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SYNOPSIS

Introduction

Equation of State

The equation-of-state (EOS) of a material represents the pressure P and internal

energy E as functions of density and temperature of the material [1,2,3,4,5]. P and

E can be expressed as the superposition of three terms, viz., (1) The Cold Curve,

which refers to Pressure and energy at zero kelvin, (2) “Ion thermal” contribu-

tion, representing the contribution from thermal motion of ions, and (3) “Electron

thermal” contribution, which is the contribution due to finite electron temperature.

The EOS is an essential input to hydrodynamic simulations of Magnetized

Target Fusion systems and pulse power experiments [6,7,8,9]. Two examples will

illustrate this point:

1. Compressed states:

Liner acceleration experiments can give rise to large compressions and pres-

sures of upto 50 million atmospheres (megabars). Hence there is a need

for EOS calculations upto 100 Megabar and densities upto 6 times normal

density.

2. Rarefied states:

In exploding wire and laser irradiation experiments, temperatures of metals

such as aluminium can reach upto a few tens of thousands of Kelvin (few

eV), while densities can fall to as low as 1/10th or 1/100th of normal density.

This combination lies in the ‘dense plasma’ state. If the plasma is produced

by electrically-driven explosion, modelling requires the EOS as an input.

Hence there is a need to generate EOS data over these low density states and

temperatures upto 50,000 deg-K.
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The EOS and conductivity models used must generate not only accurate but also

‘smooth" data. A large body of literature exists on the calculations of Equations of

State. However, these EOS models are applicable in specific density-temperature

regimes and their accuracy decreases in other regimes [2-5]. Hydrodynamic sim-

ulations for different problems require different kinds of EOS data. For example,

simulations for Inertial Fusion Energy (IFE) and pulsed-power systems require

wide-ranging data covering orders of magnitude in density and temperature. Sim-

ulations for exploding wires require data in rarefied states of metals, but the tem-

perature range only extends upto 5 eV (50,000 K). Simulations for high-velocity

impact require data upto only 5-10% compression, but with high accuracy, and

must take account of solid-solid phase transformations.

This thesis studies the EOS and conductivity of certain materials over the range

of parameters described above. This has, necessarily, involved the development/use

of computer codes in a variety of areas.

Electrical conductivity

Electrical conductivity is a property of a material which quantifies how well the ma-

terial allows flow of an electric current. Fast opening switches based on electrically-

exploded metal foils are of interest for pulsed power systems. Such explosions

involve states with densities ranging from normal density ρ0 down to 0.01ρ0 and

temperatures ranging from room temperature up to a few electron volts. Modelling

of electrically exploded fast opening switches requires the electrical conductivity

data of the metal in this density-temperature regime, as an input. Hence there is

a need to perform first principles study of conductivity of metals over these low

density states and temperatures upto 50,000 deg-K.
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Scope of the present work

In order to focus the present study, we have performed EOS studies for two mate-

rials. The first is the metallic element Aluminium (Al) and the second is a ceramic

compound tungsten carbide (WC). Aluminium is of importance for liner acceler-

ation and exploding foil systems. Even though there have been several studies of

the EOS of Al, these EOS models are applicable in specific density-temperature

regimes and their accuracy decreases in other regimes. In this work we develop

an EOS model which gives correct result in the liquid-vapour region along with

accurate results for the densities above normal density. Tungsten carbide is impor-

tant because of its applications in industrial machinery and high pressure systems.

Despite the importance of WC in high-pressure studies, the theoretical study of

elastic properties at high pressure has not been reported by other workers. In

this thesis we present the results of our theoretical studies on EOS and elastic

properties of tungsten carbide at high pressure.

For aluminium, we have also computed the electrical conductivity as a func-

tion of temperature & density. These studies are described in Sections 1 and 2,

respectively.

EOS and electrical conductivity of Aluminium

In this Section, we report on EOS calculations for Al over large ranges of density

and temperature. We also compute the electrical conductivity of Al. This work

has been done in four parts:

• Full Potential Linearized Augmented Plane Wave (FP-LAPW) calculations

for Al.

• Quantum molecular dynamics simulations for Al EOS and conductivity.
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• Development of QEOS and its comparison with FP-LAPW and QMD results.

• Improvements in QEOS.

Computational details and important results are summarized below.

FP-LAPW calculations for Al

First principles study of compression of Al (ρ > ρ0) at zero kelvin has been per-

formed using the FP-LAPW method within the framework of density functional

theory (DFT) [10, 11]. There are three reasons for performing this study. Firstly,

this study yields the EOS at high pressure and zero kelvin (‘cold-contribution’).

Secondly, in a recent XRD experiment performed by Akahama et. al. [12], it has

been found that the FCC-HCP structural transition occurs at 217 ± 10 and that

FCC and HCP structures coexist over a large range of pressure. This coexistence

can be understood using first principles calculations. Thirdly, in the same experi-

ment, for the first time, high pressure values of lattice parameters of FCC and HCP

structures have been reported. In our calculations, we have reported theoretical

results of high pressure lattice parameters for the first time.

The cold contribution depends upon the crystal structure of the metal. Crystal

structure of a metal can change on applying pressure and if the volume change

at the transformation pressure is large then many thermodynamic properties such

as Debye temperature, specific heat and melting temperature etc are significantly

affected. Therefore, it is very important to study the effect of pressure on crystal

structure and lattice parameters. The volume and pressure of structural trans-

formation have been reported in previous studies [13, 14]. However, those studies

were performed using different theoretical methods. In this thesis we have reported

results of accurate FP-LAPW calculations using GGA exchange-correlation. We

have also reported lattice parameters at high pressure. In addition we have dis-

cussed the structural transformation in terms of density of states (DOS).
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Computational details:

We have used the WIEN2k code [15] to calculate the total energies of FCC, BCC

and HCP structures of Al. This code performs electronic structure calculations of

solids using the FP-LAPW method. This method is amongst the most accurate

methods for performing first principles calculations for crystals and is used widely

for the studies of structural properties of crystalline materials. The exchange cor-

relation potential within LDA is calculated using the scheme of Perdwe-Wang [16],

while the scheme of Perdew-Burke-Ernzerhof is used within GGA [17]

These calculations have been done using a constant muffin-tin radius Rmt of

1.7 a. u. In the WIEN2k code, it is very important to select a good basis set and k

mesh size for getting accurate results. We start by taking a low value of RmtKmax.

For purposes of determining a suitable k -mesh size, we then calculate the total

energy as a function of the size of the k-mesh., increasing the size by 1000 at each

step. We find that 10000 k-points are sufficient. Having determined a good k -

mesh, we now vary RmtKmax from 7 to 12, and find that 9.0 is a good choice. Lmax

is taken as 10 throughout the calculations. We have selected an energy cut-off of

-6.0 Ry to separate the core from the valence states. The convergence criterion for

energy was taken as 10−4 Ry.

Important results:

1. Structural properties at ambient condition

To determine which option for the exchange-correlation functional is the

most suitable for our purposes, we compared certain zero pressure properties

viz., the lattice constants and the bulk modulus calculated by using GGA

and LDA with their experimental values. The ground-state properties of the

three phases of Al were obtained using the calculations of the total energy

(E) as a function of volume (V ) at lower pressures. E versus V data was
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then fitted to the Birch-Murnaghan equation of state [18] to obtain lattice

parameters and bulk modulus at zero pressure. Calculated GGA and LDA

lattice parameters and bulk modulus were compared to the experimental

values and it was found that GGA results are more accurate. Hence in our

subsequent calculations, we used GGA E versus V results.

2. c/a ratio for HCP structure

We are interested in structural transformations in FCC, HCP and BCC struc-

tures at high pressures. For FCC and BCC, the only adjustable parameter

is a. For HCP, however, the ratio c/a must also be specified. Hence it is

first necessary to determine the c/a ratio that minimizes system energy at

a given volume V/V0. To this end, we have calculated the total energy for

the HCP structure as a function of the c/a ratio for several densities. The

c/a ratio was varied from 1.45 to 1.8. The experimental value of c/a ratio at

ambient conditions is 1.6139. Hence the c/a ratio was varied from 1.45 to 1.8

for higher densities. This calculation was repeated for several values of V/V0

spanning our range of interest. We have found that for densities near the

normal density, the energy is minimum for a c/a ratio that deviates by 2%

from the experimental value. Near the FCC-HCP transition and at higher

densities, the energy was minimum for the 1.623 value of the c/a ratio.

3. Lattice constants at high pressure

We have also calculated the lattice constants at higher pressures and com-

pared the results with those obtained in recently reported X-ray powder

diffraction experiments [12]. Our calculations show good agreement with the

experimental values, the percentage errors lying within 0.5% in the calcu-

lated results for ‘a’(FCC and HCP), and within 0.4% for ‘c’ (HCP). Errors

do not show any definite trend with the pressure. This is the first theoretical

calculation of lattice parameters at high pressures.
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4. Total energy as function of Volume

To find the volumes at which structural transformations take place, we have

compared the total energy versus volume curves of FCC, HCP and BCC

structures. The differences (∆) between the energies of FCC - HCP, FCC -

BCC, and HCP - BCC were calculated and plotted as a function of the volume

to determine the transition volume. From this plot we observe that the FCC-

HCP transition occurs at 0.53V0. Experimentally, however, this transition

has been found to lie at 0.509V0 [12]. The reason for this difference could be

that ∆FCC−HCP is negligibly small (of the order of 10−4 Ry) over the range

V/V0 = 0.51-0.53. It becomes significant 0.9 mRy at V/V0 = 0.5089 and

becomes 1 mRy when V/V0 reaches 0.50. Such a small difference between

the energies of FCC and HCP structures around the phase transition point

could be the reason for the co-existence of the FCC and HCP structures over

a wide range of densities.

5. Pressure vs. enthalpy

For determining the FCC - HCP and HCP - BCC transition pressures, the

differences between the enthalpies of FCC -HCP, FCC - BCC, and HCP -

BCC were calculated and plotted as functions of the pressure. We find FCC -

HCP transition pressure at 178 GPa whereas the reported experimental value

is 217±10 GPa [12]. This difference could be due to two reasons. Firstly, we

have not included the energy contribution of zero point vibration. Secondly,

there is a negligibly small difference between FCC and HCP enthalpies ( 1

mRy) in the pressure range of 178 - 217 GPa, hence there is a possibility that

in the experiment the structural transformation may not be noticed until the

enthalpy difference becomes significant.

6. Density of states vs. Volume (Pressure)
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The density of states (DOS) of FCC and HCP structures of Al has been

calculated for normal and high pressures. It has been found that the DOS of

both structures at normal conditions shows different kind of nature near the

Fermi level but become similar over a range of compressed volumes close to

the FCC-HCP transition volume (V/V0 = 0.53). At ambient conditions, FCC

- DOS at Fermi level lies in a local minima whereas HCP-DOS at Fermi level

does not lie in any minima. At high pressures, the DOS of both structures

at the Fermi level lies in local minima, implying that both structures are

stable. This similarity can be one reason for the reported coexistence of

FCC-HCP phases over a wide range of compressions near the FCC-HCP

phase transition. Such explanations for the stability of crystal structures

have been given for Au [19] and for Ti2AlC and Ti2AlN [20] in previous

theoretical studies.

Thus from the first principles study of the structural and electronic properties

(DOS) of Al we have generated the cold - curve of Al and also understood that

FCC-HCP transition does not lead to any sudden change in the properties.

Quantum molecular dynamics simulation for EOS and elec-

trical conductivity of Al

In the previous section, we had studied the cold curve in compressed states using

a first principles method. In this section, we focus on studying the EOS and elec-

trical conductivity of Al in the low density regime, ρ < ρ0, where ρ0 is the normal

density at ambient conditions, by using quantum molecular dynamics (QMD) sim-

ulations or ab-initio molecular dynamics (AIMD) which is also based on the first

principles method.

AIMD is a powerful simulation technique for calculating equation of state and elec-

trical conductivity for low-temperature (< 4−5 eV) low density materials [21, 22].
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In AIMD simulations, the energetics of the system and the forces on the ions are

calculated by the first principle method, within the framework of finite temperature

density functional theory (DFT). We have generated EOS and electrical conduc-

tivity data of low density Al using AIMD simulations in combination with the

Kubo-Greenwood formula [23, 24]. Generating equation of state data on a closely-

spaced grid of density and temperature is computationally very costly. Hence, we

have generated EOS data using this method for a few density-temperature points

on which interpolation is performed.

Computational details:

The exchange correlation interaction of the electrons are treated in the generalized

gradient approximation (GGA), using the PBE parametrization [17]. Ion-electron

interactions are described by the pseudo-potential generated by Troullier and Mar-

tins method. All calculations have been done at the Γ point, i .e., with number

of k-points taken as one. In ABINIT, the energy cut off (ecut) is an important

parameter which controls the number of plane waves, We performed several calcu-

lations at various values of ecut to investigate the convergence needed for reliable

results and found that 272 eV is a good value for Al. The convergence criterion

for energy was taken as 4.0 × 10−4 eV. Larger value of ecut and a smaller value of

convergence criterion for energy do not make any significant change in the results.

In the second step, the Kubo-Greenwood formula was used for the calculation of

frequency-dependent electrical conductivity of Al. The quantities like Fermi Dirac

occupation for each band and each k point, weight of each k point, electronic

eigenstates and eigenvalues for each electronic state, and the derivative of the

Hamiltonian with respect to the wave vector of the three directions, are required

as input for the Kubo-Greenwood formula. These quantities are again calculated

by the ABINIT [25]. For selected statistically-independent atomic configurations of

32 atoms, a self-consistent ground state calculation is performed with the ABINIT
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code to get the detailed electronic structure. For conductivity calculations, we

found that four k points are necessary for better convergence. We ensured that

there were always some unoccupied levels for better convergence of all runs.

Important results:

The calculated EOS and electrical conductivity is in good agreement with pub-

lished theoretical and experimental results [21, 26]. From a plot of DC electrical

conductivity σ (T) with temperature, we noticed that there is a change of slope

at a certain temperature – for example, the slope decreases above 6000 K at a

density of 2.35 g/cc. We have explained this using the Drude theory of electrical

conductivity. According to this theory, electrical conductivity depends upon the

number density of electrons at Fermi level n, and on the relaxation time τ . Hence,

at low temperatures, the conductivity decreases rapidly with increasing tempera-

ture. This can be explained as follows - the ions vibrate about their equilibrium

positions, which leads to thermal vibration of the crystal lattice. The amplitude of

the vibrations increases as temperature is increased. The electrons are scattered

by collisions with the lattice ions. Consequently, with the increase in the ampli-

tude of vibration, the collision frequency increases. This leads to decrease in the

relaxation time τ , and hence to decrease in the electrical conductivity. At high

temperatures (> 6000 K), even though the relaxation time is still decreasing with

the temperature leading to decrease in the conductivity, the number density of

electrons near the Fermi level also starts increasing, causing a net increase in the

conductivity. Both these phenomena, viz., the decrease in the relaxation time and

the increase in the number density of electrons near Fermi level jointly lead to less

decrease in the electrical conductivity above the temperature 6000 K as compared

to below this temperature. Hence, we see a break in the slope near 6000 K. This

explanation has been given for the first time. However, further studies should be
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performed to confirm this explanation.

Development of QEOS and its comparison with FP-LAPW

and QMD results

In the work reported above, we used first principles methods to calculate the cold

contribution to the EOS. We also used first principles method based quantum

molecular dynamics (QMD) for calculating the EOS in expanded states. Thus we

have FPLAPW results for compressed states and QMD results for expanded states.

Now we focus on developing a global equation of state model which can be used for

compression as well as expansion and its results should be as accurate as the first

principles results. However, before developing a new global EOS, we would like

to compare the first principles EOS results with an existing global EOS model for

compression as well as for expansion. The most popular global equation of state

model is the Quotidian EOS (QEOS) model developed by More et. al [3]. We first

develop a QEOS model following the methodology provided in the literature and

then compare its results with first-principles results.

In QEOS, cold and electron thermal contributions are calculated by using the

Thomas-Fermi (TF) statistical model of the atom and the ion-thermal contribution

is calculated by using the Cowan model [3]. According to the TF model, each

nucleus is located at the center of a spherical cavity, and electrons are treated

as a charged fluid surrounding the nucleus and filled in the cavity to make it

electrically neutral. The TF model does not consider the quantum mechanical

structure of atoms and hence gives a positive pressure even at zero temperature

due to the presence of free electrons inside the cavity. For the case of Al, it is

approximately 1.0 million atmospheres (Megabar) at standard condition, whereas

the actual pressure should be zero. Following More’s methodology in QEOS, an

empirical bonding correction is applied to the TF model to remove this inaccuracy.
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The correction is applied in such a way that the pressure and bulk modulus are

made to match the experimental value at normal conditions. This correction term

has a progressively weaker effect as we move away from standard conditions. After

implementing this correction, it was confirmed that 1. pressure becomes zero at

standard condition. 2. the energy versus density curve exhibits a minimum at

standard conditions and 3. bulk modulus is equal to its experimental value.

Important results:

The cold curve of QEOS was compared with the cold curve obtained from FP-

LAPW and with the reported experimental cold curve generated by using powder

X-ray method [12]. Good agreement was found.

We next compared our QEOS results with the EOS generated by using quantum

molecular dynamics simulations in expanded states. Here, the agreement between

the results was not good and hence an improvement of the QEOS is required for

expanded states. There are three reasons for this disagreement. Firstly, in More’s

QEOS method, the cold curve is corrected by applying an empirical term which

is a crude way of calculating the cold curve. Though it corrects the cold curve in

the compression region, it does not account for the rarefaction region. Secondly,

the formula used for calculating the Gruneisen parameter in the Cowan model is

not suitable for expanded states as the calculated Gruneisen parameter diverges as

density tends to zero. Thirdly, the thermodynamic properties at the critical point

in the liquid-vapour region cannot be calculated accurately by using QEOS, since

it is grossly inaccurate in that region.

These limitations are addressed in the next section of the thesis.
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Improvement in QEOS

We have developed a new three-term EOS model in to address the limitations of

More’s QEOS model. In this model, we make improvements in the cold-curve and

the ion-thermal term. The cold curve is calculated by three different methods in

three different regions - 1. FP-LAPW method for densities ranging from standard

conditions to the density corresponding to the compression at 1000 GPa. 2. Above

this density we extrapolate the cold-curve using an analytical Thomas-Fermi-Dirac

(TFD) extrapolation formula [5]. 3. For densities below normal, we calculate the

cold-curve using a soft-sphere function [5].

For generating cold - curve using the FP-LAPW method, we have assumed Al to

exist in the FCC structure at all pressures. In reality, pressure induced FCC - HCP

and HCP - BCC structural transformations occur at high pressures, but differences

in the energies of FCC and HCP structures and HCP and BCC structures are so

small that these structures coexist over a wide range of pressures. This has been

confirmed by experiments as well as by our previous theoretical studies. Hence

we have calculated the cold - curve ignoring the FCC- HCP structural transition.

Our cold - curve is in good agreement with XRD and shockwave measurements

[12, 27, 28]. The constants of the extrapolated soft sphere function are calculated

by applying the condition that 1. calculated energy and pressure using this func-

tion should match the energy and pressure calculated by FP-LAPW method at

standard conditions and 2. the binding energy should be predicted correctly.

For the ion-thermal contribution, we have used the Cowan model which is used

in More’s QEOS model. However, we now calculate the Gruneisen parameter by

imposing a condition that the calculated Pressure versus temperature isotherm

matches reasonably with the isotherms generated by using QMD method. Other

known conditions on Gruneisen parameter have also been imposed - that it should
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be close to its experimental value at ambient condition and should approach 2/3

at very high density.

Finally, the electron-thermal contribution is calculated using the TF model, i.e

Eel = ETF (T ) − ETF (100K).

Important results:

This global EOS model is validated in compressed states by deriving P − ρ and

Us−Up hugoniots and comparing them with available experimental results [29, 30].

Good agreement was found. In expanded states, this EOS model is validated by

comparing isochores with the reported experimental isochores and thermodynamic

properties at critical point with their reported values in the literature. The vari-

ation of pressure as a function of internal energy along the isochores shows good

agreement with reported experimental results and the estimated critical tempera-

ture shows good agreement with reported results [31, 32]. Thus our EOS model is

valid over large ranges of density and temperature.

EOS and Elastic Properties of Tungsten Carbide at

high pressures

Introduction

Tungsten carbide is a promising material for applications in industrial machinery,

cutting tools, and other instruments. In addition, because of its hardness it is

also used as anvil in multi-anvil high pressure systems and as seats in diamond

anvil cells [33-37]. Hence knowledge of equation of state and elastic properties of

tungsten carbide is necessary.
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The EOS and elastic properties of solids are closely related to many solid state

properties such as specific heat, thermal expansion, Gruneisen parameter, De-

bye temperature, melting temperature and many others. At a more fundamental

level the study of material behaviour at high compressions provides a better under-

standing of the interplay between the structural stability and electronic properties.

