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SYNOPSIS 

Introduction 

The remediation of a contaminated aquifer is a complex process which involves huge cost and time 

and requires proper planning to optimize the cost and effectiveness of the remediation. A very crucial 

aspect in the remediation process is to identify the locations and estimate the release magnitude of the 

unknown contaminant sources. Due to the complexity of groundwater transport process, models are 

required to identify the location and extent of contaminant plume. Groundwater contaminant transport 

modeling involves the solution of advection-dispersion-reaction (ADR) equation. Identification of the 

sources of contamination from the spatial and temporal measurements of contaminant concentrations 

in the aquifer is an inverse problem which requires solving the ADR equation backwards in time and 

an optimizer to minimize the error involved.  

Grid or mesh based methods such as FDM or FEM are commonly used to model the groundwater 

flow and transport process in an aquifer. However, due to the difficulty and high computational costs 

of creating a mesh, meshfree methods have been recently developed. Meshfree methods require only a 

set of scattered nodes within and on the boundary to represent the modeling domain and no 

information are required on the connectivity of the nodes. Several meshfree methods have been 

developed in the last few decades (Liu and Gu, 2005). Meshfree Radial Point Collocation Method 

(RPCM) is a simple meshfree method (Kansa, 1990) based on the point collocation using Radial Basis 

Functions (RBF) as the interpolation function. In this study, meshfree RPCM is proposed for 

simulation of the groundwater flow and transport process. 

A Simulation-Optimization (SO) approach is one of the effective techniques used for groundwater 

source identification. In this technique, the groundwater contaminant source identification problem is 

formulated as forward-time simulation in conjunction with an optimization model. Gorelick et 

al.(1983) are the first to apply simulation-optimization approach to groundwater contamination source 

identification using linear programming and regression as the optimizer. In recent times, many 

optimization tools based on artificial intelligence such as particle swarm optimization (PSO) has been 

evolved. In the present study, an attempt is made to develop groundwater contaminant source 

identification model with the SO approach using Meshfree RPCM as the simulation model and PSO 

as the optimizer. PSO offers advantages in terms of simplicity in implementation and easy integration 

with simulation models. 

Within this context, the objectives of the present study are: 

 Development of coupled groundwater flow and transport simulation models using 

meshfree radial point collocation methods (RPCM) for both confined and unconfined 

aquifer problems. 
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 Development of optimization model using Particle Swarm Optimization (PSO). 

 Coupling of meshfree RPCM simulation model and PSO based optimization model to 

develop Simulation-Optimization (SO) models for groundwater contaminant source 

identification. 

 Validation of the developed models with benchmark problems from published literature. 

 Application of the developed SO model to hypothetical and field case studies and to cases 

with uncertainties in concentration data. 

Groundwater Flow and Solute Transport Simulation 

The governing equations describing the groundwater flow in a two dimensional inhomogeneous 

confined and unconfined aquifers can be written as (Bear, 1979): 

 
𝜕

𝜕𝑥
[𝑇𝑥

𝜕ℎ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑇𝑦

𝜕ℎ

𝜕𝑦
] = 𝑆

𝜕ℎ

𝜕𝑡
+ 𝑄𝑤𝛿(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) − 𝑞 (1) 

 𝜕

𝜕𝑥
[𝐾𝑥ℎ

𝜕ℎ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐾𝑦ℎ

𝜕ℎ

𝜕𝑦
] = 𝑆𝑦

𝜕ℎ

𝜕𝑡
+ 𝑄𝑤𝛿(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) − 𝑞 (2) 

Subject to the initial conditions: ℎ(𝑥, 𝑦, 0) = ℎ0(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝛺 and the boundary conditions: 

ℎ(𝑥, 𝑦, 𝑡) = ℎ1(𝑥, 𝑦, 𝑡)  ∀ 𝑥, 𝑦 ∈ 𝜕𝛺1; 𝑇𝜕ℎ/𝜕𝑛 = 𝑞1(𝑥, 𝑦, 𝑡)   ∀ 𝑥, 𝑦 ∈ 𝜕𝛺2 or 𝐾ℎ𝜕ℎ/𝜕𝑛 = 𝑞2(𝑥, 𝑦, 𝑡)  

 ∀ 𝑥, 𝑦 ∈ 𝜕𝛺2. Here ℎ(𝑥, 𝑦, 𝑡) is the piezometric head (m) which is the state variable; 𝐾𝑥 , 𝐾𝑦 are the 

hydraulic conductivities (m/d) in x & y directions; 𝑇𝑥 , 𝑇𝑦 are the transimissivities (m2/d) in x & y 

directions; S is the storage coefficient; 𝑆𝑦 is the specific yield and 𝑄𝑤 is the source or sink term 

(m3/d/m2). The flow region is represented by Ω while the boundary of the domain is denoted by 

𝜕Ω (𝜕Ω1 ∪ 𝜕Ω2 = 𝜕Ω).  𝜕/𝜕𝑛  denotes the normal derivative to the boundary. ℎ0(𝑥, 𝑦) is the initial 

head in the flow domain (m), ℎ1(𝑥, 𝑦, 𝑡) is the known head value of the boundary head (m) and 

𝑞(𝑥, 𝑦, 𝑡) is the known inflow rate (m3/d/m). Once the hydraulic head is computed, the seepage 

velocity  𝑉𝑥 , 𝑉𝑦 can be evaluated as: 𝑉𝑥 = −
𝐾𝑥

𝜃
 
𝜕ℎ

𝜕𝑥
  ;  𝑉𝑦 = −

𝐾𝑦

𝜃
 
𝜕ℎ

𝜕𝑦
 where 𝜃 is the porosity of the 

medium. 

The governing equation for two dimensional solute transport of a single chemical constituent in 

groundwater is given by (Freeze and Cherry, 1979), 

 𝑅
𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑥𝑥

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑦𝑦

𝜕𝐶

𝜕𝑦
) −

𝜕

𝜕𝑥
(𝑉𝑥𝐶) −

𝜕

𝜕𝑦
(𝑉𝑦𝐶) −

𝑐′𝑤

𝜃𝑏
− 𝑅𝜆𝐶 +

𝑞𝑤𝐶

𝜃
 (3) 

where, 𝐷𝑥𝑥 , 𝐷𝑦𝑦  are the components of dispersion coefficient tensor in x and y direction (m2/day); 

𝐷𝑥𝑥 =
𝛼𝐿𝑉𝑥

2+𝛼𝑇𝑉𝑦
2

𝑉2     ; 𝐷𝑦𝑦 =
𝛼𝐿𝑉𝑦

2+𝛼𝑇𝑉𝑥
2

𝑉2  , αL and αT are the dispersivity in longitudinal (x) and 
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transverse (y) directions and 𝑉2 = 𝑉𝑥
2 + 𝑉𝑦

2 ; C is the concentration of the dissolved species (kg/m3); λ 

is the reaction rate constant (day-1); w is the elemental recharge rate with solute concentration c’ ; b is 

the aquifer thickness; 𝑅 = 1 + 𝜌𝑏𝐾𝑑/𝜃 is the retardation factor, in which 𝜌𝑏 is the media bulk 

density, 𝐾𝑑 is the sorption coefficient and 𝑞𝑤 is the volumetric pumping rate from a source. The initial 

condition is, 𝐶(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦, 0)   ∀ (𝑥, 𝑦) ∈ Ω. The boundary conditions are of the form, 

𝐶(𝑥, 𝑦, 𝑡) = 𝑔1(𝑥, 𝑦, 𝑡)  ∀(𝑥, 𝑦) ∈ 𝜕Ω1  (Dirichlet boundary condition); (𝐷𝑥𝑥𝜕𝐶/𝜕𝑥)𝑛𝑥 +

(𝐷𝑦𝑦𝜕𝐶/𝜕𝑦)𝑛𝑦 = 𝑔2(𝑥, 𝑦, 𝑡) ∀(𝑥, 𝑦) ∈ 𝜕Ω2 (Neumann boundary condition). Here, Ω is the flow 

domain, ∂Ω(= ∂Ω1 ∪ ∂Ω2) denotes the boundary of the modeling domain; f is a given function in Ω; 

𝑔1, 𝑔2 are functions along the boundaries; and  𝑛𝑥 , 𝑛𝑦 are the components of the unit outer normal 

vector to the boundary. In this study, meshfree RPCM (Liu and Gu, 2005) has been used for solving 

the groundwater flow and transport equations. In this method, the interpolation of the unknown field 

variable is done by using radial basis functions (RBF) while discretization of the governing equations 

is achieved by point collocation. 

Meshfree Radial Point Collocation Method (RPCM) 

The unknown field variable is first approximated using trial or shape functions. A local support 

domain of a point x determines the nodes, in its neighborhood, to be used to approximate the function 

value at x. The approximation of a function h(x) within a local support domain can be constructed as a 

linear combination of n radial basis functions as: ℎ(𝒙) = ∑ 𝑎𝑖𝑅𝑖(𝒙) = 𝑹𝑇(𝒙)𝒂𝑛
𝑖=1  ; where 𝑅𝑖(𝒙) is a 

radial basis function (RBF) such as a Multi-Quadrics or Gaussian RBF (Liu and Gu, 2005), n is the 

number of points in the support domain, 𝑎𝑖  are unknown coefficients to be determined. The 

interpolation of the function at the 𝑘𝑡ℎ point has the following form: 

 
ℎ(𝑥𝑘 , 𝑦𝑘) = ℎ𝑘 = ∑ 𝑎𝑖𝑅𝑖(𝑥𝑘 , 𝑦𝑘)

𝑛

𝑖=1

      𝑘 = 1, . . .  , 𝑛 (4) 

which yields n simultaneous linear algebraic equations with 𝑛 unknowns. Solving the system of 

equations for the unknown coefficients 𝑎𝑖  and substituting back these coefficients, the interpolation 

can be expressed as,  

 ℎ(𝒙, 𝒕) = 𝚽𝑻(𝒙)𝒉𝒔(𝑡) (5) 

where 𝚽𝑻(𝒙) = {𝜙1(𝑥, 𝑦)   𝜙2(𝑥, 𝑦)    . . .   𝜙𝑛(𝑥, 𝑦)} is known as the shape function and, 𝒉𝑠 =

{ℎ1ℎ2  ⋯ ℎ𝑛}𝑇 is the vector of nodal head values at the support domain nodes.  

The discretization of the governing equation for groundwater flow and solute transport (eqns. 1, 2 and 

3) is done by simple collocation at all the internal nodes. Thus by collocation at the point 𝒙𝑟(𝑥𝑟, 𝑦𝑟), 

the governing equation (1), for a homogeneous and isotropic aquifer, is discretized as: 
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𝑇𝑟 [

𝜕2𝚽𝑇

𝜕𝑥2
+

𝜕2𝚽𝑇

𝜕𝑦2
] 𝒉𝑠(𝑡) = 𝑆𝑟 (

𝜕ℎ

𝜕𝑡
)

𝑟
+ 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) − 𝑞𝑟 (6) 

For time discretization, Cranck-Nicholson time stepping method is applied. Eqn. (6) is finally 

transformed as: 

[𝑆𝑟𝝓𝑻 − 𝜃Δ𝑡𝑇𝑟 (
𝜕2𝝓𝑻

𝜕𝑥2
+

𝜕2𝝓𝑻

𝜕𝑦2 )] 𝒉𝑠
𝑡+Δ𝑡

= 𝑆𝑟ℎ𝑟
𝑡 + Δt(1 − 𝜃) [

𝜕2𝝓𝑻

𝜕𝑥2
+

𝜕2𝝓𝑻

𝜕𝑦2
] 𝒉𝑠

𝑡 − 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) + 𝑞𝑟 

(7) 

where 𝜃 = 0.5. A similar discretization is performed for the solute transport equation which yields 

(after neglecting the source and reaction terms): 

[𝑅𝚽𝑇 − 𝜃∆𝑡 (𝐷𝑥𝑥𝑟

𝜕2𝚽𝑇

𝜕𝑥2
+ 𝐷𝑦𝑦𝑟

𝜕2𝚽𝑇

𝜕𝑦2
− 𝑉𝑥𝑟

𝜕𝚽𝑇

𝜕𝑥
− 𝑉𝑦𝑟

𝜕𝚽𝑇

𝜕𝑦
)] 𝑪𝑠

𝑡+∆𝑡

= 𝑅𝐶𝑟
𝑡 + (1 − 𝜃)∆𝑡 [𝐷𝑥𝑥𝑟

𝜕2𝚽𝑇

𝜕𝑥2
+ 𝐷𝑦𝑦𝑟

𝜕2𝚽𝑇

𝜕𝑦2
− 𝑉𝑥𝑟

𝜕𝚽𝑇

𝜕𝑥
− 𝑉𝑦𝑟

𝜕𝚽𝑇

𝜕𝑦
] 𝑪𝑠

𝑡  

(8) 

The discretized equations (7) and (8) are established for all the internal nodes. Appropriate boundary 

conditions are applied at the boundary nodes. The nodal discretized equations of eqn. (7) can be 

assembled in matrix form as (Guneshwor et al., 2016), 

[𝐾]𝑁×𝑁{ℎ}𝑁×1
𝑡+∆𝑡  = [𝐹]𝑁×𝑁{ℎ}𝑁×1

𝑡 + {𝑄}𝑁×1 (9) 

where N is the total number of nodes including internal and boundary nodes.  {ℎ}𝑡+∆𝑡 is the unknown 

nodal heads (or concentrations) at current time, 𝑡 = 𝑡 + ∆𝑡 while {ℎ}𝑡 is its values at the previous 

time step. [𝐾] is the global coefficient matrix (LHS of eqn. 7) , [𝐹] is the coefficient matrix associated 

with previous time-step and {𝑄} is the vector representing contributions of the sources or sinks terms. 

In a similar way, the nodal discretized equation of eqn. (8) can be obtained. Further a similar 

discretization is performed for unconfined aquifers using eqn (2). Based on the above formulation, a 

coupled groundwater flow and transport simulation model (CFTM) in 2D using RPCM called 

meshfree CFTM-RPCM has been developed. The developed model has been verified for its accuracy 

and effectiveness with respect to available analytical and numerical solutions for various problems. 

Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is a nature-inspired swarm intelligence algorithm proposed 

by Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995). A swarm is a collection of multiple 

units known as particles that interact with each other leading to a complex behavior. PSO relies on the 
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interactions of these particles to find the optimum value of a function. The ability of the PSO 

algorithm to optimize a given objective function comes from the velocity and position update steps of 

the algorithm. For each particle in the swarm, the velocity is updated using the following equation 

(Clerc and Kennedy, 2002): 

 𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥𝑏
𝑖 (𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑥𝑔(𝑡) − 𝑥𝑖(𝑡)] (10) 

The position is then updated as, 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (11) 

Here, i is the index of the particle. Thus, 𝑣𝑖(𝑡) and 𝑥𝑖(𝑡) are the velocity and position respectively of 

the 𝑖𝑡ℎparticle at time t. The parameters w, 𝑐1 and 𝑐2 are coefficients to be-specified by the user and 

their ranges are: 0 ≤ 𝑤 ≤ 1.2 , 0 ≤ 𝑐1 ≤ 2 and 0 ≤ 𝑐2 ≤ 2. 𝑐1 and 𝑐2 controls the cognitive and 

social aspects of the particle respectively while 𝑤 controls the inertia of the particle. The values 𝑟1 and 

𝑟2(0 ≤ 𝑟1 ≤ 1  𝑎𝑛𝑑  0 ≤ 𝑟2 ≤ 1) are random values generated for each velocity update. 𝑥𝑏
𝑖 (𝑡) is the 

individual best candidate solution for the 𝑖𝑡ℎ particle at time t, while 𝑥𝑔(𝑡) refers to the swarm’s 

global best candidate solution at time t. Based on the above formulation, a PSO model has been 

developed and verified for its accuracy and effectiveness. 

Simulation-Optimization Model for Source Identification 

In Simulation-Optimization (SO) models, the groundwater contaminant source identification problem 

is formulated as forward-time simulation in conjunction with an optimization model. In this approach, 

several forward-time simulations of the groundwater solute transport equation are run with different 

sets or combinations of the potential sources and their strengths. The predicted solute concentrations 

of these forward runs are compared against the measured spatial and temporal concentration data. 

Since there are an infinite number of plausible sets of the potential sources, an optimization model is 

required to find that set of potential sources which lead to minimum difference between the simulated 

and observed concentrations (the objective function). In this study an SO model (RPCM-PSO-SO 

model) is being developed using meshfree RPCM as the simulation model and the PSO as the 

optimizer. Since the forward-time simulation of the groundwater solute transport model needs to be 

called many times to search for the optimal solution, it may take very large computational time. To 

overcome this, a concentration response matrix is developed (Gorelick et al., 1983) for evaluation of 

the concentrations of the contaminant at the observation wells from the forward simulations. 

Figure 1 shows the flow chart of the simulation-optimization approach for groundwater contaminant 

source identification. This approach avoids the mathematical complexities associated with direct 

inversion of the groundwater flow and solute transport equation.  
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Figure 1: Flow chart of the developed Simulation-Optimization model (RPCM-PSO-SO model) 

Objective Function for Optimization 

As depicted in the flow chart (Figure1), the simulation-optimization (SO) model seeks to match the 

concentrations predicted by the model to the measured (observed) concentrations. This matching is 

done by minimizing the sum of a function of the differences between the simulated and measured 

concentrations. In this study, the objective function used for minimization is the sum of squared 

differences between predicted and observed concentrations i.e. 

 𝑆 = ∑ ∑(𝐶𝑖,𝑗
𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗

𝑂𝑏𝑠)
2

𝑁𝑇

𝑗=1

𝑁𝑂

𝑖=1

 (12) 
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where,   𝑁𝑂 = no. of observation bore wells, 𝑁𝑇 = no. of time steps, 𝐶𝑖,𝑗
𝑃𝑟𝑒𝑑 =Predicted concentration 

at 𝑖𝑡ℎ observation point at the jth time step, 𝐶𝑖,𝑗
𝑂𝑏𝑠 =Observed/measured concentration at ith observation 

point at jth time step.  

Application of the Meshfree RPCM Simulation Model 

The meshfree RPCM simulation model is applied to one case study of confined aquifer near Surat, 

Gujarat (Figure 3). The aquifer is bounded by a lake on the north, north-east, west and south-west 

boundaries. There are no water bodies on the rest of the boundary. The area to be modeled is 

approximately 4.5 km2. A total of 1008 nodes were used corresponding to a separation between the 

nodes of 49.6 m along x-direction (∆𝑥) and 42.8 m along the y-direction (∆𝑦). The field measured 

hydrogeological parameters of the site are obtained from Singh and Sarma (2009). It is observed that 

the transmissivity of the area varies from a minimum of 30.0 m2/day to a maximum of 170.0 m2/day. 

There is a recharge zone within the model domain which corresponds to a water pond and is known to 

be leaking water to the aquifer and is observed as a mound in the water table map of the area. The 

boundaries adjacent to the lake are treated as constant head boundaries while the rest of the 

boundaries are treated as flux boundaries. The flux boundary values are estimated and adjusted during 

calibration of the model. The recharge through the pond is estimated from the make-up level of the 

pond and is adjusted during calibration. Figure 3 shows the head distribution (contours) and velocity 

vectors from the RPCM flow model. An areal contaminant (assumed to be TDS) source is assumed to 

be leaking with a concentration of 1000 ppm. The longitudinal dispersivity (𝛼𝐿) for this problem is 20 

m and the transverse dispersivity (𝛼𝑇) is taken as 10% of the longitudinal dispersivity. The transport 

model was simulated for a period of 10 year. Meshfree RPCM model was applied to compute the 

head and concentration distribution in the aquifer. The results were compared to the field measured 

heads and FEM predicted concentration distributions (Figure 2) and found to be in good agreement 

(Guneshwor et al. 2016). This validates the applicability of the meshfree CFTM-RPCM model. 
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Figure 2: Comparison of concentration predictions 

of the RPCM model to FEM predictions. 

Figure 3: Location of the sources and observation 

wells for source identification model including 

contour of groundwater heads (in m) and plot of 

flow vectors. 

Application of the Meshfree RPCM –PSO Simulation-Optimization Model 

The developed SO model has been applied to a number of hypothetical and field case problems. 

Results of two case studies are presented here – the first is a steady state case involving a hypothetical 

aquifer and the second is a transient field case study.  

Case Study 1 (Steady state case): Figure 4 shows the hypothetical aquifer considered for the steady 

state case. An underground pipe lies in an unsaturated zone above the water table and carries effluent 

from one end to the other. This problem was studied by Gorelick et al.(1983) and all the parameters 

are taken from the above work. The aquifer is 10 m thick and is of size 160 m x 240 m with a constant 

hydraulic conductivity of 0.864 m/day. It is assumed that the effluent (pollutant) has been flowing 

continuously within the pipe and contains high concentrations of the non-reactive pollutants – 

chloride and tritium. Several observation borewells are located within the modeling region which is 

used for detecting and measuring the concentration of the pollutant found in the groundwater. It is 

assumed that the relatively small volume of effluent that has leaked into the aquifer does not change 

the original, steady groundwater flow pattern.  
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Figure 4: Hypothetical aquifer with an 

underground pipeline carrying effluent 
Figure 5: Chloride Concentration distributions (mg/L) 

Here the concentration distributions are at steady state. It is required to locate the leak(s) and 

determine the magnitude of the solute and water flux from each leak from the concentration 

distributions of the pollutant observed in the water samples of the observation borewells.  

Table 1: Source predictions by the meshfree RPCM-PSO-SO model of the present study as compared 

to other SO models 

Potential 

Source 

Location 

True Leak 

Magnitudes(L/d) 

RPCM-PSO-SO model 

Predicted  

Leak Magnitudes (L/d) 

Leak magnitudes predicted by 

Gorelick et al. (1983) 

Linear 

Programming(L/d) 

Regression 

(L/d) 

I 0 0 0.0 -1.0 

II 0 0 0.1 -0.6 

III 518.4 518.2 518.2 521.1 

IV 0 0.2 0 -1.3 

V 0 0 0 -1.1 

VI 0 0 0.0 -1.5 

VII 0 3.2 2.0 -0.4 

VIII 259.2 254.8 256.5 259.2 

IX 0 2.0 1.0 0.0 
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The meshfree RPCM groundwater flow and transport simulation was carried out to create the 

concentration data used in this problem. In the transport model two sources (leaks) were placed at the 

locations III and VIII. The concentrations of Chloride and Tritium in the effluent are 15,000 mg/L and 

15,000 µCi/L respectively. The water flux at first leak (location III) and second leak (location VIII) 

are respectively 259.2 L/day and 518.4 L/day. Figure 5 shows the chloride concentration distribution 

from the simulation model. The source predictions by the meshfree RPCM-PSO-SO model of the 

present study is shown in Table 1 where it has been compared with the SO model used by Gorelick et 

al. (1983). It is seen that the RPCM-PSO-SO model predictions are comparable to other models. 

Case Study 2 (Transient case): The aquifer used for the transient field case study is shown in figure 

3. Six hypothetical sources 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5 and 𝑆6 are assumed to be releasing TDS (Total Dissolved 

Solids) contaminant through leaching over a period of four years according to the concentration data 

given in Table 2. It is assumed that after the 4 years of release, the sources stop releasing any 

contaminants. Four observation wells viz. OB-1, OB-2, OB-3 and OB-4 records the contaminant 

(solute) concentrations due to the releases from the above sources for a simulation period of 10 years. 

Table 2: Strength of the sources during the leaching period 

Release Year 

Source strength (in ppm) 

S1 S2 S3 S4 S5 S6 

1st year 1000 1500 890 0 0 500 

2nd year 0 1200 1000 0 0 700 

3rd  year 900 500 0 1000 850 0 

4th year 0 0 800 1300 1100 0 

The concentration values at the observation bore wells are recorded for every 30 days (monthly) to 

construct the breakthrough curves at the wells (Figure 6). The breakthrough curves at the four 

observation bore wells serve as the measured concentration data and are used as the input to the 

source identification model. The goal of the source identification model is to reconstruct the release 

history of the sources (Table 2) from this given concentrations data. The result of the source 

identification model is presented in Table 3. 
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Figure 6: Breakthrough curves at the observation wells 

The source strength predictions are shown in brackets (bold) alongside the actual release strengths. 50 

x 103 iterations of PSO was used to generate this result. It is observed that the source predictions are 

accurate to within 5% of the true values. It may be observed that a few artificial or spurious sources 

are also predicted. However their magnitudes are very small and can therefore be safely neglected. 

Table 3: Predicted strengths (bolded in bracket) of the sources during the leaching period 

Release 

Year 

Source strength (in ppm) 

S1 S2 S3 S4 S5 S6 

1st year 1000 (1031) 1500 (1552) 890 (888) 0 (0) 0 (1) 500 (491) 

2nd year 0 (27) 1200 (1257) 1000 (999) 0 (1) 0 (1) 700 (691) 

3rd  year 900 (878) 500 (462) 0 (1) 1000 (1000) 850 (850) 0 (9) 

4th year 0 (3) 0 (6) 800 (800) 1300 (1300) 1100 (1100) 0 (4) 

Further, the robustness of the proposed RPCM-PSO-SO model for source identification was examined 

by considering additional scenarios which simulates cases with limited amount of concentration data, 

missing or incomplete concentration data, intermittent or irregular data collection etc. Effect of the 

location of the observation borewells with respect to the sources was also examined by placing the 

wells randomly and in the contaminant plume path. It was observed that the source identification 

model was able to reconstruct the release histories satisfactorily in all the above cases.  The 

application of the meshfree RPCM-PSO-SO model was further extended to cases with uncertain 
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concentration data since errors or uncertainties are inevitable in field measurements. The 

measurement uncertainties were simulated by perturbing the concentration data with random errors 

sampled from a normal distribution. Various ways of dealing with erroneous concentration data were 

examined such as, smoothing of the input data to recover the underlying relationship, imposing global 

and local constraints on the sources from field information, incorporating field information to rule out 

spurious predictions, giving weights when such information is conceivable or available etc. The 

developed source identification model was able to cope with the uncertain input data but the 

prediction accuracies are reduced with increase in uncertainty. From the above case studies, it can be 

concluded that the meshfree RPCM-PSO-SO model can be effectively used for groundwater source 

identification. 

Conclusions 

Following important conclusions are drawn from the present study: 

 A Meshfree RPCM model is developed for groundwater flow and solute transport simulation 

for both confined and unconfined aquifers. The models are verified with available analytical 

and numerical solutions using FDM and FEM and found to be in good agreement. The 

developed model was also applied to a field case study. The results are compared to field 

measurements and with the results from FEM computation. The results were found to be 

satisfactory validating the applicability of the RPCM model. 

 For the purpose of groundwater source identification, a simulation-optimization (SO) model 

using meshfree RPCM as the simulator and PSO as the optimizer was developed. The model 

was verified with other methods available in the literature and found to be effective. 

 The source identification model was applied to a field case problem. Robustness of the model 

was examined by simulating various field scenarios such as limited amount of concentration 

data, missing concentration data, intermittent or irregular data collection etc. The effects of 

the location of the observation borewells, with respect to the contaminant plume path, on the 

model predictions were also examined. The model has been found to be effective for all types 

of the problems. 

 The source identification model was also examined for its capability to handle concentration 

data with measurement errors. Both moderate and high levels of measurement errors were 

simulated and it was found that the model could handle the uncertainties involved. 

 The RPCM-PSO-SO model developed identified the location and magnitude of the sources to 

acceptable accuracy and will be a useful tool in remediation of contaminated aquifers. 
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Chapter 1 

Introduction 

1.1 General 
Groundwater accounts for roughly a third of the source of drinking water for the world’s population and 

is one of the components of the hydrological cycle. In some regions of the world, the share of 

groundwater as drinking water is as high as 75 percent (Sampat, 2000). Major aquifers are tapped  on 

every continent, and ground- water  is the  primary  source  of  drinking  water  for more  than  1.5  billion  

people  worldwide. It is predicted that groundwater may become the main source of water in future as 

many terrestrial sources of fresh water are getting dried up or their water volume is reduced due to global 

warming and climate changes. In many arid regions, groundwater is the only reliable source of water for 

drinking and for agricultural activities. As rivers and lakes are stretched to their limits with many of them 

getting dried up, dams being constructed or polluted, we’re growing more and more dependent on 

groundwater.  

Even as our dependence on groundwater increases, the availability of the resource is becoming more 

limited. Overexploitation of groundwater due to intensive competition among factories, farms, and 

households, has led to rapid depletion of the water table in many places around the world. On almost 

every country, many major aquifers are being drained faster than their natural rate of recharge. 

Groundwater depletion is most severe in many parts of India, China, the United States, North Africa, and 

the Middle East (Sampat, 2000).  

In many coastal areas, salt water intrusion has become a very serious problem as the sea water and 

groundwater equilibrium is disturbed due to overuse of groundwater. Moreover in many places around the 

world, groundwater contamination has become a very serious issue due to uncontrolled human and 

industrial activities. Not only has this rendered the groundwater in many areas unusable, but the soil and 

groundwater being contaminated by toxic substances pose a threat to human and environmental health as 

they enters the food chain through absorption by plants. Therefore proper management of this precious 

source of water on which mankind depends is very important. Remediation and protection of groundwater 

is very vital to human needs and to maintain nature’s ecological balance also. An important aspect in 

groundwater remediation is to identify the location and estimate the release magnitude of the unknown 

contaminant sources. The main scope of the present study is groundwater contaminant source 

identification using a simulation-optimization approach. 
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1.2 Groundwater pollution problems 
Over the past few decades, the groundwater resources of the world have become vulnerable to serious 

threats of pollution due to rapid industrialization and uncontrolled extraction of groundwater. Areas 

known to be severely affected are often densely populated areas where groundwater is heavily used and 

dependent upon as a drinking water source. A wide variety of organic and inorganic chemicals have been 

identified as potential contaminants in groundwater (Freeze and Cherry, 1979). These include inorganic 

compounds such as nitrates, brine, and various trace metals; dissolved solids; synthetic organic chemicals 

such as fuels, chlorinated solvents, and pesticides; radio-active contaminants associated with defense 

sites; and pathogens. 

1.3 Groundwater flow and transport modeling 
The growing economic importance of aquifers as a potable water supply and the potential adverse effects 

that contamination can pose to users of aquifers necessitate the development of improved methods of 

predicting the transport of contaminants in aquifers both spatially and temporally. The scientific 

developments in solving partial differential equations numerically, and the technological developments in 

the computer industry during the past decades, have collectively made it possible to solve complex 

aquifer flow and aquifer contamination problems in a cost-effective and efficient way. For some aquifer 

problems, such as wellhead protection and water supply design, groundwater flow modeling is sufficient. 

However, for a solute transport problem, both groundwater flow and solute transport modeling are 

required. Groundwater flow and solute transport models are mathematical tools that can range from 

simple analytical solutions, which can be solved using a calculator, to far more complex numerical 

models that can only be solved using a digital computer (Bear, 1979). These models can be used to 

develop optimal groundwater usage and management models, and to develop remedial measures to 

address the contamination. 

Groundwater modeling is one of the main tools used in the hydrogeological sciences for the assessment of 

the resource potential and prediction of future impact under different circumstances/stresses. Its predictive 

capacity makes it the most useful tool for planning, design, implementation and management of the 

groundwater resources. 

1.4 Groundwater source identification 
While the importance of groundwater as the source of potable water has grown over the years, 

groundwater pollution has become a serious environmental problem due to rapid industrialization, 

uncontrolled extraction of groundwater, uncontrolled disposal of industrial and domestic wastes, seepage 

from urban landfills etc. Once contaminated, it is very expensive to remediate the aquifer. To make the 
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remediation effective, accurate assessment of the contamination and proper planning is required. 

Groundwater source identification is vital to the remediation of a contaminated aquifer. Only when the 

sources are identified, the effective planning for remediation can be taken up. Once identified, the sources 

can be plugged or prevented from further leakages. Also it will help to fix the responsible facility or unit 

and take other legal measures (Delleur, 2007). 

However, identifying the source of groundwater contamination is not an easy task since the only available 

information in most of the cases is the contaminant concentration data found from water sampling in an 

area. Physical approaches such as tracer tests will be difficult to perform in most of the field situations. In 

this context, the effective method may be to develop computer or numerical models. In the past three 

decades, several modeling approaches have been proposed for groundwater source identification. Since it 

is in developmental stages, most of the proposed approaches have serious limitations and limited 

applicability in field conditions. Among the proposed approaches, the simulation-optimization approach 

has the potential to handle actual field problems with complex geometries. It couples a groundwater flow 

and transport model to an optimization model. Since there are many methods to perform the simulation 

and the optimization, it provides a lot of flexibility in the choice of these models.  

1.5 Simulation-Optimization model for source identification 
Simulation-optimization models are powerful tools for groundwater source identification with the 

potential to be widely applicable to a number of field problems. It was the first method proposed for 

groundwater source identification. A large number of researches towards groundwater source 

identification have been focused on the SO models due to its flexibility in the choice of simulation and 

optimization techniques (Gorelick et al., 1983). The basic principle behind SO model is to find the 

combination of the sources which gives closest match between observed and simulation predicted solute 

concentrations. This matching is done by defining an objective function.  The objective function is 

usually the sum of squares of the differences between the observed and predicted solute concentrations. 

Other types of objective functions can also be defined as per the requirements of the problem. A number 

of conventional (e.g. linear programming, non-linear programming, regression etc.) and heuristic or 

artificial intelligence based (genetic algorithm, swarm intelligence optimization etc.) optimization 

techniques may be adopted (Datta et al., 2009). For the simulation model, commonly used methods are 

the finite-difference and finite element methods. Recently meshfree methods have also been used in 

simulation of groundwater flow and transport.  
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1.6 Motivation of the study 
Groundwater is a significant source of drinking water for the world’s population. In many areas of the 

world, it is also the main source for irrigation. It is predicted that groundwater may become the main 

source of water in future as many terrestrial sources of fresh water are getting dried up or their water 

volume is reduced due to global warming and climate changes. However, groundwater resources of the 

world are facing serious threats of contamination or are already contaminated due to rapid 

industrialization, overexploitation or uncontrolled extraction of groundwater, uncontrolled disposal of 

industrial and domestic wastes, seepage from urban landfills etc. (Freeze and Cherry, 1979). Remediation 

of contaminated aquifers is very expensive and requires proper planning both to optimize the cost and 

increase its effectiveness. This calls for accurate tracking and assessment of the groundwater 

contamination.  

A very crucial aspect in the remediation process is to identify the location and release magnitude of the 

unknown contamination sources. Only then an effective remedial measure can be designed and it will also 

help to fix the responsibilities. Simulation optimization (SO) models have been found to be very effective 

for groundwater contamination source identification. 

Generally used simulation models are based on Finite Difference Method (FDM) and Finite Element 

Method (FEM). Compared to these methods, meshfree based methods offer advantageous in that no mesh 

is required. The construction of mesh is computationally very expensive. Moreover, radial basis functions 

(RBF) used in meshfree methods such as Radial Point Collocation Method (RPCM) have high 

interpolation accuracy. High Peclet transport problems are also much easier to deal with meshfree RPCM.  

