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Abstract

Various schemes have been analysed over the years for extracting energy from

Inertial Fusion Energy systems such as laser-driven fusion. The method examined

here is to directly convert a part of the plasma kinetic energy into pulsed electrical

energy, through the medium of magnetic flux compression. The present work

involves a computational study of the physics of flux compression inside a current-

carrying coil by an expanding inertial fusion plasma sphere. The numerical analysis

has been performed using two-dimensional MHD and FDTD simulations.

The overall efficiency of the system is determined numerically for a typical set

of initial plasma and system parameters. It is found that the proposed system is

promising in terms of overall efficiency, but the system produces ultrahigh inter-

turn voltages in the coil, necessitating the use of magnetic self-insulation to avoid

inter-turn breakdown.

The plasma sphere, expanding across a magnetic field, is subject to the Mag-

netic Rayleigh-Taylor (MRT) instability. For a detailed analysis of this concept,

especially plasma dynamics under large deformations, a two-dimensional Eulerian

multi-material MHD model has been developed for the first time. The algorithm

is found to be capable of accurately handling complex plasma dynamics inside the

MFC system. Magnetic field diffusion into the plasma during the expansion phase

is found to be negligible. 2D MHD simulations of random, single and multi-mode

MRT instability growth have been performed to analyze the MRT instability and

its implications for the proposed MFC system. The simulation takes into account

the effects of MFC and geometric divergence due to spherical plasma expansion.

The dominant modes obtained in the random seed analysis show a progressive

transition to the intermediate wavelength regime (∼4−8 cm) in the spectrum.

Single-mode evolution exhibits linear exponential growth followed by a non-linear

phase towards stagnation time. In the multi-mode analysis, with initial amplitudes

3



(αin) comparable to the perturbation wavelength (λin), there is clear evidence of

mode coupling and the generation of harmonic and inverse cascade modes. We

also find that near the time of stagnation, the growth in amplitude of the modes,

although exponential in nature, is much lower than that predicted by linear the-

ory. Furthermore, the instability amplitudes are not large enough for αin ≤ 0.1λin

to severely disturb the smooth MFC during the first expansion phase. However,

the growth of modes with αin ≥ λin causes plasma jetting, especially for longer λ

modes, and can lead to significant reduction in MFC efficiency.

We have also investigated the application of finite difference time domain

(FDTD) schemes, involving direct solution of Maxwell’s equations. The FDTD

algorithm has been modified, for the first time, by including motional e.m.f terms

in the standard FDTD update equations. This algorithm can be applied to MFC

systems with moving parts. This new approach is validated with standard ana-

lytical solutions for planar flux compression systems and magnetic field diffusion

in moving conductors with non-relativistic velocity. Finally, in order to demon-

strate the utility of this powerful scheme to MFC problems, we have applied it to

a sample problem involving plasma armatures. To our knowledge, this is the first

application of this powerful technique to such systems. We have also identified,

through extensive numerical tests, critical constraints that must be satisfied while

performing magnetic diffusion problems using FDTD scheme.
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SYNOPSIS

Introduction

Magnetic flux compression (MFC) generators [1−7] convert the chemical energy of

explosives into high-power electrical pulses through the compression of magnetic

flux. These systems typically consist of a high-explosive charge contained inside

a metallic conductor (“armature”). Detonation of the explosive produces high-

pressure gases, which cause the armature to expand outward at a high velocity.

The armature is subjected to an externally-imposed magnetic field, e.g. by being

placed inside a current-carrying solenoid. Since the armature is a good electrical

conductor, it pushes against the magnetic field and compresses the magnetic flux

into a smaller space. This magnetic flux compression leads to amplification of the

electrical energy in the solenoid. The net result is that the chemical energy of the

explosive is partially converted into output electrical energy. MFC generators have
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found widespread use as pulsed power sources for a broad range of applications such

as fusion, electromagnetic accelerators, high-power micro-wave (HPM) sources,

laser, electron, ion, or neutron sources, high magnetic field research and many

others.

Most existing MFC devices use solid metal armatures to compress the mag-

netic field, although the use of imploding liquid and plasma liners has also been

explored [8−13]. for the generation of high magnetic fields.

In Inertial Fusion Energy (IFE) systems, such as laser-driven fusion, the im-

plosion and burn process produces a fireball consisting of a high-density, high-

temperature plasma. Several schemes have been examined for converting the ther-

mal and kinetic energy of this fireball into electrical energy [14−20]. Since the IFE

plasma fireball is a good electrical conductor, it could, in principle, act as an ar-

mature in an MFC system. Plasma armatures can expand much faster than metal

armatures, yielding shorter-duration electrical pulses and higher flux efficiencies.

On the other hand, the expanding plasma could be subject to MHD instabilities

due to its interaction with the magnetic field.

Hence it is necessary to perform a detailed numerical study of the interaction

between the IFE fireball and an externally-imposed magnetic field. The objective

of this thesis work is to computationally examine the physics of expanding plasma

armatures using numerical schemes based on MHD as well as Finite Difference

Time Domain (FDTD) approaches.

The following studies have been performed in this thesis:

• Development of a Lagrangian MHD scheme coupled self-consistently with ex-

ternal circuit equations for the analysis of MFC inside a solenoid driven by

a fusion plasma sphere.

• Preliminary analysis of the conversion of plasma energy into pulsed electrical

energy using the above mentioned MHD scheme.
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• Development of an Eulerian MHD model using volume-of-fluid material in-

terface tracking for studying the plasma dynamics across the magnetic field.

• The study of large-deformation plasma dynamics in the proposed MFC system

using an Eulerian MHD model.

• Analysis of magnetic Rayleigh-Taylor instability in a MFC system driven by

fusion plasma sphere.

• Development and validation of computational algorithms relevant to MFC

systems based on the FDTD scheme for electromagnetics.

• Application of FDTD scheme for electromagnetics for the analysis of MFC

by an expanding cylindrical plasma.

The important work carried out and the major results of the thesis are sum-

marized below.

1. MFC inside a solenoid by an expanding fusion plasma sphere and

its application as a direct energy conversion scheme

Introduction and Motivation

In this chapter, we report on a conceptual study of magnetic flux compression

inside a solenoid by an expanding IFE plasma sphere. The plasma expands

across the magnetic field produced by the coil itself. The study has been

been performed numerically using two-dimensional magneto-hydrodynamic

(MHD) simulations. The basic idea is to use a conducting surface (a solenoid

in this work) enclosing an expanding diamagnetic plasma expanding across an

external magnetic field. The external magnetic field will be excluded by the

diamagnetic plasma due to currents produced in the plasma. The inductive
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electromotive force (e.m.f) induces currents in the shielding conductor and

thus convert the plasma kinetic energy into electrical energy. Fig. 1 shows a

schematic of the proposed MFC system.

Earlier work in this area [14−17] had considered separate coils for producing

the primary field and for carrying the induced (output) currents. The present

study is the first to consider a single coil. Similarly, Ref. [14] analyses a

different plasma parameter range, starting with an initial radius of ∼ 1 m

and system dimensions of ∼ 14 m in radius. Since the pickup coil is located

at a radius of ∼ 9 m, a low initial magnetic field is sufficient to stop the

plasma close to the coil radius. Therefore, a magnetic field of ∼ 0.57 T is

used in Refs. [14]. We have examined the case of a much smaller system

having a radius ∼1.5 m, a higher-pressure plasma (∼ 107 Pa) with an initial

radial expansion velocity ∼ 107 m/s, which requires a higher magnetic field

(5 T) to extract enough energy from the plasma.

We examine the dynamics of plasma expansion across the magnetic field

and the energy conversion efficiency. We start our simulation from the time

when plasma is created and the initial magnetic field is setup. The initial

plasma conditions are chosen from earlier published works for a D-3He fusion

plasma with energy of 140 MJ with mass ∼ 6 mg. Although the required

ignition energy is substantially higher for D-3He, the reaction products will

consist predominantly of charged particles, which can be electromagnetically

manipulated. The initial magnetic field is varied from 2 to 10 Tesla. The

coil radius and length were taken as 1.5 m and 2-3 m respectively.

Results and conclusions of this study

• During the expansion phase, the characteristic scale length of the plasma

is much larger than the ion skin-depth and orbit radius. Hence plasma
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Figure 1: Schematic showing magnetic flux compression during expansion phase
(not to scale).

dynamics is modeled using single fluid MHD equations assuming quasi-

neutrality in plasma. A 2D-Lagrangian code has been developed and

validated to solve the governing two-dimensional MHD equations. The

code has an explicit finite-difference scheme for hydrodynamic equa-

tions. A filamentary model [21,22], which includes the effect of plasma

dynamics, is used to update the coil current and the induced currents

in the plasma.

• The plasma dynamics and the efficiency of the proposed system with

different inductive and resistive load conditions are studied numerically.

An overall efficiency ∼ 56 % is obtained with an inductive load having

an inductance ∼ 1 mH for a typical system (coil radius = 1.5 m and

length ∼ 4.5 m and initial magnetic field ∼ 5 T) and plasma parameters

(energy 140 MJ and mass ∼ 6 mg) considered.

• However, ultra-high inter-turn voltages ∼ 25 MV are predicted across

the coil turns. Therefore, the feasibility of magnetic self-insulation for

avoiding coil inter-turn break-down has been examined. It has been

found that breakdown could indeed be prevented by self-insulation for
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the parameter range considered here. We have also found that the

inter-turn voltages can be reduced with increased operational time (by

decreasing initial B⃗ and increasing coil radius). For example, with an

increase of 33 % in coil radius, with an initial magnetic field of 3.8 T and

coil length equal to three times the coil radius, the inter-turn voltage

decreases to 19 MV (E=95 MV/m); corresponding to a 42% reduction

in the voltage and a reduction in inter-turn electric field by 2.8 times.

• The variation of plasma stopping radius with different applied external

magnetic fields has been calculated numerically and compared with a

simple analytical expression. Reasonable agreement is found, except

for cases with low initial magnetic fields. The difference in results,

especially for low magnetic field cases, is due to the fact that the an-

alytical expression neglects the effect of field amplification, leading to

over-estimation of the stopping radius. This effect is more significant

for cases with low initial magnetic fields, where the radial plasma ex-

pansion is higher, leading to considerable difference between initial and

final magnetic fields.

• It is observed that during the final stage of MFC, the plasma shape be-

comes distorted (non-spherical) due to non-uniform deceleration caused

by the magnetic field outside the plasma sphere. In particular, there

is elongation of the plasma in the axial direction. These effects, col-

lectively, lead to a non-spherical expansion of the plasma with large

deformation.

To the best of our knowledge, this is the first analysis of an MFC system

driven by an IFE plasma, conducted with an MHD scheme self-consistently

coupled to external circuit equations.

This work has been published in [23].
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2. Development of an Eulerian MHD model using volume-of-fluid ma-

terial interface tracking and its application to study the plasma

dynamics in an MFC system

Introduction and motivation

Numerical studies described in the last section (Ref. [23]) have shown that

plasma expansion in an MFC system is highly non-uniform due to magnetic

deceleration. In particular, the plasma exhibits non-spherical expansion, i.e.,

axial expansion of the plasma is higher than radial expansion. Towards

the end of the expansion phase, Magnetic Rayleigh-Taylor (MRT)-like in-

stabilities are observed at the plasma surface. Under conditions where such

instabilities reach large amplitudes, there are large distortions of the plasma

shape, hence Lagrangian algorithms fail. In order to study these effects in

detail, it is necessary to develop an Eulerian MHD model.

Important work, results and conclusions of this study

• We have developed and validated an Eulerian multi-material algorithm

with Volume-of-Fluid (VOF) based material interface tracking. The

algorithm is capable of handling large material deformations. A Volume-

weighted averaging technique is used to handle mixed computational

cells.

• The Eulerian code is then extended to MHD form. The magnetic induc-

tion equation is solved implicitly using magnetic vector potential. An

iteration procedure using Alternating Direction Implicit (ADI) scheme

is used for free space field calculation. The fields are transported using

a second order MUSCL scheme.
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• The validated algorithm is applied to study the dynamics of plasma

inside an MFC system described in the last section. We start with a

spherically-symmetric initial plasma, which means that the MRT insta-

bility is seeded by numerically-generated perturbations. Simulations

indicate the development and evolution of MRT instabilities at the

plasma-vacuum interface near stagnation time, i.e., close to the time

when the outer surface comes to a halt. The wavelength of this pertur-

bation is found to be ∼ 6.8 cm. In the r − z plane, these instabilities

are more marked near the center of the solenoid where the magnetic

deceleration is comparatively higher.

• The plasma sphere forms a shell-like geometry near the stagnation point

as the outer surface slows down due to B⃗ and the inner region catches

up with the outer surface. The resulting high temperature plasma re-

gion has high electrical conductivity. Therefore the B⃗ diffusion into the

plasma is found to be negligible even around stagnation time.

This work has been published in [24−25].

3. Analysis of magnetic Rayleigh-Taylor instability in an MFC system

driven by plasma armatures

Introduction and motivation

In the previous sections, we have described the direct energy conversion

scheme to convert plasma kinetic energy in an IFE system into pulsed elec-

trical energy [23,24]. Preliminary numerical studies [23,24] indicate that the

proposed system, with an inductive load, is promising in terms of overall

conversion efficiency. However, such a plasma, expanding across a magnetic

field, is subject to the Magnetic Rayleigh Taylor (MRT) instability. The
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MRT instability occurs when an electrically conducting fluid, e.g. plasma, is

decelerated or supported by the magnetic field. For efficient operation of the

proposed MFC system [23,24], the instability amplitude must remain small

so that the irregular surface, caused by growth of the MRT instability, does

not disturb the smooth compression of the magnetic field between the plasma

and solenoid. Large amplitude flute modes and plasma jetting can damage

the cavity wall [14].

The majority of numerical and experimental studies performed by other

workers on plasma expansion in an external magnetic field consider a uniform

background magnetic field. This means that magnetic field increase due to

flux compression are ignored. This is not valid in MFC systems examined

here.

Ref. [14] has examined the problem of plasma energy conversion, taking into

account the role of MFC. The system examined in the present work differs

from Ref. [14] in several respects. Firstly, Ref. [14] analyses a different param-

eter range, starting with an initial radius of ∼ 1 m and system dimensions

of ∼ 14 m in radius. Since the pickup coil is located at a radius of ∼ 9

m, a low initial magnetic field is sufficient to stop the plasma close to the

coil radius. Therefore, a magnetic field of ∼ 0.57 T is used in Ref. [14]. In

our last study [23,24], we had examined the case of a much smaller system

having a radius ∼1.5 m, a plasma with higher initial pressure (∼ 107 Pa)

and having an initial radial expansion velocity ∼ 107 m/s, which requires a

higher magnetic field (5 T) to extract enough energy from the plasma.

Secondly, the simulation results given in Ref. [14] start with an unperturbed

initial plasma state, so that instabilities are seeded by numerically-produced

perturbations. This was also the case in our last study [24]. In reality,

perturbations with different wavelengths and amplitudes would exist on the
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surface of the plasma sphere even before it starts expanding. For a real-

life system, therefore, it is necessary to study the growth of pre-existing

perturbations with different wavelengths and amplitudes.

In the present section, therefore, the study has been done for different cases

of applied initial perturbations (different wavelengths and amplitudes), tak-

ing into account the effects of magnetic field amplification (time dependent

g) and the geometric divergence due to spherical plasma expansion. The pur-

pose of this study is to numerically analyze, using MHD fluid simulations,

the MRT instability on the surface of the plasma liner and its implications

for the proposed MFC system. The initial plasma parameters are taken from

earlier published data for D-3He plasma. The plasma energy Ep and mass

mp used in this study are 280 MJ and 4.4 mg respectively [14−17,27,28]. The

value of seed magnetic field B⃗ used in the simulation is 5 T and the system

parameters are taken from Refs. [23,24].

Important work, results and conclusions of this study

In Ref. [23], we had developed a pure Lagrangian MHD scheme, self consis-

tently coupled with external circuit equations, to solve the governing equa-

tions. That scheme, however, is not suitable for the present study as large

material deformations are expected. In such situations, the pure Lagrangian

scheme fails just around the time the problem becomes interesting, i.e., when

plasma deformation becomes significant. Consequently, in Ref. [24] we have

formulated an Eulerian MHD scheme with volume-of-fluid material interface

tracking [25] to handle large plasma deformations in the MFC system. How-

ever, for the present study, it demands a prohibitively large number of cells

in the simulation. This is due to an order of magnitude difference between

the different scale lengths involved in the system, such as MFC system di-
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mensions of the order of few meters, plasma initial perturbation amplitude

αin of the order of few µm and wavelength λ ranging from few mm to cm.

Note that for numerical convergence with respect to the mesh size, at least

10−20 cells per λ are required. This demands an unacceptably large number

of computational cells in the simulation.

In this work, therefore, we have used an unstructured Lagrangian scheme [29]

with sub-zonal mass and pressure [30] to control artificial grid distortion and

hourglass type motion. Further, to stabilize the grid a node based tensor

viscosity [31] and an artificial grid distortion control algorithm [30] are used.

This allows us to simulate the plasma evolution till the stagnation or turn-

around time ts (the time at which the plasma radial expansion halts) without

leading to numerical instability. Approximately at this time the inductive

energy across the load goes to maximum [23,24]. Therefore, in the present

work, we are only interested in studying the evolution of MRT instability till

the stagnation time. We have obtained a substantial reduction of the overall

computational time with the help of an unstructured Lagrangian scheme,

since the total number of cells required in the simulation are considerably

reduced.

The following are the important works, results and conclusions of this study.

• We have developed an unstructured Lagrangian scheme [29] with sub-

zonal mass and pressure [30] to control artificial grid distortion and

hourglass type motion. Further, to stabilize the grid a node based tensor

viscosity [31] and an artificial grid distortion control algorithm [30] are

used.

• Two-dimensional MHD simulations of random, single and multi-mode

perturbation growth in an MFC system driven by a fusion plasma sphere

have been carried out for different initial perturbation amplitudes and
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wavelengths. The simulation takes into account the effects of magnetic

flux compression and geometric divergence due to spherical plasma ex-

pansion.

• In the random seed perturbation analysis, we have found that the dom-

inant modes in the spectrum show a progressive transition from the

short-wavelength to the intermediate-wavelength regime, λ ∼ 4−8 cm

− this is consistent with the observations in Ref. [24]. The cross-

correlation analysis indicates the mode coupling between dominant modes

and other modes in the spectrum.

• The multi-mode (sinusoidal) analysis, with two different fundamental

modes (say n1 & n2) and with αin ∼ 500 µm, shows the appearance

of higher harmonics of the individual modes, as well as the shorter

wavelength (n1 + n2) and higher wavelength inverse cascade (n2 − n1)

modes created by non-linear interaction of fundamental and harmonic

modes. This indicates that the modes upon saturation exhibits strong

interaction with other modes in the spectrum.

• In the case of single-mode perturbation, the modes continue to grow

exponentially with nearly constant γ and make a transition into the

non-linear phase (mode saturation). That is the amplitude growth of

the modes towards stagnation time, although exponential in nature, is

lower than the growth predicted by linear theory.

• We also note that extremely large flute structures and plasma jetting,

which could damage or reach the cavity-wall/coil and to severely dis-

turb the smooth compression of the magnetic field, are not seen during

the time period of our interest, viz., the first expansion phase of the

plasma. This means that it is feasible to have efficient flux compression

during the first expansion phase in the proposed system, for perturba-
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tion amplitudes αin ≤ λin/10. However, for αin ≥ λin, the instability

amplitudes are large enough, especially for longer λ modes, to cause

plasma jetting leading to significant reduction in the flux compression

efficiency.

This work has been published in [32] and some part of this work has been

presented in [33].

4. Development, validation and application of finite-difference time-

domain (FDTD) schemes for electromagnetics based on first prin-

ciple calculations to MFC systems

Introduction and motivation

Numerical simulations of MFC systems with solenoids as stator/pick-up coil

require accurate calculations of the inductance and resistance of complex

geometries, such as arbitrarily-wound helical coils. Analytical, closed-form

expressions are available, and have long been used, for calculating the coil

resistance, taking into account skin and proximity effects [34−36]. However,

for an arbitrarily-wound coil, involving a variable pitch, turn splitting and

inter-turn potting, calculation of the proximity and skin effects is complicated

by a complex geometry and the presence of multiple materials, conductors

as well as dielectrics. One example of such a dielectric is the inter-turn pot-

ting material. Even if these factors were not a consideration, the analytical

methods are applicable for a single frequency, while flux compression systems

typically involve complex temporal waveforms which cannot be approximated

by a single frequency. To our knowledge, none of the closed-form expressions

can handle these complexities.

The most general method is to solve the magnetic field diffusion equation for
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the system [38]. Such a solution yields the spatio-temporal distribution of

the magnetic field, and hence the current density, throughout the domain,

from which the resistance can be calculated. However, the electrical conduc-

tivity, and hence the magnetic field diffusion coefficient, can vary by orders

of magnitude through the coil assembly. This leads to numerical problems in

obtaining this solution using “standard” solvers for such equations. In par-

ticular, the inter-turn insulation has a near-infinite magnetic field diffusion

coefficient, requiring a near-zero timestep. This last problem can be handled

by using flux-limited transport, but the problem of small timesteps remains.

The problem is further complicated by imperfectly-known boundary condi-

tions for the magnetic field. There is thus a need for a more general method

that can handle real-life problems with all the complexities listed earlier.

We have used the Finite Difference Time Domain (FDTD) method for elec-

tromagnetics [37] to handle such problems. This method directly updates

Maxwell’s curl equations in time, using an explicit algorithm, to yield spatial

variation of electric and magnetic fields. It allows setting up of complex,

multi-material configurations. Furthermore, the time domain analysis allows

handling of arbitrary time-dependent waveforms of current. This technique

thus allows a study of real-life configurations with practically no limitations

on the geometric complexity, the materials used or the temporal waveforms.

To our knowledge, this is the first application of this powerful tech-

nique to such systems.

The objective of the work described in this section is the development and

validation of a computational tool using FDTD method for electromagnetics

for studying various phenomena (magnetic diffusion and flux loss, skin and

proximity effects in stator coils, inclusion of motional e.m.f terms in standard

FDTD equations for studying magnetic induction in moving conductors, etc)
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in MFC systems.

(a) Step-1: A computational tool using 3D-FDTD method for electromag-

netics is developed to calculate accurate resistance and inductance of

arbitrarily wound helical coils of interest in MFC systems. For this a

FDTD method for electromagnetics, which is adapted for magnetic-field

diffusion problems, has been developed. The simulations have been per-

formed using a locally developed 3D variable-mesh FDTD code. The

resistance calculations automatically take account of skin and proximity

effects and are capable of handling arbitrarily complex multi-material

systems. The simulations also yield a detailed 3D picture of magnetic

field diffusion through a complex multi-material coil in the presence of

arbitrary time dependent current waveforms. Hence these methods can

provide critical insight into coil performance in real-life MFC systems.

(b) Step-2: MFC systems involve the motion of the conductors (liner or ar-

mature) across the magnetic field. The FDTD calculations performed

so far include only the coil (stator); the inclusion of material move-

ment in standard FDTD equations is, therefore, necessary. Worldwide,

the FDTD algorithms for electromagnetics are used mainly for static

problems.

Therefore, we have developed a new 2D-FDTD algorithm for electro-

magnetics by including motional e.m.f terms in standard FDTD update

equations, which can be applied to flux compression systems with mov-

ing parts. Material movement is implemented by continuously changing

material properties in each computational cell consistent with mate-

rial advection. The magnetic flux carried by the moving conductors in

a fixed Eulerian mesh is transported using a flux corrected transport

(FCT) scheme. A higher time-step is achieved by artificially increas-
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ing the permittivity of the medium. This new approach is validated

with standard analytical solutions for planar flux compression systems

and magnetic field diffusion in moving conductors with non-relativistic

velocity. This work is the first approach to use FDTD method for elec-

tromagnetic problems involving material motion.

(c) Step-3: Finally, in order to demonstrate the utility of the powerful

FDTD-based scheme to MFC problems, we have applied it to a sam-

ple problem involving plasma armatures [15]. Here, an ideal cylindri-

cal plasma expansion in an applied magnetic field ∼ 0.27 T is consid-

ered. The initial conditions are taken from Ref. [15] with plasma energy

270 MJ and pickup coil (single turn) radius 8.25 m. In Ref. [15], the

electrical energy is extracted across a resistive load connected to the

pickup coil. The hydrodynamic calculation provide the spatial vari-

ation of plasma conductivity and velocity at a given instant of time.

This information is used in the FDTD calculation to update electro-

magnetic fields. The updated electromagnetic fields are then used in

the hydrocode for calculating magnetic deceleration on the surface of

the plasma. We have compared the plasma energy conversion efficiency

(∼ 28%) at the end of first expansion phase with the reported values ∼

30% in Ref. [15]. A reasonable agreement with the results are obtained.

However, the dynamics of the plasma after the first expansion phase is

found to be different from the predictions made by the 0D-model de-

scribed in Ref. [15]. This is due to the neglect of plasma compressibility

in their 0D-model. As expected, the diffusion of magnetic field into the

plasma is found to be negligible.
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Important works, results and conclusions of this study

• We have developed and validated a 3D parallel variable-mesh FDTD

scheme by directly solving Maxwell’s equations adapted for magnetic

field diffusion problems. An exponential difference scheme was used for

the stability of the numerical solution in the conductor region.

• To permit higher time-steps in FDTD calculations, artificial scaling of

permittivity was considered.

• Identified important issues that must be kept in mind (e.g. cell-size, dis-

tance to computational boundary, maximum permittivity scaling factor,

etc) while performing magnetic diffusion problems using FDTD scheme

for electromagnetics. Some new constraints were identified for the first

time.

• The resistance, inductances and proximity factor calculated for sample

problems are validated with known models/results. However, the tech-

nique also suffers from the disadvantage of being extremely demanding

in terms of computational power. Hence the method can be regarded

as a first exploratory step, rather than as a mature technique ready for

application to design.

• Developed and validated a parallel variable-mesh 2D-FDTD algorithm

with an exponential difference scheme, adapted for magnetic field diffu-

sion problems involving material movement, by directly solving Maxwell’s

equations including motional e.m.f terms. The algorithm is validated

with the known analytical solutions for a planar MFC system.

• The validated algorithm is then applied to study MFC by an expanding

cylindrical plasma [15]. The energy conversion efficiency at the end of

the first expansion phase is calculated and compared with the results
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given in Ref. [15]. Reasonable agreement in the results is obtained.

• This method accurately predicts magnetic field diffusion into a moving

conductor and field amplification in the compression volume for complex

situations. However, it suffers from the disadvantage of being extremely

demanding in terms of computational power, even for sample problems

with typical dimensions of a few cm with conductivity of the order of

106 S/m.

This work has been published in [39−42].
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1
Introduction

1.1 Magnetic flux compression generator

Conventional high explosive (HE) driven Magnetic Flux Compression (MFC) gen-

erators (also known as magneto cumulative generators) convert the chemical energy

of explosives into high-power electrical pulses or high magnetic fields through the

compression of magnetic flux [1–10]. These systems typically consist of a high-

explosive charge contained inside a metallic conductor (“armature”). Detonation

of the explosive produces high-pressure gases, which cause the armature to ex-

pand outward at a high velocity (few km/s). The armature is subjected to an

externally-imposed magnetic field, e.g. by being placed inside a current-carrying

solenoid. Since the armature is a good electrical conductor, it pushes against the

magnetic field and compresses the magnetic flux into a smaller space. This mag-

netic flux compression (MFC) leads to amplification of the electrical energy in the

solenoid. The net result is that the chemical energy of the explosive is partially

converted into output electrical energy. MFC generators have found widespread

use as pulsed power sources for a broad range of applications such as fusion, elec-
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1.1. Magnetic flux compression generator

tromagnetic accelerators, high-power micro-wave (HPM) sources, laser, electron,

ion, or neutron sources, high magnetic field research and many others.

1.1.1 Basic theory of magnetic flux compression

A brief theoretical introduction to MFC is given in the following. The Faraday

induction law states that the electric field appearing at the open circuited terminals

of a loop with contour ‘C’ and area ‘S’ is equal to the time rate of change of the

flux Φ =
∫
S
B⃗ · dS⃗ through the loop:

∫
C

E⃗ · d⃗l = −dΦ⃗
dt

= − d

dt

∫
S

B⃗ · dS⃗ (1.1)

For an ideal conductor (infinite electrical conductivity σ), the flux loss in to

the conductor is zero. That is the total flux is conserved.

dΦ⃗

dt
=

d

dt

∫
S

B⃗ · dS⃗ = 0 (1.2)

Φ⃗ =

∫
S

B⃗ · dS⃗ = const. (1.3)

Therefore, for an ideal case, if the area of the loop is reduced, the magnetic

flux density B⃗ in the loop has to increase so as to conserve the total flux Φ. This

is the working principle of MFC. Work has to be performed to decrease the area

of the loop. In the case of explosive driven MFC systems, this work is done by the

explosive.

In terms of electrical notations, the above phenomena can be described as

follows. The magnetic flux is defined as Φ = LI, where L is the system inductance

and I is the current. The work is done so as to decrease the system inductance.

Therefore, for an ideal case, the current and hence B⃗ in the confining conductor
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1.1. Magnetic flux compression generator

has to increase so as to conserve the flux.

The two expressions
∫
S
B⃗ · dS⃗ = const and LI = const, are equivalent but

they best describes different types of devices. The imploding devices used for

the generation of high magnetic fields are best described by the expression
∫
S
B⃗ ·

dS⃗ = const and are called MK-1 devices, whereas exploding devices, called as

MK-2 devices [1], delivering high currents are best described by the expression

LI = const.

For practical cases, the magnetic flux diffuses into the confining conductors due

to finite electrical conductivity (resistive loss). Therefore, the magnetic flux has

to be compressed within a time frame such that the magnetic flux does not have

time to diffuse through the conductors and out of the compression volume. The

diffusion of magnetic field into the conductor is governed by the following equation.

∂B⃗

∂t
= −∇× 1

µσ
∇× B⃗ = −∇× η

µ
∇× B⃗ (1.4)

Here, µ, σ and η = 1/σ are the permeability, electrical conductivity and re-

sistivity of the conductor material respectively. The term 1/(µσ) is called the

magnetic diffusivity. For a one-dimensional planar case (see Fig 1.1) and neglect-

ing the spatial gradient of resistivity η, the equation reduces to

∂Bz

∂t
=

1

µσ

∂2Bz

∂x2
=
η

µ

∂2Bz

∂x2
(1.5)

where, Bz is the perpendicular magnetic field component. From Eq. (1.5), the

diffusion time-scale for the magnetic field to diffuse the conductor is given by

tB = µσL2 (1.6)

where, L is the conductor thickness. For effective magnetic flux compression,
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1.1. Magnetic flux compression generator

the flux compression time tc = Lc/v ≫ tB, where Lc and v are the compression

length and velocity of the conductor respectively, see Fig 1.1.

Lc0

xy

z

σ = 8

Bz

Bz

σσ

σ = 8

statorstator

armature

0v v(t)

(a) t = 0 (b) arbitrary time

Lc(t)

Figure 1.1: Schematic of one dimensional planar flux compression by incompress-
ible electrical conductors. (a) Initial configuration, (b) During the flux compression
process.

