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SYNOPSIS 

 
Radiotherapy treatment involves the precise delivery of the prescribed radiation dose to a defined 

target volume in the cancer patient. Whilst a high, tumoricidal dose is delivered to the target volume, 

the surrounding healthy tissue is to be spared as far as possible. The success of radiotherapy depends 

on the accuracy, precision and conformity of the desired dose distribution over the tumour volume 

and organs at risk i.e. the accurate delivery of the treatment as planned. The tumour control 

probability (TCP), and hence the chances of cancer cure, are critically dependent on the dose 

delivered to the tumour; for many tumour types TCP is a steep function of dose. If the delivered dose 

is 5% lower than the intended dose, this can decrease the cure rate between 10 and 15% depending on 

the tumour type whereas if it is 5-10% higher than intended dose, there may be a significant increase 

in the rate of serious complications/intolerable side effects (ICRU 1976, Brahme 1984). It follows that 

high accuracy of dose determination is crucial, and this means that a thorough understanding of the 

response of the various dose-measuring instruments (dosimeters or detectors) in practical use is 

essential.    

 Conventional radiotherapy is often performed with ‘static’ treatment beams with a uniform 

transverse dose profile. However, due to the location and/or the shape of the tumour, it is often not 

possible to achieve both a homogeneous dose in the tumour and adequate sparing of the surrounding 

normal tissues using such beams. In recent years, the introduction of newer technologies in radiation 

therapy for the delivery of external radiotherapy using x-ray and γ-ray beams produced by linear 

accelerator machines and a dedicated Gamma Knife system respectively has improved the capability 

of treating small and irregular lesions.  Conformal dose distributions and more accurate dose delivery 

is offered by radiotherapy techniques such as beamlet-based intensity modulated radiation therapy 

(IMRT), volumetric modulation arc therapy (VMAT), helical IMRT and high-precision stereotactic 

radiosurgery (SRS) and stereotactic ablative radiotherapy (SABR). The multileaf collimators (MLCs) 

of different designs and technology are the core mechanical components which enable the shaping of 

the treatment fields so that these ‘conform’ to the tumour geometry. In particular, SRS delivered by 

Gamma Knife and Cyberknife deliver a large number of very small fields of the order of a few 

millimeters to treat (small) tumors and spare normal structures. Beamlet-based IMRT uses a large 

number of fields (also known as ‘segments’), designed using ’inverse-planning’, some of which are so 

small that individually they do not yield charged-particle equilibrium, CPE (Dutreix et al 1965 Attix 

1986). Thus, recent developments in radiotherapy techniques have substantially increased the use of 

small radiation treatment fields. A ‘small’ radiation treatment field can be defined as a field with a 

width smaller than the range of the secondary charged particles. Small radiation fields require their 

geometry and dosimetry to be accurately characterized so that dose distributions calculated by 
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treatment planning systems correctly reflect the doses delivered. However, accurate measurement of 

small radiation fields presents some challenges not encountered for large fields. 

 The ‘physics’ of small, non-equilibrium radiation fields differs from that of large fields; one 

consequence of this is that the conversion of detector signal to absorbed dose to water is more 

sensitive to the properties of the radiation detectors used. Differences include loss of lateral electronic 

equilibrium and source occlusion; the field size at which these effects become significant depends on 

beam energy, and collimator design (Treuer et al 1993, Das et al 2008b, Alfonso et al 2008, Scott et 

al 2008, 2009, IPEM 2010). Detector-specific effects include fluence perturbation caused by 

differences between detector material and medium, dose-averaging effects around the peak of the 

dose distribution, and the uncertainties for very small fields introduced by slight geometrical detector 

misalignment (Paskalev et al 2003, Bouchard et al 2009, Crop et al 2009, IPEM 2010, Francescon et 

al 2011, Scott et al 2012, Fenwick et al 2013, Charles et al 2013, Underwood et al 2013b, Kumar et 

al 2015b). The Monte-Carlo method is especially valuable when the width of the photon field is so 

small as to make even quasi-CPE impossible (IPEM 2010).There is therefore a need to carry out 

comprehensive Monte Carlo based dosimetry studies on small, non-standard and standard treatment 

fields used for advanced radiotherapy techniques, for a range of different types of detectors, and to 

develop recommendations for the dosimetry of such fields.  

 

Aims/Objectives of the work undertaken for the thesis: 

In this thesis the Monte-Carlo (MC) simulation of radiation transport was applied to the following 
areas:  
 

• A critical re-examination of certain basic concepts of radiation dosimetry (Papers III and V). 

• An improvement of our knowledge and understanding of the response of practical dosimeters 

in the non-equilibrium (small-field) situations commonly encountered in advanced 

radiotherapy treatments (Papers I and IV). 

• A study of certain aspects of ‘cavity theory’ in order to extend the range of validity of this 

body of theory (Papers II, IV and VI).  

 
This thesis comprises of eight chapters arranged as follows. 

 

Chapter 1: Introduction 

This chapter describes briefly the modalities used for the treatment of cancer and emphasises the 

importance of radiotherapy in the management of cancer patients. A brief overview of the mode of 

radiotherapy delivery is given. The biological basis of radiotherapy is briefly discussed. The clinical 

requirement for accuracy in radiotherapy dose delivery is explained by reference to dose-response 



SYNOPSIS 

iii 

 

(dose-effect) curves in terms of tumour control probability (TCP) and normal-tissue complication 

probability (NTCP). In addition to this, the different techniques for the delivery of external 

radiotherapy treatments are described with special attention paid to advanced radiotherapy delivery 

techniques such as beamlet-based IMRT, VMAT, helical IMRT using tomotherapy, SRS and SABR 

where small radiation fields are produced by secondary/tertiary collimators (cones and multi-leaf 

collimators, MLCs) to conform to the tumour volume in order to achieve good clinical outcomes. The 

main challenges faced in small-field dosimetry are briefly discussed. The need for Monte-Carlo (MC) 

methods in radiation dosimetry, especially in non-equilibrium photon fields, and for a suitable MC 

code system (i.e. EGSnrc) for relative ionization chamber response calculations is discussed. Finally 

the aims and scope of the present thesis are presented. The scientific literature related to the thesis is 

briefly summarized here. However, more specific publications are reviewed in the individual chapters. 

 

Chapter 2: Monte-Carlo derived insights into Dose-Kerma-Collision Kerma inter-relationships for 

50-keV to 25-MeV photon beams in water, aluminium and copper (Paper III) 

The relationships between D, K, and Kcol are of fundamental importance in radiation dosimetry. These 

relationships are critically influenced by secondary electron transport, which makes Monte-Carlo 

simulation indispensable; we have used Monte-Carlo (MC) codes DOSRZnrc and FLURZnrc. 

Computations of the ratios D/K and D/Kcol in three materials (water, aluminium and copper) for large 

field sizes with energies from 50 keV to 25 MeV (including 6-15 MV) are presented. Beyond the 

depth of maximum dose D/K is almost always less than or equal to unity and D/Kcol greater than unity, 

and these ratios are virtually constant with increasing depth. The difference between K and Kcol 

increases with energy and with the atomic number of the irradiated materials. D/K in ‘sub-

equilibrium’ small megavoltage photon fields decreases rapidly with decreasing field size. A simple 

analytical expression for X , the distance ‘upstream’ from a given voxel to the mean origin of the 

secondary electrons depositing their energy in this voxel, is proposed: emp csda 00.5 ( )X R E≈ , where 

0E  is the mean initial secondary electron energy. These empX  agree well with 'exact' MC-derived 

values for photon energies from 5-25 MeV for water and aluminium. An analytical expression for 

D/K is also presented and evaluated for 50 keV – 25 MeV photons in the three materials, showing 

close agreement with the MC-derived values.   

 

Chapter 3: Secondary bremsstrahlung and the energy-conservation aspects of Kerma in photon-

irradiated media (Paper V) 

Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed 

with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed 

dose D, kerma K and a special form of kerma, Kncpt, obtained by setting the charged-particle transport 
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energy cut-off very high, thereby preventing the generation of ‘secondary bremsstrahlung’ along the 

charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, 

differential in energy, from which collision kerma, Kcol and K were derived. The ratios K/D, Kncpt/D 

and Kcol/D have thereby been determined over a very large volumes of water, aluminium and copper 

irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV 

‘clinical’ radiotherapy qualities. Concerning depth-dependence, the ‘area under the kerma, K, curve’ 

exceeded that under the dose curve, demonstrating that kerma does not conserve energy when 

computed over a large volume. This is due to the ‘double counting’ of the energy of the secondary 

bremsstrahlung photons, this energy being (implicitly) included in the kerma ‘liberated’ in the 

irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon 

fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this ‘violation’ 

amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but 

only 0.6% for a ‘clinical’ 6 MV beam in water. By contrast, Kcol/D and Kncpt/D, also computed over  

very large phantoms of the same three media, for the same beam qualities , are equal to unity within 

(very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, 

Kncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 

MeV beam at a depth of ≈ 51 g cm-2 for both very high and very low charged-particle transport cut-

offs reveals the considerable contribution to the total photon fluence by secondary bremsstrahlung in 

the latter case. Finally, a correction to the ‘kerma integral’ has been formulated to account for the 

energy transferred to charged particles by photons with initial energies below the Monte-Carlo photon 

transport cut-off PCUT; for 25 MeV photons this ‘photon track end’ correction is negligible for all 

PCUT below 10 keV. 

  

Chapter 4: Characterizing the influence of detector density on dosimeter response in non-

equilibrium small photon fields (Paper I) 

The impact of density and atomic composition on the dosimetric response of various detectors in 

small photon radiation fields is characterized using a ‘density-correction’ factor, Fdetector, defined as 

the ratio of Monte-Carlo calculated doses delivered to water and detector voxels located on-axis, 5 cm 

deep in a water phantom with a source to surface distance (SSD) of 100 cm. The variation of Fdetector 

with field size has been computed for detector voxels of various materials and densities. For 

ionization chambers and solid-state detectors, the well-known variation of Fdetector  at small field sizes 

is shown to be due to differences between the densities of detector active volumes and water, rather 

than differences in atomic number. Since changes in Fdetector with field size arise primarily from 

differences between the densities of the detector materials and water, ideal small-field relative 

dosimeters should have small active volumes and water-like density. 
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Chapter 5: Using cavity theory to describe the dependence on detector density of dosimeter 

response in non-equilibrium small fields (Paper II) 
 
The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a 

detector located within a water phantom depends on the density of the sensitive volume. Here this 

effect is explained using cavity theory, and analysed using Monte Carlo data calculated for 

schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density 

and atomic composition of the sensitive volume on its response is represented as a ratio, Fw,det , of 

doses absorbed by equal volumes of unit density water and detector material co-located within a unit 

density water phantom. The impact of density alone is characterized through a similar ratio,

 

Pρ−
, of 

doses absorbed by equal volumes of unit and modified-density water. The cavity theory is developed 

by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons 

liberated in photon interactions occurring inside and outside the volume. Using this theory a simple 

model is obtained that links Pρ−
 to the degree of electronic equilibrium, see , at the centre of a field via 

a parameter Icav determined by the density and geometry of the sensitive volume. Following the 

scheme of Bouchard et al (2009 Med. Phys. 36 4654–63) Fw,det can be written as the product of Pρ−
, 

the water-to-detector stopping power ratio 
SA

w, det, s ∆ , and an additional factor flP
− 

. In small fields 

SA

w, det, s ∆ changes little with field-size; and for the schematic diamond and Pinpoint detectors flP
− 

 takes 

values close to one. Consequently most of the field-size variation in Fw,det originates from the Pρ−
 

factor. Relative changes in see and in the phantom scatter factor sp are similar in small fields. For the 

diamond detector, the variation of Pρ−
 with see (and thus field-size) is described well by the simple 

cavity model using an Icav parameter in line with independent Monte Carlo estimates. The model also 

captures the overall field-size dependence of Pρ−
 for the schematic Pinpoint detector, again using an 

Icav value consistent with independent estimates. 

 

Chapter 6: Breakdown of Bragg-Gray behaviour for low-density detectors under electronic 

disequilibrium conditions in small megavoltage photon fields (Paper IV) 

In small photon fields ionisation chambers can exhibit large deviations from Bragg-Gray behaviour; 

the EGSnrc Monte Carlo (MC) code system has been employed to investigate this 'Bragg-Gray 

breakdown'. The total electron (+ positron) fluence in small water and air cavities in a water phantom 

has been computed for a full linac beam model as well as for a point source spectrum for  6 MV and 

15 MV qualities for field sizes from 0.25 × 0.25 cm2 to 10  × 10 cm2. A water-to-air perturbation 

factor has been derived as the ratio of total electron (+ positron) fluence, integrated over all energies, 

in a tiny water volume to that in a ‘PinPoint 3D-chamber-like’ air cavity; for the 0.25 × 0.25 cm2 field 
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size the perturbation factors are 1.323 and 2.139 for 6 MV and 15 MV full linac geometries 

respectively. For the 15 MV ‘full linac’ geometry, for field sizes of 1 × 1 cm2 and smaller, not only 

the absolute magnitude but also the ‘shape’ of the total electron fluence spectrum in the air cavity is 

significantly different to that in the water ‘cavity’. The physics of this ‘Bragg-Gray breakdown’ is 

fully explained, making explicit reference to the Fano theorem. For the 15 MV full linac geometry in 

the 0.25 × 0.25 cm2 field the directly computed MC dose ratio, water-to-air, differs by 5% from the 

product of the Spencer-Attix stopping-power ratio (SPR) and the perturbation factor; this ‘difference’ 

is explained by the difference in the shapes of the fluence spectra and is also formulated theoretically. 

It is shown that the dimensions of an air-cavity with a perturbation factor within 5% of unity would 

have to be impractically small in these highly non-equilibrium photon fields. In contrast the dose to 

water in a 0.25 × 0.25 cm2 field derived by multiplying the dose in the single-crystal diamond 

dosimeter (SCDDo) by the Spencer-Attix ratio is within 2.9% of the dose computed directly in the 

water voxel for full linac geometry at both 6 and 15 MV, thereby demonstrating that this detector 

exhibits quasi Bragg-Gray behaviour over a wide range of field sizes and beam qualities. 

Chapter 7: Dosimetric response of variable-size cavities in photon-irradiated media and the 

behaviour of the Spencer-Attix cavity integral with increasing ∆ ∆ ∆ ∆ (Paper VI) 

Cavity theory is fundamental to understanding and predicting dosimeter response. Conventional 

cavity theories have been shown to be consistent with one another by deriving the electron (+ 

positron) and photon fluence spectra with the FLURZnrc user-code (EGSnrc Monte-Carlo system) in 

large volumes under quasi-CPE for photon beams of 1 MeV and 10 MeV in three materials (water, 

aluminium and copper) and then using these fluence spectra to evaluate and then inter-compare the 

Bragg-Gray, Spencer-Attix and ‘large photon’ ‘cavity integrals’. The behaviour of the ‘Spencer-Attix 

dose’ (aka restricted cema), DS-A(∆), in a 1-MeV photon field in water has been investigated for a 

wide range of values of the cavity-size parameter ∆: DS-A(∆) decreases far below the Monte-Carlo 

dose (DMC) for ∆ greater than  ≈ 30 keV due to secondary electrons with starting energies below ∆ not 

being ‘counted’. It has been shown that for a quasi-scatter-free geometry (DS-A(∆)/DMC) is closely 

equal to the proportion of energy transferred to Compton electrons with initial (kinetic) energies 

above ∆, derived from the Klein-Nishina (K-N) differential cross section. (DS-A(∆)/DMC) can be used 

to estimate the maximum size of a detector behaving as a Bragg-Gray cavity in a photon-irradiated 

medium as a function of photon-beam quality (under quasi CPE) e.g. a typical air-filled ion chamber 

is ‘Bragg-Gray’ at (monoenergetic) beam energies  ≥ 260 keV. Finally, by varying the density of a 

silicon cavity (of 2.26 mm diameter and 2.0 mm thickness) in water, the response of different cavity 

‘sizes’ was simulated; the Monte-Carlo-derived ratio Dw/DSi for 6 MV and 15 MV photons varied 

from very close to the Spencer-Attix value at ‘gas’ densities, agreed well with Burlin cavity theory as 

ρ increased, and approached large photon behaviour for ρ ≈ 10 g cm-3. The estimate of ∆ for the Si 
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cavity was improved by incorporating a Monte-Carlo-derived correction for electron ‘detours’. 

Excellent agreement was obtained between the Burlin ‘d’ factor for the Si cavity and DS-A(∆)/DMC at 

different (detour-corrected) ∆, thereby suggesting a further application for the DS-A(∆)/DMC ratio. 

 

Chapter 8: Summary and Conclusions  

 
This chapter summarizes the major findings of the thesis and outlines the scope for future work.  

 A set of D/K, D/Kcol and X values has been generated in a consistent manner by Monte-Carlo 

simulation for water, aluminium and copper and for photon energies from 50 keV to 25 MeV 

(including 6-15 MV). Beyond the build-up region dose D is almost never greater than kerma K whilst 

collision kerma Kcol is always less than D.  A simple analytical expression for X , denoted by empX , 

the distance ‘upstream’ from a given voxel to the mean origin of the secondary electrons depositing 

their energy in this voxel, was proposed: emp csda 00.5 ( )X R E≈ , where 0E  is the mean initial 

secondary electron energy, and validated (Paper III).  

It has been demonstrated that when computed over a large irradiated volume, kerma does not 

conserve energy whereas collision kerma and a special form of kerma, which is denoted by Kncpt, (ncpt 

≡ ‘no charged-particle transport’), do conserve energy. This analysis has also quantified the 

magnitude of the errors made in deriving kerma by setting a high electron/positron kinetic energy cut-

off ECUT and has highlighted the role played by secondary bremsstrahlung in determining kerma at 

large depths (Paper V). 

Relative to wide-field readings, it has been found that high-density detectors over-read, and 

low-density detectors under-read (relative to the density of water, the reference medium) in non-

equilibrium small photon fields (Paper I).  

A modified form of cavity theory has been developed to take account the ‘density effect’ in 

small fields. The density-dependence can be minimized either by constructing detectors with sensitive 

volumes having similar densities to water, or by limiting the thickness of sensitive volumes in the 

direction of the beam. Regular 3×3 cm2 or 4×4 cm2 fields are useful for small-field detector 

calibration (Paper II). 

In small photon fields, even small ‘PinPoint 3D’ ionisation chambers exhibit large deviations 

from Bragg-Gray behaviour; the EGSnrc Monte Carlo code system has been employed to quantify 

this 'Bragg-Gray breakdown'. For the 15 MV ‘full linac’ geometry, for field sizes of 1 × 1 cm2 and 

smaller, not only the magnitude but also the ‘shape’ of the electron fluence spectra in the air cavity 
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differs from that in the water cavity, due to the combined effect of electronic disequilibrium, source 

occlusion and volume-averaging; a theoretical expression for this ‘shape factor’ has been formulated. 

A detailed explanation, also formulated analytically, for the ‘breakdown’ of Bragg-Gray behaviour in 

low-density (gas) detectors in non-equilibrium field sizes is given, making explicit reference to the 

Fano theorem (Paper IV). 

The self-consistency of conventional cavity theories has been examined in different materials 

for photon beams of 1 MeV and 10 MeV. The ratio of Spencer-Attix dose to direct Monte-Carlo dose 

(DS-A(∆)/DMC) decreases steadily as Spencer-Attix cut-off energy ∆ increases about ≈ 20 keV in 

photon-irradiated media. The quantity DS-A(∆)/DMC as a function of a ∆ can be used to deduce an air 

cavity with dimensions corresponding to a ∆, of 10 keV (a value widely applied to the air cavities of 

practical ion chambers e.g. Farmer and NACP designs) to exhibit Bragg-Gray behaviour. Excellent 

agreement between DS-A(∆)/DMC and the Burlin ‘d’ weighting factor at different Si pseudo-densities 

(provided a correction for ‘detour’ is made) suggests a further application for the DS-A(∆)/DMC ratio: as 

an alternative way  to estimate d (Paper VI).  

 

 

The scope for future work includes (i) formulating a composite expression for a 'quasi-Burlin 

dose ratio' for an intermediate cavity in a bremsstrahlung beam by recognising that the cavity response 

can be characterized as a quasi-perfect 'large photon detector' for the lowest energies, an 

(approximate) ‘Burlin’ detector for the intermediate energies, and a quasi Bragg-Gray detector for the 

highest energies of the bremsstrahlung beam spectra; (ii) a critical evaluation of the validity of the 

Fano theorem when the density-dependence of the interaction cross-sections in various media (e.g. the 

density or polarization effect in condensed media) is explicitly modelled by Monte-Carlo codes.  
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CHAPTER 1 
 

Introduction 
 

 

1.1 The role of radiotherapy in the treatment of cancer 
 
Cancer (also termed as neoplasm) is a mass of tissue that grows in excess of normal tissue in an 

uncoordinated manner, and continues to grow after the initial stimulus has ceased. Cancer is one of 

the leading causes of death globally. The incidence of cancer is increasing, particularly because of the 

increase in life expectancy arising from worldwide improvements in standards of health care. 

According to recent estimates of the International Agency for Research on Cancer (IARC) and the 

World Health Organization (WHO), approximately ten million new cases of cancer are being detected 

per year worldwide, with slightly more than half of the cases occurring in developing countries. By 

this year the number is expected to increase to about 15 million cases, of which two thirds will occur 

in developing countries. As people live longer and populations increase, the number of new cancers 

each year is projected to rise sharply. By 2035, just 20 years from now, there will be an estimated 10 

million more people every year facing cancer (Saracci and Wild 2015). Cancer patients primarily 

undergo surgery, radiotherapy, chemotherapy, or any combination of these treatment strategies to 

prolong life. Surgery and radiotherapy are aimed for local control whereas chemotherapy acts 

systemically to treat the disease in all affected parts of the body.  

  Radiotherapy is currently an essential component in the management of cancer patients.  

About fifty to sixty percent cancer patients receive radiotherapy at some time or other during the 

course of the disease, either as part of their primary treatment, in connection with recurrences or 

palliative treatment, or in combination with surgery or chemotherapy, for cure or palliation (Delaney 

et al 2005, Williams et al 2007, Janaki et al 2010). Radiotherapy is a multidisciplinary specialty 

which uses complex equipment and radiation sources for the delivery of a high ‘dose’ of ionizing 

radiation to the tumour volume. It is estimated that approximately 3300 teletherapy machines are 

currently installed in developing countries. This figure is significantly below the estimated needs, of 

about 10,000 machines by the year 2015. In India, the first teletherapy (telecobalt) unit was installed 

in 1957. Since then, there has been a steady increase in the number of teletherapy unit in the country. 

By December 2014, there were 359 radiotherapy centres in India. However, due to the lack of 

adequate radiotherapy facilities, only 1/3rd of the cancer patients get the opportunity to receive 

radiotherapy. As per international norms, there should be 2 teletherapy units per million of population. 

Therefore, considering the present population of India of 1.28 billion, 2560 teletherapy unit are 

required in the country to meet the ideal requirement as against 520 teletherapy units (289 linear 

accelerator + 231 telecobalt) currently available in the country. 
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 Radiotherapy is defined as the treatment of diseases (mostly malignant) with ionizing 

radiation. It works by damaging tumour cells to stop them dividing i.e. killing the so-called clonogens. 

Radiotherapy is delivered through two different modes: teletherapy (or external-beam radiotherapy) 

and brachytherapy. External-beam radiotherapy (EBRT) is the most common form of radiotherapy, 

where the source of radiation lies outside the body. Electrons and photons (x-ray and γ-ray) are the 

two type of ionising radiation widely used in EBRT presently. The γ-ray beams are usually provided 

by a radioactive source such as Co-60 whereas x-ray and electron beams are produced using linear 

accelerators (linacs). The treatment with EBRT spares the skin (skin sparing effect). The linac is 

preferred for the treatment of deep seated tumours like thoracic tumours, pelvic tumours etc. 

Telecobalt unit is the backbone of any radiotherapy department in developing countries like India 

because it is cost effective and requires low maintenance cost. EBRT treatment with conventional 

fractionation is done once a day with 1.8-2 Gy, 5 times a week and lasts for about 5-7 weeks. Majority 

of the tumours require EBRT doses in the range of 50-70 Gy. It is a painless and non-invasive 

procedure.  

 Brachytherapy is another mode of treatment where the radioactive source is placed inside or 

in close proximity of the tumour mass. Various radioactive sealed sources used for brachytherapy are 

Co-60, Cs-137, Ir-192, I-125, Au-198 and Pd-103 etc.  Currently the brachytherapy treatment is 

performed with the help of remote afterloading units where there is minimal risk of radiation exposure 

to the staff. Brachytherapy has the advantage of delivering high dose of radiation in shorter time 

simultaneously sparing the surrounding normal structures. The usual treatment with high dose rate 

(HDR) brachytherapy is delivered in minutes but multiple fractions (average 3-7 fractions) are 

required. The sites where brachytherapy is used as boost are cancers of cervix, endometrium, 

esophagus, head & neck and chest wall, etc. 

 In addition to photon and electron beam, heavy charged particles (i.e. hadron) such as protons 

and carbon ions are also used for the treatment of cancer patients at some radiotherapy centres in 

world. Although hadron therapy has shown many advantages over photon and electron beams, its use 

is still limited worldwide due to the complexity and very high cost of the devices required for the 

production of beams. In India, this facility is not available so far. In this study/thesis the radiation 

dosimetry concept relevant to external photon beams produced either by Co-60 or linacs has been 

studied. 

 

1.2 Biological basis of radiotherapy 
 
In broad term, radiotherapy exploits the fact that ionising radiation causes damage to cells within the 

body. The biological effects of ionizing radiation result mainly from damage to deoxyribonucleic acid 

(DNA) which is the most critical target in the nucleus of a cell (Hall and Giaccia 2006). The damage 

to DNA may occur in one of the two ways: direct or indirect action (Podgorsak 2005). In direct 

action, the ionizing radiations interact directly with the target molecule (i.e. DNA). In this process, 
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ionization or excitation of the atoms of the target may occur, causing a break in one or both strands of 

the molecule, which if unrepaired or incorrectly repaired, results in a variety of effect such as cell 

killing, division delay/mitotic inhibition, chromosome aberration and mutation. On the other hand the 

interaction of radiation with other molecules (mainly water since almost 80 % of a cell is composed of 

water) results in the formation of reactive species called the ‘free radicals’. The interaction of these 

radicals with targets (i.e. DNA) results in indirect action. In living organisms, almost 70% of the 

damage results from indirect action. Since most living systems are composed of 80% water, indirect 

action mainly results from the radiolytic products of water. Absorption of radiation by water results in 

excitation and ionization, that finally results in the formation of radicals H0, OH0 and hydrated 

electrons ( aqe ). The free radicals are highly reactive due to the presence of unpaired electrons. The 

most biological damage is caused by hydroxyl radical (OH0). The damage due to irradiation of cells is 

classified into lethal, sub-lethal and potentially lethal. The lethal damage is irreversible as well as 

irreparable and ultimately leads to cell death. This type of damage is expected more for cancerous 

cells in order to produce a positive treatment outcome. In sub-lethal damage, the cells repair in hours 

when optimal conditions are there for cell death, if additional sub-lethal damage is not added. 

Potential lethal damage leads to kill the cell unless external interference (Hall and Giaccia 2006).  

 In radiotherapy, treatments are typically delivered once daily for up to eight weeks using 

multiple fraction of small dose (i.e. dose fractionation) allowing for the repair of sub-lethal damage 

between fractions and cellular repopulation of normal tissues while cancer cells are less likely to 

repair. In addition, dose fractionation increases damage to the tumour due to reoxygenation of 

hypoxic cells and redistribution of the cells in the sensitive phases of the cell cycle. 

 

1.3 Required accuracy in radiotherapy dose delivery: dosimetry perspective   
 
An understanding of the basic principles of radiotherapy is essential for the successful application of 

radiotherapy. The higher the dose of radiation delivered to the tumour, the higher the probability of 

local control of the tumour. Hence the aim of radiotherapy is to deliver a tumoricidal dose of radiation 

to a well-defined target volume whilst causing an acceptably low probability of damage to the 

surrounding healthy tissue, in other words an optimum therapeutic ratio.  

 The clinical requirement for accuracy in radiotherapy dose delivery is explained by reference 

to dose-response (dose-effect) curves in terms of tumour control probability (TCP) and normal-tissue 

complication probability (NTCP). These curves have typically sigmoidal shapes, with a quasi-

threshold dose, a relatively steep rise and saturation (100% effect) at high enough doses; see the 

schematic figure 1.1. The TCP is the probability of ‘controlling’ (i.e. eliminating) the tumour, TCP is 

critically dependent on the dose delivered to the tumour and is, for many tumour types, a relatively 

steep function of dose. NTCP is the probability of normal-tissue complications; the NTCP must in a 
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general be kept to no more than approximate 10-15% or even lower if the effect is potentially severe 

or even fatal. 
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Figure 1.1: Schematic illustration of tumour control probability (TCP) and normal tissue complication 
probability (NTCP) as a function of dose. Dpr is the suggested optimal    dose. (A E Nahum, private 
communication) 

 
 

A relatively common practical radiotherapy situation is an overlapping of the TCP and NTCP 

curves such that the aim of radiotherapy is compromised (Mayles and Thwaites 2007). Radiotherapy 

optimisation including advances in beam-delivery technology is aimed at improving this balance, i.e. 

maximising tumour control while maintaining tissue complications at an acceptable level. The 

difference between the tumour control curve and the normal tissue complication probability is 

sometimes known as the therapeutic ratio. Dose-response curves depend on a number of parameters, 

such as fraction size, and tumour or (normal) tissue cell type i.e. radiosensitivity; the latter cannot 

currently be determined for each individual patient. It is also difficult to define what constitutes an 

acceptable side effect. 

 The shape of dose-response curves can give an estimate of the required accuracy of dose 

delivery in radiotherapy and therefore the required accuracy of the determination of the absorbed dose 

to the patient (in both the tumour and any critical normal tissues). The steepness of the given TCP or 

NTCP curve versus dose defines the change in response expected for a given change in delivered 

dose. If the delivered dose is 5% lower than the intended dose, this can decrease the cure rate between 

10 and 15% depending on the tumour type whereas if it is 5-10% higher than intended dose, there 

may be a significant increase in the rate of serious complications/intolerable side effects (ICRU 1976, 
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Brahme 1984). It follows that high accuracy of dose determination is crucial, and this means that a 

thorough understanding of the response of the various dose-measuring instruments (dosimeters or 

detectors) in practical use is essential.  

Based on the steepness of the dose-response curves from limited routine clinical data 

available, the International Commission on Radiation Units and Measurements (ICRU), in Report 76 

(1976),  recommended that  ± 5% accuracy is required in the delivery of absorbed dose to the target 

volume, but that in critical situations ± 2% may be required. Mijnheer et al (1987) obtained a figure 

for required accuracy by considering normal-tissue effects. They considered the steepness of dose-

effect curves in terms of the percentage increase in absorbed dose to produce a change in the 

probability of normal-tissue complications from 25% to 50%. Based on this analysis they 

recommended a value of 3.5%, one relative SD (standard deviation), as the general accuracy 

requirement on absorbed dose delivery. Brahme (1988) considered the effects of variations in dose on 

tumour control for typical values, showing that the largest change in tumour control introduced by 

dosimetric inaccuracy is found at TCP ≈ 50%. A general figure of 3% (relative SD) on the delivered 

absorbed dose to the patient was recommended as the tolerance level on accuracy in dose delivery, in 

order to keep variations in the probability of tumour control within acceptable limits. Thus overall a 

figure of ± 3% (1 SD) can be taken as the currently recommended accuracy requirement on the value 

of the dose delivered to the patient at the dose specification point.  

Recently Thwaites (2013) stated that general recommendations on achievable dosimetric 

accuracy in radiotherapy had not changed and concluded that despite the advances in technology and 

techniques in external-beam megavoltage x-ray therapy, ± 5% was still an acceptable level. 

   

1.4 Dose delivery techniques in external-beam radiotherapy   
  
Different techniques have been developed for the delivery of external radiotherapy treatments using 

x-ray and γ-ray beams produced by linacs and a dedicated Gamma Knife system respectively. This 

section gives a brief overview of these techniques, with special emphasis on advanced photon-beam 

radiotherapy delivery techniques such as Intensity Modulated Radiation Therapy (IMRT) and 

Volumetric Modulation Arc Therapy (VMAT); Stereotactic Radiosurgery (SRS) and Stereotactic 

Body Radiotherapy (SBRT) employ so-called ‘small’ radiation fields. Field shaping for all of these 

machines is produced by secondary/tertiary collimators (cones and multi-leaf collimators, MLCs) 

which conform the beam cross-section to a projection perpendicular to the beam direction of the 

outermost margin drawn around the tumour (known as the PTV, planning target volume).  

 

1.4.1 Conventional radiotherapy 
 
Conventional radiotherapy consists of two-dimensional (2D) treatment planning that involves a 

radiographic film or an image localization procedure. In conventional radiotherapy, the dose is 

delivered by square or rectangular fields shaped by conventional collimator blocks without any 
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detailed conforming of the field geometry to the treatment volume. The treatment plans for such 

simple radiotherapy mainly consist of beams with a uniform intensity delivered from several 

directions to the treatment volume (target volume). This technique is well established at most 

radiotherapy centres in India and worldwide, because it is generally quick and reliable. However, its 

use has shown to be limited to the cases where the tumour is symmetrically shaped and centrally 

located in the body with a minimal surrounding critical organs. Since tumours generally do not have 

either rectangular or square cross sections seen from any direction, such techniques are not suitable 

for therapy given with curative intent; this is because, depending on the shape of the tumour, a lot of 

healthy tissue will be irradiated, leading to high toxicity of the tissues/organs close to the target 

volume if a curative dose is given to the tumour. 

 

1.4.2 Conformal radiotherapy 
 
The rationale for conformal radiotherapy is straightforward to state. The goal is to achieve a 

tumoricidal high-dose volume which conforms to (i.e. wraps closely around) the planning target 

volume (PTV) whilst simultaneously the OARs receive a dose sufficiently low as not to cause any 

complications. The concept behind this rationale is that if the difference between the doses received 

by the PTV and the OARs can be made large, then the dose to the PTV can be escalated with 

consequent expectation of a high TCP without causing unwanted radiation damage to normal-tissues 

(i.e. a low NTCP).  

Conformal radiotherapy techniques are divided into two broad classes: i) techniques which 

involve only geometrical field shaping, known as three dimensional conformal radiotherapy 

(3DCRT), and ii) Intensity modulation radiotherapy (IMRT) techniques. 

 

1.4.2.1 Three-dimensional conformal radiotherapy 
 
The goal of three-dimensional (3D) planning is to conform the profile of each radiation beam to the 

shape of the target volume (i.e. PTV) seen from the beam direction; generally several (static) beams 

from different directions are employed. The radiation beams normally have uniform intensity across 

the field and the high-dose volume is made to ‘conform’ to the target volume by putting either metal 

blocks (e.g. made of cerrobend, a low melting point alloy) in the path of the radiation beams or by a 

using multi-leaf collimator (MLC) attached to the treatment head of the linac; both methods change 

the shape of the beam so that it ‘conforms’ closely to the shape of the tumour. A simultaneous goal is 

to minimize the dose to organs at risk. Radiation delivered by this method can only yield a ‘convex’ 

3D dose distribution. The main achievement of techniques involving geometrical collimation alone 

(i.e. with quasi-uniform intensity across the beam aperture) is the shaping of the radiation field to the 

beam’s eye-view of the target.  

The great advantage of 3D-conformal radiotherapy compared to conventional radiotherapy 

(i.e. few beams with rectangular collimation) is the reduction of radiation dose to the normal tissues 
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adjacent to the PTV. As a consequence, a higher dose of radiation can be delivered to the tumour, 

thereby increasing the effectiveness of the treatment. 

 
1.4.2.2 Intensity Modulated Radiotherapy 

 
Intensity modulated radiotherapy (IMRT) is now an established paradigm for the treatment of cancer 

(Staffurth et al 2010); IMRT is an advanced form of 3D conformal radiotherapy where so-called 

inverse-planning is applied to calculate a ‘modulated’ (i.e. non-uniform) x-ray fluence across the 

treatment field thereby obtaining a potentially ‘concave’ 3D dose distribution. IMRT is a conformal 

treatment that not only conforms (high) dose to the target volume but also conforms (low) dose to 

sensitive structures (Nutting et al 2011, Miah et al 2012).  IMRT is also used to deliver different dose 

prescriptions to multiple target volumes simultaneously (Wong et al 2010). Each treatment field is 

divided into small beams called beamlets. The intensity is different for individual beamlets. This is 

achieved by a set of collimating ‘leaves’ under computer control. This delivers a spatially non-

uniform radiation exposure across the beam aperture and by combining several such beams from 

different directions, all planned with an inverse algorithm, a quasi-uniform dose distribution can be 

created in the target volume and steep dose gradients at the edge of the target volume. Steep dose 

gradients result in the reduction of normal-tissue doses and hence a reduction in morbidity; this 

affords the possibility of (so-called) ‘dose escalation’ within the target volume.  

Two types of MLC-based IMRT delivery modes are used clinically, namely the ‘step-and-

shoot’ or static (SMLC)’ technique and the ‘sliding window or dynamic (dMLC)’ technique (Ezzell et 

al 2003). With SMLC, the radiation beam is off while the collimator leaves move to shape the field. 

The beam is turned back on only after the leaf motion has stopped, thereby defining an individual 

beamlet. In the sliding-window technique, the radiation beam remains on while the leaves are moving. 

The treatment time using DMLC is much less than for the SMLC technique (Nutting et al 2000). 

 The significant challenge for the practical implementation of IMRT is to ensure the accuracy 

of dose delivery. The IMRT fields (both step‐and‐shoot and dMLC) require highly accurate 

positioning of the MLC leaves, and a number of quality control regimes have been proposed to 

monitor this (Webb 2001). Inverse treatment planning is used to find the optimal position and 

movement of the leaves during irradiation. The delivery of modulated beams (i.e. IMRT) is achieved 

through a large number of small field sizes (˂ 3 cm in at least one dimension), highly irregular field 

shapes defined by the MLC and a small number of MUs1 (≤ 5) per beamlet in step-and-shoot delivery 

mode. Low et al (2011) have provided a detailed discussion on the dosimetry ‘tools’ required and the 

techniques used in IMRT.  

                                                      
1 The integrated current associated with 1 cGy in the standard conditions (source-surface-distance (SSD) of 100 

cm  for field size 10 × 10 cm2 at the depth of maximum dose (dmax) ) is defined as one Monitor Unit (MU) 
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1.4.2.3 Volumetric Modulated Arc Radiotherapy 

 
Yu (1995) introduced the concept of intensity modulated arc therapy (IMAT) on a linac as an 

alternative to tomotherapy. IMAT combines spatial and temporal intensity modulation with the 

movement of the gantry. Although Yu first proposed inverse planning for IMAT, forward planning 

was used for its early implementation (Yu et al 2002). The search for an equivalent linac‐based 

solution continued with several authors attempting to determine an inverse‐planned technique for 

IMAT which would result in the desired dose distribution deliverable in a single arc (Otto 2008, Cao 

et al 2009, Pardo‐Montero and Fenwick 2009). Since becoming commercially available in 2009, there 

have been two main implementations of arc radiotherapy: Elekta VMAT (Elekta, Crawley, UK) and 

Varian RapidArc (Varian Medical Systems, Palo Alto, USA). 

 Volumetric Modulated Arc Therapy (VMAT) represents a new paradigm in the treatment of 

patients with external beam radiotherapy. VMAT is a subset of IMRT in which the gantry rotates 

while the beam is on to deliver dose from a range of coplanar or non-coplanar directions. Gantry 

speed, MLC leaf position and dose rate vary continuously during the irradiation. Arbitrary intensity 

distribution at each angle is delivered with multiple arcs. Dose conformity is theoretically equivalent 

to that achievable with a slice-based treatment technique (cf. tomotherapy). VMAT is ideal for 

generating conformal dose distributions ‘wrapped around’ critical organs. The demands on accurate 

dosimetry are even greater for VMAT delivery, as it involves a combination of continuous changes in 

the dose rate, gantry speed, and MLC leaf positions. 
 Studies have shown that VMAT dose distributions for prostate and cervical cancer have better 

sparing of OARs than 3DCRT and even static-field IMRT (Palma et al 2008, Zhang et al 2010). 
VMAT reduces the treatment time by a factor of 8 to 2 by using single or two rotations (arcs), 

respectively, compared to seven-field IMRT treatment plans (Clivio et al 2009, Sze et al 2011). In 

complex treatments with concave target volumes, VMAT needs usually at least two or possibly three 

arcs to be dosimetrically equivalent to fixed-gantry IMRT treatments (Wu et al 2009). However, with 

approximately spherical target volumes, like the prostate gland, one arc has been found to be adequate 

to achieve comparable dose distributions to conventional IMRT (Fontenot et al 2011). The number of 

MUs has also decreased by a factor of 2-4 by using VMAT techniques when compared to static gantry 

angle IMRT (Lee et al 2011). 

 
1.4.2.4 Tomotherapy 
 
‘Tomotherapy,’ which literally means ‘slice therapy,’ is a term derived from tomography. 

Tomotherapy is an arc-based approach to IMRT delivered using a fan-beam of radiation in 

conjunction with a binary multileaf collimator (Mackie et al 1993, Shepard et al 2000, Welsh et al 

2002, Mackie et al 2006). Tomotherapy was first realized clinically using an approach called serial 

tomotherapy. Serial tomotherapy, as embodied in the NOMOS PEACOCK system (North American 
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Scientific, Chatsworth, CA), was delivered as an add-on accessory to a conventional linac. Serial 

tomotherapy delivers a series of abutted axial arcs. A potential disadvantage of this approach is that it 

can lead to hot and cold spots due to mismatched divergence. Consequently, it requires very precise 

placement of the arcs.  

 More recently, helical tomotherapy has become widely adopted as a new and promising 

delivery method for IMRT. The first clinical helical tomotherapy (Mackie et al 1993, 1999) treatment 

machine was installed at the University of Wisconsin (UW) Comprehensive Cancer Centre. The UW 

tomotherapy research group and TomoTherapy Incorporated (Madison, WI) developed the hardware 

and software.  It was named Hi-ART for highly integrated adaptive radiotherapy.  It essentially 

represents the fusion of a computed tomography (CT) scanner and a therapeutic linac. A compact 6 

MV flattening filter free linac (waveguide: ~ 40 cm long, S-band (3 GHz)) and megavoltage CT 

detector sub-system are mounted upon a rotating gantry assembly. They are provided with power via 

slip-ring technology which also allows the transmission of data, and therefore the unit is capable of 

continuous rotation around the patient while the couch is moving through the plane defined by the 

rotating gantry, thus providing smooth helical delivery. 

A primary collimator (of tungsten) shapes the 6 MV photon beams. This collimator defines a 

geometrical projection that is 40 cm wide in the X or transverse direction by 5 cm wide in the Y or 

patient inferior-superior direction at an isocenter located 85 cm from the x-ray target (source). A 

single set of moveable (tungsten) jaws further collimates to the fan beam of adjustable thickness up to 

5 cm.  During the treatment, the radiation fan beam has a fixed thickness (1, 2.5 and 5 cm) and is 

collimated/modulated along its long axis by a binary multileaf collimator (bMLC) consisting of 64 

leaves. There are 32 leaves on each of two opposing sides (64 total) that slide past one another. Each 

of the leaves projects a shadow of 6.25 mm at the isocenter 85 cm from the x-ray target, thereby 

generating a total usable fan beam with of 40 cm. The leaves are binary (on or off) in the sense that 

the transit time from open to close is relatively short (< 25 ms). The open beam components are 

generally referred to as ‘beamlets’. Thus each leaf therefore defines a beamlet (i.e. 6.25 mm wide in 

the transverse direction at a distance of 85 cm from the source). The bMLC configuration is optimised 

and varied as a function of gantry angle using an inverse treatment planning process (Shepard et al 

2000).  

By altering leaf positions as a function of gantry position while the patient advances slowly 

through the gantry, one has great flexibility to produce the dose distributions with good target 

coverage and homogeneity together with individualized sparing OARs in a variety of tumours using 

the helical tomotherapy compare to step-and-shoot IMRT or stereotactic radiotherapy (Penagaricano 

et al 2005, Ramsey et al 2006, Soisson et al 2006, Vulpen et al 2006, Sterzing et al 2008).  

  

1.4.2.5 Stereotactic Radiosurgery and Radiotherapy  

 



Chapter 1: Introduction 

10 

 

The term 'stereotactic' defines the three-dimensional localisation of a particular point in space by a 

unique set of co-ordinates that relate to a fixed, external reference frame. Stereotactic radiosurgery 

(SRS) is a special radiotherapy technique used to irradiate intracranial lesions with 10-25 Gy dose in a 

single fraction by means of three-dimensional arrangement using a focused small ionizing radiation 

beams such as x-rays or γ-rays, eliminating the need for conventional invasive surgery. SRS is used in 

the treatment of benign and malignant lesions as well as functional disorders (e.g. pituitary adenoma, 

acoustic neuroma, meningioma, arteriovenous malformations (AVM) etc). The AVM is the most 

common application of radiosurgery (Webb 1993).  

In India, gamma rays from a dedicated Gamma Knife system (Elekta Medical System) and 

megavoltage x-rays from linac are used to perform SRS. In the linac-based radiosurgery system (X-

Knife), field sizes are defined by secondary/tertiary collimators (circular cones or micro multileaf 

collimator, µMLC) that are either attached to the end of the gantry head or an integral part of the 

gantry head. Cones are divergent and are used to define circular fields with diameters typically 

varying from 5 mm to 40 mm (Das et al 1996).   

