
Studying neutron dynamical diffraction theory and its applications 

in neutron optics 

 
 

By 

SOHRAB ABBAS 

 
Bhabha Atomic Research Centre, Mumbai 

 
 
 
 
 
 

A thesis submitted to the 

Board of Studies in Physical Sciences 
 

In partial fulfillment of requirements 

For the Degree of 
DOCTOR OF PHILOSOPHY 

of 

HOMI BHABHA NATIONAL INSTITUTE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
January, 2012 





STATEMENT BY AUTHOR 
 
 
 

This  dissertation  has  been  submitted  in  partial  fulfillment  of  requirements  for  an advanced  

degree  at  Homi  Bhabha  National  Institute  (HBNI) and  is  deposited  in the Library to be  

made available to borrowers under rules of the HBNI.  

Brief quotations from this dissertation are allowable without special permission, provided that 

accurate acknowledgement of source is made. Requests for permission for  extended quotation  

from  or  reproduction  of  this  manuscript  in  whole  or  in  part may be granted by the 

Competent Authority of HBNI when in his or her judgment the proposed use of the material is in 

the interests of scholarship. In all other instances, however, permission must be obtained from 

the author.  

 
 
 
 
 
         
                 SOHRAB ABBAS  



 
 
 
 

DECLARATION 
 
 
 

I, hereby declare that the investigation presented in the thesis has been carried out by me. The 

work is original and has not been submitted earlier as a whole or in part for a degree / diploma at 

this or any other Institution / University. 

 
 
 
 

 

 
 
 

SOHRAB ABBAS



 
 

 

 

 

 

DEDICATED TO MY FATHER 

 
 

   
Over the years, I have practiced quantum mechanics with zeal and spirits and subscribed to its 

Copenhagen interpretation which states unless you observe an object it’s not there, it exists only in the 

coherent superposition of all the possibilities.  My father though left his physical body in January 2007 

but I continue seeing him in the same state he was, when alive. I feel him around, his blessings, his 

teachings…but I miss his unwavering support, advice,…… assuring voice....... his comforting 

hug………..greatest salutations to most special individuals…..most precious gift of GOD to me…. my 

mother (Late Ms. Perveen Bano) and father (Late Mr. Fazal Abbas) ……..    

                                                                                                                           
 

 

     

 

 

 

 

 

 

 



ACKNOWLEDGEMENTS 

I sincerely, thank my senior colleague, teacher and research advisor, Prof. Apoorva G. Wagh, for 

believing in me, guiding, inspiring and supporting me during my thesis work. I also thank him for 

introducing me to this beautiful world of quantum physics using neutrons and for his great zeal and 

unwavering patience with which he explained me the neutron dynamical diffraction. His intuition, work 

ideas, detailed knowledge and unending quest to arrive at the correct mathematical formulas consistent 

with physics provided me with an invaluable and exciting experience and benefitted me a lot.  

I would also like to gratefully acknowledge and thank my all colleagues and coworkers, Prof. W. 

Treimer, Drs. M. Strobl, R. Loidl, T. Potocar, H. Lemmel and Prof. H. Rauch. Special thanks are due to 

H. Lemmel for his good company in our June, 11 run of experiment at ILL. It is a pleasure to 

acknowledge skilled assistance of Smt. M. Sharma of TP&PED, R. Mittal of SSPD, S.S. Patil of CDM, 

S.S. Jadhav of Spectroscopy Division, D. Sahoo of TP&PED, members of Chemie lab, HZB, O. 

Ebrahimi, S. Keil, P. Walter, R. Monka, other students of Prof. W. Treimer, V.K. Aswal and D. Sen, at 

various stages of this work and HZB and ILL (hospitality during experimental runs).  

I am very thankful to the members of doctoral committee which comprised of Prof. S.V.G. Menon, Prof. 

S.C. Gupta, Prof. S.L. Chaplot, Prof. V. Datar and Prof. A.G. Wagh. I am indebted to them for their 

valuable time and pain that they took to monitor the progress of the work and their valuable suggestions.   

I gratefully acknowledge all my teachers, my family members specially my sister, my colleagues at 

BARC and my friends who have greatly contributed towards my evolution and supported me.  

And last but not the least, I would like to express my very special thanks to my wife Mariyam Fatima, 

for being a very special part of me. I am indebted to her with extreme sense of gratitude for the love, 

help and support that she has been showering through the period of our togetherness. Special thanks are 

due for her patience and encouragement during the writing of this thesis.  



CONTENTS 
     Page No. 

 
SYNOPSIS                                                                                                                                         I-V 

LIST OF FIGURES  

Fig.1 Change in thermal neutron flux with time. Since 1970s, the neutron flux in  research 

          Reactors  got  stagnated  due   to  technical  limitations  over  the  achievable power 

          density, forcing to look for new types of neutron sources like spallation, fusion  etc.  

          [14].                                                                                                                                        2 

Fig.2 The  distribution  of  scattering  lengths  as  a  function  of  atomic  mass  number A 

          [5,119].                                                                                                                                 14 

Fig.3 Reciprocal space representation of the Bragg diffraction in a single crystal.                      18 

Fig.4 Asymmetric (a) Bragg and (b) Laue configurations of neutron incidence on a single  

         crystal.                                                                                                                                   20 

Fig.5 Reciprocal space diagram of the Laue diffraction in a single crystal.                                 25 

Fig.6 The intensities of the forward (IO) and diffracted (IH) beams  exiting a  parallel face 

          crystal  slab  in  the  symmetric  Laue  configuration  as  a function of the  reduced  

          incidence angle y for the slab thickness t = 20.25 ΔS [4].                                                    30 

Fig.7 Operating principle of a symmetric LLL IFM.                                                                    31 

Fig.8 Intensities of the forward (O)  anddiffracted (H) beams emerging from a symmetric 

          LLL interferometer (tS=tM=tA=t=20.25ΔS) as a function  of  the  reduced incidence  

          angle y for χ = 0 (solid curves) and χ = π (dashed curves) [4].                                           34   

Fig.9 Neutron propagation through  amorphous  and  single  crystal prisms. For the single  

          crystal  prism,   additional  beams   emerge  from    front  and  side  faces   and   the  

          transmitted beam undergoes a significant lateral displacement.                                          36 



Fig.10 Boundary   conditions   on   wave  vectors  dictate  the   allowed  wave  vectors  at  

            incidence and exit faces of an amorphous prism in reciprocal space.                               38 

Fig.11 Calculated variation of δam with incidence angle for A=90o and n=1-10-5, exhibits 

            a minimum when both the incidence and exit angles equal.                                              39   

Fig.12 Bragg diffraction of a neutron beam from a thick single crystal in real space.                  40 

Fig.13 Bragg diffraction of a neutron beam in  reciprocal space. At each  incidence angle, 

            continuity of tangential components of wave vectors across the incidence and exit  

            faces of the prism yields unique tie points as well as internal  and  emergent wave 

            vectors (see text).                                                                                                               41  

Fig.14 Variation of the diffracted (ID) and transmitted (IO) beam intensities with the angle  

             of incidence for different apex angles A.                                                                          43   

Fig.15 Calculated δcr and IO for a symmetric Bragg prism.                                                           46 

Fig.16 Calculated δcr and IO for an asymmetric Bragg prism.                                                       46 

Fig.17 Calculated b
crδ  and b

crI  for an asymmetric Bragg prism.                                                    48 

Fig.18 Experimental layout to measure neutron deflection and  transmission  by a  Bragg  

           prism.  The  set  up  employs  7X7  reflections  each  in  the  monochromator  and  

           analyser  channel-cut  crystals  of  a  5.24 Å  neutron  beam  with  a  silicon  prism  

           suspended in each crystal between 3rd and 4th reflections and sample (Bragg prism) 

           was placed between the monochromator and analyser.                                                      50 

Fig.19 Bragg   reflection   intensity   fraction  as   a  function  of  prism  rotation  for  the  

            symmetric Bragg {111} prism reflection with apex  angles  A of (a) 56.7o and (b) 

            90o, respectively.                                                                                                                51  

Fig.20 Bragg  reflection  intensity   fraction  as   a  function   of   prism  rotation  for  the  



            Asymmetric Bragg  {111}  prism  reflection  with  asymmetry angles θS and apex  

            angles A being (a) 35° and 94° (b) 41° and 98°, respectively.                                          52 

Fig.21 Typical  Voigt   function   fits  (curves)  to  the  direct  and  deflected  beam  scans  

            (points)  for   an  asymmetric  Bragg   prism:  θS=41°   and   A=98°   at  off  Bragg  

            condition (θ= -12.85) (top) and near Bragg condition (θ= -4.85) (bottom).                      55 

Fig.22 Experimental  (points)   and   theoretical   (curves)  values  of   δcr   and  IO  for  a  

            Symmetric Bragg prism with A=56.7°.                                                                             56 

Fig.23 Experimental   (points)   and   theoretical   (curves)  values  of  δcr   and  IO  for  a  

            symmetric Bragg prism with A=90°.                                                                                 56 

Fig.24 Experimental  (points)  and  theoretical  (curves)  values  of   δcr   and   IO  for   an  

           asymmetric Bragg prism: θS=35° and A=94°.                                                                    57 

Fig.25 Experimental  (points)  and  theoretical  (curves)  values  of  δcr  and  IO  for  an  

           asymmetric Bragg prism: θS=41° and A=98°.                                                                    57 

Fig.26 Asymmetric  Bragg  prism  diffraction  (schematic). Outside the  total  reflectivity  

           domain, unreflected  neutrons  traverse  the  prism  at  an  angle  Δ to the incidence  

           surface and exit the side face in diffracted (IH)  and forward diffracted (IO) beams.  

           At large enough angles Δ,  neutrons  reach  the part  of  the  side face cut along the 

           diffracted beam direction and exit wholly into  the IO beam, thus  truncating  IH on  

           the larger-|y| side as well to yield a tail-free, sharp angular profile.                                   59  

Fig.27 Bragg diffraction of a neutron beam in reciprocal space. At each  incidence  angle, 

           continuity of tangential components of wave vectors across the incidence and exit 

           faces of the prism yields unique  tie  points  as well as internal and emergent wave 

           vectors.                                                                                                                                61 



Fig.28 Theoretical curves for Si {111} Bragg reflection and  prism diffraction of 5.26 Å 

           neutrons with A=172o and θS=50.1o as a function of the incidence angle.                         64 

Fig.29 Exit angle as a function of incidence angle and Diffracted intensity for the Bragg 

            prism monochromator with A=160o and θS=50.1o. For A<Ax, neutron exit angles 

            corresponding to incidence angles on the two sides of the Bragg reflection do not 

            overlap yielding two separated peaks.                                                                               65 

Fig.30 Exit angle as a function of incidence angle and Diffracted intensity for Bragg prism 

            Monochromator  (Ax =166.85o and  θS=50.1o). For  A=Ax, exit  angles of  neutrons 

            corresponding to incidence angles on the two sides of the Bragg  reflection become 

            exactly equal and peaks begin to overlap for A even slightly greater (e.g., A =167.4)  

            than Ax (inset).                                                                                                                   66 

Fig.31 Exit angle as a function of incidence angle and Diffracted intensity for the optimised 

            Bragg  prism  monochromator  (A= 172o and  θS=50.1o).  At  this  A,  exit  angles of  

            neutrons  corresponding   to  incidence  on  the  two  sides  of   the  Bragg  reflection  

            significantly overlap to yield a single peak with long tails..                                              67 

Fig.32 Exit angular profiles of prism diffraction (theory) for parameters as in Fig.28. Long  

            tails of the large curves obtainable with the Bragg  prism get  clipped (small curves)  

            on cutting the prism side face along the diffracted beam direction beyond a depth of  

            5 mm.                                                                                                                                 68 

Fig.33 Theoretical  flat-topped   angular   profile   of  the   optimally  tailored  Bragg  prism 

            monochromator (A=172o and θS=50.1o). The angular width  at  zero intensity of the  

            net peak is (θH|y=1 – θH|y=−1)=0.86 arcsec.                                                                          69 

Fig.34 Numerically computed  acceptance  curve   of   the  optimal  Bragg  prism  analyser  



           (A=16o and  θS=−51o)  for  5.26 Å  neutrons  (theory) and its convolution  with  the 

            monochromator angular profile of Fig.33.                                                                         69 

Fig.35 SUSANS experimental arrangement of the optimised monochromator-analyser pair  

            of  Si {111} Bragg prisms. A translation of  the  monochromator  chooses between  

            its  Bragg  reflection  and  prism  diffraction  to   illuminate the  analyser. Cd  sheet  

            downstream of the analyser can be translated to allow or forbid the analyser  Bragg 

            reflection into the detector (not shown).                                                                            71 

Fig.36 Photographs of Bragg prisms. Top: Monochromator-analyser setup. Bottom: Three  

            monochromators and one analyser (3rd from the left).                                                       73 

Fig.37 Bragg reflection from the θS=53.5o monochromator observed with prism diffraction  

            (cf. inset) of the optimal analyser.                                                                                     75 

Fig.38 Bragg  reflection  rocking  curve  of  the  monochromator  (A=172o  and  θS=50.1o)  

            observed  with  Bragg  reflection and  prism diffraction  (cf.  inset) of  the  optimal  

            analyser.                                                                                                                             76 

Fig.39 Bragg  Prism diffraction rocking curve  of  monochromator (A=172o and θS=50.1o)  

            observed with  Bragg  reflection  and  prism  diffraction  (cf. inset)  of  the  optimal 

            analyser.                                                                                                                             76 

Fig.40 1st sub-arcsec  neutron  collimation: observed  (data points)  and  calculated (curve)  

            rocking curves (cf. inset) for prism diffractions of the monochromator (A=172o and  

            θS=50.1o) and the optimal analyser.                                                                                   77 

Fig.41 SUSANS spectra without and with a sample holder, viz. a pair of overhead project- 

            tion transparencies.                                                                                                            78 

Fig.42 First  Q ~ 10-6 Å-1  SUSANS  spectra  without  and  with  a  Hydroxyapatite  casein  



             sample. Least-squares fit to the sample spectrum (smooth curve) implies the instr- 

             ument capability of characterising ~ 150 μm-size agglomerates in a sample.                 80 

Fig.43 Sphere size distribution inferred from Fig.42.                                                                   80 

Fig.44 1st neutron diffraction  pattern of  a  macroscopic grating (inset) of  period d ~ 200  

            μm. The least-squares fit to the pattern (smooth curve) corresponds to a transverse  

            coherence length of 175 μm, the highest value  reported  to date for  Å wavelength  

            neutrons.                                                                                                                             83 

Fig.45 Neutron diffraction pattern (points) from a macroscopic grating of period d ~ 200  

            μm and the least-squares fit (smooth curve) to the pattern.                                               85 

Fig.46 Analyser rocking  curve  for  an  iron  sample (top) and  inferred scattering length  

            density distribution (bottom).                                                                                             86 

Fig.47 Analyser  rocking  curve  for  amorphous  aluminium  prisms  of apex angles 120o  

            (top) and  90o (bottom) to observe  ~ arcsec deflections.                                                  87 

Fig.48 Theoretical flat-topped angular profile from  the  optimally  tailored  Bragg  prism 

            monochromator (A=172o and θS=50.1o) for 1.75 Å neutrons.                                           90 

Fig.49 Theoretical acceptance curve (black) of the optimal Bragg  prism analyser (A=16o  

            and  θS=−51o) for 1.75 Å  neutrons  and  its  convolution  (red)  with  the  mono- 

            chromator angular profile of Fig.48.                                                                                  90 

Fig.50 Our proposal depicting the phase  measurement  by  recording  the  interferograms  

            with the thick  sample  placed  alternately in  subbeams I and II of  the  symmetric  

            LLL IFM.                                                                                                                           91 

Fig.51 In  a  symmetric  LLL  IFM,  neutrons of  wavelengths  λ and  λ+δλ  propagate at 

            corresponding Bragg angles θB and θB+δθB to  the IFM  Bragg  planes  and hence 



            are incident at angles θ and  θ+δθB on  the  sample. Neutron  refraction at  the air- 

            sample interfaces introduces a small correction to the phase due to the sample.              93 

Fig.52 Phase  dispersion  in  a  26.5 mm thick Si  sample placed on path I of an  IFM as a  

            function of  neutron  incidence angle  θ  at  central  wavelength  λ0 (=5.14Å).  The  

            phase  becomes  nondispersive  only  for  incidence  at  the  Bragg  angle  θB  and 

            hence mandates sample alignment to arcsec precision.                                                     94 

Fig.53 Variation in the difference ФI-ФII between phases arising with the sample on paths  

            I and II with θ near θB  for  three  wavelengths (top). The  approximate  phases for  

            λ0   are  also shown  (bottom).  ФI-ФII  remains  nondispersive  over  ~  arcminute,  

            relaxing the required sample alignment precision.                                                            97 

Fig.54 Variation of the allowed sample thickness with Bragg angle of the IFM.                         99  

Fig.55 The experimental setup (schematic) employing a large symmetric LLL IFM with  

            dual sample placed in subbeam II.                                                                                   103 

Fig.56 Dual Si-sample mounted on a plate.                                                                                 104  

Fig.57 A photograph of the experimental setup at S18 ILL, depicting a pair of amorphous 

           Si prisms each of 120o apex angles placed before the symmetric {220}  LLL  IFM  

           to remove the λ/2 from monochromatic neutron beam. Dual sample mounted on a  

           plate, is hanging from the top.                                                                                          106 

Fig.58 Optimisation of the sample rotation and tilt.                                                                    109 

Fig.59 Typical interferograms for path I and II as a function of phase flag.                               110 

Fig.60 Variation in phase with the interferogram oscillation frequency normalised to that  

            expected theoretically.                                                                                                     110 

Fig.61 Oscillation frequency and phase with scan number.                                                        111 



Fig.62 Interference contrast and average intensity.                                                                     111 

Fig.63 Path I, II and I-II phases during the run.                                                                          112 

Fig.64 Metrological mapping of the Si sample thickness along with the neutron traject- 

            ories in paths I and II.                                                                                                      112 

Fig.65 Average intensity with the sample placed IN and OUTSIDE paths I and II.                 114 

Fig.66 Interference contrasts with the sample placed IN and OUTSIDE in paths I and II.        114        

Fig.67 Optimisation of the sample rotation and tilt.                                                                    115     

Fig.68 Interferograms with the sample placed in paths I and II.                                                 115 

Fig.69 New metrological mapping of Si dual sample.                                                                116           

 

LIST OF TABLES   

Table 1: Isotopic abundance, spin, neutron scattering lengths and cross sections for the Si.       15 

Table 2: Observed deflection sensitivities, corresponding transmissions and percentage 

               variations in the deflections for various Bragg prisms from their respective 

               amorphous prisms.                                                                                                          58 

Table 3: Comparison between various Δbc/bc contributions at Ioffe et al. [127] and our  

               proposal for a Si sample.                                                                                               101 

Table 4: Comparison between various Δbc/bc contributions at Ioffe et al. [127] and in the 

                proposed experiments with dual Si-sample.                                                                105 

 

 

 

 



CHAPTER 1 Introduction                                                                                                            1 

                   1.1 Introduction                                                                                                   1 

                   1.2 Background and brief literature survey of dynamical diffraction and 

                           neutron optics                                                                                                        4 

                     1.3 Motivation and scope of the thesis                                                                        9 

CHAPTER 2 Optics and dynamical diffraction theory of neutrons                                       13 

                    2.1 Scattering length: Basic relations                                                                      13 

                     2.2 Dynamical diffraction from a single crystal                                                       16 

                        2.2.1 Boundary conditions and diffraction geometries                                          19 

                        2.2.2 Bragg Case                                                                                                    20 

                           2.2.2.1 Neutron collimation                                                                                23 

                        2.2.3 Laue Case                                                                                                      24 

                           2.2.3.1 Energy flow and Pendellösung oscillation                                              27 

                           2.2.3.2 Symmetric Laue Case                                                                             29 

                     2.3 Symmetric LLL neutron interferometer operation                                             30 

                     2.4 Detectors                                                                                                             35 

CHAPTER 3 Neutron forward diffraction by Bragg prisms                                                  36 

                     3.0 Amorphous prism                                                                                                37 

                     3.1 Neutron forward diffraction                                                                                40 

                     3.2 Forward diffracted intensity fraction                                                                  42 

                     3.3 Neutron deflection                                                                                              44 

                        3.3.1 Bragg prism                                                                                                   44 

                        3.3.2 Back Face contribution to neutron forward diffraction                                47 



                     3.4 Experimental                                                                                                       49 

                     3.5 Results and Discussion                                                                                       53 

CHAPTER 4 First sub arcsec collimation of monochromatic neutron beam                        59 

                     4.0   Introduction                                                                                                       59 

                     4.1 Bragg prism diffraction                                                                                       60 

                     4.2 Bragg prism design                                                                                             63 

                4.3 Experimental                                                                                                       72 

                        4.3.1 Bragg prism preparation                                                                               72 

                        4.3.2 Expeiment                                                                                                     74 

                        4.3.3 1st ever sub arcsec collimation                                                                     74 

                     4.4 Applications of novel SUSANS set up                                                              78 

                        4.4.1 Super Ultra small angle neutron scattering (SUSANS) of a  

                                protein sample                                                                                                78 

                        4.4.2 Coherence properties of the beam                                                                 81 

                        4.4.3 Versatility of the instrument                                                                         85 

                     4.5 Tightening the neutron collimation still further                                                  89 

CHAPTER 5 High precision determination of the neutron coherent scattering length       91 

                     5.0 Introduction                                                                                                         91 

                     5.1 Our proposal: Theory                                                                                          92 

                        5.1.1 Achieving high precision bc through optimisation of various parameters    99 

                        5.1.2 Dual nondispersive phase shifter                                                                102 

                     5.2 EXPERIMENTAL                                                                                            106 

                            5.2.1 Recording of the interferograms                                                                  107 

                       5.2.2 Data analysis                                                                                                108 



                       5.2.3 Repeat Experiment                                                                                       113 

 CHAPTER 6 Conclusion and Future directions                                                                     119 

                REFERENCES                                                                                                                 124 

 



 

I 
 

SYNOPSIS 

The present thesis aims to elucidate intricacies of the dynamical diffraction theory and its 

applications in design, fabrication and operation of novel neutron optical devices. The thesis 

consists of 6 chapters.  

