiments as discussed in Chapter-6.  

A small part of ECDL2 is also used to generate SAS for frequency calibration and 

the remaining part is used as the probe beam. Pump beam is locked at a specified 

detuning 1Δ  and its intensity is varied to obtain Rabi frequency 1α  in the range of 5 - 50 

MHz. Probe beam is further split into two unequal parts, one weak (~110 µW) and the 

other strong (~180 µW). Pump beam and weaker part of the probe beam are passed co-

propagating through a Rb vapour cell of 2 cm diameter and 5 cm length in orthogonal 

linear polarization configuration. The vapour cell is kept at room temperature and is 

wrapped with a µ- metal shield to reduce the effect of stray magnetic field. The stronger 

part of probe beam is sent counter-propagating through the cell. These three beams 

overlap over a length of ~1.5 cm in the sample cell.  

In this arrangement, the co-propagating probe and coupling beams participate in 

the dressed state spectroscopy, while the counter-propagating part of the probe beam 

helps to eliminate the first order Doppler effect as seen by the weaker part of the probe 

beam. This technique is similar to SAS and is used here to reduce Doppler background 

which improves the signal to noise ratio (contrast) of the dressed level spectrum. After 
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the exit of the beams from the vapour cell, probe beam is separated using a polarizing 

beam splitter (PBS) and detected on a photodiode. The dressed state resonances are 

obtained using amplitude modulation technique. This experimental arrangement extracts 

weak signals and provides nearly Doppler-free probe absorption signals, albeit with 

somewhat broader linewidths. 

 

4.7.2 Results and Discussion 

Pump laser is locked at different hyperfine and crossover components of 87Rb 

3,2,1525 2/32/1 =′→= FpFs  manifold by a frequency stabilized servo loop and the 

weak probe is scanned across 2,1,0515 2/32/1 =′→= FpFs . The probe spectrum is 

recorded on a 1 GHz digital storage oscilloscope. The powers of pump and probe beams 

are 1.9 W/cm2 and 0.08 W/cm2 respectively. The control beam detuning ( 1Δ ) varies from 

– 557 MHz to 265 MHz. However with shift from the central frequency, the power of 

control beam decreases and reduces to as low as 870 µW at the detuning of –557 MHz.  

An important technique employed in this experiment is the phase sensitive 

detection of probe absorption. Pump beam is modulated at 30 kHz using AOM and 

modulation transfer to the probe beam is measured using phase sensitive detection 

technique. The modulation frequency of the pump laser is set as the reference signal for 

lock in amplifier (LIA). This indirect modulation transfer to probe beam is strongly 

dependent on pump-probe interaction which is directly related to susceptibility. Therefore 

the demodulated output appears only at those frequencies where both beams interact. If 

the pump beam is locked in a highly off-resonant condition the modulation depth is weak 

hence the signal strength reduces. Hence the probe beam is kept at a high power of 110 
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µW which can take modulation even at such low frequencies. This technique not only 

extracts weak signal from large background noise but also provides a clean and nearly 

Doppler free probe spectrum. However the disadvantage here is that the demodulated 

spectrum has broader linewidths compared to the unmodulated probe signal. A typical 

probe absorption spectrum for red detuned pump field is shown in Fig. 4.12. Here the 

pump laser is locked at 2525 2/32/1 =′→= FpFs  transition. The fixed frequency of the 

pump laser, as locked above is further shifted appropriately using AOM so that the effect 

of pump detuning on the dressed levels can be studied in details. In Fig. 4.12 this shift is 

108 MHz which implies =Δ1  265 MHz. The absorption spectrum exhibits a triplet, 

which is a signature of dressing of 2,1525 2/32/1 =′→= FpFs  by the pump laser. This 

result thus emphasizes the importance of taking into account nearby resonant level in 

dressed state spectroscopy.  

 

  

 

 

 

 

 

 

For red detuned pump field, level 5  ( 35 2/3 =′Fp ) is far off-resonant and does 

not participate in dressing of the medium. However for large blue detuned pump, the 

system corresponds to six-level Λ  type system as was discussed in the Sec. 4.6. A 

Fig. 4.12: Dressed state spectroscopy of 
87Rb D2 transition. (i) Probe saturation 
absorption spectrum where the various 
resonances are marked as (1): 

2'1 =→= FF , (2): crossover between 
2,11 =′→= FF , (3): crossover between  
2,01 =′→= FF , (4): 11 =′→= FF , (5): 

crossover between 1,01 =′→= FF  and 
(6): 0'1 =→= FF . (ii) Probe intensity  
(–A) in the presence of pump laser of 
intensity of ~1.9W/cm2 and ≈Δ1 265 MHz. 
The resonances a, b and c are at 1δ = – 86, 
89 and 263 MHz respectively. 
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representative behaviour of this situation is shown in Fig. 4.13. Here the pump beam is 

locked at 3525 2/32/1 =′→= FpFs  and is further up-shifted by 200 MHz using AOM 

( −≈Δ1 467 MHz). The dressed state spectrum in this case consists of more than three 

resonances due to dressing of 3,2,1525 2/32/1 =′→= FpFs  transition by the pump beam. 

 

 

 

 

 

 

As discussed in theoretical treatment of Sec. 4.3 we observe that the separation 

and line widths of the dressed resonances are critically dependent on 1α . While an 

increase in 1α  tends to increase the separation between the resonances, it also increases 

their widths and that results in the smearing of the absorption spectrum. Though our 

experimental results qualitatively agree with the theoretical modeling the quantitative 

comparison is complicated due to various experimental restrictions, for e.g. there is an 

uncertainty in determining the effective pumping Rabi frequency which depends on the 

focusing of pump beam, change in pump intensity along the cell and its spatial shape in 

the radial direction. The stability of pump laser locking and uncertainty in exact matching 

of pump and probe lasers also affect the observed spectrum. Further the large probe 

power and modulation transfer detection technique contribute to the increased linewidths 

of the dressed resonances as compared to that expected from the theoretical analysis. 

Fig. 4.13: Dressed state spectroscopy 
of D2 transition of 87Rb for ≈Δ1 – 467 
MHz. (i) Probe saturation absorption 
spectrum and (ii) probe intensity (–A) 
in the presence of pump laser of 
intensity of ~ 1.9W/cm2. The 
resonances a, b, c and d correspond to 

1δ  ~ –212, –52, 95 and 195 MHz 
respectively. 
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CHAPTER 5 

AMPLIFICATION WITHOUT INVERSION 

IN DEGENERATE DOUBLE Λ SYSTEM 

 

5.1 Introduction 

Quantum coherence and interference in driven multi-level atomic systems are 

central to a number of interesting and counter intuitive phenomena that are important in 

the understanding of subtle effects in coherent photon-atom interactions and also in 

several practical applications [1-17]. One such phenomenon that has attracted much 

attention is amplification without inversion (AWI) or lasing without inversion (LWI) [53-

79]. The underlying physics and extra-ordinary interest pertaining to AWI and LWI are 

discussed in Chapter-1.  

In this chapter we investigate AWI in a degenerate double lambda (DDL) system 

of Chapter-4. Hyperfine manifold of D1 transition of 87Rb is used as a model system to 

discuss the effect of pump induced coherence on the absorption of the weak probe beam. 

The system is observed to exhibit AWI very close to two-photon resonance as a result of 
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interference between two simultaneously excited lambda resonances. AWI is found to be 

critically dependent on pump detuning and low frequency coherence established between 

the pair of ground levels. Approximate analytical expression for probe absorption is 

derived to corroborate the numerical results and to discuss the contrasting behavior, i.e., 

absorption instead of AWI for the model DDL system in D2 transition of 87Rb. This 

distinctive behavior is further enhanced on inclusion of Doppler broadening.  

 

5.2. Model and Numerical Results 

We consider a DDL system (cf. Fig. 2.1(a)) formed by the hyperfine manifold of 

D1 transition of 87Rb. The four-level subset that forms the DDL scheme is ≡1  

15 2/1 =Fs , 252 2/1 =≡ Fs , 153 2/1 =′≡ Fp  and 254 2/1 =′≡ Fp  such that the 

only non-vanishing dipole matrix elements are 6/113 Dd μ= , 6/5114 Dd μ=  and =23d  

2/124 Dd μ= , where 1Dμ  is the transition matrix element associated with D1 transition 

[204]. Pump laser is used to dress the hyperfine transitions 2,1525 2/12/1 =′→= FpFs  

and probe is scanned across 2,1515 2/12/1 =′→= FpFs  transition. For D1 transition of 

87Rb, S = 814.5 MHz and the natural linewidth ( nΓ2 ) of the transition is 5.75 MHz [204]. 

We consider dilute atomic vapour medium so that nΓ<<ΓΓΓΓ 43342112 ,,, . 

Absorption )(A  and dispersion )(η  of the weak probe are defined in Eq. (4.5). 

Clearly 0>A  represents probe absorption while 0<A  corresponds to amplification of 

the probe beam by the coherently prepared atomic system. Fig. 5.1 shows the steady state 

probe absorption spectrum for a situation where the strong pump ( =1α 20 MHz) is 
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detuned ( =Δ1 430 MHz) in such a way that its frequency lies midway between levels 3  

and 4 , and a weak probe ( 1β = 0.1 MHz) is tuned across 4,31 →  transition. We 

observe that at =1δ 0 and S  the probe beam is absorbed while close to two-photon 

resonance, 11 Δ=δ , it is amplified. In particular in Fig. 5.1, amplification occurs at 

=1δ 429.89 MHz. This small deviation (< 5%) from exact two-photon resonance is 

observed in all calculations, especially when nΓ>1α . As was discussed in Chapter-4, the 

two-photon resonance condition is simultaneously satisfied for both )1(Λ and )2(Λ  at 

11 Δ=δ , albeit approximately.  

 

 

 

 

 

 

 

For the same set of parameters, steady state populations in the bare atomic levels 

( 41, −=iiiρ ) are plotted in Fig. 5.2. It is observed that 443311 , ρρρ >>  implying that 

there is no population inversion in the bare states and therefore the observation of gain at 

two-photon resonance is indeed AWI. We further obtain the dressed states, 

)3,2,1(, =iiψ , formed by the coherent coupling of 4,32 →  transitions and 

compare their populations (
iψρ ) with 11ρ . While this data is not explicitly shown here, 

Fig. 5.1: Steady state probe absorption 
spectrum calculated for =1α 20 MHz, 

=1β 0.1 MHz and =Δ1 430 MHz. This 
data corresponds to =2α 20 MHz, =2β  
0.045 MHz and =Δ 2 –384.5 MHz. All 

ijγ  are assumed to be equal and they add 
to natural linewidth =Γn2 5.75 MHz. 
The incoherent decay rates are 

=Γ=Γ 2112 1 kHz.  
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we observe that the behavior is very similar to that in Fig. 5.2 indicating absence of 

inversion in the dressed states. 

 

 

 

 

 

 

 

Further clarity to the origin of AWI is brought by studying the amplification as a 

function of pump detuning 1Δ . For variation of 1Δ  in the range S<Δ< 10 , the 

amplification observed near two-photon resonance ( 11 Δ≈δ ) is plotted in Fig. 5.3. We 

see that the gain is maximized at =Δmax
1 407.25 MHz, i.e., 2/1 S=Δ , and it decreases on 

either side of max
1Δ  to become zero as 1Δ  approaches 0 and S . Note here that for =Δ1 0 

and S , the pump laser is at exact resonance with 41 →  and 31 →  transitions 

respectively. The results of Fig. 5.3 indicate that the observed AWI is a result of 

interference between two competing Λ  resonances. For ≈Δ1 0, the )1(Λ  resonance is 

expected to be significantly stronger than the far detuned )2(Λ  resonance ( S−=Δ2 ). On 

the other hand for S≈Δ1 , )1(Λ  resonance weakens substantially in comparison to )2(Λ  

resonance ( 02 =Δ ). At intermediate detuning, 2/1 S≈Δ , both the Λ  resonances are of 

equal strength and that leads to maximization of the observed AWI. There however exists 

a range of 1Δ  (250 to 550 MHz in Fig. 5.3) for which the interference between two Λ  

Fig. 5.2: Steady state populations 
in the bare atomic levels for the 
data used in Fig. 5.1. Inset shows 
the expanded view of 33ρ  and 44.ρ  
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resonances results in probe amplification. Fig. 5.4 shows dependence of pump intensity 

( 1α ) on AWI. For 0 < 1α < 20 MHz, AWI exhibits close to quadratic dependence and 

thereafter saturation behaviour.  

 

 

 

 

 

 

 

 

The importance of coherence between dipole forbidden levels in the observation 

of AWI may be seen from Fig. 5.5 where the gain is plotted as a function of incoherent 

decay rates )( 2112 Γ=Γ  and )( 4334 Γ=Γ . AWI decreases rapidly to zero as 12Γ  is increased, 

while it is relatively insensitive to 34Γ . The low frequency coherence established in the 

ground hyperfine levels is thus an important factor in the observation of AWI. 

 

 

 

 

 

Fig. 5.3: Effect of pump detuning on AWI. 
Other data are same as in Fig. 5.1. The 
dotted line is only indicative of the trend. 

Fig. 5.4: Dependence of AWI on 
pump Rabi frequency. Other data 
are same as in Fig. 5.1.  

Fig. 5.5: Variation of AWI with the 
incoherent decay rate (i): )( 2112 Γ=Γ  
and (ii): ).( 4334 Γ=Γ  For curve (i) 

=Γ=Γ )( 4334 0 and for curve (ii) 
=Γ=Γ )( 2112 0. Other data are same 

as in Fig. 5.1.  
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5.3 Perturbative Analysis 

Probe absorption and dispersion in a DDL system under weak probe limit has 

been discussed in Chapter-4. Here we look for the atom-field parameters contributing to 

AWI in this limit. Perturbative analysis of Eq. (4.2), when substituted in Eq. (4.6) yields 

)(~
321 χχχ ++= iP ,                                                                                                (5.1) 

))(/())(/( )0(
44

)0(
11341

)0(
33

)0(
112311 ρρκγρρκγχ −+−= ,                                                  (5.2) 

ςρχ )1(
212 = ,                                                                                                               (5.3) 

])/()/[( )0(
4331412

)0(
34223113 ρκβγβρκβγβχ +−= ,                                                        (5.4) 

)/()/( 3141122312 κβγακβγας += .                                                                            (5.5) 

The form of Eq. (5.1) suggests that we need to consider only Re )( 1χ , Re )( 2χ  and 

Re )( 3χ , since )Im(PA = . Relative contribution of these terms is shown in Fig. 5.6, 

where we observe that Re )( 2χ essentially contributes at 11 Δ=δ . 

 

 

 

 

 

 

 

The behavior observed in Fig. 5.6 can be explained based on the steady state 

polarizations and populations in zeroeth and first order given in Chapter-4 and Appendix-

1. These may be used to obtain the general expression for A  that is valid for arbitrary 

Fig. 5.6: Variation of Re )( 1χ , Re )( 2χ  and Re )( 3χ  with probe detuning for
the parameters of Fig. 5.1.  
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values of laser-atom interaction parameters, albeit at weak probe intensity. These 

expressions are explicitly provided in Appendix-2. To obtain physical insight into the 

problem, we consider here the region of pump detuning that maximizes AWI, i.e., the 

region where ijγαα ,, , 2121 >>ΔΔ . This restriction also implies ijγααδδ ,, , 2121 >> , 

since AWI is observed to occur close to two-photon resonance. At such large detunings, 

the excitation is weak and that corresponds to the situation where ≈)0(
11ρ 1 and )0(

33
)0(

22 ρρ =  

≈= )0(
44ρ 0 (cf. Fig. 5.2). In this domain of interest, an inspection of Eq. (5.2) shows that 

the contribution of Re )( 1χ  is sum of two Lorentzians peaked at 01 =δ  and S , and its 

contribution to A  is negligible near two-photon resonance )( 11 Δ=δ . Also the 

contribution of 3χ  can be neglected since ),,( )0(
44

)0(
33

)0(
22

)0(
34 ρρρρ f= . The probe absorption 

thus assumes a simpler form, 

)Im()Im()Re()Re()Re( )1(
21

)1(
212 ςρςρχ −==A .                                                       (5.6) 

It may be further seen from Eq. (5.5) that 2
1)Re( −Δ∝ς  whereas 1

1)Im( −Δ∝ς , and as a 

consequence for large pump detuning, we may write 

)Im()Im( )1(
21 ςρ−=A ,                                                                                              (5.7) 

where )Im( )1(
21ρ  is given by Eq. (A3.3) in Appendix-3 and  

.
)()(

)Im( 2
2

2
123

2
31

2

2
2

1
2

124

1
41

1

1

δγ
δγ

β
α

δγ
δγ

β
ας

+Γ+
−

+Γ+
−=                                        (5.8) 

The two terms of Eq. (5.8) correspond respectively to )1(Λ  and )2(Λ resonances. Without  

loss of generality, we may assume 4334 Γ=Γ , 2112 Γ=Γ  and dγγγ == 43  so that =+ 43 γγ  

)(2 34Γ+Γn  and simplify Eq. (5.7) under the condition of two-photon resonance, i.e., 

02211 =Δ−=Δ− δδ . Note also from the numerical results of Sec. 5.2 that AWI is 
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maximized when 2/1 S=Δ , which also implies that 2/2 S−=Δ . Under these 

approximations, we finally obtain the following expression for absorption at 11 Δ=δ , 

 
22

1
2
2

2221
2
111 )(

)2/(
αα

αδ
−+

Γ=≈Δ≈
SZ

ZMMSA n ,                                              (5.9) 

 ))((2 2
2

2
13412

2
12 αα +Γ+Γ+Γ+Γ= nSZ ,                                                                (5.10) 

)/()/( 141324231 ddddM −= ,                                                                                (5.11) 

)/()/( 131424232 ddddM −= .                                                                                 (5.12) 

We have thus expressed the competition between two simultaneously excited Λ  

resonances in terms of the relevant dipole matrix elements. Since all other quantities 

except 1M  and 2M  are positive definite, the sign of A  is governed by the relative 

magnitudes of dipole moments. Specifically, for amplification to occur the relevant 

dipole moments need to be such that 1M  and 2M  have opposite signs. For D1 transition 

of 87Rb [204], =1M 0.553 and =2M  –1.236, and as a consequence 0<A  at 11 Δ≈δ , as 

is seen in the numerical calculations. The dependence of AWI on 1α (cf. Fig. 5.4) is 

closely predicted by Eq. (5.9). For low pump intensities, i.e., <+ )( 2
2

2
1 αα  

)(2/ 3412
2

12 Γ+Γ+ΓΓ nS , Eq. (5.9) predicts that 2
1α∝A  whereas at high pump intensities 

the term ))((2 2
2

2
13412 αα +Γ+Γ+Γn  begins to contribute and leads to the saturation of 

AWI. It may also be seen from Eq. (5.9) that AWI is very sensitive to 12Γ  since 1
12
−Γ∝A . 

In comparison the effect of 34Γ  comes into play only at high pump intensities and even 

there the effect is marginal since nΓ<Γ34 . This analysis is consistent with the behaviour 

observed in Fig. 5.5. Low frequency coherence associated with the ground levels is thus 
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more important compared to that in the excited levels. 

On the contrary from Eq. (5.9) one observes that if 021 >MM , then 0>A , and 

that corresponds to the situation where the probe is absorbed at 11 Δ≈δ . This prospect 

prompts us to employ it to a model DDL system in D2 transition of  87Rb, →= 2,15 2/1 Fs  

3,2,1,05 2/3 =′Fp . The relevant electric dipole allowed transitions which simultaneously 

connect the ground hyperfine levels to upper hyperfine levels are →= 2,15 2/1 Fs  

2,15 2/3 =′Fp . We therefore consider 11 =≡ F , 22 =≡ F , 13 =′≡ F  and ≡4  

2'=F . Here =S 156.95 MHz and the relevant dipole moments are == 1413 dd  

12/52Dμ , 20/223 Dd μ=  and 2/224 Dd μ= , where 2Dμ  is the transition matrix 

element of D2 transition [204]. We observe here that =1M =2M  –0.553, which as a 

consequence must yield 0>A . In Fig. 5.7 we have plotted the numerically calculated 

absorption spectrum for the DDL system in D2 transition, where we indeed see that, the 

probe is absorbed instead of being amplified at two-photon resonance condition 11 Δ≈δ .  