Important information about the binding characteristics between adjacent atomic

planes, the anisotropic character of the bonding and the structural stability etc

can be deduced from the elastic properties.

In ambient conditions, the crystalline form of WC is a hexagonal structure

known as αWC. This is a unique behaviour of WC among transition metal carbides

as other carbides are stable in rock-salt structure. The structure of α WC can be

viewed as alternating simple hexagonal layers of W and C. In addition to this α

phase, WC can also exist in FCC structure at high temperatures, this phase is

known as β WC.

Experimental investigation of EOS and elastic properties of WC at ambient and

high pressures has been a subject of interest for more than two decades. Day and

Ruoff [33] investigated pressure dependence of elastic moduli of WC with 3% Co

binder up to 0.2 GPa, Gerlich and Kennedy [34] extended this investigation up to

1 GPa. Lee et. al. [35] determined the elastic constants of single crystal tungsten

carbide at ambient conditions using high frequency ultrasonic pulse-echo measure-

ments. Recently, Amulele et al [36] and Litasov et. al. [37] performed synchrotron

X-ray diffraction measurements on polycrystalline powder samples loaded in a di-

amond anvil cell. Ultrasonic measurements on hot-pressed ceramics compressed

in a multi-anvil high-pressure apparatus, have also been done in this paper [36].

In these measurements, pressure versus volume relations and elastic properties of

WC have been determined.
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On the theoretical side, several first principles calculation results have been

reported among them the recent ones are [38, 39]. However the focus of these

theoretical investigations has been on the physical, elastic and electronic properties

at ambient conditions. Despite being a promising material for applications in high

pressure apparatuses, the elastic properties of tungsten carbide at high pressure

have not been reported by any author in a theoretical investigation.

In this work we present elastic properties of α and β WC up to a pressure of

120 GPa. We also perform comparison of enthalpies of α and β WC to investigate

the competition between the structures of these phases in WC at high pressure.

We discuss the outcomes of this competition in terms of density of states. We also

discuss the stability, ductility/brittility and anisotropic behaviour of these phases

at ambient and high pressures. Computational details and important results of

the thesis are summarized below. The calculations have been performed using

FPLAPW method as implemented in WIEN2K code.

Important results

Structural properties P-V isotherm and Gruneisen parameter

Calculated volume dependent total energy data of Îś and Îš tungsten carbide have

been fitted to the Birch-Murnaghan EOS to obtain molecular volume (V0), bulk

modulus (B) and its pressure derivative (BP ). The obtained values of these proper-

ties are in good agreement with reported XRD and ultrasonic experimental values.

The calculated P − V isotherm at zero pressure is also in good agreement with

reported experimental isotherms. As α tungsten carbide is hexagonal, its c/a value

has been optimized at each volume, as was done in the case of Al. The c/a ratio

of α - WC increases on increasing pressure. The calculated lattice parameters at

high pressures have been compared with experimental values and reasonably good

16



agreement has been found. The density dependent Gruneisen parameter has been

deduced from the P − V isotherm using Slater’s formula.

Investigation of structural transformation

To investigate the structural transformations in tungsten carbide, the total ener-

gies versus volume (E − V ) and Gibbs free energy (or enthalpy) versus pressure

curves of α and β phases have been compared up to 350 GPa. It has been found

that over the whole range of compression, the α phase remains stable and no α to

β structural transformation takes place. To understand this in physical terms, the

density of states (DOS) of α and β phases have been calculated at 0, 100 and 200

Gpa. It has been observed that DOS of the β phase lies in a local maximum at all

pressures whereas the DOS of α phase at Fermi level lies in a local minimum at all

pressures, making it thermodynamically stable. Moreover, the available states of α

phase at Fermi level keep decreasing and the width of the minima keeps increasing

on increasing pressure, providing more stability to the β phase at high pressures.

Elastic properties

Elastic properties such as bulk, shear and Young’s modulus have been calculated

upto a pressure of 120 GPa. The reported experimental data is available up to 14

GPa only. Our results are in good agreement with reported experimental data. We

have found that the ratio of shear to bulk modulus (G/B) of both phases of WC

are smaller than 1.0. This means that resistance to bond-length change exceeds

the resistance to bond angle change in WC. G/B value of a material is also associ-

ated with the brittle or ductile character of the material. Low value is associated

with ductility, the materials having G/B value smaller than 0.57 are ductile and
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materials with G/B value larger than 0.57 are brittle. At zero pressure, the G/B

value of α and β WC are 0.86 and 0.61 respectively, implying that WC is a brittle

material in both phases. Between both phases, β WC is less brittle and becomes

ductile at 46 GPa. but α phase remains brittle up to 120 GPa. On increasing

pressure, the G/B value of the α phase also goes down but it remains above the

critical value of 0.57, implying that WC shows a tendency towards ductility on

increasing the pressure but remains brittle up to 120 GPa. The brittle character

of WC is also confirmed by its low value of Poisson ratio. It is believed that the

materials with low Poisson’s ratio are brittle [40] for example brittle metals with

BCC structure have low value of Poisson’s ratio whereas ductile FCC metals have

high Poisson’s ratio. The critical value of Poisson’s ratio for separating brittle

materials from ductile materials is 1/3, the brittle materials have Poisson’s ratio

smaller than this value.

The pressure dependent sound velocities (shear and longitudinal) have been cal-

culated from the elastic properties have been calculated up to 120 GPa. These

velocities show good agreement with the available experimental data. Pressure-

dependent Debye and melting temperatures have been also deduced from the cal-

culated sound velocities up to 120 GPa.
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1
Introduction

The study of matter at high pressure is of considerable current interest, particularly

in the case of metals and compounds [1–3]. The knowledge of material equation of

state and elastic properties at high pressure is important for a variety of scientific

and engineering applications. In addition, equation of state and elastic properties

of solids are closely related to many solid state properties such as specific heat,

thermal expansion, Grüneisen parameter, Debye temperature, melting temperature

and many others. At a more fundamental level the study of material behaviour

at high pressure provides a better understanding of the interplay between the

structural stability and the electronic properties. Important information about the

binding characteristics between adjacent atomic planes, the anisotropic character

of the bonding and the structural stability etc can be deduced from the elastic

properties [4–7].

The equation-of-state (EOS) of a material represents the pressure P and inter-

nal energy E as functions of density and temperature of the material [8–11]. P and

E can be expressed as the superposition of three terms, viz., (1) The Cold Curve,

which refers to Pressure and energy at zero kelvin, (2) “Ion thermal” contribu-
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tion, representing the contribution from thermal motion of ions, and (3) “Electron

thermal” contribution, which is the contribution due to finite electron temperature.

The EOS is an essential input to hydrodynamic simulations of Magnetized

Target Fusion systems and pulse power experiments [12–15]. Two examples will

illustrate this point:

1. Compressed states:

Electromagnetically-accelerated Liner experiments can give rise to large com-

pressions and pressures of upto 50 million atmospheres (megabars). Hence

there is a need for EOS calculations upto 100 Megabar and densities upto 6

times normal density.

2. Rarefied states:

In exploding wire and laser irradiation experiments, temperatures of metals

such as aluminium can reach upto a few tens of thousands of Kelvin (few

eV), while densities can fall to as low as 1/10th or 1/100th of normal density.

This combination lies in the ‘dense plasma’ state. If the plasma is produced

by electrically-driven explosion, there is a need to generate EOS data over

these low density states and temperatures upto 50,000 deg-K.

The EOS and conductivity models used must generate not only accurate but also

“smooth” data. A large body of literature exists on the calculations of Equations of

State. However, these EOS models are applicable in specific density-temperature

regimes and their accuracy decreases in other regimes [8–11]. Hydrodynamic sim-

ulations for different problems require different kinds of EOS data. For example,

simulations for Inertial Fusion Energy (IFE) and pulsed-power systems require

wide-ranging data covering orders of magnitude in density and temperature. Sim-

ulations for exploding wires require data in rarefied states of metals, but the tem-
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1.1. Equation of State

perature range only extends upto 5 eV (50,000 K). Simulations for high-velocity

impact require data upto only 5-10% compression, but with high accuracy, and

must take account of solid-solid phase transformations.

This thesis studies the EOS and conductivity of certain materials over the range

of parameters described above. This has, necessarily, involved the development/use

of computer codes in a variety of areas.

Electrical conductivity is a property of a material which quantifies how well

the material allows flow of an electric current. Fast opening switches based on

electrically-exploded metal foils are of interest for pulsed power systems. Such

explosions involve states with densities ranging from normal density ρ0 down to

0.01ρ0 and temperatures ranging from room temperature up to a few electron volts.

Modelling of electrically exploded fast opening switches requires the electrical con-

ductivity data of the metal in this density-temperature regime, as an input. Hence

there is a need to perform first principles study of conductivity of metals over these

low density states and temperatures upto 50,000 deg-K.

1.1 Equation of State

The equation of state is described by a functional relationship between thermody-

namic variables defined for a system in equilibrium. If one neglects electron-phonon

interactions, the thermodynamic functions can be expressed as a superposition of

three terms. In particular, one can write the energy E and pressure P in the

following form [9]

E(V, T ) = EC(V ) + EIT (V, T ) + EET (V, T ) (1.1)

P (V, T ) = PC(V ) + PIT (V, T ) + PET (V, T ) (1.2)
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1.1. Equation of State

where EC and PC are the energy and the pressure at zero temperature (T

= 0 K), EIT and PIT are the contributions of ionic motions to the energy and

pressure, while ETE and PTE are the electron thermal contributions. Here, the

specific internal energy E has units of Joules/kg.

The first contribution to EOS is known as the ‘cold’ contribution. This comes

from the kinetic energy of electrons, and Coulomb interaction between electron and

nuclei, between electrons and other electrons and between nuclei and other nuclei.

The cold curve (zero kelvin isotherm) can be constructed by a variety of empirical

models such as Lennard-Jones(LJ) formula, EXP-N formula, and universal metal

EOS formula [11] and semi-empirical models such as the Thomas Fermi model

with bonding correction. Experimentally, it can be measured using a diamond

anvil cell and can also be deduced from the experimental shock-hugoniot. The

experimental data can be be fitted to a theoretical analytical form such as the

Murnaghan equation of state [16] or an expression given by Sikka and Godwal [17].

The most accurate methods for calculating cold contribution are those derived from

density-functional based electron band structure methods. Only atomic number

and crystal structure is required as input in these methods.

Theoretical models have been described in the literature for calculating the

ion-thermal contribution. The models given below cover different ranges of ρ and

T:

1. If the material is in the solid state, energy and pressure can be calculated

using the Debye model [19]

EIT =
3kBT

AMp

D

(
θD

T

)
PIT = γs (ρ) ρEIT (1.3)

A is the atomic mass and Mp is the mass or proton. ρ is the density,
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1.1. Equation of State

γs (ρ) is the density-dependent Gruneisen parameter of solids and D(x) is

the Debye integral [18]. This equation applies for temperatures upto the

Debye temperature θD.

2. The Dulong-Petit law applies to solids over the temperature range θD < T <

Tm. Energy is calculated using the following formula [18]

EIT = 3
kBT

AMp

(1.4)

and the pressure is still given by Equation 1.3.

3. The ideal gas law applies at either very high temperatures or very low den-

sities:

EIT =
3

2

kBT

AMp

PIT =
ρkBT

AMp

(1.5)

4. For temperatures above the melting point, a correction must be applied to

the ideal gas expression to account for non-ideal dense fluids. The correction

scales with the ratio Tm(ρ)/T , as explained in [20–22]:

EIT =
3

2

kT

AMp

[
1 + f

(
Tm

T

)]
PIT =

ρkBT

AMp

[
1 + γF (ρ) f

(
Tm

T

)]
(1.6)

where γF is fluid Gruneisen parameter, which is related to γs by:

1 + γF = 3γs (1.7)

5. The density-dependent melting temperature Tm(ρ) can be related to the

Debye temperature θD (ρ) by Lindemann’s melting law [23]

Tm(ρ)/θ2
D (ρ) = α/ρ2/3 (1.8)
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1.2. Application of Density Functional Theory in EOS

In the present work, we have used the Cowan model [10] which is based upon the

above laws. Details are given in chapter 4.

At low temperatures (<3-4 eV), the electron thermal contribution PTE can be

calculated using an expression similar to the Gruneisen equation of state, viz.

PIT = γEρEIT (1.9)

while the energy due to thermal excitation of electrons can be calculated using a

relation derived from the free electron model

EIT =
1

2AMp

βT 2 (1.10)

Here, β is given by:

β = β0

(
V

V0

)1/2

(1.11)

and γE is the electronic Gruneisen parameter. β0 is a material dependent parameter

related to electronic specific heat and can be measured experimentally. β0 =

500 erg g−1 deg−2 for Al [9]. At very high temperatures, the energy and pressure

due electron thermal contribution can be calculated using the Thomas-Fermi model

[24].

1.2 Application of Density Functional Theory in

EOS

Density functional theory (DFT) is a quantum mechanical modelling method used

in physics and chemistry to investigate the electronic structure of many-body sys-

tems, in particular atoms, molecules, and the condensed phases. The name density

36



1.2. Application of Density Functional Theory in EOS

functional theory comes from the use of functionals of the electron density [25–28].

DFT is among the most popular and versatile methods available in condensed-

matter physics, computational physics, and computational chemistry. This theory

is now being increasingly employed for EOS work [29,30].

The following studies, using density functional theory, are necessary for theo-

retically constructing accurate EOS tables.

1.2.1 T = 0 contribution to EOS

The specific internal energy E and pressure P, as functions of specific volume V

at T = 0, can be obtained by electronic structure calculations if the stable crystal

structure is known. From the calculated E(V) data, the pressure P and the bulk

modulus B can be derived using the following equations:

P = −dE

dV
(1.12)

B = −V dP

dV
= V

d2E

dV 2
(1.13)

The accuracy of these DFT calculations is limited by approximations made

in treating electron-electron interactions, for which different models are available.

Hence a direct comparison with experimental data is necessary, at least for some

combinations of ρ-T. The first test is to determine the theoretical value of equilib-

rium volume V0, where E is a minimum and P = 0, and the bulk modulus B for

the known zero-pressure crystal structure. Since V0 and B can be measured with

great accuracy, this is a rigorous test for the theory. In this procedure, energy E is

calculated for several values of volume V, and is fitted to an analytical form, e.g.,

the Murnaghan equation of state [16]. The minimum gives the predicted volume

V0 and total energy, and the second derivative is the bulk modulus B.
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1.2. Application of Density Functional Theory in EOS

1.2.2 Phase transitions under pressure

During computations, different pressures can be produced simply by adjusting the

volume of a unit cell in a crystal. On reducing the volume, the distances between

atoms is decreased and the materials sometimes exhibit a tendency to change the

crystal structure. An in-depth study can sometimes reveal the physical reason for

the change in structure.

In this thesis we have performed such studies for aluminium and tungsten

carbide and have discussed the reasons for structural transformations and stability

on the basis of their free energies, density of states and elastic properties. Our

predictions regarding phase transformations have been compared with published

experimental data to determine their accuracy.

The basic quantities involved in testing the stability of a structure are the

Helmholtz free energy F (V, T ) = E(V, T )−TS(V, T ), where the volume V and the

temperature T are the independent variables, or the Gibbs free energy G(P, T ) =

H(P, T ) − TS(P, T ), where the pressure P and T are the independent variables.

The enthalpy H is given by

H = E + PV (1.14)

At temperature T = 0, the condition for a stable structure at constant pressure P

is that enthalpy be a minimum. One can also determine transition pressures by

calculating E(V) and using the Gibbs construction of a tangent line between the

E(V) curves of two phases, the slope of which is the pressure for the transition

between phases.
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1.2. Application of Density Functional Theory in EOS

1.2.3 Quantum molecular dynamics

In Quantum Molecular Dynamics (QMD), forces on the nuclei are calculated using

electronic structure theory. Atomic movement (dynamics) is performed in the same

way as in classical molecular dynamics. In QMD, the problem of electronic struc-

ture and motion of nuclei are treated together. Although some approximations

are used, these have some theoretical basis instead of being based on empirical

fitting [25]. In addition to evolving atomic coordinates and velocities, QMD also

produces detailed information about the time-evolution of electron density distri-

bution and other electronic properties, which provides insight into the underlying

physics.

Among the foremost challenges in EOS calculations is to understand the be-

haviour of metals in the liquid-vapour region. Also, as mentioned earlier, MHD

modelling of exploding conductors requires accurate EOS data for densities rang-

ing from normal density to a fraction of normal density and for temperatures up

to a few thousand kelvin. This is a regime where first principles QMD can provide

crucial information, complementing experiments that are very difficult at these

temperatures and densities. In this thesis, we have studied thermal properties

of aluminium in the liquid-vapour region using QMD results. We have used this

method only for expanded states because the QMD method is based on pseudopo-

tentials which would be most accurate for densities below normal density and may

not be accurate in compression. In any case, for compressed states, it would be

more accurate to calculate the cold contribution using a full potential based DFT

method and then combine it with thermal models to get the full EOS.
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1.3. Electrical conductivity

1.2.4 Elastic properties

Elastic properties of a solid are important because they are linked thermodynam-

ically to the Debye temperature, melting temperature, Gruneisen parameter, spe-

cific heat and thermal expansion. They also relate to various fundamental solid-

state properties such as equation of state, inter-atomic potentials and phonon

spectra. For the calculation of elastic constants, we have to distort the crystal by

bending and perform a calculation of total energy. The total energy of a distorted

crystal includes energy due to change of volume and elastic energy (due to shape

change) in addition to the cold energy. The elastic energy depends on the elastic

constants.

A cubic crystal has three independent elastic constants. Hence, in order to

determine these by total energy calculation using DFT, three types of distortions of

the crystal are required to set up three equations. Similarly, a hexagonal crystal has

five independent elastic constants; hence five types of distortions would be required

to form five equations in terms of five unknown independent elastic constants. In

this thesis, we have studied elastic properties of tungsten carbide at normal and

high pressures.

1.3 Electrical conductivity

In laser heated and electrically-exploded wire/foil experiments, matter can reach a

regime where density is below normal and temperature goes up to 40,000-50,000 K.

Hydrodynamic and MHD simulations of such systems require electrical conductiv-

ity data along with EOS data. Hence electrical conductivity data as well as proper

understanding of the conducting nature of the material in this regime is necessary.

For this purpose, we have also studied the behaviour of electrical conductivity in
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1.4. Motivation

this regime for aluminium.

In this regime, aluminium does not exist in a crystalline state. Hence atomic

configurations have to be determined using QMD runs keeping system volume

and temperature constant. Starting with an arbitrary initial configuration, the

atomic configuration is evolved using QMD until the pressure and energy start

oscillating about a mean. This can be called the ‘equilibrated portion’ of the

run. From this portion, we can select atomic configurations and use them for the

calculation of electrical conductivity using the Kubo-Greenwood formula [31–33].

This formula is a general expression for the conductivity and includes electron-

electron and electron-ion interactions. It calculates the conductivity directly from

the electronic wavefunction.

1.4 Motivation

High-pressure studies of practical importance can involve elements as well as com-

pounds. As discussed earlier, pulsed-power experiments such as electromagnetically-

accelerated liners and exploding foils make use of Aluminium. Hence there is a

pressing need for studying the EOS and other properties of Al in detail. Some

other high-pressure applications and studies require the use of ceramics. Tungsten

carbide (WC) is used as an anvil in multi-anvil high pressure systems and as seats

in diamond anvil cells [34]. It is also a promising material for applications in in-

dustrial machinery, cutting tools, and other instruments due to its hardness [35].

Hence, in this thesis, we first perform a study of the EOS and electrical conduc-

tivity of Al in detail, and then extend the EOS study to WC.

Due to its importance as discussed above, theoretical and experimental investiga-

tion of EOS of metals, particularly of aluminum, is of great interest for many years.
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1.4. Motivation

On the theoretical side, several thermodynamic theoretical models [8–11, 36–41]

are available in literature. The thermodynamic properties of Al in different den-

sity - temperature regimes including liquid - vapor regimes have been studied using

such theoretical models in [10,42,43]. Electronic structure calculations have been

performed for studying zero temperature isotherms and pressure induced struc-

tural transformations [44–51]. Quantum molecular dynamics simulations have

been performed for the calculation of EOS and electrical conductivity in the rar-

efied region [52–59]. The results of these theoretical EOS are tested by comparing

them with the experimental EOS. In the literature there are several approaches

to determine experimental EOS at high pressures. Absolute isothermal pressure-

volume measurements can be done using diamond anvil cells [60–62]. Shock-wave

compression techniques can be used to obtain EOS data at high pressures and tem-

peratures [63–68]. High power lasers and pulse power discharges are important

tools for EOS experiments [69–74]. Room temperature isotherms can be deduced

from the shock wave EOS data using modest state-of-the-art corrections [75–77].