 In case of stereotactic radiotherapy (SRT), the dose is delivered in multiple fractions (1.8-2 

Gy per fraction over 5-6 weeks). The SRT can be used for curative as well as boost to primary 

lesion/target. The SRT is done by linac using X-Knife system. In general SRS/SRT uses small fields 

under conditions of lateral electronic disequilibrium and dosimetry is verified by comparing measured 

data from multiple detectors recommended for small field dosimetry. AAPM TG-135 has provided 

detailed discussion on the dosimetry tools and techniques for SRS (Dieterich et al 2011). 

 Recently a frameless stereotactic radiosurgical device, called Cyberknife, has been developed. 

Cyberknife uses a miniature 6 MV linac mounted on a robotic arm. The linac uses an x-band cavity 

magnetron and a standing wave, side-coupled accelerating waveguide, to produce a 6 MV x-ray 

treatment beams with a dose-rate of 1000 cGy/min. There is no beam flattening filter in Cyberknife. 

Secondary collimation is provided using twelve fixed circular collimators with diameters ranging 

from 0.5- 6 cm. A complete description of this treatment system is given in Kilby et al (2010). The 

system uses on-line x-ray images to continuously monitor the treatment volume within a patient with 

a high degree of precision. The megavoltage x-ray beam is aimed at the precisely determined 

treatment volume using pre-planned beam orientation. Cyberknife can be used to treat lesions outside 

the cranium (e.g. spine, lung, prostate, liver etc.). Skeletal landmarks or fiducial markers implanted in 

a patient are used to treat lesions of the thorax and the pelvis.  

 

1.4.2.6 Stereotactic Ablative Body Radiotherapy  

 
In the early 1990s, Lax et al (1994) and Blomgren et al (1995) extrapolated the concept of stereotactic 

radiosurgery in the treatment of intracranial tumour to extracranial sites like liver and lung with 

encouraging results. The term ‘stereotactic body radiotherapy’ was coined to describe the precise 

delivery of a focused small  ionizing radiation beams to body lesions (lung, liver and spine tumours) 
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using a 3D coordinated systems/arrangements with reference to a fiducial marker that can be readily 

detected by imaging system. Its synonym, stereotactic ablative body radiotherapy (SABR, 

pronounced as ‘SAY-BER’) has recently been advocated because the term ‘ablation’ can more 

accurately reflect the ultra-high radiation dose delivered in each fraction of radiation treatment, so as 

to overwhelm the normal cellular repair mechanisms and ‘ablate’ the tumour and adjacent tissues 

(Loo et al 2010).    

SABR is a form of high-precision radiotherapy characterized by: reproducible immobilization 

to avoid patient movement during radiation delivery; measures to account for tumour motion during 

treatment planning and radiation delivery; dose distributions tightly covering the tumour, with steep 

dose gradients away from the tumour into surrounding normal tissues in order to minimize toxicity. 

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality 

worldwide, with over 1 million deaths every year (Ferlay et al 2010). The SABR delivered to stage I 

primary NSCLC achieves excellent local control rates.Typical radical radiotherapy regimes for stage I 

lung cancer, prior to SABR, consisted of total doses of 55-74 Gy in 20-37 fractions of 2-2.75 Gy over 

a period of 4-7.5 weeks. Typical SABR regimes now deliver a dose of 54-60 Gy in 3-5 fractions of 

12-20 Gy per fraction (Goldsmith and Gaya 2012).  

The major feature that separates SBRT from conventional radiation treatment is the delivery 

of large doses in a few fractions, which results in a high biological effective dose (BED). In 

conventional radiotherapy, fractionated schedules delivering 2 Gy per fraction (e.g. 64 Gy in 32 

fractions or 70 Gy in 35 fractions) typically have a BED (for α/β = 10 Gy) of 70-80 Gy (Fowler et al 

2004). In contrast, modern SABR schedules use doses equivalent to a BED >100 Gy, resulting in 

superior tumour cell kill while minimizing the dose to the surrounding tissues, which is a significant 

improvement compared with conventional fractionated radiotherapy in stage I NSCLC (Nagata et al 

2005, Chang et al 2008, Zhang et al 2011). A frequently used schedule for peripheral lung tumours is 

20 Gy × 3 fractions, which delivers a BED as high as 180 Gy (McGarry et al 2005). The delivery of 

such high doses of radiotherapy per fraction (hypofractionation) means that the irradiated tumour cells 

(as well as any normal body cells irradiated to the prescribed dose) cannot possibly repair DNA strand 

breaks. The prescribed dose (> 8.0 Gy per fraction) is considered ablative (Timmerman 2008). 

 This unique therapeutic advantage has been exploited with good results for early-stage, 

inoperable NSCLC (McGarry et al 2005, Nagata et al 2005, Xia et al 2006, Chang et al 2008, 

Lagerwaard et al 2008). AAPM TG-101 has provided detailed discussion on SABR including 

protocols, equipment, and QA procedures etc. (Benedict et al 2010). 

 

1.5 Challenges in small-field dosimetry 
 
In modern radiation therapy small photon fields are often used during SRS, SABR, IMRT or VMAT 

in order to achieve the desired, highly-focused and precisely modulated dose distribution. A photon 

field is defined as ‘small’ when the field size is not large enough to provide charged particle 
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equilibrium (CPE) at the position of measurement; that is, when the field width is smaller than the 

(lateral) range of secondary charged particles for the beam quality in question. Accurate determination 

of the doses delivered by these small or very small radiation fields present many challenges not 

encountered for large fields (Sánchez-Doblado et al 2007, Capote et al 2004, Alfonso et al 2008, Das 

at al 2008b, Bouchard et al 2009, Crop et al 2009, IPEM 2010, Francescon et al 2011, Scott et al 

2012, Fenwick et al 2013, Kumar et al 2015b). The dosimetry of small megavoltage photon fields is 

challenging for several reasons including a lack of lateral electronic equilibrium, source occlusion, 

and the size of detector with respect to the field size (Treuer et al 1993, McKerracher and Thwaites 

1999, Das et al 2008b, Alfonso et al 2008, IPEM 2010). 

 

1.5.1 Lack of charged particle equilibrium 
 
When a photon interacts with matter, it transfers energy to an electron (or positron). The secondary 

electrons produced by high-energy photons have long ranges and even though they initially travel 

predominantly in the forward direction, they will spread laterally because of electron scattering. The 

longest electron ranges in media irradiated by megavoltage photon beams are of the order of a few 

centimetres. Near the edges of (very) small fields electrons scatter from inside to outside the field and 

there is no compensating scatter into the field from outside. Since the electron range increases with 

energy, the minimum beam radius at which lateral electronic disequilibrium becomes significant 

increases as the beam energy increases (Metcalfe et al 1997).  Thus material laterally as well as 

‘upstream’ is necessary for the establishment of CPE. Lateral electronic disequilibrium is said to exist 

on the central axis for small beam radii/sizes because electrons displaced laterally away from the 

beam axis are not replaced by equal numbers displaced laterally towards the central axis. This is 

illustrated in figure 1.2.  

 

 
 

Figure 1.2: Schematic illustration of charged particle disequilibrium for very narrow fields. For a given 
incident photon fluence (or kerma), the electron fluence at position ×  due to the narrow (dashed) photon 
field is reduced below that obtained for a broader equilibrium photon field (edges indicated by full lines); 
electrons ‘1’ are not replaced by electrons ‘2’. (adapted from Gagliardi et al (2011)) 
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At a given photon energy (or MV), as the field size is reduced beyond a certain width the 

amount of material laterally will no longer be sufficient and the electron fluence and therefore the 

dose will fall: electrons leaving the volume laterally (labelled ‘1’) will no longer be replaced by ones 

entering (labelled ‘2’). This results in loss of lateral electronic equilibrium. Lateral charge particle 

disequilibrium thus always occurs at the beam edges and exits at distances from a beam edge up to the 

maximum lateral secondary electron range. The distance required in a medium for electronic 

equilibrium depends on the beam energy, and the composition and density of the medium. In non-

equilibrium (small) fields, perturbation factors which correct for minor deviations from Bragg-Gray 

conditions in ‘reference conditions’ are  invalid for converting  (air) ionization to dose to water using 

(conventional) cavity theory (Sánchez-Doblado et al 2007, Kumar et al 2015b). 

  Li et al (1995) defined the lateral range required for CPE (rlcpe) at a given energy or beam 

quality, and obtained values of rlcpe from Monte-Carlo-derived ratios D/Kcol (dose to collision kerma) 

in water. These authors derived the approximation rlcpe (cm) = 5.973 × TPR20,10 – 2.688, where  rlcpe is 

defined as the maximum radius until which a beam can be considered to be ‘small’ for the beam 

quality TPR20,10 of the standard reference field, fref = 10 cm × 10 cm. Small-beam conditions can be 

assumed to exist when the external edge of the detector’s sensitive volume is at a distance less than 

rlcpe from the beam edge.  

   

1.5.2 Source occlusion 
 
The bremsstrahlung photon fluence generated by linacs can be divided into two components: i) direct 

radiation which originates from the effective x-ray source/focal spot in the bremsstrahlung target 

(usually of tungsten), and ii) indirect or extra-focal radiation which originates when target-generated 

bremsstrahlung photons are scattered at structures near or below the target (i.e. primary collimator, 

flattening filter, secondary collimators).  The ‘direct-beam’ source or focal spot is not a point, but has 

an extended size which is usually defined by the full width at half maximum (FWHM) of the 

bremsstrahlung photon fluence distribution exiting the target; it is typically represented as a Gaussian 

distribution.  

As collimator aperture of a linear accelerator is decreased, less of the flattening filter is 

exposed or ‘visible’ from the position of measurement. In small fields, therefore, indirect/extra-focal 

becomes less important in the determination of dose. When the beam aperture is extremely narrow, 

part of the extended source/direct beam source cannot be ‘seen’ at all at the position of the 

phantom/patient as shown in figure 1.3.  
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Figure 1.3: Schematic illustration of the source occlusion effect (adapted from Scott et al (2009)) 

 

 

The larger the focal spot size, the larger the collimator setting/jaw setting at which occlusion 

of the direct beam source begins (IPEM 2010). For large field sizes (i.e. approx. 4 × 4 cm2 or greater) 

the whole of the focal spot can be seen from the detector location on central axis, and so the direct 

primary fluence component remains approximately constant. For very small fields the jaws are so 

close together that the outer edges of the focal spot are ‘occluded’ and therefore the kerma and the 

dose on the central axis falls significantly.   

Focal spot sizes are difficult to determine experimentally, but Monte Carlo phase-space file 

modelling, where the focal spot FWHM is assumed to be between 1.0 and 1.5 mm, usually produces 

excellent agreement with measurement for percentage depth-doses (PDD) and beam profiles in water 

(Wang and Leszczynski 2007). To avoid dose calculation errors when modelling linear accelerators 

an accurate simulation of the extended source (focal spot) is of great importance (Scott et al 2008, 

Underwood 2013c). 

 

1.5.3 Volume averaging 
 

In addition to the constraints posed by the intrinsic radiation field and beam collimation, the detector 

size, relative to the dimensions of the field, plays a fundamental role. Due to the finite size of the 

detector its signal is necessarily an average over its volume. If the dose varies over the volume of the 

detector, this averaging can yield a different signal compared to that which an infinitesimally small 

detector would measure when positioned in the centre of the volume of the large detector. This is 

what is meant by so-called ‘volume averaging’.  
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When the particle fluence crosses the detector volume, the detector signal Mdet is proportional 

to the average dose in its sensitive volume, detD , (volume-averaging effect). If the field size is smaller 

than the detector dimensions and therefore particles traverse only a fraction of the sensitive volume, 

the detector signal averaged over its entire volume will be clearly unrepresentative of the dose at the 

reference position in the uniform medium; a severe under-reading may result.  Ideally a tiny, medium-

equivalent detector is required– which doesn’t exist.   
In summary, the response of detectors in small fields can vary rapidly with field size due to 

volume averaging together with source occlusion and the lack of lateral electron equilibrium (Alfonso 

et al 2008, Ding and Ding 2012). During the course of this thesis work, the above mentioned effects 

have been studied deeply. 

 

1.6 Interaction processes  

 
The most important interactions of radiotherapy-quality photon beams with matter are: 

• The attenuation of (primary) photons 

• Energy transfer to charged particles, i.e. electrons and positrons 

• Transport of charged particles 

• Deposition of energy 

 

The three most important photon interaction types at energies used in radiotherapy (Attix 1986, 

Dance and Carlsson 2007) are photoelectric, Compton and pair production processes. Other 

interaction processes are the coherent (Classical or Rayleigh) scattering and γ-n interactions, although 

their cross sections are small at radiotherapy energies. Figure 1.4 summarises the main interaction 

processes. The probability of each is determined by a cross section which depends on the photon 

energy and on the density and atomic number of the medium. More detailed information on photon 

interaction processes can be found in Attix (1986).  

 

1.7 The need for Monte-Carlo simulation in dosimetry studies 

 
Monte-Carlo (MC) calculations are an integral part of many current studies in radiotherapy. 

Particularly in radiation dosimetry, where experiments are very difficult to perform with an adequate 

degree of precision, and where many of the correction factors cannot be measured directly, many of 

the quantities of interest are determined using MC simulations (Mackie 1990, Rogers and Bielajew 

1990, Andreo 1991, Buckley 2005, Crop et al 2009, Seco and Verhaegen 2013  ). 

Monte-Carlo is especially valuable when the width of the photon field is so small as to make 

even quasi-CPE impossible (IPEM 2010). In small fields, volume-averaging together with source 

occlusion and loss of lateral electronic equilibrium result in the reduced signal observed in the central 

part of the beam and a drop in the measured beam output (Metcalfe et al 1997, Scott et al 2008, Scott 

2009a, Underwood 2013c). 
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Figure 1.4: Primary photon interaction processes with their secondary emissions 

 
  

Measurement-based effects include fluence perturbations caused by detectors with 

dimensions similar to the dimensions of the radiation fields, dose-averaging effects for measurements 

of peak dose distributions, and the increased errors for very small fields introduced by slight 

geometrical detector misalignment. In order to get the source-occlusion effect right, there is therefore 

a need to construct a detailed Monte-Carlo model of a medical linear accelerator head using a 

suitable MC software system.  A validated Monte-Carlo model of accelerators is used further for the 

prediction of detector response, variations of photon and electron spectra in water and detectors, the 

calculation of dosimetric parameters (output factors, depth dose curves, and beam profiles) and the 

calculation of detector correction factors for small, non-standard treatment fields used for the 
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advanced radiotherapy techniques. MC simulation has established itself as a useful tool in radiation 

therapy dosimetry and more recently for the study of small photon fields (Buckley 2005, Scott et al 

2008, Scott et al 2009, Scott 2009a, Wulff 2010, Francescon et al 2011, Cranmer-Sargison et al 

2011a, 2011b, 2012, Charles et al 2012, 2013, Scott et al 2012, Fenwick et al 2013, Underwood 

2013c, Benmakhlouf et al 2014, 2015). 

 

1.8  Monte Carlo method   
 
 

Monte-Carlo simulation of radiation transport is a very powerful technique. There are basically no 

exact analytical solutions to the Boltzmann Transport equation.  Even the ‘straightforward’ situation 

(in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for 

analytical methods without making gross approximations such as ignoring energy-loss straggling, 

large-angle single scattering and bremsstrahlung production. Monte Carlo is essential when radiation 

is transported from one medium into another. The MC simulation of particle transport requires a great 

deal of information regarding the interaction properties of the particle and the media through which it 

travels. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set 

of interaction cross sections is simply read in and the simulation continues as though the new medium 

were infinite until the next boundary is encountered. Details on Monte-Carlo techniques for electron 

and photon transport are given in Rogers and Bielajew (1990).  

Having been used in medical physics for over fifty years (Rogers 2006), MC is considered to 

be the gold-standard transport simulation method for external-beam radiotherapy, brachytherapy and 

radionuclide therapy.  A variety of different codes exists to enhance and optimise the performance of 

MC simulations for different particles and different energy ranges, the most widely used for medical 

application being MCNP (Brown 2003), GEANT (Agostinelli  et al 2003),  FLUKA (Battistoni et al 

2007), PENELOPE (Salvat et al 2014) and EGSnrc (Kawrakow et al 2011). The PENELOPE and 

EGSnrc MC systems are to date the only MC systems capable of simulating accurately the response 

of ionization chambers; both the above codes pass the stringent test of verifying Fano’s theorem (Fano 

1954, Smyth 1986, Seuntjens et al 2002, Sempau and Andreo 2006). The EGSnrc Monte-Carlo 

system was chosen for this work. 

 

1.8.1 The EGSnrc Monte Carlo system 

The EGSnrc Monte Carlo code system (Electron-Gamma Shower) developed at the National Research 

Council of Canada (NRC) is a package of codes for the simulation of electron and photon transport 

through an arbitrary geometry (Kawrakow 2000a, Kawrakow et al 2011). It is the most recent version 

in the family of EGS Monte Carlo codes and is substantial improvement over its predecessor, the 

EGS4 version (Nelson et al 1985). Among other changes, EGSnrc uses an improved multiple-

scattering theory which includes relativistic spin effects in the cross section, a more accurate boundary 
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crossing algorithm, and improved sampling algorithms for a variety of energy and angular 

distributions. For a more detailed description of the features of the EGSnrc system, the reader is 

referred to the EGSnrc manual (Kawrakow et al 2011). The newest version of EGSnrc is a multi-

platform version of the EGSnrc code, which retains all the physics of EGSnrc (Kawrakow et al 2006). 

 The EGSnrc Monte-Carlo code (Kawrakow 2000a, Kawrakow et al 2011) has been shown to 

be accurate within 0.1% with respect to its own cross sections for relative ionization chamber 

response calculations; this is known as the Fano test (Kawrakow 2000b). 

 
1.8.1.1 User-codes of the EGSnrc Monte Carlo system employed in the present work 
 
 
The EGSnrc system includes a set of user-codes (Rogers et al 2011b) developed for specific types of 

calculations which allows the definition of a geometry, the set-up of various particle sources (e.g. 

parallel beam of photons with certain spectral distribution), and the scoring of quantities sufficient for 

most problems. Table 1.1 describes the EGSnrc user-codes previously developed and used in the 

present study. 

 

Table 1.1: Brief description of the EGSnrc user-code used in the present study. 

 

User-code Description 

DOSRZnrc Computes the dose, kerma and dose to kerma ratios to individual regions within a 

cylindrically symmetric (RZ) geometry. In the present study, it is used to generate 

depth dose information for a variety of monoenergetic photon beams as well as for 

input spectra. 
 

FLURZnrc Computes the fluence spectra (photon and electron (+ positron)) for designated 

regions within a cylindrically symmetric (RZ) geometry. It also outputs the mean 

energy of particles in a given region. 
 

CAVRZnrc Computes the total dose to a region (or regions) designated as the cavity in a 

cylindrically symmetric (RZ) geometry and to calculate some correction factors.  It is 

similar to DOSRZnrc but also scores a variety of quantities which are of specific 

interest to dosimetry calculations for an ion chamber. 
 

SPRZnrc Computes the mass restricted electronic stopping-power ratio, medium to detector 

material specified in the input file for each region within the geometry. 
 

‘g’ Computes the mass energy-absorption and mass energy-transfer coefficients for the 

medium of interest. 

 

A detailed description of these user-codes is given in Rogers et al (2011b).  
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1.8.1.2 Material data sets required for MC simulation 

 
Prior to all simulations the cross section databases for photon and electron interactions are initialized. 

The data sets are provided in look-up tables for the materials found in the simulation geometries. 

PEGS4 is a stand-alone programme that is used to create material data files containing much of the 

cross section information for the materials of interest in the calculations (Nelson et al 1985, 

Kawrakow et al 2006, 2011). When a material data set is created using PEGS4, lower energy bounds 

AP and AE are defined where AP and AE are the production thresholds for secondary bremsstrahlung 

photons and knock-on electrons respectively. These parameters represent the lowest energies for 

which the material data are generated. Among other properties, at the time of creation of a data set, 

PEGS4 defines the density of the material and whether or not ICRU (or any other) density effect 

corrections will be applied. In this thesis, the required PEGS4 datafiles were generated depending 

upon the type of calculation. 

 
1.8.2 Modelling a linac using BEAMnrc 
 
A number of systems have been used for modelling radiotherapy linacs. The three systems most 

frequently used in medical physics are BEAMnrc (Rogers et al 1995, 2011a) which uses the EGSnrc 

code, PENELOPE (Salvat et al 2014) and MCNP (Brown 2003).  

In this thesis (chapters 4-6), Monte-Carlo models of a Varian 2100C linear accelerator for 

photon beams of nominal energy 15 MV (Scott et al 2009) and of a Varian 2100 iX linear accelerator 

(Varian Medical Systems, Palo Alto, CA) for beams of nominal energy 6 MV (Underwood et al 

2013c) were used. A Monte-Carlo model of both accelerators studied here was constructed in the 

BEAMnrc system (Rogers et al 1995, 2011a). BEAMnrc is a package that allows the user to quickly 

describe the geometry of their model and choose suitable values for parameters without advanced 

knowledge of any programming language. One builds a BEAMnrc model of a linear accelerator head 

by configuring a series of component modules (CM) to dimensions provided by the manufacturer. The 

typical CM used in modelling an accelerator head are: SLABS, CONS3R, FLATFILT, CHAMBER 

and JAWS. 

The primary output of a BEAMnrc simulation is a phase space file. The measurement of this 

phase space is nearly impossible and not trivial even for just one of the dimensions. This file contains 

information on all particles crossing the xy-plane located at a fixed point along the z-axis. The xy-

plane is referred to as a scoring plane, where any number of scoring planes can be defined and located 

along the accelerator head z-axis. A phase space file contains information on each particle: the energy 

(E), the xy-position (X,Y), the direction cosines with respect to the x and y-axis (U,V), the direction 

cosine of the angle with respect to the z-axis (SIGN(W)), the particle weight (WT), the charge (IQ), 

the number of times the particle has crossed the scoring plane (NPASS) and other particle history 

information (LATCH) (Rogers et al 2011a). 
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The 15 MV and 6 MV Monte-Carlo beam models used for the work described in this thesis 

were constructed by Scott et al (2009a) and by Underwood et al (2013c) respectively. Here the outline 

of a Monte-Carlo model of a Varian 2100C linear accelerator for photon beams of nominal energy 15 

MV, adapted from Scott et al (2009a), is shown. 

 

 

 
 

 

 
Figure 1.5: Outline of the MC model of a Varian 2100C linac for photon beams of nominal energy 15 MV, 
image from BEAMnrc software. The Y jaws are not shown since they are perpendicular to the page, but 
are positioned above the X jaws. The MLCs are positioned well out of the field (adapted from Scott et al 

(2009a)). 
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1.9 Aims/Objectives of the work undertaken for the thesis 

 
In this thesis the Monte-Carlo (MC) simulation of radiation transport was applied to the following 

areas:  

• A critical re-examination of certain basic concepts of radiation dosimetry (Papers III and V). 

• An improvement of our knowledge and understanding of the response of practical dosimeters 

in the non-equilibrium (small-field) situations commonly encountered in advanced 

radiotherapy treatments (Papers I and IV). 

•  A study of certain aspects of ‘cavity theory’ in order to extend the range of validity of this 

body of theory (Papers II, IV and VI). 

 

 

1.10 Scope of the present study 

 
During this thesis work the approach has been theoretical i.e. no new measurements were involved 

and Monte-Carlo simulation was the main computational tool. Certain new analytical expressions 

have been developed to describe and explain the simulation results. The work presented in this thesis 

provides guidance on the types of detectors/dosimeters that can be used for reliable absorbed dose 

determination in certain situations and the ones which cannot. In this thesis, the following areas and 

associated problems have been approached/solved/tackled: 

 

• Fundamental dosimetry – kerma and its relationship to absorbed dose and to energy 

conservation (Papers III and V). 

• Small megavoltage photon fields – dosimeter response and its relationship to Bragg-Gray 

cavity theory (Papers I, II and IV). 

•  Cavity theory – an exploration of the limits of validity of the Spencer-Attix-Nahum cavity 

theory and aspects of Burlin or general cavity theory (Paper VI). 

 

 

The scientific literature relevant to the thesis is summarized in this chapter. However, more 

specific publications are reviewed in the individual chapters. Chapters 2, 4, 5 and 6 of this thesis have 

already been published in the form of research papers in peer-reviewed international journals; these 

are denoted by Papers III, I, II and IV in the publications list.
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CHAPTER 2 
 

Monte-Carlo derived Insights into Dose-Kerma-Collision 

Kerma inter-relationships for 50-keV to 25-MeV photon 

beams in water, aluminium and copper 
 

 

2.1 Introduction 

 
Energy deposition in a photon-irradiated medium is a two-step process: (i) the photons transfer their 

energy to atomic electrons (and positrons) via the pair production, Compton and photoelectric 

processes, and (ii) these charged particles dissipate their kinetic energy in (multiple) coulomb-force 

interactions with bound atomic electrons in addition to creating bremsstrahlung photons (e.g. Attix 

1968). ICRU-85 (2011) defines kerma, K, for ionizing uncharged particles, as the quotient of dEtr   by 

dm, where dEtr is the mean sum of the initial kinetic energies of all the charged particles librated in a 

mass dm of a material by the uncharged particles incident on dm. Therefore kerma includes the energy 

that the charged particles eventually re-radiate in the form of bremsstrahlung photons and can be 

partitioned into two components, namely collision kerma, Kcol, and radiative kerma, Krad, (Attix 1979a, 

1979b). The other fundamental quantity is absorbed dose, the energy imparted to the medium by 

ionizing radiation. ICRU-85 (2011) defines absorbed dose, D, as the quotient of dε by dm, where dε is 

the mean energy imparted by ionizing radiation to medium of mass dm. The relationships between D, 

K, and Kcol, as a function of depth in photon-irradiated media are of fundamental importance in 

illustrating and quantifying the two-step process referred to above i.e. firstly transfer of energy in the 

form of kinetic energy of charged particles and secondly the imparting of this kinetic energy to the 

medium. Furthermore, absorbed dose and kerma (both types) have the same unit, gray, which 

emphasises the need for conceptual clarity on the differences between them.  

 Under charged particle equilibrium (CPE), also known as electronic equilibrium, absorbed 

dose is exactly equal to collision kerma (Dutreix et al 1965, Attix 1979a, 1986). In an irradiated 

medium, CPE is never exact, with the ratio of absorbed dose at a given point to the collision kerma at 

the same point  often written as β = (D/Kcol) (e.g. Loevinger 1981, Attix 1986, Hannallah et al 1996). 

All these relationships are critically influenced by secondary electron transport, which makes Monte-

Carlo simulation essential for obtaining accurate values of the various quantities. Monte-Carlo is 

especially valuable when the width of the photon field is so small as to make even quasi-CPE 

impossible (IPEM 2010). 

 Attix (1979a) illustrated the relationship between D, K, and Kcol as a function of depth in 

aluminium (Al) for a 6 MeV broad photon beam. He presented an analytical expression for β in the 



Chapter 2:  Monte-Carlo study of Dose and Kerma for kilo- to mega-voltage photons 

23 

 

transient-equilibrium region following Roesch (1958) and evaluated it for the 6 MeV broad photon 

beam in Al using the effective linear attenuation coefficient to account for scattered photons, as well 

as estimating the ratio D/K. Studies of the relationship between D, K and Kcol have also been 

published by Loevinger (1981), Nilsson and Brahme (1983) and Iwasaki (1994).  

 In the literature referred to above, the photon energy was limited to either Co-60 γ-rays (mean 

energy 1.25 MeV) or 6 MeV. To date, there is no comprehensive study of the relationships between 

D, K and Kcol for (broad) beams of kilovoltage (kV) to megavoltage (MV) quality, as a function of 

depth and in a variety of materials. There are also no systematic data available on how kerma and 

collision kerma differ from each other in photon beams of much higher energy in media of high 

atomic number (Z). For example, the figures illustrating how dose, kerma and collision kerma vary 

with depth in the section on transient charged-particle equilibrium in the well-respected textbook by 

Attix (1986) are  unrepresentative of  photon beams (of radiotherapy quality) in water, as it is shown 

in what follows.  

Furthermore, there is no simple analytical expression in the literature for estimating X , the 

mean distance travelled (in the direction of the primary radiation) by the secondary charged particles 

which deposit energy at the depth of interest; X plays a key role in the understanding of the 

difference between dose and collision kerma in real beams and in the numerical estimation of D/Kcol. 

Greening (1981) gives X = d = µe
-1 where µe

-1 is the linear attenuation coefficient of the secondary 

electron energy fluence but it is not straightforward to calculate µe. In this chapter an approximate 

expression for X in terms of the continuous slowing-down approximation, csda, range of the mean 

initial energy of the secondary electrons, 0( )
csda

R E , is derived and compare it to accurate Monte-

Carlo-derived values. Using this easy-to-evaluate approximation for X  in the well-known expression 

for D/Kcol (e.g. Attix 1986) leads to an expression for D/K which shows explicitly how this key 

quantity can take values both above and below unity depending on energy and material.  

 By employing the EGSnrc Monte-Carlo code system (Rogers et al 2011b) the values of D, K 

and Kcol as a function of depth in water, aluminium and copper media (thus spanning a range of 

atomic numbers) for photon energies from 50 keV to 25 MeV, as well as for several clinical x-ray 

beam qualities ranging from 100 kV to 15 MV in water have been computed. Additionally, the field-

size dependence of D/K in 'non-equilibrium’ small photon fields (e.g. Scott et al 2009, IPEM 2010) 

has been investigated for square fields ranging from 0.25 x 0.25 to 10 x 10 cm2 in a water phantom for 

megavoltage beam qualities ranging from 5 MeV to 15 MeV (mono-energetic) and spectra from 6 to 

15 MV (from Mohan et al (1985)).  

 The photon fluence, differential in energy (per unit primary photon fluence at a depth of 69 g 

cm-2), has also been computed for the case of a 25 MeV photon beam in the three materials in order to 

examine how the low-energy photon fluence (partly due to 'secondary' bremsstrahlung) changes 
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relative to the primary fluence as a function of atomic number.  The large depth was chosen to 

illustrate the effect of secondary bremsstrahlung.  

 Finally, the mean electron (+ positron) energy has been obtained as a function of depth for a 

range of megavoltage qualities including some 'clinical' photon beams; this has revealed some 

intriguing behaviour at very small depths for a 15 MeV monoenergetic beam.    

 

2.2 Materials and Methods 
 

2.2.1 Monte-Carlo Calculations  
 
The EGSnrc user-code DOSRZnrc (version: V4-2.3.2) was employed to compute dose and kerma and 

the user-code FLURZnrc to generate photon and electron fluence spectra (Rogers et al 2011b). The 

calculations were carried out with the default settings, which include modelling the Compton 

interaction for bound electrons, the effect of any atomic relaxation events, and relativistic spin effects 

in the multiple-scattering theory for charged particles. 

 

2.2.1.1 kV region  
 
For 50-250 keV photon beams, the phantom was cylindrical with radius 5 cm and height (minimal) 

0.078 cm; note that this very small height will exclude almost all backscatter. The minimum thickness 

of the scoring voxel was 0.0009 cm (Rogers and Bielajew 1985), chosen in order to reveal the very 

shallow build-up region. A PEGS4 datafile (pre-processor for EGS (Nelson et al 1985)) was 

generated with the EGSnrcMP package by setting the parameters AP = 1 keV, AE = 512 keV (total 

energy) where AP and AE are the production thresholds for secondary bremsstrahlung photons and 

knock-on electrons respectively. Electrons and photons were followed down to 1 keV kinetic energy 

(i.e. ECUT (electron cut-off energy) = 512 keV (total energy) and PCUT = 1 keV). The ‘Source 2’ 

option of the EGSnrc Monte-Carlo code system (i.e. a broad parallel beam) was used for this energy 

region.  

 Dose, kerma and D/K ratios were computed as a function of depth in the cylindrical phantom 

for beam qualities 50-250 keV using DOSRZnrc. When dose and kerma versus depth (in water) were 

plotted for a 100 keV monoenergetic photon beam, a bi-phasic build-up was observed, which 

warranted further investigation. Consequently FLURZnrc was used to obtain the primary electron 

fluence per MeV per unit incident photon fluence at each depth in the cylindrical water phantom as 

described above; the spectral bin width was selected to be 1.0 keV for the lowest energy bin (1.0 keV 

– 2.0 keV), then 2.0 keV for the next 2 bins and was gradually increased as the energy increased up to 

10 keV, and was set at 5 keV thereafter. The beam qualities of 100 and 250 kV using the spectra 

distributed with the EGSnrc Monte-Carlo code system were added (Rogers et al 2011b). 

 

2.2.1.2 MV Region  
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2.2.1.2.1 Computation of D, K, Kcol, D/K and β as a function of depth 
 
For Co-60 to 25 MeV photon beams, a beam radius of 5.55 cm (equivalent to a '10 cm ×10 cm' field 

size; Day and Aird 1996) was defined on the phantom surface. The ‘Source 4’ option of the EGSnrc 

Monte-Carlo code system (parallel beam, scoring regions on the central axis for different beam radii) 

was used; with this option the outer radius of the cylindrical phantom is effectively infinite. The 

height of the cylindrical phantom was fixed at 75 cm. The scoring cavity had a circular cross-section 

of 2 cm diameter with a height equal to the slab thickness which was varied from very small in the 

build-up region (e.g. for Co-60, 0.05 cm in water and 0.005 cm in Cu) to greater values at greater 

depths. The electron transport cut-off ECUT (kinetic energy) was set at 152 keV for water, 220 keV 

for aluminium and 103 keV for copper, chosen such that the csda ranges of electrons with energies 

equal to ECUT were never greater than 1/3 of the slab thickness (Rogers 1984, Rogers and Bielajew 

1990). The photon transport cut-off PCUT was set at 1 keV in all cases. D, K and D/K were computed 

along the central axis of the beam from the surface to the end of the cylindrical phantom.  

It is emphasised that kerma should not be computed by simply ‘switching off’ secondary 

charged-particle transport in the Monte-Carlo photon simulation and scoring energy deposition (per 

unit mass) as kerma; this approach removes any possibility of ‘secondary’ bremsstrahlung transport, 

and therefore underestimates the photon fluence ‘downstream’ thus distorting the computation of 

kerma at these greater depths. DOSRZnrc scores kerma by summing the initial kinetic energies of the 

secondary electrons (and positrons) at their point of creation but these particles are subsequently 

transported, thus ensuring that secondary bremsstrahlung photons are generated and make their 

contribution to kerma further downstream. This secondary bremsstrahlung is of critical importance at 

high energies in high-Z media. 

As there is no option available in the user-code DOSRZnrc to compute collision kerma Kcol 

directly, the ratio (Kcol/K) was firstly obtained from the 'photon cavity integrals' given below 

(equations (2.1) and (2.2)). In order to evaluate equations (2.1) and (2.2) the total photon fluence per 

MeV per unit incident photon fluence was scored at each depth along the central axis of the 

cylindrical phantom using FLURZnrc. K and Kcol were then calculated over energy fluence spectrum 

using the following cavity integrals (e.g. Nahum 2007b):  

max
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where k is the photon energy, µ tr(k)/ρ the mass energy-transfer coefficient, µen(k)/ρ the  mass energy-

absorption coefficient, and dФmed/dk  the photon fluence, differential in energy, in the medium2 

(which can also be written [Φk]med).  

From equations (2.1) and (2.2), Kcol/K = (1 – g ) was calculated at each depth in the cylinder 

and multiplied by K from DOSRZnrc to yield Kcol, and hence D/Kcol (= β)  as a function of depth using 

the values of D also computed using DOSRZnrc. The D/K ratios at corresponding depths were 

obtained directly from the DOSRZnrc simulations.  

Dose, kerma and D/K were computed as a function of depth for beam qualities ranging from 

Co-60 to 25 MeV photon beams in water, aluminium and copper. The parameter β as a function of 

depth was derived as described above for the three materials. Tables 2.2 and 2.3 compare present 

study D/K and β values with published data. The total photon fluence, differential in energy, as a 

function of depth was also obtained from FLURZnrc in the three phantom materials irradiated with 25 

MeV photon beams in order to investigate the magnitude of the low–energy photon fluence (partly 

due to 'secondary' bremsstrahlung) relative to the primary fluence. 

 

2.2.1.2.2 Computation of D/K in ‘non-equilibrium’ small photon fields as a function of field size 
  

The D/K ratios in ‘non-equilibrium’ small photon fields for square field sizes ranging from 0.25 x 

0.25 to 10 × 10 cm2  were computed in a water medium for a range of beam qualities ranging from 5 

to 15 MeV including clinical linac spectra (for point sources) of 6, 10 and 15 MV from Mohan et al  

(1985).   

 The D/K ratios were computed for each field size using DOSRZnrc with the ‘source 1’ option 

(i.e. point source, incident on front face). The scoring volume was a cylinder with a circular cross-

section of 2.26 mm diameter and 2.0 mm thickness located on the central axis at 10 cm depth in a 

cylindrical water phantom (radius 15 cm, thickness 30 cm) to ensure sufficient depth beyond the 

depth of maximum dose (dmax) for the absorbed dose and kerma curves to become quasi-parallel to 

each other (Attix 1986). The source to phantom surface distance was 100 cm. The beam radius 

equivalent to each square field size (i.e. 0.25 × 0.25 to 10 × 10 cm2) was defined at the phantom 

surface. ECUT was set at 512 keV (total energy) and PCUT at 1 keV, i.e. electrons and photons were 

generated and followed down to 1 keV.  

 

2.2.1.2.3 Mean electron energy 
 
To see how electron (+ positron) fluence spectra change with depth for megavoltage photons at a 

range of beam energies/qualities, the mean electron (+ positron) energies were obtained from   

                                                      
2 Kerma computed from equation (2.1) was compared to the values obtained from DOSRZnrc for a number of 

data points, with identical normalization, and the agreement was generally within ±0.5%.   
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(2.3)  

where 
prim

E ( )zΦ is the ‘primary’ electron (+ positron) fluence, differential in energy (i.e. excluding 

‘knock-on’ electrons, or delta-rays) at different depths z. These fluence spectra  were generated  for 

(broad, parallel) beams ranging from Co-60 to 15 MeV including 'clinical' photon beams of 6, 10 and 

15 MV using FLURZnrc, with the same ECUT and PCUT as above. The source spectra employed 

were those distributed with the EGSnrc code system (Rogers et al 2011b) for Co-60 γ-rays (Rogers et 

al 1988), and for 6, 10 and 15 MV 'clinical' photon beams (Mohan et al 1985). 

  

2.2.2 Simple analytical expressions for X ,  D/Kcol and D /K  
 

Attix (1979a, 1986) has given the following expression for the absorbed dose to collision kerma ratio 

for the ‘transient CPE’ condition: 

( )eff

col

  
XD

e
K

µ
ρβ= =     (2.4a) 

                 

( )eff 1+   X
µ
ρ

≈
  

   (2.4b) 

This is the ratio of the photon fluence (integrated over energy) at the centre of (secondary) 

electron production, CEP (e.g. Boutillon and Niatel 1973), to the photon fluence at the depth of 

interest P, where X is the distance between these depths. Equation (2.4b) assumes that X <<  
effµρ  

,  the photon mean free path in units of mass per distance squared. The ‘effective’ mass attenuation 

coefficient
effµ ρ  is smaller than the ‘narrow-beam’ coefficient µ ρ  due to the build-up of scattered 

photons; the 
effµ ρ from the gradient of the Monte-Carlo-generated kerma versus depth curves was 

obtained for each beam quality and material (see tables 2.5a-c).  

 The factor β is also involved in the determination of primary standards for the quantity air 

kerma for Co-60 and Ir-192 gamma-ray sources using thick-walled graphite cavity ionization 

chambers. The secondary electrons that contribute to ionization in the cavity gas originate from 

photon interactions that take place within the wall at a point upstream from the cavity and therefore 

this photon fluence is not been attenuated by the full wall thickness (see figure 2.1). The factor Kcep 

accounts for the difference in the positions of the centre of electron production and point of interest; it 
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is one of the components of the overall wall correction factor (Boutillon and Niatel 1973, Attix 1984, 

Sander and Nutbrown 2006, Burns et al 2007); Kcep is related to D/Kcol through (Kcep)
-1 = β  = D/Kcol.  

 

Figure 2.1: Pictorial explanation of equation (2.5), the simple analytical expression for empX . Three 

secondary electron tracks of initial energy o
E , are shown, which contribute fluence (track length per unit 

volume) and hence deposit energy (and therefore dose) in a small volume at the depth of interest (P), 
where dose and kerma are required. The CEP is the mean origin of the electrons which contribute fluence 
to the small volume at P.  

 
An expression for X will now be developed; clearly, it will be related to the ranges of the 

secondary electrons. Figure 2.1 is a simplified representation of the situation. The quantity csda 0( )R E , 

the continuous slowing-down range, is taken as a first-order approximation of the mean distance a 

secondary electron travels in the photon direction, where 0E  is  the mean initial electron energy of 

the secondary electrons set in motion by photons. Contributions to the electron fluence, and hence to 

the dose, in a small volume at P arise from electrons with their positions of origin ranging from very 

close to P to a maximum distance equal to csda 0( )R E . It is therefore reasonable to assume that mean 

position of the origin of the secondary electrons (i.e. the CEP discussed above) is at a distance 

approximately equal to 0.5× csda 0( )R E from P. Hence the following empirical expression is proposed 

for X , denoted by empX : 

 

emp csda 0  0.5 ( )X R E≈ ×     (2.5) 

The value of X  is subject to two effects which act in opposite directions. Firstly the csda 

range automatically includes the detours of electron tracks, which are due primarily to elastic nuclear 

scattering (e.g. Tabata and Andreo 1998); consequently the straight-line distance will be less than the 

csda range and this will effectively reduce the factor multiplying csda 0( )R E below 0.5. However, the 

contribution to the dose at P from electrons originating at different upstream distances will, to first 

order, be proportional to their contributions to the electron fluence at P (ignoring the relatively minor 
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variation of the electronic stopping power, el el( / ) orE s Sd d , with energy at relativistic energies). 

Now the fluence at ‘P’ per electron will be greater for the more oblique or diffuse electron tracks, and 

the average degree of obliquity will tend to increase with distance from the point of creation (cf. the 

build-up of electron fluence, and hence dose, in a broad electron beam); the tracks in the volume at P 

in figure 2.1 indicate schematically this increasing obliquity. This second effect means that electrons 

originating furthest away will make the greatest contribution to the fluence at ‘P’, and this will tend to 

increase the multiplying factor. Due to these two competing effects it has been chosen not to modify 

the factor 0.5 in equation (2.5). 

Combining equations (2.4b) and (2.5), the following approximate expression for β, the dose 

to collision kerma ratio is arrived:  

( )eff med

csda 0

col med

 1+ 0.5 ( )
k

kD
R E

K

µ

ρ

     ≈ ×          (2.6) 

  An estimate of 0E   is also required. It is straightforward to show that the mean initial energy 

of secondary electrons liberated by photons of energy k is given by 

( )
( )

( )
( ) ( ) ( )

tr total

0

pe C pp2

k k
E k

k k k k

µ σ

µ σ σ σ

    
= × ×      + +        (2.7) 

 

where ( )total kσ , ( )pp kσ  , ( )C kσ  and ( )pe kσ  are the total, pair production, Compton and 

photoelectric atomic interaction cross sections at photon energy k respectively for the medium of 

interest. In the case of a photon spectrum, e.g. an x-ray beam, the energy k in equation (2.7) should be 

a collision-kerma-weighted mean value over the photon fluence spectrum, k , i.e. weighted by 

µen(k)/ρ. 

An approximate expression for (D/K) now follows. Firstly the equations (2.1) and (2.2) is 

combined to yield  

 ( )col

med
med

 1-
k

K
g

K

  = 
     

  (2.8) 

where k  is the mean energy of the photon beam (for monoenergetic photons  k  = k; for a spectrum - 

see above) and 
k

g  is the average fraction of the secondary electron energy re-radiated as 

bremsstrahlung for photons  of energy k   in medium med. Eliminating Kcol between equations (2.6) 

and (2.8) and replacing µeff/ρ by µ/ρ, the following approximate expression for the dose to kerma ratio 

is arrived:   
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( )( ) ( )
med
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anl, med

 1- 1+ 0.5 ( )
k k

kD
g R E

K

µ

ρ

 
   ≈    

 

 (2.9)

 

It is seen that the first term in equation (2.9) is always less than (or equal to) unity and the 

second term always greater than unity. The difference between µeff/ρ and µ/ρ has been ignored, firstly 

as there is no simple way to estimate this difference, and secondly as equation (2.9) is an approximate 

expression. 

 Finally, returning to the more exact expression (2.4a) for D/Kcol and re-arranging it, X can be 

written as 

eff
e

col

D
X Log

K

µ
ρ

   
=   
   

     (2.10) 

Values of X were obtained from equation (2.10) for photon energies ranging from 5 MeV - 

25 MeV for the three materials including clinical beams (Co-60, 6 MV, 10 MV and 15 MV) for water 

medium; in what follows the X obtained from equation (2.10) is denoted by MCX  as both D/Kcol and 

µeff/ρ  were obtained from Monte-Carlo simulations. 
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Figure 2.2: (a) Dose and kerma (Gy/incident fluence) versus depth in water for broad, parallel 100 kV and 
100 keV photon beams with ECUT (k.e.) = 1 keV. (b) ‘Primary’ electron fluence (per MeV per incident 
photon fluence) versus energy (MeV) close to surface and at dmax for a broad, parallel 100 keV photon 
beam with ECUT (k.e.) = 1 keV. 