 

 

 

 

 

 

We may mention here that the DDL system in 87Rb is merely a representative 

case. DDL system can be formed in other alkali atoms also, where the separation between 

Fig. 5.7: Probe absorption spectrum 
for DDL system formed in D2 
transition of 87Rb. Here =S 156.95 
MHz, =1α 20 MHz, =1β 0.1 MHz 
and =Δ1 80 MHz, which corresponds 
to =2α 8.94 MHz, =2β 0.1 MHz and 

=Δ 2 –76.95 MHz. All ijγ  are 
assumed to be equal and they all add 
to nΓ2 = 6.066 MHz, and 2112 Γ=Γ = 
0.001 MHz. 
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excited levels is much smaller, for e.g., (361.58, 63.401) MHz in (D1, D2) transitions of 

85Rb and (26.1, 1.507) MHz in (D1, D2) transitions of 6Li. In these systems the contrast 

behaviour of amplification and absorption observed for D1 and D2 transitions respectively 

is expected to be more pronounced. In order to ascertain the 2−S dependence of AWI, we 

show in Fig. 5.8 the probe absorption in case of a model DDL system in D1 transition of 

6Li. We indeed observe enhanced AWI at 2/11 S≈Δ≈δ . 

 

 

 

 

 

 

 
 

At this juncture it is important to comment on the frequency position at which the 

amplification is observed. This information may be obtained from the dressed state 

energies of the system. While the dressed state energies are obtained in Sec. 4.3 for some 

specific cases, e.g. 01
2
22

2
1 =Δ+Δ αα , we observe that for S<Δ< 10  and S<<21,αα , the 

approximate energies are given as  

431
2
2

2
1

431
2
1

1 γγαα
γγαδ
+Δ−+

Δ+
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43

2
2

2
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2
22

2
1

1 γγαα
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−−−ΔΔ
Δ+Δ

+Δ , .
432

2
2
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1

432
2
2

γγαα
γγα

+Δ++
Δ+−

+
S

SS  

(5.13) 

As discussed in Chapter-4, the first and third roots in Eq. (5.13) correspond to the 

resonances appearing in the proximity of atomic resonances 41 →  and 31 →  

Fig. 5.8: AWI in D1 transition of 6Li 
for )2,,,,,,( 12121 nS ΓΔββαα = (4, 
3.58, 0.01, 0.003, 26.1, 14, 5.87) 
MHz. The incoherent decay rates are 

=Γ=Γ 2112 0.001 MHz.  
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respectively, whereas the second root corresponds to the frequency where amplification is 

observed (cf. Fig. 5.1). The amplification thus does not occur exactly at exact two-photon 

resonance, i.e., 11 Δ=δ , but is shifted depending on the strength of the Rabi frequencies. 

For =Δ2 430 MHz and =2α 20 MHz the correction to the exact two-photon resonance is 

– 0.11 MHz, which is consistent with the observations in Fig. 5.1.  

 

5.4. Doppler Averaging 

We now consider the atomic motion to include the Doppler effect on the observed 

AWI. To this end, we integrate the probe absorption spectrum over the Maxwell-

Boltzmann distribution of atomic velocities. Further we consider co-propagating pump 

and probe, and Rb vapor with Doppler width of 250 MHz and 500 MHz. These Doppler 

widths correspond to vapour temperature of 75 K and 298 K respectively. The effect of 

Doppler broadening on the probe absorption spectrum of Fig. 5.1 is shown in Fig. 5.9.  

 

 

 

 

 

 

 

 

Note here in Fig. 5.9 that with increase in the temperature of the medium, the bare 

atomic resonances at 01 =δ  and S=1δ  broaden and they begin to contribute steadily to 

Fig. 5.9: Effect of Doppler broadening on the probe absorption spectrum of 
Fig. 5.1. =DW2 250 MHz and 500 MHz for frames (a) and (b) respectively. 
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the probe absorption near 11 Δ≈δ . The increase in the baseline absorption therefore 

results in steady decrease in AWI. The progressive decrease in the height of the 

amplification peak with increase in Doppler width is shown in Fig. 5.10. Nevertheless, 

even at room temperature we observe noticeable AWI in the calculations. 

 

 

 

 

 

 

In order to contrast the behavior of the DDL system of D1 transition with that of 

D2 transition under Doppler averaging, we show in Fig. 5.11 the effect of Doppler 

broadening on the absorption spectrum of Fig. 5.7. Absorption spectrum here is a familiar 

profile that corresponds to the EIT resonance as was studied in Chapter-4. These 

observations highlight the remarkable features of a coherently driven DDL system. 

 

 

 

 

 

 

Fig. 5.10: Variation of 
amplification with Doppler 
width. Other data are same 
as in Fig. 5.1.  

Fig. 5.11: Effect of Doppler 
broadening ( =DW2 510 MHz) 
on the probe absorption 
spectrum for the data of Fig. 
5.7. 
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AWI resonance under Doppler averaging (cf. Fig. 5.9) exhibits finite linewidth 

)( AWIΓ , which is a strong function of the pump intensity as may be seen from Fig. 5.12.  

 

 

 

 

 

 

 

While the complexities involved in the four-level system do not permit us to 

obtain a closed form solution for AWI half-width ( AWIΓ ), it may be interesting to 

compare the observed behavior of AWIΓ  with that of the linewidth of an EIT spectrum. 

For a three-level Λ system, the linewidth of EIT follows Eq. (3.27). Analogous behaviour 

is observed in Fig. 5.12 for AWIΓ . For <1α 10 MHz, AWIΓ  varies linearly with respect to 

1α , while for >1α 10 MHz, the dependence is quadratic.  

 

5.5. Quantum Jump Approach to AWI 

Physical insight into the problem may be obtained by employing the quantum 

jump approach proposed by Cohen Tannoudji [206]. This approach has been used in 

several works to identify the processes responsible for amplification of the medium [206-

208], and also in the studies of absorption mechanism in a four-level N system [209] and 

dissipative dynamics in quantum optics [210].  

Fig. 5.12: Variation of the width 
of Doppler averaged AWI 
resonance with pump intensity 
( 1α ). Here =DW2 500 MHz and 
other data are same as in Fig. 
5.1. Inset shows the linear 
behaviour of AWIΓ  at low pump 
intensities.
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For the system under consideration we define the manifold ),( 21 NNζ  of atom + 

laser system such that 

( ) { }21212121 ,1,1,1,,2,,},4,3{, NNNNNNNN ++=ζ ,                                    (5.14) 

where 1N  and 2N  refer to the number of photons associated with the probe and pump 

fields, and notation {3,4} is used to denote simultaneous excitation of 3  and 4  by 

both pump and probe fields. Time evolution of the atomic system is viewed as coherent 

evolution within a manifold as determined by four Rabi frequencies and detunings, and 

quantum jumps to a neighboring manifold is governed by the dissipative processes. 

Different manifolds ),( 21 NNζ  relevant for the present discussion are shown in Fig. 5.13.  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.13: Different manifolds of atom + photon system for a DDL scheme. 
Coherent coupling between the states within a manifold is characterized by 
Rabi frequencies as shown by solid arrows. Quantum jumps are governed by 
incoherent processes which cause jump of the system from one manifold to 
other. These radiative and non-radiative dissipative processes are shown by 
wavy and dashed lines respectively. 
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Spontaneous emissions from {3,4} to 1  and 2  make the system to jump from 

the manifold ),( 21 NNζ  to the manifolds ),1( 21 NN −ζ  and )1,( 21 −NNζ respectively, 

while the collisional decay processes characterized by rates 12Γ  and 21Γ  bring it to the 

manifolds )1,1( 21 −+ NNζ  and )1,1( 21 +− NNζ  respectively. The incoherent decay 

rates 34Γ , 43Γ  do not change the manifold of the system.  

We now define the coherent period ),( ji in a given manifold ),( 21 NNζ  such that 

the system enters the manifold in the state i  and leaves it from state j  by quantum 

jumps. Of the 9 periods involved in the present problem, only four periods, i.e., (1,2), 

(2,1), (1, {3,4}) and ({3,4},1) contribute to the change in 1N . Here the periods (1,2) and 

(2,1) correspond respectively to stimulated Raman loss and gain processes respectively, 

while (1,{3,4}) and ({3,4},1} correspond to probe absorption and stimulated emission 

processes respectively. The mean change in the number of probe and pump photons is 

related to the probability ),( jiP  of observing a coherent period ),( ji such that 

)|()(),( ijPjPjiP = ,                                                                                            (5.15) 

where )/( ijP  is the conditional probability that given the period has started in i , it 

ends in j  and )(iP is the probability that a randomly chosen period starts in i , i.e.,  

)|()()( startstart
j

jiQjPiP ∑= .                                                                                  (5.16) 

Here )/( startstart jiQ is the conditional probability of starting a period in i  given that the 

previous period has started in j  and 1)( =∑
j

jP . The conditional probability is given by 

∑ Ξ=
k

kistartstart jkPjiQ )|()|( ,                                                                                (5.17) 
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where 1)|( =∑
i

startstart jiQ  for all startj  and kiΞ is the jump probability, i.e., probability 

that the quantum jump starts from k  of a given manifold and ends in i  of a 

neighboring manifold. From Fig. 5.13 it is clear that 

ii 21 δ=Ξ ,                                      ii 12 δ=Ξ , 

3

32
2

3

31
13 γ

γδ
γ
γδ iii +=Ξ ,                 

4

42
2

4

41
14 γ

γδ
γ
γδ iii +=Ξ .                                      (5.18) 

Using Eq. (5.17) – (5.18) it is easy to show that 0)|}4,3({ =startjQ   for all j . 

Consequently 0})4,3({ =P  and 0)1},4,3({ =P . Now denoting by 1NΔ  the mean 

change (decrease) in the number of photons, we find 

})4,3{,1()1,2()2,1(1 PPPN +−=Δ .                                                                    (5.19) 

The conditional probability )/( ijP required for evaluation of 1NΔ  is given by 

∫=
∞

0

2
)()/( ττ dcGijP ijj ,                                                                                       (5.20) 

where jG  is the total departure rate from j  via a quantum jump, i.e., 

121 2Γ=G , 212 2Γ=G , 33 2γ=G  and 44 2γ=G , and )(τijc  is the probability amplitude of 

finding an atom in j  at time τ+t  when it started its coherent evolution in i  at time t , 

i.e., =)(τijc iiHj effτ−exp( . The effective non-Hermitian Hamiltonian [211] relevant 

to the atomic system of Fig. 5.13 is given as 
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The equations of motion for )(τijc can therefore be obtained as, 

41321121 )( iiii CiCiCC ββτ ++Γ−=
•

,                                                                       (5.22a) 

4132211212 )]([)( iiii CiCiCiC ααδτ ++Δ−+Γ−=
•

,                                                (5.22b) 

32322123 )()( iiii CiCiCiC δγαβτ +−+=
•

,                                                              (5.22c) 

41421114 )()( iiii CiCiCiC δγαβτ +−+=
•

,                                                              (5.22d) 

These equations are solved with initial conditions ijijC δτ == )0( . We use 

adiabatic elimination technique to obtain ijC  (cf. Appendix-4), which are then used to 

calculated )/( ijP  and ),( jiP . Without the loss of generality we take 3443 GGG ==  and 

write })4,3{,1(P  as 

∫ ++=+=
∞

0
ceinterferen

2
141334 )4,1()3,1()()()1(})4,3{,1( PPPdccPGP τττ ,                 (5.23) 

where ceinterferenP  is the interference term arising from the simultaneous absorption 

processes 4,31 →  and is defined as 

∫=
∞

0
14

*
1334ceinterferen ))()(Re()1(2 τττ dccPGP .                                                             (5.24) 

Eq. (5.19) then takes the form 

ceinterferen1 )4,1()3,1()1,2()2,1( PPPPPN +++−=Δ .                                            (5.25) 

and the probe absorption is given by 1NA Δ∝ . AWI therefore corresponds to the 

situation where 01 <ΔN . In Fig. 5.14 we show explicitly the relative contributions of the 

terms on the right side of Eq. (5.25) in the spectral region where AWI is observed. We 

see here that while P (1,2), P(2,1), P (1,3), P (1,4) are positive, ceinterferenP  is negative and 
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this particular contribution is responsible for the observation of AWI in the DDL system. 

As a counter example, we show in Fig. 5.15 the behavior of the various terms 

contributing to 1NΔ  for a DDL system of 87Rb D2 transition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe in Fig. 5.15 that )4,1()3,1(ceinterferen PPP +<  at 11 Δ=δ , which results 

in absorption instead of AWI. It is thus clear that the interference in one-photon 

absorption processes is primarily responsible for the observation of AWI. 

Fig. 5.14: (a): Relative probabilities of coherent periods and (b) relative 
absorption (in terms of 1NΔ ) at 11 Δ=δ  for the data of Fig. 5.1.  

Fig. 5.15: (a): Relative probabilities of coherent periods and (b) relative 
absorption (in terms of 1NΔ ) at 11 Δ=δ  for the data of Fig. 5.7.  
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CHAPTER 6 

COHERENCE AND INTERFERENCE IN 

DOUBLE DARK RESONANT SYSTEMS 

 

6.1 Introduction 

Coherent pump-probe spectroscopy of double dark resonant systems has received 

considerable attention in recent times. Some of the interesting four-level configurations 

discussed in the literature are N-resonance, Y type, K type and tripod systems [26-31]. 

The presence of additional atomic states and extra control fields has marked effect on the 

coherent dynamics of such systems and pose an advantage of control over more physical 

variables. These systems are associated with the observation of ultra-narrow ‘double 

dark’ resonances, i.e. splitting of dark state resonance associated with EIT. Double dark 

resonant systems have been studied in contexts of sub-Doppler and sub-natural narrowing 

[26-31], coherent hole burnings [212,213], optical switching [214-217], slow and fast 

light [218-220], enhanced cross phase modulation and Kerr nonlinearity [219-222], 

squeezed vacuum survival [223], AWI [224] and numerous other applications [225-227].  
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A tripod system is an extension of a three-level Λ  system where an additional 

transition from a nearby ground level is driven by a third control field [28-30]. The main 

issue examined here is the demonstration of double dark resonances i.e. two EIT 

windows in this system and control of their linewidths. The other system studied in this 

chapter is a four level system in N-configuration. Three-photon resonance in this system 

is reported as a promising alternative to CPT resonance for atomic frequency standards 

[227]. An interesting feature of N system is that it can show EIA, EIT and AWI 

depending on the tri-chromatic field parameters [40-43]. We study the effect of driving 

fields on the optical response of this system, particularly in the context of inversion in 

dressed states, observation of more than one transparency window and switching between 

EIT and EIA. The effect of spontaneously generated coherence (SGC) on the linear and 

nonlinear response of N system is also investigated. The chapter is concluded with an 

experimental study of EIT in N system and its comparison with Λ  system. 

 

6.2 Double Control EIT Resonances in Tripod System 

6.2.1 Model and Basic Formulation 

We consider a tripod system (cf. Fig. 2.1(b)) where levels 1 , 3  and 4  form 

the usual Λ  system such that a pump laser of frequency 1Ω  excites 41 →  transition 

and a probe laser of frequency 3Ω  is tuned across 43 →  resonance. Level 2  is an 

additional ground level that is connected to the excited level 4  by a control laser of 

frequency 2Ω . Such a system can be realized within the Zeeman manifold of alkali atoms 

placed in magnetic field and using appropriate polarizations of the excitation fields. The 
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Rabi frequencies of pump, control and probe beams are 12α , 22α  and 32α  respectively 

(cf. Eq. (2.88)) and the relevant detunings are defined in Eq. (2.89). The system is 

characterized by radiative decay rates 412γ , 422γ  and 432γ . There exist additional non-

radiative decay rates, )3,2,1( ,2 =Γ ji,ij , i.e., those involving the three ground levels. The 

time evolution of this system is governed by the master Eq. (2.86). The elements of 

density operator satisfy the following equations: 

4441333122214114111111 222)(2/ ργρρρραρρ +Γ+Γ+−−Γ−= idtd ,                         (6.1a) 

42114212112 / ραραρρ iibdtd +−−= ,                                                                     (6.1b)
 

43114313213 / ραραρρ iibdtd +−−= ,                                                                     (6.1c)
 

1431331224411114 )(/ ρραραρραρ biiidtd −−−−−= ,                                            (6.1d)
 

4442333242242222111222 22)(22/ ργρρραρρρ +Γ+−−Γ−Γ= idtd ,                       (6.1e)
 

43224323423 / ραραρρ iibdtd +−−= ,                                                                     (6.1f)
 

2452334422221124 )(/ ρραρραραρ biiidtd −−−−−= ,                                           (6.1g)
 

4443433433332223111333 2)(222/ ργρραρρρρ +−−Γ−Γ+Γ= idtd ,                        (6.1h)
 

3464433332231134 )(/ ρρραραραρ biiidtd −−−−−= ,                                            (6.1i)
 

44434433244221441144 2)()()(/ ργρραρραρραρ −−−−−−−= iiidtd ,                 (6.1j) 

where various coefficients )6...2,1(, =ibi  are defined as  

 )( 21211 ∆−∆−Γ+Γ= ib  ,      )( 31212 ∆−∆−Γ+Γ= ib ,      1413 ∆−+Γ= ib γ , 

)( 32324 ∆−∆−Γ+Γ= ib ,       2425 ∆−+Γ= ib γ ,                3436 ∆−Γ+Γ= ib ,      (6.2) 

13121 Γ+Γ=Γ ,      23212 Γ+Γ=Γ ,      32313 Γ+Γ=Γ ,       4342414 γγγγ ++= .         (6.3) 

In what follows we are interested in steady state absorption of the weak probe field 
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)/Im( 34343 αγρ=A , where 43ρ  is the induced polarization on 34 →  transition. For 

weak probe field, i.e. 213 ,ααα << , analytical solution for 43ρ  can be obtained as 

 2
2
24

2
1

*
642

)0(
44

)0(
3342

)0(
1441

)0(
24223)1(

43

)]([

bbbbb

bibbb

αα
ρρραρααρ

++
−++= ,                                              (6.4a) 
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)0(
44
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)0(
22

)0(
44
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*
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*
12)0(

24

)]())([(

bbbbb

bbi

αα
ρραρρααρ

++
−+−+= ,                                         (6.4b) 

5
2
2

*
3

2
1

*
3

*
15

)0(
44

)0(
22

2
2

)0(
11

)0(
44

2
1

*
511)0(

14

)]())([(

bbbbb

bbi

αα
ρραρρααρ

++
−+−+= .                                           (6.4c) 

The steady state populations of the system are given in Appendix-5. Detailed analysis 

shows that 1)0(
33 ≈ρ , ,0)0( ≈ijρ )3,( ≠ji  and hence 

)/()(3
)1(

43 TTTT isriqp −−= αρ ,                                                                                 (6.5)  

))(())(( 32313231 ∆−∆∆−∆−Γ+ΓΓ+Γ=Tp ,                                                       (6.6a) 

))(())(( 31323231 ∆−∆Γ+Γ+∆−∆Γ+Γ=Tq ,                                                       (6.6b) 

TTT qpr )()( 431
2
22

2
1

2
3 γααα +Γ−∆−∆−+∆= ,                                                    (6.6c) 

TTT qps 321
2
232

2
143 )()()( ∆+Γ+Γ+Γ+Γ++Γ= ααγ ,                                            (6.6d) 

where 2
2

2
1

2 ααα += . For coherent spectroscopy in vapour cells containing dilute atomic 

gas, collisional relaxation rates are negligible, therefore ijΓ  can be neglected to obtain, 

))()(()(

))((

433231
2
2

2
132

2
11

2
2

32313)1(
43 γαααα

αρ
i−∆∆−∆∆−∆++∆−∆+∆

∆−∆∆−∆= .                        (6.7) 

Further in the absence of control laser ( =∆= 22α 0), Eq. (6.7) gives the familiar result for 

a three-level Λ  system [6], i.e.  