Chapter 1 focuses on introducing neutron optics in single crystals which requires detailed 

understanding of the dynamical diffraction theory. After enumerating various advantages and 

application areas of neutrons, I briefly review the work done by earlier researchers on neutron 

optics, neutron dynamical diffraction theory and neutron interferometry. Inability of kinematical 

theory to explain diffraction from a single crystal and therefore, the need for dynamical 

diffraction theory is briefly discussed. The last Section of this chapter details the motivation and 

scope of the thesis. In this Section, some imposing problems associated with neutron optics and 

limitations/restrictions arising due to these in neutron related research areas, e.g., accessing 

smaller wave vector transfers in scattering experiments, difficulties in controlling neutron 

deflections and precision measurement of neutron coherent scattering length, are described. The 

solutions to these problems form the core of this Ph.D. thesis.  

The Chapter 2 presents the basic theoretical framework underlying our work on neutron 

dynamical diffraction and its application in neutron optics. Dynamical diffraction theory 

addresses incidence of a neutron plane wave on a single crystal represented by a 3-D periodic 

nuclear potential, within the elastic scattering limit.  All possible solutions of the corresponding 

time-independent Schrödinger equation constitute the dispersion surface in the reciprocal space. 

Boundary conditions at the vacuum-single crystal interface then pick unique neutron wave vector 

and wave amplitude solutions. The Bragg case has been dwelt upon (Section 2.2.2) keeping in 

view its importance in neutron monochromatisation and collimation. The Laue case has been 



 

II 
 

discussed in detail in Section 2.2.3 with special emphasis on the symmetric Laue case due to its 

wide use in the perfect crystal LLL interferometer (Section 2.2.4).  For the sake of completeness, 

nuclear reactions exploited for neutron detection in all our experimental work are presented in 

the last Section of this Chapter. 

In Chapter 3, I present the first ever calculations and experimental observations of the deflection 

and intensity fraction of neutrons forward diffracted by a single crystal prism as a function of the 

angle of incidence θ. For neutron incidence on a single crystal prism near a general asymmetric 

Bragg reflection, I delineate Bragg reflection at the incidence face and diffraction and forward 

diffraction at the side face of the prism in Section 3.1. Sections 3.2 and 3.3 present analytic 

expressions for the intensity fraction IO(θ) and deflection δcr(θ) of forward diffracted neutrons. In 

the vicinity of a Bragg reflection, δcr(θ) deviates sharply from δam for an identical amorphous 

prism, reaching opposite extrema at either end of the total reflectivity domain and exhibits a 3 

orders of magnitude greater sensitivity to the incidence angle. We have coined the term ‘Bragg 

prism’ to name this device. The neutron deflection and transmission from a Bragg prism are 

governed by the apex angle A, the Bragg reflection {h,k,l} and the angle between the Bragg 

diffracting planes and incidence surface of the prism, as illustrated with various Bragg prism 

configurations. For a suitably selected Bragg prism configuration, the deflection can even change 

sign on the low θ side. Sections 3.4 and 3.5 describe experimental observations of IO(θ) and 

δcr(θ) across the Bragg reflection for several silicon Bragg prism. The observed Bragg prism 

deflections deviate from amorphous prism deflections by up to 27% with variations of deflection 

up to 0.43 arcsec per arcsec variation in incidence angle [1-7].  

Chapter 4 dwells upon preparation of a nearly plane wave neutron beam by employing an 

optimally designed Bragg prism and scoring several experimental firsts with it. In Section 4.1, 



 

III 
 

analytic expressions for intensity fraction IH and exit angle θH of neutrons diffracted from a 

Bragg prism, are derived. With a judicious choice of the Bragg reflection, its asymmetry and the 

apex angle, a Bragg prism can collimate a neutron beam to sub-arcsec widths (Section 4.2). In 

conjunction with an analyser in the opposite asymmetry likewise tailored to accept a pair of even 

narrower peaks, it would yield a rocking curve comprising a pair of sub-arcsec peaks separated 

by up to a few arcsec. Experimental achievement of the first ever neutron beam of sub-arcsec 

widths is presented in Section 4.3. This novel setup has facilitated SUSANS (Super Ultra-Small-

Angle Neutron Scattering) experiments probing wave vector transfers Q ~ 10-6 Å-1 (Section 4.4) 

and hence characterisation of up to 150 μm-size agglomerates in samples. The transverse 

coherence length of 175 μm of the monochromated beam is the highest achieved to date, 

allowing us to record the first neutron diffraction pattern from a macroscopic grating of 200 μm 

period [8-16]. 

Chapter 5 describes high-precision interferometric determination of the coherent scattering 

length bC by optimising various parameters of the experiment. A finely surfaced thick dual 

sample in the nondispersive configuration and a large interferometer (IFM) with spacious 

splitter-mirror and mirror-analyser gaps operating at a large Bragg angle reduce imprecision in 

previous bC measurements down to a few ppm. It is then imperative to correct the bC inferred 

from the observed phase for neutron refraction effects at the sample-ambient interfaces. The 

refractive index for neutrons can thus be determined to a phenomenal precision of a few parts in 

1012. Section 5.2 describes the interferometric experiment which thus determined bC of silicon to 

within 27 parts in 106 [17-22].  

Chapter 6 concludes this thesis and provides a summary of the main results and future directions  

for the use of these novel techniques and devices in research. It enumerates several  firsts  scored 



 

IV 
 

 by us in the field of neutron optics such as: 

• Enunciation and observation of neutron forward diffraction by single crystal prisms 

which enables smooth control over the neutron deflection due to the arcsec/arsec 

sensitivity of the deflection to the incidence angle. 

• Design, fabrication and operation of a novel Bragg prism monochromator-analyser pair 

which achieved the first rocking curve of sub-arcsec angular width.  

• SUSANS (Super Ultra Small Angle Neutron Scattering) spectrum probing wave vector 

transfers Q ~ 10-6 Å-1. 

• Neutron diffraction pattern from a macroscopic grating (period ~ 200 μm). 

• Measurement of the largest non-dispersive phase (911 interference orders) to date, 

determining bC to within 27 parts per million.  
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CHAPTER 1 

Introduction 

 

1.1  Introduction 

Particle-wave duality forms the basis for optics and the dynamical diffraction of neutrons [1-5]. De 

Broglie’s discovery [6] of the fundamental fact that a particle of mass m and velocity v behaves 

like a wave of wavelength  given by  

h
m v

  ,                                                                                                                                           (1) 

paved the way for the unification of matter and radiation. Here symbol h signifies the Planck 

constant. Davisson-Germer [7] and Thomson [8] provided a firm experimental footing to the matter 

wave hypothesis by observing Bragg diffraction [9] of electrons from a Ni-single crystal.  

Chadwick’s discovery of the neutron in 1932 [10] motivated Mitchell and Powers [11] to 

experimentally verify its wave nature by employing the Bragg diffraction of neutrons (from an 

MgO single crystal) with the neutron beam extracted from a Ra–Be source embedded in a paraffin 

moderator. However, the biggest and the most drastic boost to development of neutron physics 

came with Fermi’s operation of a nuclear reactor in 1942. Neutrons produced by U235 fission in a 

research reactor have an average energy of 2MeV. They are slowed to thermal energies in a 

moderator (such as graphite, beryllium, heavy or light water) surrounding the fuel. The peak core 

flux of research reactors is typically in the range of 1014 cm−2 s−1 to 1015 cm−2 s−1. To maximize the 

neutron flux density, it is necessary to increase the fission rate per unit volume, but the power 

density is limited by heat transfer and material properties [12]. In spallation sources, high intensity 

(mA) proton beams (typically) of energies in the GeV range strike a high Z target, producing 

approximately 20 neutrons per proton with energies in the fast and epithermal region. Existing 
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spallation sources yield peak neutron flux of 1016 cm−2s−1 and 1017 cm−2s−1 [13-15]. New neutron 

sources under study, based on inertial confinement fusion (ICF) will increase the neutron flux by 

many orders of magnitude (Fig.1) [14]. Neutron sources are inherently weak compared to X-ray 

sources. However, due to the importance of neutrons, numerous research reactors have been built 

around the world. To mention a few of them, state-of-the-art research reactors like 10 MW BERII 

in Helmholtz Zentrum Berlin and 20 MW FRM II  in Munich (Germany) [16], 58 MW ILL reactor 

in Grenoble (France) [17], 100 MW Dhruva reactor in Mumbai (India) [18], 20 MW NIST [19] and 

LANL [20] in USA have been built and are operational. Next-generation spallation neutron source 

facilities e.g., SNS at Oak Ridge National Laboratory-U.S.A [21] and J-PARC at Tokai-Japan [22], 

have also become functional.  

Extraordinary importance conferred to neutrons is due to its use both as a probe and as an object of  

 

Fig.1 Change in thermal neutron flux with time. Since 1970s, the neutron flux in research reactors 

got stagnated due to technical limitations over the achievable power density, forcing to look for 

new types of neutron sources like spallation, fusion etc. [14].  
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study themselves due  to  their unique  properties  like  large  mass (~ 2000 times the e- mass), short 

range strong interaction, essentially no electric charge, long life time, anomalous magnetic moment 

(n=–1.913N, N being the nuclear magneton) etc. Responding to all known fundamental 

interactions viz. strong, electromagnetic, weak and gravitational, they are a powerful tool for 

addressing questions from the domains of particle physics, nuclear physics and astronomy [3, 23]. 

Neutrons especially in the thermal energy range ~ 25meV (in thermal equilibrium with a moderator 

at ~ 300 K), stand out as a unique probe for condensed matter. The significant advantages of 

thermal neutrons can briefly be summarised as [24-27]: 

1. The thermal neutron energy (meV) is ~ energies of atomic motions. A wide range of energy 

scales may be probed, from the neV energies associated with polymer reptation, through 

molecular vibrations and lattice modes in meV to eV transitions within the electronic structure 

of materials. 

2. The wavelengths of thermal neutrons (~ Å) are of the same order as atomic spacing in 

condensed matter. Through various neutron scattering techniques from diffraction to ultra small 

angle scattering, structural information over many orders of magnitude (~ Å to 104Å) in scale 

can be obtained.  

3. Neutrons primarily undergo the strong interaction with nuclei, rather than the diffuse e- clouds 

of atoms, in contrast to X-rays. Therefore n’s can discern light atoms (e.g. hydrogen) in the 

presence of heavier ones, and distinguish neighbouring elements.  

4. The neutron’s magnetic moment is ideally suited to study microscopic magnetic                                                                                                                                

structures and magnetic fluctuations.  

5. Because of its charge neutrality and spin ½, the two component neutron spinor evolves in a 

magnetic  field  B  through  the  interaction  Hamiltonian  –μnσ.B, enabling  observation  of  the  
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SU(2) phase, and  separation  of  geometric  and  dynamical  phases. Here σ signifies Pauli spin 

operator. 

6. Neutrons are non-destructive, even to complex, delicate biological materials. They are highly 

penetrating, allowing non-destructive investigation of the interior of materials.  

In spite of these advantages, neutrons have some disadvantages, e.g., 

1. Neutron sources are weak in intensity and the neutron flux at the sample is generally low in 

comparison to other sources like X-rays. Large samples and long experimental durations are 

hence required.  

2. Other serious drawback is Kinematic restrictions viz., all energy and momentum transfers with 

neutrons can’t be accessed with a single instrument.    

Therefore, neutron instruments are designed to compromise between intensity and resolution and      

different types of instruments are required to achieve the best compromise for different types of 

measurements. So far, the greatest gains in instrument performance have come from improvements 

in neutron optics such as supermirrors and improved detectors (especially PSDs) and not from 

better sources, as the neutron flux hasn’t risen appreciably over for the last 4 decades (Fig.1). 

 

1.2 Background and brief literature survey of dynamical diffraction and neutron optics 

The phrase “neutron optics” encompasses a wide range of optical elements which exploit the 

phenomena of reflection, refraction, interference and diffraction or combinations of these to focus, 

deflect, monochromate or manipulate neutron beams. Fermi [28] proposed in analogy with theory 

of refraction of light (or X-rays) that the interaction of neutrons with materials consists of coherent 

scattering, or re-radiation of the incident wave by individual scattering centres. His consequent 

introduction of Fermi pseudo potential forms the backbone of neutron optics for thermal neutrons. 
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Neutron optics has since made great strides in diverse directions. Many of the fundamental 

relations of neutron optics concerning magnetic effects in neutron scattering, theory of coherent 

and incoherent scattering, magnetic crystal diffraction, and refraction were developed in a series of 

papers by Halpern and co-workers [29-31] and Hamermesh [32]. Refraction, in analogy with 

visible photon optics, is described by introducing a refractive index n defined as the ratio of the 

neutron wave vector inside a material medium to that in vacuum. For most materials, n [see 

Chapter 2] differs from unity by about 10-6-10-5. The neutron refraction effects have been studied 

[33-38] extensively and applied to build lenses and prisms to respectively focus and deflect neutron 

beams. Refraction for thermal neutrons, though miniscule, has been effectively used to observe a 

focusing effect using symmetric concave lenses made of amorphous MgF2 [39], stacked layers of 

small amorphous prisms and stacked Fresnel-shape discs [40-42]. Spin dependent refraction using 

a quadrupole magnet was observed by Oku et al., [43].  

Materials with n less than unity effect total external reflection of neutrons incident at grazing 

angles less than the critical angle θc given by  

cosθc=n.                                                                                                                                             (2) 

Neutron transportation through a neutron guide tube, the inner wall of which is made of a material 

with n<1, is based on total external reflections. The principle and the design were proposed by 

Maier-Leibnitz [44]. Ultracold neutrons (UCN) which have speeds < 10 m/s, i.e., wavelength  > 

400 Å and E < 500 neV, get totally reflected and bounce elastically from the material walls at all 

angles of incidence including normal incidence as neutrons with such energies (~100 neV) can’t 

overcome the optical potential barriers of most materials [36,45]. Some extremely important 

questions pertaining to fundamental physics [44-47], have been addressed using UCN. The effect 

of the magnetic interaction on n is merely to add a term of opposite signs for the two spin states 
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[33-34,48]. The bi-refracting nature of ferromagnetic materials which provides two different 

critical angles for two spin states of neutrons (  ½) forms the basis for the production of polarized 

neutrons through selection of one component only, and super mirrors guides [49-50]. Magnetic 

confinement of ultracold neutrons also relies on the same principle and only one spin state can be 

confined [36,45].  

 

Diffraction: I. Kinematic Diffraction  

The kinematical theory of diffraction considers the scattering of the incident wave from atoms in a 

crystal, but ignores further interactions of scattered wavelets within the crystal. Born 

approximation [51-52] is applied to calculate the scattering amplitude. Assuming the wave 

amplitude incident on each nucleus inside the crystal to be same, the total diffracted amplitude is 

obtained simply by adding the individual amplitudes diffracted by each atom, taking into account 

the phase differences between them. Distribution of diffracted amplitudes in the reciprocal space is 

then the Fourier transform of the distribution of nuclear scattering length density in the real space. 

The integrated reflected intensities calculated thus, are proportional to the square of the structure 

factor and to the volume of crystal. The diffracted intensity becomes infinity if the crystal thickness 

is increased to infinity, which is unphysical. The theory can only be applied to measure diffracted 

intensities and their peak positions for a weak optical potential and extremely small crystals or 

polycrystalline materials. Further, it is difficult to obtain the phase information of the diffracted 

wave [24-27]. Therefore, for perfect or nearly perfect crystals, a more complete theory which takes  

into account further interactions of the scattered radiation with matter ought to be developed.  
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II. Dynamical diffraction 

Dynamical diffraction theory for neutrons as well as X-rays owes its birth to the availability [53] of 

pure, defect free and large single crystals in late 40’s. Several discrepancies between experimental 

observations and predictions of kinematical theory showed that the theory was ill-equipped to deal 

with scattering from perfect crystals. The applications of neutron dynamical diffraction include 

mainly neutron optics, measurement of scattering lengths, neutron interferometry, imaging of 

defects, multiple Bragg diffraction and grazing incidence diffraction.  

Dynamical diffraction theory for X-rays was developed much before neutrons and the immediate 

stimulus for this development was observation of Bormann effect [38] for X-rays. X-ray 

Dynamical diffraction theory of a plane wave by a perfect crystal was formulated by Darwin [54] 

and Ewald [55], using two different but original approaches. Two beam plane wave dynamical 

diffraction which considers only an incident beam and one Bragg diffracted beam has been the 

main focus of theoretical development since then. The theory was extended to multiple Bragg 

diffracted beams later. Prins [56] extended the Darwin’s theory to take absorption into account, and 

von Laue [57] reformulated Ewald’s approach which forms the backbone of the modern-day 

dynamical theory. Reviews and extensions of the theory have been given by Zachariasen [58], 

James [59], Kato [60] and Authier [61]. A comprehensive review of the Ewald-von Laue theory 

has been provided by Batterman and Cole [37]. More recent reviews are provided by Kato [62], 

Pinsker [63] and Authier [64-65]. 

There exists a one to one correspondence between dynamical diffraction theory of X-rays and 

neutrons [65] with an important difference being that for neutrons unlike X-rays, absorption is 

weak in most materials. Since the first observation of the Pendellösung fringe structure in a neutron 

diffraction experiment, using single crystals of Si, by Shull about 43 years ago [66], interest in the 



  

8 

 

application of the dynamical theory to the neutron case has grown substantially. A concise review 

with focus on the work presented in this thesis is given in Chapter 2.  Some excellent papers and 

reviews already exist on the theory for example, by Sears [67-68], Rauch and Petrascheck [1,69], 

Wagh and Rakhecha [4,70] and Klein and Werner [5]. Extension of the dynamical diffraction 

theory for magnetic case is provided by Stasis and Oberteuffer [69,71]. Many of the theoretical 

predictions of neutron dynamical diffraction have since been verified and exploited for 

applications. Knowles in 1956 showed that the intensity of neutron capture γ-radiation varies 

markedly close to a Bragg condition for CdSO4 single crystals [72]. This was the first effect of 

dynamical diffractions of neutrons demonstrated experimentally. Thereafter, anomalous 

transmission of neutrons associated with α-branch of the dispersion surface was experimentally 

verified by Sippel et a1. [73] and Shilshtein et a1. [74] using InSb crystals. The angle amplification 

effect was exploited by Kikuta et a1. [75] and Zeilinger et al. [76] to measure small directional 

changes of a neutron beam resulting from prism refraction. In a TOF (time-of-flight) experiment, 

Shull [77] could also observe ‘anomalous’ speed reduction by a factor cosB within a single crystal. 

The effects of a finite curvature of the incident wavefront can be accounted for by using the 

spherical wave approach [78]. Shull and Oberteuffer [66,78] used the Laue collimator setup to 

measure the fringe shift with the displacement of the exit slit along the crystal face. The experiment 

[79] showed that the phenomenon ought to be described in terms of a spherical incident wave. The 

interest and activities in neutron dynamical diffraction theory and its applications, reached the 

crescendo with the successful operation of the 1st perfect-crystal neutron interferometer (IFM) by 

Rauch-Treimer-Bonse [80] in 1974 by exploiting the amplitude division of the neutron wave 

function in the symmetric Laue configuration. However, a perfect-crystal X-ray IFM [81] was 

conceived and realized 9 years earlier. The first neutron IFM was built by Maier-Leibnitz and 
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Springer though in 1962, that used the wavefront division. Biprism (refraction based) IFMs suffer 

from small beam separations (~ 60 μm) making measurements with samples placed in one of the 

interfering paths extremely difficult [82].  To overcome this, various IFMs based on amplitude 

division have been developed for different requirements [Chapter 3, 1,4,83-84]. Among these, the 

LLL IFM (both skew symmetric and symmetric case) is the most widely used. Neutron 

interferometry has been a testing bed for the concepts of quantum mechanics. Many of the 

hypotheses previously treated only in thought experiments have since been verified neutron 

interferometrically. Some of these landmark experiments include observation of 4π spinor 

periodicity [85-87] and gravitational phase shift measurement [88], separation of geometric and 

dynamical phases [89], observation of Aharonov-Anandan-Casher (AAC) [90-91] and scalar 

Aharonov-Bohm (AB) effects [92-93], confinement induced phase [94], coherence length 

measurements [95-96] and experiment for testing quantum contextuality with single neutrons [97]. 

These alongwith some other experiments and many more interesting proposals are well 

documented [1,4,98-107].  