Thus a large body of experimental and theoretical EOS data are available in the

literature. However, there are three major shortcomings in the foregoing electronic

structure studies. Firstly, none of the studies have calculated lattice parameters

of Al at higher pressures theoretically and secondly, there is a lack of theoretical

understanding for the coexistence of FCC and HCP phases over a wide range of

pressures. Thirdly none of the electronic structures calculations have been per-

formed using FPLAPW method with GGA as exchange and correlation. Hence,

its necessary to perform more accurate DFT calculations using the full-potential

(FP) linearized augmented plane wave (LAPW) method, using GGA. This forms

the subject of the present investigation. Moreover, thermodynamic properties of

Al in the liquid-vapour regime are not well known. These properties are predicted

42



1.5. Roadmap

inaccurately by More’s QEOS model [10]. Attempts have been made to make the

improvements in QEOS [42,43]. However, these attempts are based on empirical

theoretical models. In order to improve QEOS by incorporating ab-initio (AIMD)

results, it is necessary to make a comparison of QEOS and ab-initio calculations.

In this thesis we have first made such comparison to identify the descrepancies of

QEOS. We next improved QEOS by incorporating ab-initio results to remove the

descrepancies.

Similarly, for tungsten carbide, several first principles calculation results have

been reported [78–83]. However, the focus of these theoretical investigations has

been on the zero pressure physical, elastic and electronic properties. Despite being

a promising material for applications in high pressure devices, elastic properties

of tungsten carbide at high pressure have not been reported by any author in

any theoretical investigation. Elastic properties are colsely related to EOS and its

constituent properties such as Debye temperature, melting temperature etc. Hence

it is necessary to perform FPLAPW calculations of EOS, elastic properties and

other constituent properties of WC at high pressure.

1.5 Roadmap

This thesis is organized as follows. In Chapter 2, we have explained the basics

of our computational techniques. Density functional theory is described in detail.

We further discuss the Kohn-Sham equations and techniques, viz., pseudopotential

method and full potential linearized augmented plane wave (FP-LAPW) method,

to find the solutions of the Kohn-Sham equations. We have also described the

exchange correlation potentials. In addition, we also explain the basic technique

used in quantum molecular dynamics.
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In Chapter 3, we have described the study of crystal structure transformation

in aluminium on applying high pressure, using ab-initio method. We have per-

formed a comparative study of the effects of Local Density Approximation (LDA)

and Generalized Gradient Approximation (GGA) on properties like equilibrium

volume, lattice parameter, bulk modulus etc. We have also calculated lattice pa-

rameters at high pressures.

In Chapter 4, we report on ab-initio and quotidian equation of state (QEOS)

results for Al, followed by a comparative study of ab-initio and QEOS methods to

identify the limitations of QEOS. We also present and discuss Quantum Molecular

Dynamics results for the electrical conductivity of aluminium.

In chapter 5, we describe the development and evaluation of an improved QEOS

model. Using the improved QEOS algorithm, we estimate important thermody-

namic properties such as critical temperature, pressure and volume in the liquid-

vapour region.

In chapter 6, we have described results of FP-LAPW calculations for tungsten

carbide, including EOS and structural phase transformations. We have also studied

the stability and ductile/brittle nature of different phases of WC.
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2
Computational Methodology

2.1 Density functional theory

The microscopic description of the physical and chemical properties of matter is

a complex problem. In general, we deal with a collection of interacting atoms,

which may also be affected by an external field. If we have N atoms with atomic

number Z, we must deal with a problem of N+ZN electromagnetically interacting

particles. This amounts to a quantum many-body problem. The Hamiltonian of

such a system can be written as [25,27]:

Ĥ = − h̄
2

2

N∑

I=1

∇2
RI

MI

− h̄2

2

n∑

i=1

∇2
ri

me

− 1

4πϵ0

N∑

I=1

n∑

j=1

e2Zi

|RI − rj|

+
1

8πϵ0

n∑

i=1

n∑

j ̸=i

e2

|ri − rj|
+

1

8πϵ0

N∑

I=1

N∑

J ̸=I

e2ZIZJ

|RI − RJ|

(2.1)

MI and me are the nuclear and electron masses, and RI (I = 1, ......N) and ri

(i = 1 ......n) are their respective positions. The first and second terms are kinetic

energy operators of nuclei and electrons respectively. The last three terms describe

45



2.1. Density functional theory

the Coulomb interaction between electrons and nuclei, between electrons and other

electrons, and between nuclei and other nuclei.

This Hamiltonian can be used in the many-body Schrodinger equation to derive

all properties.

ĤΨi (r1, r2, ..., rn,R1,R2, ...,RN) = EiΨi (r1, r2, ..., rn,R1,R2, ...,RN) (2.2)

This problem is almost impossible to treat in a full quantum-mechanical frame-

work. A complete analytic solution is possible only in a few simple cases and

numerical solutions are also limited to a very small number of particles.

There are several features that contribute to this difficulty [25]. First, this is a

multicomponent many-body system, where each component (each nuclear species

and the electrons) obeys a particular statistics. Second, the complete wave func-

tion cannot be easily factorized because of coulombic correlations. In other words,

the full Schrodinger equation cannot be easily decoupled into a set of independent

equations so that, in general, we have to deal with (3N + 3n) coupled degrees of

freedom. The dynamics is an even more difficult problem, and very few and limited

numerical techniques have been devised to solve it. The usual choice is to resort to

some sensible approximations. In order to find acceptable approximate solutions,

we need to make approximations at three different levels, which are described in

Sections 2.1.1, 2.1.4 and 2.1.5.

2.1.1 Adiabatic approximation

The nuclei are much heavier and therefore much slower than electrons. The

timescale associated with the motion of nuclei is usually much longer than that

associated with electrons. In fact, the small mass of electrons as compared with
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2.1. Density functional theory

that of protons means that electrons have much higher velocities. We can hence

freeze nuclei at fixed positions and assume the electronic wave function to be in

instantaneous equilibrium with them. The nuclei are reduced to a given source of

positive charge, external to the electron cloud. After having applied this approxi-

mation, we are left with a collection of NZ interacting negative particles, moving

in the potential of the nuclei [26].

The adiabatic approximation thus means that the nuclei do not move any more,

their kinetic energy is zero and the first term of Eq. 2.1 disappears. The last term

of this equation reduces to a constant. Three terms describing the kinetic energy

of the electron gas, the potential energy due to electron-electron interaction and

the potential energy of the electrons in the external potential of the nuclei are left

in equation 2.1. These terms can be rewritten as:

Ĥ = Ĥel = T̂ + V̂ee + V̂ext (2.3)

The solution of the Schrø̈dinger equation with Ĥel is the electronic wave function

Ψel and the electronic energy Eel. The total energy Etot is then the sum of Eel and

the constant nuclear repulsion term Enuc.

ĤelΨel = EelΨel (2.4)

Etot = Eel + Enuc where Enuc =
N∑

A=1

N∑

B>A

ZAZB

RAB

(2.5)

Several methods exist to solve equation 2.4, such as the Hartree-Fock (HF)

method and density functional theory (DFT). Both methods use a variational

principle for solving the equation.
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2.1. Density functional theory

2.1.2 Variational Principle

When a system is in the state Ψ, the expectation value of the energy is given by

E [Ψ] =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ where ⟨Ψ|Ĥ|Ψ⟩ =

∫
Ψ∗ĤΨdr (2.6)

The variational principle states that the energy computed from a guessed Ψ

is an upper bound to the true ground-state energy E0. Full minimization of the

functional E [Ψ] with respect to all allowed n-electron wave functions will give the

true ground state Ψ0 and energy E [Ψ0] = E0.

For a system of n electrons and given nuclear potential Vext, the variational

principle defines a procedure to determine the ground-state wave function Ψ0, the

ground-state energy E0 [N, Vext], and other properties of interest. The ground state

energy is then a functional of the number of electrons n and the nuclear potential

Vext:

E0 = E [N, Vext] (2.7)

2.1.3 The theorems of Hohenberg and Kohn

DFT was formally established in 1964 by two theorems due to Hohenberg and

Kohn [84,85].

First Theorem: For any system of interacting particles in an external potential

Vext (r), the potential Vext (r) is determined uniquely, except for a constant, by the

ground state electron density ρ (r).

An immediate consequence is that the ground state expectation value of any ob-
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2.1. Density functional theory

servable Ô is a unique functional of the exact ground state electron density:

⟨Ψ|Ô|Ψ⟩ = O [ρ] (2.8)

For Ô being the Hamiltonian Ĥ, the ground-state total energy functional is of

the form

E [ρ] = ⟨Ψ|T̂ + V̂ |Ψ⟩ + ⟨Ψ|V̂ext|Ψ⟩ = FHK [ρ] +

∫
ρ (r)Vext (r) dr (2.9)

where FHK [ρ] is Hohenberg-Kohn energy functional.

Second Theorem: The second H-K theorem states that FHK [ρ], the functional

that corresponds to the ground state energy of the system, yields the lowest energy

if and only if the input density is the true ground state density. This is nothing

but the variational principle:

E0 ≤ E
[
ρ

′
]

= FHK

[
ρ

′
]

+

∫
ρ

′
(r)Vext (r) dr (2.10)

This means that for any trial density ρ′
(r), which satisfies the necessary bound-

ary conditions such as ρ′
(r) ≥ 0,

∫
ρ

′
(r) dr = n and which is associated with some

external potential Vext (r), the energy obtained from the solving the Schrodinger

equation represents an upper bound to the true ground state energy E0. Energy E0

results if and only if the exact ground state density is inserted in the Schrodinger

equation.
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2.1.4 Kohn-Sham equations

The universal functional FHK [ρ] contains exact kinetic energy T [ρ] and electron-

electron potential energy V [ρ] functionals of the interacting many electron system.

Using Schrodinger equation at this stage would lead to difficult system of coupled

differential equations, because of the electron - electron interaction. To overcome

this difficulty Kohn-Sham suggested to replace the Hamiltonian of interacting elec-

trons with the Hamiltonian of non-interacting electrons plus an exchange correla-

tion term. This is done in the following way. Let us suppose that T0 [ρ] and VH [ρ]

be the kinetic and potential energy functionals of non - interacting many electron

system. Then we can write the following:

FHK = T + V

= T + V + T0 − T0 + VH − VH

= T0 + VH + (T − T0) + (V − VH)

= T0 + VH + VC + VX VX : Exchange term, VC : Correlation term

= T0 + VH + VXC

(2.11)

where VXC is the exchange-correlation energy functional. This functional is

not known exactly, since it contains the difficult exchange and correlation contri-

butions. If we assume for a while that we do know VXC , we can write explicitly

the energy functional:

E [ρ] = T0 [ρ] + VH [ρ] + VXC [ρ] + Vext [ρ] (2.12)
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2.1. Density functional theory

The corresponding Hamiltonian is

ˆHKS = T̂0 + V̂H + V̂XC + V̂ext

= − h̄2

2me

∇2 +
e2

4πϵ0

∫
ρ
(
r

′)

|r − r′|dr
′
+ VXC + Vext

(2.13)

Using this Kohn-Sham Hamiltonian we can find the single particle wave func-

tion by solving the following Kohn-Sham equation for the n lowest energy solutions

ĤKSψi = ϵiψi (2.14)

Using these single particle wave functions we can find the exact ground state

electron density

ρ (r) =
n∑

i=1

ψi (r)
∗ψi (r) (2.15)

The exchange correlation operator and the Hartree operator depend on the

electron density ρ (r). The electron density ρ (r) depends on the ψi which are being

searched. The solutions ψi determine the ĤKS (VXC and VH of Hamiltonian) and

the equation cannot be constructed and solved until its solution is known. This is

a self-consistency problem, which can be solved using an iterative procedure. An

initial guess of the electron density ρ0 is made and with this density the exchange

correlation operator and the Hartree operator are calculated and the Hamiltonian

is constructed. Then the Kohn-Sham equations are solved to obtain single particle

wave function ψi. From these wavefunctions, the electron density ρ1 is calculated.

Then ρ0 is compared with ρ1. If these are different then the same procedure is

repeated until we converge to a stage where input and output electron densities

are almost the same.
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2.1. Density functional theory

2.1.5 Exchange - Correlation Potential

The important achievement of the Kohn-Sham equations is the separating out of

the independent-particle kinetic energy and the long range Hartree terms. The

remaining exchange-correlation functional can be reasonably approximated as a

local or nearly local functional of the density. Even though the exact functional

must be very complex, great progress has been made with remarkably simple ap-

proximations. A few of them are described in this section [25–27].

Local density approximation (LDA):

The local density approximation (LDA) is the basis of all approximate exchange-

correlation functionals. This model starts with the idea of a uniform electron gas.

This is a system in which electrons move on a positive background charge distri-

bution such that the total ensemble is neutral. The central idea of LDA is the

assumption that we can write EXC in the following form

ELDA
XC =

∫
ρ (r) ϵxc (ρ (r)) d3r (2.16)

where, ϵxc (ρ (r)) is the exchange-correlation energy per particle of a homoge-

neous electron gas (HEG) of density ρ (r). This energy per particle is weighted

with the probability ρ (r) that there is an electron at this position. The quantity

ϵxc (ρ (r)) can be further split into exchange and correlation contributions,

ϵxc (ρ (r)) = ϵx (ρ (r)) + ϵc (ρ (r)) (2.17)

The exchange part, ϵx, which represents the exchange energy of an electron in

a uniform electron gas of a particular density, was originally derived by Bloch and
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2.1. Density functional theory

Dirac in the late 1920’s

ϵx = −3

4

(
3

π

)1/3 ∫
ρ (r) d3r (2.18)

No such explicit analytical expression is known for the correlation part, ϵc,

except in the high- and low-density limits corresponding to infinitely-weak and

infinitely-strong correlation. These are calculated in terms of Wigner-Seitz radius,

which is related to the density as

4

3
πrs

3 =
1

ρ
(2.19)

Gellmann and Breuckner [86] proposed the following infinite series for the high-

density limit of the correlation energy

ϵc (rs) = A ln (rs) +B + rs (C ln (rs) +D) ...... (2.20)

where the ln terms are the signature of non-analyticity that causes so much dif-

ficulty. At low density the system can be considered a Wigner crystal with zero

point motion leading to

ϵc (rs) =
a1

rs

+
a2

rs
3/2

+
a3

rs
2
....... (2.21)

Accurate quantum Monte Carlo simulations for the energy of the HEG have

been performed for several intermediate values of the density, in turn providing

accurate values of the correlation energy density. One very important result is

that for materials at typical solid densities (rs ≈ 2 − 6), the correlation is much

smaller than the exchange energy; however at very low densities (large rs) correla-

tion becomes more important and dominates in the regime of the Wigner crystal
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2.1. Density functional theory

(rs >≈ 80)

Generalised gradient approximation (GGA):

The first logical step to go beyond LDA is to combine information about the

density ρ (r), at a particular point r, but to supplement the density with informa-

tion about the gradient of the charge density, ∇ρ (r), in order to account for the

non-homogeneity of the true electron density. Several parameterizations of LDA

and GGA exist in literature [87–91]

2.1.6 Solving Kohn-Sham Equations

After separating out kinetic energy and Hartree terms we end up with the following

Kohn-Sham equation for non-interacting electrons

(
− h̄2

2me

∇2 +
e2

4πϵ0

∫
ρ
(
r

′)

|r − r′|dr
′
+ VXC + Vext

)
ψm (r) = ϵmψm (r) (2.22)

where ψm (r) are single particle wavefunction. Solving means finding the coef-

ficients cmp , required to expand ψm (r), in terms of a given basis set ϕp

ϕm =
P∑

p=1

cmp ϕp (2.23)

In principle, P should be infinite to exactly represent ϕm, but, in practice, we

can not work with infinite coefficients therefore we limit the number of P in such

a way that it represents a function which is close to ϕm.

It can be shown that any eigenfunction ψn
k of a periodic Hamiltonian can be

expressed in terms of a plane wave basis set ϕk
K (r) = ei(k+K).r with infinite number

of coefficients
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2.1. Density functional theory

ψn
k (r) =

∑

K

cn,k
K ei(k+K).r (2.24)

where k is a vector in the first Brillouin zone and K is a reciprocal lattice

vector. n is the number of Brillouin zone where (k + K) is in.If we compare this

with equation 2.23, we can see that m stands for (n,k) and p stands for k + K.

Since we cannot work with an infinite set of coefficients we will have to limit it

to some finite number in such a way that the summation still gives an eigenfunction

which is close to the true eigenfunction. This is done by limiting the plane wave

basis set to all K with K ≤ Kmax. Often, the free electron energy corresponding

to Kmax is specified instead of Kmax itself. This energy is called cut-off energy

Ecut.

Ecut =
h̄2Kmax

2

2me

(2.25)

The number of plane waves is determined by the smallest length scales that are

to be taken into account in real space. As shown in figure 2.1, near the nucleus

the wave functions show steep and oscillatory behaviour. In order to describe

this part of the wave function, a very large number of plane waves will be needed

that would require diagonalization of a very large matrix and would make the

calculations almost impossible. This problem is solved by using different methods

such as pseudopotential and linearized augmented plane wave (LAPW) methods.

Pseudopotential Method

In an atom, the part of the wave function of an electron which reaches close to the

nucleus exhibits the most oscillatory behaviour. However, in a solid, interaction

with neigbouring atoms occurs due to wave functions which are in the outer region
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2.1. Density functional theory

of the atom (away from the nucleus). Hence the inner oscillating regions are

shielded, to a great extent, by the outer region. The pseudopotential method

assumes that there is no need to perform calculations for these inner regions. We

can therefore replace the potential of the nucleus by a pseudopotential in such a

way that the wavefunction in this inner region is very smooth, so that few plane

waves would be needed to describe this part of the wavefunction. Towards the

outer region of the atom, the pseudopotential continuously evolves into the true

potential.
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Figure 2.1: An illustration of the full wavefunction for 3s and 3p orbitals of Al are
plotted against distance, r, from the atomic nucleus. The corresponding pseudo
wavefunction is also plotted. Outside a given radius, the full and pseudo values
are identical.

There is no unique way to construct a pseudopotential for a particular element.

Several choices are possible. A pseudopotential is judged on the basis of its softness

and transferability. It is called soft when few plane waves are needed. If the

number of plane waves is very small, it is called an ultrasoft pseudopotential.

A soft pseudopotential gets tailored for an element in a specific environment. A

pseudopotential which can be used in any environment (solid, surface, cluster, etc),
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2.1. Density functional theory

is called transferable. A good pseudopotential is that which is both ultrasoft and

transferable.

The FP-LAPW Method

In this method, the wavefunction is described by plane waves for regions located

some distance from the nucleus, as done in the pseudopotential method. The

rapidly-varying function close to the nucleus is described by atomic-like functions.

Thus space is divided in two regions, the muffin-tin and the interstitial region, as

shown in figure 2.2. The Muffin-tin region belongs to a sphere of radius s around

each nucleus, while the Interstitial region is the remaining space outside the sphere.

s

Figure 2.2: Division of space into muffin-tin and interstitial regions.

Hence, the augmented plane-wave basis function can be written as follows:

ϕk
K (r) =

1√
V
ei(k+K).r r > s (2.26)
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ϕk
K (r) =

∑

l,m

(
Ak+K

lm ul (r, E0) + Bk+K
lm u̇l (r, E0)

)
Y l

m (r) r < s (2.27)

The coefficients Ak+K
lm and Bk+K

lm are obtained using the condition that the function

and its slope in the muffin tin sphere matches with the plane wave of interstitial

region at the sphere boundary surface. E0 is the linearization energy. The ul (r, E0)

are solutions to the radial part of the Schrodinger equation if the atom is free

(instead of being part of the solid. Y l
m (r) are spherical harmonics.

2.2 Quantum Molecular Dynamics

Molecular dynamics (MD) simulation is a technique by which one generates the

atomic trajectories of a system of N particles by numerical integration of Newton’s

equation of motion, for a specific inter-atomic potential, with certain initial con-

dition (IC) and boundary condition (BC). Newton’s equations of motion for a set

of nuclei positioned at RI are

MIR̈I = FI (RI) (2.28)

The forces on the nuclei have two contributions- direct forces between the nu-

clei and the force due to electrons. In classical molecular dynamics, this has been

done by effective empirical potentials such as Lennard-Jones potential.

