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Investigations on pressure induced B1-B10-B2 phase transitions in binary systems 
LaN, LiH and MgO 

(SYNOPSIS) 

Research on material properties under high pressure has attracted attention of 

scientific community since four decades and there are some fascinating results which 

enriches the basic and applied sciences [1-5]. Pressure is a thermodynamical variable 

which can be tuned in precise way to induce changes in materials properties similar to 

those brought by the application of temperature. The application of pressure can cause the 

reduction in volume of condensed matter by more than a factor of two and thus revealing 

many interesting changes in properties of materials under compression. The high 

pressures in the materials are generated either by static compression methods or by 

dynamic compression (shock compression) methods.  The two methods of high pressure 

generation differ widely. In the static compression technique [4], material is squeezed 

slowly; hence, temperature inside the sample during the experiment remains constant i.e. 

the static compression is an isothermal process. To some extent, in static method one can 

compress the material hydrostatically by selecting a suitable (fluid or gas) pressure 

transmitting medium surrounding the sample [4,6].   In shock loading methods, on the 

other hand, materials are compressed uniaxially with very high rate of pressurization (rise 

times ~ few tens of nanoseconds), and the temperature and entropy of the materials 

always increase. Under static compression, the duration of the pressure on the material 

can be as long as we desire, however, in shock compression the duration of pressure 

pulse is very small (of order of few microseconds) depending upon the dimensions of the 

sample. Unlike the hydrostatic compression, the shock loading is always accompanied by 

the shear stresses which may induce phase transitions that are not observed under 

hydrostatic loading. For example, in tantalum (Ta) the body centered cubic (β) phase is 

found to be stable under hydrostatic compression up to 170 GPa whereas under shock 

loading it transforms to ω phase at ~ 45 GPa [7-9].  

 

Phase transitions are examples of the striking changes that can be brought by 

application of pressure in materials. Some of the interesting pressure induced phase 
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transitions are metallization of oxygen at ~ 96 GPa[10-11], metal to insulator transition in 

sodium at ~ 200 GPa [12], the hcp → three atom hexagonal (ω) → bcc (β) structural 

transformation in group IV transition metals Ti, Zr and Hf [13-16], the β to ω phase 

transition in tantalum and Zr-20%Nb alloy under transient loading to ~ 45 GPa and ~ 15 

GPa, respectively [8-9, 17-18] etc. The discovery of such phase transformations in 

materials has added new dimensions to the understanding of behaviour of materials under 

high pressure. For example, the occurrence of hcp → ω → β structural phase transition in 

Ti, Zr and Hf under high pressure has been attributed to the transfer of electrons from 

filled s-band to the partially filled narrow d-bands and their distribution in various d-

substates [19-21]. The knowledge of this structural sequence under pressure and its 

correlation with electron transfer from s-band to d-bands has added a new understanding 

in basic physics of transition metals and their alloys.  

 

In addition to pressure induced phase transitions, the high pressure equation of 

state (EOS), e.g., isotherm, isentrope and Hugoniot also play important role in 

characterization of state of a material under pressure. The knowledge of EOS serves as 

vital input to the computer codes for the hydrodynamic simulations which are related to 

the wave propagation in geological media, reactor accidents, fission/fusion energy 

systems and in the analysis of many problems pertaining to geophysics, astrophysics and 

planetology [1, 2]. Similarly, the pressure dependent elastic constants of materials play 

important role in determining the mechanical failure strength and various physical 

quantities such as Debye temperature, sound velocity, Gruneisen parameter, etc. The 

ultrasonic technique [22] is commonly used to measure the elastic constants of materials 

at ambient pressure. The Brillouin scattering is another method of measuring elastic 

constants at ambient conditions as well as at high pressures of few GPa [23-24]. Further, 

the high pressure x-ray diffraction measurements in diamond anvil cell (DAC) under non 

hydrostatic stress conditions have been used to evaluate elastic constants up to few tens 

of GPa [25-26]. 
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The mechanical failure strength of materials is of practical interest. The failure 

strength of a material is governed by the binding energy and the defects and dislocation 

present in the material. In a perfect solid, the failure strength is solely dependent on its 

binding energy; however, in case of a practical solid the failure strength strongly depends 

upon the defects and dislocations present in it. Beside the defects and dislocation, the 

failure strength of materials also depends on the rate at which the strains are applied [27-

28]. In fact, it has been observed experimentally that the failure strength of a material 

measured under quasistatic loading differs significantly from that measured under high 

strain rate conditions [27-30].  This suggests that the knowledge of strength properties 

merely at quasistatic loading conditions is not sufficient when the suitability of a material 

for applications involving high strain rates has to be decided. For example, analysis of 

structural response of a material subjected to high strain rate loading conditions occurring 

during the propagation of seismic waves through geological media and the fracture and 

fragmentation at high velocity impact needs the failure strength at high strain rate as 

input.  The strength measurements at high strain rate conditions are quite challenging and 

need special techniques for generation and measurements of high strain rates [31-34]. 

The well configured shock wave experiments which not only can generate the high 

compressive stresses but also the high tensile stresses at strain rates ranging from 104/s to 

109/s are ideal tool for measurement of failure strength at high strain rates [35].  

 

Besides the advancement in high pressure experimental techniques, a significant 

progress has been made in theoretical front also in last few decades [14-15, 17, 19, 36-

37]. With the advent of much enhanced computational power, the ab-initio theoretical 

methods based on density functional approach have been developed and employed for 

investigations of the phase transitions, equation of states, elastic properties, mechanical 

failure strength and pressure effect on melting point of materials [11, 14-15, 19, 36-40]. 

The present day theoretical methods are capable of not only reproducing the experimental 

results but also predicting the various new physical phenomena such as structural phase 

transitions, elastic and mechanical properties of the materials [37, 41-42]. For example, in 

calcium, the ab-initio calculations performed by Oganov et al. [37] predicted a β-tin type 

tetragonal structure (space group I41/amd) to be more favorable above 33 GPa. However, 
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the high pressure x-ray diffraction measurements by Mao et al. [43] reported a phase 

transition around 32 GPa and indexed this as rhombohedral structure (space group R-3m) 

at 300 K and orthorhombic structure (space group Cmmm) below 30 K. In view of this 

discrepancy between theory and experiment, Li et al. [44] repeated the high pressure 

experiment on this material and reported that the high pressure phase formed around 35 

GPa is indeed a β-tin type tetragonal structure, consistent with theoretical prediction. In 

addition to predicting phase transitions, the ab-initio theoretical methods can be resorted 

as a tool to determine the ideal failure strength of materials under different deformation 

configurations and thus providing the information about the upper bound to the maximum 

stress that a given solid can withstand before failure under a particular deformation 

configuration. Further, the ab-initio theoretical methods have also been utilized to 

determine melting line of materials [39]. For example, molecular dynamic simulations or 

ab-initio static lattice calculations in conjunction with Lindemann melting criteria have 

been widely used to calculate the melting line and predict the melting of solids under 

shock loading [39, 45- 46]. 

 

The present thesis deals with theoretical studies carried out on binary compounds 

LiH, LaN and MgO to understand the high pressure behavior of these materials. The 

theoretical work includes the analysis of structural stability, determination of 300 K 

isotherm, elastic constants and phonon spectra as a function of hydrostatic compression. 

All these compounds exist in rocksalt structure (B1) at ambient conditions and have 

attracted attention of researchers due to their technical as well as academic importance. 

For example, in hydride and deuteride of lithium, the major interest is due to their 

importance as thermo nuclear materials and the potential hydrogen storage compound. 

The LaN is among the transition metal mononitrides that exhibit unique physical 

properties such as high hardness, brittleness and melting point. Apart from this, the LaN 

encounters many problems related to stoichiometry [47]. The MgO, however, has been 

subject of extensive study due to its geophysical implications as it constitutes the major 

part of the lower mantle of the earth. In various theoretical studies carried out in past [48-

64] on these isostructural materials have predicted the B1 to a simple cubic CsCl type 

(B2) structural phase transition under hydrostatic compression. For example, in LiH, 
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several theoretical studies predicted the B1 to B2 phase transition at the pressures ranging 

from 85 GPa to 660 GPa [48-54]. The experimental study performed up to ~ 250 GPa, 

however, shows no phase transition [65]. In LaN also, the theoretical studies [55-56] 

predicted the B1 to B2 phase transition and the transition pressure is put in the range of 

25-27 GPa. The high pressure X-ray diffraction measurements carried out on this 

material in diamond anvil cell (DAC), however report the occurrence of a primitive 

tetragonal structure (B10, which can be viewed as distortion of B2 structure) with space 

group P4/nmm at ~ 22.8 GPa [66]. Likewise in MgO also, the theoretical investigations 

predict the B1 to B2 structural phase transition under hydrostatic compression with 

transition pressures ranging from 116 GPa to 1050 GPa [57-64]. The static compression 

experiment [67] carried out up to maximum pressure of ~ 227 does not show any phase 

transition in this material. It may be noted that the most of the theoretical predictions on 

phase transition in these materials are based on the analysis of structural stability of B1 

and B2 structures only. In light of the experimentally observed occurrence of B10 

structure in LaN, the B10 structure also becomes one of the plausible structure to be 

considered for structural stability analysis of such isostructured binary compounds. In 

spite of a large body of research work available on these materials there are still useful 

aspects of high pressure behavior which required to be investigated.  For example, in 

LiH, studies related to the pressure dependent of elastic properties, ambient condition 

thermophysical properties, e.g., Gruneisen parameter, Debye temperature, and Hugoniot 

parameter were either limited or are not available. Similarly, in LaN, it is worth to 

investigate theoretically the existence of experimentally observed B10 structure and the 

cause for its occurrence. As far as MgO is concerned, no data are available on the 

mechanical stability of this material under uniaxial loading condition. Being a 

geophysically important material, the knowledge of its ideal strength for compression as 

well as for expansion under uniaxial loading condition will serve as an important input 

for simulation of wave propagations through geological media. The theoretical 

investigations on these binary compounds have been carried out mainly to address the 

above mentioned issues. Apart from the theoretical investigations on these compounds, 

the experimental work has been carried out in elemental solid copper also. The objective 

of the experimental work was to measure the tensile fracture strength of polycrystalline 
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copper subjected to high strain rate loading in shock wave experiments and compare it 

with that measured under quasistatic loading condition. The whole work presented in the 

thesis has been classified in six chapters. 

 

The first chapter gives an introduction to the basic concepts of the high pressure, 

the different methods to generate high pressure in materials, the effect of high pressure in 

materials, various diagnostic techniques utilized to understand the behavior of materials 

under high pressure. Also, a brief description of modern DFT based ab-initio electronic 

band structure method used for understanding the material response under high pressures 

has also been provided along with illustrations on the predictive capability of these 

theoretical tools.  

 

The Second chapter deals with the theoretical calculations carried out on LiH. In 

LiH, the objective was to perform the studies to determine the pressure dependent elastic 

properties, ambient condition thermophysical properties e.g. Gruneisen parameter, Debye 

temperature, and Hugoniot parameter. For this purpose, first the ab-initio calculations at 

0 K have been performed to analyze structural stability by choosing the three structures 

namely B1, B10 and B2 as plausible structures. The 0 K calculations have been utilized 

to derive the 300 K isotherm after adding finite temperature corrections. The bulk 

modulus and its pressure derivative at zero pressure as well as at higher pressures have 

been determined from theoretical isotherm. Additional calculations have been performed 

to determine the shear elastic moduli as a function of hydrostatic compression. Our 

structural stability analysis suggests that the B1 phase will transforms to B2 phase at ~ 

327 GPa. The theoretical equation of state derived from these calculations agrees well 

with the experimental data [68]. The zero pressure equilibrium volume, bulk modulus and 

its pressure derivative has been found to be 17.26 Å3/formula unit, 34.2 GPa, and 3.61 as 

compared to the experimental values [65] of 17.02 Å3/formula unit, 32.2 GPa, 3.53, 

respectively. Other physical parameters such as bulk sound velocity of 6.48 km/s, the 

shock  parameter of 1.15, the Debye temperature of 828 K and the Gruneisen parameter 

of 1.30 agree well with the experimental data of 6.43 km/s [69], 1.16 [70], 1.2 [69] and 

810 K[71], respectively. The elastic constants C11, C12 and C44 of B1 phase at zero 
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pressure are calculated to be 77.0 GPa, 12.7 GPa and 48.2 GPa as compared to the 

experimental values of 74.06 GPa, 14.2 GPa and 48.43 GPa [69], respectively. The 

variation of elastic constants and elastic anisotropy with pressure was determined and the 

polycrystalline elastic moduli have also been calculated. Calculations are further 

extended to determine the phonon spectra of B1 phase of LiH as a function of 

compression up to 120 GPa [72]. The phonon spectrum calculated at zero pressure is in 

agrees reasonably with the experimentally measured data [65, 73-74].  The X-point 

phonon frequencies calculated at various pressures up to maximum of 120 GPa have been 

compared with the available experimental data [65]. 

The third chapter of the thesis is devoted to the analysis of structural stability, and 

determination of equation of state and elastic properties as a function of hydrostatic 

compression for MgO, a geophysically important material. To analyze the structural 

stability, the total energy calculations have been carried out on the B1, B10 and B2 

structure of MgO and enthalpy has been determined as a function of pressure. The 

comparison of enthalpies of B1, B10 and B2 phases suggests the B1 to B2 structural 

transition at ~ 535 GPa, in line with the available theoretical findings [57-64]. The 0 K 

energy-volume relation in conjunction with thermal corrections has been utilized to 

derive the isotherm, isentrope and Hugoniot of this material. A good agreement has been 

found between the theoretically determined isotherm, isentrope and Hugoniot with the 

experimental data [75-80]. The theoretical investigations have been further extended 

beyond the hydrostatic conditions and the elastic moduli of MgO single crystal have been 

determined as a function of strain for uniaxial loading along [001] crystallographic 

direction under two deformation configurations “uniaxial stress condition” and “uniaxial 

strain conditions”, respectively. The ideal failure strengths for compression and 

expansion under these two deformation configurations have been determined by 

examining the elastic stability conditions throughout the deformation path. It may be 

noted that the uniaxial stress condition is commonly encountered in quasistatic 

experiments, however, the uniaxial strain condition exists in high strain rate experiments 

e.g. uniaxial compression and expansion generated in shock wave experiments. The 

determination of elastic moduli as a function of [001] strain and examination of the 

elastic stability condition at each strain suggested that for [001] uniaxial expansion, the 
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MgO single crystal will fail due to vanishing of tensile modulus, whereas it will fail due 

to shear instability under uniaxial compressive loading. The ideal compressive strength 

and ideal tensile strength for compressive and tensile loading along [001] direction under 

uniaxial strain condition are determined to be ~ -283 GPa and ~ 20 GPa, respectively; the 

same under uniaxial stress condition are evaluated to be ~ -115 GPa and ~11 GPa, 

respectively. These findings suggest that the ideal compressive and tensile strength of 

MgO single crystal is higher for uniaxial strain condition than that for the uniaxial stress 

condition. 

The fourth chapter presents the theoretical high pressure investigations on LaN. 

Unlike the LiH and MgO, this material is experimentally reported [66] to undergo 

pressure induced phase transition from B1 phase (high symmetry cubic structure) to a 

tetragonal (B10) phase (low symmetry structure named as HP-LaN by authors) at ~ 22.8 

GPa. Whereas theoretical studies [55-56] prior to this experimental work have not 

included the tetragonal structure in their calculations and predicted the B1 to B2 phase 

transition in this material. We analyzed the structural stability of this material under 

hydrostatic compression by performing total energy calculations on B1, B2 and B10 (HP-

LaN) structures. The present theoretical calculations suggest the B1 to HP-LaN transition 

at ~ 19 GPa as compared to the experimental value of 22.8 GPa [66]. Further, we predict 

that the HP-LaN phase transforms to B2 phase at ~ 169 GPa. While the B1 → HP-LaN 

transition is of first order in nature with 9% volume discontinuity, the HP-LaN → B2 

transition is of second order in nature. To understand the cause for the existence of lower 

symmetry HP-LaN phase (a distortion of the B2 structure) prior to the stabilization B2 

structure at higher pressures, we have analyzed the band structures of HP-LaN and B2 

phase. Our analysis suggests that the low symmetry HP-LaN phase could be stabilized at 

lower pressure due to symmetry breaking lowering of total energy. 

 

The fifth chapter reports the experimental measurements of the tensile fracture 

strength and yield strength of polycrystalline copper subjected to uniaxial loading at 

strain rates of ~ 104/s, generated in shock wave experiments carried out using single stage 

gas gun existing in our laboratory at BARC [81]. Additionally, the sample retrieved from 
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peak shock loading of ~ 10 GPa are analyzed using nanoindentation technique to look for 

shock induced changes in its hardness and Young’s elastic modulus. The yield strength 

and spall strength of 0.14 GPa and 1.32 GPa, measured at strain rates ~ 104/s from free 

surface velocity history measured using VISAR are higher by a factor of ~ 2.0 and 6, 

respectively, than the quasi static loading values. Further, the nanohardness and the 

Young’s modulus have been determined to be 1.43 GPa and 239 GPa, respectively from 

the indentation method as compared to 1.21 GPa and 185 GPa for as-received sample. 

This signifies that the hardness and Young’s modulus increases upon shock treatment on 

material.  

The thesis will be concluded in the sixth chapter giving a discussion and summary 

of the overall work presented followed by further research scope open in the present 

field. 
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Chapter - 1 

Introduction 
 

1.1 Preface 
 

Understanding the response of materials at high pressures is of interest not only 

from basic science point of view but also in applied sciences [1-6]. Pressure is a 

thermodynamical variable which can reduce the volume of condensed matter by more 

than a factor of two and thus can be taken as an independent parameter in the equation of 

state (EOS) of a material. The application of pressure on materials can bring various 

interesting changes such as the structural phase transformations, solid to liquid 

transitions, metal to insulator transitions, etc. Apart from these transitions sometimes the 

pressure induced mechanical instabilities can lead to simply fractures in the materials. 

Pressure can be applied on materials either isothermally or adiabatically. The isothermal 

pressurization condition is achieved in static compressions, e.g., in experiments using 

diamond anvil cell, whereas, the adiabatic pressurization condition exists in high strain 

rate compressions (dynamic compressions), e.g., in shock compression experiments using 

gas guns or lasers and in isentropic compressions employing lasers or magnetic flux 

compression technique.  The above mentioned pressures driven changes in materials are 

not only dependent on the amplitude of the applied pressure but also on the rate of 

application of pressure or equivalently on the strain rates.  

 

The above mentioned two methods of pressurization i.e., static compression and 

shock compression differ significantly in nature. In the static compression technique [4], 

material is squeezed slowly; hence, temperature inside the sample during the experiment 

remains constant. To some extent, in static method one can compress the material 

hydrostatically by compressing the sample in the environment of a suitable (fluid or gas) 

1



 

pressure transmitting medium [4,7]. On the other hand, in shock compression methods, 

materials are compressed uniaxially with very high rate of pressurization (rise times ~ 

few tens of nanoseconds). The rapid compression increases the internal energy and 

temperature of the specimen. The irreversible sudden compression also increases the 

entropy of the system. Under static compression, the pressure can be held as long as we 

desire, however, in shock compression the duration of pressure pulse (of order of few 

microseconds) depends on the dimensions of the sample. Unlike the hydrostatic 

compression, the shock loading is always accompanied by the shear stresses which may 

induce phase transitions that are not observed under hydrostatic loading. For example, in 

tantalum (Ta) the body centred cubic (β) phase is found to be stable under hydrostatic 

compression up to 170 GPa whereas under shock loading it transforms to three atom 

hexagonal (ω) phase at ~ 45 GPa [8-10].  

 

One of the important pressure induced changes in material behaviour observed is 

phase transitions.  Some of the interesting pressure induced phase transitions under static 

compression are metallization of oxygen at ~ 96 GPa [11-12], metal to insulator 

transition in sodium at ~ 200 GPa [13], wide-bandgap, even-valence insulator to metal 

transition in silicon at ~ 90 GPa [14]. Apart from these pressure induced transitions, the 

hcp → three atom hexagonal (ω) → bcc (β) structural transformation in group IV 

transition metals Zr and Hf observed under static as well as shock compressions [15-22] 

are also interesting from applied as well as basic science point of view. The interesting 

high symmetry β to low symmetry ω phase transition in tantalum and Zr-20%Nb alloy 

has been reported to occur around ~ 45 GPa and ~ 15 GPa, respectively, under shock 

loading [9-10,23], whereas, the same transition does not occur under static compression 

[8, 23]. The discovery of such pressure induced phase transitions in materials has added 

new dimensions to the understanding of behaviour of materials under high pressure. For 

example, the occurrence of hcp → ω → β structural phase transition in Ti, Zr and Hf 

under high pressure has been attributed to the transfer of electrons from filled s-band to 

the partially filled narrow d-bands and their distribution in various d-substates [24-26]. 

The knowledge of this structural sequence under pressure and its correlation with electron 
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transfer from s-band to d-band has added a new understanding in basic physics of 

transition metals and their alloys.  

 

Apart from pressure induced phase transitions, the high pressure equation of state 

(EOS), e.g., isotherm, isentrope and Hugoniot also play key role in complete 

characterization of material state under pressure. The knowledge of EOS is a vital input 

to the computer hydrodynamic codes used for the simulations various situations such as 

the wave propagation in geological media, reactor accidents, fission/fusion energy 

systems and in the analysis of many problems pertaining to geophysics, astrophysics and 

planetology [1, 2]. Similarly, knowledge of the pressure dependent elastic constants of 

materials can be utilized to examine mechanical stability as a function of pressure, to 

determine the pressure effect on melting, Debye temperature, sound velocity, Gruneisen 

parameter etc [27-29]  

 

The mechanical failure strength especially the yield strength and the spall strength 

of materials is of practical interest. The failure strength of a material is dependent on the 

binding energy and the defects and dislocation present in the material. In a perfect solid, 

the failure strength is solely dependent on its binding energy; however, in case of a 

practical solid the failure strength strongly depends upon the defects and dislocations 

present in it. Beside the defects and dislocation, the failure strength of materials also 

depends on the rate at which the strains are applied [30-31]. In fact, it has been observed 

experimentally that the failure strength of a material measured under quasistatic loading 

differs significantly from that measured under high strain rate conditions [30-33].  This 

suggests that the knowledge of strength properties merely at quasistatic loading 

conditions is not sufficient when the suitability of a material for applications involving 

high strain rates has to be decided. For example, analysis of structural response of a 

material subjected to high strain rate loading conditions occurring during the propagation 

of seismic waves through geological media and the fracture and fragmentation at high 

velocity impact needs the failure strength at high strain rate as input.  
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In view of the key role played by pressure induced structural phase transitions, 

high pressure EOS, shock Hugoniot, pressure dependent elastic constants and strength of 

materials, it is important to determine these properties for understanding the several 

aspects of the material behavior under high pressures. The present thesis deals with such 

studies carried out on NaCl type structured (B1 Phase) binary compounds LiH, MgO and 

LaN. The thesis is planned as follows: 

 

The present chapter provides the outline of the work to be presented in the 

subsequent chapters along with the current status of high pressure research including the 

basics of high pressure, the methods of generation of high pressure and various diagnostic 

techniques utilized for determining the behavior of the materials under pressure. Also 

discussed are the theoretical methods (ab-initio calculations) available to simulate the 

high pressure state of the materials. 

 

The second chapter presents the detailed ab-initio theoretical investigations 

carried out on LiH under pressure. Under high pressure, because of the quantum 

influence of proton and increasing interaction of core electrons of neighboring atoms, this 

material is expected to display interesting behavior such as the transitions to low-

symmetry phase, metal-insulator transition, etc [34]. Thus, ab-initio calculations at 0 K 

have been performed on the plausible phases of LiH and structural stability has been 

analyzed. The theoretical analysis predicts that the B1 phase of LiH will transform to 

CsCl type structure (B2 phase) at ~ 327 GPa. Various thermophysical properties e.g. 

Gruneisen parameter, Debye temperature, Hugoniot parameter etc., at ambient condition 

have been calculated and compared with available experimental and theoretical data. The 

variation of elastic constants and elastic anisotropy with pressure was determined and the 

polycrystalline elastic moduli have also been calculated. Calculations have further been 

extended to determine the phonon spectra of B1 phase of LiH as a function of 

compression up to 120 GPa [35]. The X-point phonon frequencies calculated at various 

pressures up to maximum of 120 GPa have been compared with the available 

experimental data [34]. 
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The third chapter of the thesis provides the detailed account of the theoretical 

investigation on MgO. MgO having B1 structure at ambient conditions is a geophysically 

important material [36] and used as pressure standard in diamond anvil cell (DAC) based 

high pressure experiments. Apart from this, MgO is potentially suitable candidate for use 

as a window material in shock wave experiments [37]. Therefore, analysis of its 

structural stability, determination of equation of state and strength properties is of 

practical importance. The chapter presents the analysis of the structural stability under 

pressure followed by the determination of 300 K isotherm, isentrope and Hugoniot of this 

material and comparison with available experimental data [38-46]. The structural stability 

analysis predicts that the B1 phase of this material will transform to B2 structure at ~ 535 

GPa. The calculations have been extended beyond the hydrostatic compression 

conditions and ideal failure strength has been determined for two different uniaxial 

loading conditions, e.g., ‘uniaxial strain condition’ and ‘uniaxial stress condition’ along 

[001] crystallographic axis. For this purpose the elastic moduli of MgO single crystal as a 

function of compressive as well as tensile strain has been determined for two different 

loading conditions and ideal failure strength is determined by examining the elastic 

stability criterion at each strain for compression as well as in the expansion.  

 

Another binary system chosen for theoretical investigation is rare earth 

mononitride LaN, which also like LiH and MgO exists in B1 phase at ambient conditions. 

Earlier theoretical investigations [47-48] have predicted B1 to B2 structural phase 

transition in material also under pressure, however, recent DAC based high pressure 

experimental study [49] has reported that at ~ 22.8 GPa, this material, instead of 

transforming to B2 phase goes to a lower symmetry primitive tetragonal structure (B10) 

named as HP-LaN by authors. The fourth chapter of the thesis presents the theoretical 

investigation on structural stability of LaN under high pressure. The comparison of total 

energies of B1, B2 and B10 (HP-LaN) structures as a function of hydrostatic compression 

suggests that the B1 phase will transform to B10 structure at ~ 25.8 GPa which will 

further transform to B2 structure at a pressure of ~ 169 GPa. The stability of B10 phase 

has been tested for LiH and MgO and it has been found that this structure remains 

unstable even up to a few Mbar pressures. To understand the cause for the existence of 
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lower symmetry B10 phase (a distortion of the B2 structure) in LaN prior to the 

stabilization B2 phase at higher pressures, we have analyzed the band structures of B10 

and B2 phase. Our analysis suggested that the low symmetry B10 phase could be 

stabilized at lower pressure due to lowering of total energy by symmetry breaking. 

 

As already mentioned, in many applications, such as hypervelocity impacts and 

armor applications, the generated strains are dynamic in nature with very high strain rates 

ranging from ~ 104/s to 109/s. The yield strength and fracture strength are different for 

such high strain rates than those in static measurements. So, it is of practical importance 

to determine these properties under high strain rate conditions. Experimentally, it is 

possible to measure the dynamic yield strength (yield strength at high strain rates) and 

dynamic fracture strength (or spall strength) of materials using properly configured shock 

wave experiments [30, 50] in conjunction with interferometric technique known as 

velocity interferometer system for any reflector (VISAR) [51]. Shock wave experiments 

on polycrystalline copper have been performed to determine the dynamic yield strength; 

spall strength of this material at strain rates of ~ 104/s. Fifth chapter of thesis discusses 

the results of experimental measurements of these mechanical properties on 

polycrystalline copper.  

 

The last chapter of the thesis will summaries and conclude the overall work 

presented in the thesis. The summary and conclusion will be followed by the further 

research scopes open in these areas.  

 

With this outline of the work to be presented in the subsequent chapters of the 

thesis, the following sections of the this chapter give the present status of the high 

pressure research which includes the brief description of currently available experimental 

methods for generating high pressures in materials, various diagnostic techniques used to 

characterize the materials under high pressures and modern theoretical methods for 

understanding response of material under pressures.  

6



 

1.2 Methods of High Pressure Generation  

 

High pressures in materials can be generated experimentally in methods which 

can broadly be categorized into two types depending on the rate at which strain is 

generated in the sample, namely static compression and dynamic compression. As has 

already been stated, in static compression method, a very small sized sample along with a 

material used for measuring the pressure generated in the sample is encased in a gasket 

material and the whole system in compressed between two opposed diamonds (in DAC 

experiments) mechanically in very slow process so that the isothermal condition in the 

sample can be achieved. On the other hand, in dynamic compression method, a large 

amount of energy is imparted in the material in very short period of time using a sub-

microsecond pressure pulse propagating through a material with super-sonic speed called 

shock wave. Here, evidently the material gets compressed adiabatically and temperature 

increases due to sudden deposition of large amount of energy in very short period of time. 