 
 

2.3 Results and Discussion 

 
2.3.1 Monte-Carlo calculations 

 
2.3.1.1 kV region  

 
Figure 2.2(a) shows the depth dependence of dose and kerma for a 100 keV monoenergetic photon 

beam and for a 100 kV spectrum in water. Figure 2.2(b) shows the primary electron fluence, 

differential in energy, close to surface and at the depth of maximum dose (dmax) in water for a 100 keV 

photon beam. The distribution of (primary) electron energy indicates that there are two distinct 

components, low-energy Compton electrons giving rise to a very rapid build-up, and a much slower 

build-up due to the higher-energy photo-electrons (Ma and Nahum 1991). At 250 keV and 250 kV, 

the bi-phasic build-up was not observed (see figure 2.3). The D/K and D/Kcol values for beam qualities 

50-250 keV in the three materials (water, aluminium, copper) are shown in table 2.1a.   
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Figure 2.3: Dose and kerma (Gy/incident fluence) versus depth in water for borad, parallel 250 keV and 
250 kV photon beams with ECUT (k.e) = 1.0 keV.  

 

 
2.3.1.2 MV Region  
 

2.3.1.2.1 D, K, Kcol, D/K and β as a function of depth 
 
 Figures 2.4(a) – 2.4(c) show the depth dependence of dose, kerma and collision kerma for a 25 MeV 

photon beam in water, aluminium and copper. Beyond the depth of maximum dose, kerma is always 

greater than dose and collision kerma less than dose. Further, as the Z of the medium increases, and 

therefore radiative kerma is enhanced due to increased (secondary) bremsstrahlung production, the 

kerma curve is ‘pulled up’ over dose curve. Figure 2.4 (d) shows the depth-dependence of the same 

quantities for the ‘clinical’ beam quality of 15 MV in water. In this case the kerma and dose curves 

cannot be separated beyond the depth of maximum dose; Table 2.1 (b) indicates that the numerical 

difference is only ≈ 0.2%. This can be compared to figure 4.7b in Attix (1986) which shows very 

different behaviour more representative of high-energy mono-energetic photons in a high-Z material 

such as figure 2.4(c) presented in this chapter. A further point to note is that the area under the kerma 

curve exceeds that for either the dose or collision-kerma curves, which demonstrates that kerma does 

not conserve energy (Kumar and Nahum 2015). 
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Figure 2.4: (a) Dose, kerma and collision kerma per incident photon fluence (Gy cm2) versus depth           
(g cm-2), for a 25 MeV photon beam in water; (b) same quantities and energy for aluminium (c) same 
quantities and energy for copper; (d) same quantities, 15 MV 'clinical' photon beam (spectrum form 
Mohan et al (1985)) in water. Dose, kerma and collision kerma were computed using DOSRnrc (and 
FLURZnrc) along central axis for a field size of 10 × 10 cm2 defined at the phantom surface. 
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Figure 2.5 depicts the variation of the ratios D/K and D/Kcol (= β) as a function of depth for all 

described materials for 25 MeV photon beams. Beyond the depth of maximum dose D/K and β remain 

very nearly constant, especially in water and aluminium. The variation of β with depth is consistent 

with that found by Iwasaki (1994). However, a slight depth dependence of the ratios D/K and D/Kcol 

can be seen, especially in copper, as Bjärngard et al (1989) pointed out; D/K increases and D/Kcol 

decreases with depth. In other words the K and Kcol ‘curves’ converge slowly towards the dose curve 

as the depth increases. This can be understood by reference to figure 2.6 that shows (at a depth ≈ 69 g 

cm-2) the fluences of low-energy photons relative to the primary fluence (i.e. at the incident energy); 

this ‘ratio’ is significantly higher in copper than in water or aluminium. This will have two effects at 

large depth: firstly the mean secondary electron energy will be slightly lower than that at shallower 

depths, which will reduce X , and therefore cause D/Kcol to be closer to unity, and secondly less 

(secondary) bremsstrahlung will be generated by the secondary electrons set in motion by the lower-

energy photons, thus making g smaller and hence decreasing the difference between K and Kcol. In 

figure 2.5, for 25-MeV photons, these effects are clearly visible in copper but barely discernible in 

aluminium or water.  

 

0 5 10 15 20 25 30 35 40 45 50 55 60
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

 

D
/K

 a
n

d
 D

/K
co

l r
a
ti

o
s

Depth in medium (g cm
-2
)

 D/Kcol - Copper

 D/Kcol - Aluminium

 D/Kcol - Water

 D/K - Water

 D/K - Aluminium

 D/K - Copper

 

Figure 2.5: Monte-Carlo-derived dose to kerma (D/K) and dose to collision kerma (D/Kcol) ratios as a 
function of depth in water, aluminium and copper for a 25 MeV photon beam. The D/K and D/Kcol were 
computed along the central axis for a field size of 10 × 10 cm2 defined at the phantom surface. 
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Figure 2.6: Total photon fluence, differential in energy, along the central axis, normalized to the fluence at 
the incident energy, for a 25 MeV monoenergetic photon beam, at depths ≈ 69.5 g cm-2 in water, 
aluminium and copper.  The field size was 10 × 10 cm2 defined at the phantom surface. 

 
Figure 2.7 compares dose to kerma ratios from Monte-Carlo with those from simple 

analytical expression proposed in this chapter (equation (2.9)) as a function of photon energy in water, 

aluminium and copper for photon beams over the full energy range from 50 keV to 25 MeV. The 

agreement is generally good. One can conclude that equation (2.9) reproduces the trends with energy 

and atomic number very well for these specific materials, energies, and field sizes. 

 Table 2.1(a) gives the Monte-Carlo-derived values of D/K and D/Kcol at a depth equal to 1.5 

times the depth of maximum dose (dmax) from Co-60 γ-ray energy (1.25 MeV) to 25 MeV photon 

beams, at a  field size of 10×10 cm2 defined at the phantom surface, in water, aluminium and copper. 

It can be seen that D/K is almost always equal to or less than unity, within Monte-Carlo statistical 

uncertainties, whereas D/Kcol (= β) is always greater than unity. Further, these ratios remain almost 

constant beyond the depth of maximum dose (but see above, especially figure 2.5). It is also clear 

from table 2.1(a) that D/K decreases and D/Kcol increases with increasing beam quality. Table 2.1(b) 

gives the same quantities for clinical beam qualities in water only. It can be noted that the values for 

the 15 MV spectrum are close to those of the mono-energetic 5 MeV beam. 

Tables 2.2 and 2.3 show comparisons of D/K and D/Kcol from the present study with data 

available in the literature. There is excellent agreement between values computed in the present study 

and those from earlier studies for Co-60 energy at field sizes of 4 × 4 and 10 × 10 cm2 in both water 
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and aluminium. The only significant difference between present study numbers and the previously 

published ones is for a 6 MeV broad photon beam in aluminium where presently computed D/K 

values are ≈ 2% higher than either Attix (1979a) or Nilsson and Brahme (1983). 
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Figure 2.7: Monte-Carlo-derived dose to kerma (D/K)MC and dose to kerma (D/K)anl  evaluated from 
equation (2.9), as a function of energy, for 0.05–25 MeV photon beams in water, aluminium and copper. 
The (D/K)MC were computed along the central axis for a 10 × 10 cm2 field size defined at the phantom 
surface; the error bars are ± 2 standard deviations and correspond to statistical (Type A) uncertainties. 

 
2.3.1.2.2 D/K in ‘non-equilibrium’ small photon fields as a function of field size  
 
Figure 2.8 shows the field-size dependence of the D/K ratio along the central axis at 10 cm depth in a 

cylindrical water phantom for megavoltage beam qualities ranging from 5 to 15 MeV, including 

‘clinical’ linac spectra (for point sources) at 6, 10 and 15 MV.  It is observed that D/K decreases 

rapidly as the field size decreases below about 3 x 3 cm2. This decrease is due to the onset of (lateral) 

electronic disequilibrium as the field width becomes too small to encompass the lateral excursions of 

the high-energy secondary electrons (e.g. Scott et al 2009, IPEM 2010).  

 

2.3.1.2.3 Mean electron energy  
 
Figure 2.9 shows the variation of mean electron (+ positron) energy for 15 MeV and 15 MV photon 

beams as a function of depth in water. The mean energy was evaluated from equation (2.3), from the 

‘primary’ electron (and positron) fluence spectra generated by FLURZnrc where ‘primary’ in this 

context means that knock-on electrons have been excluded.
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Table 2.1: (a) D/K and D/Kcol (= β) at depth = 1.5 × dmax from 50 keV to 25 MeV photons in water, aluminium and copper from Monte-Carlo simulation. The D/K and D/Kcol 
were computed along the central axis for a field size of 10 × 10 cm2 defined at the phantom surface; the statistical (Type A) uncertainties  are  ± 2 standard deviations (b) 
Monte-Carlo-derived D/K and D/Kcol (= β) at depth = 1.5 × dmax for clinical qualities from 100 kV to 15 MV in water. The D/K and D/Kcol were computed along central axis 
for field size 10 × 10 cm2 defined at the phantom cylindrical phantom surface. The statistical (Type A) uncertainties are ± 2 standard deviations. 

 ((a) 

(b) 
 

Photon Energy D/K  D/Kcol (= β) 

 Water Aluminium Copper  Water Aluminium Copper 

50 keV 1.0000 ± 0.0008 0.9998 ± 0.0005 1.0001 ± 0.0002  1.0003 ± 0.0009 1.0013 ± 0.0006 1.0034 ± 0.0004 

80 keV 0.9995 ± 0.0006 0.9994 ± 0.0006 1.0000 ± 0.0020  1.0004 ± 0.0007 1.0008 ± 0.0007 1.0049 ± 0.0004 

100 keV 1.0000 ± 0.0005 0.9997 ± 0.0006 0.9990 ± 0.0030  1.0006 ± 0.0005 1.0013 ± 0.0007 1.0047 ± 0.0005 

250 keV 1.0003 ± 0.0005 0.9996 ± 0.0005 0.9992 ± 0.0005  1.0007 ± 0.0007 1.0017 ± 0.0006 1.0069 ± 0.0007 

Co-60 γ 1.0014 ± 0.0010 0.9983 ± 0.0010 0.9897 ± 0.0010  1.0045 ± 0.0020 1.0046 ± 0.0006 1.0063 ± 0.0030 

5 MeV 1.0040 ± 0.0014 0.9871 ± 0.0010 0.9544 ± 0.0015  1.0192 ± 0.0015 1.0193 ± 0.0010 1.0171 ± 0.0030 

10 MeV 0.9955 ± 0.0019 0.9712 ± 0.0020 0.9180 ± 0.0010  1.0321 ± 0.0019 1.0328 ± 0.0021 1.0373 ± 0.0013 

15 MeV 0.9860 ± 0.0020 0.9537 ± 0.0020 0.8915 ± 0.0015  1.0427 ± 0.0017 1.0475 ± 0.0020 1.0564 ± 0.0030 

20 MeV 0.9775 ± 0.0016 0.9410 ± 0.0010 0.8726 ± 0.0030  1.0535 ± 0.0016 1.0627 ± 0.0012 1.0817 ± 0.0032 

25 MeV 0.9656 ± 0.0025 0.9293 ± 0.0016 0.8508 ± 0.0200  1.0637 ± 0.0036 1.0782 ± 0.0019 1.0998 ± 0.0020 

  Clinical Beam Quality  D/K  D/Kcol (= β) 

100 kV 0.9999 ± 0.0005 1.0001 ± 0.0004 

250 kV 0.9994 ± 0.0006 1.0002 ± 0.0007 

Co-60 γ 1.0014 ± 0.0010 1.0045 ± 0.0020 

6 MV 1.0030 ± 0.0002 1.0102 ± 0.0011 

10 MV 1.0020 ± 0.0003 1.0145 ± 0.0013 

15 MV 0.9981 ± 0.0003 1.0177 ± 0.0013 
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Table 2.2: Comparisons of D/K computed in this work with values in the literature. The statistical (Type A) uncertainties are ± 2 standard deviations. 
 

 
 
 
Table 2.3: Comparisons of D/Kcol from the present work with previously published values. The statistical (Type A) uncertainties are ± 2 standard deviations. 
 

 

 
 
 
 
 

   D/K 

Photon Energy Material Name Field Size (cm2) Attix (1979a) Nilsson and Brahme (1983) Present  MC  work (1.5 × dmax) 

Co-60 γ Water 10 × 10 ---- 1.0011 1.0014 ± 0.0013 

  4 ×  4 ---- 1.0019 1.0020 ± 0.0010 

 Aluminium 10 × 10 ---- 0.9980 0.9983 ± 0.0010 

  4 × 4 ---- 0.9970 0.9973 ± 0.0010 

6 MeV Aluminium Broad Beam 0.9670 0.9660 0.9853 ± 0.0006 

   D/Kcol 

Photon Energy Material Name 
Field Size       
(cm2) 

Attix               
(1979a) 

Loevinger 
(1981) 

Greening 
(1981) 

Nilsson and Brahme    
(1983) 

Iwasaki               
( 1994) 

Present  MC work             
(1.5 × dmax) 

Co-60 γ Water 10 × 10 ---- ---- 1.005 1.0051 1.005 1.0045 ± 0.0012 
  4 × 4 ---- ---- ---- 1.0059 1.005 1.0053 ± 0.0014 
 Aluminium 10 × 10 ---- ---- ---- 1.0043  1.0046 ± 0.0006 
  4 × 4 ---- 1.006 ---- 1.0049  1.0053 ± 0.0006 

6 MeV Aluminium Broad Beam 1.018 ---- ---- 1.017  1.0208 ± 0.0010 
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The anomalously low values of the mean energy within a millimetre from the surface for 15 MeV 

photons must be due to secondary electrons from backscattered photons, which will have relatively 

low energies. The influence of backscattered photons can only be seen at extremely small depths 

where there is negligible build-up from the forward-directed secondary electrons. Beyond this narrow 

‘transition layer’ the mean energy is at its highest value (≈ 7.5 MeV) and then decreases gradually 

towards an ‘equilibrium’ value (≈ 5.2 MeV). At 15 MV a very different behaviour is seen: the highest 

mean energy is achieved instead not close to the surface but at the depth of the dose maximum and 

beyond (≈ 2.2 MeV) as a result of the broad distribution of photon energies in the bremsstrahlung 

spectrum as Andreo and Nahum (1985) discuss in more detail. 

The mean electron (+ positron) energies for a range of (broad) beam qualities ranging from 

Co-60 to 15 MeV, including the 'clinical' photon beams at 6, 10 and 15 MV, in water are given in 

table 2.4 at two depths, close to the surface and at z = 1.5 × dmax. As in figure 2.9, from the surface to 

a quasi-equilibrium depth there is a clear decrease for monoenergetic beams but a modest increase for 

the x-ray qualities (Andreo and Nahum 1985). The numbers for Cobalt-60 gamma rays appear to 

belong to the results for the bremsstrahlung spectra rather than to those of the mono-energetic beams. 

This is probably due to the inclusion of a significant component from collimator and internal-source 

scatter in the source spectrum provided with the EGSnrc code system. 
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Figure 2.8: Monte-Carlo-derived ratios of absorbed dose to kerma (D/K) on the central axis at 10 cm 
depth in a cylindrical water phantom for megavoltage beam qualities versus field size defined at 100 cm 
source-to-phantom surface distance; field sizes are 0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 10 cm respectively; the 
error bars are ± 2 standard deviations and correspond to statistical (Type A) uncertainties. 
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Figure 2.9: Mean (secondary) electron energy versus depth for 15 MeV and 15 MV photons in water for 
broad parallel beams. 

 

Table 2.4: Mean secondary electron energy ( )E
z at the surface and at a depth of 1.5 × dmax in water for 

broad, parallel beams (evaluated from equation (2.3) using Monte-Carlo-derived ‘primary’ electron 
fluence spectra). The statistical (Type A) uncertainties are ± 2 standard deviations. For Co-60 and 5 - 15 
MeV qualities the values at the surface are the maximum mean energy (see main text) whereas for 6, 10 
and 15 MV the ‘surface’ is at 1.5 mm depth. 

 

Photon Energy/Quality 
(megavoltage) 

Mean electron Energy (MeV) 

 Surface 1.5 × dmax 

Co-60 γ 0.45 ± 0.01 0.43 ± 0.01 

5 MeV 2.44 ± 0.01 1.89 ± 0.01 

10 MeV 5.03 ± 0.01 3.62 ± 0.01 

15 MeV 7.52 ± 0.01 5.21 ± 0.01 

6 MV 0.81 ± 0.01 0.98 ± 0.01 

10 MV 1.25 ± 0.01 1.57 ± 0.01 

15 MV 1.60 ± 0.01 2.21 ± 0.01 

 

2.3.2 The analytical and Monte-Carlo evaluations of X  
 
Tables 2.5 (a) - (c) gives the key quantities from present study MC-derived data involved in 

evaluating empX  (equation (2.5)) and MCX (equation (2.10)) as well as values of MCX  itself, as a 
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function of photon energy/quality and material. In particular it can be noted that MCX  is ≈ 0.16-0.19 × 

dmax for the clinical bremsstrahlung beam qualities and is ≈ 0.33-0.36 × dmax for the monoenergetic 

beams; this is because the depth of the dose maximum is largely determined by range of the 

maximum-energy secondary electrons whereas MCX  is determined by the ranges of the mean energy 

electrons. The final column shows how well the approximate formula for empX  (equation (2.5)) 

works compared to the ’exact’ MCX ; the ratio is reasonably close to the simple factor 0.5 in equation 

(2.5) for the monoenergetic beams in both water and aluminium but closer to 0.4 for the clinical 

beams in water and the monoenergetic beams in copper. The latter difference, for copper, is not 

surprising as the ‘detour’ effect (see above) can be expected to dominate in high-atomic number 

materials where the nuclear elastic scattering of electrons is very strong. Mackie et al (1988) 

employed a convolution method to derive X for a water medium for various monoenergetic photon 

beams of energies 5, 10, 15 and 20 MeV; their values are within 3% of present study MCX  values. 

Present study MCX  of 0.413 cm for a 6 MeV broad photon beam is in very good agreement with 

Attix (1979a). 

 
 

2.4 Summary and Conclusions 

 

A set of D/K, D/Kcol and X values has been generated in a consistent manner by Monte-Carlo 

simulation for water, aluminium and copper and for photon energies from 50 keV to 25 MeV. Beyond 

the build-up region dose D is almost never greater than kerma K whilst collision kerma Kcol is always 

less than dose. An expression for X , denoted by empX , equal to 0.5 × the csda range of the mean 

initial secondary electron energy, is proposed, based on a simplified picture of energy deposition by 

secondary electrons, and shown to work well for monoenergetic photons beams in water and 

aluminium. Expressions for D/Kcol and D/K based on the above expression for empX   are also given. 

Further results include the biphasic shape of the dose build-up at 100 keV, the anomalous behaviour 

of the mean (secondary) electron energy in the build-up region in water at 15 MV and 15 MeV, and 

the large increase in lower-energy photon fluence at 25 MeV, especially in copper; the latter can 

explain why the kerma and collision kerma curves converge towards the dose curve at high atomic 

number and energy. 
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Table 2.5: (a) For water: the dependence of X on photon energy, including the values of all the terms in equation (2.10) for MCX and in equation (2.5) for empX ; 

the D/Kcol values correspond to z = 1.5 × dmax.  

 

 
 
 
 
 
 
 
 
 
 

Photon Energy ( )2 1

eff cm gµ ρ −

 

( )0 MeVE
 

( ) ( )2

csda 0 g cmR E
−

 
   

( )col MC
D K   ( )2

MC g cmX
−

 

MC maxX d  ( )MC csda 0X R E

 

Co-60 γ 0.0524 0.59 0.22 1.0045 ± 0.0020 0.09 0.189 0.409 

6 MV 0.0398 1.32 0.61 1.0102 ± 0.0011 0.25 0.161 0.410 

10 MV 0.0313 2.27 1.13 1.0145 ± 0.0013 0.46 0.167 0.409 

15 MV 0.0260 3.39 1.72 1.0177 ± 0.0013 0.67 0.175 0.393 

        

5 MeV 0.0255 2.96 1.49 1.0192 ± 0.0015 0.75 0.329 0.500 

10 MeV 0.0202 5.96 3.03 1.0321 ± 0.0019 1.56 0.332 0.515 

15 MeV 0.0176 8.75 4.39 1.0427 ± 0.0017 2.37 0.354 0.541 

20 MeV 0.0165 11.43 5.62 1.0535 ± 0.0016 3.16 0.363 0.562 

25 MeV 0.0158 14.09 6.81 1.0637 ± 0.0036 3.89 0.363 0.571 
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Table 2.5: (b) For aluminium: the dependence of X on photon energy, including the values of all the terms in equation (2.10) for MCX and in equation (2.5) 

for empX ; the D/Kcol values correspond to z = 1.5 × dmax.  

 

 
 

Table 2.5: (c) For copper: the dependence of  X on photon energy, including the values of all the terms in equation (2.10) for MCX and in equation (2.5) for empX ; 

the D/Kcol values correspond to z = 1.5 × dmax.  
 

 

Photon Energy 
(MeV) 

( )2 1

eff cm gµ ρ −
 ( )0 MeVE

 

( ) ( )2

csda 0 g cmR E
−

 
   

( )col MC
D K   ( )2

MC g cmX
−

 

MC maxX d  ( )MC csda 0X R E  

5  0.0240 2.84 1.766 1.0193 ± 0.0010 0.80 0.311 0.452 

10  0.0204 5.60 3.442 1.0328 ± 0.0021 1.58 0.335 0.459 

15  0.0195 8.24 4.779 1.0475 ± 0.0020 2.38 0.338 0.499 

20  0.0186 10.75 6.232 1.0627 ± 0.0012 3.27 0.370 0.524 

25  0.0183 13.33 7.504 1.0782 ± 0.0019 4.11 0.387 0.548 

Photon Energy 
(MeV) 

( )2 1

eff cm gµ ρ −
 ( )0 MeVE

 

( )( )2

csda 0 g cmR E
−

    

( )col MC
D K   ( )2

MC g cmX
−

 

MC maxX d  ( )MC csda 0X R E  

5 0.0253 2.64 1.847 1.0171 ± 0.0030 0.67 0.303 0.364 

10 0.0262 5.19 3.520 1.0373 ± 0.0013 1.40 0.328 0.397 

15 0.0275 7.68 4.966 1.0564 ± 0.0030 1.99 0.356 0.401 

20 0.0286 10.20 6.276 1.0817 ± 0.0032 2.75 0.377 0.438 

25 0.0292 12.72 7.428 1.0998 ± 0.0020 3.25 0.383 0.438 
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CHAPTER 3 
 

Secondary bremsstrahlung and the energy-conservation 

aspects of kerma in photon-irradiated media 
 

 

3.1 Introduction 
 
In an irradiated medium kerma quantifies the transfer of energy from the uncharged ionizing radiation 

(e.g. photons) to charged-particle kinetic energy (KE), whereas absorbed dose quantifies the energy 

imparted to the medium by these charged particles. Kerma necessarily includes that fraction of the 

initial charged-particle KE eventually re-radiated in the form of bremsstrahlung photons (ICRU 

2011); for this reason kerma is generally partitioned into two components, namely collision kerma, 

Kcol, and radiative kerma, Krad (Attix 1979a, 1979b). Under charged-particle equilibrium (CPE), 

absorbed dose is exactly equal to collision kerma at all positions in the medium (Dutreix et al 1965, 

Attix 1979a, 1986). However, in a medium irradiated by an external beam of uncharged particles, 

CPE beyond the depth of maximum dose is never complete due to beam attenuation over the range of 

the secondary charged particles; the ratio of absorbed dose to collision kerma, generally denoted by β, 

is always greater than unity (Loevinger 1981, Attix 1986, Kumar et al 2015a). 

Attix (1986) stated, based on a physical model, that the energy obtained from integrating the 

dose curve from zero to infinite depth, should be equal to the energy from the corresponding 

integration of collision kerma (neglecting energy losses due to charged particles scattered out of the 

front surface of the medium). However, kerma, as opposed to collision kerma, includes implicitly the 

fraction of charged-particle kinetic energy eventually re-radiated as bremsstrahlung. Consequently, if 

kerma is calculated over a large volume/mass, the energy of these ‘secondary bremsstrahlung’ 

photons will inevitably be ‘double-counted’.  

As far as it is known, no detailed study has been published on the energy conservation aspects 

of K, Kcol and D. The K/D and Kcol/D have therefore been calculated over a large volume by simulating 

photon transport in a very large (effectively semi-infinite) homogeneous cylindrical phantom for 

photon beams ranging from 0.1 to 25 MeV (monoenergetic) with water, aluminium and copper as 

media, and additionally for ‘clinical’ linac beams of 6, 10 and 15 MV (from Mohan et al 1985) in 

water. Photon energies up to 25 MeV were chosen in order to see by how much K and Kcol differ from 

D as a function of atomic number. Further, a special form of kerma  have been defined (see below) 

and computed, which is denoted by Kncpt (ncpt ≡ ‘no charged-particle transport’), by preventing any 

secondary charged-particle transport in the Monte-Carlo simulation in order to see if the Kncpt  

conserves energy over a large volume.  
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The photon fluence, differential in energy (per unit primary photon fluence at a depth of  ≈ 51 

g cm-2), for both very high and very low charged-particle transport cut-offs, has also been computed 

for a 25 MeV photon beam in the three materials in order to look at differences in the low-energy 

photon fluence for these two cut-off values as a function of atomic number. The large depth was 

chosen to highlight the contribution of secondary bremsstrahlung.  

Additionally, a ‘track-end’ correction term to the ‘kerma integral’, defined by equations (3.7) 

and (3.8), has been formulated to account for the energy transferred to charged particles by photons 

with initial energies below the Monte-Carlo photon transport cut-off PCUT.  

   

3.2 Materials and methods 
 

3.2.1 The various types of kerma  

3.2.1.1 Formal definitions 

Attix (1983, 1986), formally defines kerma as  

( )trd

d

eK
m

ε
=         (3.1) 

where ( )tr e
ε is the expectation value of the energy transferred in a finite volume during some time 

interval. For an elementary finite volume V the energy transferred is given by 

( ) ( )nonr

tr in outu u
R R Qε = − +∑        (3.2) 

where ( )in u
R is the energy of uncharged particles entering V and ( )nonr

out u
R is the  energy of uncharged 

particles leaving V, with the superscript ‘nonr’ indicating the non-inclusion of uncharged particles 

originating from charged-particle radiative losses while in V, i.e. bremsstrahlung and in-flight 

annihilation of positrons. Q∑ is the net energy derived from changes in rest mass in V; for the 

production of an electron-positron pair this is equal to –1.022 MeV which means that this energy is 

effectively subtracted from the uncharged radiant energy entering the volume and is therefore not 

counted in trε . Equation (3.1) expresses the fact that kerma, K, is the sum of the kinetic energies of the 

charged particles liberated in V divided by the mass of the finite volume element; this is how kerma is 

conventionally defined and calculated. 

The quantity net energy transferred, 
n

trε , from which collision kerma, Kcol, is derived (by 

replacing trε  by 
n

trε  in equation (3.1)), is given by   
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( ) ( )nonrn r

tr in out uu u
R R R Qε = − − +∑         (3.3) 

which differs from equation (3.2) by the term 
r

uR−  which is the charged-particle kinetic energy 

emitted as radiative losses, i.e. bremsstrahlung, by the charged particles liberated in V, regardless of 

where these bremsstrahlung events take place.   

The new type of kerma proposed in this chapter, Kncpt, can be defined in terms of the above 

formalism; in this case the charged particles liberated are not transported and therefore no ‘secondary 

bremsstrahlung’ is generated, making the ‘nonr’ superscript superfluous. The corresponding energy 

transferred in the finite volume V, { }tr ncpt
ε , is given by 

{ } ( ) ( ){ }tr in outncpt u u ncpt
R R Qε = − +∑     (3.4) 

and therefore Kncpt is defined as 

{ }( )tr ncpt

ncpt

d

d

eK
m

ε
=        (3.5) 

 

3.2.1.2 Monte-Carlo ‘scoring’ of K and Kncpt 

In this section it is clarified how two of the types of kerma defined above are ‘scored’ by Monte-Carlo 

user-code DOSRZnrc. 

 Firstly, ‘normal’ kerma, K: let the initial kinetic energy of each charged particle (both 

electrons and positrons) liberated in scoring region Pi of mass Mi be denoted by kej. Then for all the n 

photon interactions in Pi, K is written as   

 

1

1
(P)K ke

M

=

=

= ∑
j  n

i j

j  i

 

       (3.6) 
  

Secondly, kerma Kncpt: this is scored in exactly the same manner, except that in this case the 

electron/positron kinetic energy cut-off, ECUT is set higher than the incident photon energy, thereby 

ensuring that there is no subsequent transport of the charged particles liberated by photon interactions 

with the medium, and therefore no possibility of any ‘secondary bremsstrahlung’ being generated 

anywhere in the irradiated volume. 

 

3.2.2 Monte-Carlo calculations  

3.2.2.1 Setting up the simulations 
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The EGSnrc user-code DOSRZnrc (version: V4-2.3.2) was employed to compute dose and kerma; 

photon fluence spectra were generated by the user-code FLURZnrc (version: V4-2.3.2) (Rogers et al 

2011b). The simulations were carried out with most of the so-called default settings, which include 

modelling the Compton interaction for bound electrons, and relativistic spin effects in the multiple-

scattering of charged particles. However, so-called electron impact ionization was switched off. This 

means that the ‘fluorescent’ photons resulting from atomic electrons being ‘knocked out’ of the atom 

(i.e. the atom being ionized), by fast electron-bound electron ‘collisions’, are not generated; the 

binding energies are effectively added to the initial kinetic energy of the knock-on electrons3. In 

addition to the above settings, cross sections for the sampling of bremsstrahlung photon energies from 

the NIST database (Hubbell and Seltzer 2004) and photon interaction cross sections from the XCOM 

database were used (Berger et al 2010). 

The irradiated phantom was cylindrical. The two scoring geometries have been defined: the 

‘large volume’ scoring region (hereafter referred to as LVG ≡  ‘large volume geometry’) had height 

and diameter equal to 1308 cm; the ‘depth-dependent’ scoring geometry consisted of dividing the 

LVG into many thin layers of circular cross section, each with a diameter of 1308 cm (hereafter 

referred to as DDLRG ≡  ‘depth-dependent large radius geometry’). The 1308 cm dimension was 

chosen so that the ratio of the number of primary particles reaching the  exit surface of the phantom to 

the number of incident particles was less than 10-10 for 25 MeV photons in water (estimated from the 

total attenuation coefficient); for aluminium and copper and for all lower energies this ratio will be 

even smaller. These dimensions ensured that a negligible amount of energy, whether carried by 

charged or uncharged particles, could escape from this phantom, apart from backscattered photons. 

The ‘Source 2’ option (denoted as a ‘broad, parallel beam’) of the EGSnrc Monte-Carlo code 

system was used4. Source 2 fixes the phantom radius to 1000 cm and the beam area to 1 cm2 (Rogers 

et al 2011b) i.e. the beam radius is very much smaller than the radius of the scoring regions (here set 

to 654 cm); due to the ‘reciprocity theorem’ (Attix 1986) this is equivalent to the distribution along 

the central axis of a ‘broad beam’. Note further that a very large scoring radius (654 cm) was 

deliberately selected to ensure a negligible probability of any particles escaping through the side walls 

of the scoring volume.   

A PEGS4 datafile (Nelson et al 1985; Kawrakow et al 2011) was generated with the 

EGSnrcMP package (Kawrakow et al 2006) for parameter values AP = 1 keV, AE = 512 keV (total 

                                                      
3 If electron impact ionization (eii) is simulated (one of the default settings) then the initial kinetic energies of 

knock-on electrons (aka delta rays) will be reduced by the relevant binding energies, with this energy instead 

appearing as the energy of fluorescent photons and adding to the photon fluence. This will be reflected in an 

increase in the parameter g compared to not simulating eii; for a 25 MeV photons in water the increase is 

entirely negligible, but with lead as the medium g increases by ≈ 0.9%, from 0.4393 to 0.4435.   

4 Alternatively, ‘Source 0’ could have been chosen. 
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energy) where AP and AE are the production thresholds for bremsstrahlung photons and knock-on 

electrons respectively. Electrons and positrons were followed down to 1 keV kinetic energy (i.e. the 

electron/positron kinetic energy cut-off ECUT = 512 keV) and photons down to 1 keV (photon energy 

cut-off PCUT = 1 keV).  

 

3.2.2.2 Computation of D, K, Kcol, Kncpt, K/D, Kcol/D and Kncpt/D   

Dose and kerma were computed by the user-code DOSRZnrc in the cylindrical phantom described 

above for 0.1 to 25 MeV monoenergetic broad, parallel photon beams in water, aluminium and copper 

media and for ‘clinical’ linac spectra of 6, 10 and 15 MV (from Mohan et al 1985) in water. D, K and 

Kncpt were scored directly in the DDLRG from the surface to 240 g cm-2 depth for the monoenergetic 

beams and to 20 g cm-2 depth for the clinical beams. The scoring regions had very large circular cross 

sections (radius = 654 cm) with heights/thicknesses varying from very small in the build-up region 

(e.g. 0.05 cm in water and 0.005 cm in Cu) to larger values at greater depths. 

As user-code DOSRZnrc yields kerma K but not collision kerma Kcol, the ratio (Kcol/K) was 

firstly determined by evaluating equations (3.7) and (3.8) for the identical source and geometry. In 

order to evaluate these expressions the total photon fluence per MeV per unit incident photon fluence 

was scored in each depth interval in the cylindrical phantom using FLURZnrc, taking care to choose 

sufficiently narrow energy bins to capture the possible rapid variation in the mass energy-transfer and 

mass energy-absorption coefficients with photon energy. K and Kcol were then derived by numerical 

integration over the energy-fluence spectra according to (e.g. Nahum 2007b):  

max

med tr
med

med

d ( )
d

d

k

PCUT

Φ k
K k k

k

µ
ρ

 
=  

 
∫        (3.7)

 

and 
max

med en
col med

med

d ( )
( ) d

d

k

PCUT

Φ k
K k k

k

µ
ρ

 
=  

 
∫     (3.8) 

where k is the photon energy, µ tr(k)/ρ the mass energy-transfer coefficient, µen(k)/ρ the  mass energy-

absorption coefficient, and dФmed/dk  the total photon fluence, differential in energy, in the medium 

(which can also be written [Φk]med). The above expressions are sometimes known as ‘kerma integrals’. 

It is emphasised that dФmed/dk includes secondary bremsstrahlung. For consistency, µ tr(k)/ρ and 

µen(k)/ρ were computed  using the ‘g’ user-code of EGSnrc system (Kawrakow et al 2011) with the 

identical PEGS4 datafiles used with DOSRZnrc to compute kerma. Note that the lower limit of the 

integral is equal to PCUT as the fluence spectrum only extends down to PCUT in energy. From 

equations (3.7) and (3.8),  
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( )col 1K K g= −        (3.9) 

was calculated at each depth with the same radius of the scoring volume as above and then multiplied 

by K from DOSRZnrc to yield Kcol as a function of depth for each medium in turn. It can be noted that 

the numerical value of K derived from equation (3.7) with the fluence obtained from user-code 

FLURZnrc agreed within 0.5% with that obtained directly from the simulations with user-code 

DOSRZnrc for the same normalization. 

From user-code DOSRZnrc, dose D and kerma K were obtained over the LVG for beam 

qualities ranging from 0.1 to 25 MeV photon beams in water, aluminium and copper and for ‘clinical’ 

linac spectra of 6, 10 and 15 MV (from Mohan et al 1985) in water; the ratio K/D was then calculated. 

The value of Kcol over the LVG was also derived using the methodology described above and hence 

Kcol/D could be obtained as D had been computed using DOSRZnrc for the same beam qualities and 

materials. 

The new quantity Kncpt was also computed, firstly as a function of depth in the DDLRG and 

secondly over the LVG, for the same beam qualities and media as above. This was achieved by setting 

ECUT, the total energy at which charged particle transport is terminated, to a high value; this ensures 

that there can be no secondary charged-particle transport and hence no generation of secondary 

bremsstrahlung. A constant value of ECUT = 50.511 MeV was chosen in all the simulations where 

Kncpt was computed5. Consequently the initial kinetic energy of each charged particle was added to the 

total energy deposition in the scoring volume where the charged particle was ‘liberated’. Kncpt is then 

given by the quantity scored as ‘dose’ (and also ‘kerma’) in DOSRZnrc. Kncpt cannot possibly include 

any component due to secondary bremsstrahlung as no charged-article transport is involved. Kncpt 

scored over the LVG was divided by the dose D, also computed over the LVG using DOSRZnrc (but 

with the electron transport cut-off ECUT now set back to its normal very low value), to yield Kncpt/D.  

Regarding the pair-production interaction, as a result of the ‘instant termination’ of all 

charged-particle transport, the 0.511 MeV photons due to positron annihilation are set in motion at the 

position of the pair-production interaction i.e. the EGSnrc code does not ‘forget about’ these 0.511 

gammas.   

 

3.2.2.3 Computation of total photon fluence, differential in energy  

In order to determine the amount of low-energy photon fluence (partly due to 'secondary' 

bremsstrahlung) relative to the primary fluence, the total photon fluence per MeV per unit incident 

photon fluence, at one single depth, in the large homogeneous cylindrical phantom was computed 

                                                      
5 In practice ECUT = 25.511 MeV would have been sufficient as 25 MeV was the highest incident photon 

energy in the whole investigation.  
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using FLURZnrc for our standard  low value of the charged-particle transport cut-off (i.e. ECUT ) of 

512 keV (total energy)) and for the very high ECUT = 50.511 MeV (total energy) as employed to 

derive Kncpt, in the three phantom materials irradiated with 25 MeV photon beams. For both settings of 

ECUT, the photons were followed down to 1 keV kinetic energy (i.e. PCUT = 1 keV). The spectral 

energy-bin widths were set at 1 keV for the lowest energy bins (1 keV – 10 keV), then 5 keV for the 

next 18 bins, then gradually increased as the energy increased up to 400 keV, and thereafter kept at 20 

keV. Consequently the ‘spike’ at 0.511 MeV due to annihilation photons was ‘captured’ in the 0.50 - 

0.52 MeV energy bin. The fluence spectra were scored in a layer centred at a depth of ≈ 51 g cm-2. 

 

3.2.2.4 The influence of PCUT on kerma  

Here an attempt was made to investigate the effect of the value selected for PCUT (the photon 

transport cut-off energy) on kerma computed using DOSRZnrc at different depths for a 25 MeV 

photon beam in water, Al and Cu. Therefore PCUT was varied between 1 keV and 200 keV in 

variable intervals, for the geometry and source described in sub-section 3.2.2.1. Kerma obtained from 

the above DOSRZnrc simulations was compared with kerma derived from equation (3.7) using the 

photon fluence differential in energy, dΦ/dk, computed by FLURZnrc, with the same value of PCUT, 

for the 25 MeV photon beam in the three materials, and with identical normalization (i.e. per unit 

incident photon fluence).  

 

3.2.3 Formulation of a track-end term in the kerma cavity integral   

Ideally, in a Monte-Carlo simulation all photons should be tracked until they disappear (from the 

fluence spectrum), due to either the pair-production interaction or photoelectric absorption. However, 

for a finite value of the photon transport cut-off, PCUT, there will inevitably be some photons which 

fall below PCUT in energy and are therefore removed from the simulation. The energy deposition by 

these photons is correctly ‘counted’ and  therefore contributes to absorbed dose but the kinetic 

energies of any secondary charged particles these sub-PCUT photons would have liberated will not be 

added to kerma via equation (3.6). Consequently, kerma derived from user-code DOSRZnrc will be 

underestimated by an amount depending on the value of PCUT in the simulation. When kerma is 

evaluated from equation (3.7) or (3.8), sometimes referred to as ‘large photon cavity integrals’, there 

will also be some ‘missing kerma’ as the lower limit of the integral cannot be below PCUT, the lowest 

energy in the simulation, and therefore the lowest energy in the fluence spectrum. By analogy with the 

track-end term in the Spencer-Attix cavity integral (Nahum 1978, 2007b) a kerma track-end term, 

( )T-E med
K , can be formulated to be added to equation (3.7): 
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( )
max

C

tr, med
T-E med

med

( )d
d

d

PCUT

k

PCUT

kΦ
K k k

k

µ

ρ

 
 =
 
 

∫  (3.10)  

where ( )C

tr, med

( )
PCUT

kµ ρ  is a form of restricted energy-transfer coefficient (Brahme 1978) for 

Compton interactions which result in (scattered) photons with energies below PCUT. By analogy with 

the derivation of the conventional µ tr/ρ from the (total) mass attenuation coefficient, µtot, this restricted 

coefficient is the product of the Compton attenuation coefficient restricted to events producing sub-

PCUT photons,  

C

med

( )
PCUT

kµ

ρ

 
  
 

and ratio of the scattered photon energy to the primary photon energy: 

  

C C C
tr,

medmed

( ) ( )
PCUT PCUT

k k k

k

µ µ

ρ ρ

    
  = ×           

    (3.11) 

where 
C

k  is the mean value of the initial energies of the photons Compton-scattered to energies 

below PCUT generated by photons of energy k. Note that the above expression assumes that 100% of 

the scattered photon energy will eventually be converted into charged-particle kinetic energy (most 

probably via the photoelectric effect).  

 
 3.3 Results and Discussion 

3.3.1 D, K, Kcol, Kncpt, K/D, Kcol/D and Kncpt/D 
 
Figures 3.1(a) - (c) show the depth dependence of dose, kerma and collision kerma for a 25 MeV 

broad, parallel photon beams in water, Al and Cu media respectively6. These graphs (and the numbers 

in Tables 3.1 and 3.2 for energies 0.1-25 MeV) indicate that the ‘area under the kerma curve’ (i.e. the 

dashed-dotted line) exceeds the area under either the dose (i.e. dotted line) or collision kerma (dashed) 

curves, i.e. over a large volume the energy content integrated from the kerma distribution is not equal 

to the energy content integrated from the dose distribution over a large volume. In contrast, the area 

under the collision kerma curve is equal to the area under the dose curve which demonstrates that 

collision kerma does conserve energy (as quantified in Tables 3.1 and 3.2). It can also be noted that as 

the Z of the medium increases, bremsstrahlung production increases, resulting in the enhancement of 

radiative kerma, Krad, which ‘pulls’ the kerma curve up over the dose curve, thus creating a significant 

difference between dose and kerma. 

                                                      
6 The absolute value of the kerma very close to the surface (per unit incident photon fluence) obtained from 

DOSRZnrc, K/Φ  was verified and was equal to k ×µtr(k)/ρ . 
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(c)  
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Figure 3.1: (a) Dose, D, kerma, K, collision kerma, Kcol and kerma (no charged-particle transport), Kncpt 

per unit incident photon fluence (Gy cm2) versus depth (g cm-2) for the depth-dependent large radius 
geometry for photon beams with ECUT = 512 keV (total energy), and high ECUT = 50.511 MeV (total 
energy) respectively, for a 25 MeV monoenergetic broad, parallel photon beams in water; (b) same 
quantities and energy for aluminium;  (c) same quantities and energy for copper. The data were derived 
from Monte-Carlo codes DOSRZnrc and FLURZnrc.  

 

 

The depth dependence of K and Kncpt are shown on semi-log plots for the three media in 

Figures 3.2(a) - (c) for a 25 MeV broad, parallel photon beams. It can be seen that the differences 

between K and Kncpt increase with increasing atomic number (from water to Al to Cu). Figure 3.2(d) 

shows the depth dependence of the same quantities for the ‘clinical’ beam quality of 15 MV (for the 

Mohan et al 1985 incident spectrum) in water. Figure 3.2 illustrates more clearly than Figure 3.1 the 

difference between (normal) kerma and kerma corresponding to no charged-particle transport, Kncpt, 

and thus gives an idea of the magnitude of the error that could be made over a large volume if kerma 

is approximated by setting a high value of the charged-particle cut-off in a Monte-Carlo simulation.  
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Figure 3.2: (a) Kerma, K and kerma (no charged-particle transport), Kncpt per unit incident photon fluence 
(Gy cm2) versus depth (g cm-2) for the depth-dependent large radius geometry for photon beams with 
ECUT = 512 keV (total energy) and high ECUT = 50.511 MeV (total energy) respectively, for a 25 MeV 
monoenergetic broad, parallel photon beams in water; (b) same quantities and energy for aluminium;  (c) 
same quantities and energy for copper; (d) same quantities, 15 MV ‘clinical’ photon beam (spectrum 
from Mohan et al 1985) in water. Kerma and kerma (no charged-particle transport) were computed using 
DOSRZnrc. 
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Table 3.1: Kerma K over a large volume, divided by Dose D over the same large volume, K/D, and 1/ (1 – g ) (equation 3.9) for beams of 0.1 to 25 MeV photons in 

water, aluminium and copper. The statistical (Type A) uncertainties are ± 2 standard deviations. 

 

Table 3.2: Collision Kerma Kcol over a large volume, divided by Dose D over the same large volume, Kcol/D for beams of 0.1 to 25 MeV photons in water, aluminium 
and copper. The statistical (Type A) uncertainties are ± 2 standard deviations. 