For steady state sinusoidal variation of field with angular frequency ω, the

solution of Eq. (1.5) is given by

Bz(x, t) = B0e
−x/δ sin

(
ωt− x

δ

)
(1.7)

where, B0 is the magnitude of the field and δ =
√

2
ωσµ

is the skin depth.

The variation of the current density (J⃗ = 1
µ
∇ × B⃗) along the thickness of

the conductor produces non-uniform Joule heating in the conductor, leading to

non-uniform electrical conductivity (σ = σ(T ), where T is the temperature). The

magnetic field diffusion, therefore, is non-linear and is governed by the following

equation for the one-dimensional planar case.

∂Bz

∂t
=

∂

∂x

1

µσ

∂Bz

∂x
(1.8)

Here, σ = σ(x, T, t); is a function of space, local heating and time.

The practical implication of magnetic field diffusion is that the conductor thick-
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ness in a flux compression generator should be chosen such that the skin depth

is smaller than the conductor thickness to avoid excessive loss of flux during the

compression.

During the process of MFC, the magnetic field in the compression volume and

the associated J⃗ × B⃗ force on the conductor increases. This will slow down the

armature and hence the compression. The increased magnetic field may eventually

stop the armature and even cause it to reverse direction. This is called ‘turn-

around’ or ‘armature rebound’. At the turn-around point, the magnetic energy

inside the system equals the sum of initial kinetic energy of the armature and

magnetic energy in the system.

1.1.2 Governing circuit equations

The equivalent circuit diagram for a MFC system is shown in Fig. 1.2. The flux

conservation equation with resistive elements can be represented by the following

differential equation.

L
dI

dt
+ I

dL

dt
+ IR = 0 (1.9)

Here, L = Lg + LL and R = Rg + RL are the total system inductance and

resistance respectively. The terms Lg and Rg are represent the generator induc-

tance and resistance. Similarly, LL and RL are the load inductance and resistance

respectively. The current I, flowing through the circuit can be found by solving

the Eq. (1.9). The analytical solution of the equation is given by

LI = LiIiexp

(
−
∫ t

0

R

L
dt

)
(1.10)

where, Ii is the initial seed current and Li is the initial total inductance of the
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system. From Eq. (1.9), the necessary condition for dI/dt > 0 can be deduced as

follows:

−dL
dt

> R (1.11)

In order to account for intrinsic flux losses [1] in HE-driven MFC systems, dL/dt

is usually multiplied by a constant parameter 0 < α ≤ 1 in the above equation.

The value of α is typically 0.6−0.7.

−αdL
dt

> R (1.12)

L
L

R
LI

Rg

Lg

Load

Generator

Figure 1.2: Equivalent circuit diagram for a general MFC system.

Multiplying Eq. 1.9 by current I, we get the rate of change of electrical energy.

d

dt

(
1

2
LI2
)
+
I2

2

dL

dt
+ I2R = 0 (1.13)

The analytical solution of the above equation is given by

E(t) = Ei
Li
L(t)

exp

(
−2

∫ t

0

R

L
dt

)
(1.14)

where the subscript i refers to the initial value. The necessary condition for

positive energy gain is given by
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−dL
dt

> 2R (1.15)

Using the intrinsic flux loss parameter, α, the above equation can be written

as

(1− α)
dL

dt
> 2R (1.16)

1.2 MFC using plasma armatures/liners

Most existing MFC devices use solid metal armatures to compress the magnetic

field. However, the use of imploding liquid and plasma liners has also been ex-

plored for the generation of high magnetic fields [12, 18–20]. A schematic repre-

sentation of MFC systems used for the compression of an axial seed magnetic field

in cylindrical geometry is shown in Fig. 1.3. The left side plot in Fig. 1.3 shows

an MFC system driven by an imploding plasma/liquid liner (converging geometry)

whereas the right side plot shows the compression of magnetic field between an

expanding cylindrical plasma and an outer co-axial confining conductor (diverging

geometry). In the following sections, we present a brief review of MFC by plasma

armatures/liners in both converging and diverging geometries.

1.2.1 Imploding plasma liners

Many authors have examined the process of MFC by an imploding liquid/plasma

liner. Analytical theory and numerical simulations of the confinement and com-

pression of magnetic flux by plasma shells are given in Ref. [11]. Ref. [12] has

examined the production of ultra-high magnetic fields ∼100 megagauss (MG) by

the compression of an axial magnetic field inside a radially imploding gas-puff Z
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plasma liner

a) Imploding device

θ
Bz

θ

Outer conductor

x plasmaBz

b) MFC by expanding plasma 

Figure 1.3: Cross-section of a cylindrical MFC system driven by plasma liners
in imploding and expanding geometries. (a) Compression of axial magnetic field
by an imploding cylindrical plasma liner. (b) The expanding central plasma col-
umn compress the axial magnetic field between the plasma and the outer co-axial
cylindrical conductor.

pinch plasma. The compression of an axial field can also be achieved by a laser

driven ablative implosion of a thin liner [12–14]. In Ref. [15], self-similar solutions

have been obtained for the compression of the plasma with a frozen-in magnetic

field by an imploding thin cylindrical wall. Self-similar solutions for supersonic and

subsonic compression of a magnetized plasma-filled liner is provided in Ref. [16,17].

The production of high axial magnetic fields ∼2−40 MG by imploding an annular

gas puff Z pinch has been studied in Ref. [18, 19]. The production of 10−15 MG

fields by using an HE-driven liner compressing an initial seed flux has been studied

in Ref. [20].

1.2.2 Expanding plasma armatures

Several works have been reported in the past which explore MFC by an expanding

plasma armature. A spherical expansion configuration compressing an azimuthal

field was proposed by Fowler et al. [4]. The general idea of MFC by an expanding

plasma sphere has been proposed by Artsimovich [21]. This has been applied to

inertial fusion energy (IFE) systems by Haught et al. [22]. The basic idea is to use
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a conducting surface that encloses a diamagnetic plasma expanding across an ex-

ternal magnetic field. The external field is excluded by the diamagnetic plasma due

to the currents produced in the plasma. The induced electromotive force (e.m.f)

drives currents in the shielding conductor and thus converts the plasma kinetic

energy into electrical energy [37]. Raizer [23] obtained, theoretically, a conversion

efficiency of up to 80 % when a plasma sphere is allowed to expand in an external

homogeneous magnetic field in the absence of a shielding conductor. Also, using

a simple theoretical model, an efficiency of about 50% in the presence of short-

circuited pickup coils were obtained in the development of rocket thrust using

fusion micro-explosions [24]. A preliminary analytical study with an assumption

of cylindrical plasma expansion is provided in Ref. [25]. Cowan et al. [34–36] pro-

posed a pulsed power conversion system with inductive storage, called PULSAR,

that could be powered by the expanding plasma from fusion micro-explosions to

compress the magnetic flux. They expected an energy conversion efficiency >80%

with a fusion reactor scale PULSAR design. A first quantitative study, using a

two-dimensional particle-in-cell (PIC) simulation [26,27] for an ICF fusion reactor

with D-3He fuel, predicts a maximum efficiency of 20 % with a resistive load. An

experimental study [28–30] using laser-produced plasma clouds shows a conversion

efficiency of about 30%.

1.2.3 Motivation for present work

Plasma armature, as compared to a metal armature, has several advantages. The

major advantages are summarized below.

• High electrical conductivity, leading to higher flux efficiency (lower flux losses

due to magnetic flux leakage into the armature).

55



1.2. MFC using plasma armatures/liners

• Much higher expansion velocity, leading to smaller expansion times, in turn

increasing flux efficiency.

• Greater expansion ratio, i.e., ratio of maximum to minimum radii of plasma.

With a metal armature, fracture precludes the use of expansion ratios higher

than 2 for aluminium (Al) armatures and ∼2.5 for copper (Cu) armatures.

• Unlike conventional explosive driven flux compression generators where the

stator coil is permanently destroyed, the plasma armature driven flux com-

pression system gives lower impulse to generator structure. Reusable coil

structures can be designed [26,27]. However, to protect the coil from plasma

radiations, a cylindrical protective shield between the coil and plasma may

be required.

On the other hand the plasma armature driven MFC systems have some major

disadvantages as summarized below.

• Plasma is subject to instabilities: Instabilities can also arise in metal arma-

tures, but are stabilized due to material strength. A plasma has no material

strength.

• Short operational time may lead to ultra high voltages, leading to problems

with insulation & electrical breakdown.

The advantages of plasma armatures over metallic liners make this subject

attractive. The plasma armatures can expand much faster than metal armatures,

yielding shorter-duration electrical pulses and higher flux efficiencies. However,

they are subjected to MHD instabilities due to its interaction with the magnetic

field. Also, the short operation time may lead to ultra-high voltages. Hence it

is necessary to perform a detailed numerical study of the interaction between the
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plasma and an externally-imposed magnetic field. In the present work, we explore

the physics of MFC using an expanding spherical plasma armatures. The concept

may find application in inertial fusion energy (IFE) systems as a direct energy

conversion scheme to convert a part of fusion plasma kinetic energy into pulsed

electrical energy.

1.3 Proposed concept of MFC by a plasma arma-

ture

1.3.1 Basic description

In Inertial Fusion Energy (IFE) systems, such as laser-driven fusion, the implosion

and burn process produces a fireball consisting of a high-density, high-temperature

plasma [25, 31, 32]. Since the IFE plasma fireball is a good electrical conductor,

it could, in principle, act as an expanding armature in an MFC system. Plasma

armatures can expand much faster than metal armatures, yielding shorter-duration

electrical pulses and higher flux efficiencies.

Schematic representations of the basic concept are shown in Fig. 1.4 and 1.5.

The first figure shows the initial configuration of the system, where the coil is driven

by a power source (e.g. a charged capacitor) to set up the initial magnetic field.

Following earlier works [24–26, 28], we assume that a spherical plasma is created

at the center of the coil, e.g. from fusion micro-explosions [24–26, 28]. Also, we

assume that the system is isolated from the power source by opening the switch s1.

The sequence of switch operation is as follows. At time t=0, the switch s1 is closed

and the switch s2 is held open. This allows the capacitor to discharge into the coil

and set up the initial magnetic field. Simultaneous (ideally) opening and closing of
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1.3. Proposed concept of MFC by a plasma armature

the switches s1 and s2 respectively, prior to the plasma expansion, will exclude the

capacitor from the system. The circuit breakers or opening switches can be SF6

gas switches capable of handling high voltages, as suggested in earlier works [25,

26]. Such circuit breakers or opening switches and near-simultaneous switching

actions are realized in many magnetic flux compression generator experiments

using plasma opening switches (POS), two-stage exploding foil switches (EFS),

SF6 gas switches etc. However, for the time-scales involved, the possible options

are either a plasma opening switches (POS) or an exploding foil switches (EFS).

It is worth noting here that for these opening switches a large energy has to be

dissipated inside the switches. Also, the switch must be capable of absorbing

hundreds of MJ energies. At present, similar to earlier works [25, 26], we assume

that these requirements can be achieved with near-term engineering technologies.

The whole system, excluding the load and source, should be kept inside a

vacuum chamber similar to the designs given in Ref. [25,26]. Similarly, to protect

the cylindrical coil from plasma radiation, a cylindrical protective shield may be

placed between the coil and plasma, see Fig. 1.4. For a typical case of plasma and

system parameters, an ultra-high single-turn EMF of the order of 25 million volts

(MV) is produced. In order to be able to handle such voltages, the radiation shield

must be electrically insulating in the azimuthal direction. These requirements can

be achieved with existing or near-term engineering technologies. A brief discussion

on these issues and possible methods to overcome those are given in Ref. [25],

which can also be found in many IFE reactor design concepts.

The expanding plasma performs work against the magnetic field and thereby

loses energy. The increase in the magnetic energy due to magnetic flux compression

is accompanied by an increase in the coil current (See Fig 1.5). In other words,

a part of the plasma kinetic energy can be converted into electrical energy by the
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1.3. Proposed concept of MFC by a plasma armature

compression of magnetic flux between the coil and plasma. The concept may find

application in inertial fusion energy (IFE) systems as a direct energy conversion

scheme.

However, the expanding plasma, working against a magnetic field, is subject to

MHD interchange instabilities, e.g. magnetic Rayleigh-Taylor (MRT) instability,

flute mode instability etc. Therefore, the plasma parameters, system dimensions

and initial magnetic field should be chosen in such a way that MHD instabilities

do not grow significantly during the first expansion phase of the plasma. Here,

the first expansion phase is defined as the time duration from the start of plasma

expansion up to the stagnation point, where the plasma expansion velocity along

the radial direction falls to zero.
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Figure 1.4: Schematic of magnetic flux compression system inside a solenoid, driven
by an expanding plasma sphere (not to scale)
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Figure 1.5: Schematic of the proposed magnetic flux compression system during
the plasma expansion phase (not to scale)

1.3.2 Typical initial conditions

In the present computational work, we focus on the dynamics of plasma expan-

sion across the magnetic field, the energy conversion efficiency and an analysis of

magnetic Rayleigh-Taylor (MRT) instability in such systems. Therefore, similar

to earlier works, we start our analysis/simulation from the time when plasma is

created and the initial magnetic field is set up.

The initial plasma conditions are chosen from earlier published works [25–28]

for a D-3He fusion plasma. Although the required ignition energy is substantially

higher for D-3He, the reaction products will consist predominantly of charged par-

ticles, which can be electromagnetically manipulated. In D-3He fusion products,

about 80% of the fusion energy is carried by 14-MeV protons (D2
1+He32 → He42 (3.6

MeV) +p1
1 (14.7 MeV)). Shortly after fusion reactions start, the plasma reaches a

state of extremely high temperature (few tens of keV) and density (∼ 106 kg/m3),

and has a radius of 150-250 µm. Therefore, initially, it undergoes free expansion
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in the applied initial magnetic field. Considering this fact, we start our simulation

with an initial plasma radius of about 1.0 cm with a coil of radius 1.5 m. There-

fore, the ratio of initial plasma radius (rpi) to coil radius (rc) is ∼7×10−3. A higher

initial radius of about 1 m is reported in Ref. [25, 26], with rpi/rc ∼0.1 (rc ∼10

m). Hence the system dimensions used here are much smaller than those given

in Ref. [25–27]. We have taken the coil axial length as approximately 2−4 times

the radius. The initial plasma kinetic energy is typically varied from 140−280 MJ.

with plasma mass equal to 1−6 milligrams (mg) [25–27]. The initial magnetic field

is varied from 2 to 10 Tesla, which is considerably higher than the magnetic field

values used in earlier works [25–27].

1.3.3 Major difference with past work in this area

Major differences with earlier works [25–27] described above are in terms of the

system dimensions, parameter regime, feeding magnetic field source, computational

model used etc.

Ref. [33] analyses a different plasma parameter range, starting with an initial

radius of ∼1 m and system dimensions of ∼14 m in radius. Since the pickup coil

is located at a radius of ∼9 m, a low initial magnetic field is sufficient to stop the

plasma close to the coil radius. Therefore, a magnetic field of ∼0.57 T is used in

Refs. [33]. We have examined the case of a compact system having a radius ∼1.5

m. That is the plasma expansion radius is much smaller than that described in

Refs. [25–27], leading to higher-density and higher-pressure plasma (∼ 107 Pa) with

an initial radial expansion velocity ∼ 107 m/s. This requires a higher magnetic

field (∼5 T) to extract enough energy from the plasma.

Also, earlier work in this area [25–27, 33] had considered separate coils for

producing the primary field and for carrying the induced (output) currents. The
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present study is the first to consider a single coil. This makes the design similar

to conventional explosive driven helical generator. Also, the complexity of two

coils with a cylindrical shielding conductor between the coils [25–27, 33] can be

eliminated. However, since the same coil is used for providing initial magnetic

field and energy extraction, it is necessary to have fast switching devices to isolate

the primary power supply.

Most of the existing works are based on simple analytical (Zero-D) models

except the two-dimensional (2D)-PIC simulations given in Ref. [26, 27]. The non-

uniform deformation of plasma (larger expansion along the axial direction) is re-

ported in Refs. [26,27]. Therefore, it is necessary to analyse the plasma dynamics

in 2D. Apart from this, for a detailed analysis of plasma RT instabilities the de-

velopment of 2D scheme is necessary. In Refs. [26,27], the simulations are started

with an initial plasma radius of about 1 m and the plasma is allowed to expand

up to a radius of ∼14 m. That is the plasma had already expanded to a very low

density. Therefore, PIC simulations are sufficient to study the plasma dynamics.

However, for the present work, since we are dealing with a higher-density plasma

(hence fluid-like), MHD simulations are required. We have used a 2D axisymmetric

MHD model coupled self-consistently to an external circuit equations with load.

To the best of our knowledge, it is the first time such a calculation is performed

for an MFC system driven by spherical plasma armatures.

The analysis of MHD instabilities on the surface of the plasma armature is one

of the objective of this work. The instability analysis (using 2D PIC simulations)

reported in Refs. [26,27] are for comparatively lower initial magnetic field and larger

plasma expansion. We have performed a detailed 2D instability analysis (random

and single mode perturbation analysis) for different values of initial perturbation

amplitudes and wavelengths using 2D MHD simulations.
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Finally, we examine the utility of Finite-Difference Time-Domain (FDTD)

scheme for electromagnetics for studying MFC systems. This is done by including

velocity-dependent terms in the standard FDTD equations. The validated algo-

rithm is then applied to a sample problem involving plasma armatures. To our

knowledge, this is the first application of this powerful technique to such systems.

1.4 Plan of the thesis

The objective of this thesis work is to computationally examine the physics of

expanding plasma armatures using numerical schemes based on MHD as well as

Finite Difference Time Domain (FDTD) approaches.

During the expansion phase, for typical system and plasma parameters used

in this work (discussed earlier in Sec. 2.3), the characteristic scale length of the

plasma is much larger than the ion skin-depth and orbit radius. Hence plasma dy-

namics can be modeled using single fluid MHD equations assuming quasi-neutrality

in the plasma. In Chapter 2, therefore, we have presented a study of plasma dy-

namics across the magnetic field and the energy conversion efficiency using a 2D

Lagrangian MHD scheme coupled self-consistently with an external circuit equa-

tion solver [52]. The main objective is to introduce the concept of MFC inside

a solenoid and its potential application as a direct energy conversion scheme to

convert plasma kinetic energy into pulsed electrical energy. A brief discussion of a

few important theoretical and technical issues that need to be addressed are also

included. The work includes the development of a 2D Lagrangian hydrodynamic

code and an external circuit equation solver using the filamentary model [49, 50]

to update the coil and plasma currents. The modules are self-consistent coupled,

and an analysis performed of the energetics of the proposed system.
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Numerical studies described in Chapter 2 have shown that plasma expansion

in an MFC system is highly non-uniform due to magnetic deceleration. In par-

ticular, the plasma exhibits non-spherical expansion, i.e., axial expansion of the

plasma is higher than radial expansion. Towards the end of the expansion phase,

Magnetic Rayleigh-Taylor (MRT)-like instabilities are observed at the plasma sur-

face. Under conditions where such instabilities reach large amplitudes, there are

large distortions of the plasma shape, hence Lagrangian algorithms fail. In order

to study these effects in detail, it is necessary to develop an Eulerian MHD model.

In Chapter 3, we have described the details of an Eulerian MHD model [82] de-

veloped to study large deformation plasma dynamics in the proposed MFC system.

The plasma expands into an ambient medium (vacuum or low density material).

The treatment of mixed computational cells (a cell containing more than one ma-

terial) is therefore necessary for the Eulerian method. Therefore, a multi-material

formulation based on a volume-of-fluid (VOF) method [60] is used. The details

of the benchmarking of the code against known results and the convergence anal-

ysis are also given in Chapter 3. The details of the new volume-of-fluid (VOF)

algorithm developed [60] for material interface tracking are given briefly in Ap-

pendix A. Details of the analysis of large deformation plasma dynamics in the

proposed MFC system are also given in Chapter 3. We have also demonstrated

the observation of magnetic Rayleigh-Taylor (MRT) instability on the surface of

the plasma near the stagnation time by using this new computational tool.

The simulation results given in Chapter 3 start with an unperturbed initial

plasma state, so that instabilities are seeded by numerically-produced perturba-

tions. In reality, perturbations with different wavelengths and amplitudes would

exist on the surface of the plasma sphere even before it starts expanding. For

a real-life system, therefore, it is necessary to study the growth of pre-existing
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perturbations with different wavelengths and amplitudes. Therefore, Chapter 4 is

exclusively dedicated for this instability analysis for different applied perturbations

and initial plasma conditions. The algorithm described in Chapter 3 was able to

handle large plasma deformations in the MFC system. However, for the present

instability analysis, it demands a prohibitively large number of cells in the simu-

lation. This is due to an order of magnitude difference between the different scale

lengths involved in the system, such as MFC system dimensions of the order of few

meters, plasma initial perturbation amplitude αin of the order of few µm and wave-

length λ ranging from few mm to cm. Therefore, we have used an unstructured

Lagrangian scheme [98] with sub-zonal mass and pressure [99] for this analysis.

In Chapter 4, we provide details of an unstructured Lagrangian scheme and the

results of instability analysis with random, single and multi-mode perturbations.

In Chapter 5, we examine the utility of a three-dimensional Finite-Difference

Time-Domain (FDTD) scheme for electromagnetics for studying magnetic field

diffusion in complex geometries relevant to MFC systems [53, 54]. As a first step,

the FDTD scheme is applied to static problems, in particular to determine accurate

resistance and inductance of simple magnetic field coils, taking account of skin

and proximity effects. In the second step, the algorithm is extended to study MFC

systems involving material movement by including velocity-dependent terms in the

standard FDTD equations. This work is the first attempt at extending the FDTD

method for electromagnetic problems involving material motion. Finally, in order

to demonstrate the utility of the powerful FDTD-based scheme to MFC problems,

we have applied it to a sample problem involving plasma armatures [25]. Details

of these steps and related issues are discussed in Chapter 5.

Finally, in Chapter 6, we present the overall summary/conclusions of the work

reported in the present thesis and suggestions for future work.
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Some of the simulations [53, 54] reported in this thesis required large comput-

ing power and were carried out on a parallel computing facility set up by the

Computational Analysis Division in BARC Visakhapatnam.
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2
Analysis of energy conversion efficiency

and related issues using Lagrangian MHD

simulations

2.1 Introduction

In this chapter, we present results from two-dimensional MHD simulations to ex-

plore the possibility of direct energy conversion of plasma kinetic energy into elec-

trical pulses. Details of the proposed concept and a brief summary of related

works are given in Chapter 1. The major differences with earlier works described

in Chapter 1 are in terms of the parameter regime, the external source of the seed

magnetic field and the computational model, as explained in Chapter 1. For the

present study, we assume that the load is predominantly inductive – this is a ma-

jor difference from earlier works [25–27], where a resistive or capacitive load was

considered. A brief discussion on a few important theoretical and technical issues
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that have to be addressed are given in the following sections. Also, we report the

overall efficiency of the system with different load conditions.

2.2 Computational model

During the expansion phase, Ln ≫ rLi, c/ωpi and rD; where Ln is the characteristic

scale length of the plasma, rLi ∼ vi/Ωi is the ion Larmor radius, vi ∼ (Ti/mi)
1/2

is the ion thermal speed, Ωi is the ion cyclotron frequency, ωpi is the ion plasma

frequency and rD is the Debye radius. Similarly, the time scale (plasma radial

expansion time ∼ ts) is longer than an ion cyclotron period. Therefore, a single-

fluid MHD model (assuming quasi-neutrality) can be used to describe the plasma.

In addition to this, we assume that the plasma behaves like an ideal gas. The

governing equations are as follows [39]:

∂ρ

∂t
+∇ · (ρu⃗) = 0 (2.1)

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇p+ J⃗ × B⃗ (2.2)

∂

∂t

(
ρI +

ρu2

2

)
+∇ ·

[
ρu⃗

(
I +

u2

2

)
+ pu⃗

]
= 0 (2.3)

where, ρ is the density, u⃗ is the velocity vector, p is the pressure, J⃗ is the current

density, B⃗ is the magnetic field and I is the internal energy. We have neglected

the resistive heating term required in Eq. 3.3, because of the high conductivity of

the plasma and short time scales involved. Similarly, the energy flux from thermal

heat conduction is neglected.

The two-dimensional MHD equations are solved using a locally-developed 2D-
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Lagrangian code based on the formulations given in [38]. The code uses an explicit

finite-difference scheme for hydrodynamic equations.

For the present geometry setup, only the θ-component of current exists in

both coil and plasma. A filamentary model, similar to the formulations given by

Novac et al. in Refs. [49–51], is used to update the coil current and the induced

currents in the plasma. This model includes the effect of plasma dynamics. For

this, each coil turn is broken up into a number of coaxial circular loops. Similarly,

each computational cell used to describe the plasma region in the hydrodynamic

calculation is assumed to be a circular loop with a rectangular cross-section. Each

such loop may carry a different current, which is updated self-consistently using

coupled circuit equations given below:

LT
dIc
dt

+
Na∑
j=1

Mcj
dIj
dt

= −IcRT −
Na∑
j=1

Ij
dMcj

dt
(2.4)

Mcj
dIc
dt

+ Lj
dIj
dt

+
Na∑

i,j=1;i̸=j

Mij
dIi
dt

= Sj (2.5)

Sj = −IjRj −
Na∑

i,j=1;i̸=j

Ii
dMij

dt
− Ic

dMcj

dt
− Ij

dLj
dt

(2.6)

where, LT , RT and Ic are the total inductance (coil+stray+load), total resis-

tance and coil current respectively. Lj, Rj and Ij are the self-inductance, resistance

and induced current respectively for the jth plasma filament. Mij is the mutual

inductance between the plasma filaments i and j. Similarly, Mcj is the mutual

inductance between coil and jth plasma filament. The coupled Eqs. 2.4 and 2.5 are

solved simultaneously. The cell-centered current density is obtained by dividing

the current obtained using Eq. 2.4 and 2.5 by the area of the computational cell

in the R-Z plane, which represents a fluid element. The node-averaged current
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density is then calculated to estimate the Lorentz force. The self-inductance of a

circular loop and the mutual inductance between the loops are calculated using

analytical equations in terms of elliptic integrals. The magnetic field at any given

point in the computational domain is calculated using the contributions from all

plasma filaments and the coil loops. The field from a circular filament loop is

calculated using an analytical formula in terms of elliptic integrals. The self and

mutual inductances of the current loops can be calculated more accurately by using

standard Finite-Element method [141]. However, for the present system involv-

ing large number of current carrying filaments, the application of Finite-Element

method [141] to calculate the self and mutual inductances of the filaments at each

time-step will be computationally expensive. Therefore, we have used analytical

formula in terms of elliptic integrals. The estimated maximum error w.r.t. to the

results of Finite-Element method [141] was about 2−3 %.

2.3 Initial conditions

A brief discussion on typical initial conditions used in this work has been given

in Chapter 1. However, some important parameters are given below for the sake

of completeness. The initial plasma kinetic energy and mass are taken as 140 MJ

and 6 milligrams (mg) [25–27, 31, 32] respectively. Initially, the plasma undergoes

free expansion in the applied magnetic field, since the kinetic pressure, pk is far

higher than the magnetic pressure, pB (high β = pk/pB plasma). Considering this

fact, we start our simulation with an initial plasma radius of about 1.0 cm. We

have taken the coil axial length as approximately 2-4 times the radius. The coil

radius (rc), length (lc) and no. of turns (nc) are 1.5 m, 4.5 m and 30 respectively.

For higher efficiency, the plasma should stagnate at a radius, rp∼rc. The seed
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field should be sufficient to stop the plasma expansion within this distance, which

means that the initial magnetic field has a strong effect on the recovery efficiency.

An initial magnetic field of ∼5 T is assumed, corresponding to an initial current

of ∼750 kA.

Ideally, the magnetic field profile inside the plasma sphere, at the time simu-

lation starts, must be evaluated by considering magnetic field diffusion into the

sphere as it expands rapidly across the magnetic field, from an initial radius

∼200µm to 1 cm. However, magnetic field diffusion into the plasma sphere during

those early time-scales can be neglected, due to high temperature and electrical

conductivity. Hence we assume a uniform magnetic field through the sphere at

t=0. The subsequent evolution of this field, as the sphere expands, is calculated

using the frozen-field approximation, which conserves total magnetic flux (∝ B0)

connected with each plasma mass element. We have examined the difference in

plasma dynamics as well as overall system efficiency for two cases. The first case

assumes that the initial magnetic field inside the plasma is (and therefore remains)

zero at all times. The second case assumes a constant initial magnetic field in the

plasma, which is evolved according to the frozen-field approximation. We have

found that the choice of initial B0 has negligible effect on the overall system dy-

namics and efficiency for the system parameters considered in this work. Hence,

in the rest of this chapter, we have assumed a uniform initial magnetic field in the

plasma.

We have also analyzed the dependence of overall system efficiency on the initial

radius of the plasma sphere, rp. Negligible variation is observed for 0.01m ≤ rp ≤

0.1m. Therefore, in the present study, we have assumed an initial plasma radius

of rp = 1cm ≪ rc. The initial coil and load inductances (Lc and LL) were ∼1.4

millihenry (mH) and 1.0 mH respectively.
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2.4 Issues to be addressed

In this section, we discuss a few theoretical and technical issues that need to be

addressed.

2.4.1 MHD instabilities

Performance degradation due to MHD interchange instabilities of the expanding

plasma are a major concern with this concept. The plasma expanding into the

magnetic field can undergo Rayleigh-Taylor (RT) instability. The instability am-

plitude should be small enough so that the expanding plasma layer is stable at

least during first expansion phase. From MHD theory, the RT instability growth

rate γ =
√
g/Ln; for kLn ≫ 1 and γ =

√
kg; for kLn ≪ 1, where, k is the wave

number, g is the deceleration and Ln is the density scale-length.

From the simulation, the average deceleration and density scale-length are

found to be 1× 1014 ms−2 and 0.2 m respectively. The large Larmor radius (LLR)

effect on RT instability growth rate [47, 48] can be neglected during the first ex-

pansion phase for the present case. This is because the ratio rLi/Ln ≪ 1, where

rLi ∼ 10−3 m is the time-averaged ion Larmor radius, defined as the ratio of ther-

mal expansion velocity to the cyclotron frequency based on the magnetic field. The

growth rate thus evaluated for the wavelength perturbations in the range 10−3 to

0.5 m is found be of the order of 107s−1, which is comparable with the inverse of

plasma expansion time. Therefore, we expect the RT instability may not be so

critical for small amplitude initial perturbations during the first expansion phase

of the plasma.

Similarly, in Ref. [40], Winske has reported a detailed theoretical and numerical

study which could explain the experimentally observed results (see references given
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in Ref. [40]) on the development of flute modes (similar to RT instability) on ex-

panding plasma clouds. From various experimental results observed and numerical

simulations performed, Winske [40] has concluded that the single most important

parameter which determines the evolution of flute mode instability is the ratio of

ion Larmor radius, rLi to the plasma confinement radius, Rw. When rLi/Rw > 1,

large flute modes are observed which shows nonlinear dynamics. For rLi/Rw ≤ 1,

the flute modes are smaller and the non-linear surface modes appear only at the

time of maximum expansion. When rLi/Rw ≪ 1, only a weak instability is de-

tected. According to Winske [40], such results are consistent with linear theory.