)])((/[)( 3134
2
1313

)1(
43 ∆−∆∆+−∆−∆= ii γααρ .                                                       (6.8) 
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The dressed state resonances for a tripod system in the absence of Doppler broadening, 

thus, appear at 213 , TT εε=∆  and 3Tε  which are the roots of following equation 

0)()( 2
2
11

2
2

2
2

2
121321

2
3

3
3 =∆+∆+−−∆∆∆+∆+∆∆−∆ αααα .                                   (6.9) 

For a Λ  system (cf. Eq. (6.8)), there exist two dressed state resonances located at 

2/)4( 2
1

2
113 α+∆±∆=∆ .                                                                                     (6.10) 

Note that for a tripod system the susceptibility vanishes identically at 13 ∆=∆  and 

23 ∆=∆  (cf. Eq. (6.7)), and these correspond to the positions of two EIT resonances.  

 

6.2.2 Results and Discussion 

We calculate the probe absorption spectrum for Λ  and tripod systems for a range 

of Rabi frequencies and detunings using the radiative data of D2 transition of 87Rb atoms. 

Non-radiative decay rates are taken to be 1 kHz corresponding to the transit time in 

typical experiments conducted in vapour cells without buffer gas. Typical results for 

representative atom-field interaction data are shown in Fig. 6.1. For Λ  system, there 

appear two dressed state resonances at 3∆  given by Eq. (6.10), and an EIT resonance at 

13 ∆=∆ . For tripod system, there exist three dressed state resonances at =2,1TTε  

2/)4( 2
1

2
11 α+∆±∆  and 23 ~ ∆Tε  when 12 αα < . Further the system exhibits two EIT 

resonances at 13 ∆=∆  and 23 ∆=∆  (cf. Fig. 6.1(b)). A special case of the tripod system 

corresponds to the equal detuning of the pump and control lasers, i.e., 21 ∆=∆ . In this 

case one observes two dressed state resonances at 2/)4( 22
11 α+∆±∆ , and a single EIT 

at 13 ∆=∆ . 
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We now focus on the quantity of interest which is the linewidth ( EITΓ ) of EIT 

resonance. In Fig. 6.1, the EIT resonance in the Λ  system has ~EITΓ 0.034 nΓ , whereas 

the linewidths of two EIT resonances in the tripod system, i.e., )( 13 ∆=∆ΓEIT  and 

)( 23 ∆=∆ΓEIT , are ~0.032nΓ  (nearly equal to that for Λ system) and ~10-3 nΓ  

respectively. The possibility of observing an ultra-narrow EIT profile by use of a control 

laser field makes the tripod system interesting in applications related to metrology. For 

21 ∆=∆ , a single EIT resonance of width ~0.034nΓ  appears at 213 ∆=∆=∆  similar to 

that in a Λ  system (cf. Fig. 6.1(a)). It is thus possible to manipulate the probe response of 

a Λ  system by inclusion of an additional control field. The control laser Rabi frequency 

has a dramatic effect on the EIT resonances in a tripod system. Fig. 6.2 shows the 

behaviour of EIT resonances as a function of2α . It is seen in Fig. 6.2 that )( 13 ∆=∆ΓEIT  

and )( 23 ∆=∆ΓEIT  are both of sub-natural linewidth at low strengths of pump and control 

fields, and their linewidths are proportional to respective field strengths. On increasing 

Fig. 6.1: Probe absorption spectrum for (a) Λ  system with =∆ ),( 11α (5, 0) MHz, 

and (b) tripod system with =∆∆ ),,,( 2211 αα (5, 0, 1, 3) MHz. The dotted and solid 
curves (scaled up by 50) in each frame correspond to spectra in the absence 
( =DW2 0) and presence ( =DW2 510 MHz) of Doppler broadening. 
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the control field strength, both EIT resonances broaden, however, )( 23 ∆=∆ΓEIT  

increases at a much faster rate compared to )( 13 ∆=∆ΓEIT . The broadening in both 

resonances is asymmetric with respect to their line centers, particularly at large 2α . It is 

interesting to note from Fig. 6.2 that while both the EIT resonances broaden, they do not 

overlap even at large2α  and there always exists a narrow absorption window in between 

two EIT resonances. Interestingly linewidth of this absorption window can be made sub-

natural or even ultra-narrow by increasing the control field strength (cf. Fig. 6.2(d)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now examine the behaviour of EIT linewidth for tripod system in the light of 

three-level Λ  system. Fig. 6.3(a) and 6.4(a) show the variation of EIT linewidths with 

Fig. 6.2: EIT in a tripod system as a function of control field strength 2α . 

Here =∆∆ ),,( 211α (5, 0, 3) MHz. =DW2 510 MHz, === 434241 γγγ 1.017 

MHz. =2α 1, 5, 10 and 40 MHz for frames (a) to (d) respectively. 
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control Rabi frequency (2α ) for fixed 1α , 3α , 1∆  and 2∆ . We observe that )( 13 ∆=∆ΓEIT  

is a much weaker function of control intensities compared to )( 23 ∆=∆ΓEIT .  

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
 
 
 

At lower intensities of control laser, )( 13 ∆=∆ΓEIT  remains almost constant. This 

implies that at lower 2α , EITΓ ( 13 ∆=∆ ) is a function of pump strength 1α  only. At higher 

Fig. 6.4: EIT widths as a function of (a) control Rabi frequency and (b) control field 
detuning. Here =1α 20 MHz. For frame (a) =∆∆ ),( 21 (0, 20) MHz and for frame 

(b) =∆ ),( 12α (15, 100) MHz. The gray and black curves represent EIT at 13 ∆=∆  

and 23 ∆=∆  respectively. 

Fig. 6.3: EIT widths as a function of (a) control Rabi frequency and (b) control field 
detuning. Here =1α 5 MHz. For frame (a) =∆∆ ),( 21 (0,3) MHz and for frame (b) 

=∆ ),( 12α (1,50) MHz. The gray and black curves represent EIT at 13 ∆=∆  and 23 ∆=∆  

respectively. Note the scale for )( 13 ∆=∆ΓEIT  on the right hand side of frame (b). 
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2α , both the strong fields contribute to its width. This behaviour is more evident in Fig. 

6.4(a) where 21 αα > . Contrarily )( 23 ∆=∆ΓEIT  closely follows the behaviour predicted 

in a Λ  system. For low pump intensity, i.e., sαα <<2 , nEIT ΓΓ∝∆=∆Γ /)( 13223 α , 

which gives a linear dependence on 2α . On the other hand when sαα >>2 , 

2
223 )( α∝∆=∆ΓEIT  and that corresponds to the region where the optical pumping rate 

nΓ/2
2α  starts to exceed 13Γ  and the susceptibility of the atomic medium exhibits square 

dependence on 2α , where nDs W ΓΓ /~ 13α  is the saturation intensity. The crossover 

between the two curves in Fig. 6.3(a) and 6.4(a) represent the case when control and 

pump fields are of equal strengths which causes )()( 2313 ∆=∆Γ=∆=∆Γ EITEIT . Until this 

crossover )( 13 ∆=∆ΓEIT  is constant and after this point both 1α  and 2α  contribute to its 

width. When 12 αα >>  )( 13 ∆=∆ΓEIT  increases much faster, almost parallel with 

EITΓ ( 23 ∆=∆ ) i.e., the stronger field 2α  has the major contribution to its width.   

Fig. 6.3(b) and 6.4(b) shows the dependence of control field detuning ( 2∆ ) on the 

width of the two EIT windows for fixed 1α , 2α , 3α  and 1∆ . It is seen that )( 23 ∆=∆ΓEIT  

exhibits a stronger dependence on 2∆  compared to )( 13 ∆=∆ΓEIT . Note here that in Fig. 

6.3(b), )()( 1323 ∆=∆Γ<∆=∆Γ EITEIT  since 12 αα < . While )( 13 ∆=∆ΓEIT  remains fairly 

constant, )( 23 ∆=∆ΓEIT is minimum at 23 ∆=∆  and shows quadratic dependence on 2∆ . 

Further both the EIT resonances exhibit minimum width at the respective two-photon 

resonance conditions. Interestingly in the vicinity of 21 ∆=∆  both EIT widths undergo 

rapid changes resulting in a discontinuous behaviour at 21 ∆=∆ . As discussed before, at 
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21 ∆=∆ , the two EIT resonances become degenerate and that results in =∆=∆Γ )( 13EIT  

)( 23 ∆=∆ΓEIT . In Fig. 6.3(b) and 6.4(b) this condition is satisfied at =∆2 50 and 100 

MHz respectively and consequently the behaviour of EIT at these points are not shown. 

 

6.3 Pump-Probe Spectroscopy of N-Resonance System 

6.3.1 Variants of N System  

We consider here a typical example of N system formed by D2 transition of 87Rb 

as shown in Fig 2.1(c). The four level subset forming the N scheme are 151 2/1 =≡ Fs , 

252 2/1 =≡ Fs , 153 2/3 =′≡ Fp  and 254 2/3 =′≡ Fp . Depending on choice of 

probe field three completely different configurations can be realized within the manifold.  

Model A: In this configuration field 3E  is used as the probe. The scheme can be 

identified as an ideal three-level Λ  system for EIT comprising of 41 →  and 

42 →  transitions driven by strong pump 2E  and a weak probe 3E  respectively. This 

system is perturbed by an additional strong field 1E  coupling 31 →  transition. 

Model B: In this scheme the field 1E  is used as the probe. Here a V system formed by 

transitions 31 → and 41 →  is driven by an additional field 3E . 

Model C: Here two strong fields 1E  and 3E  dress the transitions 31 →  and 42 →  

respectively. The resulting dressed states are probed by a weak probe laser 2E  scanned 

across 41 → transition. The scheme can be thought of as two quasi-independent ‘two-

level systems’ 31 →  and 42 →  being coupled by the weak probe. 
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Note that in models A and B the probe field shares a common level with one of 

the strong fields 2E  which results in the observation of EIT or EIA at the two-photon 

resonance conditions 23 ∆=∆  and 21 ∆=∆  respectively, whereas in model C probe field 

shares a common level with both the strong fields which yields interesting characteristics 

in the absorption and dispersion profiles.  

 

6.3.2 Theoretical Formulation 

Master equation of the system is given by Eq. (2.90) which is cast in c-number 

representation to obtain the following equations: 

 444133312221

411423113111111

222

)()(/

ργργρ
ρραρραρρ

++Γ+
−−−−−= iiadtd

                                             (6.11a) 

42232114312212 / ραραραρρ iiiadtd ++−−= ,                                                    (6.11b) 

4321333311113 )(/ ραρρραρ iaidtd +−−−= ,                                                       (6.11c) 

 
3411441234411214 )(/ ραρραρραρ iaiidtd +−−−−= ,                                        (6.11d) 

4442333242243226111222 22)(2/ ργργρραρρρ ++−−−Γ= iadtd ,                        (6.11e) 

 
43323721123 / ραρραρ iaidtd +−−= ,                                                                  (6.11f) 

 
2484422321224 )(/ ρρραραρ aiidtd −−−−= ,                                                     (6.11g) 

 
444333113113133 2)(/ ρρρραρ Γ+−−= aidtd ,                                                      (6.11h) 

 
341232331214134 / ρραραραρ aiiidtd −−−= ,                                                      (6.11i) 

 
44163334422434114244 2)()(/ ρρρραρραρ aiidtd −Γ+−+−= .                           (6.11j)  

where the Rabi frequencies ( )iα  and detunings ( )i∆  are defined in Eq. (2.92) and (2.93), 

and the coefficients ia  are defined as follows: 
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121 2Γ=a ,                   ∗=∆−∆+Γ+Γ= 52321122 )( aia ,              ∗=∆−Γ+Γ= 913123 aia , 

∗=∆−Γ+Γ= 1324124 aia ,             216 2Γ=a ,            ( ) ∗=∆+∆−∆−Γ+Γ= 101233217  aia , 

, 1434218
∗=∆−Γ+Γ= aia              311 2Γ=a ,                   ∗=∆−∆+Γ+Γ= 15214312 )( aia , 

416 2Γ=a ,                     3432313 Γ++=Γ γγ ,                   4342414 Γ++=Γ γγ .       (6.12) 

Under the weak probe approximation the relevant coherences of the medium for the three 

model schemes are obtained as follows: 

(a) Model A 
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Populations for the three models are given in Appendix-6. Absorption A and refractive 

index η  of the weak probe are given by )
~

Im(PA = , )
~

Re(P=η  where )/(
~

342
)1(

42 αγρ=P , 

)/( 141
)1(

31 αγρ  and )/( 241
)1(

41 αγρ  for models (A), (B) and (C) respectively.  

 

6.3.3 Absorption Spectra  

(a) Absorption in Model A  

Fig. 6.5 shows the calculated probe absorption spectra in absence and presence of 

inhomogeneous broadening for a few representative values of field strengths. Steady state 

spectra is characterized by three dressed states formed by the coherent coupling of 

31 →  and 41 →  transitions by two strong fields 1E  and 2E . These dressed states 

can therefore be obtained from the eigenstates of V system formed by levels 1 , 3  and 

4 . For 21 ∆=∆ , these dressed states are given in Table-5. Here dressed state 1ψ  at 

)( 123 ∆=∆=∆  corresponds to resonant bright resonance.  

 

 

 

 

 

 

 

 

 

Fig. 6.5: Probe absorption spectrum for model A. Here 021 =∆=∆ , ( 21,αα ) = (5,5), 
(1,5) and (5,1) MHz for solid, dashed and dotted lines respectively. The decay rates are 

== 4131 γγ 1.115 MHz, =32γ 0.134 MHz, =42γ 0.669 MHz and =Γ=Γ=Γ=Γ 34341212  

1 kHz. Frames (a) and (b) correspond to the spectra in the absence ( =DW2 0) and 

presence ( =DW2 510 MHz) of inhomogeneous broadening. 
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Table-5: Dressed states of model A for 21 ∆=∆  

Dressed state energy Dressed state eigen vector 

2∆  
2
2

2
1

12
1

43

αα
αα

ψ
+

−
=  

2/)( 12 ξ∓∆  
4

)(
2

3
)(

2
1

2 211
2

211
1

21
3,2 ∆±

±
∆±

±∆±=
ξξ

α
ξξ

α
ξ

ξψ  

)(4 2
2

2
1

2
21 ααξ ++∆=  

From Table-5 it is clear that relative amplitudes of the three dressed resonances 

depends on the ratio of field strengths 1α  and 2α , and the transition dipole moment of 

excited states to the probe ground state 2 . Since for 87Rb 2423 dd << ,  amplitude of the 

state 1ψ  is directly related to 1α  whereas that of the other two dressed resonances are 

related to 2α . This is in agreement with the observed change in heights of the dressed 

resonances with change in field strengths as shown in Fig. 6.5(a). Fig. 6.6 shows the 

effect of 1∆  and 2∆  on the probe absorption spectra when 21 αα = .  

 

 

 

 

 

 

 

 Fig. 6.6: Absorption in absence (dotted line) and presence (solid line) of 
Doppler broadening. Here =),( 21 αα (5,5) MHz and ( 21, ∆∆ ) = (0, 50) and 
(–50, 50) for frames (a) and (b) respectively. The solid curves are scaled up 
by 50. Other data are same as in Fig. 6.5.  
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In the steady state nearly all the population is transferred to the probe ground level 

2 . This fulfills the prerequisite for EIT and hence in a thermal broadened media one 

observes a narrow EIT at 23 ∆=∆ . The effect of field 1E  on the Λ  system (1 , 3 , 4 ) 

becomes significant when 21 αα >  as may be seen the dotted curve in Fig. 6.5(b). Here 

EIT is retained but with much smaller amplitude and a larger width. Further it is observed 

that EIT always appears at 23 ∆=∆  irrespective of the detuning 1∆ (cf. Fig. 6.6). 

 

(b) Absorption in Model B  

In the absence of inhomogeneous broadening absorption spectra exhibits a triplet 

formed by dressing of 41 →  and 42 →  transitions by two strong fields 2E  and 

3E . Representative probe absorption spectra for 32 ∆≠∆  are shown in Fig. 6.7.  

 

 

 

 

 

 

 

 

 

 

Fig. 6.7: Probe absorption spectrum 
for model B. Here =∆2 0, =∆3 20 

MHz and ( 32,αα ) = (5,5), (1,5) and 

(5,1) MHz for frames (a), (b) and (c) 
respectively. The solid and dotted 
lines correspond to the spectra in the 
absence and presence of Doppler 
broadening. Other data are same as 
in Fig. 6.5. 
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Though the analytical dressed states for 32 ∆≠∆ are difficult to obtain, it can be 

argued that for 32 αα >  there is preferential dressing of two-level system 41 ↔ . 

Hence the dressed spectrum constitutes an AT doublet =∆1  2/)4( 2
2

2
22 α+∆±∆  (cf. 

dotted curves in Fig. 6.7(a) and (c)). The third dressed resonance appears at the three-

photon resonance condition 321 ∆−∆=∆  [227]. Analytical form of dressed states can be 

obtained under the condition 32 ∆=∆  and are given in Table-6. The dressed state 1ψ ′ at 

)( 321 ∆=∆=∆ is called dark resonance.  

Table -6: Dressed states for model B for 32 ∆=∆  

Dressed state energy Dressed state eigen vector 

2∆  

2
3

2
2

23
1

21

αα
αα

ψ
+

−
=′  

2/)( 22 ξ∓∆  

4
2

2
)(

2
1

)(

2

2

22

222
3

222
23,2 ξ

ξ
ξξ

α
ξξ

αψ ∆±−
∆±

±
∆±

±=′  

)(4 2
3

2
2

2
22 ααξ ++∆=

 

In the presence of Doppler broadening observation of transparency or absorption 

resonance in the medium depends on relative strengths of the two strong fields. While 2α  

increases the absorption, 3α  tends to make the medium transparent. Hence for 32 αα =  

and 32 ∆=∆  the Doppler averaged spectra do not show any characteristics of EIT or EIA. 

When 32 αα < , an EIT resonance is obtained at the two-photon resonance condition 

21 ∆≈∆  (cf. in Fig. 6.7(b)). When 32 αα > , an EIA resonance appears at 31 ∆≈∆  (cf. 

Fig. 6.7(c)). Further unlike the previous model, steady state population in this case is not 

trapped in the probe ground state, but is shared between levels 1  and 2 .  
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(c) Absorption in Model C  

We now concentrate on model C which is most interesting of the three 

configurations. In the absence of inhomogeneous broadening probe absorption spectra is 

a quadruplet formed by dressing of the four bare states. In general two pairs of dressed 

states are formed by dressing of two-level systems 31 ↔  by 1E  and 42 ↔  by 3E . 

The corresponding dressed states are =2,1S 2/)4( 2
1

2
11 α+∆±∆  and ±∆= 34,3 (S  

2/)4 2
3

2
3 α+∆ . These four dressed states are probed by field 2E  resulting in absorption 

at 132 SS −=∆ , 23 SS − , 14 SS −  and 24 SS − . Fig. 6.8 shows probe absorption spectra for 

fixed detunings and varying field strengths. Note here that the scheme under 

consideration is a combination of a Λ ( )4,2,1 and a V ( )4,3,1  system, each 

driven by its own strong control field but having a common probe field. 
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Fig. 6.8: Probe absorption spectra for 
=∆∆ ),( 31 (0,50) MHz. =DW2 0 and 

510 MHz for dotted and solid curves. 
Here =),( 31 αα (10,50), (10,10) and 

(50,10) MHz for frames (a), (b) and 
(c) respectively. The solid curves 
have been scaled up by 10. 
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When 31 αα < , Λ  system is stronger and nearly all the steady state population is 

distributed in the probe ground state 1  and excited state 3  ( ≈11ρ 0.43 and ≈33ρ 0.42). 

In this condition one observes four absorptive resonances in the absence of 

inhomogeneous broadening as shown in Fig. 6.8(a). When 31 αα ≥ , the resonant V 

system is relatively stronger and the maximum population is transferred to level 2  

( ≈22ρ 0.6). Thus there is inversion between state 1  and one of the dressed resonances 

arising from coherent coupling of 42 ↔  transition by control field 3E . This results in 

the amplification as observed in Fig. 6.8(b) – (c). The effect of thermal averaging is to fill 

in the transparency region between the four dressed states resulting into the formation of 

three EIT resonances as shown in Fig. 6.8(a). It may be noted here that the inversion in 

the dressed states is not retained in the Doppler averaged spectrum. 

