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SYNOPSIS 

Tomography is the science of reconstructing an object from its projection images. It has 

long been applied in transmission Computed Tomography (CT) to obtain cross-sectional 

images (attenuation map) of objects. However, there are certain nuclear applications, 

such as waste assay or determination of burnup in fuel assemblies, where not only the 

attenuation information but also the source strength or activity of the gamma emitters 

inside the object is required. In this case, transmission CT does not provide source 

strength information but only the spatial distribution of attenuating materials.  Commonly 

used techniques like segmented gamma scanning provide only gross source strength 

information without giving position information. However, there is another class of 

tomography, known as Emission Tomography or Single Photon Emission Computed 

Tomography (SPECT), which can be used for not only position but also source strength 

imaging of gamma (emission) sources inside an object. SPECT is a non-destructive 

technique that assesses the distribution of gamma emitting radionuclide within a given 

object. It uses the decay of radioactive isotopes to image the spatial distribution of the 

isotope as well as to determine their source strength or activity. The intensities of the 

radiation measured are directly related to the radionuclide distribution inside the object. 

A basic difference between transmission tomography and emission tomography, also 

called Active and Passive CT, is the absence of external radiation source in the case of 

emission tomography. In fact, the source of radiation is located inside the object itself and 

the aim of emission tomography (Passive CT) is to find their distribution using the 

radiation emitted by them. The formulation in this case is fundamentally different from 

transmission tomography (Active CT). In the case of SPECT, the absorption of the 
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gamma rays as it travels from the source to the detector has to be taken into account. In 

the absence of absorption, the problem simply reduces to reconstructing the source term 

from its measured Radon transform. In the presence of absorption, however, the 

exponential attenuation of the gamma rays inside the object has to be considered. The 

source term is then reconstructed from the so-called exponential Radon transform or 

attenuated Radon transform. 

SPECT has been widely used in medical field for functional imaging of organs (in 

contrast to anatomical imaging of organs in CT or MRI). However, its application in 

nuclear field is still quite limited. The present thesis explores the development of SPECT 

as a gamma imaging technique for nuclear applications as in nuclear waste assay. 

Characterization of nuclear waste drums is required for its safe disposal, transportation, 

permanent storage as well as nuclear material accounting, especially 
239

Pu. Another 

application is the post irradiation of fuel which, till now, is mostly done destructively by 

chopping the fuel and then examining it. SPECT provides a possibility for non-

destructive examination of irradiated nuclear fuel and fuel bundle. Most of the literature 

present deals with different aspects of clinical SPECT imaging and very little information 

are available for nuclear applications. Hence, there is a need to develop reconstruction 

methods which are specifically suited for nuclear applications. This thesis aims focuses 

on developing analytical and iterative reconstruction methods for nuclear applications, 

particularly, for waste assay application. 

For demonstration of SPECT imaging for nuclear waste assay, a number of 

factors have to be considered. Some of these factors are as follows: 

• Development of analytical and iterative reconstruction codes 
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• Phantom generation and projection data generation for testing the algorithms 

• Developing methods for construction of 2D system matrix 

• Developing methods for construction of fully 3D system matrix 

• Experimental validation for different geometries 

The above factors have been dealt with in the present thesis and are further 

elaborated in the following discussion. The present work can be broadly divided in two 

parts. The first part involves development of reconstruction algorithm for SPECT which 

are suitable for nuclear waste as well as development of theoretical phantoms to validate 

developed reconstruction algorithms. This includes developing analytical and iterative 

reconstruction codes and testing them through computer simulations for various cases. 

The second part of the work involves experimental studies for reconstructing radioisotope 

activity in a given matrix. This includes lab based experiments for 2D SPECT and finally 

setting up a 3D SPECT imaging facility for Active and Passive CT of waste drums. 

For SPECT reconstruction, a large number of iterative and analytical techniques 

have been developed earlier. An explicit analytical formula for inverting the attenuated 

Radon transform in parallel beam geometry was first given by Novikov and later by 

Natterer. This was extended to fan-beam and cone-beam geometries by Huang et al. The 

analytical reconstruction techniques are fast and provide an exact solution of the inverse 

problem. However, analytical techniques are incapable of taking into account various 

physical parameters of the system which affect the quality of the final reconstructed 

image. For example, Novikov‟s inversion formula for SPECT reconstruction takes into 

account the attenuation suffered by photons inside the object but does not take into 
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account the role of collimator which plays an integral role in the quality of reconstructed 

image. To solve this problem, iterative techniques are used.  

Iterative techniques generally solve a set of linear equations which relate the 

vector of observables to the vector of unknowns through a matrix. This matrix is known 

as the system probability matrix (or system model), the elements of which describe the 

probability that a photon from a given pixel is detected in a given detector or projection 

bin. The system model can take into account various physical factors involved in the 

detection process – collimation, scatter, distance-dependent fall in intensity, transmission 

through collimator, etc. All these factors can be modeled into the system probability 

matrix. In fact, system matrix is at the heart of any iterative reconstruction. Extensive 

work has been done as a part of this thesis for developing analytical methods of 

computing the system matrix for parallel beam geometry and taking into account the 

attenuation and collimator effects. The method is extended to fan beam geometry also.   

The system matrix discussed above is a 2D system matrix, in the sense that the 

reconstructions are carried out for each slice or section of a 3D object using the 2D 

system matrix corresponding to that particular slice. The reconstructed slices are then 

stacked together to form a three dimensional volume. This method is most commonly 

used as it is computationally less intensive and easier to apply. However, this method 

does not take into account the inter-slice cross talk which results in blurring in the 

reconstructed volume. To take into account the contribution of slices above and below the 

reconstruction plane, a fully 3D system matrix has been computed. This takes into 

account the contribution from each voxel of the three dimensional object to each 
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projection bin. The method increases the computational requirement manifold. However, 

inter-slice blurring of reconstructed images is reduced. 

Once the system matrix is constructed, the problem reduces to solving the linear 

system of equations. A host of iterative techniques exist to solve this linear system of 

equations. They can be categorized under two broad headings – algebraic and statistical. 

The algebraic reconstruction techniques obtain the activity distribution by calculating the 

least squares (LS) solution for the set of equations. The LS problem is usually an ill-

posed inverse problem. Also, a straightforward solution for LS problem is 

computationally heavy and iterative methods are used. The algebraic reconstruction 

techniques, such as ART, SART and SIRT are methods for solving the LS problem using 

different types of iterations. In algebraic methods, an additive correction term is generally 

applied in each iteration. The correction term is proportional to the difference between 

the measured projection data and calculated projection data from the previous iteration. 

The iterations are repeated till the solution converges. 

The statistical approach takes into account the Poisson statistics of radiation. The 

solution for activity distribution is obtained by Bayesian point estimation: maximum a 

posteriori or maximum likelihood estimation. The methods for Bayesian point estimation 

are solved iteratively. Maximum Likelihood-Expectation Maximization (MLEM) and its 

variants are the most common statistical iterative algorithms used in SPECT 

reconstruction. A Poisson statistical model is applied to the projection data in these 

studies.  

The purpose of MLEM is to find the best estimate for f: “the mean number of 

radioactive disintegrations ˆf in the image that can produce the sinogram g with the 
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highest likelihood”. Each projection is a linear combination of Poisson distributed 

variables Aij. Each iteration of the algorithm consists of two steps: 

E-step: the expectation step which forms the expression of the likelihood of any 

reconstructed image given the measured data.  

M-step: the maximization step which finds the image with the most likelihood to give the 

measured data. The maximum is found when the derivative of the log-likelihood is zero 

One remarkable feature of EM algorithm is the non-negativity of the estimate: if the 

initial guess is positive, the estimate is positive after each iteration.  

MLEM algorithm converges extremely slowly and may require nearly 100-200 

iterations. To accelerate the MLEM reconstruction, an OSEM (Ordered Subsets 

Expectation Maximization) algorithm is used. Instead of using the whole set of 

projections, OSEM uses a subset of projections at each sub-iteration step.  

Iterative techniques can model the physical system rather accurately. The main 

disadvantage of iterative techniques is being computationally intensive and mathematical 

complexity involved in computing the probability system matrix. Also, for large sized 

images, the memory involved in computation is huge. This requires the use of accelerated 

GPU based approach or parallel computing. 

As a part of this work, an experimental facility has been set-up for three 

dimensional SPECT imaging. One of the highlights of the present work is the use of 

LaBr3(Ce) detectors for imaging. LaBr3(Ce) has an intermediate energy resolution 

between NaI(Tl) and HPGe detectors. I have explored the use of LaBr3(Ce) detectors for 

SPECT imaging of low level wastes. Complex spectra have also been analyzed with 

HPGe. However, these detectors are costly and cannot be used in large numbers due to 
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geometrical constraints. There are cases where high scanning speed is required and 

detectors with even an intermediate energy resolution are sufficient to analyze the 

spectra. LaBr3(Ce) provides such an opportunity as a large number of detectors can be 

used. Though some simulation studies have been reported, this is the first instance of 

experimental SPECT imaging with LaBr3(Ce) being reported. 

The thesis is organized in seven chapters to discuss different aspects of the 

present work. The contents of the chapters are summarized as follows. Chapter 1 

comprises a general introduction to SPECT imaging. This chapter discusses the major 

issues of SPECT with a focus on nuclear applications in particular. Mechanism of gamma 

ray interaction with matter and their detection are stated. Further, the basic concept of 

imaging using radiation sources, in general, and transmission tomography and emission 

tomography (or SPECT), in particular, is discussed in detail. Different aspects of SPECT 

imaging, such as effect of attenuation, noise, collimation and scatter are briefly explained. 

An overview of the history of SPECT imaging along with a brief summary of literature 

survey on analytical and iterative algorithms is also provided. Some of the nuclear 

applications of SPECT, such as, waste assay and burnup determination of individual rods 

in a fuel bundle have been discussed. 

Chapter 2 throws light on mathematical aspects of different reconstruction 

algorithms in SPECT. The reconstruction algorithms can be broadly classified into 

analytical and iterative reconstructions. To explain analytical reconstruction proposed by 

Novikov for inversion of attenuated Radon transform, a mathematical background of 

Radon transform and filtered backprojection has been provided. The iterative approach 

allows a complex model of gamma radiation interaction to be taken into account 
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including the effect of collimation and scatter as well as statistical variability of measured 

data. Different EM techniques – MLEM, OSEM and MAP-EM have been discussed.  

Chapter 3 discusses modeling of the forward projection, that is, generation of the 

projection data. This chapter is divided into two sections. The first section describes a 

novel approach developed in this thesis for generation of forward projection for fan and 

cone beam geometries. This method does not take into account the effect of collimator, 

scattering or distance. The projection data generated thus corresponds to an „ideal‟ 

collimator system where the detector „sees‟ photons along a straight line path only. The 

second section describes the analytical method used in this thesis to obtain the probability 

system matrix. This is a more rigorous approach which takes into account the effect of 

collimator and distance (scattering has been neglected). The projection data generated 

using this system matrix mimics the experimental parameters more closely as compared 

to the ideal approach in section one. In addition to producing projections, this system 

matrix can be used for iterative reconstructions. Finally, a fully 3D system matrix has 

been computed for fully 3D reconstruction which takes into account the contribution of 

slices below and above the reconstruction plane to the reconstructed image.  

Chapter 4 deals with the computer simulations used to test analytical and iterative 

reconstruction techniques developed in this thesis. Both the line integral approach (no 

collimator) and collimator modeled approach have been considered for constructing the 

simulated projections. Different 2D phantoms have been considered to elucidate the 

contribution of collimator modeled system matrix in reconstruction. Analytical 

reconstruction codes have been developed for parallel, fan and cone beam configurations. 

3D phantoms for simulated waste drum have been used to test analytical fan and cone 
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beam reconstruction codes. For experiments, however, cone beam geometry has not been 

explored. 

Chapter 5 presents the experimental results. The experimental SPECT imaging 

system consists of the following: (a) Sample Stage – to manouever the sample during 

acquisition; (b) Collimator – to define the path of gamma rays accepted by the detector; 

(c) Detector – to record gamma photon events and (d) Data Acquisition System – to 

record, save and/or display the data for offline processing. The choice of detector 

depends on particular application (in terms of energy resolution and efficiency) and cost. 

As multiple detectors are required in SPECT imaging, NaI(Tl) is commonly preferred 

because of its high efficiency and low cost. However, NaI(Tl) has poor energy resolution 

and cannot be employed for situations where a complex energy spectrum is to be 

analyzed. An important aspect of this thesis is to explore the use of LaBr3(Ce)  detector 

for SPECT imaging. Initial feasibility experiments were carried out for 2D imaging with 

137
Cs sources. Finally a 3D SPECT imaging lab was set up for scanning of mock waste 

drums with 
137

Cs sources. For reconstruction, both analytical and iterative reconstructions 

have been employed and results have been presented. This chapter also includes a section 

on the application of SPECT imaging in the context of nuclear waste assay. An active and 

passive computed tomography (A&PCT) has been carried out for assessing the 

distribution and quantification of 239Pu in waste drums. During the ACT measurements, 

an external gamma/X-ray source is used to determine the attenuation map of the object. 

With this knowledge of the attenuation map, the PCT measurements are then carried out 

to reconstruct the gamma sources inside the object. 
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Chapter 6 concludes with a summary of works and discusses briefly the important 

outcomes of the work and future directions. 

The highlights of the work done under this thesis may be summarized as follows: 

(i) Implementation of analytical and iterative reconstruction codes 

(ii) Novel method for generation of fan and cone beam data for simulated objects 

(iii) Development and implementation of fully 3D SPECT reconstruction 

(iv) Development and implementation of a practical fan-beam Active and Passive CT       

technique for waste assay 

(v) Developing a three dimensional SPECT imaging facility for scanning of waste drums      

using LaBr3(Ce) detectors 

(vi) Active and Passive CT for 
239

Pu assay in waste drums 
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Chapter 1 

Introduction 

Single Photon Emission Computed Tomography (SPECT) is an imaging technique to 

localize and quantify radionuclide activity inside an object. It uses the photons which are 

emitted from the radionuclide to produce an image which corresponds to the spatial 

distribution of the radionuclide. SPECT has been widely used for medical imaging where 

it is recognized as one of the best diagnostic techniques for functional imaging of organs. 

This technique also has great potential to be used in the nuclear industry for 

characterization of nuclear waste for disposal decisions, non-destructive burnup 

determination of fuel pins or fuel assemblies, verification of spent fuel integrity, etc. In 

general, it can be used for any application where position sensitive imaging of 

radionuclide in a matrix is required.  

 Characterization of nuclear waste drums, for example, is required for disposition 

decisions, safe transportation, permanent storage as well as nuclear material accounting, 

especially 
239

Pu. Manual inspection of opened drums for an assay is a risky (exposure to 

radiation), time-consuming, and expensive proposition because of huge cost involved for 

checking each opened drum and the safety precautions involved in handling active waste. 

Traditionally, the drums are inspected by conventional transmission radiography or 

tomography 
[1-3]

. However, these techniques do not yield information about the 

radioisotopes inside the drum, but just on the material density. Gamma spectroscopy or 

segmented gamma scanning techniques 
[4, 5]

 can be used for gross activity measurement. 
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However, to improve accuracy and provide information about the spatial distribution of 

the radioisotopes, SPECT imaging is best suited.  

 For waste drum application, Lawrence Livermore National Laboratory had used 

HPGe detectors for scanning high level waste drums 
[2, 6-7]

. However, over a period of 

time, the regulatory requirements have become more stringent and they now mandate 

characterization of not only high level waste but also a variety of nuclear wastes from 

low level waste drums to waste packets in small sizes. HPGe detector, besides being 

costly, is also bulky and need special cooling arrangements. Also for multi-detector 

applications which can be used for fast scanning of drums for a fast qualitative 

examination of thousands of such radioactive waste drums, the option of using multiple 

HPGe becomes very costly. Due to this, for several applications there is a need for 

alternate compact systems which are less cumbersome and at the same time can give 

reasonable SPECT images. Hence, there is a need to explore SPECT with newer 

detectors, which are compact and have medium energy resolution, such as LaBr3(Ce), 

faster reconstruction algorithms and advanced computational techniques. This thesis 

addresses these issues and explores the use of LaBr3(Ce) detector for SPECT imaging, 

which to our knowledge has not been reported earlier in published literature, though as a 

detector LaBr3(Ce) has been used for other spectroscopic applications. The use of 

LaBr3(Ce) for 
239

Pu imaging is one of the distinguishing features of the work reported in 

this thesis. 

Inspite of the potential applications, SPECT has found very limited use in the 

nuclear industry. One of the main reasons is that medical and industrial SPECT imaging 

is quite different in implementation. In medical SPECT, the attenuation of gamma rays 
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inside the organs and that in the surrounding tissues is of the same order. Also, the 

attenuation of the body tissues is practically known beforehand. This makes it easier and 

faster to reconstruct the source distribution. However, in the industrial case, most of the 

factors affecting attenuation are unknown and it can vary over a wide range. Also, the 

range of gamma energies used in both the applications is quite different. In medical 

SPECT, mostly 
99m

Tc, 
67

Ga or 
123

I are used which have emission energy of less than 140 

keV 
[8]

. For nuclear SPECT, the gamma energy covers almost the whole range from 400 

keV – 1500 keV depending on the different isotopes under study (eg. 
239

Pu, 
137

Cs, 
60

Co, 

154
Eu, etc.). Again, the emitted gamma spectrum is complex and with multiple peaks, 

often closely spaced. This puts a restriction on the use of detectors with low energy 

resolution, such as NaI(Tl), which are commonly employed in gamma camera (or Anger 

camera) 
[9-11]

. Additionally, high or medium-high energy resolution area detectors are 

also not available. As such, a number of individual detectors are used and the object is 

scanned. This increases the overall scanning time of the object, thus reducing the 

throughput. 

Also, most of the available literature deals with different aspects of clinical 

SPECT imaging and very less information are available for nuclear applications. Hence, 

there is a need to develop reconstruction methods which are specifically suited for 

nuclear applications.  

The goal of the present thesis is to focus on developing both analytical and 

iterative reconstruction methods for SPECT imaging, such as fully 3D reconstruction and 

fan beam reconstruction. This thesis aims to develop emission tomography as a gamma 

imaging technique for nuclear application such as waste assay. In particular, extensive 
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study of imaging of 
239

Pu using LaBr3(Ce)  and its comparison with HPGe forms the 

highlight of this thesis. This work includes various steps starting from phantom 

generation to test algorithms, using new reconstruction techniques, setting up of 

experiments to verify them, conducting experiments with 
137

Cs and finally imaging of 

239
Pu.  

This chapter is organized as follows. Section 1.1 explores the history of SPECT 

imaging.  Section 1.2 reflects light upon the basics of imaging with radiation sources in 

general, and transmission tomography and emission tomography, in particular.  Sections 

1.3 to 1.6 describe different modalities of emission tomography, planar image formation 

and attenuation compensation. Section 1.7 discusses the development of different 

algorithms in SPECT. Section 1.8 describes interaction of gamma rays in matter and their 

detection using inorganic scintillators and semiconductor detectors. Section 1.9 briefly 

discusses the factors that degrade or affect SPECT images. Section 1.10 discusses the 

different nuclear applications of SPECT imaging currently being explored. The chapter 

concludes with a discussion of the aims and scope of the thesis.  

1.1 Brief history of SPECT Imaging 

Although X-rays and gamma rays were discovered by 1900, the problem of generating 

images from measurements of the radiation around the body of a patient was considered 

much later. The introduction of the scintillation camera by Anger and Rosenthal in 1959 

[12, 13]
 and its ultimate evolution into the imaging system of choice for routine nuclear 

medicine imaging applications resulted in a great deal of effort being expended toward 

the extension of the scintillation camera as a tomographic imaging device. Tomography 
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was first carried out in 1964 by David Kuhl, a nuclear medicine specialist in Philadelphia, 

and Roy Edwards by an analogue technique. In the early 1960s, Kuhl and Edwards 

established fundamentals for SPECT using multi-detector scanning systems to acquire 

cross-sectional images of radionuclide distributions 
[14–16]

. They were the first 

investigators to describe true transaxial approach for emission tomography. During the 

period of 1963 through 1976, Kuhl and his colleagues developed a series of transaxial 

tomographs 
[17-20]

. Kuhl‟s Mark II device consisted of two scintillation detectors and used 

a translate-rotate motion of the detectors. Kuhl‟s final tomograph was the Mark IV 
[20]

. 

Each detector array had a linear array of eight discrete scintillation detectors. Kuhl even 

investigated the use of transmission computed tomography (CT) in 1966 
[21]

.  John 

Mallard and his team in Aberdeen built the first digital CT for radio-isotope distributions 

from 1967 to 1969. It was known as the Aberdeen Section Scanner. This was some five 

years before the technique was applied to X-rays by Hounsfield, which revolutionized X-

ray diagnosis, and for which he received the Nobel Prize together with Cormack in 1979. 

Also, during this period, Patten, Brill and their colleagues developed a novel scanner. In 

the 1970s, Muehllehner 
[22]

 Keyes and colleagues 
[23]

 and Jaszczak and colleagues 
[24]

 

adapted the technology to a rotating scintillation camera. The result of these efforts along 

with the integration of computer systems was the development of the modern day SPECT 

system as a scintillation camera/computer system with one, two, or three heads and 

tomographic imaging capability. The scintillation camera collects tomographic data by 

rotating around the region of interest and acquiring multiple planar projection images 

during its rotation. It is imperative that the region of interest is included in every 
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projection image. If this is not the case, the resulting truncation of the images will 

produce artifacts in the final reconstructed images. 

The camera may move in a continuous motion during acquisition but typically 

remains stationary during the acquisition of each projection image before advancing to 

the next position in a „„step and shoot‟‟ mode of operation. A complete 360º rotation of a 

scintillation camera with a rectangular field of view will completely sample a cylindrical 

region of interest. Originally, camera systems were only capable of circular orbits; 

however, modern day systems have elliptical orbit capability. This is accomplished by 

equipping the collimators with sensors that detect the presence of the patient and 

maintain the camera head(s) in close proximity to the patient as the orbit is completed. 

Since the spatial resolution of collimators used with the scintillation camera degrades 

with distance from the collimator face, the optimum resolution is obtained in each 

projection image when the camera is as close to the patient as possible. 

The first commercial applications of SPECT imaging were similar to the Mark IV 

but utilized 32 photon detectors 
[20]

. Even though this camera had more detectors, images 

were frequently distorted and not very useful in assisting clinicians in diagnosing a 

patient's medical problem. Subsequently, SPECT imaging technology was slow to gain 

universal acceptance within the medical community. It was not until advancements in 

nuclear imaging technology in the 1980's and 1990's that SPECT began to show promise 

as a diagnostic tool in the clinical environment.  

Today, SPECT imaging is recognized as one of the best imaging modalities to 

evaluate brain function and is frequently used in the diagnosis of Traumatic Brain Injury, 

Alzheimer's Disease and other Dementias, Stroke, Toxic Encephalopathy and is being 
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increasingly used as a  diagnostic tool for Bipolar Disorder, Depression, Anxiety 

Disorders, Obsessive Compulsive Disorder and other psychiatric conditions 
[25]

. 

During its formative years, SPECT was predominantly used as a medical imaging 

technique. However, in the last decade or so, SPECT imaging has been extended to 

nuclear applications such as in waste assay, burnup distribution in fuel assemblies, 

verification of integrity of spent fuel assemblies, etc. 

1.2 Imaging with Radiation 

When radiation passes through an object, it interacts with matter and suffers loss in 

intensity. The beam is said to undergo attenuation in the medium. The loss in intensity is 

given by the well-known Lambert-Beer‟s law: 

0 e xI I           (1.1) 

where 0I is the incident intensity, I is the transmitted intensity,   is the linear 

attenuation coefficient of the medium and x  is the thickness of the medium. Here it is 

implicitly assumed that  is constant. For non-uniform , Eq. 1.1 may be expressed as 

0 e
dx

I I


        (1.2) 

where the integral is over the path traversed by the radiation. 

The Lambert-Beer‟s law forms the basis of imaging with radiation from an 

external source. When the incident radiation after transmission through an object is 

captured on a detector/screen, it forms a two-dimensional image of the three-dimensional 

object. This is known as the projection of the object, or in more general term, a 

radiograph. 
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1.3 Transmission Tomography 

Tomography is derived from the Greek word ‘tomos’ (which means slice or section) and 

‘graphia’ (which means draw). The word tomography means „reconstruction from 

slices‟. It is applied in Computed Tomography (CT) 
[26, 27]

 to obtain cross-sectional 

images of objects. Fundamentally, tomographic imaging deals with reconstructing an 

image from its projections. The relationship between the unknown distribution (or object) 

and the physical quantity which can be measured (the projections) is referred to as the 

forward problem. The mathematical basis for tomographic imaging was laid down by 

Johann Radon already in 1917 
[28]

. This reconstruction problem belongs to the class of 

inverse problem, which are characterized by the fact that the information of interest is not 

directly available for measurements. The imaging device (the camera) provides 

measurements of a transformation of this information (Fig.1.1). In practice, these 

measurements are both imperfect (sampling) and inexact (noise). 

 

 

 

 

 

 

 

The projections are reconstructed on a three-dimensional grid which is discretized 

into unit cells known as ‘voxels’ (short for volume cells). The reconstructed volume 

represents the attenuation map of the object 

Fig. 1.1 Schematic configuration for transmission tomography 
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1.4 Emission Tomography 

Emission Computed Tomography (ECT) 
[29]

 is a non-destructive technique for imaging of 

radionuclide distribution inside an object. It uses the decay of radioactive isotopes to 

image the spatial distribution of the isotope as well as to determine their source strength 

or activity. In medical imaging, radiotracers are administered to the patient in the form of 

radiopharmaceuticals either by injection or by inhalation.  

 A fundamental difference between transmission tomography and emission 

tomography is the absence of external radiation source in the case of emission 

tomography. In fact, the source of radiation is located inside the object itself and the aim 

of ECT is to find their distribution using the radiation emitted by them. 

ECT can be divided into two types: Single Photon Emission Computed 

Tomography (SPECT) and Positron Emission Tomography (PET). The word single in 

SPECT refers to the analyzed product of the radioactive decay, a single photon, while in 

PET the decay produces a single positron, which is analyzed through its further 

interaction. After traveling a short distance the positron comes to rest and combines with 

an electron. The annihilation of the emitted positron results in two oppositely traveling 

gamma-ray photons. An „event‟ in SPECT corresponds to the detection of a single photon 

whereas in PET an „event‟ corresponds to the detection of two photons (coincidence 

detection).  

1.4.1 Positron Emission Tomography (PET) 

Positron Emission Tomography 
[30, 31]

 is used for determining the concentration and 

location of a positron emitting compound in a desired cross-section. When an emitted 
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positron is brought to rest, it interacts with an electron and, as a result, their masses are 

annihilated, creating two photons of 511 keV each. These two photons are called 

annihilation gamma-ray photons and are emitted at very nearly 180º from one another 

(Fig. 1.2).  

The fact that the annihilation of a positron leads to two gamma-ray photons 

traveling in opposite directions forms the basis of a unique way of detecting positrons.  

 

 

 

 

 

 

 

 

Coincident detection by two physically separated detectors of two gamma-ray 

photons locates a positron emitting nucleus on a line joining the two detectors. The 

phrase “coincident detection” in the present context refers to the “coincidence resolving 

time” of circuits that check for whether the two photons have arrived simultaneously and 

is usually on the order of 10 to 25 ns - a sufficiently long interval of time to make path 

difference considerations unimportant. This means that if the two annihilation photons 

arrive at the two detectors within this time interval, they are considered to be in 

coincidence. 

 

Fig. 1.2 Schematic configuration for positron emission tomography 
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1.4.2 Attenuation Compensation in PET 

Two major advantages of positron tomography over single photon emission tomography 

are: 1) inherent electronic collimation 2) easier attenuation compensation. Let us say that 

the detectors D1 and D2 in Fig. 1.3 are being used to measure one ray in a projection and 

let us also assume that there is a source of positron emitters located at the point S. 