The following sub-sections give a brief account of these two techniques: 

 

1.2.1  Static Compression  

 

1.2.1.1  Methods of Static Compression 

 

Static compression technique was first introduced by Nobel Laureate P. W. 

Bridgman. He built the piston-cylinder device where the sample is compressed in a 

cylinder by two opposed pistons [52]. This basic apparatus was improvised later. This 

was followed by the invention of Bridgman anvil cell where the material under 

examination is sandwiched between two anvils of tungsten carbide material. Electrical 

resistivity measurement and compressibility measurement can be carried as a function of 

pressure up to few GPa using this apparatus. The quest for still higher pressures led to the 

invention of the diamond anvil cell (DAC) [52-58] working with the same principle as 
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the Bridgman cell; the only difference being the material used for the anvils is the hardest 

material known so far. The sample, here, is squeezed between two opposing single 

crystals of diamond. Various diagnostic techniques used to analyze the state of sample 

under high pressure include the measurement of electrical resistance, Mossbauer 

spectroscopy, x-ray diffraction, Raman and Brillouin spectroscopy, optical absorption 

spectroscopy etc.  

 

The schematic diagram of DAC is shown in Fig. 1.1. As shown in figure the DAC 

set  up  consists  of  mainly  four  parts. The  first component  is  the  pressure  generating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic diagram of diamond anvil cell (DAC) with its basic components.  
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system which can be a lever arm, tightening screws or pneumatic or hydraulic pressure 

from a pressurized gas bottle applied to a membrane. For all cases the forces generated on 

the diamonds are of uniaxial type. Second component is the flawless, gem quality 

diamonds on which pressures are applied by the pressure generating devices. The culets 

of the diamonds face each other and they are adjusted to be parallel otherwise the triaxial 

strains will break the diamond. Third part of the system is the gasket which is a metallic 

plate on which first a small indent is made on it by pressurizing the gasket with 

diamonds. Then, a small drill of few micron diameters is made almost middle of the 

indent. This small hole is filled up with a pressure transmitting medium (fourth 

component of DAC) which is a fluid to generate hydrostatic pressure in the sample. A 

few microgram samples along with a small chip of pressure marker material are 

immersed in this pressure transmitting medium. When uniaxial load is applied over the 

diamonds, the pressure transmitting medium surrounding the sample produces hydrostatic 

pressure on the sample.  

 

As pressure is increased the pressure transmitting medium starts getting solidified 

above certain pressure. As long as the shear strength of the solidified pressure 

transmitting medium is low enough, the compression is close to hydrostatic and named as 

quasi hydrostatic but when shear strength increased significantly the compression no 

longer remains to be hydrostatic. The commonly used pressure transmitting mediums in 

DAC are 4:1 methanol-ethanol mixture and some inert gases like Xe, Ar, He and H2 [4]. 

The methanol-ethanol mixture remains hydrostatic up to 10.4 GPa; addition of small 

amount of water (methanol:ethanol:water :: 16:3:1) takes this hydrostatic range to 14.5 

GPa, however, the gases Xe, Ar, He and H2 are used upto higher pressures of ~ 100 GPa. 

Though it is believed that using Xe, He and H2 as pressure transmitting media it is 

possible to maintain hydrostatic condition up to ~ 100 GPa [4], the recent high pressure 

work  report that it not possible to maintain truly hydrostatic condition at pressures higher 

than ~ 15 GPa because none of the pressure transmitting medium remain fluid above this 

pressure [56]. The DAC developed by Mao and Bell can generate static pressure of about 

200 GPa in samples [57-58].  Still higher pressures of more than 500 GPa are reported to 

be achieved by using improved DAC [59]. An advanced version of DAC where screw - 
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spring mechanism of conventional DAC is modified by attaching a motor driven gearbox 

to the system has been developed by Mao and Mao [60] and pressure of ~ 230 GPa has 

been generated in the Pt sample using this instrument. Recently, Evans et al. [61] have 

developed an apparatus named as dynamic DAC which applies a time dependent load to a 

sample. This instrument, which is a modified version of conventional DAC comprises a 

DAC coupled with piezoelectric actuators that derive a load supplementing the main load 

provided by the load screws of conventional DAC. It is capable of generating repetitive 

time dependent load/strain with loading rates of ~ 500 GPa/s and strain rates of ~ 0.16 /s 

in the sample. This instrument is useful for understanding the kinetics of phase transitions 

at such small strain rates which are inaccessible in shock wave experiments. Very 

recently, using the micro-semi-balls of nano-crystalline diamonds is used as second stage 

of conventional diamond anvil cell and this extends the achievable pressure in this device 

to above 600 GPa [62].  

 

The measurement of pressure generated in the sample due to static compression is 

carried out using either the internal pressure markers or pressure dependence of ruby 

fluorescence. In first method the pressure generated in the sample is determined by 

adding internal pressure marker material (whose EOS is known) such as Cu, Mo, Pd or 

Ag with the sample in DAC [4]. The compression generated in the sample and pressure 

marker material is determined from collected x-ray diffraction data of sample and 

marker. The corresponding pressure in the sample is then inferred from the known EOS 

of marker material.  In the second method the pressure dependence of the shift of the R1 

(6927 Å) line of Ruby fluorescence is used to determine the pressure generated in the 

sample at a given compression [4]. The calibration of ruby fluorescence pressure scale 

for this purpose is carried out using isothermal EOS of standard substances derived from 

shock wave experiments [4]. The calibration so obtained relates the pressure and the shift 

in R1 line as follows [63]: 

 

        (1.1) 
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where Δλ is the ruby R-line shift (= 0.365 Å/kbar) and A = 19.04 Mbar and B = 

7.665. 

 

The high pressure experiments using DAC can be conducted not only at room 

temperature but also at low as well as elevated temperatures. For low temperature 

experiments the DAC is immersed in the cryogenic fluid directly to gain the low 

temperature or cryogenically cooled system with the thermocouple arrangement are used 

[64]. To study high pressure behavior of materials at elevated temperatures, DACs are 

equipped with heating arrangements. Two techniques used to generate high temperature 

in the sample are resistive heating and laser heating [65-67]. The first laser heated DAC 

(LHDAC) introduced by Ming and Bassett had the capability to generate sustained 

temperature up to  2000º C and 3000º C using two different type of laser and pressures 

up to ~ 26 GPa [68]. New LHDAC can be used to understand the high pressure behavior 

of materials above 350 GPa in conjunction with temperature in excess of 5500 K [65]. 

This kind of LHDAC instrument is useful for understanding the state of material in the 

high pressure-high temperature conditions existing in the interior of the earth. 

 

1.2.1.2 Diagnostic Techniques in Static High Pressure 

Experiments 

 

In the high pressure experiments carried out using DAC set up the pressures in the 

sample can be held as long as one desires. This makes online characterization of 

pressurized sample in DAC easier than that in shock wave experiments. Various 

microscopic techniques such as x-ray diffraction [69], inelastic x-ray spectroscopy [70], 

extended X-ray absorption fine-structure (EXAFS) [71], X-ray fluorescence (XRF) [72], 

Mössbauer spectroscopy (SMS) [73], nuclear forward and inelastic scattering (NFS and 

NIS) [74], neutron diffraction, Raman scattering, IR scattering and Brillouin scattering 

[4, 75-81] are commonly used for online characterization of the pressurized sample in 

DAC. 
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The x-ray diffraction technique in DAC has made significant advancement in past 

few decades. As the sample size is very small (of the order of few microns) in DAC, for 

sufficient scattering from the sample high brilliance of x-ray is required. The birth of 

synchrotron radiation sources around the world has added new dimensions to the x-ray 

diffraction technique.  The first synchrotron radiation beam was seen in General Electric 

Research Laboratory in Schenectady, New York on 1947 by Elder et al. [82]. Earlier, the 

synchrotron radiation generated by the moving particles in accelerators built for high 

energy particle physics was unwanted byproduct as more energy was needed to be 

pumped to overcome this leak and continue particle move with desired velocity(first 

generation of synchrotron source) [83]. Later, the analysis of this radiation revealed that 

it has very useful properties to be employed as probe for material research. These particle 

accelerators served as the second generation synchrotron sources. The second generation 

synchrotron sources produce dedicated x-rays by using bending magnets that keeps the 

electron beams moving in a circle. The third generation synchrotron sources were built by 

fitting second-generation sources with insertion devices such as undulator and wiggler 

magnets for optimization of the brightness. Wigglers can create a broad intense 

incoherent beam whereas; undulator can give narrower coherent beam. Fourth generation 

of synchrotron source is under construction for producing ultra brilliant, pulsed time-

structured x-rays. The European Synchrotron Radiation Source (ESRF), Hamburger 

Synchrotronstrahlungslabor (HASYLAB), the Advanced Light Source (ALS) at 

Berkeley, the Japanese source SPRING-8 and National Synchrotron Light Source 

(NSLS) at Brookhaven National Laboratory are examples of some of the third generation 

synchrotron sources. The high brilliance ( ~ 103 -104 times more brilliant than the beams 

from conventional x-ray machines) along with tunability of wavelength of the x-rays, to 

control their polarization, and to choose between a single wavelength or a range of 

wavelengths makes this radiation an excellent probe for diverse systems such as normal 

and magnetic materials, biomolecules, polymers allowing to explore phase diagram, 

chemical reactivity, properties of elements and compounds  [54]. The high brilliance of 

synchrotron radiation makes it a very powerful tool for characterizing the low Z elements 

(e.g. H2, Li) or materials composed of low Z elements (e.g. hydrogen storage material 

NaBH4) and quantitative analysis of phase composition specially for phases present in 
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extremely low concentration < 1%. For example, in Li the occurrence of new 

rhombohedral phase and cubic polymorph with 16 atoms per unit cell under high pressure 

could be confirmed through sufficiently intense synchrotron radiation diffraction (SRD) 

[84]. In nominal high purity α-alumina ceramic, the SRD could clearly establish the 

presence of trace levels of β- alumina and anorthite (CaAl2Si2O8), which was 

inconclusive from conventional x-ray diffraction [85]. Thus, now-a-days, the SRD has 

replaced the conventional x-ray diffraction for the on-line measurement in DAC. The 

synchrotron radiation has been used for Mossbauer spectroscopy also, e.g.,  detection of 

the antiferromagnetic to paramagnetic transition in SrFe2As2 at 4.2 GPa and 13 K of 

temperature could be done through Mossbauer spectroscopy using SRD [64]. Also for the 

same powder sample at 13 K temperature the angle dispersive synchrotron XRD shows 

orthorhombic phase below 4 GPa and tetragonal structure above 6 GPa.  

 

The detection of pressure induced structural phase transitions and determination 

of their mechanisms is carried out by performing x-ray diffraction; Raman or IR 

spectroscopy in the compressed state, and electron diffraction and electron micrography 

measurements on samples retrieved after pressurization. The continuous monitoring of 

the evolution of the new structure in the sample material in DAC experiments through x-

ray diffraction or Raman and IR spectroscopy is carried out in online mode as a function 

of applied pressure. On-line Raman measurement is also used to measure the ruby 

fluorescence and thereby measuring the stress on the diamonds and the sample. 

Vibrational spectroscopy gives vital information on the behavior of ice, in particular, the 

evolution of hydrogen bonds.  Further, infrared reflectance spectra determined using  

synchrotron source have also been utilized to infer about phase transition in materials 

under pressure, e.g., Goncharov et al. [86] have reported a phase transition in ice at 60 

GPa (70 GPa in D2O ice) on the basis of infrared reflectance spectra determined 

employing synchrotron source. Further, the in-situ measurements are useful to detect the 

reversible phase transitions in the materials e.g. reversible cubic to amorphous phase 

transitions in negative thermal expansion materials ZrMo2O8 and HfMo2O8 [87], 

scheelite phase to fergusonite phase transition in BaWO4 [88], etc. The electron 
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microscopy measurements are useful for not only to detect the pressure induced 

irreversible phase transitions but also to determine the lattice correspondence between the 

parent and product phases, which in turn is used to understand the mechanism of the 

phase transition. For example, the lattice correspondence between the parent α (hcp) 

phase and product ω phase derived from electron diffraction patterns obtained from 

partially ω (three atom simple hexagonal) transformed samples of group IV transition 

elements and their alloys subjected to high static and dynamic pressures has been used to 

understand the mechanism of this transition [15, 89-95]. 

 

In addition to these microscopic techniques, the macroscopic method of electrical 

conductivity measurements is very useful in detecting the pressure induced phase 

transitions, e.g. in Ti and Yb through continuous monitoring of the electrical resistances 

under pressure, Singh [96-97] has not only detected the α → ω transition in Ti and fcc → 

bcc transition in Yb but also investigated the kinetics of these transitions.  

  

Apart from determining structural phase transformations, phase diagram, reaction 

kinematics etc., experiments carried out on DAC in conjunction with synchrotron 

technique can map melting line by direct observation of melting as well as the dynamic 

insight of the melting phenomena. Melting can be probed in DAC using various methods: 

(a) observing changes in the sample surface by laser speckle technique [98]; (b) changes 

in the resistivity of the sample during heating [99]; (c) changes in the absorption of laser 

radiation [100]; (d) heating sample to a specific temperature and observation of visual 

changes after experiments [101]; (e) in-situ XRD technique to observe the diffuse 

scattering from liquid phase [102].  

 

Using the high pressure-high temperature condition in the DAC, new materials 

have been synthesized many of which such as diamond and the cubic boron nitride (c-

BN) have industrial importance [103]. Many noble metals nitrides such as PtN2, IrN2, and 
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OsN2 have been synthesized by varying the pressure temperature condition and 

controlling the reaction pathways in the DAC [104-106].  

 

1.2.2  Shock Compression Techniques 

 

The shock compression methods of pressure generation which differ significantly 

from static compression method are also important as these are utilized to explore the 

different regimes of EOS surface which cannot be accessed in static compression 

experiments using DAC. The following subsections give the basic concepts of generating 

positive pressure (compressive stress) as well as negative pressures (tensile stress) in 

shock wave experiments. Also described are various methods of shock wave generation 

and diagnostic techniques used in shock experiments.  

 

1.2.2.1  Basic Concepts of Shock Compression  

 

A sudden deposition of high energy on a material by some means can generate an 

impulse of compression in the material which when traverses in the material with 

supersonic speed producing near-discontinuous changes in density and pressure across 

the wave front, a shock wave is said to be generated in the material. The shock front 

discriminates the material into two parts – the shocked and the un-shocked region across 

which various physical properties, such as density, pressure, temperature etc change 

abruptly. The temperature in dynamic compression can be tuned by varying the rise time 

of the pressure pulse. Highest temperature can be generated in the case of single-shock 

wave; whereas, the lowest temperature can be achieved in the isentropic process. The 

formation of shock wave in a medium can be understood as follows: 

 

Consider a plate impact experiment where a moving plate (flyer) impacts a 

stationary plate (target) so that a linear shock wave travels through these plates. When the  
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Figure 1.2: (a) Hypothetical broad stress wave profile at time = t0. The length of the 

vector indicates the speed of the point in the profile, which increases with stress at that 

point. (b) At later time t1 the wave front attains a finite constant width (τs) due to 

balancing of sharpening effect caused by non linearity and spreading effect from 

viscosity and thermal conductivity of material. Hence a steady shock wave with constant 

front width (τs) propagates into the material.  
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plates comes in contact of each other, a compressive disturbance propagates in the 

interior of the plates as a stress wave as shown schematically in Fig.1.2. Suppose that 

initially (at time t = t0) the stress wave profile is broad as in Fig.1.2a. Every point in this 

profile travels with a velocity 

pUC
dt
dx

+=          (1.2) 

 

where C and Up denote the sound velocity and the material velocity, respectively, at 

pressure P. As, C and Up are pressure dependent, the point near the crest will travel faster 

than the point far from the crest as the pressure increases towards crest. Thus, starting 

from foot to the crest of the profile the velocity goes on increasing (as shown by the 

vectors in Fig 1.2a) and with time this difference in velocity will sharpen the wave front. 

This sharpening effect arising due to dependence of sound speed on amplitude of 

pressure is opposed by the spreading effects due to viscosity and thermal conductivity of 

the material.  Hence at some point of time t = t1, when the two opposing effects start 

balancing each other the steady shock wave front with finite constant width (Fig. 1.2b) 

propagates in to the material. 

 

For a steady shock wave the conservation of mass, momentum and energy across 

the shock wave front can be written as a set of differential equations [107-108], which 

lead directly to three Rankine-Hugoniot relationships between the specific volume V, the 

stress (shock pressure) P, the particle velocity Up, the shock velocity Us and the specific 

internal energy E (the zero subscript in these variables corresponds to the initial phase 

that is the unshocked state). These three conservation equation can be derived as follows:  

 

Suppose a material is contained in a cylinder of cross-sectional area A. One end of 

the cylinder is open, but the other is closed by a piston that is in contact with the material. 

Initially, as shown in Fig. 1.3a, the system is at rest. Suppose that at time t = 0, the piston 

impulsively acquires the finite velocity Up in the x-direction. Then it instantly begins to 
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drive the material to the right at the same velocity Up. This is accomplished by a shock 

wave that instantly appears on the face of the piston and propagates into the material with 

the finite velocity Us > Up (see Fig. 1.3b). As Us is finite, the material to the left of the 

shock wave moves at the velocity Up, but the material to the right of it remains at rest. 

The equations for conservation for mass, momentum, and energy can now be derived as 

follows. It is assumed for simplicity that the system has adiabatic walls, that body forces 

such as gravity and electromagnetism are negligible and that there is no heat transfer by 

radiation across the shock.  

Conservation of Mass 

After unit time the piston has moved a distance Up and the shock a distance Us. 

During that time the shock compresses a mass of the material from its initial volume AUs 

to A(Us - Up). The density therefore increases from initial ρ0  to ρ, so the conservation of 

mass demands that, 

ܣ ௦ܷߩ଴ ൌ ሺܣ  ௦ܷ െ ܷ௣ሻߩ 

,ݎ݋ ௦ܷߩ଴ ൌ  ሺ ௦ܷ െ ܷ௣ሻ(1.3)        ߩ 

 

Figure 1.3: Shock wave generated by the impulsive motion of a piston. (a) Initial state at 

rest; (b) state in unit time after the piston had acquired velocity Up impulsively. 

ρ0 , P0 ρ0 , P0

ρ , P , Up ρ0 , P0

Up Us ‐Up
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Conservation of Momentum 

The piston applies a driving force (P - P0)A to the material, causing it to acquire a 

momentum per unit time of  ሺߩ଴ ௦ܷܣሻܷ௣ Then from conservation of momentum, 

ܲ െ ଴ܲ ൌ ଴ߩ  ௦ܷܷ௣        (1.4) 

 

Conservation of Energy 

The compressive work that the piston does on the material in unit time is PAUp. 

The energy gained by the material in unit time is the sum of the kinetic ଵ
ଶ

ሺߩ଴ ௦ܷܣሻܷ௣
ଶ and 

the internal energy ሺߩ଴ ௦ܷܣሻሺܧ െ  ଴ሻ. Thus by conservation of energyܧ

ܷܲ௣ ൌ ଴ߩ ௦ܷሺ
1
2 ܷ௣

ଶ ൅ ܧ െ  ଴ሻܧ

,ݎ݋ ܧ െ ଴ܧ ൌ  ଵ
ଶ

 ሺܲ ൅ ଴ܲሻሺ ଴ܸ െ ܸሻ      (1.5) 

Further, the following useful relationships can be deduced from Eqns. (1.3) and (1.4): 

)()( 02
0

2

0 VV
V
U

PP S −=−        (1.6) 

( )( )[ ]VVPPVU p −−= 00
2

0
2        (1.7) 

Under compression the thermodynamic path followed by material while going 

from initial state (P0, V0) to final state (P, V) is Rayleigh line with slope US
2/V0

2 as 

represented by Eqn. (1.6). 

 

Fig. 1.4 displays the Hugoniot along with isotherm and isentrope from the same 

initial state. The blue, green and red curves represent the isotherm, isentrope and 

Hugoniot, respectively, starting from the same initial state (P0, V0). In the case of 

isotherm or isentrope, any final state is achieved following every point on the isotherm or 

isentrope curve from the initial state. In the case of Hugoniot, the situation is different. 

When a shock compresses a material, the material achieves a final pressure-volume state 
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Figure 1.4: Schematic P-V diagram showing the compression curves. The Hugoniot lies 

above the isentrope which lies above the isotherm. For isentrope and isotherm, the 

thermodynamic path coincides with the locus of state. For Hugoniot which is the locus of 

shock states, the thermodynamic path is a straight line (Rayleigh line) from (P = 0, V = 0) 

to (P,V) state on the Hugoniot curve. The magenta colured curve is the release isentrope. 

The difference of the  area of  triangle  OAC  and  curved  triangle  under  release 

isentrope represents the heat deposited on the terminal material. In other words, the 

irreversible heating of the sample is equal to the difference between purple shaded areas 

below and above the Rayleigh line (Fig. 1.4). This irreversible heating of the material 

causes increase in its entropy. 
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A (P, V) from its initial state O (P0, V0) through the Rayleigh line as thermodynamic path 

(Fig. 1.4). Thus the successive states on the Hugoniot cannot be obtained one after 

another by a shock process. The Hugoniot is, thus, constructed from some initial state O 

(P0, V0) by carrying out different shock wave experiments to achieve different final 

pressure-volume state and then joining those final shocked states with the initial state. In 

other words, the Hugoniot of a material is the locus of all the equilibrium states that can 

be achieved from a given initial state, but the successive states along which cannot be 

achieved one from another by a shock process. 

 

The process of shock compression is irreversible in nature and is accompanied by 

increase in entropy. Also, the temperature of the shock recovered sample is more than 

that of the initial unshocked state. Further, it is clear in Fig. 1.4 if the compression to 

volume V is carried out isothermally, then the increase in internal energy will be the area 

of the curved triangle OBC below the isotherm. However, under shock loading, the 

internal energy deposited on the compressed material is the area of the triangle OAC. The 

difference of the area OAC and OBC corresponds to the heat energy deposited by the 

shock on compressed material, which results in the thermal pressure. It may be noted that 

a small fraction of supplied energy goes in to generation of defects also. Fig. 1.4 clearly 

shows that with increasing compression, more and more energy goes into generation of 

thermal pressure. After passage of the shock, the material unloads through the release 

isentrope as shown in the Fig. 1.4 (orange line). 

 

The relation between shock velocity (Us) and particle velocity (Up) also gives 

Hugoniot in the Us - Up plane as it can be drawn in the pressure – volume or pressure – 

density plane. An empirical relation between Us  and Up is expressed as: 

....2'
0 +++= pps UssUCU       (1.8) 

where C0 is the bulk sound velocity of the material. It is experimentally observed that this 

relation is generally linear (Fig. 1.5a) for most of the materials which show no phase 

transition up to very high pressures e.g. normal metals like Li, Mo, Au, Os, Ba etc., or for 
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Figure 1.5: Representation of Shock Hugoniot in Us-Up plane for various conditions. 

The Us –Up relation for (a) normal material, material exhibiting decrease or increase in 

compressibility with shock compression, respectively; (b) a material undergoing a phase 

transition to a phase of lower compressibility (this situation can arise due to formation of 

a new electronic configuration of lower compressibility caused by transfer of outer 

electrons to partially filled inner shell at high pressure); (c) first order phase transition 

which are accompanied with volume change under shock compression.  
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those materials which undergo a phase transition to a new phase of same compressibility 

with negligible volume change e.g. thorium, [109-111, 27]. But as displayed in Fig. 1.5, 

in certain situations such as change in the compressibility, melting and first order 

polymorphic transitions under shock compression, Us-Up relation may deviate from 

linearity [109-113]. For example, for V, Nb, Co and Ta, the Us-Up relation is reported to 

be non linear with upward curvature however, the same for Al, Pb, Zn with a downward 

curvature [110-111]. These nonlinear relations between Us  and Up with 

upward/downward curvature have been related to the decrease/increase in compressibility 

due to restructuring of energy spectra of electrons under high pressure and high 

temperature generated in shock compressions [110-111]. In some materials e.g. Gd, Nd, 

Y, Sc the Us-Up relation shows a break with two lines of different slopes (Fig. 1.5b). This 

break in Us and Up curve is attributed to the formation of compact electron configuration 

with reduced compressibility due to transfer of outer s electrons to the inner partially 

filled d shells at high shock compressions [110-111]. For a material undergoing first 

order phase transition the Us-Up relation exhibits two lines separated by a flat region (Fig. 

1.5c)which is due to volume change occurring during transition [109-111, 113]. 

 

The complete characterization of state of material during shock compression 

needs knowledge of five unknowns namely pressure, shock velocity, particle velocity, 

density and internal energy. These five variables are interconnected by three Hugoniot 

relations (Eqn. 1.3 to 1.5) and thus measurement of any two variables suffices the 

complete characterization of state of shocked material. In plate impact experiments, the 

Hugoniot of any unknown target material generally determined using measured Us and 

flyer plate velocity Vp in the impedance match method. The two types of impact 

configurations namely the symmetric impact and asymmetric impact can be used for this 

purpose. In the  symmetric impact  configuration  the flyer plate  and  the  target plate  are 

made of same material; however, in  asymmetric  impact configuration the flyer  plate 

material  is different  than the  target material. In order to use asymmetric impact 

configuration for measurement of Hugoniot of unknown target material, the Hugoniot of 

the flyer plate material must be known. It may be noted that the Hugoniot of a material 

can be represented in P-Up plane also by using the second shock jump condition (Eqn. 
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1.4). In the impedance match method this form of Hugoniot is used. The procedure of 

determination of Hugoniot by employing this method is explained below: 

 

Suppose the experiment is carried out in asymmetric impact configuration. Consider that 

a flyer plate (impactor) of known Hugoniot, traveling at a velocity Vp1 in right direction 

impacts the target at rest (Fig.1.6a). This impact introduces shock waves propagating in 

right direction in target plate and left direction in the flyer plate. Just before the impact, 

the pressure in the flyer plate is P = P0 = 0  and particle velocity is Vp1 in right direction, 
and after the impact, the left traveling compression wave reduces the forward motion (i.e. 

the motion in right direction) of the flyer i.e. with increasing compression the particle 

velocity in right direction reduces, therefore, as shown in Fig. 1.6b, its Hugoniot in P-Up 

plane must be represented by a curve having a negative slope with origin at (0, Vp1) 

which is referred as reflected Hugoniot of flyer material also. The Hugoniot of the target 

which is initially at rest, must have its origin at Up = 0 and P = 0 with a positive slope. It 

is evident from Eqn. (1.4) that the slope of a straight line joining this initial state to the 

final state (P1, Up1) in the target is just ρ0Us1 (the slope of red line in the Fig 1.6b), where 

ρ0 is the initial density of the target. The fundamental property of the impedance match 

method is that both the stress and the particle velocity must be continuous across the 

interface. Hence, the state achieved upon impact must be common to the Hugoniot’s of 

the flyer and target as they are represented in the P-Up plane. This common point can be 

found simply by extending a straight line of slope ρ0Us1, of the target material, until it 

intersects the flyer Hugoniot. As shown in Fig. 1.6b, by performing experiments at 

several flyer velocities say Vp2, Vp3 etc. the unknown Hugoniot of any material can be 

determined. 

 

It may be noted that for a symmetric impact configuration as the material of flyer and 

target plate are identical, the Hugoniot of flyer is a mirror reflection of target Hugoniot 

about the pressure axis plus a translation by Up = Vp1 (the velocity of flyer plate) along Up 

axis. Therefore, the particle velocity Up1 corresponding to final state is simply equal to 

½Vp1. The shock pressure in target plate can be estimated just by substituting the 

measured Us1 and Up1 (=½Vp1) into Eqn. (1.4). 
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Figure 1.6: Impedance matching for Hugoniot determination. (a) A flyer plate attached 

with a sabot is moving at a speed Vp1 strikes a target whose Hugoniot is to be determined. 