In quantum molecular dynamics the forces on the nuclei are directly derived

from the electrons using electronic structure calculations [25]. No empirical pa-

rameters are required in QMD. In density functional theory the total energy of the

system of electrons Eel [ψ] is determined by solving the Kohn-Sham equation. The

total energy of the system of ions and electrons can be given by
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2.2. Quantum Molecular Dynamics

E [ψ,RI ] = Eel [ψ] + EII [RI ] (2.29)

Here, EII [RI ] is the ion-ion interaction. Forces can be calculated by using

Hellmann-Feynman theorem

FI = − ∂E

∂RI

= −⟨ψ| ∂Ĥ
∂RI

|ψ⟩ − ⟨ ∂ψ
∂RI

|Ĥ|ψ⟩ − |ψ|Ĥ| ∂ψ
∂RI

− ∂EII

∂RI

(2.30)

2.2.1 Verlet Algorithm

Eq 2.28 is solved by numerical methods using discrete time steps based upon

discrete equations such as the Verlet algorithm. This algorithm is a combination

of two Taylor expansions, combined as follows. First Taylor series for position from

time t forward to t+ ∆t

x (t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
∆t3 +O(∆t4) (2.31)

Second Taylor series for position from time t backward to time t− ∆t

x (t+ ∆t) = x(t) − dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
∆t3 +O(∆t4) (2.32)

adding these two expansions eliminates all odd-order terms,leaving

x(t+ ∆t) = 2x(t) − x(t− ∆t) +
d2x

dt2
∆t2 +O(∆t4) (2.33)

This is Verlet’s algorithm for positions. It has a truncation error which varies

as (∆t)4 hence it is of third order even though it does not contain third order

59



2.2. Quantum Molecular Dynamics

derivatives. Position 2.33 does not involve any function of the velocities. To

estimate velocities, various schemes are used, one being an estimate for the velocity

at the half-step:

v(t+
1

2
∆t) =

x(t+ ∆t) − x(t)

∆t
(2.34)

other scheme is the first-order central difference estimator

v(t) =
x(t+ ∆t) − x(t− ∆t)

2∆t
(2.35)

Verlet’s algorithm is a two step method because it estimates x(t+∆t) from the

current position x(t) and the previous position x(t− ∆t).

2.2.2 Velocity Verlet Algorithm

In this algorithm following equations are used for position

x (t+ ∆t) = x(t) + v(t)∆t+
1

2
a∆t2 + ......... (2.36)

acceleration a is calculated from the force and is used in velocity calculation

v (t+ ∆t) = v(t) +
1

2
[a(t) + a(t+ ∆t)]∆t (2.37)

Since we can have x (t+ ∆t) and v (t+ ∆t) simultaneously, it is popular.

2.2.3 Ensembles

An ensemble is a collection of all possible systems which have different microscopic

states but have an identical macroscopic or thermodynamic state. There exist

different ensembles with different characteristics
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1. Microcanonical ensemble (NVE) In the microcanonical, or NVE ensem-

ble, the system is isolated from changes in moles (N), volume (V) and energy

(E). It corresponds to an adiabatic process with no heat exchange. A mi-

crocanonical molecular dynamics trajectory may be seen as an exchange of

potential and kinetic energy, with total energy being conserved.

2. Canonical ensemble (NVT): In the canonical ensemble, moles (N), vol-

ume (V) and temperature (T) are conserved. It is also sometimes called

constant temperature molecular dynamics (CTMD). In NVT, the energy of

endothermic and exothermic processes is exchanged with a thermostat.

A variety of thermostat methods is available to add and remove energy from

the boundaries of an MD system in a more or less realistic way, approxi-

mating the canonical ensemble. Popular techniques to control temperature

include velocity rescaling, the Nosé-Hoover thermostat and the Berendsen

thermostat.

3. Isothermal-isobaric (NPT) ensemble : In the isothermal isobaric ensem-

ble, moles (N), pressure (P) and temperature (T) are conserved. In addition

to a thermostat, a barostat is needed. It corresponds most closely to labora-

tory conditions with a flask open to ambient temperature and pressure.

2.2.4 Boundary Conditions

There are two major types of boundary conditions: isolated boundary condition

(IBC) and periodic boundary condition (PBC). IBC is ideally suited for studying

clusters and molecules, while PBC is suited for studying bulk liquids and solids.

There could also be mixed boundary conditions. such as slab or wire configurations

for which the system is assumed to be periodic in some directions but not in the
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others.

In IBC, the N-particle system is surrounded by vacuum; these particles interact

among themselves, but are presumed to be so far away from everything else in the

universe that no interactions with the outside occur except perhaps responding

to some well-defined external forces. In PBC, one explicitly keeps track of the

motion of N particles in the so-called supercell, but the supercell is surrounded by

infinitely replicated, periodic images of itself. Therefore a particle may interact

not only with particles in the same supercell but also with particles in adjacent

image supercells 2.3. It is not necessary to store the coordinates of all images in

a simulation (this would be an infinite number), just those of the particles in the

central box. When a particle leaves the box by crossing a boundary, attention may

be switched to the identical particle just entering from the opposite side.

2.2.5 Thermostat

In molecular dynamics, The instantaneous value of the temperature is related to

the kinetic energy via the particles momenta as follows:

N∑

i=1

|pi|2
2mi

=
kBT

2
(3N −Nc) (2.38)

where Nc is the number of constraints and so 3N − Nc = Ndf is the total

number of degrees of freedom. The average temperature ⟨T ⟩ is identical to the

macroscopic Temperature. The standard MD is performed in the microcanonical

(NVE) ensemble. Unfortunately, the microcanonical ensemble does not correspond

to the conditions under which most experiments are carried out. If one is interested

in the behavior of the system at a specific temperature, a NVT simulation using a

thermostat is required.

62



2.2. Quantum Molecular Dynamics

Figure 2.3: Illustration of periodic boundary condition (PBC). When using pe-
riodic boundary conditions, a particle which exits the system on the right, will
reappear on the left.

An obvious way to alter the temperature of the system is velocity scaling. If

the temperature at time t is T(t) and the velocities are multiplied by a factor λ,

then the associated temperature change can be calculated as

∆T =
1

2

N∑

i=1

2
mi (λvi)

2

NdfkB

− 1

2

N∑

i=1

2
m1v

2
i

NdfkB

(2.39)

∆T =
(
λ2 − 1

)
T (t) (2.40)

λ =
√
T0/T (t) (2.41)
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The simplest way to control the temperature is thus to multiply the velocities at

each time step by the factor λ
√
T0/T (t), where T (t) is the current temperature as

calculated from the kinetic energy and T0 is the desired temperature. One problem

with this approach is, that it does not allow fluctuations in temperature which are

present in the canonical ensemble. To overcome this problem other thermostats

such as Berendsen temperature coupling and Nose-Hoover temperature coupling

thermostats can be used.

In this thesis, we have used the FP-LAPW method for our static calculations,

and the pseudopotential method in the QMD calculations. The FP-LAPW calcu-

lations have been done using the Wien2K package [92] and QMD calculations have

been performed using both ABINIT [93–95] and VASP [96,97] codes.
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3
First principles study of structural phase

transformations in Al

Abstract: In this chapter we report results of ab-initio calculations for the zero-

temperature isotherm for Al in compressed states. Zero-pressure properties, phase

stability and phase coexistence have been studied for Al. Possible high pressure

phases of Al are examined by comparing the total internal energies and enthalpies

for three structures, viz., FCC, BCC and HCP. The energies are calculated us-

ing the density function formalism and the FP-LAPW method. Perdew-Burke-

Ernzerhof 96 parametrization of the Generalized Gradient Approximation (GGA)

is used for exchange and correlation. Zero pressure lattice constants and the bulk

modulus have been calculated for three phases of Al, and show good agreement

with published experimental results. Our results for the minimum energy c/a ra-

tio for hcp match well with the experimental value. Coexistence of FCC & HCP

phases for a wide range of pressures near phase transformation is indicated by

volume-energy curves, in agreement with a recently reported powder X-ray diffrac-

tion experiment. The calculated lattice parameters at high pressures show good
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agreement with reported experimental values. The computed transition pressure

and volume for FCC-HCP phase transition is also in reasonable agreement with

published experimental data. Finally, we have also calculated the FCC-BCC and

BCC-HCP transition pressures and compared our results with reported theoreti-

cal results. These results show that the Perdew-Burke-Ernzerhof GGA, along with

FP-LAPW, gives reasonably accurate results for aluminium over a large range of

pressures.

3.1 Introduction

The behaviour of metals under high pressure at zero kelvin is very important for

the determination of the equation of state. Such a study can be performed using

accurate first principles calculations. Experimental data is also available up to

some extent for the validation of the calculated results [61, 62, 67, 68, 75, 76, 102].

Such calculations can also predict pressure-induced phase transitions. Theoretical

studies of such phase transitions in metals have been of special interest over the

last three decades [44–51].

Of the simple metals, Aluminium is one of the simplest in many ways, being

cubic closed packed in normal conditions and possessing ion cores occupied by

electrons in the s and p orbitals. Al has thus been the subject of numerous exper-

imental and theoretical studies. Ultra-high pressures of a few terapascals (TPa)

have been achieved in experiments involving Al [67, 75]. Experiments have also

been performed to investigate structural phase transitions in Al [61, 62].

The first theoretical study of phase transitions in Al was done by Friedli et.

al [44] using a local pseudo-potential method. They showed by a series of argu-
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ments that the common face centered cubic (FCC) phase of Al appears to remain

the stable phase even for pressures exceeding 3 Mbar (megabar). Moriarty and

McMahan [46] studied phase stability in Al by two method - Generalized Pseudo-

potential Technique (GPT) and the all-electron linear muffin-tin-orbital method

(LMTO). Both methods predicted the same phase sequence for Al, viz., FCC-HCP-

BCC, but the transition pressures were different. GPT predicted the FCC-HCP

phase transition at 360 GPa and the HCP-BCC phase transition at 560 GPa, while

LMTO predicted the transition pressures at 120 and 200 GPa respectively. GPT

and LMTO predictions of the FCC-HCP transition pressure are much higher and

lower, respectively, than the transition pressure recently obtained experimentally

by Akahama [62] using the powder X-ray diffraction method.

Lam and Cohen [47] calculated total energies for three structures, viz., FCC,

BCC and HCP, by using the density functional formalism and the ab initio self

consistent pseudo-potential approach. They also found the same phase sequence.

They predicted transition pressures of 200 and 400 GPa, respectively. However,

since these calculations were based on calculated total energies for only four vol-

umes, viz., 1.0 V0, 0.8 V0, 0.6 V0 and 0.4 V0, their precision is open to question.

Here, V0 is he atomic volume under standard conditions. Boettger and Trickey [48]

calculated the energies and enthalpies of the FCC and BCC structures by using

the linear combination of Gaussian type orbitals (LCGTO) technique. They com-

pared energies and enthalpies of both structures and predicted that the FCC phase

should be more stable for pressures below 3.28±09 Mbar, while the BCC structure

is more stable at higher pressures. In this calculation, they did not consider the

HCP structure of Al.

Greene et al. [61] performed an experiment using a diamond-anvil-cell (DAC) to

show that the FCC structure remains stable up to 219 GPa. In 1994, Boettger and
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Trickey [49,50] performed high-precision, all-electron full potential calculations us-

ing the linear combination of Gaussian-type orbitals-fitting function (LCGTO-FF)

technique, combined with a rough estimate for the impact of zero-point motion

on the transition. They predicted that FCC-HCP-BCC transitions would occur at

205±20 and 565±60 GPa, respectively. They used the local density approximation

(LDA) for exchange and correlation. Their results indicate that the DAC experi-

ment [61] probably came very close to achieving the FCC-HCP phase transition.

Very recently, the structural phase transition of Al was again investigated by a

powder X-ray diffraction experiment [62]. This investigation was done up to 333

GPa and the FCC-HCP phase transition was observed at a reduced volume V/V0

of 0.509, corresponding to a pressure of 217 GPa. This experiment also reported

evidence of the coexistence of FCC and HCP phases over a wide range of pressures.

All the calculations reported so far have been done using either pseudo-potential

methods or by using LDA in fullpotential methods. For a given electronic density

distribution, the LDA replaces the true exchange-correlation at each point in space

by the exchange-correlation energy of a homogeneous electronic gas of the same

density [84]. In principle, the LDA is only valid for an electron gas of slowly varying

density in space [103]. LDA has several limitations in calculating properties of bulk

solids, where it tends to overestimate the magnitude of the total energy and bulk

moduli and underestimate equilibrium lattice constants [87,104,105]. To improve

on these limitations, attempts have been made to focus on generalized gradient

approximations (GGA), in which the exchange-correlation functional incorporates

terms containing density gradients [88–90]. Lattice constants, bulk moduli and

energies of bulk solids are found to improve when GGA is used [103]. Recent

calculations [104] indicate that the GGA functional proposed by Perdew-Burke-
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Ernzerhof [88] is promising.

The only investigation using GGA, so far, was done by G V Sinko and N A Smirnov

[51]. This investigation was done by FP-LMTO method. They have taken zero

point vibration effect also into account to predict the FCC-HCP phase transition.

They report FCC-HCP transition at 170 GPa for rigid lattice and 220 GPa after

including the effect of the zero point vibrations. In the present work we have

also used GGA [88], with a different technique for energy calculation, FP-LAPW

method. There are two major shortcomings in the foregoing studies. Firstly, none

of the studies have calculated lattice parameters at higher pressures theoretically

and secondly, there is a lack of theoretical understanding for the coexistence of

FCC and HCP phases over a wide range of pressures. Hence there is a need for

performing more accurate DFT calculations using the full-potential (FP) linearized

augmented plane wave (LAPW) method, using GGA. This forms the subject of

the present investigation.

3.2 Computational Details

We have used the WIEN2k code [26, 92] to calculate the total energies of the

FCC, BCC and HCP structures of Al. This code performs electronic structure

calculations of solids using the FP-LAPW method. This method is amongst the

most accurate methods for performing first principles calculations for crystals and

is used widely for the studies of structural properties of crystalline materials [104,

106–110]. The exchange correlation potential within LDA is calculated using the

scheme of Perdew-Wang [91], while the scheme of Perdew-Burke-Ernzerhof [88]

is used within GGA.

Details of the LAPW method are given elsewhere [26, 92]; here we focus on the
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aspects relevant to the present calculations. These calculations have been done

using a constant muffin-tin radius Rmt of 1.7 a.u. In the WIEN2k code, it is very

important to select a good basis set and kmesh size for getting accurate results.

We start by taking a low value of RmtKmax = 7.0. For purposes of determining a

suitable k-mesh size, we then calculate the total energy as a function of the size of

the k-mesh., increasing the size by 1000 at each step. We find that 10000 k-points

are sufficient. Having determined a good k-mesh, we now vary RmtKmax from 7

to 12, and find that 9.0 is a good choice. Lmax is taken as 10 throughout the

calculations. We have selected an energy cut-off of 6.0 Ry to separate the core

from the valence states. The convergence criterion for energy was taken as 10−4

Ry.

3.3 Results and discussion

3.3.1 Total energy as a function of volume

Total energies were calculated for FCC, HCP and BCC phases of Al as a function of

volume. In the case of HCP, the calculation has been repeated for different values

of the c/a ratio. The volume was varied by using the volume optimization module

of WIEN2k. It was found that a c/a ratio of 1.614 yields the lowest energy value

for HCP Al. The data obtained by the above calculations were used in obtaining

zero-pressure properties of Al, as well as its crystallographic phase stability at high

pressures. Sample data points from the above calculation, using GGA, are given

in table 3.1.
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Table 3.1: Atomic volume (bohr3) and calculated total energies E (Ry/atom) for
the FCC, HCP and BCC structures of Al

Volume EFCC EHCP EBCC

119.53 0.6437 0.6418 0.6376
115.02 -0.6449 -0.6425 -0.6381
110.51 -0.6452 -0.6426 -0.6379
106.0 -0.6445 -0.6416 -0.6366
101.49 -0.6426 -0.6396 -0.6341
95.85 -0.6379 -0.6347 -0.6288
90.21 -0.6299 -0.6266 -0.6204
78.93 -0.5994 -0.5963 -0.5898
67.66 -0.5368 -0.5350 -0.5291
56.38 -0.4140 -0.4151 -0.4113
50.74 -0.3132 -0.3165 -0.3148
45.10 -0.1690 -0.1757 -0.1771
42.29 -0.0740 -0.0830 -0.0864
39.47 0.0416 0.0299 0.0238
36.65 0.1836 0.1684 0.1590
33.83 0.3595 0.3402 0.3265

3.3.2 Lattice constants and bulk modulus at normal pres-

sure

It is first necessary to determine which option for the exchange-correlation func-

tional is the most suitable for our purposes. This can be done by a comparison of

certain zero-pressure properties, viz., the lattice constants and the bulk modulus.

The ground-state properties of the three phases of Al were obtained using the cal-

culations of the total energy (E) as a function of volume (V) at lower pressures.

A total of nine equally spaced data points were generated over the volume range

from 101.49 to 119.53 bohr3, and the data were fitted to the Murnaghan equation

of state [16].

EV = E0 − B0V0

B′ − 1
+
B0V

B′

[
(V0/V )B

′

B′ − 1
+ 1

]
(3.1)

This fit then yielded the zero-pressure equilibrium lattice constants (a, b, c),
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the bulk modulus (B0) and the pressure derivative of the bulk modulus (B0). These

results are given in table 3.2 for the FCC, HCP and BCC structures of Al. Results

are shown using both LDA and GGA.

Table 3.2: Calculated zero-pressure equilibrium lattice constants, bulk modulus
and pressure derivative of bulk modulus, for the FCC, HCP and BCC phases of
Al

GGA LDA
FCC HCP BCC FCC HCP BCC

a0 7.63 5.43 6.10 7.52 5.35 6.02
B0 78.36 75.02 69.05 84.02 80.13 74.39
B

′ 4.48 4.08 4.33 4.98 4.49 4.07

Table 3.3: The lattice constant a0 (Bohr) and bulk modulus B0 (GPa) for the FCC
structure of Al

Reference Potential a0 B0

Experiment (Ref. [17]) 7.62 77
Present GGA PBE96 7.63 78.3
Present LDA PW92 7.52 84.0

Reported using LDA:
Ref. [12] HL 7.60 79.7
Ref. [33] HL 7.60 80
Ref. [34] W 7.58 71.5
Ref. [10] KSG 7.65 96.8
Ref. [35] PZ 7.43 87.6
Ref. [36] HL 7.54 82.2
Ref. [37] HL 7.54 84
Ref. [17] PZ 7.52 83.9
Ref. [38] PZ 7.48 87

Reported using GGA:
Ref. [35] PW91 8.03 61.1
Ref. [39] PW91 7.62 79.3
Ref. [37] PW91 7.65 74
Ref. [17] PW91 7.74 72.6
Ref. [38] PW 86 7.63 79
Ref. [37] EV 7.91 55
Ref. [38] BP 7.64 79

Table 3.3 compares the zero-pressure static-lattice properties obtained here,
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for the FCC structure of Al, with results from a wide variety of calculations using

various approximations for exchange and correlation. Table 3.3 also gives the

experimental values of lattice constant and bulk modulus taken from [103]. Com-

parison of LDA and GGA results with the experimental values of bulk modulus

and lattice constant reveals that LDA generally underestimates the lattice constant

and overestimates the bulk modulus. PW91 parametrized GGA gives good results

in the calculations of [116], but gives inaccurate results in other calculations show-

ing inconsistency. Similarly, Becke-Perdew functional (BP) was used to compute

the lattice constant, bulk modulus, and cohesive energy for various metals in [113]

and no consistent improvement over the predictions of local density approximation

was found. In our calculation, we have used PBE-GGA, which incorporates sev-

eral improvements over PW91. These include an accurate description of the linear

response of the uniform electron gas, correct behavior under uniform scaling, and

a smoother potential [88].

Table 3.3 shows that this version of GGA gives results that are in better agreement

with experimental values, with only 0.13 % error in the lattice constant and 1.7 %

error in the bulk modulus. Given the higher accuracy yielded by PBE-GGA, all

subsequent calculations have been performed with this GGA.

3.3.3 c/a ratio optimization for HCP structure

We are interested in the FCC-HCP transition and the HCP-BCC transition at

high pressures. For FCC and BCC, the only adjustable parameter is a. For

HCP, however, the ratio c/a must also be specified. Hence it is first necessary to

determine the c/a ratio that minimizes system energy at a given volume V/V0.

To this end, we have calculated the total energy for HCP as a function of the

c/a ratio for several densities. The c/a ratio was varied by ±10%, in steps of 2%,
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Figure 3.1: Energy as a function of c/a ratio for HCP structure at three densities;
curves p, q and r correspond to V/V0 0.71, 0.53 and 0.48, respectively. To allow
plotting in the same figure, curve p has been shifted up by 0.14 Ry and curve r
down by 0.09 Ry.

around the experimental value of 1.6139 [62]. This calculation was repeated for

several values of V/V0 spanning our range of interest. We have found that for the

densities near to normal density the energy is minimum for the c/a ratio, deviated

by 2% of the assumed value. And near the FCC-HCP transition and at higher

densities the energy was minimum for the assumed value of c/a ratio. The results

for three representative values of V/V0 are shown in Fig. 3.1, where curves p q and

r correspond to energy variation with respect to c/a ratio at volume ratios 0.71,

0.53 and 0.48, respectively. Curve p shows minimum at the c/a ratio deviated by

2% from c/a 1.6139, while q and r show minimum at c/a 1.6139.

All subsequent calculations have used this value of the c/a ratio.
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3.3.4 Lattice constants at higher pressure

In order to estimate the accuracy of our calculations at high pressures, we have

also calculated the lattice constants at higher pressures and compared the results

with those obtained in X-ray powder diffraction experiments [62] recently. Fig. 3.2

shows the lattice constants for FCC and HCP structures as a function of pressure.