A detailed discussion, including non-linear effects, can be found in Ref. [40]. For

the present case, the ratio rLi/Rw is ∼ 10−3. Therefore, only a weak instability is

expected during the fist expansion phase of the plasma.

The MHD interchange instabilities, however, need to be analysed separately

with different initial conditions of applied perturbations. In Chapter 4, we have

presented this analysis in detail.

2.4.2 Choice of the load

Depending on the application, the load can be purely resistive, inductive, capacitive

or a combination of these. Most of the earlier works have examined the case of a

purely resistive load. Higher efficiency is achieved by using an optimized capacitor-

diode load where a capacitor is switched to the coil circuit at the moment of peak

current in the coil [26]. However, this demands a coil discharge on a timescale

which is short relative to that of plasma expansion time [27] (π
2

√
LcC ≪ tp, where tp

plasma expansion time ∼ 10−7 s, Lc is the coil inductance and C is the capacitance).

For the present study, we assume that the load is predominantly inductive – this

is an important difference as compared to earlier works [25–27], where a resistive or
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capacitive load was considered. The inductive load could be electrically decoupled

from the pickup coil after the completion of first expansion phase of the plasma

and could be subsequently switched into a different load (not shown in Fig. 1.4) for

t ≥ tp. The decoupling of the inductive load from the pickup coil will be necessary

due to the fact that, after the first expansion phase of the plasma, the amplitude

of perturbations on the irregular surface of the plasma caused by RT instability

is likely to be so large that the plasma can not maintain its stability [33]. The

remaining plasma energy in the form of inductive energy of its diamagnetic current

will convert into plasma heating due to the penetration of the field into the plasma

at a late stage.

In this work, we focus on system performance with an inductive load. How-

ever, to facilitate comparison, we have also performed a sample simulation with a

resistive load.

2.4.3 Coil inter-turn breakdown

Since the inductive energy recovery system proposed here has a total operational

time less than ∼0.2 µs, extremely high voltages (few hundreds of MV) across the

coil are expected. Ultra-high voltages ∼500 MV were predicted in earlier work [25,

26]. One possible method to prevent the inter-turn voltage break-down is to use

magnetic insulation. The concept of magnetic insulation has been investigated

by many authors, such as Hirsch [43] and Winterberg [41]. Mima et al. [25] has

discussed the effect of magnetic insulation to reduce the possibility of electric

breakdown between neighboring pickup coil segments. Therefore, in Ref. [25],

they expected the breakdown voltage to be very high (∼10 MV) for their design.

The application of this concept in high voltage transformers have been investigated

by Winterberg [42], Novac et al. [44] and Istenic et al. [45]. Magnetic insulation
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has proved to be the practical technique for use in the development of high-voltage

components like transmission lines and plasma opening switches etc (see Ref. [44]

and References therein). The magnetic field required for insulation can either

be provided externally or by the system itself (magnetic self-insulation). Magnetic

self-insulation is more appropriate for the present system. More details on magnetic

self-insulation method used in high voltage helical transformer coils can be found

in Ref. [44, 45].

From our simulation results for the present case, the maximum average inter-

turn voltage is found to be ∼25 MV, which is higher than the break-down voltage

∼0.5 MV obtained using the equations provided in Ref. [45,46] without considering

magnetic insulation. Considering magnetic insulation, the relation between the

breakdown voltage (Vb) and magnetic field is given by [43,45]

B ≥

√
2mE

edg
(2.7)

where, E = V/dg is the electric field, V is the voltage and m and e are the mass

and charge of an electron. Using this formulation, Novac et al. [44,45] have studied

the application of magnetic self insulation to eliminate breakdown between the coil

turns of a helical transformer. For helical coils, the inter-turn electric field is along

the axial (Ez) direction. Therefore, the radial component of magnetic field (Br)

should be used in Eq. 2.7, assuming axisymmetry. From the simulation results,

we have found that the magnetic field component, Br ≥ 0.25 T between the coil

turns. Therefore, the breakdown voltage Vb ≥ 125 MV for dg = 0.15 m. This is

higher than the average inter-turn voltage (∼ 25 MV) obtained in our simulation.

A detailed discussion, including the effect of field variation along the pitch of the

coil, is given in Sec. 2.5.

Finally, with an optimized design having longer plasma expansion time, e.g. by
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increasing the coil mean radius, and increasing inter-turn separation (pitch) of the

coil, the voltage level can be reduced to an acceptable level. A brief discussion of

this is provided in later sections.

In short, we have listed a few methods to mitigate the problem of inter-turn

break-down. However, a detailed optimization study in this direction may be

required to maintain the internal voltage levels within the acceptable range of

existing technologies.

2.5 Results and discussion

The initial conditions used are within the range of parameters given in Sec. 2.3.

The plasma sphere is assumed to be centered at (r,z) = (0,0) and because of the

symmetry only one quarter of the system is simulated. Fig. 2.1 shows the different

stages of plasma expansion.

In the early phase of plasma dynamics, the plasma sphere has high initial

directed velocity ∼ 107 ms−1 and moderately high plasma β value. Therefore,

it expands freely across the magnetic field (radial direction) as well as along the

magnetic field (axial direction). Expansion perpendicular to the field is decelerated

by the progressive increase in magnetic field due to magnetic flux compression.

Expansion along the axial direction, at radii close to the axis, is not significantly

affected. This is because motion along the z-direction is opposed by Br, and

Br → 0 for r → 0. Hence the plasma sphere tends to elongate in the direction

of the magnetic field. This can be readily seen from the density contour plots of

Fig. 2.2 at different times. This is consistent with the earlier reported results [25–

27]. Pure Lagrangian computational scheme fails when Large deformations occurs.

Consequently, the simulations presented here are performed with a coarse mesh
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(only near the axis) and the calculations are stopped when the radial expansion of

the plasma comes to a halt at z = 0 location. This does not significantly change

the calculated system efficiency. We see that plasma expansion nearly stops at

a radius ∼1.23 m at z = 0 location. The plasma stopping radius can be roughly

obtained by equating the magnetic energy excluded by the plasma to the initial

plasma energy; (4πr3max/3)(B2/2µ0) ∼ Ep, where Ep is the initial plasma energy.

This leads to rmax ∼ 8.5 × 10−3(Ep/B
2)1/3. The maximum radius thus evaluated

is ∼1.5 m, which is higher than the rmax obtained from simulation. The analytical

estimate for rmax is likely to over estimate the radius since it has neglected the field

amplification due to magnetic flux compression. However, considering the average

magnetic field during the expansion phase (∼6.3 T), the rmax evaluated is ∼1.28

m, which is close to the numerical result.

The plasma expansion radius along the field lines can be roughly estimated

(neglecting the deceleration produced by magnetic field component, Br) using the

typical expansion velocity ∼ 107m/s and total radial expansion time ∼ 2× 10−7s,

which is found to be ∼ 2 m and is consistent with the simulation value ∼1.99 m.

The time evolution of plasma radius and the magnetic field on the surface of

the plasma at z=0 are shown in Fig. 2.3. As mentioned earlier, because of the high

initial directed velocity and β value, the early stage of plasma expansion is less

affected by the magnetic pressure. However, as the plasma expands, its pressure

and density decreases continuously and the magnetic field inside the compression

volume increases. Therefore the deceleration by the magnetic pressure dominates

in the later stages of expansion. It is clear from Fig. 2.3 that the magnetic pressure

tends to dominate at a time t ∼ 0.1µs.

Fig. 2.5 shows the radial velocity profile at different times for an axial location

z=0. The initial velocity profile is almost linear and then decreases due to magnetic
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pressure. The velocity at the outer radius of the plasma decreases faster (high

magnetic field on the surface) and goes to zero at the ‘stagnation point’. The

magnetic field on the plasma surface at the stagnation point is 7.6 T. The radial

profile of the normalized density, for the z=0 plane, and at different times, is shown

in Fig. 2.4. The plasma forms a near shell-like geometry at the stagnation point,

where the outer surfaces slow down due to magnetic pressure and the inner region

catches up with the outer region, as shown in Fig. 2.2 and 2.4. The plasma density

scale length, Ln varies over the range ∼0.1 to 0.2 m.

One important parameter which determines the efficiency of the flux compres-

sion system is the ratio of magnetic diffusion time (td = µ0σL
2) to the compres-

sion time (tc ∼ 10−7); where L is the system dimension and σ is the conductivity.

The necessary condition is that this ratio, Re = td/tc ≫ 1. For the present case

Re ∼ 107 (for L ∼ 0.1 m and resistivity at stagnation point ∼ 10−8 Ωm), indicating

negligible magnetic field diffusion over the time-scales of interest.

Fig. 2.6 shows the spatial variation of the magnetic vector potential, Aθ. This

represents field line contours inside the coil, including the plasma region, at dif-

ferent times. The magnetic field is given by: Bz = 1
r
∂ψ
∂r

, where ψ = rAθ is the

stream function. The magnetic field outside the plasma is amplified by magnetic

flux compression, while the field inside the plasma gets reduced by the diamagnetic

(θ) current produced by the plasma. As expected, the maximum magnetic field

between the coil and plasma, inside the flux compression volume, is observed at

the axial midplane z=0.

Fig. 2.7 shows the time variation of normalized electrical energy stored in the

load, coil current and inductance. The normalizations are performed with respect

to their initial values (initial inductive energy in the load is EL0=281 MJ). The

plasma energy conversion efficiency is defined by ηp =
ELf−EL0

Ep
, where ELf and
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Figure 2.1: The Lagrangian mesh which shows the different stages of plasma ex-
pansion (t=0.03 µs, 0.08 µs, 0.15 µs and 0.18 µs). The square dots represents
the coil loop locations. Only one quarter of the system is shown because of the
symmetry.
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Ep are the final load and initial plasma energy. The plasma energy recovered in

the inductive load is 97 MJ, corresponding to an efficiency of 69 %. The inductive

energy increase in the coil and the residual plasma energy (kinetic + internal

energy) were 15 MJ and ∼28 MJ respectively. We have defined the overall system

efficiency, ηs for t ≤ tp as below:

ηs =
EL

Ei + Ep
(2.8)
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Figure 2.6: Contours of magnetic field lines represented by magnetic vector poten-
tial (Aθ in Tesla-meter), at different times (t=0, 0.056µs, 0.08µs and 0.18µs)

where, Ei = 1
2
(Lc + LL)I

2
0 is the total initial electrical energy in the system.

Note that Ei is defined after the exclusion of the capacitor by the simultaneous

switching action of switches s1 and s2, and tp is the time required to complete the

first expansion phase. The above expression assumes that the inductive energy

remaining in the coil (not the load) cannot be recovered after the completion of

first expansion phase. Also, we assume the load is decoupled from the system
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for t ≥ tp, as discussed earlier. The overall system efficiency, ηs calculated using

Eq. 2.8 is found to be equal to 56 %. The peak coil current obtained is 870 kA.

The effect of load inductance on the conversion efficiencies (ηp and ηs) is shown

in Table 2.1. It is clear from the table that higher efficiency is achieved as load

inductance increases. For the cases with low load inductance compared to the coil

inductance, the energy efficiency in the load is found to be low. This is because

most of the energy will be inductively stored in the coil. It is worth noting that as

the load inductance increases, despite higher ηs value, the initial electrical energy

requirement increases since we are keeping the initial magnetic field constant at

∼5 T. This is because we assume that the load is active in the circuit during the

priming of the system.

Next, for the sake of comparison, we have analysed the system efficiency with

different resistive loads. Table 2.2 summarizes these results. The efficiency in-

creases as the load resistance increases and tends to saturate, which is consistent

with the observations reported in Ref. [27], where the maximum efficiency was re-

ported with a resistive load of ∼1400 Ω. In contrast to inductive loads, the initial

energy required for different cases listed in Table 2.2 are the same ∼400 MJ.

Next, we have examined the variation of plasma stopping radius, rmax at the
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Table 2.1: System performance for different inductive load conditions. L is the load
inductance, Ei is the initial electrical energy, EL is the inductive energy stored in
the load, and η is the conversion efficiency.

L (mH) Ei (MJ) EL (MJ) ηp (%) ηs (%)
0.05 407 8 5.7 5.5
0.1 421 16 11.5 10
0.3 478 41 29 26
0.5 534 63 45 38
0.7 590 79 56 47
1.0 675 97 69 56

Table 2.2: System performance for different resistive loads. R is the load resistance,
EL is the resistive energy across the load, and η is the conversion efficiency. The
total initial energy is 400 MJ.

R (Ω) EL (MJ) ηp (%) ηs (%)
100 8 9 2
250 31 22 7
500 61 43 15
750 90 64 22.5
900 99 70 24.7
1000 101 72 25

axial midplane (z=0) for different initial magnetic fields. The coil radius, length

and number of turns are 3 m, 9 m and 30 respectively. The initial magnetic

field is varied from 1.4 to 6.3 T. A comparison of simulation results with a simple

analytical expression described earlier this section is shown in Fig. 2.8. Reasonable

agreement is found, except for the cases with low initial magnetic field. The

difference in results for the cases with low magnetic field is are due to the fact

that the analytical expression neglects the effect of field amplification, and hence

over-estimate the stopping radius. This effect will be higher for the cases with

low initial magnetic fields, where the radial plasma expansion will be higher and

likely to have considerable difference between initial and final magnetic fields. The

variation of Bf/B0 is shown in Fig. 2.8, where B0 and Bf are the initial and

final magnetic fields. Another reason for the difference in simulation results and
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analytical result is the assumption of uniform expansion of the plasma sphere

while deriving the expression for rmax. In reality, the plasma sphere expands non-

uniformly, expanding more along the axial direction. This leads to underestimation

of rmax at z=0.
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Figure 2.8: Variation of plasma stopping radius for different values of initial mag-
netic fields

The time evolution of coil inter-turn voltage for typical system dimensions

described in the beginning of this section (Case-1) is shown in Fig. 2.9. The change

in flux inside the coil is high during the period where the magnetic deceleration is

small (t ≤ 0.1 µs). The voltage increases to a peak value of about ∼27 MV (peak

electric field of 180 MV/m, for pitch of the coil equal to 0.15 m) during this period

and then decreases continuously due to the magnetic pressure driven deceleration

of the plasma expansion. This is because the change in flux decreases due to

deceleration of the plasma. An optimized design with appropriate coil dimensions

and initial magnetic field can reduce the average inter-turn voltage. For example,

with an increase of 33 % in coil radius (case-2), with an initial magnetic field of

3.8 T and coil length equal to three times the coil radius, the inter-turn voltage

decreases to 19 MV (E=95 MV/m); corresponds to a 42 % decrease in the voltage

(see Fig. 2.9, case-2). The electric field between the coil turns are reduced by 2.8

times. However, with increased coil dimensions the initial energy required will
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increase by 20 %. Similarly, keeping the system dimensions are the same as case-1

and increasing the magnetic field from 5 to 6.4 T (case-3) the voltage and electric

field are reduced by 12.5 % despite the short operational time (see Fig. 2.9, case-

3). Even though the internal voltages are within the range of values discussed in

Sec. 2.4.3, a detailed optimization study in this direction is needed to maintain

the voltage levels within the acceptable range without reducing overall system

efficiency.
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Figure 2.9: Time evolution of coil inter-turn voltage (MV) for different cases with
load inductance 1.0 mH

Finally, we have analysed the magnetic self-insulation process for the entire

pulse duration. Eq. 2.7 can be written as Brdg ≥
√
2mV/e, where V is the inter-

turn voltage. Integrating this equation along the pitch of the coil turn (to account

for the variation of Br along the axial direction between coil turns), the following

equation can be derived as a necessary condition to satisfy magnetic self-insulation

criteria [44,45].

αV =
(√

2mV/e
)
/

(∫ p/2

0

Br(rc, z)dz

)
≤ 1 (2.9)

where, rc is the coil radius and p is the pitch. It is known that that the magnetic

component, Br, produced by a helical coil is smallest near the center of the coil.

Therefore, the present analysis concentrates on this region. However, for purposes
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of comparison, we have provided the results obtained for two turns located at the

axial end of the coil. The variation of αV , the ratio given in Eq. 2.9, for two

different locations (center and axial end point) are shown in Fig. 2.10. It is clear

from the figure that the criteria for magnetic self-insulation is fairly satisfied. It is

worth noting that the factor αV is high (∼a factor of 2) for the turns located at

the center of the coil.
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Figure 2.10: Time evolution of αV defined in Eq. 2.9 for two different locations. It
is clear that, the ratio αV ≤ 1. See text for the discussion.

2.6 Limitations of the study

In the present work we have mainly focused on the introduction of the concept,

the dynamics of plasma across the magnetic field and the energy conversion effi-

ciency. Therefore, similar to earlier works, we have started our simulation from

the time when plasma is created and the initial magnetic field is setup. Also, we

have not considered the implications of D-3He systems for inertial fusion energy

(IFE) drivers and targets. We have assumed that the fast opening switches capable

of absorbing hundreds of MJ energies can be realized with existing or near-term

engineering technologies. We assume such systems and technologies will be devel-
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oped in the near future. The main limitation of this concept is the handling of

ultra-high voltages across the conductors. This fact is also reported in most of

the earlier works. The optimization study of the system to reduce the coil inter-

turn voltage (increasing operational time), analysis of possible energy extraction

after first expansion phase, conversion of residual energy stored in the coil (not the

load), detailed analysis of radiation effects on shielding material, electromagnetic

stress analysis acting on the coil, etc. are omitted in the present study. There-

fore, the system dimensions and parameters used in the simulations may vary for

an optimized system. The present study should, therefore, be treated as a first

exploratory step.

2.7 Conclusions of this study

A conceptual study of magnetic flux compression inside a cylindrical coil by an ex-

panding fusion plasma sphere have been performed numerically using 2D magneto-

hydrodynamic (MHD) simulations. Preliminary theoretical analysis shows that,

for an unperturbed initial plasma, MHD interchange instabilities would not grow

during the first expansion phase of the plasma for typical system parameters ex-

amined here. A few important theoretical and technical issues that need to be

addressed have been discussed.

It is observed that during the final stage of MFC, the plasma shape becomes

distorted (non-spherical) due to non-uniform deceleration caused by the magnetic

field outside the plasma sphere. In particular, there is elongation of the plasma in

the axial direction. These effects, collectively, lead to a non-spherical expansion of

the plasma with large deformation.

The concept can be used as a method to convert a part of fusion plasma kinetic
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energy into pulsed electrical energy. An overall system efficiency of ∼56 % obtained

for a typical system with appropriate load conditions. Approximately 78 % of

plasma kinetic energy is converted into electrical energy with appropriate inductive

load conditions. The system performances with different inductive and resistive

load conditions are studied.

The simulation results indicate that the proposed system is promising in terms

of overall efficiency. However, ultrahigh coil inter-turn voltages (∼25 MV) are

predicted. Therefore, the application of magnetic self-insulation to avoid coil inter-

turn break-down is considered. Even though the voltage levels are within the

theoretically acceptable range, a detailed optimization study is required to avoid

coil inter-turn break-down without reducing the system efficiency.
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3
An Eulerian MHD model to study the

dynamics of plasma

3.1 Introduction

In Chapter 2, a Lagrangian computational method with a filamentary model [49,

50, 52] self-consistently coupled with external circuit equations is used to study

the proposed MFC system. It is observed that during the final stage of MFC, the

plasma becomes distorted due to non-uniform deceleration caused by the magnetic

field outside the plasma sphere. Also, similar to Refs. [27,33,52], an elongation of

the plasma ‘blob’ in the axial direction is observed since the plasma expands almost

freely along the axial direction. These effects, collectively, lead to a non-spherical

expansion of the plasma with large deformations. Consequently, the simulations

described in Chapter 2 are stopped when the radial expansion of the plasma at the

axial midplane (z=0) comes to a halt.

For a detailed analysis of plasma dynamics under non-uniform expansion, it

is necessary to use an algorithm that can handle large material deformation. We
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3.1. Introduction

have, therefore, developed an Eulerian magneto-hydrodynamic (MHD) model to

overcome the limitations of the computational model described in Chapter 2. Each

step in the Eulerian algorithm involves a Lagrangian step followed by a remap to

the initial mesh.

For the present geometry setup, only the θ-component of current exists in both

the confining conductor and plasma. Similarly, the boundary conditions are either

known explicitly or can be specified in terms of θ-component of current. In addition

to that, all non-zero field components (Br, Bz and Eθ) can be calculated using the

θ-component of vector potential (Aθ). Therefore, for the present case, the MHD

algorithm is formulated using Aθ. This offers some advantages. Firstly, only the θ-

component of vector potential needs to be transported instead of two magnetic field

components. Therefore the algorithm is computationally less expensive. Secondly,

it may reduce the numerical error in the divergence of magnetic field (∇ · B⃗ ̸= 0)

as compared to the case where two components of magnetic field are transported.

A few examples of MHD calculations using vector potential (relevant to the

present context of MFC systems) can be seen in Refs. [57, 58]. In Ref. [58], the

expansion of a cylindrical plasma across an external unconfined background mag-

netic field is studied using a vector potential formulation, where a second order

differenced piecewise linear Lax-Wendroff method is used for both hydrodynamic

and field transport calculations. A numerical study of an MFC system using vec-

tor potential formulation with an iterative solver to couple to the external circuit

equations is given in Ref. [57], where the convective terms are solved using flux

corrected transport (FCT) [59] and field diffusion is calculated using an explicit

method.

In the present algorithm, magnetic field diffusion into the plasma sphere is

solved implicitly using magnetic vector potential. This differs from the explicit
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treatment used in Refs. [57,58]. The advection terms are computed using a second-

order monotonic upwind scheme (MUSCL) due to van Leer [64] (a non-linear total

variation diminishing (TVD) limiter); whereas a Lax-Wendroff method was used

in Ref. [58] and an FCT scheme in Ref. [57]. The MUSCL scheme used here

is less diffusive as compared to the Lax-Wendroff and FCT schemes. An itera-

tion procedure, using a second-order-accurate alternating direction implicit (ADI)

scheme, is used to calculate the field components in free space with the help of

known boundary conditions at plasma and conducting surfaces. Our algorithm

is formulated using a ‘dimensionally-split’ approach to extend the calculations to

two-dimensions. Similarly, an ‘operator-split’ approach is used with three distinct

phases in each direction (axial and radial): electromagnetic diffusion, Lagrangian

motion (predictor-corrector scheme), and Eulerian advection or remap (back to ini-

tial mesh). To avoid unnecessary material diffusion, the interface between plasma

and vacuum or low density material is explicitly tracked by using volume-of-fluid

(VOF) method along with a multi-material hydrodynamic formulation (different

from Refs. [57, 58]).

The algorithm has been validated against the semi-analytical solutions of cylin-

drical magnetic convective-diffusion equations for MFC problems in the limit of

large magnetic Reynolds number. The Reynolds number is defined as Rm = µσLv,

where σ is the conductivity, L is the scale length and v is the liner velocity. A com-

parative study with different advection procedures (MUSCL scheme and methods

given in Refs. [57,58]) is given. Following validation, the scheme has been applied

to study the non-spherical expansion of plasma sphere in an MFC system, special

attention being paid to plasma dynamics, field amplification due to MFC, mag-

netic field diffusion and the evolution of the plasma-vacuum interface for a typical

set of system parameters.
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3.2. Equations of MHD model

3.2 Equations of MHD model

The plasma dynamics can be modeled using single fluid MHD equations. Also, we

assume that the plasma behaves like an ideal gas. The governing equations are as

follows [39,52].

∂ρ

∂t
+∇ · (ρu⃗) = 0 (3.1)

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇p+∇ · T⃗ij (3.2)

∂

∂t

(
ρI +

ρu2

2

)
+∇ ·

[
ρu⃗

(
I +

u2

2

)
+ pu⃗

]
= −J⃗ · E⃗ (3.3)

T⃗ij =
1

µ0

(BiBj −
1

2
δijB

2) (3.4)

where, ρ is the density, u⃗ is the velocity vector, p is the pressure, T⃗ij is the

Maxwell stress tensor, J⃗ is the current density, E⃗ is the electric field, Bi is the

magnetic field component and I is the internal energy. For the present study, we

have neglected the energy flux due to thermal heat conduction and viscosity terms.

3.2.1 Multi-material model

The plasma expands into an ambient medium (vacuum or low density material).

The treatment of mixed computational cells (a cell containing more than one ma-

terial) is therefore necessary for the Eulerian method. Therefore, a multi-material

formulation [61, 62] using the VOF method [60] is used. A detailed discussion of
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3.2. Equations of MHD model

this multi-material formulation and the derivations of the relevant equations are

given in Refs. [61, 62]. A complete description of this formulation lies beyond the

scope of this work. However, in the following, we have listed a few important

equations.

The mass conservation equation (Eq. (3.1)) for individual materials, in terms

of their volume fractions fm in a mixed cell, is given by [61,62].

∂ (fmρm)

∂t
+∇ · (fmρmu⃗) = 0; m = 1, ..,M (3.5)

Here, M is the total number of materials present in a mixed cell. The fm of

each material in a mixed cell should satisfy the following condition.

fm = 0 ≤ fm ≤ 1;
∑
m

fm = 1 (3.6)

The total density and average pressure are calculated using a volume-weighted

average.

ρ =
∑
m

fmρm

p = Σmf
mpm

(3.7)

The total density ρ and average pressure p are used to solve the momentum

equation Eq. (3.2) by assuming a common velocity field for all materials present

in a mixed cell [61]. The assumption of locally adiabatic evolution of internal

energy [62] leads to the following equation for internal energy update in multi-

material cells, as explained in Ref. [62].
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3.2. Equations of MHD model

∂em

∂t
+ (u⃗ · ∇)em = −p

m

ρm
∇ · u⃗+Qm

s ; m = 1, ..,M (3.8)

Here, an additional term Qm
s is added due to Joule heating. One more equation,

apart from the equation of state (EOS) of each material, is required to close the

system which is given by the following:

∂fm

∂t
+ (u⃗ · ∇)fm = 0; m = 1, ..,M (3.9)

The above equation for the volume fraction is solved using a volume-of-fluid

algorithm given in Ref. [60] – this is discussed briefly in later sections and detailed

in Appendix A.

3.2.2 MHD model using magnetic vector potential

Since, for the present case, the term J⃗ × B⃗ − ∇pe in the generalized Ohm’s law

has no θ-component, the magnetic vector potential in the plasma is governed by

the following equation:

∂A⃗

∂t
=

η

µ0

∇2A⃗+ u⃗×∇× A⃗ (3.10)

where η and µ0 are the resistivity of the plasma and permittivity of free space,

respectively. We have used the condition ∇ · A⃗ = 0 to derive Eq. (3.10). In free

space, the vector potential satisfies a Laplace-like equation:

∇2A⃗ = 0 (3.11)

The field components are calculated using the vector potential.
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3.2. Equations of MHD model

B⃗ = ∇× A⃗; E⃗ = −∂A⃗
∂t

(3.12)

For the non-zero component, Aθ in cylindrical co-ordinates, Eq. (3.10) can be

written as below.

∂Aθ
∂t

=
η

µ0

(
∇2A⃗

)
θ
+
(
u⃗×∇× A⃗

)
θ

(3.13)

Introducing the magnetic stream function Ψ = rAθ in cylindrical co-ordinates,

the Eq. (3.13) can be written as follows:

∂ψ

∂t
+ ur

∂ψ

∂r
+ uz

∂ψ

∂z
=

η

µ0

[
∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r

]
(3.14)

Here, ur and uz are the velocity components in the radial and axial directions

respectively. Splitting the above equation into two separate equations for diffu-

sion and advection (solved using operator split method in two different phases:

Lagrangian and remap steps) following two equations can be obtained.

∂ψ

∂t
=

η

µ0

[
∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r

]
(3.15)

∂ψ

∂t
+ ur

∂ψ

∂r
+ uz

∂ψ

∂z
= 0 (3.16)

Similarly, the free space Eq. (3.11) in terms of Aθ in a cylindrical co-ordinate

system can be expressed as below [57].

∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r
= 0 (3.17)

The field components Br, Bz and Eθ are calculated from the θ component of
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vector potential, Aθ as follows:

Br = −∂Aθ
∂z

; Bz =
1

r

∂ (rAθ)

∂r
; Eθ = −∂Aθ

∂t
(3.18)

3.3 Computational method

A fixed Eulerian mesh is used with a virtual Lagrangian calculation. The effect

of Lagrangian deformations are remapped, at each time-step, on to the original

mesh during Eulerian advection or remap step (making the overall algorithm into

Eulerian). We have used a spatially staggered mesh, where velocities are defined

at cell faces, while density, internal energy, pressure, etc. are defined at the mid

point of the cell, as shown in Fig. A.1.

Physical variables are updated using a ‘dimensionally split’ method to extend

the calculations into the two-dimensional case. Similarly, the algorithm is formu-

lated using an ‘operator-split’ approach with three distinct phases in each direc-

tion (axial and radial): electromagnetic diffusion, Lagrangian motion (predictor-

corrector scheme), and Eulerian advection or remap (using VOF scheme). The

predictor and corrector step assumes the same magnetic stress-tensor calculated

in the magnetic diffusion step prior to the Lagrangian step. To avoid biasing, the

sequence of steps in radial and axial directions is alternated during subsequent

time-steps. The details of the numerical algorithm are described in the following

sections. The radial part of the equations are more complicated than the axial

part. Therefore, detailed discussions are given only for the calculations in the

radial direction in a one-dimensional manner.
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3.3.1 Implicit field diffusion using vector potential

Magnetic field diffusion into the plasma sphere is expected to be negligible due to

high electrical conductivity of the plasma and short time-scales involved. However,

for MFC systems with increased operational time (larger stopping radius), field

diffusion into the plasma may be significant towards the time of stagnation. Also,

a generalized algorithm must handle magnetic field diffusion. Considering these,

we have formulated the MHD algorithm by including magnetic field diffusion.

Diffusion is performed only in the plasma region. A grid point is defined to

be plasma if ni ≥ nc and vacuum if ni < nc as shown in Fig. 3.1, where ni and

nc are the plasma number density and cutoff density respectively. The diffusion

equation for the radial step is obtained by dropping axial terms from Eq. (3.15).

The advection terms in each direction are treated separately during the remap

step.

ψn+1 − ψn

∆t
=

η

µ0

[
∂2ψn+1

∂r2
− 1

r

∂ψn+1

∂r

]
(3.19)

The above equation can be linearized as below.

aj−1ψ
n+1
j−1 + bjψ

n+1
j + cj+1ψ

n+1
j+1 = djψ

n
j (3.20)

Here, j is the cell edge and a common subscript i+ 1
2

is omitted. The coefficients

in the matrix are given in the following.
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aj = − ∆t

µ0σ∆rj+1

[
1

∆rj+1

+
1

rj+1

]
bj =

[
1 +

2∆t

µ0σ∆r2j

]
cj = − ∆t

µ0σ∆rj−1

[
1

∆rj−1

− 1

rj−1

]
dj = 1

∆rj =
1

2
(∆rj−1/2 +∆rj+1/2)

(3.21)

A tri-diagonal matrix can be constructed if one linearize the Eq. (3.19) as given

in Eq. (3.20) for all other nodes in the plasma region along the radial direction for a

given axial cell (i+ 1
2
). The vector potential on the cell edges (on the y-faces of the

cells for the radial direction update) Aθi+1/2,j are obtained by the inversion of tri-

diagonal matrix. These values are then averaged into the cell center, Aθi+1/2,j+1/2.