(b) Depending upon the impact velocity the origin of the flyer plate Hugoniot is displaced 

to Vp1, Vp2 and Vp3, and the curve is reflected to represent a left traveling shock wave. The 

several Hugoniot points of the target material can be determined from impedance match 

solutions for various impact velocities. The red, violet and brown lines are Rayleigh lines 

which are followed by the target material while going from a given initial state to final 

states achieved after the impact with flyer plates accelerated to velocities of Vp1, Vp2 and 

Vp3. 
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1.2.2.2  Principle of Generation of Negative Pressure in Shock 

Wave Experiment 

 

The shock compression experiments designed properly can generate not only the 

high compressive stresses but also high tensile stresses (negative pressure) in the 

materials [114]. The generation of high tensile stresses and occurrence of fracture in 

solids under shock loading is explained below:  

 

Fig. 1.7 shows the state of the material during shock loading and unloading in a 

plate impact experiment for symmetric configuration (i.e. the target and flyer material are 

identical).  In Fig. 1.7(a) (x-t diagram) the x and t are the distance from the impact surface 

and time after the impact, respectively. The right going shock wave in target takes the 

material from state 0 to state 1 as shown in the P-Up diagram (Fig. 1.7(b)) and its 

propagation is represented by the line OB in the x-t diagram. Similarly, the left going 

shock wave in flyer takes the material from state 3 to state 1 in the P-Up diagram and its 

propagation is represented by the line OA in the x-t diagram.  The reflection of the shock 

wave in target at free surface produces a rarefaction wave represented by a rarefaction fan 

with C-h and C-t as the characteristic of head and tail, respectively. This rarefaction wave 

progressively unloads the material from state 1 to 3. Similarly, the reflection of the shock 

wave in the flyer at free surface results in a rarefaction wave, the propagation of which is 

represented by the family of C+ characteristics. This rarefaction wave releases the 

pressure from state 1 to 0. The interactions of the right going and left going rarefaction 

waves result in various states in material represented by 6, 7, 8, 9, 10 and 11. It is clear 

that the interaction of these rarefaction waves results in negative pressure (tensile stress) 

states in the target material (for example states 7, 8, 9, 10 and 11 in P-Up diagram). When 

the negative pressure exceeds the strength of the material, creation of new surface occurs 

parallel to the free surface. This process is called spalling and tensile stress at which the 

fracture of the material starts is known as spall strength (shown by point 9 in P-Up 

diagram).  
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Figure 1.7: Generation of tensile stresses in material through plate impact experiment. 

The propagation of shock wave and release waves resulting from reflection of shock at 

target/ flyer free surface is shown in (a) x-t diagram (b) in P - Up diagram. The shock 

wave through target and flyer takes their material to peak pressure state (labeled as ‘1’) 

from initial states labeled as ‘0’ and ‘3’, respectively. The interactions of release waves 

produce various stress states labeled by ‘2’ through ‘11’. As is clear from figure (b) many 

stress states lie in tensile regime. The tensile stress corresponding to state ‘9’ is the 

maximum stress that solid can withstand before spall fracture. 
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1.2.2.3  Techniques of Shock Wave Loading 

 

Shock wave in a material can be generated by impact or by rapid deposition of 

energy. Various forms of energy like chemical, mechanical, electrical, magnetic and 

radiation can be imparted in the material for producing shock waves. These can be 

classified as explosive driven systems, pulse radiation (laser, electron, X-ray, neutron, ion 

beam, photons etc.), gas guns, electric guns, rail guns and magnetic flux compression 

[108, 115-125]. 

 

For plate impact type experiments to generate shock wave in material, impact 

velocities are 15, 8, 5, 2 and 1 km/s for hemispherical explosively-driven systems, planar 

impactors accelerated with a two-stage light-gas gun, planar high-explosive systems, a 

powder gun and a single-stage gas gun, respectively[117-118,120]. Typically hydrogen, 

helium or nitrogen gases are used to drive the impactor in a two-stage and single-stage 

gas gun. Single stage light gas gun and powder gun drives a projectile with compressed 

gas and burned gunpowder, respectively. Shock transit time is few microseconds here. 

The advantage of gas-gun is that it is possible to perform experiments with well-defined 

initial conditions of the flyer and target materials (no temperature rise and density of 

projectile at the time of impact is that of ambient) with precisely controlled parallel and 

inclined impacts. Also it is possible to use large size samples of diameter of 25 mm and 

more which makes it easy to employ several diagnostic techniques simultaneously in a 

single experiment. In our laboratory at Bhabha Atomic Research Centre Mumbai, we 

have a single stage gas gun for studying the response of material to high stress and strain 

rates. The gun is capable of accelerating the flyer up to the velocity of 1 km/s, and 

generating the pressure of ~ 40 GPa in the target material [120]. In two stage light gas 

gun, burned gunpowder accelerates a piston which pumps the second stage. In the second 

stage, the piston compresses hydrogen gas upto ~ 100 MPa when rupture valve breaks 

and the compressed hydrogen gas drives the impactor along 10 m long launch tube. In the 

planar high-explosive systems, explosive kept on or ~ 1mm from the driver plate are 
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burned and accelerated to 5 km/s. In hemispherical geometry the explosive driven system 

can generate about twice the impactor velocity of a two-stage gun.  

 

Pulsed electrical currents can be used to launch impactor plates to velocities up to 

 km s−1 or more using magnetic acceleration [123-125]. The electric gun developed 30׽

in our laboratory at Bhabha Atomic Research Centre has capability of launching a 0.5 g 

flyer up to a velocity of 6.6 km/s [122]. High dynamic pressures are also achieved by 

rapid energy deposition, such as from lasers, and, in former times, underground nuclear 

explosives. 

 

Extremely high shock pressures have been generated by direct irradiation of laser 

light with intensity of 1012 to 1014 Wcm−2. The sample is less than ~ 1mm in diameter 

with a thickness of a few 100 μm. The temporal shape of the laser beam is often variable. 

For example, square pulses 10 ns long have been generated with 0.1 ns rise time [126]. 

 

The magnetic flux compressions can generate dynamic pressures in solids, where 

the process of pressurization is isentropic in nature. As Hugoniot of a material is a curve 

in EOS surface that is generated from a series of shock compression experiments, 

similarly, compression isentrope is a class of curves that explore another region of EOS 

surface. Unlike in shock compression experiments where only one datum is determined 

in one experiment, in isentropic compression experiment (ICE) one can generate a full 

isentrope in a single experiment. Magnetic pulse loading method is popular for ICE in 

solids [123-124]. Recently, Sandia National Laboratory has developed a Z accelerator 

facility to produce 0.5 Mbar isentropic compression in solids [125]. High magnetic fields 

(greater than 100 Tesla) are generally produced in pulsed form using capacitor banks. 

These fields may be further enhanced through compression of metallic liners (cylindrical 

shells) in which initial magnetic field may be trapped and then compressed using 

secondary energy source such as another capacitor bank or chemical explosives. The Z-

29



 

accelerator of Sandia National Laboratory has been used to launch flyer plates of 

aluminium with thickness ~ 1 mm with ultrahigh velocities up to ~ 34 km/s not 

achievable with conventional gas guns [127]. Very recently, the static compressions have 

been combined with dynamic loading with laser irradiation to achieve terapascal pressure 

on a sample [128]. Here, a sample is compressed inside a diamond anvil cell and laser 

induced shock wave further pressurize this precompressed sample which can generate 10-

100 TPa pressure.   

 

1.2.2.4  Diagnostic Techniques in Shock Wave Experiments  

 

Depending upon the nature of properties measured the diagnostic techniques used 

in shock wave experiments can be broadly classified in two categories namely 

macroscopic (continuum) measurement techniques and microscopic measurement 

techniques. The macroscopic measurement includes impact velocity measurement, shock 

arrival measurement and time resolved stress profile and particle/free surface velocity 

history measurements.  The impact velocity can be measured using electrical pins or 

optical technique. The shock velocity in the target material is generally measured using 

electrical and optical transducers. For this purpose, the electrical sensors are placed at 

various known depths in the target from the impact surface and shock arrival timings at 

sensor locations is recorded,  which is then used to determine the shock velocity in the 

target material [129-130]. The piezoresistive  manganin gauges [131] have been widely 

used to record the time resolved stress profile [108,132-133]. The particle/free surface 

velocity history of the target plate after arrival of shock wave is measured using high 

precision laser interferometery techniques such as velocity interferometer system for any 

reflector (VISAR) [50-51] and optically recording velocity interferometer system 

(ORVIS) [134]. ORVIS employs a streak camera to record the interference data with 

subnanosecond time resolution. Later, line imaging variations on these techniques [135-

137] has been extended to encode spatial information from streak camera detectors. 

Adapting these techniques to the context of laser-driven targets has enabled precise 

measurement of the motion of a variety of shock-related phenomena in laser-driven 

targets, including the motion of free surfaces, of shocked interfaces, and of ionizing 
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shock fronts in a wide variety of transparent media. These macroscopic (continuum) 

techniques can provide quantitative information about shock induced phase transitions 

(both reversible and irreversible), mechanical failure (fracture strength, Hugoniot elastic 

limit (HEL) and yield strength) at high strain rates.  

 

Though the in-situ microscopic measurements in shock wave experiments are 

difficult, there are few laboratories in the world that have recently developed capabilities 

of real time x-ray diffraction and Raman measurements in shock wave experiments [138-

143]. They have carried out in-situ nanosecond lattice measurement that can determine 

reversible phase transition which is not possible to detect in the post shock analysis. For 

example, using online x-ray diffraction measurements Milathianaki et al. [138] have 

detected the hcp to bcc phase transformation in polycrystalline Mg subjected to laser 

shock.  Similarly, in shock loaded iron the bcc to hcp structural transformation could be 

detected through in-situ x-ray diffraction measurements [139]. Nanosecond diffraction 

has been used to show that single crystal of silicon can sustain very high elastic strain 

[140]. More recently, time resolved optical transmission and imaging measurements have 

been reported on water samples subjected to multiple shock wave compressions up to 

peak pressures of 1–5 GPa in nanosecond time scales.  The combination of optical 

transmission and imaging measurements provide the first consistent evidence for freezing 

on short time scales [143].  

 

1.3 Electronic Band Structure Calculations 

 

Apart from experimental techniques, there is a significant advancement in the 

theoretical methods used to calculate the electronic band structure of solids. The 

knowledge of electronic band structures in turn has been utilized to examine structural 

stability, to determine equation of state and elastic properties of materials as a function of 

pressure. The predictive capabilities of modern electronic band structure methods have 
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facilitated the determination of structural phase transitions, equation of state and pressure 

dependent elastic and mechanical properties of materials prior to experiments. 

Properties of a material e.g., EOS, elastic moduli, strength etc. depend upon the 

crystal structure it adopts. Therefore, for proper understanding of material behavior under 

pressure it is essential first to analyze the structural stability. For a material, at a given 

thermodynamic condition (pressure, temperature and specific volume), the 

thermodynamically favourable structure is the one which has the lowest free energy and 

it is found by determining and comparing the free energies for various plausible 

structures. Depending upon the thermodynamic condition the different forms of free 

energy are used for structural stability analysis. For example, for constant volume and 

temperature condition the thermodynamically favorable structure is the one for which the 

Helmholtz free energy (F) is lowest. However, for constant pressure and temperature 

condition it is the Gibbs free energy (G) which is used to determine the possible stable 

crystal structure. These free energies are defined as follows: 

 

The Helmholtz free energy, which is function of thermodynamic variables T and 

V is: 

ܨ ൌ ܧ െ ܶܵ          (1.9) 

With E, T and S are total internal energy, temperature and entropy, respectively. Further, 

the total internal energy is expresses as ),(),()(),( TVETVEVETVE eTc ++= , with Ec, 

ET and Ee are 0 K energy, Lattice thermal energy and electronic excitation energy, 

respectively.  

Similarly, the Gibbs free energy which is function of thermodynamic variables T 

and P is: 

ܩ ൌ ܨ ൅ ܸܲ          (1.10) 

With P and V are the pressure and volume thermodynamic variables. 
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It may be noted that for T = 0, the Helmholtz free energy reduces to total internal 

energy at 0 K and the Gibbs free energy reduces to PVEH c += , where H is defined as 

enthalpy. The term Ec can be determined through electronic band structure methods, 

however, the lattice thermal energy, electronic excitation energy and the entropy 

contribution can be determined by using the physical quantities such as elastic moduli 

and density of electronic states obtained from ab-initio calculations in the continuum 

model like Debye model. 

 

The pressure from the total energy is determined as 

ܲ ൌ  െ డா
డ௏

          (1.11) 

Thus the equation of state can be drawn by calculating the pressure at various 

compressions. The total energy calculations can be performed on specifically deformed 

lattice and by calculating the energy of the deformed lattice the elastic constants can be 

calculated.  

 

There are several theories and approximations to calculate the electronic band 

structures of solids. For example, nearly free electron model, tight binding model, 

muffin-tin approximation, k-p perturbation theory and density functional theory. Brief 

outlines of these methods are provided below: 

 

In the nearly free electron model, the interactions among electrons are completely 

ignored. The wavefunction is periodic in wavevector which is given by: 

Ψ୬,ܓሺ࢘ሻ ൌ  ݁௜ݑ࢘.࢑௡ሺ࢘ሻ         (1.12) 

Where, n is the nth energy band, wavevector k is related to the direction of electron 

motion, r is the position in the crystal and the  ݑ௡ሺ࢘ሻ is periodic over the lattice vector R: 

ሻ࢘௡ሺݑ ൌ ࢘௡ሺݑ  െ  ሻ         (1.13)ࡾ
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Here the interaction between the ion cores and the conduction electrons are modelled as 

‘weak’ perturbing potentials.  

 

Other opposite extreme to this model is the tight binding model where the 

electrons stay most of the time to the constituent atoms. Here Ψሺ࢘ሻ is approximated by a 

linear combination of atomic orbitals. ߰௡ሺ࢘ሻ 

 

Ψሺ࢘ሻ ൌ  ∑ ࡾ,௡ࡾ,௡࢈ ߰௡ሺ࢘ െ  ሻࡾ             (1.14) 

 

Further improvement of the tight binding model is the well known Hubbard 

model, where the Hamiltonian of the interacting particles in the lattice consists of two 

terms: a kinetic energy term which describes the tunneling (hopping) of particles between 

sites of the lattice and a potential term for the on-site interaction. If interaction between 

particles of different sites of the lattice is considered, the model is referred as the 

extended Hubbard model.  

 

Various electronic band structure methods such as Korringa-Kohn-Rostoker 

approximation (KKR), augmented plane wave (APW), linearized muffin-tin orbital 

(LMTO) and Green’s function methods use the muffin-tin approximation. The muffin-tin 

approximation basically is shape approximation of the potential around an electron in the 

solid. In the methods using this approximation, the lattice is divided in two parts. Around 

the atom the potential is approximated to be spherically symmetric and electron 

wavefunction spanned as a linear combination of spherical harmonics multiplied by a 

radial wavefunction. Outside this spherically symmetric potential, the potential is 

assumed to be flat i.e. constant or zero, and linear combination of plane waves are used to 

span the wavefunction of the electron.  
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In the k.p perturbation theory the term k.p is taken as perturbation in the 

Hamiltonian. The total Hamiltonian is represented as:  

்ܪ ൌ ଴ܪ  ൅ ܪ௄
ᇱ         (1.15) 

Where  ܪ଴ ൌ  ௣మ

ଶ௠
൅  ܸ is the unperturbed Hamiltonian and  

௄ܪ
ᇱ ൌ  ħమ௞మ

ଶ௠
൅ ħ ࢖.࢑

௠
  is the perturbation term.  

The perturb energy to the unperturbed Hamiltonian (which is the exact 

Hamiltonian for the k = 0, i.e., at the Gamma point) is calculated. As all the theoretical 

analysis on various materials presented in the subsequent chapters of the thesis have used 

the band structure calculation methods based on the well established density functional 

approach, a separate section has been provided to describe the density functional theory.  

 

1.3.1 Density Functional Theory 

 

Density functional theory is a quantum mechanical description of the electronic 

band structure of many body system particularly atoms, molecules and the condensed 

phase. The theory deals with the calculation of total energy of the many body system 

from the first principle (ab-initio) or by solving the Schrodinger equation without taking 

any approximation on the potential of the system under consideration. With this theory 

the properties of the system under consideration can be determined from the total ground 

state energy functional i.e. the energy is a function of density which itself is a function of 

position co-ordinate. As it is not dependent on any particular parameters, these 

calculations are more reliable than any model calculations where many parameters are 

used to optimize the potential of the system and then predict the properties of the system. 

In the present thesis, the problems addressed stems ultimately from the calculations 

involving how matter behaves under pressure theoretically. A brief outline of the basic 

principle of the theory is given below. 
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Overview of DFT  
 
The central concept of DFT is to describe the total energy of many-body 

interacting system via its particle density and not via its many-body wavefunction. Its 

main aim is to reduce the 3N degrees of freedom of the N-body system to only three 

spatial coordinates through its particle density. Its basis is the well known Hohenberg-

Kohn (HK) theorem [148], which claims that all ground state properties of a system can 

be considered to be unique functionals of its ground state density and the exact ground 

state will be found when the exact density is found. Together with the Born-Oppenheimer 

(BO) approximation [149] and Kohn-Sham (KS) ansatz [150], practical accurate DFT 

calculations have been made possible via approximations for the so called exchange-

correlation (XC) potential, which describes the effects of the Pauli principle and the 

Coulomb potential beyond a pure electrostatic interaction of the electrons. Since it is 

impossible to calculate the exact XC potential (by solving the many-body problem 

exactly), two common approximations are the so-called local density approximation 

(LDA) and generalized gradient approximations (GGA) are implemented to get the XC 

energy contribution towards the total energy.  

 

In many cases the results of DFT calculations for condensed-matter systems 

agreed quite satisfactorily with experimental data, especially with better approximations 

for the XC energy functional since the 1990s. Also, the computational costs were 

relatively low compared to traditional ways which were based on the complicated many-

electron wavefunction, such as Hartree-Fock theory [151-152] and its descendants. 

 

1.3.1.1 The Many-Body System and Born-Oppenheimer (BO) 

Approximation 

 

The Hamiltonian of a many-body condensed-matter system consisting of nuclei 

and electrons can be written as: 
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           (1.16) 

where the indexes I, J run on all nuclei of the system, i and j on all the electrons, RI and 

MI are positions and masses of the nuclei, ri and me of the electrons, ZI the atomic number 

of nucleus I. The first two terms are the kinetic energies of the nuclei and the electrons 

respectively, the third term is the potential energy of nucleus-nucleus Coulomb 

interaction, the fourth term is the potential energy of electron-electron Coulomb 

interaction and the last term is the potential energy of nucleus-electron Coulomb 

interaction. The time-independent Schrödinger equation for the system reads: 

 

, ۷ሽࡾሺሼߖ௧௢௧ܪ ሼ࢏࢘ሽሻ ൌ , ۷ሽࡾሺሼߖ ܧ ሼ࢏࢘ሽሻ                                                   (1.17) 

 

where  ({RI}, {ri}) is the total wavefunction of the system. In principle, everything about 

the system is known if one can solve the above Schrödinger equation. However, it is 

impossible to solve it in practice as it is a partial differential equation entangled with 

large number of variables. A so-called Born-Oppenheimer (BO) approximation made by 

Born and Oppenheimer [149] in 1927 comes here for rescue. Since the nuclei are much 

heavier than electrons (the mass of a proton is about 1836 times the mass of an electron), 

the nuclei move much slower (about two order of magnitude slower) than the electrons. 

Therefore we can separate the movement of nuclei and electrons. When we consider the 

movement of electrons, it is reasonable to consider the positions of nuclei are fixed, thus 

the total wavefunction of the electrons and nuclei can be decoupled in the following way: 

 

, ۷ሽࡾሺሼߖ  ሼ࢏࢘ሽሻ ൌ ; ሽ࢏࢘۷ሽሻ߶ሺሼࡾሺሼ߆   ሼ۷ࡾሽሻ     (1.18) 
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where ߆({RI}) describes the nuclei and φ({ri} ; {RI}) the electrons (depending 

parametrically on the positions of the nuclei). With the BO approximation, Eqn. (1.17) 

can be divided into two separate Schrödinger equations: 

 

; ሽ࢏࢘௘ ߶ሺሼܪ  ሼ۷ࡾሽሻ ൌ ܸሺሼ۷ࡾሽሻ ߶ሺሼ࢏࢘ሽ ;  ሼ۷ࡾሽሻ      (1.19) 
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(1.20) 

And 

 

ቂെ ∑ ħమ

ଶெ಺
ࡵࡾࢺ 

ଶ ൅  ܸሺሼ۷ࡾሽሻ ூ ቃ ۷ሽሻࡾሺሼ߆ ൌ  ۷ሽሻ      (1.21)ࡾሺሼ߆ᇱܧ 

 

Eqn. (1.19) is the equation for the electronic problem with the nuclei positions fixed. The 

eigenvalue of the energy V ({RI}) depends parametrically on the positions of the nuclei. 

After solving Eq. (1.19), V ({RI}) is known and by applying it to Eqn. (1.21), which has 

no electronic degrees of freedom, the motion of the nuclei is obtained. Eqn. (1.21) is 

sometimes replaced by a Newton equation, i.e., to move the nuclei classically, equating   

  .V with the forces׏-

 

The significance of the BO approximation is to separate the movement of 

electrons and nuclei. Now we can consider that the electrons are moving in a static 

external potential Vext(r) formed by the nuclei, which is the starting point of DFT. The 

BO approximation was extended by Bohn and Huang known as Born-Huang (BH) 

approximation [153] to take into account more non-adiabatic effect in the electronic 

Hamiltonian than in the BO approximation. 
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1.3.1.2  Thomas-Fermi-Dirac Approximation 

 

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas 

[144] and Fermi [145] in 1927. In this method, they used the electron density n(r) as the 

basic variable instead of the wave function. The total energy of a system in an external 

potential Vext(r) is written as a functional of the electron density n(r) as: 

 

ሻሿ࢘ிሾ݊ሺ்ܧ ൌ ଵܣ  ׬ ݊ሺ࢘ሻହ
ଷൗ ࢘݀ ൅ ׬ ݊ሺ࢘ሻ ௘ܸ௫௧ሺ࢘ሻ ࢘݀  ൅ ૚

૛
׭  ௡ሺ࢘ሻ௡ሺ࢘ᇱሻ

|ᇱ࢘ି࢘|  Ԣ (1.22)࢘݀ ࢘݀ 

 

where the first term is the kinetic energy of the non-interacting electrons in a 

homogeneous electron gas (HEG) with  

 

ଵܣ ൌ  ଷ
ଵ଴

 ሺ3ߨଶሻଶ
ଷൗ          (1.23) 

 

in atomic units (ħ = me = e = 4ߨ/ε0 = 1). The kinetic energy density of a HEG is obtained 

by adding up all of the free-electron energy state εk = k2/2 up to the Fermi wave vector 

 

݇ி ൌ  ሺ3ߨଶ݊ሺ࢘ሻሻଵ
ଷൗ  as: 

௢ܶሾ݊ሺ࢘ሻሿ ൌ  ଶ
ሺଶ஠ሻయ ׬ ௞మ

ଶ
4πkଶ dk       (1.24) 

    ൌ ሻହ࢘ଵ݊ሺܣ 
ଷൗ  

 

The second term is the classical electrostatic energy of the nucleus-electron 

Coulomb interaction. The third term is the classical electrostatic Hartree energy 

approximated by the classical Coulomb repulsion between electrons. In the original TF 

method, the exchange and correlation among electrons was neglected. In 1930, Dirac 
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[146] extended the Thomas-Fermi method by adding a local exchange term 

ଶܣ ׬ ݊ሺ࢘ሻସ
ଷൗ ଶܣ to Eqn. (1.22) with ࢘݀ ൌ  െ ଷ

ସ
 ሺ3/ߨሻଵ

ଷൗ , which leads Eqn. (1.22) to 

 

ሻሿ࢘ி஽ሾ݊ሺ்ܧ ൌ ଵܣ  ׬ ݊ሺ࢘ሻହ
ଷൗ ࢘݀ ൅ ׬ ݊ሺ࢘ሻ ௘ܸ௫௧ሺ࢘ሻ ࢘݀  ൅ ૚

૛
׭  ௡ሺ࢘ሻ௡ሺ࢘ᇱሻ

|ᇱ࢘ି࢘| ᇱ࢘݀ ࢘݀  ൅

ଶܣ ׬ ݊ሺ࢘ሻସ
ଷൗ   (1.25)         ࢘݀

 

The ground state density and energy can be obtained by minimizing the Thomas-

Fermi-Dirac equation (1.25) subject to conservation of the total number (N) of electrons. 

By using the technique of Lagrange multipliers, the solution can be found in the 

stationary condition: 

 

ሻሿ࢘ி஽ሾ݊ሺ்ܧሼߜ െ ׬ሺߤ  ݊ሺ࢘ሻ ݀࢘ െ ܰሻሽ ൌ 0       (1.26) 

 

where μ is a constant known as a Lagrange multiplier, whose physical meaning is the 

chemical potential (or Fermi energy at T = 0 K). Eqn. (1.26) leads to the Thomas-Fermi-

Dirac equation, 

 

ହ
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ሻଶ࢘ଵ݊ሺܣ
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ଶ
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|ᇲ࢘ି࢘| ᇱ࢘݀  ൅ ସ
ଷ

ሻଵ࢘ଶ݊ሺܣ
ଷൗ െ µ ൌ 0    (1.27) 

 

which can be solved directly to obtain the ground state density.  

 

The approximations used in Thomas-Fermi-type approach are so crude that the 

theory suffers from many problems. The most serious one is that the theory fails to 

describe bonding between atoms, thus molecules and solids cannot form in this theory 

[147]. Although it is not good enough to describe electrons in matter, its concept to use 

electron density as the basic variable illustrates the way DFT works. 
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1.3.1.3  The Hohenberg-Kohn (HK) Theorems 

 

DFT was proven to be an exact theory of many-body systems by Hohenberg and 

Kohn [148] in 1964. It applies not only to condensed-matter systems of electrons with 

fixed nuclei, but also more generally to any system of interacting particles in an external 

potential Vext(r). The theory is based upon two theorems. 

The HK theorem I: 

The ground state particle density n(r) of a system of interacting particles in an external 

potential Vext(r) uniquely determines the external potential Vext(r), except for a constant.  

Thus the ground state particle density determines the full Hamiltonian, except for 

a constant shift of the energy. In principle, all the states including ground and excited 

states (in case of density functional perturbation theory) of the many-body wavefunctions 

can be calculated. This means that the ground state particle density uniquely determines 

all properties of the system completely. 

The HK theorem II: 

There exists a universal functional F[n(r)] of the density, independent of the external 

potential Vext(r), such that the global minimum value of the energy functional ܧሾ݊ሺ࢘ሻሿ ൌ

׬  ݊ሺ࢘ሻ ௘ܸ௫௧ሺ࢘ሻ ࢘݀  ൅  ሻሿ is the exact ground state energy of the system and the࢘ሾ݊ሺܨ

exact ground state density n0(r) minimizes this functional. Thus the exact ground state 

energy and density are fully determined by the functional ܧሾ݊ሺ࢘ሻሿ. 

The HK theorems can be generalized to spin density functional theory with spin 

degrees of freedom.[154] In this theory, there are two types of densities, namely, the 

particle density n(r) = n↑(r)+n↓(r) and the spin density s(r) = n↑(r) − n↓(r) where ↑ and ↓ 

denote the two different kins of spins. The energy functional is generalized to E [n(r), 

s(r)]. In systems with magnetic order or atoms with net spins, the spin density functional 

theory should be used instead of the original one-spin density functional theory. DFT can 
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also be generalized to include temperature dependence [155] and time dependence known 

as time-dependent density functional theory (TD-DFT) [156]. 

 

Although HK theorems put particle density n(r) as the basic variable, it is still 

impossible to calculate any property of a system because the universal functional F[n(r)] 

is unknown. This difficulty was overcome by Kohn and Sham [150] in 1965, who 

proposed the well known Kohn-Sham ansatz. 

 

1.3.1.4  The Kohn-Sham (KS) Ansatz 

 

It is the Kohn-Sham (KS) ansatz [150] that puts Hohenberg-Kohn theorems into 

practical use and makes DFT calculations possible with even a single personal computer. 

This is part of the reason that DFT became the most popular tool for electronic structure 

calculations. The KS ansatz was so successful that Kohn was honored the Nobel Prize in 

chemistry in 1998. 

 

The KS ansatz is to replace the original many-body system by an auxiliary 

independent-particle system and assume that the two systems have exactly the same 

ground state density. It maps the original interacting system with real potential onto a 

fictitious non-interacting system whereby the electrons move within an effective Kohn-

Sham single-particle potential VKS(r) (Fig. 1.8). For the auxiliary independent-particle 

system, the auxiliary Hamiltonian is 

 

Ĥ௄ௌ ൌ  െ ଵ
ଶ

ଶࢺ  ൅ ௄ܸௌሺ࢘ሻ        (1.28) 

 

in atomic units.  
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Figure 1.8: (Left) Interacting electrons + real potentials and (Right) non-interacting 

fictitious particles +effective potentials. 

 

For a system with N independent electrons, the ground state is obtained by 

solving the N one-electron Schrodinger equations, 

 

ቀെ ଵ
ଶ

ଶࢺ  ൅ ௄ܸௌሺ࢘ሻቁ ߰௜ሺ࢘ሻ ൌ  ε୧ ߰௜ሺ࢘ሻ      (1.29) 

 

where there is one electron in each of the N orbitals ψi(r) with the lowest eigenvalues εi. 