Results of our calculations show a good agreement with experimental values [62].

The percentage errors are up to .5%, in the calculated results for aFCC and aHCP ,

and up to .4% in the calculated results for cHCP . Errors do not show any definite

trend with the pressure.

Figure 3.2: The pressure dependence of the lattice constants aHCP , aFCC and cHCP .
The solid line shows our calculations while points show experimental values from
[62].

3.3.5 Phase transformations under high pressure

We have compared the total energies and enthalpies of three structures of Al to

determine the phase stability at higher pressures. Now, there are two commonly

used methods for estimating phase stability. The first method compares the E
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values, at a given specific volume, for different phases, the phase with the lowest

energy being regarded as the most stable. The second method compares the Gibbs

free energy, G, as a function of pressure. Now, the Gibbs free energy becomes

identical with the enthalpy at zero temperature. Hence we need only compare

E+PV as a function of pressure, the pressure being computed numerically from the

E(V ) data. The results, using the two techniques mentioned above, are discussed

in Sections 3.3.5 and 3.3.5.

Volume vs. total energy

The conventional method for obtaining the quantities such as energy and pressure

at any volume, from the computed E(V) data, is to use a best-fit function, such as

the Murnaghan equation of state [16]. However, we have found that this does not

work well at high compressions. We have found it better to fit E(V) data over the

range V/V0 = 0.3-0.7, by best-fit cubic splines [118]. Forty data points were fitted

over this range. The pressure was then calculated from the negative of the gradient

of the energy-volume curve. The differences (∆) between the energies of FCC &

HCP, FCC & BCC, and HCP & BCC were calculated and plotted as a function

of the volume to determine the transition volume. Note that this difference was

calculated using the best-fit splines.

Fig. 3.3 shows variations of ∆FCC−HCP, ∆FCC−BCC and ∆HCP−BCC with V/V0 as

curves p, q and r respectively. Curve p crosses ∆ = 0 at V/V0 = 0.53, indicating an

FCC-HCP phase transition at this point. Experimentally, however, this transition

has been found to lie at 0.509 by Akahama et. al [62]. The reason for this

difference could be that ∆FCC−HCP is negligibly small (of the order of 10−4 Ry over

the range V/V0 = 0.51−0.53). It becomes significant ∼ 0.9 mRy at V/V0 = 0.5089

and becomes 1 mRy when V/V0 reaches 0.50. Such a small difference between the
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Figure 3.3: The difference in energy between two structures of Al, as a function of
normalized volume: p = EHCP − EHCP, q = EFCC − EBCC, r = EHCP − EBCC.

energies of FCC and HCP structures around the phase transition point could be

the reason why this phase transition could not be detected in the DAC experiment

[61]. Note that we have ignored the effect of zero point vibrations [51], this may

also be a reason for the difference in our results and the experimental results.

Let us now consider the HCP to BCC phase transition. The difference in energies

between these two structures, shown as curve r (∆HCP−BCC) crosses ∆ = 0 at

V/V0 = 0.426 but the difference becomes significant (∼ 1.0 mRy) at V/V0 =

0.408. Hence we expect that this transition should be experimentally observed

only around V/V0 = 0.41.

In the same way, curve q shows that the FCC-BCC transition is expected to occur

over the V/V0 range 0.47-0.46.

Pressure vs. enthalpy

For determining the most stable structure at finite pressure we have also compared

the Gibbs free energies of the three structure; the structure with the lowest Gibbs
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free energy is the most stable. Fig. 3.4 shows differences between the Gibbs free

energies for different phases as functions of pressure (P). The pressure was calcu-

lated from the negative of the gradient of the energy-volume curve. Also shown

are the results from Ref. [51].

The line p, representing the difference between the free energies of FCC and HCP

structures, crosses zero at 178 GPa, showing FCC-HCP transition occurring here.

However, the reported experimental value is 217 ± 10 GPa. We have not included

the zero point vibrations effect in our calculations. This could be a reason for the

difference between the calculated transition pressure and the reported experimen-

tal transition pressure [51]. Also, our calculations have been done for zero Kelvin

while the experiment [62] was performed at 297 K, However thermal contribution

of pressure is very small at room temperature [50] and therefore it will not make

any considerable difference in predicting the phase stability.

Figure 3.4: The difference in Gibbs free energy between two structures of Al, as
a function of normalized volume: p = GHCP − GFCC, q = GBCC − EFCC, r =
EBCC − EHCP. p′ and q′ represent the corresponding values from [51].
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Akahama has also reported the coexistence of HCP and FCC phases, the tran-

sition starting at a pressure of 217 ± 10 GPa, with the two phases coexisting up

to a pressure of 265 GPa. This can be understood in the light of our calculations,

which indicate only small differences between the energies of FCC and HCP struc-

tures over this pressure range (∼ 2.0 mRy at 265 GPa).

Let us now consider the HCP to BCC phase transition. The difference in free

energies between these two structures, shown as curve r, crosses zero at 376 GPa,

Experimental data for this transition is not available in literature, hence our results

can only be compared with other computations. Our value matches reasonably well

with the 400 GPa value reported in [47]. However, it does not match with the

calculations of [46], where the GPT and LMTO calculations predict 560 and 200

GPa, respectively, nor the value of 565 ± 60 GPa predicted by [49, 50] using a

LCGTO-FF calculation.

Again as in FCC-HCP case, the free energy difference is very small over a large

range of pressure, ∼ 1.0 mRy only up to the pressure of 425 GPa. So we expect

that experimentally HCP-BCC transition would be observed over the pressure

range 376-425 GPa and both phases would coexist in this pressure range.

The line q in Fig. 3.4 indicates FCC-BCC transition at 275 GPa, this is in

reasonable agreement with the value of 300 GPa calculated by [47] and 340 ± 15

GPa from Refs. [49,50].

3.3.6 FCC-HCP phase co-existence in terms of density of

states

Structural phase transition up to 333 GPa in Al has been investigated by a powder

X-ray diffraction experiment [62]. FCC - HCP phase transition was observed at
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a reduced volume V/V0 of 0.509. In this work, the FCC-HCP transition pressure

was reported to be 217 ± 10 GPa. This experiment also reported evidence of

the coexistence of FCC and HCP phases over a wide range of pressures near the

transition. Before this experiment, Greene et al. [61] had performed an experiment

using a diamond-anvil-cell to show that the FCC structure remains stable up to

219 GPa and they did not find any structural transformation up to this pressure.

This could be because of the coexistence of the fcc and hcp structures over a wide

range of the pressures near transition, as reported in Ref. [62]. In this section, we

attempt to understand phase coexistence of fcc and hcp phases in Al in terms of

the density of states (DOS).

Figure 3.5: Density of states (states/eV/atom) for aluminum at normal volume V0.
The solid and dotted lines represent FCC and HCP. The Fermi level is set at 0.0
eV.

Fig. 3.5 shows the DOS of fcc and hcp phases at the normal volume V0. We see

that the total DOS for the FCC and HCP phases at the Fermi energy is 0.37 and

0.42 states/eV/atom Hence the difference in DOS at this volume is 0.05 eV −1 per

atom, indicating that the fcc phase is more stable; similar arguments are given for
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Figure 3.6: Density of states (states/eV/atom) for aluminum at volume 0.53V0.
The solid and dotted lines represent FCC and HCP. The Fermi level is set at 0.0
eV.

the stability of FCC structure in gold at normal pressure and of hcp structure at

high pressures for gold [98]. Fig. 3.6 shows the same plots at a relative volume of

0.53. Here, the difference in DOS comes down to 0.01 eV −1 per atom, indicating

that the phases are closer in terms of stability. Furthermore, at normal volume

V0, the FCC DOS shows a dip near the Fermi level, while the HCP DOS does not

exhibit this feature. This further reinforces the claim that the FCC phase is more

stable at V0 [98]. At 0.53V0, however, both structures exhibit this dip, as shown

in Fig. 3.6, indicating that the two phases are likely to coexist at this volume.

3.4 Conclusion

We have performed first-principles calculations with the Wien2k code, using the

FP-LAPW method with the PBE96 GGA. We have obtained zero pressure lattice

constants and bulk modulus that match well with experimental values. Our results

for the minimum energy c/a ratio for HCP also match well with the experimental
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value. From our volume vs. energy curve, it is clear that FCC and HCP phases

coexist over a wide range of pressures. This is also in agreement with a recent

powder X-ray diffraction experiment. The calculated lattice parameters at high

pressures also match with reported experimental values. The computed transition

pressure and volume for FCC-HCP phase transition is also in reasonable agreement

with experiment. Finally, our calculations indicate that FCC-BCC and HCP-BCC

phase transitions should occur over pressure ranges of 386-437 and 279-301 GPa,

respectively. The density of states (DOS) of FCC and HCP structures of Al has

been calculated for normal and high pressures. It has been found that the DOS

of both structures, near the Fermi level, is similar over a range of compressed

volumes close to the FCC-HCP transition volume (V/V0 ∼ 0.53). This similarity

is the reason for the reported coexistence of FCC-HCP phases over a wide range

of pressures near the FCC-HCP phase transition.
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4
Ab-initio calculations of EOS and

conductivity of Al in expanded states, and

comparison with Quotidian EOS results

Abstract: In the last chapter, we determined the zero temperature isotherm of

Al in compressed states using the FP-LAPW method. In this chapter, we perform

ab-initio molecular dynamics (AIMD) simulations to calculate the EOS of Al in

the rarefied region, i.e., for densities below normal. These results are compared

with those from the Quotidian equation of state (QEOS) model, which is used for

generating EOS tables over large ranges of density and temperature.

The EOS data obtained by QEOS has been used to calculate Us − Up and

P − V hugoniots. The calculated hugoniots show good agreement with published

experimental results. The cold curve generated by the QEOS model has been com-

pared with FP-LAPW results for compressed states and good agreement has been

found. The QEOS data has also been compared with AIMD simulation results for
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expanded states – agreement is not good. These comparisons confirm that QEOS

results are accurate for compressed states and less accurate for expanded states of

Al for T≃10,000-20000 K. AIMD-based calculations of the electrical conductivity

of Al in rarefied states are also presented.

4.1 Introduction

In Chapter 1, we introduced the three-term EOS:

ETOT (η, T ) = EC (η) + EIT (η, T ) + EET (η, T ) (4.1)

PTOT (η, T ) = PC (η) + PIT (η, T ) + PET (η, T ) η = ρ/ρ0 (4.2)

In the Quotidian EOS (QEOS) algorithm, the Thomas-Fermi (TF) model is

used for computing both contributions of electrons, viz., the cold as well as elec-

tron thermal contributions [10]. The Cowan model is used for the ion thermal

contribution [10, 42]. The TF model does not consider bound states of electrons,

nor does it include an accurate quantum-mechanical model of solids. Hence it

predicts a few megabar pressure for a cold solid where the actual pressure should

be zero.

In order to obtain an approximately correct EOS in this region, an empirical

bonding correction must be applied. This correction is applied in such a way that

pressure and bulk modulus are made to match experimental values under normal

conditions. At the same time, it is ensured that the correction term has little

effect at densities far from normal. Hence, in the QEOS model, the total energy
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and pressure are given by the following equations [10,42]:

ETOT (η, T ) = EB (η) + EIT (η, T ) + EE (η, T ) (4.3)

PTOT (η, T ) = PB (η) + PIT (η, T ) + PE (η, T ) (4.4)

where EB is the bonding correction term and EE is the electron contribution to

EOS which is calculated by using the Thomas-Fermi model.

4.2 Computational Details

We have used More’s methodology for performing QEOS calculations to gener-

ate EOS data of Al. For comparing QEOS data at T=0 and compressed states,

we have performed first principles calculations using the FP-LAPW method [92].

For comparison with QEOS data in expanded states (densities below normal), we

have performed Ab-Initio Molecular Dynamics (AIMD) simulations. The details

of QEOS, FP-LAPW and AIMD calculations are given below.

4.2.1 QEOS code using More’s methodology

We have developed a quotidian equation of state (QEOS) code, based on the

methodology of More, for generating EOS tables, specific heat and sound speed

over a wide range of temperatures and densities, including compressed as well as

expanded states. This yields the pressure, energy, entropy and free energy, tak-

ing into account density-dependent melting temperature, Debye temperature and

Gruneisen parameter for any material. In this model cold contribution is calcu-

lated by adding bonding correction to the TF contribution at zero temperature.

In fact TF model does not assume shell structure of electrons and assumes them
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as a gas of free electrons. This assumption is correct at very high temperature but

gives a few megabar pressure at standard conditions which is not correct since the

pressure should be zero at standard condition due to chemical bonding. Hence to

get a correct zero temperature isotherm a bonding correction term is added in the

TF contribution which is of the form [120]

Eb = E0

[
1 − exp b

{
1 −

(
ρ0

ρ

)1/3
}]

(4.5)

The bonding correction to the pressure will be

pb = ρ2(∂Eb/∂ρ) (4.6)

hence, total pressure cold pressure will be pTOT = pTF + pb. Bulk modulud can

be calculated by

B = ρ

(
∂pTOT

∂ρ

)

ρ0

(4.7)

In order to determone E0 and b, the requirements that the bulk modulus should

be equal to the experimental bulk modulus and the total pressure should be zero

at normal density are used.

The ion-thermal term is calculated using the Cowan model as described in [10].

Following Cowan model [10], energy and pressure of the ions in fluid phase can

be expressed as

EIT (ρ, T ) =
3kT

2AMP

(
1 + w

1
3

)
(4.8)

PIT (ρ, T ) =
ρkT

AMP

(
1 + γFw

1
3

)
(4.9)

w = Tm (ρ) /T , Tm is the melting temperature, γF is the fluid Grüneisen parameter.

These equations reduce to ideal gas equation in the limit (w → 0), and reduce to
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solid phase forms at w = 1 if

γF = 3γs − 1 (4.10)

where γs is the solid phase Grüneisen parameter, this parameter can be calculated

using the formulas given in [42].

4.2.2 Full Potential Linearized Plane Wave (FPLAPW) Cal-

culations

FP-LAPW results for the zero-temperature isotherm of Al have been taken from

chapter 1. The cold-curve calculated for FCC structure has been used.

4.2.3 Ab-Initio Molecular Dynamics (AIMD) Simulations

We used the ABINIT code [93,94] for performing AIMD simulations, in isokinetic

ensemble. The simulations are first run until equilibration is achieved, i.e., until

the variations in pressure stabilize to an oscillatory pattern, without any long-term

trend. Following equilibration, the pressure and energy are calculated by averaging

over the next 500-1000 time steps of 1 femtosecond (fs) each. The exchange corre-

lation interactions of electrons are treated in generalized gradient approximation

(GGA), using PBE parametrization [88]. Ion-electron interactions are described

by the pseudo-potential generated by Troullier and Martins method [99]. All cal-

culations have been done at the Γ point, i.e., with number of k-points taken as

one.

The atomic configurations, generated by the AIMD simulation in the calcula-

tion of EOS, are used for calculating frequency-dependent electrical conductivity

σ (ω) of Al. This is done using the Kubo-Greenwood formula as implemented

in the ABINIT code. Quantities like Fermi Dirac occupation for each band and
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each k point, weight of each k point, electronic eigenstates and eigenvalues for each

electronic state, and the derivative of the Hamiltonian with respect to the wave vec-

tor of the three directions, are required as input for the Kubo-Greenwood formula.

These quantities are also calculated by the ABINIT code. For selected statistically-

independent atomic configurations of 32 atoms, a self-consistent ground state calcu-

lation is performed with the ABINIT code to get the detailed electronic structure.

For conductivity calculations, we found that four k points are necessary for better

convergence. We ensured that there were always some unoccupied levels for better

convergence of all runs.

4.3 Results and Discussion

4.3.1 QEOS-Results

In figure 4.1, we have shown the TF as well as QEOS pressures as functions of den-

sity at T=200 K. The TF pressure is approximately 1 megabar at normal density.

The binding correction term makes pressure zero at normal density. The binding

correction has little effect at higher densities, hence QEOS and TF models give

similar representation of electron contribution at very high density. TF model is

accurate in high density limit. In order to get zero pressure at standard conditions,

the cold energy should have a minimum at normal density. However, as shown in

figure 4.2, the TF cold energy does not exhibit a minimum at normal conditions.

The binding correction removes this discrepancy.

The EOS generated using the QEOS model is combined with the three hugo-

niot equations viz., ρ0Us = ρ1 (Us − Up), P1 − P0 = ρ0UsUp and E1 − E0 =

1
2
(P1 + P0) (V0 − V1) to get the P − V and Us − Up hugoniots [9]. In these equa-

tions, ρ, E, P and V have the same meaning as in Equations 4.1 and 4.2 and Us
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Figure 4.1: TF and QEOS cold pressures as functions of density at T=200 K.

and Up are shock and particle velocities respectively. The suffixes 1 and 0 represent

the quantities in the shocked and unshocked regions. The calculated Us − Up and

P − V hugoniots are plotted in figures 4.3 and 4.4, respectively. For comparison,

experimental shock compression data [30,41,102] are also shown. Good agreement

with the experimental hugoniot can be seen.

4.3.2 Comparison of QEOS results with ab-initio calcula-

tions

We next compare the cold curve generated by QEOS by first-principles calculations

using the FP-LAPW method within the framework of density functional theory.

For generating the cold curve using FP-LAPW method we have assumed Al to

exist in the FCC structure at all pressures. In figure 4.5, we can see that there is

a very good agreement between first principles results and QEOS results. QEOS

calculates the cold curve by adding a semi-empirical bonding correction term to

the zero-temperature cold curve obtained by the TF model. Although it is a crude
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Figure 4.2: TF and QEOS cold energies as functions of density.

way of calculating the cold curve, it gives results as accurate as FPLAPW results,

in which no experimental data is used as input and calculations are done purely

using a quantum mechanical method.

These theoretical results match well with reported experimental data obtained

by powder x-ray diffraction experiments [62]. The QEOS cold curve also agrees

well with the cold-curve deduced from shock wave experiments [75,77].

In figure 4.6, we have shown a comparison of QEOS results with AIMD simula-

tion results for temperature = 10,000 K and expanded states. AIMD simulations

are known to yield an accurate EOS in this regime, especially for (T < 5eV ) [53,56].

It can be seen that QEOS results do not show good agreement with the results of

AIMD simulations. Hence, QEOS results are less accurate for expanded metals at

low temperatures.
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Figure 4.3: Us − Up hugoniot. Solid line represents QEOS results and points
represent experimental results [41, 102].

4.3.3 Electrical conductivity results

The frequency dependent electrical conductivity or optical conductivity σ (ω) is

calculated using the Kubo Greenwood (KG) formula for an ionic configuration at a

single time step within a molecular dynamics trajectory. Because of the numerical

limitation of the Kubo-Greenwood formula,σ (ω) may artificially fall to zero for

very small values of ω. Therefore it is difficult to calculate DC conductivity by

using the KG formula, It is more convenient to estimate σ (0) by using a given

functional form for σ (ω). We fitted the computed conductivities σ (ω) to a Drude

function

σ (ω) =
σDC

1 + ω2τ 2
(4.11)

σDC is the DC conductivity and τ is the relaxation time. The conductivities

computed by the KG formula for an ionic configuration at a single time step (time

step number 400) within an AIMD trajectory of temperature 12000 K and density

2.35 g/cc, and its fitting by Drude formula are shown in figure 4.7. The fitted
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Figure 4.4: P-ρ hugoniot. Solid line represents QEOS results and points represent
experimental results [30, 102]

values of σDC and τ are 21.1 × 103 (Ω − cm)−1 and 4.8 × 10−16s respectively for

this example.

The DC electrical conductivity σ for one density and temperature point is

calculated by averaging over DC conductivities from 10 randomly selected ionic

configurations of the AIMD trajectory for that density and temperature. We have

shown our results for density = 2.35 g/cc and temperatures ranging from 2,000K

to 12,000K in figure 4.8. We have also shown theoretical results of Recoules et.

al. from [2] for comparison. Reasonably good agreement can be seen.