Suppose for a particular positron annihilation, the two annihilation gamma-ray photons 

labeled 1  and 1  (Fig.1.3) are released toward D1 and D2, respectively. The probability 

of 1 reaching detector D2, is given by 

1

exp ( ( ) )
L

L
x dx 

          (1.3) 

where ( )x  is the attenuation coefficient of the object at 511 keV. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 Schematic arrangement for co-incidence detection in PET 

Coincidence 

circuit 

ϒ1 ϒ2 D2 D1 

L1 L2 L 

Annihilation site 
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Similarly, the probability of 
1 reaching detector D2, is given by 

2

exp ( ( ) )
L

L
x dx 

           (1.4) 

The probability of annihilation event as recorded by the detectors is given by the product 

of the two probabilities: 

1 2

exp ( ( ) ) .exp ( ( ) )
L L

L L
x dx x dx     

         

                                    
2

1

exp ( ( ) )
L

L
x dx  

                     (1.5) 

This is a significant advantage of PET because the attenuation factor does not depend on 

the position of the positron annihilation and is the same on the line joining the two 

detectors.  Secondly, the attenuation factor is exactly the attenuation that a beam of 

monoenergetic photons at 511 keV would undergo in propagating from through the 

object over the length L1L2. Therefore, one can readily compensate for attenuation by 

first doing a transmission study (projection data can be directly used without doing 

reconstruction) to record total transmission loss for each ray in each projection. Then, in 

the positron emission study, the data for each ray can simply be attenuation compensated 

when corrected (by division) by this transmission loss factor. This method of attenuation 

compensation has been used in 
[32]

 positron emission scanners. There are other 

approaches to attenuation compensation in PET 
[33].

  

 Electronic collimation is inherent in PET. Consider that the annihilation event in 

Fig.1.3 occurs at any position other than the line joining D1 and D2. Suppose that detector 

D1 detects one of the γ rays emitted in this event. Since the two γ rays are emitted at 180º 

to each other, it is evident that the other γ ray will not be detected by D2 and hence this 

event will not be registered as a coincidence event for the detector pair D1-D2. 
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1.4.3 Single Photon Emission Computed Tomography (SPECT) 

Single Photon Emission Computed Tomography (SPECT) 
[34]

 is a nuclear imaging 

technique for the characterization of the activity level and distribution of gamma emitting 

radioisotopes inside an object. SPECT involves the position-sensitive measurement of 

gamma rays emitted by a radionuclide (Fig.1.4). The intensities of the radiation measured 

are directly related to the radionuclide distribution inside the object. The data are 

collected with a collimated detector to segment the acquisition horizontally, vertically 

and angularly by translating, elevating and rotating the object over 360 degrees (Fig.1.5). 

The data is then reconstructed using analytical or iterative techniques to obtain 

information about each voxel of the inspected volume. 

. In the case of tomographic imaging, the planar images are acquired at several 

angles to determine the three dimensional activity distributions. However, traditionally 

SPECT is not considered as a fully 3D imaging problem. Instead, two dimensional slices 

of activity distribution are reconstructed. 

 

 

 

 

 

 

 

 

Fig. 1.4 Schematic configuration for SPECT 
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In the field of medical imaging, SPECT is considered to be one of the leading 

molecular imaging technologies that allow visualizing 3-dimensional (3D) functional 

information rather than anatomical information in the body. With a small amount of 

radiopharmaceuticals, SPECT can produce high contrast images of small 

organs/tissues/molecules and quantify the kinetic processes when these drugs interact 

with molecules in the body.  

1.4.4 Attenuation Compensation in SPECT 

One of the major difficulties with tomographic imaging of a gamma-ray emitting source 

is caused by the attenuation that photons suffer during their travel from the emitting 

nuclei to the detector. The extent of this attenuation depends upon both the photon energy 

and the nature of the absorber. Consider two gamma sources of equal strength at points A 

and B in Fig. 1.5. Because of attenuation the detector will find the source at A stronger 

than the one at B. 

 

 

 

 

 

  

 

Let us consider the simplest case of uniform attenuation   inside the object. In 

this case, the attenuation suffered by photons emitted from a source, say A, will be the 

negative exponential of   times the path length from A to the edge of the object (along a 

A B 

Detector 

Collimator 
L1 

L2 

L3 

L4 

Fig. 1.5 Formation of image in SPECT using collimated detector 
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line in the direction of the detector), assuming no losses in air. However, our task is not 

that simple. In practice, the location of source A is unknown. Also, the attenuation 

coefficient would generally be non-uniform. One of the solutions to the problem is to 

approximate an image to be reconstructed by a grid and an assumption is made that the 

concentration of the nuclide and the attenuation is constant within each grid block. For a 

particular ray, the total attenuation length is obtained by calculating the length of the ray 

in a particular grid block and multiplying with the attenuation coefficient in that grid 

block and further summing over all the grid blocks on the ray path. The corresponding 

projection data can then be expressed as a set of simultaneous equations which can be 

solved to find the unknowns (source activity in each grid block). However, the efficiency 

of the reconstruction depends on the accuracy of the assumed values of the attenuation 

coefficients for all grid blocks. 

1.5 Active and Passive Computed Tomography (A&PCT) 

Since the attenuation compensation is an integral part of SPECT reconstruction, the 

attenuation map should preferably be accurately known beforehand. For this reason, 

SPECT is often combined with transmission CT. This is known as Active and Passive 

CT. 

The A&PCT method consists of two steps to perform an assay: active CT and 

passive CT. In active CT, attenuation map of the object is obtained. This is similar to 

conventional X-ray CT but it uses an external gamma source (instead of X-ray) and the 

spectrum is recorded using a single channel analyzer (SCA) / multi channel analyzer 

(MCA). It should be noted that an SCA records the number of events within a selected 

energy window while an MCA can record a complete energy spectrum. It differs from 
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conventional CT scanners in that it discriminates between photons of different energies. 

The gamma source used for active CT has, generally, multiple emission energies. The 

reconstruction results are a discrete quantitative measurement of the linear attenuation 

coefficient at each energy measured, i.e., there has been no integration over the energy 

spectrum. Thus active CT images have pixels that represent the absolute measurement of 

attenuation at specific energies. For a waste drum, the attenuation due to its contents is 

accurately measured in three dimensions and displayed as a sequence of two dimensional 

images at different z-planes (or elevations) of the drum. Note that active CT does not 

identify any isotope or measure the source strength or activity within a waste drum. 

Energy specific attenuation maps are then used to determine the attenuation map of the 

object corresponding to the emission energy of the radioisotope (inside the object) to be 

imaged by interpolating the above data. 

Passive CT is used to measure and determine the location, identity, and strength 

of radioisotope sources within an object. The ray sum for passive CT (or SPECT) is the 

counts measured in disintegrations per unit volume per unit time of the passive source 

within the object. Therefore, a single-photon-emitted ray sum is the integrated 

radioisotope activity, modified by one or multiple of exponential attenuations, along the 

path from a source position within the object to the detector. The function that is imaged 

for passive CT is the measured gamma-ray activity at one or more energies of all 

detectable radioisotopes within the object. The spectrometry detection equipment collects 

the entire energy spectrum for each integration point and the radioisotopes are identified 

by their characteristic peaks within the energy spectrum. 
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1.6 Formation of planar image in SPECT 

As discussed in Section 1.3, a planar image is formed by recording the transmitted 

intensity on a detector. The simplest model of imaging could be conceived by tracing 

(linear) ray path from the source to the detector and estimating the attenuation suffered 

over the path length (neglecting scattering). This scheme is quite straightforward in the 

case of transmission tomography where the source position is known. However, in the 

case of SPECT, the source locations are unknown and it is not possible to trace ray paths.  

To solve this problem, a collimator is used which is an integral part of any SPECT 

imaging device. The collimator helps define the path of rays accepted by the detector. 

Photons that pass through the collimator are detected by the detector (Fig.1.6). Therefore 

collimator is a kind of lens for the detector. Depending upon their application and size of 

object to be imaged, various types of collimators are used – parallel, pin-hole, 

converging, diverging, etc. However, the parallel hole collimator still remains the 

simplest and most widely used.  

 

 

 

 

 

 

 

 

 
Fig. 1.6  A typical SPECT set-up. The gamma photon emitted (a) is absorbed by the collimator 

(b) reaches the detector (c) misses the detector completely. 
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The planar image formed is a discrete map of ‘pixels’ (short for picture cells) each 

pixel having a value that is equal to the number of the photon interactions in the crystal in 

location of pixel. For ideal collimation, one row of pixels in planar image is contributed 

only by the activity in one object slice at height of the row of pixels. Thus, 

approximately, one row of the planar image is a projection of activity in a slice at same 

height, and the whole planar image is a projection of the three dimensional activity 

distribution.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.7 shows the basic steps involved in the formation of a planar image in 

SPECT. Consider a slice of an object to be imaged. This 2D slice forms an image 

(projection) on the detector which corresponds to one row in the planar image. The object 

is then rotated at different steps over 360º and corresponding projection data are 

Fig. 1.7 Steps in SPECT image formation (a) Projection of a 2D object (b) Collection of 

projections for different rotations (c) Sinogram (d) Reconstructed object 
[35]
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recorded. When the projections for all the angles are stacked together, it forms a complete 

data set required for reconstruction and is known as the „sinogram’. The sinogram is then 

used to obtain the final reconstructed image. 

1.7 Development of Reconstruction Algorithms in SPECT  

The projection data or sinogram is used to reconstruct the activity function. SPECT 

reconstruction algorithms can be broadly classified as analytical and iterative. The 

mathematical formulation of these algorithms will be discussed in Chapter 2. Here, we 

briefly reflect upon the history of development of the reconstruction algorithms. 

1.7.1 Analytical Reconstruction 

First analytic methods for the attenuation correction in SPECT were proposed by Bellini 

et al 
[36]

 and Tretiak and Metz 
[37]

; both algorithms assumed that the attenuation 

coefficient was constant inside a patient‟s body and that the cross section of the body was 

convex. Two more analytic methods were introduced almost a decade later by Hawkins et 

al 
[38]

 and Inouye et al 
[39]

 (an algorithm similar to 
[38]

 was independently developed by 

Shneiberg et al 
[40, 41]

). A scheme generalizing all of the above-mentioned approaches has 

been proposed by Metz et al 
[42]

; a general analytic approach leading to a variety of 

reconstruction formulae was given by Kuchment et al 
[43]

. Certain extensions to the 

underlying assumptions of constant attenuation and convex body were treated by 

Kuchment et al 
[43, 44]

; in the former work, an inversion formula was derived for the case 

when attenuation depends on an observation angle (but is constant for a fixed angle). All 

of these analytic methods, however, are not applicable for the SPECT of regions with 

strongly non-uniform attenuation. Creation of the analytic SPECT reconstruction 
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algorithm, operative in the case of arbitrary realistic attenuation coefficient, has become 

possible only recently, due to the approach developed by Arbuzov et al 
[45]

, and due to the 

discovery of an explicit inversion formula for the attenuated Radon transform by 

Novikov 
[46]

. A simpler derivation of a similar formula was given later by Natterer 
[47]

.  

1.7.2 Iterative Reconstruction 

Filtered backprojection amplifies statistical noise, which adversely affects image quality. 

To address this problem, Shepp and Vardi 
[48]

 introduced an iterative reconstruction 

technique in 1982 based on the theory of expectation maximization (EM), which has a 

proven theoretical convergence to an estimate of the actual image distribution that has a 

maximum likelihood of having projections most similar to the acquired projections. The 

initial implementation of these algorithms was very time consuming, with several 

iterations being required to reach a solution, and extensive computer power was required. 

Since that time, much effort has been expended in improving and testing algorithms 

based on this concept. Significant improvements in speed and signal-to-noise and 

reconstruction accuracy have resulted from these efforts. In 1994, Hudson and Larkin 
[49]

 

developed the technique of ordered sets EM (OSEM) for image reconstruction from 2D 

projection data. This algorithm was based on the concept of dividing the projection data 

into small subsets and performing the EM algorithm on each subset. The solution of each 

subset was used as the starting point for the next subset, with subsequent subsets being 

selected to provide the maximum information (e.g., chose the second subset of data to be 

orthogonal to the first subset). The advantage of this technique is that, at the end of the 

first pass, the entire data set has been processed one time, but n successive 

approximations to the final solution have been made where n is the number of subsets. 
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Thus, OSEM is n times faster than the original EM algorithm. Typically, only two to 

three passes through the data set (iterations) are required for the reconstructed image to 

converge to a final value that is essentially unchanged by further iterations. Correction for 

scatter and attenuation effects can be performed on the acquired projection data during 

the reconstruction process. The advantage of this technique is that the star effect inherent 

in filtered backprojection is virtually eliminated since the acquired data are distributed 

within the object contour. Because of this result, signal-to-noise is generally improved. 

Filtering of the data can also be performed to further enhance the reconstructed images. 

1.8 Detection of Gamma Rays 

The most common method of detection of gamma rays is by the scintillation produced in 

certain materials. The scintillation process remains one of the oldest techniques for 

radiation detection. Another class of gamma ray detectors is the solid state detector or 

semiconductor detector. This section will briefly discuss these two types of gamma 

detectors with specific emphasis on the detectors used for experiments in the present 

thesis: sodium iodide, lanthanum bromide and high purity germanium detectors. 

1.8.1 Scintillation Detector  

The ideal scintillation material should possess the following properties 
[50]

: 

 It should convert the kinetic energy of charged particles into detectable light with 

high scintillation efficiency. 

 This conversion should be linear-the light yield should be proportional to 

deposited energy over as wide a range as possible. 
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 The medium should be transparent to the wavelength of its own emission for good 

light collection. 

 The decay time of the induced luminescence should be short so that fast signal 

pulses can be generated. 

 The material should be of good optical quality and subject to manufacture in sizes 

large enough to be of interest as a practical detector. 

 Its index of refraction should be near that of glass (~1.5) to permit efficient 

coupling of the scintillation light to a photomultiplier tube or other light sensor. 

 

 

 

 

 

The most widely applied scintillators include the inorganic alkali halide crystals, of 

which sodium iodide 
[51]

 is the most popular. The inorganic scintillators tend to have the 

best light output and linearity, but with several exceptions are relatively slow in their 

response time. The high Z-value of the constituents and high density of inorganic crystals 

favor their choice for gamma-ray spectroscopy. The scintillation mechanism in inorganic 

materials depends on the energy states determined by the crystal lattice of the material as 

shown in Fig. 1.8.  

A. Sodium Iodide 

The most notable property of thallium activated sodium iodide (NaI(Tl)) is its excellent 

light yield and high intrinsic efficiency. It has come to be accepted as the standard 

Fig. 1.8 Energy band diagram for an activated inorganic scintillator 
[50] 
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scintillation material for routine gamma-ray spectroscopy and can be machined into a 

wide assortment of sizes and shapes. However, the crystal is somewhat fragile and can 

easily be damaged by mechanical or thermal shock. 

The dominant decay time of the scintillation pulse is 230 ns. In addition to this 

prompt yield, phosphorescence with characteristic 0.15 s 
[52] 

decay time has also been 

measured which contributes about 9% to the overall light yield. At high counting rates, 

the phosphorescence will tend to build up due to the multiple overlap from many 

preceding pulses. This afterglow is often an undesirable characteristic of sodium iodide 

used in high count rate applications. 

NaI(T1) is hygroscopic and deteriorates due to water absorption if exposed to the 

atmosphere for any length of time. Crystals must therefore be hermetically sealed for 

normal use. However, NaI(Tl) is still the mostly used material in SPECT systems due to 

its high  intrinsic efficiency, fast light decay time and relatively low cost. 

B. Lanthanum Bromide 

The properties that make cerium activated lanthanum bromide (LaBr3(Ce)) scintillation 

detector 
[52-56]

 attractive for different applications based on gamma-ray spectrometry are: 

 good energy resolution 

 very fast light output decay, enabling high count rate applications 

 high temperature stability 

 high gamma detection efficiency 

 operation at room temperature 

 promising technology for manufacturing crystal at larger sizes 
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TABLE 1.1 Comparison between the characteristics of LaBr3(Ce) and NaI(Tl) scintillators of 

comparative size 
[53]

 

 

These properties compared to those of the NaI(Tl) scintillator detector (see Table 1.1) 

make it a good choice as a gamma detector for medium energy resolution, high count rate 

or fast timing applications. Although the energy resolution of LaBr3(Ce) is still poor as 

compared to a HPGe detector, its relatively lower cost serves as a intermediate choice 

between NaI(Tl) and HPGe, especially when a large number of detectors are to be used 

with a decent energy resolution. Furthermore, it does not require cooling, like HPGe 

does.  

1.8.2 Semiconductor Detector 

One of the major limitations of scintillation counters is their relatively poor energy 

resolution. The energy required to produce one information carrier (a photoelectron) is of 

the order of 100 eV or more, and the number of carriers created in a typical radiation 

interaction is usually no more than a few thousand.  

Parameter 

 

LaBr3(Ce) NaI(Tl) 

Crystal density (g/cc) 5.29 3.67 

Thickness for 50% attenuation of 662 keV γ (cm) 1.8 2.5 

Light yield (photons/MeV) 63000 39000 

1/e decay time (ns) 26 250 

Energy Resolution (at 662 keV) 3-4% 6-7% 
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The only way to reduce the statistical limit on energy resolution is to increase the 

number of information carriers per pulse. The use of semiconductor materials as radiation 

detectors 
[57, 58]

 can result in a much larger number of carriers for a given incident 

radiation event than is possible with any other common detector type. 

A. High Purity Germanium 

The dominant characteristic of germanium detectors is their excellent energy resolution 

when applied to gamma-ray spectroscopy. In Fig. 1.9, comparative pulse height spectra 

are shown for NaI(T1) scintillator, LaBr3(Ce) scintillator and germanium detector for 

identical incident gamma ray spectra. The great superiority of the germanium system in 

energy resolution allows the separation of many closely spaced gamma-ray energies, 

which remain unresolved in the NaI(T1) spectrum. Consequently, virtually all gamma-ray 

spectroscopy that involves complex energy spectra is carried out with germanium 

detectors. 

 

 

 

 

 

 

 

 

 

Fig. 1.9 Comparison of NaI(Tl), LaBr3(Ce) and HPGe spectra 
[20] 
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1.9 Image degradation in SPECT 

Three major factors that degrade SPECT images are attenuation, collimator blurring and 

scatter. Image reconstruction without compensation for these degradations results in 

reduced contrast and reduced quantitative accuracy. Compensations for these 

degradations have markedly improved the image quality and quantitative accuracy in 

SPECT imaging. We will briefly discuss these three factors; 

1.9.1 Attenuation 

One of the primary factors affecting image quality in SPECT is photon attenuation. 

Photons are attenuated in the object due to photoelectric absorption and Compton scatter. 

Since the intensity measured by the detector depends upon the total attenuation suffered 

by the photon inside the object, an accurate estimation of the attenuation coefficient is 

vital before SPECT reconstruction can be done. In the computation of SPECT the 

attenuation coefficient is traditionally either assumed to have a constant value 
[59]

 or the 

map of coefficients is obtained beforehand using X-ray imaging (CT) 
[60-62]

. A new 

approach to SPECT is to reconstruct both the activity and the attenuation distribution 

simultaneously from SPECT data alone 
[63, 64]

. This leads to a nonlinear inverse problem 

which is more ill-conditioned than a basic SPECT problem. 

1.9.2 Collimator blurring 

The formation of planar image, as discussed in the previous section, is true for ideal 

collimation. Referring to Fig.1.5 in Section 1.5.4, if the collimator in front of the detector 

had infinite collimation, it would accept gamma-ray photons only from the region L2L3 
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which is parallel to the collimator. In practice, however, „ideal‟ collimation is never 

achieved. Each collimator has a finite angle of acceptance. Any photons within this angle 

of acceptance will reach the detector and register as a signal. For a finite collimation, the 

detector in Fig.1.5 accepts photons from the region L1L4. Thus, the detector not only 

accepts photons from object voxels in the line-of-sight but also accepts photons from 

other voxels in the same plane - resulting in within-slice blurring - and photons from 

voxels in the planes below and above the reference plane, resulting in inter-slice blurring. 

The extent of blurring is decided by the L/d ratio of the collimator. L is the length 

of the collimator and d is the size of the collimator hole. Greater the L/d, lesser is the 

blurring.  

1.9.3 Scatter 

Compton scattering results in a change in direction with loss of photon energy – the 

magnitude of loss being determined by the angle of scatter. Thus, Compton scattered 

photons enter the detector with minimal or no information on their origins due to their 

change in direction within the object. Pulse height analysis is used to prevent the 

counting of photons that have scattered through large angles (greater loss of energy) to an 

extent that depends on the energy range of acceptance of the detection system 
[65-67]

.  

Traditional filtered back projection techniques for SPECT reconstruction include 

attenuation compensation but do not model collimator blurring or scatter compensation. 

For nuclear applications, such as waste assay, mostly iterative reconstruction algorithms 

are employed as the collimator blurring and other degrading factors can be accurately 
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modeled and their contributions can be incorporated in the system probability matrix. 

This will be discussed in detail in Chapter 3. 

1.9.4 Poisson noise 

The decay of radioactive isotopes is a statistical process. If n  is the mean number of 

decays (in given time) of the isotope, the actual number of emissions is a random variable 

x  with probability ( )p x . The probability function of x can be approximated by Poisson 

distribution, that is  

( )
!

n xe n
p x

x



        (1.6) 

The parameter n  is both the mean and the variance of the distribution. The traditional 

methods for SPECT imply that the activity of emitting isotope is a deterministic variable. 

Newer iterative methods take into account the statistical nature of radioactive decay
[48-49]

. 

There is also some additive noise involved in nuclear imaging. This is due to the 

background activity. The additive noise can be considered as measurement error of the 

imaging system. 

1.10 Applications of SPECT in nuclear technology 

Although major application of SPECT still remains in the field of medical imaging, some 

work has been done to extend this technique to nuclear applications. Some of these 

applications will be briefly discussed here: 
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1.10.1 Waste assay 

SPECT can be used for transuranic waste assay 
[68 - 71]

 to identify, locate and accurately 

measure radioisotopic concentration (like 
239

Pu) of contents of the waste barrel. This can 

be used for separation and disposal of wastes with long-lived isotopes.  

 

 

 

 

 

 

 

1.10.2 Rod-by-rod fuel properties of fuel assemblies 

Various fuel properties, such as e.g. the burnup distribution, in fuel assemblies 
[72]

 can be 

found out by measuring the distribution of certain fission nuclides produced in the fission 

chain, such as, 
140

Ba, 
134

Cs, 
137

Cs, 
154

Eu, etc. SPECT is used to measure the activity of 

distribution of the fission products which is then used to calculate the fuel properties. For 

the case of burnup, Cs-137 is measured, and for the case of power distribution, Ba-140 is 

measured. There are also other fuel characteristics that may be assessed, such as fission 

gas release 
[73, 74]

.
 
This method is advantageous over the conventional techniques as this 

Fig. 1.10  Waste assay at Lawrence Livermore National Laboratory 
[68]

 using A&PCT 

technique  (a) high resolution transmission tomograph (b) active data set (c) passive data set 



Chapter 1 

30 

 

method is non-destructive – the fuel pins need not be cut – and the whole assembly be 

scanned at the same time instead of examining single pins. 

 

 

 

 

 

 

 

 

1.10.3 Verification of spent fuel integrity 

International safeguards have addressed the need for verifying the integrity of nuclear 

fuel assemblies. A possible approach for such verification is the use of SPECT to 

experimentally determine the internal distribution of radioactive nuclides in nuclear fuel 

assemblies. The utilisation of the SPECT technique for safeguards purposes has been 

reported by Jacobsson et al 
[75-77]

. Removal of individual rods or groups of rods has been 

investigated, as well as replacement of rods with fresh fuel or fuel-like material. The 

investigations have indicated that the technique is applicable for partial-defect 

verification down to the single-rod level in both BWR and PWR fuel. 

 

 

 

Fig. 1.11 Ba-140 distribution in BWR fuel assembly 
[72] 
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1.11 Aims and Scope of the Thesis 

The thesis deals with SPECT imaging and its application in nuclear field. Since a 

majority of work carried out in this field is in the area of medical imaging, it is imperative 

that a detailed study should be carried out for nuclear application of SPECT. The aim of 

this thesis work is to develop simulation techniques and their experimental verification 

for use in waste assay.  

The present work can be broadly divided in two parts. The first part involves 

simulation studies to test the developed reconstruction codes. This includes developing 

analytical and iterative reconstruction codes and testing them through computer 

simulations for various cases. Some of the highlights include developing and 

implementing 2D system matrix for fan beam geometry and fully 3D system matrix for 

parallel beam geometry. The second part of the work involves experimental studies for 

reconstructing radioisotope activity in a given matrix. This includes lab based 

Fig. 1.12 Experimentally obtained image of the fuel model with a non-active rod in position 

(E,5) and an empty rod, representing the water channel, in position (D,4) 
[75]
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experiments for 2D SPECT and finally setting up a 3D SPECT imaging facility for 

Active and Passive CT of waste drums. 

The problem of the thesis work is defined and elucidated in subsequent chapters 

as follows. 

 Chapter 2 throws light on mathematical aspects of different reconstruction 

algorithms in SPECT. The reconstruction algorithms can be broadly classified into 

analytical and iterative reconstructions. To explain the analytical reconstruction proposed 

by Novikov for inversion of attenuated Radon transform, a mathematical background of 

Radon transform and filtered backprojection has been provided. The iterative approach 

allows a complex model of gamma radiation interaction to be taken into account 

including the effect of collimation and scatter as well as statistical variability of measured 

data. The iterative approach can be further classified into two sub-classes: algebraic and 

statistical. In the algebraic reconstruction technique, the formation of projections is 

modeled by a set of linear equations. The construction of the activity distribution is then 

obtained by calculating the least squares solution for the set of equations. The algebraic 

reconstruction techniques, such as ART, SART and SIRT have been discussed. The 

statistical reconstruction technique takes into account the Poisson statistics of radiation. 

The solution for activity distribution is obtained by Bayesian point estimation: maximum 

a-posteriori or maximum likelihood estimation. The methods for Bayesian point 

estimation are then solved iteratively. Different EM techniques – MLEM, OSEM and 

MAP-EM – have been discussed. 

 Chapter 3 discusses the modeling of the forward projection, that is, generation of 

the projection data. This chapter is divided into two sections. The first section describes a 
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novel approach developed in this thesis for generation of forward projection for fan and 

cone beam geometries. This method does not take into account the effect of collimator, 

scattering or distance. The projection data generated thus corresponds to an „ideal‟ 

collimator system where the detector „sees‟ photons along a straight line path only. This 

is quite useful for testing analytical reconstruction algorithms in fan and cone beam 

geometries. The second section describes the analytical method used in this thesis to 

obtain the probability system matrix. This is a more rigorous approach which takes into 

account the effect of collimator and distance (scattering has been neglected). The 

projection data generated using this system matrix mimics the experimental parameters 

more closely as compared to the ideal approach in section one. This system matrix is used 

for iterative reconstructions. Finally, a fully 3D system matrix has been computed for 

fully 3D reconstruction which takes into account the contribution of slices below and 

above the reconstruction plane to the reconstructed image. 

Chapter 4 deals with the computer simulations used to test the analytical and 

iterative reconstructed codes developed in this thesis. Both the line integral approach (no 

collimator) and collimator modeled approach have been considered for constructing the 

simulated projections. Different 2D phantoms have been considered to elucidate the 

contribution of collimator modeled system matrix in reconstruction. Analytical 

reconstruction codes have been developed for parallel, fan and cone beam configurations. 

3D phantoms for simulated waste drum have been used to test the analytical fan and cone 

beam reconstruction codes. For experiments, however, cone beam geometry has not been 

explored. 
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Chapter 5 presents the experimental results. The experimental SPECT imaging 

system consists of the following: (a) Sample Stage – to manouever the sample during 

acquisition; (b) Collimator – to define the path of gamma rays accepted by the detector; 

(c) Detector – to record gamma photon events and (d) Data Acquisition System – to 

record, save and/or display the data for offline processing. The choice of detector 

depends on particular application (in terms of energy resolution and efficiency) and cost. 

As multiple detectors are required in SPECT imaging, NaI(Tl) is commonly preferred 

because of its high efficiency and low cost. However, NaI(Tl) has poor energy resolution 

and cannot be employed for situations where a complex energy spectrum is to be 

analyzed. An important aspect of this thesis is to explore the use of LaBr3(Ce) detector 

for SPECT imaging. LaBr3(Ce) has a better energy resolution as compared to NaI(Tl). 

This is the first instance of SPECT imaging with LaBr3(Ce) being reported. Initial 

feasibility experiments were carried out for 2D imaging with 
137

Cs sources. Finally a 3D 

SPECT imaging lab was set up for scanning of mock waste drums with 
137

Cs sources. For 

reconstruction, both analytical and iterative reconstructions have been employed and 

results have been presented. Chapter 5 (Section II) describes the application of SPECT 

imaging in the context of nuclear waste assay. An active and passive computed 

tomography (A&PCT) has been carried out for assessing the distribution and 

quantification of 
239

Pu in waste drums. During the ACT measurements, an external 

gamma/X-ray source is used to determine the attenuation map of the object. With this 

knowledge of the attenuation map, the PCT measurements are then carried out to 

reconstruct the gamma sources inside the object. 