 

Photon energy (MeV) 

Water  Aluminium  Copper 

K/D 1/ (1 – g )  K/D 1/ (1 – g )  K/D 1/ (1 – g ) 

0.1 1.0002 ± 0.0001 1.0002  1.0009 ± 0.0001 1.0008  1.0032 ± 0.0001 1.0029 

0.5 1.0008 ± 0.0001 1.0007  1.0018 ± 0.0001 1.0018  1.0057 ± 0.0001 1.0057 

1 1.0017 ± 0.0001 1.0016  1.0037 ± 0.0001 1.0036  1.0100 ± 0.0001 1.0098 

5 1.0124 ± 0.0001 1.0128  1.0240 ± 0.0001 1.0238  1.0526 ± 0.0001 1.0524 

10 1.0306 ± 0.0001 1.0305  1.0552 ± 0.0002 1.0550  1.1104 ± 0.0002 1.1100 

25 1.0857 ± 0.0002 1.0859  1.1417 ± 0.0002 1.1413  1.2547 ± 0.0003 1.2544 

25 1.0857 ± 0.0002 1.0859  1.1417 ± 0.0002 1.1413  1.2547 ± 0.0003 1.2544 

 

Photon energy (MeV) 

                                          Kcol/D 

Water Aluminium Copper 

0.1 1.0001 ± 0.0001 0.9999 ± 0.0002 1.0000 ± 0.0001 

0.5 1.0000 ± 0.0001 1.0002 ± 0.0003 1.0001 ± 0.0002 

1 1.0000 ± 0.0002 1.0002 ± 0.0002 1.0002 ± 0.0003 

5 1.0000 ± 0.0002 1.0002 ± 0.0003 1.0002 ± 0.0003 

10 1.0001 ± 0.0003 1.0001 ± 0.0002 1.0002 ± 0.0003 

25 0.9998 ± 0.0003 1.0004 ± 0.0005 1.0000 ± 0.0002 



Chapter 3: Kerma and energy conservation 

58 

 

Table 3.1 and Table 3.2 give the results of K/D and Kcol/D for the LVG for 0.1 to 25 MeV broad, 

parallel photon beams in water, Al and Cu. It is observed that K/D is always greater than unity 

whereas Kcol /D is unity within the very low statistical uncertainties. In other words the energy 

deposited in the large volume is equal to the energy content of collision kerma in this same volume. 

This demonstrates that over a large volume collision kerma conserves energy whereas kerma does 

not; for 25 MeV photons this violation amounts to 8.6%, 14.2% and 25.5% (essentially given by 1/(1-

g )) in the large volumes of water, aluminium and copper respectively. These results further 

emphasize that one cannot obtain kerma from the dose yielded by setting a high value of ECUT in a 

Monte-Carlo simulation for a large-volume geometry.  

 Table 3.3 presents the values of the modified kerma, Kncpt, divided by dose D for the LVG for 

the same beam qualities and media. It is seen that Kncpt does conserve energy to a very good 

approximation. The very small excess of Kncpt over D at 5 MeV and above in copper is probably due 

to the tiny amount of (kinetic) energy backscattered on secondary electrons and thus included in the 

scoring of kerma but not of dose. Table 3.4 presents the values of K/D, Kcol/D and Kncpt/D for ‘clinical’ 

linac spectra of 6, 10 and 15 MV (spectra from Mohan et al 1985) in water only. The K/D values are 

1.018, 1.0011 and 1.006 for 15, 10 and 6 MV respectively. It should be noted that K/D is also given 

by 1/(1- g ) derived from the photon fluence spectra via equations (3.7) and (3.8) for the LVG. 

 
Table 3.3: Kerma (no charged-particle transport), Kncpt , over a large volume, divided by Dose D over the 
same large volume, Kcol/D for beams of 0.1 to 25 MeV photons in water, aluminium and copper. The 
statistical (Type A) uncertainties are ± 2 standard deviations. 

 

 

Photon energy (MeV) 

Kncpt/D 

Water Aluminium Copper 

0.1 1.0000 ± 0.0001 1.0000 ± 0.0001 1.0004 ± 0.0001 

0.5 1.0000 ± 0.0001 1.0000 ± 0.0001 1.0002 ± 0.0002 

1 1.0001 ± 0.0001 1.0003 ± 0.0002 1.0005 ± 0.0003 

5 1.0002 ± 0.0001 1.0006 ± 0.0002 1.0021 ± 0.0003 

10 1.0000 ± 0.0001 1.0004 ± 0.0003 1.0028 ± 0.0003 

25 0.9997 ± 0.0003 1.0001 ± 0.0003 1.0028 ± 0.0004 
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Table 3.4: Kerma K over a large volume, divided by Dose D over the same large volume, K/D, and 
similarly for  Kcol/D and  Kncpt/D for ‘clinical’ beam qualities from 6 MV to 15 MV for broad, parallel 
‘clinical’ photon beam (spectra from Mohan et al

 1985)  in water. The statistical (Type A) uncertainties 
are ± 2 standard deviations. 
 

 
 

Clinical beam 

quality (MV) 

                         Water 

K/D 1/ (1 – g ) Kcol/D Kncpt/D 

6 1.0057 ± 0.0001 1.0056 1.0000 ± 0.0001 1.0000 ± 0.0001 

10 1.0110 ± 0.0001 1.0109 1.0002 ± 0.0002 1.0002 ± 0.0002 

15 1.0181 ± 0.0002 1.0180 1.0001 ± 0.0002 1.0003 ± 0.0002 

 

 

3.3.2 Total photon fluence, differential in energy 

Figures 3.3(a) - (b) compare photon fluence spectra for the 25 MeV broad, parallel photon beams at 

a depth of ≈ 51 g cm-2 in all three media for both very high and very low charged-particle transport 

cut-offs, ECUT.  
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(b)   
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Figure 3.3: (a) A comparison of total photon fluence, differential in energy, along the central axis, 
normalized to the fluence at the incident energy, for a 25 MeV monoenergetic broad, parallel photon 
beams, at depths varying  between 51.25 and 52.52 g cm-2 in water, aluminium and copper for the 
DDLRG with very high charged-particle transport cut-off (i.e. ECUT = 50.511 MeV (total energy)), 
labelled with the subscript ‘ncpt’  and very low charged-particle transport cut-off (i.e. ECUT = 512 keV 
(total energy)), with no subscript; (b) same quantity and media up to a energy range of 1 MeV to visualize 
the details of the ‘spike’ at 0.511 MeV due to annihilation photons. 

 

 

The difference between the ‘low ECUT’ curves and the ‘ncpt’ ones is solely due to secondary 

bremsstrahlung, this being present in the former but not in the latter; this difference is especially 

marked in copper. 

Figure 3.3(b) shows the energy region up to 1 MeV in order to highlight the ‘spike’ at 0.511 

MeV due to annihilation photons. It should be noted that this 0.511 MeV spike is present in the 

spectra corresponding to both high and low ECUT. This is because the Monte-Carlo code DOSRZnrc 

‘forces’ positron annihilation in the scoring volume where these particles fall below ECUT  i.e. the 

identical volume where these are created in the case of high ECUT. This is consistent with the energy 

conserving properties of Kncpt. From a careful examination of Figure 3.3(b), in the case of copper a 

small difference in the height of the low-ECUT and high-ECUT 0.511 MeV spikes can be discerned; 

the slightly more pronounced low-ECUT spike must be due to the small extra amount of pair-
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production due to secondary bremsstrahlung photons, while in water this difference is entirely 

negligible. 

 

3.3.3 The influence of PCUT on kerma  

Figure 3.4 shows the variation of kerma at depths ≈ 40.0 g cm-2  computed by the DOSRZnrc user-

code as well as from the cavity integral (equation 3.7) as a function of PCUT for values between 1 

keV and 200 keV for a 25 MeV broad, parallel photon beam in the three media. As expected kerma 

decreases as PCUT increases. This can be interpreted as an increase in magnitude of the track-end 

term (see sub-section 3.2.3) with increasing PCUT.  The decrease in kerma is more pronounced for 

the high-Z media (Cu, Al) which is probably because the build up of low-energy photon fluence (i.e. 

due to secondary bremsstrahlung photons) above approximately 100 keV, relative to the primary 

fluence, is more pronounced at high-Z (cf. Figure 3.3(b)). Kerma values computed by the two 

different methods, with identical normalization, were found to be in excellent agreement, generally 

within ± 0.3%.  
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Figure 3.4: Kerma per unit incident photon fluence (Gy cm2) versus PCUT (keV) for 25 MeV 
monoenergetic broad, parallel photon beams at depths ≈ 40.0 g cm-2 for the depth-dependent large radius 
geometry in water, aluminium and copper. Kerma derived using DOSRZnrc (full lines). The error bars 
are ± 2 standard deviations and correspond to statistical (Type A) uncertainties. The short dashed lines 
represent the values of kerma calculated from the ‘cavity integral’ (equation 3.7) using fluence spectrum 
values from FLURZnrc. 
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3.4 Summary and Conclusions 

 
The ratios K/D, Kcol/D and Kncpt/D for 0.1 to 25 MeV ‘broad’, parallel photon beams in water, 

aluminium and copper media have been derived from Monte-Carlo simulation in a large phantom of 

thickness 1308 cm with a scoring volume of radius 654 cm (dimensions chosen to ensure a negligible 

particle escape). K/D is always greater than unity, by as much as 25% for 25-MeV photons in copper. 

The ratios Kcol/D and Kncpt/D are equal to unity (within extremely small statistical uncertainties) and 

demonstrate that over a large volume, collision kerma and Kncpt conserve energy in contrast to 

(normal) kerma. However, for a ‘clinical’ 6 MV beam quality K/D only exceeds unity by 0.6% over 

the large water volume. This analysis has highlighted the role played by secondary bremsstrahlung in 

determining kerma at large depths. Additionally the small error made when computing kerma by 

numerical integration over photon fluence has been quantified as a function of PCUT and an 

expression for a photon track-end correction term has been formulated. 
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CHAPTER 4 
 

Characterizing the influence of detector density on dosimeter 

response in non-equilibrium small photon fields 
 

      

4.1 Introduction 
 
Small radiation fields are increasingly being used in modern radiotherapy techniques such as 

stereotactic radiosurgery, IMRT and VMAT. The dosimetric measurements required to commission 

these techniques are the subject of much interest in the literature, both in terms of characterizing 

small-field detector properties (Westermark et al 2000, McKerracher and Thwaites 2002, Pappas et al 

2008) and developing formalisms relating small-field measurements to conventional dosimetry 

carried out at standard field sizes and conditions (Alfonso et al 2008). 

A number of authors have suggested that silicon diodes should make good small-field 

detectors due to the small size and high sensitivity of their active volume (McKerracher and Thwaites 

1999). Sauer and Wilbert (2007) observed a limited variation in the energy response of shielded 

(‘photon’) diodes; however studies by Eklund and Ahnesjö (2010) showed that the tungsten shielding 

of these diodes significantly distorts the radiation energy spectrum at the detector ‘cavity’, decreasing 

the low-energy photon scatter and increasing the electron fluence. Unshielded (‘electron’) diodes do 

not perturb the radiation fluence in this way; their relatively small size and good directional 

dependence (McKerracher and Thwaites 2002) ought to make them close to ideal for small-field 

dosimetry. 

Differences between beam profiles measured using various detectors are described in a 

number of papers. Dose averaging over the finite volume of a detector leads to apparent penumbral 

broadening (Dawson et al 1986), which is offset to some extent by penumbral ‘sharpening’ and 

profile distortion by solid-state dosimeters such as silicon diodes and diamond detectors (Pappas et al 

2008, Beddar et al 1994).  

Scott et al 2008 briefly explored the effect of calculating the dose delivered to a silicon voxel 

(representing an unshielded diode) located on the axis of a small radiation field in a water tank, rather 

than directly calculating the dose delivered to a voxel of water. The study was carried out using a 

Monte-Carlo (MC) model of a 15 MV beam generated by a Varian 2100C linear accelerator (linac) 

(Varian Medical Systems, Palo Alto, CA). Using photon and electron spectra calculated in the water 

phantom, it was found that both the Spencer-Attix, or restricted mass stopping-power ratio, water-to-

silicon, 
SA

w,Si,s ∆  and the mass energy-absorption coefficient ratio, water-to-silicon, ( )en w,Si
µ ρ  for the 

15 MV beam vary minimally with field size and depth as previously shown by Sánchez-Doblado et al 
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(2003) and subsequently confirmed by Bouchard et al (2009). However, by directly calculating the 

doses to water voxels and detector voxels in the water phantom it was showed that the quantity  

 water
detector

detector

(FS, 5 cm)

(FS, 5 cm)

D d
F

D d

=
=

=
      (4.1) 

changes significantly with field-size, where Dwater (FS, d = 5 cm) is the dose delivered to a water voxel 

whose size is roughly that of the sensitive volume of the detector, and which is located on the central 

axis of a field of size FS at 5 cm depth in a water phantom set up at a source-surface-distance (SSD) 

of 100 cm, and Ddetector (FS, d = 5 cm) is the dose delivered to the same voxel with its composition 

changed to reflect that of the sensitive volume of the detector – silicon in the case of a diode.  

Further Scott et al (2008) found that although Fdiode is constant for square fields of around 2 

cm width and above (as expected if it is simply a property of the beam quality, detector atomic 

composition and physical dimensions), it decreases strongly at very small field sizes. Since 
SA

w,Si,s ∆  

and ( )en w,Si
µ ρ  change very little with field size, it was inferred that this variation in Fdiode was not 

due to the differences in the atomic composition of water and silicon. Therefore Fdiode was tentatively 

attributed to the higher physical density of the silicon.  

Mobit et al (1997) have modelled the response of small chips of diamond in water phantoms 

irradiated using wide monoenergetic photon and electron beams. They found no energy dependence 

for electron beams but a significant decrease in sensitivity for very low-energy photon beams (25 kV). 

Haryanto et al (2002) compared output factors measured using a number of detectors with MC 

calculations of doses delivered to small voxels of detector material placed in a virtual water phantom. 

They modelled a 6 MV photon beam generated by an Elekta Sli linac (Elekta Oncology Systems Ltd, 

Crawley, UK), and calculated doses delivered to ‘detector’ voxels from fields of size 1-15 cm. 

Measurements made using the silicon diode, diamond detector, and PinPoint 3D ionization chamber 

yielded different small-field output factors, but for each detector the measurements matched their 

respective MC calculated values. However the dimensions of the voxels were chosen arbitrarily, 

rather than reflecting those of the detectors modelled, and the density of diamond used in the study 

was quite low (2.26 g cm-3), closer to that tabulated for graphite than for diamond (3.5 g/cm3)7.  

Crop et al (2009) used MC methods to determine the effect of individual components of 

microionization chambers on perturbation factors for small photon fields. They obtained a smaller 

perturbation factor for the roughly spherical ‘PinPoint 3D’ ionization chamber (Model 31016, PTW, 

                                                      
7 http://www.mindat.org 
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Freiburg, Germany) than for the more elongated PinPoint chambers (Models 31006/31014/31015, 

PTW, Freiburg, Germany). They also found that the perturbation factors changed with the distance 

off-axis in a small field, suggesting that these detectors may not be ideal for measurement of small-

field profiles. 

Francescon et al (2011) have performed detailed MC calculations of correction factors for a 

range of commercially available detectors in the 6 MV beams of two clinical linear accelerators. 

Similarly to Scott et al (2008) results they also found that at field sizes of 2 cm and greater the 

correction factor is constant.  

Alfonso et al (2008) have defined a factor FS FSref

FS FSref

,

,

f f

Q Qk  representing the difference between 

chamber response in measured and reference fields: 

( )
( )

FS FS

FS FSFS FSref

FS FSref FSref FSref

FSref FSref

w,, detector vol

,

w, detector ref vol ref

(FS) FS

(FS ) FS

f f

Q Qf f

Q Q f f

Q Q

D M F P
k

D M F P
= =  (4.2) 

where  fFSref and fFS denote the reference field and a nonstandard field of size FS respectively, QFSref 

and QFS describe the radiation qualities of these fields, FS

FSw,

f

QD is the dose to water at a point in the 

centre of a field of size FS and quality QFS, and FS

FS

f

QM  is the associated detector reading. Assuming 

that the detector reading is proportional to the integral dose absorbed by its sensitive volume 

(Francescon et al 2011) then it follows that the k factor is equal to the ratio of Fdetector values for the 

measured and reference fields, multiplied by a ratio of ‘Pvol’ factors which account for FSref

FSrefw,

f

QD being 

defined as dose at a point, in contradistinction to the detector reading which represents the dose 

absorbed throughout the sensitive volume of the detector. Bouchard et al (2009) have developed a 

formalism linking the dose absorbed by a detector to the dose in water, according to which detectorF  is 

equivalent to 
SA

fl w,det , P P sρ ∆  where ρP  represents the dosimetric impact of any difference in density 

between water and the detector active volume, and flP  describes the effect of changes in electron 

fluence within the active volume if its atomic composition differs from that of water. Following the 

similar formalism of Crop et al (2009) detector  F  is equivalent to 
SA

det-w med,det ,  p s ∆ where pdet-w is a term 

equivalent to the product of Bouchard’s Pρ and flP factors. 

In this chapter the computational approach is developed outlined in previous published study 

(e.g. Scott et al 2008), using the Monte-Carlo 15 MV beam model to explore detector response on 
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Figure 4.1: Schematic illustration of the cavities simulated in this work, and the perturbation factors 
required to obtain the dose to a point in water. 

 
 the central axis.  The calculations are presented for active detector volumes of different atomic 

compositions and densities, broadly representative of a PTW 60003 diamond detector (PTW, 

Freiburg, Germany), a PTW 31016 PinPoint 3D ionization chamber, and a Scanditronix unshielded 

electron diode (Scanditronix-Wellhöfer, Uppsala, Sweden).  In order to study how detector response 

changes specifically with the density of the detector active volume, other detector components have 

been excluded from considerations, and  water-to-detector ratios detectorF  are calculated under two 

conditions: one for which the density and mass radiological properties of the modelled detector 

volume are set equal to the real active volume, and the other for which the modelled density is 

changed to that of the detector, but the mass radiological properties are held fixed at those of unit 

density water. These latter results allow to isolate the impact of changes in detector density 

measurements (Pρ in the system of Bouchard et al 2009) from the better understood effects of changes 

in atomic composition (figure 4.1). 

 

4.2 Materials and methods 
 
Monte-Carlo model of a Varian 2100C linear accelerator (Varian Medical Systems, Palo Alto, CA) 

for photon beams of nominal energy 15 MV developed and validated previously has been used here 

(Scott et al 2008, 2009). A Monte-Carlo model of the accelerator used here was constructed in the 

BEAMnrc system (Rogers et al 1995, 2011a), setting physical machine dimensions to values provided 

by Varian Medical Systems and achieving good agreement between calculated and measured dose-

distributions(within 2%). The phase-space files, generated for previously published study e.g. Scott et 

al (2009) , were scored at a distance of 58 cm from the source, were subsequently used as input for 

EGSnrc user-code  CAVRZnrc ( version: V4-2.3.2) using the ‘source 21’ option (Rogers et al 2011b). 
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 The CAVRZnrc user-code of the EGSnrc Monte-Carlo code system has been designed 

specifically to calculate doses delivered to cylindrically symmetric detectors placed on axis (Rogers 

2011b). Different detector voxels have been located at 5 cm depth in a water phantom set up with a 

SSD of 100 cm. Doses calculated in the detector voxels are compared to those calculated for a voxel 

of water located at the same place, to establish values for the dose-to-water to dose-to-detector-in-

water factor Fdetector (FS, d) (equation (4.1)). For relative dosimetry it is the variation of this correction 

factor with field size and depth that matters, rather than its absolute value. 

To fully explore the impact of detector density on small-field measurements, the  doses for 

square fields down to a size (width) of 0.25 cm collimated by the linac jaws have been calculated, 

although the minimum field size currently available on Varian 2100C linear accelerator (Varian 

Medical Systems, Palo Alto, CA) is 0.5 cm. 

 

4.2.1 Silicon, PTW diamond and PinPoint 3D detectors 
   
The aim of this work is to characterize the impact of differences in the atomic composition and 

density of active volumes of detectors on the doses recorded by them, modelling dosimeters as simple 

homogeneous voxels of detecting material surrounded by water and ignoring any metal contacts or 

epoxy casing.  

All detector active volumes were modelled as having a circular cross-section of 2.26 mm 

diameter, which has the same area as a 2 × 2 mm2 square (used as the standard size in previous study, 

Scott et al 2008, 2009) and is close to the area of the circular cross-section of the silicon diode’s 

sensitive region. The thicknesses of the silicon and diamond voxels were chosen to match those of the 

slim disc- and tablet-like sensitive volumes of the respective detectors, while the PinPoint 3D 

ionization chamber sensitive volume was modelled as a cuboid of thickness 2 mm, rather than having 

the 2.9 mm high domed shape of the real air cavity (table 4.1). This results in a modelled air cavity 

that has half the volume of the physical PinPoint 3D ionization chamber – but this difference between 

experimental and calculational volumes has no impact on the main focus of this work, which is to 

compare doses calculated for voxels of different composition, rather than to compare measured and 

calculated doses. Crop et al (2009) found that the central electrode of the PinPoint 3D ion chamber, 

which is not modelled here, minimally perturbs the dose in the air cavity. 

 The detector material of the PinPoint 3D and diamond detectors has been represented as 

single voxels, but for the diode a stack of two silicon voxels is generally used. Only the dose recorded 

in the upper (0.06 mm thick) voxel which represents the sensitive volume (depletion layer) is used in 

these calculations; the lower (0.44 mm thick) voxel, which represents the silicon dye, is included in 

the modelling to fully capture the fluence perturbation caused by the whole silicon crystal. 
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Table 4.1: Voxel properties used for simplified model of various detectors.  

 

 

Detector name 

Physical Dimensions  Modelled Dimensions 

Diameter 
(mm) 

Depth 
(mm) 

Density 
(g cm-3) 

 
Diameter 
(mm) 

Depth 
(mm) 

Density 
(g cm-3) 

Silicon Diode 2.00 0.06 2.3  2.26 0.06 2.3 

Silicon Diode (dye) 2.00 0.44 2.3  2.26 0.44 2.3 

PTW Diamond  
(PTW 60003) 

3.00* 0.26 3.5  2.26 0.26 3.5 

PinPoint 3D 
ionization chamber 
(PTW 31016) 

2.90 2.90 0.0012  2.26 2.00 0.0012 

*The active volume of the diamond detector is a cuboidal chip with a width estimated by the manufacturer of 3 
mm. 

 
The radiation interaction cross sections and stopping powers of several materials are provided 

with the EGSnrc software and stored in a PEGS4 datafile (Pre-processor for EGS (Nelson et al 1985, 

Kawrakow et al 2011)). Although graphite is included, diamond with a density of 3.5 g cm-3 was not 

available, in the default version, and so had to be generated independently. First a density correction 

file was generated to account for the polarisation effect in the denser form of carbon using a program 

available on the NIST website8. Then this was combined with the EGSnrcMP package (Kawrakow et 

al 2006) to generate a PEGS4 datafile, setting the parameters AP=1 keV, AE=512 keV where AP and 

AE are the production thresholds for secondary bremsstrahlung photons and knock-on electrons 

respectively.  

 

4.2.2 Varying the density of water 
 
The effect of density on detector response is twofold: firstly it affects the number of atoms a particle 

encounters on a given path; and secondly it also affects electron stopping powers via the polarisation 

effect. The changes in mass stopping power caused by the density-dependent polarization effect in small 

(active) volume of material are eliminated, since the dependence of absorbed dose on stopping power 

is already well understood. Therefore, the PEGS4 datafiles have been generated for artificial (water) 

substances having the densities of silicon, diamond and air but the atomic composition and mass 

stopping power and mass energy-absorption coefficients of unit density water.  These artificial 

materials were then used in calculations of the dose delivered to a nominal detector voxel in a 

phantom of standard density water. The density-adjusted water voxels have the same dimensions as 

                                                      
8 http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 
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the corresponding voxels used to represent detector active volumes, and so comparisons between 

doses delivered to the different voxels are not biased by volume averaging effects.  

detectorF  is determined for these modified density water voxels, as well as for the voxels filled 

with ‘real’ detector material, described in sub-section 4.2.1. In the former case, where the atomic 

number of the detector is identical to water even though the density is not, both the factors flP  and 

SA

w ,det ,s ∆  are unity and so Fdetector is equivalent to the ρP  factor of Bouchard et al (2009). Similarly in 

Crop et al’s (2009) formalism Fdetector for a voxel of modified density water can be interpreted as 

purely the pdet-w factor, where ‘det’ represents this voxel of modified-density water. 

 

4.2.3 Voxel volume effects 
 
Even for a perfect (water-like) detector the size of the active volume will affect the output recorded 

for very small fields, because the degree of averaging of dose across the peaked distribution will 

change with both detector size and dose gradient over the detector, which varies with field size. In 

Bouchard et al’s formalism this effect is accounted for by the factor Pvol, which is the ratio of the dose 

absorbed at a point in water to the dose absorbed by a finite volume of water. To characterize this 

factor, the output has been calculated on central axis for water voxels of various diameters – 2.26 mm 

representing an unshielded diode, 1.13 mm representing a smaller stereotactic diode or similar and 0.1 

mm representing an ideal point-like detector . 

In addition to the averaging effect discussed above, the volume of non-unit density material 

placed in a water phantom will influence the degree to which the electron fluence (in uniform) water 

is perturbed, and thus influence the magnitude of any resulting changes in absorbed dose in the 

detector material. To investigate this variation, detectorF  (FS, d) values have been calculated for single 

silicon voxels of different thicknesses (0.5, 1.0 and 2.0 mm).  Additionally, Fdetector (FS, d) has been 

calculated for stacks of silicon voxels with diameters of 1.13, 1.70, and 2.26 mm, the upper active 

voxel having a thickness of 0.06 mm and the underlying dye a thickness of 0.44 mm. 

   

4.2.4 Varying the focal spot size 
 
The size of the x-ray focal spot generated by the incident electron beam in the ‘thick’ linac target 

partly determines the penumbral width of the beam in water, and may also influence the central axis 

dose in very small fields via source occlusion (Scott et al 2009). The dose absorbed by a voxel on the 

central axis will depend on the in-water radiation fluence profile in the vicinity, as well as on any 

fluence perturbation caused by the presence of the detector material. To check the influence of the 

focal spot size on Fdetector ratios, BEAMnrc phase space files have been generated for a range of spot 

sizes, and used them to calculate Fdetector values for a diode detector comprising two silicon voxels. 



Chapter 4: The influence of detector density on dosimeter response in non-equilibrium small photon 

fields  

70 

 

(a) 

0.25 0.5 1 2 3 4 6 8 10

1.0

1.1

1.2

1.3

1.4

1.5

1.6
F

d
et

ec
to

r

Side of square field (cm)

  PinPoint air cavity

  Silicon diode

  Diamond
PTW 60003

 
(b) 

0.25 0.5 1 2 3 4 6 8 10
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

F
d

et
ec

to
r

Side of square field (cm)

 PinPoint air cavity

 Silicon diode

 Diamond
PTW 60003

 Water (air density)

 Water (silicon density)

 Water (diamond density)

 
 

Figure 4.2: Monte-Carlo calculated dose-to-water to dose-to-detector-in-water ratios, Fdetector, obtained for 
(a) PTW60003 diamond, diode, and PinPoint 3D detector voxels and (b) the same voxels filled with 
detector-density water. All points are positioned on-axis at 5 cm depth in a water phantom and displayed 
with 2 standard deviation (σ) error bars, reflecting statistical uncertainties of the Monte-Carlo 
calculations. As with all other figures in this chapter the following field sizes have been analysed: 0.25, 0.5 
0.75, 1.0, 1.5, 2.0, 3.0 10.0 cm. 
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4.2.5 Variation of silicon diode response with depth 
 

Previously it was established that neither 
SA

w,Si,s ∆  nor ( )en w,Si
µ ρ  changes significantly with depth in 

small fields (Scott et al 2008), but it was not checked whether detector response changes with depth. 

Since Fdetector varies with field size, it might be expected also to vary with depth because the beam 

progressively diverges. Therefore the calculations have been carried out, placing a stack of two silicon 

voxels at various depths in water and determining doses delivered to the upper (active) voxel by a 0.5 

× 0.5 cm2 field, thus simulating the depth dose curve measured by a silicon diode. The curve has been 

normalized at 5 cm depth, and compared it with a calculated dose-to-water depth dose curve.    

 

 

4.3 Results 
 

4.3.1 Silicon, PTW diamond and PinPoint 3D detectors 
 
In figure 4.2(a) calculated dose-to-water to dose-to-detector-in-water ratios, Fdetector (FS, d = 5cm) are 

plotted against square field size for diamond, silicon and air voxels positioned on axis at 5 cm depth in 

a water phantom positioned at 100 cm SSD. The behaviour of the diamond detector factor, Fdiamond, is 

similar to that for silicon Fdiode, although the diamond factor falls faster at small field sizes. On the 

other hand, FPinPoint, for the low-density air voxel, varies in the opposite direction to Fdiode and Fdiamond, 

increasing at small field sizes. 

 

4.3.2 Varying the density of water  
 

The variation of Fdetector values with field size is mirrored by the analogous curves calculated for 

voxels of water whose densities have been modified to those of the different detectors, figure 4.2(b). 

Whilst for large fields the values of Fdetector for water voxels of any density are naturally unity, the 

Fdetector values for the voxels of the different detector materials – silicon, diamond, air – reflect the 

respective combinations of a weighted average of water-to-detector material stopping-power ratio and 

mass energy-absorption coefficient ratio according to ‘classical’ cavity theory (Nahum 2009). 

 

4.3.3 Voxel volume effects 
 
In figure 4.3 Pvol values (taken as the ratio of average dose-to-water in a very small on-axis voxel of 

0.1 mm diameter to that in a wider voxel) are plotted against field-size. In fields wider than 0.5 cm, 

the effect of dose averaging across water voxels of the same size as detector active volumes is small 

for commercially available detectors. On-axis in narrower fields, smaller voxels do record higher 

average doses than those of larger voxels, although the difference in output factor measured by  

detectors of 1.13 mm and 0.1 mm diameter remains quite small (1.8% relative) in a 0.5 cm field, but 

rises considerably in a 0.25 cm field.  
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Figure 4.3: (a) Output factors calculated for 0.26 mm thick water voxels of various diameters, positioned 
on-axis at 5 cm depth in a water phantom. (b) Pvol for the same range of field sizes, calculated as the ratio 
of average dose-to-water in a 0.1 mm diameter voxel to that in a wider voxel. The uncertainties shown are 
2σ.  
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Figure 4.4: Fdetector calculated (a) for silicon voxels of 2.26 mm diameter cross-section and various 
thicknesses and (b) for a stack of silicon voxels (0.06 + 0.44 mm deep) of various diameters. All voxels are 
located on-axis at 5 cm deep in a water phantom and 2σ uncertainties are indicated. 



Chapter 4: The influence of detector density on dosimeter response in non-equilibrium small photon 

fields  

74 

 

In figure 4.4(a) it can be seen that the dose correction factor Fsilicon decreases as the thickness 

of the detector increases. This might be expected since the volume of non-water density material is 

greater in thicker voxels thus increasing the degree of ‘perturbation’. Conversely and unexpectedly, 

however, it can be seen in figure 4.4(b) that the required correction factor becomes closer to unity as 

voxel widths rise.  

 

4.3.4 Varying the focal spot size 
 
Fdetector changes little with the width of the incident electron beam (figure 4.5) and therefore with the 

photon focal spot size. Although penumbra widths and profile shapes of very small fields are partly 

determined by the focal spot size, the resulting impact on Fdetector is small compared to the impact of 

changing field size.  

 

 

0.25 0.5 1 2 3 4 6 8 10
1.04

1.06

1.08

1.10

1.12

1.14

1.16

F
d

et
ec

to
r

Side of square field (cm)

 0.1 mm

 0.7 mm

 1.0 mm

 

Figure 4.5: Variation of Fdetector with field size for different modelled widths of the electron beam incident 
on the x-ray target. Fdetector values are plotted with 2σ uncertainties for a 2.26 mm diameter, 0.06 mm 
depth silicon voxel located on-axis, 5 cm deep in a water phantom (immediately above a 0.44 mm silicon 
dye). 
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4.3.5 Variation of silicon diode response with depth 
 

It can be seen in figure 4.6 that for a 0.5 × 0.5 cm2 field Fsilicon, the ratio of dose-to-water to dose-to-

silicon-in-water, remains constant with depth from around 2 cm and deeper. The excellent agreement 

beyond the dose maximum is unsurprising, since for an SSD of 100 cm beam divergence causes the 

field width to increase by only 20% between measurement depths of 0 and 20 cm. Thus a beam 5 mm 

wide at isocentre will only have diverged to 6 mm wide at 20 cm depth in water, and from Figure 4.2 

it can be seen that the variation in Fdetector between field sizes of 5 and 6 mm is no more than 1%. It 

has been shown previously (Scott et al 2008) that for small fields the change in energy spectrum with 

depth minimally affects both the stopping-power and mass-energy-absorption ratios. Consequently it 

appears that silicon diodes can be used with some confidence to make small-field depth-dose 

measurements, except possibly in the build-up region. 
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Figure 4.6: Monte-Carlo calculated depth-dose curves obtained for a 0.5 × 0.5 cm2 field. The full curve 
represents calculated doses delivered to water voxels, while the points represent doses calculated for 
isolated silicon voxels located in a water phantom. The points are normalized to the water values at 5 cm 
depth. 
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4.4 Discussion and conclusions 
 
Working with a previously validated model of a Varian linac 15 MV beam it has been shown that 

Fdetector, the ratio of dose-to-water to dose-to-detector-in-water (calculated for finite equal-sized 

volumes of water and detector material co-located on central axis) varies significantly with field size 

for ion chambers, silicon diodes and diamond detectors. Relative to wide field readings, it has been 

found that at the smallest field sizes high-density detectors over-read, and low-density detectors 

under-read, to an extent that correlates with the mass density of the detector material relative to that of 

water. This apparent dependence on density rather than on atomic composition is confirmed by 

calculations of doses delivered to unit density water voxels and to voxels of water having densities 

equal to those of detector active volumes, since ratios of the calculated doses change with field size in 

much the same way as Fdetector. Of course the average atomic number of the detecting material 

influences the value of Fdetector at all field sizes;  however this is unimportant for small-field relative 

detectors, which are used to measure doses in small fields relative to that at the centre of a larger 

reference field, where absolute dose has previously been determined using an absolute dosimeter. 

The relative insensitivity of Fdiode to variations in spot size means that it should be possible to 

calculate a set of dose-to-diode to dose-to-water correction factors that might be expected to be valid 

for a wide range of linac designs.  

At first sight it seems appealing to apply the Monte-Carlo-calculated correction factors Fdetector 

to convert detector-measured small-field doses into ‘true’ in-water values. A better approach would be 

to manufacture small-field relative detectors with active volumes whose densities are similar to water.  

Conventional cavity theory has hitherto focussed on differences in the atomic compositions of 

materials, and thus their stopping-power and mass-attenuation ratios (Nahum 2009).  Based on the 

findings in this chapter, a further work has been extended (chapter 5) to incorporate the effect of 

‘density’ into a theory for Fdetector – aiming to pin down the causes of the density dependence, 

determine when it is most likely to be problematic, evaluate ways of minimizing it, and potentially 

help identify useful reference conditions for calibration of small-field detectors (Alfonso et al 2008). 
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CHAPTER 5 
 

Using cavity theory to describe the dependence on detector 
density of dosimeter response in non-equilibrium small fields 
 

            

5.1 Introduction 
 
Small radiation fields are used increasingly often in radiotherapy – a development that has increased 

the degree of uncertainty in clinical dosimetry because some key properties of these small fields differ 

from those of the larger fields used classically, on which reference dosimetry protocols are based 

(Alfonso et al 2008, Das et al 2008b). In particular, results from several computational studies show 

that when a detector is placed at a point in a wide radiation field receiving a particular dose-to-water 

(in the absence of the detector) and where electronic equilibrium holds laterally, its reading may differ 

from that of the same detector placed in a small field at a point receiving the same dose-to-water but 

where lateral electronic equilibrium is not established (Bouchard et al 2009, Crop et al 2009, 

Francescon et al 2011, Scott et al 2012). Differences between readings in really small (0.5 × 0.5 cm2) 

fields and in 10 × 10 cm2 reference fields can reach several tens of percent, even for small ion 

chambers, diodes and diamond detectors with sensitive volumes of 1-3 mm diameter (Sánchez-

Doblado et al 2007). 

Monte Carlo calculations show that this effect is largely the result of density differences 

between detector sensitive volumes and water, and of dose-averaging over detector sensitive volumes. 

Differences in atomic number generate a smaller effect, even for silicon diodes, because spectral 

variation between small fields is limited (Bouchard et al 2009, Crop et al 2009, Ding and Ding 2012, 

Scott et al 2008, 2012). While volume-averaging effects are well understood, the dependence of 

detector readings on density has been studied less. Here this density-dependence is characterized 

using two ratios 

( ) ( ) ( )w detw,det FS FS,  5,  MU FS,  5,  MUF D D=    (5.1) 

( ) ( ) ( )w mdwFS FS,  5,  MU FS,  5,  ,  MUP D Dρ ρ−−
=    (5.2) 

where wD (FS, 5, MU) is the mean dose absorbed by a unit density water voxel of the same size as 

the detector sensitive volume, located on-axis at 5 cm depth in a water phantom set up at a source-

surface-distance (SSD) of 100 cm and irradiated by a field of size FS delivering MU monitor units; 

detD is the mean dose absorbed by an equisized voxel of detector sensitive material located in the 

same place. mdwD − is the mean dose absorbed by an equisized voxel of ‘modified density water’, 
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whose density ρ is set to that of the sensitive volume but whose mass stopping power and mass 

energy-absorption coefficients still match those of unit density water – that is, eliminating changes in 

mass stopping power caused by the density-dependent polarization effect (Attix 1986, Nahum 2007a) 

as denoted by the minus suffixes of mdwD − and Pρ−
. Thus Pρ−

 describes the impact of density alone 

on the dose absorbed by a small volume of modified density water, excluding the effects of changes in 

its mass radiological properties, whereas ( )w,det FSF  describes the total impact of changes in the 

density and atomic composition of the volume. 

In this chapter a cavity theory is developed describing Pρ−
, aiming to explain the causes of the 

density-dependence and provide insights into which detector geometries are likely to be most 

problematic, how the effect might be minimized, and which fields might provide good reference 

conditions for the calibration of small field detectors (Alfonso et al 2008). 

To keep the theory reasonably simple detectors are modelled as comprising a single volume 

(voxel) of sensitive material, surrounded by unit density water. For ion chambers this is often a good 

approximation: alongside an air cavity these detectors include a central electrode, outer wall and stem, 

which modify the cavity dose by additional factors Pcel, Pwall and Pstem – but Monte-Carlo simulations 

of Exradin A12 and A14 detectors show that these extra factors are close to one and differ little 

between regular 10 × 10 cm2 fields and IMRT fields constructed from small field segments (Bouchard 

et al 2009). 

Diamond detectors typically comprise an active diamond volume (density 3.5 g cm-3) 

surrounded by material of density close to one, and so they are also described fairly well by the single 

voxel cavity model. In diode detectors, on the other hand, a thin active layer of silicon (density 2.3 g 

cm-3) immediately overlies a thicker inactive silicon layer; and so in this work the single voxel model 

is used to explore the density-dependence of ionization chambers and diamond detectors but not 

diodes. 

In this analysis Fano’s theorem is used to study the case of a unit density water phantom 

containing a ‘water’ cavity of modified density ρ. The dose absorbed by the cavity from a wide field 

is partitioned into two components – firstly that imparted by electrons liberated in photon interactions 

occurring within the cavity (equal to a particular fraction, Jcav, of the total dose absorbed), and 

secondly that imparted by electrons generated outside it. It is shown that Jcav depends on the cavity 

density, as does the ratio of the two dose components. In smaller fields the ratio also depends on the 

degree of lateral electronic equilibrium in the vicinity of the cavity, leading to an equation that links 

Pρ−
 to the degree of lateral electronic equilibrium in the smaller fields. This link is compared to data 
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created computationally using a Monte-Carlo model of a 15 MV photon beam, which is studied here 

because the degree of electronic disequilibrium in small fields is greater at this than at lower energies. 

Classical theories of photon dosimetry describe the response of small Bragg-Gray cavities in 

which all the electron fluence originates outside the cavity volume (Jcav= 0), and of large cavities in 

which the electron fluence is generated entirely internally (Jcav=1). Doses absorbed by these small and 

large cavities are independent of cavity density, However doses absorbed by intermediate-sized 

cavities (0<Jcav<1) located in non-equilibrium fields do depend on cavity density. These ‘general’ 

cavities were first studied by Burlin (1966) who characterized them through a parameter (1-d), which 

is loosely analogous to Jcav and represents the average electron fluence generated by photon 

interactions occurring within the cavity, relative to the equilibrium electron fluence generated in an 

infinitely large volume of cavity material. Burlin’s work and that of later investigators (Haider et al 

1997, Fu and Luo 2002 for example) addressed the dependence of doses absorbed from wide fields on 

the atomic composition of general cavities and surrounding material. However these workers did not 

study the response of detectors in the severely non-equilibrium fields that are the subject of this 

chapter. 

The quantities Fw,det and Pρ−
can be linked to other descriptions of small field dosimetry: 

written in terms of a formalism developed by Bouchard et al (2009) from conventional ion chamber 

dosimetry protocols  

SA SA SA

w,det mdw det mdw det w detF P P s P P s P P sρ ρ ρ+ + + − − − − −∆ ∆ ∆= × × = × × = × ×
 fl , , fl , , fl , ,    

(5.3) 

while following the similar formalism of Crop et al (2009) 

SA

w,det det w w detF p s− ∆= ×
, ,  

; mdw wP pρ± ±
=

 - 
                                       (5.4) 

where 
SA

mdw dets
± ∆ , ,  describes the mean modified density water-to-detector mass restricted stopping 

power ratio for the electron fluence within the sensitive volume of the detector, and flP
±

accounts for 

any difference between this fluence and that in modified density water; both factors including (+) or 

excluding (-) the impact of changes in the mass stopping power of water with density. In Bouchard’s 

original formalism the symbols Pρ and Pfl were used to denote Pρ+
and flP

+
, but Pρ−

 and flP
− 

are useful 

variants allowing the effect of density to be studied in isolation from changes in mass radiological 

properties. The factors det wp
 - 

and mdw wp
±  - 

are extensions of Crop’s  pa-w factor to situations where air 

is replaced by detector material and modified density water (± the associated change in mass stopping 

power from unit density water) respectively (figure 5.1). det wp
 - 

equates to P Pρ− −
×

 fl
and accounts for 

changes in electron fluence due to both the non-water equivalent atomic composition and non-unit 

density of detector sensitive volumes. 
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Figure 5.1: Fw,det and Pρ
−

factors illustrated alongside similar factors used in the formalisms of Bouchard 

et al and Crop et al. The expression next to each arrow is the term required to correct the average dose in 
the cavity on the left of the arrow to that in the cavity on the right. 

 

Alfonso et al (2008) have defined a factor 

FS FS

FS FSFS FSref

FS FSref FSref FSref

FSref FSref

w,,

,

w ,

f f

Q Qf f

Q Q f f

Q Q

D M
k

D M
=                  (5.5) 

in which fFSref and fFS denote the reference field and a nonstandard field of size FS respectively, QFSref 

and QFS describe the radiation qualities of these fields, and FS

FS

f

QM   is the meter reading of an on-axis 

dosimeter at whose point of measurement a dose to water FS

FSw,

f

QD is delivered by a field of size FS in 

the absence of the dosimeter. Assuming that the meter reading is proportional to the mean dose 

detD absorbed throughout the detector’s sensitive volume (Francescon et al 2011) then  

FS
FS

FS
FSFS FSref

FS FSref FSref
FSref

FSref
FSref

det,w ,,

,

det,w ,

ff
QQf f

Q Q ff
QQ

D D
k

D D
=  

=   
( ) ( )

( ) ( )
( ) ( )

( ) ( )

FS FS FS
FS

FS FS FS
FS

FSref FSref FSref
FSref

FSref FSref FSref
FSref

w, det, w,w,
w,det vol

w,det ref vol refw, det, w,w,

FS FS

FS FS

f f ff
Q Q QQ

f f ff
Q Q QQ

D D D D F P

F PD D D D
=            (5.6) 

 

Pvol 

 

 

 

  

Cavity volume V, 

atomic number Z, 

density ρ 

Cavity volume V, 

H2O, 

 density ρ , 

mass stopping 

power ≡ 

density ρ H2O 

Cavity volume V, 

H2O, 

density 1 

Point cavity,  

H2O, 

 density 1   

Cavity volume V, 

H2O, 

 density ρ , 

mass stopping 

power ≡ 

density 1 H2O 

SA

fl mdw detP s
+ + ∆×

, ,
  

SA

fl w detP s ∆−
×

 , ,   

SA

w,det det-w w detF p s ∆= ×
, ,

  
S A SA

fl m dw det fl w detP P s P P sρ ρ+ ∆ ∆− −+ +
= × × = × ×

 , , , ,

mdw -wP pρ −−
=

mdw -wP pρ ++ =
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where Fw,det converts the average dose delivered to the detector sensitive volume (Looe et al 2013) 

into the average dose delivered to a co-located volume of water, and Pvol (FS) corrects the volume-

averaged water dose into the dose at the measurement point.  