  

1.3 Motivation and scope of the thesis 

With neutron optics lying at the very heart of every neutron instrument, it becomes challenging 

indeed to match new experimental requirements with better instruments and novel optical 

components. Single crystal neutron optics plays a pivotal role in development of some of the key 

components of neutron instruments. In this section, we describe some of the neutron optics issues 

needed to be resolved, present motivation for their solution and circumvent them through new 

optical devices coupled with novel ideas. This opens up new vistas for the many experiments 

which otherwise are not possible (Chapters 3-5). 
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I. One of the major disadvantages of neutrons, also shared by X-rays, is their very small magnitude 

of refractive power |n – l| ~ 10-6–10-5 [4-5]. Therefore, thermal neutrons traversing an amorphous 

prism undergo a deflection in the arcsec regime and a few-degree variation in the incidence angle 

brings about only ~ arcsec change in the neutron deflection. Further, contrary to light, since 

refractive index is usually smaller than unity for neutrons, the deflection will be towards the apex 

of prism. Schneider and Shull [108] have carried out precision measurements of prism deflection 

angles from which refractive indices, and hence scattering lengths, were determined. Wagh and 

Rakhecha [109] showed that for neutron propagation parallel to the prism base, the neutron 

deflection just equals the product of the refractive power and base-height ratio of the prism. Over 

the past five decades, variations of the forward diffracted (IO) and diffracted (IH) intensities from 

single crystal prisms with the incidence angle have been observed for X-rays [38,110] and neutrons 

[79]. Due to the nonavailability of arcsec wide neutron beams at that time however, the neutron 

IH(θ) variation could only be mapped by scanning a narrow slit across the diffracted beam. 

However, deflection sensitivities of the amorphous prisms remained abysmally low. In Chapter 3, 

we overcome this problem by presenting a novel Bragg prism, viz., a single crystal prism operating 

in the vicinity of a Bragg reflection, offering deflection sensitivity of more than three orders of 

magnitude greater than an amorphous prism achieved with a 2 arcsec wide neutron beam [111-

112]. 

II. Experimenters’ insatiating thirst for more and more parallel monochromatic neutron beam, has 

led to development of numerous types of monochromator–collimator setup using single crystal 

[4,24-27]. Ultra-small angle neutron (or X-ray) scattering (USANS/USAXS) studies [113] which 

probe wavevector transfers Q ~ 10-5 Å-1, require an incident beam collimation down to a few 

arcsec, to characterize samples [26-27,114] containing agglomerates of μm dimensions. A Bragg 
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diffracted neutron beam from a single crystal monochromator is typically a few arcsec wide but 

with long tails. The Darwin profile is sharper, with an intensity nearly half that for the Ewald 

profile in the tail region. Yet even the Darwin tail intensity drops gradually, in inverse proportion 

to the square of the incidence angle measured from the centre of Bragg reflection. Bonse and Hart 

in 1965 [115] proposed a number p of successive identical Bragg reflections from two slabs of a 

channel-cut monolithic single crystal to achieve collimation without the tail contamination. The 

tails of the multiply reflected intensity fraction Rp (R<1) get trimmed drastically leaving the peak 

(R=1) essentially unaltered, R denoting the reflectivity for each Bragg reflection. Such a beam thus 

has a nearly rectangular angular profile, a few arc sec wide. However, efforts to achieve such a top 

hat angular profile for X-ray [116] and neutron [117–118] beams yielded tail intensities a few 

orders of magnitude higher than expected. However, such a tail-free Darwin angular profile could 

be attained by Wagh et al. [111] only in 2001. The angular width achievable is limited to that of 

Darwin angular profile width. Using an asymmetrically cut crystal, one reduces the Darwin width. 

Treimer et al. [112] however placed a Si-wedge after a few reflections to deflect neutrons before 

the remaining reflections, attaining an analyser rocking curve width ~2 arcsec. In order to achieve 

sub-arcsec collimation of neutrons, we devised a judiciously optimised Bragg prism. We address 

this issue in Chapter 4 by enunciating the novel analytical as well numerical calculations based on 

the dynamical diffraction theory, which leads to the optimised collimator configuration yielding 

sub-arcsec collimation. 

III. In the low energy limit, scattering length is the only important parameter required to describe 

the strength and the character of the neutron – nuclear interaction. Scattering length values vary 

irregularly from one nucleus to another due to their strong dependence on the details of the nuclear 

structure. This makes precise determination of scattering length of low-energy neutrons for basic 
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nuclear physics very important as it would shed light on the basic nucleon- nucleon interaction, 

charge independence and charge symmetry of the nuclear forces and thus on validity of different 

nuclear models [1,2,68,119]. Neutron scattering studies of condensed matter clearly require 

accurate values for the coherent (bc) and incoherent (bI) scattering lengths of the elements present 

in the sample. There are many methods for bc determination such as, Christiansen filter [120], 

mirror reflection [121-122], gravity refractometer [123], prism refraction [49,124] and transmission 

[125] etc. However, the most accurate value with a relative error of about 0.03 was obtained by 

Shull et al. [66,78-79] using the dynamical diffraction of neutrons from a Si single crystal in Laue 

geometry and observing the Pendellösung oscillation for various thicknesses of Si crystal. 

Perfect crystal interferometry affords most precise determination of the coherent scattering length 

[1,2,4,69,119] of samples. Following Scherm’s suggestion of placing the sample with its surface 

parallel to the Bragg planes of the interferometer to attain a wavelength-independent phase, Rauch 

et al. [126] determined bc to within a few parts in 104. Ioffe et al. [127] reduced the bc imprecision 

to a few parts in 105 by measuring the phase shift between two interferograms recorded with the 

sample placed alternately on the two beam paths of the interferometer in this non-dispersive 

configuration. Wagh and Abbas have proposed a comprehensive optimisation of this method to 

attain a further order of magnitude improvement in bc precision and pointed out that a correction 

for neutron refraction at the air-sample interfaces would then become mandatory. Using a 

monolithic dual sample, proposed by Lemmel and Wagh [128], in the non-dispersive 

configuration, bc has been determined with a precision of 27 parts per million [Chapter 5]. 
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CHAPTER 2 

Optics and dynamical diffraction theory of neutrons 

 

This Chapter presents the basic theoretical framework underlying our work on neutron dynamical 

diffraction and its application in neutron optics. First, I briefly summarise the relevant results from 

the theory of neutron optics needed to understand the scattering length and its importance.  

 

2.1 Scattering length: Basic relations 

Thermal neutrons are scattered by a nucleus through the strong interaction. The strong interaction 

being short-ranged, the relevant impact parameter R (~ fm) is much smaller than the neutron 

wavelength  (~ Å) and the neutron angular momentum mvR = hR/ < 10-4ħ. Hence only l = 0 (s-

wave) scattering need be considered which by the first Born approximation [51-52], is isotropic.  

Consider a neutron plane wave i
incψ = e k r  incident on a single nucleus bound within a solid 

sample. Here k denotes the incident wave vector. The condition of kR<<1 for thermal neutrons 

allow the introduction of a point-like interaction viz., the Fermi pseudopotential [28] 

2

C
2V( ) b ( )

m


 r r .                                                                                                                         (3) 

The symbol bc denotes the coherent scattering length. At large distances, the neutron wave 

function after the scattering is written as the sum of incident plus scattered wave functions [5,24-

27,52]  i.e., 

ikr
i .

C
eψ = e - b
r

k r .                                                                                                                               (4) 

Matching of the neutron wave function and its derivative at the radius R of the nucleus, forces 

coherent scattering lengths bc to be positive most frequently [5], indicating a repulsive optical 



  

14 

 

potential for most nuclei in spite of the attractive nature of basic neutron-nuclear interaction. The 

dependence of bc on the atomic mass (Fig.2) is quite irregular [119] with only a few nuclei 

displaying negative scattering lengths [5,131].  

If all scattering nuclei are identical, neutrons scattered from different nuclei have a definite phase 

relationship and coherent scattering results. On the contrary, there is no definite phase relationship 

between waves from scattered different isotopes (isotopic incoherent scattering) or from nuclei 

with random spin orientations in the sample (spin incoherent scattering) [1-2,4,24-27,119,129-

130].  

If the sample contains different isotopes with fractional isotopic abundances fi, distributed 

randomly, the coherent bc, the isotopic incoherent bI, and the total b, scattering lengths are 

computed by accounting for the isotopic abundances, viz.,  

C i i
i

b f b ,                                                                                                                                   (5) 

 2

I i j i j
i j

b f f b b


                                                                                                                       (6) 

 

Fig2. The distribution of coherent scattering lengths as a function of atomic mass number [5,119]. 
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2
i i

i
and b f b  .                                                                                                                          (7) 

Absorption is accounted for by a complex interaction potential and therefore by a complex 

scattering length  

 2' 2
C C attn attnb b / 2 i / 2       ,                                                                                                  (8)  

where the attenuation cross section attn includes both absorption a and incoherent scattering I. 

The coherent, incoherent and total scattering cross sections 
2' 2

C C C4 b 4 b ,      2
I I4 b    and 

2
S C I( ) 4 b       respectively of a bound nucleus, are determined by the moduli of the 

respective complex scattering lengths. In general, bc varies for different isotopes of an element, 

allowing isotopic substitution methods to yield structural and dynamical information in great detail. 

It also facilitates the use of contrast variation to selectively mask specific components of a complex 

system to observe scattering only from the rest of the system in small angle neutron scattering 

(SANS) studies. 

Table 1: Isotopic abundance, spin, neutron scattering lengths and cross sections for the Si. 

Silicon Abundance 

(%) 

Spin bc  

(fm) 

bI 

(fm) 

σC  

(barn) 

σI 

 (barn) 

σa  

(barn) 

14Si - - 4.15071(22) 0.178 2.1633(10) 0.004(8) 0.171(3) 

14Si28 92.2 0 4.106(6) 0 2.120(6) 0 0.177(3) 

14Si29 4.7 1/2 4.7(1) 0.089* 2.78(12) 0.001(2) 0.101(14) 

14Si30 3.1 0 4.58(8) 0 2.64(9) 0 0.107(2) 

 

*For the isotope Si29 with a spin ½, bI arises from different scattering lengths for the up and down 
spin states. 
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Due to the rapid strides made lately by the semiconductor electronics industry, most relevant 

properties of single crystal silicon have been determined to great precision over a wide temperature 

range. Single crystal silicon is therefore an ideal candidate for high precision bc determination (cf. 

Chapter 5). For Si, attn/(2 bc) ~ 10-5 for 2Å neutrons, implying negligible neutron absorption and 

incoherent scattering. Some important neutron scattering properties of silicon cited in literature 

[119] are summarised in the Table 1. 

 

2.2 Dynamical diffraction from a single crystal 

The dynamical theory [1,4,54-70] regards the incident and diffracted waves inside the crystal to be 

coherently coupled forming a composite wave function 

i . i .'
O H

H
( ) e e ,    O HK r K rr                                                                                                          (9) 

which behaves as a single entity. The sum extends over all reciprocal lattice vectors. The internal  

wave vectors KO and KH are related through the Bragg condition  

KH = KO + H.                                                                                                                                 (10) 

The interactions between the waves and the crystal are represented by the potential  

i . i .
H O H

H H 0

V( ) V e V V e   H r H rr
≠

                                                                                                    (11) 

with  

2 2 2
c 0H

H H
O

2 Nb kFV
m F 2m


  

  .                                                                                                         (12) 

Here m stands for the neutron mass, FO and FH, the structure factors for O and H reflections 

respectively, N, the atomic number density, H,  the susceptibility for the H reflection and bc, the 

coherent scattering length.  
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Matters get simplified while dealing with the two-beam case, wherein only one reciprocal lattice 

point is close enough to the Ewald sphere to excite the corresponding diffracted wave. Thus for a 

plane wave, exp(ikO.r), incident on the crystal near the Bragg condition for a single reflection H, 

only two terms in the series (Eq.(9)) for the internal wave function need be considered, the 

amplitudes of all other terms being negligibly small. On solving the time-independent Schrodinger 

equation involving the potential (Eq.(11)) with such a wave function, one obtains the dispersion 

relation  

 22 2 2 2 2
O H H H(K K )(K K ) 2m / V V    ,                                                                                        (13) 

which to an excellent approximation for thermal neutrons translates to 

2
O H H

O H
k

4
 

   .                                                                                                                           (14) 

where 

O
O 2 2

O

2mVK k 1
k

 


 ,  O O H HK K and K K      ,                                                                       (15)                                              

K being the magnitude of the average internal wave vector, differing from kO due to the refractive 

index. Eq.(13) defines the dispersion surface in the reciprocal space. Each solution of Eq.(13) is 

represented by a point on the dispersion surface, with the corresponding wave amplitude ratio 

2 2 2
O O O HH H

2 2 2
O H H O H H

(K K ) 2 k(2m / )V
(2m / )V (K K ) k 2 

  
     

   



                                                               (16) 

The appearance of V-H in the solution is to be expected since a multiple interplay between the two 

wave components involves the -H reflection as well. In practice, the solutions KO and KH of 

Eq.(13) differ from K at most by 10-5kO. The loci of points where the allowed KO and KH vectors 

originate, then constitute a hyperbolic dispersion surface in the reciprocal space and each point on 

this surface is called a tie point. In Fig.3, the solutions in the vicinity of Bragg angle B are shown 
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for a positive value of bc i.e. for VO and VH > 0. Over this small region, the spheres LR and LL of 

radius kO drawn about the origin O and reciprocal lattice point H respectively, appear as planes 

intersecting the bisector LQ of OH at the point L in the plane of incidence. The spheres QR and 

QQ of radius K, centred at O and H respectively, are the asymptotes to the hyperbolic dispersion 

surface comprising branches labelled  and β,  denoting the branch closer to the point L. The 

dispersion surface has a remarkable property viz. that for any allowed ψ, the energy flow averaged 

over the planar spacing d and represented by the current density vector  

 2 2
0 Hm

   ψ OJ K
HK                                                                                                          (17)  

is directed along the normal [132] to the dispersion surface at the corresponding tie point. 

  

 

Fig.3 Reciprocal space representation of the Bragg diffraction in a single crystal. 



  

19 

 

The dispersion surface thus represents an infinity of allowed internal wave functions and each tie 

point characterises completely the properties of the associated wave and its propagation. 

 

2.2.1 Boundary conditions and diffraction geometries 

Of the various possible solutions obeying the dispersion relation, only those satisfying the 

following boundary conditions at the crystal-vacuum interface can be excited: 

I) The tangential components of wave vectors for the incident as well as the diffracted wave should  

be continuous across the interface The vacuum wave vector of either wave can hence differ from 

the corresponding internal wave vector at most by a component along the surface normal. 

II) At the interface, the incident and diffracted wave components of the external wave function 

should match the respective net components of the internal wave function, each internal component 

comprising a summation extending over all excited tie points. 

The condition I) is represented geometrically in Fig.3 for incidence at B+ represented by the 

point R on the sphere of incidence. Only for the tie points T and B in the figure where the straight 

line passing through R and parallel to the surface normal ni, intersects the dispersion surface, does 

kO = RO differs from the associated internal wave vectors KO, viz. TO and BO,  just by  

components, RT and RB respectively, along ni. Thus in general, two tie points can be excited at 

each angle of incidence. 

Depending on the angle S between the diffracting planes and the crystal surface, the diffraction is 

classified into two cases, viz. Bragg configuration for B<S<B (Fig4a) and Laue configuration 

for Bπ<S<B (Fig4b). The ratio of direction cosines of the external incident and diffracted 

wave vectors, kO and kH, with respect to the inward surface normal ni,  
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B S

B S

. sin( )b

. sin( )
 

  
  

O i

H i

k n
k n

.                                                                                                            (18) 

is negative in the Bragg case and positive in the Laue case. The diffracted wave exits the incidence 

surface in the Bragg case, but propagates inside the crystal in the Laue case. In the reciprocal space 

(Fig.3), ni lies between the directions QQ and QR in the Bragg, and between QQ and QQ in the 

Laue case. For a given incidence angle in the Bragg case, two tie points, in general, are excited 

either on the - or on the β-branch. In the Laue case on the other hand, one tie point each on the  

and β branches is excited. 

                                              

Fig.4 Asymmetric (a) Bragg and (b) Laue configurations of neutron incidence on a single crystal. 

 

2.2.2 Bragg Case 

In the Bragg configuration, incidence and exit surfaces are identical. Thus, for incidence 

represented by point R in Fig.3, the exit wave vector kH is obtained, in accordance with the 

boundary condition I), by producing TB, to intersect the sphere of diffraction CLL of radius kO 

about H at the point C, say. Then kH = CH. The wave vector of the external diffracted wave thus 
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differs from kO by a small component, such as CR, in addition to H.  The boundary condition II) in 

this case reads (Fig.4a)  

OT OB1                     and                            V
H HT HB    ,                                                 (19) 

where iV
He  Hk r  is the diffracted wave outside the crystal. Over a range of incidence angles 

indicated by I1I2 in Fig.3, the line drawn through the point of incidence parallel to ni does not 

intersect the dispersion surface. Thus KO and KH are complex over the range I1I2 even for a non-

absorbing crystal and the amplitude ratio is given by 

V iH H
H

O H

e b



 
   

 
.                                                                                                                (20) 

The phase  varies smoothly from 0 at I1 through /2 at I, to  at I2. For centrosymmetric crystals, 

H H   , and the reflectivity equals unity, i.e., 

21 V
H Db 1 I                                                                                                                                 (21) 

over the segment I1I2. The factor |b|1 has been included in the definition of reflectivity to correct 

for the change, by the factor |b|1 in the diffracted beam cross section from that of the incident 

beam. Thus over the region I1I2 corresponding to an incidence angle width 

H H
i

B

2
w

sin 2 b
 




,                                                                                                                             (22) 

the incident wave undergoes total reflection generating a diffracted wave with an emergent angular  

spread 

e H H
B

2w b
sin 2   


                                                                                                                  (23) 

represented by the segment W1W2. The symbol wi signifies the full Darwin width. When thermal 

vibrations of lattice atoms are considered, the widths wi and we get multiplied by the Debye-Waller  
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factor exp(-W). The centre, θC, of the total reflectivity range differs from θB by 

0
C B

0 B

LI 1(1 )bk 2sin 2


    


,                                                                                                   (24) 

a deviation brought about by the average refractive index, (1–χO/2).  

As mentioned, KO and KH have to be complex even for a nonabsorbing crystal, over the total 

reflectivity regime. Since the incident wave vector kO in vacuum is real, the boundary condition I) 

dictates that the imaginary component KO of KO must necessarily lie along the surface normal. 

Moreover KH= KO, since KH and KO differ by a real vector H. Thus both the incident and the 

diffracted wave intensities must attenuate in a direction perpendicular to the crystal surface as exp  

(-2KOZ), Z being the depth in the crystal, with 

" H
0

B S B S

sinK
sin( )sin( )

 


     
.                                                                                         (25) 

The attenuation (and not absorption) is a direct consequence of the diversion of the incident wave 

intensity into the diffracted wave at the expense of penetration into the crystal. This phenomenon is 

known as primary extinction, to distinguish it from the secondary extinction caused by overlying 

grains in polycrystalline samples. The primary extinction is the strongest for =/2, i.e. at θC. The 

effect is the most pronounced for the two extreme Bragg configurations and weakest for the 

symmetric Bragg case. 

For neutron incidence outside the total reflectivity domain, i.e., y 1 , the fraction of incident 

intensity diffracted at the front face of a thick single crystal is given by 

   22 2 2
DI ( y y 1) 1 1 y / 1 1 y         .                                                                       (26)      

Here, y denotes scaled deviation of incidence angle  from centre of Bragg diffraction C i.e., 

 C iy 2 / w  .                                                                                                                                                    (27) 
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However, for a thin crystal, the reflectivity remains unity over y 1 , whereas for y 1 , we obtain 

the Ewald reflectivity  

2
DI (1 1 y )   .                                                                                                                       (28) 

 

2.2.2.1 Neutron collimation 

Experimenters yearn for monochromatic neutron beams with δ-function angular profiles. Such 

beams allow measurements of ultra-small beam deflections and determination of micrometre-sized 

agglomerate distributions within samples through their USANS (ultra-small angle neutron 

scattering) studies. Early attempts at collimation used a pair of ~ mm wide slits set at a distance ~ 

m apart to limit the angular divergence of the beam. An advanced collimator introduced by Soller 

[133] consists of a number of uniformly spaced thin cadmium-coated metal sheets (steel or copper) 

forming a series of long (~ m) and narrow (~ mm) rectangular channels between the sheets. Each 

channel allows a narrow parallel beam of neutrons to pass through since highly divergent neutrons 

get absorbed in the cadmium coating [134-135]. Soller slits afforded large beam cross-sections 

without sacrificing the angular collimation. The slit collimation for thermal and cold neutrons 

however is constrained to the minute of arc regime; efforts at better collimation are defeated by 

neutron diffraction at the slit edges apart from a heavy loss in the beam intensity. Tighter 

collimation ~ arcsec is achievable through neutron diffraction from a single crystal.  

In the symmetric Bragg case (θS=0 and b=–1), the diffracted wave exits at exactly the same angle 

to the planes as the incident wave and both wi and we equal H Bw 2 / sin 2   for a 

centrosymmetric crystal.  For 2Å neutrons exciting a {220} reflection in silicon, w = 1.2 arcsec. 

Neutron double-crystal diffractometers employ single Bragg reflections ~ arcsec, both as a 

monochromator and analyser albeit with long tails. However, the tails were suppressed by 
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exploiting multiple successive identical Bragg reflections from two slabs of a channel-cut 

monolithic single crystal, producing a highly collimated neutron beam [111,115]. 