Chapter 6 concludes with a summary of works and plans for future work.  
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The salient features of the work under the thesis are summarized as follows: 

(i) Implementation of analytical and iterative reconstruction techniques 

(ii) Novel method for generation of fan and cone beam data for simulated objects 

(iii) Development and implementation of fully 3D SPECT reconstruction 

(iv) Development and implementation of a practical fan-beam Active and Passive CT       

technique for waste assay 

(v) Developing a three dimensional SPECT imaging facility for scanning of waste drums      

using LaBr3(Ce) detectors 

(vi) Active and Passive CT for 
239

Pu assay in waste drums 
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Chapter 2 

SPECT Reconstruction Techniques 

Mathematically, reconstruction is an inverse problem: the aim is to find vector of 

unknowns from the measured observables by solving a system of linear equations. 

Though both transmission and emission tomography are formulated as inverse 

problems, the system matrix relating the unknowns and observables is fundamentally 

different in both cases. This can be explained mathematically as follows. 

In conventional tomography (transmission tomography), the object is 

discretized into square grids. A unit cell of this grid is called „pixel‟ (short for „picture 

cell‟) for 2D grid or „voxel‟ (short for „volume cell‟) for 3D grid. The system of 

equations may be expressed as: 

1

N

i j j

j

g x


        (2.1) 

where 0lni

i

I
g

I

 
  

 
 , 0I  is the intensity of incident radiation, iI  is the transmitted 

intensity and ig  is the counts recorded by the thi  detector bin. j  and jx  are, 

respectively, the linear attenuation coefficient and path length traversed by the 

radiation in the thj  pixel / voxel. This can be expressed in matrix notation as 
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     
    
    

     
     

     (2.2) 
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1 2( , ,........, )T

N    is the vector of unknown attenuation coefficients. The system 

matrix elements are basically path lengths and it is quite straightforward to calculate 

them.  

In case of SPECT imaging the system of equations can again be described by 

the following equation: 

,

1

exp
N

i j k k ij

j k

g f x


 
  

 
     (2.3) 

In matrix notation, this may be written as  

g Af       (2.4) 

or,       

11 12 1 11

21 22
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. .

. . . .

. . . . . ..

. . . . . ..

. . .
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M MN NM

a a a fg

a fg

a a fg
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    
    
     
    
    

     
     

   (2.5) 

where 1 2( , ,...., )T

Mg g g g is the observable (measured) data, i.e. projections, 

1 2( , ,........, )T

Nf f f f is unknown spatial density distribution of nuclear disintegration 

events resulting in gamma emission (also called emission map) in the object, and A  is 

a M N  system matrix whose elements are given by (simple approximation, 

neglecting the solid angle and considering only attenuation) 

,expij k k ij

k

a x
 

  
 
      (2.6) 

It is evident from Eq. 2.3 that now there is an additional unknown µ which 

needs to be known before f can be evaluated. Also the system matrix depends 

critically on µ and is more complex to model than the previous case. Once µ is known 

and system matrix is generated, we have an inverse problem on hand and most 

theories of inverse problem can be applied. 
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 Reconstruction algorithms generally employed for solving SPECT problem 

can be divided into two classes: 

 Analytical Reconstruction Technique 

 Iterative Reconstruction Technique 

The analytical approach assumes noiseless data, an ideal collimator, no 

attenuation and no scatter of gamma radiation. These assumptions can make the 

reconstruction result an inaccurate representation of the true activity distribution. 

Therefore, additional data filtering and post-processing are necessary. The most 

commonly used method is the Filtered Back Projection (FBP) algorithm 
[78]

 based on 

the inverse Radon transform. In this approach, the projections are filtered in the 

frequency domain and the filtered projections are backprojected in the spatial domain. 

The FBP method introduces streak artifacts when large differences in activity are 

imaged. 

  The iterative approach 
[79]

 allows a complex model of gamma radiation 

interaction to be taken into account including the effect of collimation and scatter as 

well as statistical variability of measured data. These are recommended for 

quantitative image analysis
 [78]

 which is crucial, for example, in waste assay. The 

iterative approach can be further classified into two sub-classes: algebraic and 

statistical. 

 

In the algebraic reconstruction technique, the formation of projections is 

modeled by a set of linear equations. The construction of the activity distribution is 

then obtained by calculating the least squares solution for the set of equations. The LS 

problem is usually an ill-posed inverse problem and some regularization is needed. 

Also, a straightforward solution for LS problem is computationally heavy and 

iterative methods are used. The algebraic reconstruction techniques, such as ART, 
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SART and SIRT are methods for solving the LS problem using different types of 

iterations. 

The statistical reconstruction technique takes into account the Poisson 

statistics of radiation. The solution for activity distribution is obtained by Bayesian 

point estimation: maximum a-posteriori or maximum likelihood estimation. The 

methods for Bayesian point estimation are then solved iteratively.  

This chapter reviews different algorithms in SPECT available in the literature, 

highlighting their specific advantages and/or shortcomings.  

2.1 Analytical Reconstruction Technique 

Before discussing the analytical reconstruction technique for SPECT, we will discuss 

the basics of filtered backprojection technique in the context of transmission 

tomography.  

2.1.1 The Radon transform 

The Radon transform 
[28]

 was defined by Johann Radon in 1917. Let 2  denote the 

2D Euclidean space (Fig.2.1) with a point representation ( , )x x y  in Cartesian co-

ordinate.  

In the rotated co-ordinate system ( , )s t  with axes parallel to vectors ˆ( )   and 

ˆ ( )   , we have 

                                            
cos sin

sin cos

s x

t y

 

 

    
    

    
                        (2.7) 

and    
cos sin

sin cos

x s

y t

 

 

    
    

    
                                         (2.8)     
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A function ( , )f x y  in 2 is denoted by 

( , ) ( cos sin , sin cos )f s t f x y x y        in the rotated co-ordinate system ( , )s t , 

that is the rotation of ( , )x y  by an angle   in the counter-clockwise direction. 

 

 

 

 

 

 

 

 

 

 

The integrals of a 2D function ( , )f s t  along all possible lines is the two-

dimensional Radon Transform   of ( , )f s t  

 ( , ) ( , ) ( , )g s f s f s t dt 




                       (2.9) 

2.1.2 The Fourier Slice Theorem 

An important property of the Radon transform is its close correspondence with the 

Fourier transform.  

The Fourier Slice Theorem (also called Central Slice Theorem) states: “The 

one-dimensional Fourier transform of a projection of a function ( , )f x y  , i.e. the 

Fourier transform of data along a line through the origin in the Radon space 

Fig. 2.1 Co-ordinate system for parallel beam projection 
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of ( , )f x y , is same as the data along the same line through the two-dimensional 

Fourier transform  ,u vF  of ( , )f x y . 

The Fourier transform F  of ( , )g s  is given by 

               2ˆ( , ) ( ) ( , ) i RsG R f R g s e ds  






   F                              (2.10) 

Using Eq.2.9, this becomes 

   2( , ) ( , ) ( cos sin ) i RsG R f x y x y s dxdy e ds   
  



  

 
   

 
                 (2.11) 

Changing the order of integration, we get 

                2( , ) ( , ) ( cos sin ) i RsG R f x y x y s e ds dxdy   
  



  

 
   

 
          (2.12) 

The inner integral in Eq. 2.11 contributes under the condition stated in Eq. 2.7. Thus 

we have 

                  2 ( cos sin )( , ) ( , ) i x y RG R f x y e dxdy  
 

 

 

                            (2.13) 

 

 

 

 

 

 

 

 

 

 Fig. 2.2 Fourier Slice Theorem: It relates the Fourier transform of a projection with the Fourier 

transform through the object along a radial line at an angle   
[80]
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Substituting 

cos

sin

u R

v R








                            

Eq. 2.12 becomes 

                         
2 ( )( , ) ( , ) ( , )i xu yvG R f x y e dxdy u v

 

 

 

   F                             (2.13) 

Thus it is proved that the 1D Fourier Transform ( , )G R   of projection data 

( , )g s  is indeed equal to the two-dimensional Fourier transform ( , )F u v  of ( , )f x y . 

This is the Fourier Slice Theorem. Fig.2.2 shows a schematic representation of 

Fourier Slice Theorem. 

We can rewrite Eq.2.13 as 

( , ) ( cos , sin )G R R R  F                             (2.14) 

2.1.3 Direct Fourier Method 

Once ( , )F u v is obtained from the Fourier Transform ( , )G R   of the projection data 

( , )g s  using Fourier Slice Theorem, the function ( , )f x y may be calculated using the 

Inverse Fourier Transform on ( , )F u v . This is the Direct Fourier reconstruction. 

 However, there is a catch. The standard Inverse Fourier Transform requires 

data on a rectangular grid whereas Fourier slice Theorem gives data on a polar grid. 

For a practical implementation, a complicated frequency space interpolation is 

required 
[80]

. 

2.1.4 Backprojection  

Let us suppose that the projection data is  ˆ( )f R . The backprojection operator B  

may be defined as 
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          
/2

/2

ˆ( , ) ( )f x y f R d





 


 B                         (2.15)  

Fig.2.3 shows a schematic representation of projection and backprojection. An 

image of a slice through the distribution can be generated by sequentially projecting 

the data in each count profile collected from the selected slice back along the rays 

from which the data were collected and adding the data to previously projected rays 

(Fig.2.4 and Fig.2.5). The mathematical term for this process is the linear 

superposition of backprojections. 

 

 

 

 

 

 

 

 

 

 

 

Since there is no a priori knowledge of the origin of photons along each ray, the value 

of each pixel in the count profile is placed in each data cell of the reconstructed image 

along the ray. It should be noted that uniform projections are used in Fig.2.5 to 

illustrate the backprojection principle. In fact, the rays at the periphery of the sphere 

are of less intensity than at the middle. The classic „„star effect‟‟ blur pattern inherent 

in backprojection images is also evident in these images with each ray of the star 

Fig. 2.3 Projection and backprojection 
[81] 
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corresponding to one projection view. The importance of collecting the appropriate 

number of projections is evident from this diagram. Increasing the number of 

projections enhances the image contrast and reduces the potential for artifacts from 

the „„star effect.‟‟ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Effect of number of projections on the backprojected image 
[82] 

Fig. 2.4 Backprojection reconstructs an image by taking each view and smearing it along the path it 

was originally acquired. The resulting image is a blurry version of the correct image 
[24] 
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Qualitatively, the backprojection step is akin to “smearing out” the line 

integral data (projection data) along the same lines in the reconstructed object that 

produced the line integrals in the original object.  

2.1.5 Filtered Backprojection Method 

If the reconstruction process consists of backprojection only, the net effect is a low-

pass filtering which is manifested easily when we have a point object. To compensate 

for this low-pass filtering, it is essential to filter the projection data with a high-pass 

filter before the backprojection step (Fig.2.6). This forms the basis of filtered 

backprojection (FBP) scheme. FBP is the most widely used technique for 2D 

tomography reconstruction.               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Flowcharts of analytical algorithms (a) Direct Fourier Transform (b) Filtered 

Backprojection 

Fig. 2.7 In filtered backprojection, negative wings are introduced to eliminate blurring 
[81] 
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Mathematically, the high-pass filter is nothing but a ramp filter in the Fourier 

domain. The filtered backprojection algorithm may be derived as follows. Using 

inverse Fourier transform on Eq. 2.15, the object function ( , )f x y can be expressed as 

2 ( )( , ) ( , ) i ux yvf x y u v e dudv

 



 

   F                                   (2.16) 

By substituting  

cos

sin

u R

v R








         (2.17) 

Eq. 2.16 becomes 

2

2 ( cos sin )

0 0

( , ) ( , ) i R x yf x y R e RdRd



  

  


  F      (2.18) 

 where (.)F  is the Fourier function in polar co-ordinates. We can re-write Eq. 2.18 as 

2 ( cos sin )

0 0

( , ) ( , ) i R x yf x y R e RdRd



  

  


  F  

             2 ( cos( ) sin( 0)

0 0

( , ) i R x yR e RdRd



    

   


    F          (2.19) 

Using the fact that Fourier function (.)F is periodic with period 2   

( , ) ( , )R R     F F      (2.20) 

Using the interval 0     for R  , Eq. 2.19 may be written as 

2 ( cos sin )

0

( , ) ( , ) i R x yf x y R R e dR d



  

  






 
  

 
  F    (2.21) 

Using the Fourier slice theorem, the 2D Fourier transform ( , )R F  is equal to the 1D 

Fourier transform   ˆ( )f RF  of the projection   ˆ( )f R  at angle   , we get 

  2 ( cos sin )

0

ˆ( , ) ( ) i R x yf x y f R R e dR d



   






 
  

 
  F   
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(2.22) 

Eq. 2.22 describes the complete filtered backprojection scheme. The projection data 

  ˆ( )f p are Fourier transformed (   2ˆ( ) i Rpf p e dp






 ), filtered with a ramp filter 

R , inversely Fourier transformed (   2 ( cos sin )... .... i R x ye dR  







 ) and finally 

backprojected (  
0

... d



 ) 

2.1.6 Attenuated Radon transform 

In case of SPECT, the photons emitted by the radioisotope suffer attenuation inside 

the object. If attenuation is incorporated in the Radon transform, the projection takes 

the form 

   
( )

( , ) ( ) t

s d

att f s f s t e dt
   

  



  





                          (2.23) 

where (.)  is the linear attenuation coefficient and (.)f  is the radioisotope 

activity/concentration. (.)att is called the exponential Radon transform or the 

attenuated Radon transform. It can be noted that for 0  , the attenuated Radon 

transform reduces to the Radon transform.  

 The aim of SPECT reconstruction is to deduce the source activity distribution 

f from the measured projection data (.)att . However, it may be noted that Eq. 2.19 

has another unknown quantity -  . The distribution of   may be obtained from prior 

transmission tomography measurements or from assumptions of the geometry and the 

attenuation in the object.  

  2 2 ( cos sin )

0

ˆ( ) i Rp i R x yf p e dp R e dR d



    
 

 

 

  
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  
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Roman Novikov 
[48]

 presented an explicit analytical solution for the attenuated 

Radon transform (Eq. 2.23), which is presented below. 

2.1.7 Novikov’s Explicit Inversion Formula  

Consider a vector ( , )x x y  in a two-dimensional Euclidean space. Let ( )f x  denote 

the distribution of radioisotope activity and ( )x  denote the attenuation map of the 

surrounding object. ( )x may be non-uniform. The attenuated 2D Radon transform 

for parallel beam geometry is given by 
[48, 81]

  

 
( , )

( , ) ( )
D s t

att f s f s t e dt   
  

 


  



                            (2.24) 

Where 
cos

sin






 
  
 

 , 
sin

cos







 

  
 

 and ( , )D x   is the divergent beam transform of 

( )x in the direction of 
cos

sin






 
  
 

 defined as  

0

( , ) ( )D x x p dp   


                                                  (2.25) 

 Assuming ( )x is known, Novikov gave an explicit inversion formula to 

reconstruct ( )f x from the parallel projection data  ( , ) ( , )attg s f s   : 

 
2

( , ) ( , ) ( , )

.

0

1
( ) . ( , ) |

4

h s D x h s

s x
f x Re e e g s d


  


  



  



 
  

 
 H                 (2.26) 

where  
1

( , ) ( ) ( , )
2

h s I i s    H  and  
1 ( ', )

( , ) . . '
'

s
s p v ds

s s

 
 








H   

with 2 1i    . I  is the identity operator. H  is the Hilbert transform with respect to 

the second parameter and . .p v  denotes Cauchy principal value of the integral.   is 

the divergence operator defined as  
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,
x y

  
   

  
 

2.1.8 The Hilbert Transform 

A real function ( )f t  and its Hilbert transform [ ( )]f tH  are related to each other in 

such a way that they together create a strong analytic signal. The strong analytic 

signal can be written with amplitude and phase where the derivative of the phase can 

be identified as the instantaneous frequency. The Fourier transform of the strong 

analytic signal gives us a one-sided spectrum in the frequency domain. 

The Hilbert transform [ ( )]f tH  of a signal ( )f t  is defined as 

1 1 ( ) 1 ( )
[ ( )] ( )

f f t
f t f t d d

t t

 
 

    

 

 


   

 H      (2.27) 

The Hilbert transform in the time domain is a convolution of the signal with the 

signal1/ t . The Hilbert transform in Eq.2.27 is defined in terms of Cauchy principal 

value of the integral. The Cauchy principal value is obtained by considering a finite 

range of integration that is symmetric about the point of singularity, but which 

excludes a symmetric subinterval, taking the limit of the integral as the length of the 

interval approaches   while, simultaneously, the length of the excluded interval 

approaches zero. 

1/

0
1/

1 ( ) ( )
[ ( )] lim

t t

t t

f f
H f t d d

t t

 


 

 
 

  

 


 

 
  

  
             (2.28) 

2.1.9 Relation between Hilbert Transform and Fourier Transform 

The signal 1/ t has Fourier transform 
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sgn( ) 0

i

i

i






  



    

if

if

if

 

0

0

0













        (2.29) 

Consider 
1

( ) ( )g t f t
t

    

 where   is the convolution operator. The Fourier transform of ( )g t  is 

( ) ( )( sgn( ))G F i          

(2.30) 

Thus, Hilbert Transform is interpreted in the Fourier space as introducing a 

/ 2 phase shift.  

2.1.10 The / 2  phase shift 

The / 2   phase shift is interpreted in the frequency domain as a multiplication with 

the imaginary value i . Thus 

/2

/2

  for  0
( )

     for  0

i

i

i e

i e










  
 

 
H        (2.31) 

However, ( )H  is not a property of Fourier transform but the problem can be solved 

by expressing ( )H as a limit of a bounded function ( )G  , that is 

  for  0
( )

     for  0

ie
G

ie










 
 


        (2.32) 

where  
0

lim ( ) ( )G


 


 H    

It is now possible to use the inverse Fourier transform on ( )G  , thus 

                1( ) ( )g t G F   
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







   



   

  

 

 
     




 


     (2.33)    

Now ( ) ( )g t h t  when 0   and the inverse Fourier transform of the impulse 

response of ( )H  is 

2 20 0

1
( ) lim ( ) lim

( )

t
h t g t

t t     
  


  

A convolution between ( )f t  and the impulse response ( )h t  gives us 

1 ( )
[ ( )]

f
f t d

t




 






H       (2.34) 

which is the Hilbert transform.  

2.1.11 Fan-Beam Reconstruction with Equally Spaced Detectors 

You et al 
[82, 83]

 presented a modified algorithm for extending Novikov‟s Inversion 

Formula to fan beam and cone beam reconstructions. 

Let S be the fan-beam focal point located on a circle of radius D. The 

projection data ( , )g u  measured at a position u on the detector at a view angle   

(Fig.2.8) is given by 
[82]

: 

( )( , )

0

( , ) ( )( , ) ( ) sD x t

sg u D f u f x t e dt



    

              (2.35) 
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The inversion formula for the fan-beam geometry is given as 
[82]

: 

'

2 2 ( , )
( , ) ( )( , )

2 2

0

1 ( , )
( ) Re . |

4 u u

h u
h u D xD e g u

f x e H d
U D u





 
    

     
      

     
      (2.36) 

where 
sin cosD x y

U
D

  
  

1

1

cos tan

,

sin tan

u

D

u

D





  
  
   

  
  
  

 

   
0

1 1
( , ) ( )( , ) ( ) ,

2 2
sh u I iH D u I iH x t dt



                  (2.37) 

H is the Hilbert transform defined in the fan-beam geometry
 [68] 

( cos sin )
'

sin cos

D x y
u

D x y

 


  
. 

 

 

Fig. 2.8 Fan-beam geometry 
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2.1.12 Cone-Beam Reconstruction with Circular Scanning Geometry 

Let S be the cone-beam focal point located on a circle of radius D centred at O and in 

the central plane z = 0. The co-ordinate system ( ,u  ) is centred at O on the detector 

plane such that the u-axis is parallel to the tangent of the trajectory and the -axis is 

parallel to the z-axis (Fig.4). The projection data measured at a position ( ,u  ) on the 

detector plane at a view angle  is denoted by ( , , )g u  . 

 

 

 

 

 

 

 

 

The inversion formula for the cone-beam geometry is given as 
[82]

:  

 

    (2.38) 

 

 1
( , , ) ( )( , , )

2
h u I iH D u       ,                             (2.39) 

''
Ds

u
D t




 

H is the Hilbert transform defined in the cone-beam geometry. 

 

Fig. 2.9 Cone beam geometry 
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2.1.13 Optimal Number of Projections in FBP 

What is the optimal number of projections required in FBP reconstruction? This 

question was answered by Guan and Gordon 
[84]

 for the 2D parallel beam case and it 

has been extended to 3D case by Mueller in 
[85]

. The (approximately) optimal relation 

between the values n  (angular projections) and ln  (discretization size of each 

projection) in the case of 2D transmission tomography is / / 2ln n    
[30]

. We shall 

find the relation in the context of SPECT. 

 The sampling interval in Fourier space is at least /Nyquist ln   and the 

maximum frequency is given by max / 2Nyquist   where Nyquist  is the Nyquist 

frequency. Due to polar sampling in frequency space, the density of samples 

decreases as we go outward in the polar grid. To ensure a sampling rate of at least 

 everywhere in the polar grid, even at the boundary, the angular spacing between 

the projections (i.e., the Fourier slices) in frequency space needs to be: 

max

2

ln







          (2.40)   

The sample space in the case of SPECT is [0,2 ]  (even for parallel beam) in contrast 

to [0, ] sample space in the case of transmission tomography. The optimal number of 

projections is then: 

22

2

l
l

l

n
n n

n

n












  




                                (2.41)                

Thus, for FBP reconstruction, the angular projections should be at least three times 

the (linear) size of each projection.   
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2.2 Algebraic Reconstruction Techniques  

In an algebraic approach to SPECT problem, it is assumed that the reconstructed 

object consists of a matrix of unknowns and the projection data are modeled by a set 

of linear equations. The solution of the reconstruction problem is then obtained by the 

Least Square solution for the set of equations.  

2.2.1 Observation model 

Let us consider the vector of activities in the pixels 1

1 2( , ,........, )T NX

Nf f f f  . The 

projection data 1

1 2( , ,...., )T MX

Mg g g g   can be expressed as a set of linear 

equations. 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

N N

N N

M M M MN N

g a f a f a f

g a f a f a f

g a f a f a f

   

   

   

    (2.42) 

In matrix notation, Eq.2.42 can be written as 

11 12 1 11

21 22 2 22

1 2

. .

. .

. . . . . ..

. . . . . ..

. .

N

N

M M MN NM

a a a fg

a a a fg

a a a fg

   
   
   
    
   
   

    
    

    (2.43) 

or      g Af        (2.44) 

2

pN n  is the total number of pixels and .pM n n  is the number of recorded data 

points, pn is the number of pixels in one row of the planar image and n is the number 

of acquisition angles. The matrix MXNA  is called the observation matrix or the 
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probability system matrix. The matrix element ija  is the probability that a   photon 

emitted from thi  pixel is detected by the thj projection bin. 

If the matrix A  is modeled correctly it includes all the physical features of the 

detecting system. The modeling of the probability system matrix is discussed in 

Chapter 3. Forming projection bins as a linear combination of activities is clearly a 

discrete version of integrating activities over some volume as presented in Eq.2.24. 

When using equation (2.43) as an observation model, it is assumed that the number of 

emissions in each pixel is a deterministic variable. 

2.2.2 The Linear Least Square Estimation 

Eq.2.44 can be solved using linear least square (LS) estimation. Our aim is to solve 

the estimate ˆ
LSf  satisfying the condition 

ˆ arg minLSf g Af       (2.45) 

Knowing the projection data g  and constructing the probability system matrix A , our 

task is to solve the LS problem denoted by Eq.2.44. It may happen that the 

observation model Eq.2.44 is under-deterministic. In such a case the LS problem has 

no unique solution and some of the solutions must be chosen. Usually the minimum 

norm solution is used. Furthermore, the inverse problem of SPECT is usually ill-

posed and some regularization may be needed in solving the LS problem. In addition, 

the matrix A  is usually very large and the LS solution must be computed iteratively. 

2.2.3 Implementation of ART 

For the computer implementation of this method, initial guess of the solution is made. 

This guess, denoted by (0) (0) (0) (0)

1 2 3, , ,......., Nf f f f , may be assigned a value of zero or, as 
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in the case of this thesis, an average value of the projection sum to all the initial
if ‟s. 

The reconstruction process may be expressed mathematically as follows 
[87]

: 

( 1)

' '

' 1( ) ( 1)

2

'

' 1

N
k

i j ij

jk k

j j ijN

ij

j

g f a

f f a

a









 




       (2.46) 

In Eq.2.46, 
ig  is the measured ray-sum along the thi  ray. The term  ( 1)

1

N
k

j ij

j

f a



  may 

be considered to be the computed ray-sum for the same ray based on the ( 1)thk   

iteration. The correction ig  to the thj cell is obtained by first calculating the 

difference between the measured ray-sum and the computed ray-sum, normalizing 

this difference by  2

1

N

ij

j

a


  and then assigning this value to all the image cells in the 

thi ray, each assignment being weighted by the corresponding ija . 

 There are different variants of ART. These algorithms differ in the manner in 

which corrections are applied and are presented here in brief. 

The ART algorithm originally proposed for CT applications by Gordon et al 

[86]
 is considered. In this method corrections are applied to all the cells through which 

the thi  ray passes, before calculating the correction for the next ray. The approximate 

projection data for thi ray is computed as 
[87] 

1

ˆ
N

i ij j

j

g a f


      for all 1,2,....,i M       (2.47) 

( 1)

' '

' 1( ) ( 1)
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'

' 1

ˆ

ˆ ˆ

N
k

i ij j

jk k

j j ijN

ij

j

g a f

f f a

a











 




        (2.48) 

where   is a relaxation parameter which takes value between 0 and 1. 
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2.2.4 Simultaneous Iterative Reconstruction Technique (SIRT) 

Gilbert 
[88]

 developed a form of ART, called the simultaneous iterative reconstruction 

technique (SIRT). In SIRT, the elements of the unknown function f  are modified 

after all the correction values corresponding to individual rays have been calculated. 

The algorithm is similar to additive ART but the pixel values are changed only at the 

end of each iteration, the change for each iteration being the average value for all the 

computed changes for the pixel.  

( 1)

' '

' 1

'

' 1( ) ( 1)

'

' 1

ˆ

ˆ ˆ

N
k

i ij j

j

ijN
i

ij

jk k

j j N

ij

j

g a f

a

a

f f

a











 
 

 
 
 
  







                          (2.49) 

Here   is the relaxation factor. 

2.2.5 Simultaneous ART (SART) 

This method has been invented by Anderson and Kak 
[28, 87]

. It connects advantages of 

ART and SIRT algorithms. It was found to be very efficient, accurate and superior in 

implementation 
[28, 85, 87]

. The method of applying a correction is similar to ART but 

the structure is similar to SIRT. The correction terms in SART are simultaneously 

applied for all the rays in one projection. It is mathematically expressed as:  

( 1)

' '

' 1

'

' 1( ) ( 1)

'

' 1

ˆ

ˆ ˆ

N
k

i i j j

j

i jN
i

i j

jk k

j j N

i j

j

g a f

a

a

f f

a

 



















 
 

 
 
 
  







     (2.50) 
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Here   is the relaxation factor. 

SART has many advantages, due to its image-based approach: 

 It proves to be better method for cone beam reconstruction, 

 It lends itself very well for a graphics hardware-accelerated approach. 

However SART is slightly slower than ART in software, due to the pixel (for 2D) or 

voxel (for 3D) based pooling of correctional updates. 

2.3 Statistical approach  

In emission tomography, a well-known fact “the measurements are described by 

Poisson statistics” 
[89, 90]

 may be used to calculate f  especially in statistical 

reconstruction approaches. There are certain basic assumptions underlying this fact: 

Assumption 1: The spatial locations of individual radionuclei are independent random 

variables which are all identically distributed according to a common probability 

density function  

Assumptions 2: The radionuclide decay process is a Poisson process 
[89]

.  

Assumption 3: Each decay or each emitted gamma photon can only be recorded at 

most by one detector bin, and the location of this bin is only dependent on the 

recorded photon, and is independent of all other photons 
[90]

.  

Therefore, a Poisson statistical model can be applied to SPECT reconstruction.  

2.3.1 Bayesian estimation 

Let us assume that the parameter vector f  and measurements g  are random vectors 

and the joint probability density function of f and g is ( , )p f g . In the Bayesian 

estimation the aim is to find the parameter vector f , which maximizes the probability 

( | )p f g  when the observations g are known (measured). 
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Baye‟s theorem connects the prior and posterior density functions of f and g  

( | ) ( ) ( | ) ( )p f g p g p g f p f        (2.51) 

Thus the posterior density function of f is 

( | ) ( )
( | )

( )

p g f p f
p f g

p g
       (2.52) 

                 ( | ) ( )p g f p f   

The function ( | )p g f is called the likelihood of data. It is the density of data 

g  for given parameter f , and it contains the physical model that connects the 

measurements g to the parameters f . The function ( )p f is the density function of f . 