We can notice that the electrical conductivity as a function of temperature

shows a break (change of slope) near 6000 K. The cause for this can be explained

using Drude theory. Following the Drude theory, the electrical conductivity can

be expressed as

σ =
ne2τ

m
(4.12)

Here, n is the number density of electrons near Fermi surface, e is the electronic
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Figure 4.5: Cold curve generated by QEOS and FP-LAPW calculations and their
comparison with experimental results [62,75,77]

charge, τ is the relaxation time and m is the mass of electron. Initially conductivity

decreases very fast with temperature (up to 6000 K) as shown in figure 4.8. This

can be understood in a simple manner. The ions vibrate about their equilibrium

positions which leads to the thermal vibration of the crystal lattice. The amplitude

of the vibration increases with the temperature. The electrons are scattered by

collisions with the lattice ions. Consequently with the increase in the amplitude of

vibration, the collision frequency increases. This leads to a decrease in the relax-

ation time τ and hence to a decrease in the conductivity. At very high temperature

(above 6000 K), though the relaxation time τ is still decreasing with the temper-

ature leading to decrease in the conductivity, but at the same time the number

density of electrons near Fermi surface also starts increasing causing increase in

the conductivity. These both phenomenas viz. the decrease in the relaxation time

τ and the increase in the number density of electrons near Fermi surface jointly

lead to less decrease in the electrical conductivity above the temperature 6000 K

as compared to below this temperature. Hence, we see a break in the slope near
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Figure 4.6: Isotherm (10000 K) generated by QEOS and AIMD simulations

6000 K.

4.4 Conclusion

We have presented equation of state results of Al using a Quotidian equation of

state model and from first principles calculations. QEOS calculations have been

performed using More’s methodology. Full potential linearized augmented plane

wave (FPLAPW) calculations have been performed within the framework of den-

sity functional theory for accurate calculations of cold curve. Ab-initio molecular

dynamics simulations have been performed for calculating EOS for expanded met-

als. FPLAPW and AIMD simulation results have been compared with the QEOS

results. The cold curves generated by using QEOS and FPLAPW methods for

compressed states show good agreement, implying that QEOS results are accurate

for compressed Al. However, in QEOS cold - curve (zero temperature isotherm)

is calculated by applying semi-empirical bonding correction in zero temperature

TF model, it requires experimental information such as normal density and bulk
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Figure 4.7: Optical conductivity of liquid aluminium at T = 12000 K and density
= 2.35 g/cc. Points are showing the computed conductivities by Kubo-Greenwood
formula and line shows the Drude fit.

modulus as input whereas FPLAPW is based on quantum mechanical method and

does not require any experimental input.

QEOS results do not show good agreement with the AIMD simulations for ex-

panded states, indicating that QEOS method gives less accurate results for the

expanded states and low temperatures.
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Figure 4.8: DC conductivity as a function of temperature for liquid aluminium at
density 2.35 g/cc. Filled squares represent results from [53], circles show results
from the present work.
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5
Improvements in QEOS model and

determination of Al EOS for Compressed

and Expanded States

Abstract: In the last chapter we found that QEOS results agree well with ab-

initio results for compressed states of Al, but do not agree with AIMD results for

rarefied states. In this chapter we have developed an improved version of QEOS

by incorporating ab-initio results to improve the accuracy of QEOS, for both rar-

efied and compressed states. In this model, instead of using the TF model for

calculating the cold as well as electron thermal contributions, it is only used for

the electron-thermal term by taking the difference of TF values at T=0 and fi-

nite temperatures. The Ion-thermal term is calculated using a modified version of

the Cowan model where, in rarefied states, the adjustable parameters are tuned

using quantum molecular dynamics (QMD) results. In compressed states, P − ρ

and Us − Up Hugoniots derived using our results show good agreement with the
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reported experimental results. In expanded states, the estimated critical tempera-

ture shows good agreement with the reported results and pressure versus internal

energy along isochores show reasonably good agreement with published experimen-

tal results. This is a major improvement over the standard QEOS model, which

yields unphysical critical temperatures.

5.1 Introduction

In the last chapter, we had observed that the QEOS model does not work well

in rarefied states, i.e., for densities below normal. In this chapter, we describe

the development of an improved version of the QEOS model that remove these

limitations.

In this model, the cold-curve is calculated by different methods in three different

density regions. It is calculated by a function fitted to FP-LPAW results near nor-

mal conditions (atmospheric pressure to 1000 GPa), since FP-LAPW is the most

accurate theoretical method for calculating the cold curve in this region, Smooth

extrapolation to merge with Thomas-Fermi-Dirac results is performed above 1000

GPa [11]. Below normal density we use a soft sphere function to extrapolate the

cold-curve [11,42].

For calculating the electron thermal contribution, we use the equations [9]:

Eet = Etf (T, ρ) − Etf (0, ρ)Pet = Ptf (T, ρ) − Ptf (0, ρ)

For the calculation of the thermal ionic contribution, we have used a modified

Cowan model [42]. We have tuned the adjustable parameters of this model such

that the EOS matches reasonably with the quantum molecular dynamics (QMD)

results in expanded states. This is because QMD is regarded as the most accurate
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theoretical method for generating EOS data in low temperature expanded state of

metals [53–55,57–59].

The remainder of the chapter is organized as follows. The computational details

are described in section 5.2 and results for the cold-curve and its comparison with

experimental data are described in section 5.3.1. Comparisons of derived P−ρ and

Us−Up Hugoniots are done with reported experimental Hugoniots in section 5.3.2.

Isotherms and isochores of expanded states are given in section 5.3.3. Results for

stable, unstable and metastable phases and critical point are discussed in section

5.3.4. Concluding remarks are presented in section 5.4.

5.2 Computational Details

5.2.1 Cold-curve calculations

The ab-initio cold contribution is taken from FPLAPW calculations. The density

vs pressure data generated in Chapter 3 for FCC Al is fitted to a function :

PC (ρ, T = 0) =
6∑

i=1

aiη
( i

3
+1) (5.1)

EC (ρ, T = 0) =

∫ ρ

ρ0

PC (ρ, T = 0) (5.2)

Here, η = ρ/ρ0, ρ0 is density of the solid at standard conditions and ρ > ρ0.

This function is extrapolated for ρ < ρ0 using a soft-sphere function [11,42].

EC (ρ, T = 0) = Aρf1 −Bρf2 + EB (5.3)

PC (ρ, T = 0) = −∂EC

∂ρ
(5.4)

where f1 = 2.0, f2 = 0.5 and the binding energy of Al EB = 1.2×107 J/kg [42].
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Constants A and B are obtained by making energy and pressure equal to the energy

and pressure calculated by equations 5.1 and 5.2 respectively at normal density

(ρ0). Above 1000 GPa, we extrapolate the cold-curve using the Thomas-Fermi-

Dirac (TFD) analytic formula [11]. This high-density formula is based upon the

TFD statistical model of atom which is believed to be accurate at pressures above

103 GPa [11].

5.2.2 Ion-Thermal contributions

The ion thermal contribution of EOS describes the pressure and energy associated

with ion or nuclear motion. For calculating ion EOS, we have used the modified

Cowan model [42]. This yields the pressure, energy, entropy and free energy, tak-

ing into account density-dependent melting temperature, Debye temperature and

Grüneisen parameter for any material. Details of the Cowan model are described

in [10] and modifications are given in [42]. The advantage of using this model

is that it provides adjustable parameters for calculating Grüneisen parameter in

expanded states. These parameters can be tuned in such a way that the calculated

three-term EOS matches with the QMD simulation results. Important relations

for obtaining ion thermal energy and pressure are described in the chapter 4.

5.2.3 Electron-Thermal contributions

For calculating electron equation of state, we use Thomas-Fermi statistical model

of atom. In Thomas-Fermi statistical theory, the electrons are treated as a charged

fluid surrounding the nucleus; properties of this electron gas are obtained from fi-

nite temperature Fermi Dirac statistics. Equations for calculating thermodynamic

properties using this model are described in [9, 10].
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5.3 Results and Discussion

5.3.1 Cold-curve

The cold curve calculated by FP-LAPW method using WIEN-2K code is shown

in fig. 5.1. Now, it is known that pressure-induced FCC-HCP and HCP-BCC

structural transformations occur in Al at high pressures. However, differences in

the energies of FCC and HCP structures and HCP and BCC structures are so

small that these structures coexist over a wide range of pressures, as discussed

in Chapter 3. Hence, for purposes of EOS calculations in this chapter, we have

assumed Al to exist in an FCC structure at all pressures. This is also supported by

recent results from Pickard [100] that find that Al remains in closed packed struc-

tures (FCC, HCP or BCC) up to 3.2 Terapascals (TPa) and no other structural

transformation takes place upto this pressure.

Figure 5.1: Comparison of theoretically calculated Cold-curve (zero-temperature
isotherm) of Al with experimental 300 K isotherm.

Figure 5.1 compares our computed values with experimentally-measured T=300

K data obtained by powder x-ray diffraction experiments [62], and with the cold
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curve deduced from shock experiments [77] and nellis et. al. [75]. There is good

agreement with the Akahama and Chijioke’s data, but our values tend to be higher

than those deduced from Nellis’ results.

Table 5.1: The coefficients of eq. 5.1, in Megabar
a1 a2 a3 a4 a5 a6

27.92 −104.8 151.7 −108.8 39.78 −5.815

Calculated ρ vs. P data is fitted to eq. 5.1 and density dependent energy can

be calculated by using eq. 5.2. Fitted values of parameters ai, i = 1, 6 are given

in table 5.1. The cold-curve so generated is extrapolated to expanded states using

eq. 5.3 and eq. 5.4.

In fig. 5.2 we have shown a density vs energy plot for compression as well as

rarefaction. It can be seen that energy approaches to cohesive energy for ρ tending

to zero and exhibits minimum for ρ = ρ0.

Figure 5.2: Energy as a function of density; for ρ/ρ0 > 1, it is calculated using
FPLAPW method and for ρ/ρ0 < 1, it is calculated using a soft sphere function.
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5.3.2 Comparison of derived P − ρ and Us − Up Hugoniots

with experimental Hugoniots for compressed Al

To validate the EOS data generated in this work we have derived P−ρ and Us−Up

Hugoniots and compared them with experimental Hugoniots. The generated EOS

is combined with the three Hugoniot equations viz., ρ0Us = ρ1 (Us − Up), P1−P0 =

ρ0UsUp and E1 − E0 = 1
2
(P1 + P0) (V0 − V1) to derive the P − ρ and Us − Up

Hugoniots [9]. In these equations, ρ, E, and P are density, energy and pressure

respectively. V = 1/ρ, Us and Up are shock and particle velocities respectively.

The suffixes 1 and 0 represent the quantities in the shocked and the un-shocked

regions. The calculated Us−Up and P−ρ Hugoniots are plotted in fig. 5.3 and fig.

5.4 respectively. For comparison, experimental shock compression data [30,41,102]

are also shown. Good agreement with the experimental Hugoniot can be seen up

to large compression.

It may be noted that at intermediate pressures (500 - 10000 GPa), the TF model

does not give the correct Hugoniot, since pressure ionization leads to a slightly

oscillatory behaviour of the hugoniot [30, 101]. At these densities, the Hugoniot

can be corrected by making use of an average atom model for the electron-thermal

term, which is based on the quantum mechanical structure of the atom [30].

5.3.3 Expanded States

In expanded states, the three term EOS model is represented by following equation

PTOT (ρ, T ) = PC +
ρkT

AMP

(
1 + [3 (b1 + b2ρ/ρ0) − 1]w

1
3

)
+ PET (5.5)

Here the first term is the cold term PC which is calculated using Eq. 5.4 [11, 42],

the second term is ion-thermal term PIT [10, 42] (see the appendix) and third is
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Figure 5.3: Us−Up Hugoniot. Solid line represents our results and points represent
experimental results [41, 102]

the electron thermal term PET which is calculated using the TF model [9,10,42].

w = Tm (ρ) /T , where Tm is the melting temperature, b1 + b2ρ/ρ0 = γs is the

Grüneisen parameter.

In the present work, the adjustable parameters b1 and b2 have been tuned in

such a way that the function PTOT (ρ, T ) matches reasonably well with our QMD

results. The values of b1 and b2, along with the calculated value of Grüneisen

parameter for ρ/ρ0 = 1 and its experimental value, are given in Table 5.2. These

values do not depend on temperature.

Table 5.2: Values of b1, b2 and Grüneisen parameter
b1 b2 Cal. γs (ρ/ρ0 = 1) Exp. γs (ρ/ρ0 = 1) [9, 10]

0.333 2.197 2.53 2.17

The value of calculated Grüneisen parameter agrees reasonably well with its

experimental value at ambient conditions. Note that this expression for Grüneisen

parameter is only used for expanded states, hence it should not be expected to

yield the limiting value of 2/3 at high pressures.
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Figure 5.4: P-ρ Hugoniot. Solid line represents our results and points represent
experimental results [30, 102]

Isotherms obtained from our improved QEOS model are plotted along with

QMD results for the temperatures 10000 K and 15000 K in fig. 5.5. In fig. 5.6 we

have shown pressure versus internal energy along five isochores V/V0 = 1.93, 2.7, 4.0, 5.4, 9.0.

For comparison, we have also shown experimental results taken from [58]. Our

results show reasonably good agreement with experimental results.

5.3.4 Estimation of Critical temperature

Critical temperature of Al in the liquid-vapour regime is predicted inaccurately

by More’s QEOS model [10]. Young et. al and Ray et. al. have improved

QEOS by making empirical corrections in this regime. Since we have improved

EOS by incorporating ab-initio results, we would like to check its accuracy by

estimating critical temperature using improved EOS. For this purpose, we have

shown isotherms for temperatures 7458 K, 7923 K, 8387 K and 8851 K for expanded

states of Al in fig. 5.7. We can see that isotherms of temperatures below 8387

K show an oscillatory behaviour (wavelike structure). For example, the 7458 K
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Figure 5.5: Isotherms for temperatures 10000 K and 15000 K. Points represent
QMD results and line represents three term EOS fitted to QMD results.

isotherm shows oscillatory behaviour from point b to point f . In this range of the

7458 K isotherm, the oscillating part can be divided in four parts b− c, c−d, d− e

and e−f . In the first part b−c of the oscillating isotherm, the pressure first starts

increasing from a value of 2.24 kbar at b and reaches a maximum value of 2.89 kbar

at c. In the second part c−d, pressure decreases from this maximum value to 2.24

kbar at point d. In the third part d− e of the oscillating isotherm, pressure starts

decreasing below 2.24 kbar and reaches a minimum value 1.7 kbar at e, and in the

fourth part e− f , pressure starts increasing from the minimum value of third part

to the minimum value of the first part i.e. 2.24 kbar. Thus it can be readily seen

that, for a certain pressure 2.24 kbar, there are three values of density marked as

b, d and f . In the density range below starting point of the first part (from point

a to b) and in the density range above the maximum density of the fourth part

(from point f to g) the expanded state of Al is stable because in these density

ranges ∂P/∂ρ > 0. The state in the second and third parts of the oscillating

isotherm is unstable because in these states ∂P/∂ρ < 0. First and fourth part
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Figure 5.6: Pressure versus internal energy along five isochores
(V/V0 = 1.93, 2.7, 4.0, 5.4, 9.0). Symbols represent experimental data taken
from [58] and lines represent our calculation.

of the oscillatory isotherm are metastable states. These represent super-saturated

vapour and super heated liquid respectively.

We notice that on 7458 K isotherm, for a pressure 2.24 kbar, there are three val-

ues of density marked as b, d and f . If the temperature is decreased the isotherms

would move down, loops of the wavelike structure of the isotherms would become

larger and larger and the points corresponding to b, d and f move farther from

one another.

Table 5.3: Critical density, temperature and pressure obtained in this work and
reported results

Reference ρc (g/cc) Tc (K) Pc (kbar)
This work 0.385 8387 4.45
Ref [122] 0.28 8860 4.68
Ref [123] 0.43 8944 4.726
Ref [124] 0.785 8472 5.094
Ref [125] 0.66 7917 4.67

As the temperature is raised, the isotherms move up, the loops become smaller
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Figure 5.7: Isotherms for temperatures 7459 K, 7923 K 8387 K and 8859 K calcu-
lated by three term EOS model which is fitted to QMD simulation results. Straight
lines b− f and b1 − f1 are the Maxwell constructions.

and the points corresponding to b, d and f get closer to one another. At a certain

temperature, the wave-like structure disappears and these three points become

identical. The point where these three points merge is shown by the point x. This

point is critical point.

The temperature of this particular isotherm at which critical point lies is the

critical temperature, and the density and pressure corresponding to this point

x, are the critical density and critical pressure. ∂P/∂ρ and ∂2P/∂ρ2 are equal

to zero at this point. In table 5.3, we have given results of estimated critical

density, temperature and pressure. For comparison, we have also given results

reported in the literature. We can see that our results agree reasonably well with

these results. The metallic - nonmetallic transition cannot be obtained in our

calculations because we have used the TF model for the electron-thermal term.

This transition can be created by implementing quantum mechanical average atom

model for electron thermal term [30].
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5.4 Conclusion

We have developed an improved version of the QEOS model based on first principle

results in both compressed and rarefied states of Al. In compressed states, we used

a function for the cold curve which is fitted to our calculated FP-LAPW data.

In expanded states, we have used a soft-sphere function. The cold curve shows

good agreement with the experimental results. The ion-thermal contribution is

determined using a density-dependent Gruneisen parameter that is determined by

fitting to QMD results. The electron-thermal contribution is determined from the

Thomas-Fermi model.

Us − Up and P − ρ Hugoniots obtained using this EOS data show reasonably

good agreement with the reported experimental Hugoniots. In expanded states,

pressure versus internal energy shows reasonably good agreement with the reported

experimental results and the estimated critical temperature also shows good agree-

ment with published results. This is a major improvement over the standard QEOS

model, which yields unphysical critical temperatures. Better models for electron

thermal contribution, such as average atom model, will be used in future to create

metal - nonmetal transition in expanded state and to correct Hugoniot at very

high density.
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6
FP-LAPW Calculation of Equation of

State and Elastic Properties of Tungsten

Carbide at High Pressures

Abstract: Tungsten carbide is used in high pressure devices. Hence knowledge

of its equation of state and its constituent properties such as elastic properties,

Gurneisen parameter, Debye temperature and melting temperature and their pres-

sure dependence is of great practical importance. In this chapter, we present and

discuss first principles results of equation of state, elastic properties and electronic

properties of α and β phases of tungsten carbide at high pressure and compare

our results with reported experimental results. Enthalpies of α and β phases of

WC have been compared up to 350 GPa to investigate the possibility of structural

transformation. The density-dependent Grüneisen parameter has been deduced

from P − V isotherm using well known Slater’s formula. High pressure elastic

constants of α and β phases of WC have been calculated by applying various
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distortions to the original crystal structure. The elastic properties such as bulk,

shear and Young’s moduli have been derived from the calculated elastic constants.

Debye temperature and melting temperature have been deduced from the elastic

properties. These calculations have been performed using the FP-LAPW method

within the framework of density functional theory.

6.1 Introduction

High-pressure studies of practical importance can involve elements as well as com-

pounds. As discussed earlier, pulsed-power experiments such as electromagentically-

accelerated liners and exploding foils make use of Aluminium. That was the mo-

tivation for studying the EOS and other properties of Al in great detail. Some

other high-pressure applications and studies require the use of ceramics. Tungsten

carbide (WC) is used as an anvil in multi-anvil high pressure systems and as seats

in diamond anvil cells [34]. It is also a promising material for applications in in-

dustrial machinery, cutting tools, and other instruments due to its hardness [35].

Hence, in this chapter, we extend the study of EOS and other properties to WC.

The room temperature crystalline form of tungsten carbide is a hexagonal struc-

ture which is known as α WC. This is a unique behaviour of WC among transition

metal carbides as other carbides are stable in rock-salt structure. In addition to

this α phase, WC can also exist in FCC structure at high temperatures, this phase

is known as β WC. At room temperature β WC can be synthesized by a rapid

quenching process [126] and by a plasma synthesis technique [127].

Experimental investigation of EOS, structural properties and elastic properties of

WC at high pressures has been a subject of interest for more than two decades.

Day and Ruoff [128] investigated pressure dependence of these properties of WC
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with 3% Co binder up to 0.2 GPa, Gerlich and Kennedy [129] extended this in-

vestigation up to 1 GPa. Recently, Amulele et al. [35] and Litasov et. al. [34]

have performed synchrotron x-ray diffraction experiments on polycrystalline pow-

der samples loaded in a diamond anvil cell. Amulele et al. [35] have also performed

ultrasonic experiments on hot-pressed ceramics compressed in a multianvil high-

pressure apparatus. In these experiments [34,35], pressure versus volume relations

and elastic properties of WC have been determined.

On the theoretical side, several first principles calculation results have been re-

ported [78–83]. However, the focus of these theoretical investigations has been

on the zero pressure physical, elastic and electronic properties. Despite being a

promising material for applications in high pressure devices, elastic properties of

tungsten carbide at high pressure have not been reported by any author in any

theoretical investigation. In this paper we compare the enthalpies of α and β WC

upto 350 GPa, to investigate the possibility of structural transformation in WC at

high pressure and discuss the findings of this investigation in terms of density of

states. We also present elastic properties of α and β phases of WC up to a pressure

of 120 GPa and discuss the stability, ductility/brittility and anisotropic behaviour

of these phases. To the best of our knowledge, high pressure elastic properties of

α and β WC are not reported in any previous theoretical investigation.

The remainder of the paper is organized as follows. The computational details are

described in section 6.2. Important results are described in the section 6.3. In this

section we have presented and discussed results related to zero temperature equa-

tion of state such as molecular volume, bulk modulus, lattice parameters, P − V

isotherm, investigation of structural transformation and Grüneisen coefficient etc.

We have also presented and discussed results related to elastic properties at high

pressures such as elastic constants, bulk, shear and Young’s moduli, Poisson ratio,
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transverse and shear velocities, Debye temperature and melting temperature in

this section. Conclusive remarks are given in section 6.4.