For optimization, compared to generally used traditional methods such as linear programming, non-linear 

programming etc. have inherent disadvantages. Recently swarm intelligence techniques such as Particle 

Swarm Optimization (PSO) have been found to be very effective for global optimization. PSO offers easy 

implementation and also easy integration with simulation model, has fewer parameters to adjust. It can 

locate the global as well as local optimas unlike conventional gradient based optimizers which can get 

trapped in local optima. 

In this study, the simulation-optimization model has been proposed for groundwater contaminant source 

identification. Due to the advantages of meshfree method, here the Meshfree Radial Point Collocation 

Method (RPCM) is proposed as the simulation model. The Particle Swarm Optimization (PSO) is 

proposed as the optimization model. Both models will be coupled to construct the SO model. 
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1.7 Objectives of the study 
The main aim of this study is to develop methods for locating or tracing the sources of contamination in a 

given contaminated area. It is assumed that many potential sources of contamination may be present in 

the area. This is an inverse modeling problem. It is proposed to use a simulation-optimization model in 

this study to achieve this goal.  

The specific objectives of the study are: 

• Development of coupled groundwater flow and transport simulation models using 

meshfree radial point collocation methods (RPCM) for both confined and unconfined 

aquifer problems. 

• Development of optimization model using Particle Swarm Optimization (PSO). 

• Coupling of meshfree RPCM simulation model and PSO based optimization model to 

develop Simulation-Optimization (SO) models for groundwater source identification. 

• Validation of the developed models with benchmark problems from published literature. 

• Application of the developed SO model to hypothetical and field case studies, and to 

cases with uncertainty in concentration data. 

 

1.8 Organization of the report 
This report is organized in seven chapters including the present one which deals with the general aspects 

of groundwater and the objectives of the study. Chapter 2 gives a comprehensive review on the major 

developments and research works carried out so far in groundwater flow and transport modeling with 

conventional and with mesh free techniques. It also reviews the developments in contaminant source 

identification techniques in aquifers and in particular, the use of Simulation-Optimization methods for 

contaminant sources. 

Chapter 3 deals with the fundamental aspects and theoretical developments in groundwater flow and 

transport modeling and groundwater source identification. Chapter 4 introduces the mesh free RPCM 

and elaborates on the numerical formulation of the flow and transport equation with mesh free RPCM 

methods. It also includes the verification and benchmarking of the formulations developed with several 

1D and 2D problems. The developed meshfree RPCM model has also been applied to a field case study. 

Chapter 5 deals with the theoretical and numerical aspects of groundwater source identification. A 

meshfree RPCM and PSO based simulation-optimization model for groundwater source identification has 

been developed and verified using literature available test problems. Chapter 6 gives the application of 
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the developed simulation-optimization model to a wide variety of problems. A field case study is 

presented with various scenarios that may arise in real field problems of groundwater source identification 

and to test the robustness of the model. A section on handling uncertain concentration data has been 

included. Chapter 7 summarizes the research work carried out in this study, the conclusions drawn from 

it and the scope for future works. 
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Chapter 2 

Literature review 

2.1 Introduction 
This chapter discusses the developments and current research directions in groundwater flow and 

transport modeling, meshfree methods and groundwater contaminant source identification. It also briefly 

examines the existing methods or techniques in these areas and explores the issues with these methods 

and their proposed solutions.  

2.2 Groundwater flow and transport modeling 
Groundwater modeling has, nowadays, become a major part of most projects dealing with groundwater 

development, protection and remediation. With the improvements in computer hardware and software, the 

role of groundwater models will continue to increase. Earlier models of groundwater used finite 

difference method but over the years many new techniques have been applied in groundwater modeling 

such as finite element method, boundary element method, boundary integral equation method, analytic 

elements, integrated finite difference, mesh free methods etc. Each of these methods has their own 

advantages and disadvantages. A brief review of the various groundwater flow and transport modeling 

techniques and tools are provided herewith. 

Pinder (1973) used Galerkin method of approximation to simulate the movement of groundwater 

contaminants. This paper is among the first application of finite element to groundwater modeling. The 

main advantages that the author claimed in using finite element in solving the groundwater flow and mass 

transport equations  was that this approach allowed a functional representation of the dispersion tensor, 

transmissivity tensor, and fluid velocity, as well as an accurate representation of boundaries of irregular 

geometry. As a field application, he successfully used the method to track chromium contamination on 

Long Island, New York, and showed that accurate simulations can be obtained by using the Galerkin-

finite element approach. 

Strack and Haitjema (1981) developed the analytic element method for regional groundwater modeling. 

This new method avoids the discretization of a groundwater flow domain by grids or element networks. 

Instead, only the surface water features in the domain are discretized, broken up in sections, and entered 

into the model as input data. Each of these stream sections or lake sections is represented by closed form 

analytic solutions: the analytic elements. The comprehensive solution to a complex, regional groundwater 

flow problem is obtained by superposition of all, a few hundred, analytic elements in the model. 
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Traditionally, superposition of analytic functions was considered to be limited to homogeneous aquifers 

of constant transmissivity. However, by formulating the groundwater flow problem in terms of 

appropriately chosen discharge potentials, rather than piezometric heads, the analytic element method 

becomes applicable to both confined and unconfined flow conditions, as well as to heterogeneous 

aquifers. The analytic elements are chosen to best represent certain hydrologic features. For instance, 

stream sections and lake boundaries are represented by line sinks, small lakes or wetlands may be 

represented by areal sink distributions. Areal recharge is modeled by areal source distributions (areal 

sinks with a negative strength). Streams and lakes that are not fully connected to the aquifer are modeled 

by line sinks or area sinks with a bottom resistance. Discontinuities in aquifer thickness or hydraulic 

conductivity are modeled by use of line doublets (double layers). Specialized analytic elements may be 

used for special features, such as drains, cracks, slurry walls, etc. 

Ligget (1987) explored the advances of the boundary element method to model groundwater problems. 

He observed that diffusion and advection-diffusion solutions could be done efficiently including the 

incorporation of inhomogeneity, anisotropy, and nonlinear diffusion. Some of the problems suggested by 

the author which are ideally suited for application of the method are the difficult problem of stream-

aquifer interaction, flow in fractured media and seawater intrusion forms. These problems are 

complicated in nature. He suggested that for these and other applications the boundary element method 

provides an inexpensive technique for calculation where the data preparation and setup time is minimal 

and programs can be written easily. 

Harbaugh and McDonald (1996) developed a finite-difference code for modeling three dimensional 

groundwater flow. It is one of the most widely used code and also well validated by hydro-geologist 

around the world. Several commercial codes available today are based on this code. The code has been 

updated in 1988 and 2000. One of the main feature of this code is its modularity i.e. separate modules can 

be written and incorporated into the code. 

Anderson and Woessner (2002) discussed the various aspects of groundwater flow and transport 

modeling including calibration and parameter sensitivity. The book deals mainly with the popular 

methods of finite-difference and finite-element. All the protocols and consideration to be made for a 

practical groundwater modeling are discussed. Popular codes are reviewed along with the shortcomings. 

Zheng and Bennet (2002) discussed all the techniques used for groundwater transport modeling. 

Theoretical foundations of contaminant transport are elaborately discussed. Several techniques for solving 

groundwater transport such as finite difference, finite element, method of characteristics (MOC), 
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modified MOC, hybrid MOC, particle tracking etc. are all discussed. Dedicated chapters are there for 

handling different solute types, uncertainty and data collection and conceptualization of the model. 

Rastogi (2007) discussed latest techniques in numerical modeling of groundwater flow and transport 

including various applications such as groundwater management, inverse modeling, contaminant 

migration and remediation. 

Desai et al., (2011) illustrated the application of finite element method to groundwater flow and transport 

simulation. Various aspects of developing FEM models in various areas of scientific and engineering 

endeavors have been discussed in detail. 

2.3 Groundwater modeling with meshfree methods 
Meshfree methods offers an alternative approach to the mesh or grid based techniques such as FDM and 

FEM. Being free from mesh, it gives a number of advantages over mesh based approaches and is 

increasingly becoming popular. There are various approaches/types of mesh free methods (Liu and Gu, 

2005). 

Kansa (1990) used a mesh free scheme for solving partial differential equations (PDE) using a globally 

supported multi-quadrics radial basis functions (MQ-RBF) interpolant. He employed a point collocation 

discretization of the governing PDEs, known as strong form approach. This globally supported RBF 

collocation method suffers from ill-conditioning as the number of nodes increases and was also 

computationally expensive (Gutierrez and Florez, 2008). Many approaches have been proposed to 

overcome these difficulties. One of the approaches is the use of locally supported RBF interpolant.  

To improve the robustness of the Kansa method, Fedoseyev et.al.(2002) proposed an improved Kansa –

MQ method by using an additional set of collocations points beyond the boundary and an additional set of 

collocation equation of the governing equation on these points.  

There are many other issues which are yet to be addressed in using the RBF interpolation and collocation 

approach such as the optimal choice of shape parameter, shape and size of the local support domain etc. A 

few strategies have been suggested in Kansa and Carlson (1992); Rippa (1999), Schaback and Wendland 

(2000), Fornberg and Wright (2004) etc. for the optimal choice of the shape parameter. The stability and 

accuracy of radial basis function interpolations are very sensitive to the value of shape parameter 

(Driscoll and Fornberg, 2002; Fornberg and Wright, 2004; Larsson and Fornberg, 2005). Another issue 

with the collocation technique is that of instability at the boundary when it involves singularity or 

derivative (Neumann) boundary conditions (Zuppa and Cardona, 2003; Bernal et.al.,2009) etc. A 

discussion of the issues with RBF collocation method can be found in Gutierrez and Florez (2008). The 
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relative performance of the different variations of the RBF collocation methods has also been discussed in 

the same paper. The loss of accuracy due to presence of derivative boundary conditions is also well 

known (Liu and Gu, 2005), though some special treatments are available. Liu and Gu (2005) and 

Gutierrez and Florez (2008) discussed different strategies of handling the derivative boundary conditions 

along with the relative performances of each strategy. Chen (2009) has observed that owing to the 

smoothness and non-locality of radial basis functions, it poses considerable difficulties in solving problem 

with local features and heterogeneity, and proposed a technique called subdomain strong form collocation 

to deal with such problems. 

In this section, further brief literature review on the application of mesh free methods to groundwater 

modeling is presented. 

Li et al., (2003) developed a mesh less method for modeling groundwater contaminant transport. The 

algorithm uses collocation method with radial basis functions as the interpolation function. The authors 

tested and presented numerical results for several cases in two and three dimensions involving pure 

diffusion, advection and dispersion for continuous source; advection and dispersion for instantaneous 

source; advection and dispersion for patch-source. For the transient case, they have found that both the 

Crank-Nicholson and fully implicit time stepping schemes were convergent with similar accuracy. They 

observed that the method is very simple and accurate. 

Chandhini and Sanyasiraju (2007) applied a mesh free method known as radial basis function-finite 

difference (RBF-FD) for solving steady convection-diffusion equations. This method is a finite-difference 

type scheme based on radial basis function, first proposed by Wright and Fornberg  (2006). The authors 

have employed multi-quadrics RBF. Convection dominated equations are very challenging as it can lead 

to oscillations and numerical dispersion. The scheme they have developed was applied to both linear and 

non-linear problems in one and two dimensions. Several test problems were chosen to check the 

performance of the mesh free scheme under various conditions such as moderate to high Reynolds 

number, different types of boundary conditions, regular and irregular grids etc. The authors have reported 

that the solution obtained with their mesh free scheme was accurate and non-oscillatory. 

Kumar and Dodagoudar (2008) applied a mesh free method, the radial point interpolation method (RPIM) 

with polynomial reproduction, to model the two-dimensional contaminant transport through saturated 

porous media. In RPIM, the approximate solution is constructed entirely in terms of a set of nodes and no 

characterization of the interrelationship of the nodes is needed. In their method, the radial basis function is 

used only for shape function construction which is the only mesh free part, the rest of the method is 

actually same as FEM. Locally supported domains were used for the shape function creation. An 
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advection-dispersion equation with sorption was considered to illustrate the applicability of the RPIM. 

They have implemented Galerkin weak form of the governing equation using two-dimensional mesh free 

shape functions constructed using thin plate spline radial basis functions. Through three numerical 

examples, their results are compared with those obtained from the analytical solution and finite element 

method. Experimental results were also used to validate the approaches. They found that the proposed 

mesh free method showed no oscillations and also able to tackle to Peclet constraints without 

modification. 

Alhuri et.al., (2011) compared the performance of two types of mesh free collocation method for 

modeling groundwater contaminant transport. One is based on a globally supported multi-quadric radial 

basis function (MQ-RBF) for function approximation while the other was based on locally supported 

compactly supported radial basis functions (CSRBF). Their algorithm uses collocation method with radial 

basis functions. They have presented numerical results for 1-D, 2-D and 3-D groundwater contaminant 

transport models and shown that the method was very simple and accurate. The authors observed that 

CSRBFs with a suitable choice of scaling factor 𝛿 performed better than global MQ-RBFs. It was also 

found that the condition number of MQs scheme increased rapidly with the increase in the number of data 

points. Using CSRBF technique which enables one to work with sparse banded matrices, the problem of 

ill-condition was reduced and improved the conditioning of the matrices. 

Meenal and Eldho (2011) have applied mesh free point collocation method using Multi-quadrics radial 

basis function (MQ-RBF) to solve the groundwater flow equation in an unconfined aquifer and applied it 

to a case study using real field data. This work is the first application of mesh free collocation method to a 

large scale field study. The authors have employed rectangular local support domain for RBF 

interpolation and so called dummy nodes are constructed for nodes in the periphery or boundary and for 

the applications of derivative boundary. The developed method was verified through several one and two 

dimensional problems. The comparison was done against either analytical solution or FEM or BEM 

solution, if analytical solution is not available. Sensitivity analysis was performed for time-steps, nodal 

distance and shape parameter values of the multi-quadric RBF. Calibration was also performed for the 

field problem. Through their numerical exercises, they have found that the developed mesh free technique 

was giving very good agreements with field measured data. The authors have highlighted issues such as 

choosing the optimal value of the shape parameter, which is yet unresolved issue in mesh free method. In 

this work, an isotropic aquifer was considered but the method developed can be extended to 

heterogeneous aquifers also. 
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Meenal and Eldho (2012b) developed a mesh free collocation method to solve a two-dimensional coupled 

groundwater flow and solute transport problem. This mesh free method was applied to model contaminant 

transport through groundwater at an industrial complex (refinery) in Gujarat, India. Contaminant transport 

is a complicated problem as it involves solving both the flow and transport equations and coupling them. 

The formulation used is similar to what the authors have used in Meenal and Eldho (2011) and is an 

extension of their earlier work. The verification of the method was carried out by comparing the mesh 

free solutions with either analytical solutions or FEM solutions, when analytical solutions are not 

available, for one and two dimensional problems. The mesh free results were found to be in good 

agreement with standard FEM simulations. However sensitivity analysis reveals that the mesh free model 

was sensitive to shape parameter value of the MQ-RBF. This is a well-known issue while using RBF 

function interpolation (Driscoll and Fornberg, 2002). The issue of finding the optimal choice of the shape 

parameter is not yet addressed so far in mesh free formulations. It is generally found by hit and trial 

method. This paper demonstrated the applicability of mesh free collocation methods in complex and large 

scale field problems. 

Cifti et al., (2012)  applied radial basis function collocation method to investigate the solute transport 

phenomena under heterogeneous conditions. They studied 1-D and 2-D transport scenarios in which 

scale-dependent dispersivity fields were taken into consideration and compared it with available 

analytical solutions. For assessing the sensitivity of their method, different radial basis functions (RBFs) 

augmented with polynomials of varied orders, were studied. For the designed test cases uniformly 

distributed interpolation nodes as well as randomly scattered data points were used. The simulation results 

were compared with the results of MT3DMS (Zheng and Wang, 1998) which is a modular three-

dimensional transport model with alternative solution schemes including the method of characteristics, 

the implicit central finite difference and the third order total variation diminishing finite volume. They 

reported that the mesh free collocation method predicts the solute concentration behavior in a more 

accurate manner than MT3DMS. They used the model to simulate a real case of solute transport through a 

two-layer soil which was set up experimentally. They found that the results were very close to the 

experimentally measured values and demonstrated the applicability of the mesh free collocation to 

heterogeneous conditions. 

Swathi and Eldho (2013) used Meshless Local Petrov-Galerkin (MLPG) method with strong form of 

collocation with exponential/Gaussian radial basis function to solve the groundwater flow problem in 

confined aquifer. MLPG was first proposed in Atluri and Zhu (1998). The developed 1D model was 

verified with available analytical solution while the 2D model was compared against FEM solutions. Two 

case studies were taken up –one of them being an aquifer with anisotropy and heterogeneity. The MLPG 
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results were found to be satisfactory. However it was observed that the accuracy of the MLPG method 

was affected by various model parameters such as the value of shape parameter of the multi-quadric RBF 

used, support domain size, nodal distances etc. But these issues are common to most mesh free methods.  

The authors carried out a sensitivity analysis with regard to the above parameters to study how they affect 

the accuracy and to determine the optimum values of them. This study demonstrated that the MLPG 

based Meshless method was very effective in the simulation of groundwater flow problems. 

Alice et al., (2014) used reviewed the application of collocation based meshfree method to groundwater 

flow. A meshFree method based on PCM is discussed and comparison of results obtained with the 

conventional FEM is presented for groundwater flow problems. They developed PCM- and FEM-based 

groundwater flow models for confined aquifer in two-dimensional are developed. The PCM model has 

been applied to hypothetical groundwater flow problems and results are compared with analytical 

solutions and FEM model results. The meshfree-based PCM model has been found to be more accurate 

than FEM results when compared with analytical solutions.  

2.4 Contaminant Source identification in groundwater 
When multiple potential contaminant leakage sources are present, it can be quite a challenge to identify 

the source of contaminant leakage based on contamination data collected from surveillance bore wells. 

Detailed information of the potential sources is a pre-requisite to this effort. Most attempts at quantifying 

contaminant transport have relied on solving some form of a well-known governing equation referred to 

as advection-dispersion-reaction equation. In identifying the source of pollution we have to solve the 

governing equations backward in time, a process known as inverse modeling. But modeling contaminant 

transport using reverse time is an ill-posed problem since the process, being dispersive, is irreversible. 

Because of this ill-posedness, such problems have discontinuous dependence on data and are very 

sensitive to the errors in data. Non-uniqueness is another major issue for inverse calculations. In inverse 

problems, one of the common practices to overcome the stability and non-uniqueness problem is to make 

assumptions about the nature of the unknown function so that the finite amount of data in observations is 

sufficient to determine that function. In the case of groundwater pollution source identification, most of 

the time, additional informations are available such as the location of potential release sites and chemical 

fingerprints of the plume. Hester and Harrison (2008) discussed the importance of source identification in 

environmental forensics and the critical role played by it from legal perspectives. 

Various methods have been proposed for the identification of contaminant source in groundwater. All the 

methods attempt to solve the Advection-Dispersion equation (ADE) backward in time in order to identify 

the pollution sources. These methods may broadly be subdivided into four major groups (Atmadja and 
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Bagtzoglou, 2001b) namely optimization methods, analytical solution and regression approaches, direct 

methods, probabilistic and geo-statistical approach. In optimization methods, a forward simulation is run 

and the solution obtained is checked against the measured/current spatial data observed. Owing to the 

non-uniqueness of the solution and the infinite number of plausible combinations, an optimization method 

to obtain the best fitted solution is devised. Direct methods usually reconstruct the plume history. 

Analytical methods are an inverse method based on analytical solution of the contaminant transport 

equation and parameter estimation using linear or non-linear regression. Probabilistic and geo-statistical 

approaches are a group of techniques which attempts to solve the ADE backward in time without relying 

on optimization approaches. A probabilistic approach involves solving the transport problem with 

stochastic differential equations backward in time. Each of the methods is subject to significant 

drawbacks and limitations. A brief review of the various approaches is presented here. 

Gorelick et.al.(1983) was among the first who studied the pollution source identification problem using 

optimization approaches. The groundwater pollution source identification problem was formulated as a 

forward time simulation with an optimization model. For optimization, they used least squares regression 

and linear programing for least absolute error estimation combined with groundwater solute transport 

simulation to identify the locations and magnitudes of aquifer pollutant sources. Pollutant sources were 

identified by matching simulated and measured non-reacting solute concentration data. They assumed 

known hydraulic parameters i.e. no uncertainty in the physical parameters of the aquifer but concentration 

data errors were considered explicitly. The identification models were demonstrated and compared using 

two hypothetical aquifer systems, one for the steady state case and the other for the transient case. The 

number of likely leak locations was restricted in the models by employing mixed integer programing and 

stepwise multiple regressions. By minimizing either least absolute or least squared errors they were 

successful in identifying pollutant sources. The limitation of the method was the assumption of no 

uncertainty in aquifer parameter and also the restriction to cases where data are available in the form of 

breakthrough curves. It also displayed spurious negative values. 

Wagner (1992) proposed another optimization method for simultaneous model parameter estimation and 

source characterization, using inverse modeling that combines groundwater flow and contaminant 

transport simulation with non-linear maximum likelihood estimation, to determine optimal estimates of 

the unknown model parameters and source characteristics based on measurements of hydraulic head and 

contaminant concentration. In this method, a first-order uncertainty analysis provided a means for 

assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability 

of the flow and transport model predictions. Hydraulic conductivities, effective porosity, longitudinal and 

transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-
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dimensional groundwater system. Characterization of the history of contaminant disposal or location of 

the contaminant source was demonstrated through hypothetical examples. One of the limitations of the 

method is the reduction in accuracy with increasing number of unknown parameters. 

Bagtzoglou et.al. (1992) proposed a random walk based backward tracking model. It is the among the 

first to attempt solving the ADE backward in time without relying on optimization approaches. In their 

work, they modeled the reversed time transport equation using random walk particle methods, for which 

the advective part of the transport model is reversed while the dispersive part is left unchanged. They 

presented a probabilistic framework to identify solute sources in heterogeneous media. Repeated reversed 

time solute transport simulations with evaluation of the first two moments of the concentration probability 

density function (pdf) were conducted. Using geo-statistical techniques, they successfully assess the 

relative importance of each potential source. The proposed scheme provided probabilistic estimates of 

source locations and spill-time histories. The method assumed the spill incidents to be instantaneous and 

occurring simultaneously. Also the dispersion part was kept positive. 

Wilson and Liu (1994) proposed a probabilistic approach to solve the transport problem with stochastic 

differential equations backward in time. They kept the dispersion part positive and reversed the advection 

part. They provided two types of maps, namely, travel time probability and location probability maps. 

The authors showed that both location and travel time probabilities could be calculated directly, using a 

backward-in time version of traditional continuum advection-dispersion modeling. The results for travel 

time probability are in very close agreement with the simulation results from traditional forward-in-time 

methods. 

Snodgrass and Kitanidis (1997) also used a probabilistic approach combining Bayesian theory and geo-

statistical techniques. The Bayesian framework is used to derive the best estimate and to quantify the 

estimation error. In their approach the source function to be estimated is discretized into components that 

are assigned a known stochastic structure with unknown stochastic parameters. The method incorporates 

uncertainty in contaminant concentration. The method produces a best estimate of the release history and 

a confidence interval. Conditional realizations of the release history are generated that can be useful in 

visualization and risk assessment. This method is an improvement to some other methods in that the 

solutions are more general and make no blind assumptions about the nature and structure of the unknown 

source function. This approach was used for cases for which the location of the potential source was 

known a priori.  

Alapati and Kabala (2000) used a non-linear least-squares (NLS) method without regularization to 

recover the release history of a groundwater contaminant plume from its current measured spatial 
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distribution. They assumed the flow system to be one-dimensional, with the plume originating from a 

known single site. The solution was found to be very sensitive to noise and to the extent to which the 

plume is dissipated. Despite the extreme sensitivity to measurement errors for the gradual release scenario 

in using the NLS method, it could resolve the release histories for catastrophic release scenarios 

reasonably well, even in the presence of moderate measurement errors. The authors used a number of 

synthetic numerical examples for analysis. They suggested that for catastrophic contaminant releases the 

NLS method may be an alternative to the Tikhonov regularization approach.  

Atmadja and Bagtzoglou (2001a) proposed a method called the marching-jury backward beam equation 

method to solve the ADE equation backwards in time for contaminant source identification. It is an 

enhancement of the Backward Beam Equation (BBE) method, first developed by (Carasso, 1972), to 

solve the Advection-Dispersion Equation (ADE) within the context of contaminant source identification. 

The authors have applied the BBE method for the first time to solve the ADE with heterogeneous 

parameters. By altering the method, to produce a hybrid between a marching and a jury method called the 

Marching-Jury Backward Beam Equation (MJBBE), they were able to make the problem practical to 

solve. Their method was capable of recovering the time history and spatial distribution of a groundwater 

contaminant plume from measurements of its current position. Using examples involving deterministic 

heterogeneous dispersion coefficients they showed that the method was robust enough to handle 

heterogeneous parameters. However the method was sensitive to noise. 

Michalak and Kitanidis (2004) extended the geo-statistical approach to inverse modeling to allow for the 

recovery of the antecedent distribution of a contaminant at a given point back in time, which is critical to 

the assessment of historical exposure to contamination. These problems are typically strongly 

underdetermined, with a large number of points at which the distribution is to be estimated. To address 

this challenge, the authors have applied the adjoint state method to increase the computational efficiency. 

They have presented the adjoint problem in a format that allows for the reuse of existing groundwater 

flow and transport codes as modules in the inverse modeling algorithm. Through a few presented 

applications, they showed that geo-statistical approach combined with the adjoint state method allow for a 

historical multidimensional contaminant distribution to be recovered even in heterogeneous media, where 

a numerical solution is required for the forward problem. 

Clayton (2005) used a hybrid of global and local search methods to estimate the location of contaminant 

sources. It is a case of multiple source identification. His method is a linked simulation-optimization 

technique to solve an inverse problem that uses downstream well data to estimate the source. It is an 

extension of the method he has developed to estimate the location of a contaminant source in a simplified 
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two-dimensional setup to the case when there are possibly multiple sources in the same area. In order to 

handle more than one source, he modified the groundwater transport model, expanded the optimization 

methods, and created different visualizations of the problem to better understand the solution. The author 

also compared different optimization methods to find which are best for a multi-source problem, examine 

the difference between the objective function errors versus the actual solution error, and explore the 

possibilities of a non-unique solution to the problem. 

Milnes and Perrochet (2007) presented a theoretical framework that allows direct identification of a single 

point-source pollution location and time in heterogeneous multidimensional systems under known flow 

field conditions. Using the concept of the transfer function theory, they showed that an observed pollution 

plume contains all the necessary information to predict the concentration at the unknown pollution source 

when a reversed flow field transport simulation was performed. They obtained the target concentration 

from a quadratic integral of the observed pollution plume itself. Due to dispersion, backwards simulation 

of the pollution plume leads to shrinkage of the target concentration contour. In their method, when the 

target concentration contour reduces to a singular point or becomes a concentration maximum, the 

position of the pollution source was identified and the backward simulation time indicates the time 

elapsed since the contaminant release. The theoretical basis of the method was first developed for the 

ideal case that the pollution plume is entirely known and was illustrated using a synthetic heterogeneous 

2D example where all the hydro-dispersive parameters are known. Using the same example, they 

illustrated the procedure for a more realistic case where only few observation points exist. 

Huang et al., (2008) used a conjugate gradient method (CGM), based inverse algorithm determining the 

unknown space and time-dependent contaminant source for groundwater systems based on the 

measurements of the concentrations. They assumed that no prior information was available on the 

functional form of the unknown contaminant release function, classified as the function estimation in the 

inverse calculations. They examined the accuracy of this inverse mass transfer problem using the 

simulated exact and inexact concentration measurements in the numerical experiments. 

Datta et.al., (2009) developed a method for simultaneous pollution source identification and parameter 

estimation in groundwater systems based non-linear optimization. The groundwater flow and transport 

simulator is linked to the nonlinear optimization model as an external module. The simulator defines the 

flow and transport processes, and serves as a binding equality constraint. The Jacobian matrix which 

determines the search direction in the nonlinear optimization model links the groundwater flow-transport 

simulator and the optimization method. Performance of the proposed methodology was evaluated by 
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solving illustrative problems and they demonstrated the potential applicability of the developed 

methodology for a fairly large aquifer study area with multiple unknown pollution sources. 

Zi and Mao (2011) applied a radial basis collocation method (RBCM) based on the global space-time 

multi-quadric to solve the inverse problem of groundwater contaminant source identification. Their 

deterministic method directly induces the problem to a single-step solution of a system of over-

determined linear algebraic equations in the entire space-time domain. To overcome the ill-posedness of 

the linear system, the authors used least-square-based radial basis collocation method. They also 

performed sensitivity analysis with respect to calculation parameters, observation data and model 

uncertainty to increase the confidence in the solutions.  Through many application examples of 

contaminant source identification in one- and two-dimensional porous media, they demonstrated that the 

proposed method poses the mesh free advantage and direct identification of contaminant source with 

efficiency. The method showed good performance to resist the noisy measurement data and model 

uncertainty. However estimated release history was found to be very sensitive to the uncertainty of the 

Darcy velocity. They observed that the errors of the estimated release history were relatively large but the 

estimated spatial distributions match the true ones very well. They noted that this method provides a 

robust tool for estimating spatial plume distribution as well as the release history of groundwater 

contaminant source from concentration measurements. 

Jha and Datta (2013) applied an adaptive simulated annealing based method for groundwater 

contamination source identification in a three-dimensional setting. The inverse problem of source 

identification problem was solved using a linked simulation-optimization approach. Optimization 

approaches are used to overcome the non-uniqueness and ill-posedness but such approaches can be 

computationally intensive and the results obtained tend to be highly susceptible to errors in the measured 

data and estimated hydrogeological parameters. To address these issues, the authors used an adaptive 

simulated annealing (ASA) based solution algorithm and found it to be computationally efficient for 

optimal identification of the source characteristics in terms of execution time and accuracy. The authors 

noted that the computational efficiency appears to prevail even with moderate levels of errors in estimated 

parameters and concentration measurement errors. It was also observed that the contaminant 

concentration monitoring locations are critical in the efficient characterization of the unknown 

contaminant sources. They presented optimal identification results for different monitoring networks to 

demonstrate the relevance of a network suitable for efficient source identification. 

Gzyla et al., (2014) presents a new multi-step approach aiming at source identification and release history 

estimation. Their approach consists of three steps: performing integral pumping tests, identifying sources, 
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and recovering the release history by means of a geostatistical approach. A case study in Poland, situated 

in the vicinity of a former chemical plant, was studied in which several areal sources were identified. 

They found that some suspected contamination sources were found to have minor effect on the overall 

contamination while other suspected sources have been proven to have key significance. They showed the 

capability of the geostatistical approach to manage a complex real case study. 

Zhang et al., (2015) proposed an efficient full Bayesian approach for the optimal design of sampling well 

location and source parameters identification of groundwater contaminants. The relative entropy is 

employed, as an information measure, to quantify the information gain from concentration measurements 

in identifying unknown parameters. The sampling locations that give the maximum expected relative 

entropy are selected as the optimal design. Then a Bayesian approach based on Markov Chain Monte 

Carlo (MCMC) is used to estimate unknown parameters. An interpolation method based on the adaptive 

sparse grid was utilized to reduce the computations by constructing a surrogate for the contaminant 

transport equation. Through a numerical study, they demonstrated the applicability of their approach. 

2.5 Simulation-Optimization models for source identification 
Contaminant source identification involves solving the advection-dispersion equation backward in time. 

One of the approaches to backtrack the pollution source location is to run the forward simulations and 

check the solutions with the measured spatial data of the contaminant. But owing to the non-uniqueness 

of the solution and the infinite number of plausible combinations, such a manual search will be almost 

impossible. Hence one needs to follow an optimization method to obtain the best fitted solution. This 

combination of simulation and optimization is one of the early source identification techniques. It does 

not directly solve the advection-dispersion equation backward in time. A brief review of the linked 

simulation-optimization models for source identification is given below. 

Gorelick et al.,(1983) was among the first who studied the pollution source identification problem using 

optimization approaches. The groundwater pollution source identification problem was formulated as a 

forward time simulation with an optimization model. For optimization, they used least squares regression 

and linear programing for least absolute error estimation combined with groundwater solute transport 

simulation to identify the locations and magnitudes of aquifer pollutant sources. Pollutant sources were 

identified by matching simulated and measured non-reacting solute concentration data. The limitation of 

the method was the assumption of no uncertainty in aquifer parameter and also the restriction to cases 

where data are available in the form of breakthrough curves. It also displayed spurious negative values. 
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Wagner (1992) proposed another optimization method for simultaneous model parameter estimation and 

source characterization in which he modeled an inverse model as a non-linear maximum likelihood 

estimation problem. 

Sidauruk et.al. (1998) proposed an inverse procedure based on correlation coefficient optimization to 

locate groundwater contaminant sources and to identify transport parameters. They used two case 

scenarios namely, plumes caused by instantaneous and continuous point sources in a two-dimensional 

uniform groundwater flow field. For these cases the inverse formulas were explicit. They manipulated 

these expressions to yield linear relations between the logarithm of concentration and certain combination 

of parameters. By minimizing the correlation coefficient of the linear regression, parameters such as time 

and space origin of the pollution, groundwater velocity, amount of mass released, dispersion coefficients 

etc. were determined by explicit formulas similar to linear regression equation. Their procedures allow 

not only for the delineation of the sampled contaminant plume, but also the tracing and the projection of 

the plume history. Use of explicit formulas eliminated the need for an initial guess and the subsequent 

iterations to determine the unknown parameters, avoiding the possibility of divergence or false 

convergence to local extrema. However the method requires the deployment of wells following a special 

pattern. 

Mahar and Datta (2000) suggested a methodology using a nonlinear optimization model for estimating the 

unknown magnitude, location and duration of groundwater pollution sources under transient flow and 

transport conditions. The proposed optimization model incorporates the governing equations of flow and 

solute transport as binding equality constraints, and simulated the physical processes of transient flow and 

transient transport in the groundwater systems. Their method identifies unknown sources of pollution by 

using measured values of pollutant concentration at selected locations. Performance of the proposed 

model for the identification of unknown groundwater pollution sources was evaluated for an illustrative 

study area in a hypothetical confined aquifer under different cases of data availability. The effect of 

observation well location with respect to the pollution source location on identification accuracy was also 

investigated. Performance of the developed identification model was also evaluated for a condition when 

concentration measurements were missing during few initial time periods after the pollution sources 

become active. They also investigated the effect of specified initial guesses of the variable values on the 

optimal solutions.  

Mahar and Datta (2001) proposed another optimization-based methodology for identifying unknown 

sources of groundwater pollution. This methodology utilizes an optimization model in which the flow and 

transport equations are embedded as constraints. A nonlinear programming algorithm was used to obtain 
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as solution the optimal estimates of unknown source characteristics. The input to this model includes 

measured pollutant concentration at observation sites. The source identification methodology was further 

extended to the simultaneous estimation of aquifer parameters as well as identification of unknown 

pollutant sources. Through illustrative examples considering two-dimensional flow and advective-

dispersive solute transport, the performance of the developed methodology was evaluated. They examined 

different cases including variability in data availability, single and multiple potential source locations, and 

errors in measurement data. They found that the proposed methodology performs satisfactorily in 

identifying the locations, determining the magnitudes, and specifying duration of the unknown ground-

water pollution sources, even when the aquifer parameters were unknown. 