In the Bayesian estimation the prior assumptions of parameters f are included 

in ( )p f . The following sections discuss some of the techniques used to solve the 

posterior density. 

2.3.2 Maximum likelihood estimation 

Maximum Likelihood-Expectation Maximization (MLEM) and its variants are the 

most common iterative algorithms used in SPECT reconstruction. It was proposed 

independently by Shepp and Vardi 
[50]

 and Lange and Carson 
[91]

. A Poisson 

statistical model is applied to the projection data. 

 The purpose of MLEM is to find the best estimate for f  : “the mean number 

of radioactive disintegrations f̂  in the image that can produce the sinogram g  with 

the highest likelihood” 
[92]

. ). Each projection ig  is a linear combination of Poisson 

distributed variables with mean values ˆ
jf . Each iteration of the algorithm consists of 

two steps 
[92]

: 
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1. E-step: the expectation step which forms the expression of the likelihood of any 

reconstructed image given the measured data 

ˆ ˆ( ) ( | )L f P g f   

         

1 1

1

( ) ( )........ ( )

( )

M

M

i

i

P g P g P g

P g





        

                     
1 !

i ig gM
i

i i

e g

g





                       (2.53) 

where ( )iP g  is the probability (Poisson) of detecting ig  photons in detector bin 

i under the assumption that the expectation value is ig . The log-likelihood is given by 

           ˆ ˆ( ) ln ( )l f L f    
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2. M-step: the maximization step which finds the image with the most likelihood to 

give the measured data. The maximum is found when the derivative of the log-

likelihood is zero: 
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The above equation can be re-written as 
[91, 92]
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which is the EM algorithm.  
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 One remarkable feature of EM algorithm is the non-negativity of the estimate: 

if the initial guess 0f̂  is positive, the estimate is positive after each iteration. Thus, 

the EM algorithm regularizes the problem with implicit non-negativity constraint. 

2.3.3 Ordered-Subsets Expectation Maximization (OSEM) 

MLEM algorithm converges extremely slowly and may require nearly 100-200 

iterations. To accelerate the MLEM reconstruction, Hudson and Larkin 
[93]

 proposed 

an OSEM algorithm. Instead of using the whole set of projections, OSEM uses a 

subset of projections at each sub-iteration step:  

1
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' 1
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i S j
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      (2.57) 

where  1 2, ,.....,i tS S S S  with 1,2,.....,i t  with t  being the number of subsets. 

 There are different patterns for choosing the subset: uniform, consecutive, 

orthogonal, etc. It is proven 
[94]

 that each subset containing equally distributed 

projections, i.e. a uniform pattern can produce the best reconstructed images close to 

MLEM reconstruction, compared to other patterns. 

 

 

 

 

 

 

 Fig. 2.10 Three possible grouping patterns of subsets in OSEM reconstruction 
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 OSEM accelerates reconstruction by approximately a factor of t  as compared 

to standard MLEM. Unfortunately, OSEM algorithms generally oscillate rather than 

converge to a ML solution. However, the convergent of OSEM in emission imaging 

may not be a practical problem 
[95]

 since a moderate number of iterations usually does 

not approach to the limit cycle yet and always gives convergent solutions. 

2.3.4 Maximum a posteriori Expectation Maximization (MAP-EM) 

The reconstructed images obtained using MLEM or OSEM algorithm tend to become 

noisy as the number of iterations increases 
[92]

. From the likelihood point of view, 

noisy reconstructed images yield a larger likelihood and produce projections, which 

are very close to the measured noisy projections. In order to obtain high-quality 

images with less noise, a maximum a posteriori (MAP) algorithm is used which is 

shown to have significant advantages over MLEM 
[96, 97]

. 

MAP estimation can be used in SPECT if some prior information of the 

activity distribution is known. The prior, based on an assumption of what the true 

image is, is introduced in the EM algorithm using Bayes‟ theorem. The a posteriori 

probability distribution of the image is defined as 
[92, 96]

: 

ˆ ˆ( | ) ( )ˆ( | )
( )

P g f P f
P f g

P g
         (2.58) 

where ˆ( | )P g f is the likelihood function, ˆ( )P f is the prior function from the prior 

knowledge and ( )P g is the a priori probability distribution of the measurements. In 

[98-101] anatomical information is used in prior density. The anatomical information 

is obtained from CT images. In that case the prior density ˆ( )P f is chosen so that the 

activity distribution is forced to be smooth inside the anatomical regions but gaps are 

accepted in the boundaries of these regions. Another common choice of the prior 
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density is the smoothness prior 
[28, 92, 102, 103]

. One of the smoothing prior is the Gibbs 

prior 
[98]

: 

             
ˆ( )ˆ( ) V fP f ke                                              (2.59) 

where ˆ( )V f  is the so-called energy function, which is at minimum when f̂  is 

smooth, and   is the parameter to adjust the smoothing extent. 

 Using the prior in Eq.2.59, the log-likelihood is expressed as 
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The final formula may be written as 

1

1

1 1

ˆ
ˆ

ˆ ˆ( )
ˆ

k M
jk i

j ijM N
k ki

ij j ij j

i jj

f g
f a

a V f a f
f







 








 

    (2.62) 

This is the MAP-EM algorithm. Clearly the prior density ˆ( )P f plays the same role in 

MAP estimation as the side constraint in Tikhonov regularized LS estimation. The use 

of prior density regularizes the reconstruction problem. 

2.4 Analytical vs. Iterative  

The main advantages of analytical techniques are their fast execution and less 

computation. However, their mathematical formulation cannot take into account many 

of the physical features involved in image formation - such as collimator blurring, 
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distance dependent blurring, scatter, transmission through the collimator - which 

result in blurring or other artifacts in the image. 

 On the other hand, iterative techniques can model the physical system rather 

accurately and all such features can be accounted for. The main disadvantage of 

iterative techniques is being computationally intensive and mathematical complexity 

involved in computing the probability system matrix. Also, for large sized images, the 

memory involved in computation is huge. This requires the use of accelerated GPU 

based approach or parallel computing. 

2.5 Algorithms used in this thesis 

As a part of this thesis, a number of algorithms have been explored. For analytical 

reconstruction, Novikov‟s Inversion formula for parallel beam geometry (Section 

2.1.7; Eq. 2.26) has been implemented. For few of the studies, the modified approach 

of You et al for fan beam (Section 2.1.11; Eq. 2.36) and cone beam projections 

(Section 2.1.12; Eq. 2.38) has been used. For algebraic reconstruction, simple ART 

(Section 2.2.3; Eq. 2.46) and SART (Section 2.2.5; Eq. 2.50) have been used. For 

statistical reconstruction, MLEM (Section 2.3.2; Eq. 2.58) and OSEM (Section 2.3.3; 

Eq. 2.59) have been used. Custom-made codes have been developed for 

implementation of these algorithms. 
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Chapter 3 

Modelling the Forward Projection 

To solve the inverse problem of SPECT, the system matrix has to be modelled first. Once 

the system matrix is constructed, that is, the forward projection is modeled, the inverse 

problem can be solved using methods discussed in Chapter 2. 

The modelling of the probability system matrix is one of the most critical steps in 

iterative reconstructions. The system matrix elements are generated such that it will 

produce the desired projection data. Although a lot of literature is available on hosts of 

reconstruction algorithms for solving the inverse problem, very few papers are available 

that describe the construction of the probability matrix.  

This chapter concentrates on modelling the forward projection. The chapter is 

divided into two sections. The first section describes a novel approach for generation of 

forward projection for fan and cone beam geometries. This method does not take into 

account the effect of collimator, scattering or distance. The projection data generated thus 

corresponds to an „ideal‟ collimator system where the detector „sees‟ photons along a 

straight line path only. This is useful in giving an intuitive feel for testing analytical 

reconstruction algorithms in fan and cone beam geometries to check whether 

implementation seems correct or not before applying it to relevant case. 

The second section describes the analytical method used in this thesis to obtain 

the probability system matrix. This is a more rigorous approach which takes into account 

the effect of collimator and distance (scattering has been neglected). The projection data 
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generated using this system matrix mimics the experimental parameters more closely as 

compared to the ideal approach in section one. This system matrix is also used for 

iterative reconstructions.  

The system matrix has been generated for various experimental geometries / 

configuration. This includes 2D system matrix for parallel beam geometry and fan 

geometry which are used for 2D or 3D (stacked) reconstruction. Finally, a fully 3D 

system matrix has been evaluated which takes into account 3D nature of the collimator 

and closely resembles realistic experimental situation. However, it is quite challenging as 

the procedure is computationally intensive and results in a huge system matrix (typically, 

of the order of 10000 X 10000) which needs to be stored, retrieved and inverted. 

Section I: Generation of Projection Data 

To test a developed reconstruction algorithm for parallel beam, fan beam or cone beam 

geometry, be it transmission or emission tomography, one needs projection data (forward 

projection). Generally mathematical phantoms are generated in three dimensions and the 

projection for all rotation angles is calculated. For non-symmetric objects, the process is 

cumbersome and computation intensive. This chapter describes a simple methodology for 

generation of projection data for fan beam and cone beam geometry for both transmission 

and emission tomography by knowing the object‟s attenuation and/or source spatial 

distribution details as input. The object detail such as internal geometrical distribution is 

nowhere involved in the projection data calculation. This simple approach makes use of 

the pixilated object matrix values in terms of the matrix indices and spatial geometrical 

coordinates. The projection data of some typical phantoms (generated using this 
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approach) are used in reconstructions using standard Feldkamp-Davis-Kress (FDK) 

algorithm 
[104]

 and Novikov‟s inversion formula.  

3D cone beam tomography is an important tool for non-destructive examinations 

to look into the density and/or activity distribution inside an object. To perform this type 

of work one needs to acquire 2D projection data in cone beam geometry and after that 

reconstruct it with proper algorithm. In this respect, the reconstruction software, being the 

critical part, must be tested before reconstructing actual experimental data to check its 

validity and determine its resolvable ability. For this very reason, projection data are 

obtained by performing simulated experiments using various computational techniques 

such as geometrical algorithms, Monte Carlo method, etc. In all these cases, the object 

internal distribution and/or shape are taken into account. For a particular angle, the 

projection data are calculated by finding the ray integrals along the ray path. For the next 

rotation angle, the projection data are calculated by first rotating the object matrix to get 

the new object details for that angle and subsequently computing the ray integral.     

3.1 Parallel beam geometry 

The projection data generation for parallel beam geometry is quite straightforward. The 

projections are basically line integrals parallel to each other and perpendicular to the face 

of the detectors. For zero angle (first observation), the contribution of the pixel to the line 

integral is simply 1 if the pixel lies on the path or 0 if the pixel does not lie on the path of 

the ray. For other angles, the object matrix is rotated, the new object matrix is obtained 

(using bilinear interpolation) and the above process may be repeated.   
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3.2 Fan beam and cone beam geometry 

For fan beam and cone beam geometry, the contribution of a voxel to the ray can take any 

value in the range [0, 1] depending upon the length traversed by the ray inside the voxel. 

Accordingly, our task is to compute the contribution of each voxel to each ray for 

generating the projection data. Let us see how to achieve this objective.  

3.3. Voxel Based Approach for Cone Beam Data 

For symmetric objects, like sphere within a sphere or coaxial cylinders, the projection 

data calculation is quite simple as it exploits the symmetry of the object and/or takes into 

account the well-defined geometry of the object. However, for objects which do not have 

any symmetry, the conventional methodology to calculate the projection data of a 

phantom for cone beam geometry in cases of transmission and emission mode is to 

calculate the effective contribution which a voxel has on a ray passing from the source 

through a particular image pixel. This method is tedious and very involved. Before 

presenting our approach, we have discussed below the conventional method to show the 

computation and complexity involved.   

3.3.1 Transmission Tomography Data 

To start on a simple note, let us consider fan-beam geometry. The source is located 

at ( , )c cS x y and the object centred at (0,0)O . Let A  be an x yn n object matrix. For 

transmission case, we have 

( , )     for   1,2,...,  and  1,2,...,ij x yA i j i n j n        (3.2) 
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where ij   denotes the attenuation value at the pixel ( , )i j . 

For a homogeneous object,  

0 constant     ,ij i j            (3.3) 

 

 

 

 

 

 

 

 

 

Let pixel width along X-ray direction (i.e. x-axis) be  . The ray passing through the 

object at a fan-angle   is represented by ηr . This ray passing through the pixel 

( , )i j encompasses a fraction ijw of the pixel length  (see Fig.3.1 & Fig.3.2). Hence the 

effective ray path in the pixel is ijw  . 

The ray integral g  is then calculated by summing the product of ij and the 

effective path length ijw  over all the pixels ( , )i j  lying on the ray path.  

( , )
 

ij ij

i j
on

g w


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r

                                                               (3.4) 

  For the cone beam geometry, the procedure is similar except that in addition to 

the fan angle  , the cone angle    should also be accounted for. Following the same line 

Fig. 3.1 Fan beam geometry for transmission tomography. 'ijw s  are calculated for all the 

pixels lying on the ray path ηr . 
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of argument as above, the effective ray path in the voxel ( , , )i j k  (in this case, voxel is to 

be considered instead of pixel as was the case in 2D) becomes ijkw  . 

OS

Y

X

r

μ
ij

η

(i, j)

 

 

The ray integral ,g   is now calculated by summing the product of ijk  and the 

effective path length ijkw  over all the voxels ( , , )i j k lying on the ray path. 
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,
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on

g w

 
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r

                                              (3.5) 

3.3.2 Emission Tomography Data 

The projection data generation in the case of emission tomography is much more 

complex in the sense that the gamma ray emitted from a source point inside the object is 

attenuated over a part of the object, i.e. starting from the source point somewhere inside 

the object up to its periphery.  

Fig. 3.2 A ray emanating from the source S  is subsequently attenuated on passing through a 

pixel ( , )i j lying on the path ηr . 
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Consider the fan beam data collection geometry. Let ( , )c cS x y be the focal point 

of the fan beam. The object is centred at (0,0)O . Let A  and F  be x yn n object 

attenuation and source matrices respectively.  

( , )     for   1,2,...,  and  1,2,...,ij x yF i j f i n j n        (3.6) 

and A  is same as defined in 3.2. A photon, emitted from the pixel ( , )s si j , passing 

through a point ( , )i j on the path ηr encompasses a fraction ijw  of the pixel length   (see 

Fig.3.3 & Fig.3.4). 

  

  

 

 

 

 

 

 

 

 

 

The projection data g  for this path is the sum of the contributions of all such source 

points lying on this path. Eq. 3.4 is modified to incorporate the source term as 
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x 

y 

Fig. 3.3 Fan beam geometry for emission tomography. The shaded pixel represents the 

source. 'ijw s  are calculated for all the pixels lying on the ray path ηr . 
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where 
s si jf  is the source term at ( , )s si j . 

 

 

 

 

 

 

 

 

 

 

 

  

For cone beam data collection geometry, arguing on similar lines, the projection data 

,g  at cone angle  and fan angle η is obtained by modifying Eq. 3.5 as follows: 
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 (3.8) 

where 
s s si j kf is the source term at ( , , )s s si j k  

In this method, the crux of the problem is finding ijw or ijkw  (as the case may be) 

which is tedious, time consuming and also computation intensive. In this technique, the 

object matrix is re-evaluated for each projection angle separately. 

 

Fig. 3.4 A ray emanating from a source pixel ( , )s si j is subsequently attenuated on passing 

through a pixel ( , )i j on the path ηr . The dotted line traces the ray back to the focal point S  
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3.4. Novel Approach for Cone Beam Projection Data 

In our novel approach, the fraction ijkw of the pixel contribution to the ray path is not 

calculated. The method relies on finding the co-ordinates of the pixels lying on the ray 

path and subsequently rebinning the data to find the path integral. 

3.4.1 Transmission Tomography Projection Data Generation 

Let A  be an x y zn n n   object (attenuation) matrix whose elements are the attenuation 

values ijk .  

( , , )     for   1,2,...,  ;  1,2,..., ;  1,2,...,ijk x y zA i j k i n j n k n        (3.9) 

The origin (0,0,0)O is taken to be at the centre of the object. The source is at the 

focal point ( , , ) ( ,0,0)c c cS x y z S D   (see Fig.3.5) where D is the distance of the source 

from the centre of the object. Each voxel of size   is represented by its index ( , , )i j k , co-

ordinates ( , , )x y z  and its μ-value ijk . We break the cone beam into N  fans with cone 

angles  (measured from the central plane 0z  ) varying from  max  to max  and for 

each cone angle  we break the fan into N rays with fan angles η varying from max to 

+ max . Considering object dimension of max max max max max max( : , : , : )x x y y z z    

1tan ( )
z

D

  ;   1 max
max tan ( )

z

D

         (3.10) 

1tan ( )
y

D
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                                                    (3.11) 
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The ray passing through the object at cone angle  and fan angle η is represented by ,ηr . 

The projection data for the central ray 0,0r is given by 

0,0

1 1

x xn n

ijk ijk

i i

g
 

                     (3.12) 

For simplicity, let us start by calculating the projection data for the central vertical 

plane y = 0. For this plane, fan angle η = 0. Consider the central ray 0,0r . The points lying 

on this ray path have co-ordinates given by ( ,0,0)x . To find out the co-ordinates of the 

points on the path of the ray ,0r , we rotate the frame of reference through angle φ about 

y-axis, the centre of rotation being ( , , )c c cS x y z . A point ( , , )x y z in the original frame of 

reference transforms to the point ( ', ', ')x y z in the new frame of reference, where 
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z x x z z
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       (3.13) 

Fig. 3.5 Cone beam geometry for projection data generation 
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Two successive points lying on the path 0,0r separated by distance   are now separated 

by distance cos  on the new path ,0r    

Now, for the points on the ray path , r , we rotate the frame of reference through 

angle η about z-axis, the centre of rotation being ( , , )c c cS x y z . A point ( ', ', ')x y z in the 

new frame of reference upon rotation through η about z-axis transforms to the 

point ( '', '', '')x y z , where 

  

'' ( 'cos 'sin )

'' ( 'sin 'cos )

'' '

c

c

c

x x x y

y y x y

z z z

   

    

 

       (3.14) 

Two successive points lying on the path ,0r separated by distance cos  are now 

separated by distance cos cos   on the new path , r .   

In the original frame of reference, each voxel x y z    located 

at ( , , )x y z corresponds to an index ( , , )i j k . Now, in the rotated frame the 

point ( '', '', '')x y z corresponds to some index ( '', '', '')i j k  in the original frame of reference 

(see Fig.3.6). The indices '', '', ''i j k  may no longer be integers so they are rounded off to 

the nearest integer under the restriction 

1 " ;1 " ;1 "x y zi n j n k n              (3.15)  

The index ( '', '', '')i j k  will give us the μ-value at that point which is " " "i j k . The projection 

data ,g  for the ray , r will be the ray integral over all such voxels ( '', '', '')i j k on this 

path. 
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      (3.16) 
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For the projection data set at different rotation angles , where 0 2   , the 

attenuation matrix A  is first rotated through angle   and the new attenuation matrix 

obtained using bilinear interpolation. Then the above steps are performed on this rotated 

matrix to obtain the projection data set at angle . 

3.4.2 Emission Tomography Projection Data Generation 

Let A  and F  be x y zn n n   object (attenuation) and source matrices where 

     ( , , )     for   1,2,...,  ;  1,2,..., ;  1,2,...,ijk x y zF i j k f i n j n k n        (3.17) 

and A  is as defined in section 3.1. Each voxel at ( , , )x y z linked to matrix index ( , , )i j k  

has a corresponding μ-value ijk and a source count ijkf .  

The ray path through the object at cone angle  and fan angle η is represented 

by , r . The projection data for the central ray 0,0r is given by 

Fig. 3.6 Transformation of a point P to P” under two subsequent rotations 
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where '
s s si j kf s are the gamma emitting source points lying on the path 0,0r . It may be noted 

here that the attenuation is only summed from the emitting pixel (voxel) to the detector. 

 Using similar arguments as in Section 3.1, point ( , , )x y z transforms to 

( '', '', '')x y z after rotations through angle  about y-axis and angle η about z-axis (see 

Eq.3.13 & Eq.3.14). Once the new index ( '', '', '')i j k  is known, we obtain the attenuation 

value " " "i j k and the source value " " "i j kf  at that point. The projection data ,g  for the path 

, r is then given by 

   

, ,

( , , ) ( , , )

, " " " " " "

( ", ", ") ( , , ) ( ", ", ")

exp( cos cos )
x y z

s s s

s s s s s s

i j k n n n

i j k i j k

i j k i j k i j k
on on

g f

   



 



     
r r

   (3.19) 

Again, the summation is over pixels (voxels) lying on the ray path , r and starting from 

emiiting pixel (voxel). 

For the projection data set at different rotation angles , where 0 2   , the 

attenuation matrix A  is first rotated through angle   and the new attenuation matrix and 

source matrix obtained using bilinear interpolation. Then the above steps are performed 

on the rotated matrices to obtain the projection data set at angle . 

3.5. Testing the projection data 

To test the method of generation of projection data, we reconstruct transmission and 

emission projection data and compare with the original phantom. In this section, we 
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discuss some phantoms, their sinogram and reconstructed images. The evaluation 

presented here tests the simulation scheme for some basic implemented geometry. The 

projection data have been generated using our technique and the projection data thus 

generated have been reconstructed using standard algorithms. 

3.5.1 Reconstruction of Transmission projection Data using FDK 

algorithm 

Phantom 1 consists of a solid Al cylinder (μ = 0.037mm
-1

) of radius 10 mm and height 

40mm. It contains a Cu sphere (μ = 0.198 mm
-1

) of radius 2 mm centred at (-3.2, 0, -4.2) 

and an SS rod (μ = 0.154 mm
-1

) of base radius 2 mm centred at (0, 2.8). This rod is 

broken (from z = -4.2 to z = -12). The linear attenuation coefficient values are at 150 keV 

energy. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Phantom 1 (a) original object (b) sinogram (c) reconstructed object 

 

(b) (a) (c) 
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For numerical simulation purpose, Phantom 1 is discretized on a regular grid of 101 X 

101 X 241 units. The projections are generated for 300 views/rotations with angular step 

of 1.2°. The focal distance is taken as 100 mm. The reconstruction is done using FDK 

algorithm 
[104]

. 

 The reconstructed μ-values are found to be in the ratio 1: 0.178: 0.775 (Cu: Al: 

SS). This is in good agreement with the actual μ-value ratio 1: 0.187: 0.777 (Cu: Al: SS). 

3.5.2 Reconstruction of Emission projection Data using Novikov’s 

inversion formula 

Phantom 2 represents a drum of diameter 55 cm and height 87 cm with 2 mm thick lead-

lining (μ = 2.4588cm
-1

). It (Fig.3.8) consists of a low activity radioactive isotope 
239

Pu (μ 

= 5.6311cm
-1

) in the form of small spheres at 15 different locations (refer Table 3.1) in a 

surrounding matrix (μ = 0.12cm
-1

). The attenuation values are at 414 keV. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Phantom 2 (a) Activity (b) Attenuation map (c) sinogram (d) reconstructed activity 

(Note: The boundary of the drum is shown only for illustration purpose) 

(a) (b) (c) (d) 



 Modelling the forward projection 

 

81 

 

For numerical simulation purpose, Phantom 2 is discretized on a regular grid of 

121 X 121 X 241 units. The projections are generated for 300 views/rotations with 

angular step of 1.2°. The reconstruction is done using cone-beam SPECT reconstruction 

algorithm. The focal distance is taken as 100 cm. 

 TABLE 3.1 Activity table for drum D-2 (Note: Central plane is the z = 0 plane) 

 

Source 

shape/geometry 

Source position/centre 

(x, y, z) in cm 

Source dimension Activity 

(emissions/s) 

Sphere (15.6, -15.6, -37.5) Radius 3.5 cm 2 x 10
4 

Sphere (-11.4, -12.0, -33.7) Radius 3.5 cm 2 x 10
4
 

Sphere (-19.8, 4.2, -25.0) Radius 3.5 cm 2 x 10
4
 

Sphere (-13.8, -1.8, -14.1) Radius 3.5 cm 2 x 10
4
 

Sphere (-5.4, 2.4, -9.8) Radius 3.5 cm 2 x 10
4
 

Sphere (3.0, -15.0, -4.9) Radius 3.0 cm 1 x 10
4
 

Sphere (-15.0, -18.0, 3.3) Radius 3.0 cm 1 x 10
4
 

Sphere (19.2, 12.6, 6.5) Radius 3.0 cm 1 x 10
4
 

Sphere (2.4, -9.0, 10.3) Radius 3.0 cm 1 x 10
4
 

Sphere (-19.8, -19.2, 19.0) Radius 3.0 cm 1 x 10
4
 

Sphere (-18.6, 18.0, 22.8) Radius 2.5 cm 3 x 10
4
 

Sphere (1.2, -11.4, 27.2) Radius 2.5 cm 3 x 10
4
 

Sphere (-4.8, 14.4, 31.0) Radius 2.5 cm 3 x 10
4
 

Sphere (13.2, 19.8, 34.8) Radius 2.5 cm 3 x 10
4
 

Sphere (-21.6, -5.4, 38.1) Radius 2.5 cm 3 x 10
4
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3.6 Computation Time 

All the calculations were done on a standard PC with 2.4 GHz Pentium 4 processor and 1 

GB RAM. For transmission, the CPU time for projection data calculation for a 

121x121x241 grid was 4.33 sec per projection. For emission, the CPU time for projection 

data calculation for a 101x101x241 grid was 4.77 sec per projection. 

3.7 Image comparison: correlation coefficient 

The correlation between the original image ( , )g i j and the reconstructed image 

ˆ( , )g i j provides a classical criterion 
[105]

 for comparing two images. The correlation 

coefficient is given by: 

 

(3.20) 

 

The correlation is equal to 1 if the images are identical, and less if some differences exist. 

3.7.1 Projection data comparison 

The main source of error in the projection data using our algorithm can be attributed to 

the bilinear interpolation and subsequent modification of the matrix values for each ray 

path. Note that during rebinning the indices ( ', ", ")i j k  are rounded off to the nearest 

integer values. This means that the ray path through each voxel is „approximated‟ to be 

same, though in reality they differ. This error can be reduced by finer gridding of the data 

matrix at the cost of computational time. 

1 1

2 2

1 1 1 1

ˆ( , ) ( . )

( )

ˆ( , ) ( , )

N N

i j

N N N N

i j i j

g i j g i j

Correlation

g i j g i j


 

   





 
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To compare the quality of the projection data (for transmission case) with the 

ideal data, we chose a simple object - off-centred sphere within a sphere (Phantom 3 – 

size: 121 X 121 X 121). The ideal data was calculated geometrically by finding out the 

chord lengths of the X-ray passing through the object and incorporating attenuation 

values along its path. Fig.3.9 shows the plot of correlation coefficient (between the 

projection data as calculated geometrically and the projection data calculated using our 

algorithm) as a function of the rotation angle. The plot shows dips at rotation angles 90°, 

180°, 270° and 360°. This is because the error due to bilinear interpolation will be 

maximum at rotation angles of 90°, 180° and 270°. 

 The correlation coefficient between the two images is more than 0.99 which 

shows that the projection data computed by our algorithm is almost identical to the 

projection data computed geometrically. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Plot of correlation coefficient between the projection data (for Phantom 3) computed 

geometrically and the projection data calculated using the algorithm) as a function of the 

rotation angle 
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3.7.2 Reconstructed image comparison 

The correlation between the reconstructed image and the original phantom has been 

calculated for testing the quality of the reconstructed image. Fig.3.10 (a) shows the 

original phantom and Figs.3.10 (b) & 3.10 (c) show the reconstructed images for the 

projection data computed using the algorithm and the projection data computed 

geometrically respectively as stated in section 3.5 for Phantom 3. The correlation 

coefficient between the reconstructed images (Figs. 3.10 (b) & 3.10 (c)) and the original 

phantom (Fig. 3.10 (a)) for Phantom 3 is plotted as a function of Z-slice no. is shown in 

Fig.3.10 (d).  

  

 

 

 

 

 

 

 

 

 

 

  

The fluctuations in correlation coefficient in Fig.3.10 (d) at Z-slice no. 49 and Z-

slice no. 61 correspond to the edges of the smaller sphere. The comparatively lower 

(a) 

(b) (c) (d) 

 

Fig. 3.10 (a) Phantom 3 (b), (c) Reconstructed images using projection data calculated using the 

algorithm and the projection data computed geometrically respectively (d) Plot of correlation 

coefficient as a function of Z-slice no. 
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correlation coefficient can be accounted to the error introduced in the reconstruction 

process as they produce high frequency component.  

Fig.3.11 shows the plot of correlation coefficient for the Phantom 1 in section 

3.5.1. The fluctuations in correlation coefficient around Z-slices 61 and 100 correspond 

to the broken edges of the stainless steel rod and can be explained as before. This is 

evident in the sharp fall of correlation coefficient at Z-slice 61. The high frequency 

component near Z-slice 100 is modified due to the presence of the copper ball and hence 

the fluctuations in correlation coefficient are less as compared to that at Z-slice 61.  