 

5.2 Materials and methods 
 
5.2.1 Monte-Carlo modelling of the linear accelerator and detectors 
 
Monte-Carlo techniques has previously been used to study small field measurements of a photon 

beam of nominal energy 15 MV (Scott et al 2008, 2009, 2012) generated by a Varian 2100C linear 

accelerator (Varian Medical Systems, Palo Alto, CA). A Monte-Carlo model of the accelerator was 

constructed in the BEAMnrc system (Rogers et al 1995), setting physical machine dimensions to 

values provided by Varian Medical Systems and achieving a good match between calculated and 

measured dose-distributions through careful selection of user-defined model parameters – an incident 

electron beam of 14.8 MeV energy, zero energy spread, and a focal spot of 0.7 mm full-width-half-

maximum (FWHM). 

 

Table 5.1: Modelled detector active volumes for which Fw,det and Pρ
−

curves have been generated. The 

physical active volume of the diamond detector is a thin cuboidal wafer, while the physical 31016 
PinPoint 3D ionization chamber is a cylinder with a domed end. The modelled volumes are both 
cylindrical with 4 mm2 cross-section. 

 

Detector  
active volume 

 
 
Composition 

 
Density 
(g cm-3) 

Physical 
diameter or 
width (cm) 

Modelled 
diameter 
 (cm) 

Physical  
maximum 
thickness (cm)  

Modelled 
thickness 
(cm) 

PTW diamond 
carbon 3.5 0.30 0.23 0.026 0.026 

PTW PinPoint  
ion chamber  

air 0.0012 0.29 0.23 0.290 0.200 

 
 

As part of the beam-matching process, measurements were compared with doses calculated 

for water voxels and for voxels whose sizes, densities and atomic compositions were set to the 

sensitive volumes of the detectors used. The same general approach was taken when calculating Fw,det 

and Pρ−
 values (Scott et al 2012); but as this process involved no measurements, being purely a 

comparison of doses computed for voxels of differing composition, it was possible to simplify the 

simulated detector geometries for which it was carried out. In this chapter it is focused on calculations 

made for two geometries loosely corresponding to a ‘PinPoint 3D’ ionization chamber (Model 31016, 

PTW, Freiburg, Germany), a diamond detector (Model 60003, PTW, Freiburg, Germany). Each 

detector is represented as a single voxel of sensitive material surrounded by unit density water, and 

the cross-sections of both sensitive volumes are characterized approximately as circles of 4 mm2 area; 
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however the 0.26 mm thickness of the slim cuboidal active volume of diamond is matched exactly 

whereas the domed active volume of the ‘PinPoint 3D’ ionization chamber (maximum height 2.9 mm) 

is represented as a disc of uniform thickness 2 mm (table 5.1). Doses have been computed for these 

cylindrical geometries using the CAVRZnrc Monte- Carlo user-code (Rogers et al 2011b) with ECUT 

set to 512 keV and PCUT to 1 keV, and Fw,det and Pρ−
 values have been calculated from these doses 

via equations (5.1) and (5.2). 

 
 

 
 

 
Figure 5.2: A spherical cavity (grey) of volume V and radius r contains water of modified density ρρρρ and lies 
within a large unit density water phantom on the central axis (dark dotted line) of a non-divergent 
radiation beam. The edges of a wide field and fields of width 2dequilib and 2r are shown as grey lines. 
Lateral electronic equilibrium is just established in the vicinity of the cavity by the 2dequilibwide field, the 
ranges of electrons at dequilib not quite extending to the cavity. 

 

5.2.2 Fano’s theorem and the dose delivered to a water cavity of modified density ρρρρ  
 

Consider the geometry of figure 5.2 – a small spherical water cavity of density ρ and volume V lying 

within a unit density water phantom irradiated by an idealized wide, uniform, field of primary photon 

radiation that is non-divergent and attenuation-free. Within the phantom the field generates a photon 

energy fluence differential in energy ( )p

E xΨ �  and an electron particle fluence differential in energy 

( )e

E xΦ � , where E denotes particle energy and x�  spatial location, and ( )p

E xΨ � accounts for primary, 

r wide field 

dequilib 
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scatter and Bremsstrahlung photons while ( )e

E xΦ �  describes the electrons directly energized by 

interactions of these photons (i.e. it does not include knock-on electrons or delta rays). In the absence 

of the cavity the photon and electron fluences are uniform throughout the irradiated phantom, 

delivering a constant dose-level D. 

Fixing the polarization effect at its unit density water level (and thus eliminating differences 

between the mass stopping powers of water of different densities) then according to Fano’s theorem 

(Attix 1986) 

‘In an infinite medium of given atomic composition exposed to a uniform field of indirectly 

ionizing radiation, the field of secondary radiation is also uniform and independent of the 

density of the medium, as well as of density variations from point to point,’  

and so 
p

EΨ  and 
e

EΦ  remain uniform throughout the irradiated phantom, even when it contains a 

modified density water cavity, provided it is irradiated by a uniform primary photon field. 

Consequently the dose-level D also remains uniform, being linked to the photon spectrum through 

( )enp P en
col E

ww

d   
E

D K E
µ µ

Ψ Ψ
ρ ρ

   
= = =   

  
∫       (5.7) 

and to the electron spectrum via 

( ) elele e

E

w w

d
S E S

D Eφ Φ
ρ ρ

  
= =   

   
       (5.8) 

where Kcol is the collision kerma in water, ( )( )en w
Eµ ρ and ( )( )el w

S E ρ  are the energy-dependent 

mass energy-absorption coefficient and mass electronic stopping power of unit density water, 

( )en
w

µ ρ and ( )el
w

S ρ are spectral averages of these quantities, 
pΨ is the total photon fluence and 

eΦ the fluence of electrons directly energized by the photons (Attix 1986, Nahum 2007b, ICRU 

2011). 

Now consider that a volume-averaged component (Jcav(ρ) D say) of the dose D absorbed by 

the cavity originates from electrons liberated in photon interactions occurring within it, Jcav(ρ) 

potentially depending on the cavity density. Correspondingly, the average dose component originating 

from photon interactions occurring outside the cavity must be  

 ( )external cav1 ( )D D J ρ= −                   (5.9) 

Jcav can be calculated approximately using the Monte-Carlo approach of Ma and Nahum (1991). This 

begins by computing the photon spectrum in the cavity when it is located within the water phantom; 
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then the cavity is computationally relocated in vacuum and re-irradiated with this photon spectrum, 

now assuming that all the photons are travelling in the forwards (unscattered) direction. Finally Jcav is 

estimated as the ratio of absorbed dose to collision kerma within the vacuum-located cavity, a step 

whose rationale is set out in figure 5.3. Collision kerma Kcol is calculated as ( )1 g K−  , where kerma 

K is scored as the dose in the cavity with ECUT set high to 30 MeV, precluding electron transport, and 

where the factor ( )1 g−  is taken as 0.985 for a 15 MV beam with a mean energy of 4.1 MeV (Mohan 

et al 1985, Attix 1986). The assumption that all incident photons are forwards directed introduces 

some inaccuracy into the calculations, as some photons are scattered in the water phantom. However 

this approximation might not be expected to substantially bias the Jcav estimates obtained, as noted by 

Ma and Nahum, at least for cavities of similar breadth and depth. 

(a) 

 

(b) 

 

Figure 5.3: A Monte-Carlo method for estimating Jcav.  (a) The photon fluence within a large uniformly 
irradiated phantom is constant, including the fluence within a cavity of modified density water. Electronic 
equilibrium also holds throughout the phantom, the absorbed dose D equalling the collision kerma Kcol. 
(b) If the cavity is relocated in vacuum and irradiated using the same photon fluence (now all forward 
directed) the same collision kerma is generated within it, still equal to the uniform dose D absorbed in the 
phantom. However, the dose absorbed by the cavity in vacuum is JcavD, since it is generated only by 
electrons energized by photon interaction within the cavity. Consequently the ratio of cavity dose to 
collision kerma is Jcav. 

 

Using this technique Jcav values have been calculated for a cylindrical cavity of 4 mm2 cross-

section and 2 mm length (the dimensions used to loosely represent a ‘PinPoint 3D’ ionization 

chamber) placed 5 cm deep in a water phantom set up at an SSD of 100 cm and irradiated using a 15 

MV 40 × 40 cm2 field, the cavity’s axis being aligned with the central axis of the field. The cavity is 
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filled with modified density water, and Jcav computed for densities between 0.0012 g cm-3 (air) and 20 

g cm-3. Calculated Jcav(ρ) values are plotted in figure 5.4 and initially rise roughly linearly with 

density, in and above the Bragg-Gray region, Jcav « 1, where the cavity absorbs dose almost 

exclusively from electrons crossing it (Attix 1986). At higher densities Jcav approaches a plateau value 

of 1, the ‘photon’ detector region where the cavity dose is derived almost exclusively from photon 

interactions occurring within it (Attix 1986). 
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Figure 5.4: Jcav values calculated for a cylindrical cavity of cross-sectional area 4 mm2 and length 2 mm, 
located at 5 cm depth in a water phantom set up at an SSD of 100 cm. The axis of the cylindrical cavity is 
aligned with the central axis of a 15 MV 40 × 40 cm2 photon field with which the phantom is irradiated. 

Error bars show ±±±± 2 standard deviation uncertainties on calculated Jcav values. 
 

The initial linear dependence on density can be explained by noting that the total energy 

transferred to electrons by photon interactions occurring in a cavity of modified density water is the 

product of the cavity’s mass and the average kerma K within it 

 ( ) ( )transfer col 1 1E K V K V g D V gρ ρ ρ= = − = −              (5.10) 

Then if most of these electrons escape from the cavity, the fraction of their kinetic energy that 

it absorbs is 

( ) ( ) ( ) ( )int w int w

abs
ep ep

w

l L lL
F

T T

ρ ρρ ρ
ρ

ρ
∆ ∆    

= =       
    

              (5.11) 
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where ( )l ρ  is the average path-length traversed by the electrons between their generation and exit 

from the cavity, ( )( )int w
w

L ρ ρ∆ is the mean mass restricted electronic stopping power of the 

internally generated electrons as they cross the cavity (Attix 1986, ICRU 2011), and epT is their mean 

initial energy. Consequently the mean dose delivered to the cavity medium by these electrons is 

 ( ) ( ) ( )int w
internal transfer abs

ep
w

1

l L
D E F V D

g T

ρρρ
ρ

ρ
∆   

= =     −    
            (5.12) 

and 

 ( ) ( ) ( )internal int w

cav
ep

1

1

lD L
J

D g T

ρρ
ρ ρ

ρ
∆   

= =     −    
               (5.13) 

The leading ρ term of equation (5.13) accounts for the largely linear form of the initial part of 

the Jcav(ρ) curve. Even in this region, though, the shape of Jcav(ρ) is also influenced by the mean path-

length out of the cavity, ( )l ρ , since electron tracks become more tortuous in denser media; and it is 

potentially modified further by the threshold energy for electrons to escape the cavity, ( )ρ∆ , 

specified in the restricted stopping power. At higher densities increasing numbers of electrons 

liberated in internal photon interactions stop within the cavity, and so equations (5.11) and (5.13) are 

no longer accurate. 

 

5.2.3 Validity of the ‘internal’ and ‘external’ split of cavity dose 
 
Two assumptions were made to split the water cavity dose into the ‘internal’ and ‘external’ 

components of equations (5.9) and (5.12). Firstly, the primary photon fluence of a wide 15 MV field 

was assumed to be uniform throughout the water phantom, which in principle is unphysical since it 

requires the field to be non-divergent and attenuation-free. 

In practice, however, the photon fluence need only be uniform within a distance from the 

cavity equal to the range of electrons generated by the photon interactions, the fluence further away 

having far less impact on the cavity dose. The primary photons of a 15 MV beam have a mean energy 

of 4.1 MeV (Mohan et al 1985), and electrons generated by Compton interactions of these photons 

have a typical initial energy of about 2MeV and a typical continuous slowing down approximation 

(CSDA) range of 1 cm in water (Attix 1986, Berger et al 2005), which is consistent with observed 

build-ups of 80 and 90% of maximum dose at 1 cm depth in water for 15 MV fields of area 4 × 4 and 

40 × 40 cm2 respectively (Scott et al 2008). Over this 1 cm  distance the photon fluence is indeed 

reasonably uniform, the depth-dose curve of a 15 MV 40 × 40 cm2 field varies by only 3% relative 

(Scott et al 2008). 
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The second assumption was that electrons liberated within the cavity mostly escape from it. 

For the ‘PinPoint 3D’ ionization chamber  cavity  this assumption is good, since the CSDA range of a 

typical 2 MeV electron directly energized by the 15 MV beam is around 10 m in air (Berger et al 

2005).Likewise the electrons should escape easily enough from the higher density diamond detector 

cavity as the CSDA range of 2 MeV electrons in diamond is 3.2 mm, their direction of travel is 

largely in the direction of the photons that energize them (Attix 1986), and the diamond cavity is just 

0.26 mm thick along the beam axis. 

However this second assumption was only made in order to explain the initially linear form of 

Jcav(ρ), and the link between Jcav(ρ) and the density-dependence of detector measurements that will be 

obtained in Methods 5.2.4 does not depend on it. Provided some internally-generated electrons escape 

from the cavity its  Jcav value will still vary with density, driving the density-dependence of detector 

measurements in lateral disequilibrium situations. 

 

5.2.4 A link between Pρ−
 and the degree of lateral electronic equilibrium, see 

 
Consider the dose absorbed by a unit density water cavity from a field of size FS, when the average 

collision kerma throughout the cavity is fixed at Kcol irrespective of field-size by setting a number of 

monitor units 

 
( ) ( )

ref

ee

MU
MU(FS)

OF FS FSs
=                                     (5.14) 

where MUref  monitor units are required to generate the reference dose-level D at the centre of a wide 

reference field of size FSref, and the output factor OF(FS) is the ratio of central axis 

doses ( ) ( )w w refFS, 5, MU FS , 5, MUD D  at 5cm depth in fields of size FS and FSref delivering 

MU monitor units. The degree of lateral electronic equilibrium, see(FS) is defined, as 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

w w col w w

ee
w w col w wref ref ref ref

FS, 5, MU FS, 5, MU FS, 5, MU FS, 5, MU
FS

FS , 5, MU FS , 5, MU FS , 5, MU FS , 5, MU

          

D K D K
s

D K D K
= =

 
( )

( ) ( )w w ref

OF FS

FS, 5, MU FS , 5, MUK K
=             (5.15) 

where wK and w colK denote on-axis kerma and collision kerma in water, and the normalization by the 

reference field dose-to-kerma ratio roughly divides out the small degree of longitudinal electronic 

disequilibrium that exists in all fields, leaving a measure of lateral equilibrium. Dose and kerma 

values are averaged over the volume of the water cavity in the definition of OF and see.  
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Then for these conditions, the ratio of central axis doses in fields of size FS and FSref works 

out as 

( ) ( )( ){ }( )
( )

( )
( ) ( )

( )
w ref

w ref ref

FS, 5, MU OF FS FS OF FS
FS

OF FS FSFS , 5, MU

ee

ee

ee

D s
s

sD
= =              (5.16) 

And since the average kerma within the unit density water cavity is held constant when the 

monitor units are set according to equation (5.14), the average dose absorbed by the cavity that 

originates from photon interactions occurring within it, internalD , is also fixed at a field-size 

independent value of ( )cav 1DJ . On the other hand, in small fields electronic equilibrium breaks down 

on axis and  internalD  will fall below its wide field plateau level of ( )( )cav1 1D J− . Consequently 

under these conditions the total dose absorbed by the unit density water cavity from a field of size FS 

is 

( ) ( ) ( ) ( )

( ) ( )

ref ref
w internal

ref
external

MU MU
FS, 5, FS, 5, 

OF FS FS OF FS FS

MU
                                                  FS, 5, 

FS FS

ee ee

ee

D D
s s

D
OF s

   
=      

   

 
+   

 

 

     ( ) ( )( ) ( )cav cav1 1 1 FSDJ D J ε= + −      (5.17) 

where ε(FS) is a function that decreases from one as the field-size falls. From equations (5.16) and 

(5.17) it follows that 

( )
( )( ){ }( )

( )
( ) ( )( ) ( )w ref cav cav

w ref

FS, 5, MU FS 1 1 1 FS
FS

FS , 5, MU

ee

ee

D OF s DJ D J
s

DD

ε+ −
= =   

( ) ( )( ) ( )cav cav1 1 1 FSJ J ε= + −                  (5.18) 

Now consider the same conditions, but for a water cavity of non-unit densityρ, again 

neglecting changes in the mass stopping power of water with density. For a fixed average collision 

kerma colK  within the cavity, the dose due to internally generated electrons will be invariant with 

field-size at a level of  DJcav(ρ), while in wide fields the dose due to externally generated electrons is 

D(1 – Jcav(ρ)) (equation (5.9)). For narrower fields externalD is modelled as  

( ) ( )( ) ( )( ) ( )ref
external cav

MU
FS, 5, ,   1 FS

OF FS FS
ee

D D J
s

ρ ρ ε
 

≈ − 
 
 

           (5.19) 
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that is, the relative variation of externalD  with field-size is assumed  ε(FS), the same as for a unit 

density cavity. This assumption introduces some inaccuracy into the fine detail of ( )external FSD , but 

the broad shape of the curve will still be correctly described using the approximation, as outlined in 

the appendix-A. It follows that  

( ) ( )( ){ }( )
( )

( ) ( )( ) ( )mdw ref cav cav

mdw ref ref

FS, 5, , MU OF FS FS 1 FS
  

FS , 5, , MU

ee
D s DJ D J

DD

ρ ρ ρ ε

ρ

−

−

+ −
≈  

  ( ) ( )( ) ( )cav cav 1 FSJ Jρ ρ ε≈ + −      (5.20) 

and taking equations (5.2), (5.18) and (5.20) together with the density-independence of the dose-per-

monitor unit absorbed by a cavity placed at the centre of a reference field wide enough to establish 

lateral electronic equilibrium throughout the cavity, then 

( )
( ) ( )( ){ }( )

( ) ( )( ){ }( )
w ref

mdw ref

FS, 5, MU OF FS FS
FS   

FS, 5, , MU OF FS FS

ee

ee

D s
P

D s
ρ

ρ−

−

=  

( ) ( )( ){ }( )
( ) ( )( ){ }( )

( )
( )

w ref w ref ref

mdwmdw ref refref

FS, 5, MU OF FS FS FS , 5, MU
 

FS , 5, , MUFS, 5, , MU OF FS FS

ee

ee

D s D

DD s ρρ −−

=

( ) ( )( ) ( )
( ) ( )( ) ( )

cav cav

cav cav

 1 1 1 FS

1 FS

J J

J J

ε

ρ ρ ε

+ −
≈

+ −
                         (5.21) 

Finally, substituting see from equation (5.18) for ε in (5.21) and rearranging leads to 

( ) ( ) ( )
( )

( )
( )

( )
( )

cav cav

cav

cav

1 1 FS 1 FS
FS   1 1 1 1

1 1 FS FS

ee ee

ee ee

J J s s
P I

J s s
ρ

ρ
−

       − − −   
≈ + = +       

−          

   (5.22) 

where 
( ) ( )

( )
cav cav

cav

cav

1

1 1

J J
I

J

ρ −
=   − 

                 (5.23) 

 

5.2.5 Exploring the link between Pρ−
 and see 

 

In the Results the ability of equation (5.22) is explored to describe ( )FSPρ−
 factors at the centres of 

fields with lateral electronic equilibrium factors see(FS). In particular fits of the equation to ( )FSPρ−
 

and see(FS) data calculated over the field-size range 0.25-10 cm are presented, for the modelled 

PinPoint 3D and diamond cavities detailed in table 5.1. The ( )FSPρ−
 and see(FS) values were 

calculated using the15 MV Monte Carlo beam model, once again computing kerma (for the see 

calculations) by scoring dose with ECUT set high to 30 MeV. For comparison with see conventional 
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phantom scatter factors sp have also been determined, calculated as ratios of the Monte Carlo-

computed dose absorbed by a unit density water voxel, having the dimensions of the modelled 

detector cavity and being located at 5 cm depth in water on the beam’s central axis to kerma in the 

same voxel positioned in vacuum, normalized to one for a 10 cm wide square field (Scott et al 2009). 

Fitting of equation (5.22) was carried out using maximum-likelihood methods (Thames et al 

1986), determining model goodness-of-fit via a chi-square measure (Hosmer and Lemeshow 1989). 

The quantity Icav was treated as a fittable parameter with a 95% confidence interval taken as the range 

over which the chi-square measure lies below its best-fit value plus 3.84 ( )( )2

1 ,0.95
χ . Good fits of the 

( )eeP sρ−
model, obtained for physically reasonable Icav values, would lend weight to equation (5.22) 

which provides a conceptual bridge between see  and Pρ−
. To check the plausibility of the fitted Icav 

values they are compared to values calculated via equation (5.23) from direct Monte-Carlo estimates 

of Jcav made using the method of Ma and Nahum (1991). 

 

5.2.6 Extending the ( )FSPρ−
 model 

 
In this section two limitations of the model derived in Methods 5.2.4 are discussed. Firstly, noting that 

photon fluence spectra change with field-size it follows from the reasoning leading to equation (5.13) 

that Jcav (ρ) might vary with field-size too. In the Results this effect for the modelled PinPoint 3D and 

diamond cavities is quantified – obtaining Jcav values by computationally irradiating the cavities in 

vacuum using forwards-directed photon fluences having the energy spectra calculated to exist within 

the cavities when located 5 cm deep in water on the axis of 4 × 4, 10 × 10and 40 × 40 cm2 square 

fields. 

In fact the approach of Methods 5.2.4 can be extended to account for possible changes of Jcav 

with field-size, generalizing equation (5.17) to 

( ) ( )
( ) ( )( ) ( )ref

w cav cav

MU
FS, 5, 1,FS 1 1, FS FS

OF FS FS
ee

D DJ D J
s

ε
 

= + −  
 

             (5.24) 

and equation (5.19) to 

( ) ( )( ) ( )( ) ( )ref
external cav

MU
FS, 5, ,   1 ,FS FS

OF FS FS
ee

D D J
s

ρ ρ ε
 

≈ − 
 
 

          (5.25) 

and thus extending the assumption that ε (FS) is invariant with density to situations in which Jcav 

depends on field-size. Then using equations (5.24) and (5.25) instead of (5.17) and (5.19) it follows 

that 
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ee ee

ee ee

J J s s
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J s s
ρ

ρ
ρ

−

       − − −   
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−          

  (5.26) 

A further limitation of the Pρ−
model is that it focuses on cavity density alone, unlike Fw,det 

which accounts for the combined effects of density and atomic composition. In the Results the Fw,det 

and Pρ−
values are compared. In particular they are combined with restricted stopping power ratios 

( )SA

w det FSs ∆, , to determine the quantity 

  
( ) ( )

( )
( )

 

w,det

flSA

w,det,

FS FS
FS

FS

F P
P

s

ρ−

−

∆

=            (5.27) 

where the stopping power ratio is calculated for electron fluence spectra computed within a unit 

density water voxel of 4 mm2 cross-section, located on-axis at 5 cm depth in water at the centre of a 

field of size FS. Conceptually 
 flP
−

 accounts for changes in the electron fluence within a detector 

cavity due specifically to the cavity’s non-water-like atomic number rather than to its non-unit density 

(figure 5.1). In this work, though, 
 flP
−

 is used empirically to study the degree to which the 

( ) ( )w,det FS FSF Pρ−
 ratio simply reflects the water-to-detector restricted electronic stopping power 

ratio for the modelled PinPoint 3D and diamond dosimeters. Restricted stopping power cut-off 

energies, ∆ of 10 and 320 keV for the PinPoint 3D and diamond cavities have been chosen 

respectively, roughly corresponding to the minimum kinetic energies required for electrons to escape 

from these cavities.  

 

5.3 Results 
 

Fw,det and Pρ−
factors calculated for the modelled PinPoint 3D and diamond cavities by Scott et al 

(2012) are plotted for square fields of width 0.25-10 cm in figure 5.5; the curves are offset but 

similarly shaped. Spectrally-averaged water-to-air and water-to-diamond restricted electronic stopping 

power ratios ( )SA

w,det, FSs ∆ have been calculated for the computed on-axis electron fluences of these 

fields and are almost constant (figure 5.6). From these quantities fl P
−

factors have been calculated for 

the two modelled cavities via equation (5.27) and are plotted against field-size in figure 5.7. For the 

PinPoint 3D cavity fl P
−

differs insignificantly from one in all the fields studied, whilst for the 

diamond cavity it lies slightly above one at the smallest field-sizes, dropping to one in fields of width 

1.5 cm and greater.  

Since Fw,det is the product of Pρ−
, fl P

−
 and ( )SA

w,det, FSs ∆ , and the latter two factors are almost 

field-size invariant for the modelled PinPoint 3D and diamond cavities, most of the field-size 
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dependence of Fw,det stems from the field-size variation of the ( )FSPρ−
 factor, focussing attention on 

its causes and how it might be minimized. 
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Figure 5.5: Monte-Carlo calculated Fw,det and Pρ
−

factors plotted for the modelled diamond and PinPoint 

detectors, characterized as isolated voxels of detector material (Fw,det) or modified density water ( Pρ
−

) 

surrounded by unit density water. Data are taken from Scott et al (2012) and graphed for square fields of 
width 0.25-10 cm, showing the statistical uncertainties of the Monte- Carlo calculations as ± 2 standard 
deviation confidence intervals. 
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Figure 5.6: Spectrally-averaged restricted stopping power ratios 
SA

w diamonds ∆, ,  and 
SA

w airs ∆, ,  calculated for 

Monte-Carlo computed on-axis electron particle spectra in square fields of width 0.25-10 cm. Confidence 

intervals are narrower than 4 × 10-4. 
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Figure 5.7: fl P
−

factors (calculated as ( ){ }SA

w,det w detF p sρ ∆×
, ,

) plotted for square fields of width 0.25-10 

cm, together with ± 2s.d. confidence. 
 
 
 

Table 5.2: Values of the conventional photon scatter factor sp and the lateral electronic equilibrium factor 
see, shown together with (± 2 s.d.) uncertainties. 

Field-size (cm) sp see 

0.25 × 0.25 0.27 ± 0.01 0.30 ± 0.01 

0.45 × 0.45 0.34 ± 0.01 0.38 ± 0.01 

0.75 × 0.75 0.49 ± 0.01 0.54 ± 0.01 

1 × 1 0.58 ± 0.01 0.63 ± 0.01 

1.5 × 1.5 0.71 ± 0.01 0.77 ± 0.01 

2 × 2 0.81 ± 0.01 0.85 ± 0.01 

3 × 3 0.89 ± 0.02 0.93 ± 0.01 

10 × 10 1.00 1.00 

 
 

Monte-Carlo-calculated see factors are plotted against field-size in figure 5.8(a), while ratios 

of the conventional phantom scatter factor, sp, to see are plotted in figure 5.8(b). Values of  see and sp 

are listed in table 5.2: both describe the impact on central axis doses of the buildup of lateral 

electronic equilibrium with increasing field-size, but sp additionally describes the buildup of photon 

scatter. Consequently sp varies a little more than see, dropping by 73 % between field-sizes of 10 and 

0.25 cm compared to 70 % for see. However see and sp change very similarly in the narrowest fields 
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whose on-axis dose variation with field-size is dominated by electronic disequilibrium effects, their 

ratio being almost constant (figure 5.8(b)). 

The Pρ−
factors calculated for the modelled diamond and PinPoint 3D cavities are replotted in 

figure 5.9 alongside fits of the ( )( )ee FSP sρ−
 model of equation (5.22). The diamond Pρ−

factors are 

described well by the best fit of the model (p = 0.23, chi-square test) although the fitted value of Icav is 

0.067 ± 0.003 (2 standard deviation (s.d.)), significantly higher than the figure of 0.047± 0.002 

calculated from direct Monte-Carlo Jcav estimates for the diamond cavity (table 5.3). 

 
Table 5.3: Monte Carlo calculations of Jcav (± 2 s.d.) made for the modelled diamond and PinPoint cavities, 
and in-vacuum photon fluences oriented at 0˚ and 90˚ to the axes of the modelled cylindrical cavities. The 
photon fluence energy spectrum (though not angular distribution) was computed on the axis of a 40 × 40 

cm2 field, at 5 cm depth in water. Calculated Jcav values are shown together with ±±±± 2 standard deviation 
uncertainties. 

 

Modelled 

active  

volume 

 

Density 

(g cm-3) 

Modelled 

fluence 

direction (˚) Jcav(1) Jcav(ρ) 

 

cavI =
( ) ( )

( )
cav cav

cav

1

1 1

J J

J

ρ −
  −   

diamond 3.5 0 0.023 ± 0.001 0.070 ± 0.002 0.047 ± 0.002 

diamond 3.5 90 0.055 ± 0.002 0.161 ± 0.006 0.106 ± 0.006 

PinPoint 0.0012 0 0.107 ± 0.003 2 × 10-4 ± 4×10-6 - 0.107 ± 0.003 

PinPoint 0.0012 90 0.137 ± 0.001 2 × 10-4 ±  4×10-6 - 0.137 ±0.001 

 

This discrepancy is caused by the difference in angular distributions between the real photon 

fluence at 5 cm depth in water and the exclusively forwards-travelling in-vacuum fluence used to 

estimate Jcav values. For a thin disc such as the diamond cavity, the mean path-length out of the cavity 

taken by electrons energized by forwards-directed photons is shorter than the mean length of the paths 

taken by more laterally-directed electrons energized by the mixture of primary and scatter photons 

found in water. And since Jcav is directly proportional to mean path-length, its value is higher for the 

in-water photon fluence than for an exclusively forwards-directed fluence. To establish the 

dependence of Jcav on photon fluence direction, Jcav values have been re-estimated again using the 

Monte-Carlo approach of Ma and Nahum but now changing the in-vacuum photon fluence direction 

to 90˚, impacting the cavity side-on rather than from the front. The resulting Icav estimate obtained for 

this 90˚ fluence is 0.106 (table 5.3) - the fitted value of 0.067 lying between the Monte-Carlo 

estimates for 0° and 90° fluences as expected since only a fraction of the photon fluence in water is 

laterally scattered. 
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Figure 5.8: Plots of (a) the lateral electronic equilibrium factor see and (b) the ratio of the conventional 

phantom scatter factor sp to see, for square fields of width 0.25-10 cm.  
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Figure 5.9: Monte Carlo Pρ

−
factors (± 2s.d.) calculated for the modelled cavities of (a) both the diamond 

detector and PinPoint detectors and (b) the diamond detector alone, together with the best fits of equation 
(5.22) to the data. 
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For the modelled PinPoint 3D cavity, the Icav value obtained from the best fit of equation 

(5.22) to the Pρ−
 data is -0.123± 0.002,which lies in between Icav estimates of -0.107 and -0.137 

obtained from Monte-Carlo calculations of Jcav made for this cavity using 0˚ and 90˚in-vacuum 

fluences (table 5.3).Notice that the angular dependence of Icav is less for the modelled PinPoint 3D 

cavity than for the diamond, because the width and thickness of the PinPoint 3D cavity are much 

more comparable. 

The best fit of equation (5.22) to the Monte-Carlo Pinpoint Pρ−
 data is shown in figure 5.9(a). 

Although the model captures the broad shape of the data, it underestimates Pρ−
 for the 0.25 cm field 

while slightly overestimating it in fields of width 0.5-1.5 cm. The photon fluence profile of the narrow 

0.25 cm field is peaked towards the centre of the cavity, increasing the mean exit path-length taken 

out of the cavity by electrons energized within it, and consequently raising the cavity’s Jcav(ρ) and Icav 

values above their levels in wider fields with flatter photon profiles. This effect is greater in the 

geometrically thicker PinPoint 3D cavity than in the thin sensitive volume of the diamond detector, 

from which electrons energized by primary photons will exit predominantly through the distal rather 

than lateral walls, making the mean exit path-length, and thus Jcav, insensitive to the shape of the 

photon fluence profile. 
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Figure 5.10: Monte Carlo estimates of Icav (± 2s.d.) plotted against field-size for the modelled diamond (ρρρρ = 

3.5 g cm-3) and Pinpoint (ρρρρ = 0.0012 g cm-3) cavities. The Icav estimates were calculated from Jcav values 
obtained using the method of Ma and Nahum, irradiating the cavities in vacuum with forward directed 
photon fluences having the energy spectra calculated at 5 cm depth in water on-axis in square fields of 
width 4, 10 and 40 cm.  
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Although the simplified method of Ma and Nahum cannot be used to calculate the 

dependence of Jcav on the shapes of very small field photon fluence profiles, it has been used to study 

the variation of Jcav with field-size due to spectral changes resulting from the greater number of 

scattered photons in wider fields. Icav values obtained from these Jcav calculations are plotted in figure 

5.10 for the modelled diamond and PinPoint 3D cavities, and change by only 5% between square 

fields of width 4 and 40 cm. More substantial changes in Icav must, therefore, follow from the peaked 

photon fluence profiles of very small fields rather than from spectral differences. 

 

5.4 Discussion 
 
Monte-Carlo studies show that when the sensitive volume of a detector is irradiated by a field too 

small to establish lateral electronic equilibrium, the dose absorbed by the sensitive volume depends on 

its density (Scott et al 2008, 2012). Here this effect has been described using cavity theory, obtaining 

an approximate formula (equation (5.22)) that links the density-dependence Pρ−
 to the degree of on-

axis electronic equilibrium see, a normalized ratio of dose to collision kerma, whose relative variation 

in small fields is similar to that of the conventional phantom scatter factor sp. The form of the 

( )( )ee FSP sρ−
link depends on a cavity-specific parameter Icav = (Jcav(ρ) - Jcav(1))/(1-Jcav(1)), in which 

Jcav(ρ) describes the fraction of the wide field equilibrium dose that the detector sensitive volume 

absorbs from internally energized electrons when it is filled with water of density ρ.  

Equation (5.22) provides a good description of the field-size variation of Monte-Carlo Pρ−
 

values computed for a modelled diamond detector cavity, using a fitted Icav value that concords with 

independent estimates of  Jcav(ρ). The formula also captures the broad field-size variation of Pρ−
 for a 

modelled PinPoint 3D ionization chamber, again using a fitted Icav value that is consistent with 

independent computational estimates of Jcav(ρ). However the fitted formula does not match the ion 

chamber Pρ−
 data (figure 5.9(b)) for the smallest field-sizes – most likely because for the 

geometrically thick ion chamber Jcav(ρ) values in really small fields with peaked photon fluence 

profiles are greater than those in wide fields. 

Some practical ways of limiting the size of small field Pρ−
density-dependence correction 

factors can be deduced from the cavity theory – the simplest being to construct a detector whose 

sensitive volume has a density close to that of water (a liquid ion chamber for example) thereby 

largely eliminating the problem. Another method is to reduce the dimensions of the sensitive volume 

so that it approaches the Bragg-Gray limit, making Jcav(ρ) very small and Pρ−
correspondingly close to 

one even in regions of lateral electronic disequilibrium. Immediately above the Bragg-Gray region 
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Jcav(ρ) values are influenced by cavity volume via a linear dependence on  ( )l ρ , the mean path-

length taken out of the cavity by internally energized electrons (equation (5.13)). It is inefficient to 

uniformly shrink the cavity volume in order to reduce ( )l ρ , since then the volume of the detector 

cavity (and so its sensitivity) would decrease as the cube of ( )l ρ  and thus of Jcav(ρ). Instead it would 

be useful just to reduce the thickness of the cavity in the direction of the radiation beam – because this 

dimension has the most  direct impact on ( )l ρ , and reductions in Jcav achieved using this approach 

would scale linearly with associated reductions in detector sensitivity. Alternatively it may be possible 

to offset the non-water equivalent density of the sensitive volume by building other regions of 

different density into the detector – adding a high density structure to offset a low density cavity for 

example. 

In the formalism of Bouchard et al (2009) the detector correction factor Fw,det of equation (5.9) 

is the product of Pρ−
, the water-to-detector restricted stopping power ratio ( )SA

w,det, FSs ∆ , and a further 

factor 
 flP
−

that accounts for any perturbation of the electron fluence in the cavity caused by its non-

water equivalent atomic composition (equation (5.3)). Interestingly, values of 
 flP
−

calculated as 

( ) ( ) ( )( )( )SA

w,det w,det, FS FSF FS s Pρ−∆  lie close to one in square fields of width 0.25-10 cm for the 

modelled diamond and PinPoint 3D cavities, meaning that Fw,det is mostly  the product of  Pρ−
and 

( )SA

w,det, FSs ∆  for these detectors. And as Pρ−
factors calculated for the diamond cavity depart from 

unity less rapidly than those calculated for the PinPoint 3D-like cavity, it will be easier to make 

accurate measurements of small field doses using the diamond detector. 

Finally, notice again that Pρ−
 takes a value of one at the centre of fields wide enough to 

establish lateral electronic equilibrium in the vicinity of the cavity, and that this condition is close to 

being met by a 15 MV 3 × 3 cm2 field (figures 5.8(a) and 5.9). Since little difference exists between 

the water-to-detector restricted electronic stopping power ratios of very small and 3-4 cm wide fields 

either at this beam energy (figure 5.5) or at 6 MV (Heydarian et al 1996), it is convenient to calibrate 

small field detectors in the  3 × 3 or 4 × 4 cm2 fields: smaller calibration fields would introduce a 

substantially non-unit Pρ−
factor into the reference conditions (figure 5.9), which would have to be 

corrected out again, while the spectra of larger fields increasingly differ from those of small fields, 

again potentially requiring correction. Of course measurements made in small non-equilibrium fields  

require  Pρ−
corrections whose values depends on both field-size and detector location (Scott et al 
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2012),  – but the use of a 3 or 4 cm reference field effectively minimizes the number of correction 

factors needed to move between reference and small field conditions.  

 
 
5.5 Conclusions 
 
 
For PinPoint 3D-like ion chambers and diamond detectors most of the field-size variation of Fw,det, the 

ratio of doses absorbed by water and the sensitive volume of a detector, originates from the 

dependence on density of doses absorbed from non-equilibrium small fields. This dependence can be 

characterized as a ratio Pρ−
of doses absorbed by equal volumes of water of unit and modified density 

having the same mass radiological properties.  ( )FSPρ−
 depends on the degree of lateral electronic 

disequilibrium, which can be defined using a quantity see whose variation in small fields is similar to 

that of the phantom scatter factor sp. For a diamond detector the relationship between Pρ−
and see is 

described well by a model obtained from a simple cavity theory. The model also captures the overall 

field-size dependence of Pρ−
for a schematic PinPoint 3D detector, although its accuracy is reduced 

for the smallest fields whose photon fluence profiles are non-uniform within the sensitive volume.   

The density-dependence can be minimized by constructing detectors with sensitive volumes 

having similar densities to water, or by limiting the thickness of sensitive volumes in the direction of 

the beam. Regular 3 × 3 or 4 × 4 cm2 fields are useful for small field detector calibration, minimizing 

the number of correction factors needed for small field measurements. 
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CHAPTER 6 
 

Breakdown of Bragg-Gray behaviour for low-density 

detectors under electronic disequilibrium conditions in small 

megavoltage photon fields 
 

              

6.1 Introduction 
 
Radiotherapy treatment requires the accurate delivery of the prescribed radiation dose to a defined 

target volume in the cancer patient. The introduction of new technologies in radiation therapy 

(intensity modulated radiation therapy (IMRT), stereotactic ablative radiotherapy, ( SABR))  enables 

small and/or irregular shaped lesions to be treated with megavoltage (MV) photon fields   often with 

dimensions of 3 × 3 cm2 or smaller (Das et al 2008a, IPEM 2010). Accurate determination of the 

doses delivered by these small or very small radiation fields presents some challenges not encountered 

for large fields (Sánchez-Doblado et al 2007, Capote et al 2004, Alfonso et al 2008, Das at al 2008b, 

Bouchard et al 2009, Crop et al 2009, IPEM 2010, Francescon et al 2011, Scott et al 2012). 

The ‘physics’ of small, non-equilibrium radiation fields differs from that of large fields. 

Differences include loss of lateral electronic equilibrium and source occlusion; the field size at which 

these effects become significant depends on beam energy, and collimator design (Treuer et al 1993, 

Das et al 2008b, Alfonso et al 2008, Scott et al 2008, 2009, IPEM 2010). Detector-specific effects 

include fluence perturbation caused by differences between detector material and medium, dose-

averaging effects around the peak dose distributions, and uncertainties for very small fields introduced 

by slight geometrical detector misalignment (Paskalev et al 2003, Bouchard et al 2009, Crop et al 

2009, IPEM 2010, Francescon et al 2011, Scott et al 2012, Charles et al 2012, 2013, Underwood et al 

2013b). In summary, the response of detectors in small fields can vary rapidly with field size (Alfonso 

et al 2008, Ding and Ding 2012).   

In a perfect Bragg–Gray cavity the electron fluence spectrum in the detector is identical to 

that in the uniform medium (i.e. the presence of the detector does not ‘perturb’ the electron fluence 

either in magnitude or in ‘shape’). It is well established that (air-filled) ionization chambers exhibit 

Bragg-Gray behaviour in megavoltage photon beams at conventional field sizes i.e. approx. 4 × 4 cm2 

or greater (Ma and Nahum 1991). When the field size is reduced below that required for quasi-CPE9,  

                                                      
9 Quasi-CPE corresponds to what Attix (1986) termed ‘Transient CPE’ i.e. not perfect due to non-negligible 

photon attenuation over the distance of the maximum secondary electron range. 
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large perturbations have been observed experimentally and predicted theoretically by Monte-Carlo 

simulations (Sánchez-Doblado et al 2007, Francescon et al 2011, Scott et al 2012, Fenwick et al 

2013, Czarnecki and Zink 2013, Benmakhlouf et al 2014).  

In chapter 4 it was demonstrated that the physical density of the active volume of the detector 

is the key factor in its response in a medium irradiated by beams of non-equilibrium field size, rather 

than atomic number differences between detector and medium (Scott et al 2012). In chapter 5 a 

modified form of cavity theory was developed to take account of this ‘density effect’ in small fields 

(Fenwick et al 2013). This effect may also manifest itself in other non-equilibrium situations, such as 

in the build-up region of a large photon field where a detector with a density greater than that of the 

medium will over-respond compared to its behaviour once Dmax has been reached. Charles et al (2013, 

2014) and Underwood et al (2013b, 2015) showed that for small detector cavities of certain shapes, 

mass-density compensation can be exploited to design a solid-state dosimeter/ionization chamber with 

a ‘perturbation-free’ small-field response. Papaconstadopoulos et al (2014) have demonstrated that a 

liquid ionization chamber (microLion 31018, PTW, Freiburg, Germany) and an unshielded diode 

(Exradin DIV, SI, Middleton, USA) can be re-designed as ‘correction-free’ detectors for a field size 

of 0.5 × 0.5 cm2; they decreased the radius of the active volume of the microLion from 1.25 mm to 

0.85 mm and increased the radius of the active volume of the Exradin diode from 0.5 mm to 1 mm. 

These authors claimed that this approach was simpler than mass-density compensation proposed by 

Charles et al (2013) and Underwood et al (2013b).  

In this chapter, with the aid of Monte-Carlo simulations, the major deviations from Bragg-

Gray behaviour exhibited by ionization chambers with small (air) volumes (e.g. the ‘PinPoint 3D’ 

chamber) in small megavoltage photon fields are quantified. With the aid of a diagram it is explained 

exactly why the Bragg-Gray principle breaks down in low-density cavities when CPE is no longer 

present; an analytical version of this explanation is given in the Appendix-B. The ‘textbook’ statement 

that charged-particle equilibrium (CPE) in the undisturbed medium is not required for a detector to 

behave in a Bragg-Gray manner (e.g. Nahum 2007b) is critically examined. As a corollary the sizes of 

an air cavity and a high-density (diamond) cavity is also determined that would fulfil Bragg-Gray 

conditions, defined as an electron-fluence perturbation factor within 5% of unity, in field sizes of 0.5 

× 0.5 cm2 and below. 

   

6.2 Theory  
 
The introduction of a measuring device into an irradiated medium perturbs the radiation field unless 

the device is completely equivalent, in terms of radiation interactions to the medium into which it is 

introduced (or displaces). Here, it is assumed to deal with a Bragg-Gray detector, then the quantity  

‘perturbed’ is the charged-particle fluence; if this change in fluence is less than 5%, then the term  



Chapter 6: Breakdown of Bragg-Gray behaviour in small megavoltage photon fields 

103 

 

perturbation is generally used (Nahum 1996). An electron fluence perturbation correction factor, 

( )med

detΦ
p is defined as    

( )
( )

( )

max

max

tot
tot

med
med med

totdet
tot

det

det

d
( )

( )
d

E

E

Φ E

E

Φ z E
Φ z

p
Φ z

Φ z E

∆

∆

    = =
     

∫

∫

           (6.1) 

where  
tot

med
( )

E
Φ z   and ( )tot

E det
Φ z   are the total electron (+ positron) ‘fluence’ (i.e. including 

‘knock-on’ electrons, or delta-rays), differential in energy,  in the undisturbed medium (water) and 

averaged throughout the detector/cavity volume, down to energy ∆ (determined by the dimensions of 

the detector cavity), at depth ‘z’  respectively. ( )med

detΦ
p is a function of the medium and detector 

materials as well as field size FS ,beam quality Q and depth ‘z’. 