For a crystal cut asymmetrically at S  B to the reflecting planes, |b|–1 is large. For incidence at a 

near grazing angle B–S, the crystal will thus accept a narrow beam of a large angular divergence 

1/2w / b  and generate a highly collimated ( 1/2w b ) diffracted beam wider in cross section. The 

enhancement by the factor |b| in the spatial width δx of the reflected beam vis-a-vis the incident 

beam, reduces the angular divergence of the reflected beam by the same factor. This is a direct 

consequence of conservation of the phase space volume spanned by the beam since the momentum 

spread δpx=p0δ of a monochromatic beam is proportional to the angular width δ. Such an 

arrangement therefore works as a collimator. The same setup with the beam directions reversed, 

relating to the other extreme (S – B, |b|–1 →0) in the Bragg case, may be employed where a small 

sample is to be studied and the angular divergence is of no great consequence. 

 

2.2.3 Laue Case 

In a Laue configuration (Fig.4b), the line drawn through the point of incidence parallel to ni always 

intersects the dispersion surface in two real points, such as A and B in Fig.5. The internal wave 

vectors are thus always real for a nonabsorbing crystal. Further, since the diffracted wave does not 

exit the incidence surface, the boundary condition II) implies  

O O1                                            H H0     .                                                                   (29) 

At the exit surface, each composite internal wave function ( or   ) gives rise to a transmitted 

and a diffracted wave. The situation where the exit surface normal, ne is not parallel to ni is 

illustrated in Fig.5. The line drawn through A parallel to ne intersects the spheres of incident and 

diffracted wave vectors in vacuum in the points E and R respectively. Thus, the exiting transmitted 
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and diffracted waves generated by  will propagate in the directions EO and RH respectively. 

Since in general, the points E and T are distinct, the transmitted wave vector EO subtends an angle, 

ET/kO, with the incident wave vector TO. The tie point B will similarly result in another set of 

exiting waves. 

In the case where the incidence and exit surfaces are parallel, each of the tie points A and B, excites 

points T and I on the kO and kH spheres respectively. Each transmitted wave thus propagates 

exactly in the incident direction TO and each diffracted wave, along IH. In particular, for the 

symmetric Laue configuration, where ni is parallel to LQ (S =–/2, b=l), a wave incident at an 

angle (B+ω) to the crystal planes gives rise to diffracted waves exiting at (B–ω) thus always 

maintaining an angle 2B between the incident and diffracted waves. The amplitudes of the exiting 

waves are derived by applying the boundary condition II) at the exit surface. 

 

 

Fig.5 Reciprocal space diagram of the Laue diffraction in a single crystal. 
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We shall confine our discussion henceforth to nonabsorbing centrosymmetric crystals, for the sake 

of simplicity and clarity. The assumption of zero absorption is fairly accurate for instance, with 

crystals of silicon which exhibit absorption lengths of a few metres for Å wavelength neutrons. The 

quantities O, H(=–H ), K, KO and KH are thus all real. 

The internal wave solutions can then be represented by 

Oα Oβ 2

Hα Hβ 2

1 yψ = 1- ψ = 1-
2 y +1

| b |1and ψ = -ψ = - ,
2 y +1

 
 
 
 

 
 
 
 

                                                                                                    (30)  

with the associated wave vector magnitudes 

 
 

20 H
Oα

β

20 H
Hα

β

k χ | b |K = K ± y +1 ± y
2

k χK = K ± y +1 y .
2 | b |


                                                                                                   (31) 

For incidence at θ = θC, i.e. y = 0, the incident wave splits equally into the α and β waves. ψOβ gets  

stronger at the expense of ψOα, as θ increases beyond θC (y >0), whereas ψOα becomes the dominant 

component on the other side of θC. The diffracted wave amplitudes on the other hand exhibit a 

peak, | b | / 2  in magnitude, at θC and fall symmetrically on both sides of θC. The diffracted 

intensities 2
H  and 2

H  drop to half their peak values at y = ±1, corresponding to an FWHM equal 

to wi of Eq.(22). Thus θC represents the centre of diffraction in the Laue case as well. Only in the 

symmetric Laue configuration, does θC equal θB represented by the point L, the centre of 

diffraction within the kinematical model. 
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2.2.3.1 Energy flow and Pendellösung oscillation  

Associated with the two tie points such as A and B, excited for a given incidence angle are the 

current density vectors 

 2 2
Oα Hα= ψ + ψ

mα Oα HαJ K K  and  2 2
Oβ Hβ= ψ + ψ

mβ Oβ HβJ K K                                                               (32)                  

directed along the respective normals to the dispersion surface.  A small variation in θ causes a 

large deflection of the energy flow vectors, the angle amplification occurring, albeit nonlinearly, 

typically by five orders of magnitude. An incident neutron beam with an angular divergence of a 

few arcsec thus illuminates the entire ‘Borrmann fan’ of energy flow with a 2θB angular span 

centred on the reflecting planes. For large magnitudes of y, the diffracted wave intensities drop to 

insignificant levels and the currents propagate practically in the incident direction. In the 

symmetric Laue case, the two <J> vectors for a given incidence angles subtend equal and opposite 

angles with the lattice planes and only for y=0, do they propagate in the same direction, i.e. along 

the lattice planes. Kikuta et al. [75] and Zeilinger and Shull [136] utilised the large angle 

magnification within a crystal near y = 0, to measure a minute deflection of a neutron beam using a 

monolithic Si double crystal arrangement in symmetric Laue configuration. If the incident plane 

wave is of infinite (or very large)  lateral  extent,  the α  and β waves  overlap physically during 

their propagation through the crystal and create an interference term  

   O O H H

2
O

2

) ) cos ).r
m

2 z 1 y(1 / 2) ( b ) cos ,
2m(1 y )

       

  
 
   

J K K K K K K

k k





   ( ( (O Oβ H Hβ O Oβ

O H

+ + -

-
                                      (33) 

In addition to sum 

   2O
2

(1 / 2) 1 2y b
2m(1 y )


  


J J k k
  O H+ .                                                                              (34) 
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The depth Z is measured from the incidence surface along ni and 

   B S B S
O H

2 sin sin ,
k


     


                                                                                                (35) 

is called the extinction distance. In the symmetric Laue case, S B O H2 cos / k      and is e.g., 64 

μm for the {220} Si reflection with 2Å neutrons. 

In the general Laue case, the component of <J> along ni vanishes as can be seen by taking a dot 

product of <J> in Eq. (33) with ni. Thus <J>  is normal to ni , lies in the plane of incidence and 

varies sinusoidally in magnitude with Z. At depths which are integral multiples of 2/ 1 y  , the  

net  current vector 

O
m

(1 / 2)
m



kJ  O                                                                                                                       (36) 

is identical to that for the incident wave modified by the average refractive index. At depths 

2z (m 1/ 2) / 1 y     on the other hand, 

  O
2m 1/2

(1 / 2) b ,
m(1 y )


 

 O HJ k k 2y                                                                                                (37) 

which is predominantly in the diffracted wave direction for fractional values of y. At the centre of  

diffraction (y = 0), Om 1/2
b (1 / 2) / m


 HJ k , propagates totally along the diffracted direction, 

the factor b in the numerator compensating the changed cross section of the diffracted beam. This 

periodic variation with depth of the energy flow direction (Eqs.(33-34)) is termed ‘Pendellösung’, 

due to its analogy with the energy transfer between two weakly coupled pendulums. 
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2.2.3.2 Symmetric Laue case  

For an infinite incident plane wave, the α and β wave functions combine at the exit surface in 

accordance with the boundary conditions to generate a forward transmitted and a diffracted wave in 

vacuum. In order to simplify the relevant expressions without losing generality, we restrict 

ourselves to the symmetric Laue case in a parallel-faced crystal slab and a full reflection (χO = χH). 

The amplitudes of the emergent waves can then be written as 

S

i t (1 y)
V 2 2
O 2

S S

t y tT(y, t) (y, t) e cos y 1 i sin y 1
y 1

 


     
               

                                      (38a) 

and 
 f

S

2
i t (1 y) 2Z y

SV
H 2

tsin y 1
R(y, t) (y, t) ie

y 1

  


  
          

 

 ,                                                              (38b) 

t denoting the slab thickness and Zf being the distance of the incidence surface from the origin 

measured along ni. As explained in Fig.5, the ψO, wave emanates exactly along the incidence 

direction, represented by y, whereas the ψH wave exits at an angle corresponding to -y with the 

exact Bragg condition. The associated intensities 

O HI (y, t) 1 I (y, t)  ,                                                                                                                     (39a) 

with 

2 2

S
H 2

tsin y 1
I (y, t)

y 1

 
  


;                                                                                                (39b) 

are both symmetric about the centre of diffraction viz. y=0. The diffracted intensity exhibits 

maxima equal to   12 2 2 2
m Sy 1 / ( t )


     at angles y=ym satisfying the condition, 

 2 2
m S m Stan t y 1 / t y 1 /       . The H and O intensities have been plotted in Fig.6 for 

t=20.25ΔS. Both the intensities oscillate strongly, the oscillations becoming more rapid in the 
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wings (large-y regions). The frequency of oscillations also rises with t/ΔS, in accordance with 

Eqs.(39a-39b). Similar intensity oscillations occur in a Bragg configuration outside the total 

reflectivity range [4]. For thick non-absorbing crystals, t/ΔS is large so the sin2 oscillations tend to 

average to a value equal to .5. Thus Eq. (39b) reduces to a simple Lorentzian shape, 

 2
HI (y) 0.5 / y 1  [4].     

 

                                                                                                                  

 

Fig.6 The intensities of the forward (IO) and diffracted (IH) beams exiting a parallel face crystal 

slab in the symmetric Laue configuration as a function of the reduced incidence angle y for the slab 

thickness t = 20.25 S [4]. 

 

2.4 Symmetric LLL neutron interferometer operation 

A neutron wave can be split with a single crystal into two spatially separated O and H waves 

bearing a definite phase relationship with each other (Eqs.(38a-38b). The coherently split waves 

can be recombined after travelling a certain distance using a ‘mirror’ crystal, to produce 

interference fringes with a period d. Since no detectors with spatial resolutions ~ Å for neutrons are 
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currently available, the interference pattern is analysed with an ‘analyser’ crystal by monitoring the 

intensity of waves emanating from it. The numerous configurations like BB, LL, BBB, LBBL and 

LLL, have been tested and operated since last 37 years [1,4,86-88,121-130]. Here the letters L and 

B stand for Laue and Bragg cases respectively. Though each configuration has its own merits and 

demerits, the LLL symmetric IFM, due primarily to its versatility and size, has been employed in 

our experiment (Chapter 5). Large neutron IFM inevitably permits larger path separations between 

the coherent wave amplitudes allowing high precision studies of materials properties e.g., neutron 

coherent scattering length determination.  

In the configuration represented in Fig.7, the contributions of waves in the paths I and II to the O 

and H waves emanating from the analyser slab can, by a repetitive application of Eqs.(38a-38b), be  

 

   

Fig.7 Operating principle of a symmetric LLL IFM. 
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expressed as  

I
O S M AT(y, t )R(y, t )R( y, t )                                                                                                       (40a)    

II
O S M AR(y, t )R( y, t )T(y, t )                                                                                                      (40b)  

I
H S M AT(y, t )R(y, t )R( y, t )                                                                                                      (40c) 

and II
H S M AR(y, t )R( y, t )R(y, t )                                                                                               (40d) 

Here, symbols tS, tA and tM denote the thicknesses of the splitter, mirror and analyser blades 

respectively. The magnitudes of 
  and 

  both involves two Bragg reflection and one 

transmission hence can be made identical for all y by choosing thicknesses tS = tA = tM = t. Further, 

phase difference between 
   and 

  is zero because separation between splitter and mirror, and 

mirror and analyser is identical making the traversal path for both wave amplitudes exactly same. 

So the two O-wave components, equal in magnitude, interfere constructively for all incidence 

angles. It is impossible to make the magnitudes of 
   and 

  equal regardless of y, since the 

former involves three reflections and the latter, one reflection and two transmissions. Now, if a 

phase difference χ is externally introduced between paths I and II using a phase shifter, the O and 

H beam intensities vary as 

   2 2 4LLL
O O II ( , y) T R 1 cos I (y) 1 cos                                                                       (41a) 

and  2 2 4 4 2 2LLL
H H II II ( , y) R T R R T cos I (y) I (y)cos          

 
.                           (41b)  

The terms II and III denote the intensity sums of I and II components in the O and H beams 

respectively. The O and H intensities thus oscillate out of phase, conserving their sum. 

For χ = , the O-beam gets completely extinguished and H-intensity reaches its maximum. Contrast 

of the interference oscillation is defined as, 
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max min

max min

I IC
I I





.                                                                                                                                (42) 

The beam contrast equals unity for the O-beam, in ideal case. The contrast values calculated for the 

H beam with the illumination of the entire Bormann fan, lie below about 0.5. Further, Due to the 

extremely low phase space density of neutron beams (10-14), one observes pure single particle self-

interferences. Using Eq.(39b), the two intensities (Eqs.(41a-41b)) can be written as  

 
 

ttt 2
O H H

2ttt
H H H

I 4I (y, t) 1 I (y, t)

I I (y, t) 1 2I (y, t)

 

 
                                                                                                            (43) 

for χ = 0 and  

ttt
O

ttt
H H

I 0

I I (y, t)




                                                                                                                                    (44) 

for χ = . For χ = , the sum of the O and H intensities appears in the H-beam and corresponds to 

the total intensity diffracted by the mirror, since the two forward diffracted beams from the mirror 

are lost to the interferometer (Fig.7). At χ = 0, the two intensities exhibit extrema in addition to 

those caused by the extrema in IH(y,t), discussed earlier. Thus in the region y2<0.5, the O-intensity 

maxima of 16/27 appear at angles where IH(y,t) =2/3, whereas smaller maxima of 2/27 occur in the 

H-intensity over the domain y2<5, wherever IH(y,t) =1/6. For y2≤1, additional zeros of ttt
HI  are 

located where IH(y,t) =1/2. Fig.8 shows the O and H intensity variations for t/ΔS=20.25 with χ = 0 

(solid curves) and χ =  (dashed curves). The O-beam gets completely extinguished at χ = , 

yielding an ideal contrast equal to unity. From the areas enclosed under the two ttt
HI  curves between 

y = 0 and 10, the H-contrast in this case is computed to be 0.44 (which is always less than unity) 

[1,4]. We have so far dealt with the diffraction of neutrons by treating them as infinite plane waves. 

In practice, a narrow neutron beam of large angular divergence is often employed in interferometric 
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studies. With such beams, the  and  components of energy flow separate physically for large 

angles |y|, of incidence and each component independently gives rise to O and H beams at the exit 

face. Under these circumstances, Eqs.(38a-38b) ceases to be applicable. Further, after traversing a 

crystal slab of thickness t, the O and H beams become wider by 2tsinθB (cf.Fig.7). The effects of a 

finite curvature of the incident wavefront can be accounted for by using the spherical [78-79] wave 

approach. 

 

 

Fig.8 Intensities of the forward (O) and diffracted (H) beams emerging from a symmetric LLL 

interferometer (tS=tM=tA=t=20.25ΔS) as a function of the reduced incidence angle y for χ = 0 (solid 

curves) and χ =  (dashed curves) [4]. 
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2.5 Detectors 

In experiments described in Chapters 3, 4 and 5, neutron intensity pattern has been recorded by 

converting neutrons into charged particles via nuclear reactions [137].  These charged particles in 

turn, are detected using the conventional methods. We have mainly used gas filled counter operated 

in the proportional region to discriminate against γ’s.  For thermal neutrons, Gas filled in the 

cylinder is comprised of helium gas enriched with He3, or BF3 gas enriched with B10 and following 

nuclear reactions take place  

1. He3 + n = T + p + 0.765 MeV  

2. B10 + n = Li7 + He4 + 2.79 MeV    (Yield: 6%)  

            B10 + n = Li7#+ He4 + 2.31 MeV    (Yield: 94%) 

                           → Li7#=Li7+ 0.480 MeV. 
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CHAPTER 3 

Neutron forward diffraction by Bragg prisms 

 

For a single crystal prism operating in a Bragg configuration, dynamical diffraction effects bring 

about strong deviations from the amorphous prism scenario. For a single crystal prism, if neutron 

incidence is set close to a Bragg reflection i.e., θ ~ θB - θS just outside the total reflection domain, 

unreflected neutrons traverse the prism at an angle Δ to the incidence surface and exit the side face  

 

 

 

Fig.9 Neutron propagation through amorphous and single crystal prisms. For the single crystal 

prism, additional beams emerge from front and side faces and the transmitted beam undergoes a 

significant lateral displacement. 
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in forward diffracted (IO) and diffracted (IH) beams (Fig.9) [66,138]. Here, θB and θS imply their 

usual meaning of Bragg angle and the angle between the front surface and the diffracting planes 

respectively. We have coined the term ‘Bragg prism for this device [139-142]. 

 

3.0 Amorphous prism 

Consider incidence of a monochromatic neutron plane wave i .e Ok r , on a non-absorbing amorphous 

prism at an angle  (Fig.9 (top)). Because of the refractive index n of amorphous prism being very 

close to unity, these neutrons get almost fully transmitted through the prism (viz., IO ≈ Ii) and suffer 

a small deflection, with reflection at the incidence face being negligibly small. As alluded to earlier 

in Chapter 2, reciprocal space representation for an amorphous prism is depicted in Fig.10. Here, 

incident wave vectors kO in vacuum can originate on sphere of incidence LR of radius kO centred 

at reciprocal lattice point O and terminate at O of reciprocal lattice vector OH. For an amorphous 

prism, the refracted wave vectors (|K|=n|kO|) must originate on sphere of refraction QR' of radius 

nkO centred at reciprocal lattice point O and end at O. Let the vacuum wave vector kO is 

represented by RO for an incidence angle equal to . The inside wave vector of prism is uniquely 

selected by continuity of the tangential component of the wave vector across the vacuum-prism 

interface and hence the allowed internal wave vector is T'O at incidence surface, since it differs 

from RO only by a vector RT' along the incidence surface normal ni (Fig.10). By the triangle law 

of vectors, T'O and RO thus have identical components tangential to the incidence surface as 

required by the boundary conditions. We obtained the effected wave vector change –RM at 

incidence surface by extending back the inside wave vector T'O upto incidence sphere and located 

intersection point M. Negative sign indicates |n| less than unity. Thus, neutron gets deflected by 

δ1=(n–1)cotθ, away from the inward surface normal at incidence surface of the prism, with (1-n)kO  
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being the separation of points M and T'.  

Likewise, at the exit surface, which subtends an angle A with the front face, the same constraint 

can be effected by drawing a vector T'S' parallel to the exit surface normal ne to intersect the 

sphere of incidence in S'. The emergent wave vector is hence S'O. Thus, –MS' is the effected 

change in wave vectors and δ2=(1–n)cot(A+θ), the neutrons deflection at the exit surface. The S'O 

therefore, differs from kO by –RS'. Thus, the net deflection viz., am = –RS'/kO produced by the 

amorphous prism is given by  

 am (n 1) cot cot(A )     .                                                                                                                                     (45) 

 

 

 

Fig.10 Boundary conditions on wave vectors dictate the allowed wave vectors at incidence and exit 

faces of an amorphous prism in reciprocal space. 
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We have derived the deflection formula (Eq.(45)) using only the boundary conditions on wave 

vectors and geometry of prism in reciprocal space. Since |n–1|<<1 for neutrons, the refraction angle 

r=/2-θ and Eq. (45) can also be derived using Snell’s law at the entrance and exit interfaces of the 

prism, as [109]  

 am (n 1) tan r tan(A r)     .                                                                                                                          (46)  

The deflection am (Eqs.(45 or 46)) lies in the arcsec regime and Eqs.(45-46) show that at a given 

angle of incidence, neutron deflection depends on A and only a rotation through a few degrees of 

the amorphous prism varies am by only ~ arcsec (Fig.11). 

 

 

Fig.11 Calculated variation of am with incidence angle for A=90o and n=1-10-5, exhibits a 

minimum when both the incidence and exit angles equal. 
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3.1 Neutron forward diffraction  

Consider a general asymmetric Bragg configuration wherein a monochromatic neutron plane wave 

i .e Ok r  with vacuum wave vector kO is incident on the front surface of a thick non-absorbing single 

crystal at an angle θB-θS and gets diffracted at the angle θB+θS (Fig.12). The corresponding 

reciprocal space representation for the asymmetric Bragg configuration is depicted in Fig.13. 

Incidence at the Bragg angle B is represented by the wave vector LO. Hence, the wave vector RO 

implies an incidence angle equal to B+LR/kO. For a Bragg prism, however, the allowed internal 

wave vector must originate on the hyperbolic dispersion surface. The continuity of the tangential 

components of the wave vectors at the vacuum-single crystal interfaces dictates that any change in 

wave vector takes place along inward normal ni to the crystal surface. Therefore, for each angle of 

neutron  incidence  outside  the  total  reflectivity  domain, two  tie points  T  and  B  in general, are  

 

 

 Fig.12 Bragg diffraction of a neutron beam from a thick single crystal in real space. 
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Fig.13 Bragg diffraction of a neutron beam in reciprocal space. At each incidence angle, continuity 

of tangential components of wave vectors across the incidence and exit faces of the prism yields 

unique tie points as well as internal and emergent wave vectors (see text).  
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excited by the incident wave (Fig.13). These tie points are obtained through the intersection of the 

dispersion surface with straight line drawn parallel to the ni.  For each excited tie point on the 

dispersion surface, the associated energy flow vector is along local normal with <JT> being 

directed into the crystal and <JB> outward.  The outward energy flow for tie point B, makes it 

physically unacceptable for thick single crystal [110], allowing the selection of only one tie point, 

T. Therefore, only the portion of the dispersion surface shown by thick lines in Fig.l3 can be 

excited viz., either low angle side of the  branch or higher angle side of the  branch due to 

energy flow considerations <J>, inside the thick single crystal.  Hence, the allowed internal wave 

vectors are KO=TO and KH=TH in forward diffracted and Bragg diffracted directions respectively. 