 

 

 

 

 

 

 

 

 

The correlation coefficient between the reconstructed image and the original 

phantom is more than 0.97 and 0.98 respectively for Phantom 3 and Phantom 1 for most 

of the slices. This shows a good correspondence between the original object and the 

reconstructed volume. 

 

Fig. 3.11 Plot of correlation coefficient as a function of Z-slice no. for Phantom 1 
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Section II: Generation of Probability System Matrix 

For algebraic and statistical reconstruction techniques (discussed in Chapter 2), the 

observation model is represented by the set of linear equations given by 3.1  

 g Af         

where A  is the probability system matrix. The unknown vector f  can be directly 

computed by inverting the matrix A . However, the sparse matrix A  is often ill-posed or 

singular and cannot be directly inverted. Also the size of the matrix is huge. For example, 

consider a 64 x 64 object grid with 100 projections and 64 lateral data points in one 

image dimension. The size of the matrix A  will be 6400 x 4096 which is huge. For such 

a large matrix, the conventional mathematical models for inversion require huge 

computational cost. For this reason, Eq.3.1 is solved iteratively. 

The accuracy of the techniques used in predicting f  depends on how well the 

system matrix is modeled. In fact, generation of the probability system matrix is the most 

important factor in iterative reconstruction techniques.  

The system matrix can be estimated from the measurement of spatially variant 

point spread functions of physical point sources 
[106]

, by approximate analytical 

calculations 
[107-116]

, or generated by Monte Carlo simulations 
[117]

. We will focus on 

analytical calculation of the system geometry elements. 

3.8 The Probability System Matrix  

The probability system matrix A  has two components - system geometry factor and 

system attenuation factor. The system geometry factor is one of the most important 
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components of the probability system matrix. It is the probability that radioactive decay 

in the thj  voxel is recorded by the thi  detector unit solely due to the geometrical 

considerations. The system attenuation factor gives the attenuation suffered by the 

photons in the object before reaching the detector.  

The system matrix can account for various physical effects: attenuation, 

sensitivity, scatter, collimation, transmission through collimator walls, etc. More the 

factors modeled, closer will be the resemblance to true experimental conditions. We shall 

call the elements ( , )A i j  of the system matrix as system matrix elements. 

3.8.1 Structure of system matrix 

In order to solve the system of linear equations and find out the activity distribution, only 

the non-zero elements of A are used. Let us get an estimate for the number of non-zero 

matrix elements. If n is the number of grid elements in one dimension (for the sake of 

simplicity, let us consider x y zn n n n    and n n  , ln n  ), the number of matrix 

elements is 4( )o n ( dim( ) x y lA n n n n ) for 2D system matrix.  Here (.)o  means of the 

order of the bracketed term. However, the number of non-zero elements is 3( )o n  as on an 

average only ( )o n grid elements are intersected by the rays from each projection bin (as 

shown in Fig.3.12). Similarly, for 3D reconstruction, the total number of elements is 

6( )o n ( dim( ) x y z l zA n n n n n n ) whereas the number of non zero elements is 4( )o n . We 

may thus infer that the matrix becomes much sparse in three dimension in the sense that 

the number of non zero elements is about two order less than the total number of 

elements. 
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The computation time as well as the complexity of iterative methods depends on 

the number of non-zero elements which increases as the number of grid elements 

n increases. The simplest way to increase the sparseness of A  is to increase the 

collimation so that each collimator now sees a smaller portion of the grid. However, the 

projection image suffers from a relatively larger statistical variation since the image is 

now formed from lesser number of photons. 

 

 

 

 

 

 

 

 

 

 

 

3.9 2D Reconstruction: Parallel Beam System Model  

To a first approximation, each element ( , )A i j can be expressed as: 

2
( , ) exp( )

4
k ijk

kij

Area
A i j d

R



          (3.21) 

Area   is the exposed area of the thj  detector as seen by the thi  pixel 

Fig. 3.12 2D System Matrix for different collimation ratio (a) 5 (b) 20. The rows (y-axis) 

correspond to measurement/data points whereasthe columns (x-axis) correspond to object 

pixels.  The total number of elements in each case is 3.24 x 10
5
. The non-zero elements are 

marked in blue whereas the zero elements are marked in white.  

 

(a) (b) 

Non-zero elements: 87804 Non-zero elements: 39936 
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ijR       is the distance between the thi  pixel and 
thj  detector  

k      
is the attenuation coefficient of the thk pixel (material) lying on the ray path joining          

the  thi pixel and thj detector 

ijkd
    

is the path length in thk pixel traversed by the gamma ray emitted from the  thi  

pixel and reaching the thj  detector 

 

Eq.3.21 can be split into two components as 

            ( , ) ( , ). ( , )geom attA i j A i j A i j       (3.22) 

where 
2

( , )
4

geom

ij

Area
A i j

R
  is the geometrical factor,  

and ( , ) exp( )att k ijk

k

A i j d  is the attenuation factor 

In terms of matrix notation, we can write  

geom attA A A       (3.23) 

where  stands for element-to-element multiplication. 

For most analytical calculations, an implicit assumption is that radionuclei are 

distributed homogenously inside the pixel. For an ideal collimator (line integral model), 

the ray is assumed to be a “thick” line whose width is equal to the width of the projection 

bin (or detector). The pixels lying on this path (marked in dark grey in Fig.3.13) 

contribute to the detector while the pixels lying outside this region do not. However, in 

practice, the collimator is not ideal and all the pixels lying in the cone of acceptance 

(marked in light grey and bounded by two bold lines in Fig.3.13) contribute to the 

intensity in the detector. 
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To calculate the terms
ijkd , that is, the path length in thk pixel traversed by the 

gamma ray emitted from the thi  pixel and reaching the thj  detector, a similar approach is 

used. For the ideal collimator case, 
ijkd is given by the length of intersection of the ray 

joining thi  pixel and thj  detector with the thk pixel. Since the ray is always parallel to the 

detector, a simple way of evaluating this term is to use the approach used in Section I – 

rotation of the object matrix by angle   followed by bilinear interpolation to find the 

object matrix in the rotated frame of reference. In this frame of reference, all the k  pixels 

are parallel to the ray and the 
ijkd terms are simply the width (equal) of the pixel in the 

rotated frame of reference. For the collimator modeled observation, however, the length 

of intersection of the ray with the voxel is to be evaluated for all the object pixels in the 

cone of acceptance. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Pixels contributing to the probability system matrix in the case of ideal 

collimator (dark grey) and non-ideal collimator (light grey) 
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The system matrix in Eq.3.23 can be represented in block matrix notation as 

1

2

3

.

.

.

n

A

A

A

A

A


 
 
 
 
 

  
 
 
 
 
 

      (3.24) 

where 1A  is the block matrix for first projection, 2A  is the block matrix for second 

projection, and so on. n  is the number of angular projections. 

 We shall now compute the block matrix for the first projection, that is 0   , or 

the zero-angle projection. 

3.9.1 Geometrical factor 

The first term of Eq.3.21 is the geometrical factor which accounts for the solid angle 

subtended by detector at the pixel. Let us calculate the geometrical factor for the 0
th

 angle 

projection. 

The object pixel and the detector are in the same plane. By simple geometrical 

consideration, the area of the thj  detector as seen by thi  pixel is given (from Fig.3.14) as 

the difference of the projected width of cw  under angle   and the part of the projected 

width shadowed by the collimator.  

( cos sin )c c cArea w l h                                                       (3.25) 

cw is the collimator width 

cl is the collimator length 

ch is the collimator height 
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  is the angle subtended by the thi pixel at the thj  detector       

From Fig.3.13, we can write cos
ij

dx

R
   and sin

ij

dy

R
   

The calculation of Area
 
depends on the shape of the holes in the collimator. For 

square hole collimator, c ch w . If collimator is further divided into n  holes per 

dimension (for multi-hole collimator), the area corresponding to each sub-detector is 

(neglecting the width of the septa separating the holes) 

cos sinc c
c

w w
Area l

n n
 

 
  
 

       (3.26) 

 

 

 

 

 

 

 

 

 

 

 

Since the total number of holes per collimator is 2n  , the total area subtended by the 

detector will be 

Fig. 3.14 Area of the 
thj  detector as seen by 

thi  pixel 



 Modelling the forward projection 

 

93 

 

2 ( cos sin )

( cos sin )

c c
c

c c c

w w
Area n l

n n

Area w nl w

 

 

 

 

                       (3.27)  

and                             
0, 2

1
( , ) ( cos sin )

4
geom c c c

ij

A i j w nl w
R

 


                   (3.28) 

where the subscript „0‟ denotes the 0
th

 angle projection.  

For 1n  , the width of the hole is equal to the width of the projection bin. 

Obviously, in the case that ( , )Area i j is less than zero, the pixel does not contribute to 

projection bin and we have to set ( , ) 0Area i j    

3.9.2 Attenuation factor 

The second term in Eq.3.21 is the attenuation factor which accounts for the net 

attenuation suffered by the gamma photon emitted from the  thi  pixel   and reaching 

the thj  detector. For an ideal collimator (infinite collimation), only the pixels lying on the 

line joining thi  pixel   and thj  detector contribute to the attenuation factor. However, for 

all practical purpose, the collimation is finite and other pixels also contribute to the 

attenuation factor (see Fig.3.13) 

As stated in Eq.3.21, the attenuation factor ( , )attA i j  is given by 

                        (3.29) 

where 1,2,..., .x yi N N  and 1,2,..., yj N . The summation is done over all k  pixels lying 

on the ray path joining thi  pixel and thj  detector. This is repeated for all i  and j  

( , ) exp( )att k ijk

k

A i j d 
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We shall briefly discuss the calculation of the factor 
ijkd . We consider the ray 

path as the line joining the centre of thi pixel, say  ,p px y with centre of thj detector, say 

 ,d dx y . Now, the factor 
ijkd  has to be computed for all k  pixels lying on this ray path. 

This has been illustrated in Fig 3.15. The ray staring from a source pixel (in red) and 

reaching a detector bin passes through a number of pixels (in yellow) lying on the path. 

Now, the intersection length of the ray with the thk  pixel boundary gives 
ijkd .  

 

 

 

 

 

 

   

Let ( ) 0y x   denote the line joining thi  pixel and thj  detector. Also, let lx x , 

1lx x  , my y and 1my y  denote the left, right, bottom and top boundaries of  thk pixel 

respectively. The line ( ) 0y x  can intersect thk pixel in 6 ways as shown in Fig.3.16 

(ignoring the direction of the ray).  

To find out the points of intersection, the following steps are followed: 

 Find ( ) |
lx xy x  and 

1
( ) |

lx xy x
  

 If 1( ) |
lm x x my y x y   , 1 ( ) |

lx xy y x   and 1 lx x   

 If 
1 1( ) |

lm x x my y x y
   , 

1
2 ( ) |

lx xy y x
  and 12 lx x   

Fig. 3.15 A ray starting from a (red) pixel passes through (yellow) pixels on its way to the 

detector bin 
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 If 1y null  and 2y null  

o If 
1

( ) | ( ) |
l lx x x xy x y x

  , 1 my y  , 1 ( ) |
my yx y x   

o If 
1

( ) | ( ) |
l lx x x xy x y x

  , 11 my y  , 
1

1 ( ) |
my yx y x
  

 If 1y null  and 2y null  

o If 
1

( ) | ( ) |
l lx x x xy x y x

  , 12 my y   , 
1

2 ( ) |
my yx y x
  

o If 
1

( ) | ( ) |
l lx x x xy x y x

  , 2 my y , 2 ( ) |
my yx y x   

  
2 21 2 ( 1 2)ijkd x x y y      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3.16 Intersection of a ray with a pixel 
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In the above steps, the notation 1 ( ) |
my yx y x  means that 1x  is equal to the value of x  

obtained by substituting 
my y  in the equation ( ) 0y x  . If the line ( ) 0y x  does not 

intersect the thk pixel, 
ijkd is set to zero. 

3.9.3 Other Projections 

To compute the system matrix components for projections at other angles, we follow the 

method of rotation and bilinear interpolation somewhat similar to the approach followed 

in Section I. The zero-angle matrix is actually a matrix fixed to the coordinates of the 

collimator. When the object is rotated by an angle   about the axis of rotation, the 

observation matrix thus formed can be related to the zero-angle observation matrix as 

follows.  

 Let f  be the vector of activity. Under a rotation   and subsequent bilinear 

interpolation, the rotated activity vector may be written as 

f R f        (3.30) 

where R  is the interpolation matrix. Since we have interpolated the image in the original 

co-ordinates, we can now use the zero-angle observation to form the projection (or 

observation) at angle   as 

               0g A f A R f           (3.31) 

It follows that the system matrix component for angle   can be written as 

0A A R        (3.32) 

From Eq.3.24, we may write in matrix form as 
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1 0

2 0 2

3 0 3

0

. .

. .

. .

geom

n n

A A I

A A R

A A R

A

A A R
 

   
   
   
   
   

    
   
   
   
   
   

     (3.33) 

where I  is the identity matrix. The subscript geom  has been dropped on the right side. 

To compute the attenuation factor for other projections, the computation of the 

distances 
ijkd  would be computationally heavy task. Thus we use the same kind of 

method as in forming the geometrical factor. We consider the zero angle projection and 

compute the distances 
ijkd for all , ,i j k . For computing the projections at other angles, we 

use similar argument as in the previous section and find out the factor 
ijkd for the rotated 

co-ordinates by rebinning. In addition, the attenuation map   is also rotated by angle   

and the resulting map  is used. 

The attenuation map vector after rotation and bilinear interpolation may be 

written as 

R        (3.34) 

where R is the same interpolation matrix as used above. The attenuation factor can now 

be written as 

, ,( , ) exp( )att k ijk

k

A i j d       (3.35) 

The factors ijkd obtained for the zero-angle projection are used. 
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 Combining the geometrical and attenuation factors, the projection data at angle    

is now given by 

, , 0, ,( ) ( )geom att geom attg A A f A A R f         (3.36) 

 Hence, the complete system matrix can now be expressed as 

0, 0,

0, 2, 2

0, 3, 3

0, ,

( )

( )

( )

.

.

.

( )

geom att

geom att

geom att

geom n att n

A A I

A A R

A A R

A

A A R
 

 
 
 
 
 

  
 
 
 
 
 

     (3.37) 

3.10 2D Reconstruction: Fan Beam System Model  

Parallel beam reconstruction in Active and Passive CT (A&PCT) is widely used due to its 

rather simple set-up especially for large objects and scanning in three dimensions. A 

particular example is A&PCT of waste barrels 
[69]

. In order to increase the scanning speed 

and waste drum throughput, multiple detectors (horizontal or vertical or both) in parallel 

beam configuration may be used and translation of the object or source-detector pair for 

scanning in-between positions. This yields a linear speedup by a factor approximately 

equal to the number of detectors used without a compromise in system accuracy. 

However, using multiple detectors in parallel beam configuration has a limitation in the 

Active CT step (Fig.3.17(a)) since as many active sources (such as  
152

Eu, 
166m

Ho,
60

Co) 

as the number of detectors are required. This is practically not easy due to the increase in 

cost as well as shielding required for multiple active sources.  

 



 Modelling the forward projection 

 

99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another limitation is the use of HPGe detectors for waste assay. Since HPGe 

detectors are bulky and cannot be stacked vertically, it puts a limitation on the number of 

(a) 

Fig. 3.17 Schematic arrangement for multiple detector A&PCT scan in (a) Parallel beam and  

(b) Fan beam configurations showing the requirement of active source(s) 

(b) 
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detectors that can be used (as the maximum horizontal span of the detectors should be 

equal to the width of the barrel). 

One of the approaches to solve this problem is to devise new scanning geometries. 

Roberson et al 
[118]

 have discussed some scanning configurations to this effect. One of the 

scanning methods is a fan-beam geometry with the active source placed at the focal point 

of the fan (Fig.3.17(b)). In this scenario, there is a possibility of speedup due to the 

elimination of discrete translation positioning in the active (and/or passive) mode(s). 

Also, the fan-beam design has only one source and a very simple source collimator 

compared to the straight in-line case. A disadvantage of fan-beam geometry is that fan-

beam detector collimators are somewhat more complicated in construction when 

compared to the straight in-line collimators.  

Fan beam reconstruction has also been used by few other researchers 
[82, 83, 119-121] 

but has been mainly limited to proof-of-principle experiments or validation of new 

algorithms 
[82, 83]

 or intended for small objects for clinical use 
[121]

. This section describes 

a practical implementation of the fan-beam reconstruction model for A&PCT imaging of 

waste barrels. In the experimental arrangement, the detectors are spaced equally along a 

straight line with collimators arranged in a fan beam configuration such that the 

collimator face is perpendicular to the line joining the focal point and detector centre. A 

simplification introduced is in the use of parallel beam collimators instead of fan beam 

collimators. For large objects and large focal length, the angular difference of a fan beam 

collimator and a parallel beam collimator is very small (for example, in the present 

experiment the angular difference is less than 4º). This makes the implantation of fan 

beam geometry easy and is a more practical solution.  
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We shall compute the system matrix for a two dimensional fan beam system 

matrix with equally spaced detectors. The treatment is similar to that discussed earlier for 

parallel volume system model.  

For 2D reconstruction, the object pixel and the detector are in the same plane. 

Using the same line of discussion as in Section 3.9.1, the area of the thj  detector as seen 

by thi  pixel is given (from Fig.3.18) as the difference of the projected width of cw  under 

angle   and the part of the projected width shadowed by the collimator.  

( cos( ) sin( ))c c cArea w l h                                                           (3.38) 

cw is the collimator width 

cl is the collimator length 

ch is the collimator height 

  is the angle subtended by the thi pixel at the thj  detector       

  is the fan angle of the thj  detector       

From Fig.3.18, if pixel and detector co-ordinates are  ,p px y  and  ,d dx y respectively, 

we can write  

cos
d p

ij

x x

R



  ; sin

d p

ij

y y

R



       (3.39)

 

2 2
cos

d

D

D y
 


 ;

 
2 2

sin
d

d

y

D y
 


     (3.40) 
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The calculation of the geometrical factor depends on the shape of the holes in the 

collimator. For square hole collimator c ch w . If collimator is further divided into n  

holes per dimension, Eq.3.38 is modified as (by analogy with Eq.3.27) 

( cos( ) . sin( ))c c cArea w nl h                            (3.41)  

Obviously, if 0Area   , the pixel does not contribute to the detector bin and we have to 

set 0Area  .  

 For other rotations, the treatment is similar to that discussed earlier for parallel 

volume system model. The steps for calculating the attenuation factor is same as for 

parallel beam case and hence is not repeated here.  

 

Fig. 3.18 Computing the geometrical factor of system matrix  
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3.11 Fully 3D Reconstruction  

For 2D reconstruction, system matrix is constructed for a single slice and the 

corresponding slice is reconstructed. The geometrical factor has to be computed only 

once as it remains the same for each slice. The attenuation factor is modified for each 

slice depending upon the attenuation map for the particular slice. However, the term 
ijkd  

needs to be computed only once. The 3D activity map is then obtained by vertically 

stacking the respective 2D reconstructed slices.  

In 2D reconstruction, it is assumed that all photon counts in a particular row of the 

planar image are due to photons emitted from the slice at same height. However, the 

projection data has contribution from other voxels also which are located in other slices. 

In fact, each detector or projection bin accepts contributions from a cone whose 

dimensions depend on the shape and size of collimator holes. 

 

 

 

The computation of the system matrix A  in the case of fully 3D reconstruction is 

computationally heavy. However, it models the collimator more accurately thereby 

Fig. 3.19 Schematic representation of 2D (stacked) and fully 3D Reconstruction 



Chapter 3 

 

104 

 

enabling a reduction of collimator blurring and also better quantitative estimation of 

activity values. 

In order to compute the fully 3D reconstruction we must discretize the whole 3D 

region where the activity distribution is to be reconstructed. The 3D region is discretized 

into 
x y zN N N   voxels. 

The system matrix can be represented in block matrix notation as 

1

2

3

.

.

.

n

A

A

A

A

A


 
 
 
 
 

  
 
 
 
 
 

     (3.42) 

where 1A  is the block matrix for first projection, 2A  is the block matrix for second 

projection, and so on. n  is the number of angular projections. 

The procedure of forming the matrix A  in 3D case is basically the same as in 2D 

collimator modeled case. First we form the zero-angle observation matrix 0A  

corresponding to the planar image at acquisition angle 0  . Then we can form the 

matrix A  block by block using rotation and bilinear interpolation. 

We now discuss the computation of the geometrical and attenuation factors for the 

zero angle projection. The factors for other angles follow from the argument for the 2D 

case. 
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3.11.1 Geometrical factor 

For the 3D case, the (source) voxel i  may also be above or below the detector plane. 

Consider the vector 3r   joining the source voxel to the detector (Fig.3.20). For the 

sake of simplicity, the co-ordinates have been so chosen that the origin is at the centre of 

the thi voxel and collimator is not shown. In this case, the collimator height ch is also 

modified analogous to the collimator width in Eq.3.25. The modified expression for solid 

angle becomes 

0, 2

1
( , ) ( cos sin )( cos sin )

4
geom c c c c

ij

A i j w nl h nl
R

   


      (3.43) 

where   is the angle made by projection (on XY plane) of vector r  with the y-axis and 

 is the angle made by r with the horizontal (XY) plane and n
 
is the number of holes per 

dimension of the collimator. 

 

 

 

Fig. 3.20 Area of the 
thj  detector as seen by 

thi  pixel for 3D case 
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3.11.2 Attenuation factor 

The attenuation factor is given by Eq.3.28. As the photons from other slices too 

contribute to any projection bin, the voxel index now takes the range of values 

1,2,..., . .x y zi N N N  and the detector index 1,2,..., .y zj N N . The path length matrix 

elements 
ijkd  may be computed similar to the 2D case (see Section 3.9.2) except that now 

the voxels other than the reconstruction plane also have to be considered.  

      Let ( ) 0y x   denote the line joining thi  pixel and thj  detector. Similar to the 

discussion in Section 3.9.2, the intersection of the line ( ) 0y x  with voxel boundaries has 

to be now considered, instead of pixel boundaries. Since the steps for 3D case simply 

follow from the steps for 2D case (section 3.10.2), the discussion of the same has been 

skipped here.If ( 1, 1, 1)x y z  and ( 2, 2, 2)x y z  are the points of intersection then  

2 2 2( 1 2) ( 1 2) ( 1 2)ijkd x x y y z z           (3.44) 

If the line ( ) 0y x  does not intersect the thk voxel, ijkd is set to zero. 

3.11.3 Other Projections 

Once the zero angle projection has been constructed, the system matrix A  can be 

obtained block by block as in the 2D case. However, the activity map cannot be rotated 

by angle   simply by multiplying f  with R . This is because the vector f now 

represents the activity in three dimensions and the elements 1,......, x yN Nf f  represent the 

lowermost slice, 1 2,......,
x y x yN N N Nf f the next higher slice and so on. Thus, the blocks of 

the vector f  for each slice must be multiplied with R  separately representing the 

rotation of all the slices at angle  . 
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From the above argument, the projection at angle   can be written as 

 1 1 1

, , , ,( ) ...... ( )z z zN N N

geom att geom attg A A f A A f          (3.45) 

where 1

1 2( , ,........, )
x y

T

N Nf f f f  and 
( 1) 1 ( 1) 2( , ,........, )z

x y z x y z x y z

N T

N N N N N N N N Nf f f f     

Using the zero angle projection and interpolation matrix, we may write 

1 1 1

0, 0, 0, 0,( ) ...... ( )z z zN N N

geom att geom attg A A R f A A R f       (3.46) 

The system matrix for fully 3D case may now be expressed as 

1 1 2 2

0, 0, 0, 0, 0, 0,

1 1 2 2

1, 1, 1 1, 1, 1 1, 1, 1

1 1 2 2

, , , , ,

( ) ( ) . . ( )

( ) ( ) . . ( )

. . . . .

. . . . .

( ) ( ) . . (

z z

z z

z

N N

geom att geom att geom att

N N

geom att geom att geom att

N

n geom n att n n geom n att n n geom n

A A I A A I A A I

A A R A A R A A R

A

A A R A A R A A
       



, )zN

att nR


 
 
 
 
 
 
 
 

 (3.47) 
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 Chapter 4  

Simulation Studies 

To test reconstruction algorithms and to measure their performance, simulations are 

required. They also help to optimize different parameters for experiments, such as, 

number of iterations required, sensitivity to noise, optimum collimation ratio, etc. Since 

most of the SPECT reconstruction algorithms are adapted from the medical field, in 

which experimental conditions do not vary much from one patient to another, they need 

to be carefully analyzed and suitably modified for applications in nuclear field. 

This chapter explores the algorithms extensively using simulated phantoms. We 

have also tested the 2D and 3D system matrix for both parallel and fan beam geometries 

as well as fully 3D system matrix. 

 Section 4.1 describes the various phantoms used for simulations. The phantoms 

have been used to test reconstruction under different conditions using the following 

algorithms: FBP (analytical), ART and SART (algebraic) and MLEM and OSEM 

(statistical). Sections 4.2 and 4.3 present the results for 2D reconstruction in parallel and 

fan beam geometries respectively. Sections 4.4 and 4.5 discuss the results for 3D 

reconstruction for line integral model and collimator model respectively. Section 4.6 

defines some parameters to assess quality of reconstructed images. Sections 4.7 and 4.8 

present the effect of collimator blurring and photon noise on analytical reconstruction. 
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4.1 Phantoms 

Different phantoms have been considered to highlight the various cases – point source, 

distributed source with uniform and non-uniform attenuation, waste drum and PHWR 

fuel bundle. In order to illustrate the effect of collimator blurring, the observation 

matrices have been constructed for both line integral model (ideal collimator) and 

collimator model. The projections using both these approaches have been reconstructed 

using analytical approach of Novikov. For iterative reconstructions, only collimator 

modeled projections have been used. Since the collimator modeled projections (forward 

projection) have been constructed using the probability system matrix (as described in 

Chapter 2) and the same matrix is also used for solving the linear system of equations 

g Af  (backward projection), a direct inversion would lead to an incorrect 

interpretation. Hence, each data point in the projection data was replaced by a random 

realization of a Poisson variate with a mean equal to the counts of the corresponding data 

point. The modified projection data was used to invert the equation g Af . For 

phantoms 1 to 3, the pixel size of the object is 25 mm square. The collimator size is 25 

mm x 25 mm which is divided into 4 sections of dimension 10 mm x 10 mm each 

separated by highly attenuating septa.  

  Following 2D and 3D phantoms have been chosen for simulation studies. 

4.1.1 Phantom 1: Point sources (2D)  

Description: The phantom consists of three point sources (Fig.4.1(a)) (single pixel) of 

source strength equal to 1 inside a homogeneous circular area with linear attenuation 

coefficient equal to 0.05 cm
-1 

inside the circle and 0 outside
 
Fig.4.1(b)). The phantom is 

discretized on a 30 x 30 grid. 
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4.1.2 Phantom 2: Distributed sources with uniform attenuation (2D) 

Description: The phantom consists of two distributed sources: the first (top left) 

spanning 4 x 4 pixels of source strength equal to 1 per pixel ; the second (bottom right) 

spanning 3 x 3 pixels of source strength equal to 2 per pixel (Fig.4.2(a)). The surrounding 

matrix is a homogeneous circular with linear attenuation coefficient equal to 0.05 cm
-1 

inside the circle and 0 outside
 
(Fig.4.2(b)). The phantom is discretized on a 30 x 30 grid. 

 

 

 

 

 

 

 

4.1.3 Phantom 3: Distributed sources with non-uniform attenuation (2D) 

Description: The phantom consists of two distributed sources: the first (top left) 

spanning 4 x 4 pixels of source strength equal to 1 per pixel; the second (bottom right) 

Fig. 4.1 Phantom 1 (a) Activity map (b) Attenuation map 

Fig. 4.2 Phantom 2 (a) Activity map (b) Attenuation map 
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spanning 3 x 3 pixels of source strength equal to 2 per pixel (Fig.4.3(a)). The surrounding 

matrix consists of three homogeneous circular area with linear attenuation coefficient 

inside the respective circle equal to 0.025 cm
-1 

(light blue), 0.05 cm
-1 

(yellow) and 0.1  

cm
-1

 
 
(red) (Fig.4.3(b)) and 0 elsewhere. The phantom is discretized on a 30 x 30 grid. 