 

6.3.4 Switching Between EIA and EIT in Model C 

Depending on relative strengths of the two strong fields one observes both EIA 

and EIT in this configuration as shown in Fig. 6.9. This provides an interesting prospect 

of controlling light propagation from subluminal to superluminal in the medium. When 

31 αα =  and 31 ∆=∆ , the inherent Λ  and V systems are at equal footing. In this case a 

narrow EIA resonance flanked by two transparency regions is obtained at 132 ∆=∆=∆  

as shown in Fig. 6.9(a). As 3α  is increased, the dominating Λ  system creates a narrow 

transparency window within the EIA resonance while increasing the amplitude of the 

adjacent transparency windows as is shown in Fig. 6.9(b). For 13 αα >>  three EIT 
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resonances are obtained (cf. Fig. 6.9(c)) as was discussed in the previous subsection. The 

creation of EIA is due to the buildup of low frequency coherence between the excited 

states and its transfer to the ground state by spontaneous emission. Switching between 

EIA to EIT can therefore be attributed to TOC [40-43] in the medium. Similar to EIT 

linewidth, EIA linewidth decreases with increase in DW  as shown in Fig. 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10: Narrowing of EIA 
resonance with increase in 
Doppler width. Here =∆1 =∆3 0, 

== 31 αα 5 MHz. =DW2 0, 100, 

250, 500 and 600 MHz for curves 
1, 2, 3, 4 and 5 respectively. 

Fig. 6.9: Switching between EIA 
and EIT in model C. =DW2  0 and 
510 MHz for dotted and solid 
curves. Here =∆=∆ 31 0, ( 31,αα ) = 

(5,5), (5,6) and (5,10) MHz for 
frames (a), (b) and (c) respectively. 
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6.4 Spontaneously Generated Coherence in N system 

6.4.1 Theoretical Formulation 

We consider an experimental situation of closed N system in configuration C for 

the present study. When the levels 1  and 2  are closely spaced, the two spontaneous 

decay channels (31γ , 32γ ) and ( 41γ , 42γ ) give rise to coherent superposition of the two 

ground states resulting in establishment of SGC in the medium. Since electric dipole 

moments ( 31d , 32d ) and ( 41d , 42d ) need not be orthogonal, the angles 1θ  and 2θ  between 

the two pairs of induced dipole moments play the deciding role in SGC. The alignment of 

dipole moments is defined in terms of parameters 1323132311 cos)()( θ==Φ •• dddd
����

 and 

2424142412 cos)()( θ==Φ •• dddd
����

. In such a case 32311 γγΦ  and 42412 γγΦ  are the 

SGC parameters which represent the quantum interference effects resulting from the 

cross coupling between spontaneous emissions channels ( 13 → , 23 → ) and 

( 14 → , 24 → ) respectively. Under the condition that each field drives only one 

transition, the Rabi frequencies of the driving fields are related to the alignment of dipole 

moments as =S
1α 11 sinθα 2

11 1 Φ−= α  and 2
2)3(22)3(2)3(2 1sin Φ−== αθαα S . It may be 

noted that when the dipole moments (31d , 32d ), ( 41d , 42d ) are near parallel, 121 ≈Φ=Φ  

representing the maximum SGC effect. However for large energy spacing of the ground 

states, the oscillatory terms average out to zero, 021 =Φ=Φ  and SGC effect vanishes. 

The presence of two SGC channels modify the master equation of system (cf. Eq. 2.90) as 

[ ]
).(2

)(2termsdecay ,/

4124421442412

3123321332311o

AAAA

AAAAHidtd

ρργγ

ρργγρρ

+Φ+

+Φ+−−=
                  (6.16) 
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The difference between Eq. (2.90) and Eq. (6.16) is the inclusion of last two SGC terms. 

The elements of density operator satisfy the same equations 6.11(a) – (j) with S
ii αα → , 

except the ground state coherence equation 6.11(b) which is modified as follows: 

44424123332311422321143122
12 22 ργγργγραραραρρ Φ+Φ+++−−= SSS iiia

dt

d
.  (6.17) 

 

6.4.2 Perturbative Analysis 

Steady-state solutions for ijρ  can be obtained perturbatively up to third order in 

probe field strength S
2α  to obtain relevant atomic coherences as 
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The relevant zero and higher order populations are same as in the case without SGC (cf. 

Appendix 6) with S
ii αα → .  

The response of the atomic medium to the probe field is governed by the 

polarization )(2 tEP oχε=  where 2/)]exp()exp([)( 2
*
2222 tiEtiEtE Ω+Ω−=  and 

)3(2
2

)1( 3 χχχ E+= . For an ensemble of aN  atoms we may write the polarization of the 

medium as )]exp()exp([ 2414121414 tidtidNP a Ω−+Ω= ρρ , where 4114 dd = . The first and 

third order susceptibilities of the atomic medium can therefore be obtained as [220] 

S
o

a dN

2

)1(
41

2

14)1(

αε
ρ

χ
ℏ

= ,    
3

2
3

)3(
41

4

14)3(

)(12 S
o

a dN

αε
ρ

χ
ℏ

−
= .                                                         (6.25) 

Here Re( )1(χ ) and Im( )1(χ ) represent the linear absorption and dispersion of the weak 

probe field. Re( )3(χ ) corresponds to Kerr index of the medium whereas Im( )3(χ ) 

accounts for the nonlinear absorption coefficient of probe field.  

 

6.4.3 Results and Discussion 

We now examine the effect of SGC on probe absorption and relate its 

consequences to the Kerr nonlinearity of the medium. We first focus on the case when 

31 αα =  and =∆=∆ 31 0. Fig. 6.11 shows the effect of SGC on the linear probe 

absorption spectra for a representative situation. Fig. 6.11(a) shows the triplet dressed 

states and EIA resonance in the absence of SGC (cf. Sec. 6.3.4). The inclusion of two 

SGC channels has a marked effect on it. If 21 Φ≠Φ  or only one SGC channel is taken 

into account, the probe field sees different strengths of the two control fields, hence the 

medium exhibits four dressed resonances in the absence of inhomogeneous broadening 
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with a considerable decrease in absorption (cf. Fig. 6.11(b)). Further EIA observed in the 

Doppler broadened medium is transformed into three EIT resonances, out of which the 

EIT resonance at =∆=∆=∆ 312 0 is much sharper which manifests into an enhanced 

change in susceptibility of the medium. For 21 Φ=Φ , SS
31 αα =  and this results in triplet 

absorption spectra in the absence and an EIA resonance in the presence of Doppler 

broadening as is shown in Fig. 6.11(c). However the presence of SGC results in reduced 

absorption as compared the case without SGC. Fig. 6.12 shows the effect of SGC 

channels on )1(χ  and )3(χ  of the medium for the data of Fig. 6.11. It is observed that Kerr 

nonlinearity gradually increases along with a decrease in linear/nonlinear absorption with 

the increase in SGC parameters 1Φ  and 2Φ . Kerr nonlinearity for maximum SGC 

becomes almost double to the case without SGC. 
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Fig. 6.11: Linear absorption 
spectra for =1α =3α 10 MHz and 

31 ∆=∆  0= . The dotted and solid 

curves represent the spectra in the 
absence ( =DW2 0) and presence of 

Doppler broadening ( =DW2 510 
MHz). Frames (a) – (c) correspond 
to ( 21, ΦΦ ) = (0,0), (0.9,0.0) and 
(0.99, 0.99) respectively.  
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An important point to note from Fig. 6.12 is that the enhancement of Kerr 

nonlinearity is same whether =),( 21 pp (0.9,0.0) or =),( 21 pp (0.99,0.99). When 21 pp <  

Fig. 6.12: Linear absorption )Im( )1(χ and dispersion )Re( )1(χ  vs. 2∆  are shown by 

dotted and solid curves respectively in frames (a) – (c). Nonlinear absorption )Im( )3(χ  

and Kerr nonlinearity )Re( )3(χ  vs. 2∆  are shown by dotted and solid curves 
respectively in frames (d) – (f). =ΦΦ ),( 21 (0,0) for frames (a),(d); (0.9,0.0) for frames 
(b),(e) and (0.99,0.99) for frames (c),(f). Other data are same as in Fig. 6.11. 
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or when only one SGC channel ( 01 ≠p ) is taken into account the enhanced Kerr 

nonlinearity is accompanied with a decrease in linear/nonlinear absorption (cf. Fig. 6.12 

(b), (e)). However for maximum SGC in both the channels ( == 21 pp 0.99) the linear and 

nonlinear absorption increases in the region of enhancement as compared to the case 

without SGC. Hence when control fields are of equal strengths, one can obtain 

suppression of absorption and large enhancement of Kerr nonlinearity with the increase 

in the cross coupling between radiative decay channels ( 13 → , 23 → ).  

When 31 αα =  the maximum steady population is distributed in levels 1 and 3 .  

However when 31 αα < , i.e. the inherent V system is weaker, maximum population is 

transferred to the probe ground state1 . This population trapping causes makes the 

medium transparent. Further in this case the Kerr nonlinearity is increased by a factor of 

10 as is shown in Fig. 6.13. The enhanced Kerr nonlinearity enters the nonlinear 

transparency window with increase in SGC parameters. Thus one can attain enhanced 

Kerr nonlinearity with almost no absorption by controlling the field and SGC parameters.  

 

 

 

 

 

 

 

Fig. 6.13: )Im( )3(χ (dotted curve) and )Re( )3(χ  (solid curve) vs. 2∆  for 

=1α 1 MHz. =ΦΦ ),( 21 (0,0) and (0.99,0.99) for frames (a) and (b) 
respectively. Other data are same as in Fig. 6.11. 
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Fig. 6.14 shows the effect of SGC on )1(χ  and )3(χ  for 31 αα <  and off-resonant 

control field. In this case the Kerr nonlinearity is enhanced by almost 75 times for 

maximum SGC; however it is accompanied with an increase in absorption. In this case, 

SGC helps in obtaining narrow EIT resonances in the presence of Doppler broadening. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

Fig. 6.14: )Im( )1(χ and )Re( )1(χ  vs. 2∆  are shown by dotted and solid curves 

respectively in frames (a) – (c). )Im( )3(χ  and )Re( )3(χ  vs. 2∆  are shown by dotted 

and solid curves respectively in frames (d) – (f). Here ),( 31 αα = (1,10) MHz and 

=∆∆ ),( 31 (0,10) MHz. =ΦΦ ),( 21 (0,0) for frames (a),(d); (0.9,0.0) for frames (b),(e) 

and (0.99,0.99) for frames (c),(f).  
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From Eq. (6.18) – (6.23) it is clear that the coherences ,)0(
12ρ )0(

14ρ , )0(
23ρ , )0(

34ρ  and 

hence )1(
iiρ , )1(

13ρ , )1(
24ρ , ,)2(

12ρ )2(
14ρ , )2(

34ρ , )3(
iiρ ( 41−=i ) are zero in the absence of SGC 

( 0)( =j
NX )  but become finite in its presence. These coherences then modify the first and 

third order probe polarizations )1(
41ρ  and )3(

41ρ . A closer inspection of these terms reveals 

that the major contribution to the response of the atomic media is the buildup of low 

frequency coherence term )2(
21ρ . Thus the change in optical response of the medium and 

enhancement of Kerr nonlinearity can be attributed to the two SGC channels and the 

interference between them which causes generation of extra coherences in the medium.  

 

6.5 EIT in ΛΛΛΛ and N System: Experimental 

We now discuss our experimental results on EIT in Λ  and N configurations. We 

consider here the N system of model A, i.e. where 3E  is the probe, 2E  is the pump and 

1E  is the coupling (control) beam. The level scheme used in the present experiment 

correspond to D2 transition of 87Rb as shown in Fig. 6.15. The experimental set-up is 

same as that shown in Fig. 4.11. For EIT experiments, we avoid the additional counter-

propagating probe beam which was used in the dressed state spectroscopy (cf. Sec. 4.7) 

and measure the probe absorption signal directly to obtain EIT. This helps in obtaining a 

narrower EIT linewidth as compared to the dressed state spectroscopy signal. 

In case of the Λ  system formed by levels 1 , 2  and 4 , we first obtain EIT 

signal at exact pump resonance and in the absence of the coupling beam. A typical EIT 

scan is shown in Fig. 6.16. Here the pump laser is stabilized on 1'525 2/32/1 =→= FpFs  
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hyperfine transition i.e. 02 =∆ . In this configuration, when the probe laser is scanned 

across the excited hyperfine manifold, a transparency window appears at ≈∆3 0. This 

narrow ‘dark’ resonance is flanked by two velocity selective resonances. The velocity 

selective resonances appear due to non-resonant excitation of different velocity group of 

atoms by the pump beam. The observed width of the EIT resonance is ~ 3 MHz, which is 

substantially lower than the natural line width (6.1 MHz) of 87Rb D2 transition. Under 

optimized experimental conditions the line width of the ‘dark’ resonance can be further 

narrowed to ~ 1 MHz. This type of ultra-narrow resonance can act as an ideal frequency 

discriminator in the field of metrology.  
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Fig. 6.15: Energy-level diagram for EIT 
experiment in 87Rb D2 line. The bracketed 
entries represent the separation (in MHz) 
between adjacent levels. The Λ  system is 
formed with probe and pump lasers tuned 
to 11 =′→= FF  and 12 =′→= FF  
transitions. For realization of N system an 
additional coupling field is tuned to 

22 =′→= FF  transitions. The detunings 
of the coupling, pump and probe lasers are 

21, ∆∆  and 3∆  respectively.  

Fig 6.16: EIT in Λ  configuration of D2 
transition of 87Rb where pump is exactly 
resonant with 1525 2/32/1 =′→= FpFs  

transition. (i) Probe saturation absorption 
spectrum of FpFs ′→= 2/32/1 515 transition, 

where the resonances are as marked in Fig. 
4.15. (ii) Probe intensity in the presence of 
the pump laser with 02 =∆  and Rabi ~2α  

17 MHz. The EIT signal at 03 ≈∆  has a 

linewidth (FWHM) of ~3 MHz (obtained by 
Lorentz fitting).  
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For EIT in N system the coupling beam is turned on. Here the pump and coupling 

beams are derived from the same diode laser using an AOM. Pump beam is locked at 

crossover resonance between 2,1525 2/32/1 =′→= FpFs  transitions using frequency 

modulation spectroscopy (FMS) and the coupling beam is 78 MHz up-shifted through 

AOM, which implies 01 ≈∆  and ≈∆2  –78.5 MHz. EIT is recorded in Λ  and N systems 

together by scanning the probe laser over appropriate hyperfine transitions. The powers 

of pump, coupling and probe beams are 1 mW, 2.5 mW and 70 µW respectively. It may 

be noted here that this configuration gives rise to EIT in Λ  system under non-resonant 

condition ( ≠∆2 0). It is well known that the width of EIT in Λ  system with 02 ≠∆  is 

expected to be substantially higher than that for 02 =∆  [14-16]. This however is not a 

limitation since we can compare the EIT signal in both these systems under identical 

experimental conditions to draw inference on the general features. A representative result 

is shown in Fig. 6.17. It is clear from Fig. 6.17 that EIT in Λ  system occurs at the two 

photon resonance condition 23 ∆=∆ , while for N system it is observed at three-photon 

resonance condition 123 ∆−∆=∆ , which reduces to 2+1-photon resonance for =∆1 0 

[227]. This is satisfied for =∆3 –78.5 MHz (cf. Fig. 6.17). We may observe here that the 

width of EIT in N system (~5 MHz) is significantly narrower than that in Λ  system (~16 

MHz). This agrees with the general observation that the EIT is N resonance is superior to 

that in Λ system and that makes it more attractive for applications relating to time and 

frequency standards.  

The amplitude of the EIT resonance depends on the experimental parameters such 

as the field strengths and the density of the atoms. For achieving the largest absorption 
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reduction, the power of the coupling, pump and probe beams needs to be carefully 

monitored, and the probe beam is taken to be sufficiently weak to eliminate the saturation 

of atoms while maintaining appropriate signal to noise ratio. It is also important to note 

that while the pump and coupling strengths affect the frequency positions of dressed 

states, they do not change the EIT resonance frequency. 

 

 

 

 

 

 

 

 

We expect that improved optimization of the beam size and shape, laser focus, 

alignment, and intensity; and automated digital frequency locking of pump and coupling 

lasers can help in further narrowing the EIT resonance while increasing its amplitude. 

This ultra narrow EIT resonance can prove useful in frequency offset locking where one 

can stabilize the probe laser on the peak position of the EIT signal. This is done by 

locking the probe laser on the first derivative spectrum of EIT resonance. This atomic 

frequency offset locking (AFOL) technique provides better frequency stability than 

saturation absorption spectroscopy [82]. Further it eliminates the need of direct 

modulation of laser frequency and the spectral resolution is limited only by the linewidths 

of the laser systems.  

Fig 6.17: Comparison of EIT in three- 
and four-level systems. (i) Probe 
saturation absorption spectrum (ii) 
probe intensity in the presence of 
pump laser for Λ system and (iii) in 
the presence of pump and coupling 
lasers for N system. The widths of EIT 
for Λ and N system are 16 and 5 MHz 
respectively. See text for details. 



139 

 

 

CHAPTER 7 

PHASE FLUCTUATIONS IN COHERENT 

DYNAMICS OF N-RESONANCE 

 

7.1 Introduction 

In coherent pump-probe spectroscopy experiments several techniques are used to 

generate the requisite multi-frequency fields, e.g., independent lasers [80-82], 

independent but phase locked lasers [83] and sidebands of a single laser [101] etc. An 

important problem that has a direct bearing on the experimental outcome is how the finite 

bandwidths of driving lasers and their cross-correlations affect the coherent dynamics of 

multi-level systems. The laser bandwidth is related to stochastic correlations of each 

frequency fluctuation with itself and cross-correlation between two fluctuating fields 

depends on the experimental techniques used for their generation. 

It is well known from the study of two-level systems that the phase fluctuations in 

laser fields are a major cause of deterioration of the coherent optical processes. The effect 

of excitation bandwidths on resonance fluorescence [144] and Autler-Townes doublet 
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[145] was studied by Agarwal et al. Dalton and Knight [146] have reported a detailed 

analysis of the effects of laser bandwidths and cross-correlations on the coherences of a 

three-level system driven by two coherent fields. This work shows that whether atomic 

coherences are dephased or not depends on the laser bandwidths and correlations, and 

also on the atomic level configurations, i.e., Λ , V and Ξ . The same group has analyzed 

the effect of unequal phase fluctuating laser fields on CPT in ladder and Λ  schemes 

[147]. They have reported that uncorrelated laser fields destroy CPT and damp the 

narrow coherence hole in the fluorescent intensity. However if the fields are critically 

cross-correlated atomic coherences are much less affected and a significant degree of re-

trapping occurs [147]. The effect of finite bandwidths on optical double resonance (ODR) 

spectra and second-order intensity correlation functions was studied numerically and 

analytically by Lawande and co-workers [148,149]. There also exist studies on the effect 

of phase fluctuations on EIT, LWI, refractive index enhancement and entanglement 

generation [150-156]. While numerous papers have analyzed the effect of laser phase 

fluctuations on the optical response of three-level systems [144-156], relatively little 

work is reported on multilevel systems [157,158]. Fleischhauer et al. [157] have shown 

that in a double-Λ  non inversion laser, pump-field phase diffusion leads to a fluctuating 

oscillation frequency of coherence and hence reduces the laser gain. A general condition 

for population trapping has been obtained in a four level system by Osman [158]. In 

particular no such work has been reported on N system, probably due to the complex 

configuration of the levels and coupling fields.  

In this chapter we examine the effect of phase fluctuations on the response of 

three- and 2+1-photon resonance in terms of steady state and time dependent populations 
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as well as EIT/ EIA resonance in a N system. The framework of multiplicative stochastic 

processes [159,160] is used to obtain master equation for the phase averaged density 

matrix. Phase fluctuations are modeled as Wiener-Levy diffusion processes i.e. phase 

noise is assumed to be the integral of white frequency noise. The distinctive features of 

steady state and time dependent behavior of the system under three-photon and 2+1-

photon resonance conditions and for fluctuating fields are explicitly discussed. The 

results are illustrated using the N system of 40Ca+ ion (or 87Sr atom) as discussed in Ref. 