The density of the auxiliary system is constructed from: 

 

݊ሺ࢘ሻ ൌ  ∑  |߰௜ሺ࢘ሻ|ଶே
௜ୀଵ          (1.30) 

 

which is subject to the conservation condition: 

 

׬ ݊ሺ࢘ሻ ݀࢘ ൌ ܰ         (1.31) 
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The non-interacting independent-particle kinetic energy TS[n(r)] is given by, 

 

ௌܶሾ݊ሺ࢘ሻሿ ൌ  െ ଵ
ଶ

∑ ׬ ߰௜
ሻே࢘ሺכ

௜ୀଵ  (1.32)      ࢘݀ ሻ࢘ଶ߰௜ሺࢺ

 

Then the universal functional F[n(r)] was rewritten as 

 

ሻሿ࢘ሾ݊ሺܨ ൌ  ௌܶሾ݊ሺ࢘ሻሿ ൅ ሻሿ࢘ுሾ݊ሺܧ  ൅  ሻሿ     (1.33)࢘௑஼ሾ݊ሺܧ 

 

where EH[n(r)] is the classic electrostatic (Hartree) energy of the electrons, 

 

ሻሿ࢘ுሾ݊ሺܧ ൌ  ଵ
ଶ

׭  ௡ሺ࢘ሻ௡൫࢘ᇲ൯
|ᇲ࢘ି࢘|  ᇱ       (1.34)࢘݀ ࢘݀ 

 

and EXC[n(r)] is the XC energy, which contains the difference between the exact and non-

interacting kinetic energies and also the non-classical contribution to the electron-electron 

interactions, of which the exchange energy is a part. Since the ground state energy of a 

many-electron system can be obtained by minimizing the energy functional ܧሾ݊ሺ࢘ሻሿ ൌ

ሻሿ࢘ሾ݊ሺܨ  ൅ ׬ ݊ሺ࢘ሻ ௘ܸ௫௧ሺ࢘ሻ݀࢘, subject to the constraint that the number of electrons N is 

conserved, 

 

ሻሿ࢘ሾ݊ሺܨሼߜ ൅ ׬ ݊ሺ࢘ሻ ௘ܸ௫௧ሺ࢘ሻ݀࢘ െ µሺ׬ ݊ሺ࢘ሻ ݀࢘ െ ܰሻሽ ൌ 0    (1.35) 

 

and the resulting equation is 

 

µ ൌ  ஔிሾ௡ሺ࢘ሻሿ
ஔ௡ሺ࢘ሻ ൅ ௘ܸ௫௧ሺ࢘ሻ        (1.36) 
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  µ ൌ
ߜ ௌܶ݊ሺ࢘ሻ

δ݊ሺ࢘ሻ ൅  ௄ܸௌሺ࢘ሻ 

 

where μ is the chemical potential, 

 

௄ܸௌሺ࢘ሻ ൌ  ௘ܸ௫௧ሺ࢘ሻ ൅  ுܸሺ࢘ሻ ൅  ௑ܸ஼ሺ࢘ሻ      (1.37) 

              ൌ ௘ܸ௫௧ሺ࢘ሻ ൅
ሻሿ࢘ுሾ݊ሺܧߜ

ሻ࢘ሺ݊ߜ ൅
ሻሿ࢘௑஼ሾ݊ሺܧߜ

ሻ࢘ሺ݊ߜ  

 

is the KS one-particle potential with the Hartree potential VH(r) 

 

ுܸሺ࢘ሻ ൌ  ఋாಹሾ௡ሺ࢘ሻሿ
ఋ௡ሺ࢘ሻ          (1.38) 

            ൌ  න
݊ሺ࢘ᇱሻ

࢘| െ |ᇱ࢘  ᇱ࢘݀ 

 

and the XC potential VXC(r) 

 

௑ܸ஼ሺ࢘ሻ ൌ  ఋா೉಴ሾ௡ሺ࢘ሻሿ
ఋ௡ሺ࢘ሻ          (1.39) 

 

Eqns. (1.29), (1.30), (1.37) together are the well-known KS equations, which must 

be solved self-consistently because VKS(r) depends on the density through the XC 

potential. In order to calculate the density, the N equations in Eqn. (1.29) have to be 

solved in KS theory as opposed to one equation in the TF approach. However an 

advantage of the KS method is that as the complexity of a system increases, due to N 

increasing, the problem becomes no more difficult, only the number of single-particle 

equations to be solved increases. Although exact in principle, the KS theory is 
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approximate in practice because of the unknown XC energy functional EXC[n(r)]. An 

implicit definition of EXC[n(r)] can be given as: 

 

ሻሿ࢘௑஼ሾ݊ሺܧ ൌ ܶሾ݊ሺ࢘ሻሿ െ  ௌܶሾ݊ሺ࢘ሻሿ ൅ ሻሿ࢘௜௡௧ሾ݊ሺܧ  െ ܧுሾ݊ሺ࢘ሻሿ   (1.40) 

 

where T[n(r)] and Eint[n(r)] are the exact kinetic and electron-electron interaction 

energies of the interacting system respectively. It is crucial to have an accurate XC 

energy functional EXC[n(r)] or potential VXC(r) in order to give a satisfactory description 

of a realistic condensed-matter system. The most widely used approximations for the XC 

potential are the local density approximation (LDA) and the generalized-gradient 

approximation (GGA). 

 

1.3.1.5  Local (Spin) Density Approximation (L(S)DA) 

 

The KS ansatz successfully maps the original interacting many-body system onto 

a set of independent single-particle equations and makes the problem much easier. On the 

other hand, without knowing the exact form of the XC energy functional EXC[n(r)], the 

KS equations are unsolvable. Although the exact XC energy functional EXC[n(r)] should 

be very complicated, simple but successful approximations to it have been made, which 

not only predict various properties of many systems reasonably well but also greatly 

reduce computational costs, leading to the wide use of DFT for electronic structure 

calculations. Of these approximations, the local density approximation (LDA) is the most 

widely used one. In LDA, the XC energy per electron at a point r is considered the same 

as that for a homogeneous electron gas (HEG) that has the same electron density at the 

point r. The total exchange-correlation functional EXC[n(r)] can be written as, 

 

௑஼ܧ
௅஽஺ሾ݊ሺ࢘ሻሿ ൌ ׬  ݊ሺ࢘ሻ߳௑஼

௛௢௠ሺ݊ሺ࢘ሻሻ݀(1.41)       ࢘ 
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௅஽஺ሾ݊ሺ࢘ሻሿ ൌ න ݊ሺ࢘ሻሾ߳௑

௛௢௠ሺ݊ሺ࢘ሻሻ ൅ ߳஼
௛௢௠ሺ݊ሺ࢘ሻሻሿ݀࢘ 

           ൌ ௑ܧ
௅஽஺ሾ݊ሺ࢘ሻሿ ൅ ஼ܧ

௅஽஺ሾ݊ሺ࢘ሻሿ 

 

for spin unpolarized systems and 

 

௑஼ܧ
௅஽஺ሾ݊՛ሺ࢘ሻ, ݊՝ሺ࢘ሻሿ ൌ ׬  ݊ሺ࢘ሻ߳௑஼

௛௢௠ሺ݊՛ሺ࢘ሻ, ݊՝ሺ࢘ሻሻ݀(1.42)    ࢘ 

 

for spin polarized systems[14], where the XC energy density ߳௑஼
௛௢௠ሺ݊ሺ࢘ሻሻ is a function of 

the density alone, and is decomposed into exchange energy density ߳௑
௛௢௠ሺ݊ሺ࢘ሻሻ and 

correlation energy density ߳஼
௛௢௠൫݊ሺ࢘ሻ൯ so that the XC energy functional is decomposed 

into exchange energy functional ܧ௑
௅஽஺ሾ݊ሺ࢘ሻሿ and correlation energy functional 

஼ܧ
௅஽஺ሾ݊ሺ࢘ሻሿ linearly. The exchange energy functional ܧ௑

௅஽஺ሾ݊ሺ࢘ሻሿ employs the 

expression for a HEG by using it pointwise, which is known analytically as [9] 

 

௑ܧ
௅஽஺ሾ݊ሺ࢘ሻሿ ൌ ׬  ݊ሺ࢘ሻ߳௑

௛௢௠൫݊ሺ࢘ሻ൯݀(1.43)      ࢘ 
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is the exchange energy density of the unpolarized HEG introduced first by Dirac.[146]. 

Analytic expressions for the correlation energy of the HEG are unknown except in the 

high and low density limits corresponding to infinitely weak and infinitely strong 

correlations. The expression of the correlation energy density of the HEG at high density 

limit has the form: 
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߳஼ ൌ ௦ሻݎlnሺ ܣ ൅ ܤ  ൅ ݎ௦ሺܥ lnሺݎ௦ሻ ൅  ሻ      (1.45)ܦ 

 

and the low density limit takes the form 

 

߳஼ ൌ  ଵ
ଶ

൬௚బ
௥ೞ

൅ ௚భ

௥ೞ
య

మൗ ൅ ڮ ൰        (1.46) 

 

where the Wigner-Seitz radius rs is related to the density as 

 
ସ
ଷ

௦ݎߨ
ଷ  ൌ  ଵ

௡
          (1.49) 

 

In order to obtain accurate values of the correlation energy density at intermediate 

density, accurate quantum Monte Carlo (QMC) simulations for the energy of the HEG 

are needed and have been performed at several intermediate density values [157] Most 

local density approximations to the correlation energy density interpolate these accurate 

values from QMC simulations while reproducing the exactly known limiting behavior.  

 

The LDA is very simple and corrections to the exchange-correlation energy due to 

the inhomogeneities in the electronic density are ignored. However, it is surprisingly 

successful and even works reasonably well in systems where the electron density is 

rapidly varying. One reason is that LDA gives the correct sum rule to the exchange-

correlation hole. That is, there is a total electronic charge of one electron excluded from 

the neighborhood of the electron at r. In the meantime, it tends to underestimate atomic 

ground state energies and ionization energies, while overestimating binding energies. It 

makes large errors in predicting the energy gaps of some semiconductors. Its success and 

limitations lead to approximations of the XC energy functional beyond the LDA, through 

the addition of gradient corrections to incorporate longer range gradient effects (GGA), 

as well as LDA+U method to account for the strong correlations of the d electrons in 

transition elements and f electrons in lanthanides and actinides. 
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1.3.1.6  Generalized Gradient Approximation (GGA) 

 

As mentioned above, the LDA neglects the in-homogeneities of the real charge 

density which could be very different from the HEG. The XC energy of inhomogeneous 

charge density can be significantly different from the HEG result. This leads to the 

development of various generalized-gradient approximations (GGA) which include 

density gradient corrections and higher spatial derivatives of the electron density and give 

better results than LDA in many cases.  

 

The definition of the XC energy functional of GGA is the generalized form of 

Eqn. (1.42) of LSDA to include corrections from density gradient ׏ n(r) as 

 

௑஼ܧ
ீீ஺ሾ݊՛ሺ࢘ሻ, ݊՝ሺ࢘ሻሿ ൌ ׬  ݊ሺ࢘ሻ߳௑஼

௛௢௠ሺ݊՛ሺ࢘ሻ, ݊՝ሺ࢘ሻ, ,ሻ࢘՛ሺ݊ ׏  (1.50)  ࢘ሻሻ݀࢘՝ሺ݊ ׏

 

GGA generally works better than LDA, in predicting bond length and binding 

energy of molecules, crystal lattice constants, and so on, especially in systems where the 

charge density is rapidly varying. However GGA sometimes overcorrects LDA results in 

ionic crystals where the lattice constants from LDA calculations fit well with 

experimental data but GGA will overestimate it. Nevertheless, both LDA and GGA 

perform badly in materials where the electrons tend to be localized and strongly 

correlated such as transition metal oxides and rare-earth elements and compounds. This 

drawback leads to approximations beyond LDA and GGA. 

 

1.3.1.7  LDA+U Approximation 

 

Strongly correlated systems usually contain transition metal or rare-earth metal 

ions with partially filled d or f shells. Because of the orbital-independent potentials in 

LDA and GGA, they cannot properly describe such systems. For example, LDA predicts 
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transition metal oxides to be metallic with itinerant d electrons because of the partially 

filled d shells. Instead, these transition metal oxides are Mott insulators and the d 

electrons are well localized. In order to properly describe these strongly correlated 

systems, orbital-dependent potentials should be used for d and f electrons. 

 

There are several approaches available nowadays to incorporate the strong 

electron-electron correlations between d electrons and f electrons. Of these methods 

including the self-interaction correction (SIC) method [158], Hartree-Fock (HF) method 

[159], and GW approximation [160], LDA+U method [161] is the most widely used one. 

 

In the LDA+U method, the electrons are divided into two classes: delocalized s, p 

electrons which are well described by LDA (GGA) and localized d or f electrons for 

which an orbital-dependent term ଵ
ଶ

 ܷ ∑ ݊௜ ௝݊௜ஷ௝  should be used to describe Coulomb d − d 

or f − f interaction, where ni are d- or f- orbital occupancies. The total energy in 

L(S)DA+U method is given as[161]: 

 

௧௢௧ܧ
௅஽஺ା௎ሾߩఙሺ࢘ሻ, ሼ݊ఙሽሿ ൌ ሻሿ࢘ఙሺߩ௅ௌ஽஺ሾܧ  ൅ ܧ௎ሾሼ݊ఙሽሿ െ ܧௗ௖ሾሼ݊ఙሽሿ   (1.51) 

 

where σ denotes the spin index, ߩఙሺ࢘ሻ is the electron density for spin- σ electrons and 

ሼ݊ఙሽ is the density matrix of d or f electrons for spin-σ, the first term is the standard 

LSDA energy functional, the second term is the electron-electron Coulomb interaction 

energy [161]. The last term in Eqn. (1.51) is the double counting term which removes an 

averaged LDA energy contribution of these d or f electrons from the LDA energy.  

 

1.3.2  Methods for Solving Kohn-Sham Equations 
 

By using independent-particle methods, the KS equations provide a way to obtain 

the exact density and energy of the ground state of a condensed matter system. The KS 
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equations must be solved consistently because the effective KS potential VKS and the 

electron density n(r) are closely related. This is usually done numerically through some 

self-consistent iteration. The process starts with an initial electron density, usually a 

superposition of atomic electron density, then the effective KS potential VKS is calculated 

and the KS equation is solved with single particle eigenvalues and wavefunctions, a new 

electron density is then calculated from the wavefunctions. After this, self-consistent 

condition(s) is checked. Self-consistent condition(s) can be the change of total energy or 

electron density from the previous iteration or total force acting on atoms is less than 

some chosen small quantity, or a combination of these individual conditions. If the self-

consistency is not achieved, the calculated electron density will be mixed with electron 

density from previous iterations to get a new electron density. A new iteration will start 

with the new electron density. This process continues until self-consistency is reached. 

After the self-consistency is reached, various quantities can be calculated including total 

energy, forces, stress, eigenvalues, electron density of states, band structure, etc. The 

most timing consuming step in the whole process is to solve KS equation with a given KS 

potential VKS. There are several different schemes to the calculation of the independent-

particle electronic states in solids where boundary conditions are applied. They are 

basically classified into three types [162]: 

 

1.3.2.1  Plane Waves 

 

In this method, the wavefunctions (eigenfunctions of the KS equations) are 

expanded in a complete set of plane waves eik.r and the external potential of nuclei are 

replaced by pseudopotentials which include effects from core electrons. Such 

pseudopotentials have to satisfy certain conditions. Most widely used pseudopotentials 

nowadays include norm-conserving pseudopotentials[163] (NCPPs) and ultrasoft 

pseudopotentials[164] (USPPs). 

 

Plane waves have played an important role in the early orthogonalized plane wave 

(OPW) calculations [165-167] and are generalized to modern projector augmented wave 

(PAW) method [168-170]. Because of the simplicity of plane waves and 
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pseudopotentials, computational load is significantly reduced in these methods and 

therefore it is most suitable for calculations of large systems. However, results from plane 

wave methods using pseudopotentials are usually less accurate than results from all-

electron full potential methods. And great care should be taken when one generates 

pseudopotential and it should be tested to match results from all-electron calculations. 

The most widely used codes using plane waves and pseudopotentials are plane wave self-

consistent field (now known as Quantum ESPRESSO)[171] (PWscf), ABINIT[172], 

VASP[173] (which uses PAW method too). 

 

1.3.2.2  Localized Atomic(-like) Orbitals 

 

The most well-known methods in this category are linear combination of atomic 

orbitals (LCAO) [174], also called tight-binding (TB) [174] and full potential non-

orthogonal local orbital (FPLO) [175]. The basic idea of these methods is to use atomic 

orbitals as the basis set to expand the one-electron wavefunction in KS equations. 

 

1.3.2.3  Atomic Sphere Methods 

 

Methods in the class can be considered as a combination of plane wave method 

and localized atomic orbitals. It uses localized atomic orbital presentation near the nuclei 

and plane waves in the interstitial region. The most widely used methods are (full 

potential) linear muffin-tin orbital[176] (LMTO) as implemented in LMTART[177] by 

Savrasov and (full potential) linear augment plane wave[176, 178] (LAPW) as 

implemented in WIEN2K[179]. 

 

1.3.3   Lattice Dynamics and Phonons 
 

To calculate the lattice dynamical properties, we have linear response method 

[180] and density functional perturbation theory (DFPT) [181], which are closely related. 

In both methods, it is essential to calculate the second-order perturbation of DFT total 

energy, i.e., δ2E, in the framework of density functional theory. The perturbation is 
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induced by small displacements δR of the nuclei from their equilibrium positions, which 

result in changes in the external potential Vext, the wave functions of the KS equations and 

hence the electron charge density. δ2E is obtained by expanding the DFT total energy 

with respect to the changes in the wave functions to first order and external potentials up 

to second order. Detailed expressions can be found in Ref [180-181]. 

 

Phonon spectra can be obtained by first calculating the dynamical matrix 

 

ሻࢗ௜௝ሺܦ ൌ ∑ ݁ି௜ ࡾ.ࢗ′
ோ′  డమா

డ௨೔ሺࡾାࡾ′ሻడ௨ೕሺࡾሻ
       (1.52) 

 

with respect to the atomic displacements u(R) for each atom in each direction, (i,j=1, 2, 3, 

corresponding to x, y and z directions), and then by solving the equation 

 

ሻࣕࢗሺܦ ൌ ࢗ߱ ܯ
ଶࣕ          (1.53) 

 

which gives the phonon frequencies ߱ࢗof the phonons with wave vector q, where M 

is a diagonal matrix with the atomic masses on the diagonal. 

 

1.4  Summary 
 

In this chapter a brief description of the work to be presented in the subsequent 

chapters of the thesis is provided. This description is followed by an overview of the 

available experimental techniques for carrying out high pressure experiments and various 

diagnostic techniques used to understand the response of the material to high pressures. 

Also, the basic principle of the modern electronic band structure theoretical methods used 

for analyzing the high pressure behaviour of materials has been introduced.  
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Chapter - 2 
 

Elastic, Lattice Dynamic and Structural Stability of 

Lithium Hydride under High Pressure: Ab-initio 

Calculations 
 

2.1 Introduction 
 

Lithium hydrides (LiH) having NaCl structure (B1) at ambient condition is a 

good hydrogen storage material. Under high pressure, because of the quantum 

influence of proton and increasing interaction of core electrons of neighboring atoms, 

this material is expected to display interesting behavior such as the transitions to low-

symmetry phase, metal-insulator transition, etc [1]. These expectations have attracted 

attention of many researchers [1-16] in this compound to understand its solid state 

properties. Many of these studies are also related to high pressure behavior of LiH, 

which include analysis of its phase stability [1-11], determination of equation of state 

[3,4,8-13], understanding the effect of pressure on electronic charge density [13], 

band structure [9,13,14] and melting point [16] etc. As far as structural stability of this 

compound under high pressure is concerned, widely differing results have been 

reported in literature [2,3,17,18]. On the basis of psuedopotential calculations within 

local density approximation (LDA), Martins [17] predicted NaCl type (B1 phase) to 

CsCl type (B2 phase) structural phase transition at ~ 450 GPa, whereas, theoretical 

calculations by Gou et al. [18] using ionic overlap compression model found this  

transition to occur at ~ 85 GPa. In contrast to this, the x-ray diffraction measurements 

in DAC carried out by Loubeyre et al. [11] do not show any phase transition up to 94 

GPa. Subsequent theoretical studies by Ahuja et al. [2] using full potential LMTO and 

Wang et al. [3] using full potential LAPW (WIEN97 package) put this transition at ~ 

400 GPa and 313 GPa, respectively. However, using pseudopotential technique Zhang 

et al. [19] and Zurek et al.[20] found the transition pressure as ~ 200 GPa and 300 
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GPa, respectively. The recent high pressure x-ray diffraction measurements carried 

out in DAC [1] confirm that LiH will remain in B1 phase even up to ~ 252 GPa.  

 

In addition to the direct total energy calculations for determining the structural 

stability, it is also worth to examine the elastic and lattice dynamic stability as a 

function of pressure or temperature, which can give additional insight into the 

mechanism of the phase transition or simply the mechanical failure of the LiH. In 

spite of so much importance of knowledge of the elastic and lattice dynamic stability, 

there are very few theoretical and experimental work published on this aspect of LiH 

[15, 19, 21-23]. For instance, there exists one theoretical study by Zhang et al. [19], 

where on the basis of theoretically calculated pressure dependent elastic constants and 

the lattice dynamical study at high pressure, the B1 to B2 transition has been 

associated to the softening of TA phonon at the zone boundary. In experimental front, 

the measurements of phonons as a function of pressure have also been reported on this 

compound by Ho et al. [24] up to 15 GPa and by Lazicki et al. [1] up to 120 GPa 

using Raman scattering.  

 

In view of limited studies on the elastic and lattice dynamic stability of LiH as 

a function of pressure, the present theoretical work focuses on the structural, elastic 

and lattice dynamic stability of LiH under hydrostatic compression up to several 

Mbar. Unlike previous theoretical studies, in the present work the structural stability 

has been analyzed by not only considering B1 and B2 structures but also including 

B10 (primitive tetragonal structure P4/nmm) structure for analysis. The equation of 

state up to several Mbar has been derived from the 0 K calculations. Further, these 

calculations have been utilized to derive various thermophysical properties, e.g., 

equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, 

Grüneisen parameter etc. Moreover, the single crystal elastic constants have been 

employed to get the elastic properties of polycrystalline LiH.  
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2.2 Theoretical Procedure of Calculations 
 

The total energy calculations required for carrying out structural stability 

analysis, and for determination of 0 K isotherm and elastic moduli have been 

performed using WIEN2K package [25] based on FP-LAPW method. The exchange 

correlation part of the total energy is evaluated using generalized gradient 

approximation (GGA) [26].  In order to test the applicability of different exchange-

correlation functional, some calculations have also been done with LDA. It is found 

that the equation of state parameters obtained from GGA calculations are in better 

agreement with the experimental data. A grid of 5000 k points has been used for 

sampling the Brillouin zone. The plane wave cutoff parameter RMT KMAX is fixed at 7 

with muffin tin radius RMT chosen to be 1.3 a.u. for Li and 1.0 a.u. for H. The 

variation in RMT around these values does not affect the results. The self consistent 

cycle was run until the energy convergence criterion of 0.1 mRy was met.  

 

2.2.1 Structural stability analysis and determination of equation 

of state 

 

To analyze the structural stability under hydrostatic compression, the total 

energy for B1, B2 and B10 phases of LiH at 0 K have been computed as a function of 

volume up to about 450 GPa. The B10 phase is a primitive tetragonal structure having 

space group P4/nmm. The atomic species Li and H of two units of LiH are located at 

2c (0 ½ z, ½ 0 -z) and 2a (0 0 0, ½  ½  0) sites (international table of Crystallography, 

Vol. 2) [27]. As shown in Fig. 2.1, the B10 structure is a distortion of B2 structure and 

one can go from B10 structure to B2 structure by changing the c/a ratio to 1/√2 and 

the z value to 0.5. Therefore, the total energy calculations required for structural 

stability analysis of B10 and B2 phases have been performed on this tetragonal cell 

and at each volume the c/a ratio and internal parameter ‘z’ are optimized. Finally, to 

examine the structural stability under pressure, the total energy of the tetragonal cell 

at various volumes for optimized c/a ratio and internal parameter ‘z’ is compared with 

that of the B1 phase. Further, the total energy at 0 K is used to generate pressure-

volume relation for each phase and which finally is utilized to determine the 
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enthalpies of these phases at various pressures. In order to derive the pressure-volume 

relation, a polynomial fit of total energy with volume is used and the pressure is 

determined using the expression (1.11). The enthalpies have been compared at various 

pressures and the stable structure is obtained. After examining the structural stability 

at various pressures, the 0K isotherm of the LiH is determined and a 300K isotherm is 

obtained after adding the lattice thermal corrections as follows: 

 

The 0K theoretical P-V data are fitted to the third order Birch-Murnaghan (B-

M) equation of state: 
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where, V and V0 are volume at a compressed state and volume at zero pressure, 

respectively. The bulk modulus at zero pressure (B0) and the pressure derivative of 

bulk modulus at zero pressure ( '
0B ) is derived from the above fit. The bulk modulus B 

and its pressure derivative B' at different pressures are then determined as follows: 
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The total energy E(V,T) and pressure P(V,T) at given temperature T and 

volume V can be expressed as [28-29]: 

 

),(),()(),( TVETVEVETVE eTc ++=      (2.3) 

V
TVF

V
TVF

V
F

V
TVFTVP eTc

∂
∂

−
∂

∂
−

∂
∂

−=
∂

∂
−=

),(),(),(),(    (2.4) 

67



Here F(V,T) is the Helmholtz free energy at temperature T and volume V with Fc, 

denoting the free energy at 0 K, and FT(V,T) and Fe(V,T) are the free energies 

corresponding to the thermal lattice vibrations and thermal electronic excitations 

contributions, respectively. 

 

Primitive Tetragonal (B10) structure Simple cubic (B2) structure

Li
H

a
b

c

a
b

c

 

Figure 2.1: A relationship between B10 (tetragonal with space group P4/nmm) and 

B2 structure in LiH.  The atomic shuffle needed for B10 structure to transform to B2 

structure. In the B10 structure, the hydrogen atoms occupy the 2a (0 0 0, ½  ½  0) site 

and lithium atoms occupy the 2c (0  ½  z,  ½  0  -z) location (for B10 structure, z is a 

free internal parameter). The B10 structure becomes identical to the B2 phase for z = 

0.5 and c/a = 1/√2. The cell formed by dotted lines in the right hand side figure is the 

B2 unit cell formed from the B10 structure. 

 

The Eqn. (2.4) can equivalently be put in different way as [28-30] 
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where TE is vibrational energy of the ions contribution including zero point vibration 

energy and Ee thermal electronic contribution to the total energy. γ and γe are the 

thermal and electronic Grüneisen parameters, respectively. At 300 K the electronic 

excitation energy contributions are very small (of order of 10-2 mRy/atom) hence to 

determine the 300 K isotherm these terms in Eqn. (2.3) and (2.5) are neglected. The 

thermal Grüneisen parameter is determined using the definition: 

 

V
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The volume dependent Debye temperature Dθ  in the above equation has been 

calculated using following expression [28]: 
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Here the Debye temperatures θL and θT associated with longitudinal and transverse 

polarization, respectively are determined as a function of volume from the 

theoretically calculated elastic constants using the expression [28,31]: 
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Where the G is the polycrystalline shear modulus determined from average of the 

shear modulus calculated using single crystal elastic constants C11, C12 and C44 in 

Voigt and Reuss approximations as discussed in next section [32-33]. 

 

The TE  per atom is approximated using the high temperature limit of Debye 

model of lattice vibrations [28]: 
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Where, Bk  is the Boltzmann constant. 

 

Finally the 300 K isotherm is evaluated by substituting the value of γ, TE  at 

300 K calculated using Eqn. (2.6) through Eqn. (2.9) in Eqn. (2.5). 

 

2.2.2 Elastic Constants and Phonons  

 

For the LiH single crystal having cubic structure, there are only three 

independent elastic constants, 11C , 12C  and 44C  or equivalently three independent 

elastic moduli namely bulk modulus (B) and two shear moduli C'= (C11 - C12)/2 and 

C44. To determine the shear moduli C' and C44 at a particular volume, the total energy 

is calculated as a function of different kinds of distortions and the shear elastic moduli 

are then calculated from the second order derivative of the total energy with respect to 

strain ei (with i= 1to 6) as described below: 

 

Total energy of the strained lattice is related to the deformation tensor by the 

following relation [34]:  
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Where ie  are the components of the deformation tensor ε  represented in matrix 

notation as follows: 
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The total energy variation of the lattice is calculated using volume conserving 

deformation [29, 35]. The volume conserving deformations used for the calculations 

of the shear elastic moduli C' and C44, respectively are (in matrix notation): 

 

 

                   and            (2.12) 

 

 

 

When these two deformation matrices (Eqn. 2.12) are used in Eqn. (2.10), the 

relation between the total energies of the strained lattice and the elastic constants 

becomes: 
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At each unit cell volume V, the total energy of the strained lattice ( )ε,VEc  is 

computed and then Eqn. (2.13) and Eqn. (2.14) are used to determine the moduli C11 - 

C12 and C44. Again, the bulk modulus (B) calculated using equation of state (Eqn. 2.2) 

is related to the C11 and C12 elastic constants by the following relation  

 

               (2.15) 

 

The independent elastic constants C11 and C12 are evaluated by solving Eqn. 