 

 

 

 

 

 

 

4.1.4 Phantom 4: Waste drum with distributed sources and point sources in 

low attenuating matrix (3D) 

Description: A stainless steel drum containing radioisotopes has been modeled. The 

drum has a diameter of 55 cm and a height of 87 cm with 2 mm thick wall. The drum is 

filled with a homogeneous low attenuating matrix (linear attenuation coefficient: 0.0185 

cm
-1 

at 414 keV). The phantom (Fig. 4.4) consists of radioactive isotope (linear 

attenuation coefficient: 5.6311 cm
-1 

at 414 keV) in bulk pieces of various shapes and 

sizes at 5 different locations as well as point sources at 7 different positions with varied 

activities (refer Table 4.1). The point source is represented by a voxel in 3D space and 

several such voxels constitute a bulk source such as in the form of a sphere, ellipsoid or 

cube.  The activities of point sources mentioned refer to the activities over each voxel. 

Fig. 4.3 Phantom 3 (a) Activity map (b) Attenuation map 
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The activity of the bulk piece (sphere, ellipsoid or cube) is the sum total of the activities 

of all such voxels (point sources) within the bulk piece. 

 

 

TABLE 4.1 Activity table for Phantom D-1 (Note: Central plane is the z = 0 plane) 

Source 

shape/geometry 

Source 

position/centre 

(x, y, z) 

Source dimension Activity 

(emissions/voxel) 

Sphere (11.4, 0, -5.4) Radius 4.5 cm 2 x 10
6 

Sphere (0, 12.0, 21.2) Radius 5.5 cm 2 x 10
6
 

Sphere (-8.4, 0, 7.1) Radius 4.5 cm 1 x 10
6
 

Cube (13.2, -3.0, -19.0) 5.5 cm x 5.5 cm x 

5.5 cm 

1 x 10
6
 

Ellipsoid (-12.6, 0, -29.9) Radii: (4.5 cm, 5.5 

cm, 8.5 cm) 

1 x 10
6
 

Point (0, 11.4, -8.7) - 2 x 10
6
 

Point (-18.0, -6.6, 6.5) - 2 x 10
6
 

Point (14.4, -15.0, 19.0) - 2 x 10
6
 

Point (12.0, -6.6, 29.4) - 2 x 10
6
 

Point (-3.6, -15.0, -40.8) - 1.5 x 10
6
 

Point (8.4, 3.6, -25.0) - 1.5 x 10
6
 

Point (21.0, -14.4, 36.4) - 1.5 x 10
6
 

 

(a)     (b)  

Fig. 4.4 Phantom 4 (a) Activity map (b) Attenuation map 

(Note: The boundary of the cylinder is shown only for illustration purpose) 
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4.1.5 Phantom 5: Waste drum with distributed sources in high attenuating 

matrix (3D) 

Description: An SS drum containing radioisotopes has been modeled. The drum has a 

diameter of 55 cm and a height of 87 cm with 2 mm thick wall. The drum is filled with a 

homogeneous high attenuating matrix (linear attenuation coefficient: 0.12 cm
-1

 at 414 

keV). The phantom (Fig. 4.5) consists of radioactive isotope (linear attenuation 

coefficient: 5.63 cm
-1

 at 414 keV) in the form of small spherical pieces at 15 different 

locations in a high attenuation surrounding matrix (refer Table 4.2). 

TABLE 4.2 Activity table for Phantom D-2 (Note: Central plane is the z = 0 plane) 

Source 

shape/geometry 

Source 

position/centre 

(x, y, z) 

Source dimension Activity 

(emissions/voxel) 

Sphere (15.6, -15.6, -37.5) Radius 3.5 cm 2 x 10
4 

Sphere (-11.4, -12.0, -33.7) Radius 3.5 cm 2 x 10
4
 

Sphere (-19.8, 4.2, -25.0) Radius 3.5 cm 2 x 10
4
 

Sphere (-13.8, -1.8, -14.1) Radius 3.5 cm 2 x 10
4
 

Sphere (-5.4, 2.4, -9.8) Radius 3.5 cm 2 x 10
4
 

Sphere (3.0, -15.0, -4.9) Radius 3.0 cm 1 x 10
4
 

Sphere (-15.0, -18.0, 3.3) Radius 3.0 cm 1 x 10
4
 

Sphere (19.2, 12.6, 6.5) Radius 3.0 cm 1 x 10
4
 

Sphere (2.4, -9.0, 10.3) Radius 3.0 cm 1 x 10
4
 

Sphere (-19.8, -19.2, 19.0) Radius 3.0 cm 1 x 10
4
 

Sphere (-18.6, 18.0, 22.8) Radius 2.5 cm 3 x 10
4
 

Sphere (1.2, -11.4, 27.2) Radius 2.5 cm 3 x 10
4
 

Sphere (-4.8, 14.4, 31.0) Radius 2.5 cm 3 x 10
4
 

Sphere (13.2, 19.8, 34.8) Radius 2.5 cm 3 x 10
4
 

Sphere (-21.6, -5.4, 38.1) Radius 2.5 cm    3 x 10
4
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4.1.6 Phantom 6: PHWR Fuel Bundle  

Fuel pin assembly for PHWR (Pressurized Heavy Water Reactor) has been modeled. It 

has been assumed that the fuel is continuous throughout the pin instead of being in the 

pellet form. The details of the pin bundles are given in Table 4.3. The height of the fuel 

pins in either case has been taken to be 50 cm which is only a representation of the actual 

fuel pin which is of much greater height.   

 In the PHWR fuel bundle, one of the rods (as shown in Fig. 4.6 (a) and (b)) has 

been replaced by a non-active rod. This is to check the sensitivity of the algorithm in case 

one of the rods is replaced by a non-active rod or a rod with fuel-like material (so that 

there is minor or no changes in the attenuation matrix).  

 

 

(a) (b) 

Fig. 4.5 Phantom 5 (a) Activity map (b) Attenuation map 

(Note: The boundary of the cylinder is shown only for illustration purpose) 
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TABLE 4.3 Details of PHWR fuel bundle 

 

4.2 2D Reconstruction (Parallel Beam) 

4.2.1 Phantom 1: Point Sources 

Projections were computed at 100 angles over 360º (0º, 3.6º, 7.2º, …. , 356.4º) for line 

integral model and 36 angles over 360º (0º, 10º, 20º, …. , 350º) for collimator model with 

30 lateral data points per projection. Figure 4.7 (a) and 4.8 (a) present the computed 

projections in the form of sinogram for line integral and collimator models respectively. 

The projections of the points are clearly wider in the case of the collimator modeled case.  

 

 

Fuel Natural UO2 

No. of fuel rods in the bundle 19 

Fuel rod diameter 1.52 cm 

Length of the fuel rod 50 cm 

Clad material Zircaloy 

Clad thickness 0.4 mm 

Fig.4.6 Phantom 6 (a) 3D Activity map (b) Cross-sectional view 

(a) (b) 
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The spreading of a pixel into several pixels in planar image is due to the 

collimator blurring effect, as explained earlier in Chapter 3. This is manifested better in 

Fig. 4.9 which shows the projections at angles 0º and 90º computed using both models. 

Figures 4.7(b) and 4.8(b) show the analytically reconstructed activity function for line 

integral and collimator models respectively. 

  

 

 

 

 

 

 

  

 

 

 

(a) (b) 

Fig. 4.8 (a) Sinogram (b) Analytical reconstruction for collimator modeled projection 

Fig. 4.7 (a) Sinogram (b) Analytical reconstruction for line integral modeled projection 

(a) (b) 
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To compute the activity function using iterative reconstruction (inverse problem 

of SPECT), we used the projections added with Poisson noise as data. Figure 4.10 (a) 

shows the sinogram obtained after adding Poisson noise to the data. Figures 4.10 (b) and 

4.10 (c) show the reconstructed activity function using ART and SART algorithms (100 

iterations each; relaxation parameter 0.2) whereas Figures 4.10(d) and 4.10(e) show the 

reconstructed activity function using MLEM (25 iterations) and OSEM (4 subsets, 6 

iterations) algorithms.  

 

 

 

Fig. 4.9 Line profile at 0º and 90º (a) and (c) Line integral model (b) and (d) Collimator 

model 

(a) (b) 

(c) (d) 
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Fig. 4.10 (a) Sinogram for collimator modeled projection with Poisson noise (b) ART (c) 

SART (d) MLEM (e) OSEM reconstructions 

(a) 

(b) (c) 

(d) (e) 
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It can be seen that the background is noisy in the case of ART and SART 

reconstruction whereas the background is quite low for MLEM and OSEM 

reconstruction. Another important observation can be made regarding the effect of 

collimator blurring. The iterative reconstruction reduces the collimator blurring which 

was evident in the analytically reconstructed activity (Fig. 4.8(b)). Fig. 4.11 shows the 

line profile across one of the sources for different reconstruction methods. It can be seen 

that FBP shows the maximum spreading (FWHM) whereas MLEM and OSEM show the 

least spreading and closely resemble the line profile of the original phantom. For ART 

and SART reconstructions, although the spreading is less, the image is noisy which can 

be inferred from the small peaks on either side of the actual peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.11 Line profile for reconstructed image using various reconstruction techniques 
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4.2.2 Phantom 2: Distributed sources with uniform attenuation (2D) 

Projections were computed at 100 angles over 360º (0º, 3.6º, 7.2º, …. , 356.4º) for line 

integral model and 36 angles over 360º (0º, 10º, 20º, …. , 350º) for collimator model with 

30 lateral data points per projection. Figure 4.12 (a) and 4.13 (a) show the computed 

projections in the form of sinogram for line integral and collimator models respectively. 

Figures 4.12 (b) and 4.13 (b) show the analytically reconstructed activity function for line 

integral and collimator models respectively. It can be seen that the boundary of the square 

shaped activity region is more pronounced in Fig. 4.12 (b) as compared to Fig. 4.13 (b). 

This again shows the effect of collimator blurring. Figure 4.15 (a) shows the sinogram 

obtained after adding Poisson noise to the data which is used for iterative reconstruction.  

 

 

 

 

 

 

 

 

 

Figures 4.15 (b) and 4.15 (c) show the reconstructed activity function using ART 

and SART algorithms (100 iterations each; relaxation parameter 0.2) whereas Figures 

4.15 (d) and 4.15 (e) show the reconstructed activity function using MLEM (25 

iterations) and OSEM (4 subsets, 6 iterations) algorithms. It can be seen that the image is 

(a) (b) 

Fig.4.12 (a) Sinogram (b) Analytical reconstruction for line integral modeled projection 
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quite noisy (streaks) in the case of ART and SART reconstruction and the (square) 

activity region is also not well pronounced though the boundary is almost square. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 (a) Sinogram (b) Analytical reconstruction for collimator modeled projection 

(a) (b) 

Fig.4.14 Line profile for reconstructed image using various reconstruction techniques 
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Fig. 4.15 (a) Sinogram for collimator modeled projection with Poisson noise (b) ART (c) 

SART (d) MLEM (e) OSEM reconstructions 

(e) (d) 

(c) (b) 

(a) 
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For MLEM and OSEM reconstruction, the image quality is quite good, almost 

noise-free and the boundaries of activity regions are very well-defined and square. The 

above observations are also evident from the line profiles shown in Fig. 4.14. One may, 

though, note that the reconstructed activity functions are not quite flat-topped even for 

MLEM and OSEM cases 

4.2.3 Phantom 3: Distributed sources with non-uniform attenuation (2D) 

Projections were computed at 100 angles over 360º (0º, 3.6º, 7.2º, …. , 356.4º) for line 

integral model and 36 angles over 360º (0º, 10º, 20º, …. , 350º) for collimator model. 

Figures 4.16 (a) and 4.17 (a) show the sinogram for line integral and collimator model 

respectively. Figures 4.16 (b) and 4.17 (b) show the analytically reconstructed images for 

line integral and collimator model respectively.  

 

 

 

 

 

 

 

 

It is observed that though the boundary of the square shaped activity region is 

quite pronounced in Fig. 4.16 (b), the shape of the activity region is slightly distorted. 

This can be attributed to the fact that the attenuation inside the object is non-uniform and 

certain section of the sinogram show missing data / low intensity data (projections 

Fig. 4.16 (a) Sinogram (b) Analytical reconstruction for line integral modelled projection 

(a) (b) 
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between 0 to 10, between 30 to 40 and between 90 to 100) caused by high attenuation in 

certain part of the object (red region in Fig. 4.3 (b)). The missing data is somewhat 

compensated in the collimator model case (Fig. 4.17 (b)) because of non-zero 

contributions from neighbouring pixels. Figure 4.18 (a) shows the sinogram obtained 

after adding Poisson noise to the data which is used for iterative reconstruction. Figures 

4.18 (b) and 4.18 (c) show the reconstructed activity function using ART and SART 

algorithms (100 iterations each; relaxation parameter 0.2) whereas Figures 4.18 (d) and 

4.18 (e) show the reconstructed activity function using MLEM (25 iterations) and OSEM 

(4 subsets, 6 iterations) algorithms. Similar observations, as discussed in the previous 

sub-section, may be noted here also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17 (a) Sinogram (b) Analytical reconstruction for collimator modelled projection 

(a) (b) 
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Fig. 4.18 (a) Sinogram for collimator modeled projection with Poisson noise (b) ART (c) 

SART (d) MLEM (e) OSEM reconstructions 

(b) 

(a) 

(c) 

(d) (e) 
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4.3 2D Reconstruction (Fan Beam) 

The system matrix has been constructed for collimator modeled projections in fan beam 

geometry. The focal point of the fan beam is located at 100 cm form the origin (centre of 

the object). The projections have been reconstructed using analytical approach of 

Novikov and iterative reconstructions. For iterative reconstruction, the projection data is 

replaced by Poisson variate whose mean value is equal to the projection data value. The 

modified projection data is used to invert the equation g Af .  

4.3.1 Phantom 1: Point sources 

Projections were computed at 36 angles over 360º (0º, 10º, 20º, …. , 350º) for collimator 

model. Figure 4.19 (a) and 4.19 (b) present the sinogram and reconstructed image for 

analytical reconstruction. Since magnification is inherent in fan beam geometry, the 

object is reconstructed on a bigger grid (34 X 34; dimension 34 mm X 34 mm). The 

reconstructed image is later cropped to 30 X 30 image.  

 

 

 

 

 

 

 

 

 

Fig. 4.19 (a) Sinogram (b) Analytical reconstruction for collimator modelled projection in fan 

beam geometry 

(a) (b) 
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Fig. 4.20 (a) Sinogram for collimator modeled projection with Poisson noise (b) ART (c) 

SART (d) MLEM (e) OSEM reconstructions for fan beam geometry 

(b) 

(a) 

(c) 

(d) (e) 
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Fig. 4.20 (a) shows the noisy sonogram used for iterative reconstruction. Fig. 20 

(b) and Fig. 20 (c) show the reconstructed activity function using ART and SART 

algorithms (80 iterations each; relaxation parameter 0.2) whereas Figures 4.20 (d) and 

4.20 (e) show the reconstructed activity function using MLEM (20 iterations) and OSEM 

(4 subsets, 6 iterations) algorithms. It can be seen that the background is noisy in the case 

of ART and SART reconstruction whereas the background is low for MLEM and OSEM 

reconstruction. It can be observed that the reconstructed source positions match well with 

the original source positions.  

4.3.2 Phantom 3: Distributed sources with non-uniform attenuation 

Projections were computed at 36 angles over 360º (0º, 10º, 20º, …. , 350º) for collimator 

model. Figure 4.21 (a) and 4.21 (b) show the sinogram and analytically reconstructed 

image respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.22 (a) shows the sinogram of noisy data which is used for iterative 

reconstruction. Figures 4.22 (b) and 4.22 (c) show the reconstructed activity function  

Fig. 4.21 (a) Sinogram (b) Analytical reconstruction for collimator modeled projection in fan 

beam geometry 

(a) (b) 
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 Fig. 4.22 (a) Sinogram for collimator modeled projection with Poisson noise (b) ART (c) 

SART (d) MLEM (e) OSEM reconstructions for fan beam geometry 

(b) 

(a) 

(c) 

(d) (e) 
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using ART and SART algorithms (80 iterations each; relaxation parameter 0.2) whereas 

Figures 4.22 (d) and 4.22 (e) show the reconstructed activity function using MLEM (25 

iterations) and OSEM (4 subsets, 6 iterations) algorithms. Similar observations, as 

discussed in the previous sub-section, may be noted here also. 

4.4 3D Reconstruction – Line Integral Model 

Line integral model were used to generate projection data in parallel, fan and cone beam 

geometries. This was used to test the algorithms.   

4.4.1 Phantoms 4 and 5: Waste drum  

For numerical simulation purpose, phantoms 4 and 5 were discretized on a regular grid of 

101 X 101 X 161 units. The physical dimension of each voxel is 5.5mm X 5.5mm X 

5.5mm. The noise-free projections were generated for 300 views/rotations with angular 

step of 1.2° on 101 X 161 equally spaced detector points. The projections have been 

generated for three different geometries – parallel beam, fan beam and cone beam – using 

line integral model. For parallel beam geometry, Novikov’s inversion formula has been  

 

 

 

 

 

 

 

 

 Fig. 4.23 CT reconstructed image (a) Phantom 4  (b) Phantom 5 

(a) (b) 
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used whereas for fan beam and cone beam geometries modified algorithm by You et al 

(as discussed in Chapter 2) have been used. The final 3D images in the case of parallel 

beam and fan beam have been obtained by stacking the respective 2D images. For fan-

beam and cone-beam reconstructions, the focal length is taken as 100 cm.  

Fig.4.24 and Fig.4.25 show the reconstructed activity of phantoms 4 and 5 

respectively. For comparison, transmission CT images of phantoms 4 and 5 are shown in 

Figs.4.23 (a) and (b) respectively.  

 

 

 

 

 

 

 

 

 

 

It can be seen that although the transmission images show the position of the 

sources and/or identify them, the emission images can distinguish the difference in 

activities as well. The 3D images were obtained from stacking 2D reconstructed images 

from different planes for parallel and fan-beam geometry and they are free of any 

distortion while the reconstruction artifact in cone beam geometry is clearly visible at the 

edges (Fig. 4.25 (c)). This is because of the fact that the cone beam projection data are 

Fig. 4.24 Reconstructed activity of Phantom 4 (a) Parallel beam (b) Fan beam (c) Cone 

beam 

 

(a) (b) (c) 
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sufficient for exact reconstruction only in the plane of the cone-beam trajectory and 

approximate in other planes due to Tuy’s data sufficiency condition. However the images 

correctly bring out the spatial location of radioactive elements embedded in the cylinder. 

As can be seen from Fig.4.25, even the reconstruction result for low activity source in 

high attenuating matrix is quite reliable and free from reconstruction artifacts. These 

results indicate the feasibility of getting good quality of reconstruction, provided the 

statistics is sufficient.  

 

 

 

 

 

 

 

 

 

 

4.4.2 Phantom 6: PHWR fuel bundle 

Figs. 4.26, 4.27 and 4.28 show the reconstructed activity of PHWR fuel bundle for 

parallel beam, fan beam and cone beam geometry respectively. These figures indicate the 

position of non-active rod with correct spatial location. In Fig.4.28 (b), it can be seen that 

the rods are not properly reconstructed. This is again due to the fact that the cone beam 

reconstruction is accurate only in the planes close to the cone-beam trajectory plane.  

Fig. 4.25 Reconstructed activity of Phantom 5 (a) Parallel beam (b) Fan beam (c) Cone beam 

(a) (b) (c) 
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Fig. 4.26 Parallel beam reconstruction: Reconstructed activity of PHWR fuel 

bundle (a) cross-sectional view (b) 3D view 

(a) (b) 
Non-active rod 

Fig. 4.27 Fan beam reconstruction: Reconstructed activity of PHWR fuel bundle (a) 

cross-sectional view (b) 3D view 

(a) (b) Non-active  rod 
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4.5 3D Reconstruction – 3D Collimator Model 

In this section, the projection data for the phantoms have been generated using a 3D 

collimator model. The data thus generated is then reconstructed in three ways: 

 Filtered Back Projection (Novikov)  

 2D (Stacked) MLEM  

 Fully 3D MLEM  

For FBP reconstruction, the effect of collimator is not taken into account so the effect 

of collimator blurring should be present in the reconstructed image.  

For 2D (stacked) reconstruction, 2D system matrix corresponding to 2D 

collimator is generated for each z-slice. This 2D system matrix is then used for MLEM 

reconstruction. This method is computationally less intensive but does not reduce inter-

slice blurring.  

For fully 3D reconstruction, 3D system matrix corresponding to 3D collimator is 

generated for the whole object. This 3D system matrix is then used for MLEM 

Fig. 4.28 Cone beam reconstruction: Reconstructed activity of PHWR fuel bundle 

(a) cross-sectional view (b) 3D view 

 

(a) (b) Non-active rod 
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reconstruction. This method requires large storage space for matrices, is computationally 

quite intensive and much harder to implement. However, fully 3D reconstruction should 

reduce both intra-slice and inter-slice blurring.  

4.5.1 Phantom 1 (3D): Point sources 

Phantom 1 is modified such that the three sources are now located in different z- planes 

(3, 6 and 9) but their (x, y) position remains the same. Fig.4.31 shows the three z-planes 

of the phantom. All other planes do not have any source. 

 

 

 

 

 

 

 

The planar projections are generated at 20 angular positions using 3D collimator model to 

simulate experimental data. The projections are then used to reconstruct activity 

distribution using filtered backprojection for each z-plane. The reconstructed 2D slices 

are shown in Fig. 4.30. Fig.4.33 (a) shows 3D view obtained by stacking reconstructed 

slices horizontally. It is observed from these figures that the point sources are blurred in 

both the horizontal and vertical directions and appears spherical. The streaks observed are 

due to the fact that only few angular projections are used. 

 

 

(a) (c) (b) 

Fig. 4.29 Phantom 1 (3D) (a) Slice 3 (b) Slice 6 (c) Slice 9 
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For 2D (stacked) reconstruction, angular projections are used to reconstruct each 

horizontal plane by MLEM algorithm using 2D system matrix. Figure 4.31 shows 

reconstructed 2D slices. Again, the 2D reconstructed planes are stacked horizontally to 

obtain 3D volume (Fig. 4.33 (b)). It can be seen from these figures that blurring within 

the plane has reduced. However, the intra slice blurring has not reduced significantly. The 

point source now appears as an ellipsoid. 

For fully 3D reconstruction, angular projections were modified by adding Poisson 

noise. The noisy data is then used to reconstruct activity distribution by MLEM algorithm  

 

 

Fig. 4.30 Reconstructed activity using FBP for different z-slices  
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Fig. 4.32 Reconstructed activity using fully 3D MLEM for different z-slices 

Fig. 4.31 Reconstructed activity using 3D (stacked) MLEM for different z-slices 
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using 3D system matrix. Figure 4.32 shows reconstructed 2D slices and Fig.4.33 (c) 

shows the 3D volume. Clearly, both inter-slice and intra-slice blurring have been 

considerably reduced and the sources appear almost as point sources. 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Error Estimation of Reconstructed Image 

In order to evaluate the quality of reconstructed image, following performance criteria 

were evaluated: 

a) Mean Squared Error (MSE) 

It is defined as the average of the squared pixel difference as  

2

1

1 ˆ(f f )
N

i i

i

MSE
N 

   

 

 

  

 

Fig. 4.33 Reconstructed 3D volume using (a) FBP (b) 2D MLEM (c) Fully 3D MLEM 
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f̂i
 and fi are the reconstructed and true activity value for thi  pixel respectively and N  is 

the total number of pixels. MSE is a measure of the average discrepancy of reconstructed 

image with respect to the original image. 

b) Contrast (C) 

The contrast between activity and background is defined as 

S B
C

S B





 

S is the average pixel value in the activity distribution and B is the average pixel value in 

the background distribution. 

c) Spatial deviation  

It is measured as the difference between the centre of activity region in true and 

reconstructed images. The centre of the activity region is found by fitting a Gaussian 

function for each activity region. 

d) Deviation in reconstructed activity  

The deviation in quantitative value of reconstructed activity is measured as a percentage 

of the true activity value and is defined as 

100%
True activity - Reconstructed activity

True activity
X   
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TABLE 4.4 Image assessment parameters for different reconstructed images 

Phantom Recon. 

Algorithm 

MSE 

 

 

(x 10
-3

) 

Contrast Spatial Deviation  Deviation in 

Recon. 

Activity 

(%) 

Recon. 

Activity 

centre 

Deviation 

(in pixels) 

Phantom 1 

(Parallel) 

FBP 3.3 0.95 (5, 13) 

(15, 8) 

(22, 21) 

1 

0 

1 

16.9 

16.4 

14.4 

ART 1.8 0.58 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

14.3 

20.2 

19.1 

SART 1.8 0.70 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

7.9 

15.6 

21.0 

MLEM 0.9 1.00 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

6.4 

0.7 

1.8 

OSEM 0.7 1.00 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

4.7 

0.2 

0.1 

Phantom 1 

(Fan) 

FBP 3.2 0.86 (4, 12) 

(15, 8) 

(23, 22) 

1 

0 

1 

22.0 

25.2 

1.8 

ART 3.2 0.79 (5, 12) 

(15, 9) 

(22, 22) 

0 

1 

0 

8.3 

20.0 

2.2 

SART 2.6 0.75 (5, 12) 

(15, 9) 

(22, 22) 

0 

1 

0 

8.6 

8.8 

3.5 

MLEM 2.0 1.00 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

11.8 

11.5 

0.5 

OSEM 1.5 1.00 (5, 12) 

(15, 8) 

(22, 22) 

0 

0 

0 

6.5 

5.9 

1.9 

Phantom 1 – 3D 

 

FBP 3.1 0.85 (5, 12, 6) 

(15, 8, 3) 

(22, 22, 9) 

1 

1 

0 

8.5 

9.6 

7.5 

3D 

(Stacked) 

MLEM 

2.2 0.98 (5, 12, 6) 

(15, 8, 3) 

(22, 22, 9) 

0 

0 

0 

5.4 

2.8 

3.6 

Fully 3D 

MLEM 

0.8 1.00 (5, 12, 6) 

(15, 8, 3) 

(22, 22, 9) 

0 

0 

0 

0.1 

0.5 

0.2 

 

4.7 Effect of Collimation 

To study the effect of collimator blurring, a point source was simulated inside a 

homogeneous circular area with linear attenuation coefficient equal to 0.05 cm
-1 

inside 
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the circle and 0 outside. The phantom is discretized on a 30 x 30 grid. 36 projections 

were acquired uniformly over 360º using collimator model. The collimator width is taken 

to be 10 mm. The collimator length is varied from 10 mm to 200 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34 FBP reconstructed images showing the effect of collimator blurring for collimation 

ratio of (a) 1 (b) 2.5 (c) 5 (d) 7.5 (e) 10 (f) 15 (g) 20 

(a) (b) (c) 

 

  (g) 
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The projection data generated is used to reconstruct the image using analytical 

technique without any correction for collimator blurring. Fig. 4.34 (a) – (g) show the 

reconstructed image corresponding to effective collimation ratio (L/d) of 1, 2.5, 5, 7.5, 

10, 15 and 20 respectively. The spread or collimator blurring is easily manifested in the 

images. It is also observed that the blurring decreases with an increase in L/d ratio. This 

can be understood easily. In analytical reconstruction, it is assumed that each detector 

accepts contribution of photons along straight parallel ray paths (infinite collimation). 

When the collimator is finite, the detectors record contribution from other pixels which 

do not lie on the ray path as well. During backprojection, these contributions are 

attributed to pixels which lay on the original ray path which thus results in blurring. Fig. 

4.35 shows the variation of FWHM as a function of collimation ratio. The FWHM is 

computed by fitting a Gaussian curve to the spatial line profile for images in Fig.4.34. 

 

 

 

 

 

 

 

 

 
Fig. 4.35 FWHM as a function of collimation ratio 
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4.9 Discussion 

In this chapter, different algorithms have been tested for simulated phantoms. Analytical 

reconstruction technique has been used for both line integral and collimator modelled 

projections. The reconstruction in the latter case leads to collimator blurring. The 

collimator modelled projections were also reconstructed using algebraic techniques (ART 

and SART) and statistical techniques (MLEM and OSEM). It is observed that the 

collimator blurring is reduced in all these techniques. However, ART and SART images 

are generally noisy and also require larger number of iterations to converge. MLEM and 

OSEM images are much less noisy and also require lesser number of iterations to 

converge.  

 Simulations were also carried out to test fully 3D system matrix. Analytical 

reconstruction for 3D objects show blurring both within the slice and above and below 

the reconstruction lane also. Using 2D system matrix helps in reducing intra-slice 

blurring only. However, a fully 3D matrix reduces both intra-slice as well as inter-slice 

blurring. 