[227]. Further the effect of phase fluctuations on EIT/EIA resonance is discussed in 

reference with model C of Chapter-6.  

 

7.2 Theoretical Formulation 

We consider a four-level system (cf. Fig. 2.1(c)) in N-configuration interacting 

with three monochromatic laser fields which are near resonant with respective atomic 

transitions. The coherent dynamics of the system is described by the master equation 

(2.83a). The Rabi frequencies of the three fields are 2/1131 oEd=α , 2/2142 oEd=α  and 

2/3243 oEd=α . We assume that the driving fields )(tE j , ( =j 1,2,3) arise from the 

stochastic nature of phases and are described by 

)exp()( tiEtE jjoj ϕ−= , joj ϕϕ =)0( ,                                                                      (7.1) 

where non-stochastic amplitudes joE  are positive real numbers, joϕ  
are uniformly 

distributed phase variables and )(tjϕ  are the stochastic phase variables. We make the 

rather standard assumption that the phases )(tjϕ  follow a Wiener-Levy diffusion process 
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[159,160]. The phase fluctuations statistics is thus characterized by the following random 

equation of motion: 

)()( tt jj µϕ =
•

,                                                                                                          (7.2) 

with )(tjµ  as a Gaussian white noise satisfying the following properties: 

=)(tjµ 0,                                                                                                               (7.3a) 

,)( 2

,)( 2)()(

jitt

jitttt

cicj

ciji

≠′−=

=′−=′

δγ
δγµµ

                                                                    (7.3b) 

where ciγ2  is the bandwidth of laser iΩ  and cicjγ2  represent the cross-correlation that 

may exist between the lasers iΩ  and jΩ . Here and subsequently, ‘bar’ denotes the 

ensemble average with respect to the distribution of the random process )(tjµ . Cross 

correlations arise when two lasers interact simultaneously with the atom. They may also 

arise naturally if the two fields are different modes of the same laser or if the second field 

is produced by splitting and frequency conversion from the other laser beam. For critical 

correlation of driving fields we have 

2/)( cjcicicj γγγ += .                                                                                                 (7.4) 

In order to obtain the atomic observables averaged over phase fluctuations, we generalize 

the procedure used by D’Souza et al. [148] for the study of laser fluctuation effects in 

ODR spectra. The advantage of Weiner-Levy model of phase fluctuations is that it is 

possible to derive the master equation for density operator averaged over the ensemble of 

phase fluctuations. To this end we introduce the transformed density operator pqsW as 

 )exp()()exp()exp()( iZtiZiYtW pqs ρ−−= ,                                                             (7.5) 

321 ϕϕϕ sqpY ++= , 4422232331 )( AAAZ ϕϕϕϕ +−+= .                                         (7.6) 
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Differentiating Eq. (7.5) we obtain the following equation for pqsW  

iZiZiYpqspqspqs edteeWZiWsqpidtdW )/(],[)(/ 321 ρµµµ ∂+−++−= −−
•

.                (7.7) 

The equation of motion for pqsW  is thus given as 

pqspqs WLsiLqiLpiLdtdW )]()()([/ 3322110 −−+−+−= µµµ ,                              (7.8) 

},2{}2

{],[],)[(],[

],[],[],[

4422232331

4224341142311310

jj
pqs

ij
pqs

jiiiijjj
pqs

ij
pqs

ji

pqs
iiij

pqspqspqs

pqspqspqspqs

AWAWAAAWAWA

WAWAiWAiWAi

WAAiWAAiWAAiWL

+−Γ−+−

−∆−∆−∆−∆−

+++++=

ρ

γ
ααα

      (7.9) 

],[ 331
pqspqs WAWL = , ],[ 44222

pqspqs WAAWL += , ],[ 223
pqspqs WAWL = .             (7.10) 

Eq. (7.8) is a special case of a multiplicative stochastic differential equation. Our next 

step is to obtain the master equation for transformed density operator pqspqs W=χ  

averaged over distributions of phase variables )(tjϕ , ( =j 1,2,3). Since )(tjϕ  represent 

δ -correlated Gaussian processes, it is possible to apply the theory of multiplicative 

stochastic processes [159,160] to obtain an exact evolution equation for )(tpqsχ . To this 

end we write Eq. (7.8) as 

pqspqs WBtiBtiBtiBdtdW })()()({/ 3322110 µµµ −−−= ,                                        (7.11) 

where iB  are fixed operators defined as follows: 

33221100 ,,, LsBLqBLpBLB −=+=+== .                                                (7.12) 

In the interaction representation Eq. (7.11) simplifies to 

)(v)(/)(v ttiwdttd −= ,                                                                                          (7.13) 

where  

)()(v tWet pqstBo−= ,  tBtB eBtBtBtetw 00 ])()()([)( 332211 µµµ ++= − .             (7.14) 

Formal solution of Eq. (7.13) can be written in terms of time-ordered exponential as 
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)0(v})(exp{)(v
0
∫−=
t

wdiTt ττ ,                                                                             (7.15) 

where T is the time ordering operator. Taking the average of Eq. (7.15) with a fixed value 

of )0(v  and using the fact that averaging commutes with time ordering we obtain 

)0(v)(exp)(v
0 








∫−=
t

wdiTt ττ .                                                                            (7.16) 

The characteristic function of a stochastic variable x  is defined as 

∫=≡ )()exp()exp()( xPikxdxikxkG ,                                                                 (7.17) 

where )(xP  is probability distribution of x . Taking logarithm of Eq. (7.17), we obtain 

m

m

m

x
m

ik
kG ∑≡

∞

=1 !

)(
)(ln ,                                                                                  (7.18) 

where ....  are the cumulants [160]. For Gaussian processes all cumulants beyond the 

second order are zero. The first cumulant is just the average value. Using Eq. (7.18) in 

(7.16) we obtain 

),0(v)()(exp

)0(v)()(
2

1
)(exp)(v

0 0
2121

0 0
2121

0

1









∫ ∫−=









∫ ∫−∫−=

t t

t tt

twtwdtdtT

twtwdtdtwdiTt ττ
                                  (7.19) 

where we have used 0)( =τw . In this case the second cumulant is equal to the second 

order correlation )()( 21 twtw . Differentiating Eq. (7.19), we have 

∫−=
t

twtwddttd
0

)(v)()(/)(v ττ .                                                                           (7.20) 

Reverting back to the original representation we obtain 

pqs
t

i j
jjii

pqs WBBttBBdBdtWd








∫ ∑ ∑ −−−=
= =0

3

1

3

1
000 )exp()()()exp(/ ττµµττ .          (7.21) 
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Using Eq. (7.3) in (7.21) we obtain terms like  

∫ =−
t

jicjic BBBBBBd
0

00 )()exp()exp(2 γτδτττγ .                                                 (7.22) 

Now using Eq. (7.22) and the fact that sBi '  commute we finally obtain  

,)(]222

[/)(

323231312121

2
33

2
22

2
110

tWBBBBBB

BBBBdttWd

pqs
cccccc

ccc
pqs

γγγ

γγγ

−−−

−−−=
                               (7.23) 

which is equivalent to the master equation 

.)])((2))((2)(

)(2)()()([/

323231312

121
2

33
2

22
2

110

pqs
cccc

ccccc
pqs

LsLqLsLpLq

LpLsLqLpLdtd

χγγ
γγγγχ

−+−−+−+

+−−−+−+−=
           (7.24) 

pqsχ  may be directly used to compute one-time expectation values of atomic operators. 

 

7.2.1 Numerical Analysis 

Master equation (7.24) can be cast in a c-number representation by taking the 

matrix elements of the density operator )(tpqsχ  between the atomic states to obtain 

pqspqspqs XMdtdX =/ ,                                                                                          (7.25) 

where pqsX  is a column vector with 16 components given by jiX pqspqs
ij χ=−+ )1(4  and 

pqsM  is a 16×16 matrix whose elements are given in Appendix-7. The general solution of 

the matrix equation (7.25) can be written as 

)exp(
]

~
[

)(
16

1
tU

C

XV
tX pqs

k
pqs
k

k
pqs

k

pqs
k

pqs
k λ∑=

=

•
,                                                                   (7.26)  

where pqs
kU  and pqs

kV  are respectively the eigenvectors of pqs
kM  and pqs

kM
~

 corresponding 

to eigenvalue pqs
kλ . pqs

kV
~

 and pqs
kM

~
 are the transpose of pqs

kV  and pqs
kM  respectively.  
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Coefficients )
~

( pqs
k

pqs
k

pqs
k UVC •=  are normalization constants. These eigenvalues and 

eigenvectors can be easily obtained numerically. In general, eigenvalues pqs
kλ  are 

complex with negative real part. The computation of atomic averages and intensity-

intensity correlation functions involves the distribution 000χ . For 000χ , a steady-state 

exists which corresponds to the existence of an eigenvalue =000
kλ 0. With === sqp 0 

this method is quite similar to the one used by Dalton and Knight [146] for obtaining the 

populations which are related to one time averages. However proper choice of parameters 

( sqp ,, ) in the density matrix pqsχ  leads to simplification of off-diagonal atomic 

averages which can be used to obtain atomic coherences and fluorescent spectra. For e.g. 

the fluorescent spectra require the distributions 100χ , 010χ  and 001χ . 

 

7.2.2 One Time Averages 

Consider the averages of operators kkA  which correspond to atomic populations,  

].)()}(exp{[

])()exp()exp()exp([

)exp()()exp()exp([])([)(

321 tWAsqpiTr

tWiZAiZiYTr

iZtWiZiYATrtATrtA

pqs
kk

pqs
kk

pqs
kkkkkk

ϕϕϕ

ρ

++=

−=

−==

                         (7.27) 

Since kkkk AiZAiZ =− )exp()exp( , we choose === sqp 0 to take average over the phase 

distribution and obtain )]([)( 000 tATrtA kkkk χ= . Similarly the average of off-diagonal 

operator 12A can be obtained as  

,)]()}(exp{)}([exp{

)]()exp()exp()[exp(

)]exp()()exp()exp([)]([)(

1232321

12

121212

tWAisqpiTr

tWiZAiZiYTr

iZtWiZiYATrtATrtA

pqs

pqs

pqs

ϕϕϕϕϕ

ρ

−++=
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−==

                    (7.28) 
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where we have used the cyclic property of trace operation and identity (a) in Chapter-2. 

We now choose =p 0, −=q 1 and =s 1 to obtain )]([)( 1)1(0
1212 tATrtA −= χ . Similarly 

the phase averaged expectation values of the other off-diagonal operators )( kjA jk ≠  

involve distributions with ≠sqp ,, 0 can be obtained as follows: 

)]([)( 1)1(0
1212 tATrtA −= χ ,   )]([)( )1(01

2121 tATrtA −= χ ,   )]([)( 00)1(
1313 tATrtA −= χ , 

)]([)( 100
3131 tATrtA χ= ,       )]([)( 0)1(0

1414 tATrtA −= χ ,   )]([)( 010
4141 tATrtA χ= , 

)]([)( )1(1)1(
2323 tATrtA −−= χ , )]([)( 1)1(1

3232 tATrtA −= χ ,   )]([)( )1(00
2424 tATrtA −= χ , 

)]([)( 001
4242 tATrtA χ= ,       )]([)( 0)1(1

3434 tATrtA −= χ ,  )]([)( 10)1(
4343 tATrtA −= χ . 

(7.29) 

Thus within the phase diffusion model, fluctuations can be treated exactly. 

Further the two-time correlation functions can be obtained from one-time expectation 

values of the atomic operators by invoking the quantum regression theorem. 

 

7.3 Effect of Phase Fluctuations on Three- and 2+1- photon 

      Resonances 

While the driving fields can be chosen arbitrarily, for this analysis we consider the 

case of 40Ca+ ion [227], where 2E  and 3E  are strong fields and the ground level 1  is 

connected to a metastable level 3  by weak field 1E  (cf. Fig. 2.1(c)). This scheme 

represents the type of system encountered in atomic clocks, where transition 31 →  is 

the clock transition of 40Ca+ ion or 87Sr atom [227]. Here levels 2,1  and 3  are stable 
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(metastable) while the state 4  is unstable unlike the 87Rb system studied in the previous 

chapter. Champenois et al. [227] have pointed out that due to the instability of state 4 , 

the narrow lines at three-photon resonance in this system can only be explained in terms 

of population trapping and not transfer of coherence (TOC). To compare our results with 

Ref. [227], the only decay channels considered in this section are 41γ and 42γ . The 

system exhibits narrow resonances when the following two conditions are satisfied, 

(i) Three-photon resonance condition 

0132 =∆−∆−∆ and 01 ≠∆ ,                                                                               (7.30) 

in which states 2  and 3  are resonantly coupled by three-photon process, and  

(ii) 2+1-photon resonance condition 

032 =∆−∆  and 01 =∆ ,                                                                                      (7.31) 

where the states 1  and 2  are coupled by two-photon process while states 1  and 3  

are coupled by one-photon process. We now focus on the steady-state and time dependent 

behavior of the atom under the above two conditions. 

 

7.3.1 Steady - State Population Distribution 

(a) Three-Photon Resonance 

For a clear perception of the three-photon resonance condition it is pertinent here 

to discuss briefly the dark state in the absence of phase fluctuations. Though it is difficult 

to obtain closed analytic expressions of the dressed states, for 321 ,ααα <<  coupling 

between states 1  and 3  can be treated perturbatively by introducing the first order 
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perturbation parameter 1/ 11 <<∆α . The dressed states of the two-level system 31 ↔  

are =±ψ 32/)(12/)( 11 RRRR Ω∆±ΩΩ∆Ω ∓∓  corresponding to the energies 

2/)( 12,1 RΩ±∆=ε  where 2
1

2
1 4α+∆=ΩR . Thus for 01 ≠∆  and 11 α>>∆  we have 

[ ]31)/( 111 −∆=+ αψ n ,    1
2
111 / ∆+∆= αε                                                     (7.32a) 

[ ]3)/(1 111 ∆+=− αψ n ,   1
2
12 / ∆−= αε                                                          (7.32b) 

where 2
1

2
111 / ∆+∆= αn  is the normalization constant. States +ψ  and 2  are 

resonantly coupled by an effective two-photon process [227]. Coupling between states 

+ψ  and 4  is 121 / ∆αα . Dressed states of N system therefore correspond to the 

eigenvectors of Hamiltonian of the system formed by levels 2 , +ψ  and 4 , i.e., 

















∆∆−
∆∆+∆
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=

31213

1211
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/

//0

0

ααα
ααα
α

H .                                                         (7.33) 

The effective dark state of the system corresponds to three-photon resonance at 

123 ∆−∆=∆  and the corresponding dressed state eigen vector is 

[ ]aD n ψαααψ +∆≈ 2)/( 13212 .                                                                        (7.34) 

The other two dressed (bright) states of the system are 
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−= 43

)(
21

)( 2,111

121

2,11
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2,11
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nn
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αα

ε
α

ε
ααψ     (7.35) 

which correspond to ( )( ) 2/)/(4)()( 2
3

2
1

2
2

2
1

2
21212,1 αααε −∆+∆+∆±∆+∆=BB . Here 

2
3

2
1

2
2

2
1312 / αααα ∆+∆=n  and 2

2,11
2
1

2
3

2
1

2
2

2
12,1112,1 )(/)( BBBBBBn εαααε −∆∆+∆+−∆∆=  

are the normalization constants. 
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From Eq. (7.32) – (7.34) it is clear that under the weak coupling condition i.e. 

1/ 11 <<∆α , dark state 3≈Dψ . Therefore under steady state almost all the population 

is transferred to state 3  while the remaining states are correspondingly empty. This 

results in a sharp resonance, the linewidth of which is dependent on 2
3

2
12

2
1 )/( ααα ∆  [227]. 

The complete trapping of population in state 3  is referred to as dark resonance. 

Fig. 7.1 displays the populations )41( −=iAii as a function of 3∆  at the three-

photon resonance condition when 321 ccc γγγ ==  and 0=cicjγ . The data chosen is same 

as in Ref. [227]. In the absence of phase fluctuations (cf. curve A), the steady state of the 

system is characterized by two resonances, a sharp three-photon resonance at 

123 ∆−∆=∆  corresponding to almost complete transfer of population to state 3  and a 

broad two-photon resonance at 23 ∆=∆ . Note in Fig. 7.1 that at two-photon resonance 

condition, the maximum population is in state 2  and this is what is expected in a three-

level Λ  system [146,147] formed by the levels 1 , 2  and 4  in the present problem. 

Fig. 7.1 thus permits a direct comparison of the behavior of three-photon resonance in N 

system and two-photon resonance in Λ  system under identical phase fluctuations. The 

effect of phase fluctuations on these resonances is represented by curves B – D in Fig. 

7.1. It is clear from Fig. 7.1 that the three-photon resonance is strongly affected by laser 

bandwidths. Higher bandwidths lead to strong suppression of the population in the 

metastable level, while increasing the populations in the other levels. Thus the phase 

fluctuations dephase the atomic coherences thereby destroying the sharp resonance. It 

then follows that to obtain ultra-narrow three-photon absorptive resonance using three 
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independent lasers laser bandwidths must be extremely narrow. For example, for the data 

of Fig. 7.1 the population in level 3  decreases to 96% and 84% for laser linewidths of 1 

kHz and 5 kHz respectively. It may also be seen from Fig. 7.1 that the suppression in the 

two-photon resonance is relatively insensitive to the increase in laser bandwidths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 7.1 all laser bandwidths were assumed to be equal. Fig. 7.2 shows the 

effect of individual laser bandwidths on the behavior of two-photon and three-photon 

resonances respectively when no cross-correlations exist between the lasers. We observe 

Fig. 7.1: Effect of laser bandwidths on level populations under three-photon 
resonance condition. Frames (a) – (d) correspond to the populations in levels 
1 , 2 , 3  and 4  calculated for ( 321 ,, ααα ) = (0.025, 5.0, 1.25) MHz, 

( 21, ∆∆ ) = (5, 8) MHz and ( 4241,γγ ) = (9.375, 0.625) MHz. Curves A–D in 

each frame correspond to bandwidths === 321 ccc γγγ 0, 5, 20 and 50 kHz 

respectively and all the cross-correlation are assumed to be absent.  
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that the three-photon resonance is affected by all laser bandwidths equally. On the other 

hand, the suppression of two-photon resonance is dependent only on 2cγ  and 3cγ  similar 

to its behaviour in a Λ  system. 

 

 

 

 

 

 

 

 

 

 

 

The effect of cross correlations (cicjγ ) in reviving the populations is shown in Fig. 

7.3 where we have shown the two- and three-photon resonances when any two fields are 

critically correlated. It is well known that for Λ  system if the driving fields are critically 

Fig. 7.2: Effect of individual laser bandwidths on the populations of levels 1  and 

3  calculated for ( 321 ,, ααα ) = (0.025, 5.0, 1.25) MHz, =∆∆ ),( 21 (5, 8) MHz and 

( 4241,γγ ) = (9.375, 0.625) MHz. Frames (a),(c) and (b),(d) highlight the behavior 
in the vicinity of two- and three-photon resonances respectively. Curves A – D in 
each frame correspond to ( 321 ,, ccc γγγ ) = (0,0,0), (10,0,0), (0,10,0) and (0,0,10) 

kHz respectively. All cross-correlations are assumed to be zero.  
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correlated, the two-photon coherences are unaffected by laser fluctuations and coherence 

minimum persists [146]. This behavior may be seen in Fig. 7.3(a) and (c) where complete 

revival is observed when 2/)( 3232 cccc γγγ += . Note also that the two-photon resonance 

is insensitive to cross-correlations 21ccγ  and 31ccγ . The three-photon resonance, however, 

behaves very differently from the two-photon resonance, as is seen from Fig. 7.3(b) and 

(d). Firstly 21ccγ  and 32ccγ  help to revive three-photon resonance, but only partially even 

when the relevant fields are critically correlated. Secondly the effect of 31ccγ  is opposite, 

i.e., it results in deterioration of the resonance instead of its restoration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3: Effect of cross-correlations on the population of levels 1  and 3 . The basic 

atom-field interaction data is same as in Fig. 7.1. Frames (a), (c) and (b), (d) highlight 
the behavior in the vicinity of two- and three-photon resonances respectively. In each 
frame the curve A is for 0== cicjci γγ

 
and serves as the reference. For curves B – E, 

=== 321 ccc γγγ 10 kHz and =),,( 323121 cccccc γγγ (0,0,0), (10,0,0), (0,10,0) and (0,0,10) 

kHz respectively. Here each pair of fields is assumed to be critically correlated.  
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The distinctive features of three- and two-photon resonances of N system under 

laser phase fluctuations may be discussed in terms of the coherences associated with 

various processes. The coherence 23ρ  between levels 2  and 3  is responsible for three-

photon resonance, while the coherence 12ρ  between levels 1  and 2  is related to two-

photon resonance 23 ∆=∆ . Atomic coherences 23ρ  and 12ρ  are associated with the 

corresponding diagonal terms 7℘  and 2℘  given in Eq. (A7.15) and Eq. (A7.11) of 

Appendix-7 with 0=== sqp , i.e. 