The Aθ values at r = 0 along the axis are obtained using boundary conditions,

see Sec. 3.3.6. The process is repeated for all the axial locations. The numerical

scheme to solve the magnetic field diffusion equation in the axial direction follows

the same. The derivations of the governing equations and the matrix coefficients

are straight forward and are omitted here for brevity.

The electrical conductivity of a mixed cell (cell containing plasma and vac-

uum/background medium) is determined using a volume weighted average (σ =

Σmf
mσm), where the the volume fraction of each material, fm in a mixed cell is

calculated using volume-of-fluid algorithm [60] (discussed later). The conductivity

at the cell edge is the average of these cell centered quantities.
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Figure 3.1: A schematic of the grid used in the two-region solution. The shaded
area corresponds to the plasma region and the unshaded region to the vacuum.
The Eq. (3.14) is solved in the plasma region and Eq. (3.17) is solved in the vacuum
region.

3.3.2 Lagrangian step

A predictor-corrector scheme is used to integrate the fluid equations. The solution

is advanced to tn+1/2 by a half time-step with a forward Euler differencing. The

derivative is evaluated at the half time-step using this approximate solution. This

time-centered derivative is used to advance the solution from tn to tn+1. The

displacements are advanced using a trapezoidal rule. In the following, we describe

the Lagrangian step in detail.

First, the tentative half time-step velocities un+1/2
r and u

n+1/2
z are calculated

by using an explicit time integration of Eq. (3.2) with time-step ∆t/2.

ur
n+1/2 = ur

n +
∆t

2ρn

[
−∇pn +∇ ·

(
T⃗ nij

)]
r

uz
n+1/2 = uz

n +
∆t

2ρn

[
−∇pn +∇ ·

(
T⃗ nij

)]
z

(3.22)
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The half time-step values of Lagrangian energy (for each material) are updated

for the radial step using the following equation.

(em)n+1/2 = (em)n − ∆t

2

(pm)n

(ρm)n
1

r

∂(runv )

∂r
+ (Qm

s )
n (3.23)

Here, Qm
s is the energy deposition rate per unit volume due to Joule heating.

The Eq. (3.23) is solved for m = 1, ..,M , where M is the total number of materials

in a mixed cell. The Lagrangian step conserve the total mass and volume fraction

of each material in a cell. Therefore, the tentative radial locations r̃j = rnj +∆tũr/2,

where r̃v = (urj
n+urj

n+1/2)/2 can be used to determine the half time-step volume

and hence the density (ρm)n+1/2 of each material. The predicted half time-step

pressure (pm)n+1/2 is evaluated using equation of state (EOS) of the material (pm =

feos [e
m, ρm]). The predicted mean cell pressure in a mixed cell is determined using

volume weighted average.

Now, a corrected step is applied to advance the physical variables from time-

step n to n + 1 using the above determined predicted half time-step values. The

corrected velocity u⃗n+1 is updated as follows.

ur
n+1 = ur

n +
∆t

ρn+1/2

[
−∇pn+1/2 +∇ ·

(
T⃗ nij

)]
r

uz
n+1 = uz

n +
∆t

ρn+1/2

[
−∇pn+1/2 +∇ ·

(
T⃗ nij

)]
z

(3.24)

We have used the magnetic stress tensor defined at the beginning of the time-

step for the predictor as well as corrector steps. The corrected Lagrangian energy

at n+ 1 for the radial step is calculated using the following equation.
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ẽm = (em)n − ∆t(pm)n+1/2

(ρm)n+1/2

1

r

∂(ru∗r)

∂r
+ (Qm

s )
n+1/2 (3.25)

Here, u∗r = (unr + ur
n+1)/2 is the time centered velocity. The radial locations

are updated using these time centered velocities, rn+1
j = rnj + ∆tu∗r. Eq. (3.25)

is solved for m = 1, ..,M , where M is the total number of materials in a mixed

cell. The corrected volume and density for each material are updated using these

corrected node locations. Finally, the EOS of the material is used to calculate

corrected pressure at n+ 1; i.e. ((pm)n+1 = feos [ẽ
m, (ρm)n+1]). The mean pressure

in a mixed cell is the volume weighted average of individual material pressures;

pn+1 = Σmf
m(pm)n+1. This completes the Lagrangian predictor-corrector step in

the radial direction.

3.3.3 Advection or remap step

The Eulerian advection terms are treated in the remap step of the algorithm. All

the solution variables are advected in a conservative manner.

Mass and energy advection

The Lagrangian step strictly conserves the mass. Therefore, only the advected

mass contained in the overlap region in between the Eulerian and Lagrangian grid

after a time-step (∆t) has to be found, see Fig. A.7. Let Mm
j denotes the signed

advected mass (same sign of velocity at that face) along the radial direction of

material m through cell face j. Then the mass flux, Πm
j = Mm

j / (∆z∆t) for each

material through the face can be determined. The quantity Mm
j is evaluated using

VOF algorithm [60]. Now, the continuity equation for material m can be updated
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using the following.

(fmρm)n+1
j+1/2 = (fmρm)nj+1/2 +

∆t
(
Πm
j − Πm

j+1

)
rj+1/2∆rj+1/2

(3.26)

The conservative advection equation (for radial direction) for the energy of

individual materials in terms of the volume fraction is given below. Details can be

found in Ref. [61,62].

∂(fmρmem)

∂t
+ ur

∂(fmρmem)

∂r
= 0 (3.27)

Therefore, the advected energy flux is obtained by multiplying internal en-

ergy resulting after the Lagrangian step with the mass flux. The Eulerian update

equation for internal energy, using an upwind scheme, is given by

(fmρmem)n+1
j+1/2 = (fmρmem)nj+1/2 +

∆t
(
ẽmj Π

m
j − ẽmj+1Π

m
j+1

)
rj+1/2∆rj+1/2

(3.28)

where, the upwind values of ẽmj are: ẽmj = ẽmj−1/2; if ur∗j > 0 and ẽmj = ẽmj+1/2;

if ur∗j ≤ 0. The ratio of quantities obtained using Eq. (3.28) and Eq. (3.26) yield

specific internal energy of the material m after the advection step.

Momentum advection

Momentum is advected using the method given in Ref. [63]. We have used the fol-

lowing differencing scheme for momentum remap, refer Fig. A.1 for the subscripts

used.
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P n+1
j = P n

j +
(
Πj−1/2ûrj−1/2 − Πj+1/2ûrj+1/2

)
∆t (3.29)

Here, a common subscript i+ 1
2

is omitted. Also, Pj = mjurj is the momentum

defined at the cell edge where mj is the node mass, Πj+1/2 is the geometrically

weighted average of face centered (on y-edges of the cell for radial step) mass flux

summed over all the materials advected through that edge (see Eq. (3.30) and also

Ref. [62]) and ûrj+1/2 is the monotonized second-order flux limited interpolated

velocity at the center of the cell. Presently, four different limiter functions are

implemented: superbee, monotonized center (MC), minmod and van Leer.

Πj+1/2 =
1

2

[(
1 +

rj+1 − rj
2rj+1/2

)
Πj +

(
1− rj+1 − rj

2rj+1/2

)
Πj+1

]
(3.30)

For axial momentum (Pi = miuzi) advection during the radial step, the face

centered (on y-edges of the cell for radial step) mass fluxes are first geometrically

averaged to cell corners.

Πi,j =
1

2
(Πi−1/2,j +Πi+1/2,j) (3.31)

Finally, the axial momentum is updated using these corner located mass fluxes

and monotonized second-order flux limited velocities.

P n+1
i,j+1/2 = P n

i,j+1/2 +
(
Πi,j+1ûzi,j+1 − Πi,jûzi,j

)
∆t (3.32)

Here, ûzi,j is the monotonized second-order flux limited interpolated velocity

at cell corners.
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Magnetic field transport using Aθ

The advection term in Eq. (3.16) for vector potential is treated in the material

remap step. The advection equation for the radial direction is obtained by dropping

axial terms from Eq. (3.16). The solution update is as given by Eq. (3.33).

ϕn+1
j+1/2 =

1

V n+1
j+1/2

[
ϕnj+1/2V

n
j+1/2 + ϕ̃j∆Vj − ϕ̃j+1∆Vj+1

]
(3.33)

In Eq. (3.33), the nodes are numbered as j, j + 1 etc. and the cell defined

by nodes j and j + 1 is j + 1
2
. Also, ϕ = Aθ is the vector potential, ∆V is the

signed volume advected across the node j and ϕ̃j is the upwind values of stress

components at node locations. We have used a second order accurate monotonic

upwind scheme (MUSCL) due to van Leer [64] as it is one of the simplest and

most efficient algorithms that is both second order accurate and monotonic. The

essential idea of MUSCL algorithm is to replace the piecewise constant distribution

of ϕ within a cell with a piecewise linear distribution. The details of the algorithm

can found in Ref. [64].

3.3.4 Iteration procedure in free space

The free-space Eq. (3.17) for vector potential is solved iteratively at each time-step

in the vacuum region between the plasma and the conductor, using the boundary

conditions at both plasma and conductor surfaces. The iterations along the radial

and axial directions are performed in a single step. The iteration is performed at

the end of each time-step, once the diffusion, Lagrangian and advection steps in

each direction (radial and axial) are completed. The iteration procedure may also

be performed in each direction separately, along with the other calculations in the

‘dimensionally-split’ algorithm. However, we have observed no significant differ-
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ence in the physical solutions obtained by using these two different approaches.

On the other hand, the first approach is computationally less expensive. As this

part of the algorithm (iteration procedure) takes most of the computational time,

the above fact is critical for an optimized algorithm.

For numerical convenience, the equation is written in terms of ψ, see Eq. (3.17).

A second-order-accurate difference scheme [65], using an alternating direction im-

plicit (ADI) method, is used to solve Eq. (3.17). An optimization study has been

performed to determine an optimum initial tolerance factor for convergence. Also,

the convergence parameters are varied at each iteration to improve the conver-

gence. The number of iterations required to converge the solution with a tolerance

factor ξ ∼ 10−8 typically lies in the range of 10-20. Here, ξ = max
[
fni − fn+1

i

]N
i=1

;

where, fni is the solution at nth iteration and N is the total number of cells.

3.3.5 Volume-of-fluid (VOF) method

A detailed description of the VOF method can be found in many references [66–70]

and a review of VOF methods can be found in [71]. The formulation used in this

thesis follows our work described in Ref. [60]. The algorithm consists of three

parts: Interface reconstruction, Lagrangian deformation of material interfaces and

finally Eulerian transport (advection). A ‘directional-split’ advection procedure is

used to extend this method into the two-dimensional case. More details of this

VOF scheme can be found in Ref. [60] and also in Appendix A. A few important

points are given below for ready reference.

Interface construction and volume iteration

A piecewise linear interface construction (PLIC) method is used. The interface

line is represented by n⃗ · x⃗ − α = 0; where, n⃗ = înx + ĵny is the exterior normal
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to the line and α is the perpendicular distance from a local origin in a cell, see

Fig. A.3. The local origin in a cell for each material is decided by checking the

slope of the interface line for that material [60]. The slope of a material interface

line and hence the normal vector (n⃗ = ▽⃗fm/|▽⃗fm|) are determined using LVIRA

method [72]. Having obtained interface normals the interface parameter α has

to be determined so that volume behind the interface line is equal to the material

volume. The volume behind an interface line is calculated using an algorithm given

by Sijoy et al. in Ref. [60]. The interface parameter α is found when the function

f(α) = V (α) − Vactual, becomes zero (root-finding). Here, V (α) is the material

volume in the cell bounded by the interface line with line parameter α. We have

used Brents method [65] to find α with αmin = 0 and αmax = d as initial bracket;

where d is the cell diagonal distance.

Dynamic material ordering

The material interfaces in a mixed cell are constructed using ‘onion-skin’ or ‘lay-

ered’ model (see Fig. A.4) with the help of a ‘material order list’ determined dy-

namically. The ‘material order list’ is also used for specifying the order of transport

for each material in a mixed cell to its neighboring cells. We have used a simple

combination of centroid check algorithm [73] and Benson’s least squares fit to cen-

troid algorithm [74] for dynamic material ordering (see Ref. [60] and Appendix A

for details).

Material advection

The material volume advected (V m
i ) is evaluated using a generalized algorithm

given in Ref. [60] and also in Appendix A. The material volume fraction for each

material is updated using formulations given in [62] for cylindrical co-ordinates.
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The advected mass (Mm
i ) is calculated using a characteristic trace back method [62]

by assuming a linear interpolation of velocity along the streamline in a computa-

tional cell. Authors in Ref. [62] have demonstrated that this method conserve total

mass in cylindrical co-ordinate system.

3.3.6 Boundary conditions (BC)

The fluid boundary conditions (outflow, extrapolative, symmetric, etc.) are im-

plemented using methods given in Ref. [75]. The BC for Aθ along the axis for

field diffusion calculation in the axis-symmetric case is set equal to zero. Similarly,

during the iterative procedure, the condition ψr=0 = 0 is used (ψ = rAθ → 0 as

r → 0). For conductor boundary at the outer radius, we assume the magnetic

flux (Ψ = 2πψ) is conserved because of the short time scales involved ∼0.1− 1 µs.

Therefore, at the conducting wall (rw), the magnetic flux remains ‘pinned’ to its

initial value; hence, Ψrw = Ψinitial → ψrw = ψinitial. For symmetric BC along the

r-axis in r-z geometry; a simple fist-order implementation of ∂ψ
∂z

= 0 is used.

3.4 Validation of the algorithm

The MHD algorithm described so far has been validated against known analytical

results. A comparative study between different existing advection methods and

van Leer MUSCL scheme has also been done. Finally, a convergence study with

respect to mesh size has been performed.

3.4.1 Sedov problem (cylindrical geometry)

The validation of the hydrodynamic part of the algorithm is done with various

test cases. A particular case, which is relevant to the present context, is described
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below. The Sedov point blast problem (Sedov 1959) is often used to test the capa-

bility of an algorithm to deal with strong shock waves in curvilinear co-ordinates.

In this case, the resulting shock wave evolves in a self-similar fashion in which the

shock radius, shock velocity, peak pressure, etc. can be found analytically [39,76].

For a comparison of spatial profiles of the density, pressure, velocity, etc, semi-

analytical solutions with the help of numerical methods are used. Details of the

solution procedure are described in Refs. [39, 76, 77]. We deposit a quantity of

energy E = E0 into few computational cells surrounding the origin, which corre-

sponds to a small radius ∂r at the beginning. The density is set equal to unity

everywhere, with an extremely small value of pressure, p0 = 10−5 Pa. Also, the

initial velocity is set to zero throughout the computational domain. The computa-

tional domain extends from zero to 0.5m. The grid consists of 300 cells along the

radial direction. Fig. 3.2 and Fig. 3.3 show the normalized pressure and velocity

profiles for a cylindrical Sedov problem at t = 0.05 s. Reasonable agreement with

a semi-analytical solution is found.
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Figure 3.2: Comparison of normalized pressure profile (normalized to peak pres-
sure, ppeak = 4.0 Pa) with semi-analytical solution for Sedov problem at t = 0.05
s.

Table 3.1 lists the L1 norm error (multiplied by a factor 103) in the density for
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Figure 3.3: Comparison of normalized velocity profile (normalized to peak velocity,
vpeak = 1.84 m/s) with semi-analytical solution for Sedov problem at t = 0.05 s.

varying mesh-size (∆r) and flux limiter function used for momentum advection.

The L1 norm error is calculated as L1 =
(
ΣN
i=1|f ci − f ei |

)
/N ; where f c,ei are the

computed and exact solutions respectively, and N is the total number of cells. The

Superbee limiter performed slightly better than others for this particular problem.

The rate of convergence (3.32 log(L12h/L1h), where L1h and L12h are the L1 norm

errors with grid-size ‘h’ and ‘2h’ respectively) calculated for this problem is sum-

marized in Table 3.2. For this test problem, the predictor-corrector algorithm

yielded an average order convergence rate ∼1.73.

Table 3.1: L1 norm error (×103) for density ρ vs. mesh-size used for Sedov problem
for different flux limiters. In the Table MC stands for monotonized centered limiter.

Limiter ∆r = 5 mm ∆r = 2.5 mm ∆r = 1.25 mm
Superbee 6.816 2.005 0.613

MC 6.824 2.088 0.635
Minmod 6.827 2.103 0.668
van Leer 6.828 2.107 0.671
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Table 3.2: Convergence rate obtained for Sedov problem with superbee limiter.
∆r (mm) L1 rate

5 6.816× 10−3 –
2.5 2.005× 10−3 1.76
1.25 6.131× 10−4 1.7

3.4.2 Flux compression by expanding perfect electric con-

ductor

Next, the phenomenon of magnetic flux compression by an expanding cylindrical

liner (shell) with a given velocity profile is used to validate the MHD algorithm. An

important characteristic required for any Eulerian fluid dynamics algorithm is its

ability to advect distributions of the dependent variables with as little numerical

diffusion as possible. Since the accuracy of advection schemes used for hydrody-

namic variables are given in the previous test case, this problem is designed to

verify the ability of the proposed MHD algorithm to advect distributions of mag-

netic field. The liner is assumed to be a perfect electric conductor (PEC), similar

to the expansion of highly electrically conducting fusion plasma across magnetic

field. The initial axial magnetic field is assumed to fill the region between the

liner and the outer co-axial cylindrical shell. In this case, the magnetic flux con-

tained in-between the liner and outer PEC cylinder will be compressed, as the

liner expands radially outward, without flux diffusion into the walls. Therefore,

the magnetic flux contained in the compression volume at any instant can be de-

termined analytically. This particular example is a stringent test of the advection

algorithm used for field transport. Any diffusive advection algorithm will show an

unphysical flux diffusion (numerical diffusion) into the liner.

System parameters are chosen so as to yield a large magnetic Reynolds number,

Rm ≫ 1, since it is the limit of efficient flux compression and hence the case of
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experimental interest. Also, the present case of interest (expansion of fusion plasma

sphere across external applied magnetic field) falls in this regime. The Reynolds

number is defined as Rm = µσLv, where σ is the conductivity, L is the scale length

and v is the liner velocity. A velocity profile of the form, vl(t) = (Rw −Rl(t))/tR,

is used; where, vl is the velocity of the liner, Rw and Rl are the radius of the

outer PEC wall and the liner respectively and tR is a constant ∼10−6. A mesh

resolution of 100 cells with ∆r = 1 mm along the radial direction is used. The

liner is modeled by solving only the advective terms in the Eq. (3.14), disabling

diffusion calculation, in the conductor region.

Fig. 3.4 shows the normalized magnetic field profile at different times with three

different schemes used for the advection of vector potential: MUSCL scheme with

van Leer limiter (present method), FCT [57] scheme and Lax-Wendroff [58]. Field

transport using the Lax-Wendroff scheme results in an oscillatory solution in the

conductor region where, ideally, the diffused field should be zero. Both FCT and

van Leer schemes are free from these numerical oscillations. However, the FCT

scheme produces a slightly more diffusive solution as compared to the van Leer

scheme.

Fig. 3.5 shows a comparison of L1 norm error, L1 = max (|f ci − f ei |∆x)
N
i=1,

for different linear and non-linear schemes/limiters; where f c,ei are the computed

and exact solutions in the compression volume respectively, N is the total number

of cells and ∆x is the mesh-size. The L1 norm error produced by the van Leer

scheme is the smallest among the compared schemes. Despite the numerical ripples

in the conductor region, the Lax-Wendroff scheme gives almost the same accuracy

as that obtained with the non-linear superbee limiter for the solutions in the com-

pression region. It is worth noting that, with increased resolution, the accuracy

of FCT scheme and non-linear limiters (superbee and MC) give almost the same
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accuracy as the van Leer scheme. An algorithm which yields reasonable accu-

racy on a coarse Eulerian mesh is attractive for the analysis of plasma expansion

with a ratio of final plasma radius to initial radius rf/ri∼10 − 50, since a con-

siderable reduction in computational cost can be achieved. This fact makes the

proposed algorithm attractive. The convergence rate derived using the L1 norm

error, L1 =
(
ΣN
i=1|f ci − f ei |

)
/N ; shows an average rate of convergence ∼1.82 with

MUSCL scheme and van Leer limiter.

It is also of interest to determine the number of iterations required to converge

the free space iteration calculation, for a given tolerance factor ξ, as a function of

mesh size. This variation is shown in Fig. 3.6. As this part of the algorithm takes

most of the computational time, proper choice of initial ξ for a given mesh-size is

important to reduce the overall computational time. We have observed that, for a

majority of problems tested so far, a tolerance factor ξ in the range of ∼ 10−7−10−8

yields satisfactory results (in terms of accuracy and total computational time) with

∼8− 16 iterations per time-step.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

B
/B

m
ax

Normalized radial distance

van Leer
FCT

Lax-wendroff
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3.4.3 Magnetic Flux diffusion into an imploding resistive

liner

Next, a magnetic convective-diffusion problem [53, 78–81] is chosen for the vali-

dation of magnetic field diffusion into a moving conductor. The flux compression

problem [53,78] is formulated in a cylindrical co-ordinate system. A cylindrical in-

compressible resistive liner surrounding a vacuum region is imploded to compress
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a uniform axial magnetic field in the vacuum region. The initial inner radius,

conductivity and velocity of the liner are chosen so as to satisfy the condition of

large magnetic Reynolds number. The analytical solution of the problem can be

found [78–81]. A parabolic liner trajectory of the form r2(t) = r2o [1 + a(1− t/to)
2]

is used to have consistency with the analytical solutions provided in Ref. [78]; where

r(t) is the instantaneous inner radius of the liner, ro is the turn-around radius, to

is the turn-around time and a is a constant equal to ∼ 9.0 in our simulation. An

initial axial magnetic field of 2 T is used. The initial liner and the turn-around

radius were 0.2 and 0.1 m respectively (radial compression length of 10 cm). The

liner thickness was 2 cm. The σ and to of the liner were taken as 1× 104 S/m and

0.1 µs respectively. This leads to a magnetic Reynolds number, Rm ∼ 315 (here,

we define Rm = µ0σr
2
o/4t0 as given in Ref. [78]). We have used a mesh-size of

∼ 0.16 mm in the radial direction. A Neumann boundary condition (BC) of the

form ∂ψ
∂r

= 0 is used for ψ at outer radius of the liner.

The diffused magnetic flux is defined as ΦB = 2π
∫ r2
r1
Bzrdr; where r1 and r2

are the inner and outer radius of the liner respectively. Fig. 3.7 compares the

computed value of diffused flux with the analytical solution given in Ref. [78]

for two different values of Rm. For the case with Rm ∼ 315, corresponding to

lower flux diffusion, the solution obtained with the MUSCL scheme shows better

match with the analytical solution. For example, at turn-around time, the MUSCL

scheme yields a ∼ 3% difference, compared to 10% in the FCT scheme. The results

obtained with both MUSCL and FCT scheme for Rm ∼ 150, i.e., more diffusion

than for Rm = 315, show better agreement with the analytical solution, viz., ∼2.9

% with MUSCL and ∼4.2 % with FCT. The two schemes, however, over-predict

the diffused field for both cases. For a quantitative analysis, the variation of L1

norm error in ΦB at t = to (for Rm ∼ 315) with different mesh-size used in the
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radial direction (∆r) is shown in Fig. 3.8. On a coarse mesh, the accuracy of

our MUSCL scheme is better than the FCT scheme. However, with increased

spatial resolution, both the FCT and MUSCL schemes give similar accuracy. The

convergence rate calculated using L1 norm error (with MUSCL scheme) shows an

average rate of convergence ∼1.8 for this particular problem.
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3.4.4 Check for ∇ · B⃗ = 0 condition

The MHD schemes used in this work evolve only Maxwell’s curl equations, without

explicitly taking the Gauss law of magnetism (∇ · B⃗=0) into account. Hence an

additional check on the suitability of the algorithm is the requirement of divergence

free solution for the magnetic field. In the following, therefore, we have analysed

the divergence error produced by the algorithm. On a staggered mesh in cylindrical

geometry, the numerical divergence of B⃗ at a time-step n is defined by the following

equation.

(∇ · B⃗)n =
(Bz

n
i+1,j −Bz

n
i,j)

∆zj+1/2

+
(rj+1Br

n
i,j+1 − rjBr

n
i,j)

ri+1/2∆ri+1/2

(3.34)

For an efficient algorithm, the divergence at the n-th time-step remains zero to

machine round-off, provided that (∇ · B⃗)n−1 equal to zero.

The expansion of a spherical magnetized plasma across an external confined

axial magnetic field is chosen as a test problem. A monatomic ideal gas plasma

with γ = 1.67 is confined by a reflecting cylindrical shell with axial and radial

dimensions of 4.8 m (z = -2.4 to 2.4 m) and 1.5 m, respectively. The plasma is

separated from the surrounding low density medium by a membrane shaped like

a sphere, centered at the origin with an initial radius of 0.2 m. The initial plasma

temperature is assumed to be equal to ∼100 keV. The density of the plasma and

surrounding medium were 1.8 × 10−4 kg/m3 and 10−10 kg/m3 respectively. The

initial velocity is zero throughout the simulation region. The magnetic field is

assumed to be uniform, with only the axial component initially nonzero and equal

to ∼ 4T. Only one quarter of the system in simulated in two dimensions because

of axisymmetry.

The total magnetic field B⃗ at a time 0.12 µsec is shown in Fig. 3.9, where
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3.5. MFC by an expanding fusion plasma sphere

the direction and length of the vectors indicate the direction and magnitude of

the local magnetic field, respectively. It is clear from the figure that the field

outside the plasma sphere is amplified due to flux compression and the field inside

the plasma gets dilated. Also, the initial uniform field lines get modified by the

plasma currents, and a finite Br is observed near the plasma surface.
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Figure 3.9: Spatial variation of the magnetic field vector for plasma expansion
problem

Fig. 3.10 shows the temporal evolution of maximum absolute divergence error

on the grid, obtained with the van Leer scheme, for different mesh-sizes used. The

error remains within the acceptable limits and does not grow in time. Also, it is

found that the divergence error depends weakly on the tolerance factor ξ used for

the iteration. This indicates that a high tolerance factor will only produce an error

in the spatial profile of magnetic field without much divergence error.

3.5 MFC by an expanding fusion plasma sphere

The validated algorithm is applied to study the expansion of a diamagnetic fusion

plasma sphere across an external magnetic field [52], with special attention to the
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dynamics of the plasma and the evolution of the plasma-vacuum interface. Also,

this test will demonstrate the capability of the algorithm to simulate complex

dynamics of high energy fusion plasma across an external magnetic field. The

initial plasma conditions are chosen from earlier published works for D-3He fusion

plasma (see Ref. [52] and references therein). The initial plasma kinetic energy

and mass are assumed to be 140 MJ and 6 mg with an initial plasma radius (rp)

equal to 10 cm [52]. The shielding conductor (a solenoid in Ref. [52]) has a radius

of 1.5 m and an axial length of ∼4.5 m. An initial magnetic field of ∼3.5 T

is used. Other details of the MFC system and its dimensions and parameters are

given in Ref. [52]. Magnetic field diffusion into the plasma sphere during the initial

expansion phase (r ≤ rp) can be neglected due to high magnetic Reynolds number,

Rm ≫ 1. Therefore, the plasma sphere can be assumed to be initially free from the

applied axial field. Also, we assume the plasma sphere is centered at (r,z) = (0,0)

and because of the symmetry only one quarter of the system is simulated. A mesh

resolution of 900 × 600 is used. A symmetry boundary condition is used along

the radial direction (y-axis) at z=0 location. Fixed and extrapolative boundary
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conditions are used at the outer radius (r = rmax) and the axial ends (z = zmax) of

the system, respectively. Details of the boundary conditions applied on the stream

function Ψ are discussed in Sec. 3.3.6. The vector potential as a function of (r,z)

on the computational domain is initialized using analytical equations in terms of

elliptic integrals, taking contributions from all the turns in the shielding coil, and

based on the initial coil current. This procedure is similar to the initialization of

magnetic field in Ref. [52].

Fig. 3.11 shows the spatial variation of scaled density (ρ×106 kg/m3) at different

times. Initially the plasma exhibits a uniform spherical expansion. The expansion

of the plasma across the field lines (radial direction) reduces in time due to magnetic

deceleration. Expansion along the field lines (axial direction) is essentially not

affected by the axial magnetic field, as explained in chapter 2. The radial expansion

at z = 0 is stopped at a radius ∼1.15 m at ∼ t = 0.19 µs. On the other hand,

expansion continues at axial locations z ≥ 0.6 m beyond this time, as shown in the

last two plots in Fig. 3.11 at t = 0.19 and 0.24 µs respectively. A small quantity

of plasma ∼ 0.05% leaves the axial length of the system. This is because, as

mentioned earlier, the plasma expansion along the axial direction is essentially

free. It was not possible to simulate this free streaming using the Lagrangian

method [52] explained in Chapter 2. Even though neglect of axial streaming does

not significantly change the calculated system efficiency, it is clear that the MHD

algorithm used in the present work offers an advantage over the purely Lagrangian

MHD method [52].

Fig. 3.12 shows the normalized radial profile of density at z=0 at different times,

the normalization being done with respect to the peak density at each time. As

observed in Chapter 2, the plasma forms a shell-like geometry at the stagnation

point, where the outer surface slows down due to magnetic pressure and the inner
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3.5. MFC by an expanding fusion plasma sphere

Figure 3.11: Spatial variation of scaled density (ρ× 106 kg/m3) at different times
(t = 0.072, 0.14, 0.19 and 0.24 µs).The elongation of the plasma sphere along the
axial direction and the development of shell like plasma structure are clearly visible
towards the end of the radial expansion phase.

region catches up with the outer region. This can be seen from Figs. 3.11 and 3.12.

The thickness of the shell is ∼ 0.1 m with an average temperature of ∼37 keV

at t = 0.23 µs. Note that the electrical conductivity of the plasma shell formed

near the stagnation point, is high enough (∼ 109 S/m) to prevent magnetic field

penetration. This means that the high temperature plasma shell that exists near

stagnation time does not allow magnetic field diffusion, even though plasma motion

stops for some time.

Next, we have analysed the temporal and spatial evolution of magnetic field

inside the MFC system. Fig. 3.13 shows the contour levels of magnetic stream

function (representing magnetic field lines) at different times during the flux com-
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pression phase. The magnetic field outside the plasma is amplified by magnetic

flux compression, while the field inside the plasma gets reduced due to the diamag-

netic (θ-directed) current produced by the plasma. The maximum magnetic field

between the coil and plasma is observed at the axial midplane z=0. These are con-

sistent with the results given in Ref. [52]. The radial variation of Bz at z=0 plane

at different times is shown in Fig. 3.14. A spike-like increase in the magnetic field

near r = 1.5 m is due to the presence of shielding conductor (solenoid loops). The

final amplified field is ∼6.6 T at z=0 plane. The distribution of current density at

different times during the expansion phase is shown in Fig. 3.15. The diamagnetic

current produced in the plasma has its maximum value near the plasma surface,

as expected.