 It may be noted here that the method of generating projection data using 

collimator model for iterative reconstruction technique is not ideal as the same model is 

also used for reconstruction. Although some Poisson noise has been added to test the 

reconstruction technique, a better way is to use an independent model (say, using Monte 

Carlo methods) to create the projection data. Another way of overcoming this problem is 

to test the reconstruction techniques using experimental data. This shall be explored in 

the next chapter. 
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Chapter 5 

 Experimental Studies 

In this chapter, we have described the experimental techniques and a variety of test 

samples with varying degree of complexity which has been analyzed to optimize different 

experimental parameters. For 2D reconstruction, sources in air (no attenuation) and 

sources in solid perspex disc have been considered. Both analytical and iterative 

techniques have been used for reconstruction. For 3D objects, both 2D and fully 3D 

reconstruction have been performed. Mock waste drums with non-homogeneous matrix 

have been used. Both parallel and fan beam data acquisition geometries have been 

explored.  

The results have been divided into two sections. Section I discusses the 

experimental results using 
137

Cs passive sources. Section II deals with the application of 

Active & Passive CT for nuclear waste assay. Experimental results with 
239

Pu in mock 

waste drums shall be discussed. 

5.1 Experimental set-up 

The experimental set-up consists of the following: 

 Sample Stage 

 Sample / object matrix with source 

 Detector and associated electronics 

 Collimator 

 Data Acquisition system 
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 (External) Active source (for transmission measurement) 

These shall be briefly discussed below. 

5.1.1 Sample Stage 

The object (waste drum) is placed on a 3-axis sample manipulator. During the scanning, 

the drum is rotated and translated whereas the source-detector pair is elevated for vertical 

scanning. It can scan an object of diameter 600 mm (maximum) and 1000 mm height and 

can handle object / drum weighing upto 500 kg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Experimental set-up for 3D imaging 

Waste Drum 

Active source 
152

Eu 

(collimated) 

Collimator + Detector 
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5.1.2 Sample (Matrix) 

A. Sample: Hollow SS rods 

18 Hollow SS rods of diameter 10 mm and height 50mm are arranged on a thin Perspex 

plate at indexed positions arranged in two concentric circles of radii 60 mm and 120 mm 

respectively as shown in Fig.5.2 (a). A schematic arrangement is shown in Fig.5.2 (b). 

The sources are placed inside the SS rods at different indexed locations. 

 

 

 

 

 

 

 

 

B. Sample: Solid Perspex disc with indexed holes 

  

 

 

 

 

 

 

 Fig. 5.3 Solid perspex discs with indexed holes (a) Photograph (b) Cross-section (schematic) 

(a) 
(b) 

Fig. 5.2 Hollow SS rods (a) Photograph (b) Cross-section (schematic) 

(a) (b) 
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Solid Perspex disc of diameter 300mm and thickness 25mm with 18 indexed holes 

arranged in two concentric circles of radii 60mm and 120mm respectively is used as 

shown in Fig.5.3 (a). A schematic arrangement is shown in Fig.5.3 (b). The sources are 

placed inside the holes at different indexed locations. Multiple discs stacked vertically 

have been used for 3D imaging. 

C. Sample: Aluminum drum  

An aluminum drum (Fig. 5.4) of diameter 300mm and height 600mm (wall thickness 

2mm) filled with different materials is used for 3D imaging. The sources are placed 

inside the drum at various locations. 

 

 

 

 

 

 

 

 

 

D. Sample: SS waste barrel  

SS waste barrel (Fig. 5.5) of diameter 580 mm and height 850 mm (wall thickness 5mm) 

filled with different materials is used for 3D imaging. The sources are placed inside the 

drum at various locations. 

 

Fig. 5.4 Aluminum drum Fig. 5.5 SS waste barrel 
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5.1.3 Source (Passive) 

Three 
137

Cs sources (Emission energy: 662 keV; Branching ratio (for 662 keV): 0.85) are 

used for the experiments. The sources are kept at different positions inside the sample for 

different configurations. Table 5.1 lists the details of the sources used. Fig.5.6 shows the 

decay scheme of 
137

Cs 

 

 

 

TABLE 5.1 Details of passive 
137

Cs sources used 

Source Activity 

(MBq) 

A 26.7 

B 21.0 

C 37.8 

 

5.1.4 Active Source 

An external (collimated) gamma source 
152

Eu (33mCi) is used for ACT. The source is 

housed in a portable industrial gamma radiography exposure device (ROLI-3) 
[122] 

which 

Fig. 5.6 Decay scheme of 
137

Cs 
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is remotely operated. The collimation of the source reduces scatter and helps direct 

radiation towards the detector.  

5.1.5 Detector 

A. NaI(Tl) 

NaI(Tl) detectors (cylindrical) of dimension 3” (diameter) X 1” (thickness) (Amcrys) are 

used. Fig. 5.7 shows the energy resolution of these detectors as a function of energy in 

the range 100-1500 keV. The energy resolution at 662 keV is 8.8 % 

 

 

 

 

 

 

 

 

 

B. LaBr3(Ce) 

A novel feature of the thesis is the use of LaBr3:Ce detectors for SPECT imaging. 

LaBr3(Ce) detectors (cylindrical) of dimension 1” (diameter)  X 1” (thickness) 

(BrilLanCe 380 : Saint-Gobain) are used. Fig.5.8 shows intrinsic photopeak efficiency of 

these detectors as a function of energy. Fig. 5.9 presents the variation of energy 

resolution of these detectors with energy. The energy resolution at 662 keV is 3.4 %.  

 

 

Fig. 5.7 (a) Intrinsic photopeak efficiency and (b) Energy resolution of 3” X 1” NaI(Tl) as a 

function of energy  

(a) (b) 
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Fig. 5.8 Intrinsic photopeak efficiency of 1” X 1” LaBr3(Ce) as a function of energy 

Fig. 5.9 Energy resolution of LaBr3(Ce) as a function of energy 
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C. High Purity Ge (HPGe) 

A P-type HPGe detector (L-shaped configuration) is used for SPECT imaging. The 

relative efficiency of the detector is 30% (with respect to 3” X 3” NaI(Tl)). Fig.5.10 (a) 

shows intrinsic photopeak efficiency of this detector as a function of energy. Fig. 5.10 (b) 

presents the variation of its energy resolution with energy. Fig. 5.11 shows gamma 

spectrum recorded with NaI(Tl), LaBr3(Ce) and HPGE detectors.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Gamma spectrum recorded with NaI(Tl), LaBr3(Ce) and HPGe detectors 

Fig. 5.10(a) Intrinsic photopeak efficiency of 

HPGe as a function of energy 
Fig. 5.10(b) Energy resolution of HPGe as a 

function of energy 
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5.1.6 Collimator 

A specially designed square collimator (Fig.5.12 (b)) made of SS-Pb-SS with thickness 

10 mm, 30 mm and 10 mm respectively has been used. A four segment tungsten septa of 

thickness 1.6 mm is used to increase the L/d ratio. Septa are highly attenuating, dividing-

plates that run the length of the collimator which can be used to reduce the collimator 

length yet retain the effective L/d. These plates help collimate the gamma-ray beam, 

providing an effective aspect ratio that is better than that provided by the aperture size 

alone. The collimator has a square aperture of 25mm x 25mm is divided into four equal 

segments using high attenuating tungsten septa of thickness 1.6mm. The length of each 

collimator is 50mm which gives an effective aspect ratio (collimator length divided by 

collimator width) of 5:1 (with septa) or 2:1 (without septa). For higher collimation, a 

series of such collimators is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.12 Collimator with tungsten septa (a) Schematic (b) Photograph 

Fig. 5.13 Collimator (10 mm X 10mm) 
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For smaller collimator opening, another square SS collimator of dimension 25 mm X 25 

mm with a square aperture of dimension 10 mm X 10 mm has been used (Fig. 5.13). This 

collimator can be inserted in the above mentioned 25 mm x 25 mm collimator. 

5.1.7 Data Acquisition System  

Data acquisition system has been developed for collection and storage of data. The 

detector is coupled to a Photomultiplier tube. Portable USB based plug-on MCA 

(ScintiSPEC and ScintiSPEC-L respectively) are used with NaI(Tl) and LaBr3(Ce) 

detectors. The data acquisition system includes interfacing of the sample manipulator 

controls and the MCA such that the sample is rotated and a projection data is recorded by 

the MCA and saved in a pre-determined format as specified by the user. The steps are 

subsequently repeated till the whole scan is complete. Depending upon the energies of 

interest for the radioisotope under study, the total net counts (gross counts - background) 

for the particular peak(s) from the MCA spectrum are calculated and saved. The whole 

data acquisition system is automated and computer controlled. 

Section I: SPECT Reconstruction with 
137

Cs sources 

 In this section, we discuss experimental results for 
137

Cs source distribution in 

matrix with different acquisition geometries and for 2D and 3D configuration. Before 

presenting the results, we shall discuss some aspects involved in qualitative and/or 

quantitative analysis. 

 Reconstructed spatial position 

The reconstructed spatial position is obtained by finding out the centroid about each 

intensity maxima in the image. 
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 Reconstructed activity  

The activity (in disintegrations per second) for each voxel is given by 

   
C

A
t  

                                                      (5.1) 

where C is the reconstructed function value (counts) in the voxel, t is the acquisition time, 

  is the branching ratio of the emitted gamma for the particular isotope and ε is the 

detector intrinsic efficiency. The total activity for each distinct source is calculated by 

summing all the voxels in the neighbourhood. The reconstructed activity values are 

quoted with 1σ error values (only stochastic error is taken into account). 

 Efficiency Calibration for Multiple detectors 

Since multiple NaI(Tl) or LaBr3(Ce) detectors have been used, the efficiency ε (in Eq. 

5.1) has to be properly accounted for as it would vary from detector to detector. It is 

particularly essential to perform a relative detector efficiency calibration when using 

more than one detector in a measurement.  

 

 

 

 

 

 

 

 

 

Fig. 5.14 Intrinsic photopeak efficiency of three NaI(Tl) detectors used in experiments  
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Figs. 5.14 and 5.15 show the detector efficiency for NaI(Tl) and LaBr3(Ce) 

detectors respectively used in the experiments. The counts recorded by individual 

detectors are corrected for efficiency variation relative to one of the detectors whose 

absolute efficiency value is used for further analysis.  

 Convergence criterion 

To investigate the convergence properties of the implemented iterative algorithms, 

following convergence criterion has been examined. The progress of the reconstruction is 

monitored by observing the root mean residual squares error (RMSE) at each iteration. 

RMSE is defined as follows: 

2

1

1 ˆ(f f )
N

i i

i

RMSE
N 

        (5.2) 

Fig. 5.15 Intrinsic photopeak efficiency of three LaBr3(Ce) detectors used in experiments  
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f̂i
 and fi are the reconstructed and true activity value for thi  pixel respectively and N  is 

the total number of pixels. It is interpreted as how well the forward projection of the 

image matches with the measured data. Therefore it will be expected to decrease with 

increasing the iteration number, and approach to a plateau. 

For implementation, both the reconstructed and true activity images are 

normalized. 

 FBP calibration 

In FBP reconstruction, the filtering step does not preserve the norm and the reconstructed 

value do not produce the true quantitative value, though the relative ratio of intensity is 

maintained. This calls for calibration procedures to obtain absolute activity values. For 

calibration, SPECT image of a point source in air is reconstructed using FBP and 

correction factor f is evaluated as follows: 

Reconstructed activity

True activity
f        (5.3) 

This correction factor is used for experimental FBP reconstruction to obtain true 

quantitative value. 

5.2 2D SPECT Reconstruction: Parallel beam geometry 

We shall first discuss results for 2D reconstruction in parallel beam geometry.  

5.2.1 Sample: Hollow SS Rods  

Two 
137

Cs sources (B and C) are placed at indexed locations 17 and 1 respectively (see 

Fig. 5.2 (b)). The indexed locations correspond to spatial locations (in terms of pixel) (4, 

6) and (7, 11) respectively.  
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Fig. 5.16 (a) Sinogram (b) FBP reconstruction 

(a) (b) 

Fig. 5.17 Reconstructed image using (a) ART (b) SART (c) MLEM (d) OSEM 

(a) (b) 

(c) (d) 
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The planar images are acquired with three NaI(Tl) detectors at 36 angular 

positions with 12 lateral data points per projection. The acquisition time for each data 

point is 20s. The total assay time (including sample manipulator motion) is 

approximately 1.2 hr. The collimator opening is 25 mm (without septa) and collimator 

length is 150 mm (collimation ratio: 6). The distance from the centre of object to 

collimator opening is 310 mm. Fig.5.16 (a) shows the sinogram for 36 projections.  

TABLE 5.2 Comparison of reconstructed and true source activity and spatial location 

Reconstructed 

Algorithm 

Reconstructed 

Spatial Location 

(Pixel) 

Deviation in 

Spatial Location  

(Pixel) 

Reconstructed 

Activity 

(MBq) 

Deviation in 

Reconstructed 

Activity 

(%) 

 

FBP 

(4, 6) 0 16.2 ± 1.8 22.8 

(8, 11) 1 28.8 ± 2.6 23.8 

 

ART 

(4, 5) 1 17.7 ± 1.6 15.7 

(7, 11) 0 34.0 ± 2.5 10.1 

 

SART 

(4, 6) 0 18.1 ± 1.6 13.8 

(7, 11) 0 34.7 ± 2.8 8.2 

 

MLEM 

(4, 6) 0 19.8 ± 1.8 5.7 

 

(7, 11) 0 36.6 ± 2.6 3.2 

 

OSEM 

(4, 6) 0 19.9 ± 1.7 5.2 

(7, 11) 0 38.9 ± 2.9 5.2 

 

The projection data is used to reconstruct the activity distribution using filtered 

backprojection technique based on Novikov’s formula and iterative reconstruction. The 

FBP reconstructed activity image is shown in Fig. 5.16 (b). For ART and SART 
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reconstruction, 40 iterations ae required with relaxation parameter of 0.1 for both the 

cases. Figures 5.17 (a) and (b) present the activity functions generated using ART and 

SART respectively. For MLEM, 35 iterations are used whereas for OSEM, 4 subsets and 

18 iterations are used. Figures 5.17 (c) and (d) present the activity functions generated 

using MLEM and OSEM respectively. Table 5.2 presents the reconstructed spatial 

position and activity of sources for different algorithms used.  

It is observed that for MLEM and OSEM algorithms, there is no spatial deviation 

and the deviation in reconstructed activity is minimum (less than 6%) as compared to 

other algorithms and should be the preferred choice. FBP algorithm shows the maximum 

deviation in reconstructed activity (nearly 20%) owing to the collimator blurring and is 

not acceptable. 

5.2.2 Sample: Solid Perspex disc  

Three 
137

Cs sources (A, B and C) are placed at indexed locations 7, 1 and 4 respectively 

(see Fig.5.3 (b)). The indexed locations correspond to spatial locations (in terms of pixel) 

(10, 4), (26, 23) and (27, 11) respectively.  

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 5.18 (a) Sinogram (b) FBP reconstruction 
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The planar images are acquired with three LaBr3(Ce) detectors at 100 angular 

positions with total of 30 lateral data points (10 data points per detector) per projection. 

The acquisition time for each data point is 15s. The total assay time (including sample 

manipulator motion) is approximately 5.5 hrs. The collimator opening is 10 mm (without 

septa) and collimator length is 150 mm (collimation ratio: 15). The distance from the 

centre of object to collimator opening is 180 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19 Reconstructed image using (a) ART (b) SART (c) MLEM (d) OSEM 

(b) 

(c) (d) 

(a) 
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TABLE 5.3 Comparison of reconstructed and true source activity and spatial location 

Reconstructed 

Algorithm 

Reconstructed 

Spatial Location 

(Pixel) 

Deviation in 

Spatial Location  

(Pixel) 

Reconstructed 

Activity 

(MBq) 

Deviation in 

Reconstructed 

Activity 

(%) 

 

 

FBP 

(11, 5) 1 20.2 ± 2.2 24.3 

(25, 23) 1 17.6 ± 1.8 16.2 

(27, 11) 0 34.3 ± 2.9 9.3 

 

 

ART 

(10, 4) 0 28.9  ± 2.4 8.2 

(26, 23) 0 18.7 ± 1.6 10.9 

(27, 11) 0 41.5 ± 2.8 9.8 

 

 

SART 

(10, 4) 0 29.8 ± 2.6 11.6 

(26, 23) 0 18.3 ± 1.7 12.8 

(27, 11) 0 41.4 ± 2.9 9.5 

 

 

MLEM 

(10, 4) 0 25.7 ± 2.2 3.7 

(26, 23) 0 19.4 ± 1.6 7.6 

(27, 11) 0 39.4 ± 2.6 4.2 

 

 

OSEM 

(11, 5) 1 24.4 ± 2.3 8.6 

(26, 23) 0  19.0 ± 1.6 9.5 

(27, 11) 0 37.0 ±  2.4 2.1 

 

Fig.5.18 (a) shows the sinogram for 100 projections. The projection data is used 

to reconstruct the activity distribution using filtered backprojection technique based on 

Novikov’s formula and iterative reconstructions. The FBP reconstructed activity image is 

shown in Fig. 5.18 (b). For ART reconstruction, 10 iterations are required with relaxation 
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parameter of 0.2. For SART reconstruction, 16 iterations are required with relaxation 

parameter of 0.2. Figures 5.19 (a) and (b) present the activity functions generated using 

ART and SART respectively. For MLEM, 40 iterations are required whereas for OSEM, 

5 subsets and 20 iterations are required. Figures 5.19 (c) and (d) present the activity 

functions generated using MLEM and OSEM respectively. The reconstructed spatial 

position and activity values for different algorithms are listed in Table 5.3. 

It is observed that for MLEM algorithm, there is no spatial deviation and the 

deviation in reconstructed activity is minimum for MLEM and OSEM (less than 10%) as 

compared to other algorithms and should be the preferred choice. Once again, FBP 

algorithm shows the maximum deviation in reconstructed activity (nearly 10-25%) and is 

not acceptable. 

5.3 3D SPECT Reconstruction: Parallel beam 

In this section, we shall discuss SPECT reconstruction in parallel beam geometry for 3D 

volume. The analytical reconstructions have been performed for each horizontal plane 

independently of other planes.  Similarly for iterative reconstruction, 2D system matrix 

has been used for each horizontal plane. The independently reconstructed 2D slices have 

been stacked vertically to form a (pseudo) 3D volume or stacked 3D volume. Essentially, 

the reconstruction procedure is still 2D but the object is 3D and a pseudo 3D volume is 

rendered. 

Furthermore, in order to take into account the intra-slice blurring, fully 3D system 

matrix has also been used for iterative reconstruction. For the experiments described 

below, the projection data are reconstructed with analytical technique, 2D system matrix 

and fully 3D system matrix.  
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5.3.1 Sample: Al Drum 

An aluminum drum (described in Section 5.1.2 C) filled with cotton gloves, nylon 

gloves and cotton fibre is used as object matrix. Three 
137

Cs sources are placed inside the 

drum at different locations. The exact locations of the samples are not known beforehand. 

Projections are acquired with three LaBr3(Ce) detectors at 36 angular locations with total 

of 12 lateral data points (4 data points per detector) per projection for each z-position. In 

the vertical direction, 24 z-positions are scanned. Thus each slice thickness is 25mm. 

Each data point is acquired for duration of 10s. The collimator opening is 25 mm (with 

septa) and collimator length is 100 mm (collimation ratio: 10). The distance from the 

centre of object to collimator opening is 450 mm. 

 In the experiments described so far, the attenuation coefficient of the object 

matrix is uniform. For attenuation compensation during reconstruction, an average 

(measured) value of linear attenuation coefficient is considered. However, in this case, 

the attenuation map of the matrix object is non-homogeneous. Hence, attenuation map of 

the object is obtained from transmission tomography of the object.  

Transmission computed tomography (TCT) of the drum is carried out using 

external 
152

Eu source. The TCT data are acquired for different energies (244 keV, 344 

keV, 444 keV, 778 keV and 867 keV). The attenuation map is reconstructed for each 

energy using Filtered Back Projection algorithm. The absolute attenuation values have 

been obtained by calibrating with standard objects with known attenuation values. Fig. 

5.20 shows the reconstructed TCT data for three slices at different energies. Fig. 5.21 

shows the plot of attenuation coefficient as a function of energy. The attenuation map for 
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662 keV (emission energy in SPECT) is interpolated from these data pixel by pixel. This 

attenuation map is then used for attenuation compensation.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.20 TCT data for three different slices (top to bottom) at different energies (from left to 

right) – 244 keV, 344 keV, 444 keV, 778 keV and 867 keV; Colour bar is shown on the right 

(in unit of cm
-1

) 

Fig. 5.21 Plot of linear attenuation coefficient as a function of energy for (a) Top row (b) Middle row 

(c) Bottom row of TCT data in fig.5.20  

(a) (b) (c) 
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A. Analytical Reconstruction 

The passive CT data is reconstructed using Filtered Backprojection scheme with 

attenuation compensation based on Novikov’s Inversion Formula. The reconstructed 

volume is discretized on a 12 X 12 X 24 grid. Fig. 5.22 shows sinogram corresponding to 

three XY slices corresponding to the slices containing the passive sources (as inferred 

from reconstructed images). Reconstructed XY slices at different Z-positions are shown 

in Fig. 5.23.  

 

 

 

 

 

 

 

The reconstructed 3D volume is shown in Fig. 5.24 (a). For 3D volume 

visualization, the data is also interpolated on finer grid (30 X 30 X 60) as shown in Fig. 

5.24 (b). It can be seen that spatial position of the radioisotopes can be easily located. The 

reconstructed activity distribution in the images matches well with the true source activity 

in the original object (see Table 5.4). 

 

 

 

 

(a) 

Fig. 5.22 Sinogram of SPECT data for (a) Slice 5 (b) Slice 13 (c) Slice 18 

(b) (c) 
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Fig. 5.23 Analytical reconstructed slice images showing 
137

Cs activity in a drum. The images show 

XY Slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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Fig. 5.25 shows the line profiles along x-axis, y-axis and z-axis respectively for 

the sources. The spread in the line profiles is mainly due to the collimator blurring (and 

scattering) which is one of the important factor of image degradation in SPECT. 

Deconvolution methods may be applied on the obtained images to reduce the blurring 

effect. However, it can be seen from these results that even without any correction for 

collimator blurring, it is possible to locate the radioisotopes with reasonable accuracy. 

 

 

 

 

Fig. 5.24 (a) Reconstructed 3D volume showing 
137

Cs
 
activity in the drum  (b) 3D volume 

interpolated on a finer grid. Note that the drum outline is shown for illustration. 
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B. 2D (Stacked) MLEM Reconstruction 

The passive CT data is reconstructed using MLEM for a 2D system matrix. Each 

slice is reconstructed independently and the reconstructed slices are stacked to from a 3D 

volume. The number of iterations required is 50. Fig. 5.26 shows the reconstructed slice 

images for 2D MLEM reconstruction. 

 

 

Fig. 5.25 Intensity profile along x-axis, y-axis and z-axis respectively for Source A (a-c), Source 

B (d-f) and Source C (g-i) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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 Fig. 5.26 2D MLEM reconstructed slice images showing 
137

Cs activity in a drum. The images 

show XY Slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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C. Fully 3D MLEM Reconstruction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.27 Fully 3D MLEM reconstructed slice images showing 
137

Cs activity. The images show 

XY slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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The passive CT data is reconstructed using MLEM for fully 3D system matrix. 

The number of iterations required is 30. Fig. 5.27 shows the reconstructed slice images 

for fully 3D MLEM reconstruction. 

 Fig. 5.28 (a), (b) and (c) show the 3D view of 
137

Cs activity distribution using 

analytical, 2D MLEM and fully 3D MLEM reconstruction respectively for the Al drum 

sample. The effect of collimator blurring is clearly evident from these images. For 

analytical reconstruction (Fig. 5.28(a)), both inter- and intra-slice blurring are observed 

and a point source appears spherical. For 2D MLEM reconstruction (Fig. 5.28(b)), the 

intra-slice blurring is reduced but inter-slice blurring remains. For fully 3D MLEM 

reconstruction (Fig. 5.28(c)), both inter- and intra-slice blurring are reduced considerably 

and the point source appears point-like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.28 Reconstructed activity for Al drum sample (a) FBP (b) 2D (Stacked) MLEM  

(c) Fully 3D MLEM 

(a) (c) (b) 
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The reconstructed spatial position and activity values for different algorithms are 

listed in Table 5.4. 

TABLE 5.4 Comparison of reconstructed and true source activity 

Reconstruction 

Technique 

Source Reconstructed 

Source Position 

 (pixel) 

(x, y, z) 

Reconstructed 

activity 

(MBq) 

Deviation in 

Reconstructed 

Activity 

(%) 

 

 

FBP 

A (10, 6, 5) 27.9 ± 2.5 4.5 

B (7, 9, 13) 19.5 ± 2.0  7.1 

C (6, 3, 18) 34.7 ± 2.9  8.2 

 

 

2D MLEM 

A (10, 6, 5) 27.0 ± 2.3 1.1 

B (7, 9, 13) 20.1 ± 1.9  4.3 

C (6, 3, 18) 38.2 ± 2.3  1.1 

 

Fully 3D 

MLEM 

A (10, 6, 5) 27.2 ± 2.3 1.9 

B (6, 9, 13) 18.7 ± 2.1  10.9 

C (6, 3, 18) 37.0 ± 2.1  2.1 

 

5.3.2 SS Drum 

A mock SS waste drum (described in Section 5.1.2 D) filled with cotton gloves, nylon 

gloves and cotton fibre is used as object matrix. Three 
137

Cs sources are placed inside the 

drum at different locations. Exact locations of the sources are not known beforehand. 

Projections are acquired with LaBr3(Ce) detectors at 36 angular locations and 24 lateral 

positions for each z-position. In the vertical direction, 34 z-positions are scanned. Thus 

each slice thickness is 25 mm. Each image data point is acquired for duration of 10s. The 
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collimator opening is 25 mm (with septa) and collimator length is 150 mm (collimation 

ratio: 15). The distance from the centre of object to collimator opening is 450 mm.  

 Transmission computed tomography (TCT) of the drum is carried out using 

external 
152

Eu source. The TCT data are acquired for different energies (121 keV, 244 

keV, 344 keV, 444 keV, 778 keV and 867 keV). The attenuation map is reconstructed for 

each energy using FDK algorithm. Fig. 5.29 shows the reconstructed TCT data for three 

slices at different energies. The attenuation map for 662 keV (emission energy in SPECT) 

is interpolated from these data. This attenuation map is then used for attenuation 

compensation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.29 TCT data for three different slices (top to bottom) at different energies (from left to 

right) – 121 keV, 244 keV, 344 keV, 444 keV, 778 keV 
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A. Analytical Reconstruction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.30 Analytical reconstructed slice images showing 
137

Cs activity. The images show XY 

Slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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Reconstruction is done using Filtered Backprojection scheme with attenuation 

compensation based on Novikov’s Inversion Formula. The reconstructed volume is 

discretized on a 24 X 24 X 34 grid. Reconstructed XY slices at different Z-positions are 

shown in Fig. 5.30. The reconstructed 3D volume is shown in Fig. 5.31.  

 

 

 

 

 

 

 

 

 

B. 2D (Stacked) MLEM Reconstruction 

The passive CT data is reconstructed using MLEM for a 2D system matrix. Each 

slice is reconstructed independently and the reconstructed slices are stacked to from a 3D 

volume. The number of iterations required is 36. Fig. 5.32 shows the reconstructed slice 

images for 2D MLEM reconstruction. 

 

 

 

Fig. 5.31 3D view of 
137

Cs activity  
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Fig. 5.32 2D MLEM reconstructed slice images showing 

137
Cs activity. The images show XY 

Slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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C. Fully 3D MLEM Reconstruction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.33 Fully 3D MLEM reconstructed slice images showing 
137

Cs activity. The images show 

XY Slices at different Z-positions starting from bottom to top (ordered row-wise left to right) 

 



Chapter 5 

178 

 

The passive CT data is reconstructed using MLEM for fully 3D system matrix. 

The number of iterations required is 25. Fig. 5.33 shows the reconstructed slice images 

for fully 3D MLEM reconstruction. 

Fig. 5.34 (a), (b) and (c) show the 3D view of 
137

Cs activity distribution using 

analytical, 2D MLEM and fully 3D MLEM reconstruction for the SS waste drum sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 It is observed that analytical reconstruction results in collimator blurring both 

within the reconstruction plane and between different planes. This results in a point 

source being spread over a volume as a sphere. The use of 2D system matrix reduces 

blurring within the reconstruction plane only and the point source now resembles an 

elongated sphere. When fully 3D system matrix is used, both inter-slice and intra-slice 

blurring are reduced and the point source appears to be point-like. 

(a) (c) (b) 

Fig. 5.34 Reconstructed activity for SS drum sample (a) FBP (b) 2D (Stacked) MLEM (c) Fully 3D 

MLEM 
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The reconstructed spatial position and activity values for different algorithms are 

listed in Table 5.5. 