Singh and Datta (2004) proposed an artificial neural network (ANN) based method to simultaneously 

solve the problems of estimating unknown groundwater pollution sources and estimating unknown hydro-

geologic parameters (hydraulic conductivity, porosity, and dispersivities). They achieved this by training 

an ANN to recognize the data patterns. The universal function approximation property of a multilayer, 

feed-forward ANN was utilized to estimate temporally and spatially varying unknown pollution sources, 

as well as to provide a reliable estimation of unknown flow and transport parameters. Back-propagation 

algorithm was used to train the ANN on patterns of simulated data. A set of source fluxes and temporally 

varying simulated concentration measurements constituted the pattern for training used by the authors. 

Through an illustrative example, they demonstrated the potential applicability of their method. 

Performance of the method was evaluated under varying concentration measurement errors. They 

concluded that the proposed methodology performs reasonably well even with large measurement errors. 

Singh and Datta (2006) used a genetic algorithm (GA) based simulation optimization approach for 

optimal identification of unknown groundwater pollution sources. A flow and transport simulation model 

was externally linked to the GA-based optimization model to simulate the physical processes involved. In 

this study, simple as well as complex scenarios of multiple unknown groundwater pollution sources were 

considered. The simulation model uses potential pollution source characteristics that are evolved by the 

GA and simulates the resulting concentration measurement values at observation locations. These 

simulated spatial and temporal pollutant concentration measurement values were used to evaluate the 

fitness function value of the GA. The external linking of the numerical simulation model with the 

optimization model makes it feasible to solve the source-identification problems for complex aquifer 

study areas with multiple unknown pollution sources. Performance was evaluated for combinations of 

source characteristics (locations, magnitudes, and release periods), data availability conditions, and 

concentration measurement error levels. 
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Chadalavada et al., (2012) introduced a feedback-based methodology for identifying the unknown 

pollution sources in contaminated aquifers. The methodology consists of models within an iterative 

feedback system, with the capacity of feeding back real-time measurements of pollutant concentrations 

for the sequential optimal designs and characterization of the contaminated aquifer study area. The 

resulting linked-simulation optimization model considers the delineation of the contaminant plume, 

optimally characterizing the site in terms of pollutant sources and the optimal monitoring network leading 

to the remediation and/or management of the contaminated aquifer. The simulation-optimization code 

was developed by linking a groundwater flow and transport model with an optimization code for the 

purpose of identifying the unknown pollution sources. Their method addresses the source identification 

process with very limited information available regarding the observed contamination data for the 

identification of unknown pollution sources. They applied it to a chlorinated hydrocarbon contaminated 

site for the identification of unknown pollution sources. Information regarding the sources such as the 

magnitude, location and the duration of contamination activity were not known for the study area except 

the information regarding the likely activities that led to its contamination. Developed methodology was 

applied to choose the optimal source locations from the identified potential locations. They performed 

qualitative assessment of the results by utilizing the contamination information obtained during their field 

investigations.  

Srivastavaa and Singh (2014) proposed an ANN based simulation-optimization approach for groundwater 

source identification by exploiting the capability of  universal function approximation by a feed-forward 

multilayer artificial neural network (ANN) to identify the sources in terms of its location, magnitudes, and 

duration of activity. Back-propagation algorithm is utilized for training the ANN to identify the source 

characteristics based on simulated concentration data at specified observation locations in the aquifer. 

Uniform random generation and the Latin hypercube sampling method of random generation are used to 

generate temporal varying source fluxes. These source fluxes are used in groundwater flow and the 

transport simulation model to generate necessary data for the ANN model-building processes. 

Breakthrough curves obtained for the specified pollution scenario are characterized by different methods. 

The characterized breakthrough curves parameters serve as inputs to ANN model. Unknown pollution 

source characteristics are outputs for ANN model. The method was verified using hypothetical examples. 

Gurarslan (2015) presented a model for solving problems of groundwater-pollution-source identification 

using differential evolution algorithm optimization model. The numerical simulations of flow and 

pollutant transport in groundwater were carried out using MODFLOW and MT3DMS. The performance 

of the developed model was tested on two hypothetical aquifer models using real and noisy observation 
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data. Two cases were considered. In one case, the locations of the potential sources are known and second 

when there is no information on the sources. The results were found be very accurate. 

Leichombam and Bhattacharya (2016) proposed a simulation-optimization model where an ANN based 

surrogate model replaced the complex time-consuming numerical simulation model. They enhanced the 

model efficiency by developing separate ANN model for each of the observation locations. The number 

of ANN models is equal to the number of observation wells in the aquifer. A modified formulation was 

used to find out the optimal numbers of observation wells which will eventually reduce the computational 

time of the model. The performance of the ANN-based simulation-optimization model was evaluated by 

identifying the groundwater pollutant sources of a hypothetical study area. 

2.6 Critical appraisal of literature review 
From the literatures reviewed, it is seen that extensive work has been done towards groundwater flow and 

transport modeling in the last three decades, various techniques have been suggested and many codes 

have been written in this regard. Each of the techniques has their own advantages and disadvantages. Out 

of the available methods, FEM and Mesh free methods are suitable for very complex modeling domain 

with irregular features. A number of papers have been published and extensive research work was done 

towards application of mesh free techniques in the last two decades. Though a few issues are yet to be 

fully addressed, the use of mesh free methods has increased and its successful application in groundwater 

modeling has been reported along with the advantages it offers. 

For invers modeling, there is a substantial increase in the use of optimization based on artificial 

intelligence based techniques such as ANN, genetic algorithm etc. over the conventional gradient based 

optimization techniques A number of papers have been published which explores different variations and 

improvements of these techniques. 

A number of techniques or methods have been proposed for the identification of contaminant source in 

groundwater. At this stage, most of the methods have serious limitations and drawbacks. No general 

method has been found which can be used in all conditions. All the methods attempt to solve the 

Advection-Dispersion equation backward in time in order to identify the pollution sources. These 

methods have been broadly be classified into four major groups namely: optimization methods, analytical 

solution and regression approaches, direct methods, probabilistic and geo-statistical approach. In 

optimization methods, a forward simulation is run and the solution obtained is checked against the 

measured/current spatial data observed. An optimization method is then devised to obtain the best fitted 

solution to overcome the problem of non-uniqueness of the solution and the infinite number of plausible 

combinations. From the literature review, it is seen that recent trend towards source identification is the 
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use of simulation-optimization (SO) methods. In the present study, SO method will be utilized for source 

identification. 

In the last two decades, artificial intelligence or soft computing techniques have increasingly been applied 

in SO models for source identification. They have also been successfully applied in many scientific and 

engineering problems which involve optimization. The main advantage of soft computing techniques like 

GA, PSO etc. is that they can search the global extrema unlike the conventional gradient based methods 

which can end up finding only the local extrema, depending on the initial guess or start point. A number 

of papers have been published which utilizes soft computing techniques for contaminant source 

identification and construction of release history. The present study proposes to employ soft computing 

techniques for source identification. In particular, particle swarm optimization will be used as it offers 

additional advantages such as fewer parameters to adjust, simplified structure and implementation. 

In the present study, Mesh free method is proposed to be used for coupled flow and transport studies 

(forward simulation). This mesh free forward simulation model will be linked or coupled with the PSO 

optimization model. This coupled SO model will be used for the identification of contamination sources 

by fitting the model predicted concentration to the measured spatial concentration data. The developed 

model will be tested with hypothetical problems and field case study. 

2.7 Closure 
Groundwater pollution is a serious problem in many parts of the world. Based on the literature review, it 

is observed that numerical models are very effective tools for groundwater flow and contaminant 

transport modeling. Out of the available numerical methods, meshfree methods are found to be efficient 

to deal with flow and transport problems with complex domain and boundary conditions. A number of 

research papers dealing with the flow and solute transport model have been published. Meshfree methods 

are becoming popular in recent days and a lot of research have been conducted to address different issues 

with these methods and to extend their applications to several areas. For groundwater source 

identification, a number of different approaches have been proposed and a lot research material has been 

published in the last three decades. Simulation-optimization approaches have attracted a lot of attention 

from researchers with various combinations of simulation and optimization models. Artificial intelligence 

based optimization approaches are gaining popularity as they are global optimizers and less prone to local 

minima trapping as compared to conventional gradient based approaches. 

In the present study, the meshfree RPCM method is proposed as a numerical tool for coupled 

groundwater flow and transport problems. The meshfree RPCM model based simulation model will be 

coupled with the PSO optimization model. The coupled SO model is proposed for groundwater source 
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identification problem. The developed models will be tested initially on hypothetical problems and then it 

will be applied to field case studies. Robustness of the model will be examined in different field 

situations. 
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Chapter 3 

Theoretical development - groundwater flow and transport modeling and 

source identification 

3.1 Introduction 
Since groundwater moves at a very slow rate in aquifers, groundwater contamination and its source is 

normally detected much later (Freeze and Cherry, 1979). As a result, before a bore well shows 

deterioration in its water quality, it is likely that groundwater may have moved several kilometers from 

the source and a large aquifer area is already contaminated. A large number of surveillance bore wells 

will be required to properly track the movement of contaminants if the aquifer area involved is very large. 

It will be prohibitively costly to drill such a large network of bore wells. As is well known, remediation of 

contaminated groundwater is also a very costly affair. Therefore numerical modeling of groundwater flow 

and contamination plays a very important in the prediction of the movement of contaminants in an aquifer 

and also to optimize the remediation efforts. 

Significant progress has been there in groundwater flow and contaminant transport modeling over the 

years. Many techniques have evolved and been applied in groundwater modeling such as  finite 

difference, finite element, particle tracking methods, method of characteristics, modified method of 

characteristics, random transport models etc. Recently mesh free methods has also been applied to 

groundwater modeling. This section deals with the theoretical developments and application of mesh free 

methods to simulate groundwater flow and transport problems. 

3.2 Sources of groundwater contamination 
Groundwater can become contaminated in many ways. If rain water or surface water comes into contact 

with contaminated soil while seeping into the ground, it can become polluted and can carry the pollution 

from the soil to the groundwater. Groundwater can also become contaminated when liquid hazardous 

substances themselves soak down through the soil or rock into the groundwater. Some liquid hazardous 

substances do not mix with the groundwater but remain pooled within the soil or bedrock (Bear, 1979). 

These pooled substances can act as long-term sources of groundwater contamination as the groundwater 

flows through the soil or rock and comes into contact with them. 

Aquifers are normally contaminated by agricultural activities, industrial waste and municipal sewage 

waste disposal practices. The major sources of groundwater pollution are Underground Storage Tanks 

(USTs), landfills, septic systems and hazardous waste sites (Freeze and Cherry, 1979). Other sources 
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include pesticides leaks or spills of industrial chemicals at manufacturing facilities, runoff of salt and 

other chemicals from roads and highways and fertilizer on agricultural land. Most of water contamination 

cases generally occur in highly developed areas, agricultural areas, and industrial zones 

Groundwater contaminants exist in many forms, and contaminant classification schemes can be based on 

any of several physicochemical characteristics. For example, contaminants may be classified based on 

their preference for association with the aqueous phase or with particles (Bear, 1979). Contaminant 

distinction based on phase preference is important as the phase(s) a contaminant associates with can affect 

its transport behavior and toxicology. Furthermore, the form taken by a contaminant can also affect the 

choice of treatment processes that may be implemented to remediate a contaminated area. In general, the 

physicochemical characteristics of groundwater contaminants and the surrounding aquifer will play 

critical roles in determining their fate, transport, and effects. 

3.3 Mechanisms of Contaminant movement 
The principal mechanisms of contaminant transport are advection, diffusion, dispersion, sorption, and 

decay (Bear, 1979). These processes are briefly discussed in this section in their simplest 1D form. Other 

processes such as hydrolysis, volatilization, and biotransformation may also play an important role 

depending on the type and nature of the contaminant and also the soil (Zheng and Bennet, 2002). 

3.3.1 Advection 
The process by which solutes are transported by the bulk motion of the flowing groundwater is known as 

advection (Freeze and Cherry, 1979). Owing to advection, non-reactive solutes are carried at an average 

rate equal to the average linear velocity, �̅�, of the water. Here 

 �̅� =
𝑣
𝑛

=
1
𝑛

 (−𝐾∇ℎ) (3.1) 

Here, v is the specific discharge or Darcy flux and n is the porosity. The advection process is also 

sometimes called convection. An estimation of the flow velocity is needed for an accurate estimation of 

the advective transport. In sand/gravel aquifers with significant groundwater, the plume movement is 

dominated by advection. Applying the conservation of mass principle to a control volume, it can be 

derived that the one dimensional advective transport equation in a homogeneous aquifer (Zheng and 

Bennet, 2002) as, 

 𝜕𝐶
𝜕𝑡

= −𝑣
𝜕𝐶
𝜕𝑥

 (3.2) 
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Here 𝐶 is the concentration of the solute. The main factors that control the advective transport are 

hydraulic conductivity or transmissivity, effective porosity of the porous material and the hydraulic 

gradient. 

3.3.2 Diffusion 
Diffusion is the flux of solute from a zone of higher concentration to one of lower concentration due to 

the Brownian motion of ionic and molecular species. Under steady-state condition, the diffusion flux F is 

described by Fick’s first law (Bear, 1979), 

 𝐹 = −𝐷∇��⃗ 𝐶 (3.3) 

where D is the diffusion coefficient [L2 T-1]. For diffusion in porous media, Freeze and Cherry (1979) 

suggest taking an effective diffusion coefficient, 𝐷∗ = 𝜔𝐷 to account for the tortuosity of the flow paths 

with ω ranging from 0.5 to 0.01 for laboratory studies of non-adsorbed ions in porous geological 

materials. The change of concentration over time inside a control volume subject to diffusion flux is given 

by Fick’s second law, 

 𝜕𝐶
𝜕𝑡

= 𝐷∗ 𝜕
2𝐶
𝜕𝑥2

 (3.4) 

The importance of diffusion increases as flow velocities decrease. Thus diffusion may be the governing 

transport mechanism in unfractured clays with low hydraulic conductivities. Diffusion can generally be 

neglected in gravel aquifers with high flow velocities. It can also be significant in fractured porous 

aquifers. 

3.3.3 Dispersion  
Dispersion is the spreading of the plume that occurs along and across the main flow direction due to 

aquifer heterogeneities at both the small scale (pore scale) and at the macroscale (regional scale). 

Dispersion tends to increase the plume uniformity as it travels downstream. Factors that contribute to 

dispersion include faster flow at the center of the pores than at the edges, some pathways being longer 

than others, flow velocity larger in smaller pores than in larger ones. This is known as mechanical 

dispersion. The spreading due to both mechanical dispersion and molecular diffusion is known as 

hydrodynamic dispersion (Freeze and Cherry, 1979). 

Dispersion equation in general is derived using Fick’s law, whereas, results from theoretical studies 

suggest that dispersion is non-Fickian near the source of contaminant and it generally becomes Fickian at 

larger times or travel distances where a constant dispersivity value is achieved (Anderson, 1984). A 
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phenomenological coefficient that combines the effects of diffusion and dispersion, known as dispersion 

coefficient is generally defined. As mechanical dispersion is more pronounced in the longitudinal 

direction than in the transverse direction, a longitudinal dispersion coefficient 𝐷𝐿 and a transverse 

dispersion coefficient 𝐷𝑇 are introduced. These coefficients are defined as, 

 𝐷𝐿 = 𝛼𝐿𝑣 + 𝐷∗ 

𝐷𝑇 = 𝛼𝑇𝑣 + 𝐷∗ 
(3.5) 

where 𝛼𝐿 is the longitudinal dispersivity [L], 𝛼𝑇 is the transverse dispersivity [L], and 𝑣 is the pore 

velocity [LT-1]. 

3.3.4 Retardation and Reactions 
Sorption refers to the exchange of molecules and ions between the solid phase and the liquid phase. It 

includes adsorption and desorption. Adsorption is the attachment of molecules and ions from the solute to 

the rock material. Adsorption produces a decrease of the concentration of the solute or, equivalently, 

causes a retardation of the contaminant transport compared with water movement. Desorption is the 

release of molecules and ions from the solid phase to the solute (Zheng and Bennet, 2002).  

The relationship between the solute concentration in the adsorbed phase and in the water phase is called a 

sorption isotherm. The simplest expression is the linear isotherm, called Henry’s equilibrium model, 

 𝐶𝑎 = 𝐾𝑑𝐶 (3.6) 

where 𝐶𝑎 is the sorbed concentration as mass of contaminant per mass of dry rock matrix dimensionless, 

C is the dissolved concentration in mass of contaminant per volume of water [ML-3], and 𝐾𝑑 is the 

distribution coefficient [L3 M-1]. This expression implies that there is equilibrium between the adsorbed 

concentration and the dissolved concentration. This can be assumed when the adsorption process is fast 

compared with advection of contaminant. Apart from the Henry’s model, many adsorption models are 

also used (Rastogi, 2007). 

The adsorption causes retardation in the migration of contaminants compared with advection. The 

contaminant transport gets more retarded as the fraction adsorbed increases. This effect can be described 

by a retardation factor 𝑅𝑎 , which for a linear isotherm, is 

 
𝑅𝑎 = 1 +

(1 − 𝑛)𝜌𝑠
𝑛

𝐾𝑑 (3.7) 
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where n is the porosity and 𝜌𝑠 is the density of the solids. The retardation coefficient may take values 

from 1 to 10,000. The velocity of the solute front 𝑣𝑐 (where the concentration is half that of the original 

concentration) is given by  

 𝑣𝑐 =
𝑣
𝑅𝑎

 (3.8) 

If sorption is taken into account, the 1D advection–dispersion equation then becomes, 

 𝜕𝐶
𝜕𝑡

= −
𝑣
𝑅𝑎

𝜕𝐶
𝜕𝑥

+
𝐷𝐿
𝑅𝑎

𝜕2𝐶
𝜕𝑥2

 (3.9) 

where the term on the left side represents the time rate of change in storage of contaminant in the control 

volume, the first term on the right-hand side represents the retarded advective inflow–outflow, and the 

last term represents the retarded diffusion and dispersion. 

When there is chemical reaction (degradation) whereby the solute changes its form or if the solute 

undergoes radioactive decay, it decreases the concentration of the solute.  The simplest model for decay 

of contaminants without transport is first order model, 

 𝜕𝐶
𝜕𝑡

= −𝜆𝐶 (3.10) 

where λ is the first order decay rate constant [T-1]. This relation also applies to radioactive decay and 

degradation processes. Integration of equation (3.10) gives 𝐶 = 𝐶0𝑒−𝜆𝑡 where 𝐶0 is the concentration at 

time 𝑡 = 0 and 

 
𝜆 =

ln  2
𝑇1/2

 (3.11) 

𝑇1
2�
 is the half-life of the radioactive isotope or of the degraded contaminant. The degradation causes a 

mass λC to disappear per unit volume per unit of time. The transport equation including decay is then 

obtained by simply appending the quantity −λC to the right-hand side of equation (3.9). 

3.4 Governing equations and Boundary conditions 

3.4.1 Groundwater Flow 
The governing equation describing the groundwater flow in a two dimensional inhomogeneous confined 

aquifer is given as (Bear, 1979) 
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 𝜕
𝜕𝑥 �

𝑇𝑥
𝜕ℎ
𝜕𝑥�

+
𝜕
𝜕𝑦 �

𝑇𝑦
𝜕ℎ
𝜕𝑦�

= 𝑆
𝜕ℎ
𝜕𝑡

+ 𝑄𝑤𝛿(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) − 𝑞 (3.12) 

Following initial conditions are used for transient analysis,  

 ℎ(𝑥,𝑦, 0) = ℎ0(𝑥,𝑦)                      𝑥,𝑦 ∈ 𝛺 (3.13) 

Generally, the boundary conditions can be of two types, the prescribed head or flux. It can be written as: 

 ℎ(𝑥,𝑦, 𝑡) = ℎ1(𝑥,𝑦, 𝑡)          𝑥,𝑦 ∈ 𝜕𝛺1 (3.14) 

 
𝑇
𝜕ℎ
𝜕𝑛

= 𝑞1(𝑥,𝑦, 𝑡)              𝑥,𝑦 ∈ 𝜕𝛺2  (3.15) 

 For an unconfined aquifer, the governing equation is given as (Bear, 1979) , 

 𝜕
𝜕𝑥 �

𝐾𝑥ℎ
𝜕ℎ
𝜕𝑥�

+
𝜕
𝜕𝑦 �

𝐾𝑦ℎ
𝜕ℎ
𝜕𝑦�

= 𝑆𝑦
𝜕ℎ
𝜕𝑡

+ 𝑄𝑤𝛿(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) − 𝑞 (3.16) 

For unconfined aquifer problems, the boundary conditions are: 

 ℎ(𝑥,𝑦, 𝑡) = ℎ1(𝑥,𝑦, 𝑡)          𝑥,𝑦 ∈ 𝜕𝛺1 (3.17) 

 
𝐾ℎ

𝜕ℎ
𝜕𝑛

= 𝑞2(𝑥,𝑦, 𝑡)              𝑥,𝑦 ∈ 𝜕𝛺2 (3.18) 

where , ℎ(𝑥,𝑦, 𝑡) is the Piezometric head (m) which is the state variable, 𝐾𝑥,𝐾𝑦 are the hydraulic 

conductivities in x and y directions, 𝑇𝑥 ,𝑇𝑦 are the transimissivities (m2/d) in x and y directions, S is the 

storage coefficient, Sy is the specific yield, 𝑄𝑤 is the source or sink term (m3/d/m2). The flow region is 

represented by Ω while the boundary is denoted by 𝜕Ω.  
𝜕
𝜕𝑛

 denotes the normal derivative to the 

boundary. ℎ0(𝑥,𝑦)  is the initial head in the flow domain (m), ℎ1(𝑥,𝑦, 𝑡) is the known head value of the 

boundary head (m) and 𝑞(𝑥,𝑦, 𝑡)  is the known inflow rate (m3/d/m). 

3.4.2 Groundwater Solute Transport 
The governing equation for contaminant transport of a single chemical constituent in groundwater is 

given by (Freeze and Cherry, 1979; Wang and Anderson, 1982; Desai et al., 2011 etc.)  

 
𝑅
𝜕𝐶
𝜕𝑡

=
𝜕
𝜕𝑥

�𝐷𝑥𝑥
𝜕𝐶
𝜕𝑥
� +

𝜕
𝜕𝑦

�𝐷𝑦𝑦
𝜕𝐶
𝜕𝑦
� −

𝜕
𝜕𝑥

(𝑉𝑥𝐶) −
𝜕
𝜕𝑦 �

𝑉𝑦𝐶� −
𝑐′𝑤
𝑛𝑏

− 𝑅𝜆𝐶 +
𝑞𝑤𝐶
𝑛

 (3.19) 

where, 

 𝑉𝑥  ,𝑉𝑦 ≡ Seepage velocity in x and y direction [LT-1] 

 𝐷𝑥𝑥 ,𝐷𝑦𝑦 ≡ components of dispersion coefficient tensor in x and y direction [L2T] 
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C is the concentration of the dissolved species [ML-3]; λ is the reaction rate constant [T-1]; 

w =elemental recharge rate with solute concentration c’; n = porosity; b = aquifer thickness; 

 𝑅 = Retardation factor = 1 + 𝜌𝑏𝐾𝑑/𝑛 , in which 𝜌𝑏 is the media bulk density, 𝐾𝑑 is the sorption 

coefficient and 𝑞𝑤 = volumetric pumping rate from a source. 

The initial condition is, 

 𝐶(𝑥,𝑦, 0) = 𝑓(𝑥, 𝑦, 0)          (𝑥,𝑦) ≡ 𝛺 (3.20) 

And the boundary conditions are of the form, 

Dirichlet boundary condition: 𝐶(𝑥,𝑦, 𝑡) = 𝑚1(𝑥,𝑦, 𝑡)      (𝑥, 𝑦) ≡ 𝜕𝛺1; (3.21) 

Neumann boundary condition: 
�𝐷𝑥𝑥

𝜕𝐶
𝜕𝑥
�𝑛𝑥 + �𝐷𝑦𝑦

𝜕𝐶
𝜕𝑦
�𝑛𝑦 = 𝑚2(𝑥,𝑦, 𝑡) ∈ 𝜕𝛺2 (3.22) 

Where Ω is the flow domain, Ω = boundary region (∂Ω1 ∪ ∂Ω2 = ∂Ω; f is a given function in Ω; 

g1, g2 are functions along boundaries; and  nx, ny are the components of the unit outer normal vector to 

the given boundary. 

The seepage velocities 𝑉𝑥,𝑉𝑦 are evaluated from the flow equations by the following relations, 

 
𝑉𝑥 = −

𝐾𝑥
𝑛

 
𝜕ℎ
𝜕𝑥

  ;  𝑉𝑦 = −
𝐾𝑦
𝑛

 
𝜕ℎ
𝜕𝑦

 (3.23) 

where n is the porosity of the medium. The elements of the dispersion coefficient tensor are evaluated 

from the longitudinal dispersivity (αL) and transverse dispersivity (αT) from the relations (Bear, 1979): 

 
𝐷𝑥𝑥 =

𝛼𝐿𝑉𝑥2 + 𝛼𝑇𝑉𝑦2

𝑉2
    ;𝐷𝑦𝑦 =

𝛼𝐿𝑉𝑦2 + 𝛼𝑇𝑉𝑥2

𝑉2
  ;𝐷𝑥𝑦 = 𝐷𝑦𝑥 =

(𝛼𝐿 − 𝛼𝑇)𝑉𝑥𝑉𝑦
𝑉2

 (3.24) 

where,   𝑉2 = 𝑉𝑥2 + 𝑉𝑦2 . Equations (3.23) and (3.24) together provide the linkage or coupling between the 

groundwater flow and transport equations. The velocities computed from the flow equation are used as 

input to the transport equation. 

3.5 Groundwater flow and transport modeling - numerical methods 
Every groundwater model design consists of the following steps (Anderson and Woessner, 2002): 

1. Establish the purpose of the model. It will determine the governing equations and code to be 

selected 

2. Develop a conceptual model of the system 
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3. Select the mathematical model (governing equation and computer code) 

4. Model design 

5. Calibration  

6. Calibration sensitivity analysis 

7. Model verification 

8. Prediction 

9. Presentation of results 

10. Post audit 

Figure 3.1 shows a flow chart of the groundwater modeling process (Anderson and Woessner, 2002).  

The laws which govern the groundwater flow and solute transport are usually expressed in terms of partial 

differential equations (PDEs). For the vast majority of geometries and problems, these PDEs cannot be 

solved with analytical methods. Instead, an approximation of the equations can be constructed, based 

upon different types of discretization. These discretization methods approximate the governing PDEs with 

numerical model equations, which can be solved using numerical methods. The solution to the numerical 

model equations are, in turn, an approximation of the real solution to the PDEs. There are various 

discretization schemes for solving PDEs. The most widely used methods are the finite difference method 

(FDM) and finite element method (FEM). Both methods require the construction of a grid or mesh of the 

solution domain which can be computationally very costly.  Meshfree method which does not require the 

construction of a mesh is gaining popularity in recent days. Brief descriptions of these methods are 

provided in this section. 
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Figure 3.1: Steps in Groundwater modeling  

 

3.5.1 Finite Difference Method 
Finite difference methods (FDM) are numerical methods for solving differential equations by 

approximating them with difference equations, in which the derivatives are approximated by finite 

differences. The difference approximations of the derivatives of a function 𝑓(𝑥) can be obtained from a 

Taylor series expansion (Wang and Anderson, 1982): 

 
𝑓(𝑥0 + ∆𝑥) = 𝑓(𝑥0) +

𝑓′(𝑥0)
1!

∆𝑥 +
𝑓′′(𝑥0)

2!
∆𝑥2 + ⋯+

𝑓𝑛(𝑥0)
𝑛!

∆𝑥𝑛 + 𝑅𝑛(𝑥) (3.25) 
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The first derivative of the function can be obtained by truncating the series as, 

𝑓(𝑥0 + ∆𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)∆𝑥 + 𝑂(∆𝑥2) 

 
𝑜𝑟, 𝑓′(𝑥0) =

𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)
∆𝑥

+ 𝑂(∆𝑥) (3.26) 

This is known as the forward difference approximation of the first derivative. The backward difference 

approximation can be obtained by using Taylor series expansion for 𝑓(𝑥0 − ∆𝑥). Centered difference 

approximations can be obtained by combining the Taylor series expansions of 𝑓(𝑥0 + ∆𝑥) and 𝑓(𝑥0 −

∆𝑥). The centered difference approximation for the second derivative is obtained as (Wang and 

Anderson, 1982), 

 
𝑓′′(𝑥0) =

𝑓(𝑥0 + ∆𝑥) − 2𝑓(𝑥0) + 𝑓(𝑥0 − ∆𝑥)
∆𝑥2

+ 𝑂(∆𝑥2) (3.27) 

To use finite difference method, the domain over which the differential equation is to be solved for is 

divided into a grid of discrete points (nodes). The differential equation is then written (discretized) on 

each node using the finite difference approximations of the derivatives i.e. FDM is a point wise 

approximation of the differential equation on each node. Appropriate boundary conditions are applied at 

the domain boundaries. The resulting system of equations is then solved using a numerical technique such 

as Gauss elimination or iterative method to get the nodal solutions. 

Finite difference methods are one of the most popular methods for solving partial differential equations 

due to its simplicity. The MODFLOW codes (Harbaugh and McDonald, 1996) used for groundwater flow 

modeling and MT3DMS (Zheng and Wang, 1998) for solute transport modeling are both FDM codes. 

However, FDM has its own limitations. Its main drawback is that it cannot properly represent complex 

domains accurately and efficiently. It also has difficulty in implementing dissimilar or variable material 

properties.  

3.5.2 Finite Element method 
In contrast to the FDM, the finite element method (FEM) divides the solution domain into simply shaped 

regions or elements (Desai et al., 2011). An approximate solution is then developed for each of these 

elements. The total solution is then generated by coupling together (assembling) the individual solutions 

over each element taking care to ensure continuity at the inter-element boundaries. FEM thus uses 

continuous, piecewise smooth functions to approximate the unknown quantity. FEM is characterized by 

the following three basic features (Desai et al., 2011), 
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1. The domain of the problem is represented by a collection of simple sub-domains, called finite 

elements. The collection of finite elements is called the finite element mesh 

2. Over each finite element, the physical process is approximated by functions of desired type 

(polynomials or otherwise), and algebraic equations relating physical quantities at selective 

points, called nodes, of the elements are developed 

3. The element equations are assembled using continuity and /or “balance” of physical quantities 

The use of elements, rather than a rectangular grid, allows a much accurate representation of complex and 

irregularly shaped domains. Further, the values of the unknown variable can be generated continuously 

across the entire domain rather than at isolated grid points. 

The main steps involved in a FEM solution of a PDE are (Desai et al., 2011; Segerlind, 1984): 

1. Discretization of the domain into finite elements 

2. Development of element equations: develop element equations to approximate the solution 

for each element. This consists of two steps: 

(i)  Choose an appropriate function (called trial function) to approximate the solution. The 

trial function has parameters which have to be determined so that it satisfies the 

differential eqn. as closely as possible. Usually the approximation function is a linear 

combination of basis functions: 

 
𝑢(𝒙) = �𝜙𝑖(𝒙)𝑢𝑖

𝑛

𝑖=0

 (3.28) 

where 𝜙𝑖(𝒙) ‘s are known as basis functions or shape functions and 𝑢𝑖 are the nodal 

values of the unknown function 𝑢(𝒙)  

(ii) Since it is not an exact solution, substitution of the trial function into the differential 

equation will produce an error (called residual), 𝑅(𝒙). The coefficients of the trial 

functions are evaluated such that it approximates the solution in an optimal way i.e. the 

residual (or error) is made as small as possible (minimized) or forced to be zero. The 

residual is usually multiplied with a weight function, 𝑤𝑖(𝒙) before minimization i.e. 

 𝑚𝑖𝑛 �𝑤𝑖(𝑥)𝑅(𝑥)𝑑𝑥
Ω

 (3.29) 

3. Assembly of element equations taking care of continuity and/or balance of physical 

quantities 
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4. Application of boundary conditions 

5. Solving the system of equations 

6. Post-processing of the solution 

It may be noted that finite element method approximates a solution by minimizing the associated error 

function (residual). The minimizing process automatically finds the linear combination of basis functions 

which is closest to the solution (Zienkiewicz and Taylor, 2000).  

In FDM the differential operators are approximated from Taylor’s series expansions while in FEM the 

unknown variable itself is approximated with a shape function of one’s choice. This provides enormous 

flexibility with FEM in approximating the unknown function. The shape of the elements can also be 

chosen by the modeler according to the requirements of the problem domain. These flexibilities, together 

with the ability to represent any complex geometry makes FEM one of the most widely used approach for 

solving PDEs. Several commercial softwares based on FEM are available for performing simulations in 

various areas of engineering and scientific endeavors (Pepper and Heinrich, 1992).  

However, creating a grid or mesh for FEM can be computationally very costly. Consequently FEM is not 

suitable for those applications which require frequent meshing such as adaptive analysis, simulation of 

large deformation, crack propagation, breakage of materials etc. 

3.5.3 Meshfree Methods 
Meshfree methods provide an alternative to the mesh based methods and seeks to address the inherent 

shortcomings of numerical methods that rely on meshes. A truly meshfree method requires only a set of 

scattered nodes within and on the boundary to represent the modeling domain and no information is 

required on the connectivity of the nodes throughout the process of solving the problem (Liu and Gu, 

2005). However, for most of the methods classified as meshfree methods, the connectivity of the nodes is 

determined at the run time. In conventional numerical methods (FDM, FEM etc.), the definition of the 

connectivity of the nodes needs to be determined a priori.  

The minimum requirement for a meshless method is that a predefined mesh is not necessary at least in 

field variable interpolation. Unlike FEM where shape functions are determined for each element, 

meshless methods compute the shape functions using a support domain. A support domain of a point is a 

collection of nodes used to approximate the function value at that point (Liu and Gu, 2005). The 

equations of a mesh free method can be formulated using the shape functions and a strong or weak form 

system equation. The procedures of forming system equations are slightly different for different meshfree 

methods. Several variants of meshfree methods have been proposed in the last three decades. These 

methods have been discussed in Liu and Gu (2005), Nguyen et al. (2008), Belytschko et al.(1996) etc. 
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3.5.4 Comparison of FEM and Meshfree model 
The solution procedures of FEM and meshfree methods are as shown in the Figure 3.2 (Liu and Gu, 

2005). Both the methods follow similar procedures. The differences are at the 2nd and 3rd stages viz., mesh 

generation and shape function construction. FEM requires a mesh but meshfree methods require only the 

nodal coordinates. 