Finally, the dynamics of the plasma-vacuum interface is investigated, with spe-

cial attention to the evolution of the Rayleigh-Taylor (RT) instability driven by the

magnetic field. The plasma-vacuum interface near the stagnation point (∼ 0.21 µs)

is shown in Fig. 3.16 (plotted on a coarse mesh for clarity). The figure indicates

the development and the evolution of RT-like instability near the stagnation point.
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Figure 3.13: Contours of magnetic field lines represented by magnetic stream func-
tion (Ψ = 2πrAθ), at different times, t = 0.072 and 0.21 µs respectively.
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If we start with a perfectly spherical initial plasma, these instabilities appear only

around the end of the expansion phase, i.e., ∼ 0.18 µs for the problem considered

here. The amplitude of the instability at ∼ 0.21 µs is ∼2 mm with a wavelength

of ∼6.8 cm. Fig. 3.17 shows velocity vectors inside the plasma region at a time

∼ 0.21 µs, where the length of the vector shows the magnitude of the velocity at

that location. The figure clearly shows a non-uniform velocity distribution on the

surface. The variations in the directions of the velocity vectors clearly show the

development of instability. The velocities within the plasma shell are consider-

ably lesser than the velocities on the surface and at regions below the shell. Even

though the instabilities are observed only around stagnation time for the problem

considered above, it is possible that for different system parameters instabilities

may play a more significant role. Hence a detailed plasma stability analysis is

clearly necessary, assuming initial surface perturbations with different amplitudes

and wavelengths. This forms the subject of the next chapter.

3.6 Limitations of the study

In this chapter, we have focused on the dynamics of the plasma and the evolution

of MRT instability near the stagnation point. Therefore, although we consider

this MFC system in the context of the energy conversion from a hot plasma sphere

to usable electrical energy, we have not studied the conversion efficiencies of the

proposed system using this MHD model. However, the conversion efficiencies of

the proposed system with different inductive and resistive load conditions were

described in Chapter 2. In order to study the possible inefficiencies of the system

including resistive elements (confining conductor with finite conductivity), the per-

fectly conducting external boundary condition must be replaced with a diffusion
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Figure 3.16: Zoomed in plot (plotted on a coarse mesh for clarity) of plasma-
vacuum interface near stagnation point (∼ 0.21 µs) indicates development of RT
like instability on the plasma surface.

calculation into a resistive wall with a self-consistently coupled circuit equation

model [52,57].

3.7 Conclusions of this study

In this chapter we have described the development and validation of an Eulerian

multi-material MHD model to study the dynamics of expanding plasma sphere

across external magnetic field with a special attention to plasma dynamics and the

evolution of MRT instability at plasma-vacuum interface. The MHD algorithm

is formulated using magnetic vector potential. In order to treat the expansion of

plasma into surrounding vacuum or low density medium a multi-material hydrody-

namic formulation is used. Different materials in a computational cell are assumed

to be separated by a sharp material interface. These interfaces are tracked us-

ing classical volume-of-fluid (VOF) method. The magnetic field diffusion is solved

implicitly using a vector potential formulation. The advection terms in the field

diffusion equation are computed using a second-order monotonic upwind scheme
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Figure 3.17: Zoomed-in plot of velocity vector inside the plasma region at a time
∼ 0.21 µs. The plot indicate the development of instabilities on the plasma surface.
The velocities within the plasma shell are considerably lesser than the velocities
on the surface and at regions below the shell.

due to van Leer. A second-order accurate alternating direction implicit iteration

procedure is used to calculate the field components in free space. Results obtained

for various test cases show good qualitative and quantitative agreement with the-

oretical solutions. A convergence rate of ∼1.7 is obtained.

The validated algorithm has been applied to study the proposed MFC system

described in Ref. [52]. The algorithm was able to handle complex physics/dynamics

involved in the MFC system such as non-uniform plasma expansion and magnetic

pressure driven deceleration, magnetic field amplification due to flux compression,

magnetic field diffusion and its advection, material interface tracking at plasma-

vacuum boundary, etc.

The simulation results indicate the growth of the magnetic Rayleigh-Taylor

(MRT) instability on the surface of the plasma around the time of stagnation.

The plasma sphere forms a shell-like geometry near stagnation point. The electrical

conductivity of the plasma shell is sufficiently high for the system parameters used

in this simulation, to prevent magnetic field diffusion into the plasma.
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4
Analysis of Magnetic Rayleigh-Taylor

(MRT) instability

4.1 Introduction

In previous Chapters, we have examined a direct energy conversion scheme to

convert plasma kinetic energy in an Inertial Fusion Energy system into pulsed

electrical energy. Preliminary numerical studies [52, 82] described in Chapters 2

and 3 indicate that the proposed system is promising in terms of overall conversion

efficiency. However, such a plasma, expanding across a magnetic field, is subject to

the Magnetic Rayleigh Taylor (MRT) instability. The growth of MRT instability

on the surface of the plasma, around the time of stagnation, is evident from the

results presented in Chapter 3. A detailed analysis of such instabilities forms the

subject of this chapter.

The MRT instability occurs when an electrically conducting fluid, e.g. plasma,

is decelerated or supported by the magnetic field. The classical linear MRT growth

rate [83] is defined as, γL = (kg)1/2 for kLn ≪ 1 and γL = (g/Ln)
1/2 for kLn ≫ 1;
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4.1. Introduction

where k is the wave number, g is the deceleration, Ln ∼ [∂ln(n)/∂x]−1 is the density

scale length of the plasma and n is the plasma density. For efficient operation of

the proposed MFC system [52,82], the instability amplitude must be small so that

the irregular surface caused by growth of the MRT instability does not disturb the

smooth compression of the magnetic field between the plasma and solenoid. Large

amplitude flute modes and plasma jetting can damage the cavity wall [33].

Numerical and experimental studies on plasma expansion in an external mag-

netic field and the analysis of interchange instabilities in space and laboratory plas-

mas can be found in Refs. [40, 84–97] (also see references therein). The majority

of the above-mentioned works examine plasma expansion in a uniform unconfined

background magnetic field where there is negligible compression of the magnetic

field. In the MFC system, however, the magnetic field outside the plasma increases

due to magnetic flux compression.

Previous work related to plasma energy conversion and including the role of

MFC has been reported in Ref. [33]. There are, however, two major differences

between that work and the present work. Firstly, Ref. [33] analyses a different

plasma parameter range, starting with an initial radius of ∼1 m and system di-

mensions of ∼14 m in radius. Since the pickup coil is located at a radius of ∼9

m, a low initial magnetic field is sufficient to stop the plasma close to the coil

radius. Therefore, a magnetic field of ∼0.57 T is used in Refs. [33]. In our last

study [52,82], described in Chapter 2 and 3, we had examined the case of a much

smaller, practically-relevant system having a coil radius ∼1.5 m, higher-pressure

plasma (∼ 107 Pa) with an initial radial expansion velocity ∼ 107 m/s, which

requires a higher magnetic field (5 T) to extract enough energy from the plasma.

Secondly, the simulation results given in Ref. [33] start with an unperturbed

initial plasma state, so that instabilities are seeded by numerically-produced per-
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4.2. MHD model and Computational Scheme

turbations. This was also the case in our last study [82], described in Chapter 3.

In reality, perturbations with different wavelengths and amplitudes would exist on

the surface of the plasma sphere even before it starts expanding. For a real-life

system, therefore, it is necessary to study the growth of pre-existing perturba-

tions with different wavelengths and amplitudes. In the present work, therefore,

the study has been done for different cases of applied initial perturbations (differ-

ent wavelengths and amplitudes), taking into account the effects of magnetic field

amplification (time dependent g) and the geometric divergence due to spherical

plasma expansion.

The purpose of this study is to numerically analyze, using MHD fluid simula-

tions, the MRT instability on the surface of the plasma liner and its implications

for the proposed MFC system.

4.2 MHD model and Computational Scheme

The equations of the MHD model used in this work have been described in Chap-

ter 3. In Chapter 2, we have developed a pure Lagrangian MHD scheme self

consistently coupled with external circuit equations to solve the governing equa-

tions. That scheme, however, is not suitable for the present study as large material

deformations are expected. In such situations, use of a purely Lagrangian scheme

leads to severe mesh distortion. Consequently, in Chapter 3, we have formulated

an Eulerian MHD scheme with volume-of-fluid material interface tracking [60] to

handle large plasma deformations in the MFC system. The method was success-

ful in analysing large deformation plasma dynamics in the proposed MFC system.

However, for the present study, it demands a prohibitively large number of cells

in the simulation. This is due to the order of magnitude difference between the
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4.2. MHD model and Computational Scheme

different scale lengths involved in the system, such as MFC system dimensions of

the order of few meters, plasma initial perturbation amplitude αin of the order of

few µm and wavelength λ ranging from few mm to cm. Note that for numerical

convergence with respect to the mesh size, at least 10−20 cells per λ are required.

This demands an extremely large number of cells in the simulation. Hence nei-

ther of the two foregoing techniques can be used for analysing MRT instabilities

in an MFC system. In this chapter, we report on the development and use of an

unstructured Lagrangian scheme [98] for such problems.

This unstructured Lagrangian scheme [98] helps control artificial grid distortion

and ‘hourglass’-type motion. Further, to stabilize the grid, a node based tensor

viscosity [100] and an artificial grid distortion control algorithm [99] are used. This

allows us to simulate plasma evolution till the stagnation or turn-around time ts

without numerical instabilities. Approximately at this time, the inductive energy

across the load reaches a maximum [52,82]. Therefore, in the present work, we are

only interested in studying the evolution of the MRT instability till the stagnation

time. We have obtained a substantial reduction of the overall computational time

with the help of an unstructured Lagrangian scheme, since the total number of

cells required in the simulation are considerably reduced.

A typical unstructured mesh used in the simulation is given in Fig. 4.1. Only

one quarter of the system is simulated due to symmetry. Details of the unstructured

Lagrangian scheme can be found in Refs. [98–100], and essential details are given

in Appendix B. Similarly, the details of the MHD scheme can be found in Ref. [52,

60,82] and are omitted here for the sake of brevity.
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Figure 4.1: A typical unstructured Lagrangian mesh used in the plasma region.
A larger number of cells is used near near the surface of the plasma, where large
material deformations are expected.

4.3 Initial conditions

The initial plasma parameters are taken from earlier published data for a D-3He

plasma. The plasma energy Ep and mass mp used in this study are 280 MJ and

4.4 mg respectively [25–27, 31, 32]. A 5 Tesla seed magnetic field is used in the

simulation and the system parameters are the same as described in Chapters 2

and 3. Initially, therefore, the plasma undergoes free expansion across the B (see

Chapters 2 and 3 and Refs. [25–27,52,82]). Therefore, we have started our simula-

tion with an initial plasma radius of ∼0.2 m. Initial radial profiles for the plasma

density, temperature and velocity are generated using a separate 2D simulation

without considering the effect of B (free expansion up to a radius equal to 0.2 m).

The initial conditions thus obtained are shown in Fig. 4.2 as a function of plasma

radius.

The overall computational approach in this work is summarized below. We

have analyzed the evolution of MRT instability in two steps.

1. In the first step, we have applied random amplitude perturbations. The
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Figure 4.2: Initial radial plasma profiles for density, temperature and velocity.
The profiles are normalized to the peak value; ρpeak = 2.5× 10−4 kg/m3, Tpeak =
0.275 keV and vpeak = 1.63× 107 m/s.

instability has been seeded by adding a random fraction of the initial am-

plitude αin to the plasma radius on the outer surface. In this method, the

non-linear evolution of different modes can be studied simultaneously. Also,

it helps to identify the dominant modes in the spectrum. However, this study

is subject to the limitation that the shortest wavelength that can be studied

is restricted to the mesh-size used in the θ direction near the surface of the

plasma.

2. In the second step, we have used a single-mode sinusoidal perturbation. The

initial wavelength λin of this perturbation is varied typically around the wave-

length of the dominant modes found in the previous analysis (random per-

turbations). The perturbation is imposed by defining the outer radius as

R(x, y) = R0 + αin sin(2πr/λin)

where r =
√
x2 + y2 and αin are the radius and perturbation amplitude re-
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4.4. Results and Discussion

spectively.

In the random seed analysis, the mesh-size is typically governed by the shortest

wavelength that has to be studied. For single mode analysis, we have used a mesh-

size ranging from ∼ λ/20 to λ/12, which is found sufficient to yield numerical

convergence with respect to the mesh-size.

4.4 Results and Discussion

The simulation results are analyzed using a Fast Fourier Transform (FFT) tech-

nique. The Fourier spectrum of modes in the plasma liner at different times is

obtained as follows. The simulation yields R(θ, t) on the outer surface of the

plasma. We subtract the R(θ, t) from the average outer radius to yield the devia-

tions ∆R(θ, t). A fast Fourier transform is performed on these values to yield the

Fourier spectrum.

4.4.1 Random perturbation

The plasma has an initial radius rp = 0.2 m. A random perturbation is imposed on

the outer surface of the plasma, as described in Sec. 4.3 with αn = 5 µm. We have

used 160 cells in the θ direction (nθ = 160) near the surface of the plasma. Since

only one quarter of the system is simulated, we have a spherical plasma liner with

a circumference C = πrp/2. The mode number corresponding to a wavelength

λ is given by n = C/λ. Therefore, the shortest and largest wavelength that can

be studied with this mesh-size are 2C/nθ ∼4 mm and C ∼ 0.3 m respectively.

Note that these values change along with the instantaneous plasma radius rp(t)

(geometric divergence effect).

The early phase is characterized by plasma expansion, a comparatively low
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value of acceleration g and hence a low growth rate γ. A high pressure plasma

region is created near the surface [52,82] as the outer surface slows down due to B

and the inner region catches up with the outer surface, as shown in Fig. 4.3(a). This

pressure build up near the plasma surface tends to smooth out the perturbations.

Hence, for a very short initial period, the amplitudes of all the modes decrease. As

the plasma expands further, the B outside the plasma increases due to MFC and

hence the interface deceleration g increases, as shown in Fig. 4.3(b). This in turn

increases the growth rate of the modes.

Fig. 4.4 shows snapshots of the Fourier spectrum at different times for this case.

The initial figure at t = 0 shows a spectrum with comparatively larger amplitudes

for longer wavelength modes. Fig. 4.4(b), corresponding to t ∼ 0.036 µs, shows

that the amplitudes of all modes become comparable, with an average amplitude

of ∼30 µm. During this time, the amplitudes of short λ modes are increased by

∼10 times while the amplitudes of longer λ modes essentially remain constant.

This is because of the faster growth of shorter wavelength modes (comparatively

higher γ). However, these short wavelength modes also tend to saturate earlier.

For t ≥ 0.05 µs, all the modes grow with nearly equal γ, with a comparatively

higher-amplitude spectrum in the intermediate wavelength range (modes 20−50).

This is due to the non-linear evolution of the modes. For the present system

dimensions and plasma parameters, the time scales of magnetic field diffusion and

thermal conduction are much greater than the typical plasma expansion time [52,

82]. Similarly, we have also neglected the plasma ion viscosity [52, 82]. Therefore,

the non-linear evolution of the modes might be the consequence of other non-

linear effects such as mode saturation [101], interaction of different modes (mode

coupling) and harmonic mode generation.

In order to understand coupling between different modes, we have used a cross-
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Figure 4.3: (a) Plasma pressure (normalized to 107 Pa) vs radius at different times
during the initial phase of the plasma expansion. The plasma forms a shell like
geometry [52,82]. (b) The temporal evolution of g of the outer surface (normalized
to 1014 ms−2) during the initial phase of plasma expansion.

correlation (fcr) analysis, as explained in Ref. [102]. First the FFT spectrum

is obtained for a large number of time points. This yields a time-series of the

amplitudes of different modes in the spectrum. We have calculated fcr between

these time series using the following expression [103].

fcr =

∑
(αnj − ᾱj)×

∑
(αnk − ᾱk)√∑

(αnj − ᾱj)2
√∑

(αnk − ᾱk)2
(4.1)

Here, αnj and αnk are the time series for modes j and k, ᾱj and ᾱk are the

respective average values. Fig. 4.5 shows fcr for a few important modes (n = 22,

34, 38 and 50) with other modes in the spectrum. The results indicate strong

cross-correlation between different modes. This coupling causes the transfer of en-

ergy between different modes. A detailed study would be required to analyze this

non-linear mode coupling between different modes. This, however, lies beyond the

scope of this thesis. The main objective of this multi-mode analysis is to qualita-

tively identify the dominant modes and the corresponding wavelength regime in

the amplitude spectrum. This dominant wavelength range is next explored using
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single mode analysis with an initial sinusoidal perturbation.

It is noteworthy that since the number of modes (nθ) are fixed, the λ corre-

sponding to a mode number increases with time due to the plasma expansion (rp

and hence C changes with respect to time). Thus the shortest λ (highest n) that

can be studied increases with time due to geometric divergence. Fig. 4.6 shows the

temporal variation of λ for n = 80. The λ for this mode changes from 4 mm to

22.5 mm. That is, as the plasma expands radially outwards, the shorter wavelength

spectrum is continuously eliminated even though the number of modes/cells are

fixed. Therefore, we have repeated the analysis with nθ = 600. This allows study

of the shortest λ (n = 300) that varies from ∼0.1−5.8 mm. This study will also

help us to see the sensitivity of the results with respect to the mesh-size.

Fig. 4.7 shows snapshots of the Fourier spectrum at different times for this

case. Similar to the earlier case, the FFT spectrum has comparatively larger

initial amplitudes for longer λ modes and as the plasma expands the shorter λ

modes in the spectrum evolve faster and saturate. A progressive transition to

longer λ regime is observed. Similar trends have been observed in the simulations

of Z-pinch implosions [104]. The wavelength regime of the dominant modes and

their amplitudes are consistent with the previous results obtained for nθ = 160.

This means that there is no significant change in the results by increasing the

number of cells and hence by including shorter wavelength modes (0.1−5.8 mm)

in the simulation.

Let us now consider the effect of initial amplitude. We have already obtained

results for αn = 5 µm. We have repeated the analysis with two different amplitudes,

viz., αn = 50 µm and 0.5 mm, a variation by two orders of magnitude. Fig. 4.8

shows the Fourier spectrum obtained for these two cases. The initial spectrum

obtained for these two cases are as shown in the first plot of Fig. 4.4 with a
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Figure 4.4: Spectral evolution of perturbations in plasma liner at different times,
starting with an initial random perturbation. We have drawn an envelope over
the wave structure, adapted from [104], (dashed blue line) to easily identify the
dominant modes and corresponding wavelength regime. Figures (a)−(f) are at t=0,
0.04 µs, 0.044 µs, 0.048 µs, 0.058 µs and 0.081 µs, respectively. The corresponding
average plasma radii are 0.2 m, 0.78 m, 0.9 m, 0.95 m, 1.0 m and 1.2 m respectively.
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Figure 4.5: Cross-correlation factor (fcr) for few dominant modes (n = 22, 34, 38
and 50) with other modes in the spectrum.

multiplication factor of 10 and 100 respectively. The dominant modes and their

λ regime obtained for these two cases are in good agreement with the previous

case (αn = 5 µm). However, with αn = 0.5 mm, the spectrum amplitudes of

the dominant modes are ∼60−80 times higher than the short λ modes (n > 60)

compared to ∼2−3 times for the previous case. This is because the higher initial

amplitude of short λ modes leads to their reaching saturation faster than for lower

initial amplitudes.

The spectral evolution obtained clearly demonstrates its complex nature for

the case with random initial perturbations. The large number of modes make it

difficult to follow individual mode evolution and distinguish between the various

factors influencing the γ. As mentioned in the beginning, the primary objective of

this random seed perturbation analysis is to find out the dominant modes and their

λ regime in the spectrum. These wavelengths are then subsequently used in the
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Figure 4.6: Temporal variation of λ for mode number 80. The λ for this mode
changes from 4 mm to 2.25 cm.

single mode analysis. Inspecting Fig. 4.4, it is clear that towards the stagnation

time the dominant modes shift towards intermediate wavelengths λ = 3.7−8 cm

(mode number n = 20−50 for nθ = 160). Also, the higher wavelength modes (λ

ranging from 10−100 cm) have comparatively lower amplitudes from t = 0.05 µs

to ts. The dominant wavelength regime obtained in this analysis is consistent

with the observations in our earlier work using a 2D Eulerian MHD scheme [82].

In Ref. [82], the instabilities grow from numerical perturbations and the λ of the

dominant mode observed towards ts is ∼6.8 cm [82].

The evolution of the dominant modes to intermediate wavelength regime is the

consequence of non-linear mode saturation and/or mode coupling effects. Other

effects, such as B diffusion into the plasma, thermal conduction and viscosity,

are not significant for the present MFC system parameters [52, 82]. The shorter

wavelength modes, which grow more rapidly, saturate at an earlier time. With

saturation, their growth rate becomes close to a constant value [101], so that they

are eventually overtaken by intermediate λ modes. For longer λ modes (n = 1−10

for nθ = 160), the growth rate γ ∝ 1/
√
λ is slower than the γ of the intermediate

modes. Apart from these, the non-linear coupling of different modes which occurs
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Figure 4.7: Spectral evolution of plasma liner at different times from an initial
random amplitude perturbation (with nθ = 600). We have drawn an envelope over
the wave structure (dashed blue line) to easily identify the dominant modes and
corresponding wavelength regime.
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Figure 4.8: Fourier spectrum obtained for two different values of αn (random initial
perturbation). The initial spectrum obtained for these two cases are as shown in
the first plot of Fig. 4.4 with a multiplication factor of 10 and 100 respectively.

simultaneously, as seen by the cross-correlation analysis, contributes to the growth

of other modes in the spectrum. This makes the numerical picture more difficult

to interpret. Therefore, in the next section, we have described the instability

analysis with a single-mode initial perturbation. The initial wavelength (λin) of

this perturbation is varied typically around the wavelength of the dominant modes

found in this section.

4.4.2 Single mode sinusoidal perturbation

The initial perturbation is taken to be sinusoidal, as described in Sec. 4.3. λin

is varied from 6.9 mm−6.28 cm (n = 5−45). These modes are chosen in such a

way that the corresponding λin lies within the dominant λ regime found in the

previous study. For each λin, four values of αin are used; λin/1000, λin/100, λin/50

and λin/10. Note that for the cases with αin ∼ λin/10, the mode amplitude and the

wavelength are comparable. This means that αin is close to the mode saturation

limit [101]. This value, however, is included in the test cases by considering the

fact that the λ of a given mode increases due to plasma expansion. Also, we have

observed that for a short initial period of time, the α decreases – this is examined
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in later sections. Apart from these, the following fact also need to be considered.

In reality the plasma expands from a radius of ∼200 µm after fusion energy release

is completed. However, as mentioned above, we have started our simulation with

a radius of 0.2 m (1000 times expansion). Therefore, modes with comparable α

and λ would pre-exist on the plasma surface.

Fig. 4.9 shows the density profile near the plasma surface and the corresponding

Lagrangian mesh towards t = ts for the case with λin = 3.14 cm (n = 10) and

αin = λin/10. The plasma forms a shell like geometry near the stagnation time.

This is consistent with the observations in Refs. [52, 82]. The evolution of the

FFT spectrum amplitude is shown in Fig. 4.10. Inspecting the plots, it is clear

that apart from the fundamental imposed mode, the evolution of other harmonic

modes (nk where n = 2, 3,..) with λn = λin/n are also taking place. We have

observed that, in all the test cases presented here, the evolution of harmonic modes

(the non-linear phase of instability growth) occur significantly when αin ∼ λin/10.

In order to understand the mode coupling and harmonic mode generation in

detail, we have performed a multi-mode analysis by imposing two fundamental

modes having different λ. Initially two fundamental modes, numbers 10 and 40,

are imposed with the same initial amplitude αin ∼ 500 µm for each mode, i.e.

αin ∼ λin/65 for mode 10 and αin ∼ λin/15 for mode 40. The right side plot

in Fig. 4.10, shows the FFT spectrum (normalized to the highest amplitude in

the spectrum) at t ∼ 0.04 µs for this case. For single mode perturbation with

αin = λin/10 and n = 40, only one harmonic mode (n = 80) is appeared at

t = 0.04 µs, see Fig. 4.10(b). The amplitude of this harmonic mode is ∼ 20% of

the fundamental mode. Also, note that the FFT spectrum obtained in the single

mode analysis for n = 10 with αin = λin/50 shows negligible amplitude for its

harmonic modes at t = 0.04 µs. However, with multi-mode perturbation (modes
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10 and 40), the evolution of other modes due to the interaction between different

primary and harmonic modes are observed. The appearance of a mode n = 30

which is the difference of fundamental modes is also observed. Note that for single

mode perturbation with n = 40, the spectrum amplitude of the modes 20 and 30

were negligible.

Further, to observe the mode coupling between two fundamental short wave-

length modes (say n1 and n2), we have repeated the multi-mode analysis for two dif-

ferent sets of fundamental modes (n1, n2) = (30, 40) & (60, 80) with αin ∼ 500 µm.

The FFT spectrum (α/αpeak) obtained for these two cases are shown in Fig. 4.11.

Note the appearance of inverse cascade modes 10 and 20 corresponding to the

difference n2 − n1 for these two cases respectively (the generation of inverse cas-

cade modes in a Z-pinch implosion system with multi-mode perturbation analysis

is reported in Ref. [104]). That is the short wavelength modes upon saturation

generate higher wavelength modes along with other short wavelength harmonic

modes. Note that the amplitude of harmonic modes are found to be insignificant

for all the cases of multi-mode analysis when the value of αin for each mode is

set equal to ∼ 5 µm (this is true even with increased spatial resolution). That is

the evolution of harmonic modes and their interactions with both the primary and

other harmonic modes are found to be significant only when the value of αin is

comparable to λin. This implies upon saturation these modes evolve non-linearly

with the generation of harmonic and inverse cascade modes.

Our aim with this multi-mode perturbation study was to qualitatively analyze

the non-linear evolution of the modes (particularly the short λ modes) when α is

comparable to λ (close to mode saturation). It is clear that the non-linear evolution

of the modes upon saturation is characterized by the generation of harmonic modes

and mode coupling. Detailed analysis of the evolution of these harmonic modes
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for various initial conditions in terms of number fundamental modes, their initial

amplitudes and wavelength lies beyond the scope of this work. For these studies,

more computational efforts with increased spatial resolution to resolve the highest

harmonic mode [104] in the spectrum are required.

In Fig. 4.12, we have shown the temporal evolution of the perturbation ampli-

tude α and the wavelength λ. As mentioned earlier, α decreases till t ∼ 0.03 µs due

to the geometric divergence effect, comparatively low growth rate γL ∼ (2πg/λ)1/2

(g is comparatively low during the initial phase of the expansion) and the high

pressure region created near the surface of the plasma. However, as the plasma

expands further, the B outside the plasma and hence g increases due to MFC. This

increases the γ value. Therefore, at a time ∼ 0.03 µs the α begins to grow.

The temporal evolution of the α predicted by the linear theory with a constant

growth rate γL is also shown in Fig. 4.12. Since, both the λ and g varies with time,

we have used their time averaged values (λavg ∼ 10 cm, gavg ∼ 3 × 1014 m/s2)

for calculating the growth rate γL ∼ (2πgavg/λavg)
1/2 ∼ 1.4 × 108 s−1. Note that

λavg and gavg are also averaged along the θ direction. It is clear from the figure

that the assumption of linear growth for α from t = 0 to ts with a growth rate γL

tends to overestimate the final amplitude by orders of magnitude. The magnetic

deceleration g and hence the γ value, as mentioned earlier, becomes significant

at a time ∼ 0.03 µs. Therefore, we have also plotted the temporal evolution of

α starting from t ∼ 0.03 µs by using both γL (shifted line in the Fig. 4.12) and

γL(t) ∼ (2πg(t)/λ(t))1/2, where g(t) and λ(t) are the instantaneous values of the

interface deceleration and wavelength respectively. These plots are close to the

simulation result, except towards the stagnation time ts, where the simulation

result shows a non-linear evolution. Clearly, the assumption of linear growth from

t = 0 produce a much larger amplitude than is observed computationally.
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The temporal evolution of α for a few other cases of sinusoidal perturbation

(n = 5, 25 and 45) with αin = λin/1000 is shown in Fig. 4.13. The evolution of α

starting from t = 0.03 µs is found to be in agreement with the predictions of linear

theory. However, similar to the earlier case, non-linear evolution of the modes

is observed towards the time t = ts. For short wavelength modes, this onset of

non-linearity occurs at an earlier time. For example the onset of non-linearity for

mode n = 45 occurs at a time t ∼ 0.05 µs, whereas for mode n = 5 this occurs at a

time t ∼ 0.07 µs. In short, the growth of the modes near stagnation time, although

exponential in nature, occurs at a lower rate than that predicted by linear theory.
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Figure 4.9: Density (×105 kg/m3) profile near the plasma surface towards t = ts
for the case with λin = 3.14 cm (n = 10) and αin = λin/10. Right side plot is the
corresponding Lagrangian Mesh with a mesh-size ∼ λ/12.

For a plasma of given mass, its radial expansion velocity increases with its initial

energy Ep. Therefore, the plasma energy determines (for fixed B) the stagnation

time, plasma stopping radius and hence the growth of the modes. Typical plasma

energy Ep and mass mp reported for inertial fusion plasmas vary from 140−300

MJ and 1.2−6 mg respectively [25–27,31,32,52,82]. Fig. 4.15 shows the results of

a sample calculation (n = 10, αin = λ/1000) with two different values for Ep (140

and 280 MJ) with mp ∼ 4.4 mg. No significant difference in the final amplification

factor (at t ∼ ts) is observed between these two cases despite having different
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Figure 4.10: The left side plot shows the spectrum amplitude (mm) at different
times (single mode analysis) with λin = 3.14 cm (n = 10) and αin = λin/10. The
FFT spectrum shows the evolution of harmonic modes. Right side plot shows the
normalized spectrum amplitude (α/αpeak) at t ∼ 0.04 µs obtained in the multi-
mode analysis (modes 10 & 40, αin = 500 µm) and single mode analysis (n = 40,
αin = λ/10).

operational time, interface deceleration and plasma stopping radius. The decrease

in g (hence γ) and the increase in overall operational time (more growth) makes

the final α/αin factor nearly the same for this particular system parameters with

B ∼ 5 T. A similar trend is observed for other cases with different n, αin and

mp. A more comprehensive analysis with different plasma mass, energy (different

fusion yield), mode number, αin and initial B lies beyond the scope of this work.

The results can now be summarized. Fig. 4.14 shows the values of maximum

α/αin and α obtained at t = 0.09 µs (close to the stagnation time) for different val-

ues of initial mode number n and perturbation amplitude αin. The final amplitude

amplification factor α/αin obtained is typically higher for the cases with lower αin

values. Also, small wavelength modes have comparatively higher α/αin value. For

a given n, the final α/αin value obtained (at t ∼ ts), when αin ∼ λ/10, is found to

be much lower than the α/αin values obtained for αin ∼ λ/100 and λ/1000. This

difference increases towards higher n (mode saturation for short λ modes happens

at an earlier time). However, inspecting the actual amplitude (α) variation, com-
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Figure 4.11: The normalized spectrum amplitude (α/αpeak) obtained in the multi-
mode perturbation analysis with αin ∼ 500 µm. The left and right side plots are
for modes 30 & 40 at t = 0.04 µs and modes 60 & 80 at t = 0.03 µs respectively.
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paratively larger α values (despite having lower α/αin values) are observed for the

cases with αin ∼ λ/10. Furthermore, as the mode number n increases (shorter

wavelength modes), the α values tend to decrease for αin ∼ λ/10.