(2.15) and Eqn. (2.13). 

 

These three independent elastic moduli are used to calculate the shear elastic 

constant for polycrystalline LiH containing randomly oriented crystallites. For this 

purpose, two different averaging procedures are implemented – first one is based on 

the strain continuity across the grain boundaries suggested by Voigt and the other is 

based on the stress continuity across the grain boundaries suggested by Reuss. These 
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two averaging is the upper and lower limit of the isotropic polycrystalline shear 

modulus. The expression for the polycrystalline shear modulus GV and GR for the 

Voigt and Reuss approximations for cubic system (LiH) are given as: 
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Finally, the polycrystalline shear modulus G is found from the Voigt-Reuss-

Hill approximation [36] which is the arithmetic average of GV and GR. 

 

The bonding nature of a material is analyzed phenomenologically by the 

Cauchy’s pressure Pc = (C12 – C44) [37]. Similarly, the brittle or ductile behavior has 

an empirical linking with the Pugh’s relationship (G/B ratio) [38]. For covalent or 

metallic bonding, the directionality of bonds and thus the angular character of atomic 

bonding must be taken into account which could be described by the Cauchy’s 

pressure. For covalent material the material’s resistance to shear (C44) is much higher 

than the volume change (C12) resulting the Cauchy pressure to be negative (for 

metallic material vice-versa). Another empirical relation is to measure the ductility of 

a material through its G/B ratio. If G/B ratio is greater than 0.5 the material may be 

considered as brittle, while if G/B < 0.5 the material is ductile. 

 

Apart from static lattice calculations, the lattice dynamic calculations, have 

also been performed using plane wave pseudopotential method as implemented in the 

Quantum ESPRESSO software package [39] and  phonon spectra at various volumes 

have been determined.  The lattice dynamical calculations have been carried out 

within the framework of self consistent perturbation theory with 4×4×4 q points and 

8×8×8 k-mesh used for integration over the Brillouin zone. The calculations are 

carried out within GGA and the electronic wave functions are expanded in a plane 
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wave (PW) basis set with energy cut off of 60 Ry and charge density is represented in 

PWs with energy cut off of 600 Ry. 

 

2.3 Results and Discussions 
 

2.3.1 Structural stability and equation of state 
 

In order to determine equation of state, the knowledge of structural stability as 

a function of pressure is necessary. Therefore we have analyzed structural stability of 

LiH under hydrostatic pressure. For this purpose the total energy at 0 K has been 

calculated at various unit cell volumes for the B1, B2 and B10 structures.  In order to 

test the structural stability of B10 and B2 phases the calculations have been performed 

on the tetragonal cell and at each volume the c/a ratio and internal parameter ‘z’ are 

optimized. Fig. 2.2 shows the optimized c/a ratio and z as a function of volume. Also 

plotted is the total energy of tetragonal cell corresponding to the optimized parameters 

at each volume. It is clear from the figure that at zero pressure the optimum value of 

c/a and z parameter of the tetragonal cell is ~0.7598 and 0.2863, respectively, 

indicating that at zero pressure, the B10 structure has lower energy than the B2 phase. 

Upon compression, the optimum c/a ratio decreases, whereas, the z parameter 

increases monotonically with increasing pressure and approach to a value of ~ 0.707 

and 0.5, respectively, at volume of 10.053 Å3/ formula unit with corresponding 

pressure of ~ 31 GPa. Beyond this pressure the two parameters remain fixed at these 

values, indicating that the B2 structure becomes a low energy structure as compared 

to B10 phase beyond this pressure.  Further, in the same figure, the total energy of the 

B1 structure has also been displayed. The comparison of total energy of B1, B10 and 

B2 structures, clearly suggests that up to volume/formula unit of ≤ 4.8 Å3 with 

corresponding pressure of ≤ 327 GPa, the B1 structure has lowest energy among these 

three phases and beyond this pressure LiH stabilizes in B2 phase. B10 structure does 

not stabilize at any compression. Further, shown is the enthalpy of B2 phase relative 

to B1 phase in Fig. 2.3. The comparison of enthalpies (Fig. 2.3) puts this transition at 

~ 323 GPa i.e. slightly lower side. The transition pressure predicted in the present 

work is in accord with the predictions of Wang et al. [3] and Zurek et al. [20] and not 

with Gou et al. [18] and Zhang et al. [19]. The calculated 300 K isotherm is plotted in 
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Fig. 2.4 along with the experimental data [1, 11]. The agreement between theory and 

experiment is excellent and is better than with some other theoretical predictions. 

Further, it is clear from the figure that 300 K isotherm is better described by GGA as 

compared to LDA.   
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Figure 2.2: The total energy of the B1 phase and tetragonal structure (B10). The total 

energy at each volume for the tetragonal structure is plotted for optimum c/a and z. 

For clarity, the optimized c/a and fractional coordinate z of tetragonal structure as a 

function of volume are also plotted. It may be noted that for V ≤ 10.053[Å3/formula 

unit], i.e. pressure ≥ 31 GPa, the optimum c/a and z of the tetragonal structure saturate 

at a value of 0.707 ׽ and 0.5, respectively. 

 

In Table 2.1, we compare various physical quantities for B1 phase derived from 

our calculations with the experimental data and theoretical values available from other 

sources [6-9, 11, 12, 19, 21-23, 40-41]. The calculated zero pressure volume, bulk 

modulus and its pressure derivative at zero pressure volume obtained from GGA 

(LDA) calculations agree within 1.4(8.3), 1.4(19.4) and 2.3(1.4) %, respectively with 

experimental values[11, 21]. The experimental data agree better with the GGA results. 

This is consistent with the theoretical study by Lebegue et al. [4] using projector - 

augmented - wave method under GGA. Further, as depicted in the Table 2.1, our 

theoretical zero pressure bulk modulus of 34.2 GPa from GGA and 40.3 GPa from 

LDA calculations at 0 K agrees well with GGA and LDA values of 36.2 GPa and 40.5 
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Figure 2.3: The differential enthalpy (H) of B1 and B2 phases of LiH with respect to 

B1 phase as a function of pressure (P). In this H – P plot, the crossover of the energies 

for these two phases occurs at ~ 323 GPa of pressure as pointed out with black line.  

GPa reported by Barrera et al.[6] from pseudopotential calculations at 0 K. 

However,the room temperature value of B0 by these authors under quasi harmonic 

approximation is ~ 29 GPa for GGA and ~ 33 GPa for LDA, suggesting that the value 

determined from LDA is closer to the experiment (32.2 GPa). We find that, if instead 

of quasi harmonic approximation, the experimentally measured temperature 

derivative of bulk modulus (~ -0.0083 GPa/K) [21] is used, the 0 K value reported by 

Barrera et al. [6], becomes ~ 34 GPa for GGA and  ~38 GPa for LDA at the room 

temperature.  Interestingly, as shown in the Table 2.1, we find that though, the zero 

pressure volume and bulk modulus are different for GGA and LDA, the pressure 

derivative of bulk modulus is almost the same for both the approximations. This is 

consistent with the argument by Knuc and Syassen [42] that the third order derivative 

of total energy with respect to volume is nearly independent of the approximation 

used for the exchange-correlation functional.  Additionally, we have also made 

contact with the available shock data by evaluating the parameters for the linear shock 

velocity (Us) versus particle velocity (Up) relation: 

 

pbs sUCU +=         (2.18) 
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here, the constant Cb is approximately related to the bulk modulus and the s parameter 

to pressure derivative of the bulk modulus through following expressions:  

0

0

ρ
BCb =          (2.19) 

14'
0 −= sB         (2.20) 
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Figure 2.4: The pressure-volume relation or the equation of state of LiH at room 

temperature. The experimental data (filled diamond) of Loubeyre et al. [11] and 

Lazicki et al. [1] has also been shown for comparison. 

 
The theoretical bulk modulus and its derivative is further utilized to derive the 

Grüniesen parameter (γ), the bulk sound speed and the Hugoniot parameter ‘s’. The 

Grüniesen parameter is estimated from '
0B  using the well known Dugdale MacDonald 

relation [43]. The value of Grüneisen parameter so determined, turns out to be 1.30 as 

compared to 1.2 obtained at 140 K by James and Kheyrandish [21] using 

experimental measured value of thermal expansion coefficient, compressibility and 

heat capacity. The bulk sound velocity of 6.48 km/s determined from theoretical bulk 

modulus using Eq. (2.19) exhibits a good agreement with 6.43 km/s derived from 

experimentally measured adiabatic elastic constants [21] at 140 K. The value of ‘s’ 
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determined employing theoretically calculated '
0B   in Eq.  (2.20) is 1.15, in good 

agreement (within 0.8 %) with the experimental value of 1.16 determined from 

experimentally measured shock velocity vs particle velocity plot [40]. These values 

are listed in Table 2.1 also. 

 

Table 2.1. Comparison of theoretical and experimental values of various physical 
properties of LiH at zero pressure.  
 

Properties  
*Present 
Theoretical 
Work 

Theoretical  
(Other sources) Experimental 

V0 (300K)  
(Å3/atom) 
GGA 
 
LDA 
 

 
17.26  
 
15.60 

 
17.76[6],16.15[7], (15.18-16.24)[8],  
15.24[19] 
16.46[6],(14.87-15.18)[8], 16.0[9] 

17.02[11], 
16.85[12] 

B0 (GPa) 
GGA 
 
LDA 
 

34.2 
 
40.3  

36.2[6] ,36.07[7], (34.03-39.99) 
[8],34.30[19] 
40.5[6], 36.6[9], (41.33-42.8) [8] 

32.2[11], 
33.74[21], 
32.35[22] 

B0′ 
GGA 
LDA 

3.61 
3.58 

3.49[7], 3.40[19] 
3.40[9] 

3.53[11] 
(3.8±0.15) [22] 

Cb (km/s) 6.48 -- 6.43[21] 

s 1.15 -- 1.16[37] 

γ 1.30 0.85[9] 1.2[21] 

C11 (GPa) 77.0 82.7[19], 69.28[23] 
74.06[21], 
72.83[21] , 67.2 
[22] 

C12 (GPa) 12.7 10.7[19], 17.14[23] 14.2[21], 
14.93[22] 

C44 (GPa) 48.2 52.5[19], 58.25 [23] 
48.43[21], 
48.0[21], 
46.37[22]  

θ0 (K) 828 1246[9] 1128±10[21],81
0[41] 

* All the quantities are at zero pressure and zero temperature except the volume which 
is at zero pressure and room temperature. 
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2.3.2 Elastic Properties 
 

In Table 2.1, we have also compared the theoretically determined elastic 

constants at ambient pressure with the experimental data measured through ultrasonic 

technique [21-22] and other theoretical values calculated using a periodic ab-initio 

(HF and DFT) code “CRYSTAL” based on an atom-centered (Gaussian) basis set 

program [23] and ab-initio pseudopotential plane wave method [19]. The presently 

determined values are closer to the values measured in ultrasonic experiments [21] at 

the temperature of ~ 60 K and 140 K. A further confirmation comes from the 

calculation of the Debye temperature (θ0) from these elastic constants.  The value of 

θ0, turns out to be 828 K, which is near the value 810 K derived through the 

experimentally measured specific heat [41]. Further, the pressure dependence of the 

Debye temperature is also determined which is shown in Fig. 2.5. As shown in the 

figure, the Debye temperature increases monotonically with pressure.  

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400

D
eb

ye
 T

em
pe

ra
tu

re

Pressure (GPa)  

Figure 2.5: Debye temperature as a function of pressure. 
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After finding that our calculated elastic constants at zero pressure and the 

experimental data are in good agreement, we have performed further calculations for 

determinations of elastic constants as a function of compression for B1 phase.  As 

shown in Fig. 2.5b (Fig. 2.5a is the E-V plot for comparison), the bulk modulus and 

shear modulus C′ of B1 phase increase monotonically with increasing compression, 

which is similar to the trend found by Zhang et al. [19]. However, the shear modulus 

C44 determined from our calculations initially increases monotonically with 

compression and reaches its maximum value of ~ 109 GPa at a volume of ~ 5.97 

(A0)3/atom (corresponding pressure ~196 GPa), thereafter, starts softening upon 

further compression. However, it does not soften completely at the B1 → B2 

transition pressure. This softening is unlike that reported by Zhang et al. [19], where 

C44 increases monotonically upto to the pressure of 600 GPa. It was predicted by 

Zhang et al. [19] that LiH is different in this respect from NaH, KH and CsH. We do 

not support this conclusion. The numerical values of elastic constants are shown in 

Table 2.2.  No experimental data are available for comparison at higher pressures. 

Additionally, Fig 2.6 shows the elastic anisotropy (A= 2C44/(C11-C12)) parameter as a 

function of  pressure.  The parameter “A” at zero pressure is found to be ~ 1.48 as  
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Figure 2.5: (a) Total energy of B2 phase with respect to B1 phase. This energy-

volume plot indicates the transition corresponding to volume of 4.8 Å3/formula unit (~ 

327 GPa of pressure). (b) Single crystal elastic constants as a function of volume of 

LiH. 
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compared to the 1.603 (at 4.2 K of temperature) determined from the adiabatic elastic 

constants measured experimentally. As pointed out by James and Kheyrandish [21], 

this is the largest among the alkali halides in the NaCl structure. Its value becomes 

near to that of the heavier alkali halides only at higher pressures.  

 

Table 2.2. Theoretically calculated single crystal elastic constants of B1 phase of LiH 
at various unit cell volume and corresponding hydrostatic pressures. 

 

Volume 
(Å3/atom) 

Pressure 
(GPa) C11 (GPa) C12(GPa) C44(GPa) 

15.94 0.39 79.9 13.4 49.1 
14.87 3.17 107.2 14.2 55.7 
14.42 4.67 118.2 16.0 61.4 
13.66 7.67 139.3 19.7 65.1 
12.90 11.43 166.1 23.4 67.2 
12.14 16.12 197.0 28.8 70.4 
11.38 22.05 233.9 35.9 73.9 
10.62 29.66 281.9 43.7 80.3 
9.87 39.64 346.8 50.7 88.5 
9.11 52.94 421.8 63.3 93.4 
8.35 70.87 528.7 73.7 97.0 
7.59 95.14 643.0 98.9 101.4 
6.83 127.93 813.7 120.7 107.7 
5.97 196.10 1125.8 203.6 109.1 
5.16 281.25 1485.1 269.9 104.9 
4.85 323.75 1662.4 306.2 99.2 
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Figure 2.6: Elastic anisotropy parameter (A) of LiH as a function of pressure. ‘A’ 
starts from 1.48 at zero pressure and decreases monotonically with pressure. 
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Figure 2.7: Polycrystalline shear elastic modulus (G) and bulk modulus (B) as a 
function of pressure. 
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Fig. 2.7 shows the polycrystalline elastic moduli in the Voigt (Gv) and Reuss 

(GR) approximation as a function of pressure. In Voigt approximation, the elastic 

stiffness constants over all lattice orientations of polycrystalline material are averaged 

using the assumption that the strain is uniform throughout a grain. Whereas, in Reuss 

approximation the elastic compliances are averaged assuming the stress uniformity 

throughout a grain. As is plotted in the figure, GV and GR determine the upper and 

lower bounds of the shear modulus. The Voigt-Reuss-Hill approximated value of 

shear modulus G which is the average of the GR and GV is also shown in the figure. 

The zero pressure shear modulus and the Poisson ratio of polycrystalline LiH is 

determined to be 41.7 GPa and 0.14, respectively. Like C44, initially, the GR also 

increases with increasing pressure and reaches to a maximum value of ~ 158.3 GPa at 

238.89 GPa, it decreases monotonically thereafter upon further increase of pressure.  

 

In the figure 2.8, the Cauchy’s pressure C12 – C44  and the G/B ratio has been 

plotted as a function of pressure. As is evident from the figure, for the pressure below 

~ 100 GPa, the Cauchy’s pressure has negative value and also, the G/B ratio is greater 

than 0.5 which suggest that LiH may display the brittle nature up to this pressure. 

According to these phenomenological relations, above this pressure, the LiH may 

behave as a ductile material. 
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Figure 2.8: Cauchy’s pressure and the Pugh’s relation G/B as a function of 

pressure. 

 

2.3.3 The electronic band structure and density of states 
 

 

The electronic density of states (DOS) as well as band structure for B1 and B2 

phases of LiH has also been calculated at ambient pressure (Fig. 2.8a and 2.8b) and at 

the transition pressure (Fig. 2.9a and 2.9b).  It is evident from both the DOS and band 

structure plot that there exists a band gap in the B1 phase at ambient pressure 

implying that it is insulator at normal pressure in agreement with experiments [44]. At 

the transition pressure, though the band gap for B1 phase almost vanishes, the DOS at 

Fermi energy is still almost zero, indicating that the B1 phase is still non-conducting. 

However, the situation for B2 phase is different and the DOS at the Fermi energy 

around the transition pressure is non-zero, implying that the LiH becomes metallic in 

nature at the transition pressure which is consistent with the earlier theoretical 

findings [3].  
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(a)

 

(b)

 
Figure 2.8: Band structure and total density of states of (a)B1 phase of LiH at 

ambient pressure and (b) B2 phase of LiH at ambient pressure. 
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(a)

 

(b)

 

Figure 2.9: Band structure and total density of states of (a) B1 phase of LiH at the 

B1→B2 transition pressure and (b) B2 phase of LiH at transition pressure. 
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2.3.4 Lattice dynamics of LiH 
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Figure 2.10: (a) Phonon spectra of LiH in the B1 phase at ambient pressure. Symbol 

 corresponds to experimental data of Lazicki et al. [1], ● displays data of ref. [45-46] 

and ∆ corresponds to data of Anderson et al.[49]. (b) Phonon spectra of LiH in the B1 

phase at 300 GPa. 
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The phonon spectrum of a solid is useful to get insight into lattice dynamical 

stability of the material which in turn is related to structural stability of the material.  

Additionally, it is useful for evaluating various thermodynamic quantities such as 

specific heat, thermal expansion coefficients etc. Due to the low atomic mass of 

hydrogen the phonon frequencies in the alkali hydrides are high and the contribution 

of the ionic zero-point motion to the enthalpy of the crystal is not negligible. Roma et 

al. [45] using density functional perturbation theory implemented in plane-wave 

pseudopotential method with the inclusion of non-linear core correction for the 

exchange-correlation potential calculated the phonon dispersion relation in LiH. They 

found that this self-consistent linear response calculation of lattice dynamics 

successfully reproduced the experimental data. 
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Figure 2.11: Combination of different acoustic and optical phonon frequencies at X-

point compared with the experimental data of Lazicki et al. [1] and Ho et al. [24]. The 

circular dots correspond to Ho et al. [24] data points and the diamond dots are of 

Lazicki et al. [1].  

 

 

88



 In the present calculations, the phonon spectra of LiH have been calculated 

in the B1 phase at various pressures. The phonon spectra calculated at zero pressure 

has been compared with the available experimental data at the Γ, X and L points of 

the Brillouin zone [1, 45-46, 49] (Fig. 2.10a). The theoretically determined optical as 

well as acoustic phonon frequencies at these points show reasonably good agreement 

with the experimental data [1, 45-46, 49]. In Fig. 2.10b, the phonon spectra at 300 

GPa for the B1 phase of LiH is also shown. At zero pressure, the gap between 

longitudinal acoustic (LA) and transverse optical (TO) phonon branches is 

significantly small (~ 40 cm-1) and upon compression this gap widens monotonically 

with increasing pressure. For example, at 300 GPa (Fig. 2.10b) the gap between LA 

and TO branch increases to 576 cm-1 from zero pressure value of 40 cm-1. 

Additionally, in Fig. 2.11 the theoretically calculated X-point phonon frequencies 

(combination of different acoustic and optical phonon modes) of LiH in B1 have been 

compared with experimental data at various pressures [1, 24]. The maximum 

deviation of theoretically determined frequencies for TA and LA phonons is found to 

be within ~ 16% and 11%, respectively, from the experimental data. The same for TO 

and LO phonons is evaluated to be within ~ 8.7% and 7.0%, respectively. It is worth 

to mention here that using ab-initio linear response calculation Zhang et al. [19] have 

predicted softening of TA(X) mode around ~ 200 GPa of pressure and reported that 

this could be indicative of a possible B1 → B2 phase transition. However, our 

calculations do not show softening of any of the phonon branches at X-point up to 

300 GPa.  Finally, Table 2.3 gives a comparison of the X-point phonon frequencies 

and the microscopic Grüneisen parameter corresponding to particular LA, TA and 

LO, TO branches at ambient pressure with the available experimental and theoretical 

values. As is clear from the Table 2.3, the acoustic phonon frequencies TA(X) and 

LA(X) of 289 cm-1 and 369 cm-1 calculated at X point at ambient pressure in the 

present work agree reasonably (maximum within ~ 7.9 %  and ~ 6.5 %, respectively) 

with experimental values 298-312 cm-1 and 393 – 379 cm-1, respectively [1,24,48-49]. 

Similarly for the zero pressure optical phonon frequencies TO(X) and LO(X) of 

776.77 cm-1 and 998.46 cm-1 calculated at X point in the present work agree within ~ 

3.7 % and ~ 5.6 %, respectively with experimental values 777.5-806 cm-1 and 1003-

1054.5 cm-1, respectively [1,24,48-49]. 
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Table 2.3: The equilibrium X-point phonon frequencies and the corresponding 

Grüneisen parameters for that particular vibrational mode have been compared with 

the previous literature.  

 LO(X) TO(X) LA(X) TA(X) 

ω0(cm-1) γ ω0(cm-1) γ ω0(cm-1) γ ω0(cm-

1) 
γ 

Present 
Calculation 

998.46 0.61 776.77 0.91 369.00 1.08 289.00 0.85 

Experimental Data 
Lazicki et 
al.[1] 

1003 0.75 805 0.93 379 1.6 298 0.78 

Ho et al.[24] 1015 0.69 806 0.88 393 1.10 299 0.90 

Laplaze et 
al.[48] 

    379  312  

Anderson et 
al.[49] 

1054.5  777.5  385  300  

Theoretical Other sources 
Hex et 
al.[50] 

 1.2  1.15  1.88  0.77 

Ho et al.[24] 1408 0.7 793 1.01 443 1.36 303 0.65 

Anderson et 
al.[49] 

937  821  392  286  

Zhang et 
al.[19] 

1041  821  404  312  

Yu et al.[47] 1039  857  457  349  
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2.4 Summary 

 

Ab-initio total energy calculations have been performed on the plausible 

phases (B1, B2 and B10 structures) of LiH as a function of hydrostatic compression to 

examine the structural stability. Apart from this, the calculations have been carried out 

to determine the equation of state and pressure dependent elastic constants and lattice 

dynamic stability of LiH. Various thermo physical parameters have been determined 

from theoretical equation of state and elastic constants.   

 

The structural stability analysis suggests that B1 phase of LiH will transform 

to B2 phase at a compression of ~ 0.29 with corresponding transition pressure of ~ 

327 GPa. The 300 K isotherm determined theoretically after adding the lattice thermal 

energies to the cold energies agrees closely with experimental P-V data. The equation 

of state derived from calculations within GGA agrees better with experimental data 

than that obtained from the LDA approximation. Calculated equilibrium lattice 

parameter, bulk modulus and pressure derivative of bulk modulus at zero pressure 

derived from theoretical equation of state are in good agreement with the 

experimental findings. Various physical quantities such as elastic modulus at ambient 

pressure, the Debye temperature, the Grüneisen parameter, bulk sound speed, the 

Hugoniot parameter ‘s’ compare well with the available experimental data.  

 

The ambient pressure elastic constants C11, C12 and C44 of 77 GPa, 12.7 GPa 

and 48.2 GPa of the B1 phase of LiH determined in the present work are in reasonable 

agreement with experimental data lying in the range 82.7-69.28 GPa, 10.7-17.14 GPa 

and 52.5-58.25 GPa, respectively measured in different works [19, 23]. The C11 and 

C12 increase monotonically with increasing pressure, whereas, the C44 modulus first 

increases with increasing pressure and reaches to maximum value of ~ 109 GPa at a 

pressure of~ 196 GPa, it decreases thereafter upon further compression. The elastic 

anisotropy parameter (A=2C44/(C11-C12)) at zero pressure is found to be ~ 1.48. 

Further, this parameter has been found to decrease monotonically with increasing 

pressure. The single crystal elastic constants as a function of pressure have been 
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further utilized to determine the polycrystalline elastic constants using Voigt-Reuss-

Hill approximation. Further, the Cauthy’s pressure and Pugh’s relationship between 

elastic moduli has been calculated as a function of pressure and an attempt has been 

made to understand the ductile or brittle nature of LiH as a function of pressure. 

Based on this analysis LiH will behave as a brittle material below 100 GPa and above 

this pressure it is expected to exhibit the ductile nature. 

 

The DOS and band structure plots LiH suggest that at ambient pressure LiH 

will be insulating, whereas above the transition pressure it will be metallic in B2 

phase. The phonon spectra of this material at zero pressure determined from lattice 

dynamics calculations display good agreement (the maximum deviation being ~ 16 % 

of the present theoretical finding for TA branch) with the available experimental data. 

The X-point phonon frequencies of different optical and acoustic branches of LiH has 

been calculated as a function of pressure and the maximum deviation of the calculated 

phonon frequencies has been found to be ~ 16 %, 11 %, 8.7 %, and 7.0 % for TA, LA, 

TO, and LO respectively with the experimental data of Lazicki et al. [1] and Ho et al. 

[24]. 
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Chapter - 3 

Ab-initio Study of Equation of State and ideal 
compressive and tensile strength of MgO 

 

3.1   Introduction 

 

Magnesium oxide or magnesia (periclase) having NaCl-type structure (B1 phase) 

at ambient conditions, is one of the major constituent of the earth-forming materials. 

Also, it is used as a basic end-member of refractory ceramics material for its physical and 

chemical stability under high pressure and high temperature. Apart from its geophysical 

importance, the structural stability under very high pressure makes it a suitable candidate 

for the pressure standard in the diamond anvil cell (DAC) experiments. Also, in the shock 

compression experiments, MgO can be used as a window material due to its optical 

transparency up to shock pressure of ~ 23 GPa and high shock impedance (more than that 

of LiF). For all these applications, it is important to understand the structural and elastic 

stability, equation of state (EOS) of this material under high pressure. In addition to these 

investigations, the determination of ideal tensile and compressive strength of this material 

under various loading conditions will also be of practical interest. 

 

As far as behavior of MgO under hydrostatic compression is concerned, a large 

body of literature exists on structural stability analysis, determination of equation of state 

and lattice dynamical and elastic stability [1-9]. In a high pressure x-ray diffraction 

experiment using DAC, Duffy et al. [1] have demonstrated that the B1 phase remains 

stable up to ~ 227 GPa, the maximum pressure achieved in their experiment. Speziale et 

al. [2], from energy dispersive x-ray diffraction measurements carried out in diamond 

anvil cell experiments up to 52 GPa at room temperature, have determined the pressure-
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volume EOS of MgO at room temperature. Further, using the measured room temperature 

isotherm in conjunction with the third order Birch-Murnaghan EOS  and Debye model 

for thermal pressure contribution, the authors have developed a model that satisfactorily 

describes the experimental data from room pressure and room temperature to  203 GPa 

and 3663K. Garcia et al. [3] also have determined high pressure–high temperature 

isotherms of MgO up to 1273 K and 6 GPa by compressing this material in tungsten 

carbide anvils. In recent past, Jacobsen et al. [4] have measured the EOS of MgO single 

crystal up to ~ 118 GPa under quasi hydrostatic environment using helium as pressure 

transmitting medium, and up to ~ 87 GPa in non-hydrostatic conditions using KCl 

powder as pressure transmitting medium in DAC experiments. In addition to the 

measurements of equation of state, the studies on the effect of pressure on compressive 

strength and grain size [5], and behavior of elastic constants as a function of temperature 

from 4.2 K to 1300 K [6, 7] at room pressure have also been reported in past. The 

pressure and temperature dependence of elastic constants upto ~ 8 GPa and 1600 K has 

been studied by Chen et al. [8] using ultrasonic interferometric technique. Ghose et al. 

[9] using inelastic x-ray scattering have measured the phonon dispersion relation for both 

the optical and acoustic branches along Γ-X direction as a function of pressure up to ~ 35 

GPa.  