 

Figure 3.2: Comparision of solution procedures of FEM and Meshfree methods  

The construction of the shape functions in these two methods is also quite different. In the finite element 

method, the shape functions are constructed using predefined elements, and the shape functions are the 

same for the entire element. But in MFree methods, the shape functions constructed are usually only for a 

particular point of interest based on selected local nodes located within a small region called the support 

domain of the point of interest (Liu and Gu, 2005). As such the shape functions can change when the 

point of interest changes. Once the global discretized system equation is established, the two methods 

follow the same procedure. The main differences between FEM and meshfree methods are listed below 

(Liu and Gu, 2005): 
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1. FEM requires the creation of a mesh while meshfree methods requires only the generation of 

nodes. 

2. Shape function creation in FEM is based on pre-defined elements while in meshfree methods it is 

based on a local support domain 

3. Imposition of essential boundary condition is easy in FEM but the same will require special 

treatments in meshfree methods 

4. Computational speeds are in general slower in meshfree methods as compared to FEM 

5. Meshfree methods, in general, yields more accurate solutions as compared to FEM 

6. Due to the requirement of a mesh, carrying out adaptive analysis with FEM is difficult especially 

in 3D.  The same can be done much easier in meshfree methods 

7. It may be mentioned that FEM is a well-developed method whereas meshfree methods are in 

developmental stages with many issues yet to be addressed. Consequently while there are several 

commercial software packages for FEM, only a few codes are available for meshfree methods. 

Since the solution procedure is the same for FEM and meshfree methods after the global discretized 

system is obtained, many of the techniques developed for FEM can be applied to meshfree methods also. 

3.6 Groundwater source identification  
Contaminant transport in groundwater is governed by advection-dispersion equation (ADE). Contaminant 

source identification involves solving the advection-dispersion equation backward in time .The problem 

of contaminant source identification is illustrated with a one dimensional case here. For a non-reactive 

contaminant, the one-dimensional (1-D) heterogeneous transport in a semi-infinite domain, described by 

the ADE is (Atmadja and Bagtzoglou, 2001b): 

 𝜕𝐶
𝜕𝑡

=
𝜕
𝜕𝑥

 �𝐷(𝑥)
𝜕𝐶
𝜕𝑥

 � −
𝜕
𝜕𝑥

 [𝑢(𝑥)𝐶] (3.30) 

 with initial and boundary conditions : 

𝐶(𝑥1, 𝑡) = 𝐶𝑖𝑛(𝑡)                0 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠 

 

(3.31) 

 𝐶(∞, 𝑡) = 0                     0 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠 (3.32) 

 𝐶(𝑥,𝑇𝑜𝑏𝑠) = 𝐶𝑇(𝑥)            0 ≤ 𝑥 ≤ ∞ (3.33) 

where u(x) is the transport velocity in the x-direction and x is distance. In the pollution source location 

identification, the source (x1) information is not known, but measurements of the spatial distribution of 

the plume are given at time, 𝑇𝑜𝑏𝑠. For the release history reconstruction, usually the source location is 

assumed to be known, but the contaminant source function,𝐶𝑖𝑛(𝑡) is unknown. Finding the source 
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location and the time history of the solute in groundwater can be categorized as a problem of time 

inversion. This means solving the governing equations backward in time. Modeling contaminant transport 

using reverse time is an ill-posed problem since the process, being dispersive is irreversible. Because of 

this, the solutions have discontinuous dependence on data and are sensitive to errors in the data. 

A problem is categorized as a well-posed problem if (1) the solution exists; (2) the solution is unique; and 

(3) the solution is stable (Ortega and Rheinboldt, 1970). Problems that do not satisfy these criteria are 

called ill- posed. For the groundwater contamination problem, the plume has to have originated from 

someplace, therefore, physically, the plume exists. However, in rigorous mathematical terms, the fact that 

there exists a present day plume concentration does not necessarily mean that we satisfy the existence 

criterion. The solution exists only when we have perfect and consistent model and data that satisfy 

extremely restrictive conditions. Satisfying the stability criterion is a difficult task to accomplish since 

numerical schemes, which are usually implemented as a marching procedure are unstable for negative 

time steps, and make it impossible to solve contaminant transport problems backward in time. 

Regarding the non-uniqueness of the solution, there is no method that can bypass this inherent problem. 

In inverse problems, one of the common practices to overcome the stability and non-uniqueness criteria is 

to make assumptions about the nature of the unknown function so that the finite amount of data in 

observations is sufficient to determine that function (Ala and Domenico, 1992). This can be achieved by 

converting the ill-posed problem to a properly posed one by stabilization or regularization methods. In the 

case of groundwater pollution source identification, additional information such as potential release sites 

and chemical fingerprints of the plume are usually available to make this possible. 

3.6.1 Source identification Methods 
A number of source identification techniques have been proposed. An overview of the developed 

methodologies can be found in Atmadja and Bagtzoglou (2001b), Michalak and Kitanidis (2004) and Sun 

et al. (2006). These methods may broadly be subdivided into four major groups (Atmadja and 

Bagtzoglou, 2001b) namely: optimization methods, analytical solution and regression approaches, direct 

methods, probabilistic and geo-statistical approach. Each of the methods is subject to significant 

drawbacks and limitations. A broad classification of the proposed methods is discussed below. 

3.6.1.1 Direct inversion of advection-diffusion equation 

This class of approaches uses deterministic direct methods to solve the governing equations backward in 

time to reconstruct the release history of the contaminant plumes. The inversion is achieved by using 

appropriate integral equations or other transformations to represent the contaminant transport. Methods 

falling into this class of approaches are the Tikhonov regularization approach (Skaggs and Kabala, 1994), 
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method of quasi-reversibility (Skaggs and Kabala, 1995), the minimum relative entropy (MRE) inversion 

method (Woodbury et al.,1998), Fourier series based inversion technique (Birchwood, 1999), the 

marching-jury backward beam equation (MJBBE) method (Atmadja and Bagtzoglou, 2001a) etc.  These 

methods have been applied to reconstruct the spatial and temporal plume release history in homogeneous 

and heterogeneous media. However, such methods are very sensitive to noise or errors in the 

concentration data and in some cases can only recover the plume history partially. 

3.6.1.2 Analytical solution and regression 

Analytical methods are an inverse method based on analytical solution of the contaminant transport 

problems and parameter estimation using linear or non-linear regression. Sidauruk et al., (1998) presented 

an inverse method based on the analytical solution that provides a complete estimate of the dispersion 

coefficients, flow velocity, amount of pollutant, its initial location and time of origin. Ala and Domenico 

(1992) developed an inverse analytical technique that can determine the source strength, the advective 

position of the contaminant front for the instantaneous contaminant plumes at air force base. Other 

analytical solutions methods were proposed by Butcher and Gauthier (1994), Alapati and Kabala (2000) 

etc. The analytical solution and regression techniques have been applied only to very simple geometries 

and flow conditions. They are also very sensitive to noise in the input data. Consequently their utility is 

very limited. 

3.6.1.3 Probabilistic and geo-statistical method 

Probabilistic and geo-statistical approaches employ probabilistic techniques such as geo-statistics to 

deduce the probability of the location of the sources. These techniques are among the first which attempts 

to solve the ADE backward in time without relying on optimization approaches. Methods belonging to 

this class are the random walk particle method (Bagtzoglou et al., 1992), backward in time solution of 

stochastic differential equations (Wilson and Liu, 1994), adjoint method (Neupauer and Wilson, 1999), 

probabilistic approach combining Bayesian theory and geo-statistical techniques (Snodgrass and 

Kitanidis, 1997) etc. The probabilistic and geo-statistical techniques have been used to assess the relative 

importance of each potential source and produce the maps of time and location probability. These 

techniques have limitations in application to complex geometries. Some of the methods require that 

potential sources be known a priori and that the release incidents are assumed to be instantaneous and 

occurring simultaneously. 

3.6.1.4 Simulation-Optimization (SO) approach 

These approaches were among the first to be proposed for groundwater source identification. In these 

methods, a forward simulation is run with different possible sets of sources and the predicted solution is 
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compared to the measured spatial and temporal concentration data. Since an infinite number of plausible 

combinations of sources are there, an optimization model is required. The optimization model searches 

for the particular combination of sources which leads to minimum differences with the observed data. 

Simulation-optimization approaches were first proposed by Gorelick et al., 1983) using linear 

programming and regression as the optimizer. Since then several such approaches have been proposed 

using various optimization methods, some of which also includes simultaneous parameter estimation. 

Wagner, (1992) used non-linear maximum likelihood for simultaneous source identification and 

parameter estimation. Other optimization technique proposed include non-linear optimization model 

(Mahar and Datta, 2000), artificial neural network (ANN) (Singh and Datta, 2004), genetic algorithm 

(GA) (Singh and Datta, 2006) etc.  SO approaches have been applied to both steady state and transient 

source identification problems, hydro-geologic and source parameters identification and groundwater 

quality monitoring. It has the potential to be applicable in field scale problems with complex geometries.  

However, non-uniqueness of groundwater source identification and sensitivity to noise in input data pose 

a challenge for these methods. 

3.7 Stability criterion 
There are certain stability issues associated with the numerical modeling of groundwater flow and solute 

transport. These issues arise from the approximations used in spatial and temporal discretization. In this 

section, some of the issues which can drastically affect the outcome of the numerical model of the 

groundwater flow and solute transport are discussed (Bear, 1979; Zheng and Bennet, 2002). 

Stability in time integration: Of the different time-stepping techniques, the explicit method is the most 

simple. However it is only conditionally stable. When the size of the time step, ∆𝑡 exceeds a certain limit, 

the numerical errors incurred by the solution will be amplified as the time marches forward leading to a 

situation where the solution is dominated by the errors and becomes an invalid or unstable solution.  

Consider the one-dimensional groundwater flow in a confined equation, 

 
𝑇
𝜕2ℎ
𝜕𝑥2

= 𝑆
𝜕ℎ
𝜕𝑡

 (3.34) 

The explicit method is stable only when the following relation holds between the spatial grid size (∆𝑥) 

and the time step size (∆𝑡) (Wang and Anderson, 1982): 

 𝑇∆𝑡
𝑆(∆𝑥)2 ≤

1
2

 (3.35) 

Thus the nodal spacing and time step size cannot be independently chosen when using the explicit 

method. For the two dimensional problem, the stability condition is, 
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 𝑇∆𝑡
𝑆(∆𝑥2 + ∆𝑦2) ≤

1
4

 (3.36) 

 Similarly, for the one-dimensional advection-dispersion equation (Zheng and Bennet, 2002), 

 𝜕𝐶
𝜕𝑡

= 𝐷
𝜕2𝐶
𝜕𝑡2

− 𝑣
𝜕𝐶
𝜕𝑥

 (3.37) 

the explicit method is stable only when, 

 𝐷∆𝑡
(∆𝑥)2 ≤

1
2

    ⇒ 𝑡 ≤
(∆𝑥)2

2𝐷
 (3.38) 

The explicit method is a special case of the general θ- method of time integration (Richtmyer and Morton, 

1967). In this technique, the time derivative is replaced by a simple forward difference while the solution 

is replaced by a weighted value of the previous time-step solution and current solution e.g. for the 

groundwater flow problem, ℎ = 𝜃ℎ𝑡+Δ𝑡 + (1 − 𝜃)ℎ𝑡   , 𝜃 ∈ [0,1]. When = 0 , it reduces to the explicit 

method. The θ-method is unconditionally stable only when 𝜃 ≥ 1/2, otherwise it is only conditionally 

stable. 

Artificial oscillation and Numerical dispersion: Artificial oscillation and numerical dispersion are two 

issues encountered in numerical modeling of advectively dominated transport problems. The root cause of 

these instabilities is the truncation error incurred by the derivative terms. To illustrate the idea, let us 

consider the one dimensional transport problem (eqn. 3.37). From Taylor series expansion (Zheng and 

Bennet, 2002), 

𝐶(𝑥 + ∆𝑥) = 𝐶(𝑥) + ∆𝑥 ⋅
𝜕𝐶
𝜕𝑥

+
(∆𝑥)2

2
⋅
𝜕2𝐶
𝜕𝑥2

+ 𝑂(∆𝑥3) 

 
⇒
𝜕𝐶
𝜕𝑥

=
𝐶(𝑥 + ∆𝑥) − 𝐶(𝑥)

∆𝑥
−
∆𝑥
2
⋅
𝜕2𝐶
𝜕𝑥2

− 𝑂(∆𝑥2) (3.39) 

Substituting this expression, eqn. (3.39) into the RHS of eqn. (3.37) and neglecting terms with 𝑂(∆𝑥2), 

we get, 

 𝜕𝐶
𝜕𝑡

≈ 𝐷
𝜕2𝐶
𝜕𝑡2

− 𝑣 �
𝐶(𝑥 + ∆𝑥)− 𝐶(𝑥)

∆𝑥
−
∆𝑥
2
⋅
𝜕2𝐶
𝜕𝑥2�

 (3.40) 

Re-arranging the terms, 

 𝜕𝐶
𝜕𝑡

= �𝐷 + 𝑣
∆𝑥
2
�
𝜕2𝐶
𝜕𝑥2

−  𝑣 �
𝐶(𝑥 + ∆𝑥) − 𝐶(𝑥)

∆𝑥 � (3.41) 
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It may be observed that an artificial dispersion term has been added with dispersion coefficient, 𝑣 ∆𝑥/2  

as a truncation error. If  𝐷 ≤ 𝑣 ∆𝑥/2, then the artificial dispersion term starts dominating over the actual 

dispersion and the solution will be invalid. 

Artificial oscillation: Oscillations are the overshoot or undershoot in the numerical solution. It arises 

when a sharp concentration front is present i.e. when the problem is advection-dominated. The degree to 

which the transport problem is dominated by advection is measured by a quantity called Peclet number 

(Pe) (Zheng and Bennet, 2002). For a one-dimensional uniform flow field, it is given by: 

 𝑃𝑒 = 𝑣
∆𝑥
𝐷

 (3.42) 

A smaller value of Peclet number is desirable to for an oscillation free numerical solution. It has been 

shown that when 𝑃𝑒 ≤ 2, numerical oscillations are removed (Huyakorn and Pinder, 1983). Larger the 

physical dispersion (D), smaller the Peclet number. The Peclet number is also dependent on the grid 

spacing used. Smaller grid spacing leads to smaller Pe. However to keep the Peclet number within a small 

value, the grid spacing ∆𝑥 may have to be so small as to be impractical. There are several ways to deal 

with high Peclet number flow problems such as upstream weighting, streamline upwind Petrov-Galerkin 

(SUPG) etc. (Onate, 1998) 

Courant number: Another source of numerical dispersion lies in the approximation of the time 

derivative. A quantity used to estimate numerical dispersion while solving the advection-dispersion (AD) 

equation is the Courant number (Zheng and Bennet, 2002). The Courant number (𝐶𝑟) reflects the number 

of cells (or the fraction of a cell) that a solute particle will traverse by advection in one time step. It is 

defined as, 

 𝐶𝑟 =
𝑣∆𝑡
∆𝑥

 (3.43) 

The numerical dispersion is dependent on the Courant number and is used as the accuracy requirement for 

the solution of AD equation (Zheng and Bennet, 2002). When advection dominates dispersion, designing 

a model with a small (<1) Courant number will decrease oscillations, improve accuracy and decrease 

numerical dispersion. To obtain sufficiently accurate solutions, it is generally required that 𝐶𝑟 be less than 

or equal to one. The Courant number requirement nevertheless put a limit on the time-step size to be used 

in implicit or Cranck-Nicholson schemes, even though these schemes are unconditionally stable. 

3.8 Closure 
This chapter has discussed the various physical processes which are associated with groundwater flow 

and solute transport. The partial differential equations (PDE) that governs these processes have been 
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elaborated along with the available numerical methods for solving them such as FDM, FEM and the 

meshfree methods. Each of these methods has its own strengths and weaknesses. Over and above these, 

various numerical stability issues also arises during groundwater flow and solute transport modeling and 

they have been briefly discussed. The primary root cause of these stability problems is the truncation or 

approximation errors that are implicit in the numerical methods. This chapter also discussed the broad 

classifications of the methods used for groundwater source identification and the limitations of each of 

them. The next chapter proposes a meshfree method for modeling groundwater flow and solute transport. 

Meshfree methods can overcome some of the difficulties associated with mesh based approaches. 
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Chapter 4 

Groundwater flow and transport modeling using meshfree method 

4.1 Introduction  
Commonly used methods for solving groundwater flow and transport equations such as FDM, FEM, and 

BEM are grid based methods requiring the construction of a mesh. This necessitates a lot of pre-

processing and also leads to difficulties in adaptive analysis.  Mesh Free methods, on the other hand, use a 

set of nodes scattered within the problem domain as well as sets of nodes scattered on the boundaries of 

the domain to represent (not discretize) the problem domain and its boundaries. These sets of scattered 

nodes are called field nodes, and they do not form a mesh, meaning it does not require any a priori 

information on the relationship between the nodes for the interpolation or approximation of the unknown 

functions of field variables (Liu and Gu, 2005). The solution procedure for Meshfree methods is shown in 

the Figure 4.1 where it has been compared to FEM.  

 

Figure 4.1: Comparison of steps in Mesh Free and 
FEM  
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4.2 Meshfree method - theoretical background 
Mesh free methods use a set of nodes scattered within the problem domain as well as sets of nodes 

scattered on the boundaries of the domain to represent (not discretize) the problem domain and its 

boundaries  (Liu and Gu, 2005). The set of scattered nodes are called field nodes. Mesh free method does 

not require any a priori information on the relationship between the nodes for the interpolation or 

approximation of the unknown functions of field variables i.e. a mesh is not required. 

The ideal requirement for an MFree method will be that no mesh is required throughout the process of 

formulating and solving the problem, of a given arbitrary geometry, governed by a partial differential 

system equations subject to given boundary conditions. However, many of the methods classified as 

meshfree methods do not fulfill the ideal requirement as stated above. For many of these methods the 

connectivity of the nodes is determined at the run time. The minimum requirement for a method to be 

called mesh free method is that a predefined mesh is not required in the field variable interpolation or 

approximation. 

Over the last three decades, several types of mesh free methods have been developed and it continues to 

attract the attention of researchers around the world till today. Many mesh free methods have found good 

applications in several areas of scientific and engineering endeavors and have shown to be a very good 

potential to become a powerful numerical tools. However, these methods are still in their developmental 

stage, and there are technical issues that need to be resolved before the methods can become efficient 

tools for complex engineering problems. 

4.2.1 Developments in meshfree methods 
The first of the meshfree methods developed was the smooth particle hydrodynamics (SPH) method by 

Lucy, (1977) and Gingold and Monaghan, (1977). It was developed to solve problems in astrophysics 

such as modeling exploding stars and dust clouds that had no boundaries. Its application was later 

extended to fluid dynamics (Bonet and Kulasegaram, 2000, Monaghan, 1982, Monaghan, 1988). Libersky 

et al., (1993) were the first to use SPH in solid mechanics. SPH is based on a strong form. Meshfree 

methods based on weak form were developed in the 1990s such as the element-free Galerkin (EFG) 

method developed in 1994 by Belytschko et al., (1994). EFG was one of the first meshfree methods based 

on a global weak form. Since then several other weak-form meshfree methods such as reproducing kernel 

particle method (RKPM) (Liu et al.,1995), the meshless local Petrov-Galerkin method (MLPG) (Atluri 

and Zhu, 1998), the point interpolation method (Liu and Gu, 1999), hp-cloud method (Armando and 

Oden, 1995), the partition of unity finite element method (PUFEM) (Melensk and Babuska, 1996) etc. 
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were developed. Kansa (1990) first applied collocation based meshfree method to solve partial differential 

equations using a globally supported support domain. 

4.2.2 Different types of meshfree method 
Meshfree methods can be classified based on the formulation procedure, according to the function 

approximation schemes and the domain representation. There are three main ways of formulating mesh 

free methods namely, weak-form formulation, strong-form formulation (collocation) and combination of 

weak-form and strong-form. Mesh free methods also differs from each other in the schemes with which 

the function approximations are performed. The main function approximation techniques are the moving 

least squares approximation (MLS), integral representation method of function approximation, point 

interpolation method (PIM), hp-cloud method and the partition of unity method. When it comes to 

domain representation, meshfree methods falls into two categories namely domain-type and boundary-

type meshfree methods. The boundary-type is an extension of the boundary integral equation. Table 4.1 

below list the various meshfree methods classified according to the criterion mentioned above (Liu and 

Gu, 2005). 

Table 4.1: Classification of meshfree methods (Liu and Gu, 2005) 

Feature or basis for 

classification 
Categories 

Examples of the meshfree 

methods falling in a category 

Interpolation or approximation 

method 

Meshfree methods using MLS EFG, MLPG etc. 

Meshfree methods using integral 

representation method for function 

approximation 

SPH 

Meshfree method using PIM RPIM, LRPIM etc. 

Meshfree method using other 

interpolation schemes 

PUFEM (partition of unity) 

hp-cloud 
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Formulation procedure of the 

governing equation 

Meshfree methods  formulated 

based on strong-form 

Meshfree collocation methods, 

FPM etc. 

Meshfree methods  formulated 

based on weak-form 

EFG, RPIM, MLPG, LRPIM 

etc. 

Meshfree methods  formulated 

based on combination of weak-

form and strong-form 

MWS 

Domain representation 

Domain-type meshfree methods 
SPH, EFG, RPIM, MLPG, 

LRPIM etc. 

Boundary-type meshfree methods 
BNM, BPIM, BRPIM, 

HBRPIM etc. 

 

4.2.3 Radial point collocation method 
Radial point collocation is a strong-form meshfree method wherein the governing equations are 

formulated using point collocation method and the function approximation (interpolation) is achieved by 

using a class of functions known as the radial basis functions (RBF) (Liu and Gu, 2005). The function 

interpolation is performed by using nodes within a small region around the point of interest. This region 

in the neighborhood of the point of interest is known as the local support domain of the point and is 

different for each point. The chosen approximation function passes through all the points within the 

support domain. This type of interpolation is known as the point interpolation method (PIM). In other 

function approximation such as the moving least squares approximation, the function need not pass 

through the individual points.  

4.3 Meshfree method- modeling procedure 
The process of solution of a given PDE by mesh free methods proceeds as in FEM but with differences in 

the way the domain representation and shape function creation are handled (Figure 4.1). These can be 

seen from the steps listed below (Liu and Gu, 2005). 

4.3.1 Domain representation 
In the Mesh free method, the problem domain and its boundary are first modeled and represented by using 

sets of nodes scattered in the problem domain and on its boundary. Since these nodes carry the values of 
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the field variables in a meshfree formulation, they are often called field nodes. The density of the nodes 

depends on the accuracy required and resources available. 

 

Unlike in FEM, no connectivity data among the nodes is required i.e. no mesh is required, only the 

coordinates of the nodes is required. This difference in the domain representation is illustrated in   Figure 

4.2 (Liu and Gu, 2005). 

4.3.2 Function interpolation or approximation 
To solve any PDE, first the unknown field variable is approximated using trial or shape functions. A local 

support domain of a point x determines the number of nodes to be used to approximate the function value 

at x. It is a set of nodes in the neighborhood of the point. The constructed shape function will not be used 

or is regarded as zero outside this local support domain; hence it is called locally supported. The support 

domain can have different shapes and also its dimension and shape can be different for different points of 

interest x, as shown in Figure 4.3 (Liu and Gu, 2005). Circular or rectangular support domains are the 

most commonly used shapes. 

   Figure 4.2: Domain representation in (a) FEM and (b) 
Mesh free methods  
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Figure 4.3 : Local support domains  

 

4.3.3 Formation of system equations 
The discrete equations of a meshfree method can be formulated using the shape functions and strong or 

weak form system equation. These equations are often written in nodal matrix form and are assembled 

into the global system matrices for the entire problem domain. The discretized system equations of 

meshfree methods are similar to those of FEM in terms of bandedness and sparseness, but they can be 

asymmetric depending on the method used. 

4.3.4 Solve the global Mesh free equations 
The resulting system of equations is solved to get the desired solution, as in FEM, except that solvers for 

asymmetric matrix systems may be needed, if locally supported domain is used in the function 

approximation. When the function interpolation is based on globally supported domain i.e. all the nodes 

are used in the function approximation, the system matrix can be conditionally unstable and is also 

unbanded. 

4.4 Radial point interpolation and shape function evaluation 
The approximation of a function u(x) within a local support domain can be constructed as a linear 

combination of n radial basis functions and m polynomial basis functions as below (Liu and Gu, 2005): 

:  Field Node 

Local Support 
Domains 

:  Point of interest 
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𝑢(𝒙) = �𝑎𝑖𝑅𝑖(𝒙) +  �𝑃𝑗(𝒙)𝑏𝑗

𝑚

𝑗=1

= 𝑹𝑇(𝒙)𝒂 + 𝑷𝑇(𝒙)𝒃
𝑛

𝑖=1

 (4.1) 

where 𝑅𝑖(𝒙) is a radial basis function (RBF) such as a Multi-Quadrics or Gaussian, n is the number of 

points in the support domain, 𝑎𝑖  and 𝑏𝑗 are unknown coefficients to be determined. 𝑃𝑗(𝑥) are polynomial 

basis functions. m is the number of polynomial basis functions. When m = 0, pure RBFs are used. 

Otherwise, the RBF is augmented with m polynomial basis functions.  

The above interpolation could have been accomplished using polynomials. But the major drawback of 

using polynomial for point interpolation method (PIM) is that it may yield a moment matrix that is badly 

conditioned or even singular depending on the locations of the nodes in the support domain and the terms 

of the monomials used in the basis. This may render the moment matrix non-invertible. To create a 

nonsingular moment matrix, radial basis functions (RBF) are used for constructing shape functions. PIM 

using radial basis function is termed radial PIM (RPIM). 

In the RBF, 𝑅𝑖(𝒙), the only variable is the distance between the point of interest x, called the data site and 

a node at 𝒙𝑖, known as the center point, 

 𝑟𝑖 = �(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2      (in case of 2D problems) (4.2) 

There are several types of radial basis functions. Kansa (1990), Franke and Schaback (1997), Sharan et 

al.(1997) etc. have extensively investigated the characteristics of RBFs. Table 4.2 lists some of the widely 

used RBF functions and their definitions. In this work, two of the most widely used RBF functions viz., 

the multi-quadrics RBF (MQ-RBF) and the Exponential or Gaussian RBF (EXP-RBF) have been used for 

function interpolation. 

Table 4.2 : Typical radial basis functions with dimensionless shape parameters 

 Name Expression 
    Shape  

Parameters 

1 Multi-quadrics(MQ) 𝑅𝑖(𝑥,𝑦) = �𝑟𝑖2 + 𝐶𝑠2�
𝑞 = [(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + 𝐶𝑠2]𝑞 𝐶𝑠, 𝑞 

2 Gaussian (EXP) 𝑅𝑖(𝑥,𝑦) = exp�−𝑐𝑟𝑖2� = exp {−𝑐[(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2]} 𝑐 

3 
Thin plate spline 

(TPS) 
𝑅𝑖(𝑥,𝑦) = 𝑟𝑖

𝜂 = [(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2]𝜂 𝜂 

 Logarithmic RBF 𝑅𝑖(𝑟𝑖) = 𝑟𝑖
𝜂 log 𝑟𝑖 𝜂 
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where 𝑞,𝐶𝑠, 𝑐, 𝜂 are known as the shape parameters of the RBF and. The standard MQ-RBF has 𝑞 =

±0.5, but this parameter can also be left as an additional open parameter (Wang and Liu, 2002a). In this 

study, the parameter q has been kept at 0.98 as in Liu and Gu (2005). It was observed that changing this 

parameter to the standard value of 0.5 did not produce any significant effect on the accuracy and stability 

of the solutions in this study. The shape parameter of the MQ-RBF, 𝐶𝑠 is usually defined in terms of a 

characteristic length (𝑑𝑐) i.e. 𝐶𝑠 = 𝛼𝑐𝑑𝑐. This characteristic length (𝑑𝑐) is related to the nodal spacing in 

the local support domain. The value of the shape parameter of the RBFs has a very profound impact on 

the quality of the interpolation within a support domain and hence on the overall solution accuracy. 

Choosing the optimum value of this parameter is very crucial. Currently there is no unique criterion or 

established method for finding the optimum value of this parameter and is generally found by sensitivity 

or parametric studies. Some strategies of choosing the shape parameter can be found in Schaback and 

Wendland (2000), Rippa (1999) and Wright (2003). 

The unknown coefficients 𝑎𝑖 and 𝑏𝑗 in equation (4.1) can be determined by enforcing the interpolation 

function to pass through all n nodes within the support domain (Liu and Gu, 2005). The interpolation of 

the function at the 𝑘𝑡ℎ point has the following form: 

 
𝑢(𝑥𝑘 ,𝑦𝑘) = ℎ𝑘 = �𝑎𝑖𝑅𝑖(𝑥𝑘 ,𝑦𝑘) +�𝑏𝑗𝑃𝑗(𝑥𝑘 ,𝑦𝑘)

𝑚

𝑗=1

𝑛

𝑖=1

      ,𝑘 = 1, . . .  ,𝑛 (4.3) 

which yields n simultaneous linear algebraic equations with 𝑛 + 𝑚 unknowns. The additional m equations 

can be obtained from the following m constraint equations imposed on the polynomial term to guarantee 

unique approximation (Goldberg et al., 1999) : 

 
�𝑃𝑗(𝑥𝑖,𝑦𝑖)𝑎𝑖 = 𝑷𝑚𝑇 𝒂 = 0 ,      𝑗 = 1,2, … …𝑚
𝑛

𝑖=1

 (4.4) 

Equation (4.3) can be written in matrix form as: 

 𝑈𝑠 = 𝑅0𝒂 + 𝑃𝑚𝒃 (4.5) 

where, 

 𝑈𝑠 = {𝑢1  𝑢2 ⋯  𝑢𝑛}𝑇 (4.6) 

 

𝑅0 = �

𝑅1(𝑟1) 𝑅2(𝑟1) ⋯ 𝑅𝑛(𝑟1)
𝑅1(𝑟2) 𝑅2(𝑟2) ⋯ 𝑅𝑛(𝑟2)
⋮

𝑅1(𝑟𝑛)
⋮

𝑅2(𝑟𝑛)
⋮

⋯ 𝑅𝑛(𝑟𝑛)

�

(𝑛𝑥𝑛)

 (4.7) 
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𝑃𝑚𝑇 =

⎣
⎢
⎢
⎢
⎡

1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑛
𝑦1
⋮

𝑝𝑚(𝒙𝟏)

𝑦2
⋮

𝑝𝑚(𝒙𝟐)

⋯
⋱
…

𝑦𝑛
⋮

𝑝𝑚(𝒙𝒏)⎦
⎥
⎥
⎥
⎤

(𝑚𝑥𝑛)

 (4.8) 

 𝑎𝑇 = {𝑎1 𝑎2 ⋯ 𝑎𝑛} ; 𝑏𝑇 = {𝑏1 𝑏2 ⋯ 𝑏𝑚} (4.9) 

𝑅0 is the moment matrix of RBFs while 𝑃𝑚𝑇 is the moment matrix of polynomials. In the above,  

𝑟𝑘  𝑖𝑛 𝑅𝑖(𝑟𝑘) is defined as: 

 𝑟𝑘 = �(𝑥𝑘 − 𝑥𝑖)2 + (𝑦𝑘 − 𝑦𝑖)2  (4.10) 

Combining equations (4.4) and (4.5), the following set of equations is obtained, 

 𝑼�𝑠 = �𝑼𝑠
𝟎 � = �

𝑅0 𝑃𝑚
𝑃𝑚𝑇 0 � �𝒂𝒃� = 𝐺𝒂0 (4.11) 

Solving this set of equations, 

 𝒂0 = �𝒂𝒃� = 𝐺−1𝑼�𝑠 (4.12) 

Equation (4.1) can be written as, 

 𝑢(𝒙) = 𝑅𝑇(𝒙)𝒂 + 𝑝𝑇(𝒙)𝒃 = {𝑅𝑇(𝒙) 𝑝𝑇(𝒙)} �𝒂𝒃� (4.13) 

Substituting the coefficients from equation (4.12) back into equation (4.13), the interpolation can be 

expressed as, 

 𝑢(𝒙) = 𝚽𝑻(𝒙)𝒖𝒔 (4.14) 

 where 𝝓(𝐱), is known as the shape functions and expressed as: 

 𝚽𝑻(𝒙) = {𝜙1(𝑥,𝑦)   𝜙2(𝑥, 𝑦)    . . .   𝜙𝑛(𝑥,𝑦)} (4.15) 

and, 𝒖𝑠 = {𝑢1 𝑢2  ⋯𝑢𝑛}𝑇 is the vector of nodal values of the function at the support domain nodes. 

The shape functions depend only upon the position of the nodal points. The derivatives of 𝑢(𝑥,𝑦) at any 

point 𝒙𝐼(𝑥𝐼 ,𝑦𝐼) can be easily determined as below: 

 
𝑢(𝒙𝐼) = 𝚽𝑇𝒖𝑠 = �𝜙𝑖𝑢𝑖

𝑛

𝑖=1

 (4.16) 

 𝜕𝒖𝐼
𝜕𝑥

=
𝜕𝚽𝑇

𝜕𝑥
𝒖𝑠 = �

𝜕𝜙𝑖
𝜕𝑥

𝑛

𝑖=1

𝑢𝑖    ;   
𝜕2𝒖𝐼
𝜕𝒙2

=
𝜕2𝚽𝑇

𝜕𝑥2
𝒖𝑠 = �

𝜕2𝜙𝑖
𝜕𝑥2

𝑢𝑖

𝑛

𝑖=1

 (4.17) 
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 𝜕𝒖𝐼
𝜕𝑦

=
𝜕𝚽𝑇

𝜕𝑦
𝒖𝑠 = �

𝜕𝜙𝑖
𝜕𝑦

𝑛

𝑖=1

𝑢𝑖    ;   
𝜕2𝒖𝐼
𝜕𝒚2

=
𝜕2𝚽𝑇

𝜕𝑦2
𝒖𝑠 = �

𝜕2𝜙𝑖
𝜕𝑦2

𝑢𝑖

𝑛

𝑖=1

 (4.18) 

 

4.4.1 Approximation using radial point collocation method (RPCM) 
In this section, the approximation or discretization of differential equations using point collocation 

method is demonstrated (Liu and Gu, 2005). The discretization techniques developed here are applied to 

the governing equations of groundwater flow and transport in the next section. 