It is worth mentioning here that the conversion of plasma energy into electrical

energy across a resistive load, during several expansion and compression cycles

of the plasma [25–27], are for an unperturbed initial plasma with B ≤ 0.6 T.

Such operation would be inefficient/challenging for the present system parameters
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of initial mode number n and perturbation amplitude αin (λ/1000, λ/100 and
λ/10).

since the plasma outer surface, after the first expansion phase, would have high-

amplitude perturbations. During the next implosion phase of the plasma, after the

turn-around, these perturbations grow further and may generate plasma jetting or

extremely large amplitude wave structures, which could affect the smooth implo-

sion of the plasma (the compression phase) and damage the cavity wall. Therefore,

further studies are required to explore the concept of plasma energy recovery across

a resistive load with several expansion and compression phases [25–27].
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with mp ∼ 4.4 mg and Ep = 140 and 280 MJ.

The implications for the proposed MFC system (for the present plasma and

system parameters) from the results summarized above are as below: The instabil-

ity amplitudes are not large enough to severely the disturb smooth compression of

B for initial perturbations with αin ≤ λin/10. Comparatively large wave structures

are observed for the short wavelength modes with αin ∼ λin/10.

Next, it is desirable to determine the threshold value of initial amplitude beyond

which instability growth would significantly degrade operation due to large flute

structures and jetting. Hence we have next conducted the instability analysis with

αin ≥ λin for modes 5, 10, 20 and 40. The present Lagrangian scheme, however,

has failed to simulate the plasma dynamics till the stagnation time for αin ≥ λin

due to large plasma deformation (plasma jetting). Fig. 4.16 shows such a situation

for n = 10 with αin = λin.

Beyond this time point, the Lagrangian scheme fails due to severe mesh tan-

gling. Therefore, we have continued the analysis with an Eulerian MHD model

described in Chapter 3. It is necessary to validate the Eulerian MHD model be-

fore we can believe its prediction of MRT instability growth rate. This has been
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done by comparing the final α predicted by both models for different perturbation

wavelengths (modes 5− 40) with αin ∼ λin/10. The differences in the final α thus

obtained were not more than ∼6% of the peak value, the Eulerian model predicting

higher growth.
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Figure 4.16: Initial plasma configuration (blue color plot) and the plasma con-
figuration at t = 0.033µs obtained in the single mode analysis for n = 10 with
αin = λin.

Fig. 4.17 shows snapshots of MRT instability evolution, using Eulerian simu-

lation, at different times, for n = 10 with αin = λin. Zoomed in plots of plasma

density and pressure near the surface of the plasma at 0.09µs are shown in Fig. 4.18

and Fig. 4.19 respectively. Large plasma deformation, plasma jetting, flute break-

ing (towards ts) etc are observed. Also, for this case, the instability amplitude

is large enough to reach the coil inner surface before the stagnation time, lead-

ing to inefficient flux compression. In order to quantify the decrease in the flux

compression efficiency, we have plotted the value of η = Bf/Bts vs mode num-

ber for different values of αin. Here, Bf and Bts are the B at a time when the

plasma instability amplitude (jetting) first reaches the coil inner surface and the

peak magnetic field obtained (∼9.5 T) at ts assuming ideal operation, respectively.

Fig. 4.20 shows the η calculated for modes 5, 10, 20 and 40 with two different
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values of αin (λin and 2λin). For modes 5−10, the decrease in efficiency is ∼15−20%

when αin ∼ λin and ∼30−40% when αin ∼ 2λin. However, for a given αin (related

to λin), the decrease in η is found to be smaller for short λ modes. In general, a

loss of efficiency ∼20% is expected for longer λ modes (n ≤ 20) and short λ modes

(n > 20) when αin ∼ λin and αin ∼ 2λin respectively.
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Figure 4.17: The snap shots of MRT instability evolution at different times (left
and right side plots are at 0.035µs and 0.09µs respectively.) with an Eulerian MHD
scheme for n = 10 with αin = λin.
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Figure 4.18: The plasma density (normalized to 1.0 × 10−5 kg/m3) at 0.09 µs
obtained with an Eulerian MHD scheme for n = 10 with αin = λin. The plot is
shown only near the surface of the plasma for better clarity.
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Figure 4.19: The plasma pressure (normalized to 7.0×107 Pa) at 0.09 µs obtained
with an Eulerian MHD scheme for n = 10 with αin = λin. The plot is shown only
near the surface of the plasma for better clarity.

4.5 Conclusions of this study

Two-dimensional MHD simulations of random, single and multi-mode perturbation

growth in an MFC system driven by a fusion plasma sphere have been carried out

for different initial perturbation amplitudes and wavelengths. The simulation takes

into account the effects of magnetic flux compression and geometric divergence due

to spherical plasma expansion.

In the random seed perturbation analysis, we have found that the dominant

modes in the spectrum show a progressive transition from the short-wavelength to

the intermediate-wavelength regime, λ ∼4−8 cm − this is consistent with the ob-

servations in Ref. [82]. The cross-correlation analysis indicates the mode coupling

between dominant modes and other modes in the spectrum.

The multi-mode (sinusoidal) analysis, with two different fundamental modes,

and with αin ∼ 500 µm, shows the appearance of higher harmonics of the individual

modes, as well as the shorter wavelength (n1 + n2) and higher wavelength inverse

cascade (n2 − n1) modes created by non-linear interaction of fundamental and
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Figure 4.20: Flux compression efficiency (defined in the text) vs mode number for
two different values of αin.

harmonic modes.

In the case of single-mode perturbation, the modes continue to grow exponen-

tially with nearly constant γ and make a transition into the non-linear phase (mode

saturation). That is the amplitude growth of the modes towards stagnation time,

although exponential in nature, is lower than the growth predicted by linear theory.

We also note that extremely large flute structures and plasma jetting, which could

damage or reach the cavity-wall/coil and to severely disturb the smooth compres-

sion of the magnetic field, are not seen during the time period of our interest, viz.,

the first expansion phase of the plasma. This means that it is feasible to have

efficient flux compression during the first expansion phase in the proposed system,

for perturbation amplitudes αin ≤ λin/10. However, for αin ≥ λin, the instability

amplitudes are large enough, especially for longer λ modes, to cause plasma jetting

leading to significant reduction in the flux compression efficiency.

There are a number of remaining issues that need to be addressed to obtain a

complete description of the evolution of MRT instability in MFC systems driven

by fusion plasma. The extension of the present work to three dimensions may give

a better understanding of mode coupling and non-linear evolution. Future work
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should quantify the effect of MRT instability in terms of conversion efficiency by

using MHD models that are coupled with external circuit equations [52].
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5
FDTD based first principle analysis of

MFC systems

5.1 Introduction

So far in this thesis, we have focused on an MHD description of plasma behaviour.

No attention has been paid to accurate modelling of the outer coil, which produces

the seed magnetic field and also acts as the pickup coil. In all real-life MFC gener-

ators, such as helical flux compression generators [107], it is necessary to perform

accurate calculations of the inductance and resistance of complex geometries, such

as arbitrarily-wound helical coils, including the effects of multiple materials, con-

ductors as well as insulators. The resistance calculations must take into account

phenomena such as skin and proximity effects. For high-frequency (short pulse)

operation, capacitive effects in the coil could also become significant. Furthermore,

the requirement of self-consistent coupling between the MHD computational do-

main to external circuit solver can be eliminated by using a 3D FDTD simulation

of the whole system. The evolution of electromagnetic field components in the
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MFC system and the currents in the moving armature and the stator coil can

be self-consistently updated by using FDTD scheme for electromagnetics. In this

chapter, we report, for the first time, on the application of an advanced electro-

magnetics technique (FDTD scheme for electromagnetics) for accurate modelling

of MFC generator coils.

Analytical, closed-form expressions are available, and have long been used,

for calculating the coil resistance, taking into account skin and proximity ef-

fects [107–109]. Similarly, the filamentary technique has been applied to model

skin and proximity effects in flux compression systems by Novac et al. [110, 111].

For an arbitrarily-wound coil, involving a variable pitch, loosely-wound coils (3D

helical effects), turn splitting and inter-turn potting, calculation of the proximity

and skin effects is complicated by a complex geometry and the presence of multiple

materials, conductors as well as dielectrics. One example of such a dielectric is the

inter-turn potting material used in conventional FCGs [107]. Note that the inter-

turn potting cannot be used in the MFC systems described in previous chapters

due to high inter-turn voltage ∼25 MV. Even if these factors were not a consid-

eration, the analytical methods are applicable for a single frequency, while flux

compression systems typically involve complex temporal waveforms which cannot

be approximated by a single frequency. To our knowledge, none of the closed-form

expressions can handle these complexities.

The most general method is to solve the magnetic field diffusion equation for

the system [57]. Such a solution yields the spatio-temporal distribution of the

magnetic field, and hence the current density, throughout the domain, from which

the resistance can be calculated. However, the electrical conductivity, and hence

the magnetic field diffusion coefficient, can vary by orders of magnitude through

the coil assembly. This leads to numerical problems in obtaining this solution using
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5.2. Application to problems with stationary conductors

“standard” solvers for such equations. In particular, the inter-turn insulation has

a near-infinite magnetic field diffusion coefficient, requiring a near-zero time-step.

This last problem can be handled by using flux-limited transport, but the problem

of small time-steps remains. The problem is further complicated by imperfectly-

known boundary conditions for the magnetic field. There is thus a need for a more

general method that can handle real-life problems with all the complexities listed

earlier.

We have used the three-dimensional (3-D) Finite Difference Time Domain

(FDTD) method for electromagnetics [112] to handle such problems. This method

directly updates Maxwell’s curl equations in time, using an explicit algorithm, to

yield the 3-D variation of electric and magnetic fields. It allows setting up of

complex, multi-material configurations. Furthermore, the time domain analysis

allows handling of arbitrary time-dependent waveforms of current. This technique

thus allows a study of real-life configurations with practically no limitations on

the geometric complexity, the materials used or the temporal waveforms. To our

knowledge, this is the first application of this powerful technique to such systems.

5.2 Application to problems with stationary con-

ductors

5.2.1 Computational method

The past decade has seen rapidly-increasing growth of the Finite Difference Time-

Domain (FDTD) method for electromagnetics to calculate scattering and absorp-

tion of electromagnetic waves from lossy dielectrics as well as conducting ob-

jects [118, 119, 122]. The FDTD method is an explicit time-domain approach for
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solving Maxwell’s curl equations

∇× E⃗ = −µ∂H⃗
∂t

(5.1)

∇× H⃗ = ε
∂E⃗

∂t
+ σE⃗ (5.2)

on spatial grids, based on a technique introduced by Yee [114], see Fig. 5.1. Here,

E⃗ and H⃗ represent the electric field and magnetic field intensities, respectively,

while σ, µ and ε represent the electrical conductivity, magnetic permeability and

permittivity of the medium, respectively. The six finite-difference equations are

stepped in time, alternately updating the electric and magnetic field components

at each grid point. This method has been applied to a wide range of problems,

including scattering cross-section calculations for arbitrarily-shaped objects [115],

scattering from materials with frequency-dependent properties [117], and a variety

of other areas [116].

The FDTD technique yields the 3-D variation of electric and magnetic fields,

E(r⃗,t) and B(r⃗,t) throughout a specified domain [112]. Using the field distribution

computed for a given coil and a specified driving voltage waveform, we can deter-

mine the inductance from the magnetic field distribution and the resistance from

the computed current. We can also determine the current density distribution

J(r⃗,t) throughout the conductor, which provides physical insight into the role of

proximity and skin effects.

The object to be modeled is set up in a Cartesian computational grid. The

time-step is governed by the Courant criterion for speed-of-light transit through

the smallest computational cell and it is calculated using Eq.(5.3) [112,114].

∆t =
1

c
√

1
∆x2

+ 1
∆y2

+ 1
∆z2

(5.3)
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where, c = 1/
√
µϵ is the velocity of light. Since the present problem is related to

magnetic field diffusion, the standard finite difference form used in FDTD [112,114]

is replaced by an explicit exponentially differenced form, to avoid the possibility

of diffusion instability [105,106].

E
n+ 1

2
x (I, J,K) = e

−σ∆t
ϵ E

n− 1
2

x (I, J,K) +

[
1− e

−σ∆t
ϵ

σ

]

×
[
Hn
z (I, J,K)−Hn

z (I, J − 1, K)

Y (J)− Y (J − 1)

−
Hn
y (I, J,K)−Hn

y (I, J,K − 1)

Z(K)− Z(K − 1)

] (5.4)

This modification increases computational accuracy in the presence of dissipation

and this scheme reduces to a standard differencing form when σ∆tϵ << 1 so that

eσ∆t/ϵ ≈ 1− σ∆t/ϵ. This approach was taken to handle large values of σ and first

published for the 3-D FDTD equations by Holland et al. [106]. Its 1-D application

in the electromagnetics literature was given in Ref. [123]. A more detailed analysis

of exponential time-differencing for FDTD in lossy dielectrics is given in Ref. [121]

A second-order outer radiation boundary condition has been used [112,113].

5.2.2 Geometry setup and excitation

Figure 5.2 shows a sample setup of the coil, along with the excitation by an applied

voltage.

For problems of interest in the present work, we consider a time-harmonic

applied voltage with a peak value Vp and angular frequency ω. The coil resistance

(R), inclusive of proximity and skin effects, as well as the coil inductance (L), can

then be calculated by ‘measuring’ the peak current (Ip) flowing through the coil

158



5.2. Application to problems with stationary conductors
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Figure 5.1: Yee cell with electric and magnetic field locations

and the phase angle (ϕ) between the applied voltage and the current.

V 2
p /I

2
p = ω2L2 +R2 (5.5)

tan(ϕ) = ωL/R (5.6)

5.2.3 Important issues

FDTD modeling requires the calculation of optimum values for the size of a com-

putational cell, the total number of cells required in the simulation and time-step.

The following issues must be kept in mind whilst setting up a magnetic field

diffusion problem using FDTD. Firstly, the modeling of curved geometries, such

as coils, in a Cartesian grid, leads to ‘staircase’ errors that must be minimized by

using a sufficient number of cells [112]. Secondly, the cell size must not exceed 10%

of the free-space wavelengths λ corresponding to the frequencies of interest [112].

Thirdly, since an outer radiation boundary condition is used, it is necessary to

maintain a distance of at least 1-2 λ between the object and the domain boundary

in all directions [112]. Fourthly, there must be a sufficient number of cells in one
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Iy Observation loop

Ix Observation loop

Iy Observation loop

Ix Observation loop

Iz Observation loop

Iz Observation loop

Source Excitation (Ez)

Connector

Coil

z

x

y

a

b

Figure 5.2: Schematic of a typical two turn coil geometry setup used in FDTD
modeling, including different current observation loops as well as the applied elec-
tric field driving a current through the coil.

skin depth, for proper resolution of the penetration of the magnetic field. Fifthly,

the wavelength corresponding to the applied frequency should be very different

from system dimensions, to eliminate the possibility of radiation, which would not

be significant in a real-life system.

These criteria, put together, lead to a rather large computational load in 3-D

calculations, which is best illustrated by an example. Consider the copper coil

shown in Figure 5.3, having a wire diameter D=3 mm and a mean coil diameter of

15 mm. For an applied voltage of frequency 1 MHz, the skin depth is 0.066 mm.

This leads to a cell size of 0.0132 mm even if we use the bare minimum of five cells

per skin depth. Even for a single-turn coil, a 1363×1363×227 mesh is required,

a total of 400 million cells. For a real-life problem involving multi-turn coils,

the number would increase substantially. To this must be added the mandatory

distance to the domain boundary, typically 1-2λ. Since λ = 3×105 mm, this leads

to a prohibitively large mesh requirement. Another important parameter is the

time-step. For a cell size of 0.0132 mm, in free space, the Courant-limited time-

step ∆t is ≈ 2.5 × 10−14 s, leading to ≈ 3.9×107 steps per cycle. This is again
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prohibitively large.

D

λ

nλ

n

λn nλ

coil mean
Diameter

Pitch

FDTD domain boundary

Figure 5.3: A typical two turn coil, nλ is the distance to the FDTD domain
boundary (n = 1, 2, 3 ..)

This problem can be solved by using an artificially increased permittivity for

the medium by a large factor, which reduces the speed of light and thereby permits

much larger time-steps [105, 106]. The scaling factor used for the permittivity ϵ

throughout the computational domain varies from 104 to 108, depending upon the

problem. This permits an increase in the time-step by a factor of 102 to 104. Since λ

is proportional to the speed of light, the cell size required to resolve the wavelength

becomes a few mm. However, the cell size required to resolve the skin-depth is

10-1000 times smaller, depending upon the conductivity and frequency. The only

solution is to have variable meshing, which is constant through the conductor

region, but progressively expands in the free-space region surrounding the coil.

With the use of variable meshing, a typical simulation involves 360×360×210 cells,

and a typical time-step of 10 ns.

Clearly, there is a great reduction in computational demand by increasing ϵ.

However, one constraint must be kept in mind while increasing ϵ. In a real-life

helical generator coil made out of good conductor, e.g. copper, the ratio of the

conduction current to the displacement current σ/ϵω >>> 1, i.e., the conduction
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current dominates, by far, over the displacement current. The maximum enhance-

ment in ϵ must be limited to a range that satisfies the above condition.

Another issue is to ensure the magnetic diffusion timescale in good conductors

is not affected by the use of an artificially large permittivity to achieve higher

time-steps in the simulation. The magnetic diffusion time to a conductor having

thickness ’L’ and conductivity σ is given by td = µσL2. This time scale will not

be affected by increasing ϵ in the medium. However, the time-step used in the

computation should not exceed the magnetic diffusion time scale and it should

be able to resolve the magnetic diffusion time. In our simulation we have scaled

permittivity keeping these constraints in mind.

Despite these changes, due to the large number of constraints that have to be

satisfied, the computational demand is too large to be handled on one CPU. Hence

the computer code has been parallelized in three directions with the flexibility to

independently specify the number of CPUs in each direction.

The present work is an exploratory study of the use of FDTD for such problems.

Hence the method has been applied to simple geometries, such as single-turn and

two-turn coils. Coil dimensions, as well as parameters such as ϵ, ω and electrical

conductivity σ, are chosen so as to minimize the computational demand. Also, in

the present work, the coil geometries simulated are extremely small compared to

those of interest for practically relevant MFC generators.

5.2.4 Important new constraint observed in simulations

Apart from the constraints mentioned in Section 5.2.3, which are known from

the literature, our simulations have indicated a new constraint that must also be

satisfied. This is discussed below.

Consider electromagnetic (EM) waves, driven by the exciting gap voltage, trav-
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eling along the inner and outer surfaces of a coil, as illustrated in Figure 5.4.

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
��� �����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

y
x

z

A
Iy observation loop

I

Excitation Gap

Ex Outer surface

Ix observation loop
b

a
Rin

Rout

RoutD
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Inner surface

Figure 5.4: Schematic of a typical single-turn coil geometry setup with different
current observation loops and source excitation gap. Inset shows line ‘ab’ along
which electric field measurements are reported.

These two surfaces define transit paths with different path lengths. This dif-

ference can become significant for “thick” coils, i.e., coils where the conductor

diameter is a significant fraction of the average coil diameter. For example, in a

coil with an average diameter of 15 mm and a conductor diameter of 6 mm, the

path lengths are 2π× 18 and 2π× 12 mm, respectively. These path lengths imply

a transit time difference ∆ttrans = 0.13 ns, taking the velocity of light in a vacuum.

This is negligible in comparison with a cycle time of 1 µs corresponding to an ap-

plied frequency of 1 MHz, the highest typically encountered in helical generators.

Hence, even with thick coils, this ∆ttrans does not affect field propagation through

the coil.

With a large enhancement in ϵ, however, the resulting decrease in the speed of

light increases ∆ttrans, and can make it significant in comparison with cycle times.

This is bound to affect the distribution of EM fields through the conductor, leading

to erroneous results. Hence ϵ should be chosen so that this error remains small.

163



5.2. Application to problems with stationary conductors

5.2.5 Quasi-DC Excitation

We first studied the diffusion problem with a quasi-DC excitation by using a half

Gaussian ramp-up pulse followed by a flat top. We expect the magnetic field

to diffuse into the conductor and finally relax to a steady-state distribution. A

gradual ramp-up of the applied voltage is necessary, since a jump in the electric

field from zero to a finite value would lead to numerical instabilities [112]. The

reasons for using a half-gaussian ramp-up waveform are explained in Ref. [120].

Single Turn Coil

We first studied diffusion into a single turn coil having the following parameters:

coil mean radius R = 7.5 mm, conductor radius r = 1.5 mm, relative permittivity

ϵr = 108, conductivity σ = 5 × 105 Siemens/m. This value of ϵr implies that the

speed of light is reduced by a factor of 104. The half-gaussian pulse had a rise

time of 1 µs, as shown in Figure 5.5. The coil is assumed to lie in the x-y plane,

its thickness extending in the z direction as shown in Fig 5.4. The excitation is

applied over a 3-cell gap in the x-direction. A 360×360×210 mesh was used in

the x, y and z directions, respectively. Variable mesh sizes were used, the smallest

being 0.1 mm in the conductor region, increasing to a maximum of 3 mm in the

free space region. The number of cells used along the x, y and z directions, and

their variations, are mentioned in Table 5.1.

The computed mean current from currents observed at different observation

locations is shown in Figure 5.6.

The currents have been computed by an application of Ampere’s law along

paths of the form shown in Figure 5.4. The difference between currents observed at

two different locations are found to be very small for this particular case. However,

at early times, up to ∼ 2 µs, we see a small difference in the waveforms, which
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Region NX, DX (mm) NY, DY (mm) NZ, DZ (mm)
1 50, 3 50, 3 50, 3
2 10, 1.5 10, 1.5 10, 1.5
3 8, 0.8 8, 0.8 8, 0.8
4 2, 0.4 2, 0.4 2, 0.4
5 5, 0.2 5, 0.2 5, 0.2
6 5, 0.15 5, 0.15 5, 0.15
7 100, 0.1 100, 0.1 50, 0.1
8 5, 0.15 5, 0.15 5, 0.15
9 5, 0.2 5, 0.2 5, 0.2
10 2, 0.4 2, 0.4 2, 0.4
11 8, 0.8 8, 0.8 8, 0.8
12 10, 1.5 10, 1.5 10, 1.5
13 50, 3 50, 3 50, 3

Table 5.1: No. of cells and cell-size used in each directions

is due to a propagation delay between the two observation points at the reduced

speed of light. However, once the applied voltage stabilizes at its peak value,

propagation delay becomes irrelevant, and the waveforms merge.

At steady state, the current at different locations is found to be the same, as

expected. The current at steady state was 24.5 mA and the excitation gap voltage

was 0.3 mV, corresponding to a 3-cell gap with a cell size of 0.1 mm. The DC

resistance, calculated from the steady state values, was 12.2 mΩ, yielding good

agreement with the analytical value of 12.8 mΩ, and the analytical inductance

value is 18.3 nH, leading to an analytical L/R time of 1.4 µs.

It takes the current 2.23 µs and 3.91 µs to reach 60% and 90% of its steady-state

value, respectively. This compares well with the analytical L/R time of 1.4µs.

The inductance can also be calculated from the magnetic energy stored. We

have calculated the inductance from the energy of the magnetic field and mean

current. The calculated value of 18.29 nH agrees well with the analytical value.

It is also interesting to examine the electric field distribution across the con-

ductor cross-section, after steady state is achieved. Consider the inset shown in
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Figure 5.6: Mean current for single-turn coil with quasi-DC excitation

Figure 5.4. Since the applied voltage is the same across the coil cross-section (y-

z plane), the electric field is expected to exhibit a strong variation with radial

position, due to coil curvature. Figure 5.7 shows the steady-state distribution of

electric field Ex as a function of radial position inside the conductor. The electric

fields are plotted along the line a⃗b inside the conductor as shown in Figure 5.4. For

the dimensions used in this study, the expected ratio Ein/Eout = Rout/Rin = 1.5,

while the ratio determined from FDTD calculation is 1.53.

Hence we conclude that the FDTD technique yields good agreement with an-
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alytical results in the case of quasi-DC excitation.
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Figure 5.7: Steady-state electric field Ex (V/m) distribution through the conductor
as a function of radial position (along the line a⃗b as shown in Figure 5.4) inside
the conductor, for a single turn coil with Quasi-DC excitation.

Two Turn Coil

We next studied a two-turn coil with a Pitch/Diameter (P/D) ratio of 1.5, where

D refers to the conductor diameter. The other dimensions are the same as in

the single-turn coil, and the connectors are arranged as shown in Figure 5.2 with

an excitation gap of 0.09 mm. A 640×580×390 mesh was used, expanding from

0.09 mm to 3 mm. The number of cells used along the x, y and z directions and

their variations are mentioned in Table 5.2. The 2D meshing near the conductor

cross-section is shown in Figure 5.8.

The connectors have the same cross-section as the coil conductor, with a = 4

mm and b = 3 mm. σ = 5×102 Siemens/m, the gaussian pulse has a rise-time

of 10 ns, and ϵr = 102 in the entire computational domain. The mean current,

calculated using the currents recorded at different observation locations, is shown

in Figure 5.9. The absolute value of the difference in currents with respect to the

mean current is depicted in Figure 5.10. The reason for this change in current
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Region NX, DX (mm) NY, DY (mm) NZ, DZ (mm)
1 100, 3 100, 3 100, 3
2 6, 1 6, 1 6, 1
3 2, 0.4 2, 0.4 2, 0.4
4 2, 0.2 2, 0.2 2, 0.2
5 10, 0.1 10, 0.1 10, 0.1
6 400, 0.09 340, 0.09 150, 0.09
7 10, 0.1 10, 0.1 10, 0.1
8 2, 0.2 2, 0.2 2, 0.2
9 2, 0.4 2, 0.4 2, 0.4
10 6, 1 6, 1 6, 1
11 100, 3 100, 3 100, 3

Table 5.2: No. of cells and cell-size used in each directions

 320

 320.5

 321

 321.5

 322

 322.5

 323

 317 316 315 314

R
a

d
ia

l D
ir
e

ct
io

n
, 

X
 -

->
 (

m
m

)

Axial Distance, Z --> (mm)

Figure 5.8: Meshing used near the conductor cross-section with mesh size of 0.09
mm

waveforms is the propagation delay between the observation points at the reduced

speed of light. However, it is clear from the Figure 5.10 that at steady state the

waveforms merge and the difference goes to zero.

The calculated DC resistance, inclusive of the connectors, is 28.7 Ω, matching

well with the analytical value of 29.1 Ω. The inductance, calculated from the

energy of the magnetic field and the mean current, is 33.78 nH, in reasonable

agreement with the analytical value of 36.7 nH.
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Having obtained a match in the gross resistance, we next examine the current

density distribution through the conductor cross-section. Figure 5.11 shows the

orientation of the coil in space and the cross-sections in each turn that have been

used to record the current density distribution J. The variation of J over the

conductor cross-section, at different times during current ramp-up, is shown in

Figure 5.12. The following points are noteworthy:

1. The conductor cross-section for each turn lies in the x-z plane. It is clear

from the plots that current densities are higher near the inner radius of the

coil and decrease as we move radially outwards. This is consistent with the

curvature effect that was seen in the single-turn coil.

2. As expected, the current gradually fills-up the entire cross-section as it ap-

proaches steady state. It is also clear that at early times, current densities

are lower in the sections of the two turns adjacent to each other. This is

the so-called ‘proximity effect’, which pushes apart the current from neigh-

boring areas of two adjacent conductors if the current flows in the same

direction. Such current concentration tends to increase the coil resistance,

and plays a major role in determining the flux efficiency of helical MFC

generators [108,109].

To show the proximity effect in greater detail, the current density is calculated as

a function of axial distance along the line c⃗d, which is indicated in Figure 5.11.

The results are shown in Figure 5.13. The last frame in Figure 5.13 is close to

steady state, where the current density distribution is uniform.
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5.2.6 AC Excitation

We continue to study simple coil geometries for the cases with AC excitation,

coil parameters being chosen so as to minimize the demand for computational

resources.

Single Turn Coil

We next study a single-turn coil with AC excitation. The coil dimensions are the

same as those used with quasi-DC excitation, with σ = 5 × 106 Siemens/m, a

frequency of 0.1 MHz, yielding a skin-depth of 0.7 mm. A 360×360×210 mesh

was used, the smallest being 0.1 mm in the conductor region, and expanding to
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Figure 5.11: Schematic of a typical two-turn coil which shows the current density
observation planes across the conductor cross-section for individual turns in the
coil
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Figure 5.12: Current density distribution (A/m2) over the conductor cross-section
for a two turn coil at different times during current ramp-up. The last frame is
close to steady state.

3 mm in free space. The applied voltage, and the measured current waveforms at

two locations, are shown in Figure 5.14. As expected, there is an initial transient

in the current waveforms, settling down to harmonic variation after a few cycles.

From the observed current waveform, and its phase difference with the voltage, the

inductance was found to be 18.3 nH, in excellent with the analytical value of 18.3

nH. The inductance calculated from the magnetic energy stored and mean current

was 18.24 nH. The radio of AC to DC resistance (RAC/RDC) calculated from
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as a function of axial distance (along the line c⃗d as shown in Figure 5.11) for a
two turn coil at different times during current ramp-up. The last frame is close to
steady state.

the simulation is 1.36, matching very well with the analytical value of 1.364 from

Arnold’s expression [109]. However, Arnold’s formulae for resistance calculations

are approximations as well, especially for non-perfect conductors. Also, it fails to

give accurate results for coils with gap, loosely wound coils and variable pitch coils.

Arnold’s method does not include non-linear heating of conductors.

Figure 5.14: Currents (mA) observed at different locations and the applied voltage
(scaled up by 10) for a single-turn coil with AC excitation

172



5.2. Application to problems with stationary conductors

Two Turn Coil

We next studied a two-turn coil with the same coil dimensions as in quasi-DC

excitation, with an applied voltage frequency of 100 MHz and conductivity σ =

5 × 103 Siemens/m. A 640×580×390 mesh was used, expanding from 0.09 mm

to 3 mm. The current waveforms observed at three different observation locations

are shown in Figure 5.15. The simulation yields a value of 1.54 for the ratio of

Figure 5.15: Currents (µA) observed at different locations for two-turn coil for AC
excitation

AC to DC resistance (RAC/RDC), matching well with the analytical value of 1.49

from Arnold’s expression [109]. The inductance calculated is 33.6 nH, while the

analytical value is 36.7 nH – however, it should be noted that the analytical value

assumes a uniform current density distribution through the conductor, which is

bound to yield a higher inductance.