 

 Apart from these static high pressure experimental studies, MgO has been 

investigated under shock compression also. The shock compression experiments on this 

material mainly include generation of P-V data along Hugoniot and in-situ measurement 

of shock temperature [10-17]. Duffy and Ahrens [10] have measured the Hugoniot of the 

polycrystalline MgO, in the pressure range of 14 to 233 GPa using propellant and light 

gas gun facility. Fat’yanov et al. [15] carried out shock wave experiments on MgO using 

two stage light gas gun and used optical pyrometry to measure shock temperature in the 

pressure range of 102 to 203 GPa. Based on their measurements, these authors suggested 

that that MgO does not undergo melting transition up to the highest pressure of ~ 203 

GPa with corresponding temperature of ~ 6.53 × 103 K. Using two-stage light gas gun 

facility Zhang et al. [16] carried out two experiments, one  at ~ 114 GPa and other at ~ 
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192 GPa. They have plotted their data along with those available from Duffy et al. [10], 

Marsh [14], and Vassiliou et al. [17] in both the pressure-volume as well as in the Us 

(shock velocity) - Up (particle velocity) plane. On the basis of the Us-Up plot these 

authors have reported a volume discontinuity by ~1.9 % (increase in volume) at the shock 

pressure of ~ 170 GPa. This volume discontinuity has been associated with the transition 

of B1 phase to another solid high pressure phase [16]. Very recently, laser shock 

compression experiments have been carried out up to 1400 GPa [18]. According to this 

new study, MgO under shock compression, transforms from B1 phase to B2 structure 

(CsCl type structure) above 360 GPa [18]. 

 

 In theoretical front also, MgO has attracted the attention of many high pressure 

researchers [19-26]. For instance, Cohen and Gordon [19] using modified electron gas 

theory predicted a B1 to B2 phase transformation at ~ 256 GPa or 372 GPa, depending 

upon the two different kinds of the wavefunctions chosen for the oxygen ion. Subsequent 

to this work, Chang and Cohen [20] on the basis of the ab initio pseudopotential 

calculations within local density approximation (LDA) have predicted the B1 to B2 

structural phase transition at ~ 1050 GPa. However, in another pseudopotential 

calculation, the same transition has been put ~ 451 GPa by Karki et al. [23]. Further, 

using density functional theory (DFT) within both LDA and generalized gradient 

approximation (GGA) Jaffe et al. [24] predicted this transition to occur at ~ 515 GPa.  In 

yet another all electron total energy calculations Mehl et al. [25] placed this transition at 

~ 510 GPa,  close to ~ 509 GPa and 489 GPa that predicted by Oganov and 

Dorogokupets [26] later using PAW and ECP potentials, respectively, implemented in the 

more accurate modern code VASP. 

 

  Apart from structural stability aspects, theoretical studies to examine the lattice 

dynamic and elastic stability of MgO under pressure have also come into existence in 

past [26-28]. For example, Karki et al. [27] have performed a detailed calculation of 

elastic constants of B1 and B2 phases of MgO as a function of pressure. Their 

calculations correctly show that at ambient conditions, the B1 phase is elastically stable 
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whereas the B2 phase is unstable. Further these authors have suggested that the shear 

instability might not be solely responsible for possible B1 to B2 phase transformation in 

MgO. This is because the shear modulus C44 though starts decreasing with pressure 

beyond 350 GPa, it still remains non zero even at predicted B1 to B2 transition pressure 

of 451 GPa and vanishes at ~ 1400 GPa, much beyond the transition pressure. In another 

study employing density functional perturbation theory (DFPT), Karki et al. [28] have 

determined the temperature variation of elastic constants of B1 phase and also calculated 

the phonon dispersion relation for B1 phase at ambient as well as at high pressures. The 

monotonous reduction in theoretical elastic constants with increasing temperature has 

been reported to display fair agreement with experimental measurements of Isaak et al. 

[29]. Based on the phonon dispersion relations calculated as a function of pressure, the 

authors have predicted the dynamic stability of B1 phase up to 150 GPa (the maximum 

pressure up to which the study has been carried out). The pressure variation of elastic 

constants of B1 phase has been studied by Oganov and Dorogokupets [26] also, using 

calculations based on VASP code. In addition to these studies, the pressure dependence 

of elastic constants have also been investigated by Gueddim et al. [30] using FP-LAPW 

method, and Lu et al.[31] using pseudopotential method. Further, through molecular 

dynamic simulations, the pressure–temperature phase diagram and pressure effect on 

melting temperature of MgO has also been determined by various researchers [32-34]. 

The onset of melting of MgO along Hugoniot predicted has been predicted to be ~ 430 

GPa with corresponding temperature of ~ 11000 K from the molecular dynamic 

simulations [32]. This theoretical shock pressure for onset of melting of MgO is lower by 

~28% as compared to the experimental value of ~ 600 GPa, reported recently by laser 

shock experiments [17].  

 

 In spite of so much of research work done on high pressure-high temperature 

behavior of MgO, the strength properties of MgO under uniaxial compression or 

expansion is, to our knowledge, yet to be explored. The uniaxial compression or 

expansion can be achieved under two different loading configurations namely uniaxial 

strain condition and uniaxial stress condition. The uniaxial strain condition is encountered 
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in shock experiments where materials are subjected to high strain rates (~104/s to 109/s), 

whereas the uniaxial stress condition exists in quasi static loading of materials where the 

material gets sufficient time for the lateral dimension to relax. With the advancements in 

the shock wave experimental techniques and development of new sophisticated 

diagnostic techniques it has been possible to realize the ideal failure strength for tension 

under uniaxial strain condition at strain rates as high as 109/s, on many materials such as 

Mo, Al and Cu [35, 36]. Apart from experiments, the ab-initio studies pertaining to 

determination of ideal strength under pure uniaxial stress condition as well as under 

uniaxial stress combined with biaxial compression/tension have also been reported in the 

past [37-40]. The ideal failure strength under quasi-static loading conditions derived from 

such studies play an important role in providing correct description of the hardness of a 

material as the material deformations during hardness measurements occur at finite 

strains where the knowledge of elastic moduli at the equilibrium structure only is not 

sufficient to give stringent evaluation of hardness [41].  The MgO being a geophysically 

important material, the knowledge of its ideal strength for compression and expansion 

under uniaxial strain condition will serve as one of the useful inputs required for analysis 

of structural response of this material subjected to high strain rate loading conditions 

occurring during the propagation of seismic waves through geological media and the 

fracture and fragmentation at high velocity impact. Similarly, the knowledge of ideal 

strength of MgO single crystal under uniaxial stress condition will be an important input 

for more stringent evaluation of the hardness of this material.  

   

The main purpose of this chapter is to present the results on theoretical 

determination of the ideal failure strength of MgO single crystal subjected to uniaxial 

compression and expansion along [001] crystallographic direction. For this purpose, the 

elastic moduli of MgO single crystal subjected to uniaxial compression and expansion 

along [001] crystallographic direction under two different deformation conditions namely 

“uniaxial strain condition” and “uniaxial stress condition” have been determined and 

elastic stability conditions have been tested at various compressive and tensile strains.  

The examination of elastic stability along the entire deformation path for the above 

mentioned deformation conditions yielded ideal failure strengths of the MgO single 
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crystal for [001] compressive and tensile loading under these two conditions. Before 

proceeding for these calculations, we have determined the isotherm, isentrope and 

Hugoniot of MgO; and compared these with the experimental data which provided the 

proof of the reliability of the present calculations.  

 

3.2  Methodology Employed for Present Calculations 

 

 The full potential linearised augmented plane wave (FP-LAPW) [42] method 

within the generalized gradient approximations [43] has been utilized to carry out the 

detailed calculations. These total energy calculations are performed in the B1, B2 and 

B10 (The detailed description of B10 structure and its relationship with the B2 phase has 

already been discussed in chapter 2) structure of the MgO to analyze its structural 

stability under hydrostatic compression. The total energy calculations required for 

structural stability analysis of B10 and B2 phases have been performed on the tetragonal 

cell and at each volume the c/a ratio and internal parameter ‘z’ are optimized. Finally, to 

examine the structural stability under pressure, the total energy of the tetragonal cell at 

various volumes for optimized c/a ratio and internal parameter ‘z’ is compared with that 

of the B1 phase. Further, the total energy at 0 K is used to generate pressure-volume 

relation for each phase and which finally is utilized to determine the enthalpies of these 

phases at various pressures. It has been found that the B1 phase remains stable up to ~ 

535 GPa. The total energy calculations required for determination of equation of state and 

elastic moduli of B1 phase under hydrostatic compression has been carried out using  the 

NaCl type fcc cell. However, to examine elastic stability of B1 structure under uniaxial 

compression and expansion along [001] direction, it is represented as a bct cell with c/a = 

√2 (Fig. 3.1) and the strains are applied along c-axis of this cell. For all the calculations, a 

grid of 7000 k points is used for sampling of full Brillouin zone. The plane wave cutoff 

parameter RMT KMAX is fixed at 7 with muffin tin radius RMT chosen to be 1.4 a.u. for Mg 

and 1.3 a.u. for O. The variation in RMT around these values does not affect the results. 
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The self consistent cycle was run until the energy convergence criterion of 0.01 mRy was 

met. 

 

3.2.1 Determination of Isotherm at 300 K, Isentrope and Hugoniot 

 

As a first step of our theoretical study, we performed total energy calculations on 

B1 phase as a function of hydrostatic compression and determined its 0 K isotherm, 

which after adding thermal corrections as described in chapter 2, is converted to 300 K 

isotherm. The 0 K isotherm is further utilized to generate isentrope and Hugoniot of MgO 

in B1 phase using the procedure described below: 

 

 

Figure 3.1: The representation of fcc cell (B1) of MgO as bct cell (cell bounded by dark 

solid lines). The small spheres (purple coloured) and big spheres (green coloured) show 

the oxygen and magnesium atoms, respectively. 
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 To determine the isentrope, we have first calculated temperature rise along the 

isentropic compression. For this purpose, the entropy S(T,V) is expressed by the 

following thermodynamic relation: 

 

           (3.1) 

 

which upon using Maxwell relations reduces to  

 

        (3.2) 

 

Where, CV is specific heat at constant volume. Eqn. (3.2) under isentropic condition i.e. 

for dS = 0, further reduces to 
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The shock Hugoniot is determined using Eqn. (2.3) and (2.5) in conjunction with 

the Rankine–Hugoniot relation (the energy conservation equation for a shock-wave 

travelling through a material) [44-45]: 

 

[ ][ ]VVTVPTVPTVETVE HH −+=− 00,000 )(),(
2
1),(),(     (3.5) 

 

Here TH is the temperature rise along shock Hugoniot and T0 is the room temperature.  

At high temperatures generated during shock compression the ratio θD/T << 1, the 

expression for lTE  reduces as  

 

TkE BlT 3=           (3.6) 

 

As temperatures generated during shock compressions are high so contribution of 

electronic excitations also becomes significant. The electronic contributions to energy 

and pressure are evaluated from β and γe determined theoretically using following 

expressions [46-47]:  

 

3/)(22
fB ENkπβ =          (3.7) 

 

Where )( fEN is the density of states at Fermi level, which is determined at various unit 

cell volume from FP-LAPW calculations, and 

 

Ve ln
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∂
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Finally, using the expression of energy ),( TVE  and the corresponding pressure ),( TVP  

calculated according to Eqn. (2.3) and (2.5), the Hugoniot point for a particular 

compression is evaluated by finding the temperature (TH) for which the Rankine – 
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Hugoniot relation (Eqn. 3.5) is satisfied. Putting the value of TH in the expression of 

P(V,T) the Hugoniot pressure is calculated.  

 

3.2.2  Ideal failure strength under uniaxial compression and 

expansion 
 

The determination of isotherm, isentrope and Hugoniot of MgO is followed by 

calculation of ideal failure strength of MgO single crystal in B1 phase subjected to 

uniaxial compressive loading as well as tensile loading along [001] crystallographic 

direction. For this purpose, the undeformed B1 cell (which is fcc) is represented as a bct 

cell with c/a ratio = √2 and strains along c-axis i.e. the axis oriented along [001] direction 

are applied on this cell (Fig. 3.1).  Both compression and tension were carried out under 

two types of deformation configurations namely “uniaxial strain condition” (i.e. the 

condition where 0≠= eei for i = 3 and 0=ie  for i ≠ 3, ei are the components of strain 

matrix) and “uniaxial stress condition” (i.e. the condition where 0≠= σσ i for i = 3 and 

0=iσ   for i ≠ 3, σi are the components of stress matrix).  

 

To simulate the [001] compression/expansion under uniaxial strain condition, the 

compressive/tensile strains (e) are applied along the c axis of the bct cell keeping the 

lateral dimension fixed. At each [001] strain the total energy is calculated and the stress 

along [001] direction is evaluated using following expression: 

 

e
E

ca ∂
∂

=
0

2
0

2σ            (3.9) 

 

With a0 and c0 are the lattice parameters normal to and along the loading axis of 

undeformed bct cell.  E is the total energy per formula unit of MgO. A factor of 2 is 

multiplied as bct cell contains two units of MgO. The ideal failure strength (σc), for 

uniaxial compression/expansion along [001] direction under uniaxial strain condition is 

defined as the maximum uniaxial stress which the MgO single crystal can withstand prior 
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to mechanical failure. To evaluate this (i) the elastic moduli KL, C'=(C11-C12)/2, C44 and 

C66 of bct cell have been determined as a function of [001] strain and (ii) the following 

stability conditions are examined along the entire deformation path: 
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The stress corresponding to the minimum strain at which any one of the above 

mentioned stability criteria gets violated is considered as the ideal failure strength of 

MgO single crystal subjected to uniaxial compression/expansion along [001] direction 

under “uniaxial strain condition”.  The C', C66 and C44 at a given [001] strain are 

determined using following volume conserving distortions as described in ref. [48, 49] 

 

 

 

 

 

As the strains are volume conserving no stress term comes into the energy 

equations of the strained lattice used to evaluate the shear moduli at a given volume [48-

51]. 

 

For simulation of the [001] compression/expansion under uniaxial stress condition 

(i) a strain (e) is applied along the c axis; (ii) and at this fixed strain the total energy is 

calculated as a function of lateral lattice parameter. The total energy is then plotted as a 

function of lateral lattice parameter to find the minimum energy and corresponding lateral 

lattice parameter. A typical example is given in Fig. 3.2 for e = 0.093. The above 

procedure is repeated for several strains along c- axis. The stress is determined from a 

polynomial fit of total energy to strain along c-axis using the expression:  
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Where a is the relaxed lateral parameter. The ideal compressive or tensile strength 

is determined same way as described for “uniaxial strain condition” except the 

longitudinal modulus KL in the stability conditions of Eqn. (3.10) is replaced by the 

Young’s modulus defined as: 

 

             (3.12) 
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Figure 3.2: Total energy as a function of lateral lattice parameter of bct cell strained 

along [001] direction by e = 0.093. The thin vertical line marks the minimum energy and 

corresponding lateral lattice parameter. 
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3.3 Results and Discussions 
 

3.3.1  Structural stability and equation of state 
 

In order to determine equation of state of a material the knowledge of its 

structures at various pressures is necessary. Therefore we have analyzed structural 

stability of MgO under hydrostatic pressure. For this purpose the total energy at 0 K has 

been calculated at various unit cell volumes for the B1, B2 and B10 structures. In order to 

test the structural stability of B10 and B2 phases the calculations have been performed on 

the primitive tetragonal cell and at each volume the c/a ratio and internal parameter ‘z’ 

are optimized. Fig. 3.3 shows the optimized c/a ratio and z as a function of volume. Also 

plotted is the total energy of tetragonal cell corresponding to the optimized parameters at 

each volume. It is clear from the figure that at zero pressure the optimum value of c/a and 

z parameter of the tetragonal cell is ~ 0.74 and ~ 0.28, respectively, indicating that at zero 

pressure, the B10 structure has lower energy than the B2 phase. Upon compression, the 

optimum c/a ratio decreases, whereas, the z parameter increases monotonically with 

increasing pressure and approach to a value of ~ 0.707 and 0.5, respectively, at volume of 

16.078 Å3/ formula unit with corresponding pressure of ~ 25 GPa. Beyond this pressure 

the two parameters remain fixed at these values, indicating that the B2 structure becomes 

a low energy structure as compared to B10 phase beyond this pressure.  Further, in the 

same figure, the total energy of the B1 structure has also been displayed. The comparison 

of total energy of B1, B10 and B2 structures, clearly suggests that up to volume/formula 

unit of ≤ 8.90 Å3 with corresponding pressure of ≤ 535 GPa, the B1 structure has lowest 

energy among these three phases and beyond this pressure MgO stabilizes in B2 phase. 

B10 structure does not stabilize at any compression. Further, the enthalpy (H) of B1 and 

B2 phases are determined using theoretically calculated total energy in conjunction with 

the 0 K isotherms. The plot of enthalpy of B2 phase relative to that of B1 structure is 

given in the Fig. 3.4. The comparison of enthalpies puts the B1 to B2 transition pressure 

at ~ 535 GPa, which is in line with other theoretical predictions [23-25].   
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Figure 3.3: The total energy of the B1 phase and tetragonal structure (B10). The total 

energy at each volume for the tetragonal structure is plotted for optimum c/a and z. For 

clarity, the optimized c/a and fractional coordinate z of tetragonal structure as a function 

of volume are also plotted. It may be noted that for V ≤ 16.078[Å3/formula unit], i.e. 

pressure ≥ 25 GPa, the optimum c/a and z of the tetragonal structure saturate at a value of 

0.707 and 0.5, respectively.  

 

Additionally, the activation barrier between the B1 and B2 structures has been 

determined at various compressions. For this purpose, the total energy calculations at a 

given compression have been carried out on a rhombohedral cell as a function of 

rhombohedral angel (α). It may be  noted that  the  B1 and B2  structures are special cases 

of rhombohedral cell i.e. for α = 60° the rhombohedral cell reduces to B1 structure and 

for α = 90° it corresponds to B2 structure [52]. Fig. 3.5 shows the total energy of 

rhombohedral cell as a function of angle α relative to that for the α = 60. The figure 
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correctly depicts that at ambient pressure the B1 phase is stable structure, whereas, the B2 

structure is metastable. At the pressure of ~ 535 GPa (the transition pressure predicted 

from the comparison of the total energy), both B1 and B2 have same energy and are 

separated by a barrier of height ~ 23 mRy/formula unit. Above this pressure, the B2 

phase displays the global minima and B1 phase emerges as a metastable structure.  
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Figure 3.4: The enthalpy of B2 phases relative that of B1 phase as a function of pressure. 
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Figure 3.5: Total energy of rhombohedral cell relative to that of B1 phase as a function 

of α at various compressions. 
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Figure 3.6: The comparison of theoretically determined 300 K isotherm of B1 phase of 

MgO with experimental data [1, 2, 4, 53]. 
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Table 3.1: Comparison of theoretical and experimental values of physical properties of 

MgO at ambient condition.  

 

Properties at 
Equilibrium 
Volume 

Present 
Theoretical 
Work   

Theoretical  
(Other sources) 

Experimental 

V0 (Å3/formula 
unit) 

19.11 18.40[20], 18.65[19] 
24.01 [21], 18.52[22] 
19.19 [23, 26],18.81 [28] 
18.06 [29], 17.54 [31] 

18.67 [2,4,55,56], 
18.69 [54], 18.65 
[3],  

B0 (GPa) 157.2 159.7 [23], 153.9 [26] 
159 [28], 171 [29] 
160.9 [31], 163 [30] 

160.2 [2], 153[55] 
160 [54], 161 [56], 
159.6 [4]166.2 [7] 

B0′ 3.97 4.26 [23], 4.05 [26] 
4.30 [28], 4.29 [29] 
4.12 [31] 

3.99 [2], 4.1 [55], 
4.15 [54], 3.94 [56], 
3.74 [4] 

γ 1.43 1.52 [26], 1.54 [28] 1.49[2], 1.6* [7] 
C11(GPa) 276.0 291 [23], 280 [26] 

338 [29], 299.9 [31] 
302 [30] 

295.9 [6], 286 [58]  
296 [7] 

C12(GPa) 87.0 91[23, 26]], 91 [29] 
94.9 [31], 94 [30] 

95.4 [6], 87 [58]  
95.9 [7] 

C44 (GPa) 154.4 139 [23], 142.5 [26] 
118 [29], 146 [31],  
144 [30] 

153.9 [6], 148 [58] 
156 [7] 

θ0 (K) 732 910 [26] 773 [57], 946 [6] 
962 [7] 

 

After predicting the structural stability, the theoretical 300 K isotherm of MgO in 

B1 phase has been determined (Fig. 3.6) and compared with the available experimental 

data [1-2, 4, 53]. The Theoretical isotherm shows good agreement with the experimental 

data of Duffy et al. [1] and Perez-Albuerne and Drickamer [53], however it is somewhat 

overestimated as compared to that of Speziale et al.[2] and Jacobsen et al. [4]. In Table 

3.1, various physical quantities derived from present all-electron calculations are 

compared with previous experimental findings [2-4, 6-7, 54-58] and theoretical values 

available from other sources [19-23, 26-31]. The calculated zero pressure volume, bulk 

modulus and its pressure derivative at this volume agree within 2.4%, 5.4% and 4.3 %, 

respectively, with experimental values [2-4, 6-7, 54-58]. The Gruniesen parameter (γ) 
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turns out to be 1.43 as compared to 1.49 measured at 300 K by Speziale et al. [2] and 1.6 

measured by Sumino  et al.[7] at 80 K. 
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Figure 3.7: The comparison of theoretically determined isentrope of B1 phase of MgO 

with experimental data [59]. 

 

The theoretical isentrope of MgO is plotted in Fig. 3.7 along with the 

experimental isentrope data generated recently by Duffy et al. [59] by conducting ramp 

compression experiments on MgO. The agreement between the theoretical isentrope and 

experimental data is quite good. Fig. 3.8 shows Hugoniot of B1 phase of MgO in P-V 

(Fig. 3.8a) and Us-Up (Fig. 3.8b) plane, where Us is the shock velocity and Up is the 

particle velocity. Our theoretical Hugoniot agrees reasonably well with experimental data 

generated in various studies [10-12, 16, 59]. As is clear from the figure, the Us and Up 

display a linear relationship of type Us = C0 + s Up with C0 approximately equal to the 

bulk sound velocity.  The value of C0 and s evaluated from linear fit of theoretical Us 

with Up is 6.74 km/s and 1.23, respectively, in good agreement with 6.87 km/s and 1.24 

measured experimentally [10]. 
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Figure 3.8: The theoretical Hugoniot of MgO for B1 phase plotted in (a) pressure-density 

and (b) Us - Up plane. Experimental data [1, 10-12, 16, 57] has also been plotted for to 

check the matching of the present theoretical data with the available experimental 

findings. 
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After finding the isothrerm, isentrope and Hugoniot of MgO, the elastic constants 

C11, C12 and C44 of B1  phase  at  ambient  pressure  are determined  and compared  with  

the experimental data [6, 7, 58] measured through ultrasonic and rectangular 

parallelepiped resonance techniques, and other theoretical values[23, 26, 29-31]. 

Presently determined values of C11, C12 and C44 agree within 6.7%, 9.3% and 4%, 

respectively with the experimental data [6, 7, 58]. The value of Debye temperature (θ0) 

calculated from these elastic constants is 732 K as compared to the 773 K determined 

using experimentally measured specific heat [57] in the low temperature Debye 

approximation. Though our theoretical value of θ0 shows a good agreement with that 

determined using experimentally measured specific heat in the low temperature Debye 

approximation it deviates significantly from the values determined using experimental 

elastic constants [6-7] and theoretical value of Oganov et al. [25]. 

 

 

3.3.2 Ideal Compressive and tensile strength 
 

 

Having demonstrated that the various ground state properties and equation of state 

derived from present theoretical calculations agree reasonably well with the available 

experimental data, we have extended the total energy calculations to determine the ideal 

compressive and tensile strength of MgO single crystal subjected to uniaxial compressive 

and tensile loading along [001] crystallographic direction. As mentioned earlier, the 

compressive and tensile loadings have been carried out in two deformation configurations 

i.e. uniaxial strain condition and uniaxial stress condition. It may be noted that the 

uniaxial strain condition is encountered in experiments where materials are subjected to 

rapid loading with strain rates ranging from 104/s to 109/s.  Such high strain rates in 

materials can be achieved in shock wave experiments. In fact, a suitably configured 

shock wave experiment not only generates high compressive stresses but also high tensile 

stresses at such strain rates [35-36, 60] which may cause spall fracture in material. The 

uniaxial stress condition prevails when materials are subjected to quasistatic loading with 

strain rates of order of 10-3/s.  
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Figure 3.9: Total energy versus strain plot of MgO single crystal strained along [001] 

direction under uniaxial strain condition. Also displayed is the corresponding uniaxial 

stress along [001] direction. 

 

Fig. 3.9 displays the total energy and corresponding uniaxial stress as a function 

of strain along [001] direction for uniaxial strain condition. As is clear from the figure, 

for compression, the stress along [001] direction increases monotonically with increasing 

e, however, for tension, it first increases and reaches to maximum value of ~ 20 GPa at e 

~ 0.19 corresponding to the inflection point in total energy, thereafter it decreases 

monotonically with increasing e. To identify the minimum strain and corresponding 

stress at which MgO single crystal fails mechanically upon [001] compression and 

expansion under uniaxial strain condition, various elastic moduli of bct MgO have been 

calculated as a function of e and plotted in Fig. 3.10. As depicted in the figure for [001] 

compression, the shear modulus C′ vanishes first at strain e ~ - 0.218 with corresponding 

stress σ ~ - 283 GPa. However, for tension the longitudinal modulus vanishes first at the 

strain e ~ 0.19 with corresponding stress of σc ~ 20 GPa. These results suggest that for 

compressive [001] loading the MgO single crystal fails mechanically due to shear 
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instability whereas for tensile loading it fails due to vanishing of tensile modulus. Thus, 

the ideal compressive strength and ideal tensile strength of MgO single crystal subjected 

to compressive and tensile loading along [001] direction under uniaxial strain condition is 

determined to be ~ -283 GPa and ~ 20 GPa, respectively. 

 

 
 

Figure 3.10: Various elastic moduli as a function of strain for MgO single crystal 

strained along [001] direction under uniaxial strain condition. Application of strain 

distorts the fcc lattice to fct or equivalently to a bct lattice. The elastic moduli at various 

strains have been calculated for bct lattice. The two thin vertical lines intercepting the 

strain axis at -0.218 and 0.19 displays the strains at which mechanical failure occurs 

under compression and tension, respectively. The stresses corresponding to these strains 

as shown in Fig. 3.9 are -283 GPa and 20 GPa, respectively. 

 

In Fig. 3.11, the total energy and corresponding stress is displayed as a function of 

strain along [001] direction for uniaxial stress condition. Like for first type of 

deformation configuration, here also, for compression, the stress along [001] direction 
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increases monotonically with increasing strain, however, for expansion it first increases 

with increasing strain and reaches to a maximum value of ~ 11 GPa at e ~ 0.13 

corresponding to the inflection point in total energy - strain curve. Again to identify the 

minimum strain for which any one of the stability conditions gets violated, we 

determined various elastic moduli of bct MgO as a function of strain e. These are plotted 

against e in Fig. 3.12. As is clear from figure, for compression the shear modulus C66 

vanishes   first  at   the  strain  e ~ -0.17  with   corresponding  stress  of  ~ -115 GPa.  For 

expansion, however, it is the Young’s modulus which vanishes first at a strain of ~ 0.13 

with corresponding stress of ~ 11 GPa. Like uniaxial strain condition, in the uniaxial 

stress condition also, for compression the mechanical failure of MgO single crystal 

occurs due to shear instability, however, that for expansion is due to vanishing of 

Young’s modulus. On the basis of these results the ideal compressive strength and ideal 

tensile strength for uniaxial loading along [001] direction under uniaxial stress condition 

is evaluated to be ~ -115 GPa and ~ 11 GPa, respectively.  
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Figure 3.11: Total energy versus strain plot of MgO single crystal strained along [001] 

direction under uniaxial stress condition. Also displayed is the corresponding uniaxial 

stress along [001] direction. 
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Figure 3.12: Various elastic moduli as a function of strain for MgO single crystal 

strained along [001] direction under uniaxial stress condition. The two thin vertical lines 

intercepting the strain axis at -0.17 and 0.12 displays the strains at which mechanical 

failure occurs under compression and tension, respectively. The stresses corresponding to 

these strains as shown in Fig. 3.11 are -115 GPa and 11 GPa, respectively. 