  Let us consider the following second-order one-dimensional differential equation: 

 
𝐴2(𝑥)

𝑑2𝑢
𝑑𝑥2

+ 𝐴1(𝑥)
𝑑𝑢
𝑑𝑥

+ 𝐴0(𝑥)𝑢 + 𝑞𝑎(𝑥) = 0 (4.19) 

where 𝑢 is the unknown scalar field variable, the coefficients 𝐴0,𝐴1 and 𝐴2are given functions of the 

independent variable 𝑥, 𝑞𝑎 is the source or sink term which may also be a function of x. Let the boundary 

conditions be: 

 
𝐵1(𝑥)

𝑑𝑢(𝑥)
𝑑𝑥

+ 𝐵0(𝑥)𝑢(𝑥) + 𝑞𝑏 = 0   (𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑜𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝐵𝐶) (4.20) 

 𝑢(𝑥) − 𝑢� = 0   (𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝐵𝐶) (4.21) 

where B0 and B1 are given functions of x, qb is a source term on the flux boundary and 𝑢� is the specified 

value of the field variable on the Dirichlet boundary points. Let us assume that the above equation is valid 

over the domain shown in Figure 4.4 where the nodal distributions are also shown. The domain ranges 

from 𝑥 = 𝑥1to 𝑥 = 𝑥𝐿 and it has been sub-divided into N discrete points, not necessarily spaced equally. 

The Dirichlet boundary is at 𝑥 = 𝑥1while the Neumann or derivative boundary is at 𝑥 = 𝑥𝐿. The 

collocation points to be used for the discretization of eqn.(4.19) can be different from the grid or field 

nodes used to sub-divide the domain. 



 Radial point interpolation and shape function evaluation 
 

56 
 

 

Figure 4.4: Nodal distribution of the problem domain 

Using the meshfree shape function derived in the preceding section (given in eqns. 4.16 through 4.18), the 

approximation (𝑢ℎ) of the unknown function (𝑢) and its derivatives at the collocation point at 𝑥 = 𝑥𝐼 are : 

 𝑢𝐼ℎ = 𝑢ℎ(𝑥𝐼) = 𝚽𝑇𝒖𝑠 (4.22) 

 𝜕𝑢𝐼ℎ

𝜕𝑥
=
𝜕𝚽𝑇

𝜕𝑥
𝒖𝑠 (4.23) 

 𝜕2𝑢𝐼ℎ

𝜕𝑥2
=
𝜕2𝚽𝑇

𝜕𝑥2
𝒖𝑠 (4.24) 

For all the internal points (all points except the end points where BC are applied) of the domain, the 

discretization of the equation (4.19) is obtained by simple collocation at each of the points and using the 

approximation in eqn. (4.22). For the node at = 𝑥𝐼 , the resulting equation is: 

 
�𝐴2(𝑥𝐼)

 𝑑2𝚽𝑇

𝑑𝑥2
+ 𝐴1(𝑥𝐼)

𝑑𝚽𝑇

𝑑𝑥
+ 𝐴0(𝑥𝐼)�𝒖𝑠 = −𝑞𝑎(𝑥𝐼) ;   𝑓𝑜𝑟 𝑎𝑙𝑙 𝐼 = 2, 3, … . ,𝑁 − 1 (4.25) 

Or in matrix form, 

 𝑲𝐼𝒖𝑠 = 𝑓𝐼  ;     𝑓𝑜𝑟 𝑎𝑙𝑙 𝐼 = 2,3, … . ,𝑁 − 1 (4.26) 

Where 𝑲𝐼 is the nodal matrix for the collocation at 𝑥𝐼. Expanding the expression, 

𝑲𝐼 = 𝐴2(𝑥𝐼)
 𝑑2𝚽𝑇

𝑑𝑥2
+ 𝐴1(𝑥𝐼)

𝑑𝚽𝑇

𝑑𝑥
+ 𝐴0(𝑥𝐼)

= �𝐴2(𝑥𝐼)
 𝑑2𝜙1
𝑑𝑥2

+ 𝐴1(𝑥𝐼)
𝑑𝜙1
𝑑𝑥

+ 𝐴0(𝑥𝐼) … .𝐴2(𝑥𝐼)
 𝑑2𝜙𝑛
𝑑𝑥2

+ 𝐴1(𝑥𝐼)
𝑑𝜙𝑛
𝑑𝑥

+ 𝐴0(𝑥𝐼)� 
(4.27) 

Here, 𝑓𝐼 = −𝑞𝑎(𝑥𝐼). The Dirichlet boundary condition (eqn.4.21) can be implemented as, 

 𝚽𝑇𝒖𝑠 = 𝑢� ⇒ 𝑲1𝒖𝑠 = 𝑓1 (4.28) 

𝑥 = 𝑥1 𝑥 = 𝑥𝐿 = 𝑥𝑁 

1 2 3 N 𝑥 

Dirichlet boundary Neumann boundary 
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where 𝑲1 = 𝚽𝑇 = {𝜙1 𝜙2  …𝜙𝑛} is the nodal matrix for the collocation node at x1 ; the 𝜙𝑖’s are created 

by using the n nodes in the support domain of node 1 and 𝑓1 = 𝑢� . The Neumann boundary condition at 

the other end of the domain i.e. 𝑥 = 𝑥𝑁 requires special treatment as derivative boundary conditions are 

known to cause instability and poor accuracy, specially with irregular grids, in collocation methods (Liu 

and Gu, 2005). A number of strategies have been proposed in Liu and Gu (2005) to deal with derivative 

boundary conditions such as direct collocation, method of fictitious points, Hermite-type collocation, 

method of regular grids, dense nodes method and weak-strong form method. In this study, the direct 

collocation approach has been implemented. In the direct collocation method for derivative boundary, a 

discretization scheme, similar to that for the internal nodes, is constructed at the derivative boundary 

nodes. Substituting the function approximation in eqn. (4.20) into the Neumann boundary (eqn. 4.22), we 

obtain, 

 
�𝐵1(𝑥𝑁)

𝑑𝚽𝑇

𝑑𝑥
+ 𝐵0(𝑥𝑁)𝚽𝑇�𝑢𝑠 = −𝑞𝑏(𝑥𝑁) (4.29) 

Or, in matrix form, 

 𝑲𝑁𝒖𝑠 = 𝑓𝑁 (4.30) 

where 𝑲𝑁 is the nodal matrix for the collocation node at 𝑥𝑁 and 𝑓𝑁 = −𝑞𝑏(𝑥𝑁). 𝑲𝑁 can be expanded as, 

𝐾𝑁 = 𝐵1(𝑥𝑁)
𝑑𝚽𝑇

𝑑𝑥
+ 𝐵0(𝑥𝑁)𝚽𝑇 = �𝐵1(𝑥𝑁)

𝑑𝜙1
𝑑𝑥

+ 𝐵0(𝑥𝑁)𝜙1 … 𝐵1(𝑥𝑁)
𝑑𝜙𝑛
𝑑𝑥

+ 𝐵0(𝑥𝑁)𝜙𝑛� (4.31) 

Now assembling the eqns. (4.25), (4.28) and (4.29), the discretized system equation is obtained as, 

 𝑲𝑁𝑥𝑁𝑼𝑁𝑥1 = 𝑭𝑁𝑥1 (4.32) 

where the global system matrix , 𝑲 has the form, 

 

𝑲 =

⎣
⎢
⎢
⎢
⎡
𝐾11 𝐾12 ⋯ 𝐾1(𝑁−1) 𝐾1𝑁
𝐾21 𝐾22 ⋯ 𝐾2(𝑁−1) 𝐾2𝑁
⋯ ⋯ ⋱ ⋯ ⋯

𝐾(𝑁−1)1 𝐾(𝑁−1)2 ⋯ 𝐾(𝑁−1)(𝑁−1) 𝐾(𝑁−1)𝑁
𝐾𝑁1 𝐾𝑁2 ⋯ 𝐾𝑁(𝑁−1) 𝐾𝑁𝑁 ⎦

⎥
⎥
⎥
⎤

 (4.33) 

and the global source or load vector 𝑭 is of the form, 

 

𝑭 =

⎩
⎪
⎨

⎪
⎧

𝑢�
−𝑞𝑎(𝑥2)

⋮
−𝑞𝑎(𝑥𝑁−1)
−𝑞𝑏(𝑥𝑁) ⎭

⎪
⎬

⎪
⎫

 (4.34) 
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The vector 𝑼 collects all the nodal values of the unknown function 𝑢 and is of the form, 

 

𝑼 =

⎩
⎪
⎨

⎪
⎧
𝑢1
𝑢2
⋮

𝑢𝑁−1
𝑢𝑁 ⎭

⎪
⎬

⎪
⎫

 (4.35) 

Solving eqn. (4.32) will give the nodal values of the unknown field variable 𝑢 at all the nodes. It may be 

observed that the assembling of the global system matrix has been done by stacking together row-by-row 

for each of the nodes, quite different from the assembling procedure of FEM. 

Two dimensional equation: The general form of the second-order PDE defined in a domain Ω is given 

by, 

𝐴11(𝒙)
𝜕2𝑢
𝜕𝑥2

+ 2𝐴12(𝒙)
𝜕2𝑢
𝜕𝑥𝜕𝑦

+ 𝐴22(𝒙)
𝜕2𝑢
𝜕𝑦2

+ 𝐴10(𝒙)
𝜕𝑢
𝜕𝑥

+ 𝐴20(𝒙)
𝜕𝑢
𝜕𝑦

+ 𝐴00(𝒙)𝑢 + 𝑞𝑎(𝑥) = 0 (4.36) 

where u is the unknown field function, 𝑞𝑎 is the source term and 𝐴11 through 𝐴00 are coefficients which 

can be a function of the spatial coordinates, 𝒙 = (𝑥,𝑦). The boundary conditions can be of Dirichlet or 

Neumann type. 

• Dirichlet boundary condition: 

𝑢 = 𝑢�   𝑜𝑛 ∂Ωu 

• Neumann (derivative) boundary condition: 

𝒏𝑇 ⋅ ∇𝑢 + 𝑞𝑏 = 0    𝑜𝑛  𝜕Ω𝐷𝐵 

where 𝑞𝑏 is a specified source term on the Neumann boundary, 𝜕Ω𝐷𝐵; n is the vector of the unit outward 

normal and the gradient operator ∇ is defined as, 

∇𝑢 =

⎩
⎨

⎧
𝜕
𝜕𝑥
𝜕
𝜕𝑦⎭
⎬

⎫
𝑢 =

⎩
⎨

⎧
𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦⎭
⎬

⎫
 

The point collocation discretization derived above can be easily extended to this general second-order 

PDE. The meshfree function approximations derived in eqns. (4.16), (4.17) and (4.18) can be employed to 

obtain the discretization of the given equation. 
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4.5 RPCM formulation for groundwater flow problem 
In the present work, the meshfree RPCM or strong form formulation as proposed in Liu and Gu (2005) is 

used for discretizing the groundwater flow and transport equations. The governing equation is discretized 

using point collocation method with the state variable, i.e. hydraulic head or solute concentration 

approximated by using point interpolation method (PIM) as described in the previous section 4.4. The 

radial basis functions used in this study are the Multi-quadrics (MQ) and the Gaussian or Exponential 

(EXP) RBFs. In this section, this discretization process is demonstrated for both the confined and 

unconfined aquifers. Steady state and time-dependent cases of both the aquifers have been also 

considered. 

4.5.1 2D confined flow problem 
The equation which governs the two-dimensional groundwater flow in a confined aquifer is given by 

eqn.(3.12). In steady-state case the governing equation is given by, 

 𝜕
𝜕𝑥 �

𝑇𝑥
𝜕ℎ
𝜕𝑥�

+
𝜕
𝜕𝑦 �

𝑇𝑦
𝜕ℎ
𝜕𝑦�

= 𝑄𝑤𝛿(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) − 𝑞 (4.37) 

Using the meshfree shape functions derived in eqn. (4.16), the groundwater head can be approximated as, 

 
ℎ(𝑥,𝑦) = �𝜙𝑖(𝑥,𝑦)ℎ𝑖 = 𝚽𝑇(𝑥,𝑦)𝒉𝑠   

𝑛

𝑖=1

 (4.38) 

where 𝒉𝑠 = {ℎ1 ℎ2 …ℎ𝑛} is the nodal heads for the nodes in the support domain of the point of interest 

(𝑥,𝑦), n is the number of nodes in its support domain. Collocation of the governing eqn. (4.37) at the 

point 𝒙𝑟 = (𝑥𝑟,𝑦𝑟) using the approximation in eqn. (4.37) yields,  

𝑇𝑥(𝒙𝑟)
𝜕2𝚽𝑇

𝜕𝑥2
𝒉𝑠 + 𝑇𝑦(𝒙𝑟)

𝜕2𝚽𝑇

𝜕𝑦2
𝒉𝑠 = 𝑄𝑤𝛿(𝒙 − 𝒙𝑟) − 𝑞(𝒙𝑟) 

Or, 

 
�𝑇𝑥(𝒙𝑟)

𝜕2𝚽𝑇

𝜕𝑥2
+ 𝑇𝑦(𝒙𝑟)

𝜕2𝚽𝑇

𝜕𝑦2
�𝒉𝑠 = 𝑄𝑤𝛿(𝒙 − 𝒙𝑟) − 𝑞(𝒙𝑟) (4.39) 

The above discretized equation is established for all the internal nodes, 𝒙𝑟’s.  The Dirichlet boundary 

condition in eqn. (3.14) can be easily discretized, using the function approximation (eqn.4.38), as below: 

 𝚽𝑇𝒉𝑠 = ℎ1 (4.40) 

The Neumann boundary condition in eqn. (3.15) is discretized by using the direct collocation technique as 

described in the preceding sections to yield, 
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𝑇(𝒙)

𝜕Φ𝑇

𝜕𝑛
= 𝑞1(𝒙)  (4.41) 

Now, assembling the discretized eqns. (4.39), (4.40) and (4.41), the global system of equations can be 

obtained and it will have a similar form as in eqn. (4.32). 

4.5.1.1 Time-dependent confined flow problem 

For time-dependent case, the nodal groundwater head approximation using the meshfree RPIM shape 

functions can be written as, 

 
ℎ(𝒙, 𝑡) = �𝜙𝑖(𝒙)ℎ𝑖(𝑡) = 𝚽𝑇(𝒙)𝒉𝑠(𝑡)   

𝑛

𝑖=1

 (4.42) 

in which n is the number of nodes used in the local support domain. The time-dependence appears only in 

the nodal head values whereas the shape functions are only a function of the nodal coordinates. 

The discretization of the governing equation (3.12) is achieved by simple collocation at all the internal 

nodes and using the above approximation for the groundwater head. Thus by collocation at the point 

𝒙𝑟(𝑥𝑟,𝑦𝑟), the governing equation (3.12), for a homogeneous and isotropic aquifer, is discretized as: 

 
𝑇(𝒙𝑟) �

𝜕2𝚽𝑇

𝜕𝑥2
+
𝜕2𝚽𝑇

𝜕𝑦2
�𝒉𝑠(𝑡) = 𝑆(𝒙𝑟) �

𝜕ℎ
𝜕𝑡
�
𝒙𝑟

+ 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) − 𝑞(𝒙𝑟) (4.43) 

Using nodal indices, the above equation can be re-written as, 

 
𝑇𝑟 �

𝜕2𝚽𝑇

𝜕𝑥2
+
𝜕2𝚽𝑇

𝜕𝑦2
�𝒉𝑠(𝑡) = 𝑆𝑟 �

𝜕ℎ
𝜕𝑡
�
𝑟

+ 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) − 𝑞𝑟 (4.44) 

The time discretization can be done by using the θ- method which is the most commonly used algorithm 

for time discretization. In this method, the time derivative is replaced by a simple forward difference 

while the solution is replaced by a weighted value of the previous time-step solution and current solution 

as below (Richtmyer and Morton, 1967): 

 𝜕ℎ
𝜕𝑡

=
ℎ𝑡+Δ𝑡 − ℎ𝑡

Δ𝑡
 (4.45) 

and ℎ = 𝜃ℎ𝑡+Δ𝑡 + (1 − 𝜃)ℎ𝑡 (4.46) 
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Here, 𝜃 is a relaxation parameter which lies in the interval [0, 1] and is used to control the accuracy and 

stability of the algorithm. This method is unconditionally stable for all 𝜃 ≥ 1/2 (Richtmyer and Morton, 

1967). Commonly used values of θ are 0, ½, 2/3 and 1. When θ < 1/2, the algorithm is only conditionally 

stable. When = 1
2�  , it is known as the Cranck-Nicholson time stepping method and the same is used in 

this study. Substituting equations (4.45 and 4.46), the discretized equation (4.44) can be written as, 

 
𝑆𝑟
𝝓𝑻𝒉𝒔

𝑡+Δ𝑡 − ℎ𝑟𝑡

Δ𝑡
+ 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) − 𝑞𝑟

= 𝜃𝑇𝑟 �
𝜕2𝝓𝑻

𝜕𝑥2
+
𝜕2𝝓𝑻

𝜕𝑦2
�𝒉𝑠𝑡+Δ𝑡 + (1 − 𝜃)𝑇𝑟 �

𝜕2𝝓𝑻

𝜕𝑥2
+
𝜕2𝝓𝑻

𝜕𝑦2
�𝒉𝑠𝑡  

(4.47) 

It is assumed that the nodal heads, ℎ𝑟𝑡  at time 𝑡 are known and is used as the initial condition to advance 

the solution to the next time level, 𝑡 = 𝑡 + Δ𝑡. Re-arranging the terms, 

 
�𝑆𝑟𝝓𝑻 − 𝜃Δ𝑡𝑇𝑟 �

𝜕2𝝓𝑻

𝜕𝑥2
+
𝜕2𝝓𝑻

𝜕𝑦2 �
�𝒉𝑠𝑡+Δ𝑡

= 𝑆𝑟ℎ𝑟𝑡 + Δt(1 − 𝜃) �
𝜕2𝝓𝑻

𝜕𝑥2
+
𝜕2𝝓𝑻

𝜕𝑦2
�𝒉𝑠𝑡 − 𝑄𝑤𝛿(𝒙𝑟 − 𝒙𝑖) + 𝑞𝑟 

(4.48) 

The above equation is established for all the internal nodes. Appropriate boundary and initial conditions 

are applied. An assembling of the discretized nodal equations, as discussed in the preceding section 4.4.1, 

is performed and the resulting global equation is solved. 

4.5.2 2D unconfined flow problem 
The governing equation for an unconfined aquifer in two dimensions is non-linear (eqn. 3.16). Hence a 

linearization technique needs to be applied to apply the mesh free formulation. In this work Newton-

Raphson iteration (Ortega and Rheinboldt, 1970 ; Onate, 1998)  is applied.  

Given a system of equations, 𝑲(𝒉) = 0  Newton-Raphson method use successive approximations 

/iterations to find the solution to the equation,  𝒉𝑛+1 = 𝒉𝑛 − Δ𝒉  where 𝚫𝐡 = 𝑱−𝟏.𝑲(𝒉𝑛) is the 

successive corrections or refinements to the solution. 𝑱 is the Jacobian matrix, also called gradient matrix. 

The procedure for creating the system matrix (K) and the Jacobian(J) for implementing Newton-Raphson 

iteration method is illustrated here. The hydraulic conductivities terms have been neglected for the sake of 

simplicity since they appear as constants factors. 



 RPCM formulation for groundwater flow problem 
 

62 
 

The non-linear terms in the equation of the unconfined aquifer are discretized as below: 

 𝜕
𝜕𝑥

�ℎ
𝜕ℎ
𝜕𝑥
� = �

𝜕ℎ
𝜕𝑥
�
2

+ ℎ
𝜕2ℎ
𝜕𝑥2

 = ��
𝜕𝜑𝑖
𝜕𝑥

ℎ𝑖

𝑛

𝑖=1

�
2

+ ��𝜑𝑖ℎ𝑖

𝑛

𝑖=1

���
𝜕2𝜑𝑖
𝜕𝑥2

ℎ𝑖

𝑛

𝑖=1

� (4.49) 

Similarly, 

 𝜕
  𝜕𝑦

�ℎ
𝜕ℎ
𝜕𝑦
� = �

𝜕ℎ
𝜕𝑦
�
2

+ ℎ
𝜕2ℎ
𝜕𝑦2

 = ��
𝜕𝜑𝑖
𝜕𝑦

ℎ𝑖

𝑛

𝑖=1

�
2

+ ��ℎ𝑖

𝑛

𝑖=1

���
𝜕2𝜑𝑖
𝜕𝑦2

ℎ𝑖

𝑛

𝑖=1

� (4.50) 

The (j,r)th element of the Jacobian matrix element is then given by: 

 
[𝐽]𝑗𝑟 =

𝜕𝐾𝑗
𝜕ℎ𝑟

= 2
𝜕𝜙𝑟
𝜕𝑥

��
𝜕𝜙𝑖
𝜕𝑥

𝑛

𝑖=1

ℎ𝑖� +
𝜕2𝜙𝑟
𝜕𝑥2

��𝜙𝑖ℎ𝑖

𝑛

𝑖=1

� + 𝜙𝑟 ��
𝜕2𝜙𝑖
𝜕𝑥2

ℎ𝑖

𝑛

𝑖=1

� 

+ 2
𝜕𝜙𝑟
𝜕𝑦

��
𝜕𝜙𝑖
𝜕𝑦

𝑛

𝑖=1

ℎ𝑖� +
𝜕2𝜙𝑟
𝜕𝑦2

��𝜙𝑖ℎ𝑖

𝑛

𝑖=1

� + 𝜙𝑟 ��
𝜕2𝜙𝑖
𝜕𝑦2

ℎ𝑖

𝑛

𝑖=1

� 

 

(4.51) 

The discretization of the Dirichlet boundary condition is done in a similar way as in eqn. (4.40). However, 

the Neumann or derivative boundary condition is also non-linear for an unconfined aquifer. As noted 

earlier, the presence of derivative boundary condition, also called Neumann type BC, drastically 

deteriorates the accuracy of the solution and the solution can also be unstable (Liu and Gu, 2005). A 

number of strategies to handle derivative boundary conditions have been mentioned in Liu and Gu (2005). 

In the present study, the direct collocation method has been used which is a simple way to treat derivative 

boundary conditions (BC) with satisfactory accuracy. 

The generalized expression for derivative or Neumann type boundary conditions is (Liu and Gu, 2005) 

 𝜕ℎ(𝒙𝒊)
𝜕𝒏

= 𝑙𝑥𝑖
𝜕ℎ(𝒙𝒊)
𝜕𝑥

+ 𝑙𝑦𝑖
𝜕ℎ(𝒙𝒊)
𝜕𝑦

 (4.52) 

Where 𝒏 is the vector of unit outwards normal; 𝑙𝑥𝑖 and 𝑙𝑦𝑖 are the direction cosines for the outward 

normal at the Neumann node 𝒙𝒊 ≡ (𝑥𝑖,𝑦𝑖) defined by, 

�
𝑙𝑥𝑖 = cos (𝒏,𝑥𝑖)
𝑙𝑦𝑖 = cos (𝒏,𝑦𝑖)

   

For an unconfined aquifer, the boundary condition is also non-linear .The discretization of derivative BC 

can be done as below: 
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𝑐1  �ℎ
𝜕ℎ
𝜕𝒏
� + 𝑐0 = 𝑚(𝑥)   or,  𝑐1 �𝑙𝑥𝑖  �ℎ

𝜕ℎ
𝜕𝑥
� + 𝑙𝑦𝑖  �ℎ

𝜕ℎ
𝜕𝑦
�� + 𝑐0 = 𝑚(𝑥) 

or,          𝑐1 �𝑙𝑥𝑖 ���𝜙𝑖ℎ𝑖

𝑛

𝑖=1

���
𝜕𝜙𝑖
𝜕𝑥

ℎ𝑖

𝑛

𝑖=1

�� + 𝑙𝑦𝑖 ���𝜙𝑖ℎ𝑖

𝑛

𝑖=1

� ��
𝜕𝜙𝑖
𝜕𝑦

ℎ𝑖

𝑛

𝑖=1

��� + 𝑐0 = 𝑚(𝑥) 

The (j,r)th element of the Jacobian or gradient matrix corresponding to the Neumann boundary nodes will 

be given by, 

[𝐽]𝑗𝑟 =
𝜕𝐾𝑗
𝜕ℎ𝑟

= 𝑐1[𝑙𝑥𝑖 �𝜙𝑟 ��
𝜕𝜙𝑖
𝜕𝑥

ℎ𝑖

𝑛

𝑖=1

� +
𝜕𝜙𝑟
𝜕𝑥

��𝜙𝑖ℎ𝑖

𝑛

𝑖=1

��

+ 𝑙𝑦𝑖 �𝜙𝑟 ��
𝜕𝜙𝑖
𝜕𝑦

ℎ𝑖

𝑛

𝑖=1

� +
𝜕𝜙𝑟
𝜕𝑦

��𝜙𝑖ℎ𝑖

𝑛

𝑖=1

��]  

(4.53) 

The eqns. (4.49), (4.50), (4.51 ) and (4.53) can be established for all the nodes in the domain to form the 

system matrix (K) and the Jacobian (J). The steps for implementing Newton-Raphson iterations is: 

1. Start with an initial guess solution 

2. Compute the corrections to the previous guess using 𝚫𝐡 = 𝑱−𝟏.𝑲(𝒉𝑛)  

3. Compute the improved solution: 𝒉𝑛+1 = 𝒉𝑛 − Δ𝒉  

4. Repeat steps 2 and 3 until the preset convergence criteria is satisfied 

4.5.3 Modeling sources and sinks 
The presence of singular sources or sinks such as pumps leads to instability of the solution and loss of 

accuracy in the whole domain, known as pollution effect. This has been studied by Tornberg and Engquist 

(2004), Ashyraliyev et.al., (2007), Rude et al., (2003) and Jung (2009). Many techniques have been 

proposed to overcome this problem. In this study, the Gaussian function regularization as suggested in 

Jung (2009) has been implemented which is a very simple yet very effective method. 

In this approach, the singular δ-function i.e. the source or sink term is regularized as 

𝛿𝑁𝜖 (𝑥) =
1

𝜖√2𝜋
𝑒−

𝑥2
2𝜖2 

where the constant 𝜖 is given by, 𝜖 = 2/𝑁 and 

lim
𝑁→∞

� 𝛿𝑁𝜖 (𝑥)𝑑𝑥 = 1
+1

1
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As observed in Jung (2009), this approach yields more regularized δ-function approximation on the 

collocation points. For the choice of parameter 𝜖, Jung (2009) suggested that the parameter 𝜖 should be 

chosen properly so that 𝛿𝑁𝜖 (𝑥) can be smoothly defined on the collocation points to guarantee the 

regularity within the approximation with given N. It was shown by the author that this approach yields 

only a first order convergence near the jump discontinuity. In this study, we have observed that this first 

order convergence is sufficient for regularizing the singularities i.e. sources or sinks in groundwater 

modeling. 

4.5.4 Velocity computation 
Velocity computations are performed by applying equation (3.23) which is Darcy’s law (Bear, 1979),  

𝑉𝑥 = −
𝐾𝑥
𝑛

 
𝜕ℎ
𝜕𝑥

  ;  𝑉𝑦 = −
𝐾𝑦
𝑛

 
𝜕ℎ
𝜕𝑦

 

Applying the meshfree approximation, ℎ(𝒙𝑰, 𝑡) = 𝚽𝑇𝒉𝑠(𝒕) = ∑ 𝜙𝑖ℎ𝑖(𝑡)𝒏
𝒊=𝟏 , the nodal velocities at the 

node i can be computed as, 

 
𝑉𝑥𝑖 = −

𝐾𝑥𝑖
𝑛
𝜕𝝓𝑇

𝜕𝑥
𝒉𝑠(t);      𝑉𝑦𝑖 = −

𝐾𝑦𝑖
𝑛
𝜕𝝓𝑇

𝜕𝑦
𝒉𝑠(𝑡) (4.54) 

 

4.5.5 Dealing with anisotropy and heterogeneity 
The groundwater flow and transport equations are given for confined and unconfined aquifers in eqns. 

(3.12), (3.16) and (3.19). For heterogeneous and anisotropic cases, the RPCM formulations are same as 

for in preceding sections for homogeneous cases except that the domain is divided into zones. The 

transmissivity of a zone is considered for all the nodes lying in that particular zone. The detail 

formulations and changes to be considered are discussed in section 4.9. 

4.6 RPCM formulation for contaminant transport problem 
The meshfree RPCM formulation of the groundwater solute transport equation can be done in a similar 

way to the formulation for groundwater flow equations. However, the transport equation requires seepage 

velocities in x and y directions to be calculated from the flow model. These velocities are also required for 

the computation of dispersion coefficients (eqn. 3.24). In this section, the RPCM formulation of the 

groundwater solute transport problem is demonstrated for both one and two dimensional cases. For the 

sake of simplicity not all processes / terms has been taken into account e.g. sources or sinks, reaction 

terms etc. have been neglected. Discretizing such terms does not pose any challenge to the RPCM 

formulation. Unlike groundwater flow equations, numerical modeling of solute transport suffers from 

instability when the advection term dominates over the dispersion term. A quantity called the Peclet 
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number is defined to measure the degree to which the transport problem is dominated by advection. 

Section 3.5 briefly discussed the instability caused by advection dominated flow. Liu and Gu (2005) 

discussed several ways in which this instability can be overcome while using meshfree RPCM 

formulation. 

4.6.1 1D transport problem 
Consider the one dimensional advection-diffusion equation 

 𝜕𝐶
𝜕𝑡

= −𝑣
𝜕𝐶
𝜕𝑥

+ 𝐷𝐿
𝜕2𝐶
𝜕𝑥2

 (4.55) 

The meshfree RPIM approximation for the concentration function may be written as, 

  
𝐶(𝑥, 𝑡) = �𝜙𝑖(𝑥)𝐶𝑖(𝑡)

𝑛

𝑖=1

= 𝚽𝑇𝑪𝑠 (4.56) 

where 𝜙𝑖’s are the shape functions as derived in eqn.(4.16) and 𝑪𝑠 = {𝐶1 𝐶2 …𝐶𝑛} is a vector of 

concentrations at the nodes in the local support domain of the point, x. The seepage or linear velocity, v 

may be obtained from the flow model by using the computations as in eqn. (4.54). This computed seepage 

velocity may be used in eqn. (3.24) to compute the dispersion coefficient.  

Now collocating at an internal (not on the boundary) node 𝑥 = 𝑥𝑟 and substituting the function 

approximation in eqn. (4.56) to the one dimensional transport eqn. (4.55), the discretized equation is 

obtained as, 

 
�
𝜕𝐶
𝜕𝑡
�
𝑥𝑟

= −𝑣(𝑥𝑟)
𝜕𝚽𝑇

𝜕𝑡
𝑪𝑠 + 𝐷𝐿(𝑥𝑟)

𝜕2𝚽𝑇

𝜕𝑡2
𝑪𝑠 (4.57) 

For time discretization, the 𝜃-method, as discussed in the preceding sections, is applied. Eqn. (4.57) is 

then transformed as, 

 𝐶𝑟𝑡+∆𝑡 − 𝐶𝑟𝑡

∆𝑡
= 𝜃 �−𝑣𝑟

𝜕𝚽𝑇

𝜕𝑡
+ 𝐷𝐿𝑟

𝜕2𝚽𝑇

𝜕𝑡2 �𝑪𝑠𝑡+∆𝑡 + (1 − 𝜃) �−𝑣𝑟
𝜕𝚽𝑇

𝜕𝑡
+ 𝐷𝐿𝑟

𝜕2𝚽𝑇

𝜕𝑡2 �𝑪𝑠𝑡 (4.58) 

where the nodal index has been used to represent the collocation node e.g. 𝑣𝑟 denotes 𝑣(𝑥𝑟). 𝑪𝑟𝑡+∆𝑡 is the 

nodal concentration at the current time t=𝑡 + ∆𝑡 while 𝑪𝑠𝑡  is the concentration in the previous time step 

𝑡 = 𝑡. It is required that the nodal values of the concentration are known at the pervious time step to 

advance to the next time step. 
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Eqn. (4.64) is established for all the internal nodes. The implementation of the Dirichlet and Neumann 

boundary conditions can be performed in a similar way as demonstrated in the preceding sections for the 

flow equation. The terms of eqn. (4.64) can be re-arranged as, 

 
�1 + 𝜃 ⋅ ∆𝑡 �𝑣𝑟

𝜕𝚽𝑇

𝜕𝑡
− 𝐷𝐿𝑟

𝜕2𝚽𝑇

𝜕𝑡2 ��𝐶𝑠𝑡+∆𝑡 = 𝐶𝑟𝑡 + ∆𝑡(1 − 𝜃) �−𝑣𝑟
𝜕𝚽𝑇

𝜕𝑡
+ 𝐷𝐿𝑟

𝜕2𝚽𝑇

𝜕𝑡2 �𝑪𝑠𝑡  (4.59) 

Assembling the discretized equations for all the nodes (including the boundary conditions) will yield a 

matrix equation of the form, 

 [𝐾]𝑁×𝑁{𝐶}𝑁×1
𝑡+∆𝑡  = [𝐹]𝑁×𝑁{𝐶}𝑁×1

𝑡  (4.60) 

Here K is the global system matrix arising out of the LHS of eqn. (4.65) while F is a coefficient matrix 

arising from the RHS of the same equation. 𝐶𝑡+∆𝑡 is the vector of the nodal concentration values  at the 

time 𝑡 = 𝑡 + ∆𝑡 and is the unknown in the above equation. With the initial condition is as the starting 

concentration values, eqn. (4.65) is used to evaluate the concentrations at the successive time steps. 

4.6.2 2D transport problem 
The discretization of the two dimensional transport equation (3.19) can be done in a similar manner as for 

the one dimensional case. The RBF point interpolation approximation of the concentration, 𝐶(𝒙, 𝑡) in this 

case is: 

 
𝐶(𝒙, 𝑡) = �𝜙𝑖(𝒙)𝐶𝑖(𝑡)

𝑛

𝑖=1

= 𝚽𝑇𝑪𝑠 (4.61) 

The point collocation discretization using the function approximation in eqn. (4.67) yields the following 

equation at the node r, neglecting the source and reaction terms: 

 
�𝑅𝚽𝑇 − 𝜃∆𝑡 �𝐷𝑥𝑥𝑟

𝜕2𝚽𝑇

𝜕𝑥2
+ 𝐷𝑦𝑦𝑟

𝜕2𝚽𝑇

𝜕𝑦2
− 𝑉𝑥𝑟

𝜕𝚽𝑇

𝜕𝑥
− 𝑉𝑦𝑟

𝜕𝚽𝑇

𝜕𝑦 ��𝑪𝑠𝑡+∆𝑡

= 𝑅𝐶𝑟𝑡 + (1 − 𝜃)∆𝑡 �𝐷𝑥𝑥𝑟
𝜕2𝚽𝑇

𝜕𝑥2
+ 𝐷𝑦𝑦𝑟

𝜕2𝚽𝑇

𝜕𝑦2
− 𝑉𝑥𝑟

𝜕𝚽𝑇

𝜕𝑥
− 𝑉𝑦𝑟

𝜕𝚽𝑇

𝜕𝑦
�𝑪𝑠𝑡  

(4.62) 

The seepage velocities 𝑉𝑥 ,𝑉𝑦can be evaluated from the groundwater flow equation solutions using 

equation (4.54) as, 

 
𝑉𝑥𝑟 = −

𝐾𝑟
𝜃
𝜕𝚽𝑇

𝜕𝑥
𝒉𝑠 ;   𝑉𝑦𝑟 = −

𝐾𝑟
𝜃
𝜕𝚽𝑇

𝜕𝑦
𝒉𝑠 (4.63) 
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With the seepage velocities evaluated, the dispersion coefficients are computed using equation (3.29). 