TABLE 5.5 Comparison of reconstructed and true source activity and location 

Reconstruction 

Technique 

Source Reconstructed 

Spatial Position 

 (in pixel) 

(x, y, z) 

Reconstructed 

activity 

(MBq) 

Deviation in 

Reconstructed 

Activity 

(%) 

 

 

FBP 

A (11, 11, 9) 27.4 ± 2.1 2.6 

B (3, 7, 14) 21.1 ± 2.0 0.5 

C (9, 12, 18) 36.4 ± 2.8 3.7 

 

 

2D MLEM 

A (11, 11, 9) 28.0 ± 2.0 4.9 

B (3, 7, 14) 20.2 ± 1.8 3.8 

C (9, 12, 18) 38.5 ± 3.0 1.9 

 

 

Fully 3D MLEM 

A (11, 11, 9) 27.1 ± 1.8 

 

1.5 

B (3, 7, 14) 21.3 ± 2.1 1.4 

C (9, 12, 18) 37.4 ± 2.6 1.1 

 

5.4 3D SPECT Reconstruction: Fan Beam 

A mock waste barrel (580 mm diameter and 850 mm height) is filled with cotton waste / 

gloves / tissues / cellulose matrix. Three 
137

Cs sources have been placed at different 

locations inside the barrel. For the Active CT measurement, a single external gamma 

source (
152

Eu; 33mCi) and three LaBr3(Ce) detectors in fan beam configuration are used. 

Data has been acquired at 33 lateral positions and 15 angular positions over 180º for each 

z-position. In the vertical direction, 34 z-positions are scanned. Each slice thickness is 
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25mm. The acquisition time for each scan is 5 sec. The peak area corresponding to 121 

keV, 244 keV, 344 keV, 444 keV, 778 keV and 964 keV are used for reconstructing the 

active data set. The attenuation coefficient at emission energy of 662 keV is obtained by 

interpolating the values pixel by pixel from the above data set. 

 For passive CT, the detectors are used in the same configuration. Data is acquired 

at 33 lateral positions and 24 angular positions over 360º for each z-position. In the 

vertical direction, 34 z-positions are scanned. The collimator opening is 25 mm (with 

septa) and collimator length is 150 mm (collimation ratio: 15). The focal length (distance 

of the focal point from the detector surface) is 1540 mm. The acquisition time for each 

data point is 10 sec.  

 

 

 

 

 

 

 

 

 

 

 

(c) (b) (a) 

Fig. 5.35 (a) Reconstructed attenuation map (b) & (c) Analytical and 2D MLEM reconstructed volume 

showing 
137

Cs activity respectively 
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Fig. 5.36 Reconstructed (Analytical) slice images showing 
137

Cs activity. The images show XY Slices 

at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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Fig. 5.37 Reconstructed (2D MLEM) slice images showing 
137

Cs activity. The images show XY Slices 

at different Z-positions starting from bottom to top (ordered row-wise left to right) 
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Fig. 5.35 (a) shows the attenuation map at 662 keV obtained from the Active CT 

data. The attenuation map shows high density materials (densely packed rubber gloves) 

in the bottom one-third of the drum, nearly homogeneous attenuation in the middle one-

third of the drum (nearly uniformly distributed cellulose matrix). Fig.5.35 (b) shows the 

analytical reconstruction for 
137

Cs activity in the waste barrel. Fig.5.35 (c) shows the 

MLEM reconstruction using 2D system model. The number of iterations required for 

MLEM technique is 50. 

Fig. 5.36 shows the slice images for analytical reconstruction. Fig. 5.37 shows the 

slice images for 2D MLEM reconstruction. Table 5.6 shows the reconstructed activity for 

the three sources. 

TABLE 5.6 Comparison of reconstructed and true source activity 

Reconstruction 

Technique 

Source 

(Slice-wise 

location) 

 Reconstructed 

activity  

(MBq) 

Deviation in 

Reconstructed 

activity  

(%) 

 

 

FBP 

A (Bottom)  24.9 ± 1.8 6.7 

B (Middle)  18.7 ± 1.5 10.9 

C (Top)  35.1 ± 1.9 7.1 

 

 

2D MLEM 

A (Bottom)  26.6 ± 1.6 3.6 

B (Middle)  19.9 ± 1.4 5.2 

 

C (Top)  36.9 ± 1.8 2.4 

Fig. 5.38 shows the 
137

Cs activity using analytical reconstruction (no collimator 

modelling) (top row) and MLEM reconstruction (bottom row) using the fan beam system 

model. The activity map for three consecutive z-slices is shown. It can be seen that the 
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collimator blurring is reduced in the MLEM reconstruction as the collimator modeling 

has been implemented in the system matrix.  

 

 

 

 

 

 

 

 

 

5.5 Effect of Collimation 

Increasing the collimation reduces the blurring due to collimator effects. To study this 

effect, experiments have been carried out at different collimation ratios using a single 

LaBr3(Ce) detector. Two 
137

Cs source (C and B) are placed inside a perspex disc of 

diameter 300mm (Section 5.1.2 Sample B) at indexed locations 18 and 15 respectively. 

The distance from the centre of the object to collimator is 200 mm which is fixed for all 

the experiments. The collimator opening (d) of 10 mm is also fixed whereas the 

Fig. 5.38 
137

Cs activity for Slice 18, Slice 19 and Slice 20 (left to right) using analytical (a -c) and 

MLEM (d - f) reconstruction 

(a) (b) (c) 

(d) (e) (f) 
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collimator length (L) is varied from 50 mm to 200 mm. The projection data has been 

acquired for 100 angular positions. The acquisition time for each data point is 10 sec.  

Since intra-slice blurring is studied, only 2D analysis has been performed. The 

projection data are reconstructed using Novikov’s Inversion formula. The reconstructed 

images are shown in Fig.5.39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each intensity peak, a Gaussian profile was fitted and correspondingly 

FWHM is calculated. It can be seen that FWHM reduces with an increase in L/d, as 

expected. As is evident from Fig.5.40 and Fig. 5.41, the FWHM reduces slowly above 

Fig. 5.39 Effect of collimation ratio on analytically reconstructed image for different collimation 

ratio (a) 5 (b) 10 (c) 15 (d) 20 

(a) (b) 

(c) (d) 
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L/d of 10. This can also be observed from the reconstructed images that increasing the 

L/d above a certain value improves the image marginally and a trade-off between FWHM 

and L/d can be reached while choosing an optimum value of L/d. For most of the present 

experiments, a value of L/d equal to 10 has been chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.40 Plot of normalized intensity as a function of pixel number for different collimation ratio 

(a) 5 (b) 10 (c) 15 (d) 20 

Fig. 5.41 Variation of FWHM for spatial profile of intensity as function of collimation ratio 
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5.6 Discussion 

 
Experiments on 2D and 3D SPECT imaging using 

137
Cs sources have been discussed in 

Section I. For 2D reconstruction in parallel beam geometry, both analytical and iterative 

reconstructions have been used. For fully 3D reconstruction, analytical and MLEM 

techniques have been used. The fully 3D technique clearly brings out the role of 

collimator modeling as is evident from images reconstructed using analytical, 2D MLEM 

and fully 3D MLEM techniques. Experiments have also been presented for reconstruction 

of waste drum in fan beam geometry. 

 Analytical reconstruction does not take into account the role of collimator and 

results in blurring which has been evident in the experiments. The iterative techniques 

reduce the collimator blurring by modelling the collimator. It is observed that ART and 

SART tend to be noisy and also require larger number of iterations to converge. MLEM 

and OSEM images are much less noisy and also require lesser number of iterations to 

converge. The 3D collimator modelling used in fully 3D system matrix reduces the intra 

slice blurring also. Thus, fully 3D MLEM / OSEM provides a better spatial resolution 

and lesser noise over the other algorithms used. For experiments discussed in the next 

section, fully 3D MLEM reconstruction has been adopted as the most suitable 

reconstruction technique. 

 

SECTION II: Active and Passive CT for Nuclear Waste Assay 

Assay of nuclear waste drums is required for disposition decisions, safe transportation, 

permanent storage as well as nuclear material accounting, especially 
239

Pu. Traditionally, 

the drums are inspected by conventional transmission radiography or tomography. 
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However, these techniques do not yield information about the radioisotopes inside the 

drum, but just on the material density. Gamma spectroscopy in open geometry or 

segmented gamma scanning can be performed to this aim. 

Commonly employed gamma ray based non-destructive techniques 
[1-3]

 or 

conventional gamma ray spectroscopy methods rely on the assumption that the sample 

matrix and the activity are in a uniform configuration. In fact, waste drums are often 

heterogeneous in matrix and radionuclide material distribution, and span a wide range of 

composition and matrix type. These errors can be reduced by imaging techniques that 

better measure the spatial locations of sources and matrix attenuations. 

One of the most commonly applied non-destructive techniques for assaying 

radioactive materials in waste drums is the segmented gamma-ray spectrometry (SGS) 
[5]

 

technique. The SGS technique measures spatially averaged gamma-ray intensities in few 

segments, i.e., horizontal disk-shaped slices of the drum. The average matrix attenuation 

value for each slice is measured by the transmission of an external source by measuring 

the attenuated intensity for few ray paths only. These attenuation values are used to 

correct average passive gamma-ray emitted intensity for each section.  

To improve accuracy and provide information about the spatial distribution of the 

radioisotopes, an active and passive computed tomography (A&PCT) technique is best 

suited. The A&PCT technique is a more refined technique that improves the imaging 

from few segments to few thousand volume elements or voxels. 

In this chapter, we have explored LaBr3(Ce) detectors for A&PCT of 
239

Pu in 

waste assay. This is one of the highlights of this thesis. For comparison, the experiments 

have also been performed with high energy resolution HPGe detectors. 
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5.7 Active and Passive CT 

Active and Passive Computed Tomography (A&PCT) is one of the most efficient 

techniques for characterization and localization of radioisotopes in nuclear waste assay. 

The A&PCT method consists of two steps to perform an assay: active CT and passive 

CT. This has earlier been discussed in Chapter 1 (Section 1.5).  

5.8 Experimental set-up 

The experimental set-up discussed in Section 5.2 has been used for the present 

experiments. An addition to the set-up is the use of filter(s). 

A typical problem in plutonium spectroscopic measurement is the relatively high 

count rate from the 59.54-keV 
241

Am gamma ray which dominates the unfiltered 

spectrum. If the detector is unfiltered, the americium peak will cause unnecessary 

deadtime. For this purpose, the detector is covered with 3 mm cadmium (followed by 

0.250 mm copper) to filter the 59.54-keV gamma ray. 

5.9 A&PCT of Plutonium with LaBr3(Ce) 

Most plutonium samples contain the isotopes 
238

Pu, 
239

Pu, 
240

Pu, 
241

Pu, and 
242

Pu. 
241

Am 

and 
237

U are always present as decay products of 
241

Pu. Table 5.7 lists some of the 

gamma energies of these important isotopes. 

Traditionally, high purity germanium detectors have been used for gamma 

spectroscopy of transuranic isotopes especially plutonium. The complex energy spectrum 

coupled with many closely spaced gamma energies makes it imperative to use a 

semiconductor detector which has an excellent energy resolution as compared to 

inorganic scintillators (NaI(Tl), CsI(Tl), BGO, etc.). Recently, development of cerium 
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activated lanthanum bromide (LaBr3(Ce)) scintillators which have a better energy 

resolution than their other inorganic counterparts have prompted the need to explore its 

use for spectroscopy of complex energy spectra. In this section, we explore the use of 

LaBr3(Ce) detectors for SPECT imaging of 
239

Pu in nuclear waste assay. 

TABLE 5.7 Main gamma rays in plutonium spectrum 

238
Pu 

239
Pu 

240
Pu 

241
Pu 

241
Am 

keV γ/s-g keV γ/s-g keV γ/s-g keV γ/s-g keV γ/s-g 

          

43.48 2.49 X 

108 
51.63 6.19 X 

105 
45.23 3.80 X 

106 
103.68 3.86 X 

106 
59.54 4.54 X 1010 

99.86 4.59 X 

107 
98.78 2.80 X 

104 
104.24 5.86 X 

105 
148.57 7.15 X 

106 
98.95 2.57 X 107 

152.68 6.05 X 

106 
129.29 1.44 X 

105 
160.28 3.88 X 

104 
164.58 1.73 X 

106 
102.97 2.47 X 107 

766.41 1.39 X 

105 
203.54 1.28 X 

104 
642.48 1.05 X 

103 
208.00 2.04 X 

107 
125.29 5.16 X 106 

  345.01 1.28 X 

104 
  332.35 1.14 X 

106 
335.40 6.28 X 105 

  375.04 3.60 X 

104 
  370.93 1.04 X 

105 
662.42 4.61 X 105 

  413.71 3.42 X 

104 
    721.99 2.48 X 105 

  645.97 3.42 X 

102 
      

  717.72 6.29 X 

101 

      

 

5.9.1 Experimental Results  

A mock waste drum (580mm diameter and 850mm height) is filled with cotton waste / 

gloves / tissues. A total of 1g plutonium (0.04% 
238

Pu, 93.0 % 
239

Pu, 6.72% 
240

Pu, 0.24% 

241
Pu) sealed in 20 aluminum cylinders (approximately 25mm diameter and 25mm 

height) containing 50 mg each are distributed at three different locations inside the drum. 

11 cylinders (0.512g  
239

Pu) lumped together are located at region #1 (approx. height 275 

mm),  5 cylinders (0.232g  
239

Pu) lumped together are located at region #2 (approx. 

height 700 mm) and 4 cylinders (0.186g  
239

Pu) lumped together are located at region #3 
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(approx. height 475 mm). The data are acquired with LaBr3(Ce) detectors. Fig. 5.42 (a) 

and (b) show the gamma spectrum by LaBr3(Ce) detector for Active CT (using 
152

Eu 

source) and Passive CT respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.42 Gamma spectrum recorded by LaBr3(Ce) detector(a) 
152

Eu (for Active CT) (b) 93% 
239

Pu 

(for Passive CT). The major 
152

Eu and  
239

Pu peaks have been labeled 

(b) 

(a) 
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5.9.1.1 Active CT  

For the ACT measurement, the external gamma source and a single LaBr3(Ce) detector 

are used. Data is acquired at 24 lateral positions and 18 angular positions over 180º for 

each z-position. In the vertical direction, 33 z-positions are scanned. Each slice thickness 

is 25 mm. The acquisition time for each data point is 10 sec. The peak area corresponding 

to 244 keV, 444 keV, 778 keV, 964 keV and 1407 keV are used for reconstructing the 

active data set. The 344 keV peak is avoided as it interferes with the 345 keV peak from 

239
Pu. The attenuation coefficient at emission energy (414 keV peak is analyzed for 

assessing the 
239

Pu distribution in the consecutive PCT measurement) is obtained by 

interpolating the values from the above data set. The reconstructed attenuation map is 

shown in Fig. 5.43 (a) and Fig. 5.43 (b). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.43 (a) Reconstructed 3D attenuation map at 414 keV (b) Reconstructed Active CT slice images 

at different elevations 

(a) (b) 
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5.9.1.2 Passive CT 

For the PCT measurement, the external source is removed and gamma rays emitted from 

within the drum are recorded by three collimated LaBr3(Ce) detectors. For each z-

position, data are acquired at 12 angular positions over 360º with 24 lateral data points 

per projection. In the vertical direction, 33 z-positions are scanned. Each slice thickness is 

25 mm. The collimator opening is 25 mm (with septa) and collimator length is 100 mm 

(collimation ratio: 10). The distance from the centre of object to collimator opening is 

450 mm. The acquisition time for each data point is 20 sec.  

The passive data set is reconstructed using fully 3D MLEM technique. The 

reconstructed volume is discretized on a 24 X 24 X 33 grid. The 414 keV peak from 
239

Pu 

is used for PCT measurement. The reconstructed 3D volume is shown in Fig. 5.44. 

Reconstructed XY slices at different Z-positions are shown in Fig. 5.45. It can be seen 

that spatial position of the radioisotopes can be easily located.  

 

 

 

 

 

 

 

 

 

 Fig. 5.44 Reconstructed 3D volume showing activity distribution of 
239

Pu. The drum outline is shown 

for illustration  

 

#1 

#3 

#2 
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Fig. 5.45 Fully 3D MLEM reconstructed Passive CT slice images at different elevations 
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The total activity for each distinct source is calculated by summing all the voxels 

in a given region. The measured activity can be converted to its mass (in gram) using the 

following relation: 

sp

A
m

A
       (5.4) 

where
spA  is the specific activity of the radioisotope. The specific activity of 

239
Pu is 

0.063 Ci/g (or 2.33 X 10
3 

MBq/g). 

The reconstructed activity distribution in the images matches well with the true 

source activity (see Table 5.8).  

TABLE 5.8: Reconstructed 
239

Pu mass 

 True 
239

Pu mass 

(g) 

Reconstructed 
239

Pu mass 

(g) 

# 1 0.512 0.519 ± 0.023 

# 2 0.232 0.233 ± 0.015 

# 3 0.186 0.168 ± 0.013 

Total 0.930 0.920 ± 0.030 

 

5.10 A&PCT of Plutonium with HPGe 

High resolution gamma spectroscopy is used to determine isotopic composition of 

plutonium. In the previous sections, we have discussed the SPECT imaging of 
239

Pu with  

LaBr3(Ce) detectors. It can be combined with high resolution spectroscopy to increase 

sensitivity.  
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5.10.1 Spectral Features of Plutonium  

In this sub-section, we shall analyze the spectral features which are essential in 

measurement of isotopic composition of plutonium. The same sample of plutonium used 

for A&PCT measurements is used for spectral measurements. 

A. Energy Range: 0 – 160 keV 

Table 5.8 shows that the lower energy gamma rays are more intense than those at higher 

energies. The lower energy gamma rays should be used whenever possible. However, it is 

often impossible to use them. This is because if too much 
241

Am is present, the 59.54 keV 

gamma ray overwhelms all other peaks in the region. Usually, the region below 60 keV is 

useful for 15 to 30 days after a separation of americium and uranium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.46 Gamma spectrum of Plutonium (without Cd filter) 
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 To minimize the spectral interference of the 59.54 keV 
241

Am gamma ray, the 

detector is covered with 3 mm cadmium (followed by 0.250 mm copper) to selectively 

absorb the 59.54-keV gamma ray. Fig. 5.46 and 5.47 show the unfiltered and filtered 

gamma spectrum respectively. 

Fig. 5.48 shows the gamma spectrum for energies less than 160 keV. The region 

90-120 keV is a complex region consisting of X-rays and gamma rays. The uranium X-

rays arise from plutonium decay and can be used to measure the plutonium isotopes. The 

neptunium X-rays arise from the decay of 
241

Am and 
237

U whereas the plutonium X-rays 

appear from gamma-ray and alpha particle induced X-ray fluorescence. This is the only 

region in which gamma rays from all isotopes are present. 

 

 

Fig. 5.47 Gamma spectrum of Plutonium (with Cd filter) 
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241
Am and 

239
Pu can be measured from gamma rays at 125.29 and 129.29 keV. There are 

strong interferences to the 125.29-keV 
241

Am gamma ray from 
239

Pu lines at 125.21 and 

124.51 keV. The use of filters also affects the count rate in this region. 

The 148.57-keV 
241

Pu peak is the only useful gamma ray outside of the complex 

100-keV region that comes directly from 
241

Pu. The 152.68 keV peak from 
238

Pu, 

although weak, is often the only useful gamma ray from 
238

Pu above 100 keV. 

B. Energy Range: 160 – 320 keV 

Fig. 5.49 shows the gamma spectrum for energies in the range 160 – 320 keV. The strong 

241
Pu-

237
U peak at 208.00 keV dominates this region. Usually it is the most intense peak 

in the spectrum. Because this gamma-ray comes from 
237

U it can be used only for aged 

samples.  

Fig. 5.48 Gamma spectrum of plutonium (239 - 93 %) in the energy range less than 160 keV 
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The 203.54 keV 
239

Pu line is another important peak in this region. The 

239
Pu/

241
Pu ratio formed with the 203.54/208.00 line pair gives best results for low 

burnup material. For high burnup material, the precision of the 203.54-keV 
239

Pu peak 

becomes worse because of the Compton background and the long tail from the very 

strong 208.00 keV 
237

U peak. 

C. Energy Range: 320 – 460 keV 

Fig. 5.50 shows the gamma spectrum for energies in the range 320 – 460 keV. The ratio 

of the 345 keV 
239

Pu peak to the 332.35 keV 
241

Pu-
237

U peak is useful for measuring the 

239
Pu/

241
Pu ratio. Both the 332.35- and 335.40-keV peaks from 

241
Pu-

237
U contain very 

close interferences from 
239

Pu peaks. 

Fig. 5.49 Gamma spectrum of plutonium (239 - 93 %) in the energy range 160 – 320 keV 
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The 375 keV region also has components from 
241

Pu-
237

U, 
241

Am, and 
239

Pu. For 

all isotopes except 
239

Pu the branching ratios are lower than in the 332-keV region, so the 

isotopic information will be less precise. 

 

 

 

 

 

 

 

 

 

 

 

The 413.7 keV peak from 
239

Pu is the only peak which is free from interference 

from other Pu peaks and is often used for absolute measurement of 
239

Pu mass in the 

sample. This is the enrgy peak which has been used for Passive CT experiments in this 

thesis 

D. Energy Range: 460 –800 keV 

Fig. 5.51 shows the gamma spectrum for energies in the range 460 – 800 keV. This is the 

only region above 160 keV that can be used for measuring 
240

Pu. The region is useful 

only for large samples because of the low intensity of the 642.48-keV 
240

Pu gamma ray. 

Fig. 5.50 Gamma spectrum of plutonium (239 - 93 %) in the energy range 320 – 460 keV 
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Nearby peaks from 
239

Puand 
241

Am complicate the region. The 645.97 keV and 662.42 

keV peaks are useful for measuring 
239

Pu and 
241

Am.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.10.2 Active CT  

For the ACT measurement, the external gamma source and single HPGe detector are 

used. Data is acquired at 18 angular positions with 24 lateral data points per projection 

over 180º for each z-position. In the vertical direction, 33 z-positions are scanned. Each 

slice thickness is 25mm. The acquisition time for each data point is 10 sec. The peak area 

corresponding to 244 keV, 444 keV, 778 keV, 867 keV, 964 keV and 1407 keV are used 

for reconstructing the active data set. The reconstructed attenuation map is shown in Fig. 

5.52 (a).  

 

 

Fig. 5.51 Gamma spectrum of plutonium (239 - 93 %) in the energy range 460 – 800 keV 
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5.10.3 Passive CT 

For the PCT measurement, the external source is removed and gamma rays emitted from 

within the drum are recorded by single collimated HPGe detector. Data are acquired at 12 

angular positions with 24 lateral data points per projection over 360º for each z-position. 

In the vertical direction, 33 z-positions are scanned. Each slice thickness is 25mm. The 

collimator opening is 25 mm (with septa) and collimator length is 100 mm (collimation 

ratio: 10). The distance from the centre of object to collimator opening is 450 mm. The 

acquisition time for each data point is 50 sec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The passive data set is reconstructed using fully 3D MLEM technique. The 

reconstructed volume is discretized on a 24 X 24 X 34 grid. The 414 keV peak from 
239

Pu 

is used for PCT. The reconstructed 3D volume is shown in Fig. 5.52 (b). It can be seen 

Fig. 5.52 3D view (a) Attenuation map (b) 
239

Pu activity distribution 
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that spatial position of the radioisotopes can be easily located. Fig. 5.53 shows the 3D 

volume of the drum which both the active and passive data overlapped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reconstructed activity distribution in the images matches well with the true 

source activity (see Table 5.9).  

TABLE 5.9: Reconstructed 
239

Pu mass 

 True 
239

Pu mass 

(g) 

Reconstructed 
239

Pu mass 

(g) 

# 1 0.512 0.528 ± 0.025 

# 2 0.232 0.225 ± 0.016 

# 3 0.186 0.166 ± 0.010 

Total 0.930 0.919 ± 0.030 

 

Fig. 5.53 3D (perspective) view with superimposed active and passive data set 
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5.11 Discussion 
 

An Active and Passive CT facility has been developed for detection and imaging of 
239

Pu 

in waste drum. The results show that the three dimensional distribution of 
239

Pu as well as 

the mass/quantity assayed matches well with the true distribution. A novel feature of the 

work is the use of LaBr3(Ce) for imaging of 
239

Pu which, to the best of our knowledge, is 

being reported for the first time. LaBr3(Ce) detectors may be used for SPECT of 

radioactive waste (including transuranic waste) especially for multi-detector systems. An 

HPGe detector, owing to its better energy resolution, can be used for SPECT imaging of 

other plutonium isotopes also. The experiments have been repeated with an HPGe 

detector and it is observed that so far as the imaging of 
239

Pu is concerned, the results 

obtained with LaBr3(Ce) and HPGe match reasonably well.  



205 

 

Chapter 6 

Concluding Remarks 

 

The thesis describes emission tomography studies on nuclear materials, with specific 

focus on waste barrels. The work covered in this thesis includes development of 

simulation codes for producing virtual parallel-, fan- and cone-beam data, development 

of tomographic reconstruction codes and software based on analytical and iterative 

algorithms, implementing hardware for tomographic data collection and evaluation of 

these reconstruction methods on experimental data collected using an advanced 

measurement setup combining Active and Passive CT. 

For the simulation part, dedicated codes have been developed for simulating 

projection data, especially for fan- and cone-beam configurations. Similarly, dedicated 

codes have been developed for both analytical and iterative reconstruction techniques. 

Analytical reconstruction techniques based on filtered backprojection are fast and 

easy to implement but result in significant blurring due to the physical size of the 

collimator. The effect of collimator blurring can be reduced by using iterative 

reconstruction. This necessitates the use of iterative techniques. 

For iterative techniques, a key factor is the precise modeling of the forward 

projection, that is, the construction of the system matrix. The construction of the system 

matrix is not often discussed in literature although it plays a fundamental role in iterative 

reconstruction. Generally, 3D reconstructions are performed using a 2D system matrix 

where each horizontal plane is reconstructed independently of the other planes and a 



Chapter 6 

206 

 

pseudo 3D volume is obtained by stacking different reconstructed 2D planes. This 

method of 3D imaging reduces intra-slice blurring but results in inter-slice blurring due to 

cross-talk between different planes. 

For a truly 3D reconstruction, a fully 3D system matrix is required. A novelty of 

this work is the implementation and testing of a fully 3D iterative method, where the 

inter-slice contributions to the detector signals are taken into account, enabling the 

reduction of inter-slice blurring in the resulting images.  

Amongst the iterative reconstruction techniques explored, the algebraic 

techniques ART and SART tend to produce noisy image and also require a larger number 

of iterations, in general, to converge. The statistical techniques, MLEM and OSEM, in 

comparison, produce a less noisy image and converge faster. Hence, the MLEM 

technique is used to reconstruct most of the images in experimental section. Instances 

where qualitative information or fast reconstruction is required, analytical reconstruction 

has been used.  

In addition to parallel beam SPECT geometries discussed so far, a practical fan-

beam Active and Passive CT technique for waste assay has also been developed. The 

scanning geometry uses a fan beam with the active source placed at the focal point of the 

fan. This results in speedup due to the elimination of discrete translation positioning in 

the active (and/or passive) mode(s). Also, the fan-beam design has only one source and a 

very simple source collimator compared to the straight in-line case. This scanning 

geometry has been experimentally demonstrated. For reconstruction, an expression for 

2D fan beam system matrix has been analytically determined and implemented. 
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For the experimental part, an advanced setup for combining (active) transmission 

tomography and (passive) emission tomography has been set-up for three dimensional 

imaging of waste drums. A novel feature of this thesis is the application of relatively 

novel detector LaBr3(Ce) for SPECT imaging of 
239

Pu samples in low level waste. 

Although high resolution HPGe detectors are conventionally used for spectral analysis of 

plutonium, we have explored medium-high energy resolution LaBr3(Ce) detectors for 

SPECT imaging of 
239

Pu. The results have been compared with high energy resolution 

reconstruction with HPGe detectors and it has been observed that both match reasonably 

well. Although LaBr3(Ce) cannot determine isotopic ratios, it can be used for absolute 

measurement of 
239

Pu. 

The highlights of the work done under this thesis may be summarized as follows: 

(i) Implementation of analytical and iterative reconstruction techniques 

(ii) Novel method for generation of fan and cone beam data for simulated objects 

(iii) Development and implementation of fully 3D SPECT reconstruction 

(iv) Development and implementation of a practical fan-beam Active and Passive CT       

technique for waste assay 

(v) Developing a three dimensional SPECT imaging facility for scanning of waste drums      

using LaBr3(Ce) detectors 

(vi) Active and Passive CT for 
239

Pu assay in waste drums 

 Future work will involve implementation of the developed technique for 

quantitative SPECT imaging of real waste drums. Another application where this 

technique will be used is in burnup determination of PHWR fuel pin / fuel assemblies. 
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