6.2 Computational Details

6.2.1 Total energy calculation using FPLAPW method

FPLAPW calculations within the framework of density functional theory [84,85]

have been performed using WIEN-2k code [26, 92]. The exchange correlation

potential within GGA is calculated using the scheme of Perdew - Burke- Ernzerhof

[88]. These calculations have been done using constant muffin-tin radius Rmt of

1.9 a.u. for tungsten and 1.68 a.u. for carbon. In the FPLAPW method, it is

very important to select a good basis set and k mesh size for getting accurate

results. We start by taking a low value of RmtKmax ( = 6.0). For the purpose

of determining a suitable k -mesh size, we then calculate the total energy as a

function of the size of the k -mesh increasing the size by 1000 at each step. We

find that 8,000 k-points are sufficient. Having determined a good k-mesh, we now

vary RmtKmax from 7 to 12, and find that 9 is a good choice. We have selected

an energy cut-off of −6.0 Ry to separate the core from the valence states. The

convergence criteria for energy was taken as 10−5 Ry.

6.2.2 Independent elastic constants of α and β WC.

From Hooke’s law of stress - strain relationship, It has been shown that total

number of elastic constants are 81 and elasticity can be represented by a fourth rank

tensor. A further general argument reduces their number to 36. Using Voigt’s two-

suffix notation, the elasticity tensor of 36 independent constants can be represented
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by following matrix




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




. (6.1)

The number of elastic constants can be reduced still further by exploiting the

symmetry of the particular crystal at hand. For example a cubic crystal has only

three and a hexagonal crystal has only five independent elastic constants.

First principles calculations based on DFT provide reliable results for these elastic

constants of crystalline materials. For calculating elastic constants, the ground

state crystal structure is distorted by applying symmetry dependent strains with

varying amplitudes. The total energy of the strained crystal Etot can be expressed

as :

Etot = Etot
0 + P (V − V0) + ϕelast (6.2)

where Etot
0 and V0 are the total energy and the volume of an unstrained crystal.

V is the volume of the distorted crystal. According to Hooke’s law, elastic energy

can be expressed as :

ϕelast =
V

2
.Cijϵiϵj (6.3)

Hence elastic constants can be derived from the second-order derivatives of

Etot:
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Cij =
1

V0

∂2Etot

∂ϵi∂ϵj
(6.4)

a cubic crystal, for example β phase of WC, has only three independent elastic

constants, C11, C12 and C44. As a result a set of three equations is needed to

determine these constants. This means that three types of strains must be applied

to the initial crystal. First type involves calculating the bulk modulus by varying

the volume, second type involves performing volume conservative tetragonal strains

and third type strain involves rhombohedral distortions. A hexagonal crystal such

as α phase of WC, has 7 non zero elastic constants C11, C12, C13, C33, C44, C55 and

C66. Out of these 7 elastic constants only 5 are independent since C55 = C44

and C66 = 1
2
(C11 − C12). Hence we need five different strains to determine these

elastic constants [131]. First distortion involves changing the size of the basal

plane and keeping z axis constant. The symmetry of the resultant lattice remains

hexagonal. Second distortion involves increasing the x axis and decreasing the y

axis with an equal amount and keeping z axis constant. In this case, the symmetry

of the strained lattice is monoclinic. In third distortion z axis is stretched keeping

other axes unchanged. In this distortion, hexagonal symmetry remains in the

strained crystal. The fourth distortion involves changing the hexagonal crystal in

to triclinic crystal. The fifth distortion involves volume changes and calculation of

bulk modulus.

The calculated elastic constants can be used to determine anisotropy constants of

α and β WC. There are three types of anisotropy constants for α WC, one for

compression wave and two for shear waves. These anisotropy constants can be

calculated using following relations [132]

∆P =
C33

C11

, ∆S1 =
C11 + C33 − 2C13

4C44

, ∆S2 =
C44

C66

(6.5)
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The anisotropy constant of β WC can be calculated using following relation

A =
2C44

C11 − C12

(6.6)

6.2.3 Bulk and Shear Moduli

Once the elastic constants are calculated, the bulk modulus and shear modulus

can be calculated following the Voigt [133] and Reuss [134] approximations. The

approximation relations for cubic and hexagonal crystals are as under:

HCP structure (α) phase

For hexagonal crystal the relations for bulk modulus and shear modulus are

BV =
2

9

(
C11 + C12 + 2C13 +

1

2
C33

)
(6.7)

BR =
(C11 + C12)C33 − 2C12

2

C11 + C12 + 2C33 − 4C13

(6.8)

GV =
1

30
(C11 + C12 + 2C33 − 4C13 + 12C55 + 12C66) (6.9)

GR =
5/2

[
(C11 + C12)C33 − 2C13

2
]
C55C66

3BVC55C66 +
[
(C11 + C12)C33 − 2C13

2
]
(C55 + C66)

(6.10)

In these equations, suffixes V and R represent Voigt [133] and Reuss [134] approx-

imations respectively.

FCC structure (β) phase

For the cubic symmetry the relations for bulk modulus and shear modulus are
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B = BV = BR = (C11 + 2C12) /3 (6.11)

GV = (C11 − C12 + 3C44) /5 (6.12)

GR =
5C44 (C11 − C12)

3 (C11 − C12) + 4C44

(6.13)

6.3 Results and Discussion

We first describe the results related to equation of state such as equilibrium molecu-

lar volume (or density), pressure dependent lattice parameters and P−V isotherm.

We present results of these calculations in sections 6.3.1, 6.3.2 and 6.3.3 respec-

tively. From the calculated equation of state we determine pressure dependent

enthalpies of α and β WC and compare them to test the stability of these phases

in section 6.3.4. We also discuss the outcomes of this comparison in terms of

density of states in the section 6.3.5. We finally deduce Grüneisen coefficient from

our P − V isotherm and predict its density dependent nature in section 6.3.7.

6.3.1 Molecular volume of α and β WC at ambient pressure

The calculated total energies of α and β phases of WC for different volumes of the

unit cell are fitted to the following Birch - Murnaghan equation of state:

E = E0 +
9

16
V0B0

[(
η2 − 1

)3
B′ +

(
η2 − 1

)2(
6 − 4η2

)]
, η =

V

V0

(6.14)

From the least square fitting of equation 6.14, we obtain the equilibrium volume

(V0), bulk modulus (B0) and pressure derivative of bulk modulus (B′) for both
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phase of WC. The calculated values of these properties are listed in table 6.1.

Available experimental values [35,126,127] of these properties for both structures

are also given in table 6.1 for the comparison. The equilibrium molecular volume of

α−WC shows good agreement with the XRD result, our calculations overestimate

the molecular volume by only 1.2 %. Calculated bulk modulus is close to the

experimental bulk modulus obtained from ultrasonic measurement of [35] and

XRD results of [34]. Differences between calculated bulk modulus and its mean

values obtained in the XRD and the ultrasonic experiments are only 1.8 % and 1.48

% respectively. Calculated equilibrium volume of β− WC also shows reasonably

good agreement with reported measured volume.

Table 6.1: Equilibrium volume, bulk modulus and pressure derivative of bulk mod-
ulus of tungsten carbide

α−WC β−WC
Method V (a.u.) B (GPa) BP V (a.u.) B (GPa) BP

Exp. [35] (XRD) 20.806 ± 0.02 411.8 ± 12.1 5.45 ± 0.73
Exp. [35] (ULTRA.) 382.9 ± 0.0 2.61 ± 0.07

Exp. [34] (XRD) 20.75 ± 0.002 384 ± 4 4.65 ± 0.32
Exp. [126] 18.91
Exp. [127] 19.41
Our Cal. 21.058 389.7 4.04 21.001 371.9 4.20

6.3.2 Lattice parameters of α and β WC at high pressures.

Total energies of α and β phases of tungsten carbide were calculated by varying the

volume of the unit cell. β phase is FCC therefore only parameter which changes

with volume is âĂŸaâĂŹ but α phase is HCP, therefore c and a both parameters

change with the volume. Hence for α WC, c/a ratio at each volume must also be

calculated accurately. This is done by determining the c/a ratio that minimizes

system energy at a given volume V . To this end, we have calculated the total
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energy of HCP structure of WC by varying the c/a ratio for all the volumes. The

c/a ratio was varied from -6% to 20 % in steps of 2 %, around c/a = 0.98. In

figure 6.1, we have plotted variation of lattice parameters of α− (a and c) and β

(a) phases of WC with the variation of of pressure. We have found that c/a ratio

increases on increasing the pressure. We have also plotted experimental a and c

of α− WC for the comparison. We can see that our results show a reasonably

good agreement with experimental results. The maximum deviation in a and c

are 1.06 % and 1.03 % respectively. This deviation is reasonable because of two

reasons, firstly the sample of WC used in the experiment may not be 100% perfect

and secondly small deviation of GGA results from the experiment is common. The

good agreement between our results and experimental results validate the accuracy

and reliability of our results at high pressure.

Figure 6.1: Variation of lattice parameters of α and β WC with pressure.
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6.3.3 Zero temperature P − V isotherm of α WC.

The relation of pressure and volume at zero kelvin is known as zero tempera-

ture isotherm or cold compression or cold - curve. From fitted Birch Murnaghan

equation of state E(V ), pressure can be easily calculated by using the relation

P = −dE/dV which is based on the first law of thermodynamics. To validate

our calculations at high pressure using this relation, we have generated zero tem-

perature P − V isotherm for α WC. We have shown our P − V isotherm along

with the results of XRD and ultrasonic measurements of Amulele et. al [35] and

XRD measurement of Litasov et. al. [34] in the figure 6.2. Our results show

small deviation from the results of [35]. Our isotherm lies below XRD results

and above ultrasonic measurement results. However, our results are in excellent

agreement with the XRD results of [34]. This further validates our calculations

at high pressure.

Figure 6.2: Zero temperature isotherm of α WC
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6.3.4 Investigation of structural transformation

The structural transformations are investigated by comparing the Gibbs free energy

versus pressure curves of different structures. The crossing of these curves of two

structures provide information of the transition pressure. In our case temperature

is zero kelvin therefore the Gibbs free energy is calculated by the thermodynamic

relation G = E + PV which is enthalpy H. The enthalpy variations of α and

β−WC with the variation of pressure from zero to 350 GPa are shown in the

figure 6.3. We can see that the enthalpy curve of α WC is lower than that

of β−WC up to the maximum pressure. Hence, we can conclude that tungsten

carbide is thermodynamically stable in the α− WC phase and no α− β structural

transformation takes place up to the pressure of 350 GPa. This can be understood

with the help of nature of density of state (DOS) curve near Fermi level. We have

discussed this in section 6.3.5.

Figure 6.3: Variation of enthalpies of α and β WC with pressure.
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6.3.5 Interpretation of stability of α phase in terms of den-

sity of states

In figure 6.4, we have shown calculated density of states of α (HCP) and β (FCC)

WC at pressures 0, 100 and 200 GPa. Our zero pressure density of state curve of α

and β WC are similar to previous calculation results [81] confirming the reliability

of our results. The bonding nature of WC in terms of density of states has been

discussed in this paper [81] hence we skip that and focus the discussion on the

stability of α phase in comparison to β phase at high pressure. We can see that

in figure 6.4, α phase has 0.32, 0.24 and 0.21 states/eV/molecule at Fermi level

in the DOS curves of 0, 100 and 200 GPa respectively, whereas β WC has 1.14,

0.91 and 0.79 states/eV/molecule. Hence at all pressures DOS of α phase at Fermi

level is low as compared to the DOS of β phase. This provides stability to the α

phase. We can also see in figure 6.4, that at all pressures DOS of β WC at Fermi

level lies in a local maxima whereas DOS at Fermi level of α phase lies in a local

minima providing more stability to WC in this phase. Similar nature of DOS at

Fermi level has been observed for the FCC phase at ambient condition and for

HCP phase at high pressure for Au and Al in [98] and chapter 3 of this thesis

respectively. The most interesting thing is that the width of the minima of DOS of

α phase at Fermi level increases on increasing pressure, this gives more mechanical

stability to this phase at high pressure. Hence from the DOS curves, it is clear

that α phase is more stable at high pressure and its stability should increase on

increasing the pressure.
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Figure 6.4: Density of states curves of α (HCP) and β (FCC) WC at zero, 100 and
200 GPa

6.3.6 Qualitative discussion on the electrical conductivity of

WC

From the calculated density of state of both phases of tungsten carbide, we can

attempt to predict its conductive(resistive) behaviour with pressure. For this pur-

pose we use Bloch resistivity formula [142].

ρ =
3πh̄Q6n2

8e2ϵFD(ϵF )2NkBθDk4
F

(
T

θD

)5

I5

(
θD

T

)
(6.15)

where ϵF is the Fermi energy, D(ϵF ) is the density of states (DOS) per unit volume

at Fermi energy, θD is the Debye temperature, n is the electron density, Q is a

phonon wavevector, kF is the Fermi vector and I5 is a Debye integral which can

be written as

I5(x) =

∫ x

0

z5ez

(ez − 1)2
dz (6.16)

If we express ϵF and kF in terms of n and D(ϵF ), we can rewrite Bloch’s formula
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as

ρ =
π2hbarQ6n2

4e2D(ϵF )kBθD

(
T

θD

)5

I5

(
θD

T

)
(6.17)

From equation 6.17, we can see that at a given temperature, the resistivity of a

metal correlates inversely with the electronic density of state (DOS) at the Fermi

level. From figure 6.4, we can see that the DOS of FCC structure of tungsten

carbide at Fermi level is higher than the that of HCP structure at all pressures.

Hence we can predict that resistivity of the HCP structure should be larger than

that of FCC structure or the electrical conductivity of HCP structure is smaller

than electrical conductivity of the FCC structure. Similarly we can also see in

figure 6.4, that for both structures the DOS at the Fermi level decreases when

pressure is increased. It means that on applying pressure, electrical conductivity

of both the structures, decreases.

6.3.7 Grüneisen Coefficient of α and β WC

Grüneisen coefficient Γ is an important parameter of ion - thermal equation of

state [9, 41]. Grüneisen coefficient is dependent on the density (or on the applied

pressure) and is independent of the temperature. It is defined as Γ = ∂lnν̄/∂lnV .

ν̄ is the average frequency of the spectrum of the elastic vibrations of the lattice

and V is the specific volume. Grüneisen coefficient can be related to the function of

cold compression by making an assumption that the average frequency ν̄ is close to

the maximum frequency. The magnitude of the maximum frequency νmaxis equal

to the ratio of speed of propagation of elastic compression waves c0 to the minimum

wavelength λmin. Hence, we can write ν̄ ∼ νmax = c0/λmin. λmin is of the order of

inter-atomic distance (λmin ∼ r0). The speed of sound is c0 = (−V 2dpc/dV )
1/2 and

r0 = V 1/3. Hence ν̄ ∼ V 2/3(−dpc/dV )1/2. Logarithmic derivative of this expression
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gives,

Γ =
∂lnν̄

∂lnV
= −2

3
− V

2

d2pc/dV
2

dpc/dV
(6.18)

Equation 6.18 is known as Slater’s formula [9]. Using equation 6.18, we have calcu-

lated Grüneisen coefficient as a function of cold compression, variation of Grüneisen

coefficient with volume is shown in the figure 6.5. Litasov et. al. [34] have re-

ported Grüneisen coefficient at ambient condition, calculated by fitting measured

isotherms using three different fitting schemes. The results of their poorly resolved

[34] three fittings are 1.44, 1.56 and 1.64 respectively. Our calculated value at

zero pressure is Γ0(cal.) = 1.84 which is reasonably close to the maximum value of

the reported measured value [34]. We tried to fit our calculated Γ as a function

Figure 6.5: Variation of Grüneisen parameter of α and β phases of WC with the
variation of the volume.

of compression (V0/V ) to provide an analytical formula for calculating Grüneisen

coefficient for compressed WC. The best - fit which gives similar results as our first

principles calculation, can be expressed as Γ = Γ0 (V/V0)
4.3.

ELASTIC PROPERTIES
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Elastic properties of a material provide information about hardness, brittle/ductile

character, anisotropic behaviour and bonding nature of the material. Now we de-

scribe the results of the elastic properties and discuss these characters of tungsten

carbide. We present the results of pressure dependent elastic constants and discuss

anisotropic behaviour of α and β WC in section 6.3.7. In section 6.3.8, we first

present the results of elastic moduli and Poisson’s ratio and then discuss the brit-

tle/ductile character of tungsten carbide on the basis of these results. Finally we

deduce pressure dependent longitudinal and shear velocities, Debye temperature

and melting temperature from the calculated elastic properties and present the

results in section 6.3.9.

Elastic constants of α and β WC

Table 6.2: The calculated elastic constants of α and β WC; P and Cij are in GPa.
α−WC β−WC

P C11 C12 C13 C33 C55 C11 C12 C44

Experimental results [130]
0.0 720.0 254.0 267.0 972.0 328.0
Our results
0.0 719.2 215.7 165.8 960.4 315.3 894.3 115.7 124.5
12.1 797.9 250.3 196.2 1067.8 355.2 988.1 138.2 135.2
31.8 920.9 315.8 268.6 1233.2 417.6 1149.5 168.3 149.2
55.9 1026.5 402.3 326.0 1395.0 467.5 1362.1 207.1 165.6
85.5 1145.2 514.1 409.6 1583.2 532.0 1613.4 255.5 182.3
122.1 1295.9 656.9 510.0 1804.9 596.3 1909.2 311.0 202.3

In table 6.2 we have displayed calculated pressure dependent elastic constants

Cij of α and β WC phases. We have also given the experimental values [130]

of elastic constants of α− WC measured at ambient conditions in table 6.2 for

the comparison. These experimental values were determined using high frequency

pulse-echo measurements. Elastic constants C11,C12,C33 and C55 are in reasonably

good agreement with the experimental results for α− WC, only C13 shows some
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discrepancy. It is easy to observe from table 6.2 that elastic constants Cij of both

phases increase almost linearly when the pressure is increased.

The Born mechanical stability criteria of hexagonal phase are C11 > 0, C11 −

C12 > 0, C55 > 0 and (C11 + C12)C33 − 2C12
2 > 0. The calculated independent

elastic constants C11, C12, C13, C33 and C55 of α WC satisfy these stability criteria

at all pressures implying that α phase is a mechanically stable phase for tungsten

carbide in the pressure range considered here. Similarly, the mechanical stability

criteria of cubic phase are: C11 −C12 > 0, C11 +2C12 > 0 and C44 > 0. We can see

in table 6.2 that all independent elastic constants of β WC are positive and satisfy

these criteria implying the mechanical stability of β phase. Hence, α and β both

phases are mechanically stable for tungsten carbide.

Now we discuss the anisotropic behaviour of α and β WC. There are three types of

anisotropy constants for a hexagonal crystal ∆P , S1 and S2. ∆P corresponds to

the anisotropy with respect to compression wave and S1 and S2 correspond to the

anisotropy with respect to two shear waves. First shear wave is the wave polarized

perpendicular to the basal plane and second is the wave polarized in the basal

plane [132]. Anisotropic behaviour of cubic phase is described by the anisotropy

constant A. The calculated anisotropy constants of α and β WC are given in the

table 6.3. We observe from table 6.3 that for β WC, the anisotropy constant A at

zero pressure is much smaller than unity implying highly anisotropic behaviour of

β WC. It further decreases on increasing the pressure. We can also observe from

table 6.3 that for α−WC, the anisotropy constants ∆P and ∆S2 are larger than

unity whereas ∆S1 is close to unity at zero pressure. This implies that α−WC

is anisotropic for the compression wave and the shear wave polarized in the basal

plane whereas it is isotropic for the shear wave polarized perpendicular to the basal

plane at zero pressure. ∆P and ∆S2 increase on increasing the pressure whereas
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∆S1 decreases on increasing pressure.

Once the elastic constants at high pressure are determined we would like to

compare our results with experiments. Unfortunately comparisons of elastic con-

stants of α and β phases of WC with measured values at high pressure are not

possible because there is no measurement of the independent elastic constants

Cij of α and β phases of WC at high pressure. However, we can derive elastic

properties such as bulk, shear and Young’s modulus from the calculated elastic

constants and compare them with the available measured values at high pressure.

In the following section, we present the results of calculated elastic moduli and

their comparison with experimental results.