3231213211237 222)( ccccccccci γγγγγγ −+−+++∆+∆−∆−=℘                            (7.36) 

3232232 2)( cccci γγγ −++∆−∆=℘                                                                        (7.37) 

Thus the phase fluctuations modify the detunings of system as ckkk iγ+∆→∆ , 

( =k 1,3) and 222 ciγ−∆→∆ . It is clear from these equations that the three-photon 

resonance is affected by all ciγ  equally, while the two-photon resonance is broadened 

only by 2cγ  and 3cγ . This is consistent with the observations made from Fig. 7.2. The 

revival of the two-photon resonance for critically correlated fields, i.e., 3232 2 cccc γγγ =+  

is obvious from Eq. (7.37) and is shown in Fig. 7.3(a) and (c). On the contrary such exact 

cancellation is not possible in case of three-photon resonance (cf. Eq. (7.36)). Thus 21ccγ  

and 32ccγ  revive the three-photon resonance only partially; see curves C and E of Fig. 

7.3(b),(d). As expected the revival is better for small bandwidths of the three lasers. For 

example the population in metastable state 3  revives to 97% for == cicjci γγ 1 kHz (not 

shown here). One may also note from Eq. (7.36) that the effect of 31ccγ  is exactly 

opposite to that of 21ccγ  and 32ccγ , i.e., it does not cancel the effect of 1cγ  and 3cγ , but 
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rather adds. This results in further suppression of three-photon resonance as is exhibited 

by curve D of Fig. 7.3(b), (d). This analysis shows that cross-correlation of lasers 

coupling one of the common levels, i.e., 1  and 4 , help to restore the resonance, and 

consequently these frequencies can be derived from a single laser source to obtain 

relatively sharp three-photon absorption resonance.  

 

(b) 2+1-Photon Resonance 

We now consider the 2+1-photon resonance which is a special case of three-

photon resonance. The difference between 2+1- and three-photon resonance is that when 

the former condition is satisfied, the steady state response of the system is characterized 

by the Λ  system formed by levels ,1 2 and 4  alone. This manifests into a 

remarkable difference in the response of the system under the two resonance conditions. 

In the absence of phase fluctuations the dynamics of the system may be conveniently 

discussed in terms of dressed states of the Λ  system given in Table-6. Here the dark state 

1ψ ′  is a coherent superposition of levels 1  and 2 , and the energy of this state is 

)( 32 ∆=∆=ε . For 32 αα > , the dark state essentially retains the character of level 2 . 

This dark state is resonantly coupled to 3  exhibiting an effective two-level behavior. At 

long times, however, the system is damped due to off-resonant coupling of 3  with other 

two dressed states of the Λ  system and the rate of this damping is responsible for the 

width of 2+1-photon resonance [227]. Fig. 7.4 shows the effect of laser bandwidths on 

the populations iiA  ( =i 1 – 4) for 2+1-photon resonance condition. In the absence of 

phase fluctuations, almost all population is shared between levels 2  and 3  (cf. curve 
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A in Fig. 7.4). Note that, for 32 αα <  the steady state population is shared between the 

levels 1  and 3 . The effect of bandwidths of driving fields ( 0≠ciγ ) in the absence of 

correlations ( 0=cicjγ ) may be seen from the curves B, C and D of Fig. 7.4. We observe 

here that an increase in the laser bandwidths results in broadening of 2+1- photon 

resonance with no significant change in its height.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4: Effect of laser phase fluctuations on the level populations under 2+1-
photon resonance condition. Frames (a) – (d) correspond to the populations in 
levels 1 , 2 , 3  and 4  calculated for ( 321 ,, ααα ) = (0.025, 5.0, 1.25) 

MHz, =∆∆ ),( 21 (0,8) MHz and ( 4241,γγ ) =  (9.375, 0.625) MHz. Curves A – D 

in each frame correspond to bandwidths === 321 ccc γγγ 0, 5, 20 and 50 kHz 

respectively and all the cross-correlation are assumed to be absent ( 0=cicjγ ). 
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The effect of individual laser bandwidths on the populations of levels 1  and 3  

is shown in Fig. 7.5. It is observed that all bandwidths ciγ  affect the populations of levels 

2  and 3  in equal measure. However 1cγ  has a relatively weaker effect than 2cγ  and 

3cγ  on the populations of levels 1  and 4 . The resonance is only slightly broadened in 

the vicinity of 2+1-photon resonance as shown in Fig. 7.5(a). Nonetheless the populations 

of these levels are very small and hence this result is of little consequence. 

 

 

 

 

 

 

 

 

 

 

 

Thus comparing the behavior of three-photon (cf. Fig. 7.2(b),(d)) and 2+1-photon 

resonances (cf. Fig. 7.5) under identical laser bandwidths, it may be concluded that both 

these resonances are deteriorated under finite bandwidths, however the manner in which 

this effect is exhibited is different, i.e., suppression for three-photon resonance while 

broadening for 2+1-photon resonance. The role of cross-correlations when the laser fields 

Fig. 7.5: Effect of individual laser bandwidths on the populations of levels 1  and 

3  calculated for ( 321 ,, ααα ) = (0.025, 5.0, 1.25) MHz, =∆∆ ),( 21 (0, 8) MHz and 

( 4241,γγ ) = (9.375, 0.625) MHz. Shown is the behavior in the vicinity of 2+1-photon 

resonance. Curves A – D correspond to ( 321 ,, ccc γγγ ) = (0,0,0), (10,0,0), (0,10,0) and 

(0,0,10) kHz respectively and all cross-correlations are assumed to be zero. 
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are critically correlated is shown in Fig. 7.6. Correlation 32ccγ  play a stronger role in 

reviving the populations of level 1  and 4  than 21ccγ . However of interest are the 

populations of the levels 2  and 3  connected by 2+1-photon coupling, where it is seen 

that both 21ccγ  and 32ccγ  are effective in restoring the linewidth of the resonance albeit 

partially. The cross-correlation 31ccγ , however, is found to exhibit detrimental effect. The 

effect of laser bandwidths and cross-correlations is thus similar to that observed in three-

photon resonance, and is in tune with Eq. (7.36). In the absence of phase fluctuations, the 

damping of the two-state coherent dynamics is responsible for the linewidth of the 2+1-

photon resonance [227]. As is discussed in Sec. 7.3.2, the laser phase fluctuations 

contribute an additional damping mechanism and that results in broadening of the 

resonance. The cross-correlations on the other hand appear to revive the coherent 

dynamics to some extent, which helps in restoring the linewidth to some extent. 

 

  

 

 

 

 

 

 

 

 

Fig. 7.6: Effect of cross-correlations on the populations of levels 1  and 3  in 

the vicinity of 2+1-photon resonance. The basic atom-field interaction data is 
same as in Fig. 7.4. Curve A is for == cicjci γγ 0 and serves as the reference. For 

curves B – E, === 321 ccc γγγ 10 kHz and =),,( 323121 cccccc γγγ  (0,0,0), (10,0,0), 

(0,10,0) and (0,0,10) kHz respectively. Here each pair of fields is assumed to be 
critically correlated. 
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7.3.2 Time Dependent Behaviour of Population Distribution 

Time evolution of the atomic populations under three-photon and 2+1-photon 

resonance conditions for a N system has been investigated in details in Ref. [227]. We 

present here the case studies which help us to understand the manner in which the phase 

fluctuations affect the three- and 2+1-photon resonances. For three-photon case, the time 

evolution of populations )31(, −=iAii  is shown in Fig. 7.7 for two different initial 

conditions. In Fig. 7.7(a) – (c) the atom is considered to be in the ground level 1  

initially. In the absence of phase fluctuations (curve A) the dynamical behavior of the 

system is analogous to quantum jumps i.e., an abrupt change of population from one 

energy level to another, with loss or gain of a quantum of energy [228,229]. In the short 

time scale (10-6-10-5 s) close to half the population is transferred to quasi steady state 2 , 

i.e., steady state of the intrinsic Λ  system. Subsequently in longer time scale (10-3 s) 

population is transferred to the metastable dark state 3 , i.e., the steady state of N 

system, through three-photon coupling. In the steady state, almost all population resides 

in the dark state. It may be seen from Fig. 7.7(a) – (c) that the phase fluctuations do not 

affect the behavior of the system in the transient (< 10-6 s) or intermediate (10-4 s) time 

scale. The effect of phase fluctuations is however seen in the slow time scale, wherein we 

find leakage of population from level 3  to levels 1  and 2  (curve B). Inclusion of 

critical cross-correlations helps to restore the population, albeit only partially (curve C). 

Fig. 7.7(d) – (f) shows the time dependent behavior when initial state is the metastable 

state 3 . In the absence of phase fluctuations, system remains in the initial state at all 

times (curve A). However the presence of phase fluctuations results in redistribution of 
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population in the slow time scale (curve B). The cross-correlations help to revive the 

original behavior only partially (curve C). Increase in the laser bandwidths thus reduce 

the population in 3  while the critical cross-correlations result in its partial restoration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.7: Time evolution of populations at three-photon resonance calculated for 
=),,( 321 ααα (0.025, 5.0, 1.25) MHz, ( 321 ,, ∆∆∆ ) = (5,8,3) MHz and =),( 4241 γγ  

(9.375, 0.625) MHz. For frames (a) – (c) the initial condition is set as level 1  while 

for frames (d) – (f) it is level 3 . Curves A – C correspond to ,,,,( 21321 ccccc γγγγ  
=), 3231 cccc γγ (0,0,0,0,0,0), (10,10,10,0,0,0) and (10,10,10,10,10,10) kHz respectively.  
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The observations made on the steady state three-photon resonance under 

fluctuating laser fields are consistent with Fig. 7.7. Fig. 7.8 shows the time evolution of 

the populations iiA , (i = 1–3) for 2+1-photon resonance condition.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.8: Time evolution of populations in levels1 , 2 and 3  at 2+1-photon 

resonance calculated for ( 321 ,, ∆∆∆ ) = (0, 8, 8) MHz. For frames (a) – (c) the 

initial condition is set as level 1  while for frames (d) – (f) it is level 3 . Curves 

A – C correspond to =),,,,,( 323121321 ccccccccc γγγγγγ (0,0,0,0,0,0), (10,10,10,0,0,0) 

and (10,10,10,10,10,10) kHz respectively. Other data are same as in Fig. 7.7. 
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The atom is considered to be initially in level 1  for frames (a) – (c). In the 

absence of phase fluctuations (cf. curve A), in the time scale of 10-6 s, the system jumps 

from 1  to 2  which is the trapped state of the Λ  system. Thereafter the system exhibits 

two-state coherent dynamics involving levels 2  and 3  as may be seen from out of 

phase Rabi oscillations of these levels. However these oscillations are damped by off-

resonant coupling of 3  and beyond 10-2 s the system attains steady state population. The 

effect of finite bandwidths of laser is to further damp the Rabi oscillations and cause only 

a marginal deviation in the steady state result (curve B). The transient behavior (< 10-5 s) 

is unaffected by the bandwidths.  

Inclusion of cross-correlations at their critical values helps to restore the coherent 

behavior to a limited extent (curve C). The critical cross correlations do not revive the 

coherent Rabi oscillations completely unlike the steady state populations which are 

almost completely revived. Very similar observations may be made from Fig. 7.8(d) – (f), 

where we have exhibited the time dependent behavior of the system when the atom is 

initially taken in level 3 . Fig. 7.8 thus explicitly shows that the laser bandwidths 

primarily affect the coherent dynamics of the effective two-level system with little 

change in the steady state populations. The additional damping arising from the phase 

fluctuations is reflected in the increased linewidth of 2+1-photon resonance and very little 

change in its height. This is consistent with the observations made on the steady state 

2+1-photon resonance under fluctuating laser fields.  

For the sake of completeness we have also studied the effect of phase fluctuations 

and cross correlations on intensity-intensity correlation functions. In absence of phase 
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fluctuations the intensity-intensity correlation functions show the expected oscillations 

through bunching and anti-bunching cycles decaying to their steady-state value 1. The 

phase fluctuations tend to reduce the amplitudes of these oscillations but do not change 

the basic structure of the curves.  

 

7.4 Effect of Phase Fluctuations on Absorption 

In this section we examine the effect of laser phase fluctuations on the absorption 

spectra of N-system specifically on EIA resonance. We consider model C of Chapter-6 

for this analysis where the weak probe laser 2E  drives 41 →  transition. This model is 

chosen as a representative of EIT/EIA resonances in N system. A similar behaviour is 

observed for the other models also and hence not shown here. The density operator pqsχ  

is used to compute the one-time expectation values of the off-diagonal atomic operators 

averaged over the ensemble of the phase fluctuations as given in Eq. (7.29). A typical 

result for the effect of the independent laser fluctuations on the EIA resonance for the 

data of Fig. 6.9(a) is shown in Fig. 7.9. This figure shows that the effect of phase 

fluctuations on EIA resonance is in sync with the effect on populations. The effect of 

phase fluctuations on the EIT resonances is similar.  

 

 

 

 

 

 

Fig. 7.9: Effect of individual laser 
bandwidths on the EIA resonance 
calculated for == 31 αα 5 MHz and 

=∆=∆ 31 0. =),,( 321 ccc γγγ (0,0,0), 

(0.1,0,0), (0,0.1,0), (0,0,0.1) and 
(0.1,0.1,0.1) MHz for curves 1 – 5 
respectively. All cross-correlations 
are assumed to be zero.  
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In general the laser phase fluctuations broaden and destroy the EIA/EIT 

resonances, however the extent of this effect is critically dependent on the phase 

fluctuations associated with the pump, probe and control laser. For example, phase 

fluctuation 1cγ  in the laser 1E , which forms the V sub-system of the N-resonance, is 

found to be of very little consequence. However the fluctuations associated with the Λ  

sub-system i.e. the probe and pump lasers (2cγ  and 3cγ ) matter a lot. Curve 5 shows the 

case when all the lasers have equal bandwidths. As seen from Fig. 7.9 curve 3 and 5 are 

almost identical which proves that the major suppression of the EIA resonance is caused 

by the fluctuations in the probe laser. The effect of individual cross-correlations on EIA 

resonance with fluctuating driving fields is shown in Fig. 7.10.  

 

 

 

 

 

 

Introduction of cross-correlations helps to revive the resonances, but here also the 

extent to which that happens depends on the specific cross-correlations. For example, 

cross-correlation between the two strong lasers 31ccγ  further spoils the EIA/EIT resonance 

similar to its effect on populations. The correlations between the probe and pump 

(control) laser helps in reviving the resonance. Out of these two cross correlations, the 

one between the two fields forming the inherent Λ  system, i.e., 32ccγ  helps to a much 

greater extent in the revival as is shown by dashed curve in Fig. 7.10. 

Fig. 7.10: Effect of cross-correlations on 
the EIA resonance. The basic atom-field 
interaction data is same as in Fig. 7.9. 

=== 321 ccc γγγ 0.1 MHz and, ( 21ccγ , 

31ccγ , 32ccγ ) = (0,0,0), (0.1,0,0), (0,0.1,0) 

and (0,0,0.1) MHz for solid, dotted, gray 
dash-dotted and dashed curves 
respectively. Here each pair of fields is 
assumed to be critically correlated. 
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CHAPTER 8 

COHERENCE INDUCED NEGATIVE 

REFRACTIVE INDEX IN FOUR-LEVEL 

ATOMIC MEDIUM 

 

8.1 Introduction 

The propagation of electromagnetic wave in a medium is governed by its 

refractive index rrrn με= . Here rε  and rμ  are relative dielectric permittivity and 

permeability which in general are complex functions of frequency. Depending on the 

value of refractive index, all the available media/materials can be characterized into four 

quadrants as shown in Fig. 8.1. Conventional optical materials belong to the first 

quadrant. These are known as right handed materials since electric vector E , magnetic 

vector H  and wave vector k  form a right handed coordinate frame in them. The second 

and fourth quadrants constitute non-propagating evanescent waves. While the gaseous 
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Ordinary Optical materials

Negative Refractive Index

Electrical Plasma

Magnetic Plasma

0,0 << rr με

0,0 >< rr με 0,0 >> rr με

0,0 <> rr με ε

μ

and solid plasma materials belong to the second quadrant, materials which can be 

structured to behave like magnetic plasma belong to the fourth quadrant.  

 

 

  

 

 

 

Most interesting materials which offer possibilities of controlling light 

propagation within a medium belong to the third quadrant. These materials are 

characterized by simultaneous negative rε  and rμ  and are referred to as negative 

refractive index (NRI) materials, double negative materials, backward wave media 

(having negative group velocity), left-handed materials (LHMs) or metamaterials. E , H  

and k  form a left-handed triad of vectors in NRI media. Further the Poynting vector is in 

opposite direction to wave propagation and hence the group velocity direction, which 

modifies the conventional route of refraction, diffraction and scattering of waves in these 

materials. The existence of LHMs was predicted by Veselago in 1968 [115]. He showed 

that LHMs do not violate any fundamental physical law and some of the most 

fundamental electromagnetic properties in these materials are opposite to that of ordinary 

materials, resulting in unusual optics. Some of the counter-intuitive electromagnetic and 

optical effects exhibited by these materials are reversed Snell’s law, reversed Doppler 

shift, an obtuse angle for Cherenkov radiation, anomalous refraction, sub-wavelength 

focusing, negative Goos-Hanchen shift, intense enhancement of the local fields, distinct 

Fig. 8.1: Quadrant diagram 
illustrating the classification 
of materials based on the 
values of rε  and rμ .  
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phase matching conditions and nonlinear response, photon tunneling etc. [115-121]. Due 

to nonexistence of such materials naturally this field did not captured the attention of 

researchers for a long time. However following the demonstration of the key practical 

application of LHM i.e. perfect lens by Pendry in 2000 [117] the interest in these 

materials has grown tremendously. He showed that a NRI slab can focus all Fourier 

components and amplify evanescent modes allowing a complete reconstruction of a point 

source to a perfect point image, thus making it possible to achieve, in principle, unlimited 

resolution without any loss of energy [117]. Since then LHMs have become one of the 

frontline research area. The captivating optical properties of LHM not only bring new 

conceptual horizons in the basic understanding of physics but make them a potential 

candidate for diverse applications such as sub-wavelength imaging and beam refocusing, 

electromagnetic cloaking, slow and stopped light, stimulated Raman scattering, enhanced 

bio-sensing, quantum computation, in acoustics, photonics etc. [115-121]. 

 

8.2 Approaches for Realization of Negative Refraction Index 

Several fascinating approaches have been developed for fabrication of LHMs. 

Most of the LHMs have been artificially realized in the microwave region using 

transmission line simulation, nanostructures, assembling composite lattice of metallic 

split ring resonators and metallic wires, or by using anomalous propagation properties of 

light in two-dimensional photonic crystal structures with periodicity of the order of or 

much smaller than the wavelength of the electromagnetic field [122,123]. All such 

materials, also known as artificial metamaterials, require delicate manufacturing of 

spatially periodic structures. Very recently Yoon et al. [124] have demonstrated NRI by 
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exploiting inertia of electrons in semiconductor two-dimensional electron gases which 

promises to open a path to miniaturization in the science and technology of these 

materials. 