Figure 5.16 shows the variation of time-dependent inductance up to the steady

state. The inductances are functions of time because of the diffusion of field into

the conductors. At steady state the coil inductance calculated from the magnetic

energy stored and mean peak current is 33.59 nH. Consider the conductor cross-

sections depicted in Figure 5.11. The distribution of current density over these
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Figure 5.16: Time dependent inductance (nH) for two-turn coil with AC excitation

cross-sections is shown in Figure 5.17 at various times covering one cycle. The

results are shown after the simulation settles down to a harmonic variation. The

variation of current density distribution along the axial direction (line c⃗d in Fig-

ure 5.11) of the coil, illustrating the proximity effect for this case, is shown in

Figure 5.18. It is clear from the plots that the magnitude of current densities

are lower in the sections of the two turns adjacent to each other. Also, the the

magnitude of current density fluctuation in a cycle are found to be less at these

locations.

5.2.7 Sample calculations for different P/D ratios

It is also interesting to know how the ratio of AC to DC resistance, Rac/Rdc, varies

with the P/D ratio of the coil. For this, we have used a simple two-turn coil with

dimensions used in previous calculations, along with a fixed frequency of 1 GHz

and conductivity σ = 103 Siemens/m. The P/D ratio is varied from 1.2 to 5.2.

The Rac/Rdc calculated using FDTD method and the analytical values from [109]

are shown in Figure 5.19.
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5.2. Application to problems with stationary conductors

Figure 5.17: Current density (A/m2) distribution over conductor cross-section for
two-turn coil for AC excitation. The snap-shots are for a typical cycle after reaching
steady state.

5.2.8 Sample Calculations for different applied frequencies

Finally, we consider a two-turn coil having the same parameters as earlier, but

with the following changes. The P/D ratio is held constant at 1.3, the frequency

being varied from 0.5 to 1.3 GHz. The variation of Rac/Rdc is shown in Figure 5.20.

Fairly good agreement is seen.

5.2.9 Sample calculation with a variable pitch coil

We have studied a typical problem with a simple coil structure having two sections

with different P/D ratios. The first section of the coil is with a P/D ratio of 1.5 and

the other with 3.0. Both sections have the same number of turns (two). Fig. 5.21
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Figure 5.18: Current density (A/m2) distribution over conductor cross-section for
two-turn coil for AC excitation. The snap-shots are for a typical cycle after reaching
steady state.

shows a schematic of the coil. The coil mean diameter and wire diameter are the

same as mentioned in previous sections for the two-turn coil, with a conductivity of

σ = 5×103 Siemens/m. A mesh size of 640×580×1170 was used with an applied

voltage frequency of 100 MHz. To calculate AC to DC resistance (RAC/RDC) for

this case using Arnold’s expression, we have to use the average P/D ratio for the

coil, which is equal to 2.25 for the case with four turns. RAC/RDC calculated

using Arnold’s formula with the average P/D ratio is 1.49. Another way is to

calculate RAC/RDC independently for the two sections and then take the average,

which yields 1.44. Both the calculations using Arnold’s formula only approximately
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Figure 5.19: Comparison of Rac/Rdc using FDTD calculations with those obtained
from Arnold’s expression, as a function of the P/D ratio. Calculations are reported
for a two-turn coil with an applied frequency of 1 GHz.

account for variable pitch, so the estimate is subject to some error. The value

yielded by FDTD is 1.59.

5.2.10 Parallel Performance of the 3D-Code

3-D FDTD calculations are very demanding. Hence it is necessary to parallelize

the computer code using the Message Passing Interface (MPI) for communication

between processors. The speedup achievable with the parallelized code is discussed

in this section.

Consider the two-turn coil system mentioned earlier. This requires a mesh size

of 640×580×390 in x, y and z directions respectively. The performance study were

performed on a 33 node 3.0 GHz, Dual core and Dual Socket Xeon cluster with an

Infiniband interconnect and 4 GB memory per node. The network bandwidth is

20+20 (send+receive) Giga bits per second (Gbps). The performance of the code

in terms of speedup is given in Table 5.3. In that Table, NPx, NPy and NPz refer

to the number of segments in the domain in the x-, y- and z-directions. It is clear

from the table that three-way parallelization gives better performance compared
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.

to parallelized performance in one direction, typically when the dimensions of

the unparallelized directions are larger. For example, speedup achieved for 20

processors along the z-direction is only about 16.2, while with the same number of

processors (10 along x-direction, 2 along y-direction and 1 along z-direction) gives

a speedup of 18. Still better performance, a speedup of 19.4, is achieved with a

combination of NPCx=5, NPCy=2 and NPCz=2 (Total 20). A plot showing the

speedup achieved for two cases, namely, parallelization along one direction and

parallelization along multiple directions, is shown in Fig. 5.22. It is clear that

for a given number of processors, a better performance can be achieved by multi-

directional parallelization. Total computational time required for this particular

problem with 10 processors (along z-direction) was ≈28 hours for completing 12

harmonic wave cycles with a computational time-step of 1.7× 10−12sec.
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P/D = 3.0P/D = 1.5

Z −−−>

Figure 5.21: Sketch of a typical 4 turn variable pitch coil having two sections with
different P/D ratio

.

5.3 Application to dynamic problems

So far in this chapter, we have considered the application of the FDTD technique

to problems involving static conductors. MFC systems involve the motion of con-

ductors (liner, armature or expanding plasma) across a magnetic field. The FDTD

calculations performed so far include only the coil (stator); the inclusion of material

movement in standard FDTD equations is, therefore, necessary. Worldwide, the

FDTD algorithms for electromagnetics are used mainly for problems with static

conductors.

We have, therefore, developed a new 2D-FDTD algorithm for electromagnet-

ics by including motional e.m.f terms in the standard FDTD update equations,

which can be applied to flux compression systems with moving parts A leapfrog

method [114] is used to update electric and magnetic fields, and a Flux Corrected

Transport (FCT) algorithm [59,125] is used for magnetic field transport. This new

method can be used for electromagnetic problems involving material movement.
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NPx NPy NPz Total Speedup
1 1 5 5 4.5
1 1 10 10 9.1
1 1 15 15 12.1
1 1 20 20 16.2
1 1 25 25 15.6
3 2 1 6 5.9
5 2 1 10 9.4
7 2 1 14 13.6
10 2 1 20 18.0
12 2 1 24 21.4
3 3 1 9 8.9
4 4 1 16 15.8
5 5 1 25 23.2
2 2 2 8 7.9
3 2 2 12 11.9
4 2 2 16 15.8
5 2 2 20 19.4
6 2 2 24 23.8
3 3 2 18 17.9
4 3 2 24 23.9
3 3 3 27 26.9

Table 5.3: Speedup achieved with no. of processors used in each directions

In the following, we report details of this modified FDTD method for electro-

magnetic problems involving material movement and validation of the new tech-

nique. We restrict our calculations to two spatial dimensions (2D), although its

three dimensional (3D) implementation is straightforward. To our knowledge, this

is the first application of this powerful technique to systems involving material

movement.

5.3.1 Algorithm

Similar to the case for static problems described in the earlier sections, the stan-

dard scheme is replaced by an explicit exponentially-differenced form, to avoid the
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possibility of diffusion instability [105,106,121,123].

Let us now consider problems involving magnetic field diffusion through moving

conductors. We limit ourselves to non-relativistic cases, which is sufficient for

practical systems such as magnetic flux compression systems. Hence the effect on

displacement current can be neglected. The motion of a conductor in an external

magnetic field can create an electric field or voltage (motional emf) that can induce

a flow of current in the conductor. This can be expressed mathematically by the

relation

E⃗
′
= E⃗ + v⃗ × B⃗ (5.7)

The conduction current density J⃗ must now include the motional emf:

J⃗ = σ
[
E⃗ + v⃗ × B⃗

]

where, B⃗ = µH⃗. This corresponds to a motional electric field, E⃗v = µ(v⃗ × H⃗),

induced in materials having finite conductivity and velocity.
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For most problems in time-dependent field problems, where currents are in-

duced by non-relativistic velocities, D⃗′ ≈ D⃗ and B⃗
′ ≈ B⃗, (see, e.g., Sommerfield,

1952) [128]. Thus the electric field and hence conduction current density are the

only variables that differ significantly. The relevant theories followed and its math-

ematical formulations can be found in Ref. [129].

The addition of motional electric field leads to the following equation for mag-

netic field update.
∂H⃗

∂t
= − 1

µ
∇× E⃗

′
+∇× v⃗ × H⃗ (5.8)

Applying some mathematical treatment, along with the condition ∇ · H⃗ = 0,

the final form of Eq. 5.8 becomes:

∂H⃗

∂t
+∇ · (v⃗H⃗) = SH (5.9)

where, ∇ · (v⃗H⃗)j = Σi∂(viHj)/∂xi in Cartesian coordinates. The source term

SH is given by

SH = ∇ · (H⃗v⃗)− 1

µ
∇× E⃗

′
(5.10)

The advection terms in Eq.(5.9) can be solved using special algorithms like the

Total Variation Diminishing (TVD) scheme [130–132] or the Method of Character-

istics (MOC) [133]. A comparative study on TVD scheme and the flux-corrected

transport (FCT) method can be found in Ref. [132], which also lists some ad-

vantages of the FCT algorithm over the TVD scheme. The FCT procedure adds

higher order anti-diffusive terms to the stable but diffusive low-order solution and

a limiter ensures that no new minima or maxima with respect to the low order so-

lution are created [59,125]. This method ensures a monotonic solution. A detailed

discussion can be found in Refs. [59, 125]. The FCT algorithm satisfies ∇ · H⃗ = 0

condition fairly accurately, limited only by round off errors. It is also efficient at
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resolving sharp spatial gradients. Finally, its implementation is simple. We have,

therefore, opted to use the FCT algorithm to modify the standard FDTD equa-

tions for magnetic field diffusion through moving conductors. We have also used

a multi-dimensional flux limiter suggested in Refs. [134,135].

The electric field equation can be updated using the following equation which

include v⃗ × B⃗ term.

∂E⃗

∂t
= −∇× H⃗

ε
+
σ

ε
E⃗

′
(5.11)

A variety of boundary conditions are available for FDTD algorithms [122]. It

turns out that in the problems of interest here, the choice of boundary condition is

not very critical, as long as the boundary is far from the the object through which

magnetic field diffusion is taking place. Hence we have used Mur’s second order

outer radiation boundary condition (ORBC) [112,113]. For other problems, more

appropriate boundary conditions could be used.

Due to material movement through the mesh, the electrical conductivity through-

out the domain must be updated at every time-step. This is particularly critical at

conductor-insulator interfaces, where the conductivity changes by orders of magni-

tude. The conductivity in each computational cell is calculated based on the mass

density – details are given in Sec. 5.3.3. Hence it is necessary to evolve material

density throughout the domain, given the spatio-temporal distribution of velocity.

This is done using the continuity equation:

∂ρ

∂t
+∇ · (v⃗ρ) = 0 (5.12)

where v⃗ is the material/conductor velocity. The velocity distribution in space and

time, throughout the computational domain, must be externally specified. In the
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present study, the velocity distribution required throughout the domain in space

and time is given as an input parameter. Self-consistent updation of the velocity

profile with the hydrodynamics lies beyond the scope of the present work.

Due to the large number of constraints that have to be satisfied, the computa-

tional demand is too large to be handled on one CPU. Hence the computer code

has been parallelized using Message Passing Interface (MPI) [136] in all directions,

with the flexibility to independently specify the number of sub-divisions in each

direction.

5.3.2 Theoretical Model for a simple system

This new method has been validated against analytical solutions for the spatio-

temporal distribution of the magnetic field, given in Refs. [79–81]. These solu-

tions apply to a simple flux compression system having a slab geometry shown in

Fig. 5.23. The system consists of a slab with a finite conductivity σ and thickness

a, placed inside two ideally conducting walls with infinite conductivity. The slab

moves across a transverse magnetic field with a uniform velocity, v. B10 and B20

are the initial transverse (z-component) magnetic fields to the left and right of the

conductor. In Figure 5.23, L is the length of the ‘compression volume’. As the

slab moves to the right, it reduces L, leading to an amplification in the external

magnetic field B20 by flux compression and a dilution of magnetic field B10 behind

the slab [80,81].

The processes involved are a) the induction of electromagnetic fields in the con-

ductor resulting from its motion across B(x, t), and b) diffusion of this magnetic

field through the moving conductor, etc [79–81]. The extent of field amplification

depends on two competing effects. Diffusion of flux through the conductor reduces

the total flux left in the compression volume. The remaining flux is compressed
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into a progressively smaller volume, leading to an increase in magnetic field. The

efficiency of flux compression in the compression volume is related to a dimension-

less number

Rd =
µσa2v

L
(5.13)

which is the ratio of the diffusion time td = µσa2 to the compression time tv = L/v.

The higher the value of Rd, the better is expected to be the conservation of flux

in the compression volume.
8σ < 

8

σ 
=

8
σ 

=

B10

V(t)

s(t) s(t) + a +d

x

y

−b

Vc

B (x,t)

B20

a

Figure 5.23: Electromagnetic induction model with a moving conductor and fixed
end conductors at x = −b and x = +d. B10, B20 are the initial transverse magnetic
fields to the left and right of the conductor. The symbol Vc marks the ‘compression
volume’.

This is an initial-boundary-value-problem (IBVP) and can be solved analyti-

cally as in Refs. [80, 81]. The displacement current is neglected in Refs. [80, 81]

while deriving analytical solutions, since the electromagnetic field changes are pro-

duced by non-relativistic conductor motion. Also, the diffusion of electromagnetic

field through the moving conductor is described by the linear parabolic diffusion

equation, since joule heating is neglected for the present study. More details can

be found in Refs. [80,81].

In order to remain consistent with [79–81], we have neglected the deceleration
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of the moving conductor and its compression due to magnetic pressure, which

becomes significant at high fields. However, it is easy to include both effects in the

FDTD calculation.

5.3.3 Computational Model

The FDTD setup is shown in Fig. 5.24. The object is modeled in a 2D Cartesian

grid. For the present problem, only Ex and Ey components of the electric field

and the Hz component of the magnetic field exists. The electric and magnetic

field components are located according to a 2D Yee cell configuration, as shown

in Fig. 5.25. Material quantities like conductivity, σ and density, ρ are specified

at the center of a computational cell, while velocities are specified at the faces

of the cell. The specification of field locations in this manner requires boundary

conditions only for electric field components. In order to remain consistent with

FCT algorithms [59,125], the velocities are specified on the edge faces.

a

Source excitation pointsx

B field observation points

B2 B1I

D

I

B20B10

v

PEC wall

y

z

Computational Domain Boundary

Figure 5.24: FDTD setup, with source excitation points and magnetic field obser-
vation points (B1 and B2). D is the distance to computational boundary.
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The conductor, having a thickness a, is enclosed by a Perfectly Electrically

Conducting (PEC, σ = ∞) wall. Mur’s outer radiation boundary condition

(ORBC) [112, 113] has been used to terminate the computational domain. In or-

der to avoid unphysical reflections from the termination boundary due to ORBC,

a minimum distance D must be maintained between the PEC wall and the com-

putational boundary in all directions. D is typically 1-2 λ [112]. A gap of 20-40

cells has been found to be sufficient for the present problem.

For the present problem we found that no field get diffused through the PEC

wall and therefore the number of cells between the object (PEC wall) and the

boundary can be reduced considerably. The initial magnetic fields B10 and B20

are specified analytically at two different source excitation points, see Fig. 5.24,

with one computational cell for each source excitation point. The field observation

points B1 and B2 are used for recording magnetic fields at different times.

In the FDTD method, the highest frequency that can be handled is limited by

the mesh-size. From stability considerations, the free-space wavelength λ corre-

sponding to that frequency should not be smaller than 4 computational cells [112].

For reasonable accuracy, it is desirable to have at least 10 cells in one λ. Now, a

step-change in any quantity contains all frequencies, so it cannot be handled by

any practical mesh-size. Hence it is not acceptable to start the simulation with a

jump in B1 and B2 to their desired values B10 and B20. Starting from zero values

of all field components, a gradual increase becomes necessary. We have used a

quarter-wave sinusoidal excitation function given by Eq.(5.14).

Bz = B0 sin(ωt), B0 = B10, B20, 0 < t < tB (5.14)

where, tB is the 0-100% rise-time of the magnetic field, corresponding to the
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quarter-wave time, when ω = 2π/(4tB) is the angular frequency. This will fill up

uniform magnetic fields B10 and B20 at the left and right side of the conductor

respectively.

Apart from satisfying the stability criterion, the field rise-time for both source

excitation points is determined in such a way that negligible diffusion takes place

into the slab before the movement, so as to trap most of the flux between the

conductor and PEC wall.

The conducting slab is held stationery until t = tB, at which point is suddenly

starts moving to the right with a constant specified velocity, compressing the initial

magnetic field along the x-direction. The material density in each computational

cell is evolved using Eq.(5.12). A multi-dimensional Flux corrected Transport

(FCT) method is used for this purpose [134]. The material conductivity (σm) for

material m in each computational cell is calculated using an approximate expression

given by Eq.(5.15), which is based on the assumption that the material is uniformly

filled in the entire region of the cell.

σm(i, j) = σm0 × ρm(i, j)

ρm0
(5.15)

where ρm0 , ρm(i, j) are the normal density of material ‘m’ and its instantaneous

material density, respectively. Similarly σm0 , σm(i, j) are electrical conductivities

corresponds to normal density and instantaneous density, respectively. Here, cell

indices i and j correspond to the x- and y-directions, respectively. The total conduc-

tivity in a computational cell is calculated using the weighted average of individual

conductivities of all materials present in that cell, which can be expressed as:

σT (i, j) =

∑M
m=1 ρ

m(i, j)σm(i, j)∑M
m=1 ρ

m(i, j)
(5.16)
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where M is the total number of materials present in a cell.

ExEx

Ey

Ey

Vy Vy

VyVy

Vx Vx

VxVx

σ
ρHz

Hz

Hz Hz

Hz

Figure 5.25: Two-dimensional (2D) Yee cell, showing locations of field components
and material quantities.

Finally, the equations to be solved for the present problem in two dimensions

can be summarized in finite difference form as below:

En
x (i, j) = En−1

x (i, j) +
∆t

ϵ0

[
H
n− 1

2
z (i, j)−H

n− 1
2

z (i, j − 1)

∆y

]
(5.17)

En
y (i, j) = En−1

y (i, j) +
∆t

ϵ0

[
H
n− 1

2
z (i, j)−H

n− 1
2

z (i− 1, j)

∆x

]
(5.18)

En
x (i, j) = En−1

x (i, j)e−σ(i,j)∆t/ϵ(i,j) +
(
1− e−σ(i,j)∆t/ϵ(i,j)

)
×[

H
n− 1

2
z (i, j)−H

n− 1
2

z (i, j − 1)

σ(i, j)∆y
− µvy(i, j)Hz(i, j)

] (5.19)
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En
y (i, j) = En−1

y (i, j)e−σ(i,j)∆t/ϵ(i,j) +
(
1− e−σ(i,j)∆t/ϵ(i,j)

)
×[

H
n− 1

2
z (i, j)−H

n− 1
2

z (i− 1, j)

σ(i, j)∆x
+ µvx(i, j)Hz(i, j)

] (5.20)

H
n+ 1

2
z = H

n− 1
2

z − ∆t

µ0

×
[
En
y (i+ 1, j)− En

y (i, j)

∆x

]
−∆t

µ0

×
[
En
x (i, j + 1)− En

y (i, j)

∆y

]
− ∂F

n+ 1
2

x

∂x
− ∂F

n+ 1
2

y

∂y

(5.21)

Here, Equations (5.17) and (5.18) are for free space, while Equations (5.19) and

(5.20) are for lossy dielectrics. F n+ 1
2

x = vx(i, j)Hz(i, j) and F n+ 1
2

y = vy(i, j)Hz(i, j)

are x-directed and y-directed fluxes evaluated at the faces of the Yee cell, using the

FCT algorithm. n is the time index and i,j are the space indices. The conductivity

values required at various electric field locations (cell faces) are obtained by taking

the average of cell-centered conductivities surrounding that face.

The computational algorithm can be described as follows.

Initialize time, t = 0

(i) initialize Ex, Ey, Hz, ρ, σ etc.

1. E update

(i) Update electric fields using Eq. (5.17),(5.18),(5.19) and (5.20)

(ii) if (t < tB) then, apply source terms for electric fields, if any

(This section will be used if one has an applied voltage excitation [54–56] rather

than magnetic field excitation for establishing current flow in the system. For the

present problem we have used magnetic field excitation)

Advance time, t = t+ ∆t
2
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2. H update

(i) transport magnetic field using FCT; Eq. (5.9).

(ii) if (t < tB) then, apply source terms for magnetic fields using Eq. (5.14).

The source fields B10 and B20 are specified at two different excitation points with

one computational cell for each. See Fig. 5.24. This will establish a current flow

in the system.

Advance time, t = t+ ∆t
2

3. Material movement at full time-step

(i) advect material using FCT; Eq. (5.12)

(ii) update conductivity in each cell using convected density; Eq. (5.15) and Eq. (5.16).

If t < tstop go to step 1

4. Stop

Basic steps involved in the FCT algorithm are as follows

1. Calculate and apply the convective and diffusive fluxes in x-direction

2. Calculate and apply the convective and diffusive fluxes in y-direction

3. Add source terms, if any

4. Calculate the anti-diffusive fluxes in x and y direction

5. Limit and apply correction factors to the anti-diffusive fluxes in x and y direc-

tion

6. Compute the solution

Details of each step and its evaluation schemes can be found in Refs. [59, 125].

Multi-dimensional problems in FCT are solved by using directional splitting [59].

We have used a fully multi-dimensional flux limiter suggested in Refs. [134,135] for
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performing step 5 above, which does not require a directional splitting algorithm.

For the present problem, ∇·H⃗ =
(
∂Hx

∂x
+ ∂Hy

∂y
+ ∂Hz

∂z

)
= 0 is clearly maintained,

since we only have one component of the magnetic field, Hz, which is perpendicular

to x-y plane and symmetry along z-direction is assumed.

The present study aims at introducing a modified form of the FDTD equations

for electromagnetics involving material motion, and its validation against analyt-

ical solutions. Another aim is to study the sensitivity of results to computational

parameters such as the permittivity scaling factor. The application of this tech-

nique to sample problems involving a plasma armature is given in later sections.

Similar to static problems discussed earlier, arbitrary parameters are chosen for

material conductivity σ, velocity v and system dimensions so as to minimize the

overall computational demand. These parameters, of course, meet the necessary

conditions discussed earlier.

5.3.4 Application to 2D planar MFC systems

As a first step, we have chosen a flux compression system similar to the one given in

Ref. [81]. The initial magnetic field outside the compression volume is zero (B10 =

0), with a compression length of 50 mm in both x and y directions. The dimensions

of the B10 region and thicknesses of walls are 20 mm and 1 mm respectively. The

initial magnetic field inside the compression volume, B20 is 1.256×10−2 Tesla. The

total flux injected into the system is thus 3.14×10−5 Tm2 (Weber). The thickness

and conductivity of slab are 10 mm and 1 × 106 S/m respectively. Cell-sizes are

taken as ∆x = 0.1 mm and ∆y = 1 mm, leading to a problem size of 860 × 110

cells, including the distance to the boundary. A uniform velocity of 100 km/s in the

positive x-direction is given to the slab when the field reaches its peak value B20.

This velocity lies in the range (20-400 km/s) offered by plasma armatures [81,137].
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This implies Rd ≈ 251. The permittivity of the medium is artificially increased by

a factor of 100, relative to free space, to allow a larger time-step while satisfying

all the constraints discussed earlier.

The temporal amplification of the initial magnetic field B20 due to flux com-

pression, and the analytical solution given in Ref. [81], is shown in Fig. 5.26. Good

agreement is observed.
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Figure 5.26: Magnetic field inside the compression volume, B2, as a function of
time. Dotted curve is the analytical solution and solid line represents results from
the FDTD calculation. t=0 refers to the time when the source magnetic field
reaches its peak value.

A plot showing the normalized flux inside the system is shown in Fig. 5.27.

The total flux is evaluated for the entire computational domain. It is clear that

the total flux inside the system is conserved during the compression stage. A small

decrease in the flux (≈ 0.02%) towards the end of operation is observed, which is

in the acceptable range.

There is an induced electric field (motional EMF, Ev = vxBz) on the surface of

the conductor moving across the magnetic field. The computed result is compared

with analytical solutions given in Ref. [81] and reasonable agreement is found, as

shown in Fig. 5.28.
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Figure 5.27: Time history of normalized magnetic flux inside the system. The
normalization factor is the initial flux in the system = 3.14× 10−5 Tm2 (Weber)

The spatial variation of magnetic field inside the compression volume at three

different times during the compression stage is shown in Fig. 5.29. Data points

to the left of the flat-top, at any given time, show field diffusion into the moving

conductor.
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Figure 5.28: Magnitude of induced EMF (kilo volts/m) on the surface of the slab
(Ev = vx ×Bz). Both analytical and computed values are shown.

The inductance per unit width in the z-direction, i.e., perpendicular to the

plane of Fig. 5.24, can be calculated using Eq. (5.22).
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at three different times during compression. Points represent analytical solutions
while line plots shows numerical results.

L =
Φtotal

I
=

∫
s
B⃗ · d⃗S
I

(5.22)

where I is the total current per unit width of the conductor, d⃗S is an area

element in the x-y plane and Φtotal is the total flux linked with the compression

volume. Here, the total area S⃗ include only the compression volume. The variation

of inductance with time is plotted in Fig. 5.30, along with analytical solutions

from [4]. Good agreement can be seen.

We next investigate a flux compression problem described in Ref. [80], where

the field outside the compression volume B10 is non-zero. System dimensions and

material parameters are the same as described previously, with B10 = 1.256×10−3

Tesla, i.e., 10% of B20. The spatial variation of the magnetic field inside the com-

pression volume at two different times during the compression is shown in Fig. 5.31.

The FDTD results are found to be in good agreement with analytical results given

in Ref. [80]. Figure 5.32 shows the normalized magnetic fields inside (B2(t)/Bpeak)

and outside (B1(t)/B10) the compression volume. Reasonable agreement between
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Figure 5.30: Inductance as a function of time. Analytical and FDTD results match
well.

FDTD results and analytical solutions is observed.
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Figure 5.31: Spatial variation of magnetic field inside the compression volume.
Dots and solid lines represent analytical and computational solutions, respectively.

5.3.5 Sensitivity to permittivity scaling factor

The permittivity of the medium is scaled-up artificially as in Ref. [54, 105, 106] to

achieve higher time-step by meeting all the constraints mentioned earlier in this

chapter. It is important to determine the maximum extent of scaling that can be

achieved without introducing significant errors in physical quantities of practical
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(B1(t)/B10) the compression volume, as functions of time. Bpeak is the peak mag-
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the source magnetic field reaches its peak, and conductor motion starts.

interest, e.g. compressed magnetic field.

Hence we next examine the sensitivity of computational results to the scaling

factor used for the permittivity of free space, i.e., ϵr. We consider the problem

described in Ref. [81], with system dimensions described earlier in this section.

The scaling factor is varied from 10 to 10000. For each scaling factor, we com-

pute the percentage difference between the analytical and numerical solutions for

the magnetic field inside the compression volume at the end of the compression.

Fig. 5.33 shows the result. For the case examined here, the overall error remains

a few percent, although there is a monotonic increase with ϵr. Furthermore, the

error only changes by a few percent for a change of three orders of magnitude in ϵr.

Hence, while a higher ϵr would certainly help increase the time-step and reduce the

computational load, it comes at the cost of reduced accuracy. Note also that this

may significantly change for other system parameters where the diffusion scales

are different.

The conclusion is that the acceptable scaling factor that can be used for achiev-
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ing higher time-steps needs to be selected carefully, depending upon system pa-

rameters and the desired accuracy level.
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Figure 5.33: Percentage error between analytical and numerical solutions, as a
function of the permittivity scaling factor (ϵr).

5.3.6 Convergence Test

Next, we have performed a convergence test by comparing analytical solutions and

FDTD simulated results for different mesh-size. To investigate the sensitivity of

mesh-size on the convergence of numerical results, a test problem mentioned in

Ref. [81] with system dimensions described in the previous section has been used

with permittivity scaling factor equal to 100. The mesh-size is varied from 0.025

mm to 0.4 mm along the direction of velocity. The numerical error estimated is

plotted against mesh-size, See Fig.5.34. For the case examined here, the numerical

results have converged with respect to the mesh-size (∆x ≈ 0.1 mm). The variation

of numerical error estimated with respect to permittivity scaling factor for different

mesh-size shows similar trend as discussed in Ref. 5.3.5. The acceptable mesh-size

may vary for different system parameters depending on conductivity (skin-depth),

velocity etc. Therefore, an acceptable mesh-size that can be used needs to be
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selected carefully, depending upon system parameters and the desired accuracy

level.
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Figure 5.34: Percentage error between analytical flux conservation factor and nu-
merical solutions, as a function of mesh-size.

5.3.7 Parallel Performance of the 2D-Code

Even sample problems of the kind discussed above require a fairly large mesh.

Simulations for practical flux compression problems would thus impose a much

greater computational load. Hence it is important to examine the performance of

a parallelized version of this algorithm on a parallel cluster.

The algorithm has been parallelized using Message Passing Interface (MPI) [136].

The flux compression system mentioned in the Sec. 5.3.4 requires a mesh size of

860×110 in x and y directions respectively. Computer code performance has been

studied on a 33 node, 3.0 GHz, Dual core, Dual Socket Xeon cluster with Infiniband

interconnect. The speedup achieved as a function of the number of processors is

shown in Fig. 5.35. It can be seen that the speedup varies approximately linearly

with the number of processors used.
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Figure 5.35: Speedup achieved as a function of the number of processors, for the
problem described in Sec. 5.3.4.

5.4 MFC by an expanding cylindrical plasma

Finally, in order to demonstrate the utility of the powerful FDTD-based scheme

to MFC problems, we have applied it to a sample problem involving plasma ar-

matures [25]. Here, an ideal cylindrical plasma expansion in an applied magnetic

field ∼0.27 T is considered. The initial conditions are taken from Ref. [25] with

plasma energy, Ep = 270 MJ, plasma mass ∼0.2 mg and pickup coil (single turn)

radius 8.25 m. In Ref. [25], the electrical energy is extracted across a resistive

load connected to the pickup coil. The axial length of the cylindrical plasma was

15 m. The schematic of FDTD setup for the simulation of MFC by an expanding

cylindrical plasma is depicted in Fig. 5.36. The hydrodynamic calculation provides

the spatial variation of plasma conductivity and velocity at a given instant of time.

This information is used in the FDTD calculation to update electromagnetic fields.

The updated electromagnetic fields are then used in the hydrocode for calculating

magnetic deceleration on the surface of the plasma.

The 2D-FDTD algorithm mentioned in the previous section has been modified

to make it compatible for cylindrical geometry by including other field components.
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5.4. MFC by an expanding cylindrical plasma

Since systems dimensions are of the order of a few meters, the FDTD simulation

with fixed 2D Eulerian grid would be prohibitively expensive. Therefore, we have

solved the FDTD equation in a Lagrangian manner, where high-resolution is used

in the conductor and plasma region, and a comparatively coarse mesh in the sur-

rounding vacuum region. The surrounding vacuum is modeled by an extremely

low density (ρ ∼ 10−14 kg/m3) medium. In the Lagrangian phase, we assume the

frozen field approximation (flux being constant for a fluid element). New magnetic

field, Bz, values after the Lagrangian step are determined by using the flux con-

servation equation in the old and new mesh (Bn+1
z · dSn+1 = Bn

z · dSn, where the

superscript represent the time point and dS is the cross-section area). This step is

followed by the standard FDTD calculations to update field components. Apart

from these, boundary conditions for the field components are explicitly specified

near the axis, for example (Eθ)r=0 = 0. That is, the standard MUR’s radiation

boundary condition has been replaced by an explicit boundary condition at the

axis.