Equation (4.62) are formed for all the internal nodes. For the boundary nodes, the proper boundary 

conditions have to be imposed as illustrated in previous sections. Let N be the total number of nodes 

including internal and boundary nodes. Then nodal discretized equations derived above for the 

groundwater flow equation can be assembled in matrix form as, 

 [𝐾]𝑁×𝑁{𝐶}𝑁×1
𝑡+∆𝑡  = [𝐹]𝑁×𝑁{𝐶}𝑁×1

𝑡  (4.64) 

This equation can be solved, using any of the matrix inversion methods or by using iterative methods, for 

the concentrations at the current time {𝐶}𝑡+∆𝑡  given the concentrations at the previous time {𝐶}𝑡 . 

4.7 RPCM model development 
Based on the RPCM formulations presented in the previous sections, groundwater flow models (RPCM-

GFM) for confined and unconfined aquifers, groundwater solute transport models (RPCM-GTM) and 

coupled groundwater flow and transport models (CFTM-RPCM) are developed. In this section, the 

stepwise model development process is being described. 

4.7.1 Confined aquifer 
The model development for confined aquifers is shown in the flow chart in Figure 4.5. Here the hydro-

geological parameters to be collected (step1) are transmissivities, storativity, porosity, recharges and 

sources or sinks within the model domain. The transmissivity and storativity values are determined in the 

field using pumping tests and are normally a spatially variable quantity. The model is able to take into 

account varying zones for the hydro-geological parameters. These quantities are adjusted during the 

calibration of the model. The boundary conditions are also determined from the field data. Specified 

heads are obtained from river stages or water levels (connected to mean sea level) of the adjoining water 

bodies. The flux boundary conditions, being difficult to be determined by field experiments, are however 

determined and adjusted usually during the calibration process. 

Following are the important steps in the groundwater flow model development: 

 Step 1: Model development starts with delineation of the model domain and collection of field 

measured hydro-geological data such as transmissivity, hydraulic conductivity, porosity, 

recharges, sources or sinks etc. The total simulation time and time-step size may also be 

decided at this stage  

 Step 2: Nodes are generated within the model domain and on its boundaries to represent the 
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domain in the numerical model.  

 Step 3: From the nodes generated, the RPIM shape functions are computed for each of the nodes 

by determining its local support domain. 

 Step 4: The groundwater heads are initialized to begin the simulation.  

 Step 5: The governing equations are discretized at each node by using the RPCM formulations 

derived in section 4.5 and by incorporating the field measured hydro-geological 

parameters and by applying the appropriate boundary conditions. These discretized nodal 

equations are then assembled to form the global system of equations.  

 Step 6: The global system equation is then solved using any of the numerical solvers such as 

Gauss-elimination, LU decomposition or iterative solvers.  

 Step 7: At this stage, calibration of the model parameters may be performed.  

 Step 8: Once the solution is obtained, the groundwater heads are re-initialized with the new 

solutions to proceed to the next time step. The solution process is repeated for all the time 

steps till the total simulation period is reached. 

 

Figure 4.5 : Groundwater flow model development 
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4.7.2 Unconfined aquifer 
For unconfined aquifers, the groundwater flow model development proceeds in the same manner as for 

the confined aquifer except that, being non-linear equation, the global system equation must be solved 

iteratively e.g. with the Newton-Raphson iterative method. Some the hydro-geological parameters are 

also different from the unconfined aquifer e.g. transmissivity and storativity are replaced by hydraulic 

conductivity and specific yield respectively. 

Using Newton-Raphson iteration method for solving the global system matrix requires additional 

computations for evaluating the Jacobian and system matrix at every iteration step. The main steps of 

implementing Newton-Raphson iteration are: 

 Step 1: Set the convergence criteria 

 Step 2: Start with an initial guess for the hydraulic heads, {ℎ0} 

 Step 3: Compute the Jacobian matrix, 𝐽 and the global system matrix, 𝐾(ℎ) using the 

guess solution 

 Step 4: Compute the corrections to the initial guess heads using the following formula: 

{∆ℎ} = 𝐽−1𝐾(ℎ𝑛)  where   ℎ𝑛is the vector of guess solutions at 𝑛𝑡ℎ iteration  

 Step 5: Update the guess solution with the improved solution as, 

{ℎ𝑛} = {ℎ𝑛} − {∆ℎ} 

 Step 6: Repeat steps 3 to 5 until the convergence criteria is satisfied 

4.7.3 RPCM transport model 
The flow chart for developing RPCM groundwater solute transport model is shown in the Figure 4.6 and 

is based on the numerical formulations described is section 4.6. Following are the important steps in the 

groundwater solute transport model development: 

 Step 1: Model development starts with delineation of the model domain and collection of field 

measured data such as longitudinal and horizontal dispersivities, Kd values, bulk density 

of the soil, porosity, solute sources or sinks, reaction mechanisms of the solutes etc. The 

total simulation time and time-step size may also be decided at this stage  

 Step 2: Nodes are generated within the model domain and on its boundaries to represent the 

domain in the numerical model.  

 Step 3: From the nodes generated, the RPIM shape functions are computed for each of the nodes 

by determining its local support domain. 

 Step 4: The solute concentrations in the model domain are initialized to begin the simulation.  

 Step 5: The governing equations are discretized at each node by using the RPCM formulations 
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derived in section 4.6. At this stage the field measured hydro-geological parameters are 

incorporated and appropriate boundary conditions are then applied. The seepage 

velocities used in discretizing the transport equation are obtained from the flow model 

and using these velocities the dispersion coefficients are computed. 

 Step 6:  These discretized nodal equations are then assembled to form the global system 

equation.  

 Step 7: The global system equation is then solved using any of the numerical solvers such as 

Gauss-elimination, LU decomposition or iterative solvers.  

 Step 8: At this stage, calibration of the model parameters may be performed.  

 Step 9: Once the solution is obtained, the initial solute concentrations are updated with the new 

solutions to proceed to the next time step. The solution process is repeated for all the time 

steps till the total simulation period is reached. 

 

Figure 4.6: Flow chart for RPCM transport model 
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4.7.4 Coupled flow and transport model 
The coupled flow and transport model is a coupling of the flow and transport models. Both the models are 

run at every time step. The flow chart for the coupled flow and transport model is shown in Figure 4.7. 

The coupling is provided through the transfer of the seepage velocity computations from the flow model 

to the transport model. As such at every time step, the flow model is solved first so that the seepage 

velocities can be computed using eqn. (4.54) and then the dispersion coefficients using eqn. (3.24). These 

computed values are used as inputs to the solute transport model. 

 

Figure 4.7: Flow chart of coupled groundwater flow and transport model 

 

4.7.5 Model performance evaluation 
The performance of the meshfree RPCM model can be measured using various metrics or error indicators, 

depending on the aspects to be examined. For the cases where the exact analytical solution is known, the 
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following error metrics or norms are defined for measuring the performance of the RPCM method (Liu 

and Gu, 2005): 

Normalized RMS error of the 

solution, u: 𝑒0 = �
∑ �𝑢𝑖𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑖𝑛𝑢𝑚�

2𝑁
𝑖=1
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1/2

 (4.65) 

Errors in the first x-derivative of 

the function, u: 𝑒𝑥 = �
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 (4.66) 

Errors in the first y-derivative of 

the function, u: 𝑒𝑦 = �
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 (4.67) 

𝑒0 is a normalized root mean square error of the solution while the other two error metrics are for the 

derivatives of the solution or the dependent variable, u. Here 𝑢𝑖𝑒𝑥𝑎𝑐𝑡 are the exact values of the function, 

and 𝑢𝑖𝑛𝑢𝑚 are the numerical values of the function obtained using the numerical method (meshfree 

RPCM). 𝑢𝑖,𝑥𝑒𝑥𝑎𝑐𝑡 is the exact values of the first x-derivative, and 𝑢𝑖,𝑥𝑛𝑢𝑚 is the numerical value of the first x-

derivative obtained using RPCM method while 𝑢𝑖,𝑦𝑒𝑥𝑎𝑐𝑡 is the exact values of the first y-derivative, and 

𝑢𝑖,𝑦𝑛𝑢𝑚 is the numerical value of the first y-derivative. 

Apart from the above measures of error, the absolute Root Mean Square (RMS) error and maximum error 

(percentage) are also used to measure the performance of the RPCM solution. 

4.8 Model verifications 
The models developed in the preceding section 4.7, using the RPCM formulations of section 4.5 and 4.6 , 

are verified using analytical and numerically available solutions.  

4.8.1 Model verification for two dimensional mesh free RPCM flow equation 
The RPCM groundwater flow model (RPCM-GFM) developed is verified for both the confined and 

unconfined aquifers in this section. An additional general PDE is being solved using the meshfree RPCM 

formulation to demonstrate its general applicability. 

4.8.1.1 General 2D-PDE equations with RPCM formulation 

The RPCM formulation for a general 2D problem is verified with the following problem given in Xin 

(2006) and also in Liu and Gu (2005): 

 ∇2𝑢 + 𝑢 = (2 + 3𝑥)𝑒𝑥−𝑦        ,   (𝑥,𝑦) ∈ [0,1] × [0,1] (4.68) 

with the boundary conditions 
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• Dirichlet BC: 

 𝑢(𝑥,𝑦)|𝑥=0 = 0  ;   𝑢(𝑥,𝑦)|𝑦=0 = 𝑥𝑒𝑥 (4.69) 

• Neumann(Derivative) BC: 

 𝜕𝑢
𝜕𝑥�𝑥=1

= 2𝑒1−𝑦  ;     
𝜕𝑢
𝜕𝑦�𝑦=1

= −𝑥𝑒𝑥−1 (4.70) 

The exact analytical solution to the above PDE is: 

  𝑢𝑒𝑥𝑎𝑐𝑡(𝑥,𝑦) = 𝑥𝑒𝑥−𝑦 (4.71) 

The problem domain and the boundary conditions for this problem are shown in Figure 4.8. Dirichlet 

boundary conditions are imposed on the left and bottom boundaries are while Neumann boundary 

conditions are applied to the right and top boundaries. However, both the Neumann and Dirichlet 

boundary values vary as a function of the spatial coordinates. Also shown in the figure is the nodal 

distribution for a grid size of 11x11 nodes. A uniform grid size has been used along both the x and y 

directions in this case for simplicity. However, the node distribution need not be regular. 

 

Figure 4.8: Problem domain, boundary conditions and nodal distribution (for 11x11 grid) 

Eqn. (4.74) is solved by the RPCM flow model with the nodal distribution as shown in the Figure 4.8. 

The shape parameter (𝐶𝑠) has been set to 3 times the nodal spacing and the radius (size) of the circular 
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support domain has also been set at 3 times the nodal spacing. These values have been set arbitrarily. The 

optimal values must been found by a sensitivity study. Figure 4.9 shows a comparison of the contour plots 

of the output from the meshfree RPCM model to the analytical solution. It is observed that the RPCM 

solution is indistinguishable from the analytical solution in this plot as the differences are in second or 

third decimal points. However an analysis of the error (percentage) shows that the maximum error is 

around 12% and that most of the errors are less than 5% of the true values. This may be observed from 

Figure 4.10 where the node wise comparison of the RPCM and analytical solutions is shown along with 

the node wise error (percent) of the RPCM solution. 

 

Figure 4.9: Comparison of meshfree RPCM solution with the analytical solution 

It may be noted however that the parameters of the RPCM such as shape parameter and size of support 

domain used to obtain the above solutions have not been optimized. Also the grid spacing can also be 

reduced to obtain very accurate solutions. The effect of grid size, size of the support domain and value of 

shape parameter (𝜶𝒄) on the accuracy of the RPCM solution are shown in Table 4.3 and Table 4.4. It has 

been found that the shape parameter Cs has the greatest impact on the accuracy and stability of the 

solution. Its’ optimal value is range bound. A small value leads to poor accuracy. The solution accuracy 

improves as Cs becomes larger till an upper limit beyond which the solution becomes unstable and the 

method breaks down. As mentioned earlier, this upper limit has to be determined by numerical 

experimentation. 
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Figure 4.10: Node wise comparison of the RPCM and analytical solution and error  

The local support domain size also influences the accuracy and the computational time. It was found that 

a local support domain size of 3 or 4 times the nodal distance leads to very good accuracy. Larger support 

domain sizes leads to much higher computational times without commensurate improvement in the 

accuracy of the solution. The number of grid points plays a role similar to finite difference and finite 

element methods. A very dense grid points can lead to a huge increase in the computational time.  

Table 4.3 : Error measurements of the RPCM solution (radius of support domain=3 x nodal 
distance (dc) 

Grid 
𝛼𝑐 = 3 𝛼𝑐 = 5 

20 x 20 30 x 30 40 x 40 20 x 20 30 x 30 40 x 40 
Maximum 
error (%) 

0.0059 0.0024 0.0087 0.0037 0.0018 6.192e-4 

RMS Error 1.002e-4 3.82e-5 9.88e-5 6.58e-5 2.138e-5 4.85e-6 
𝑒0 0.0024 0.0014 0.0048 0.0016 7.77e-4 2.347e-4 
𝑒𝑥 0.0031 0.0016 0.0026 0.0015 8.68e-4 4.53e-4 
𝑒𝑦 0.0091 0.0086 0.0182 0.0051 0.0027 0.0017 
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Table 4.4 : Effect of size of support domain (expressed as multiples of nodal distance, dc) on the 
solution (grid size: 30 x 30) 

Size of support domain 
𝛼𝑐 = 3 𝛼𝑐 = 5 

2*dc 3*dc 4*dc 2*dc 3*dc 4*dc 
Maximum error (%) 0.0244 0.0024 0.0063 0.0048 0.0018 0.0016 
RMS Error 3.64e-4 3.82e-5 8.11e-5 5.86e-5 2.14e-5 1.90e-5 

𝑒0 0.0132 0.0014 0.0029 0.0021 7.77e-4 6.91e-4 
𝑒𝑥 0.0059 0.0016 0.0022 0.0016 8.68e-4 6.75e-4 
𝑒𝑦 0.044 0.0086 0.0098 0.0072 0.0027 0.0024 

 

4.8.1.2 Confined aquifer 

For the verification of the mesh free RPCM formulation to two-dimensional groundwater flow problem, a 

hypothetical confined aquifer as shown in the Figure 4.11 is considered. This problem is found in 

Segerlind (1984). The aquifer is of dimension 5 km by 3 km and is bounded by impermeable layers on the 

northern and southern sides while on the eastern and western boundaries the piezometric head is 

maintained at 100m. The hydraulic transmissivities are 𝑇𝑥 = 30 𝑚/𝑑𝑎𝑦 and 𝑇𝑦 = 30 𝑚/𝑑𝑎𝑦  i.e the 

aquifer is isotropic. Two pumps are operating within the confined aquifer with pumping rates 400 m3 /day 

(P2) and 600 m3 /day (P1) as shown in the figure. As the presence of singular sources can lead to 

numerical instability of the solution (as discussed in section 4.5.3) if special treatments are not 

implemented, this problem will also demonstrate the effectiveness of the mesh free RPCM method to 

handle singular sources and sinks. The governing equation (steady state) for the confined aquifer with 

pumping is (see Eqn. 3.12) 

 
𝑇𝑥
𝜕2ℎ
𝜕𝑥2

+ 𝑇𝑦
𝜕2ℎ
𝜕𝑦2

= 𝑄𝛿(𝑥 − 𝑥𝑝)(𝑦 − 𝑦𝑝) (4.72) 

As there is no analytical solution available for this problem, the mesh free RPCM solution is compared to 

the solution from FEM (COMSOL® Multiphysics). To examine the effect of the pumps, two cases are 

studied – one with only one pump (P1) operating and the other when both the pumps P1 and P2 are 

operating. The grid used for the mesh free solution is 51 x 31 i.e. 50 equal divisions along x-direction and 

30 equal divisions along y-direction, corresponding to a regular grid with equal x- and y- sub-division size 

of 100 m, for a total of 1581 nodes. The nodal distribution is shown in Figure 4.12. In comparison, the 

FEM mesh used consists of 584 triangular elements and a total of 1231 nodes. The FEM mesh was 

generated by Delaunay triangulation. The size or radius of the local support domain is 4 times the nodal 

distance i.e. 200 m and the shape parameter is 3 times the nodal distance 150 m. 
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Figure 4.11 : Confined aquifer problem domain with two pumping wells  

 

Figure 4.12: Nodal distribution used in the meshfree RPCM solution 

Case 1: A single pump, P1 is assumed to be operating. A contour plot of the output from mesh free 

RPCM solution is shown in Figure 4.13. The solution obtained by FEM (COMSOL) is also shown 

alongside for comparison. It is seen that the mesh free and FEM solution agrees very well. 
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Figure 4.13: Comparison of Mesh free RPCM and FEM solution for the single pump case 

 

Case 2: Here it is assumed that both the pumps P1 and P2 are operating. This case highlight the effect of 

one pump over another. Figure 4.14 shows a contour plot of the output from mesh free RPCM 

formulation. The effect of the simultaneous operation of the two pumps on the head distribution is clearly 

seen. Figure 4.15 shows a contour plot comparison of the solution from mesh free RPCM and FEM for 

this case. It is seen that the mesh free RPCM results agrees very well with the FEM results. 

From the above comparative studies, it is observed that the RPCM solutions agree very well with FEM 

solutions. As the results show, with a simple Gaussian function representation of the pumping wells 

(singular sources) as described in section 4.5.3, the meshfree RPCM method is able to overcome the 

numerical instability very well and also gives very smooth contours near the wells. The RPCM solution 

may be made more efficient by employing lesser number of nodes. This can be done by employing an 

irregular node distribution where there are denser nodes in regions near the pumping wells and coarse 

nodes elsewhere. The FEM mesh uses this type of node distribution. However, in this demonstration 

example, for the sake of simplicity regular node distribution has been used regardless of the presence of 

the pumping wells. This case study demonstrates that the RPCM method can be effectively used for 

solving confined aquifer flow problems with pumping wells. 
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Figure 4.14: Mesh free RPCM solution of the confined aquifer problem with two pumps operating 

 
Figure 4.15: Comparision of mesh free RPCM and FEM solution for the confined aquifer 

problem with two pumps operating 
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4.8.1.3 Unconfined aquifer 

As observed in section 4.5.2, the governing equation for two dimensional groundwater flow in an 

unconfined aquifer is non-linear and hence must be linearized first with a technique such as Newton-

Raphson iteration method. To verify the applicability of the mesh free RPCM solution for this non-linear 

equation, a hypothetical aquifer as shown in Figure 4.16 below is considered. The boundary conditions 

are arbitrarily prescribed as in the figure to check the ability of the mesh free RPCM to handle all kinds of 

boundary conditions. It is also assumed that there are no sources or sinks or recharge taking place.  

The governing equation for this unconfined aquifer is:  

 𝜕
𝜕𝑥

�
𝜕ℎ
𝜕𝑥
� +

𝜕
𝜕𝑦

�
𝜕ℎ
𝜕𝑦
� = 0 (4.73) 

The aquifer is assumed to be of dimension 100 m by 100 m. On the west and southern boundary, the head 

is prescribed (Dirichlet boundary condition). On the northern boundary, no flow boundary condition is 

imposed while on the eastern side, the flux is specified. 

 
Figure 4.16 : An unconfined Aquifer 

 

𝜕ℎ
𝜕𝑥

= 0.5 ℎ = 35 𝑚 

ℎ = 25 𝑚 

No flow 

(0, 0) 
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Figure 4.17: Node distribution used in RPCM  solution (left) and mesh used in FEM solution (right) 

The domain is subdivided into a 10 x 10 grid so that Δ𝑥 = Δ𝑦 = 10 𝑚  for a total of 121 nodes. The size 

(radius) of the support domain used was 4 times the nodal distance. The governing non-linear equation is 

solved by mesh free RPCM by using Newton-Raphson iteration method as formulated in section 4.5.2. 

The convergence criterion used for this problem is: 

 ℎ𝑗+1 − ℎ𝑗

ℎ𝑗
≤  0.1% (4.74) 

where j is the iteration number. It was observed that convergence was achieved after 6 iterations. The 

same problem is solved by finite element method (FEM) using the PDETOOL toolbox of MATLAB for 

checking the performance of the mesh free RPCM method. The mesh used for the FEM solution consists 

of 318 triangular elements with 181 nodes. Figure 4.17 shows the node distribution used in the RPCM 

solution and the mesh employed in the FEM solution. 

Figure 4.18 shows the comparison of the contour plot of the solution by FEM and Mesh free RPCM while 

Figure 4.19 shows the comparison of the mesh free and FEM solutions on node to node basis. The two 

figures show that both FEM and RPCM results agree very well. 
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Figure 4.18 : Contour plot comparison of Mesh free RPCM and FEM (PDETOOL of 
MATLAB) solutions 

 

To measure the agreement between the two results, the following metric called the root mean square error 

or difference is defined 

𝑅𝑀𝑆𝐸 = �
(ℎ𝑅𝑃𝐶𝑀 − ℎ𝐹𝐸𝑀)2

𝑁
   ,  where N is the number of nodes/points in the domain

𝑁

𝑖=1

 (4.75) 

The RMSE value for the present case is found to be 0.0028 which indicates the two results agree with 

each other up to the second decimal point. This confirms the very good agreement between meshfree 

RPCM and FEM (MATLAB PDETOOL). This problem demonstrates that the mesh free RPCM method 

can effectively be used for non-linear equations also. 
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Figure 4.19 : Nodal plot of solution (in m) to the unconfined aquifer 

4.8.2 One dimensional transport problem 

For verification of one dimensional RPCM transport model, the following combined advection-dispersion 

equation is considered, 

 𝜕𝐶
𝜕𝑡

= −𝑣
𝜕𝐶
𝜕𝑥

+ 𝐷𝐿
𝜕2𝐶
𝜕𝑥2

 (4.76) 

The boundary and initial conditions for the problem considered are: 

Initial Condition: 𝐶(𝑥, 0) = 0   , 𝑥 ≥ 0;  

Boundary conditions:  𝐶(0, 𝑡) = 𝐶0  ,    𝑡 ≥ 0 and 𝐶(∞, 𝑡) = 0 ,   𝑡 ≥ 0 

The analytical solution to this problem has been given by Ogata and Banks (1961) as, 

 
𝐶(𝑥, 𝑡) =

𝐶0
2
� 𝑒𝑟𝑓𝑐 �

𝑥 − 𝑣𝑡
2�𝐷𝐿𝑡

� + exp �
𝑣𝑥
𝐷𝐿
� 𝑒𝑟𝑓𝑐 �

𝑥 + 𝑣𝑡
2�𝐷𝐿𝑡

�� (4.77) 

where is x the distance from the injection point. To verify the RPCM method for this 1D transport 

problem, a one dimensional domain as depicted in Figure 4.20a is considered. Solute (contaminant) of 

concentration 𝐶0 = 500 𝑚𝑚/𝐿 is injected at x = 0 and it is required to find the concentration at different a 

downstream distances (𝑥 > 0) after 2 years. The parameters used for this problem are (Delleur, 2007): 
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pore flow velocity (𝑣) = 0.0259 m/day and longitudinal dispersion coefficient (𝐷𝐿) = 0.0360 m2 /day. The 

modeling domain is considered to be 1000 m in length, sufficient enough for the boundary condition 

𝐶(∞, 𝑡) = 0 , 𝑡 ≥ 0 to be satisfied i.e. far away from the points where concentration is required. 

Considering the very small pore flow velocity of 0.0259 m/day, the above assumption regarding zero 

concentration boundary condition is justified since the simulation time considered is only 2 years. Figure 

4.20b illustrates the construction of local support domain for a support domain size equal to twice the 

nodal separation (𝑑𝑐). 

 

Figure 4.20 : One Dimensional Transport Problem 

For finding the optimum value of the shape parameters for the RBF function used in the interpolation, a 

sensitivity analysis is performed. The RBF functions used in this study are the Multi-Quadrics and 

Exponential or Gaussian RBF. Figure 4.21 and Figure 4.22 shows respectively the results of the 

sensitivity analysis for each of the RBFs. It is found that for the MQ-RBF, the values of the shape 

parameter (𝐶𝑠 = 𝛼𝑐𝑑𝑐) in the range of 3 to 7 times the nodal separation gave very good accuracy whereas 

for the exponential RBF very good accuracy was observed when the shape parameter (𝛼𝑐) was in the 

range from 0.1 to 0.08. It was observed that the exponential RBF was more sensitive to changes in the 

shape parameter values as compared to MQ-RBF. The values of the shape parameter can further be 

refined using some of the recent approaches suggested in Schaback and Wendland (2000), Rippa (1999), 

Wright (2003) etc. to obtain the optimum value.  

Local Support Domain (size =   
2*Nodal distance) 

𝐶0 = 500 𝑚𝑚/𝐿 

x = 0 x = 1000 m 

Point of interest 

𝐶0 = 500 𝑚𝑚/𝐿 𝐶 = 0 𝑚𝑚/𝐿 

(a) 

(b) 
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Figure 4.21 : Meshfree Concentration profile at 10m downstream as compared to the analytical 
result for various values of the shape parameter of the MQ-RBF (number of nodes : 301, size of 
support domain : 4 *dc) 

 
Figure 4.22 : Meshfree Concentration profile at 10 m downstream as compared to the analytical 
result for various values of the shape parameter of the EXP-RBF (number of nodes:301; size of 
support domain: 4*dc) 

With the shape parameters determined, the 1D transport equation is solved and Figure 4.23 shows the 

concentration profiles at two downstream distances as compared to the exact solution of Ogata and Bank 

(1961). Results of using MQ-RBF and EXP-RBF as interpolation functions are also shown for 

comparison. 



 Model verifications 
 

86 
 

 

Figure 4.23 : Concentration profile at downstream distance (a) x = 10 m and (b) x = 25m 

 

(a) Concentration profile at x = 10 m 

(b)  Concentration profile at x = 25 m 
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In the above figures, number of nodes used for the simulation is 401 and the size of the support domain is 

4 times the nodal separation (𝑑𝑐). Since the analytical solution is known, the root mean square error 

(RMSE) as defined below is used as the measure of error: 

 
𝑅𝑀𝑆𝐸 = ���𝐶𝑖

𝑛𝑢𝑚 − 𝐶𝑖𝑒𝑥𝑎𝑐𝑡�
2

𝑁

𝑁

𝑖=1

 (4.78) 

Table 4.5 below shows the RMS error measures of the above plots: 

Table 4.5: Error measures of the concentration profile plots of Fig. 4 

RBF x = 10m x = 25 m 

RMSE RMSE 

Multi-

quadrics 

1.4 0.4 

Exponential 1.6 0.6 

From Figure 4.23a and b and Table 4.5, it can be seen that there is very good agreement between the 

mesh free calculated concentration values and the analytical results. It is also seen that both the MQ-RBF 

and EXP-RBF gave almost equally good results.  

4.8.3 Two dimensional coupled flow and transport problem 

For verification of the coupled groundwater flow and solute transport model, a two-dimensional transport 

of solute injected continuously from a point source in a steady-state uniform flow field is considered 

(Zheng and Wang, 1998). In this problem, it is assumed that a contaminant enters at a point, such as an 

injection well or toxic spill, and spreads through the aquifer with time.  

The study area is shown in Figure 4.24. The flow model is surrounded by constant-head boundaries on the 

east and west borders and no-flow boundaries on the north and south borders. The head values at the 
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constant-head boundaries are arbitrarily chosen to establish the required hydraulic gradient so as to give a 

uniform flow field with groundwater seepage velocity (v) = 1/3 m/day. The simulation period is chosen so 

that the plume developed from the point source does not reach the boundaries. The model parameters 

used in the simulation are listed below (Zheng and Wang, 1998): 

Cell width along rows (Δx) = 10 m, Cell width along columns (Δy) = 10 m, Layer thickness (Δz) = 10 m, 

Porosity (θ) = 0.3, Longitudinal dispersivity = 10 m, Ratio of transverse to longitudinal dispersivity = 0.3, 

Volumetric injection rate = 1 m3 /day, Concentration of the injected water = 1000 ppm, Simulation time 

(t) = 365 days 

 

Figure 4.24 : Confined aquifer considered as benchmark for coupled flow and transport 
simulation 

The study area has been divided into a 46 x 31 uniformly spaced nodes, along the x and y axes 

respectively and meshfree RPCM formulation as formulated in section 4.4.1 was applied. Figure 4.25 

shows the nodal distribution used in the RPCM model .The node numbering scheme is also shown in the 

figure. The Crank-Nicholson scheme was implemented for time discretization with a time step of 5 days. 
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The same problem was solved with FEM using 1092 triangular elements and 585 nodes in COMSOL 

Multiphysics (www.comsol.com) for the purpose of comparison. 

 

Figure 4.25: Node distribution for 2D transport problem 

As in the 1D case, a numerical sensitivity analysis with respect to the size of support domain and the 

shape parameter value was conducted to arrive at an optimum value of these parameters taking into 

account the balance between accuracy, stability and computational time. While the support domain size 

mostly affects the computational time, the shape parameter has a profound impact on the accuracy and 

stability of the method.  A support domain size (radius) of 3 to 4 times the nodal separation yielded 

sufficient accuracy within acceptable computational time. 

For finding the optimum value of the shape parameter, a sensitivity analysis is performed for both the 

RBF functions viz. MQ-RBF and EXP-RBF. It is found that for the MQ-RBF, the values of the shape 

parameter (𝐶𝑠 = 𝛼𝑐𝑑𝑐) in the range of 3 to 7 times the nodal separation gave very good accuracy whereas 

for the EXP-RBF the optimum values of the shape parameter (𝛼𝑐) was in the range from 0.1 to 0.08. It 

can be noted that the ranges of the shape parameters are same as for the 1D transport case. 

http://www.comsol.com/
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Figure 4.26 shows the contour plot of the contaminant distribution at the end of the simulation time i.e. 

365 days obtained by meshfree RPCM method using both the MQ-RBF and EXP-RBF as interpolation 

functions. It is observed that both MQ-RBF and EXP-RBF produces almost identical results and there is 

no way to conclude which RBF function is superior to the other. This means that we can freely choose 

either of the RBF functions provided the proper shape parameter values are used. The result from the 

FEM (COMSOL) simulation is also shown alongside for comparison. From the figure, it can be seen that 

there is good agreement between the meshfree RPCM and FEM results. 

 

Figure 4.26 : Comparison of the meshfree RPCM and FEM solutions for two-dimensional transport 
from a continuous point source in a confined aquifer 

 

4.9 Heterogeneous and anisotropic problem  
Though the RPCM method offers implementation simplicity and exponential convergence in solving 

partial differential equations, the smoothness and non-locality of radial basis functions poses considerable 

difficulties in solving problems with local features and heterogeneity, specially when there is abrupt 

changes in the material properties (Chen, 2009). Presently, there is also a dearth of literature in addressing 
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the solvability of problems with heterogeneity and material interfaces using this class of methods. In 

groundwater modeling, there can be several zones of transmissivity or conductivity in a given modeling 

domain. The possibility of sudden change in conductivity from one zone to the other must be considered 

in developing meshfree methods. 

For such problems with heterogeneity and material interfaces, application of the RPCM presents two 

major difficulties. One is due to the non-locality of the RBF, where the local characters cannot be 

precisely represented by the nonlocal approximation. The other is the difficulty of approximating 

derivative discontinuity across the material interface by the smooth RBF. 

Chen (2009) has proposed the sub-domain radial basis collocation method to deal with such problems. In 

this approach, the whole domain is partitioned into different subdomains according to the heterogeneity of 

the problem. The solution of each subdomain is approximated only by the RBFs with source points 

located in the particular subdomain and on the boundaries of the subdomain. The strong form 

(collocation) of the original problem is first imposed at the collocation points in each subdomain using the 

RBFs in the same subdomain in such a way that they are treated as separate subdomain problems. The 

solution of the total domain is then obtained by gluing or joining the solution along the interfaces of the 

subdomains by imposing interface conditions with direct collocation. These interface conditions and the 

direct collocation of strong form and the associated boundary conditions are then solved simultaneously 

to obtain the overall solution of the original problem. The critical consideration in this approach is the 

type of interface conditions to be imposed. 

4.9.1 Formulation of sub-domain collocation 

We first consider the original heterogeneous problem of the following form: 

 𝐿𝜏𝑢𝜏 = 𝑓𝜏       𝑖𝑛       Ω  (4.79) 

 𝐵𝜏𝑢𝜏 = 𝑞𝜏     𝑖𝑛        𝜕Ω (4.80) 

where Ω is the open domain, 𝜕Ω is the boundary of Ω; 𝐿𝜏 is the differential operator in Ω, 𝐵𝜏 is the 

boundary operator defined on 𝜕Ω which contains both the Dirichlet and Neumann boundary operators, 𝑓𝜏 

is the source term, 𝑞𝜏 is a source term associated with boundary conditions. The superscript 𝜏 denotes the 

heterogeneity of the problem. 
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Figure 4.27 : Sub-Domains of a problem with material heterogeneity 

For easy illustration we consider a domain composed of two materials, each occupies Ω+ and Ω− as 

shown in Figure 4.27. We denote by 𝜕Ω+ and 𝜕Ω− the boundaries of  Ω+ and Ω−, respectively; and 

closed domains Ω� = Ω ∪  𝜕Ω, Ω�+ = Ω+ ∪  𝜕Ω, Ω�− = Ω− ∪  𝜕Ω−, and we have Ω� = Ω�+ ∪  Ω�−, Ω+ ∩

Ω− = ∅  and Τ = 𝜕Ω+ ∩ 𝜕Ω− is the interface. In each subdomain, the material is homogeneous. We 

consider the transformation of the original problem to the following subdomain problem: 

 𝐿+𝑢+ = 𝑓+   𝑖𝑛   Ω+ 

𝐵+𝑢+ = 𝑞+     𝑜𝑛   𝜕Ω+ ∩ 𝜕Ω 
(4.81) 

 𝐿−𝑢− = 𝑓−     𝑖𝑛  Ω− 

𝐵−𝑢− = 𝑞−    𝑜𝑛        𝜕Ω− ∩ 𝜕Ω 
(4.82) 

 𝐼(𝑢+,𝑢−) = 0    𝑜𝑛   Γ (4.83) 

Where I is the operator representing interface conditions on Γ , which plays a crucial role on the accuracy 

and convergence of the proposed method. The solution of the originally heterogeneous problem in 

equations (4.79) & (4.80) is now solved in each subdomain i.e. equations (4.81) and (4.82), separately, 

with additional interface condition in equation (4.83) to ‘glue’ the two subdomain solutions together. 