The dose to the medium D(z)med at a specified position, z, can therefore be written  

( ) ( )medSA
det med detmed detΦ

D z D s p∆= × ×
, ,

      (6.2) 

where 
SA

med dets
, ,Δ   is the Spencer-Attix, or restricted mass stopping-power ratio, medium-to-detector, for 

a cut-off energy ∆, appropriate for the dimensions of the detector cavity, and Ddet  is the average dose 

over the sensitive volume of the detector. It should be noted that the Spencer-Attix ratio, which is the 

most accurate formulation of the Bragg-Gray principle (Spencer and Attix 1955; Nahum 1978; 

Nahum 2007b), involves the total electron (+ positron) fluence and a perturbation factor defined in 

terms of total fluence, i.e. equation (6.1), is consistent with this. For a water medium this becomes  

( )wSAw
w,det, det

det

( )
Φ

D z
s p

D
∆= ×         (6.3) 

 
The implicit assumption in the above is that the electron fluences in the detector and water differ in 

magnitude but that the energy distribution is not affected i.e. the spectra have identical ‘shapes’; this 

assumption is investigated later in this chapter.  

 Alfonso et al (2008) defined the output correction factor msr ref

msr

,

,

f f

Q Qk  accounting for the 

difference between the responses of an ionization chamber in conventional reference field (fref) and 

machine-specific reference field (fmsr). Benmakhlouf et al (2014, 2015) and Underwood et al (2013b, 

2015) expressed this composite k-factor as   

clin clin

clin clinclin msr

clin msr msr msr

msr msr

w,,

,

w ,

f f

Q Qf f

Q Q f f

Q Q

D M
k

D M
=        (6.4) 
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where w,

fx
Qx

D is the dose to water at a point in the centre of a field of size 'x' and beam quality Qx, and 

f

Q
x

x
M  is the  detector reading in a field of size 'x' (x ∈ clin, msr). The subscript 'clin' refers to the 

clinical field size, and 'msr' refers to the machine-specific reference-field size. Following Bouchard et 

al (2009), but using the notation from this work, the composite k-factor can be written: 

( )
( )

clinclin msr

clin msr

msr

detw
MC,

,

detw
MC

/

/

Qf f

Q Q

Q

D D

k
D D

 
 

=
 
 

      (6.5) 

where the subscript MC refers to Monte-Carlo derived dose ratios. It follows from equation (6.3) that  

( )

( )
clinclin msr

clin msr

msr

wSA

w,det, det
,

, wSA

w,det, det

Φ
Qf f

Q Q

Φ
Q

s p

k
s p

∆

∆

 ×
 

=
 ×
 

      (6.6) 

 
assuming again that the electron fluence spectra in the detector and water volume have identical 
shapes (see sub-section 6.3.5). 

  

 

6.3 Materials and methods 
 

 

6.3.1 Monte Carlo modelling of linear accelerator geometry and detector response  

The EGSnrc Monte-Carlo code (Kawrakow 2000a, Kawrakow et al 2011) has been shown to be 

accurate within 0.1% with respect to its own cross sections for relative ionization chamber response 

calculations; this is known as the Fano test (Kawrakow 2000b). Buckley et al (2003) showed that 

EGSnrc-derived values of thick-walled ionization chamber response differed from Spencer-Attix 

cavity theory (Spencer and Attix 1955) by 0.15% and 0.01% for graphite and aluminum walled 

thimble chambers, respectively. Verhaegen (2002, 2003) confirmed the accuracy of the EGSnrc 

system for near-to-interface dosimetry and also demonstrated that a detailed model of the ion chamber 

geometry is essential for obtaining good agreement with experimental results. 

Monte-Carlo techniques have been previously used to study small-field physics for photon 

beams of nominal energy 15 MV (Scott et al 2008, 2009, 2012; Fenwick et al 2013) generated by a 

Varian 2100C linear accelerator, and beams of nominal energy 6 MV (Underwood et al 2013a, 2013b, 

2013c) generated by a Varian 2100 iX linear accelerator (Varian Medical Systems, Palo Alto, CA). A 

Monte-Carlo model of both accelerators used here was constructed in the BEAMnrc system (Rogers 

et al 1995, 2011a), setting physical machine dimensions to values provided by Varian Medical 

Systems and achieving good agreement between calculated and measured dose-distributions (within 

2%) through careful selection of user-defined model parameters (table 6.1). The phase-space files, 

generated for previously published studies e.g. Scott et al (2009) and Underwood et al (2013a), were 
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scored at a distance of 58 cm and 100 cm from the source for the 15 MV and 6 MV Monte-Carlo 

beam models respectively, and were subsequently used as input for EGSnrc user-codes DOSRZnrc, 

FLURZnrc and CAVRZnrc (all version: V4-2.3.2) using the ‘source 21’ option (Rogers et al 2011b).  

 

Table 6.1: The user-defined model parameters for Monte-Carlo model of a Varian 2100 iX linear 
accelerator (Varian Medical Systems, Palo Alto, CA) and Varian 2100C linear accelerator for 6 MV and 
15 MV photon beams respectively. 

 

The simulations with these user-codes employed the default settings, which include modelling 

the Compton interaction for bound electrons, the effect of any atomic relaxation events, and 

relativistic spin effects in the multiple scattering of charged particles. In addition to these default 

settings, cross sections for the sampling of bremsstrahlung photon energies from the NIST database 

(Hubbell and Seltzer 2004) and photon interaction cross sections from the XCOM database were used 

(Berger et al 2010). A PEGS4 datafile (Nelson et al 1985, Kawrakow et al 2011) was generated with 

the EGSnrcMP package (Kawrakow et al 2006) with parameters AP = 1 keV, AE = 512 keV (total 

energy) where AP and AE are the production thresholds for secondary bremsstrahlung photons and 

knock-on electrons respectively. Electrons and positrons were followed down to 1 keV kinetic energy 

(i.e. the electron/positron kinetic energy cut-off ECUT = 512 keV) and photons down to 1 keV 

(photon energy cut-off PCUT = 1 keV). 

 

6.3.2 Output factor in terms of both kerma and dose  

 

Generally the ‘output factor’ is defined in terms of absorbed dose (Khan 2010). An output factor has 

also been calculated in terms of (water) kerma in order to separate the effects of source occlusion, 

which affects photon fluence, from electron disequilibrium which affects dose but not kerma.  

Dose and kerma were computed using the DOSRZnrc user-code for photon beams with 

square field sizes ranging from 0.25 × 0.25 to 10 × 10 cm2 in a water medium for the beam qualities 

                                                      
10
γ  is the half angle of the cone in degree (Rogers et al 2011a) 

11 FWHM-Full-width-half-maximum 

 User defined model parameters 

 
Beam quality 

Incident electron 
beam energy (MeV) 

Electron 
source angle γ 10 

Focal spot size 
(FWHM)11 

6 MV 6.0  1.5
◦
 0.95 mm 

15 MV 14.8 0
◦
 0.70 mm 
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of 6 MV and 15 MV using clinical linac spectra (for point source geometry- PSG) from Mohan et al  

(1985), which are included in the EGSnrc package, and phase-space files generated for these field 

sizes for full linac geometry (FLG)  for  the 6 MV and 15 MV qualities (see above). The ‘source 1’ 

option and ‘source 21’ option  were used to compute the dose and kerma for each field size using the 

DOSRZnrc user-code, with  ECUT and PCUT given in sub-section 6.3.1. 

 The scoring volume was a ‘point like’ water cylinder with a circular cross-section of 0.5 mm 

diameter and 0.5 mm height (to minimize the volume-averaging effect) located on the central axis of 

the beam at 10 cm depth in a cylindrical water phantom (15 cm radius, 30 cm thickness) to ensure 

sufficient depth beyond the depth of maximum dose (dmax) for the absorbed dose and kerma curves to 

become parallel to each other (Attix 1986, Kumar et al 2015a).  The source to phantom surface 

distance (SSD) was 100 cm. In the case of PSG, the beam radius equivalent to each square field size 

(Day and Aird 1996) of the phase-spaces (i.e. 0.25 × 0.25 to 10 × 10 cm2) was defined at the phantom 

surface.  

Output factors12 in terms of kerma and absorbed dose, OF(kerma) and OF(dose), were 

calculated as ratios of either central-axis water kerma,  Kw, or dose, Dw, respectively at 10 cm depth in 

a field of size FS to that at the reference field size FSref for PSG and FLG for both beam qualities (6 

MV and 15 MV). The reference field size FSref   was taken as 3 × 3 cm2 at 6 MV and 10 × 10 cm2 at 

15 MV. 

 

6.3.3 Comparison of MC-derived dose to water with ‘BG dose to water’ for SCDDo, PTW 

diamond and PinPoint 3D detectors 

  

Here the work was focused on three simulation geometries corresponding approximately to the air 

cavity of a ‘PinPoint 3D’ ionization chamber (Model 31016, PTW, Freiburg, Germany), a diamond 

detector (Model 60003, PTW, Freiburg, Germany) and a Single Crystal Diamond Dosimeter 

(SCDDo) (Marsolat et al 2013a, 2013b, Górka et al 2006). SCDDo is an ‘Element Six’ electronic 

grade, synthetic single-crystal diamond grown by a process of chemical vapour deposition (CVD). 

The 0.26 mm thickness of the thin cylindrical active volume of the PTW 60003 diamond was 

modelled exactly while the domed active volume of the PinPoint 3D ionization chamber (maximum 

height 2.9 mm) was represented by a disc of uniform thickness 2 mm (table 6.2). This results in a 

modelled air cavity with a volume equal to half that of the PinPoint 3D chamber. Crop et al 2009 

found that the central electrode of the PinPoint 3D ionization chamber, which is not modelled here, 

minimally perturbs the dose in the air cavity. The cuboidal sensitive volume of the real SCDDo 

detector (Marsolat et al 2013a) was modelled as a cylinder with the same thickness (0.0165 cm) and 

                                                      
12 The Output Factor, also known as field output factor (FOF) or total scatter factor, is often written as the product of two 

independent effects: collimator (or head) scatter factor (Sc) and phantom scatter factor (Sp) i.e. FOF  = Sc× Sp (Khan 2010). 
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cross-sectional area (radius 0.0564 cm) (table 6.2) in order to meet the geometrical constraints of the 

‘RZ user codes’ (i.e. CAVRZnrc, FLURZnrc) of the EGSnrc Monte-Carlo code system. 

 
Table 6.2: Detector details as modelled in the MC simulations. The physical active volume of the PTW 
60003 diamond detector is a thin wafer, while the SCDDo detector is a synthetic single crystal diamond 
dosimeter with tiny cuboidal dimensions and the PTW 31016 PinPoint 3D ion chamber is a cylinder with 
a domed end. The volumes were all modelled as cylinders. 
 
 

 

Detector name 
Material 
simulated 

Density 
(g cm-3) 

Diameter    
or width 
(cm) 

Modelled 
diameter 
 (cm) 

Maximum 
thickness/ 
height (cm) 

Modelled 
thickness /  
height (cm) 

PTW diamond 
(PTW 60003) 

Carbon 3.5 0.300 0.230 0.026 0.026 

 
PinPoint 3D 
ionization chamber 
(PTW 31016) 

 
air 
 

 
1.205×10-3 

 
0.290 

 
0.230 

 
0.290 

 
    0.200 

 SCDDo carbon 3.5 0.113 0.113 0.0165 0.0165 

 

As mentioned above, the radiation interaction cross sections and stopping powers of the 

selected materials required by the EGSnrc system are stored in a PEGS4 datafile; although graphite is 

included, diamond (i.e. carbon) with a density of 3.5 g cm-3 was not available in the default version 

and so had to be generated independently for both types of diamond detectors. Firstly a density-effect 

correction file was generated to account for the density (aka polarisation) effect in the denser form of 

carbon using the ESTAR code/program available on the NIST website13. This was then combined with 

the EGSnrcMP package to generate a PEGS4 datafile, setting the parameters AP=1 keV, 

AE=512 keV. Note that the EGSnrc Monte Carlo code uses the ESTAR code to obtain the density-

effect correction to the mass restricted electronic stopping power. Hence there is consistency between 

our prepared density-effect correction file and the file that the EGSnrc system uses routinely.  

The different detector voxels mentioned above (table 6.2) comprising a single volume (voxel) 

of sensitive material, surrounded by unit density water, were located at 5 cm depth along the central 

axis of the beam in a cylindrical water phantom (15 cm radius, 30 cm thickness) with an SSD of 

100 cm. The ‘source 1’ option and ‘source 21’ option as mentioned in sub-section 6.3.2 were again 

used here to compute the dose to detector using the CAVRZnrc user-code (Rogers et al 2011b) for 

field sizes ranging from 0.25 × 0.25 cm2 to 10 × 10 cm2 (for 15 MV FLG and PSG) and 0.25 × 0.25 

cm2 to 3 × 3 cm2 (for 6 MV FLG and PSG). The dose to water was scored in a ‘point like’ water voxel 

                                                      
13 http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 
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(0.5 mm diameter, 0.5 mm thickness) to minimize volume-averaging effects as these are significant 

for the FL geometry. 

The Spencer-Attix mass electronic stopping-power ratio, water to detector material, for 

energy cut-off ∆, 
SA

w,det,s ∆ , was computed from the total electron fluence at 5 cm depth in the 

unperturbed medium (i.e. water). This was done with the SPRRZnrc user-code (Rogers et al 2011b) 

for both beam qualities (6 MV and 15 MV) and both source geometries (FLG and PSG) for the above-

mentioned field sizes; further, the same PEGS4 datafiles were used as with the CAVRZnrc  

computation of the dose to the detector. SPRRZnrc calculates restricted stopping power ratios using 

an ‘on the fly’ technique in the volume of interest (Kosunen and Rogers 1993). The track-end term 

was evaluated following Nahum (1978). The cut-off energies ∆ of 10 keV, 258 keV and 320 keV have 

been chosen for the PinPoint 3D, SCDDo and diamond (PTW 60003) cavities respectively, following 

Fenwick et al (2013). The dose to the sensitive volume of each detector, Ddet  , was computed using 

CAVRZnrc (for each field size); this detector dose was then multiplied by 
SA

w,det ,s ∆  to yield the 

quantity defined here as ‘BG dose to water’ for both beam qualities (6 MV and 15 MV) and both 

source geometries, for field sizes ranging from 0.25 × 0.25 cm2 to 3 × 3 cm2 and to 10 × 10 cm2 

respectively.  

 

6.3.4 Total electron (+ positron) fluence spectra in water and detector cavities and the 

computation of ( )w

detΦ
p   

 

The total electron (+ positron) fluence spectra per MeV per unit incident photon fluence down to 1 

keV have been computed using the FLURZnrc user-code, with the same ECUT and PCUT as above, 

for PSG and FLG sources of 6 MV and 15 MV, for field sizes ranging from 0.25 × 0.25 cm2 to 10 × 

10 cm2. These fluence spectra have been scored in the following volumes: a ‘point like’ water cavity 

(0.5 mm diameter, 0.5 mm thickness), a ‘PinPoint 3D’ air cavity and a single crystal diamond 

dosimeter volume (SCDDo) located at 5 cm depth on the beam central axis in a cylindrical water 

phantom with SSD = 100 cm as described above.  

In order to obtain high energy resolution of the fluence spectra at very low energies, energy-

bin widths were set at 1 keV for the lowest energy bin (1 keV – 2 keV), then 2 keV for the next 2 bins 

and then gradually increased until the electron energy was 10 keV, and thereafter kept at 5 keV. The 

electron (+ positron) fluence, per unit incident photon fluence, obtained directly from FLURZnrc was 

verified by integrating over the fluence differential in energy, i.e.
max

tot

w
( ) d

E

E
Φ z E

∆

  ∫ . The electron 
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fluence perturbation correction factors, water-to-air, ( )w

airΦp , and water-to-SCDDo, ( )w

SCDDoΦp , 

were computed from equation (6.1) for both beam energies and the full range of field sizes. 

 

6.3.5 Comparison of the MC-derived dose ratio with the product of 
SA

med,det,s ∆ and ( )w

detΦp

  
As discussed in section 6.2, the fluence in the detector may differ from that in the uniform medium 

not only in magnitude but also in the shape of its energy distribution. This shape ‘distortion’ may 

cause the MC-derived dose ratio to differ from the dose ratio derived from cavity theory, given by 

equation (6.3); these differences are quantified here. The ratio of dose-to-water to dose-to-detector, 

( )detw
MC

/D D ,
 
was computed with user-code CAVRZnrc for the detectors, geometry, field sizes and 

beam qualities mentioned in sub-section 6.3.3. The mass restricted electronic stopping-power ratio, 

water to detector material, 
SA

med,det,s ∆ , and the electron fluence perturbation correction factor, water to 

detector material, ( )w

detΦp , were  computed as described above from user-codes SPRZnrc and 

FLURZnrc  respectively. These computations were carried out for field sizes ranging from 0.25 × 

0.25 cm2 to 3 × 3 cm2 and to 10 × 10 cm2 for 6 MV and 15 MV respectively, for PSG and FLG 

sources.  

 

6.3.6  Maximum dimensions of perturbation-limited ‘Bragg-Gray’ detector 
 

Following Nahum (1996) a detector is considered to be ‘Bragg-Gray’ if the electron (+ positron) 

fluence perturbation is within 5% of unity. The size of ionization chamber and diamond detector 

fulfilling this 5% condition has been determined at the two smallest field sizes (0.5 × 0.5 cm2 and 0.25 

× 0.25 cm2). The response of an air cavity with radius = 0.0564 cm, equal to half of radius of the 

modelled ‘PinPoint 3D-chamber-like’ air cavity, and a diamond cavity with radius equal to the radius 

of the SCDDo, were simulated with the thickness/height varied incrementally. These cavities were 

placed at 5 cm depth on the beam central axis in a cylindrical water phantom (15 cm radius, 30 cm 

thickness) at 100 cm SSD. The total electron (+ positron) fluence spectra down to 1 keV (per MeV per 

unit incident photon fluence) for field sizes 0.25 × 0.25 cm2 to 0.5 × 0.5 cm2 was computed using 

FLURZnrc, with ‘source 21’, and with the same ECUT and PCUT as above for the 6 MV and 15 MV 

FLG sources. The electron fluence perturbation correction factors, water-to-air,( )w

airΦp , and water-to-

diamond,  ( )w

SCDDoΦp , were computed from equation (6.1) for both field sizes. The thickness/height of 

the modelled cavities were successively adjusted until the above perturbation factors equalled 1.05 

and 0.95 respectively.   
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Figure 6.1: (a) 6 MV photon beams, FLG  and  PSG: the output factor in term of kerma , OF(kerma), and 
absorbed dose, OF(dose), on the beam central axis at 10 cm depth in a cylindrical water phantom  versus 
field size defined at 100 cm SSD;  side lengths of square fields  are 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 1.5 cm, 
2 cm and 3 cm respectively; the error bars (masked by the symbols) are ± 2 standard deviations and 
correspond to statistical (Type A) uncertainties. (b) 15 MV photon beams, FLG  and PSG: the output 
factor in term of kerma , OF(kerma), and absorbed dose, OF(dose), on the beam central axis at 10 cm 
depth in a cylindrical water phantom versus field size defined at 100 cm SSD;  side lengths of square 
fields  are 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 1.5 cm, 2 cm, 3 cm and 10 cm respectively; the error bars 
(masked by the symbols) are ± 2 standard deviations and correspond to statistical (Type A) uncertainties. 
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6.4 Results and Discussion 

6.4.1 Output factor in terms of both kerma and dose   

Figures 6.1(a)-(b) show the output factor in terms of kerma, OF(kerma), and absorbed dose, 

OF(dose), along the central axis for field sizes ranging from 0.25 × 0.25 cm2 to 10 × 10 cm2 at 10 cm 

depth in   water for PSG and FLG for both beam qualities (6 MV and 15 MV). The dramatic decrease 

in OF(kerma) between field sizes 0.5 × 0.5 cm2 and 0.25 × 0.25 cm2 for the full-linac geometry at 

both qualities must be due to source occlusion as this decrease is completely absent for the point 

source geometry, where source occlusion is not applicable. Turning now to the OF(dose) curves, as 

the field size drops below that necessary for electronic equilibrium, a decrease is clearly seen in the 

PSG case. For FL geometry, electron disequilibrium (Attix 1986, Kumar et al 2015a) combines with 

source occlusion to produce the greatest decrease in OF(dose) with field size. 
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Figure 6.2: (a) 6 MV photon beams, FLG: comparison of MC-derived dose to water voxel with ‘BG dose 
to water’ obtained for SCDDo, PTW diamond and PinPoint 3D detectors, characterized as isolated voxels 
of material surrounded by water, on the beam central axis at 5 cm depth in a cylindrical water phantom, 
as a function of field size defined at 100 cm SSD; side lengths of square fields are 0.25 cm, 0.5 cm, 0.75 cm, 
1 cm, 1.5 cm, 2 cm and 3 cm. The dose to water (Dw) was scored in a ‘point like’ water voxel (0.5 mm 
diameter, 0.5 mm thickness) to minimize the volume averaging effects. The Dw (large voxel) was scored in 
a larger voxel (2.26 mm diameter, 0.26 mm thickness). The Dw (10 g cm-3) is the dose to water scored 
again in a ‘point like’ water voxel (0.5 mm diameter, 0.5 mm thickness) of 'modified density water', with 
density ρ was set equal to 10 g cm-3 but with mass stopping power and mass energy-absorption 
coefficients equal to those of unit density water i.e. eliminating changes in mass stopping power caused by 
the density-dependent polarization effect. (b) 6 MV photon beams, FLG: ratio of ‘BG dose to water’ to 
water-voxel dose for SCDDo, PTW diamond and PinPoint 3D detectors; other details as for figure 6.2(a). 

 

6.4.2 Comparison of MC-derived dose to water with ‘BG dose to water’ for SCDDo, PTW 

diamond and PinPoint 3D detectors 

 
Figures 6.2(a)-6.3(b) show the variation of Monte-Carlo calculated ‘BG dose to water’ for the 

SCDDo, PTW diamond, and PinPoint 3D detectors, characterized as isolated voxels of material 

surrounded by water, as a function of field size defined at 100 cm SSD, at 5 cm depth on the central 

axis in a cylindrical water phantom for the FLG source geometry of the 6 MV and 15 MV beams; the 

side length of square fields are 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 1.5 cm, 2 cm,  3 cm and 10 cm 

respectively. It can be seen that even for a perfect water-equivalent detector, the size of the active 
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volume affects the output recorded for very small fields i.e. signal averaging over the detector volume 

is important.   

When the field width is too small for the establishment of lateral electronic equilibrium in the 

uniform medium, the dose in the sensitive volume of a detector, per unit dose to the uniform medium, 

depends critically on its density (Scott et al 2012). The ‘BG dose to water’ at the smallest field sizes 

(0.25 × 0.25 cm2) for the SCDDo is within 2.9% of the dose to water computed directly in the water 

voxel for FLG at 6 MV and 15 MV, thereby demonstrating that this detector exhibits quasi Bragg-

Gray behaviour over a wide range of field sizes and beam qualities; in the case of the other detectors 

the ratio ‘BG dose to water’/MC-derived dose to water deviates significantly from unity as the field 

size is reduced, as Figures 6.2(b) and 6.3(b) clearly indicate. 
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(b)  
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Figure 6.3: (a) 15 MV photon beam, FLG: comparison of MC-derived dose to water voxel with ‘BG dose 
to water’ obtained for SCDDo, PTW60003 diamond and PinPoint 3D (air cavity), characterized as 
isolated voxels of material surrounded by water, on the beam central axis at 5 cm depth in a cylindrical 
water phantom, as a function of field size defined at 100 cm SSD; side lengths of square fields are 0.25 cm, 
0.45 cm, 0.75 cm, 1 cm, 1.5 cm, 2 cm, 3 cm and 10 cm . For Dw and Dw (10 g cm-3) see figure 6.2(a). (b) 15 
MV photon beam, FLG: ratio of ‘BG dose to water’ to water voxel dose for SCDDo, PTW diamond and 
PinPoint 3D detectors; details as for figure 6.3(a). 

 

6.4.3 Total electron (+ positron) fluence spectra in water and in detector cavities and the 

evaluation of ( )w

detΦ
p   

 

6.4.3.1 Results from Monte-Carlo simulations  

 

Figures 6.4(a), (b) (6 MV, FLG) and 6.5(a), (b) (15 MV, FLG) show explicitly the ‘perturbation’ of 

the (total) electron fluence spectrum in small, non-equilibrium photon fields. The dotted curves 

(corresponding to the ‘PinPoint 3D-chamber-like’ air cavity) lie significantly below the full curves 

(water), demonstrating that these air cavities violate the Bragg-Gray principle.  
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Figure 6.4: (a) 6 MV photons, FLG, 0.25 × 0.25 cm2 field size defined at 100 cm SSD: total electron fluence 
(per MeV per  incident photon fluence) as a function of electron kinetic energy (MeV) scored in (i) a 
‘point like’ water voxel (0.5 mm diameter, 0.5 mm thickness), (ii) a Pinpoint 3D air cavity, and (iii) the  

fluence in (ii) × ( )w

airΦp
 

(= 1.323); both scoring volumes positioned at 5 cm depth along the beam central 

axis in a water phantom. (b) 6 MV photons, FLG, 0.5 × 0.5 cm2 field size defined at 100 cm SSD: total 
electron fluence (per MeV per  incident photon fluence) as a function of electron kinetic energy (MeV) 
scored in (i) a ‘point like’ water voxel (0.5 mm diameter, 0.5 mm thickness), (ii) a Pinpoint 3D air cavity, 

and (iii) the  fluence in ii)  ×( )w

airΦp
 

(= 1.146); both scoring volumes positioned at 5 cm depth along the 

beam central axis in a water phantom. (c) 6 MV photons, FLG, 3 × 3 cm2 field size defined at 100 cm 
SSD: total electron fluence (per MeV per incident photon fluence) as a function of electron kinetic energy 
(MeV) scored in (i) a ‘point like’ water voxel (0.5 mm diameter, 0.5 mm thickness), and ii) the Pinpoint 
3D air cavity; both scoring volumes positioned at 5 cm depth along the beam central axis in a water 
phantom. 

 

 
The dashed curves result from multiplying the fluence (dotted curves) by the water-to-air perturbation 

factor, defined by equation (6.1). At 6 MV for the 0.25 × 0.25 cm2 field, for which p = 1.323, this 

‘corrected’ fluence is very close to the unperturbed ‘water’ fluence at all energies, thereby 

demonstrating a negligible change in ‘shape’. At 15 MV, where p = 2.139, a significant difference 

between the ‘water’ and corrected ‘PinPoint 3D-chamber-like' air cavity spectra can be observed, 

especially at low energies i.e. the air cavity perturbs not only the magnitude but also the shape of the 

electron fluence spectrum.  
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Figure 6.5: (a) 15 MV photons, FLG: total electron fluence (per MeV per  incident photon fluence) along 
the central axis for a 0.25 × 0.25 cm2 field size defined at 100 cm source-to-phantom surface distance, as a 
function of electron kinetic energy (MeV), scored in (i) a ‘point like’ water voxel (0.5 mm diameter, 0.5 

mm thickness), (ii) the PinPoint 3D air cavity, and (iii) the fluence in (ii) × ( )w

airΦp
 
(= 2.139); both scoring 

volumes positioned at 5 cm depth along the beam central axis in a water phantom. (b) 15 MV photons, 
FLG for 0.45 × 0.45 cm2 field size defined at 100 cm SSD: total electron fluence (per MeV per  incident 
photon fluence) as a function of electron kinetic energy (MeV) scored in (i) a ‘point like’ water voxel (0.5 

mm diameter, 0.5 mm thickness), (ii) the PinPoint 3D air cavity, and (iii) the fluence in (ii) × ( )w

airΦp
 
(= 

1.343); both scoring volumes positioned at 5 cm depth along the beam central axis in a water phantom. (c) 
15 MV photons, FLG for a 3 × 3 cm2 field size defined at 100 cm SSD: total electron fluence (per MeV per 
incident photon fluence) as a function of electron kinetic energy (MeV) scored in (i) a ‘point like’ water 
voxel (0.5 mm diameter, 0.5 mm thickness), and (ii) the PinPoint 3D air cavity; both scoring volumes 
positioned at 5 cm depth along the beam central axis in a water phantom. 

 

Note that the logarithmic energy scale over-emphasises the effect of differences between the fluence 

spectra at the lowest energies on the numerical value of the perturbation factor; the true width of the 

energy interval between 1 keV and 1 MeV is only equal to that between 1 and 2 MeV. In the interests 

of graphical clarity the fluence spectra in the SCDDo cavity have not been included; in almost all 

cases these were virtually indistinguishable from the spectra in the water voxel.  

Table 6.4 shows that the water-to-SCCDo perturbation factors were always less than unity 

(within statistical uncertainties) with the lowest value being 0.957 ± 0.002 at 6 MV, point source 

geometry, in a 0.25 × 0.25 cm2 field. Turning now to the larger field sizes (Figures 6.4(c), 6.5(c)), the 
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‘total’ electron (+ positron) fluence in these same air and water cavities cannot be separated, which is 

an explicit demonstration of the Bragg-Gray behaviour of these cavities.  

Tables 6.3 and 6.4 present the MC-derived electron fluence perturbation correction factors, 

water-to-air, ( )w

airΦp , and water-to-SCDDo, ( )w

SCDDoΦp , versus field size defined at 100 cm SSD for 

both FLG and PSG source geometries for the 6 MV and 15 MV beam qualities. As expected, the 

perturbation factors approach unity as the field size increases. It can be noted that even at the very 

small field size of 0.25 × 0.25 cm2 the perturbation factor for the SCDDo single-crystal diamond 

dosimeter is within 4% of unity. These results are consistent with recent studies of the small-field 

response of the PTW 60019 microDiamond detector in terms of [dose to the detector]/[dose to water] 

(Chalkley and Heyes 2014, Papaconstadopoulos et al 2014, Morales et al 2014, Benmakhlouf et al 

2015); note, however, that the smallest field size simulated by any of these workers had a diameter of 

4 mm.  

Table 6.3: 6 MV and 15 MV photon beams, FLG and PSG: MC-derived total electron fluence 

perturbation correction factors for water-to-air,( )w

airΦ
p , versus field size defined at 100 cm SSD; side 

lengths of square fields are 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 1.5 cm, 2cm, 3 cm and 10 cm ; the statistical 
(Type A) uncertainties are ± 2 standard deviations. The standard uncertainty propagation method was 
used to derive the statistical (Type A) uncertainties. 
 

                                                      
14 Everywhere in the tables for 15 MV the 0.5 × 0.5 cm2 field size was actually equal to 0.45 × 0.45 cm2. 

 

 
 
 

 

Field Size 
(cm × cm) 

Total electron fluence perturbation correction factors, water-to-air

6 MV  15 MV 

FLG PSG 
 FLG PSG 

0.25 × 0.25 1.323 ± 0.003 1.292 ± 0.003  2.139 ± 0.008 1.346 ± 0.001 

0.5 × 0.514 1.146 ± 0.003 1.080 ± 0.003  1.343 ± 0.005 1.119 ± 0.001 

0.75 × 0.75 1.046 ± 0.002 1.037 ± 0.002  1.165 ± 0.003 1.050 ± 0.001 

1 × 1 1.017 ± 0.003 1.017 ± 0.003  1.083 ± 0.002 1.030 ± 0.002 

1.5 × 1.5 1.005 ± 0.004 1.002 ± 0.004  1.029 ± 0.002 1.014 ± 0.002 

2 × 2 1.003 ± 0.005 1.001 ± 0.004  1.001 ± 0.003 1.007 ± 0.003 

3 × 3 1.001 ± 0.005 1.000 ± 0.004  1.000 ± 0.003 1.001 ± 0.003 

10 × 10 -------- ----------  1.000 ± 0.005 1.000 ± 0.004 
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Table 6.4: 6 MV and 15 MV photon beams, FLG and PSG: MC-derived total electron fluence 

perturbation correction factors, water-to-SCDDo, ( )w

SCDDoΦp  , versus field size defined at 100 cm SSD; 

side lengths of square fields were 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 1.5 cm, 2cm, 3 cm and 10 cm; the 
statistical (Type A) uncertainties are ± 2 standard deviations. The standard uncertainty propagation 
method was used to derive the  statistical (Type A) uncertainties. 
 

 
 
Table 6.5: Comparison of MC-derived dose ratios, water-to-air, for the PinPoint 3D air cavity with MC- 

calculated output correction factor, clin msr

clin msr

,

,

f f

Q Qk  from Benmakhlouf et al (2014) versus field size defined at 

100 cm SSD. The uncertainties in the present work are ± 2 standard deviations. The standard uncertainty 
propagation method was used to derive the statistical (Type A) uncertainties.  
 

 
 

 
 

Field Size 
(cm × cm) 

Total electron fluence perturbation correction factors, water-to-SCDDo

6 MV  15 MV 

FLG PSG  FLG PSG 

0.25 × 0.25 0.968 ± 0.002 0.957 ± 0.002  0.963 ± 0.004 0.967 ± 0.001 

0.5 × 0.5 0.979 ± 0.002 0.975 ± 0.003  0.965 ± 0.003 0.976 ± 0.001 

0.75 × 0.75 0.983 ± 0.003 0.989 ± 0.002  0.973 ± 0.003 0.985 ± 0.001 

1 × 1 0.985 ± 0.004 0.993 ± 0.004  0.979 ± 0.003 0.992 ± 0.002 

1.5 × 1.5 1.000 ± 0.004 0.995 ± 0.004  0.992 ± 0.003 0.992 ± 0.003 

2 × 2 1.002 ± 0.004 0.996 ± 0.004  0.993 ± 0.003 0.996 ± 0.003 

3 × 3 1.001 ± 0.005 1.002 ± 0.006  0.995 ± 0.003 0.997 ± 0.004 

10 × 10 ---------- ------------  0.997 ± 0.004 0.998 ± 0.005 

 
 
 
Beam quality 

 
 
Field Size        
(cm × cm) 

 

clin msr

clin msr

,

,

f f

Q Qk (Benmakhlouf  

et al (2014)) 

( )
( )

detw
MC

detw
MC

clin

msr

/

/

Q

Q

D D

D D

 
 

 
   

   

 (Present  work) 

6 MV, FLG 0.5 × 0.5 1.147 1.144 ± 0.006 

 1 × 1 1.010 1.024 ± 0.007 

 2 × 2 1.000  1.000 ± 0.005 
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Table 6.5 gives a comparison of ( ) ( )det detw w
MC MC

/ / /
FS refQ Q

D D D D   
   

for ‘det’ ≡ air for 

PTW 31016 'PinPoint 3D' air cavity from this work with the equivalent quantity clin msr

clin msr

,

,

f f

Q Qk  derived by 

Benmakhlouf et al (2014), for square fields of side length 0.5 cm, 1 cm and 2 cm for 6 MV full 

(Varian Clinac) beam geometry. It should be noted that these authors employed a different Monte-

Carlo code (PENELOPE) and modelled the PTW 31016 PinPoint 3D ionization chamber in full 

constructional detail. The excellent agreement between the two studies, despite employing different 

Monte-Carlo systems and detector geometries, lends considerable confidence to our numbers.  

 

6.4.3.2 Explanation of the breakdown of Bragg-Gray behaviour  

 
In this section the physics behind the ‘breakdown’ of Bragg-Gray cavity theory is explained as 

evidenced by the large difference between the (uncorrected) air-cavity fluence spectrum and the 

water-voxel fluence spectrum for the two smallest field sizes shown in Figures 6.4(a), (b) and 6.5(a), 

(b). Figure 6.6 is an aid to the explanation; the measurement position, marked by ×, is at a depth 

beyond Dmax.. On the left-hand side of the figure the field is broad enough for quasi-CPE (‘quasi’ in 

the sense of a real photon beam for which photon attenuation may not be negligible over distances 

equal to the secondary electron ranges – cf. Kumar et al 2015a) to be established at the depth of 

interest in the uniform medium i.e. the maximum lateral distance any secondary electron can travel 

(indicated by 
e-

maxr ) is less than the field width. It follows that there will be quasi-CPE at × in the 

uniform medium for all fields wider than the inside edge of the hatched area.  

Considering the low-density (gas) cavity, the shortest distance from the cavity edge to the 

field edge is exactly equal to 
e-

maxr . Therefore in this case the electron fluence in the (gas) cavity will 

be negligibly different from the equilibrium fluence at × in the uniform medium – in other words the 

cavity is acting in a Bragg-Gray manner. This is because the conditions for the Fano theorem are 

essentially fulfilled (Harder 1974) even though the atomic composition of the cavity gas may differ 

from that of the medium; this compositional difference has little significance as here the energy of the 

photons (and hence of the secondary electrons) is sufficiently high and the density of the cavity 

sufficiently low that the component of the dose to the cavity (gas) due to photon interactions with the 

(gas) material inside the cavity is a negligible fraction of the dose due to secondary electrons incident 

from outside the cavity (Ma and Nahum 1991).  

  In case of the narrow field on the right-hand side of the figure; the field width is insufficient 

for quasi-CPE to be established in the uniform medium. Consider first the case of the ‘cavity’ in the 

uniform medium. The electron (+ positron) fluence at × (strictly the fluence in a region centred on × 

giving rise to dose at ×) can be split into two components: Φout arising from secondary electrons 
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generated outside the (virtual) cavity and Φin  arising from photon interactions in that volume of the 

medium inside the virtual cavity boundary. The Φin component will be very similar to that in the 

wide-field case described above (as it is assumed that the beam width is greater than the cavity width) 

but Φout here will be lower than its wide-field counterpart. Consequently the total charged-particle 

fluence, and hence the dose, at × will be lower than in the wide-field ‘equilibrium’ situation discussed 

above.  

Consider now the low-density (gas) cavity in the narrow field. Here Φout  will not be too 

dissimilar in magnitude to that for the uniform medium (but will differ due to the ‘attenuation’ of the 

‘out’ fluence by the material inside the uniform cavity, whereas there is no such ‘attenuation’ in the 

gas cavity). Relative to Φout , the Φin  contribution to the gas cavity dose will be virtually zero, as it 

has already been established that the gas cavity acts in a Bragg-Gray manner in this photon quality in 

a wide field. Consequently the total electron (+ positron) fluence in the gas cavity in the narrow non-

equilibrium photon field will be smaller than its counterpart (the fluence at ×) in the uniform medium, 

this difference being principally due to the difference in magnitude of the respective Φin components. 

Expressed another way, Bragg-Gray behaviour has broken down. An analytical formulation of the 

above verbal-pictorial explanation is given in the Appendix-B.  

Why do the same arguments not apply to the low-density cavity in the wide field? Because in 

this case the (same) very low value of Φin  is almost exactly compensated by the added contribution 

(to Φout) from the hatched volume shown in the lower part of the wide-field figure; this 

‘compensation’ is due to the (near) fulfilment of Fano conditions in an ‘equilibrium’ geometry 

(Harder 1974). It must therefore follow that in a (megavoltage) photon-irradiated (uniform) medium, 

quasi-CPE is required in order for a low-density cavity inserted into the medium to act in a Bragg-

Gray manner, as it is only under quasi-CPE conditions that the Fano theorem can be applied, thus 

ensuring the ‘compensation’ described above.  

The connection between CPE and the Bragg-Gray principle has been insufficiently 

emphasised in the radiation dosimetry literature. It is frequently argued that because the Bragg-Gray 

principle is ≈ valid for ion chambers in charged-particle (e.g. electron-beam) irradiated media, where 

CPE can never exist (as the beam energy is continually decreasing with depth), then neither is CPE 

necessary for such detectors in photon-irradiated media. However, when the primary radiation is 

charged particles, the concepts of Φin and Φout do not apply and consequently the above reasoning is 

flawed.  

As a corollary, it follows that the density of the detector medium will play a major role in the 

response of a (small) detector in a narrow, non-equilibrium field, as the electron/positron fluence due 

to photon interactions in the cavity volume, i.e. the Φin component, will increase with the density of 

the detector material (Scott et al 2012, Fenwick et al 2013).   
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× ×

A. Wide, equilibrium field B. Narrow, sub-equilibrium field
(i) Uniform medium

× ×

(ii) Low-density cavity

Gas Gas

e-

maxr

e-

maxr

 

Figure 6.6: Schematic illustration to accompany the explanation of ‘Bragg-Gray breakdown’ in narrow, 
non-equilibrium megavoltage photon fields. The measurement position, marked by ‘×’, is at a depth 

beyond Dmax; 
e-

maxr is the maximum lateral distance any secondary electron can travel. 

 

6.4.4 Comparison of the MC-derived dose ratio with the product of 
SA

med,det,s ∆ and ( )w

detΦp
 

 

Tables (6.6) - (6.7) present, for both beam qualities and source geometries, a comparison of the ratio 

of the MC-derived dose-to-water to dose-to-PinPoint-3D-air-cavity-in-water, ( )airw
MC

/D D , with the 

product of 
SA

w,det ,∆s and ( )w

detΦp  = ( )detw
Eq.(6.3)

/D D , as a function of field size defined at 100 cm 

SSD; the side lengths of square fields are 0.25 cm, 0.45 cm, 0.75 cm, 1 cm, 1.5 cm, 2 cm, 3 cm and 10 

cm. In the case of field sizes below 1 × 1cm2 for the 15 MV FLG beam quality, the directly computed 

MC dose ratios differed from ( )detw
Eq.(6.3)

/D D  ; in the 0.25 × 0.25 cm2 field this difference was a 

non-negligible 5% which must be attributed to the effect of the change in spectral shape. 
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 An expression for the effect of this spectral shape change will now be developed. Firstly the 

dose ratio can be expressed as: 

( )
{ }

max max

max

tot tot tot
el

med med meddet det
med

SAmed
med,det,

det
det tot tot

det detdet

( ) d ( ) ( ) ( ) d

( ) d ( )

E E

E E E

E

E E

Φ

Φ z L E Φ S Φ z E

Φ z L E Φ

D s p
D

ρ ρ

ρ

∆

∆ ∆

∆

∆

∆

× × ×

= × ×

× ×

           + ∆ ∆ ∆              

      + ∆     
  

∫ ∫

∫ { }
max

tot
el

detdet
( ) ( ) d

E

ES Φ z Eρ
∆

×

 
 
 
 
     ∆ ∆      
  

∫
 

which can be re-written as 

( )
e,tot e,tot

med det

medSAmed
med,det, det

det det det

/Φs
D L L

p
D

Φ Φ

ρ ρ
∆ ∆

∆= × ×
   
   
   

    (6.7) 

 
where the final term is the ratio of the restricted mass electronic stopping power averaged over the 

fluence spectrum in the medium (=1.711 MeV cm2 g-1 for 15 MV FLG at 0.25 × 0.25 cm2), to the 

restricted mass electronic stopping power averaged over the fluence spectrum in the PinPoint 3D air 

cavity (=1.632 MeV cm2 g-1), yielding a ‘shape factor’ of 1.049 which is consistent with the ratio 

( ) ( )w air w air
MC Eq(6.3)

/ / /D D D D = 1.050 from table 6.6. If the shapes of these two spectra are 

identical then this factor will be unity. 

An alternative approach would be to define an overall or ‘global’ perturbation factor thus: 

( )global fluence shape - difference factorp p= ×       (6.8) 

where the ‘shape-difference’ factor is given by the final term in equation (6.7). 
 
 

6.4.5 Maximum dimensions of perturbation-limited ‘Bragg-Gray’ detector 

 
Table 6.8 presents the dimensions of ‘perturbation-free’ cavities as per the Nahum (1996) criterion. It 

can be seen that an ion chamber with a perturbation within 5% of unity in the 0.25 × 0.25 cm2 field 

would require the cavity height to be only 0.023 cm at 6 MV and 0.008 cm at 15 MV; these are 

impractically small dimensions. These results emphasise the magnitude of the breakdown in Bragg-

Gray behaviour in very small fields for practical ionisation chambers which easily fulfil Bragg-Gray 

conditions in conventional, quasi-CPE fields. In contrast, the single-crystal diamond dosimeter, 

SCDDo, comfortably fulfills the 5% criterion with its actual dimensions.  
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Table 6.6: 6 MV and 15 MV photon beams, FLG and PSG: comparison of MC-derived ratio, dose-to- water to dose-to-PinPoint 3D-air-cavity-in-water, 

( )airw
MC

/D D ,
 
with the product ( )wSA

w,air, airΦ
s p∆ ×    i.e. equation (6.3); the statistical (Type A) uncertainties  are  ± 2 standard deviations. The standard uncertainty 

propagation method was used to derive the statistical (Type A) uncertainties.  

 

 
 
 
 

 6 MV  15 MV 

FLG PSG  FLG PSG 

Field Size 
(cm × cm) 

w

air MC

D

D

 
 
 

 
w

air Eq.(3)

D

D

 
 
 

 
w

air MC

D

D

 
 
 

 
w

air Eq.(3)

D

D

 
 
 

 

 
w

air MC

D

D

 
 
 

 
w

air Eq.(3)

D

D

 
 
 

 
w

air MC

D

D

 
 
 

 
w

air Eq.(3)

D

D

 
 
 

 

0.25 × 0.25 1.485 ± 0.007 1.479 ± 0.007 1.464 ± 0.004 1.453 ± 0.006   2.437 ± 0.022 2.321 ± 0.016 1.475 ± 0.004 1.461 ± 0.003 

0.5 × 0.5 1.278 ± 0.005 1.281 ± 0.006 1.208 ± 0.005 1.207 ± 0.008  1.474 ± 0.012 1.460 ± 0.010 1.213 ± 0.005 1.217 ± 0.003 

0.75 × 0.75 1.165 ± 0.005 1.170 ± 0.005 1.156 ± 0.006 1.161 ± 0.005  1.246 ± 0.009 1.269 ± 0.005 1.144 ± 0.008 1.145 ± 0.003 

1 × 1 1.144 ± 0.005 1.138 ± 0.007 1.137 ± 0.008 1.138 ± 0.007  1.166 ± 0.007 1.182 ± 0.005 1.125 ± 0.010 1.124 ± 0.005 

2 × 2 1.117 ± 0.010 1.123 ± 0.010 1.162 ± 0.011 1.159 ± 0.010  1.104 ± 0.009 1.094 ± 0.006 1.099 ± 0.012 1.100 ± 0.007 

3 × 3 1.117 ± 0.014 1.121 ± 0.010 1.164 ± 0.017 1.166 ± 0.014  1.099 ± 0.010 1.095 ± 0.007 1.097 ± 0.011 1.096 ± 0.007 

10 × 10 ------- ------- ------- -------  1.095 ± 0.021 1.098 ± 0.010 1.094 ± 0.028 1.096 ± 0.008 
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Table 6.7: 6 MV and 15 MV photon beams, FLG and PSG: comparison of MC-derived ratio of dose-to-water to dose-to-SCDDo cavity-in-water, 

( )SCDDow
MC

/D D with the product ( )wSA

w,SCDDo, SCDDoΦ
s p∆ × i.e. equation (6.3); uncertainties are as per table 6.6.  