An unstructured Lagrangian scheme (see Chapter 4 and Appendix B) is used

for solving fluid equations. The pickup coil is a single turn cylindrical coil. The

current in the coil is determined by constructing an integration loop around the

cross-section of the loop in 2D r-z plane. The initial magnetic fields Bz is specified

analytically (with a rise-time as described in the previous section) at a source

excitation point above the plasma cylinder, see Fig. 5.36.

The radial plasma density profile at two different times during the first expan-

sion phase is depicted in Fig. 5.37. The results are similar to the case described

in Chapters 2 and 3. The plasma forms a shell like geometry at stagnation point,

where the outer surfaces slow down due to magnetic pressure and the inner region

catch up to the outer region. The results presented in Ref. [25] shows several com-
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5.4. MFC by an expanding cylindrical plasma

Figure 5.36: Schematic of FDTD setup for the simulation of MFC by an expanding
cylindrical plasma. The pickup coil is a single turn cylindrical coil. The current in
the coil is determined by constructing an integration loop around the cross-section
of the loop in 2D r-z plane.

pression and expansion phases of plasma and the energy is assumed to be extracted

throughout these phases. However, the dynamics of the plasma after the first ex-

pansion phase in our simulation is found to be different from the predictions made

by the 0D-model described in Ref. [25]. This is due to the neglect of plasma com-

pressibility in their 0D-model. The model described in Ref. [25], assume plasma as

a point mass and hence the behavior of plasma as a fluid is neglected. It also ne-

glect the plasma instabilities. Our simulation results clearly indicate the evolution

of plasma instability after the first expansion phase, see Fig. 5.38. The evolution

of plasma outer radius till the stagnation time (with load resistance R = 100 Ω)

is shown in Fig. 5.39, which is in reasonable agreement with the results given in

Ref. [25].

We have compared the conversion efficiency (I2Rt/Ep) obtained in our simu-

lation with the results given in Ref. [25]. Since the instabilities are observed after

the first expansion phase, the comparison is made only at the end of the first ex-

pansion phase. We have compared the plasma energy conversion efficiency (∼28%)
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instability.

at the end of first expansion phase with the reported values ∼30% in Ref [25] for

a load resistance of 100 Ω. Reasonable agreement with the results is obtained. As

expected, the diffusion of magnetic field into the plasma is found to be negligible

during the first expansion phase.
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5.5 Limitations of the Study

The present study suffers from the following major limitations. Firstly, it is ex-

tremely demanding in terms of computational power. Therefore, at present, the

calculation of resistance and inductance using FDTD scheme are performed only

for simple coil geometries. Hence the work should be regarded as a first, ex-

ploratory step rather than as a mature technique ready for application to design.

Secondly, the spatial variation of conductivity inside the conductor, due to effects

like Joule heating, has been neglected in the present work. It is straightforward

to include an arbitrary conductivity distribution in the FDTD model. However,

self-consistent inclusion of that effect will require coupling to a complete model for

helical generators, which is still inaccessible due to the high computational cost.

5.6 Conclusions

The Finite Difference Time Domain (FDTD) method for electromagnetics, adapted

for magnetic field diffusion problems, has been applied for accurate calculation of
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the resistance and inductance of coils (single turn, two turns and four turns with

variable pitch). These simulations have been performed using a locally-developed

three-dimensional variable-mesh FDTD code that has been parallelized along three

directions. This technique allows the study of complex, multi-material configura-

tions, and the time domain analysis allows handling of arbitrary temporal wave-

forms of current. This technique thus allows a study of real-life configurations with

practically no limitations on the geometric complexity, the materials used or the

temporal waveforms.

Resistance calculations based on this technique automatically take account of

skin and proximity effects. The simulations also yield a detailed 3-D picture of

magnetic field diffusion through a complex coil in the presence of arbitrary time-

dependent current waveforms. Hence they can provide critical insight into coil

performance in real-life systems. We have identified the critical issues that must

be kept in mind for such simulations and the results of test problems with simple

coil geometries.

The modified algorithm, by including velocity dependent terms, has been ap-

plied to study the electromagnetic induction in moving materials similar to mag-

netic flux-compression systems in planar geometry. In order to demonstrate the

utility of the powerful FDTD-based scheme to MFC problems, we have applied

it to a sample problem involving plasma armatures [25]. We have compared the

energy conversion efficiency (with a resistive load) reported in Ref. [25] with our

simulation results for a typical set of plasma parameters. Reasonable agreement

in the results is obtained.

This technique allows the study of complex, multi-material configurations with

arbitrary non-relativistic material velocity. To our knowledge, this is the first ap-

plication of this powerful technique to electromagnetic problems involving material

205



5.6. Conclusions

motion.

However, the technique also suffers from the disadvantage of being extremely

demanding in terms of computational power. Hence the present work should be

regarded as a first, exploratory step rather than as a mature technique ready for

application to design.
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6
Summary and conclusions

6.1 Overall summary

The objective of this thesis work is to computationally examine the physics of mag-

netic flux compression using expanding plasma armatures. Starting with an MHD-

based approach, we have extended the study to Finite Difference Time Domain

(FDTD)-based electromagnetics calculations, involving direct solution of Maxwell’s

equations, as a computational tool for MFC systems.

The following studies have been performed in this thesis:

• Development of a Lagrangian MHD scheme coupled self-consistently with ex-

ternal circuit equations for the analysis of MFC inside a solenoid driven by

a fusion plasma sphere.

• Preliminary analysis of the conversion of plasma energy into pulsed electrical

energy using the above mentioned MHD scheme.
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• Development of an Eulerian MHD model using volume-of-fluid material in-

terface tracking for studying plasma dynamics across the magnetic field.

• The study of large-deformation plasma dynamics in the proposed MFC system

using an Eulerian MHD model.

• Analysis of Magnetic Rayleigh-Taylor instability in an MFC system driven

by a fusion plasma sphere.

• Development and validation of computational algorithms relevant to MFC

systems based on the FDTD scheme for electromagnetics.

• Application of FDTD scheme for electromagnetics for the analysis of MFC

by an expanding cylindrical plasma.

In Chapter 2, we have reported on a conceptual study of magnetic flux com-

pression (MFC) inside a solenoid by an expanding IFE plasma sphere. The

study has been been performed numerically using two-dimensional (2D) magneto-

hydrodynamic (MHD) simulations. A 2D Lagrangian code has been developed to

solve the governing two-dimensional MHD equations. A filamentary model, which

includes the effect of plasma dynamics, is used to update the coil current and the

induced currents in the plasma. The plasma dynamics, and the efficiency of the

proposed system with different inductive and resistive load conditions, are studied

numerically. An overall efficiency ∼56% is obtained for a typical set of plasma and

system parameters. The concept is found to be promising in terms of conversion

efficiency. However, ultrahigh coil inter-turn voltages (∼ 25 MV) are predicted.

Therefore, the application of magnetic self-insulation to avoid coil inter-turn break-

down is considered. Even-though voltage levels are within the theoretically accept-

able range, for a typical case considered here, a detailed optimization study may

208



6.1. Overall summary

be required to avoid coil inter-turn break-down without reducing the system effi-

ciency. Such a detailed optimization, however, lies beyond the scope of the present

work.

It is observed that during the final stage of MFC, the plasma shape becomes

distorted (non-spherical) due to non-uniform deceleration caused by the magnetic

field outside the plasma sphere. In particular, there is elongation of the plasma

in the axial direction. These effects, collectively, lead to non-spherical expansion

of the plasma with large deformation. Hence, in order to examine the large defor-

mation plasma dynamics in the proposed MFC system, we have next developed

an Eulerian multi-material algorithm with Volume-of-Fluid (VOF) based material

interface tracking. In Chapter 3, we have described the details of this Eulerian

MHD model and the analysis of the MFC system using this model. The Eulerian

code is then extended to MHD form. The magnetic induction equation is solved

implicitly using magnetic vector potential. An iteration procedure using Alternat-

ing Direction Implicit (ADI) scheme is used for free space field calculation. The

validated algorithm is applied to study the dynamics of plasma inside an MFC

system. Simulations indicate the development and evolution of MRT instabilities

at the plasma-vacuum interface near stagnation time, i.e., close to the time when

the outer surface comes to a halt. In the r − z plane, these instabilities are more

marked near the center of the solenoid where the magnetic deceleration is com-

paratively higher. We start with a spherically-symmetric initial plasma, which

means that the MRT instability is seeded by numerically-generated perturbations.

The plasma sphere forms a shell-like geometry near the stagnation point as the

outer surface slows down due to B⃗ and the inner region catches up with the outer

surface. The resulting high temperature plasma region has high electrical conduc-

tivity. Therefore the B⃗ diffusion into the plasma is found to be negligible even
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around stagnation time.

The plasma armature, expanding across a magnetic field, is subject to the

Magnetic Rayleigh Taylor (MRT) instabilities. The studies described in Chap-

ter 3, starting with an unperturbed initial plasma state, indicate the growth of

MRT instability as stagnation time is approached. In reality, perturbations with

different wavelengths and amplitudes would exist on the surface of the plasma

sphere even before it starts expanding. For a real-life system, therefore, it is neces-

sary to study the growth of pre-existing perturbations with different wavelengths

and amplitudes. In Chapter 4, therefore, a study has been performed for differ-

ent cases of applied initial perturbations (different wavelengths and amplitudes),

taking into account the effects of magnetic field amplification (time dependent g)

and geometric divergence due to spherical plasma expansion. For this, we have

developed an unstructured Lagrangian MHD scheme. Two-dimensional MHD sim-

ulations of random, single and multi-mode perturbation growth in an MFC system,

driven by an expanding fusion plasma sphere, have been carried out for different

initial perturbation amplitudes and wavelengths. In the random seed perturba-

tion analysis, we have found that the dominant modes in the spectrum show a

progressive transition from the short-wavelength to the intermediate-wavelength

regime, λ ∼4−8 cm, which is consistent with the results obtained in Chapter 3. A

cross-correlation analysis indicates mode coupling between dominant modes and

other modes in the spectrum, leading to energy transfer to weaker modes. The

multi-mode (sinusoidal) analysis, with two different fundamental modes (say n1 &

n2) and with αin ∼ 500 µm, shows the appearance of higher harmonics of the in-

dividual modes, as well as the shorter wavelength (n1+n2) and higher wavelength

inverse cascade (n2 − n1) modes created by non-linear interaction of fundamental

and harmonic modes. In the case of single-mode perturbation, the modes con-
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tinue to grow exponentially with nearly constant γ and make a transition into the

non-linear phase (mode saturation). This means that the amplitude growth of the

modes towards stagnation time, although exponential in nature, is lower than the

growth predicted by linear theory.

A major concern in such systems is the formation of large flute structures and

plasma jetting, which could damage or reach the cavity-wall/coil and could severely

disturb smooth compression of the magnetic field [25–27]. We find that these are

not seen during the time period of our interest, viz., the first expansion phase

of the plasma. This means that it is feasible to have efficient flux compression

during the first expansion phase in the proposed system, for perturbation ampli-

tudes αin ≤ λin/10. However, for αin ≥ λin, the instability amplitudes are large

enough, especially for longer λ modes, to cause plasma jetting leading to significant

reduction in the flux compression efficiency.

It is worth mentioning here that the conversion of plasma energy into electrical

energy across a resistive load, during several expansion and compression cycles

of the plasma given in Refs. [25–27], are for an unperturbed initial plasma with

B⃗ ≤ 0.6 T. Such operation would be inefficient/challenging for the present sys-

tem parameters since the plasma outer surface, after the first expansion phase,

would have high-amplitude perturbations. During the next implosion phase of the

plasma, after the turn-around, these perturbations grow further and may generate

plasma jetting or extremely large amplitude wave structures, which could effect

the smooth implosion of the plasma (the compression phase) and damage the cav-

ity wall. Therefore, further studies are required to explore the concept of plasma

energy recovery across a resistive load with several expansion and compression

phases [25–27].
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In Chapter 5, we have investigated the application of finite-difference time-

domain (FDTD) schemes to electromagnetics calculations in MFC systems. As a

first step, a computational tool has been developed, allowing for variable-mesh 3D,

time-dependent FDTD calculations of electromagnetic field components. This is

then used for calculating accurate resistance and inductance of arbitrarily-wound

helical coils of interest. The resistance calculations automatically take account of

skin and proximity effects and are capable of handling arbitrarily complex multi-

material systems. The simulations also yield a detailed 3D picture of magnetic

field diffusion through a complex multi-material coil in the presence of arbitrary

time-dependent current waveforms. Hence these methods can provide critical in-

sight into coil performance in real-life MFC systems. In the second step, we have

modified the FDTD algorithm (in 2D), by including motional e.m.f terms, so that

it can be applied to flux compression systems with moving surfaces. This new

approach has been validated against standard analytical solutions for planar flux

compression systems and magnetic field diffusion in moving conductors with non-

relativistic velocity. Finally, in order to demonstrate the utility of the powerful

FDTD-based scheme to MFC problems, we have applied it to a sample problem

involving plasma armatures. Analysis is done by coupling a hydrodynamic module

(for plasma dynamics) and FDTD scheme (for field update). We have compared

the plasma energy conversion efficiency at the end of first expansion phase with

the reported values. Reasonable agreement in results is obtained. We have identi-

fied, through extensive numerical tests, critical constraints that must be satisfied

(e.g. cell-size, distance to computational boundary, maximum permittivity scal-

ing factor, etc) while performing magnetic diffusion problems using FDTD scheme

for electromagnetics. The FDTD scheme is found to be promising in predicting

magnetic field diffusion in complex geometries as well as in predicting magnetic
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induction in moving conductors. However, the technique also suffers from the dis-

advantage of being extremely demanding in terms of computational power. To our

knowledge, this is the first application of this powerful technique to such systems.

6.2 Suggestions for future work

In future work one can optimize the proposed MFC system for higher efficiency,

to reduce inter-turn voltage and to yield optimum coil parameters and system

dimensions for a typical initial plasma parameters. With detailed numerical and

theoretical study, it is possible to formulate a model which can suggest, for given

initial plasma parameters, the coil and other system parameters that have to be

used for optimum operation.

A possible improvement of the proposed concept is the use of spherical coils

instead of a solenoid. The use of spherical coils may yield symmetric spherical

plasma expansion (i.e. without a considerable axial plasma distortion) and hence

a higher conversion efficiency. The second advantage by using a spherical coil is

that it may lower the initial energy requirement. This study can be a potential

future scope of the present work.

The instability analysis must be repeated in three dimensions, since a 2D anal-

ysis may be ignored 3D modes altogether. Hence the results of the present study

are likely to be slightly optimistic. A 3D study would help to make a more accurate

assessment of instability-related problems. Further more, a detailed study would

be required to analyze the non-linear mode coupling between different modes. The

growth of instabilities is also likely to be different for different kinds of loads, viz.,

resistive, inductive and capacitive. The study must be repeated. Future work

should also quantify the effect of MRT instability in terms of conversion efficiency
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for different kinds of loads by using MHD models that are coupled with external

circuit equations.

The application of first principle FDTD calculation (including velocity depen-

dent terms) to MFC systems, though computationally very expensive, can give a

detailed picture of the evolution of electromagnetic fields inside the MFC system.

These simulations, however, can only be performed through massively parallel

computer simulations.
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A
Volume-of-fluid (VOF) scheme

We have developed a volume-of-fluid (VOF) scheme [60] for material interface

tracking in Eulerian simulations. The details of the algorithm and several valida-

tion tests are given in Ref. [60]. Here, we have described important features of

the algorithm in brief. The overall VOF formulation can be split into three major

parts: Interface construction, Lagrangian deformation of material interfaces and

Eulerian transport step. All calculations presented here are one-dimensional in

nature and therefore a ‘directional-split’ advection algorithm is used to extend it

into two-dimensional case.

A.1 Structured Staggered Mesh

A spatially staggered grid: where volume fractions (fm, m = material number),

density (ρm), cell mass etc are cell-centered, whereas the velocity components (u,v)

are specified at the mid point of cell edges. See Fig. A.1 for details.
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Figure A.1: Schematic of staggered computational grid

A.2 Interface Construction

A Piecewise Linear Interface Construction (PLIC) method is used. An interface

line can be represented by Eq. (A.1) [67,139], where n⃗ = înx + ĵny is the exterior

normal to the line and α is the perpendicular distance from a local origin, see

Fig. A.2 (a general case) and Fig. A.3 (for different possible material orientations).

It is worth to note that the distance α is always measured from a local origin in

our method. It is possible to define α as distance from a common origin. The

local origin is defined as per material orientation. For some special cases, e.g. lines

parallel to any co-ordinate axis, any one of the possible two origins can be selected.

n⃗ · x⃗− α = 0 (A.1)

The slope of a material interface line and hence the normal vector (n⃗ =

▽⃗fm/|▽⃗fm|) can be estimated by using different known existing methods. One

such algorithm is the LVIRA [72] scheme. In LVIRA algorithm one minimizes E2
i,j

as a function of slope by rotating the line under the constraint that this line exactly

reproduces the volume fraction in the cell. E2
i,j is defined as follows

216



A.3. Volume behind interface line
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Figure A.2: Geometry of linear interface construction for Material interface

E2
i,j =

(
1∑

k,l=−1

(f̃i+k,j+l(m̃)− fi+k,j+l)
2

) 1
2

(A.2)

where, f̃ be a linear approximation to a curve passes through the cell (i,j) with

slope m̃ and volume fractions f̃k,l. Similarly, fk,l represent the volume fractions due

to a true linear function f . The basic logic in the LVIRA algorithm is to minimize

some measure of the error between the volume fractions given by the true and

approximate interfaces. This method generally exhibits second order accuracy.

A.3 Volume behind interface line

We have developed a generalized algorithm (in order to treat all possible material

orientations) for evaluating volume behind material interface line for arbitrary

material orientation. The algorithm outline is given below.
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Algorithm outline

1. Adjust normal depending on orientation

if (nx < 0); α = α + nx∆x

if (ny < 0); α = α + ny∆y

(A.3)

2. Get the two intersection points with cell edges

3. Collect all cell-nodes lies behind an interface line

if nx(x− xi) + ny(y − yi) ≤ α (A.4)

4. Construct a polygon using nodes from step 2 and 3

5. Calculate volume of this polygon

Vxy =
1

2

∑
i=1,n

(xiyi+1 − xi+1yi) (A.5)

nx = normal component along x-direction

ny = normal component along y-direction

α = perpendicular distance to interface line from local origin

∆x = mesh-size along x-direction

∆y = mesh-size along y-direction

n = no. of polygon nodes

A.4 Volume Iteration

Having obtained interface normals the interface parameter α has to be determined

(See Eq. (A.1)) so that volume behind the interface line is equal to the material
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Figure A.3: Different types of possible material interface orientation. Here, d = α
(in the text) is the perpendicular distance from a local origin and n⃗ is the exterior
normal to the interface line.

volume. If there are more than two materials in a cell a material order has to be

determined and all materials are layered in that order so that volume behind ith and

i− 1th material interface is equal to the sum of volume of materials from 1 to i−1.

Different methods for evaluating ‘material order’ will be discussed in later sections.

The interface parameter α is found when the function f(α) = V (α) − Vactual,

becomes zero. Here, V (α) is the material volume in the cell bounded by the

interface line with line parameter α. An efficient root-finding algorithm can be

used to find α. We have used Brents method for root-finding as suggested in [67].

In our calculation we have used αmin = 0 and αmax = d as initial bracket for

root-finding system, where ‘d’ is the cell diagonal distance. For each iteration

in root-finding system a function which evaluate volume behind an interface line

with a given interface parameters has to be used. We have used our new volume

evaluation algorithm mentioned in section A.3.
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A.5. Multi-material interface construction

A.5 Multi-material interface construction

In this section we describe a ‘non-intersecting’ material interface construction

method. Once the ‘material order’ is defined (how to define material order is

discussed in later sections), the material interfaces are constructed using methods

given in Section A.2 using ‘onion-skin’ model (See Fig. A.4). Given a material

order, material m1 to mN , the first interface, between m1 and m2, is calculated by

putting the volume of m1 behind the interface [138]. The slope of this particular

material is evaluated by using the volume fractions of material m1 in a 3× 3 block

element surrounding it.

m2

i12 i23’sandwiched’

d1
m1

m3

d2

o1 o2

o3o4

V1

V1+V2

Figure A.4: Onion-skin order of material interfaces in a computational cell

The second interface, between m2 and m3, is calculated by putting the volumes

of m1 and m2 behind the interface. This time the sum of volume fractions between

m1 and m2 in 3 × 3 block is used for evaluating slope. In general, the interface

of material i is constructed by putting the sum of the volumes of materials m1

through mi behind interface i and same logic is applied for slope estimate.

To avoid intersection between a pair of interfaces we have used the following

repair algorithm. Once the interface reconstruction is completed, we check for an

intersection among them in order. If there is an intersection, the scalar product of

their normal vector (n⃗m1 · n⃗m2) is evaluated [62]. If the scalar product is negative,

we determine a new interface for material having lesser volume fraction among
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them by using Eq. (A.6) (In Eq. (A.6) we have assumed fm1 > fm2).

n⃗m2 =
n⃗m2

|n⃗m1 |
− n⃗m1

|n⃗m2 |
(A.6)

If the scalar product is positive, we adjust the normal of least stiff material

equal to the normal of other material. Thereafter, new interface parameter, α is

evaluated.

A.6 Dynamic Material Ordering

In this section we have summarized different material ordering methods.

Niem’s intersection check method

In this section we discuss on a method given in [62]. This method is based on

an intersection check between material interface lines. This method works only

for three-material configuration in a mixed-cell. First, an independent interface

reconstruction for each material is performed. Second step is to test for an inter-

section point of each pair of interface lines within a cell. This can be performed by

a simple line intersection check with known interface line parameter α and their

slopes. The final goal is to eliminate one out of three interface lines to partition

the cell into an ‘onion-skin’. Counting each intersection among a particular pair of

interface lines independently, there are 23 = 8 different cases [62]. These are listed

in Table. A.1. Third step is to reject the interface line of one of the materials. The

rejected material is then ‘sandwiched’ in between the two others.

221



A.6. Dynamic Material Ordering

Table A.1: Different cases of intersection among pairs of interface lines [62]; ‘y’
and ‘n’ stands for an intersection and non-intersection respectively.

case line 1 & 3 line 2 & 3 line 1 & 2 action
1 n n n reject 1, 2 or 3
2 n n y reject 1 or 2
3 n y n reject 2 or 3
4 y n n reject 1 or 3
5 n y y reject 2
6 y n y reject 1
7 y y n reject 3
8 y y y adjust normal

Centroid check method by Mosso and Clancy

Mosso and Clancy [73] developed a formulation based on approximate center-of-

mass of materials. They evaluate the centroid (xm) from a nine-cell stencil centered

by the mixed cell from the material volume fractions and cell centroids (xc) as given

Eq. A.7.

xm =

∑9
i=1 f

m(i)xc(i)∑9
i=1 f

m(i)
,m = 1, ...,M (A.7)

Once all the centroids are evaluated, the materials are arranged in the ascend-

ing order of their centroid distances from a ‘local origin’. This ‘local origin’ is

determined by checking slope of lines connecting material centroids. A positive

slope is a vote for the lower left corner and a negative slope is a vote for the lower

right corner [138], see Fig. (A.5).
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Figure A.5: Priority checking by Mosso-Clancy method

A simple combination of Centroid check and Benson’s least squares fit

to centroid

A similar approach is described by Benson in [74]. He adds the locations of the

centroids as solution variables. They are transported using some higher-order

transport algorithm, e.g. MUSCL algorithm [74]. Using the centroids of the ma-

terials (x⃗m) in the current element, a least squares fit to a line is calculated by

solving the least squares problem given in Eq. (A.8).

minJ =
1

2

∑
m=1,M

fm [nx(xm − x̃) + ny(ym − ỹ)]2 (A.8)

The projections of the centroid locations onto this line are sorted in ascending

order. There after few heuristic rules are applied to define ‘material order’, details

of these rules and their purpose can be found in [74]. See Fig. (A.6).

This method is found to be more accurate in determining ‘material order’. We

actually did not transport material centroids, instead an approximate centroid for

each material is evaluated at each time-step using method given by Mosso and

Clancy [73]. Remaining procedures follows method given by Benson in [74].
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Figure A.6: Priority checking by Benson’s method of least square fit to the set of
the centroids

A.7 Calculation of transport volume

The calculation of advected volume (V m,a
i ) for each material is basically the evalu-

ation of the area of the overlap region between Eulerian and Lagrangian positions

after deformation (see Fig. (A.7)). This is determined by using the algorithm

mentioned in Appendix A.3.

d
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advected volume

advected volume
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x x
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i+1iu dt dt

initial volume

u
i
dt ui+1 dt

initial volume

d

d1

d2
advected volume
right

advected volume
left

xi
x

i+1

Figure A.7: Material polygon before and after Lagrangian deformation for two
different orientations

The volume fraction, fm for each material is updated at each time-step by

solving an advection equation (color advection) of the form given by Eq. (A.9),

see [62,66,67,140].

∂fm

∂t
+ u

∂fm

∂x
+ v

∂fm

∂y
= 0 (A.9)
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The above equation can be solved by using a flux difference scheme described

in Refs. [60, 62].

225



B
Unstructured compatible Lagrangian

hydrodynamics scheme

B.1 Introduction

The compatible unstructured Lagrangian hydrodynamics algorithm used in Chap-

ter 4 is a staggered mesh, finite-difference scheme for solving the equations of fluid

dynamics in Lagrangian form. The compatible algorithm is formulated [98] in a

such a way that it exactly conserves momentum and internal energy. The un-

structured mesh offers more flexibility especially when the geometry is complex.

We have also included the sub-zonal pressures and masses [99] to control artificial

grid distortion. Further, to stabilize the grid a node based tensor viscosity [100] is

used. In the following we have described the details of this compatible unstructured

Lagrangian hydrodynamics scheme.
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B.2 Staggered unstructured mesh

Spatially staggered unstructured mesh is constructed as follows. The construction

of the grid begins with arbitrary placement of nodes which define the geometry of

interest. The velocities and the accelerations are defined at these nodes. In order

to define computational cells or zones uniquely, a connectivity among the nodes

which define arbitrary shaped polygons are specified, see Fig. B.1. The density,

pressure and internal energy are defined at the zone centers. The sub-cell or sub-

zone of each node is formed by connecting the zone centroid and edge centers.

The sub-zonal cell will be always a quadrilateral regardless of the shape of the

unstructured mesh, see Fig. B.1. With node positions, their connectivity and the

cells defined, an unstructured mesh is completely specified. Following conventions

are used: The cells are denoted by z, and nodes are indexed by p. The set of nodes

that defines a cell z are p ∈ S(z), where the nodes are ordered counterclockwise.

Similarly, the set of cells that shares a node p is denoted by z ∈ S(p).

B.3 Discrete Lagrangian hydrodynamics

In the Lagrangian framework, the equations of conservation of mass, momentum

and energy are written

dρ

dt
= −ρ ∇ · v (B.1)

dv

dt
= −∇P

ρ
(B.2)

ρ
de

dt
= P ∇ · v (B.3)

where ρ is density, P is pressure, v is the velocity vector and e is the internal
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Figure B.1: A typical unstructured staggered mesh, including zone z and point p.
The solid lines define the mesh and the dashed lines show the sub-cell or median
mesh. The sub-cell of each node is formed by connecting the zone centroid and
edge centers.

energy. In Lagrangian scheme, the mass of the cell is assumed to be constant.

The same assumption is used for the sub-cell, leading to the definition of sub-zonal

corner volume, mass and pressure. The cell volumes, Vz, are related to the sub-cell

volumes, V z
p , by

Vz =
∑
p∈S(z)

V z
p (B.4)

Let us denote the mass of this corner volume as mz
p, where the indices define

the zone and point with which it is associated. Also, define mz
p = mp

z, with a

convention that the summation in any mathematical expression is always with

respect to the lower index.

The corner mass is used to define both the zone mz and point mass mp.
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mz =
∑
p∈S(z)

mz
p

mp =
∑
z∈S(p)

mp
z

(B.5)

Since, the mass of a cell is constant the discrete forms for mass conservation

equation is as below.

ρz =
mz

Vz

ρzp =
mz
p

V z
p

(B.6)

The algorithm is written in terms of corner forces. A corner force is the con-

tribution of one computational zone to the total force at a point or node. The

discrete momentum equation at a node p in terms of corner force, fpz , is as given

below.

mp
dvp
dt

= Fp = −
∑
z∈S(p)

fpz (B.7)

The corner force, fpz , is the force from zone z that acts on point p. The sum-

mation of all the corner forces around a point p gives Fp. The corner force due to

hydrostatic pressure is evaluated as

f zp = Pz
(
szp+1 − szp

)
(B.8)

where s is the area vector defined in Fig. B.1. The change in mass specific

internal energy can be calculated as below [98].
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B.4. Sub-zonal pressure method

mz
dez
dt

= −
∑
p∈S(z)

f zp · vp (B.9)

The derivation of the above equation and proof of energy conservation can be

found in Ref. [98]. Since the conservation of total energy is used to derive the above

equation, it ensures total energy is conserved to numerical round-off in calculations.

B.4 Sub-zonal pressure method

The sub-zonal pressure method [99] is developed to control artificial grid distor-

tion. The difference between the sub-zonal and the zonal density and hence in the

pressure (assuming same specific internal energy for sub-zone and zone) is used to

formulate a corner force which oppose the hourglass motion. The details of this

formulation and physical backgrounds are described in Ref. [99]. For each sub-zone

the pressure difference between the zone and sub-zone, δP z
p , is calculated using the

following equation.

δP z
p =

(
ρzp − ρz

)
c2z (B.10)

Here, cz is the zone sound speed. The corner force due to these pressure dif-

ference is then calculated by integrating around the boundary of the sub-zonal

volume.

f zp,h = Ch

(
δP z

p

(
a+
p + a−

p

)
+

1

2

[(
δP z

p − δP z
p+1

)
szp+1 +

(
δP z

p−1 − δP z
p

)
szp
])

(B.11)

Here, 0 < Ch ≤ 1 is a dimensionless factor and the a vectors are outward edge

normals to the zone, see Fig. B.1. This sub-zonal corner force, f zp,h, is added to
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B.5. Tensor artificial viscosity

corner force, f zp .

B.5 Tensor artificial viscosity

To resolve shocks over just a few zones, the tensor artificial viscosity of Campbell

and Shashkov [100] is included in the hydrodynamic equations. It assume that the

artificial viscosity tensor is a combination of a scalar coefficient and the gradient of

the velocity tensor, ∇v. The sub-zonal artificial viscous force, f zp,v, thus calculated

is added to the corner force, f zp . The details of the algorithm can be found in

Ref. [100].
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