Of particular interest is the realization of NRI in optical region. However in this 

region refraction is always accompanied with absorption. Further it is difficult to realize 

negative rμ  with low loss, since magnetic dipole response to an oscillating magnetic 

field is smaller than the electric dipole response by a factor of 2
fsα , where ≈fsα 1/137 is 

the fine structure constant. Several elegant suggestions such as magneto cross coupling 

technique or chirality induction have been made to alleviate this problem. A chiral media 

is an optically active media capable of producing negative refraction of circularly 

polarized wave [125]. Coupling a magnetic dipole transition coherently with an electric 

dipole transition may lead to electromagnetically induced chirality, which can show NRI 

with suppressed absorption without requiring negative permeability [118]. However such 

media suffer from losses due to environmental effects. Another proposal suggested a 

quantum optical approach in which, under certain conditions, electric-dipole and 

magnetic-dipole transitions in a multilevel EIT atomic/molecular system exhibit NRI 

[126-131]. As has been established in previous chapters EIT based dispersive media do 

not suffer from absorption at resonance, and offer low transmission losses even at high 

frequencies. 

The realization of negative refraction in EIT based Λ  system was first proposed 

by Oktel et al., however with a stringent condition that the middle state ( 2  in Fig. 1.2 

(a)) is involved in both magnetic transition and electric transition at the same frequency 

[126]. A much realistic four-level EIT system was studied by Thommen and Mandel 
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[127] for the existence of left-handedness within a restricted domain of parameters and 

the requirement of degeneracy of the four levels. Further they suggested that atomic 

hydrogen and neon are good candidates for such experiments [127]. Since then several 

multilevel schemes based on based on quantum coherence and interference have been 

studied to realize NRI [128-131]. This method of coherently prepared atomic media 

offers various advantages such as realization of NRI in optical frequency range, electric 

and magnetic responses at atomic level and isotropic macroscopic electromagnetic 

structure as compared to artificial metamaterials. 

In the chapter we demonstrate the use of laser induced coherent preparation of 

atomic medium to obtain simultaneous negative rε  and rμ  with minimal absorption in 

four-level systems in two different configurations interacting with trichromatic coherent 

field. Such systems can be realized within the hyperfine energy level or Zeeman manifold 

of alkali atoms. The advantage of rf field coupling over the conventional three level Λ  

scheme [126] is the additional control of rμ  by regulating the rf field parameters. Further 

the rf field provides flexibility for adjusting frequency, depth and dispersion of the EIT 

resonance. We obtain rε  and rμ  for a dense atomic medium in the framework of master 

equation and Classius-Mossotti relation. Local field corrections (arising due to dipole-

dipole interaction of the neighboring atoms) to the susceptibilities of the medium enhance 

the magnetic response and play an important role in reducing the absorptive losses. Our 

analysis shows that negative rε  and rμ  can be realized simultaneously in certain probe 

frequency regions with transparent propagation due to EIT. The use of the dispersion 

property of the negative refractive index to control the group velocity of the probe beam 

from subluminal to superluminal is also discussed.  
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8.3 Description of the Models 

We consider two Λ type four-level schemes coupled by three coherent fields as 

shown in Fig. 8.2.  

 

 

 

 

 

 

 

 

 

 

Model (a): The scheme is similar to the DDL system studied in Chapters-4 and -5 with 

an additional rf field coupling the excited levels as shown in Fig. 8.2(a). Here transitions 

41 →  and 32 →  are driven by control and probe lasers of Rabi frequencies cα2  

and pα2  respectively. The electric dipole forbidden transition 43 →  is driven by a rf 

field of Rabi frequency rfα2 . The relevant electric and magnetic dipole moments are 

jdidij
ˆ=  and jmimij ˆ=  where d̂  and m̂  are the electric and magnetic dipole 

operators respectively.  The detunings of control, rf and probe fields are =Δc cΩ−41ω , 

rfrf Ω−=Δ 43ω  and pp Ω−=Δ 32ω  respectively. This scheme was earlier studied by Fu et 

al. [230] to show switching between EIT and EIA depending on the field detunings.  

Fig. 8.2: Schematic representation of four-level systems coherently driven by three 
laser fields: control, rf and probe of Rabi frequencies cα2 , rfα2  and pα2  respectively. 
The corresponding detunings are cΔ , rfΔ  and pΔ . Radiative and nonradiative decay 

rates associated with ji →  transition are denoted by ijγ  and ijΓ  respectively. 
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Model (b): This scheme consists of a triplet ground state 1 , 2 and 3  and an excited 

state 4 . Here transitions 41 → , 43 →  and 21 →  are driven by probe, control 

and rf fields of Rabi frequencies pα2 , cα2  and rfα2  respectively. The detunings of these 

fields from the corresponding atomic resonances are pp Ω−=Δ 43ω , cc Ω−=Δ 41ω  and 

=Δrf  rfΩ−21ω . This scheme has been earlier studied in context of rf induced dynamic 

Stark effect [231], experimental realization of double dark resonances [232], sub-Doppler 

resonances [232,233] and other quantum interference effects [234]. 

 

8.4 Realization of Negative Refractive Index in Model (a) 

8.4.1 Theoretical Formulation 

In this section we obtain relative permittivity and permeability for a dense atomic 

medium in the framework of master equation and Classius-Mossotti relation. 

 

(a) Density Matrix Equations and Coherences 

The time evolution of the system is described by the following master equation, 

[ ] )2( )2( ,/
,,

0 ∑ +−Γ−∑ +−−−=
ji

iiijjiiiij
ji

iiijjiiiij AAAAAAAAHidtd ρρρρρργρρ ,   (8.1) 

where ijγ  and ijΓ  represent the radiative and non radiative decay rates associated with 

transitions ji → .The semi classical Hamiltonian of the system under RWA is 

.)()(

)()()(

443322

4334322341140

AAA

AAAAAAH

crfcprfc

rfpc

Δ+Δ−Δ+Δ−Δ−Δ+

+−+−+−= ααα
                                            (8.2) 

The elements of the density operator satisfy the following equations: 
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444122214114111211 22)(2/ ργρρραρρ +Γ+−−Γ−= cidtd ,                                    (8.3a)
  

421312112 / ραραρρ cp iifdtd +−−= ,                                                                    (8.3b)
 

43141321213 / ραραρραρ crfp iifidtd +−−−= ,                                                     (8.3c)
 

14313441114 )(/ ρραρραρ fiidtd rfc −−−−= ,                                                        (8.3d)
 

333232232221111222 2)(22/ ργρραρρρ +−−Γ−Γ= pidtd ,                                       (8.3e)
 

24234332223 )(/ ραρρραρ rfp ifidtd −−−−= ,                                                       (8.3f)
 

34245232124 / ραρραραρ prfc ifiidtd +−−−= ,                                                     (8.3g)
 

44434334333432233233 2)()(2)(/ ρρραργρραρ Γ+−−Γ+−−−= rfp iidtd ,            (8.3h)
 

3464433312434 )(/ ρρραραραρ fiiidtd rfcp −−−−= ,                                            (8.3i) 

44434143343334411444 )(2)(2)(/ ργρραρρραρ Γ+−−+Γ+−= rfc iidtd ,                 (8.3j) 

where the coefficients if  are defined as 

 )(21121 prfcif Δ−Δ−Δ+Γ+Γ= ,           )(3432122 rfcif Δ−Δ+Γ+++Γ= γ , 

 cif Δ+Γ++Γ= 4341123 γ ,                       pif Δ+Γ++Γ= 3432214 γ , 

)(4341215 rfpif Δ+Δ+Γ++Γ= γ ,          rfif Δ+Γ++Γ+= 434134326 γγ .               (8.4) 

For weak probe laser steady state solutions of Eq. (8.3) can be obtained as follows: 
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(b) Electric and Magnetic Response  

The atomic coherences can be used to analyze the possibility of observing NRI in 

the medium. Transitions 32 →  and 21 →  are driven by electric and magnetic field 

of the weak probe respectively. Therefore the coherences related to the electric and 

magnetic response are )1(
32ρ  and )1(

21ρ  respectively. The induced electric dipole moment of 

an atom due to the interaction with probe field is given by  

)1(
2323

)1(
3223)ˆ()( ρρρω dddTrP pe +== .                                                                      (8.8) 

Electric and magnetic response of the medium can also be given in terms of 

electric polarizability eα  and magnetizability mα . We choose the probe field pE  parallel 
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to the electric dipole moment )( 3223 dd =  so that eα  is a scalar quantity. eα  is related to 

the induced dipole moment as )()( ppeope EP ωαεω =  where oε  is permittivity of free 

space. We therefore obtain, 

po
e

d
αε
ρ

α
2

)1(
32

2
23= .                                                                                                        (8.9) 

Similarly magnetization mP  is given as 

)1(
2112

)1(
1212)ˆ()( ρρμρω mmTrP pm +== ,    )()( ppmpmo BP ωαωμ = ,                        (8.10) 

where oμ  is permeability of free space, and pB  is the magnetic field given by 

pppp EkB ω/×= .                                                                                                 (8.11) 

We further assume that magnetic dipole moment is perpendicular to the induced electric 

dipole moment, i.e. 12m  is parallel to pp Ek ×  so that cEB pp /=  and therefore we have, 

p

o
m
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α

ρμα
2

)1(
212312= .                                                                                             (8.12)  

The electric and magnetic Classius-Mossotti relations connect the macroscopic and 

microscopic variables of a media. For macroscopic polarization electric susceptibility of 

the medium can be obtained as  

)3/1( eee NN ααχ −= .                                                                                         (8.13) 

The relative electric permittivity of the medium is therefore given as 

3/1
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e
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= .                                                                                                  (8.14) 

Similarly relative permeability of the medium can be obtained as follows: 
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where N is the atomic density. In order to modify rε  and rμ  simultaneously the 

foremost condition is that the electric and magnetic dipoles should oscillate at the same 

frequency, which implies that 32ω  and 21ω  should be equal to the probe frequency. The 

relevant electric and magnetic dipole moments chosen for the subsequent studies are 

2.534×10-29 Cm and 1.312×10-23 J/T respectively which correspond to 87Rb atom. 

For a dilute atomic vapor the microscopic local fields are very weak and hence 

neglected. However under this condition it is impossible to obtain negative permittivity 

and permeability as clear from Eqs. (8.9) – (8.15). Thus we consider a dense atomic 

media of closely packed atoms ( =N 1023 m-3) where dipole - dipole interactions i.e the 

Lorentz-Lorenz local fields play a crucial role in the response of the medium. Finally for 

a left-handed media the absorption coefficient and refractive index are defined as 

]Im[2A rrμεπ −=  and ]Re[ rrrn με−=  respectively. The group velocity of the 

medium ( gnc /vg = ) becomes negative in certain frequency range of NRI. Thus by the 

tailoring the group index ]/)([)( pprpprg ddnnn ωωωω +=  one can tune the velocity of 

probe propagation from subluminal to superluminal. 

 

8.4.2 Results and Discussion 

We first consider that the control and rf fields are at resonance. Fig. 8.3 shows the 

effect of control strength on the permittivity, permeability and refractive index of the 

media. For 0=cα , the system effectively becomes a cascade type system comprising of 

levels 2 , 3  and 4 , therefore no coherence is established between levels 1  and 2  
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( =12ρ 0). This implies =mα 0 (cf. Eq. (8.12)) and hence =rμ 1. Thus left handedness of 

the medium is not possible in the absence of control field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.3: Probe field dependence of (a): Re( )rε , (b): Im( )rε , (c): Re( )rμ , (d): 
Im( )rμ , (e): rn  and (f): A. Here =Δ=Δ rfc 0, ,5γα =rf  γγ =ij  and =Γij 0.001γ . 

γα =c  (solid curve), γ5  (dashed curve) and γ10  (dotted curve). 1nω  and 2nω  are 
indicated for solid curve in frame (e). 
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We observe that control field strength is proportional to the maximum amplitude 

of NRI and frequency range over which both rε  and rμ  are negative. This is due to 

broadening of EIT resonance at 0=Δ p  with increase in cα . We denote the frequency of 

maximum NRI as 1nω  and 2nω  (cf. solid curve in Fig. 8.3(e)). Further from Fig. 8.3(e) it 

is clear that in the region 1np ω>Δ  and 2np ω<Δ  refractive index increases with 

decreasing probe frequency ( prpr ddnddn Δ−= // ω ) showing anomalous behavior. Thus 

gv  becomes negative in this region which indicates superluminal propagation. On the 

other hand for 12 npn ωω <Δ< , group index 1>>gn  indicating subluminal velocity. Thus 

in the NRI region one can control the propagation of probe beam with proper choice of 

laser atom interaction parameters. In the probe region 2np ω<Δ , the refractive index rises 

steeply compared to the region 2np ω>Δ  which means that the velocity of light can be 

made much faster than c . Further in the vicinity of 2nω  absorption coefficient is 

negative. This region is of interest for obtaining probe amplification in the NRI media.  

Another interesting observation is that one can tune the transparency region, and 

hence 1nω , 2nω  and the range of NRI by controlling field detunings as shown in Fig. 8.4. 

This is an important advantage of coherent preparation method over artificial fabrication 

to realize NRI. Fig. 8.5 shows the dependence of rf field strength ( rfα ) on refractive 

index and absorption coefficient. For 0=rfα , the system can be considered as two 

independent two-level systems comprising of levels 41 −  and 32 − . In this 

condition also, =12ρ 0 which implies 0=mα  and hence 1=rμ . Thus it can be concluded 

that left handedness is possible in this scheme only if both electric and magnetic coupling 
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are present simultaneously. Further from Fig. 8.5(a) it is evident that as the rf field 

strength increases the maximum value of negative rn  attained increases. Fig. (8.3) – (8.5) 

thus which highlight the importance of choosing optimum values of field strengths and 

detunings to obtain desired NRI values and range.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The effect of control and rf field parameters on the range of NRI and maximum 

value of rn  achieved is summarized in Table-7. It is observed that a very large NRI value 

can be obtained when the rf field is detuned. 

Fig. 8.4: Refractive index versus 
probe detuning for γαα 10== rfc . 
Solid and dashed lines correspond 
to =ΔΔ ),( rfc (0, 20γ ) and (20γ , 0) 
respectively. Other data are same as 
in Fig. 8.3. −=1nω 6.2γ  and 
20.58γ  for solid and dashed curves. 

Fig. 8.5: Probe field dependence of (a): refractive index and (b): absorption 
coefficient. Here 0=Δ=Δ rfc , =cα 10γ , γα =rf (solid curve) and γ10  
(dashed curve). Other data are same as in Fig. 8.3.  
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Table-7: Dependence of strengths and detunings of control and rf fields on the range and 

maximum amplitude of negative refractive index 

cα  rfα  cΔ  rfΔ  Range of negative rε  and rμ  (max)rn  

γ 5γ 0 0 –6.25γ  to  7.05γ –3.28 

5γ 5γ 0 0 –9.94γ  to  11.54γ –3.26 

10γ 5γ 0 0 –13.95γ  to  15.73γ –3.54 

10γ γ 0 0 –10.72γ  to  11.29γ –2.86 

10γ 10γ 0 0 –17.62γ  to 19.89γ –3.74 

10γ 10γ 20γ 0 –13.99γ  to  13.76γ,  20.34γ  to  29.02γ –9.57 

10γ 10γ 0 20γ –34.06γ  to  –6.18γ,  –0.35γ  to 9.03γ –39.12 

 

8.5 Realization of Negative Refractive Index in Model (b) 

8.5.1 Theoretical Formulation 

The interaction Hamiltonian of this system under RWA is given as 
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)()()(
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Δ−Δ−Δ−Δ−

+−+−+−= ααα
                                          (8.16) 

The elements of the density operator satisfy the following equations: 
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ργρρ

ρραρραρρ

+Γ+Γ+

−−−−Γ+Γ−= crf iidtd
                            (8.17a)

 

42121221112 )(/ ραρρραρ crf igidtd +−−−= ,                                                      (8.17b)
 

43231413213 / ραραραρρ crfp iiigdtd ++−−= ,                                                   (8.17c) 

2414313441114 )(/ ραρραρραρ rfpc igiidtd +−−−−= ,                                       (8.17d) 
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33322223212112111222 2)(2)(2/ ρρρραρρ Γ+Γ+Γ−−+Γ= rfidtd ,                        (8.17e) 

242341323 / ραρραρ prf igidtd −−= ,                                                                   (8.17f) 

24523211424 / ρραραραρ giiidtd pcrf −−−= ,                                                     (8.17g) 

444343343332312223111333 2)()(222/ ργρραρρρρ +−−Γ+Γ−Γ+Γ= pidtd ,          (8.17h) 

34644333134 )(/ ρρραραρ giidtd pc −−−−= ,                                                       (8.17i) 

4443414334411444 )(2)()(/ ργγρραρραρ +−−+−= pc iidtd ,                              (8.17j) 

where the coefficients ig are defined as 

 rfig Δ+Γ+Γ+Γ+Γ= 232113121 ,        )(323113122 cpig Δ−Δ+Γ+Γ+Γ+Γ= ,   

 pig Δ+++Γ+Γ= 434113123 γγ ,        )(323123214 rfcpig Δ−Δ−Δ+Γ+Γ+Γ+Γ= , 

42434123215 Δ+++Γ+Γ= ig γγ ,       43434132316 Δ+++Γ+Γ= ig γγ .                    (8.18) 

Under the weak probe approximation the solutions of Eq. (8.17) are obtained as 
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The electric and magnetic polarizability of the medium are obtained as  
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In this model the dipole synchronization restriction requires 3143 ωω = . The relevant 

dipole moments and the atomic density are chosen similar to that in model (a).  

 

8.5.2 Results and Discussion 

For =cα 0, this configuration can be considered as two independent two-level 

systems comprising of levels 21 −  and 43 − . Thus no coherence is established 

between levels 1  and 3  which means 0=mα  (cf. Eq. (8.22)). Hence negative 

refraction is not possible. However when 0=rfα  the response of the system is similar to 

(8.21c) 
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that of a three-level Λ  system formed by levels 1 , 3  and 4  where one can find 

probe regions exhibiting NRI [126]. Fig. 8.6 show the effect of control strength on rε , 

rμ , rn  and A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.6: Probe field dependence of (a): Re( )rε , (b): Im( )rε , (c): Re( )rμ , (d): Im( )rμ , 
(e): rn  and (f): A. Here 0=Δ=Δ rfc , γα 5=rf , γα =c  (solid curve), γ5  (dashed curve) 

and γ10  (dotted curve). +ω  and −ω  are indicated for the solid curve in frame (e). 
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There exist two maxima in the NRI region located at +=Δ ωp  and −=Δ ωp  (cf. 

Fig. 8.6(e)). For +>Δ ωp  and −<Δ ωp , refractive index rn  increases sharply with 

increase in pΔ  thereby indicating anomalous behavior. Comparing Fig. 8.6(e) – (f) we 

can identify the frequency regions where 0<rn  and 0~A , which is of significant 

interest experimentally. Interestingly in the region −Δ ω~p  we observe 0<A  and that 

corresponds to the amplification of the probe beam. Fig. 8.7 shows the effect of control 

and rf detunings on the refractive index of the media. Similar to the previous model, here 

also one can tune the range and amplitude of NRI by controlling the field detunings. 

 

 

 

 

 

 

 

Fig. 8.8 show the effect of rf strengths and detunings on rn  and A. From Figs. 

8.6(e) and 8.8(e) it is clear that the range and maximum amplitude of NRI increases with 

increase in strengths of both the fields. The effect of laser atom interaction parameters on 

NRI is summarized in Table-8.  

Finally a comment on the group velocity ( gv ) in this coherently driven system is 

appropriate at this stage. Here 0v >g  in the region +− <Δ< ωω p , while 0v <g  in the 

anomalous dispersion region. This provides a prospect for observing both subluminal and 

Fig. 8.7: Refractive index versus 
probe detuning for γαα 10== rfc . 
The solid and dashed curves 
correspond to =ΔΔ ),( rfc (0, 20γ ) 
and (20γ , 0) respectively. 
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 superluminal light propagation in the media similar to the previous model. 