 

 
 

 6 MV  15 MV 

FLG PSG  FLG PSG 

Field Size    
(cm × cm) 

w

SCDDo MC

D

D

 
 
 

 w

SCDDo Eq.(3)

D

D

 
 
 

 
w

SCDDo MC

D

D

 
 
 

 w

SCDDo Eq.(3)

D

D

 
 
 

 

 
w

SCDDo MC

D

D

 
 
 

 w

SCDDo Eq.(3)

D

D

 
 
 

 
w

SCDDo MC

D

D

 
 
 

 w

SCDDo Eq.(3)

D

D

 
 
 

 

0.25 × 0.25 1.131 ± 0.006 1.127 ± 0.005 1.112 ± 0.003 1.115±0.005  1.136 ± 0.009 1.126 ± 0.009 1.127 ± 0.003   1.130 ± 0.003 

0.5 × 0.5 1.137 ± 0.005 1.140 ± 0.005 1.138 ± 0.004 1.135±0.007  1.139 ± 0.008 1.128 ± 0.008 1.141 ± 0.004   1.141 ± 0.003 

0.75 × 0.75 1.145 ± 0.005 1.144 ± 0.005 1.152 ± 0.006 1.151±0.005  1.140 ± 0.008 1.137 ± 0.006 1.152 ± 0.007   1.150 ± 0.003 

1 × 1 1.157 ± 0.007 1.147 ± 0.008 1.156 ± 0.008 1.156±0.008  1.143 ± 0.008 1.144 ± 0.006 1.154 ± 0.009   1.159 ± 0.005 

2 × 2 1.158 ± 0.011 1.166 ± 0.010 1.162 ± 0.011 1.159±0.010  1.163 ± 0.009 1.156 ± 0.008 1.169 ± 0.010   1.164 ± 0.008 

3 × 3 1.159 ± 0.015 1.165 ± 0.011 1.164 ± 0.017 1.166±0.014  1.165 ± 0.010 1.162 ± 0.008 1.170 ± 0.011   1.165 ± 0.008 

10 × 10 ------- ------- ------- -------  1.167 ± 0.021 1.164 ± 0.010 1.170 ± 0.019   1.166 ± 0.011 
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Table 6.8: Dimensions of 5% perturbation-limited PinPoint 3D air cavity and diamond cavity (SCDDo) 
determined by keeping the radii of the cavities constant and reducing the thickness/height until  

( )w

airΦp = 1.05 and( )w

SCDDoΦp  = 0.95 for field sizes 0.25 × 0.25 cm2 and 0.5 × 0.5 cm2 for  FLG of the 6 

MV and 15 MV qualities . The 'true' thicknesses/heights are shown in parentheses. 
 

  

 

6.5 Summary and Conclusions 

It has been shown that OF(kerma) changes minimally with field size for PSG at both beam qualities 

(15MV and 6 MV) whereas for FLG this quantity decreases dramatically as the field size drops below 

0.5 × 0.5 cm2, thereby demonstrating explicitly the source occlusion effect. For the SCDDo detector, 

the ‘BG dose to water’ in small fields is within 2.9% of the dose computed directly in the water voxel 

(for the 0.25 × 0.25 cm2 field size in 6 and 15 MV FLG) whereas these quantities differ significantly 

in case of a small (air-filled) ionisation chamber. Signal-averaging over the detector volume is also a 

big effect. A water-to-detector material perturbation factor has been defined and evaluated as the ratio 

of the (photon-generated) total electron (+ positron) fluence in undisturbed water to that in the 

detector ‘cavity’, integrated over all energies; for the PinPoint 3D-chamber-like air cavity the values 

are 1.323 and 2.139 for the 0.25 × 0.25 cm2 field size in 6 MV FLG and 15 MV FLG respectively. For 

the 15 MV FLG and fields of 1 × 1 cm2 and smaller not only the magnitude but also the ‘shape’ of the 

electron fluence spectra in the air cavity differs from that in the water cavity due to the combined 

effect of electronic disequilibrium, source occlusion and volume-averaging; a theoretical expression 

for this ‘shape factor’ has been formulated. A detailed explanation for this ‘breakdown’ of Bragg-

Gray behaviour in low-density (gas) detectors in non-equilibrium field sizes is given, which 

emphasises that for low-density detectors to act as Bragg-Gray cavities in a photon-irradiated 

medium, quasi-CPE must be present in the undisturbed medium. In contrast to air-filled ionisation 

chambers, a new type of ‘single crystal’ diamond detector is predicted to exhibit quasi Bragg-Gray 

behaviour over a wide range of field sizes and beam qualities despite its high density.  

  Thickness/height of the cavity (cm) for 5% perturbation 

  6 MV  15 MV 

Field size 
(cm × cm) 

Cavity radius 
(cm) 

PinPoint 3D 
(0.2 cm) 

SCDDo 
(0.0165 cm) 

 
PinPoint 3D 
(0.2 cm) 

SCDDo 
(0.0165 cm) 

0.25 × 0.25 0.0564 0.023 0.028  0.008 0.021 

0.5 × 0.5 0.0564 0.122 0.045  0.027 0.024 
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CHAPTER 7 
 

Dosimetric response of variable-size cavities in photon-
irradiated media and the behaviour of the Spencer-Attix 

cavity integral with increasing ∆∆∆∆ 
 

 

7.1 Introduction 
 
The absorbed dose in an irradiated medium, Dmed, is in practice derived from the reading of a detector 

(or dosimeter) placed at the desired depth. The energy absorbed in the detector’s sensitive material, 

and hence the absorbed dose in this material, is proportional to the signal, or reading (e.g. charge 

∝ Ddet). The ratio of the absorbed dose in the uniform (or undisturbed) medium to the absorbed dose 

in the detector cavity, Dmed/Ddet, is determined from cavity theory, which accounts for the effect of 

differences between the atomic composition and density of the detector ‘cavity’ and those of the 

medium into which it is introduced; Dmed/Ddet also depends on cavity size and radiation quality (Attix 

1986, Nahum 2009).  

 When the three principal quasi-exact cavity theories, Bragg-Gray (Bragg 1912, Gray 1936), 

Spencer-Attix (Spencer and Attix 1955) and ‘large photon’ detector (e.g. Nahum 2009) were 

developed the theoretical tool to critically examine these theories was not available. Monte-Carlo 

(MC) codes such as the EGSnrc and PENELOPE systems, with electron transport schemes 

specifically designed to yield accurate results in gas-filled ion chamber simulations (Kawrakow 

2000a, Kawrakow 2000b, Borg et al  2000, Mainegra-Hing et al 2003, Rogers and Kawrakow 2003, 

Buckley et al 2003,  Verhaegen  2002, 2003,  Buckley and Rogers  2006,  Sempau et al 2006, La 

Russa and Rogers  2006, 2008, 2009, Wulff  et al 2008, Kawrakow et al 2011, Muir and Rogers 2013, 

2014,  Salvat 2014), together with the high statistical precision which can be obtained today, can 

critically test these theories for various detector types in different media, for a range of radiation 

qualities. 

Here, a confirmation of the self-consistency of the different cavity theories (Bragg-Gray, 

Spencer-Attix and large photon detector) with one another is begun by evaluating the so-called ‘cavity 

integrals’ (see below) and comparing these to the (direct) Monte-Carlo dose DMC in media of varying 

atomic number irradiated by high-energy photon beams under (quasi) charged-particle equilibrium. 

Nahum et al (2010) found that if the ‘Spencer-Attix dose’ DS-A(∆) (also known as restricted cema) 

was evaluated for value of ∆ (the Spencer-Attix cavity-size parameter) much greater than that 

appropriate for typical gas-filled cavities (∆ ≈ 10-15 keV) then the ratio DS-A(∆)/DMC fell increasingly 

below unity; this behaviour is explored in detail here and the dependence of this ratio on ∆ is 
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explained in terms of the Klein-Nishina (K-N) differential cross section. For a given radiation quality, 

it is shown that the maximum value of ∆ for which (DS-A(∆)/DMC) remains within a few percent of 

unity can be related to the maximum size detector exhibiting Bragg-Gray behaviour. Consequently it 

is suggested that (DS-A(∆)/DMC) can be used as a Bragg-Gray detector criterion.  

Finally the variation of Dmed/Ddet has been explored for a highly mis-matched (i.e. non-water-

equivalent) cavity, irradiated in water by the ‘clinical’ photon–beam qualities of 6 and 15 MV; by the 

device of varying the density of the cavity material (silicon), variations in cavity size from that 

corresponding to a gas to that approaching the ‘large photon detector’ condition were mimicked, 

enabling a critical examination of Spencer-Attix and Burlin cavity theories. Furthermore, by 

employing a Monte-Carlo- electron ‘detour factor’ to the linking of the Spencer-Attix ∆ to cavity size, 

it is shown that DS-A(∆)/DMC matches closely the (Monte-Carlo-derived) Burlin ‘d’ factor  at different 

values of ∆. 

 

7.2 Materials and Methods 
 

7.2.1 Monte-Carlo Calculations  
 
The EGSnrc Monte-Carlo code system (Kawrakow 2000a, Kawrakow et al 2011) and its associated 

user-codes (Rogers et al 2011b) have been carefully validated in detector-response studies (Borg et al  

2000, Mainegra-Hing et al 2003, Rogers and Kawrakow 2003, Buckley et al 2003, Verhaegen  2002, 

2003, Buckley and Rogers  2006,  La Russa and Rogers  2006, 2008, 2009, Ali and Rogers 2008, 

Wulff  et al 2008, Muir and Rogers 2013, 2014).  

The ‘user-codes’ DOSRZnrc, FLURZnrc and CAVRZnrc (version: V4-2.3.2) were used in 

the present study. The settings employed in these simulations included modelling Compton 

interactions for bound electrons, Rayleigh scattering, the effect of any atomic relaxation events and 

relativistic spin effects in the multiple scattering of charged particles. Electron impact ionization was 

switched on (in the EGSnrc code system this can be either ON or OFF). Cross sections for sampling 

photon energies in bremsstrahlung events were taken from the NIST databases (Hubbell and Seltzer 

2004) and photon cross sections from the XCOM database were used (Berger et al 2010). 

  A PEGS4 datafile (Nelson et al 1985, Kawrakow et al 2011) was generated with the 

EGSnrcMP package (Kawrakow et al 2006) with parameters AP = 1 keV, AE = 512 keV (total 

energy) where AP and AE are the production thresholds for secondary bremsstrahlung photons and 

knock-on electrons respectively. Electrons and positrons were followed down to 1 keV kinetic energy 

(i.e. the electron/positron kinetic energy cut-off ECUT = 512 keV) and photons down to 1 keV 

(photon energy cut-off PCUT = 1 keV). This ensured that photons and charged particles were 

explicitly created above 1 keV (i.e. bremsstrahlung photons and knock-on electrons) and transported 

down to 1 keV. 
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  It is noted that PEGS4 data files with AE = 512 keV and AP = 1 keV generated using the 

egs_gui of the EGSnrcMP package produce restricted total mass stopping powers (IUNRST = 0). The 

evaluation of the Spencer-Attix cavity integral (see equation (7.3) below) involves the restricted 

electronic mass stopping power. However, for low values of AP (= 1 keV), restricted radiative mass 

stopping powers are extremely close to zero (Rogers and Bielajew 1990, Rogers et al 2011b) and 

hence the difference between the restricted total mass stopping power (IUNRST = 0) and the 

restricted electronic mass stopping power is entirely negligible.  

 

7.2.2 Self-consistency of conventional cavity theories 

 
Cavity theory provides several expressions, sometimes known as ‘cavity integrals’, which essentially 

yield the absorbed dose to medium, Dmed, given the particle fluence spectrum, of either photons or 

charged particles, depending on the cavity integral employed.  

The collision kerma in the medium at a depth, z, [ ]col med
( )K z , is given by (Mobit et al 2000, 

Nahum 2007b):  

 

[ ] ( )
max

phot en
col med med

0 med

( )
( ) z d

k

k

k
K z k Φ k

µ
ρ

 
 =   

 
∫       (7.1) 

where k is the photon energy, µen(k)/ρ the mass energy-absorption coefficient at energy k, and 

( )phot

med
z

k
Φ    the photon fluence, differential in energy, in the medium (water, aluminium or copper) 

at depth z. When there is quasi-CPE15 as is the case here then [ ] [ ]med colmed med
( ) ( )D z K zβ= and we 

can write 

[ ] [ ] ( )
maxCPE

phot en
med col medmed med med

0 med

( )
( ) ( ) z d

k

k

k
D z K z k Φ k

µ
β β

ρ
 

 = =   
 

∫    (7.2) 

where βmed is generally unity within a few percent (Kumar et al 2015a); in what follows it is 

[ ]col med
( )K z which has been evaluated. For consistency, µen(k)/ρ was computed  using the ‘g’ user-

code of EGSnrc system (Kawrakow et al 2011) with the identical PEGS4 datafiles used with 

FLURZnrc. In practice the lower limit of the integral is not zero but PCUT as the fluence spectrum 

only extends down to PCUT in energy.  

                                                      
15 In real photon beams CPE is never ‘perfect’ as a result of finite photon attenuation over the distance of the 

maximum secondary-electron/positron range; we refer to this as quasi-CPE.  
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The integral involving the primary charged-particle fluence spectrum and the mass electronic 

stopping power, also known as cema (ICRU 2011), can be written   

[ ] ( ) [ ]
max

prim

E elmed medmed
0

( ) z ( )/ d

E

C z S E EΦ ρ =  ∫       (7.3) 

where E is the kinetic energy of charged particles, Sel(E)/ρ is the unrestricted mass electronic stopping 

power, and prim

med
( )

E
Φ z    is the primary electron (+ positron) fluence, differential in energy, in the 

undisturbed medium (water, aluminium or copper)  at depth z (the same depth as in equations (7.1)  

and (7.2)). By primary it is meant all charged particles (electrons, positrons) which are not ‘delta rays’ 

(aka knock-on electrons); this includes charged particles liberated by secondary bremsstrahlung. If 

there is delta-ray equilibrium in the volume of interest then we can write 

[ ] ( ) [ ]
maxeqm

prim

med E elmed medmed
0

( ) ( ) z ( )/ d

E

D z C z S E E
δ

Φ ρ
−

 = =  ∫      (7.4) 

In general there will be a very good approximation to δ–ray equilibrium (an exception is close to the 

surface in a medium irradiated by an electron beam). In practice the electron fluence spectrum is only 

computed down to the Monte-Carlo cut-off  energy ECUT; however, the numerical difference due to 

the lower limit of the integral not being zero is entirely negligible in the case here of the primary 

fluence.  

The EGSnrc user-code FLURZnrc was employed to generate the photon and electron fluence 

spectra per MeV per incident photon fluence down to 1 keV, with the same ECUT and PCUT, as 

above at 2.5 g cm-2 depth and 10.5 g cm-2 on the beam central axis for 1 MeV and 10 MeV photon 

beams respectively, perpendicularly incident on large homogeneous water, aluminium and copper 

phantoms (a cylinder with both height and diameter equal to 1308 cm, Kumar and Nahum (2015)). 

The user-code input parameter setting SLOTE = -999 was chosen i.e. the lowest 90% of the energy 

range is split into  intervals (‘bins’) with equal logarithmic spacing and the highest 10%  into linearly-

spaced bins; this was to ensure sufficiently narrow  bins to ‘capture’ the possible rapid variation of the 

photon mass energy-absorption coefficient with energy. A parallel beam (i.e. source 0) of circular 

cross-section with a radius of 5 cm was selected. The scoring ‘cavity’ of water, aluminium or copper, 

was cylindrical, with radius 2 g cm-2, height 1 g cm-2 and with its front face at depths of 2 g cm-2 and 

10 g cm-2 for 1 MeV and 10 MeV photons respectively, perpendicular to the beam direction (i.e. the 

cavity centres were at depths of 2.5 g cm-2 and 10.5 g cm-2 respectively). 

Again for consistency, a separate PEGS4 datafile was generated for the different media in 

order to obtain the unrestricted mass electronic stopping power; IUNRST = 1 was set in the PEGS4 

input file (this cannot be done from the egs_gui of the EGSnrcMP package (Kawrakow et al 2006) so 

the file was created manually). The IUNRST = 1 option provides a cross-section data set (PEGS4 
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output) of unrestricted mass electronic stopping powers. The unrestricted stopping powers used in 

equation (4) were extracted from PEGS4 data files using the user-code EXAMIN, also distributed 

with the EGSnrc package (Rogers et al 2011b).  

Finally D(z)med can also be computed from the ‘Spencer-Attix’ cavity integral involving the 

total charged-particle fluence spectra and the restricted electronic stopping power (Nahum 1978, 

Nahum 2009), also known as restricted cema, [C∆(z)]med (ICRU 2011): 

[ ] [ ] [ ]
max

tot tot

S-A elmed, med medmed med
( ) ( ) ( ) d ( ) ( )

E

E ED z Φ z L E E Φ Sρ ρ∆∆
∆

   = + ∆ ∆ ∆   ∫   (7.5) 

where E is the kinetic energy of charged particles, [ ]
med

( )L E ρ∆ is the mass electronic stopping 

power restricted to losses less than ∆, and tot

med
( )

E
Φ z    is the total electron (+ positron) fluence, 

differential in energy (i.e. including all generations of ‘knock-on’ electrons, or delta-rays) in the 

undisturbed medium (water, aluminium , copper), down to the cut-off energy, ∆ (1 keV here but any 

value below around 20 keV could have been chosen –see sub-section 7.2.3) at depth z. For 

consistency, the restricted mass electronic stopping power [ ]
med

( )L E ρ∆  was also extracted from the 

PEGS4 datafiles as described above. The absorbed dose determined using equation (7.5), henceforth 

written as [ ]S-A med
( )D ∆ , will be referred to as the 'Spencer-Attix dose'.  

In the evaluation of the 'track end' term in the equation (7.5) the total electron (+ positron) 

fluence and the unrestricted mass electronic stopping power are required at an energy exactly equal to 

∆. In FLURZnrc it is not possible to derive the fluence at exactly 1 keV, the lower limit of the lowest 

energy bin. The value of ∆ was therefore set equal to the upper limit of the lowest bin combined with 

SLOTE = -999 (see above). 

 The absorbed dose was computed with DOSRZnrc for the beam qualities, media and source 

type specified above; we denote this ‘direct Monte-Carlo dose’ by DMC. The above dose, the photon 

fluence spectrum, the fluence spectra for the first generation (denoted as ‘primary fluence’), and for 

all generations of charged particles (electrons and positrons) i.e. total fluence, have been computed 

with the identical normalization ‘per incident photon fluence’.  The ratio of cavity dose (from 

equations (7.2), (7.4) and (7.5)) to DMC was determined for 1 MeV and 10 MeV photon beams at 

depths of 2.5 and 10.5 g cm-2 respectively in all three media. 

 

7.2.3 The relationship between the direct Monte-Carlo dose and the Spencer-Attix cavity 

integral at increasing values of ∆ 

 

Generally the Spencer-Attix cut-off ∆ is either chosen to be as low as possible or, in the context of the 

S-A stopping-power ratio, is related to the mean chord length across the detector cavity (see sub-
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section 7.2.4.2). In a critical examination of Spencer-Attix theory for a 10-MeV photon beam in 

aluminium, Nahum et al (2010) observed that whilst for ∆ below ≈ 30 keV the ratio [DS-A(∆)/DMC] 

was essentially unity, for ∆ above ≈ 30 keV this ratio decreased monotonically with increasing ∆. 

This decrease was ascribed to the non-inclusion in DS-A(∆) of energy deposition due to secondary 

electrons and positrons with initial energies below ∆. In this section, and in sub-section 7.3.2, this 

dependence of [DS-A(∆)/DMC] on ∆ is explored in detail. 

   

7.2.3.1 Investigation of the dependence of (DS-A(∆)/DMC) on  ∆  

 
The Klein-Nishina (K-N) differential cross section gives the probability that a single photon will 

undergo a Compton interaction in traversing a layer containing one electron/cm2, transferring kinetic 

energy between E and E + dE  to the (Compton) electron (Attix 1986): 

( ) ( ) ( )
( ) ( )

22 2 2 ' '
2 2

2 2

2 2 3
'

2e o o o

o o

d r m c m c E k k
E m c m c

dE kk kk

σ π       = × + + − −            

  (7.6) 

where moc
2 is the electron rest mass energy (= 0.511 MeV),  k' is the energy of scattered photon, E is 

the electron kinetic energy,
e
σ  is the total K-N cross section per electron and ro = e2/moc

2 = 2.818 x 

10-13 cm is the so-called ‘classical electron radius’; the above expression applies to ‘free’ electrons i.e. 

no corrections for binding energies. Starting from equation (7.6) the fraction of the total energy (i.e. 

over all energies) transferred to Compton electrons with initial k.e. above energy ∆ was calculated. 

Let us denote the upper and lower limits of energy transfer to Compton electrons by Emin and Emax. 

The total energy in the Compton electron spectrum will be proportional to

max

min

  

E

e

E

d
E dE

dE

σ 
  

∫ and   the 

energy above ∆ proportional to
max

  

E

e
d

E dE
dE

σ

∆

 
  

∫ . Consequently, the fraction of the total (kinetic) 

energy transferred to electrons with k.e. > ∆  for a photon of energy k, F(k, ∆), is given by
16

 

max

max

min

  

( , )

  

E

e

E

e

E

d
E dE

dE
F k

d
E dE

dE

σ

σ
∆

 
  ∆ =
 
  

∫

∫
       (7.7) 

The maximum Compton electron energy, Emax , due to a ‘head-on’ collision (photon deflection angle θ 

= 180 ̊ i.e. the photon is backscattered) is 

                                                      
16 The evaluation of equation (7.7) was ‘validated’ by computing the mean energy of the Compton 

electrons, Emean, from k = 0.01 MeV to 100 MeV; the numbers were consistent with the data in figure 7.7 in 

Attix (1986). 
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2

max

2

2 0.511 

k
E

k
=

+
         (7.8) 

where the incident photon has energy k in units of MeV. The minimum energy, Emin , (see equation 

(7.7)) is technically zero; in practice this is set at 500 eV as reducing it further had a negligible effect 

on the results. Equation (7.7) was evaluated for 1 MeV photons for energy ∆ = 1 keV and 10 - 200 

keV in steps of 10 keV. In the evaluation of the numerical integrals of equation (7.7) the widths of the 

energy intervals were successively reduced until the value of F(k, ∆) ceased to change.      

 The ratio (DS-A(∆)/DMC) was derived  for a 1-MeV photon beam incident on a cylindrical water 

phantom (2 cm diameter, 3 cm height/thickness) suspended in a vacuum. The dimensions were chosen 

in order to eliminate as much photon scatter as possible, as the quantity F(k, ∆) was evaluated for 

photons of exactly 1 MeV energy. The source geometry was a parallel beam of circular cross-section 

with a radius of 1 cm (equal to the radius of modelled water phantom). The scoring volume was a 

cylinder with a circular cross-section of 2 cm diameter and 1 cm thickness located on the central axis 

centered at 2.5 cm depth in the cylindrical water phantom to ensure sufficient depth beyond the depth 

of maximum dose (dmax). The absorbed dose, DMC, was computed using DOSRZnrc with ECUT = 512 

keV (total energy) and PCUT = 1 keV. Using FLURZnrc , the total electron (+ positron) fluence per 

MeV per incident photon fluence was scored for the same geometry, scoring volume and source 

described above; the spectral bins were selected as described  in sub-section 7.2.2 with ECUT and 

PCUT as above. DS-A(∆) was evaluated from equation (7.5)  for ∆ = 1 keV and 10-200 keV in steps of 

10 keV. The ratio (DS-A(∆)/DMC)  was compared to F(k, ∆) evaluated from equation (7.7) for the same 

values of ∆. 

 

7.2.3.2 The interpretation of the numerical value of (DS-A(∆)/DMC) in terms of cavity theory 

  
The magnitude of (DS-A(∆)/DMC) expresses the fraction of the total energy deposited in a cavity (of 

dimensions such that electrons of energy ∆ can just cross the cavity) by electrons (and technically also 

positrons) incident on the cavity from the surrounding medium. This can be ‘seen’ more easily by 

considering the quantity ([DMC - DS-A(∆)]/DMC) or 1- (DS-A(∆)/DMC); this is the fraction of energy 

deposition in the cavity by those electrons and positrons with initial energies below ∆ (see previous 

sub-section). It is precisely this component of the total energy deposition which must be negligible for 

a cavity to exhibit Bragg-Gray behaviour. It follows that if (DS-A(∆)/DMC) is very close to unity then 

the cavity is Bragg-Gray in the radiation quality under study. Thus a cavity with a value of ∆ such 

that DS-A(∆)/DMC = 0.95-0.98 (or similar) has the maximum size for consideration as a Bragg-Gray 

detector.  The computation of DS-A(∆)/DMC is described in the following sub-section. 

 

7.2.3.3 ( )S-A MC( ) /D D∆  as a function of ∆ and radiation quality  
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The scoring volume was a (water) cylinder with a circular cross-section of 20 mm diameter and 6 mm 

height located on the central axis with its front face at 2.0 cm depth for 50-300 keV photon beams and 

kilovoltage beam qualities (50-250 kV), 2.5 cm depth for a 10 MeV electron beam, 5 cm depth for 

Co-60 γ-rays, 6 10 and 15 MV x-rays and 10 cm depth for a 10 MeV photon beam. The scoring 

cylinder was placed in a cylindrical water phantom (radius 15 cm, thickness 30 cm) to ensure 

sufficient depth beyond the depth of maximum dose. The source to phantom surface distance (SSD) 

was 100 cm. A beam radius of 5.55 cm (equivalent to a ‘10 cm ×10 cm’ field size; Day and Aird 

1996) was defined on the phantom surface. The ‘Source 1’ option of the EGSnrc Monte-Carlo code 

system (i.e. point source, incident on front face) was used. The above geometry mimicks the 

measurement set-up in radiotherapy clinics.  The total electron (+ positron) fluence per MeV per 

incident photon fluence down to 1 keV was computed using FLURZnrc with the same beam qualities 

and geometry as above.   ECUT was set at 512 keV (total energy) and PCUT at 1 keV. The spectral 

bin widths were selected in the same way as in sub-section 2.2. The source spectra employed were 

those distributed with the EGSnrc code system (Rogers et al 2011b) for beam qualities of 50-250 kV, 

Co-60 γ-rays (Rogers et al 1988), and 6, 10 and 15 MV 'clinical' photon beams (Mohan et al 1985).

 The Spencer-Attix dose DS-A(∆) was derived from equation (7.5) for all the above-mentioned 

beam qualities for  ∆ values from 1 keV up to a maximum of 2000 keV depending upon beam quality 

(see below). The ‘direct’ Monte-Carlo dose to water, DMC, was computed for the same geometry, 

source type and radiation beam qualities described above, using CAVRZnrc with ECUT and PCUT as 

above. Subsequently (DS-A(∆)/DMC)  for all radiation qualities was plotted as a function of ∆. Further, 

∆0.95 and ∆0.98 corresponding to (DS-A(∆)/DMC) = 0.95 and 0.98 respectively were determined for all 

radiation beam qualities. The continuous slowing-down range in air, [ ]csda air
( )R ∆ , for ∆ = ∆0.95 and = 

∆0.98 (see above) was also calculated for each radiation beam quality. 

 

7.2.4 Transition in detector behaviour from ‘Bragg-Gray’ towards ‘large cavity’ 
 
The size, density and atomic composition of the cavity in combination with the radiation quality 

determines whether it behaves as a ‘small’ or Bragg-Gray cavity, an ‘intermediate’-size or Burlin 

cavity, or a ‘large photon cavity’ in an irradiated medium (Attix 1986). We set up a simulation firstly 

to demonstrate this transition in behaviour and secondly to test how well the three ‘established’ cavity 

theories (Spencer-Attix, Burlin or general, ‘large photon detector’ – see below) predicted this 

transition. The detector/cavity was modelled as a single cylindrical volume (voxel) of silicon (Si), 

diameter 2.26 mm and height/thickness 2 mm (in the beam direction) surrounded by liquid water (i.e. 

there was no wall) located with its centre at 5 cm depth on the central axis of a cylindrical water 

phantom (15 cm radius, 30 cm thickness). Silicon was chosen as it is appreciably different in atomic 

composition (principally atomic number) from the surrounding water medium and therefore the 
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medium-to-detector stopping-power ratio will differ significantly from the ‘large photon cavity’ ratio. 

The intention with this part of the investigation was to compute the response of a detector with a 

significantly non-water-equivalent atomic composition and constant volume/shape but a density 

varying from extremely low, corresponding to Bragg-Gray (gas) cavity conditions, to very high, 

corresponding to that of a ‘large photon detector’; in-between these extremes the detector would be 

‘Burlin’ in its response.   

The phantom was irradiated by 6 MV and 15 MV x-ray beams with SSD = 100 cm; the 

clinical linac spectra from Mohan et al (1985) were employed. High-energy bremsstrahlung beams 

were chosen partly as these are representative of clinical radiotherapy beams and partly because small 

gas-filled detectors unambiguously exhibit Bragg-Gray behaviour in such beams (Nahum 2007b, 

2009). The physical dimensions of the cavity were kept constant and instead varied the density of the 

cavity material, silicon, over a very wide range so that the detector response would change from 

Bragg-Gray towards ‘large photon cavity’, whilst keeping the atomic properties constant. The 

alternative, of successively increasing the cavity size from extremely small, i.e. Bragg-Gray, all the 

way to the ‘large photon’ condition (i.e. quasi-CPE in the detector) would have resulted in unwieldy 

dimensions, especially at 15 MV, and necessitated unfeasibly large perturbation corrections for the 

finite size of the detector (Andreo et al 2000, Nahum 2009). 

 

7.2.4.1 MC derivation of the dose-to-water to dose-to-silicon ratio, ( ) ( )w wMC MC
/D D    

 
 
As mentioned in sub-section 7.2.1, the radiation interaction cross sections and stopping powers (of the 

selected materials) required by the EGSnrc system are stored in a PEGS4 datafile. Although Si with 

density 2.33 g cm-3 is included as standard, PEGS4 datafiles for Si with (pseudo) densities ranging 

from 0.002 g cm-3 to 10 g cm-3 had to be created. Firstly a density-effect correction file was generated 

for the individual pseudo-densities of Si by keeping the density (aka polarisation) effect constant i.e. 

at the value corresponding to the true silicon density (2.33 g cm-3). This was then combined with the 

EGSnrcMP package (Kawrakow et al 2006) to generate PEGS4 datafiles for all the pseudo-densities 

of Si (0.002, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.75, 5, 10) with electron transport parameters 

unchanged at AP=1 keV, AE = 512 keV.  

The ‘source 1’ option (see sub-section 7.2.3.3.) with a beam radius of 5.55 cm (equivalent to a 

‘10 cm × 10 cm’ field size) defined on the phantom surface was used to compute the dose to water 

and the dose to the Si cavity for each pseudo-density of silicon using CAVRZnrc. It is emphasised 

that the dimensions of the scoring volumes (1.13 mm radius, 2 mm thickness) were identical for the 

water and silicon cavities and were kept constant. These simulations thus yielded the ratio dose-to-

water to dose-to-Si, ( ) ( )w wMC MC
/D D   , for each  silicon pseudo-density. 
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7.2.4.2 Estimation of the Spencer-Attix cut-off energy ∆ as a function of silicon density
  

 

In order to evaluate the Spencer-Attix stopping-power ratio, water-to-silicon, values of ∆ 

corresponding to each value of the Si density were required. These were estimated  starting from the 

mean chord length, L, of the cavity volume, taken as equal to four times the  volume V divided by its 

surface area S i.e. L = 4V/S (Rogers and Kawrakow  2003, Buckley et al 2003, La Russa and Rogers, 

2009). The standard method of estimating ∆ consists of finding the energy E of an electron for which 

the continuous slowing-down approximation range for the detector material, [Rcsda(E)]det, is equal to L. 

However, this simple method implicitly assumes that these (low-energy) electrons have straight 

trajectories, whereas in reality their tracks are highly tortuous.   

 Harder (1970) coined the concept of the term detour factor, DF, to take account of the vast 

number of (predominantly small) changes of direction (due to elastic scattering with the nucleus) 

when charged particles slow down in matter. Several definitions of detour factor have appeared and 

the DF has been evaluated accordingly (Bethe et al 1939, Harder 1970, ICRU 1993, Sorcini and 

Brahme 1994, Fernández-Varea et al 1996, Tabata and Andreo 1998) though this was always for 

megavoltage electrons whereas in the present study primarily interest in DF was for kilovoltage 

electrons. The detour factor has been computed from:  

csda

50

R
DF

R
=          (7.9) 

where R50 is the (half value) depth at which the dose is 50% of the maximum dose;  R50 is a good 

estimate of the average maximum penetration depth. R50 was computed using DOSRZnrc, for a broad 

parallel electron beam incident on silicon, for energies between 10 and 4000 keV. Additionally, DF 

was computed for air for electron beam energies ranging from 10 keV to 300 keV, as Spencer-Attix 

theory is generally applied to the air-filled cavities of ionisation chambers. For each value of the 

silicon pseudo-density (0.002 g cm-3 to 10 g cm-3) a value of ∆ was found which satisfied 

 

[ ]csda Si
( )R

L
DF

∆
=         (7.10) 

The detour factor was treated as a constant as its energy dependence was found to be negligible, 

except in silicon above ≈ 1 MeV (see table 7.3a). 

 

7.2.4.3 Computation of the Spencer-Attix mass electronic stopping-power ratio, water to Si, for 

cut-off ∆,
 

SA

w,Si,s ∆  

 

The evaluation of the Spencer-Attix ratio requires electronic mass stopping powers restricted to losses 

less than ∆ for the medium and cavity material (Nahum 1978, 2009):  
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∫

∫

   (7.11) 

In practice the Spencer-Attix stopping-power ratio, water to Si, for cut-off energy ∆, 
SA

w,Si,s ∆ , was 

computed not from equation (7.11) but with the SPRRZnrc user-code (Rogers et al 2011b) – see 

below; PEGS4 datafiles were created for all the cut-off energies ∆ (see above, especially equation 

(7.10). These computations were carried out for both beam qualities (6 MV and 15 MV) with the 

source, field size, scoring volume, and depth exactly as specified in sub-sections 7.2.4 and 7.2.4.1. 

SPRRZnrc calculates restricted stopping power ratios using an ‘on the fly’ technique in the volume of 

interest17 (Malamut et al 1991, Kosunen and Rogers 1993) with the track-end term evaluated 

following Nahum (1978) – see also equation (7.11).  

 

7.2.4.4 Evaluation of the water-to-silicon dose ratio from Burlin or general cavity theory 

  
For the case of a silicon cavity in an irradiated water medium, the Burlin ratio can be written as (cf. 

Attix 1986) 

( ) ( )
Si

SA en
Si,w Si,w,Bu

w

1f d s d
µ
ρ∆

  
 = × + − × 
   

      (7.12) 

where 
SA

Si,w,∆s  is the Spencer-Attix stopping-power ratio, Si-to-water, for ∆ appropriate to the cavity 

size, and ( )Si

en
w

µ ρ is the mass energy-absorption coefficient ratio, Si-to-water (see below). The 

weighting factor d  gives the fractional contribution to the total cavity dose from electrons incident 

from the surrounding medium; (1-d) is therefore contribution due to photon interactions in the 

detector (i.e. the silicon cavity). The ratio ( )w,Si Bu
f is simply the inverse of equation (7.12).   

Burlin (1966) proposed that d be estimated as (1 ) /Le Lβ β−− where L is the mean chord-

length of the cavity and β is the effective attenuation coefficient
18

 of the electron fluence (incident 

from the medium) as it crosses the cavity. Values of β for the Si cavity for each pseudo-density were 

                                                      
17 In earlier (unpublished) work it was verified that Spencer-Attix stopping power ratios obtained from equation 

(7.11) with the electron fluence spectrum given by FLURZnrc were in excellent agreement with those derived 

from SPRRZnrc. 

18 Note that this β is not the same quantity as in equation (C.1). In the literature, β is used for both of these 

quantities.   
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derived from csda 0.04
R

e
β−

= (Janssens et al 1974) where Rcsda corresponds to the maximum energy of 

the secondary electrons, Emax; we used equation (8) with k taken as the fluence-weighted mean energy 

in the bremsstrahlung spectrum (1.9 MeV and 4.1 MeV for 6 MV and 15 MV respectively)
19

.  

 For each silicon pseudo-density at 6 MV and 15 MV we have also determined (1- d) from 

Monte-Carlo simulation as follows. By selecting the parameter PHOTON REGENERATION = ‘no 

electrons from wall’ (i.e. IFANO = 2) in the input file for CAVRZnrc20, the scoring routine 

(AUSGAB) in CAVRZnrc scores the absorbed dose resulting from electrons generated by photon 

interactions in the cavity region (Si cavity) and in the surrounding medium (water) separately (Mobit 

et al 1996, 1997, Borg et al 2000).  We denote the Monte-Carlo computed values by (1-d)MC  and  dMC 

and the Burlin-Janssens values by (1-d)Bu and dBu .  

 The second term in equation (7.12) involves ( )Si

en
w

µ ρ ; this is given by (Nahum 2007b):  
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 

∫

∫

        (7.13) 

Each of the terms in the numerator and denominator was defined in sub-section 7.2.2. In order to 

evaluate equation (7.13), the photon fluence per MeV per incident photon fluence down to PCUT 

(negligibly different from zero for these purposes) was scored at 5 cm depth on the central axis of the 

cylindrical water phantom (15 cm radius, 30 cm thickness) using FLURZnrc with same ECUT and 

PCUT as above (see sub-section 7.2.3.3) for point sources of both beams (6 MV and 15 MV) for the 

field size specified above (see sub-section 7.2.4). The interaction coefficients (µen(k)/ρ)w and 

(µen(k)/ρ)Si were computed as described in sub-section 7.2.2.  

With each of the terms in equation (7.12) evaluated as described above, ( )w,Si Bu
f was 

calculated, for the 6 MV and 15 MV qualities at each silicon pseudo-density; d and (1 - d) were 

obtained from the Burlin and Janssens expressions, not from MC.  

 

                                                      
19 Alternatively the Burlin ‘d’ could be estimated using the maximum photon energy in bremsstrahlung spectrum 

but this would place too much weight on the very small proportion of photons at this energy. 

20 With this special option (i.e. IFANO = 2), the prepared input file has to be executed using the egs_gui of the 

EGSnrcMP package (Kawrakow et al 2006). 
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Table 7.1: (a) The direct Monte-Carlo (MC) dose (Gy/incident photon fluence) compared with dose estimated by three different cavity integrals in a small 
cylindrical cavity  in a homogeneous water phantom irradiated by a 1 MeV photon beam: The ‘large cavity’ integral, B-G cavity integral and S-A cavity integral 
are also known as collision kerma, cema and restricted cema respectively. The dose and the photon and electron fluences were scored in a voxel of dimensions 2 g 
cm-2 diameter, 1 g cm-2 thickness located at 2.5 g cm-2 depth; the statistical (Type A) uncertainties are ± 1 standard deviations. 

 

 

 

 

 

 

 

 

 

 

 1 MeV photon beam 

 Water  Aluminium  Copper 

Alternative dose 
computation 

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
  

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
  

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
 

Direct  Monte-Carlo 4.860×10-12  ± 0.03% -------  4.878×10-12 ± 0.13% -------  6.491×10-12 ± 0.22% ------- 

‘Large cavity’ integral 4.841×10-12  ± 0.06% 0.996 ± 0.001  4.857×10-12 ± 0.15% 0.996 ± 0.002  6.449×10-12 ± 0.24% 0.994 ± 0.003 

B-G cavity integral 4.844×10-12  ± 0.09% 0.997 ± 0.001  4.855×10-12 ± 0.20% 0.995 ± 0.002  6.452×10-12 ± 0.26% 0.994 ± 0.003 

S-A cavity integral   
(∆ = 1.004 keV) 

4.881×10-12  ± 0.11% 1.004 ± 0.001  4.910×10-12 ± 0.2% 1.007 ± 0.003  6.531×10-12 ± 0.36% 1.006 ± 0.005 
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Table 7.1: (b) The direct Monte-Carlo (MC) dose (Gy/incident photon fluence) compared with dose estimated by three different cavity integrals in a small 
cylindrical cavity  in a homogeneous water phantom irradiated by a 10 MeV photon beam: The ‘large cavity’ integral, B-G cavity integral and S-A cavity integral 
are also known as collision kerma, cema and restricted cema respectively. The dose and the photon and electron fluences were scored in a voxel of dimensions 2 g 
cm-2 diameter, 1 g cm-2 thickness located at 10.5 g cm-2 depth; the statistical (Type A) uncertainties are ± 1 standard deviations.  

 

 

 10 MeV photon beam 

 Water  Aluminium  Copper 

Alternative dose 
computation 

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
  

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
  

Dose 
(Gy cm2) 

Cavity Dose

MC Dose
 

Direct  Monte-Carlo 2.233×10-11 ± 0.08% -------  2.395×10-11 ± 0.18% -------  3.066×10-11 ± 0.23% ------- 

‘Large cavity’ integral 2.168×10-11 ± 0.15% 0.971 ± 0.002  2.322×10-11 ± 0.18% 0.969 ± 0.002  2.960×10-11 ± 0.25% 0.966 ± 0.004 

B-G cavity integral 2.230×10-11 ± 0.10% 0.999 ± 0.001  2.393×10-11 ± 0.25% 0.999 ± 0.003  3.058×10-11 ± 0.28% 0.998 ± 0.004 

S-A cavity integral   
(∆ = 1.007 keV) 

2.244×10-11 ± 0.10% 1.005 ± 0.001  2.411×10-11 ± 0.23% 1.007 ± 0.003  3.087×10-11 ± 0. 3% 1.007 ± 0.004 
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7.3 Results and Discussion 
 

7.3.1 Self-consistency of conventional cavity theories 

 
Tables 7.1(a) and (b) compare the direct MC-derived absorbed dose in the cylindrical scoring voxel, 

(Dmed)MC, with the expressions for dose of the various ‘cavity integrals’, using the photon and electron 

fluence spectra at 2.5 g cm-2 depth in 1 MeV (table 7.1(a)) and at 10.5 g cm-2 in 10 MeV (table 7.1(b)) 

photon beams in the three media (water, aluminium and copper); note that these depths ensure quasi-

CPE. The data demonstrate firstly a high degree of consistency between the different forms of cavity 

integral and secondly the very good agreement between the dose derived from equations (7.2)–(7.5) 

and the dose computed with DOSRZnrc. It can be noted that the ‘dose’ from the ‘large cavity’ 

integral, equation (7.2), which is the collision kerma, (Kcol)med, is expected to be lower than (Dmed)MC 

as the factor β (=D/Kcol) is always greater than unity (Attix 1986, Kumar et al 2015a). The difference 

is ≈ 0.5% at 1 MeV (table 7.1a) and ≈ 3% at 10 MeV (table 7.1b); the increased discrepancy at the 

higher photon energy is due to the greater range of the secondary electrons. Further, the dose 

determined using the Bragg-Gray integral, or cema (equation (7.4)), might be expected to be very 

slightly lower than (Dmed)MC due to contributions to the ‘cavity’ dose from the incoming  (energetic) δ-

rays generated ‘upstream’ being slightly greater than the energy removed by δ-rays of corresponding 

energy exiting the cavity. The S-A cavity dose [DS-A(∆)]med (equation (7.5)) was consistently about 

0.6% greater than (Dmed)MC for reasons which are not clear; note that ∆ was set to the lowest possible 

value (≈ 1 keV). The next section deals with what happens to DS-A(∆)/DMC at increasingly large ∆. 