Table 6.3: The calculated pressure dependent anisotropy constants of tungsten
carbide

Pressure ∆P ∆S1 ∆S2 A
(GPa)
0.000 1.335 1.069 1.252 0.319
12.12 1.338 1.037 1.297 0.318
31.79 1.340 0.967 1.383 0.304
55.88 1.359 0.948 1.495 0.286
85.50 1.383 0.897 1.686 0.268
122.90 1.393 0.872 1.866 0.253

6.3.8 Bulk modulus, Shear Modulus and Young’s modulus

Direct first principles calculations of bulk, shear and Young’s moduli are compli-

cated by the complex nature of the stresses and strains across the grain boundaries

separating differently oriented elastically anisotropic crystallites. However, these

elastic properties of the polycrystalline aggregate containing randomly oriented

crystallites can be deduced from the single crystal elastic constants using Voigt
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and Reuss approximations. The relations for calculating bulk and shear modulus

using Voigt (BV and GV) and Reuss (BR and GR) approximations are given in the

section 6.2.3. Bulk modulus B and shear modulus G are calculated by averaging

of BV and BR, and GV and GR respectively. The Young’s modulus E and Poisson’s

ratio ν are calculated from the following standard relations:

E =
9BG

3B +G
and ν =

3B − 2G

2 (3B + 2G)
(6.19)

The calculated B, G, E and ν of both phases of tungsten carbide at different

Table 6.4: The calculated elastic moduli and Poisson’s ratio of α and β WC; P ,
B, G, and E are in GPa.

α−WC β−WC
P B G E ν B G E ν

0.00 377.6 324.9 757.5 0.166 375.2 228.5 569.8 0.246
12.1 426.5 359.1 841.1 0.171 421.5 252.6 631.6 0.250
31.8 517.5 406.8 967.1 0.189 495.4 287.5 722.7 0.256
55.9 595.1 438.1 1055.2 0.204 592.1 330.9 836.9 0.264
85.5 692.6 470.2 1150.3 0.223 708.1 379.7 966.5 0.272
122.1 808.4 501.9 1247.5 0.243 843.7 436.8 1117.5 0.279

pressures are given in table 6.4. From tables "6.1 of previous chapter" and 6.4

we can see that the bulk modulus B0 calculated from the elastic constants has

nearly same value as the one obtained from the EOS fitting. This might be an

estimate of the reliability and accuracy of our calculated elastic constants for α

and β tungsten carbide.

To our knowledge no experimental or theoretical data of the bulk modulus and

shear modulus of any phase of tungsten carbide have been reported up to the

pressure range considered in our calculation. Amulele et. al. [35] have given

fitted B(P ) and G(P ) relations for calculating bulk modulus and shear modulus of

α− WC using their experimental data up to 14 GPa. These experimental results
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were determined from the ultrasonic measurements in the multi anvil high pressure

apparatus. The fitted relations for bulk and shear modulus are B = 2.3865P +

382.92 and G = 1.8652P + 301.55 respectively [35]. Here B, G and P are in GPa

and have their usual meanings. Although these relations have been given using very

small range of pressure but we have extrapolated them up to 120 GPa to compare

the variation of bulk and shear modulus with pressure obtained in our calculation.

In figure 6.6 we have plotted our results along with the extrapolated experimental

results and we find reasonably good agreement in calculated and experimental

shear modulus. In the pressure range of 0-14 GPa calculated bulk modulus also

shows reasonably good agreement with the experimental bulk modulus. Above

this pressure calculated bulk modulus shows a deviation, maximum deviation is

up to 20 %. The deviation is reasonable as this relation has been fitted using B(P)

data upto P = 14 GPa only [35] whereas we are making comparison upto 120

GPA. Hence our calculations predict that at very high pressure (P > 14 GPa)

the variation of bulk modulus with pressure will not behave as described by this

relation [35].

In figure 6.7, we have plotted the variation of the ratio G/B with the variation

of the pressure. From this figure we can see that ratio of shear to bulk modulus

(G/B) of both phases of WC are smaller than 1.0, it means that resistance to bond

- length change exceeds to resistance to bond angle change in WC. G/B value of

a material is also associated with the brittle or ductile character of the material.

Low value is associated with ductility, the materials having G/B value smaller than

0.57 are ductile and materials with G/B value larger than 0.57 are brittle [135].

At zero pressure, The G/B value of α and β WC are 0.86 and 0.61 respectively,

implying that WC is a brittle material in both phases. β WC is less brittle and

becomes ductile at 46 GPa. On increasing the pressure, the G/B value of α phase

130



6.3. Results and Discussion

Figure 6.6: Bulk modulus and Shear modulus of WC. To allow plotting in the same
figure curve of bulk modulus has been shifted up by 300 GPa. The experimental
values have been extrapolated using the linear fits given in [35].

also decrease but it remains above the critical value of 0.57 implying that WC

shows tendency towards ductility on increasing the pressure but remains brittle up

to 120 GPa. Brittle character of WC is also confirmed by its low value of Poisson

ratio. It is believed that the materials with low Poisson’s ratio are brittle [136]

for example brittle metals with BCC structure have low value of Poisson’s ratio

whereas ductile FCC metals have high Poisson’s ratio [137]. The critical value of

Poisson’s ratio for separating brittle materials from ductile materials is 1/3, the

brittle materials have Poisson’s ratio smaller than this value. Young’s modulus,

also known as the tensile modulus, is defined as the ratio of uniaxial stress and

uniaxial strain. It is a measure of the stiffness of the solid [138]. The large value

of the Young’s modulus of WC shows that it is a very stiff material.
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Figure 6.7: Variation of ratio of shear to bulk modulus (G/B) of α and β WC with
pressure (P ).

6.3.9 Debye Temperature

The Debye temperature is an important parameter of a solid for calculating the

lattice contribution to the equation of state due to thermal excitations [9, 41].

Debye temperature depends on the sound speed in the solid and can be calculated

by using following formula [139]:

Θ =
h

k

[
3q

4π

Nρ

M

] 1
3

vm (6.20)

where h is plank constant, k is Boltzmann’s constant, N is Avogadro number, M

is the molecular weight of WC, q is the number of atoms in the formula of the solid

compound i. e. 2 in this case. Here vm is the sound speed which can be calculated

using following relation:

vm =

[
1

3

(
2

vs
3

+
1

vl
3

)]−1
3

(6.21)
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where vs and vl are shear and longitudinal sound velocities. The probable values

of these velocities can be calculated using following relations:

vs =
√

(G/ρ) vl =
√

(B + 4/3G) /ρ (6.22)

these velocities can be easily determined using the calculated values of bulk mod-

ulus and shear modulus. Amulele et. al. [35] have given the fitted relations for

longitudinal and transverse sound velocities as a function of pressure. These re-

lations are also fitted using the experimental data in the pressure range of 0-14

GPa as done for bulk and shear modulus. The fitted relations for longitudinal

and transverse velocities are Vp = 0.0122P + 7.0993 and Vs = 0.075P + 4.4002

respectively. Here velocities are in km/s and P is in GPa. We have extrapolated

longitudinal and transverse velocities up to 120 GPa in the similar way as we have

done for the bulk modulus and the shear modulus and compared calculated results

with these extrapolated experimental results. The comparison is shown in the

figure 6.8. We find reasonably good agreement between calculated velocities and

extrapolated experimental velocities.

Melting temperature can be calculated using Lindemann’s melting law [23].

This law relates the melting temperature Tm(V ) to the Debye temperature Θ(V ),

which characterizes the quantum effects in low temperature lattice vibration:

Tm = δ × V 2/3Θ2(V ) (6.23)

The constant δ depends upon the material and can be assumed independent of

density and temperature. Hence this constant can be estimated by using the

experimental melting temperature of WC at atmospheric pressure. Density de-

pendent melting temperature of Al have been calculated in similar way [51]. For
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Figure 6.8: Variation of longitudinal and shear velocities with the variation of
pressure for α WC. The experimental values have been extrapolated using the
linear fits given in the [35]

calculating δ of both phases we have used experimental melting temperature of

α−WC (Tm = 2800K [140]).

Table 6.5: Calculated Debye temperature and Melting temperature of α and β
WC

α−WC β −WC
P(GPa) Θ(K) Tm(K) Θ(K) Tm(K)

0.00 686 2800 580 2800
12.1 718 3008 607 3003
31.8 760 3282 643 3284
55.9 784 3396 686 3621
85.5 808 3499 730 3979
122.1 830 3578 777 4371

We have displayed the variation of Debye temperature and melting temperature

of α and β WC with the variation of pressure in the table 6.5. Experimental value

of Debye temperature at ambient condition is 665 K [141] which is in good agree-

ment with the value (687 K) obtained in our calculation for zero temperature and

pressure. The Debye temperatures of both phases of WC increase monotonically
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on increasing the pressure. To our knowledge experimental or theoretical data of

Debye temperature and melting temperature at high pressure are not reported in

the literature. Hence comparison of our results with experiments is not possible.

6.4 Conclusion

We presented results of first principles calculations of equation of state, lattice

parameters and elastic properties of α and β WC at high pressure. Calculated

volume, bulk modulus and pressure derivative of bulk modulus at zero pressure

are in good agreement with the reported experimental values. Calculated pressure

dependent lattice parameters of α WC are in reasonably good agreement with

reported experimental results. Calculated P − V isotherm at zero temperature

shows good agreement with reported experimental isotherm. High pressure struc-

tural transformation have been investigated and have been found that α phase

remains stable up to a pressure of 350 GPa. The stability of α phase over β

phase has been discussed in terms of density of states. From the nature of DOS at

Fermi level it has been found that the stability of α phase increases with respect

to the stability of β phase on increasing pressure. Grüneisen coefficient deduced

from the P − V isotherm at zero pressure shows reasonably good agreement with

the reported experimental value. Density dependent Grüneisen coefficient of α

and β WC has also been calculated and a fitted relation for Γ(V ) has been pro-

vided. Elastic properties of α and β WC at high pressure have been calculated.

The mechanical stability and the anisotropic behaviour of α and β WC have been

discussed in terms of the calculated elastic constants. Pressure dependent shear

modulus and sound velocities (shear and longitudinal) of α WC are in reasonably

good agreement with the reported experimental results. Bulk modulus shows de-
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viation from the extrapolated experimental results at high pressure. Brittle nature

of WC has been discussed using G/B and Poisson ratio.
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7
Conclusions

In this thesis, we have presented our work dealing with the calculation of the

Equation of State and structural properties of two different materials. The first

is the metallic element Aluminium (Al) and the second is the ceramic compound

tungsten carbide (WC). Aluminium is of importance in pulsed-power experiments,

such as electromagnetic liner acceleration and electrically-exploded foils. For Al,

using a variety of theoretical techniques, we have generated EOS data valid over

several orders of magnitude in density and temperature. We have also studied

structural phase transformations occurring at high pressures.

Tungsten carbide is important because of its applications in industrial ma-

chinery and high-pressure systems. We present, for the first time, theoretical

calculations of EOS and elastic properties of tungsten carbide at high pressures.

For aluminium, we have also computed the electrical conductivity as a function

of temperature & density.
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7.1 Structural phase transformations in Al

1. Structural properties at ambient condition

To determine which option for the exchange-correlation functional is the

most suitable for our purposes, we compared certain zero pressure properties

viz., the lattice constants and the bulk modulus calculated by using GGA and

LDA with their experimental values. The ground-state properties of the three

phases of Al were obtained using the calculations of the total energy (E) as

a function of volume (V ) at lower pressures. E versus V data was then fitted

to the Birch-Murnaghan equation of state to obtain lattice parameters and

bulk modulus at zero pressure. Calculated GGA and LDA lattice parameters

and bulk modulus were compared with experimental values and it was found

that GGA results are more accurate. Hence in our subsequent calculations,

we used GGA E versus V results.

2. c/a ratio for HCP structure

We are interested in structural transformations in FCC, HCP and BCC struc-

tures of Al at high pressures. For FCC and BCC, the only adjustable param-

eter is a. For HCP, however, the ratio c/a must also be specified. Hence it

is first necessary to determine the c/a ratio that minimizes system energy at

a given volume V/V0. Hence the c/a ratio was varied from 1.45 to 1.8 over a

range of densities. We have found that for densities near normal, the energy

is minimum for a c/a ratio that deviates by 2% from the experimental value

of 1.6139. Near the FCC-HCP transition and at higher densities, the energy

was minimum for c/a = 1.623.

3. Lattice constants at high pressure

We have also calculated lattice constants at higher pressures and compared
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7.1. Structural phase transformations in Al

the results with those obtained in recently reported X-ray powder diffraction

experiments [62]. Our calculations show good agreement with experimental

values, the percentage errors lying within 0.5% in the calculated results for

‘a’ (FCC and HCP), and within 0.4% for ‘c’ (HCP). Errors do not show any

definite trend with the pressure. This is the first theoretical calculation of

lattice parameters at high pressures.

4. Total energy as function of Volume

To find the volumes at which structural transformations take place, we have

compared the total energy vs. volume curves of FCC, HCP and BCC struc-

tures. The differences (∆) between the energies of FCC-HCP, FCC-BCC,

and HCP-BCC were calculated and plotted as a function of the volume to

determine the transition volume. From this plot we observe that the FCC-

HCP transition occurs at 0.53V0. Experimentally, however, this transition

has been found to lie at 0.509V0. The reason for this difference could be that

∆FCC−HCP is negligibly small (of the order of 10−4 Ry) over the range V/V0

= 0.51-0.53. It becomes significant ∼0.9 mRy at V/V0 = 0.5089 and becomes

1 mRy when V/V0 reaches 0.50. Such a small difference between the energies

of FCC and HCP structures around the phase transition point could be the

reason for the co-existence of the FCC and HCP structures over a wide range

of densities.

5. Pressure vs. enthalpy

For determining the FCC-HCP and HCP-BCC transition pressures, the dif-

ferences between the enthalpies of FCC-HCP, FCC-BCC, and HCP-BCC

were calculated and plotted as functions of the pressure. We find FCC - HCP

transition pressure at 178 GPa whereas the reported experimental value is

139



7.1. Structural phase transformations in Al

217 ± 10 GPa. This difference could be due to two reasons. Firstly, we have

not included the energy contribution of zero point vibration. Secondly, there

is a negligibly small difference between FCC and HCP enthalpies ( 1 mRy)

in the pressure range of 178 - 217 GPa, hence there is a possibility that in

the experiment the structural transformation may not be noticed until the

enthalpy difference becomes significant.

6. Density of states vs. Volume (Pressure)

The density of states (DOS) of FCC and HCP structures of Al has been

calculated for normal and high pressures. It has been found that the DOS

of both structures at normal conditions shows different kind of nature near

the Fermi level but become similar over a range of compressed volumes close

to the FCC-HCP transition volume (V/V0 = 0.53). At ambient conditions,

the DOS of FCC exhibits a a local minimum at the Fermi energy, whereas

the DOS for HCP does not exhibit this feature. At high pressures, the DOS

of both structures exhibits local minima at the Fermi energy, implying that

both structures are stable. This similarity can be one reason for the reported

coexistence of FCC-HCP phases over a wide range of compressions near the

FCC-HCP phase transition.

Hence, the work reported in this chapter not only gives the cold-curve (zero-

temperature isotherm) of the EOS of Al, but also provides information about

the possible structural transformations and the underlying physical reasons.
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7.2 Ab-initio calculations of EOS and conductivity

of Al in expanded states

In this chapter, we present results of ab-initio molecular dynamics simulations of

EOS and electrical conductivity of aluminium in rarefied states. We have also

given QEOS results in this chapter. We have compared the QEOS cold-curve with

the FP-LAPW cold-curve and found good agreement. However, AIMD results do

not agree with the QEOS results in the rarefied region. Hence we conclude that

QEOS needs to be corrected in this region.

From a plot of DC electrical conductivity σ (T) with temperature, we noticed

that there is a change of slope at a certain temperature – for example, the slope

decreases above 6000 K at a density of 2.35 g/cc. We have explained this using the

Drude theory of electrical conductivity. According to this theory, electrical conduc-

tivity depends upon the number density of electrons at Fermi level n, and on the

relaxation time τ . Hence, at low temperatures, the conductivity decreases rapidly

with increasing temperature. This can be explained as follows - the ions vibrate

about their equilibrium positions, which leads to thermal vibration of the crystal

lattice. The amplitude of the vibrations increases as temperature is increased.

The electrons are scattered by collisions with the lattice ions. Consequently, with

the increase in the amplitude of vibration, the collision frequency increases. This

leads to decrease in the relaxation time τ , and hence to decrease in the electrical

conductivity. At high temperatures (> 6000 K), even though the relaxation time

is still decreasing with the temperature leading to decrease in the conductivity, the

number density of electrons near the Fermi level also starts increasing, causing a

net increase in the conductivity. Both these phenomena, viz., the decrease in the
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relaxation time and the increase in the number density of electrons near Fermi level

jointly lead to less decrease in the electrical conductivity above the temperature

6000 K as compared to below this temperature. Hence, we see a break in the slope

near 6000 K. This explanation has been given for the first time. However, further

studies should be performed to confirm this explanation.

7.3 Improvement in QEOS model and determina-

tion of Al EOS for compressed and expanded

states

In Chapter 4, we concluded that AIMD and QEOS results do not agree in the rar-

efied region. Also, although FP-LAPW and QEOS cold-curves show good agree-

ment, QEOS uses a cold curve which is obtained by applying a semi-empirical

binding correction to the zero temperature Thomas-Fermi model, which is a crude

way of calculating the cold-curve. In this work, we have developed an improved

version of the QEOS algorithm, with the incorporation of DFT results, FP-LAPW

as well as AIMD.

In the improved version of QEOS, we have replaced the QEOS cold curve

by the FP-LAPW cold curve for compressed Al. In rarefied states, we have re-

placed the cold curve by a soft-sphere function, adjusting the parameters such that

the isotherms yielded by the improved QEOS show good agreement with AIMD

isotherms in the rarefied region. This improved QEOS model is validated in com-

pressed states by deriving P − ρ and Us −Up hugoniots and comparing them with

available experimental results. Good agreement has been found. In expanded
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states, this EOS model is validated by comparing P(E) along the isochores with

the reported experimental curves and thermodynamic properties at the critical

point with their published values. Good agreement is found.

7.4 Ab-initio calculation of EOS and elastic prop-

erties of WC at high pressures

In this chapter, we have studied structural properties, EOS, and elastic properties

of HCP (α phase) and FCC (β phase) structures of tungsten carbide. Important

results are summarized below.

1. Structural properties, P-V isotherm and Gruneisen parameter:

Calculated volume dependent total energy data of Îś and Îš tungsten carbide

have been fitted to the Birch-Murnaghan EOS to obtain molecular volume

(V0), bulk modulus (B) and its pressure derivative (BP ). The calculated

values are in good agreement with reported XRD and ultrasonic experimental

values. The calculated P − V isotherm at zero pressure is also in good

agreement with reported experimental isotherms. As α tungsten carbide is

hexagonal, its c/a value has been optimized at each volume, as was done in

the case of Al. The c/a ratio of α-WC increases with increasing pressure.

The calculated lattice parameters at high pressures have been compared with

experimental values and reasonably good agreement has been found. The

density dependent Gruneisen parameter has been deduced from the P − V

isotherm using Slater’s formula.

2. Elastic properties and Mechanical stability:

The α-phase, being an HCP structure, has five independent elastic constants,
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whereas the β phase, being an FCC structure, has only three independent

elastic constants. We have calculated these constants by creating strains in

the crystals by distorting them from their original shape. Experimental re-

sults are available only for the α phase, and that too for zero pressure. Our

results show reasonably good agreement with reported experimental results.

We have observed that elastic constants Cij of both phases increase almost

linearly when the pressure is increased.

The Born mechanical stability criteria of hexagonal phase are C11 > 0,

C11 − C12 > 0, C55 > 0 and (C11 + C12)C33 − 2C12
2 > 0. The calculated

independent elastic constants C11, C12, C13, C33 and C55 of α WC satisfy

these stability criteria at all pressures implying that α phase is a mechani-

cally stable phase for tungsten carbide in the pressure range considered here.

Similarly, the mechanical stability criteria of cubic phase are: C11 −C12 > 0,

C11 + 2C12 > 0 and C44 > 0. We have found that all independent elastic

constants of β WC are positive and satisfy these criteria implying the me-

chanical stability of β phase. Hence, both α and β phases are mechanically

stable for tungsten carbide.

3. Brittle vs. ductile character:

Elastic properties such as bulk, shear and Young’s modulus have been cal-

culated upto a pressure of 120 GPa. The reported experimental data is

available up to only 14 GPa. Our results are in good agreement with re-

ported experimental data. We have found that the ratio of shear to bulk

modulus (G/B) of both phases of WC is smaller than 1.0. This means that

resistance to bond-length change exceeds the resistance to bond angle change

in WC. The G/B value of a material is also associated with the brittle or

ductile character of the material, a low value (<0.57) being a criterion with
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ductility. At zero pressure, the G/B values of α and β WC are 0.86 and

0.61 respectively, implying that WC is a brittle material in both phases. β

WC is relatively less brittle and becomes ductile at 46 GPa. On increasing

the pressure, the G/B value of the α phase also goes down but it remains

above the critical value of 0.57, implying that WC shows a tendency towards

ductility on increasing the pressure but remains brittle up to 120 GPa. The

brittle character of WC is also confirmed by its low value of Poisson ratio.

The pressure-dependent sound velocities (shear and longitudinal) have been

calculated from the elastic properties up to 120 GPa. These velocities show

good agreement with reported experimental data. Pressure-dependent Debye

and melting temperatures have been also deduced from the calculated sound

velocities up to 120 GPa.
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