Appropriate construction of the interface condition operator is important. In case of groundwater 

modeling, both the Dirichlet and Neumann boundary conditions are implemented as the interface 

conditions. The Dirichlet boundary condition ensures the continuity of the head across the interface while 

Neumann boundary condition ensures the continuity of Darcy flux across the interface. The solution in 

each subdomain is approximated by separate set of basis functions 

 
𝑢ℎ  (𝑥) = �

𝑢ℎ+(𝑥) = 𝑚1+(𝑥)𝑎1+ + ⋯+ 𝑚𝑁𝑠+
+ (𝑥)𝑎𝑁𝑠+

+  ,        𝒙 ∈ Ω�+

𝑢ℎ−(𝑥) = 𝑚1−(𝑥)𝑎1− + ⋯+ 𝑚𝑁𝑠−
− (𝑥)𝑎𝑁𝑠−

−  ,        𝒙 ∈ Ω�−
 (4.84) 

 
Ω+ 

Ω− 

𝜕Ω 

Γ 

𝑛+ 

𝑛− 

𝜕Ω 
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Where 𝑁𝑠+ and 𝑁𝑠− are the number of source points in the two subdomains,  and  {𝑚𝐼+}𝐼=1
𝑁𝑠+   and   {𝑚𝐼−}𝐼=1

𝑁𝑠−  

are two sets of RBFs with their corresponding source points  {𝑥𝐼+}𝐼=1
𝑁𝑠+  and  {𝑥𝐼−}𝐼=1

𝑁𝑠−  located in Ω�+ and Ω�− 

respectively. The coefficients  {𝑎𝐼+}𝐼=1
𝑁𝑠+  and  {𝑎𝐼−}𝐼=1

𝑁𝑠−  are obtained by solving strong form collocation and 

interface conditions of equations (4.82) - (4.84) simultaneously. 

4.9.2 Numerical example 
To illustrate the sub-domain collocation approach, let us consider the confined aquifer as shown in Figure 

4.28. This problem is adapted from Zheng and Wang (1998). The hydraulic conductivity of the aquifer is 

1.474 x 10-4 m/s except for a zone of low conductivity (shaded in the figure) where the conductivity is 

1.474 x 10-7 m/s i.e. the conductivity is 1000 times lesser than other areas of the aquifer. This means there 

is a very sharp transition of conductivity values from this zone to the rest of the domain. The boundary 

conditions are as shown in the figure. The top and bottom boundaries are constant head boundaries (with 

specified head values as in Figure 4.28 ) while the left and right boundaries are impermeable boundaries.  

 
Figure 4.28 : An aquifer with a zone of very small conductivity 
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This problem is solved first by using RPCM without implementing sub-domain collocation. The domain 

was divided into uniform grids of size 100m x 100m. Figure 4.29 shows the contour plot of the 

groundwater heads as calculated by the RPCM method. It is very clear from this figure that RPCM 

method is unable to capture the heterogeneity of the problem. Reducing the grid size to 25 m x 25 m (a 

relatively fine grid) produced the same output. This failure to capture the heterogeneity is due to the 

smooth nature of the RBF functions used in the interpolation. 

 

Figure 4.29: Contour of groundwater heads (m) calculated by RPCM method without 
implementing sub-domain collocation 

The same problem is solved using the sub-domain collocation approach (Chen, 2009). The interface 

conditions used are- Dirichlet and flux continuity. The Dirichlet condition ensures the continuity of the 

piezometric head across the interface while the flux continuity conserves the Darcy flow flux across the 

interface. The output from the program is shown below in Figure 4.30. Also shown is the FEM 

(COMSOL) solution of the same problem for comparison purpose (Figure 4.31). The FEM mesh had 
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1884 triangular elements with 971 nodal points. The RMSE error (as defined in 4.78) calculated for this 

case study is 0.152 which confirms the very good agreement between FEM and the meshfree RPCM 

results. Table 4.6 shows the numerical comparision between the heads (in m) as predicted RPCM and 

FEM (COMSOL) for certain selected points as shown in Figure 4.32. It is clear that by implementing sub-

domain collocation approach, RPCM method is able to capture the heterogeneity of the problem.  
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Figure 4.30: Meshfree RPCM Output Figure 4.31: COMSOL output 
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Figure 4.32: Nodal points selected for comparison 

Table 4.6: Comparison of COMSOL and RPCM results 
 

Node No. COMSOL RPCM % difference 

87 121.7668 118.42 2.7478 

89 125.2258 121.64 2.8625 

92 133.6622 130.16 2.6218 

94 139.32 136.67 1.901 

96 142.9443 140.92 1.4181 

115 125.3457 121.20 3.3038 

117 130.0705 125.31 3.6568 

120 144.4531 138.45 4.159 

122 154.7504 151.98 1.7911 

124 159.4981 157.55 1.2187 

157 185.4667 183.73 0.9366 

159 186.2374 184.57 0.8952 

162 188.1826 186.89 0.6852 

164 188.8459 187.67 0.6245 

166 189.2544 187.98 0.6712 

199 245.1029 245.98 0.3567 

201 242.0313 243.62 0.6563 

204 231.1199 234.17 1.3215 

206 222.9303 223.14 0.0957 

208 219.5765 219.06 0.2342 

227 247.5379 247.95 0.1653 

229 246.0823 246.77 0.2788 

232 241.9401 242.77 0.3423 

234 239.0541 239.33 0.1146 

236 237.4028 237.27 0.057 
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4.10 Solution of highly advective transport problem 

Since in case of transport problems, higher Peclet numbers (𝑃𝑒 = 𝑣
𝐷𝐿
∗ ∆𝑥) causes numerical 

instability, it is important to analyze the capability of the meshfree RPCM method to handle such 

instability issues. Two simple approaches to handle the numerical instability are considered in this 

study (Liu and Gu, 2005). One obvious way is to reduce the nodal separation (∆𝑥), thereby reducing 

Pe itself. The other is to increase the size of the local support domain so as to capture the upstream 

information which is the source of the numerical instability. This later approach is not easy to 

implement in FDM or FEM where the mesh is predefined but in meshfree RPCM it can be easily 

implemented. 

The one-dimensional transport problem (Ogata and Banks, 1961) from section 4.8.2 is analyzed here 

to examine the capability of the meshfree RPCM method to handle high Peclet transport simulation. 

For the purpose of analysis here, the pore flow velocity is increased by 10 times to 0.259 m/day 

resulting in a Peclet number value of 72, for a nodal separation of 10 m (corresponding to 100 equal 

subdivision of the domain). In addition to the RMSE defined in equation (4.78), an additional 

measure of error (Liu and Gu, 2005) as defined below is also used for the analysis viz., 

 
𝑒0 = �∑ �𝐶𝑖𝑛𝑢𝑚 − 𝐶𝑖𝑒𝑥𝑎𝑐𝑡�

2𝑁
𝑖=1
∑ (𝐶𝑖=1𝑒𝑥𝑎𝑐𝑡)2𝑁
𝑖=1

 (4.85) 

Table 4.7 below shows the results of the two approaches of handling numerical instability where the 

meshfree RPCM results are compared to the exact solution. Figure 4.33 and Figure 4.34 shows the 

stabilization of the numerical instability by using a combination of enlargement of local support 

domain and using denser node distribution. MQ-RBF interpolation has been used in this analysis. But 

the results will apply to EXP-RBF interpolation also. 

 



 
Groundwater flow and transport modeling using meshfree method 
 

99 
 

Table 4.7 : Effect of different nodal separations and sizes of the local support domain on the 
RMS error of meshfree RPCM method (concentrations taken at the end of simulation time) 

Size of local 

support domain 

(multiples of 

nodal separation) 

Number of Nodes 

 (N = 101)  

Pe = 72 

Number of Nodes 

(N = 201); 

Pe = 36 

Number of Nodes 

 (N = 401) ; 

Pe = 18 

RMSE 𝒆𝟎 (%) RMSE 𝒆𝟎(%) RMSE 𝒆𝟎 (%) 

2 12.54 5.8 3.3 1.5 1.2 0.5 

3 7.7 3.5 1.2 0.5 0.5 0.2 

4 5.7 2.6 1.1 0.5 0.2 0.09 

5 5.2 2.4 1.0 0.46 0.2 0.1 

It can be seen that the combination of enlargement of the local support domain and reducing the nodal 

separation is very effective in handling numerical instability present in high Peclet number problems. 

The advantage of using meshfree RPCM method is that this approach can be implemented very 

easily. Other approaches for stabilization can be found in Liu and Gu (2005). 

 

Figure 4.33: Stabilizing effect of enlargement of local support domain for high Peclet transport 
problem (number of   nodes: 101 ;  concentrations obtained after simulation of 2 
years) 

 



 Sensitivity study of meshfree RPCM model parameters 
 

100 
 

 

Figure 4.34: A combination of enlargement of local support domain and increasing the nodal 
density has nearly removed the numerical instability observed in the previous 
figure (number of nodes: 401; concentrations obtained after simulation of 2 years) 

 

4.11 Sensitivity study of meshfree RPCM model parameters 
A parameter sensitivity study is generally required in order to determine the optimal values of the 

parameters used in the meshfree RPCM method namely, the value of the shape parameter and the size 

of the support domain. The choice of these parameters is subjective, no definite criteria for choosing 

these parameters has been found so far. The test example problem discussed in section 4.8.1.1 is 

taken up for studying the sensitivity analysis. The same metrics defined in that section for measuring 

the performance of the meshfree RPCM methods is being used here. 

Sensitivity to support domain size: A sensitivity study with respect to support domain size is 

conducted. The grid size is fixed at 5 x 5 nodal points and the value of shape parameter has been kept 

at twice the nodal or grid spacing (𝑑𝑐). The results of this sensitivity study are shown in Table 4.8 and 

also in Figure 4.35. It may be observed that the accuracy of the meshfree RPCM results improve with 

increase in the size (radius) of the support up to 4 times the grid spacing (𝑑𝑐) but beyond this value 

there is no improvement. This can also be clearly seen in the Figure 4.35 which shows the percentage 

normalized RMS error of the meshfree RPCM output as compared to the exact results. Hence a 

support domain radius of 3 to 4 times the grid spacing is optimal for this problem. 



 
Groundwater flow and transport modeling using meshfree method 
 

101 
 

Table 4.8: Sensitivity of support 
domain size 
 

Grid size: 5 x5  , shape parameter: 
3*dc 

Support 
domain 

size 
(*dc) 

𝑒0 (%) 𝑒𝑥(%) 𝑒𝑦(%) 

1 67.28 69.7 376.62 
2 1.18 1.46 6.5 
3 1.4 1.17 4.25 
4 0.69 0.91 3.84 
5 0.78 1.02 4.21 
6 0.79 1.04 4.13 
7 0.79 1.04 4.03 

 
Figure 4.35: Sensitivity w.r.t. support domain size 

Sensitivity to shape parameter value (𝑪𝒔): A sensitivity study with respect to value of the shape 

parameter used in the calculations is conducted. The grid size is fixed at 5 x 5 nodal points and the 

radius of the support domain has been fixed at twice the grid spacing. The results of this sensitivity 

study are shown in Table 4.9 and also in Figure 4.36. It may be observed that the accuracy of the 

meshfree RPCM results continues to improve with increase in the value of the shape parameter. 

However, the improvements are insignificant or marginal beyond 𝐶𝑠 = 5 ∗ 𝑑𝑐. This trend is clearly 

visible from Figure 4.36. Hence the optimal value of the shape parameter (𝐶𝑠) ranges from 4 to 5 

times the grid spacing (𝑑𝑐).  
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Table 4.9: Sensitivity w.r.t. shape parameter 
value 

 

Grid size: 5 x5 
Size of support domain: 2*dc 

Shape 
parameter 

(*dc) 
𝑒0 (%) 𝑒𝑥 (%) 𝑒𝑦 (%) 

1 4.1 4.37 18.24 
2 1.89 2.32 9.4 
3 1.18 1.46 6.5 
4 0.89 1.06 5.16 
5 0.74 0.84 4.42 
6 0.66 0.72 3.98 
7 0.2 0.65 3.69 
8 0.59 0.6 3.5 
9 0.57 0.57 3.36 

 
Figure 4.36: Error, 𝒆𝟎 (percent) variation with the 

value of shape parameter 

 

4.12 Case study - groundwater flow and transport modeling 
This section is deals with the application of the RPCM model developed to solve the problems faced 

in field situations. To test the effectiveness of the developed model for a field problem, a case study 

of a confined regional aquifer is considered for coupled flow and contaminant transport modeling 

(Guneshwor et al., 2016). For this case study, the MQ-RBF has been used as the interpolation 

function. This choice is arbitrary since as demonstrated in previous examples, both the MQ-RBF and 

EXP-RBF produces nearly the same results. Figure 4.37 shows the location map of the study area. 

The site is a power plant complex near Vyara, Surat (Gujarat), India. The field measured 

hydrogeological parameters of the site are obtained from Singh and Sarma (2009). It is bounded by a 

lake on the north, north-east, west and south-west boundaries. There are no water bodies on the rest of 

the boundary. The area to be modeled is approximately 4.5 km2. The aim of the study is to track the 

movement of any contaminant released inadvertently by the plant so that the groundwater used by the 

population around the site is safe and any remedial action can be planned based on the contaminant 

movement. 
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Figure 4.37 : Location map of the study area 

Figure 4.38 shows the case study site and the nodal distribution used for discretization of the 

governing equations. A total of 1008 nodes were used corresponding to a separation between the 

nodes of 49.6 m along x-direction (∆𝑥) and 42.8 m along the y-direction (∆𝑦). As shown in the figure, 

there is a recharge zone within the model domain which corresponds to a water pond and is known to 

be leaking water to the aquifer. The presence of this recharge zone to the aquifer is observed as a 

mound in the water table map of the area (Singh and Sarma, 2009). Also shown is an area within the 

complex with underground containers which is assumed to be the contaminant source location. 
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Figure 4.38 : Nodal distribution map and boundaries of the field case study (numbers in the 
model area 

The boundaries adjacent to the lake are treated as constant head boundaries while the rest of the 

boundary is treated as flux boundaries. The level of water in the lake is maintained by the irrigation 

department of the local government. This water level, adjusted to mean sea level, is used as the 

constant head value at the boundaries bounded by the lake.  The flux boundary value is estimated and 

adjusted during calibration of the model. The best estimated value of this flux obtained from model 

calibration is 6.1x 10-5 m2/d. The distribution of transmissivity is obtained from pumping tests carried 

out at five different sites within the modeling zone (Singh and Sarma, 2009). Figure 4.39 shows the 

different transmissivity zones inferred from the field experiments. It is observed that transmissivity of 

the area varies from a minimum of 30.0 m2/day to a maximum of 170.0 m2/day. Other required 

aquifer parameters are also obtained from the same reference. The recharge through the pond is 
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estimated from the make up level of the pond and is adjusted during calibration. The final recharge 

value used was 0.045 m/day.  During calibration of the model, the hydrogeologic  parameters are 

adjusted within a range of 20% from their field estimated values. 

 

Figure 4.39 : Transmissivity distribution map of the study area 

A mesh free RPCM groundwater flow model of the site is constructed using the hydrogeological 

parameters described above (Singh and Sarma, 2009) and the node distribution as in Figure 4.38. The 

governing groundwater flow equation (eqn. 3.12) is solved in steady state for obtaining hydraulic 

heads at the nodes. The level of water in the lake is maintained as also the water level of the 

recharging pond. Being a confined aquifer, rainfall recharge is negligible. Therefore the groundwater 

flow is basically steady state. Calibration of the RPCM model was done against the field measured 

heads. Table 4.10 shows the comparision of actual field measured heads in selected monitoring 

borewells at the site to the meshfree RPCM model predicted heads, after calibration of the model. For 
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comparision, using the same calibrated values of the hydro-geological parameters, an FEM model 

was constructed in COMSOL Multiphysics using 1812 triangular elements with 2165 nodes. The 

heads predicted by this FEM model is also shown in the same table.  

Table 4.10 : Comparision of field measured heads at selected monitoring 
borewells to FEM and Meshfree RPCM models 

Borewell 

no.(*) 

Field 

measured 

head (m) 

FEM model 

prediction 

(m) 

Meshfree 

RPCM Model 

prediction (m) 

1 47.995 48.0 48.3 

2 48.383 48.0 48.4 

3 48.147 47.8 48.4 

4 48.112 47.2 47. 4 

5 46.004 46.7 46.7 

6 45.799 46.7 46.8 

7 45.129 46.9 46.9 

8 46.194 47.0 47.1 

9 45.82 46.7 46.8 

10 45.719 46.6 46.6 

11 45.704 46.6 46.6 

14 45.619 46.6 46.7 

15 45.469 46.6 46.6 

16 45.439 46.5 46.6 

17 45.387 46.6 46.6 

18 45.699 46.0 45.9 

19 45.319 46.0 46.0 

20 45.139 46.1 46.1 

21 44.934 46.0 46.0 

*  Ref. (Singh & Sarma, 2009) 

Figure 4.40 compares the contour map of the hydraulic heads as predicted by mesh free CFTM-

RPCM and FEM (COMSOL) models. It can be seen that both the models predicts more or less the 
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same hydraulic head distribution in the modeling domain. This confirms the good agreement between 

RPCM model and FEM models. 

Table 4.11 : Comparision of head output of Meshfree RPCM and FEM models 

Nodes 

Head from Mesh free 

RPCM model 

(m) 

Head from 

FEM model 

(m) 

Percentage 

difference 

448 46.9 46.8 0.21 

558 46.9 46.8 0.21 

662 46.6 46.5 0.22 

552 46.6 46.5 0.22 

670 46.9 46.8 0.21 

730 46.5 46.5 0 

545 46.1 46.1 0 

 

Table 4.11 above shows the comparison of meshfree RPCM flow model results and those from FEM 

at 7 selected nodes (shown in Figure 4.37) viz., nodes  448, 545, 552, 558 ,662, 670 and 730 of the 

nodal distribution. These nodes are also used for validating the transport model. It is seen that there is 

good agreement between the heads predicted by the meshfree RPCM and FEM models. Figure 4.41 

shows the distribution and directions of the flow velocity vectors in the aquifer. 
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Figure 4.40 : Comparison of head contour predicted by Mesh free RPCM and FEM 
 

 
Figure 4.41: Flow velocity distribution 
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With the flow model validated, a non-reactive contaminant transport model is constructed and 

coupled to the flow model. Steady state head values from the flow model are considered as the initial 

head distribution. The source of contaminant is an areal source as shown in the Figure 4.38 and 

corresponds to a particular area in the domain with underground containers which may act as 

potential sources of contaminants. This model aims to track the spreading of the contaminants in a 

postulated structural failure scenario where the containers are leaking the contaminants to the 

groundwater continuously for the period of simulation.  

 The contaminant transport is governed by equation (3.19). The longitudinal dispersivity (𝛼𝐿) for this 

problem is 20 m and the transverse dispersivity (𝛼𝑇) is taken as 10% of the longitudinal dispersivity. 

The areal contaminant source is assumed to be leaking contaminant of concentration 1000 ppm. The 

boundaries of the model are set to a concentration value of zero i.e. Dirichlet boundary condition. The 

same nodes (Figure 4.38) used for the flow model are also used for the transport model. The time step 

size used is ∆𝑡 = 5 days and it is assumed that the whole area was pristine when simulation starts i.e. 

have zero concentration as the initial condition. For time-stepping, the Crank-Nicholson method 

(𝜃 = 1/2) was implemented. The total simulation time was 10 years corresponding to 730 time steps. 

The size of the local support domain was 3 times the average of the nodal distances along x and y-

directions while the shape parameter of the multi-quadrics RBF was kept at 5 times the average nodal 

distance. These parameters were determined also in the verification problems discussed in the 

previous sections.  
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Figure 4.42 : Comparision of concentration plume predicted by meshfree CFTM-RPCM and 
FEM after 5 years of simulation 

 

Figure 4.42 shows the contaminant plume after 5 years of continuous discharge. The output from 

FEM is also shown alongside for comparison. The path of the contaminant plume is in the south-

eastern direction. Table 4.12 below shows a comparison of the concentrations predicted by meshfree 

CFTM-RPCM and FEM models at the 7 selected nodes viz. nodes 448, 545, 552,558, 662, 670 and 

730 in the direction of the contaminant plume. The locations of these nodes have been shown in 

Figure 4.38. From Table 4.12 and Figure 4.42, it can be seen that the meshfree CFTM-RPCM results 

agrees very well with the FEM prediction. 

Figure 4.43 shows the concentration profiles for the above selected nodes. It is seen that the nodes 

558,662 and 730 receives the highest concentrations being directly along the centerline of the plume 

while node 448 receives the lowest concentration value being in the flank. 
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Table 4.12 : Comparison of concentration predicted by CFTM-RPCM and FEM models 

Node 

Concentration (ppm) after 5 

years 

Concentration(ppm) after 10 

years 

RPCM FEM 
Percentage 

difference 
RPCM FEM 

Percentage 

difference 

448 442 451 2.0 442 451 2.0 

558 985 976 1.0 986 975 1.1 

662 905 927 2.4 959 944 1.6 

552 732 720 1.6 733 722 1.5 

670 781 757 3.1 792 767 3.2 

730 785 804 2.4 964 930 3.5 

545 502 538 7.2 618 662 7.1 

 

 

Figure 4.43 : Concentration profile at selected nodes along the path of the contaminant plume 
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Figure 4.44 shows the snapshot of the contaminant plume at the end of 1, 3, 5 and 10 years of 

simulation showing the propagation of the contaminant. The movement of the contaminant plume is 

towards the south-eastern boundary of the model domain.  

 

Figure 4.44 : Propagation of the contaminant plume in the aquifer (number in the figure shows 
concentration in ppm) 

 

This study has demonstrated that meshfree CFTM-RPCM model can be effectively used to model 

coupled groundwater flow and transport simulations as an alternative to the grid based methods such 

as FDM or FEM. This method requires only a set of scattered nodes, instead of a mesh with all the 

nodal interconnection information. The implementation of the model is very simple regardless of the 

dimension of the problem and complexity of the model geometry. Boundary conditions are also easily 
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incorporated.  A few issues in the application of the meshfree RPCM method though are yet to be 

addressed such as choosing the optimal value of shape parameters, size and shape of the local support 

domain etc. In particular, the value of shape parameter has a profound impact on the accuracy. But it 

was found that these issues do not pose any significant hurdle in application of the method. With a 

simple numerical sensitivity or parametric analysis, these parameters can be determined. 

4.13 Closure 
Grid based methods such as FDM, FEM etc. are widely used for numerical solution of partial 

differential equations. However the requirement for grid in these methods leads to several 

computational and practical problems. Meshfree methods do away with the requirement to create a 

mesh. In this chapter a meshfree methods called the RPCM method has been developed to solve the 

governing equations for groundwater flow and solute transport. The developed method has been 

verified using analytical and other numerical techniques such as FEM. Various issues that arises 

while applying the meshfree RPCM method has been examined and ways to overcome or address 

them have been discussed. The developed method has been applied to a real field problem and the 

results were found to be good in comparison to field measurements and the output from FEM 

solutions. This validates the applicability of the meshfree RPCM method to practical problems. The 

meshfree RPCM method is proposed to be used as the groundwater flow and transport simulator in 

the simulation-optimization method developed in the next chapter for groundwater source 

identification. 



 Introduction 
 

114 
 

Chapter 5 

Simulation-Optimization models for source identification 

5.1 Introduction  
Once a system is mathematically modeled, computer-based simulations provide the information about 

its behavior. Parametric simulation methods can be used to improve the performance of a system. In 

this method, the input of each variable is varied with other parameters remaining constant and the 

effect on the design objective is observed. This is a time-consuming method and improves the 

performance partially. To obtain the optimal solution with minimum computation and time, the 

problem is solved iteratively where in each iteration the solution moves closer to the optimum 

solution by integrating with an optimization technique. Such methods are known as ‘numerical 

optimization’ or simulation- optimization model. 

In this chapter, the simulation-optimization model as applied to groundwater source identification is 

discussed.  

5.2 Simulation-Optimization model in groundwater 
Simulation-based optimization integrates optimization techniques into simulation analysis. In 

simulation experiment, the goal is to evaluate the effect of different values of input variables on a 

system, which is called running simulation experiments. However the interest is sometimes in finding 

the optimal value for input variables in terms of the system outcomes. One way could be running 

simulation experiments for all possible input variables. However this approach is not always practical 

due to several possible situations and it just makes it intractable to run experiment for each scenario. 

For example, there might be so many possible values for input variables, or simulation model might 

be so complicated and expensive to run for suboptimal input variable values. In these cases, the goal 

is to find optimal values for input variables rather than trying all possible values. This process is 

called simulation-optimization (SO) model. SO models have been widely used in groundwater 

management, calibration of groundwater flow and transport models, groundwater remediation etc. 

(Meenal and Eldho, 2012a).  

Two sets of variables are associated with SO models: decision variables and state variables. The 

variables that can be used to define and differentiate alternative decisions are known as decision 

variables (Zheng and Bennet, 2002). Decision variables can be specified or managed in the 

calculation process to identify their best combination also referred to as the optimal management 

policy or strategy. For example, in a groundwater pumping management problem, the decision 
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variables are the pumping or injection rate of wells, location of the wells etc. The variables that 

describe the flow and transport conditions are known as state variables. Examples of state variables 

are hydraulic heads, concentration etc. In an SO model, the simulation model updates the state 

variables while the optimization model determines the optimal values of all decision variables. 

The basic goal of an optimization based model for groundwater source identification or 

characterization is to identify source characteristics (location, disposal duration, and solute mass flux 

or volume disposal rates). The objective is to search for a feasible set of source characteristics which 

minimize some function of the deviations between the observed and the simulated values of 

concentrations. This can be achieved by minimizing the weighted sum of the squared deviations (or 

absolute deviations) between observed values of spatially and temporally varying concentrations, and 

the corresponding simulated values of concentrations. Given the initial and boundary conditions, 

withdrawal from and recharge into the aquifer, an optimization model for identification of pollution 

sources can be formulated. The groundwater source identification model can be formulated as (Datta 

et al., 2009): 

 
𝑀𝑖𝑛 � � �𝑊𝑖
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��𝑐𝑖𝑘�𝑜𝑏𝑠 − 𝑐𝑖𝑘�
2
� (5.1) 

subject to the constraints, 

 𝒄 = 𝒇(𝒑𝒎,𝒒) (5.2) 

 𝒄𝐿 ≤ 𝒄 ≤ 𝒄𝑈 (5.3) 

 𝒒𝐿 ≤ 𝒒 ≤ 𝒒𝑈 (5.4) 

where 𝑐 is the solute concentration, 𝑞 is the set or vector of sources, 𝑓  is the transport model, 𝑝𝑚 are 

the parameters of these transport model, 𝑊𝑖 are the weights associated with the ith data (concentration) 

The constraints in equations (5.2) represent the groundwater flow and solute transport simulation 

model. They are non-linear constraints. The source of nonlinearity in the decision model is different 

from the nonlinearity inherent in the numerical simulation model. The source identification model is a 

decision model where nonlinearity is introduced due to the combination of decision variables, i.e., as 

a product of variables. Treating the parameters as decision variables, along with the source fluxes, 

increases the nonlinearity of the decision problem many fold. Therefore, the source identification 

seems a more challenging problem computationally. In the combined optimization–simulation 

approach, where the simulation model is linked as a separate module to the optimization model, it is 
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necessary to iterate between the optimization model and the groundwater flow and transport 

simulator. 

The constraint sets in equations (5.3) and (5.4) essentially reduce the feasible search space. From 

practical considerations, these two sets of constraints ensure that once a set of sources q (q is the 

decision variable in the optimization formulation) are assumed, the resulting hydraulic heads and 

concentrations are evaluated at different observation well locations at various times. Only those set of 

q are considered acceptable, which result in simulated concentrations within some predefined lower 

and upper bounds on the actually observed measurement data. The actual values of these bounds may 

be calculated by subtracting and adding, respectively, some tolerances to the observed concentration 

values. The lower and upper bounds on the sources in equations (5.4) ensure that practically 

acceptable ranges of values are considered. 

The simulation has been performed using meshfree RPCM method formulated and developed in 

chapter 4. The optimization model is a particle swarm optimization (PSO) model and has been 

described in subsequent sections of this chapter. A pre-requisite for the application of the SO model is 

the existence of a calibrated flow and transport simulation model. It may be noted that the 

uncertainties inherent in simulation models will obviously affect the identification of optimal 

solutions. 

5.2.1 Simulation models 
Simulation models for groundwater use numerical methods such as finite-difference, finite-element, 

boundary element methods, meshfree methods etc. to analyze the groundwater flow and transport 

processes. These models gives predictions of hydraulic heads for groundwater flow and solute 

concentration values for contaminant transport problems. 

Similarly, one of the approaches to backtrack the pollution source location is to run forward 

simulations of the transport model and check the solutions with the field measured data. The 

procedure is to link the simulation model with an optimization model so as to minimize the difference 

between predicted and measured values. Owing to the non-uniqueness of the solution and the infinite 

number of plausible combinations, one needs to follow an optimization method to obtain the best 

fitted solution. Such a model where forward simulation is linked to an optimization model is 

generally known as simulation-optimization (SO) model. 

5.2.2 Optimization models 
An optimization model is defined in terms of an objective function and a set of constraints. The 

objective function represents the management policy or strategy. Depending on the problem 
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requirement the objective function is either minimized or maximized. For example, for a 

contamination remediation design problem, the objective function may be to maximize the 

contaminant mass removal. The exact form of the objective function is determined by the nature of 

the individual problem. Because of the complexity of the simulation, the objective function may 

become difficult and expensive to evaluate in some cases. In some problem, multiples objective 

functions may need to be achieved. Such problems are known as multi-objective problems. 

In all the cases, the management objectives must be achieved within a set of constraints, which can be 

derived from technical, legal or political conditions associated with the project. These constraints may 

apply to both decision variables and state variables and mathematically, may take the form of 

equalities or inequalities. There are several optimization techniques available. Conventional 

techniques include linear programming (LP), non-linear programming (NLP), mixed-integer linear 

programming (MILP), mixed-integer non-linear programming (MINLP), differential dynamic 

programming (DDP) etc. NLP and DDP are gradient based methods and have much wider 

applicability. However such methods may not be able to find the global optimal solution as they may 

get trapped in local optima. Several modern artificial intelligence (AI) based optimization methods 

have become popular in recent days. Some of the important AI based optimization techniques include 

Genetic algorithm (GA), particle swarm optimization (PSO) and simulated annealing etc. These 

techniques can avoid local optima trapping and find the global optimum and are also gradient-free 

methods. However, these techniques generally require intensive computational efforts. 

In the present study PSO is being proposed as the optimizer for the SO model for groundwater source 

identification. Unlike other techniques, PSO has a very simple structure and its implementation is also 

easy. It can be very easily integrated with simulation models. In the subsequent sections, the different 

theoretical and practical aspects of PSO have been discussed in detail. 

5.3 Particle Swarm Optimization 
A Particle Swarm Optimizer (PSO) is a nature-inspired swarm intelligence algorithm (Kennedy and 

Eberhart, 1995). Swarm intelligence is a problem-solving technique that relies on interactions of 

simple processing units (also known in artificial intelligence as agents). The notion of a swarm 

implies multiple units that are capable of interacting with each other resulting in a complex behavior. 

The notion of intelligence suggests that this approach is successful. PSO was developed by Kennedy 

and Eberhart in 1995 (Kennedy and Eberhart, 1995) inspired by the flocking and schooling patterns 

of birds, fish and swarms of insects. 
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The initial ideas of Kennedy and Eberhart (1995) were to combine cognitive abilities with social 

interaction. These ideas were developed into the Particle Swarm Optimizer. Since then many different 

applications and variants have been developed. Every PSO uses a population of particles. The number 

of particle in a swarm is typically far less than the number of individuals in an evolutionary 

algorithm. A particle in this population is interconnected to other particles. This interconnection is 

called the neighborhood topology. Neighborhood refers to a communication structure rather than a 

geographical neighborhood. To use these particles to explore the search space a so-called change rule 

is needed. This rule moves the particles through the search space at a given moment t in time 

depending on its position at moment  𝑡 − 1 as well as the position of its previous best location. This is 

the cognitive aspect of the PSO. The social aspect is introduced by an interaction rule. A particles 

position is not only dependent on its own best position in history, but also on the best position in 

history of its neighbors. 

5.3.1 Standard or Canonical PSO Algorithm 
In PSO a number of entities called particles, which represent a candidate solution, are placed in the 

search space of some problem or function, and each evaluates the objective function at its current 

location. Each particle then determines its movement through the search space by combining some 

aspect of the history of its own current and best (best-fitness) locations with those of one or more 

members of the swarm, with some random perturbations. The next iteration takes place after all 

particles have been moved. Eventually the swarm as a whole, like a flock of birds collectively 

foraging for food, is likely to move close to an optimum of the fitness function. 

Each particle maintains its position, composed of the candidate solution and its evaluated fitness, and 

its velocity. Additionally, it remembers the best fitness value it has achieved thus far during the 

operation of the algorithm, referred to as the individual best fitness, and the candidate solution that 

achieved this fitness, referred to as the individual best position or individual best candidate solution. 

Finally, the PSO algorithm maintains the best fitness value achieved among all particles in the swarm, 

called the global best fitness, and the candidate solution that achieved this fitness, called the global 

best position or global best candidate solution. In essence, the algorithm consists of the following 

three main steps which are repeated until the stopping criterion is met: 

1. Evaluate the fitness of each particle 

2. Update individual and global best fitnesses and positions 

3. Update velocity and position of each particle 

Fitness evaluation is conducted by supplying the candidate solution to the objective function. 

Individual and global best fitnesses and positions are updated by comparing the newly evaluated 
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fitnesses against the previous individual and global best fitnesses, and replacing the best fitnesses and 

positions as necessary. 

The velocity and position update step is responsible for the optimization ability of the PSO algorithm. 

The velocity of each particle in the swarm is updated using the following equation (Clerc and 

Kennedy, 2002): 

 𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥�𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑚(𝑡) − 𝑥𝑖(𝑡)] (5.5) 

 

The index of the particle is represented by i. Thus, 𝑣𝑖(𝑡) is the velocity of particle i at time t and 𝑥𝑖(𝑡) 

is the position of particle i at time t. The parameters w, 𝑐1 and 𝑐2 (0 ≤ 𝑤 ≤ 1.2 , 0 ≤ 𝑐1 ≤ 2 𝑎𝑛𝑑 0 ≤

𝑐2 ≤ 2) are user-supplied coefficients. The values 𝑟1 and 𝑟2 (0 ≤ 𝑟1 ≤ 1  𝑎𝑛𝑑  0 ≤ 𝑟2 ≤ 1) are 

random values regenerated for each velocity update. The value 𝑥�𝑖(𝑡) is the individual best candidate 

solution for particle i at time t, and g(t) is the swarm’s global best candidate solution at time t.  

Each of the three terms of the velocity update equation have different roles in the PSO algorithm. The 

first term 𝑤𝑣𝑖(𝑡) is the inertia component, responsible for keeping the particle moving in the same 

direction it was originally heading. The value of the inertial coefficient w is typically between 0.8 and 

1.2, which can either dampen the particle’s inertia or accelerate the particle in its original direction 

(Shi and Eberhart, 1998). Generally, lower values of the inertial coefficient speed up the convergence 

of the swarm to optima, and higher values of the inertial coefficient encourage exploration of the 

entire search space. 