Inside single crystal, these two waves are coherently coupled viz., i . i .
O He e   O HK r K r and 

propagate together like a single entity and get separated only at the exit surface [1,4,37].  

 

3.2 Forward diffracted intensity fraction 

For neutron incidence outside the total reflectivity domain y 1 (e.g., B+, say), the fraction of 

incident intensity diffracted at the front face is given by (viz., Eq.(26)), 

   
 

2 2
-1Β S 2Η Η 2

D
Β S Ο Ο

( - )
sin θ + θ ψ ψI θ = = b = y y -1
sin θ -θ ψ ψ

.                                                                  (47) 

Here, factor |b|-1 has been included to account for the change in cross section of the diffracted beam 

vis-à-vis incident beam.  

The remaining unreflected fraction (1-ID) of incident neutrons traverses the crystal, along the 

current density vector JT (Figs.12-13) at an angle Δ to the front face [4,138], where 

D

B S D B S

(1- I )tanΔ =
cot(θ -θ ) + I cot(θ + θ )

.                                                                                               (48) 
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However, due to conservation of neutrons in the Bragg diffraction viz.,             

i D O HI = 1 = I + I + I ,                                                                                                                        (49) 

these neutrons reach the side face of the Bragg prism if the crystal is sufficiently thick and get 

separated into two beams i.e., forward diffracted (IO) and Bragg diffracted (IH) beams. 

If 2l is the width of the beam extent on the crystal surface, the widths of the incident and forward 

diffracted beams (Fig.12) respectively, are  

B S

B S

2lsin(θ - θ

2lsinΔsin(A+θ -θ )
and

sin(A+Δ)

)

.                                                                                                                                      (50)     

Here A denotes the apex angle of Bragg prism.                                                                        

 

 

Fig.14 Variation of the diffracted (ID) and transmitted (IO) beam intensities with the angle of 

incidence for different apex angles A. 
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Therefore, the forward diffracted intensity (transmission) fraction as a function of incidence angle 

 is given by 

B S

B S
O

sin sin(A )
I ( ) .

sin(A )sin( )
  

 
                                                                                                                       (51) 

The apex angle A of Bragg prism must lie between B+S and π–(θB–θS) to make possible the 

emergence of both IO and IH ( H D OI 1 I - I  , expression derived in Chapter 4, cf. Eq.(61)), from the 

side face. Outside the total reflectivity domain, as apex angle 'A' approaches B+S, all the 

unreflected intensity (1–ID) tends to propagate in IO (Fig.14), since the cross section for IH 

approaches zero. As 'A' increases beyond B+S, the intensity fraction IH rises at the expense of IO. 

 

3.3 Neutron deflection  

We derive the neutron deflection formulae for the Bragg prisms of the forward diffracted beam by 

delineating the wave vectors change in reciprocal space determined by the boundary conditions at 

the incidence and exit faces of the prisms. The forward diffracted neutron (transmitted) beam show 

strong deflections sensitivities for neutron incidence close to total reflectivity regime, accompanied 

by a large concomitant loss of intensity due to appearance of Bragg reflection at front and Bragg 

prism diffraction at side faces, respectively. These transmitted neutrons exit the side face with a 

concomitant lateral displacement depending on the incidence angles θ and thus on the energy flow 

<JT> inside the crystal (Fig.12). 

 

3.3.1 Bragg prism 

To obtain the neutron deflection by a Bragg prism, we follow the same procedure as outlined for 

the amorphous  prism  except  that  now  the  internal  wave vector must originate on the dispersion 
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surface instead of sphere QT'R' for an amorphous prism.  

For neutron incidence along RO on the Bragg prism, the allowed internal wave vector in forward 

diffracted direction is hence TO, differing from RO only by the vector RT (Fig.13) along the 

incidence surface normal ni.  

Likewise, at the exit surface, the emergent wave vector SO can be arrived at. The exit angle of the 

forward diffracted beam B+LS/kO, thus differs from the incidence angle (B+LR/kO) by the Bragg 

prism deflection –RS/kO, written as 

 O
B S B S

O
cr

(n 1 ) cot( ) cot(A )
k


           .                                                                    (52) 

Here O symbolises the difference between magnitudes of TO and T'O and is obtained as  

1/2
2B S H

O C
B S O

sin( ) Fb N y(1 1 y )
sin( ) F

    
            

.                                                                                    (53) 

Here, symbols have their usual meanings viz., y denotes scaled deviation of incidence angle  from 

centre of Bragg diffraction C (cf. Eq.(27)), FO and FH stand for structure factor magnitude for O 

and H reflection respectively. O is positive and negative respectively for  (y<0) and  (y>0) 

branches of the dispersion surface. The difference between cr and am thus originates from O 

which vanishes for an amorphous material. O and hence the deflection cr vary sharply with 

incidence angle, the reflection {hkl} and asymmetry of Bragg configuration S. cr reaches extrema 

at either end of the total reflection domain, viz., y=±1 and can be enhanced for the opposite 

asymmetry (viz., S ~ –B ) and by employing full {hkl} reflections (FO ≈ FH).    

Eqs.(53) in (52), lead to the relation,  

  2B SH
cr am

O B S

sin( )F1 y 1 1 y .
F sin( )

              
                                                                                    (54) 
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Fig.15 Calculated cr and IO for a symmetric Bragg prism. 

 

Fig.16 Calculated cr and IO for an asymmetric Bragg prism.  
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The high sensitivity of neutron deflection cr of Bragg prism stems from dynamical diffraction 

effects. Figs.15 and 16 depict the deflection and forward diffracted intensity fraction by a right-

angled Bragg prisms for symmetric and asymmetric {220} configurations. At incidence angles well 

off a Bragg reflection, cr equals the amorphous prism deflection am. As the Bragg reflection is 

approached from the low θ-side, cr increases monotonically, reaching a maximum at the onset of 

total reflectivity. On approaching the Bragg reflection from the higher angle side, the deflection 

decreases symmetrically by the same amount, attaining a corresponding minimum at the other 

extreme of total reflectivity. Si {220}  being  a  full  reflection  (FH ≈ FO),  the  maximum  in  cr  at  

y = –1 nearly equals zero in the symmetric (cf. Eq.(54)) configuration (Fig.15). In the asymmetric 

case (Fig.16), the deflection even changes sign on the low θ-side, eventually exceeding –7am and 

displaying a much greater sensitivity to θ-variation. For partial reflection like Si {111}, cr 

deviation from am is reduced to 70.7% of the full reflection value as FH /FO ≈.707. Contrary to the 

typical |dam/dθ| values of arcsec/deg attainable with an amorphous prism, a Bragg prism affords 

several orders of magnitude greater sensitivities |dcr/dθ| ~ arcsec/arcsec. 

 

3.3.2 Back Face contribution to neutron forward diffraction 

If the crystal is thin in the direction normal to the incidence surface, at moderate values of the angle 

Δ, the neutron flow along JT reaches the back face (assumed parallel to the incidence surface). At 

the back face, two beams viz., partially transmitted and partially reflected, are generated with 

amplitudes and wave vectors determined by the respective boundary conditions. Boundary 

conditions at the back face excite the other tie point B. These partially reflected neutrons travel 

along current density vector JB at an angle Δb, say, to the back face, (Figs.12-13) given by 
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D
b

D B S B S

(1 I )tan .
I cot( ) cot( )


 

      
                                                                                       (55)  

These neutrons reach the side face and an intensity fraction  

2
b D b B S
O

b B S

I sin sin(A )
I ( ) ,

sin(A )sin( )
  

 
                                                                                                                                 (56) 

emerges deflected from the incident direction by the angle 

 b 2B SH
cr am

O B S

sin( )F1 y 1 1 y
F sin( )

            
.                                                                          (57) 

The back face intensity fraction is tiny compared to the side face intensity fraction (Fig.17). By a      

judicious choice of the Bragg reflection and its asymmetry, b
cr / dd   can be made equal to –1 at a 

reasonable y2-value. The prism will then act as a collimator for the neutron beam, albeit with a 

concomitant large loss in the beam intensity. 

 

    

 Fig.17 Calculated b
cr  and b

crI  for an asymmetric Bragg prism. 
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3.4 Experimental   

The experiment was carried out with the Bonse-Hart camera set up at the V12b double crystal 

spectrometer (Fig.18) at the BERII 10 MW reactor of Helmholtz Zentrum Berlin. Within the 

channel-cut monochromator as well as analyser silicon crystals, each performing 7 {111} Ewald 

reflections, a Si wedge each was inserted after 3 reflections to deflect neutrons of 5.24 Å by about 

4 arcsec. An analyser rocking curve width ~ 2 arcsec was thus attained. The large wavelengths 

allowed only the {111} silicon Bragg prisms since for all other planar spacings of allowed Si 

reflections, 2d<. Si {111} reflection eliminated higher order contamination in the diffracted beam. 

Si crystal is ideal for these studies due to its low absorption and low incoherent scattering cross 

section for neutrons. Moreover, large single crystals of Si are readily available at a reasonable 

price. 

Two symmetric {111} prisms of apex angles A equal to 56.7° and 90° and two asymmetric {111} 

prisms with asymmetry angles S of 35° and 41° and apex angles of 94° and 98° respectively were 

investigated. The Bragg Si prisms were prepared from dislocation free Si ingots. The ingot was 

mounted on a goniometer and its {111} planes were located and marked using Bragg reflection of 

neutrons at the Dhruva reactor in Mumbai, India. Precision cuts were made by employing a wobble 

free diamond cutting wheel aligned at the desired asymmetry angles S with {111} planes. The side 

face was then cut at the required apex angle A. Cuts were performed at a carefully optimised 

rotation speed to avoid scratches on the front as well as side faces of the Bragg prisms. The prisms 

were then slowly etched in a solution of hydrofluoric acid (HF) and nitric acid (HNO3) in 1:20 ratio 

for 20 minutes to remove all strain and damage introduced during the cutting process.  

A Bragg prism was placed between the monochromator and analyser. Only a part of the neutron 

beam illuminated the Bragg prism, the  remaining beam reaching the  analyser directly to serve as a 
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Fig.18 Experimental layout to measure neutron deflection and transmission by a Bragg prism. The 

set up employs 7X7 reflections each in the monochromator and analyser channel-cut crystals of a 

5.24 Å neutron beam with a silicon prism suspended in each crystal between 3rd and 4th reflections 

and sample (Bragg prism) was placed between the monochromator and analyser. 
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Fig.19 Bragg reflection intensity fraction as a function of prism rotation for the symmetric Bragg 

{111} prism reflection with apex angles A of (a) 56.7o and (b) 90o, respectively. 
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Fig.20 Bragg reflection intensity fraction as a function of prism rotation for the asymmetric Bragg 

{111} prism reflection with asymmetry angles S and apex angles A being (a) 35° and 94° (b) 41° 

and 98°, respectively.  
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reference for the prism deflection measurement (Fig.18). Using an additional detector to record 

neutrons Bragg reflected from the prism, the few arcsec wide Bragg reflection of the prism was 

located and optimised by adjusting the prism tilt. The analyser rocking curves were recorded for 

several angles of incidence at the prism covering a span of about 40 arcsec centred at the total 

reflectivity domain. The direct and deflected neutron peaks were thus simultaneously recorded in 

each analyser scan. The Bragg reflection intensity of the prism was continuously monitored to 

confirm the stability of the prism orientation. The observed full width at half maximum (FWHM) 

of 6 arcsec for the Bragg reflection of the symmetric prism with apex angle A of 57° confirmed the 

absence of strains and defects in the prism (Fig.19a). However, the other symmetric prism (A = 

90°) yielded a FWHM of 7.68 arcsec instead of 6 arcsec predicted by theory, indicating residual 

strain and a slight asymmetry (S ≠ 0°) of the prism (Fig.19b). For the other two  asymmetric Si 

{111} Bragg prisms with S of 35° and 41° and apex angles 94° and 98° respectively, the measured 

rocking curve FWHMS were 10.2 arcsec (Fig.20a) and 11.6 arcsec (Fig.20b) respectively in 

agreement with those expected for the corresponding asymmetry angles S of these prisms.  The 

term ‘Convl Theory’ in Figs., signifies theoretical curves convoluted with 2 arcsec wide 

rectangular angular profile of the monochromated beam. 

 

3.5 Results and Discussion 

The analyser rocking curve recorded at two typical incidence angles for a Bragg prism is displayed 

in Fig.21. Least-squares Voigt function fits (smooth curves) were made to the direct and deflected 

neutron peaks in the rocking curve. At each θ, the neutron deflection cr was determined from the 

angular shift between the fitted peaks for the direct and deflected beams. The area under the 

deflected peak corrected for the background was computed to infer the transmitted intensity 
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fraction IO through the Bragg prism. The area parameter of the fitted Voigt peak for deflected 

neutrons also yielded the same IO. Figs.22, 23, 24 and 25 depict the experimental (points) and 

theoretical (curves) deflections cr and transmitted neutron fractions IO by the four Bragg prisms 

mentioned above. The thin curves represent Eqs.(51) and (54), incorporating the appropriate Debye 

Waller factor for {111} Si reflections at 293oK. To explain the significant departures of the 

observed cr and IO from the thin curves for incidence near and within the total Bragg reflectivity 

domain, we accounted for the finite instrument resolution. We convoluted the 2 arcsec wide 

incident neutron angular profile, deflected and attenuated by the Bragg prism vide Eqs.(51) and 

(54), with the 2 arcsec wide acceptance curve of the analyser to simulate the deflected neutron 

peak. Each thick curve in Figs.22, 23, 24 and 25 represents cr or IO obtained for such simulated 

peaks. Near the total reflectivity region, IO (cf. Eq.(51)) drops sharply on the total reflectivity  side 

of the incident angular profile (bottom curve, Fig.21). The deflected peak thus gets skewed on the 

other side. The resultant low weightages for IO and cr on the total reflectivity side of the 

asymmetric deflected peak rounds off the sharp (thin) IO curve and turns the cr curve back towards 

am. The neutron deflection and transmitted intensity fraction data agree well with these convoluted 

(thick) curves. The observed maximum deflection sensitivities |dcr /dθ| viz., the rate of cr variation 

with incidence angle θ, corresponding transmissions and percentage variations in maximum cr 

from their am values respectively, for various Bragg prisms are presented in table 2. The quantities 

|dcr /dθ| and |cr –am|/|am| vary sharply near the total reflectivity region.  The observed cr deviate 

from am by >29% for symmetric prism (A = 90°), but it exhibited |dcr /dθ| of only 0.22 

arcsec/arcsec corresponding to a small transmission of 0.47, further, the observed cr and IO curves 

showed deviations from the theoretical curves for this Bragg prism. 
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Fig.21 Typical Voigt function fits (curves) to the direct and deflected beam scans (points) for an 

asymmetric Bragg prism: θS=41° and A=98° at off Bragg condition (θ= -12.85) (top) and near 

Bragg condition (θ= -4.85) (bottom).  
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Fig.22 Experimental (points) and theoretical (curves) values of cr and IO for a symmetric Bragg 

prism with A=56.7°.  

 

Fig.23 Experimental (points) and theoretical (curves) values of cr and IO for a symmetric Bragg 

prism with A=90°.  
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Fig.24 Experimental (points) and theoretical (curves) values of cr and IO for an asymmetric Bragg 

prism: θS=35° and A=94°. 

 

Fig.25 Experimental (points) and theoretical (curves) values of cr and IO for an asymmetric Bragg 

prism: θS=41° and A=98°. 
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Table 2: Observed deflection sensitivities, corresponding transmissions and percentage variations 

in the deflections for various Bragg prisms from their respective amorphous prisms. 

Bragg Prisms 

 

Sensitivity |dcr /dθ| 

(arcsec/arcsec) 

Transmission IO 100·(|cr –am|/ |am|)max. 

(%) 

Sym. (θS=0°) and 
A=56.7° 

0.16 0.78 27 

Sym. (θS=0°) and 
A=90° 

0.22 0.47 29.5 

Asym. (θS=35°) and 
A=94° 

0.43 0.96 27 

Asym. (θS=41°) and 
A=98° 

0.23 0.88 19 

 

The best results however, were observed with the asymmetric prism of θS=35° and A=94°, 

exhibiting cr deviation from am by upto 27% with sensitivities |dcr /dθ| upto 0.43 arcsec/arcsec 

corresponding to a transmission of 0.96. These observed sensitivities |dcr /dθ| are several orders of 

magnitude greater than those obtainable with amorphous prisms [139-145]. 

Encouraged by this experimental verification of predictions of the dynamical diffraction theory, we 

designed, fabricated and successfully operated a super-collimator monochromator delivering a 

Bragg prism diffracted (IH) neutron beam of sub-arcsec angular width described in Chapter 4. 
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CHAPTER 4 

First sub-arcsec collimation of a monochromatic neutron beam  

 

4.0 Introduction 

I present in this chapter, a novel device producing a tail-free plane-wave-like neutron beam of sub-

arcsec angular width. Neutrons incident on a single crystal prism in an asymmetric Bragg 

configuration undergo, in addition to the Bragg reflection, diffraction at the exit face [138] of the 

prism. Two small diffraction peaks IH, one on either side of the Bragg reflection, appear outside the  

 

Fig.26 Asymmetric Bragg prism diffraction (schematic). Outside the total reflectivity domain, 

unreflected neutrons traverse the prism at an angle Δ to the incidence surface and exit the side face 

in diffracted (IH) and forward diffracted (IO) beams. At large enough angles Δ, neutrons reach the 

part of the side face cut along the diffracted beam direction and exit wholly into the IO beam, thus 

truncating IH on the larger-|y| side as well to yield a tail-free, sharp angular profile. 
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total reflectivity domain. These arise since unreflected neutrons propagate into the crystal at an 

angle Δ to the incidence surface due to dynamical diffraction and emerge from the side face, if the 

apex angle A between the front and side faces lies between θB+θS and π−θB+θS (cf. Fig.12, Chapter 

3). The prism diffracted beam, albeit weaker than the Bragg reflection, can be made much 

narrower. Its intensity can furthermore be made to drop to zero within a fraction of an arcsec on 

either side of the peak centre by judiciously positioning the incident beam and tailoring the exit 

face orientation at large depths. We have named this super collimator-monochromator device a 

‘Bragg prism collimator’ (Fig.26).  

  

4.1 Bragg prism diffraction 

We revisit neutron beam incidence on a single crystal prism (Fig.12) just outside the total 

reflectivity domain such that the incident vacuum wave vector is RO in reciprocal space 

corresponding to the angle of incidence, B+LR/kO (Fig.27). Continuity of the tangential 

components of the wave vectors at the incidence interface and physical constraint on the energy 

flow direction into the thick single crystal allow the excitation of only a single tie point T on the 

dispersion surface (Chapter 3). At the exit surface, which subtends an angle A with the front face, 

following the same boundary condition, a line is drawn from T along the exit surface normal ne to 

intersect vacuum spheres of incidence and diffraction at point S and E respectively. The emergent 

wave vectors are therefore SO and EH in forward diffracted and Bragg diffracted directions, 

respectively.  

The Bragg diffracted intensity fraction IH of the Bragg prism as a function of the incidence angle 

can be written as  

H
H

O

2
I ( ) C( ) 

  
.                                                                                                                       (58) 
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Fig.27 Bragg diffraction of a neutron beam in reciprocal space. At each incidence angle, continuity 

of tangential components of wave vectors across the incidence and exit faces of the prism yields 

unique tie points as well as internal and emergent wave vectors. 
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Here the term C() accounts for the phase space volume conservation of the neutron beam, and is 

calculated in the same manner as in Eq.(51) i.e., by computing the H-beam cross section, 

B S

B S

sin sin(A )C( )
sin( )sin(A )


  


   

 .                                                                                                      (59) 

Employing Eq.(48), Bragg diffraction fraction can be written as   

B SH

O B S

2 sin( )
sin( )


  

     
.                                                                                                                 (60) 

Thus, Eq.(58) becomes,  

  B S B S
H

B S B S

sin sin(A )sin( )I
sin( )sin(A )sin( )


     


       

.                                                                            (61) 

Bragg diffracted H-beam cross section C(), vanishes at A=θB+θS (cf. Eq.(61)) making forward 

diffracted beam IO() stronger at the expense of H-beam. To obtain strong IH() beam from side 

face, the apex angle A must lie close to π−θB+θS. 

The exit angle B–LE/kO, of the Bragg Diffracted neutron beam IH() from side face is derived to 

be  

 2

B SH
H

B B SB S

sinA 1 1 ysin(A )y( )
sin(2 ) 2sin( )sin(A ) b

                    
 

,                                     (62) 

up to an additive constant.  