 

 

 

 

 

 

 

 

 

Table-8: Dependence of strengths and detunings of control and rf field on the maximum 

value and range of negative refractive index 

cα  rfα  cΔ  rfΔ  Range of negative rε  and rμ  (max)rn  

γ 5γ 0 0 –6.53γ  to 6.53γ –3.34 

5γ 5γ 0 0 –12.11γ  to 12.11γ –4.28 

10γ 5γ 0 0 –17.88γ  to 17.88γ –4.73 

5γ γ 0 0 –11.03γ  to 11.03γ –4.07 

5γ 6γ 0 0 –12.55γ  to 12.55γ –4.36 

5γ 10γ 0 0 –14.85γ  to 14.85γ –4.73 

5γ 5γ 20γ 0 –4.65γ  to 17.32γ,  22.68γ  to 27.46γ –6.14 

5γ 5γ 0 20γ –21.49γ to –20.94γ, –9.39γ  to 10.92γ –4.92 

 

Fig. 8.8: Dependence of probe detuning on (a): refractive index and (b): absorption 
coefficient. Here 0=Δ=Δ rfc , γα 5=c , γα =rf  (solid curve), γ6  (dashed curve) 
and γ10  (dotted curve).  
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CHAPTER 9 

CONCLUSIONS AND FUTURE SCOPE OF 

THE WORK 

 

9.1 Conclusions 

Quantum coherence and interference provide an interesting outlook for designing 

strategies for control of optical response of atomic/molecular medium. This theme has 

been the main focus of the work reported in this thesis. We have considered here three- 

and four-level atomic/molecular systems in various configurations, i.e., Λ, double-Λ, 

tripod, N-resonance etc. under multi-chromatic coherent interaction. Specific issues 

addressed here are electromagnetically induced transparency (EIT), electromagnetically 

induced absorption (EIA), amplification without inversion (AWI), spontaneously 

generated coherence (SGC), Kerr nonlinearity and the effect of laser phase fluctuations. 

Also examined are the issues relating to permanent dipole moments in molecular 

systems, subluminal and superluminal light propagation, and realization of negative 

refractive index (NRI) in coherently prepared atomic medium. While the thesis mainly 
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concentrates on the theoretical development of light-matter interaction and analysis of the 

aforementioned effects, few experimental results are also reported to provide a flavor of 

coherent pump-probe spectroscopy. Thesis begins with Chapter-1 which provides a brief 

introduction to spectroscopy in a coherently prepared atomic medium. The requisite 

theoretical background is developed in Chapter-2 and specific studies are reported in 

Chapter-3 to Chapter-8. Main findings and conclusions of the work included in this thesis 

are as follows: 

In our work on three-level dipolar molecules in Λ  configuration reported in 

Chapter-3, we have provided an integrated view of coherent pump-probe spectroscopy of 

a medium of dipolar molecules. The objective here is to investigate the effect of diagonal 

dipole moments on the coherent response of the system, particularly in the context of AT 

doublet, EIT, dispersion and its connection to the issue of subluminal and superluminal 

light propagation. These issues have been discussed for medium of stationary molecules 

as well as Doppler broadened molecular medium. The presence of permanent dipole 

moments provides a mechanism for multi-photon absorption processes, and therefore the 

coherent dynamics of Λ  system is discussed in terms of −m and −n photon absorption 

mediated by pump and probe fields respectively. Our study shows that the outcome of the 

general )( nm + - photon pump-probe spectroscopy is independent of n  and is solely 

determined by .m  Recently Zhou et al. [173] have reported amplification without 

inversion in this system for reversal in the sign of the difference of the permanent 

moments of the excited and ground levels connected by the probe field for 2=n . We 

explicitly show that the prediction of Zhou et al. is erroneous and trace the underlying 

reasons for arriving at such a result. Our analysis shows that the permanent dipole 
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moments essentially damp the laser-molecule Rabi frequency to result in narrower EIT 

linewidth and larger group velocity index. These effects are further enhanced when the 

order of the multi-photon process is increased. We have further included the virtual 

mechanism in the treatment of multi-photon absorption based EIT phenomenon. Analysis 

based on 2+1-photon EIT shows that the inclusion of virtual mechanism has two effects: 

firstly it leads to modification of the laser-molecule coupling which has a bearing on EIT 

width and group velocity index, and secondly it results in the frequency shift of the EIT 

resonance. In order to test several of these effects experimentally, we have proposed two 

schemes of Λ  systems based on the molecular data of 7LiH.  

In Chapter-4 we have investigated coherent pump-probe spectroscopy of an 

atomic medium in Λ  configuration with a closely placed adjacent excited level driven 

coherently by a pump and a probe laser. The presence of additional level results in two 

simultaneous Λ  resonances with common ground levels, i.e., degenerate double lambda 

(DDL) resonance. Such resonances arise naturally in coherent pump-probe spectroscopy 

of D1 and D2 transitions of alkali atoms due to hyperfine interaction. We have used a 

DDL system formed using the hyperfine manifold of D2 transition of 85Rb for detailed 

analysis of this problem. We have established the dressed states associated with this 

problem and used them to identify the sub-natural resonances. We observe that the 

system can exhibit at least two sub-natural resonances in the dressed state spectroscopy. 

Another remarkable feature observed is the suppression of the sub-natural resonance 

under specific atom-field interaction parameters. This suppression is attributed to the 

coherence and ensuing interference developed in simultaneous excitation of two two-

level systems with a common ground level. Doppler averaging of the probe absorption 
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spectrum gives rise to an EIT resonance, which differs in character from that of a Λ  

system. The effect of the neighboring level on the shape, linewidth and position of EIT 

resonance is discussed. The linewidth of EIT spectrum as a function of pump Rabi 

frequency shows two distinctive regions. For low pump saturation the EIT linewidth of 

DDL system is lower than that of a Λ  system, whereas for high pump saturation the 

trend is reversed. This behavior is discussed in terms of the increase in the optical 

pumping rate due to the presence of a nearby level. The discussion is further augmented 

by the extension of the DDL scheme to a six-level level model as applicable to D2 

transitions of alkali atoms. The analysis presented here thus provides a realistic 

theoretical description of pump-probe spectroscopy of hyperfine transitions of alkali 

atoms. The chapter is completed with a discussion on experimental results on dressed 

state spectroscopy of DDL system in a Doppler broadened medium of 87Rb atoms.  

Chapter-5 is dedicated to the studies on quantum interference and its 

manifestation in the observation of AWI in a DDL system using master equation and 

quantum jump formalisms. A model DDL system formed using hyperfine manifold of D1 

transition of 87Rb atom is discussed here as an example. It is shown here that near two-

photon resonance, the probe is amplified without any inversion in the bare atomic levels 

and dressed levels. The inversionless amplification is a result of interference between two 

simultaneously excited Λ  resonances and it exhibits a strong dependence on the low 

frequency coherence established in the pair of ground levels. We show that AWI in the 

present case is strongly dependent on the pump detuning, which governs the relative 

excitation amplitudes of two simultaneously excited Λ  resonances. Consequently for the 

model system of D1 transition of 87Rb, AWI is tunable and it is maximized when the 
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pump detuning is at half the frequency separation between excited levels. This is in 

contrast to the earlier works on three-level Λ  resonances, where AWI is shown to occur 

when pump and probe lasers are near resonant with the respective transitions. Further 

AWI is observed to persist in the presence of inhomogenous broadening, albeit with 

deterioration at large Doppler widths. The results are substantiated with a closed form 

analytical expression for probe absorption obtained perturbatively in the weak probe 

limit. The analytical expressions permit to express AWI in terms of the relative 

magnitudes of the dipole matrix elements involved in the problem. The analysis is 

extended to the DDL system in D2 transition of 87Rb to explain the contrasting behavior 

of absorption instead of AWI, which develops into a full grown EIT after Doppler 

averaging. Quantum jump formalism is used to provide useful insight into the inherent 

physical mechanism responsible for AWI. This analysis shows that the interference 

between one-photon absorption processes is primarily responsible for AWI in the present 

system.  

Chapter-6 deals with the analysis of interference effects in two four-level 

configurations, i.e., tripod system and N-resonance, interacting with coherent tri-

chromatic field consisting of a pump, a probe and a control. The presence of additional 

resonant transition and field offers enhanced degrees of freedom for controlling the 

coherent dynamics and optical properties of the medium. The parametric dependence of 

dressed states and pair of EIT resonances in the tripod system are studied with an 

objective of controlling their linewidths, and the existence of an ultra-narrow absorptive 

resonance is demonstrated. N-system is studied to examine the choice of probe field in 

tailoring the response of the atomic medium. Some appealing traits studied are inversion 
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in dressed states, observation of multiple transparency windows and switching between 

EIT and EIA by controlling the field parameters. These effects are attributed to the 

competition between inherent Λ  and V systems, and transfer of coherence (TOC) in the 

medium. Observation of both EIA and EIT provides an interesting prospect of controlling 

the light propagation from subluminal to superluminal with appropriate choice of field 

parameters. Further we have studied the effect of SGC on the linear and nonlinear 

response of the N- system. It is shown that the SGC transforms EIT to EIA and vice-

versa, enhances the Kerr nonlinearity of the medium while suppressing the absorption. 

Further it is observed that enhanced Kerr nonlinearity enters the minimal absorption 

window with increase in SGC parameters and a large Kerr nonlinearity can be obtained 

for detuned driving fields. The chapter is completed with experimental results on 

comparison of EIT width in Λ  and N systems. EIT signal in N-system is shown to be 

significantly narrower than that in Λ  system.  

Chapter-7 addresses the issue of laser phase fluctuations in the pump-probe 

spectroscopy of N-system. The laser phase variables are modeled by Wiener-Levy 

diffusion process to specify the bandwidths )3,2,1,( =iciγ and cross-correlations 

),( jicicj ≠γ  that may exist between a pair of laser fields. The problem is analyzed in the 

framework of master equation and multiplicative stochastic processes. The technique 

developed here is general and can be applied to study the effect of phase fluctuations on 

populations, spectrum and intensity-intensity correlation function etc. for any arbitrary 

four-level system. Results are presented for steady state and time-dependent populations 

of levels under three-photon and 2+1-photon resonance conditions using the model N-

system of 40Ca+ ion [227]. It is observed that both three-photon and 2+1-photon 
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resonances are strongly affected by the phase fluctuations associated with all lasers, 

however, the manner in which the resonances are influenced is different, i.e., suppression 

of three-photon resonance and broadening of 2+1-photon resonance. The effect of cross-

correlations between the laser fields is found to exhibit two distinctive effects. The cross-

correlations between the adjacent pair of lasers, i.e. 21ccγ  and 32ccγ , help to restore the 

resonances. However in contrast to the three-level Λ  system, this revival is only partial 

even when the fields are critically correlated. On the other hand, the cross-correlation 

31ccγ  between the lasers that are not coupled through a common level is observed to 

affect the resonances adversely. The observed behavior is explained in terms of the 

relevant atomic coherences and their dependence on ciγ  and cicjγ . The steady state results 

are complimented by time dependent studies. In case of three-photon resonance, the 

phase fluctuations lead to leakage of population from the metastable level and this effect 

is only partially corrected when the fields are critically correlated. On the other hand in 

case of 2+1-photon resonance, the phase fluctuations tend to damp the two-state coherent 

behavior with little change in the steady state population distribution. The coherent 

behavior is revived to a limited extent when the relevant fields are critically correlated. 

The study of phase fluctuations is further extended to EIT/EIA resonances. We observe 

that the while the phase fluctuations in all three driving lasers participate equally in the 

destruction of 2+1-and three-photon resonances, it is the fluctuations in the probe laser 

field that is crucial to EIT/EIA resonances. The critical cross correlations between two 

driving lasers coupled to a common level help in the revival in both the studies, however 

the cross correlation 32ccγ  between the lasers forming the intrinsic Λ  system plays a 
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stronger role in the revival of probe absorption. These results, we believe, are useful in 

the context of coherent spectroscopy of N-system with finite laser bandwidths. 

Chapter-8 examines the prospect of realizing negative refractive index (NRI) in 

the optical region using coherently driven medium consisting of multi-level atoms. We 

have considered four-level atomic system in two different configurations coherently 

driven by a control, a probe and an additional rf field. The rf field provides auxiliary 

control of magnetic permeability and flexibility for adjusting frequency, depth and 

dispersion of EIT resonance. In the framework of master equation and Classius-Mossotti 

relation, the relative permittivity and permeability are obtained for a dense medium of 

such atoms. We show here that these models exhibit simultaneous negative permittivity 

and permeability in certain frequency domains. Further by controlling the detunings of 

the control and rf fields, it is possible to tune the maximum value of NRI and the 

corresponding range in these configurations. The results are substantiated by discussing 

the possibility of subluminal and superluminal light propagation using anomalous 

dispersion in NRI media. 

 

9.2 Future Scope of the Work 

This thesis embodies studies on quantum coherence and interference effects in 

three- and four-level atomic/molecular systems and their ramifications. We believe that 

the work reported here provide opportunities for newer studies in this field.  

Work reported here on the coherent pump-probe spectroscopy of molecular 

systems with permanent dipole moments builds the concrete background for testing 

multi-photon EIT, which is of significant current interest to the experimentalists. To this 
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end, we have identified suitable molecular configurations in 7LiH molecule, which can be 

conveniently used by the experimentalists. Also of interest are the other phenomena such 

as subluminal and superluminal light propagation and negative refractive index in the 

medium of dipolar molecules. Work reported here on EIT, EIA and AWI in four-level 

atomic systems is important in the context of several contemporary applications such as 

metrology, optical switching and quantum information processing. The effect of SGC is 

another important issue, which can be explored in the studies relating to higher order 

optical nonlinearity and also in the domain of AWI. We have provided here a complete 

treatment for phase fluctuations in four-level systems, which is of significant interest in 

the development of time- and frequency standards. At the same time, we may point out 

that there exists a need to develop a complete treatment for laser amplitude fluctuations in 

the domain of coherent pump-probe spectroscopy of multi-level atomic systems. Inherent 

in these studies are the issues connected with amplitude noise to phase noise conversions 

and vice versa in such systems. We have explored here some issues relating to the 

observation of negative refractive index in coherently prepared atomic medium. This 

issue is gathering a significant momentum in very recent years and we believe that it will 

be one of the thriving areas in theoretical and experimental quantum optics in very near 

future.  
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APPENDIX-1 

Zero Order Polarizations of Degenerate Double Λ System 

The zero order coherences under the perturbative approach are obtained as follows: 
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These coherences and populations are used in the analysis of Sec. 4.5 and 5.3. 
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APPENDIX-2 

Absorption and Dispersion in Degenerate Double Λ System 

Absorption and dispersion in a DDL system are related to real and imaginary 

components of P~ (cf. Eq. (4.5)). Using Eq. (4.5) – (4.8) we obtain, 
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Therefore absorption and dispersion can be obtained as follows: 
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From equations (A2.6) – (A2.8) it is clear that at two-photon resonance condition

11 Δ=δ , 0→A  and 0→η . These expressions prove that susceptibility of DDL system 

remains finite though small at 11 Δ=δ , i.e., A  does not go to exact zero at 11 Δ=δ which 

causes the shift in EIT from exact two-photon resonance (cf. Sec. 4.5). 
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APPENDIX-3  

Low Frequency Coherence in Degenerate Double Λ System 

Of particular interest in the analysis of AWI is the low frequency coherence )1(
21ρ . 
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Using Eqs. (5.3) and (5.5) we have, 
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At two-photon resonance condition 11 Δ=δ  and for 1243211 ,,,, Γ>> γγααδ  we obtain 
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We assume 4334 Γ=Γ , 2112 Γ=Γ  and dγγγ == 43 . AWI is maximized when

2/1 S=Δ , which also implies that 2/2 S−=Δ . Under these approximations and at the 

two-photon resonance condition we can obtain Im(ς ) and Im( )1(
21ρ ) as  
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These expressions are used in the analysis of Sec. 5.3 to obtain the expression for 

probe absorption at the two-photon resonance condition (cf. Eq. 5.9). 
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APPENDIX-4  

Probability Amplitudes for Quantum Jump Approach 

Probability amplitudes ijC  relevant to the analysis of Sec. 5.5 are obtained under 

the assumptions 2121 ,, ααββ <<  and 21211243 ,,,, ββγγ ΓΓ>>  so that 43,γγ  represent the 

fastest time scales in the system. Thus for 43 /1,/1 γγ>t  it is possible to eliminate fast 

oscillating variables 3iC  and 4iC  as compared to slow variables 1iC  and 2iC . Under this 

adiabatic elimination, we obtain 

 0)()( 43 ==
••

ττ ii CC .                                                                                           (A4.1) 

)/()( 2322123 δγαβ iCCiC iii ++= ,                                                                       (A4.2) 

 )/()( 1421114 δγαβ iCCiC iii ++= .                                                                        (A4.3) 
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Eq. (A4.2) – (A4.5) can be easily solved under the initial condition ijijC δ=)0( .  
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APPENDIX-5 

Steady State Populations in Tripod System 

Considering all the non-radiative decays to be equal i.e. Γ=Γij , we obtain the 

populations in tripod system as, 
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where the coefficients ib , ( 1...6i = ) are defined in Eq. (6.2). These population terms are 

used in the analysis of Sec. 6.2.1. 
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APPENDIX-6 

Steady State Populations in N System 
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For Model B 
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For Model C 
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The populations in the three model schemes are used in the analysis of Sec. 6.3 and Sec 

6.4. 
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APPENDIX-7 

Non-Zero Elements of Matrix Mpqs in N system 

113,1515,139,1111,95,77,51,33,1 αiMMMMMMMM pqspqspqspqspqspqspqspqs −======== ,               (A7.1)

14,1212,43,1111,32,1010,21,99,1 αiMMMMMMMM pqspqspqspqspqspqspqspqs ======== ,                (A7.2) 

213,1616,139,1212,95,88,51,44,1 αiMMMMMMMM pqspqspqspqspqspqspqspqs −======== ,             (A7.3) 

24,1616,43,1515,32,1414,21,1313,1 αiMMMMMMMM pqspqspqspqspqspqspqspqs ======== ,                 (A7.4) 

314,1616,1410,1212,106,88,62,44,2 αiMMMMMMMM pqspqspqspqspqspqspqspqs −======== ,           (A7.5) 

38,1616,87,1515,76,1414,65,1313,5 αiMMMMMMMM pqspqspqspqspqspqspqspqs ======== ,                  (A7.6) 

,2,2,2 4116,13111,1216,1 γγ ==Γ= pqspqspqs MMM                                             (A7.7) 

,2,2,2 4216,63211,6121,6 γγ ==Γ= pqspqspqs MMM                                            (A7.8) 

,2,2 3411,164316,11 Γ=Γ= pqspqs MM        k
pqs

kkM −℘=, .                                           (A7.9)  

Here )16,...2,1( =℘ kk  are related to terms ka  defined in Eq. (6.12) as follows: 

),,( sqpaakk +=℘ , ( 16,11,6,1=k ),                                                                (A7.10) 

)1,1,(22 +−+=℘ sqpaa ,                                                                                 (A7.11) 

),,1(33 sqpaa −+=℘ ,                                                                                      (A7.12) 

),1,(44 sqpaa −+=℘ ,                                                                                      (A7.13) 

)1,1,(55 −++=℘ sqpaa ,                                                                                  (A7.14) 

)1,1,1(77 −+−+=℘ sqpaa ,                                                                             (A7.15) 

)1,,(88 −+=℘ sqpaa ,                                                                                       (A7.16) 
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),,1(99 sqpaa ++=℘ ,                                                                                      (A7.17) 

 )1,1,1(1010 +−++=℘ sqpaa ,                                                                          (A7.18) 

),1,1(1212 sqpaa −++=℘ ,                                                                                (A7.19) 

),1,(1313 sqpaa ++=℘ ,                                                                                     (A7.20) 

)1,,(214 ++=℘ sqpaa ,                                                                                      (A7.21) 

),1,1(1515 sqpaa +−+=℘ ,                                                                                (A7.22) 

3231213
2

2
2

1
2 222),,( ccccccccc qspspqsqpsqpa γγγγγγ +++++= .                    (A7.23) 

These elements are used for the analysis of three and 2+1-photon resonances in Sec. 7.3. 
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