 

These findings suggest that the ideal compressive and tensile strength of MgO 

single crystal is higher for “uniaxial strain condition” than that for the “uniaxial stress 

condition”. The higher failure strength under uniaxial strain condition than that under 

unaxial stress condition determined from present theoretical work in MgO is in 

accordance with the findings of Chatterbuck et al. [39] and Černý and Pokluda [40] in 

various elemental solids such as Fe, Mo, W, Cu, Pt and Au, where these authors have 

determined the tensile strength along [001] direction in two conditions, the uniaxial stress 

condition and the triaxial stress condition (lateral strains superimposed over [001] 

uniaxial strain). It has been demonstrated that the tensile strength increases when the 

lateral tension is superimposed over [001] uniaxial tension. The reason for this is 

associated with the presence of transverse stress (or strain) which prevents the Poisson 

contraction, making the structure to reach the inflection point at a larger uniaxial strain as 
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compared to that under uniaxial stress condition [39, 40]. This argument is equally valid 

in our case also, where the uniaxial strain condition under compression/expansion is 

achieved by keeping the lateral dimension of MgO single crystal fixed at zero stress 

value, i.e. by not allowing the Poisson expansion/contraction, which is equivalent to 

adding transverse stresses.  

 

The higher values of failure strengths under “uniaxial strain condition” (which 

can be generated in shock wave experiments) than that under “uniaxial stress condition” 

(which exists in quasi static loading experiments) have also been observed 

experimentally [35-36]. For example,  in  Al  and  Cu  foil  the   tensile   fracture  strength   

measured  in  shock  wave experiment [36] at strain rate of ~ 104/s are reported to be ~ 1 

GPa and ~ 2 GPa, as compared to the typical quasi-static fracture strength values of ~ 

0.12 GPa and ~ 0.4 GPa, respectively. Similarly, Mo single crystal subjected to shock 

loading along [001] crystallographic direction at strain rate of ~ 104/s (ref. 35) shows 

tensile fracture strength of ~ 3.3 GPa as compared to the quasi-static value of ~ 0.55 GPa 

[61]. Additionally, in these experiments, it has also been found that the tensile fracture 

strength increases with increasing strain rate and approaches to ideal value at strain rate 

of ~ 108/s [35-36]. The reason for this is attributed to the competition between two 

mechanisms causing the fracture in materials.  In the first mechanism it is the movement 

of defects and dislocation present in the material which cause fracture in the materials, 

i.e. the strength of the material is controlled by nucleation and movement of dislocation 

and microcracks.  However, in second mechanism it is the binding energy of the solid 

which decides the fracture strength. Thus, if the material is defect free, it will fail only 

when the any one of the elastic stability condition gets violated. It is argued that the first 

type of mechanism is operative up to strain rates ~ 107/s [35-36, 61], however, at 

ultrahigh strain rates of ≥ 108/s, due to inertia, the defects and dislocations of the material 

could not respond to the rapidly increasing stress, thereby making the binding energy 

completely responsible for the fracture process at such high strain rates [35-36, 61]. 

Hence, the ideal compressive and tensile strength calculated in present work give upper 

bound to fracture strength of MgO. 
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Additionally, it may also be noted that (i) the [001] compressive strength of MgO 

under uniaxial stress condition is much higher than that of ductile copper and aluminium 

and (ii) the failure in  MgO under compression is due to shear instability whereas that in 

Cu and Al is due to vanishing of Young’s modulus[37, 38].  The reason for this could be 

associated to the relatively small Poisson ratio (~ 0.18) of MgO as compared to that of Cu 

(~ 0.34) and Al (~ 0.35), which has caused the bcc saddle point and hence the inflection 

point to occur at a very large strain (the inflection point in MgO has not reached even at e 

= -0.3) before which the structure has already failed due to shear instability. In contrast to 

this, in Cu and Al the inflection point has reached at very low strains of ~- 0.09 and - 0.1, 

respectively, causing the failure to occur due to vanishing of Young’s modulus [37, 38]. 

Moreover, under tension, the MgO fails due to vanishing of Young’s modulus whereas 

the Cu and Al fail due to shear instability [37, 38]. 

 

3.4 Summary 
 

To summarize, the ab-initio calculations at 0K have been performed on MgO and 

the structural stability has been examined as a function of hydrostatic compression. The 

0K calculations in conjunction with Debye model for thermal corrections have been 

utilized to generate 300K isotherm, isentrope and Hugoniot of MgO. The structural 

stability analysis suggests that MgO will transform from B1 phase to B2 phase at ~ 535 

GPa in line with other theoretical predictions. The theoretical isotherm, isentrope and 

Hugoniot compare well with the available experimental data. The activation barrier 

calculated between B1 and B2 phases at transition pressure is ~ 23 mRy/formula unit.  

Various physical quantities such as zero pressure equilibrium volume, bulk modulus, its 

pressure derivative, Gruneisen parameter and Debye temperature determined at zero 

pressure are 19.11 Å3/formula unit, 157.2 GPa, 3.97, 1.43 and 732 K respectively, as 

compared to the experimental values of 18.65-18.69 Å3/formula unit, 166.2-153GPa, 

4.15-3.74, 1.49 and 773-962K. The shock parameter C0 and s of 6.74 km/s and 1.23 show 

a good agreement with the experimental data of 6.87 km/s and 1.24, respectively.  
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Apart from these studies the ideal strength of MgO single crystal subjected to two 

deformation conditions namely uniaxial stress condition and uniaxial strain condition 

along [001] crystallographic direction has also been determined. For both the deformation 

configurations present calculations suggest that under compression the MgO single 

crystal will fail due to shear instability, whereas, under expansion it will fail due to 

vanishing of tensile modulus. The ideal [001] compressive strength under “uniaxial strain 

condition” and “uniaxial stress condition” is determined to be -283 GPa and -115 GPa, 

respectively. However, ideal tensile strength is evaluated to be 20 GPa and 11 GPa, 

respectively, for the above mentioned two deformation conditions. These results suggest 

that the MgO single crystal will offer higher resistance against failure for compression as 

well as expansion under “uniaxial strain condition” than that for the “uniaxial stress 

condition”. The understanding of the strength properties under these loading conditions 

will provide useful input to codes developed for analysis of the structural response of 

MgO.  
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Chapter - 4 

B1 → B10 → B2 Structural Transition Sequence in 

LaN under High Pressure 

 
4.1 Introduction 

The transition metal mononitrides are frequently used as refractory material as 

they exhibit unique mechanical properties such as high hardness, brittleness, elastic 

moduli and melting point [1-4]. These properties ensure an extensive and growing 

application of nitrides of d- and f- metals in modern technology, e.g., the basis for 

development of various corrosion and wear-resistant coatings (in cutting tools and 

magnetic storage devices). These materials also have unique combination of chemical 

characteristics with the above mentioned physical or mechanical properties; namely 

interesting optical, electronic, magnetic and vibrational properties [1-4]. A small 

deviation from the stoichiometry of these compounds can change the physical and 

chemical properties of these materials drastically. Several of these nitrides show 

superconducting behaviour with relatively high superconducting temperature. These 

properties of transition metal mononitrides make them suitable for various 

technological and scientific applications such as producing solid solution of improved 

physic-chemical properties, new composite materials. For example, nanocrystalline 

hard transition metal nitrides (TiN, VN, W2N, CrNx and others) can be embedded in 

amorphous Si3N4, BN to produce novel nanocomposite superhard materials [5]. The 

cubic δ-NbN has been found to posses high hardness (a Vickers hardness of 20 GPa) 

as well as superconducting behavior for possible applications at extreme conditions 

[2] and thus have attracted attention of scientific community.  

 

LaN, a mononitride of 5d transition element La, possessing rocksalt type 

structure (B1) at ambient conditions, is one of the important transition metal nitrides, 

which has been studied by researchers in recent past [6-11], with the aim to determine 

the ground state properties and understand the structural stability under high pressure. 
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Some of the high pressure theoretical studies have concentrated mainly on B1 to B2 

structural phase transition. For example, Vaitheeswaran et al. [7] through first 

principles total energy calculations predicted the rocksalt type to CsCl type (B2) 

structural phase transition in this material at ~ 26.9 GPa. The same transition has been 

predicted to occur at ~ 25 GPa by Ciftci et al. [8] on the basis of augmented plane 

wave pseudopotential calculations using VASP package. Stampfl et al. [6] have 

investigated ground state bulk properties of 3d, 4d and 5d transition metal 

mononitrides using full potential linearized augmented plane wave (FP-LAPW) 

method within both the local density approximation (LDA) and generalized gradient 

approximation (GGA). The main physical properties determined by these authors 

from their ab-initio calculations are lattice constants, bulk moduli, heat of formation, 

cohesive energy, band structure and density of states of these mononitrides in B1 

phase. Based on the comparison of results obtained from GGA and LDA calculations, 

as expected, these authors reported that the GGA yields 1%–2% larger lattice 

constants, 10%–20% smaller bulk moduli, and 10%–30% lower heats of formation 

compared to the LDA. The structural and electronic properties of LaN have been 

investigated by Ghezail et al. [9] also using full potential linearized muffin tin (FP-

LMTO) and FP-LAPW method within both the LDA and GGA. These authors report 

that the structure of the stable phase of LaN predicted using ab-initio calculations is 

sensitive to the kind of approximation used for treating exchange correlation 

interactions. Apart from these static lattice calculations, the lattice dynamic studies of 

LaN has also been reported in recent past [10].  

 

In experimental front, recently, in a high pressure X-ray diffraction 

measurements carried out on LaN powder in diamond anvil cell (DAC), occurrence of 

a new phase at ~ 22.8 GPa has been reported by Schneider et al. [10]. This high 

pressure phase has been identified as a primitive tetragonal structure with space group 

P4/nmm and is named as HP-LaN [11] phase by the authors. In the present thesis, 

following the literature, we have named this structure as B10 phase. This 

experimental finding is in contrast with the earlier theoretical predictions [7-8]. 
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The material with rocksalt type structure at the ambient condition transforms 

generally to the CsCl type structure. There are large numbers of compounds showing 

this transition sequence under pressure. For example, alkali halides (except CsCl, 

CsBr and CsI), thorium chalcogenides and pnictides ThX (X=S, Se, P, As, and Sb) 

[12], barium chalcogenides and pnictides BaX (X= S, Se and Te) [13] follows this 

phase transition sequence. Thus the occurrence of high pressure B10 structure in LaN 

is rather unusual in nature. However, Iron monoxide (FeO) exists in the B1 structure 

under ambient conditions and transforms to the nickel arsenide-type (B8) structure 

under high pressure [14-15]; but above 3850 K temperature B1 to B2 transition is 

observed [16]. As the existence of high pressure B10 phase is bit unusual, we 

attempted to investigate the reason behind its stability by performing the detailed 

analysis of the electronic band structure. 

 

Motivated with this experimental study, we have attempted to theoretically 

investigate the pressure induced B1 to B10 structural phase in LaN.  For this purpose, 

we have performed first principles electronic band structure calculations on B1, B10 

and B2 phase of LaN using FP-LAPW method implemented in the WIEN2K package 

[17-18]. The theoretical study presented in this chapter includes the analysis of the 

relative stability of these phases of LaN as a function of hydrostatic compression and 

the possible mechanism behind the occurrence of low symmetry phase B10 under 

high pressure before the B2 phase gets stabilized at still higher pressures.  

 

4.2  Theoretical Method 

 

  The structural stability and equation of state of LaN has been determined from 

first principles total energy calculations using FP-LAPW method [17-18]. To analyze 

the structural stability we have considered three plausible phases of LaN namely B1, 

B10 and B2 structures. For the total energy calculations, the unit cell of these 

structures is divided into two regions, the one consisting of non overlapping atomic 

spheres centered at the atomic site and the other an interstitial region as discussed in 

the first chapter. The muffin tin radius for atomic sphere of La was chosen to be 2.2 

a.u. while the same for nitrogen was kept to be 1.5 a.u. The parameter RMTKMAX that 
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determines the number of basis functions (size of matrices) is chosen to be 7; here RMT 

is muffin tin radius and KMAX is the magnitude of the largest K vector (reciprocal 

lattice vector) used in plane wave expansion. The dimension of K2
max is that of energy. 

The magnitude of the largest vector (Gmax) used in charge density Fourier expansion 

was set to be 12. A grid of 5000 k-points was used for sampling of the Brillouin zone. 

The exchange correlation interaction was treated within generalized gradient 

approximation (GGA) [19] for all the calculations. For B10 and B2 phases the 

calculations have been performed on the tetragonal cell as described in chapter 2.  

 

  The HP-LaN or B10 structure, which, has been found to occur in LaN under 

high pressure has also been reported to exist in BaO at high pressures [20]. The 

atomic species La and N of the two units of LaN contained in the tetragonal cell of the 

B10 structure were located at 2c (0  ½  z,  ½  0  -z) and 2a (0 0 0, ½  ½  0) sites 

(international table of Crystallography, Vol. 2). The value of z determined 

experimentally at 39 GPa is 0.3450, which increases to 0.3586 at ~ 60 GPa [11]. At 

39 GPa, the experimentally measured c/a ratio of B10 phase is reported to be 0.75412, 

which shows a slight variation with pressure and reaches to ~ 0.7415 at ~ 60 GPa 

[11].  As already discussed in chapter 2, the B10 structure becomes identical to B2 

phase for c/a =1/√2 and z = ½.  In our calculations we have optimized both the c/a 

ratio and the z for B10 structure for all volumes. For this purpose, at each volume, we 

have chosen several c/a ratios ranging from 0.76 to 0.69 (which include the c/a 

corresponding to B2 structure also) and optimized the value of z for each c/a. The 

optimum c/a and z at a given volume is the one for which the total energy is 

minimum. This procedure was repeated at various volumes and optimum c/a and z as 

a function of volume has been obtained. The structural stability as a function of 

hydrostatic compression has been analyzed by comparing the total energies of B1, 

B10 and B2 phases as a function of volume.  

 

 The 0 K pressure-volume (P-V) data for LaN have been determined by finding 

the negative volume derivative of total energy calculated at various unit cell volumes.  

The 300 K isotherm is derived by adding the thermal contributions to the 0 K 

isotherm. The zero pressure bulk modulus (B0) and its pressure derivative at zero 
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pressure (B0′) were obtained by fitting the isotherm to the third order Birch-

Murnaghan equation of state [21] as described in section 2.2.1. Further, the elastic 

constants of B1 phase of LaN have also been determined as a function of hydrostatic 

compression following the procedure described in the chapter 2.  

 

4.3  Results and Discussions 

 4.3.1 Structural Phase Transition Sequence and the EOS  
 
 

 
 

Figure 4.1: The optimized c/a and fractional coordinate z as a function of volume for 

tetragonal structure. The regions marked as B1, B10 and B2 represent the regime of 

stability of B1, B10 and B2 structures, respectively. It may be noted that the 

tetragonal structure with 0.707< c/a ≤ 0.7597 and 0.3271≤ z < 0.5 represents the B10 

phase, however, the c/a = 0.707 and z = 0.5 corresponds to B2 phase. 

 

  The structural stability of B1, B10 and B2 phases has been examined as a 

function of hydrostatic compression. As one can go from B10 structure to B2 

structure by changing the c/a ratio to 1/√2 and the z value to 0.5, for these two 
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structures the calculations have been performed in primitive tetragonal cell only and 

at each volume the c/a ratio and z value is optimized. In Fig. 4.1, we have plotted the 

optimum c/a and z value as a function of volumes/formula unit of tetragonal cell. The 

optimum value of c/a ratio and z at the zero pressure equilibrium volume of tetragonal 

cell i.e. V0t= 35.87 Å3/formula unit is ~ 0.7687 and ~ 0.2791, respectively. The c/a 

ratio decreases monotonically with increasing compression and approaches a constant 

value of ~ 1/√2 at V = 19.44 Å3/formula unit (V/V0t ~ 0.542 with corresponding 

pressure ~ 169 GPa), whereas, the z parameter increases with increasing compression 

and reaches a constant value of ~ 0.5 at above mentioned compression. This indicates 

that beyond 169 GPa the B2 structure becomes lower in energy than the B10 Phase. 

Further, in Fig. 4.2, we have compared the theoretically determined optimum lattice 

parameters of B10 structure with the experimental values of Schneider et al. [11] at 

various pressures. The theoretical lattice parameters are found to agree with the 

experimental values within ~ 2.5%. 

 

The total energies of B1 and optimized primitive tetragonal cell are compared 

in Fig. 4.3 as a function volume. Also, for sake of clarity, the optimum c/a and z 

values for tetragonal cell are also plotted. It is clear from the figure that the B1 phase 

which is a stable structure at ambient conditions transforms to a tetragonal structure 

(B10) at V = 32.01 Å3/formula unit with V/V0 ~ 0.852 and corresponding pressure of ~ 

25.83 GPa. This is in agreement with the experimental findings of Schneider et al 

[11], where authors have reported this transition to occur at ~ 22.8 GPa. Further, the 

c/a ratio of ~ 0.7541 and z ~ 0.3416, determined theoretically for B10 phase at ~ 40 

GPa (V ~ 27.01 Å3/formula unit) are in good agreement with the experimental values 

of 0.7522 and 0.3450, respectively. Similarly, at ~ 60 GPa the theoretical c/a and z are 

found to be ~ 0.7500 and ~ 0.3583 as compared to the experimental values of 0.7415 

and 0.3586, respectively [11]. Additionally, present calculations predict that upon 

further compression the B10 phase will transform to B2 structure at V ~ 19.44 

Å3/formula unit with corresponding pressure of ~ 169 GPa.  
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Figure 4.2: The comparison of theoretically optimized lattice parameters of B10 

structure with the experimental values of Schneider et al. [11] at various pressures. 

 

Further, using calculated total energies and pressures, we have determined the 

enthalpy of B1, B10 and B2 structures at various pressures. The Fig. 4.4 displays the 

enthalpies of these structures relative to that of B2 phase. As is clear from the figure, 

the comparison of enthalpies puts the B1 to B10 transition pressure at ~19 GPa as 

compared to 25.8 GPa obtained from the comparison of total energy. This is expected 

as this transition is of first order in nature (as a volume discontinuity occurs at the 

transition pressure). The B10 to B2 transition is of second order in nature (as no 

volume discontinuity is associated with this transformation) and thus, the transition 

pressure determined from the enthalpy comparison is identical to that obtained from 

the total energy comparison i.e. ~ 169 GPa. Table 4.1 compares the theoretically 

determined transition pressures with available experimental data [11]. 
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Table 4.1: The comparison of theoretically determined phase transition pressures with 

experimental data. 

 

Phase transition 
(GPa) 

Theory (Present work) Experimental 
From total energy From enthalpy 

B1→B10 25.8 19 22.8[11] 

B10→B2 169 169 -- 

 

 

 
 

Figure 4.3: The total energy of B1 phase and tetragonal structure. The total energy at 

each volume for tetragonal structure is plotted for optimum c/a and z. For clarity, the 

optimized c/a and fractional coordinate z of tetragonal structure as a function of 

volume is also plotted. It may be noted that for V ≤ 19.44 (Å3/formula unit), i.e., 

pressure ≥ 169 GPa, the optimum c/a and z of tetragonal structure saturate at a value 

of ~ 0.707 and 0.5, respectively, indicating the transition of B10 phase to B2 

structure.   
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Figure 4.4: The comparison of enthalpy of the B1, B10 and B2 phases as a function 

of pressure. 

 

The theoretical isotherm along with experimental data [11] is displayed in Fig. 

4.5. As far as B1 phase is concerned, the agreement of theoretical isotherm is good 

with the experimental data [11], whereas, for B10 phase the theoretical isotherm is 

underestimated systematically as compared to the experimental data with maximum 

deviation  of ~ 16% at experimental pressure of 60GPa (the maximum pressure in the 

experiment).  The volume discontinuity determined theoretically at the B1 → B10 

transition point is ~ 9% as compared to the experimental value of 11%. Theoretical 

isotherm shows no volume discontinuity at B10 → B2 phase transition indicating that 

this transition will be of second order in nature. Further, in Table 4.2, we have 

compared equilibrium volume, bulk modulus and its pressure derivative determined 

theoretically at ambient conditions with the available experimental data [11] and 

theoretical values reported in literature [6-9, 22]. The equilibrium volume shows 

excellent agreement with the experimental value, however, the bulk modulus and its 

pressure derivative agree with the experimental data within ~ 9% and ~ 32%, 
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respectively. Further using in the Slater’s definition [23], we have determined the 

value of Gruneisen parameter (γ) to be 1.52 (listed in Table 4.2). 

 

 
 

Figure 4.5: Pressure versus volume curve of LaN. The solid curves display the 

theoretical isotherm and the symbols correspond to the experimental data [11]. 

 
Table 4.2: Various physical quantities for B1 phase of LaN at zero pressure. 
 

 Theory 
Present work 

Experimental Theory (other sources) 

V0 (A0)3/formula unit 37.53 37.32[11] 37.64[6], 34.3[7], 37.36[8], 
36.85[9], 37.37[22] 

B0(GPa) 123.2 135.5[11] 148[6], 152[7], 117[8] 
124.4[9], 152[22] 

B0′ 3.38 5[11] 3.65[8], 4.48[9], 4.16[22] 

C11 208  213[8], 201[10], 221[22] 

C12 81  84 [8], 65[10], 118[22] 

C44 69  71[8], 49[10], 71[22] 

θD(K) 318.1   

γ 1.52   
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4.3.2  Stability of B10 phase: Symmetry Breaking Mechanism  
 
In an attempt to understand the occurrence of low symmetry B10 structure 

before the stabilization of high symmetry B2 phase, we have analyzed the electronic 

band structure and DOS of B10 and B2 structure. To have a proper comparison, the 

B2 structure is also represented in tetragonal geometry and band structure and density 

of states are calculated in the tetragonal unit cell for both the B2 and B10 structure. 

Fig. 4.6 displays the band structure and corresponding DOS for B10 and B2 structure 

in the pressure regime where the B10 phase is stable. Along with the total DOS, the 

projected density of states is also plotted. The band structure plot displays that the 

band gap opens at Fermi energy for both the B10 and B2 structure. However, in B10 

phase the opening is extended in all Brillouin zone directions, whereas the same is 

limited to only Z-R-A-M-X directions for B2 structure. Moreover, the amount of 

depression in energy bands is large for B10 structure as compared to that for the B2 

structure. The total density of states plot displays that for B10 phase there are no 

states around the Fermi energy, however, that for B2 structure shows a density of ~ 

0.5 states/eV at Fermi energy. These results suggest that relatively extended opening 

of the band gap and large depression of electronic bands near the Fermi energy in B10 

as compared to that in B2 structure might have lowered the total energy low 

symmetry B10 phase and led the stabilization of this structure at lower pressures. The 

B2 phase due to its higher symmetry has high density of degenerate states (which are 

composed of d states of La and, s and p states of N hybridized near Fermi energy) 

near the Fermi energy. The energy of such a high symmetry structure can be lowered 

by lowering its symmetry as this lifts the degeneracy and pushes some of the states 

down in energy. It may be possible that the energy lowering caused by this symmetry 

breaking mechanism in the lower pressure region, is large enough to win over the 

high symmetry structure supporting Madelung energy term, leading to stabilization of 

B10 structure, which actually is a distortion of B2 structure. This kind of  symmetry 

breaking mechanism also known Peierls distortion has been found to be even more 

pronounced in group IV d-electron metals Ti, Zr and Hf, where at lower pressure the 

low symmetry ω phase, which actually is a distortion of bcc structure occurs before 

the high symmetry bcc phase stabilizes at higher pressures [24-25]. Similarly, in light 

actinides the occurrence of low symmetry distorted structures even at ambient 

conditions has been associated to the lowering of total energy due to Peierls distortion 
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[26]. It has been argued that in case of group IV d-electron systems it is the narrow d 

bands pinned near Fermi level play a significant role in stabilizing the lower 

symmetry ω structure [24, 27], whereas in light actinide series the 5f bands are 

responsible for stabilizing distorted structures [28].  

 

Additionally, the band structure and distribution of DOS indicates that the HP-

LaN structure must be an insulator or semiconductor with a direct band gap of ~ 0.2 

eV; however, the B2 phase must be a weakly metallic in character. 

 

4.3.3  Elastic constants as a function of pressure  
 

Further, we have examined the elastic stability of B1 phase under hydrostatic 

compression. For this purpose, we have calculated the elastic constants of B1 phase as 

a function of hydrostatic compression. To our knowledge, there are no  experimental  

measurements  available on elastic  constants of  this material. In Table 4.2, we 

compare the elastic constant of B1 phase at zero pressure calculated in the present 

work with those reported by other theoretical works [8, 10]. Values reported in the 

present work show very good agreement with those reported by Cifttci et al. [8]. 

Using these elastic constants, we have determined the zero pressure Debye 

temperature (θD) of LaN by following the procedure provided in Ref. (28-30). As 

listed in the Table 4.2, the value of θD is calculated to be 318.1 K. In Fig. 4.7, we have 

plotted the variation elastic moduli as a function of pressure. The bulk modulus and 

shear modulus C′ increases monotonically with increasing pressure, however, the 

shear modulus C44 shows opposite trend with increasing pressure. It gets soften with 

pressure and vanishes at ~ 107 GPa i.e. much beyond the B1 → B10 phase transition 

pressure. 
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Figure 4.6: The electronic band structure and density of states of LaN in B10 and 

B2 structure at ~ 30 GPa i.e. in the regime of stability of B10 phase. 
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Figure 4.7: Theoretically determined elastic moduli of B1 phase of LaN as a function 
of pressure. 

 

 

4.4  Summary 

First principles electronic band structure calculations have been performed on 

LaN using  FP-LAPW method with the aim to explore the possibility of existence of 

low symmetry B10 phase in the low pressure regime before the stabilization of high 

symmetry B2 phase at higher pressures. Present analysis predicts that the B1 phase of 

LaN will transform to this B10 primitive tetragonal structure (space group symmetry 

P4/nmm) at ~ 25.8 GPa as compared to the experimental value of 22.8 GPa [11]. 

Additionally, it has also been predicted that this structure will transform to B2 phase 

at higher pressure of ~ 169 GPa. Present analysis of band structure of B10 and B2 

phases suggests that the occurrence of B10, which is a distortion of B2 structure, 

could be due to the Peierls distortion. The examination of elastic moduli as a function 

of pressure shows that the shear stability of B1 phase reduces monotonically due to 

decreasing C44 modulus. However, the B1 to B10 transition does not seem to be 
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driven by shear instability. Finally, various physical quantities such as V0, B0, B0′ have 

been derived from present theoretical calculations and compared with the available 

theoretical and experimental data. The agreement of these quantities with experiment 

is reasonably good.  The elastic constants could not be compared with the 

experimental data as, to our knowledge; there are no experimental measurements 

available on elastic constants. However, our theoretical values show good agreement 

with those of Cifttci et al. [8]. 
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Chapter 5 

Spall fracture and hardening of polycrystalline 

copper under shock loading 
 
 

5.1 Introduction 
 

Depending on the strain rates, the loading of the materials can be broadly 

categorized as quasi-static loading (strain rates ≤ ~ 10-3/s) and dynamic loading (strain 

rates can range from 10-3/s to 108/s). The dynamic loading can further be classified as 

intermediate (strain rates ~ 10-3-100/s), high (strain rates ~ 100-104/s) and ultrahigh 

(strain rates ~ 104-109/s) strain rate regimes [1-3]. In many applications materials are 

not only subjected to the condition of high stresses, but also the condition of high 

strain rates. Few examples of such conditions are blast and impulsive loading, contact 

stresses under high-speed bearings, high-speed machining, explosive forming and 

ballistics. As various mechanical properties such as the yield strength and fracture 

strength of materials depends not only on the amount of the applied stress but also on 

the strain rates rate [4-8] i.e. the rates at which these are applied, it is not sufficient to 

have knowledge of these properties only under quasi-static loading conditions. It has 

been demonstrated experimentally that the yield strength and fracture strength of 

materials at high strain rates, commonly referred as dynamic yield strength and spall 

strength, are higher than those measured in quasi static experiments [4-6, 9] and the 

reason for this overstressing has been associated to the inertia shown by material 

flaws to respond the rapid loading rates [5, 9]. In fact, in aluminum (Al) and copper 

(Cu), it has been found experimentally that that at ultrahigh strain rates ≥ 108/s the 

spall strength approaches the ideal value governed solely by inter-atomic forces and 

corresponds to the maximum tensile stress achievable before spall fracture [9]. Apart 

from this, for a given material, it has also been demonstrated experimentally that the 

thickness of the target material also has strong effects on the spall strength [10-11]. 

Therefore, in order to ensure the suitability of a material for applications pertaining to 

143



high strain rates it is useful to measure the strength properties as a function of strain 

rate as well as thickness.  