We rewrite Eq. (62) as 

 2

B SH
H

O B B SB S

sinA 1 1 y2 n 1 y sin(A )F( )
F sin(2 ) 2sin( )sin(A ) b

                    
 

.                           (63) 

As can be seen from Eq.(63), θH depends on the Bragg reflection through FH, S and the apex angle 

A. So a judicious choice of these parameters can make the derivative θH/θ approach 0. The single 
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crystal then acts as a super collimator for the neutron beam. Similarly an analyser, in the opposite 

asymmetric crystal configuration (|b|→|b|–1), can be made to accept an extremely narrow angular 

range. An odd Bragg reflection such as {111}, where FH/FO ≈ 0.707, reduces the θ as well as θH 

variations to about 70.7 of those for a full reflection (FH ≈ FO) like {220}, effecting better 

neutron collimation. The exit angle variation rate with incidence angle may be expressed as  

B SH

B S

sin( )sin(A )
sin sin(A )

 
   

   
.                                                                                                    (64) 

The angular compression factor of the collimator is then the negative reciprocal of this derivative. 

For neutron incidence well off the Bragg incidence, viz, |y|>>1, Δ→θB–θS andθH/θ approaches 

B S B Ssin(A ) / sin(A )      affording a large compression factor. In the other extreme close 

to the total reflectivity regime however, |y|→1, Δ→0 and θH varies sharply, the θH slope tending to 

–∞ at |y|=1 thus yielding zero compression. An overall compression factor of about 10 in θH can 

thus be attained over the full IH peak. In the next section, we describe the Bragg prism design in 

detail.    

 

4.2 Bragg prism design 

Consider 5.26 Å neutron beam incidence on a single crystal Si {111} prism with θS=50.1o and 

A=172o. Fig.28 depicts Bragg reflection and prism diffraction intensity fraction variation curves 

with incidence angle for this Bragg prism. The Bragg reflection peak exhibits an FWHM of 17.3 

arcsec. Outside the total reflectivity window, two Bragg prism diffraction IH(θ) peaks, of 9.9 arcsec 

FWHM each, appear with long tails.  

For glancing incidence, the diffracted beam cross section gets enhanced over that of the incident 

beam. Conservation of the phase  space  volume  occupied  by  the beam dictates that the exit angle  
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Fig.28 Theoretical curves for Si {111} Bragg reflection and prism diffraction of 5.26 Å neutrons 

with A=172o and θS=50.1o as a function of the incidence angle.  

 
scale gets compressed by the same factor relative to θ (cf. Eq.(64)). The dependence of the 

diffracted intensity on the exit angle thus becomes (cf. intensity curves in Figs.29-31)  

 
2

B S B S
H H

B S B S

sin sin(A ) sin( )I
sin( )sin(A ) sin( )

      
         

.                                                               (65) 

On either side of the total reflectivity domain, θH decreases on increasing y for all apex angles (cf. 

Eq.(63)), but for apex angles greater than a crossover value Ax, θH(y =1) becomes greater than 

θH(y=−1) where  

2
1 B

x S
S

2sinA    tan tan
sin2

  
      

.                                                                                               (66)  
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The two IH(θ) peaks are separated by a forbidden gap corresponding to the full reflectivity domain 

(−1<y<1) and slowly tail to zero on opposite sides (cf. Fig.28). Figs.29-31 depict the important and 

relevant quantities for the design of Bragg prism viz., variations of neutron exit angles with 

incidence angle (left) and prism diffraction intensity IH(θH) (right) for three different apex angles, 

each with  θS=50.1o and  5.26 Å neutrons  incidence. For A equal  to  160o (<Ax=166.85o),  the  two  

 

 

Fig.29 Exit angle as a function of incidence angle and Diffracted intensity for the Bragg prism 

monochromator with A=160o and θS=50.1o. For A<Ax, neutron exit angles corresponding to 

incidence angles on the two sides of the Bragg reflection do not overlap yielding two separated 

peaks.               
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IH(θH)  peaks  of  0.18  height  and  3.13 arcsec FWHM each separated by a 1.29 arcsec forbidden 

gap, tail off back to back (Fig.29). The compression factor limit is 3.52 for this Bragg prism. At A 

=Ax, exit angles of neutrons corresponding to incidence angles on the two sides of the Bragg 

reflection  become  exactly  equal  (i.e., θH(y=1) =θH(y= –1))  and  forbidden  gap  just  gets   closed  

 

 

Fig.30 Exit angle as a function of incidence angle and Diffracted intensity for Bragg prism 

monochromator (Ax =166.85o and θS=50.1o). For A=Ax, exit angles of neutrons corresponding to 

incidence angles on the two sides of the Bragg reflection become exactly equal and peaks begin to 

overlap for A even slightly greater (e.g., A =167.4) than Ax (inset).  



  

67 

 

 

Fig.31 Exit angle as a function of incidence angle and Diffracted intensity for the optimised Bragg 

prism monochromator (A=172o and θS=50.1o). At this A, exit angles of neutrons corresponding to 

incidence on the two sides of the Bragg reflection significantly overlap to yield a single peak with 

long tails. 

 

(Fig.30), reaching a compression factor limit of 7.95 and for A >Ax, IH(θH) peaks start overlapping 

each other. At A equal to 167.4o (slightly greater than Ax), the two peaks marginally cross each 

other as shown in inset of Fig.30. With A=172o however, there is no forbidden gap since 

θH(y=1)>θH(y= –1). The two peaks of 9.02 height and 0.67 arcsec FWHM each tail towards each 
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other with a compression factor limit of 47.62 (Fig.31) adding up to a single large peak. Thus by 

increasing A, we achieve stronger and narrower diffraction peaks due to better compression and 

hence superior collimation. 

By a judicious optimisation of the Bragg reflection, the asymmetry of the Bragg configuration and 

apex angle A, the angular profile of the diffracted beam emerging from the side face can be 

narrowed down to the sub-arcsec domain. For 5.26 Å neutrons and Si {111} reflection, the optimal 

monochromator with A=172o and θS=50.1o yields vide Eq.(65) a pair of diffraction peaks each of 

9.9 arcsec FWHM in incidence angle which get compressed to 0.67 arcsec FWHM in exit angle 

(Fig.32). Thus the variation in the compression factor  from  0 at |y|=1 to 47.62  at  |y|>>1 results in  

 

 

Fig.32 Exit angular profiles of prism diffraction (theory) for parameters as in Fig.28. Long tails of 

the large curves obtainable with the Bragg prism get clipped (small curves) on cutting the prism 

side face along the diffracted beam direction beyond a depth of 5 mm.  
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Fig.33 Theoretical flat-topped angular profile of the optimally tailored Bragg prism 

monochromator (A=172o and θS=50.1o). The angular width at zero intensity of the net peak is 

(θH|y=1 – θH|y= −1)=0.86 arcsec.  

 

Fig.34 Numerically computed acceptance curve of the optimal Bragg prism analyser (A=16o and 

θS=−51o) for 5.26 Å neutrons (theory) and its convolution with the monochromator angular profile 

of Fig.33. 
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an overall compression factor of 14.78 for each peak. Each of these IH(θH) peaks drops to zero 

intensity at |y|=1 incidence due to the onset of total reflectivity regime and tails towards the other 

peak. The tails can be clipped by cutting the side face of the prism parallel to the IH beam direction, 

beyond a preset depth (cf. Fig.26). Neutrons incident at large |y| and propagating at large enough 

angles Δ reach this specially cut part of the side face, with an effective apex angle A'=θB+θS, which 

forbids them from exiting into the IH beam. This side-face cut approach proposed in [138], has been 

employed extensively over the past two decades by experimenters in Vienna, Berlin, Mumbai and 

ILL (cf., [111-112]) to attain Bonse-Hart angular profiles free of IH beam contamination. Each 

IH(θH) peak thus drops to zero intensity for incidence beyond ±yC , say, as well. The critical 

incidence angles -yC, yC and the corresponding exit angles θH1 and θH2 beyond which the IH peak 

becomes zero are geometrically determined by the distance of closest neutron incidence from the 

apex. By locating the incident beam optimally between 9 and 32 mm from the prism apex and 

applying the special cut to the side face beyond a depth of 5 mm from the incidence face, we attain 

θH1<θH|y=1 and θH2>θH|y= –1. The net peak made up of a smaller peak pair of 0.26 arcsec FWHM 

each (Fig.32) dropping to zero intensity on either side is hence contained completely within the full 

width at bottom equal to (θH|y=1 – θH|y=   –1). The configuration has been optimised to make these two 

peaks add to a tail-free and nearly flat-topped single peak of 0.53 arcsec FWHM (Fig.33) dropping 

to zero intensity at angular deviations from the centre greater than 0.43 arcsec on either side.  

Similarly, a Bragg prism analyser configuration of opposite asymmetry with the optimum angles 

A=16o and θS=−51o, the θB+θS cut made at depths beyond 8.3 mm and beam incidence between 34 

and 67 mm from the prism apex, is expected to accept two 0.22 arcsec wide neutron peaks 

separated by 2.13 arcsec (Fig.34). The convolution of the monochromator peak with this analyser 

acceptance curve, constituting a pair of peaks with an FWHM of 0.57 arcsec each, separated by 
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2.35 arcsec, is also displayed in Fig.34. Fig.35 depicts our SUSANS experimental setup 

incorporating this optimised Bragg prism monochromator-analyser pair [146-149].  

 

 

Fig.35 SUSANS experimental arrangement of the optimised monochromator-analyser pair of Si 

{111} Bragg prisms. A translation of the monochromator chooses between its Bragg reflection and 

prism diffraction to illuminate the analyser. Cd sheet downstream of the analyser can be translated 

to allow or forbid the analyser Bragg reflection into the detector (not shown). 
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4.3 Experimental 

4.3.1 Bragg prism preparation 

Several Bragg prism monochromators with θS close to 50o and one analyser with θS=−51o were 

fabricated with the apex angle A of 172o (Fig.36) at Centre for Design and Manufacture (CDM), 

Bhabha Atomic Research Centre (BARC), Mumbai, India. The {111} planar direction in a <100> 

dislocation free, single crystal Si ingot was located using {220} and {111} reflections of 1.2 Å 

neutrons at the Triple Axis Spectrometer (TAS) in the Dhruva reactor, Mumbai-India and marked 

on the ingot with a diamond point. Precision cuts were made at the required θS to {111} on a 

Blohm precision grinding machine with a wobble-free diamond wheel of 350 mm diameter and 1.5 

mm thickness to obtain several 9 mm thick monochromator slices and one 13.1 mm thick analyser 

slice. A cut at A=172o was made on the incidence face of each monochromator at 33 mm from the 

incidence edge. The side face was then cut along θB+θS to the incidence face beyond a depth of 5 

mm from the incidence face. Similar cuts were made to the analyser slice at the desired angles and 

depth. The Bragg prisms were then polished and ground to within 1 μm uniformity using another 

smaller 35 mm thick diamond wheel. The polished prisms were cleaned ultrasonically with water, 

methanol, acetone and trichloroethylene. They were subsequently subjected to a slow etch in a 

mixture of hydrofluoric acid (HF) and nitric acid (HNO3) in ratio of 1:20 for 20 minutes to remove 

about 20 μm of each prism surface and purge all residual surface strain and damage introduced 

during the cutting and polishing stages. Final sub-μm polishing and slow etching operations were 

performed at the Chemical Laboratory of Helmholtz Zentrum Berlin (HZB) in Germany.  
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Fig.36 Photographs of Bragg prisms. Top: Monochromator-analyser setup. Bottom: Three 

monochromators and one analyser (3rd from the left). 
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4.3.2 Experiment  

The experiment was carried out at the V12b Double Crystal Diffractometer setup of BER II 10 

MW Reactor in HZB, Germany. The analyser rotation could be adjusted in two stages; first in 1 

arcsec steps with a geared step motor and then with a piezocrystal driven stage, with the smallest 

step size of 0.156 arcsec. The analyser tilt could be set to within 0.9 arcsec. The monochromator 

(Fig.35), covered strategically with Cd sheets, could be translated along the incident beam direction 

to direct either its Bragg reflection or prism diffraction towards the analyser. A Cd sheet could be 

translated in front of the He3 detector to cut off the Bragg reflection from the analyser. 

 

4.3.3 1st ever sub-arcsec collimation 

An asymmetric monochromator (θS=53.5o) was placed in the 5.26 Å neutron beam from the PG 

pre-monochromator and its rotation and tilt angles adjusted to maximise its Bragg reflection. The 

analyser was illuminated with this Bragg reflection and aligned using its prism diffraction. The 

analyser tilt had to be set to within 9 arcsec. The analyser rocking curve comprised a well resolved 

pair of ~1.7 arcsec wide peaks (circles) (Fig.37). The theoretical convolution (smooth curve) of 

monochromator Bragg reflection and analyser acceptance is also plotted for comparison. The 

experimental curve reproduces the theoretical peak widths [150-151] fairly well vindicating the 

analyser Bragg prism performance. The flat tops of the theoretical peaks however have got rounded 

off in the observed spectrum. The relative intensities of the two peaks do vary statistically from 

spectrum to spectrum, but more often than not, the higher-angle peak is weaker. The reason for this 

left-right asymmetry in Figs.37, 40-42 is not clear.  

A Bragg prism monochromator with θS=50.1o was next tested. Its direct Bragg reflection, being 

much  stronger  and  wider  than  prism diffraction, was  first  used,  facilitating  a  quick  and  easy  
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Fig.37 Bragg reflection from the θS=53.5o monochromator observed with prism diffraction (cf. 

inset) of the optimal analyser. 

 

alignment of the analyser whose Bragg reflection as well as prism diffraction were monitored 

(Fig.38). The analyser rocking curve yielded the expected ~ 3.1 arcsec wide peak (circles) with a 

peak intensity of about 468 neutrons/s. The monochromator was then translated to illuminate the 

analyser with its prism diffraction alone. The corresponding analyser rocking curve of ~ 2.5 arcsec 

FWHM (cf. Fig.39) agrees well with theory (smooth blue curve), displaying a peak intensity of 

68.5 neutrons/s, After optimising the analyser alignment, the Cd sheet before the detector was 

translated to stop Bragg reflected neutrons from the analyser. With these Bragg prism diffractions, 

the analyser tilt adjustment became even more critical and had to be made in 0.9 arcsec steps, since 

prism diffraction peaks are narrower and sharper than the Bragg reflections. The rocking curve 

(Fig.40)  consisting of a pair of 0.62 arcsec wide peaks  separated by 2.2 arcsec  (squares), is in fair  



  

76 

 

 

Fig.38 Bragg reflection rocking curve of the monochromator (A=172o and θS=50.1o) observed with 

Bragg reflection and prism diffraction (cf. inset) of the optimal analyser. 

 

Fig.39 Bragg Prism diffraction rocking curve of monochromator (A=172o and θS=50.1o) observed 

with Bragg reflection and prism diffraction (cf. inset) of the optimal analyser. 
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Fig.40 1st sub-arcsec neutron collimation: observed (data points) and calculated (curve) rocking 

curves (cf. inset) for prism diffractions of the monochromator (A=172o and θS=50.1o) and the 

optimal analyser. 

 

agreement with the theoretical prediction (smooth curve), with a peak of ~ 10.1 neutrons/s. This is 

the best instrumental resolution recorded to date. The monochromator prism diffraction peaks are 

about 4 times as narrow as the monochromator Bragg reflection rocking curve, both being recorded 

by the analyser prism diffraction, albeit having 6.5 times as weak peak intensity. In comparison 

with the Bragg-Bragg curve on the other hand, they are 5 times as narrow, but with about 46.3 

times as weak peak intensity. The deconvolution of the observed rocking curve from the analyser 

acceptance curve yields an FWHM ~ 0.58 arcsec for the beam delivered by the monochromator. 

This constitutes the tightest neutron collimation attained to date [152]. 
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4.4 Applications of novel SUSANS setup 

4.4.1 Super Ultra small angle neutron scattering (SUSANS) of a protein sample  

With this highly collimated, nearly plane-wave neutron beam, we recorded the first SUSANS 

spectrum in the wave vector transfer Q ~ 10-6 Å-1 regime with a hydroxyapatite casein protein 

sample placed between the monochromator and analyser. The virgin rocking curve that consists of 

a pair of 0.62 arcsec wide peaks separated by 2.2 arcsec constitutes the instrumental resolution. 

This is basically the convolution of the monochromator peak with the analyser acceptance curve 

riding on an unavoidable background. The bottom axis in Fig.41 labelled as Q (Å-1) is derived from 

the analyser Bragg prism rotation  and neutron wave number kO through relation Q = 2kOsin(/2).  

The  corresponding  instrumental  resolution  of  about  3.4x10-6 Å-1  for  this  novel  instrument  is  

 

 

Fig.41 SUSANS spectra without and with a sample holder, viz. a pair of overhead projection 

transparencies. 
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superior by a factor of about 6 to the Q-resolution of 2x10-5Å-1 possible at the next best USANS 

facility on S18 beamport of ILL (France).  The Q-resolution is inversely proportional to the spatial 

extent of agglomerates that can be probed by the instrument. The hydroxyapatite casein protein 

sample was placed between a pair of transparencies used for overhead projection. To ascertain the 

small angle scattering contribution from the transparencies, a SUSANS spectrum was recorded 

(Fig.41) with the transparencies as the sample. Within the experimental error, the transparencies 

left the instrument rocking curve essentially unaltered over the Q-domain of interest. This enabled 

us to ignore the scattering from transparencies during the final data analysis. Analyser rocking 

curves were recorded without and with the protein sample placed in the holder (Fig.42). The 

observed broadening of the SUSANS spectrum by the protein sample in the 10-6 - 10-5 Å-1 region 

yielded information on the size distribution of agglomerates in the sample (Fig.43). 

 

SUSANS data analysis 

The intensity of neutrons scattered through a small wave vector transfer of magnitude Q from 

spherical agglomerates in a homogeneous sample can be expressed as 

 22 2
s a oI(Q) C[ ] N [V(R)] F(QR) D(R)dR ,                                                                            (67) 

where C denotes a constant, No signifies the number of scattering objects in the sample, V(R)  

stands for the volume of the scattering object of radius R and ρs and ρa symbolise scattering 

densities of the scattering sample and the surrounding ambient matrix respectively. The form factor 

F(QR) is the Fourier transform of the spatial distribution of the scattering sphere, viz.  

3 3

3{sin(QR) QR cos(QR)}F(QR) .
Q R


                                                                                                  (68) 

We assumed a log-normal distribution function D(R) of spherical agglomerates with radii R in the  
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Fig.42 First Q ~ 10-6 Å-1 SUSANS spectra without and with a Hydroxyapatite casein sample. 

Least-squares fit to the sample spectrum (smooth curve) implies the instrument capability of 

characterising ~ 150 μm-size agglomerates in a sample. 

 

Fig.43 Sphere size distribution inferred from Fig.42.  
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sample, i.e.,  

2

m

R{ln( ) / 2}
R1D(R) e .

R 2

 


 

                                                                                                        (69) 

Here, Rm and σ denote the median radius and dimensionless standard deviation of the distribution, 

respectively. Substituting Eqs. (68) and (69) in Eq. (67), we express the scattered intensity as 

26

0

I(Q) R F(QR) D(R)dR


  .                                                                                                           (70) 

The rocking curve recorded with the sample is then least-square fitted to the convolution of I(Q) 

with the instrument resolution curve, viz. the rocking curve observed  without the sample, i.e. 

S nSI (Q) I (Q) I(Q).                                                                                                                     (71) 

The log-normal size distribution of spherical agglomerates in the sample inferred [153] from the 

least-squares fit is characterised by Rm of 53 µm and σ = 0.38 respectively. This distribution peaks 

at 46 μm, dropping to Half Maximum at 27 and 73 μm respectively. The greater half-maximum of 

this distribution corresponds to the instrument capability of characterising agglomerates up to 150 

μm in size.  

 

4.4.2 Coherence properties of the beam 

Coherence properties of the amplitude of a beam are described by the coherence function [1,51]  

(1) i .( ) g( )e d   kk k ,                                                                                                                   (72) 

viz. the Fourier transform of the wave vector (momentum) distribution g(k) of the beam. For 

Gaussian wave vector distributions having widths ki in each of the three orthogonal directions 

(i=x,y,z), a Gaussian coherence function of the form 



  

82 

 

 
2

i i-(δk .Δ ) /2(1)

i=x,y,z

Γ (Δ) = e ,                                                                                                               (73) 

is obtained. In this case, the wave vector distribution and coherence length i are related by 

Heisenberg uncertainty relation [95], 

i iδk Δ = 1/ 2 .                                                                                                                                   (74) 

 

Diffraction from a macroscopic grating 

Diffraction of neutrons of wavelength  for near normal incidence at a grating of period d>> 

gives rise to a pattern with an angular separation ~ /d between successive intensity maxima. With 

a grating period of even a few microns, scattering angles become as small as a few arcsec for 

thermal and cold neutrons. A collimation of the incident neutron beam to within ~ arcsec is 

therefore necessary to record a well resolved diffraction pattern. Our super collimated beam 

facilitated measurement of the diffraction pattern from a large-period grating and determination 

therefrom of the transverse coherence length of the beam.  