 

7.3.2 The relationship between the direct Monte-Carlo dose and the Spencer-Attix cavity 

integral at increasing values of ∆ 

 
7.3.2.1 The physics behind the decrease of (DS-A(∆)/DMC) with increasing ∆ in photon-irradiated 

media 

 
Figure 7.1 shows (DS-A(∆)/DMC)  as a function of the cut-off energy, ∆, in water irradiated by 1-MeV 

photons; the scoring region is a small cylinder at 2.5 cm depth. The geometry was carefully designed 

to minimize the amount of photon scatter (see sub-section 7.2.3.1). Also shown is the fraction of the 

total energy transferred (in Compton interactions) to electrons with initial kinetic energies above ∆, 

F(k, ∆), where k = 1 MeV. There is very close agreement between these two quantities, thereby 

confirming our explanation for the decrease of (DS-A(∆)/DMC)  with increasing ∆. Furthermore, it is 

seen that (DS-A(∆)/DMC)  lies slightly below F(1 MeV, ∆),  which is consistent with the simulated 

irradiation geometry not being 100% free from scattered photons. 
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Figure 7.1: The ratio of Spencer-Attix dose to direct Monte-Carlo dose, (DS-A(∆)/DMC), as a function of the 
cut-off delta  for a 1-MeV photon beam in water, minimal scatter geometry (see below),compared to the 
fraction of the total energy transfer to Compton electrons from electrons with initial (kinetic) energy 
above delta F(k, ∆) (see equation (7.7)).  The Monte-Carlo dose, DMC, per incident fluence, was scored in a 
water voxel (2 cm diameter, 1cm thickness) at 2.5 cm depth. The total electron (+positron) fluence 
spectrum, per incident fluence, was scored in the identical water voxel. The dimensions of the water 
phantom (a cylinder of 2 cm diameter, 3 cm height/thickness) were chosen to minimize the amount of 
(Compton) scatter.  
 

7.3.2.2 ( )S-A MC( ) /D D∆  as a function of ∆ and radiation quality 

 
Figures 7.2(a)-2(c) show (DS-A(∆)/DMC) versus ∆, in water, for beam energies ranging from 50 to 300 

keV as well as ‘clinical’ kilovoltage (50 kV to 250 kV) and megavoltage  beams (Co-60 γ-rays and 

clinical linac spectra (for point sources) of 6, 10 and 15 MV); figure 7.2(c) also contains results for 

monoenergetic 10 MeV photon and electron beams.  

Energy deposition by ‘primary’ charged particles (i.e. pair electrons and positrons, Compton 

electrons and photoelectrons) that have initial energies below ∆ is excluded from the Spencer-Attix 

cavity integral which, by definition, only extends down to ∆. Consequently the Spencer-Attix cavity 

dose falls for all ∆ above a quasi-threshold energy ∆th, defined (loosely) such that ‘primary’ electrons 

with initial energies below ∆th make a negligible contribution to the total energy deposition; a 

reasonable ‘working definition’ is that ∆th is the value of ∆ such (DS-A(∆)/DMC)=0.98. Figures 7.2 (a)-

(c) demonstrate the strong beam-quality dependence of ∆th (see the discussion below on tables 7.2a 

and 7.2b).                
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Figure 7.2: (a) Ratio of Spencer-Attix dose to MC-dose, (DS-A(∆)/DMC), as a function of the cut-off energy 
∆, for a scoring ‘cavity’ (20 mm diameter, 6 mm thickness) at 2.0 cm depth along the beam central axis, in 
a cylindrical water phantom (30 cm diameter, thickness 30 cm) for monoenergetic beams of energy 50 to 
300 keV. 
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Figure 7.2: (b) Ratio of Spencer-Attix dose to MC-dose, (DS-A(∆)/DMC), as a function of the cut-off energy 
∆, for a scoring ‘cavity’ (20 mm diameter, 6 mm thickness) at 2.0 cm depth along the beam central axis, in 
a cylindrical water phantom (30 cm diameter, thickness 30 cm), for clinical kilovoltage beam qualities 
from 50 kV to 250 kV. 
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Figure 7.2: (c) Ratio of Spencer-Attix dose to MC-dose, (DS-A(∆)/DMC), as a function of the cut-off energy 
∆, for a scoring ‘cavity’(20 mm diameter, 6 mm thickness) at 2.5 cm depth for a 10 MeV electron beam, 5 

cm depth for Co-60 γγγγ-rays, 6 10 and 15 MV x-rays and 10 cm depth for a 10 MeV photon beam, along the 
beam central axis  in a cylindrical water phantom (diameter 30 cm, thickness 30 cm). 

 

(DS-A(∆)/DMC)  decreases with increasing ∆ for all photon qualities, though much more slowly 

at high photon energies (figure 7.3c). However, in the case of the (10 MeV) electron beam it remains 

constant; the lack of any dependence on ∆ in this case is due to the complete absence of any electrons 

with initial energies below any of the ∆ values in the figure. There is an alternative way to interpret 

the dependence of (DS-A(∆)/DMC) on ∆ and in particular how the curves in figures 7.2(a)-(c) vary with 

beam quality. For detectors with cavity sizes such that (the Spencer-Attix) ∆ > ∆th (noting that ∆th 

depends on photon beam quality, being higher for higher energies) the dose from photon interactions 

in the cavity material is non-negligible and therefore such detectors no longer fulfil the key Bragg-

Gray condition that the ‘direct photon dose’ must be negligible compared with the dose due to 

electrons incident from outside the cavity. For such detector-beam quality combinations Spencer-

Attix cavity theory is not applicable; instead one must resort to Burlin cavity theory (see sub-section 

7.3.3). 

Table 7.2(a) shows the values of ∆ for which (DS-A(∆)/DMC) is equal to 0.98 and 0.95 

respectively (i.e. moderately and less rigorous choices of ∆th respectively), for photon energies from 

50 keV to 300 keV; the values of Rcsda and  Rcsda/DF in mm. of air corresponding to the above ∆th are 

also given.  
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Figure 7.2: (a) Ratio of Spencer-Attix dose to MC-dose, (DS-A(∆)/DMC), as a function of the cut-off energy 
∆, for a scoring ‘cavity’ (20 mm diameter, 6 mm thickness) at 2.0 cm depth along the beam central axis, in 
a cylindrical water phantom (30 cm diameter, thickness 30 cm) for monoenergetic beams of energy 50 to 
300 keV.  

 

Table 7.2: (b) The Spencer-Attix cut-off energies ∆ and corresponding Rcsda in mm. of air for (DS-

A(∆)/DMC) equal to 0.95 and 0.98 for various clinical photon beam qualities. The detour factor for air was 
taken as 1.46 (average value) as it varies very little with electron energy (see table 7.3(a)). 

 

 

Table 7.2(b) gives the same quantities for clinical beam qualities 50-250 kV, Co-60 γ-rays and clinical 

linac spectra of 6, 10 and 15 MV. From these data it can be deduced that an air cavity with 

dimensions corresponding to a Spencer-Attix cut-off energy, ∆, of 10 keV (a value widely applied to 

Photon 
Energy 
 

(DS-A(∆)/DMC) = 0.95  (DS-A(∆)/DMC) = 0.98 

0.95

(keV)

∆
 

( )csda 0.95R ∆  

(mm)
 

( )csda 0.98R

DF

∆
 (mm) 

 0.98

(keV)

∆
 

( )csda 0.98R ∆  

(mm) 

( )csda 0.98R

DF

∆
 (mm) 

50 keV 2.38 0.20 0.14  1.42 0.08 0.05 

100 keV 4.44 0.58 0.40  1.97 0.14 0.10 

150 keV 7.74 1.53 1.05  4.40 0.57 0.39 

175 keV 9.88 2.35 1.61  5.50 0.86 0.59 

200 keV 11.50 3.08 2.11  7.04 1.30 0.89 

250 keV 16.37 5.72 3.92  9.43 2.16 1.48 

300 keV 20.59 8.58 5.88  11.91 3.27 2.24 

Clinical beam 
quality 

 

(DS-A(∆)/DMC) = 0.95  (DS-A(∆)/DMC) = 0.98 

0.95

(keV)

∆
 

( )csda 0.95R ∆  

(mm)
 

( )csda 0.98R

DF

∆
 (mm) 

 0.98

(keV)

∆
 

( )csda 0.98R ∆  

(mm) 

( )csda 0.98R

DF

∆
 (mm) 

50 kV 2.44 0.21 0.14  1.33 0.07 0.05 

100 kV 2.54 0.22 0.15  1.44 0.08 0.06 

150 kV 3.28 0.34 0.24  1.71 0.11 0.08 

250 kV 6.31 1.07 0.74  3.39 0.37 0.25 

Co-60 γ 75.03 82.71 56.65  39.49 26.99 18.48 

6 MV 170.24 326.18 223.41  74.18 81.10 55.55 

10 MV 233.88 541.66 371.00  87.31 107.12 73.77 

15 MV 379.91 1119.79 766.98  182.83 366.01 250.69 
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the air cavities of practical ion chambers e.g. Farmer and NACP designs (Andreo et al 2000)) will 

respond  in a Bragg-Gray manner in photon beams of  (monoenergetic) energies greater than 262 keV 

for (DS-A(∆)/DMC) = 0.98 or 177 keV for (DS-A(∆)/DMC) = 0.95. The data in table 7.2(b) are consistent 

with the findings of Ma and Nahum (1991) that no practical ionisation chamber fulfills the Bragg-

Gray assumptions in kilovoltage x-ray beam qualities (i.e. 300 kV and below). Table 7.2(b) shows 

further that at megavoltage qualities, air cavities with dimensions of several centimetres (up to 25 cm 

in the case of 15 MV x-rays) should still behave in a Bragg-Gray manner. However, this does not 

imply that all other sources of deviation from B-G behaviour would remain negligible for such large 

air cavities e.g. displacement effects (Andreo et al 2000; Nahum 2009); see also the next section.  

 
Table 7.3: (a) Monte-Carlo derived R50 , Rcsda  and detour factors (=Rcsda/ R50) in silicon and air for electron 
energies from 10 keV to 4000 keV; Rcsda values were generated with the ESTAR code/program 
(http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html). 
 

 

 

 

Photon 
Energy 
(keV) 
 

Silicon (ρ = 2.33 g cm-3)  Air (ρ = 1.205×10-3 g cm-3) 

 R50 

(cm) 
 Rcsda 

(cm)
 

Detour 
factor (DF) 

 
 R50 

(cm) 
 Rcsda 

(cm)
 

Detour 
factor (DF) 

10 7.547 × 10-5 1.485 × 10-4 1.968  1.628 × 10-1 2.393 × 10-1 1.470 

15 1.518 × 10-4 2.981 × 10-4 1.963  3.325 × 10-1 4.885 × 10-1 1.469 

20 2.508 × 10-4 4.901 × 10-4 1.957  5.531 × 10-1 8.117 × 10-1 1.468 

30 5.091 × 10-4 9.906 × 10-4 1.946  1.133 × 100 1.661 × 100 1.467 

50 1.239 × 10-3 2.400 × 10-3 1.937  2.781 × 100 4.076 × 100 1.466 

100 4.045 × 10-3 7.820 × 10-3 1.933  9.200 × 100 1.347 × 101 1.464 

150 7.907 × 10-3 1.528 × 10-2 1.933  1.812 × 101 2.650 × 101 1.462 

200 1.255 × 10-2 2.423 × 10-2 1.931  2.888 × 101 4.217 × 101 1.460 

300 2.344 × 10-2 4.524 × 10-2 1.930  5.430 × 101 7.907 × 101 1.456 

500 4.912 × 10-2 9.429 × 10-2 1.920  ------- ------- ------- 

800 9.180 × 10-2 1.754 × 10-1 1.910  ------- ------- ------- 

1000 1.213 × 10-1 2.312 × 10-1 1.906  ------- ------- ------- 

2000 2.826 × 10-1 5.099 × 10-1 1.804  ------- ------- ------- 

3000 4.549 × 10-1 7.781 × 10-1 1.711  ------- ------- ------- 

4000 6.329 × 10-1 1.036 × 100 1.636  ------- ------- ------- 
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7.3.3 Transition in detector behaviour from ‘Bragg-Gray’ towards ‘large cavity’ 
 

Table 7.3(a) presents the Monte-Carlo derived R50, Rcsda and the detour factor DF for silicon and air 

media for electron energies from 10 keV to 4000 keV. It is observed firstly that DF is greatest at low 

energies and secondly that it is higher in silicon, due to its higher atomic number, than in air. This is 

consistent with electron interactions in matter - multiple (elastic) scattering is strongest at low energies 

and at high atomic number. Table 7.3(b) presents the Spencer-Attix cut-off energies ∆ corresponding 

to the silicon cavity at each pseudo-density, with and without the detour factor, derived from equation 

(7.10). The inclusion of the detour factor results in a near doubling of ∆, especially at silicon pseudo-

densities of unity and above.     

Table 7.3: (b) The Spencer-Attix cut-off energies, ∆, derived from equation (7.10) as a function of the 

silicon pseudo-density. ∆∆∆∆DF indicates that the Monte-Carlo-derived detour factors (equation (7.9)) were 

used; ∆∆∆∆ indicates that the detour factor was assumed to be unity. The mean chord length (in cm) , L, of 
the cavity is equal to 0.144. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3(a) shows the S-A stopping power ratio, water-to-Si, 
SA

w,Si,∆s ,as a function of the 

pseudo-density of the silicon detector for the 6 MV and 15 MV photon beams; the S-A cut-off energy, 

∆, at the different ρSi was determined from equation (7.10) with DF from equation (7.9) and also DF = 

1, as in table 7.3(b). The inclusion of the detour factor decreases the S-A water-to-Si ratio by ≈ 0.8% at 

a given value of the silicon pseudo-density. As ∆ increases from ≈ 10 keV to ≈ 2 MeV,
SA

w,Si,∆s decreases 

Si density (g cm-3) (keV)∆  DF (keV)∆  

0.002 9 13 

0.005 15 23 

0.01 20 34 

0.05 50 86 

0.10 80 129 

0.25 150 229 

0.50 207 362 

1.00 321 592 

1.75 520 913 

2.33 634 1151 

5.00 1263 2161 

10.00 2160 3924 
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by almost 7% at both megavoltage qualities. This is in marked contrast to the extremely weak 

variation of the clinically relevant water-to-air ratio, 
SA

w,air,∆s , with ∆: a decrease of only 0.25% as ∆ 

increases from 10 to 50 keV (at any depth beyond the build-up region) in either a 6 MV or 15 MV 

beam21. This weak variation justifies the use of a ‘nominal’ ∆ = 10 keV for the air cavity of the 

commonly employed Farmer design of ionisation chamber (Andreo et al 2000); ∆ ≈ 16 keV results 

from using the mean chord length of the Farmer geometry (Buckley et al 2003) which further 

increases to ∆ ≈ 20 keV with the application of DF = 1.46 from table 3(a). Increasing ∆ from 10 to 20 

keV results in only a 0.12% decrease in
SA

w,air,∆s .    
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Figure 7.3: (a) The variation of the S-A stopping-power ratio (spr), water-to-Si, with ∆-values 
corresponding to silicon pseudo-densities, determined with and without the detour factor DF, for 6 MV 
and 15 MV photon beams at 5 cm depth for a beam radius of 5.55 cm (equivalent to a ‘10 cm ×10 cm’ field 
size) defined on the phantom surface (the S-A spr curves incorporating the detour factor are also given in 
figures 7.3(b) and 7.3(c)). 

 

Figures 7.3(b)-(c) shows the variation of the Monte-Carlo dose ratio, (Dw/DSi)MC , the S-A 

stopping power ratio, water-to-Si,
 

SA

w,Si,s ∆ , the Burlin dose ratio i.e. ( )w,Si Bu
f  (left hand  ordinate) and 

                                                      
21 Unpublished calculations consistent with e.g. the data in Table 10.2 of Attix (1986). 
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the fraction of dose in the Si cavity due to direct photon interactions (right hand ordinate) for the 6 

MV and 15 MV photon beams. At the lowest densities in the simulation, corresponding to those of a 

gas, the silicon cavity should act in a quasi-perfect Bragg-Gray manner. A comparison between 

(Dw/DSi)MC  and
SA

w,Si,s ∆ shows virtually perfect agreement at 6 MV i.e. within the MC error bars (Si 

densities of 0.002-0.005 in figure 7.3(b)) and differences of ≈ 0.6% or less at 15 MV. In contrast, the 

unrestricted (aka ‘Bragg-Gray’) stopping-power ratio, 
BG

w,Sis , is a full 2.6% and 2.5% below 
SA

w,Si,s ∆  in 

the ‘gas density’ (i.e. Bragg-Gray) region, at 6 MV and 15 MV respectively. The superior agreement 

at gas densities of (Dw/DSi)MC  with the S-A ratio compared with the unrestricted, or BG, stopping-

power ratio constitutes a powerful validation of Spencer-Attix cavity theory.  
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Figure 7.3: (b) 6 MV photon beam: variation of the Monte-Carlo dose ratio, (DW/DSi)MC , the S-A stopping 

power ratio (spr), water-to-Si, 
SA

w,Si,s ∆ , and the Burlin cavity ratio, ( )w,Si Bu
f  (l. h. axis) with the pseudo-

density of the silicon cavity (of fixed dimensions) located at depth 5 cm. The r.h. axis shows the fraction of 
dose to the Si cavity due to direct photon interactions, (1-d), derived from Monte-Carlo and from the 
Burlin-Janssens approximate formulas. An arrow indicates the value of the (density-independent) 

unrestricted spr, 
BG

w,Sis .  A second arrow indicates the position of the ‘large photon cavity’ dose ratio, 

corrected for photon fluence perturbation, ( ) ( ) 3

w
ph

en w,Si 10 gcmSi
/ p

ρ
µ ρ
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Figure 7.3: (c) 15 MV photon beam: variation of Monte-Carlo dose ratio, (DW/DSi)MC , the S-A stopping 

power ratio (spr), water-to-Si, 
SA

w,Si,s ∆ , and the Burlin cavity ratio, ( )w,Si Bu
f  (l. h. axis) with the pseudo-

density of the silicon cavity (of fixed dimensions) located at 5 cm depth. The r.h. axis shows the fraction of 
dose to the Si cavity due to direct photon interactions, (1-d) derived from Monte-Carlo and with the 
Burlin-Janssens approximate formulas. An arrow indicates the value of the (cavity size/density-

independent) unrestricted spr, 
BG

w,Sis . The ‘large photon cavity’ dose ratio ( ) ( ) -3

w ph

en w,SiSi 10 g cm
p

ρ
µ ρ

=
× = 

0.996 lies outside the range of dose ratios on the l.h.s. ordinate. 

 

Should a ‘displacement’ correction be made for the finite size of the silicon gas density as is 

commonly applied to typical ‘clinical’ instruments such as a Farmer chamber (Andreo et al 2000, 

Nahum 2009)? In principle such a correction, generally denoted by pdis, is required but in this case the 

very small dimension (in the beam direction) of the silicon cavity, 2.0 mm, renders this effect 

negligible (pdis < 1 but is within 0.1% of unity at 6 MV, and even closer to unity at 15 MV)22. 

  As the detector density increases, the secondary electron ranges in the silicon cavity decrease 

and the detector response moves into the ‘intermediate’ region. The Burlin ratio is within ≈ 2% of the 

MC dose ratio all the way from ρ = 0.002 g cm-3 to 5 g cm-3 at 6 MV and  the agreement is even closer 

at 15 MV. At a density of 5 g cm-3 around ≈ 60% at 6 MV and ≈ 40% at 15 MV of the cavity dose is 

                                                      
22 Data derived from unpublished computations of depth-doses in water for 6 and 15 MV beams. 
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due to photon interactions in the silicon cavity. At the highest density, 10 g cm-3, the Burlin weighting 

factor, (1 - d)MC, for the 15 MV photon beam has only reached 0.56 which is still far from the ‘large 

photon cavity’ condition. The Monte-Carlo dose ratio, ( )Siw
MC

/D D , at this density is 1.109, 

approximately halfway between the ‘small cavity’ and ‘large cavity’ limiting cases of 1.242 (i.e. 

SA

w,Si,s ∆ ) and 0.996 (see below) respectively as one would expect. In case of the 6 MV photon beam, 

at ρSi = 10 g cm-3 ( )Siw
MC

/D D = 1.133 which is within 1.7% of the ‘large cavity’ limiting case of 

1.114 (see below). At this highest density the Monte-Carlo-derived ‘Burlin’ weighting factor, (1 - d)MC 

for the 6 MV beam has reached 0.76 i.e. significantly closer to unity than for the more energetic 15 

MV quality. 

A further point can be made regarding the Burlin cavity expression (equation (7.12)). For 

detectors with ‘intermediate’ cavity sizes, the energies of those electrons in the cavity which originate 

in the surrounding medium will predominantly be above ∆ in energy; therefore it is entirely 

appropriate that the (Spencer-Attix) integrals used to evaluate the stopping-power ratio (see equation 

(7.11)) do not extend below ∆. Conversely the electrons liberated by photon interactions in the cavity 

material should predominantly have energies below ∆; this will not be the case if the µen/ρ-ratio in 

equation (7.12) is evaluated in the conventional manner using equation (7.13). Instead what is ideally 

required in this expression is a special form of the µen(k)/ρ restricted to energy transfers to electrons 

below ∆ (Brahme 1978). 

In the Appendix - C an expression for a photon-fluence perturbation factor was developed. 

This has been evaluated for the silicon cavity with ρSi = 10 g cm-3, the highest value attained in present  

simulation, even though, as shown above, the ‘large photon cavity’ situation has not yet been reached, 

especially at 15 MV. Nevertheless  the product of the mass-energy absorption coefficient ratio and this 

perturbation factor (equation (C.3)) has been evaluated. At 6 MV, ( )w

en
Si

µ ρ = 1.076 and 
ph

w,Sip = 

1.035 yielding a ‘large photon cavity’ ratio of 1.114 which is indicated by an arrow in figure 7.3(b).  

At 15 MV, ( )w

en
Si

µ ρ = 0.974 and 
ph

w,Sip = 1.022, yielding a ‘large photon cavity’ factor of 0.996 

which falls below the range of values on the right hand ordinate in figure 7.3(c). Figures 7.3(b) and 

7.3(c) also show the Burlin weighting factor, (1 - d). It is observed that there is good agreement 

between (1-d)MC  and (1-d)Bu, especially at the lower end and upper end of the curves. 

Figure 7.3(d) compares the Burlin ‘d’ weighting factor computed by Monte-Carlo, dMC, with 

(DS-A(∆)/DMC) for a water phantom  as a function of the Spencer-Attix cut-off energy, ∆ for the 6 and 

15 MV qualities; dMC for the Si cavity with the various pseudo-densities was linked to ∆ using 
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equations (7.9) and (7.10), applying the electron detour factor for silicon. The excellent agreement 

between these two quantities (differences never more than 5.1 %) can be interpreted as a strong 

validation of the new (DS-A(∆)/DMC) metric. Note however that if DF is set to unity the agreement is 

poor. 
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Figure 7.3: (d) For 6 MV and 15 MV photon beams: comparison of the Burlin ‘d’ computed by Monte-
Carlo, dMC, for cavities of each silicon pseudo-density, with (DS-A(∆)/DMC) as a function of ∆; the detour 
factor for silicon at each ∆ has been applied in linking the silicon pseudo-density to ∆ using equation 
(7.10); the Si cavity has diameter 0.23 cm and height 0.2 cm. 

 

 

7.4 Summary and Conclusions 

 

The main findings of this work are summarized here: 

 
1. It has been confirmed that the three main forms of ‘cavity integral’ (‘large photon detector’ or 

collision kerma, Bragg-Gray or cema, Spencer-Attix or restricted cema for ∆ < 20 keV), are 
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consistent with each other and closely equal to the ‘direct Monte-Carlo-derived dose in water, 

aluminium and copper media irradiated by 1- and 10-MeV photons under quasi-CPE. 

2.        The decrease in the quantity DS-A(∆)/DMC as ∆ increases above ≈20 keV in photon-irradiated 

media is investigated in detail. By reference to the Klein-Nishina differential cross-section it 

is explicitly demonstrated that this ∆-dependence is due to the non-inclusion of secondary 

electrons with initial kinetic energies below ∆. 

3.        The value of ∆ above which DS-A(∆)/DMC falls below ≈ 0.95-0.98 can be used as a metric for  

the maximum size of a cavity exhibiting Bragg-Gray behaviour.  

4.         For a small silicon cavity with pseudo-density varying from that of a gas to 10 g cm-3 situated 

at a depth in a water phantom irradiated by 6 and 15 MV photon beams, the transition from 

Bragg-Gray through ‘intermediate’, or Burlin, towards ‘large photon detector’ behaviour has 

been demonstrated. A Monte-Carlo-derived electron detour factor has been applied to link 

silicon density with the Spencer-Attix ∆. The MC-derived water-to-silicon dose ratio agrees 

closely with the Spencer-Attix ratio at gas-like densities and the agreement with the Burlin 

ratio at higher densities is satisfactory.   

5. The close agreement between DS-A(∆)/DMC and the Monte-Carlo-derived Burlin weighting 

factor, d, as a function of Si pseudo-density, provided that the electron detour factor is 

applied, suggests that DS-A(∆)/DMC can be used to estimate d. 
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CHAPTER 8 
 

Summary and Conclusions 
 

 
This chapter summarizes the major findings of the thesis and outlines the scope for future work.   

 In chapter 2, a set of D/K, D/Kcol and X values has been generated in a consistent manner by 

Monte-Carlo simulation for water, aluminium and copper and for photon energies from 50 keV to 25 

MeV (including 6-15 MV). Beyond the build-up region D/K is almost always less than or equal to 

unity and D/Kcol greater than unity, and these ratios are virtually constant with increasing depth. D/K 

decreases and D/Kcol increases with increasing beam quality. The difference between K and Kcol 

increases with energy and with the atomic number of the irradiated materials.  A simple analytical 

expression for X , denoted by empX , the distance ‘upstream’ from a given voxel to the mean origin of 

the secondary electrons depositing their energy in this voxel, was proposed: 00.5 ( )X R E≈emp csda , 

where 0E  is the mean initial secondary electron energy, and validated. Expressions for D/K and 

D/Kcol based on the above expression for empX  are also given (Paper III).  

In chapter 3, it has been demonstrated that over a large volume the ‘area under the kerma, K, 

curve’ vs depths exceeds the ‘area under the dose curve’, i.e. the energy content integrated from the 

kerma distribution exceeds the energy content integrated from the dose distribution over a large 

volume. Therefore over large irradiated volumes kerma does not conserve energy whereas collision 

kerma and a special form of kerma, which is denoted by Kncpt, (ncpt ≡ ‘no charged-particle 

transport’), do conserve energy. For a 25 MeV broad, parallel photon beam this ‘violation’ amounts to 

8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% 

for a ‘clinical’ 6 MV beam in water. This analysis has highlighted the role played by secondary 

bremsstrahlung in determining kerma at large depths and also quantified the magnitude of the errors 

made in deriving kerma by setting a high electron/positron kinetic energy cut-off ECUT (Paper V).  

In chapter 4, it was demonstrated that the physical density of the active volume of a detector 

is the key factor in its response in a medium irradiated by beams of non-equilibrium field size, rather 

than atomic number differences between detector and medium. Relative to wide-field readings, it was 

found that high-density detectors over-read, and low-density detectors under-read (relative to the 

density of water, the reference medium) in non-equilibrium small photon fields (Paper I).  

Based on the findings in chapter 4, a modified form of cavity theory has been developed in 

chapter 5 to take account the ‘density effect’ in small fields. It has been shown that when compared to 

water, the over-reading of high-density detectors is the result of an increased number of internally 
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generated electrons that do not escape from the active volume. The density-dependence can be 

minimized either by constructing detectors with sensitive volumes having similar densities to water, 

or by limiting the thickness of sensitive volumes in the direction of the beam. Regular 3 × 3 cm2 or 4 

× 4 cm2 fields are useful for small-field detector calibration (Paper II).  

Following on from chapters 4 and 5, with the aid of Monte-Carlo simulations the major 

deviations from Bragg-Gray behaviour exhibited by ionization chambers with small (air) volumes 

(e.g. the ‘PinPoint 3D’ chamber) in small megavoltage photon fields are quantified in chapter 6; the 

EGSnrc Monte Carlo code system has been employed to investigate this 'Bragg-Gray breakdown'. A 

water-to-air perturbation factor has been defined and computed as the ratio of the photon-generated 

‘total’ electron fluence, integrated over all energies, in undisturbed water to that in a small air cavity; 

the values are 1.323 and 2.139 for the 0.25 x 0.25 cm2 field size in 6 MV and 15 MV ‘full linac’ 

geometry (FLG) respectively. For the 15 MV FLG, for field sizes of 1 × 1 cm2 and smaller, not only 

the magnitude but also the ‘shape’ of the ‘total’ electron fluence spectra in the air cavity differs from 

that in the water cavity, due to the combined effect of electronic disequilibrium, source occlusion and 

volume-averaging. The consequences of differences in spectral shape are explored in terms of cavity 

theory and a theoretical expression for this ‘shape factor’ has been formulated. The physics of this 

‘Bragg-Gray breakdown’ in low-density (gas) detectors in non-equilibrium field sizes is fully 

explained both diagrammatically and theoretically, making explicit reference to the Fano theorem 

(Paper IV).  

In chapter 7, the self-consistency of conventional cavity theories (large photon detector, 

Bragg-Gray and Spencer-Attix) has been examined by evaluating the so-called ‘cavity integrals’ 

(‘large photon detector’ or collision kerma, Bragg-Gray or cema, Spencer-Attix or restricted cema) in 

different materials (water, aluminium and copper) for photon beams of 1 MeV and 10 MeV under 

quasi-CPE. These three forms of ‘cavity integral’ (for ∆ < 20 keV in the case of Spencer-Attix) are 

shown to be consistent with each other. The ratio of Spencer-Attix dose to direct Monte-Carlo dose 

(DS-A(∆)/DMC) decreases steadily as Spencer-Attix cut-off energy ∆ increases about ≈ 20 keV in 

photon-irradiated media. It is explicitly demonstrated that this dependence on ∆ is due to the non-

inclusion of secondary electrons with initial kinetic energies below ∆. The value of ∆ above which DS-

A(∆)/DMC falls below ≈ 0.95-0.98 can be used as a metric for  the maximum size of a detector 

behaving in a Bragg-Gray manner in a medium irradiated by a given photon-beam  quality (under 

quasi CPE); a typical air-filled ion chamber is a Bragg-Gray detector at all (monoenergetic) photon 

beam energies  ≥ 260 keV. Excellent agreement between DS-A(∆)/DMC and the Monte-Carlo-derived 

Burlin weighting factor, ‘d’  at different Si pseudo-densities (provided a correction for electron 

‘detours’ is made) suggests a further application for the DS-A(∆)/DMC ratio: as an alternative way to 

estimate d (Paper VI). 
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The scope for future work includes (i) formulating a composite expression for a 'quasi-Burlin 

dose ratio' for an intermediate cavity in a bremsstrahlung beam by recognising that the cavity 

response can be characterized as a quasi-perfect 'large photon detector' for the lowest energies, an 

(approximate) ‘Burlin’ detector for the intermediate energies, and a quasi Bragg-Gray detector for the 

highest energies of the bremsstrahlung beam spectra; (ii) a critical evaluation of the validity of the 

Fano theorem when the density-dependence of the interaction cross-sections in various media (e.g. the 

density or polarization effect in condensed media) is explicitly modelled by Monte-Carlo codes. 
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Appendix-A 
 

 
A.1 Approximating ε(FS) as being independent of cavity density 
 

In obtaining the link between Pρ −  and see described by equation (5.22), a multiplicative factor ε(FS) 

was used to model the field-size dependence of the dose imparted to a cavity by electrons energized 

outside it. In particular ε(FS) was approximated as being independent of density, leading to equation 

(5.19) 

( ) ( )( ) ( )( ) ( )ref
external cav

MU
FS, 5, ,   1 FS

OF FS FS
ee

D D J
s

ρ ρ ε
 

≈ − 
 
 

 

To justify this approximation consider the geometry of figure 5.2, initially replacing the 

spherical cavity with a long, narrow cylindrical cavity of the same radius r, aligned coaxially with the 

radiation beam. Electrons generated more than dequilib off-axis fail to reach the cavity, and so in fields 

wider than 2dequilib (practically around 2-3 cm, see Methods 5.2.3 and figure 5.4) lateral electronic 

equilibrium exists throughout the cavity, which therefore absorbs the full external dose contribution 

( )( )cav1D J ρ− from electrons energized outside it. 

On the other hand in circular fields narrower than 2r the paths of primary photons lie entirely 

within the cylindrical cavity, and so (ignoring photon scatter) no electrons will be generated outside 

the cavity by these fields, meaning that their external dose component is zero. Regardless of cavity 

density, then, equation (5.19) correctly represents externalD for the cylindrical cavity in fields narrower 

than 2r (ε = 0) or wider than 2dequilib (ε = 1) while describing a smoothly rising curve in between – a 

reasonable approximation to the real situation.  

Of course a spherical cavity of radius r will absorb a non-zero externalD dose from a circular 

field of diameter 2r, because some photon interactions occurring above the cavity will energize 

electrons that go on to deposit dose within it. When the cavity is filled with unit density water it 

follows from equation (5.17) that the externally derived dose absorbed by the cavity from the 2r 

diameter field is given exactly by 

( )( ) ( )external cav  1 2D D J rρ ε= −                (A.1) 

whereas when the cavity is filled with water of density ρ the externally-derived dose that it absorbs is 

given approximately, according to equation (5.19), by 

( )( ) ( )external cav  1 2D D J rρ ε≈ −               (A.2) 
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In the next section it is shown that doses absorbed by the spherical cavity from externally 

energized electrons in narrow fields actually vary with cavity density as (1 – 0.64 Jcav(ρ)) rather than 

as (1 – Jcav(ρ)), where Jcav(ρ) is the fractional cavity dose arising from internally energized electrons in 

a wide field. Consequently the real external dose absorbed from the circular field of diameter 2r by 

the cavity when filled with water of density ρ is 

( )( ) ( )
( )( )
( )( )

cav
external cav

cav

1 0.64
  1 2

1 0.64 1

J
D D J r

J

ρ
ρ ε

−
= −

−
             (A.3) 

and so the fractional error in the approximate externalD value obtained from equation (5.19) is  

( )
( )

( )
( )

( )
( )

external
cav cav

external cav cav

equation A.2 1 0.64 1 1
  1  1

1 0.64 1 1equation A.3

D J J

J JD

ρ

ρ

    − −  − = −    − −     
 

    ( ) ( )( )cav cav 0.36 1J J ρ≈ −                        (A.4) 

Using either the directly computed Jcav values of table 5.3 or the fitted Icav values set out in the 

Results, the fractional error in externalD values obtained for narrow fields from equation (5.19) works 

out at 2.5% for a spherical cavity having the same wide field Jcav(ρ) values as those of the modelled 

diamond cavity when both are filled with water of unit or diamond density. Similarly for a spherical 

cavity having the same Jcav(ρ) values as the modelled PinPoint 3D cavity filled with water of unit or 

air density, the fractional error in externalD  works out around 4.0%. Consequently the errors introduced 

by equation (5.19) into narrow field Pρ
−

values modelled for these two cavities in equation (5.22) are 

less than 2.5% and 4%,which are inconsequential in comparison to the calculated departures of Pρ
−

 

from one at small field-sizes (figure 5.4).  

Furthermore the spherical cavity, like the cylindrical cavity, absorbs the full external dose 

( )( )cav1D J ρ−  from fields wider than 2dequilib, meaning that ε(FS) is unity in these fields and 

equation (5.19) is accurate. And so for the spherical cavity equation (5.19) introduces inconsequential 

errors into externalD in fields narrower than 2r, correctly represents externalD  in fields wider than 2dequilib, 

and smoothly rises in between – again providing a reasonable approximation to the real situation. 

 
A.2 Doses absorbed from electrons energized outside the cavity in small fields 

 
The whole dose D absorbed by an ideal Bragg-Gray cavity comes from externally energized electrons, 

which fully traverse its small volume. However some externally energized electrons stop within larger 

cavities of modified density water, which reduces the mean  dose absorbed by these cavities from D to 
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D(1 – Jcav(ρ)) – a reduction exactly offset by the dose DJcav(ρ) absorbed from electrons energized by 

photon interactions taking place within the cavity. 

Just above the Bragg-Gray region, Jcav values are given by the formula 

( )( ) ( )( ) ( )
int 

w
ep

1
l

g L
T

ρ
ρ

ρ ρ∆

 
−   

 
 (equation (5.13)) in which ( )ep1 T  represents the average 

reciprocal kinetic energy of newly generated electrons. In a broad field externally energized electrons 

enter the cavity from all directions, and so ( )ep1 T  is an average over the Klein-Nishina differential 

cross-sections (Attix1986) of Compton interactions which generate electrons travelling at between 

0˚and 90˚ with respect to the incident photon direction. For electrons energized by the 4.1 MeV 

photons typical of a 15 MV beam (Methods 5.2.3) the average value of ( )ep1 T  obtained for a 

spherical cavity is 0.40 MeV-1. However in very narrow fields, only those externally energized 

electrons that travel in roughly the straight-ahead (0˚) direction enter the cavity. And for straight-

ahead Compton electrons energized by 4.1 MeV photons, ( )ep1 T is 0.26 MeV-1, 64% of the 

( )ep1 T value averaged across all electron angles. Consequently spherical cavities in narrow fields 

will absorb a dose (1 – 0.64 Jcav(ρ)) from externally energized electrons, compared to (1 – Jcav(ρ)) in 

wide fields. 

 
A.3 Doses absorbed from electrons energized inside the cavity in small fields 

 
The change from (1 – Jcav(ρ)) to (1 – 0.64 Jcav(ρ)) in the density-dependence of the external dose 

component absorbed by a spherical cavity seen when moving from broad to narrow fields is not 

accompanied by an associated reduction from Jcav(ρ) to 0.64 Jcav(ρ) in the density-dependence of the 

internal dose component absorbed from electrons energized by photon interactions occurring within 

the cavity – because in both narrow and broad beams the trajectories of these internally energized 

electrons cover a wide angular range rather than being limited to the forwards direction. 

Provided that the number of monitor units is chosen to hold the average kerma within the 

cavity at its broad field level, the cavity will continue to absorb a dose DJcav(ρ) from the internally 

energized electrons of a narrow field. However in fields so narrow that the photon fluence profile 

varies across the cavity, being peaked at its centre, the DJcav(ρ) dose absorbed from internally 

energized electrons will actually rise above its broad field value. This amounts to an increase in Jcav at 

small fields-sizes (as noted in the Results), in contradistinction to the fall in Jcav seen for externally 

energized electrons. 
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Appendix-B  

 

Simplified theory of the response of a low-density cavity in a 
narrow non-equilibrium field  
 

 

The arguments given in sub-section 6.4.3.2 will now be expressed analytically. Consider the dose at 

point ‘×’ in Figure 6.6. Simplifying the cavity integrals (e.g. ignoring any difference in mean energy 

between the ‘in’ and ‘out’ components of electron/positron fluence (see below) and using the 

unrestricted electronic mass stopping powers, evaluated at a single effective electron energy), for the 

uniform medium (upper half of the figure) it can be written 

[ ] [ ]{ } [ ]{ }el el el
in+out in out

med med med medmed med med
( ) ( ) ( ) ( )D Φ Φ ΦS S Sρ ρ ρ× × = × + ×     =      

   (B.1) 

where ‘in’ denotes the electron (+ positron) fluence (in a small volume centred on ‘×’) arising from 

photon interactions inside the ‘cavity’ volume and ‘out’ denotes the electron (+ positron) fluence (in 

the same volume) arising from photon interactions in the volume outside the cavity. 

The corresponding expression for the gas cavity centred  on ‘×’ is 

[ ]{ } [ ]{ }in out

el elgas gas gasgas gas
(cav) (cav) (cav)D Φ ΦS Sρ ρ+   =    

    (B.2) 

where in this case the relevant volume over which the fluence and the dose are expressed is the gas 

cavity, denoted by ‘cav’, as opposed to a single point at its centre. 

The ratio of doses, medium-to-gas is therefore given by 

[ ]{ } [ ]{ }
[ ]{ } [ ]{ }

in out
el el

med medmed medmed

in out
gas el el

gas gasgas gas

( ) ( )( )

(cav) (cav) (cav)

Φ ΦD

D Φ Φ

S S

S S

ρ ρ

ρ ρ

× + ××
=

+

   
   

   
   

  (B.3) 

 

Note that at megavoltage photon qualities, [ ] [ ]in out

gas gas
(cav) (cav)Φ Φ�  because, in a wide, 

equilibrium field, the low-density (gas) cavity acts in a Bragg-Gray manner (Ma and Nahum 1991). 

 

CASE A: wide, ‘equilibrium’ field 

To a very good approximation [ ]
in+out

gas
(cav)Φ = [ ]

in+out

med
( )Φ ×  due to the Fano theorem, as there is quasi-

CPE, given that [ ]
in

gas
(cav)Φ is negligible. Therefore it follows from (B.3) that { }med gas( ) / (cav)D D× = 
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{ }el el
med gas

/S Sρ ρ   
     (averaged over the electron spectrum at × in the medium); this is the 

standard Bragg-Gray result. 

 

CASE B: narrow, non-equilibrium field 

 
In the narrow-field geometry, in marked contrast to that for the wide field, the secondary-electron 

generation volumes outside the cavity for the uniform medium and gas are identical (see the right-

hand side of figure 6.6). However, the electrons/positrons entering the virtual cavity in the uniform 

medium will be ‘attenuated’ by the medium inside the cavity and therefore [ ]out

med
( )Φ × will only be 

approximately equal to [ ]out

gas
(cav)Φ . As in CASE A [ ]

in+out

gas
(cav)Φ ≈ [ ]

out

gas
(cav)Φ , therefore the 

(electron + positron) fluence ratio, medium-to-gas, is given by 

[ ]

[ ]

[ ] [ ]
[ ]

in+out in out

med med med

in+out out

gasgas

( ) ( ) ( )

(cav)(cav)

Φ Φ Φ

ΦΦ

× × + ×
≈      (B.4)  

As the field size becomes smaller and smaller, [ ]out

med
( )Φ × will decrease further and further and 

therefore the (quasi-constant) [ ]in

med
( )Φ × will increasingly dominate, thus increasing the fluence ratio 

given by (B.4). Expressed another way, the low-density cavity will significantly ‘under-respond’, as 

demonstrated here and in Scott et al (2012). 

 The medium-to-gas dose ratio can be written as  

( )
el

medmed med
fl gas

elgas
gas

( )
  

(cav)

D
p

D

S

S

ρ

ρ

×
= ×
 
 

 
 

      (B.5) 

where the first term is the (conventional) Bragg-Gray stopping-power ratio and 
 

 
 
( )med

fl gas
p  ≈  [ ] [ ]{ } [ ]in out out

med med gas
( ) ( ) / (cav)Φ Φ Φ× + ×     (B.6) 

 By contrast, ( )med

fl gas
p  ≈ 1 in case A.   
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Appendix-C  

 

A correction for photon-fluence perturbation in a ‘large 
photon detector’ 
 

 
The use of the mass-energy-absorption coefficient ratio, as evaluated from equation (7.13), to yield 

the ratio of the medium to detector dose for a cavity behaving as a ‘large photon detector’ (Nahum 

2007b) assumes that the photon (energy) fluences in the detector and the uniform medium are 

identical in magnitude and energy distribution, analogous to the assumption regarding the charged-

particle fluence in a Bragg-Gray detector. However, for finite-size, non-medium-equivalent detectors 

there are likely to be differences between detector and medium photon fluences; a photon fluence 

perturbation correction factor (Beddar et al 1992, Mobit et al 2000) can be applied.  

 From Kumar et al (2015a) it is written 

( )( )med

med eff csda o
med

col med

1 ( ) 0.5
k

D
µ k R E

K
β

    = = + ×      
    (C.1) 

where Rcsda is here in units of length and 
eff

med
( )µ k 

  is the ‘effective’ attenuation coefficient at 

photon energy k  for the medium of interest. In the case of a photon spectrum, e.g. an x-ray beam, the 

photon energy in equation (C.1) is a collision-kerma-weighted mean value over the photon fluence 

spectrum, k , and 0E  is  the mean initial electron energy of the electrons set in motion by photons. 

One can write an equivalent expression for (D/Kcol)det.  

Now by definition,  

( )
( )

med

colen med

col detdet

K

K

µ
ρ

 
= 

 
 

If the photon fluence spectra in the detector and uniform medium, at identical depths, were equal then 

we would have  

 
( )
( )

med

med colmed med med en

det det col detdet det

KD

D K

β β µ
β β ρ

  
= = ×  

   
 

However, a correction will also be necessary for difference in attenuation of the photon fluence 

between the detector material and the medium. If the distance from the front face of the detector (in 

the case of a cylindrical volume perpendicular to the beam direction), or from the most ‘upstream’ 
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depth of the curved front surface, to the detector centre is denoted by (t1/2)det then this difference will 

be given to a good approximation by 
( ) ( )( ) ( )( )1/2 ff ffdet med det

e et k k

e
µ µ − −

   which in turn is well approximated  by 

( ) ( )( ) ( )( ){ }1/2 eff effdet
med det

1 t k kµ µ − −  
.  

The final expression for the medium-to-(large photon) detector dose ratio becomes therefore 

[ ]
( ) ( )( ) ( )( ){ }

med

med en med
1/2 eff effdet

med det
detdet

det

(P)
1

D
t k k

D

µ β
µ µ

ρ β

     − −           

�  (C.2) 

where P is the position of the detector centre.   

We can then define a photon-fluence perturbation factor by 

[ ] med

phmed en
med,det

det
det

(P)D
p

D

µ
ρ

 
=  

    

        (C.3) 

Comparing the above with equation (C.2) yields 

( ) ( )( ) ( )( ){ }ph med
med,det 1/2 eff effdet

med det
det

1p t k k
β

µ µ
β

   − −     
�      (C.4) 

Finally, for the case of a silicon detector in water, it is written 

( ) ( )( ) ( )( ){ }ph w
w,Si 1/2 eff effSi

w Si
Si

1p t k k
β

µ µ
β

   − −     
�     (C.5) 
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