 

In past, measurement of dynamic yield strength and spall strength were limited 

due to unavailability of efficient experimental techniques to generate high tensile 

stresses at high strain rates and diagnostic techniques required for measurements. But 

significant advances made in techniques of producing [12-15] and measuring tensile 

stresses [16-17] at high strain rates in last two decades, have made it possible to 

generate data on dynamic yield strength and spall strength of many materials [5, 9-11, 

18-24]. Apart from these continuum measurements, few advanced laboratories in the 

world have developed capabilities to carry out in-situ microscopy measurements at 

high strain rates which have facilitated the understanding of the mechanism of phase 

transitions or simple mechanical deformation in terms of the atomic level 

rearrangements [25-28]. The suitably configured shock loading experiments, e.g. plate 

impact experiments, are the one which not only can generate high compressive 

stresses but also high tensile stresses in target material at high strain rates varying 

from 104/s to 109/s. The detailed mechanism of generation of tensile stresses [29] in 

target material in plate impact experiments has been discussed in chapter 1. In brief, 

in a plate impact experiment, a planar shock wave propagates into the target material 

and reflects back as a release wave upon arrival at free surface. Similarly, a shock 

wave propagating into flyer plate in opposite direction also gets reflected as a 

rarefaction wave at flyer free surface. The interaction of these two opposite travelling 

release waves generates large tensile stress in the target which when exceeds the 

fracture strength causes spall fracture in the target material. 

 

Recently, we have carried out plate impact experiments on commercially 

available 99.97% pure polycrystalline samples of copper and determined the yield 

strength and fracture strength at strain rates of ~104/s. Apart from this, we have 

performed the nanoindentation measurements on as received and shock treated sample 

and examined the effect of shock treatment on the mechanical properties such as 

hardness and Young’s modulus of the copper. Additionally, the shock recovery 

experiments have also been carried out on copper samples and analysis of recovered 
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samples has been done using x-ray diffraction (XRD) technique. In order to compare 

the results on the yield strength and fracture strength at high strain rates with that 

under quasi-static loading conditions, the quasi-static tensile test have also been 

carried out on suitably prepared copper sample. This chapter of the thesis presents 

results on these measurements. 

 

5.2 Experimental Method 

5.2.1 Quasi Static Testing  

 
A tensile test is a fundamental mechanical test on a carefully prepared 

specimen to determine the modulus of elasticity, elastic limit, proportional limit, 

tensile strength, yield strength, yield point and other tensile properties. The main 

outcome of a tensile test is load versus elongation data which is then converted to 

stress-strain curve. An ideal stress-strain curve for a ductile material appears as shown 

in Fig. 5.1.  It has mainly three regions of importance. First portion of the curve is the 

linear elastic region where the Hooke’s law is followed by the material and thus stress 

is proportional to applied strain. The proportionality constant is known as the modulus 

of elasticity or the Young’s modulus. At some point, the stress-strain curve deviates 

from the linear relationship and after this point the material undergoes plastic 

deformation. This point is known as yield point and the corresponding stress is called 

the yield strength. The transition from elastic to plastic behavior is gradual and the 

exact point at which this transition occurs is hard to determine. For most of the 

engineering applications, yield strength is defined as the stress required for a small 

amount of plastic deformation which is known as offset yield strength. To determine 

this point a parallel line to the elastic part of the curve offset by some specified strain 

(0.2% offset) is drawn and the stress corresponding to the intersection of this line to 

the stress-strain curve gives the 0.2% offset yield strength (Fig. 5.1). After this yield 

point the material undergoes uniform plastic deformation and comes to a point where 

the stress is maximum which is known as ultimate tensile strength (UTS). After the 

ultimate stress, the cross-sectional area of the specimen begins to decrease in a 

localized region of the specimen, instead of over its entire length causing necking as 
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the specimen elongated further. At the end, the specimen ruptures at that localized 

position and the corresponding stress is the fracture strength of the material.  

 

 

 

Figure 5.1: Ideal stress-strain relation for a ductile material. Three different region of 

this curve has been shown with horizontal arrow.   

 

The tensile test of the as-received copper sample is carried out in the 100 kN 

screw-driven universal servo-hydraulic testing machine (Instron 1185 Machine). The 

schematic of this machine is shown in Fig. 5.2. Rectangular specimen of total length 

85 mm and thickness 3.43 mm has been prepared for this purpose (Fig. 5.3). Gauge 

length of this specimen is 24 mm and gauge width is 6.14 mm. The holes in the 

sample are clamped between the crossheads of the machine. The crossheads are 

pulled apart by the screw driven hydraulic system with speed of the cross head kept at 

0.10 mm/min.  
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Figure 5.2: Schematic of servo-hydraulic universal testing machine. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Specimen of copper plate used for tensile test measurement. 
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5.2.2 Plate Impact Experiments 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Gas Gun facility at Bhabha Atomic Research Centre, Mumbai [30] to 

conduct plate impact experiments. 

 

The dynamic loading experiments have been conducted on polycrystalline 

copper samples in a 63 mm bore size single stage gas gun (Fig. 5.4) [30]. The gun has 

three main parts breech, barrel and target catch-up system (comprises target chamber 

and catcher tank). The breech is a vessel having capacity of 40 liters, which can hold 

gases compressed upto a pressure of ~ 420 bars. For plate impact experiment, the 

projectile consisting of an aluminium cylinder with a copper flyer plate of thickness 

4.8 mm and diameter 57 mm attached to its nose was placed inside the projectile 

holder, residing at the central region of the breech and connecting to the barrel. In 

order to accelerate the projectile to a desired velocity the breech was filled with 

helium gas up to required pressure. A small amount of the high pressure gas was 

injected behind the projectile, causing it to move past the ports on the projectile 

holder and allowing the high pressure gas filled in the breech to rush behind the 

projectile. The projectile was accelerated to a desired velocity in a 3m long barrel 

before it impacted the target plate of the copper fixed in the Perspex target holder ring 

which was mounted on the target chamber at the muzzle end of the barrel (Fig. 5.5). 

As shown in the Fig. 5.5, to measure the impact velocity of the flyer plate, four pairs 

Breech 
Barrel 

Target chamber 

Catcher Tank 
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of electrical pins were kept known distance apart from each other in the path of the 

projectile which got sorted with the moving the projectile body. The impact velocity 

was then determined from measured time interval between successive electrical 

output pulses generated by pulse forming unit due to shorting of four pairs of the pins 

and known distance between successive pairs of the pins. The motion of the free 

surface of the 15mm thick copper target plate upon the arrival of the shock wave was 

monitored through optical interferometery technique known as velocity interferometer 

system for any reflector (VISAR) [31-32]. For this purpose the rear surface of the 

target plate was illuminated with the laser light (532 nm) and the laser reflected from 

the free surface of the target was collected back and fed to the interferometer to make 

fringe pattern. This interferometer which is basically a modified Michelson 

interferometer beat the two light signals reflected from the free surface of the target 

plate at two instants of time separated by a small interval of ~ few nanoseconds and 

corresponding fringe shift as a function time was recorded. This time dependent 

fringe shift was then utilized to derive the free surface velocity history which then was 

utilized to determine the dynamic yield strength and spall strength of copper plate. 

 

The required target and flyer plate in the form of circular discs have been 

prepared from a large plate of the copper. The initial density (ρ0) of the copper plates 

was measured to be 8.905 ± 0.005 g/cc. The shock pressure of 10.4 GPa is generated 

in the target plate by impacting it with a 4.8 mm thick and 57 mm diameter impactor 

plate made of the same material and accelerated to the peak velocity (Vp) of 0.52 

km/s.  

 

Additionally, a shock recovery experiment has also been carried out in the 

copper sample.  The aim of this experiment was to see the post compression effect on 

copper sample under uniaxial strain compression conditions. A typical schematic of 

the target assembly for this experiment is displayed in Fig. 5.6. A circular sample of 

copper of 10 mm diameter and 1.2 mm thickness was fitted into a matching hole of 

stainless steel (SS304) plate of diameter 44mm and this plate is then fitted in a SS304 

ring of inner diameter 44.05mm and outer diameter 85mm. The presence of this ring 

mitigated the affect of lateral release waves on uniaxial strain compression condition. 

This assembly is then emplaced into a steel capsule of 88 mm of inner diameter and  
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Figure 5.5: Typical schematic diagram of experimental layout for plate impact shock 

wave experiment on copper target. As shown in figure the target copper plate having 

thickness 15 mm and diameter 57 mm is fixed in Perspex target holder ring of 

thickness of 5 mm. A VISAR probe consisting of a single mode launching fiber and a 

multimode collection fiber is mounted with fiber ends at a distance of ~ 2 mm from 

the free surface with a suitable mounting arrangement. The output of the collecting 

fiber is fed to the interferometer system.  

 

110 mm of outer diameter as shown in Fig. 5.6. The sample was covered by a 3mm 

steel cover plate and locked tightly by a locking nut. Two momentum trap plates of 

steel have been glued consecutively in the rear surface of the recovery fixture. The 

details of the working and momentum trapping mechanism have been discussed 

elsewhere (33). The catcher tank is used to arrest the target and projectile debris after 

the impact is taken place. The sample recovered after unloading from peak shock 

pressure of ~ 12 GPa has been analyzed through x-ray diffraction and nanoindentation 

method.  
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Figure 5.6: (a) Schematic diagram of the recovery fixture. (b) Picture of the different 

parts of the recovery fixture (upper picture) and (c) the assembled recovery fixture. 

 

5.3  Method of Analysis of Experimental Data 

5.3.1 The Analysis of Free Surface Velocity History 

 

The impact of copper flyer plate on the stationary target plate generated planer 

shock waves propagating in forward direction in target plate and in backward 

direction in flyer plate (as discussed in chapter 1).  The forward moving shock 

reached the free surface of the target and due to the impedance mismatch at the rear 

surface the shock wave reflected from target free surface as backward moving release 

wave. Similarly, the backward moving shock reflected from the flyer free surface as 

forward moving release wave. The interaction of these release waves in the target 

generated tensile stress and when this stress exceeded the strength of the material it 

spalled. The arrival of shock wave and the generation of release wave as well as spall 

fracture are manifested in the free surface velocity (Ufs) history of the impacted 

sample. To discuss the method of analyzing the free surface velocity history data, in 
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Fig. 5.7, an ideal free surface velocity profile of a material undergoing elastic to 

plastic transformation followed by phase transition and spallation has been displayed.  

 
Figure 5.7: Ideal free surface velocity profile of material showing features 

corresponding to various phenomenons. 

 

The first portion (i.e. from zero to peak velocity) corresponds to compressive 

stress, whereas, the later portion represents the tensile regime. The Huogoniot elastic 

limit ( HELσ ), strain rate ( cε& ) corresponding to HELσ , the spall strength (σs) and 

strain rate ( tε& ) corresponding to sσ , are determined from this profile as follows [2-3, 

26]:  
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Here, HU  is free surface velocity at HELσ . The Δt1 is the time taken for free 

surface to reach a velocity of HU . The  ܿ௕, ܿ௟ and σ correspond to the bulk sound 

speed, longitudinal sound speed and Poisson ratio, respectively. The pull back 

velocity is defined as ∆ ௙ܷ௦ ൌ ௙ܷ െ ܷ௠ where fU  is the peak free surface velocity 

and mU  is free surface velocity just ahead of spall pulse. The Δt2 is the time taken by 

the free surface to retard from the peak velocity fU  to mU .  

 

5.3.2 Analysis of Nanoindentation Data 
 

The nanoindentation measurements have been carried out on as-received and 

shock treated samples. The analysis of the nanoindentation data to determine the 

micromechanical properties, e.g. nanohardness and Young’s modulus was carried out 

using well known Oliver-Pharr [34-35] model. The nanoindentation experiment were 

carried out using a nanoindentation machine (UNHT S/N: 50-00002) at a fixed 

maximum load (Pmax) of 30 mN, with force and depth sensing resolutions of 0.2 µN 

and 0.1nm. Experiments were conducted using a load-time sequence. For each 

loading-unloading cycle, the loading and unloading rates were 60 mN/minute, i.e. the 

loading and unloading cycles each lasted 30s, respectively. During each test run, a 

personal computer collected and stored data for the load and displacement as the 

indenter was driven into the sample (loading segment) and then withdrawn from it 

(unloading segment). The raw data were then used to construct the load-displacement 
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plot. The deformation during loading is assumed to be both elastic and plastic in 

nature, however, during unloading it is assumed that only elastic deformations are 

recovered [34-35]. The hardness (H) is estimated from the expression [34-35]: 

 

rA
PH max=          (5.6) 

 

Here Pmax is maximum load and Ar is the area of the residual indentation in the 

sample. The Young’s modulus (E) is determined using the expression [34-35]: 
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With E′ is the effective Young’s modulus and, E and Ei are Young’s modulus of 

sample and indenter, respectively. The νi is the Poisson ratio of the indenter. The E′ is 

related to the unloading stiffness and contact area with following expression [34-35]: 

 

π
β rA

SE
2

'=         (5.8) 

 

Here “S”, which is obtained from the slope of the upper portion of the unloading 

curve, is called elastic unloading stiffness. The indenter geometry dependent constant 

β is 1.034 for Burkovich indenter [34-35]. 

 

5.4 Results and Discussions 

5.4.1 Yield Strength and Fracture Strength from Quasistatic Test  
 

Fig. 5.8 shows the stress versus elongation curve for as-received copper 

sample under quasistatic loading condition. The large strain hardening region of the 

stress-elongation diagram implies that copper is ductile in nature. Tensile strength at 

yield point (0.2% offset) has been found to be 130 MPa. The ultimate tensile strength 

is found to be 221 MPa corresponding to elongation of 11.802 mm. 
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Figure 5.8: Stress versus elongation curve for the as received sample of copper.  

 

5.4.2 Yield Strength and Fracture Strength from Plate Impact 

Experiment 
 

Fig. 5.9 displays the free surface velocity history of Cu target plate recorded 

using VISAR. The peak free surface velocity of 0.51 km/s is very close to the impact 

velocity of 0.52 km/s measured by successive shorting of four pairs of electrical pins 

by the flyer plate just before the impact. This is expected as in the symmetric impact 

configuration, i.e. impactor and target made of same material, the maximum free 

surface velocity is almost equal to the impact velocity. As expected, there is not any 

signature of polymorphic phase transition in the free surface velocity profile. The UH 

and ΔUfs determined from the free surface velocity history are 0.014 km/s and 0.075 

km/s with the time interval Δt1 and Δt2 of 0.3 μs and 0.6 μs, respectively. The cl, cb 

and ν are taken to be 4.76 km/s, 3.96 km/s and 0.34 from available literature [36, 37]. 

These quantities upon substitution in Eqn. (5.1) through (5.5) yielded the σHEL , cε& , Y 
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, σs and tε&  as listed in the Table 5.1. As shown in the Table 5.1, the yield strength 

and spall strength of copper measured at strain rates ~ 104/s in the present work is 

found to be 0.14 GPa and 1.32 GPa. The spall strength found from this dynamic 

compression experiment is higher by a factor of ~ 6 than the quasi static values, 

whereas, the yield strength measured at these high strain rates is marginally higher 

than the quasi static value. Further, as shown in Table 5.1, the spall strength measured 

in the present symmetric plate impact experiment agrees well with that measured by 

Moshe et al [9] in laser shock experiments and by Kanel et al. [38] in explosive 

driven asymmetric plate impact experiments. Additionally, the spall strength of 1.32 

GPa measured in bulk  polycrystalline copper in the present experiment is much lower 

than the 3.0 GPa  measured in the nanocrystalline copper [24] and ~ 4.5 GPa 

measured in single crystal of copper along [100] direction [11, 38]. The reason for the 

higher spall strength of nanocrystalline copper than the polycrystalline bulk copper 

could be associated to the presence of relatively large number of grain boundaries 

[24]. However, the large spall strength exhibited by single crystal copper could be due 

to presence of relatively less number of damage nucleation sites in highly 

homogeneous single crystal of copper [11].  

 
Figure 5.9: The free surface velocity history of shock loaded copper target recorded 

using VISAR. 
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Table 5.1: The dynamic yield strength, spall strength and corresponding average 

strain rates measured in the present work. A comparison also made with data 

measured under quasi static loading conditions.  

 

Properties High strain rate 

loading 

(present work)  

High strain rate 

loading 

(other sources)  

Quasi static loading 

(Present work) 

 

σHEL(GPa) 0.29 ± 0.003 0.31[32] 

cε& (s-1) 4.90 ± 0.060×103 7.90×103[32] 

Y(GPa) 0.14 ± 0.001 0.15[32] 0.13 

σs(GPa) 1.32 ± 0.01 1.25[6],1.23[32] 0.22 

tε& (s-1) 1.57 ± 0.158×104 104[6],1.5×104[32] 

 

5.4.3 Nanoindentation Measurements 

 

 
 

Figure 5.10: Indentation load-displacement curve of shock treated and as received 

copper sample. 
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In order to determine the hardness and elastic modulus of as received and shock 

treated polycrystalline copper sample the nanoindentation experiments using 

Berkovich indenter have been conducted at the maximum load of  30 mN. Fig. 5.10 

displays indentation load-displacement diagram for loading as well as unloading 

cycle. As can be seen from this figure both the maximum depth of penetration and the 

permanent depth of penetration for the shock treated samples is less as compared to 

that for the as received Cu sample (Table 5.2), indicating the increase in hardness or 

stiffness of the Cu sample after shock treatment. Various parameters measured from 

nanoindentation experiments on the shock treated and as received Cu are listed in the 

Table 5.2. As shown in Table 5.2, the S parameter of shock treated sample is 

increased by ~ 14% as compared to that of the as received Cu. Finally, the hardness 

and Young’s modulus of shock retrieved sample has increased by ~18% and ~29%, 

respectively. These results of nanoindentation experiments on shock treated and as 

received Cu samples suggest that the passage of the shock through Cu target plate has 

increased its hardness and Young’s modulus.  

 

 

Table 5.2: Various parameters measured from nanoindentation experiments.  

 

 

Properties As received Cu Shock treated Cu 

hmax(nm) 933.09 849.69 

S(mN/nm) 1.0316 1.1726 

hr(nm) 889.89 801.91 

Ar(nm2) 2.488×107 2.097×107 

H(GPa) 1.207 1.433 

E′(GPa) 177 219 

E(GPa) 185 239 
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5.4.4 X-Ray Diffraction Measurements  
 

 

Figure 5.11: ADXRD patterns of shock treated copper sample. Also displayed is the 

diffraction pattern of initial unshocked sample for comparison.  

 

 

 

 

 

 

 

 

 

Figure 5.12: Most intense diffraction peaks (111) and (200) of the shock recovered 

sample and the as-received sample.  
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technique. The x-ray diffractions of the copper sample are carried out in Ultima IV 

machine of Rigaku make. Continuous 2θ scanning mode is used with  scanning speed 

of 2.000 deg/min and step width of 0.0200 deg. Scan (2θ) is done from 30 deg to 100 

deg. The diffraction pattern of shock treated sample has been compared with that of 

the as received (unshocked) sample.  Fig. 5.11 shows the diffraction patterns of the 

shocked as well as the initial unshocked sample. The diffraction peaks of both 

unshocked and shock treated samples are indexed for fcc structure. As is shown in 

Fig. 5.11, all the diffraction peaks of the shock treated copper sample are shifted 

towards higher angles as compared to those of as received sample. For more clarity 

the most intense (111) peak and (200) of shocked and as received samples are also 

displayed in Fig. 5.12(a) and 5.12(b). The percentage change in the d-spacing of 

different set of planes is listed in Table 5.3. These observations indicate that the shock 

treated copper sample has undergone a uniform compressive residual strain.  

 

 

Table 5.3: Percentage fractional shift in d-spacing of various crystallographic planes 

measured from x-ray diffraction. Here d0 and dp are the d-spacing of various (hkl) 

planes of as received and shock retrieved Cu sample, respectively. 100×(dp-d0)/d0 is 

the percentage shift in d-spacing of shock treated Cu. 

 

(hkl)  d-spacing (Ǻ) Percentage shift in d-

spacing (100×(dp-d0)/d0) d0(Ǻ) dp(Ǻ) 

(111) 2.0929 2.0891 -0.18 

(200) 1.8127 1.8085 -0.23 

(220) 1.2806 1.2788 -0.14 

(311) 1.0920 1.0903 -0.15 

(222) 1.0449 1.0443 -0.05 
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5.5 Summary 
 

To summarize, quasistatic and high strain rate tensile tests have been carried 

out in polycrystalline copper of purity 99.99%. The yield strength and fracture 

strength measured in quasi static loading conditions are 0.13 GPa and 0.22 GPa, 

respectively. The high strain rate loading in copper sample has been achieved in plate 

impact experiment carried out using single stage light gas gun. The average strain 

rates generated in the copper sample were ~ 104/s with impact velocity of ~ 0.52 km/s 

and peak shock pressure of ~ 10 GPa. The yield strength and spall (fracture) strength 

determined at these strain rates from measured free surface velocity history are 0.14 

GPa and 1.32 GPa, respectively. The value of yield strength measured at these strain 

rates is marginally higher than that measured in quasi static test, whereas, the fracture 

strength increases by ~ 6 fold as compared to that at quasi static conditions. The spall 

strength measured in the present work agrees well with 1.25 GPa, that available from 

other source [9].  

 

The nanoindentation measurements carried out in shock treated and unshocked 

copper sample reveal that the shock treatment has increased its hardness and elastic 

modulus by ~ 16% and ~29%, respectively. The comparison of the x-ray diffraction 

patterns of the unshocked and shock treated copper sample showed: (i) the shift 

towards higher angles in all diffraction peaks of the shock treated sample as compared 

to that of the unshocked sample. This shift could be due to a residual uniform 

compressive strain in the shock retrieved sample.  
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Chapter - 6 

Summary and Future Scopes 
 

The thesis has presented the ab-initio electronic band structure calculations to 

examine high pressure behaviour of binary systems LiH, MgO and LaN under pressure. 

Most of such binary systems have been reported experimentally/theoretically to undergo 

B1 to B2 structural transition under pressure [1-3]. In LiH and MgO, we also predict the 

B1 to B2 structural phase  transition under pressure, however, unlike LiH and MgO, in 

LaN, the B1 phase is found to undergo a transition to lower symmetry B10 (which is a 

distortion of B2 phase) phase at ~ 25.8 GPa, which is in agreement with experimental 

observations of Schneider et al [4]. Further, we have predicted that the B10 phase will 

transform to B2 structure at pressures above 169 GPa, upon further compression. The 

occurrence of the low symmetry B10 structure before the stabilization high symmetry B2 

phase has been explained by invoking the symmetry breaking mechanism. Apart from 

these theoretical studies, experimental shock compression study on elemental solid 

copper has also been presented in the thesis. The aim of this shock compression study 

was to determine the dynamic yield strength and spall strength of polycrystalline copper 

at strain rates of ~104/s.  The main results of the studies conducted on these materials and 

presented in different chapters of the thesis are summarized below: 

 

Total energy calculations on the binary system LiH, MgO and LaN have been 

carried out to investigate the possibility of B1 → B10 → B2 phase transition sequence 

under pressure. At ambient conditions, each of these systems exists in rocksalt type 

structure (B1 phase). For LiH and MgO, the theoretical analysis predicts the B1 to B2 

(CsCl type structure) structural transition at a pressure of ~ 327 GPa and ~ 535 GPa, 

respectively, whereas for LaN, the B1 phase transforms to B10 (a tetragonal phase, which 

can be regarded as distortion of B2 phase) phase at ~ 25.8 GPa, in close agreement with 
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the experimental value of 22.8 GPa [4]. The B10 phase is found to be stable upto ~ 169 

GPa and beyond this pressure the B2 phase becomes favorable over the B10 phase.  The 

stability of the low symmetry tetragonal phase in LaN has been associated to symmetry 

breaking mechanism induced lowering of total energy.  

 

Further, adding thermal corrections to the first principles 0K energies at various 

hydrostatic compressions, the 300K isotherm have also been determined. Apart from this, 

the pressure dependent elastic moduli for B1 phase have also been calculated for LiH, 

MgO and LaN. Various thermophysical properties such equilibrium volume, bulk 

modulus, its pressure derivative, Debye temperature, elastic constants and Gruneisen 

parameter at zero pressure have been derived from these calculations and compared with 

the available experimental data.  

 

In LiH apart from static lattice calculations, the lattice dynamic calculations have 

also been performed up to ~ 150 GPa and phonon spectra have been determined as a 

function of pressure. The phonon frequencies for different modes at various Brillouin 

zone points have been obtained as a function of pressure and compared with the 

experimental data [5,6]. Additionally, unlike that predicted by Zhang et al. [7] on the 

basis of their lattice dynamic calculations, we do not find any attenuation in the TA(X) 

phonon mode at ~ 200 GPa. In-situ high pressure Raman measurements upto pressures 

more than 200 GPa will be required to resolve this discrepancy. 

 

For MgO, apart from investigations under hydrostatic compressions, the 

calculations have been extended to determine the ideal [001] compressive and tensile 

strength under two uniaxial loading conditions, namely “uniaxial strain condition” and 

“uniaxial stress condition”. The compressive strength is determined to be ~ -283 GPa and 

-115 GPa, respectively, for the two conditions. The ideal tensile strength is determined be 

~ 20 GPa and 11 GPa, respectively, for the two loading conditions. There are further 

166



scopes to continue these kinds of studies in various other crystallographic directions such 

as [011], [111].  In addition to this the determination of ideal shear strength along 

different crystallographic directions of MgO single crystal is also an open question. 

 

As far as prediction of crystal structure at high pressures in these binary solids is 

concerned only three structures B1, B2 and B10 have been taken for study, the possibility 

of any other high pressure structures may require testing of still more phases, specially 

for LiH and MgO, as there are no high pressure experiments on these materials up to the 

predicted B1 to B2 transition pressures. It is quite challenging to guess and perform total 

energy calculations for all the plausible structures to predict the high pressure phases of 

materials theoretically. For a new material (with only knowing the constituent atoms) 

without prior knowledge of its crystal structure, one has to carry out the total energy 

calculations as a function of pressure for all the possible candidate structures which may 

be the structures of analogous system or new structures guessed from chemical intuition. 

The plot of total energy versus pressure will show the structures which are lower in 

energy compared to other phases corresponding to particular compression and thereby the 

possibility of the stability of energetically higher structures can be cancelled out. In this 

way the ground state phase corresponding to the global minima as well as high pressure 

phases associated with the local minima and the corresponding structural transformation 

sequence with compression can be determined. But problem arises when some 

unexpected structure or hitherto unknown structure get stabilized at high pressure; as is 

the case for the high pressure B10 phase in LaN system. So, here, reliable structure 

prediction capabilities of computer simulation are necessary which will work without any 

prior knowledge, assumption or intuition of the system [8]. Simulated annealing [9-11], 

minima hopping [12] and metadynamics [13-15], evolutionary algorithm USPEX 

(Universal Structure Predictor: Evolutionary Xtallography) [16-18] etc. are some of the 

methods which have been applied in recent past to explore the stable crystal structure 

relaxing the randomly produced structures. These methods are implemented in the 

sophisticated simulation computer codes such as USPEX[19], CALYPSO[20], 

XtalOpt[21], to predict crystal structure.  
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Further, all these theoretical calculations are based on the DFT. Despite the 

improvements in various approximations in DFT, it has its own limitations. There are 

difficulties in using DFT to properly describe intermolecular interactions; charge transfer 

excitations; transition states, global potential energy surfaces and some other strongly 

correlated systems; and in calculations of the band gap of some semiconductors. The 

exchange-correlation potentials which are used in DFT calculations are not exact and 

these are some approximations to the true picture. This produces some inherent error in 

these calculations. The transition metals, the lanthanides, and the actinides has vacant 

inner orbital (the d - orbital and f - orbital are partially filled) and these atoms and their 

compounds are difficult to simulate theoretically and sometime give results which are 

away from the experimental observations. 

 

In the experimental front, the yield strength and fracture strength of 

polycrystalline copper has been measured under both the quasistatic loading condition 

and high strain rate loading condition with strain rates ~ 104/s. The yield strength and 

fracture strength (maximum stress that the material can withstand before fracture) 

measured in quasistatic experiments is 0.13 GPa and 0.22 GPa, respectively. However, 

these quantities measured at strain rates of ~ 104/s generated in plate impact experiments 

are 0.14 GPa and 1.32 GPa, respectively. These results suggest that the yield strength of 

copper shows marginal increase with increasing strain rates up to 104/s, whereas the 

fracture strength increases by ~ 6 times as compared to that measured at quasi static 

condition. Further, the nanoindentation analysis of the as received and shock treated 

samples suggested that the effect of shock treatment is to increase the hardness of this 

material by ~20%. 

 

Finally, the plate impact experiments carried out in copper to generate 

compressions as well as tensions at high strain rates using the Gas Gun facility are quite 

difficult as the rise time of pressure is of order of few tens of nanoseconds and duration 

pressure pulse in the material is extremely small (a few microseconds). All the 
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measurements are to be completed successfully within this short time. In addition to this, 

the experiments are destructive in nature with most of the parts of the experimental 

assembly including various type of sensors need to prepared a fresh for each shot. This 

thesis reports the measurements of yield strength and fracture strength of polycrystalline 

copper under high strain rate conditions generated in shock wave experiments carried out 

using the gas gun facility. It will be interesting to perform similar investigations in single 

crystal copper subjected to shock loading along different crystallographic directions e.g. 

[100], [110] and [111], as above mentioned mechanical properties are expected to be 

dependent on the shock loading along a specific crystallographic axis.  
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