A grating of ~ 200 μm period, made by winding a steel wire of 100 μm diameter tightly on a 50x50 

mm2 aluminium frame (inset of Fig.44), was mounted between the monochromator and analyser 

for near normal neutron incidence. SUSANS (Super Ultra-Small Angle Neutron Scattering) spectra 

recorded with and without the grating in the mount are depicted in Fig.47.  The two peaks in the 

grating pattern are considerably broadened due to multiple scattering and refraction in the 

cylindrical wires, and modulated by clearly resolved diffraction oscillations corresponding to the 

grating period [154]. The average peak broadening on transmission through the steel wires in the 

grating was least-square fitted to a Gaussian angular profile of standard deviation equal to about 

0.41  arcsec,  by  deconvoluting  each  peak  from  that  in  the  no-grating  SUSANS  pattern.  At a  
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Fig.44 1st neutron diffraction pattern of a macroscopic grating (inset) of period d ~ 200 μm. The 

least-squares fit to the pattern (smooth curve) corresponds to a transverse coherence length of 175 

μm, the highest value reported to date for Å wavelength neutrons. 

 

scattering angle , partial neutron wave amplitudes diffracted from successive elements of the 

grating with concomitant phases add coherently to form a net complex amplitude 

2(nd)
2πnd¥ - i( sinθ)22σ λ

n=-¥
.A(θ) = e e                                                                                                     (75) 

Here n is a running index for the illuminated elements of the grating and σ denotes the transverse 

coherence length for amplitudes of the incident neutron wave. The corresponding intensity is given 

by 
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2I( ) A( )   .                                                                                                                                   (76) 

The least squares fit (smooth curves in Fig.44) to the data, yields a transverse coherence length σ 

equal to 74 μm for the monochromated neutron beam. The corresponding transverse coherence 

length for intensity equals 53 μm which is greater than 1/(2σk) = 35 μm expected for a Gaussian 

angular distribution with the observed FWHM of 0.58 arcsec. The corresponding FWHM 

transverse coherence length of 175 μm far exceeds the previous best value of 80 μm [112] obtained 

for a 1.4 arcsec wide beam as well as the highest (5 μm) achieved in neutron interferometry [1]. 

The peak broadening was also analysed by considering SUSANS from steel wires. The intensity of 

neutrons scattered through a small wave vector transfer of magnitude Q in a homogeneous sample 

is governed by Eq.(67) with the form factor term |F(QR)|2 being replaced 

by
/2

2

0

F(QR, ) sin d


    where F(QR,) is given by  

1J (QR sin )sin(QL / 2 cos )F(QR, ) 2 .
QL / 2 cos QR sin


 

 
                                                                                      (77) 

Here J1(x) is the first order Bessel functions of the first kind, L is length of cylindrical wire,  the 

angle between the scattering vector Q and wire axis, Vcyl the volume of the wire and R denotes the 

radius of the wire. In our experiment, the wires are vertical and Q lies in the horizontal plane. 

Hence  equals /2 and  

12J (QR)F(QR) .
QR

                                                                                                                             (78)  

We assumed a log- normal distribution in radii and a form factor given by Eq.(78) for steel wires. 

The least-squares fit to the broadened peaks vide Eq.(67) yielded a median radius of 54 μm with a 

standard deviation of 0.1, i.e. a peak radius of 53.5 μm and Half Maximum radii of 47.5 and 60 μm 
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respectively, for the grating wires.  The least-squares fit (smooth curves in Fig.45) to the data with 

this broadening fit vide Eqs.(75-76) yielded the same transverse coherence length σ.  

 

 

Fig.45 Neutron diffraction pattern (points) from a macroscopic grating of period d ~ 200 m and 

the least-squares fit (smooth curve) to the pattern. 

 

4.4.3 Versatility of the instrument 

We also investigated the mesoscopic length scale with this novel instrument. The analyser rocking 

curve was recorded with and without a magnetic sample Fe73Al5Ga2P8C5B4Si3 placed between the 

monochromator and analyser. Since the neutron beam was unpolarised, we could infer only the 

nuclear scattering length density distribution in the sample. Fig.46 depicts the fitted scattering 

length density distribution which extends upto a few m. 



  

86 

 

 

 

Fig.46 Analyser rocking curve for an iron sample (top) and inferred scattering length density 

distribution (bottom).  
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Fig.47 Analyser rocking curve for amorphous aluminium prisms of apex angles 120o (top) and 90o  

(bottom) to observe   ~ arcsec deflections. 
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This instrument was also employed to observe arcsec neutron deflections from amorphous 

aluminium prisms of apex angles 120o and 90o. These prisms were placed between the 

monochromator and analyser. Only a part of the neutron beam illuminated the prism, the remaining 

beam reaching the analyser directly to serve as a reference for the prism deflection measurement. 

The direct and deflected neutron peaks were simultaneously recorded in each analyser scan. The 

analyser rocking curve recorded at a typical incidence angle for a Bragg prism is displayed in 

Fig.47. Least-squares Voigt function fits were made to the direct and deflected neutron peaks in the 

rocking curve. The neutron deflection was determined from the angular shift between the fitted 

peaks for the direct and deflected beams. The observed deflections for 120 deg and 90 deg prisms 

were determined to be 5.8 and 3.7 arcsec respectively [155].  

This SUSANS setup thus can effectively probe length scales ranging from a few hundred nm to 

150 μm. It is also capable of measuring ultra-small deflections ~ arcsec.  

To put the things in proper perspective, Bragg reflections from single crystals yield angular widths 

of a few arcsec for thermal neutron beams with long tails. The Bonse-Hart proposal [115] of 

attaining a sharp and nearly rectangular profile by Bragg reflecting neutrons successively from a 

channel-cut single crystal was realised in its totality by Wagh et al [111]. They achieved the 

Darwin reflection curves ~ 5.7 arcsec for 5.23 Å neutrons. Treimer et al. [112] employed 7X7 

bounces of a 5.4 Å neutron beam in the monochromator and analyser channel-cut crystals. A 

silicon prism suspended in each crystal without touching it, deflected the neutron beam between 

the third and fourth bounce by about 4 arcsec, thus misaligning the beam for the subsequent four 

bounces and yielding a 1.6 arcsec wide rocking curve. We now achieve the first ever sub-arcsec 

collimation of ~ 0.58 arcsec for a 5.26 Å neutron beam by introducing a novel Si{111}Bragg 

prism.  



  

89 

 

4.5 Tightening the neutron collimation still further 

The tight collimation of neutrons increases their transverse coherence length to greater than 100 

μm FWHM and hence forms a nearly plane wave of monochromatic neutrons. The neutron 

collimation may be tightened further by reducing the neutron wavelength. For instance, the same 

Bragg prism monochromator-analyser pair optimised for 5.26 Å neutrons can super collimate 1.75 

Å neutrons using the {333} reflection in the same geometric configuration down further by a factor 

of 9. The {333} Si Debye Waller factor is less than that for {111}, since 

  2
BDW exp (B B) sin /       with parameters B=0.422Å2, ΔB=0.028Å2 at 293 K [157]. The 

corresponding reduction in FH should improve the collimation further. With an optimised 1.75 Å 

neutron incidence between 8 and 32 mm from the prism apex, the Bragg prism monochromator is 

expected to deliver an angular profile of 0.062 arcsec FWHM (Fig.48). An analyser operating in 

opposite asymmetry with S =−51o and A=16o with neutron incidence between 34 and 67 mm from 

the prism apex would likewise accept a pair of 0.023 arcsec wide neutron peaks separated by 0.22   

arcsec (black curve in Fig.49). The rocking curve of the analyser, viz. the convolution of the 

monochromator beam profile with analyser acceptance, comprises two 0.065 arcsec wide peaks 

separated by 0.25 arcsec (red curve in Fig.49).  

One may envisage tightening the neutron collimation further with Bragg prisms operating at still 

smaller wavelengths. 
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Fig.48 Theoretical flat-topped angular profile from the optimally tailored Bragg prism 

monochromator (A=172o and θS=50.1o) for 1.75 Å neutrons.  

 

Fig.49 Theoretical acceptance curve (black) of the optimal Bragg prism analyser (A=16o and 

θS=−51o) for 1.75 Å neutrons and its convolution (red) with the monochromator angular profile of 

Fig.48.  
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CHAPTER 5 

High precision determination of the neutron coherent scattering length  

  

 5.0 Introduction 

Neutron interferometry as alluded to earlier, affords the most precise determination of the coherent 

scattering length. Dynamical diffraction of neutrons in a single crystal enables splitting of the 

neutron wave amplitude into two coherently coupled subbeams separated by a few cm. Insertion of 

a sample into one of the beam paths introduces a phase shift proportional to the optical path 

neutrons

 
sample

Phase 
flag

H-detector 

 O-detector

Fig.50 Our proposal depicting the phase measurement by recording the interferograms with the 

thick sample placed alternately in subbeams I and II of the symmetric LLL IFM. 
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difference between the two neutron subbeams. Single crystal mirrors recombine the subbeams at 

the ‘analyser’ crystal. Rotation of an auxiliary phase flag (Fig.50) generates intensity oscillation 

patterns of the O & H beams emerging from the analyser. The phase shift caused by the sample 

insertion, is observable through the shift in the O & H intensity modulation patterns.  

 

5.1 Our proposal: Theory 

A sample of refractive index n relative to the ambient changes the neutron wave vector magnitude 

from kO to K= nkO. Let us consider a parallel-faced sample slab of thickness D and atomic density 

N placed in one subbeam of the IFM with neutron incidence angle  to its front surface (Fig.51). 

The continuity of tangential components of wave vectors across the ambient-sample interfaces 

dictates that the wave vector K inside the sample can differ from kO in ambient air only along the 

surface normal. The respective normal components K and k hence differ by ΔK=K–k. Snell’s 

law (K// =k//) enables us to write K as 

2 2 2 ' 2 2
OK K K cos k n cos .     =                                                                              (79) 

The symbol θ′ denotes the glancing angle of refraction. The phase introduced by inserting a sample 

of thickness D on path I of the IFM is given by 

 I .d K k D.     K r =                                                                                                      (80) 

Using Eqs.(79) and (80), we arrive at the exact phase formula for neutrons, 

 2 2
I Ok D n cos sin ,                                                                                                                                 (81) 

which can be approximated as  

 C a a
I

Nb N b D
,

sin
 

  


                                                                                                                                               (82) 
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Fig.51 In a symmetric LLL IFM, neutrons of wavelengths  and + propagate at corresponding 

Bragg angles θB and θB+θB to the IFM Bragg planes and hence are incident at angles θ and θ+θB 

on the sample. Neutron refraction at the air-sample interfaces introduces a small correction to the 

phase due to the sample.  
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Fig.52 Phase dispersion in a 26.5 mm thick Si sample placed on path I of an IFM as a function of 

neutron incidence angle θ at central wavelength 0 (=5.14Å). The phase becomes nondispersive 

only for incidence at the Bragg angle θB and hence mandates sample alignment to arcsec precision. 
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since |n2–1|< 10–5. Eq.(82) is the approximate formula hitherto used by earlier researchers. Here, bc 

signifies the coherent scattering length of sample, Na and ba stand for atomic number density and 

coherent scattering length respectively, of air and  denotes the neutron wavelength. Precision of 

bc determination can be improved by increasing ФI. However, in a symmetric LLL IFM, neutrons 

of wavelengths  and + propagate at corresponding Bragg angles θB and θB+θB to the IFM 

Bragg planes and hence are incident at angles θ and θ+θB on the sample (Fig.51). The phase ФI, 

acquired by neutrons with wavelength + can be written as  

 
 

   
 

2 2
B C C B

I 2
B B B B

sin 4d Nb Nb sinD ,
d sin sin

           
        

                                                       (83) 

using Eq.(81). Here d denotes Bragg planar spacing of the IFM single crystal. The phase ФI at 

+ differs from ФI at . The -dependence of ФI (Fig.52), thus smears out interferograms, 

reducing the interference contrast and hence bc precision since 

IOI ii ( )
O OI ( )e d / I ( )d fe        with f<1. The large variations in ФI with  allows bc 

determination only to within about 1 part in 103 [1,4]. Rauch et al. [126] lowered the bc 

imprecision to about 4.7 parts in 104 by following Scherm’s suggestion to insert the sample with its 

surface parallel to the Bragg planes of the IFM. Neutrons of each wavelength are then incident at 

its corresponding IFM Bragg angle to the sample (=2dsinθ) and the phase (relative to no sample)  

 I 0 c a a2

Nb N b1 1c a a2 D 2 Nb N b Dd ,
4d 2d

 
        
 
 

                                                 (84) 

is nondispersive (Figs.52-53). The major advantage is the elimination of the requirement of precise 

wavelength determination. The interference pattern does not depend on the wavelength spread of 
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the beam and remains visible up to very high interference orders [1]. However, here the phase 

varies significantly with θ as 

    2 2
I 0 c a a B B2 Nb N b Dd 1 cot {1 2cot } / 2 ,                                                   (85)              

introducing dispersion due to a horizontal sample misalignment δθ. The nondispersivity condition 

therefore requires the sample to be aligned with arcsec precision (cf. Fig.52 and 0-I and II-0 

curves in Fig.53 (bottom)). Only at the exact nondispersive setting (viz., θ= θB, to within arcsec), 

can ФI be increased to arbitrarily large values by increasing D without losing interference contrast. 

At even a slight misalignment δθ, the -dependence of the first order term in δθ of the ФI-0 

variation (85) is large enough to make the phase dispersive (Fig.52), thereby limiting bc precision.  

Ioffe et al. [127] obviated the need for this precise sample alignment by measuring the phase shift 

between interferograms recorded with the sample placed alternately in subbeams I and II (Fig.50). 

For a symmetric LLL IFM, this method requires that the sample be parallel translated from path I 

to path II. Upon translation, the horizontal misset angle δθ changes sign. The phase shift then 

equals ( ) ( ( )) ( ) ( )          . This eliminates the large first order variation of the 

phase (cf. Eq.(85) and 0-I and II-0 curves in Fig.53 (bottom) for 0) with δθ. The sample 

alignment thus requires only arcminute precision to locate the minimum in the magnitude of I-II 

(cf. I-II curves in Fig.53), occurring at the intersection of 0-I and II-0 curves. For small 

deviations in the incidence angles, the nondispersive phase shift  

    2c a a 2
I II B

2 Nb N b Dd
2 {1 2cot } ,

cos


      


                                                                 (86) 

then determines the coherent scattering length 
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Fig.53 Variation in the difference ФI-ФII between phases arising with the sample on paths I and II 

with θ near θB for three wavelengths (top). The approximate phases for 0 are also shown (bottom). 

ФI-ФII remains nondispersive over ~ arcminute, relaxing the required sample alignment precision.  
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 
a aI II

2
2

B

N bcos .bc N
4NDd 1 1 2cot

2

 
  

 
   

 

                                                                               (87)  

Here δγ denotes the vertical misalignment of the sample. The phase ΦI-II is a quadratic function of 

δθ as well as δγ, (vide Eq.(86)). The exact nondispersive sample alignment hence yields the 

minimum phase magnitude. Ioffe et al. thus measured parabolic variations ΦI-II individually in each 

path I and II by changing δθ and δγ by a few degrees in the vicinity of θB incidence and located the 

corresponding minimum in the phase magnitude to arrive at δθ = δγ=0 settings.  With this method, 

Ioffe et al., [127] achieved bc/bc of 5.1x10
-5

, whose source-wise constituents are listed in the first 

column of Table 3.  

However, it must be noted here that phase vide Eqs.(82 and 86) and hence bc (Eq.(87)) formulas 

used hitherto, are approximate. The exact phase formula that accounts for refraction corrections at 

the ambient-sample interfaces for the sample placed in path I is given by Eq.(81) and for path II,  

II I   . Thus, the difference of exactly non-dispersive phases for the sample placed in path I and 

II alternatively with its surfaces aligned parallel to the IFM Bragg planes, equals  

I II 2

Nb N b1 1c a a4 D .
4d 2d

 
     
 
 

                                                                                             (88) 

This phase is rigorously nondispersive not only in vacuum but also in air. Eq.(88) yields the 

coherent scattering length  

         
2

2
I II I II a aN b .bc 4NDd N16 ND
     


                                                                                                  (89) 

Therefore the correction to the inferred bc due to the refraction effects   




 2
c

c

c dNb
b
b .                                                                                                                              (90) 



  

99 

 

5.1.1 Achieving high precision bc through optimisation of various parameters  

From Eq.(86), it is inferred that to increase  the  determination of bc  precision,  the  errors in  phase  

ΦI-II  measurement  and  systematic variation  in  sample  thickness D must  be reduced. By far, the  

most predominant contribution arises from the relative variation D/D in the sample thickness (cf. 

LHS of Table 3). The precision can thus be improved by increasing D and reducing its D 

variation. An increase in D dictates a larger Bragg angle (Fig.54) and hence a larger λ and bigger 

IFM. This results in greater neutron beam broadening equal to 2tsinθB at each blade of IFM, t being 

the thickness of the IFM blade. Keeping in view the practical limit on the available IFM size and 

neutron flux at large λ,  we limit θB to 55
o allowing D=26.5 mm for a 31 mm wide sample and 3 

mm wide incident neutron beam (Fig.54). The width of neutron IFM becomes rather large, about 

12.5 cm, at this θB. Attaining D=0.1 μm with a  precision grinding  and  polishing  machine would  

 

 

Fig.54 Variation of the allowed sample thickness with Bragg angle of the IFM. 
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yield about an order of magnitude reduction in the D/D contribution to bc/bc. In addition, the 

phase also increases by the same factor as D, reducing the Ф/ contribution. Further, one can 

maximise d to 3.14 Å by choosing the {111} Bragg reflection for the Si IFM (hence λ = 5.14 Å) to  

enhance  by about 63% over that obtainable with the {220} Bragg reflection and reduce Ф/. A 

thermal enclosure around and vibration isolation of the IFM reduces the phase drift to a fraction of 

a degree over a day [1,127]. The effect of this phase drift over a typical measurement duration of a 

few hours, is minimised by recording the O and H detector intensities (Fig.50) for the three 

positions (I, II and Out) of the sample in succession at each angular setting of the phase flag. 

A phase error of about 0.3 deg, thus routinely achieved in interferometric experiments, is included 

in Table 3. Good interference contrast can be achieved even for this high interference order due to 

the nondispersive configuration [1,126-127]. The contribution from the uncertainty in the refractive 

index of air, dependent on variations in the temperature, pressure and relative humidity, can be 

larger than that assumed for Naba/N =9.137(9) x 10
-3

 fm in [127]. However, this assumed 

uncertainty of 2.2 parts per million in bc precision due to air can be eliminated by performing the 

experiment in vacuum.  

If the sample happens to be a single crystal, extreme care needs to be exercised to ensure neutron 

incidence far off any Bragg reflection of the sample. The sample then just presents an average 

refractive index to neutrons. With a crystalline Si sample (Nd =1.57x10
15

 cm
-2

), our proposed phase 

ФI-II = -394284.8
o
 will yield bc with ultrahigh precision of a few parts per million (ppm) as shown 

in the last column of Table 3. The exact and approximate phases for δγ=0 in our proposal are 

plotted in Fig.53 (bottom curve). The exact phase is greater by about 2.6
o 

at θ=θB. 
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The refraction corrections (cf.. Eq.(90)) in bc of – 6.5*10
-6

 for Si{111}, slightly exceeds the 

proposed precision in magnitude (cf. Table 3), underscoring the importance of refraction effects. 

Therefore, when such ultrahigh precision is achieved, it becomes mandatory to account for neutron 

refraction at the ambient-sample interfaces and use the exact formulas for the Φ and bc respectively 

(cf. Eqs.(88-89)).  

 

Table 3: Comparison between various bc/bc contributions at Ioffe et al. [127] and our proposal 

for a Si sample. 

Ioffe et al. Source Proposed 

[111]       [220] 

5.0*10
-5

 Thickness: D  0.1 μm 

(Precision grinding) 

3.8 *10
-6

 

9.0*10
-6

 Phase: Ф = 0.3
o, typical 7.6*10

-7    
1.2*10

-6 

2.2*10
-6

 Air: ( Naba/N)=9*10
-6

fm 

Eliminate: Vacuum expt 

2.2*10
-6

 

1.1*10
-7

 Rotation: δθ  0.01
o
, typical 3.0*10

-8
 

1.4*10
-7

 Tilt: δγ  0.01
o
, typical 1.5*10

-8
 

3.7*10-9
 {Nd}Si  = 6*10

6 
cm

-2
 3.7*10-9

 

5.1*10
-5

 Total 4.4*10
-6    4.5*10

-6 

 Vacuum experiment 3.9*10
-6    

4.0*10
-6 
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The refractive index, n = (1–Nbc
2/)½ of Si for thermal neutrons equals unity to within about 1 

part in 106. This proposal can thus determine the refractive power, n–1±10-6, with a relative 

precision of a few parts in 106, and hence the refractive index to a phenomenal precision of a few 

parts in 1012 [156-157]. 

The refraction corrections of –2.7*10
-5

 and –1.01x10-5 fm to bc for {111} and {220} IFM 

reflections respectively, due to refraction at air-sample interfaces is of the same order as the Ioffe et 

al.’s experimentally determined bc precision of 5 parts in 105. Therefore after refraction 

corrections, bc values in Ioffe’s measurement should be modified to 4.15101(21) and 4.15038 (21) 

instead of inferred 4.15102(21) and 4.15041(21) values corresponding to IFM reflections {220} 

with λ= 1.98 Å and {111} with λ= 2.7 Å, respectively.     

 

5.1.2 Dual nondispersive phase shifter 

The dual nondispersive phase shifter comprising two identical and parallel phase shifters placed on 

one path, one before and the other after the mirror blade [Fig.55], in the nondispersive 

configuration has been recently proposed by Lemmel and Wagh [128]. The effective thickness of 

the phase shifter gets doubled which results in doubling of the neutron phase  (D) and halving 

Ф/. The phase shift I II( ) ( )    , which now can be obtained in a single measurement 

with this dual phase shifter placed on a single beam path, is exactly nondispersive. Furthermore, 

the temporal as well as spatial displacements of the wave packet effected by the dual sample in the 

first gap get cancelled in the second, restoring full interference contrast. A long monolithic sample 

with a groove cut in the middle (Fig.56) to accommodate the mirror plate attains the exact 

parallelity and the identical thicknesses for its two segments. Both of these segments are 

mechanically and  thermally  coupled. The  large nondispersive  phase shift  can  be measured even  
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Fig.55 The experimental setup (schematic) employing a large symmetric LLL IFM with dual 

sample placed in subbeam II. 
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with a white, and hence high-intensity, incident neutron beam, enabling a fast and precise 

measurement due to the improved (in fact, FULL) interference contrast. 

A dual sample of thickness D each inserted in both gaps of path I (or path II) of the IFM with its 

surfaces aligned parallel to the IFM Bragg planes yields an exactly non-dispersive phase given by 

I II 2

Nb N b1 1c a a4 D ,
4d 2d

 
       
 
 

                                                                                (91) 

and the phase difference between path I and II equals, 

I II 2

Nb N b1 1c a a8 D .
4d 2d

 
     
 
 

                                                                                        (92) 

 

 

Fig.56 Dual Si-sample mounted on a plate. 
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A 124 mm wide symmetric {220} LLL IFM [158] fabricated by Prof. Rauch′s group at the 

Atominstitut in Vienna, with 50.4 mm gaps between successive blades operating at a Bragg angle 

of 38° for 2.36Å neutrons, constrains the maximum allowed thickness of the dual sample to 18 mm 

due to beam widening in the mirror blade. The source-wise contributions to bc/bc for the Si 

sample are listed in LHS of Table 4 for the Ioffe et al. experiment [127] and in RHS for our  

 

Table 4: Comparison between various bc/bc contributions at Ioffe et al. [127] and in the proposed 

experiments with dual Si-sample. 

Ioffe et al Source Proposed 

[111]       [220] 

5.0*10
-5

 Thickness: D  0.1 μm 

(Precision grinding) 

2.78 *10
-6

 

9.0*10
-6

 Phase: Ф = 0.3
o, typical 5.6*10

-7
9.1*10

-7
 

2.2*10
-6

 Air: ( Naba/N)=9*10
-6

fm 

Eliminate: Vacuum expt 

2.2*10
-6

 

1.1*10
-7

 Rotation: δθ  0.01
o
, typical 6.5*10

-8
 

1.4*10
-7

 Tilt: δγ  0.01
o
, typical 1.5*10

-8
 

3.7*10-9
 {Nd}Si  = 6*10

6 
cm

-2
 3.7*10-9

 

5.1*10
-5

 Total 3.6*10
-6  

3.7*10
-6 

 Vacuum experiment 2.8*10
-6   

2.9*10
-6 
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proposed dual sample. The dual sample affords greater precision than the single sample due to its 

greater effective thickness of 36 mm. 

 

 5.2 EXPERIMENTAL 

The experiment was performed at the S18 beam port of 58 MW Institut Laue Langevin (ILL) 

reactor in Grenoble, France. The Si perfect-crystal monochromator and IFM are operated in a non- 

dispersive configuration which provides a narrow rocking curve with 1.8" FWHM at a wavelength 

of 1.8Å. To  attain  greater  contrast  and  phase  stability,  the  optical  bench  is  shielded  against 

 

 

Fig.57 A photograph of the experimental setup at S18 ILL, depicting a pair of amorphous Si prisms 

each of 120o apex angles placed before the symmetric {220} LLL IFM to remove the λ/2 from 

monochromatic neutron beam. Dual sample mounted on a plate, is hanging from the top.    



  

107 

 

vibrations and thermal drifts. A pair of amorphous Si prisms each of 120o apex angles is placed 

before the symmetric {220} LLL IFM to remove the second harmonic (λ/2) from monochromatic 

neutron beam (Fig.57). The 93 mm long sample had a 6 mm wide groove in the middle to 

accommodate the mirror blade of IFM (Fig.56). The sample was cut and ground from a single 

crystal Si ingot, at an orientation carefully selected so that neutrons incident at 38o to the sample 

surface would be at least 10o away from exciting any major reflection in Bragg or Laue 

configuration, at a company in Grenoble.  

 

5.2.1 Recording of the interferograms 

The relative intensity patterns recorded for the O and H exit beams, depend upon the phase 

difference of the neutron subbeams traversing path I relative to path II.  We record an 

interferogram with a 4 mm thick Al flat phase flag positioned between the splitter and mirror 

blades of the IFM such that it intercepts both neutron paths (Fig.55). A rotation ζof this phase flag 

from parallelity to IFM blades induces a differential thickness between the two paths given by 

B
Al II I 0 2 2

B

2sin sinD ( ) D ( ) D ( )  D
cos sin

 
     

  
                                                                              (93)                

and a phase shift  

Al Al Al( )=-N b D ( ),                                                                                                                        (94) 

proportional to DAl(ζ). Here D0, NAl and bAl denote thickness, atom density and coherent scattering  

length of aluminum phase shifter respectively. O and H intensity patterns recorded by varying χ 

through ζ, are governed by Eqs.(41a and 41b).  
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The experiment was performed with =2.36 Å corresponding to θB = 38o and an empty IFM 

rocking curve with 2.52 arcsec FWHM was recorded with respect to monochromator to align IFM. 

The empty IFM contrast, defined by Eq.(42), dropped from 80% at θB =30o (=1.92Å) to about 

40% at θB = 38o since now neutrons sampled the less perfect outer regions of the mirror. By 

translating the IFM horizontally and vertically, the contrast was optimised to about 65%.  

Next, the O+H intensity recorded as a function of the sample translation transverse to Bragg planes 

in the IFM, exhibited a plateau each in paths I and II. The sample position for each path was set at 

the centre of the respective plateau. With the sample placed in either path I or II, O and H 

interferograms were recorded. The contrast dropped to ~ 60% on placing the sample at either of 

these positions.  For the Si sample, the attenuation cross-section (σattn= 0.175 barn) does not 

significantly influence the real part of the refractive index and hence a large neutron path length of 

58.5 mm within the sample in nondispersive configuration still yielded a good interference 

contrast.  

 

5.2.2 Data analysis 

For each interferogram, intensity oscillations O*<O+H>/(O+H) were fitted to sinusoidal variation 

OI I (1 A cos(B )),     yielding the average intensity IO, contrast A, normalized frequency B 

and phase . The phases extracted from interferograms acquired at several rotations ε and tilts γ of 

the sample displayed the expected parabolic variations (Fig.58). The sample was then set to the 

correct orientation (ε0, γ0) where the phase magnitude exhibited a minimum. A large number of 

successive sample-in and sample-out interferometric scan pairs were then made alternately for path 

I and II (Fig.59), punctuated with realignments of the IFM whenever the contrast dropped below 

about 50%. Phases inferred as a function of oscillation frequency are plotted in Fig.60. The 
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measurements exhibited large, erratic phase drifts (Fig.61) due to uncontrollable variations in the 

ambient  temperature,  humidity, air  pressure  and  background  magnetic field ramps generated by 

neighbouring experiments.  

The frequency of interference oscillations, relative to that expected for the 4 mm thick Al flag, 

varied significantly between path I and II not only for sample-in scans but for sample-(raised) out 

scans as well, indicating drastically different rates of the two  phase drifts. This led to erroneously 

large inferred phase shifts between paths I and II (Figs.60 and 61). However, the interference 

contrast as well as average intensity dropped gradually over these scans (Fig.62) due to 

temperature drifts causing a misalignment between the monochromator and IFM. Average intensity 

and interference contrast both decreased as a function of scan number. We note that the 

interference contrast is greater for path I while the average intensity is always higher for path II. It 

was only for the last (13 + 13) scan pairs that the oscillation frequencies converged near a single 

value (Fig.61), yielding a nearly constant phase shift ΦI-II = + 256.7  0.30 modulo 720 deg 

(Fig.63). Variations in the planarity and thickness of the sample surfaces, mapped metrologically  

 

  

Fig.58 Optimisation of the sample rotation and tilt. 
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Fig.59 Typical interferograms for path I and II as a function of the flag phase. 

 

Fig.60 Variation in phase with the interferogram oscillation frequency normalised to that expected 

theoretically. 
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Fig.61 Oscillation frequency and phase with scan number.  

 

 Fig.62 Interference contrast and average intensity. 
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Fig.63 Path I, II and I-II phases during the run. 

 

Fig.64 Metrological mapping of the Si sample thickness along with the neutron trajectories in paths 

I and II.  
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after the experiment turned out to be unacceptably large (Fig.64). The thicknesses D on paths I and 

II, averaged over the beam extent, were (1.804+1.804) cm and (1.8027+1.8031) cm respectively. 

Using the previous measurements of bC for Si [127], we deduced Sample In – Out phases of – 456 

X 360 + 98.4  0.22 and + 456 X 360 – 158.3  0.21 deg for paths I and II respectively so that ΦI-II 

= – 456 X 720 + 256.7  0.30 deg. The Si bc value of 4.1479  0.0023 fm was arrived at after 

adding a correction of 0.009137 fm for air, the major part of the bc error arising from the 10 μm 

error in the 18 mm sample thickness. The correction of –1.01x10-5 fm to bc due to refraction at air-

sample interfaces is too small in comparison [160-161]. While errors arising due to large thickness 

variations limited our effort to measure bc with high precision, the experiment demonstrated the 

operational superiority of a dual nondispersive sample. Further, this dual sample has facilitated 

observation of the largest non-dispersive phase (911 interference orders) to date, to within a ppm 

for the first time.  

 

5.2.3 Repeat Experiment  

In 2011, we repeated the experiment to improve bc precision at the S18 beam port, Institut Laue 

Langevin (ILL) reactor in Grenoble, France. This time, symmetric {220} LLL IFM operated at 

slightly different Bragg angle of 37.92° for 2.36Å neutrons. The Si dual sample was ground again 

and polished to a better accuracy which reduced the average sample thickness to 17.98 mm 

(Fig.56). The IFM setup was enclosed in an aluminium box equipped with heating coils and Peltier 

elements to regulate its temperature. Compressed air was passed through a constant-temperature 

water bath and blown gently into four corners near the box bottom to eliminate thermal gradients 

near the IFM. The O+H  intensity  was recorded  as a function of  the  sample translation within the  
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Fig.65 Average intensity with the sample placed IN and OUTSIDE paths I and II. 

 

Fig.66 Interference contrasts with the sample placed IN and OUTSIDE paths I and II. 
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Fig.67 Optimisation of the sample rotation and tilt. 

 

Fig.68 Interferograms with the sample placed in paths I and II. 
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Fig.69 New metrological mapping of the Si dual sample.  

IFM and the sample position for path I and II was set at the centre of the intensity plateau obtained 

for the respective path. During the first week of the experiment, it was difficult to obtain 

interferograms with good and stable contrasts, due to a vacuum pump inadvertently placed over the 

IFM cabin roof by the reactor operational staff members. On isolating its vibrations from the cabin, 
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we were able to achieve empty IFM contrasts up to about 75 %.  On placing the sample in path I or 

II, the intensity dropped only by about 5% (Fig.65) and the interference contrast remained 

essentially unaltered over a majority of scans (Fig.66). We note that the actual neutron path length  

of 58.5 mm within the Si dual sample though very large, still yielded a very good contrast 

underscoring the importance of measurements in nondispersive sample configuration. Further, 

small intensity decrease in measurements made with the sample IN positions compared to sample 

OUT scans is due to the incoherent scattering and absorption of neutrons within sample. The 

phases extracted from interferograms acquired at several rotations ε and tilts γ of the sample in path 

I and II were fitted to parabolic curves (Fig.67). The sample was then set to the correct orientation  

(ε0, γ0) where the phase magnitude exhibited a minimum. A large number of successive sample-in 

and -out interferometric scan pairs were then made alternately for path I and II. A typical 

interferogram for this set of measurements is shown in Fig.68. The regulated air flow within the 

temperature-controlled aluminium enclosure yielded good interference contrasts, but also reduced 

the relative air humidity to between 5 and 10% which, in turn, led to a large variation in the 

measured phases. The frequency of interference oscillations remained fairly constant throughout 

the measurements.  

To arrive at the correct phase, we carefully analysed the temperature and humidity data. We 

observed that the measured phases on either path remained closely constant when thermal gradients 

in the IFM vicinity were low and the relative humidity inside the IFM cabin ranged between 35 and 

40%. From 95 such interferograms for paths I and II and using the previous measurements of bc for 

Si [127], we deduced phases of – 455 X 360 – 54.811  0.154 deg and + 455 X 360 – 256.49  

0.117 deg for paths I and II respectively so that ΦI-II = – 455 X 720 + 201.679  0.193 deg. After 

considering a 1μm uncertainty in the sample thickness of 35.96 mm (Fig.69), thermal expansion of 
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Si at 26.2oC, applying a correction of 0.009137 fm to bc for ambient air and –1.01x10-5 fm due to 

refraction at air-sample interfaces, a Si bc value of 4.15195  0.00011 fm was arrived at [162-163]. 

This observation of a large non-dispersive phase (910 interference orders) to within 1 ppm, led to 

the interferometric determination of bc and n of silicon to within 27 parts in 106 and 5 parts in 1011  

respectively.  

Our measured Si bc value of 4.15195  0.00011 fm is in reasonable agreement with the bc values 

of 4.1507  0.0002 fm and 4.1534  0.0010 fm, obtained by Ioffe et al. [127] and Shull and 

Oberteuffer [78] respectively. These bc values include scattering contributions from both the 

electronic as well as nuclear charge. However, we have achieved an improved bc precision by a 

factor of about 1.9 to that attained by Ioffe et al.  

By further improving the uniformity in sample thickness and enhancing the thermomechanical 

stability of the IFM, it should be possible to achieve the proposed bc determination to within a few 

parts in 106.  
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CHAPTER 6 

Conclusion and Future directions 

The objective of this Chapter is to summarize the main findings of this thesis and to shed some 

light on the future directions for the research work presented in Chapters 3, 4 and 5. 

 

I. Neutron forward diffraction by Bragg prisms 

In Chapter 3, we enunciated the theory of neutron forward diffraction by Bragg prisms and derived 

analytic expressions for the intensity fraction and deflection of the forward diffracted neutron beam 

within the framework of dynamical diffraction theory. In the vicinity of a Bragg reflection, the 

neutron deflection deviates sharply from that for an amorphous prism reaching opposite extrema at 

either end of the total reflectivity domain and exhibits several orders of magnitude greater 

sensitivity to the incidence angle variation. Using a 2 arcsec wide 5.24 Å neutron beam from a 7-

bounce Bonse-Hart monochromator-analyser setup, we observed the variations of the deflection 

and transmission of the neutron beam across a Bragg reflection, for several Bragg Si prisms. The 

observed Bragg prism deflections deviate from amorphous prism deflections by up to 27% and 

deflection sensitivities up to 0.43 arcsec per arcsec variation in the incidence angle are observed, 

thus realising 3 orders of magnitude greater deflection sensitivity to the incidence angle variation 

than that obtainable with amorphous prisms. The results agree well with the predictions of 

dynamical diffraction theory.  

The smooth deflection tuning ability and the several orders of magnitude higher sensitivity are the 

key advantages of Bragg prisms over conventional prisms. These prisms can also be employed in 

succession to achieve a larger deflection sensitivity, albeit with a concomitant intensity loss. The 

theoretical prediction of a sign change of the deflection (Fig.16) on the low θ-side by a suitably 
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selected asymmetric Bragg prism may be experimentally verified and employed in applications. 

The use of Bragg prisms can also be explored in neutron interferometric Laue phase measurements 

[164-165]. Within the channel-cut monochromator as well as analyser silicon crystals, each 

performing 7 {111} Ewald reflections, an amorphous Si wedge each was inserted after 3 

reflections to deflect neutrons of 5.24 Å by about 4 arcsec. Treimer et al. [112] thus attained an 

analyser rocking curve width ~ 2 arcsec, reduced from Darwin width ~ 6 arcsec. The angular width 

achievable thus can be trimmed down to a fraction of Darwin width by placing a Si-Bragg prism 

instead of an amorphous prism albeit with a concomitant loss of intensity. One may envisage 

further, the tuning of the angular width of such rocking curves by Bragg prism rotation. 

The observations presented in Chapter 3 have led to the design and operation of a novel super-

collimator Bragg prism which produced a neutron beam with a sub-arcsec angular width. 

 

II. First sub-arcsec collimation of monochromatic neutron beam 

Chapter 4 reported attainment of the first sub-arcsec collimation of a monochromatic neutron beam 

with a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. 

Analytical as well numerical computations based on the dynamical diffraction theory, led to the 

optimised collimator configuration of a Si {111} Bragg prism for 5.26Å neutrons. This optimal 

collimator produced a nearly plane wave neutron beam with a 0.58 arcsec angular width. With a 

similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide 

virgin rocking curve. The availability of such a sharp rocking curve has enabled several 

experimental firsts. We have recorded the first ever SUSANS spectrum in Q ~ 10-6 Å-1 range with a 

hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising 

agglomerates up to 150 m in size. The super-collimated monochromatic beam has also enabled us 
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to record the first neutron diffraction pattern from a macroscopic grating of 200 m period. The 

transverse coherence length of 175 m (FWHM) extracted from the analysis of this pattern is the 

greatest achieved to date for Å wavelength neutrons. 

A magnetic air prism between the monochromator and analyser Bragg prisms can separate the up-

and down-spin components of the neutron beam, thus providing a polarised SUSANS facility [166-

168].  

As indicated in Chapter 4, one can produce even tighter neutron collimation by employing other 

Bragg reflections, asymmetry and apex angles. The monochromator and analyser Bragg prisms 

characterised in Chapter 4 can be used to produce a sharper neutron beam by employing higher 

order reflections. This Bragg prism pair operating near {333} Bragg incidence of 1.75 Å neutrons 

can achieve a 0.065 arcsec wide rocking curve. The transverse coherence length of 525 μm 

(FWHM) of this beam will facilitate SUSANS studies down to 3x10-7 Å-1 and characterise 

agglomerates up to 450 μm in size. A magnetic air prism between the monochromator and sample 

would then yield a Polarised submicro-Å-1 SUSANS facility. 

One may envisage tightening the neutron collimation further with Bragg prisms operating at still 

smaller wavelengths. However, there are practical limits such as the mechanical stability of the 

apparatus, the minimum rotation step achievable for the goniometer and the inherent weakness of 

neutron sources in terms of flux. Only when the next generation neutron sources like Inertial 

Confinement Fusion based or advanced pulsed sources, becomes operational, may Bragg prisms be 

able to deliver sufficiently strong neutron beam with extremely narrow angular profiles. 

However, with X-rays, these novel Bragg prisms can produce sharper angular profiles than neutron 

beams as photon flux available currently is many orders of magnitude greater compared to 

neutrons.  
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III. High precision determination of neutron coherent scattering  

In Chapter 5, a proposal for high-precision determination of the neutron coherent scattering length 

is described. With this proposal, the neutron coherent scattering length and refractive index for Si 

become determinable to within a few parts per million and a few parts per trillion respectively, for 

slow neutrons. When such ultra high precision is achieved, the refraction correction at the ambient-

sample interface becomes mandatory. We have derived the correct formula for the phase and bc. In 

a proof-of-principle measurement, we used a dual non-dispersive sample to measure the largest 

non-dispersive phase (911 interference orders) to date, to within 1 ppm and the Si bc value of 

4.1479 0.0023 fm was arrived at after adding a correction of 0.009137 fm for ambient air. The 

major part of the bc error arose from the 10 μm error in the 18 mm sample thickness. The 

correction of –1.01x10-5 fm to bc due to refraction at air-sample interfaces was too small in 

comparison.  

A repeat experiment with a better polished sample, to within 1 μm, yielded a Si bc value of 

4.15195  0.00011 fm after correcting for all possible sources of errors. Thus, Si bc could be 

determined to within 27 parts per million. 

By further reducing mechanical vibrations and thermal variations of the IFM set-up and using a 

sample polished to better flatness, the proposed ppm precision in bc determination is achievable. 

Rauch et al.’s [126] nondispersive sample configuration afforded precise interferometric 

determination of neutron coherent scattering lengths and Ioffe et al. [127] improved the precision 

further by an order of magnitude by alternating the sample between the two paths of the 

interferometer. We have presented here a dual nondispersive sample which is more nondispersive 

than the single “nondispersive” sample by several orders of magnitude. This advantage will be 

especially interesting for cold neutron interferometry. The dual sample generates double the phase 
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with a null wave-packet displacement for thermal neutrons and substantially simplifies the angular 

alignment. One may envisage an interferometer setup dedicated to bc measurements, operating at a 

large Bragg angle and with a mirror blade cut to accommodate a nongrooved dual phase shifter or a 

container cell for liquid and gaseous materials [128]. 

Further improvement in the bc precision warrants the use of thicker samples which demands larger 

neutron IFMs and adequate neutron intensities at greater wavelengths. With the availability of large 

single crystal of excellent quality, it is indeed possible to fabricate bigger IFMs [159]. Therefore, 

with the next-generation neutron sources, it would be possible to determine neutron coherent 

scattering lengths of elements with much higher precision leading to a deeper understanding of 

inter-nucleon interaction.     
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