The second term  𝑐1𝑟1[𝑥�𝑖(𝑡) − 𝑥𝑖(𝑡)] , called the cognitive component, acts as the particle’s memory, 

causing it to tend to return to the regions of the search space in which it has experienced high 

individual fitness. The cognitive coefficient 𝑐1 is usually close to 2, and affects the size of the step the 

particle takes toward its individual best candidate solution, 𝑥�𝑖. 

The third term 𝑐2𝑟2[𝑚(𝑡)  −  𝑥𝑖(𝑡)]  called the social component causes the particle to move to the 

best region the swarm has found so far. The social coefficient 𝑐2 is typically close to 2, and represents 

the size of the step the particle takes toward the global best candidate solution g(x) the swarm has 

found up until that point. 

The random values 𝑟1 in the cognitive component and 𝑟2 in the social component cause these 

components to have a stochastic influence on the velocity update. This stochastic nature causes each 
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particle to move in a semi-random manner heavily influenced in the directions of the individual best 

solution of the particle and global best solution of the swarm. 

Once the velocity for each particle is calculated, each particle’s position is updated by applying the 

new velocity to the particle’s previous position: 

 𝑥𝑖(𝑡 +  1)  =  𝑥𝑖(𝑡)  +  𝑣𝑖(𝑡 +  1) (5.6) 

Figure 5.1 illustrates the position update of a particle in PSO where the influence of the various 

aspects pf the PSO namely, inertia, cognitive component (memory) and social component 

(cooperation) has been depicted clearly.  

 

Figure 5.1: Schematic diagram of position update of a particle in PSO 

This process is repeated until some stopping condition is met. Some common stopping conditions 

include: a preset number of iterations of the PSO algorithm, a number of iterations since the last 

update of the global best candidate solution, or a predefined target fitness value. 

The two parameters, 𝑐1 and 𝑐2, are responsible for the optimizing behavior of the swarm. These 

parameters are often called acceleration coefficients, because they control the magnitude of the 

adjustments towards the particles personal best and its global best. 𝑐1 controls the cognitive aspect 

(adjustment towards the personal best), while 𝑐2 controls the social aspect (adjustment towards the 

global best).  

5.3.2 Fully Informed Particle swarm 
In the standard version of PSO, the effective sources of influence are in fact only two: self and best 

neighbor. Information from the remaining neighbors is unused. Kennedy and Mendes have revised 
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the way particles interact with their neighbors (Kennedy and Mendes, 2002). Whereas in the 

traditional algorithm each particle is affected by its own previous performance and the single best 

success found in its neighborhood, in the fully informed particle swarm (FIPS), the particle is affected 

by all its neighbors, sometimes with no influence from its own previous success. In this manner, 

information of the total neighborhood is used as opposed to information from the best particle alone. 

The remaining part of the algorithm is the same as the algorithm for the canonical PSO. 

The FIPS algorithm does not perform very well while using the global best topology, or, in general, 

with any neighborhood topology with a high degree of interconnections (a particle is interconnected 

to many other particles in the swarm). FIPS performs better at topologies with a lower degree such as 

the local best (ring lattice) topology or topologies where particles have very few (approximately 

three) neighbors. Intuitively, it seems obvious that information from many neighbors can result in 

conflicting situations, since these neighbors may have found their successes in different regions of the 

search space. Therefore, this averaged information is less likely to be helpful as opposed to the 

canonical PSO where more neighbors will tend to yield better information, as it is more likely to have 

a particle with a high solution quality in the neighborhood. 

With good parameters, FIPS appears to find better solutions in less iteration than the canonical 

algorithm, but it is much more dependent on the population topology (Kennedy and Mendes, 2002). 

5.3.3 PSO algorithm 
Each individual in the particle swarm is composed of three D-dimensional vectors, where D is the 

dimensionality of the search space. These are the current position,𝑥𝚤���⃗ , the previous best position 𝑝𝚤���⃗   

and the velocity  𝑣𝚤���⃗  . The current position 𝑥𝚤���⃗  can be considered as a set of coordinates describing a 

point in space. On each iteration of the algorithm, the current position is evaluated as a problem 

solution. If that position is better than any that has been found so far, then the coordinates are stored 

in the second vector, 𝑝𝚤���⃗ .  The value of the best function result so far is stored in a variable that can be 

called 𝑝𝑏𝑒𝑠𝑡𝑖 (for “previous best”), for comparison on later iterations. The objective, of course, is to 

keep finding better positions and updating  𝑝𝚤���⃗    and 𝑝𝑏𝑒𝑠𝑡𝑖. New points are chosen by adding 𝑣𝚤���⃗  

coordinates to  𝑥𝚤���⃗ , and the algorithm operates by adjusting 𝑣𝚤���⃗  , which can effectively be seen as a step 

size. 

The algorithm for the canonical PSO can thus be written as (Kennedy and Eberhart, 1995): 

1. Initialize a population array of particles with random positions and velocities on D 

dimensions in the search space. 
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2.  loop 

i. For each particle, evaluate the desired optimization fitness function in D variables. 

ii. Compare particle’s fitness evaluation with its  𝑝𝑏𝑒𝑠𝑡𝑖 . If current value is better than 

𝑝𝑏𝑒𝑠𝑡𝑖  then set 𝑝𝑏𝑒𝑠𝑡𝑖  equal to the current value, and 𝑝𝚤���⃗  equal to the current 

location 𝑥𝚤���⃗ , in D-dimensional space. 

iii. Identify the particle in the neighborhood with the best success so far, and assign its 

index to the variable g. 

iv. Change the velocity and position of the particle according to the following equation 

 𝑣𝚤���⃗ ← 𝑣𝚤���⃗ + 𝑈��⃗ (0,ϕ1)⨂ (𝑝𝚤���⃗ − 𝑥𝚤���⃗ ) + 𝑈��⃗ (0,𝜙2)⨂ �𝑝𝑔����⃗ − 𝑥𝚤���⃗ � (5.7) 

  𝑥𝚤���⃗    ← 𝑥𝚤���⃗ + 𝑣𝚤���⃗   (5.8) 

v. If a criterion is met (usually a sufficiently good fitness or a maximum number of 

iterations), exit loop. 

3.  end loop 

here, 

      𝑈��⃗ (0,ϕ𝑖) : represents a vector of random numbers uniformly distributed in [0,𝜙𝑖 ] which is 

randomly generated at each iteration and for each particle 

                ⊗  : is component-wise multiplication 

5.3.4 Velocity clamping 
In order to keep the particles from moving too far beyond the search space, we use a technique called 

velocity clamping to limit the maximum velocity of each particle. For a search space bounded by the 

range [−𝑥𝑚𝑎𝑥, 𝑥𝑚𝑎𝑥)], velocity clamping limits the velocity to the range [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥)], where 

𝑣𝑚𝑎𝑥  =  𝑘 ×  𝑥𝑚𝑎𝑥 . The value k represents a user-supplied velocity clamping factor and usually, 

0.1 < 𝑘 < 1.0. The choice of the value of the clamping factor is subjective and may be problem 

specific. In many optimization tasks, such as the ones discussed in the paper, the search space is not 

centered around 0 and thus the range [−𝑥𝑚𝑎𝑥, 𝑥𝑚𝑎𝑥)] is not an adequate definition of the search 

space. In such a case where the search space is bounded by  [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)] , we define  𝑣𝑚𝑎𝑥  =  𝑘 ×

 (𝑥𝑚𝑎𝑥  −  𝑥𝑚𝑖𝑛)/2. 

5.3.5 Confinement 
In PSO, the particles sometimes tend to leave the search space. Confinement prevents the particles 

from leaving the feasible search space. A simple confinement can be implemented by the following 

pseudo code: 
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𝑖𝑓 𝑥(𝑡 + 1) > 𝑥𝑚𝑎𝑥   𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) ← 𝑥𝑚𝑎𝑥  ;   𝑣(𝑡 + 1) ← 0 

𝑖𝑓 𝑥(𝑡 + 1) < 𝑥𝑚𝑖𝑛   𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) ← 𝑥𝑚𝑖𝑛  ;   𝑣(𝑡 + 1) ← 0 
(5.9) 

Several methods are used to prevent particle from leaving the search space, but they all induce some 

bias, most of the time in favour of the centre of the search space and also often in favour of the 

boundaries. However not all methods give the same biases and therefore it is possible to combine two 

of them in order to obtained a less biased way. Several confinement methods, including hybrid or 

combination of confinement methods methods, have been proposed by Clerc ( http:// 

clerc.maurice.free.fr/pso/ Confinements_and_bias.pdf ). In the present work, the simple confinement 

presented above has been implemented. 

5.3.6 Regrouping – dealing with stagnation 
Particle swarm optimization (PSO) is known to suffer from stagnation when particles prematurely 

converged to any particular region of the search space. Once the particle swarm gets attracted to a 

suboptimal (local optimum) solutions, they continue the search process within a minuscule region of 

the solution space, and does not escape from this local optimum. Clerc (2006) studied the stagnation 

behavior of particle swarms. To overcome the stagnation problem with PSO, several modifications to 

the standard PSO have been suggested by Evers and Ghalia (2009), Worasucheep (2008), Napoles et 

al., (2012) etc. In this study, the regrouping PSO suggested by Evers and Ghalia (2009) have been 

adopted. In this technique, stagnation of the swarm is avoided by triggering a swarm regrouping when 

premature convergence is detected thereby liberating the particles from the stagnation zone 

(suboptimal solution) and enabling further search towards the true global optimum. Along each 

dimension, the particles are regrouped within a range proportional to the degree of uncertainty 

implied by the maximum deviation of any particle from the globally best position.  

5.3.7 Neighborhood topology 
Another factor with a major influence on the behavior of a PSO is its neighborhood topology (Figure 

5.2). A particle in the population is interconnected to other particles. This interconnection is called the 

neighborhood topology. This neighborhood is not defined in the Euclidian search space. Instead it is 

preset connectivity relation between the particles (Clerc and Kennedy, 2002). Two topologies are 

commonly used from the development of PSOs called: global best and local best. Where the global best 

topology is a fully interconnected population in which every particle can be influenced by every other 

particle in the swarm. The local best topology is a ring lattice. Every particle is connected to two 

immediate neighboring particles in the swarm. The advantage of this structure is that parts of the 
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population can converge at different optima. Thus, while it is mostly slower to converge, is less likely 

to converge at local sub-optima. 

 
Figure 5.2 : Neighborhoods Topology 

5.3.8 PSO model development 
The flow chart which describes the PSO model development is shown in Figure 5.3. The main steps 

in the PSO model development is depicted in the pseudo code below (Kennedy and Eberhart, 1995):  

For each particle 

    Initialize particle 

END 

Do 

    For each particle 

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            Set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle 

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End 

While maximum iterations or minimum error criteria is not attained 
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Figure 5.3: Flow chart of PSO model development 

5.3.9 PSO model verification 
The PSO program is verified through the following benchmark functions. 

1. Rastrigin function function 

The Rastrigin function is a non-convex function used as a performance test problem for optimization 

algorithms. It is a typical example of non-linear multimodal function. Finding the minimum of this 
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function is a fairly difficult problem due to its large search space and its large number of local 

minima. The two-dimensional Rastrigin function is defined by, 

𝑓(𝑥,𝑦) = 102 + 𝑥2 + 𝑦2 − 10 cos(2𝜋𝑥) − 10 cos(2𝜋𝑦)  ∀ (𝑥,𝑦) ∈ [−5.12   5.12] 

It has a global minimum at (𝑥,𝑦) = (0,0) with 𝑓(0,0) = 0. The result of running the PSO program 

with 5000 iterations for this function is: 

𝑓𝑚𝑖𝑛 = 1.199 × 10−7 ;   (𝑥𝑚𝑖𝑛 ,𝑦𝑚𝑖𝑛) = (0.1935 × 10−4,−0.1517 × 10−4) 

The location of the minima is accurate to 4 decimal points while the minimum value is accurate to 6 

decimal places 

2. Six-Hump Camel back function  

The six –Hump Camel back function is defined by, 

𝑓(𝑥,𝑦) = �4 − 2.1𝑥2 +
𝑥4

3 �
𝑥2 + 𝑥𝑦 + (−4 + 4𝑦2)𝑦2  ∀  𝑥 ∈ [−1.9  1.9],𝑦 ∈ [−1.1  1.1] 

It has six local minima, two of which are global. The global minimum is 𝑓𝑚𝑖𝑛 = −1.0316 and 

located at (𝑥𝑚𝑖𝑛 ,𝑦𝑚𝑖𝑛) = (0.0898,−0.7126)  𝑎𝑛𝑑  (−0.0898, 0.7126) 

 The results of finding the minima of this function with the 5000 iterations of the PSO program:  

𝑓𝑚𝑖𝑛 = 1.0316 ;  (𝑥𝑚𝑖𝑛 ,𝑦𝑚𝑖𝑛) = (−0.898 , 0.7127) 

It may be seen that the minimum value is correctly found and one of the locations of the minima has 

also been accurately identified. For finding multiple minima, the PSO has to be modified. 

3. Peaks function 

The peaks function (MATLAB) is a complex function with multiple maxima and minima and is 

defined as, 

𝑓(𝑥,𝑦) = 3(1 − 𝑥)2𝑒−𝑥2−(𝑦+1)2 − 10 �
𝑥
5
− 𝑥3 − 𝑦5� 𝑒−𝑥2−𝑦2 −

1
3
𝑒−(𝑥+1)2−𝑦2 

Defined in the interval ∈ [−5.0 5.0],𝑦 ∈ [−5.0 5.0] . 

The results of finding the minima of this function with the 5000 iterations of the PSO program:  
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 Actual value PSO predicted value 

𝑓𝑚𝑖𝑛 0.2 0.2267 

𝑥𝑚𝑖𝑛 -1.6 -1.6236 

𝑦𝑚𝑖𝑛 -6.531 -6.551 

 

5.4 Source identification using Simulation-Optimization (SO) models 
In simulation-optimization models, the groundwater pollutant source identification problem is 

formulated as an optimization model. The optimization model incorporates a simulation (response) 

model of groundwater solute transport as a series of constraints. The objective of the optimization 

model is to select that set of simulated potential sources which results in simulated concentrations 

representing the closest match with local groundwater solute concentration data. 

A concentration response matrix [𝑅] was developed to describe the simulated concentrations that 

would result at the measurement sites as a function of the combined effects of effluent leaks along the 

pipe (Gorelick et al., 1983). With this information the optimization model seeks to locate those 

pollutant sources (leaks) and their corresponding leak magnitudes which bring the simulated 

concentrations and measured concentrations into agreement. The constructions of the concentration 

response matrix are different for the steady state and transient cases.  

Steady state concentration response matrix 

The construction of the concentration response matrix is in the following manner (Gorelick et al., 

1983). Each of the potential source locations was considered separately. For each source, unit leaks 

were simulated. The concentrations ,resulting at the measurement sites, from each simulation show 

the response if a leak were to have occurred at only one location. The concentration at any location is 

a linear function of the unit leaks. Each row of the concentration response matrix is composed of 

concentration corresponding to a particular measurement site and which result from a unit leak at 

each location i.e. 

 

𝑅𝑚×𝑛 = �

𝐶11 𝐶12 ⋯ 𝐶1𝑛
𝐶21
⋮

𝐶22
⋮

⋯
⋱

𝐶2𝑛
⋮

𝐶𝑚1 𝐶𝑚2 ⋯ 𝐶𝑚𝑛

� (5.10) 

Where, 

𝑅 = �𝐶𝑖𝑗� = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑗𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑢𝑛𝑖𝑡 𝑙𝑒𝑎𝑘 𝑎𝑡 𝑖𝑡ℎ 𝑠𝑜𝑢𝑟𝑐𝑒  

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑟𝑒𝑤𝑒𝑙𝑙𝑠 𝑜𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑜𝑓 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑠 𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡𝑠 

The concentrations at the measurement points due to sources of given strength (source flux 

magnitudes), 𝑞1,𝑞2, … … . , 𝑞𝑛 from the potential sources located at points/cells 1, 2, . . ., n is then 

given by, 

 

�

𝐶1
𝐶2
⋮
𝐶𝑚

� = [𝑅][𝑞] = �

𝐶11 𝐶12 ⋯ 𝐶1𝑛
𝐶21
⋮

𝐶22
⋮

⋯
⋱

𝐶2𝑛
⋮

𝐶𝑚1 𝐶𝑚2 ⋯ 𝐶𝑚𝑛

� �
𝑞1
𝑞2
⋮
𝑞𝑛
� = �

𝑞1𝐶11 + 𝑞2𝐶12+ . . . +𝑞𝑛𝐶1𝑛
𝑞1𝐶21 + 𝑞2𝐶22+ . . . +𝑞𝑛𝐶1𝑛

⋮
𝑞1𝐶𝑚1 + 𝑞2𝐶𝑚2+ . . . +𝑞𝑛𝐶𝑚𝑛

� (5.11) 

Transient case concentration response matrix 

To construct the concentration response matrix, each of the potential source locations are considered 

in isolation with unit leaks (i.e. source strengths). The concentrations resulting at the observation 

points (wells) from each simulation are the concentrations (response) in the aquifer if a leak were to 

have occurred at only at that location. The concentration at any location when there are simultaneous 

multiple leaks (sources) is a linear function of these unit leaks (Gorelick et al., 1983). 

For the case studies considered in this study, each column of this matrix stores the breakthrough 

curves at the observation bore wells resulting from unit release from each of the sources in a 

particular release year. For example, the first column stores the concentrations at every recorded time 

steps for the observation bore wells due to a unit release from the first source in the first year. The 

second column corresponds to the unit release from the 2nd source in the first year of release; the 

third column corresponds to unit release from the 3rd source and so on. When the columns (block) for 

all the sources in the first year of release are completed, the columns (block) for the second of year of 

release are populated. This is followed by the blocks for the remaining years of the releases. 

Using concentration response matrix offers a big saving on computational time when using 

optimization programs like PSO. In PSO, the objective function is evaluated for each particle in every 

iteration and the number of iterations tends to be several thousands. Without using the concentration 

response matrix, the groundwater transport program needs to be called each time the objective 

function is evaluated which can be several thousand evaluations. Consequently the computational 

time will be very large, in some cases even unacceptable depending on the convergence rate of the 

optimization algorithm. By using the concentration response matrix, the simulations of unit leak from 

each source can be run only once and is saved in a matrix.  
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5.4.1 RPCM Simulation model 
The formulation of the meshfree RPCM flow and transport simulation model has been described in 

chapter 4. This simulation model is used to generate the concentration distributions in the aquifer 

which is then used as the observed concentration data in the SO model. It is also used to construct the 

concentration response matrix as described in the previous section. Without using the concentration 

response matrix, this simulation model will be called in every iteration of the optimization model to 

compute the fitness or objective function. This can lead to huge computational time if the simulation 

period is large and time step size is small. It may be mentioned that calibrated hydro-geological 

parameters must be used in the simulation model.  

5.4.2 PSO optimization model 
The model for standard PSO has been used in the present study. The parameters of the PSO such as 

swarm size, acceleration coefficients; topology has been decided through sensitivity analysis. These 

parameters have a profound impact on the performance of the PSO. The trade-off between 

exploration and exploitation is controlled by the acceleration coefficients and also by the 

neighborhood topology (section 5.3.7). The ring topology facilitates more extrapolation since it 

interacts with fewer particles while the star (global best) topology encourages exploitation since it 

interacts with every particle in the swarm. The stopping or convergence criteria are decided by using 

both the maximum number of iterations and a preset value of the fitness function. Whichever criterion 

is achieved first will decide the stoppage of the iteration.  

5.4.3 RPCM-PSO SO model development 
The developed SO model uses meshfree RPCM simulation model for generating the solute 

concentrations while PSO is used as the optimizer to search for the sources (location and magnitude) 

which leads to the best match between predicted and observed solute concentrations. The PSO 

iterations calls the simulation model to compute the objective function whenever it generates a new 

set of the plausible sources. This happens in every iteration of the PSO. This provides the coupling 

between the optimization and the simulation models. As mentioned earlier, the simulation model is 

not directly used in these iterations, rather the use of concentration response matrix allows the model 

to avoid repeated call of the simulation model and make the evaluation of concentration predictions 

efficient computationally. Figure 5.4 shows the flow chart of the developed RPCM-PSO-SO model.  
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Figure 5.4: Flow chart of the Simulation -Optimization model 

5.5 Verification of SO models for source identification 
The developed RPCM-PSO-SO model is verified with problems solved by other source identification 

models. This allows the direct comparison of the performance of the proposed method with other 

existing models.  
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5.5.1 Problems considered 
In this section, the RPCM-PSO-SO model for contaminant source identification is demonstrated 

through contamination problems in hypothetical aquifers. This hypothetical problem was studied by 

Gorelick et al., (1983) and has been chosen so that the performance of the PSO based model can be 

compared to the techniques proposed by the authors. The use of optimization based source 

identification model was first proposed by the above mentioned authors with two scenarios of 

contaminant release. The first case, which is a steady state case, involves simulating continuous 

release of contaminants from an underground pipe running through the hypothetical aquifer. The 

second case study involves periodic releases from some randomly distributed disposal sites and 

represents the transient case study. The optimization methods used in the above mentioned work is 

least squares regression and linear programming. After this comparative study with the techniques 

proposed by Gorelick et al. (1983), a parameter sensitivity study is conducted with regard to the PSO 

parameters namely, swarm population size, acceleration coefficient and the constriction coefficient. 

5.5.2 Steady state source identification –effluent flow through an underground pipe 

For demonstrating source identification with simulation-optimization model, here we consider the 

hypothetical aquifer system as shown in Figure 5.5 in which groundwater pollutant sources are to be 

identified. It is assumed that an underground pipe lies in an unsaturated zone above the water table 

and carries effluent from one end to the other. The groundwater head boundaries at the top and 

bottom are also shown in the figure. This problem was studied by Gorelick et al.(1983) and all the 

parameters are taken from the above work. It is assumed that the effluent (pollutant) has been flowing 

continuously within the pipe and contains high concentrations of the non-reactive pollutants – 

chloride and tritium. Several observation or measurement borewells are located within the modeling 

region which is used for detecting and measuring the concentration of the pollutant found in the 

groundwater. The detection of the pollutant in the water samples collected from the observation 

borewells indicates that a small leak or series of leak in the pipe has taken place resulting in the 

pollution of the groundwater. It is assumed that the relatively small volume of effluent that has leaked 

into the aquifer has left the original, steady groundwater flow pattern unchanged. Flow from the 

leak(s) through the unsaturated zone is assumed to be vertical to the water table. 

Here the concentration distributions are at steady state. It is required to locate the leak(s) and 

determine the magnitude of the solute and water flux from each leak from the concentration 

distributions of the pollutant observed in the water samples of the observation borewells.  
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A preliminary groundwater flow and transport simulation was carried out to create the concentration 

data used in this problem. First a steady state groundwater flow model was constructed with the 

boundary conditions as described in the Figure 5.5. It also shows the grid used by Gorelick et al. 

(1983). The same nodal distribution has been used in this study. A constant hydraulic conductivity 

(Gorelick et.al. 1983) of 0.864 m/day was used. The aquifer is 10 m thick and is of size 160 m x 

240.m. After the flow model is created, a steady state solute transport model constructed and coupled 

to the flow model.  In the transport model two sources (leaks) were placed at the locations III and 

VIII, as in Figure 5.5. 

Following parameters (Gorelick et.al., 1983) are used in the transport model: 

Chloride concentration in the pipe water: 15,000 mg/L 

Tritium concentration in the pipe water: 15,000 µCi/L 

Solute flux in the first leak (at location III):  90.0 mg/sec chloride and 90.0 µCi/sec Tritium 

Solute flux in the second leak (at location VIII):  45.0 mg/sec chloride and 45.0 µCi/sec Tritium 

From the above solute concentrations in the pipe and the solute fluxes at the leaks, the water flux 

from the pipe may be calculated as follows: 

 Water flux at first leak (at location III) = (45.0 mg/sec) / (15,000 mg/L Chloride) * (86,400 
sec/day) 

 = 259.2 L/day 

 Water flux at first leak (at location III) = (90.0 mg/sec) / (15,000 mg/L Chloride) * (86,400 
sec/day)  

= 518.4 L/day 
Other transport parameters are: 

 Longitudinal dispersivity = 40 m 

 Transverse dispersivity = 20 m 

 Porosity = 0.3 

Figure 5.6 shows the steady state head distribution and flow vectors of the aquifer system subject to 

the boundary conditions as specified above. The Chloride concentration distribution at steady state is 

shown in the Figure 5.7. Tritium concentration follows a similar distribution. A total of 11 random 

measurement points or surveillance borewells are chosen for monitoring the chloride and tritium 

concentrations. The locations of these borewells are as shown in the Figure 5.5. All the borewells are 

placed in the downstream direction (refer to Figure 5.6 ). The concentrations of chloride and tritium 

in these borewells forms the baseline data i.e. observed concentration data for the source 

identification model. 
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Figure 5.5: Hypothetical Aquifer system for steady state pollutant source identification. 
Potential leak locations are marked by I through IX 

 

Given this concentration data and the location of all the potential sources, the optimization model 

seeks to find a set of simulated sources (or source strength vector) which yields closest match to the 
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concentration data. The error metric which is used to measure this matching can be the least squares 

residual defined as follows: 

 
𝑅 = ��𝐶𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑�
2

         𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠
𝑁

𝑖=1

 (5.12) 

But as pointed out by Gorelick et.al.(1983), the use of this ordinary residual introduces a bias in 

favour of pairs with higher numerical values. Hence a normalized residual as defined below is 

employed: 

𝑅 = ��
𝐶𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐶∗
�
2

  where  𝐶∗
𝑁

𝑖=1

= 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  or some smoothed value of 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

(5.13) 

The optimization model seeks to minimize the value of R with respect to various sets of the source 

strength vector in order to determine the pipe leak locations and leak magnitudes. Since PSO is being 

used for optimization in this work, the sets of source strength vectors acts as the particle of the 

swarm. Several particles are generated randomly to start the search process. Each particle moves 

around (i.e. is perturbed) in the search space trying to find the lowest value of the objective function 

(referred to as fitness function in this context) till all the particles converge to the global minima. 

Additional constraints are applied to stop the particles from crossing the search boundary. In the 

present case, the constraint on the source strength is that it cannot be negative but the upper limit is 

unbounded. The displacement (or perturbation) of the particle is also restricted in order to allow 

exhaustive search of the space. 

The results of the source identification using PSO optimization is shown in Table 5.1. It tabulates the 

source fluxes from the 9 potential sources as predicted by the simulation-optimization model. This 

table shows the results for 20 independent runs of the SO model and the final result is found by taking 

average from these runs. As can be seen from the table, the sources at locations III and VIII are 

identified with acceptable accuracy. However the model has also predicted spurious minor sources at 

locations VII and VIII. The model has also predicted non-zero source fluxes from locations I, II, and 

IV. However these fluxes are very small and can be safely neglected. For locations V and VI, the 

model has correctly identified them as not leaking. Further a sensitivity study of the PSO parameters 

has been done in section 5.6. As shown in that section, this sensitivity study will allow the 

determination of the optimal values of the PSO parameters and improve the accuracy of the model 

predictions significantly. The spurious sources or noises will also be reduced. 
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Figure 5.6:  Head distribution (in m) and flow vectors of the aquifer system 

 
Figure 5.7: Steady state Chloride concentrations in the aquifer system 
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Table 5.1 : Results of source identification by using Particle Swarm Optimization 

 

 

Serial Iterations Residual Source location points 
I II III IV V VI VII VIII IX 

1 900000 0.0061 0 0 518.2757 0.1391 0 0 4.8818 252.6626 2.3862 
2 900000 0.0073 0 0 518.2645 0.1513 0 0 5.3556 252.0304 2.616 
3 900000 0.0136 0 0 518.2139 0.2077 0 0 7.3066 249.4182 3.5691 
4 900000 0.0193 0 0 518.1808 0.2452 0 0 8.7208 247.5249 4.2603 
5 900000 0.0188 0 0 518.1824 0.2437 0 0 8.6011 247.681 4.2051 
6 900000 0.0341 0 0 518.1034 0.3312 0 0 11.5767 243.6995 5.6565 
7 900000 0.0364 0 0 518.0962 0.3393 0 0 11.963 243.1851 5.8431 
8 900000 0.0106 0 0 518.2335 0.186 0 0 6.4576 250.5504 3.158 
9 900000 5.13E-04 0 0 518.3641 0.0401 0 0 1.42 257.2991 0.6935 

10 900000 0.0123 0 0 518.2262 0.1946 0 0 6.9454 249.9006 3.394 
11 900000 0.0419 0 0 518.0781 0.3605 0 0 12.8401 242.006 6.2763 
12 900000 0.0218 0 0 518.1656 0.2617 0 0 9.2627 246.7997 4.5247 
13 900000 0.0069 0 0 518.2676 0.1482 0 0 5.1901 252.2485 2.5379 
14 900000 0.0136 0 0 518.2141 0.2077 0 0 7.3081 249.416 3.5701 
15 900000 4.59E-04 0 0 518.3659 0.0381 0 0 1.344 257.4006 0.6567 
16 900000 0.0076 0 0 518.2604 0.1558 0 0 5.4663 251.8815 2.6705 
17 900000 0.0038 0 0 518.3015 0.1102 0 0 3.8717 254.0136 1.8939 
18 900000 0.0302 0 0 518.1264 0.3059 0 0 10.8996 244.6081 5.3247 
19 900000 1.18E-05 0.0004 0.0002 518.3939 0.0052 0 0 0 259.1993 0 
20 900000 0.0274 0 0 518.141 0.2899 0 0 10.3879 245.2947 5.0735 

Average or Leak magnitudes 
predicted by SO model ( L/day) 

0.0 0.0 518.2 0.2 0 0 6.9 249.8 3.4 

True values of source flux 
(  L/day) 0 0 518.4 0 0 0 0 259.2 0 
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Table 5.2 below compares the source strengths predictions of the PSO based source identification model 

to that of the least squares and linear programming model of Gorelick et al.,(1983). 

Table 5.2 : Comparision of leak magnitude predictions 

Potential 
Source 

Location 

True 
 Leak 

Magnitudes 
(l/d) 

PSO Predicted  
Leak 

Magnitudes 
(l/d) 

Leak magnitudes predicted by 
Gorelick (1983) et.al. 

Linear 
Programming Regression 

I 0 0 0.0 -1.0 
II 0 0 0.1 -0.6 
III 518.4 518.2 518.2 521.1 
IV 0 0.2 0 -1.3 
V 0 0 0 -1.1 
VI 0 0 0.0 -1.5 
VII 0 6.9 2.0 -0.4 

VIII 259.2 249.8 256.5 259.2 

IX 0 3.4 1.0 0.0 

It can be seen that the PSO based source identification model gives about the same accuracy as that of the 

linear programming and regression based models of Gorelick et al.,(1983). It may be observed that the 

linear programming model give slightly better predictions than PSO model. However, it may be noted 

that the PSO parameters used in the above calculations have not been optimized. As discussed in section 

5.6, with optimized parameters the predictions of the model can be significantly improved and be better 

than the traditional optimization methods. Further it may be noted that the traditional optimization 

techniques is prone to getting trapped in local optima instead of finding the global optima. The main 

advantage of artificial intelligence based optimization techniques is that they do not suffer from this issue 

and has a better chance of finding the global optima. 

5.5.3 Transient source identification –waste release from disposal sites 
Consider the hypothetical aquifer as shown in Figure 5.8 with five sources of contamination i.e. disposal 

sites. This problem was studied by Gorelick et al.(1983) and is being adapted in this study to compare the 

performance of the PSO based SO source identification model to the optimization methods proposed by 

Gorelick et al.(1983). The five disposal sites 𝑆1,𝑆2,𝑆3 ,𝑆4 and 𝑆5 are shown in the Figure 5.8. Three 

observation wells 𝑊1,𝑊2 and 𝑊3 shown in the figure records the contaminant concentrations over a 15 
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year period. The thickness of the aquifer is 30.5 m while the hydraulic conductivity is 0.01 cm/s and is 

considered to be isotropic. Effective porosity is taken to be 0.3. Longitudinal and transverse dispersivities 

are 7.6 and 2.3 m respectively. The recharge rate of the pond has been taken as 0.0067 m/day and 

contributes roughly around 21% of the total flow through the system. The waste disposal rate has been 

kept at a low value of 1 L/s so that it does not significantly affect the groundwater hydraulic head 

distribution. The disposal flux, which is the product of the liquid volume disposal rate and the solute 

concentration of the waste, from the disposal sites has been kept at same values as in Gorelick et. al 

(1983) to have a comparative study. Table 5.3 shows the schedule of the contaminant disposals from the 

sites and the magnitude (disposal fluxes) of these disposals. The disposals are assumed to happen during a 

four year period and stopped thereafter. 

Table 5.3: Contamination release schedule from the sources 

Year of release 
Disposal fluxes from the disposal sites (in gm/s) 

Site 1 Site 2 Site 3 Site 4 Site 5 

1st 51 15 47 27 0 

2nd 0 9 44 35 0 

3rd 0 11 8 0 12 

4th 24 0 0 0 16 

 

A groundwater flow and transport model using meshfree RPCM was constructed to generate the 

breakthrough curves at the observation wells. The nodal grid used in the meshfree RPCM flow and 

transport simulation is shown in Figure 5.9. A total of 177 nodal points are used in the simulation. The 

nodal spacing is 91.4 m in both the x- and y- directions. A circular support domain (Guneshwor et al., 

2016) was employed with a radius equal to three times the nodal separation. The simulation was carried 

out for 15 years period with a time step size of 40 days. Additionally the time steps included all the 

multiples of 365 days i.e. the end of each year of the 15 years period. The breakthrough curves at the 

three designated observation borewells obtained from the simulation are shown in Figure 5.10. These 

breakthrough curve data are be treated as the observed concentration data for the source identification 

model.  
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Figure 5.8: Hypothetical aquifer with 5 contaminant disposal sites 

To construct the concentration response matrix, the simulation model was run to generate the 

breakthrough curves corresponding to unit releases from each of the five disposal sites for each year of 

release. There are a total of twenty 1-year disposal events in this case study (Table 5.3) and the simulation 

model was run for each of these disposal events. The breakthrough curves from these simulations are then 

used to construct the concentration response matrix. Each column of this matrix stores the breakthrough 

curves at the observation wells resulting from simulation of the unit release disposal events. 

The observed concentration data and the concentration response matrix are then fed to the PSO based 

source identification model for prediction of the disposal fluxes from the sources or sites. The PSO 

optimizer tries to find that set of disposal fluxes that minimize the objective function (defined in equation 

5.14) which is the sum of squared differences between predicted and observed concentrations i.e. 
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Figure 5.9 Nodes used in the meshfree RPCM transport simulation 

 
𝑆 = ���𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�

2
𝑁𝑇

𝑗=1

𝑁𝑂

𝑖=1

 (5.14) 

where,   𝑁𝑂 = no. of observation bore wells, 𝑁𝑇 = no. of time steps, 𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 =Predicted concentration at 

𝑖𝑡ℎ observation point at the jth time step, 𝐶𝑖,𝑗𝑂𝑏𝑠 =Observed/measured concentration at ith observation point 

at jth time step.  
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Further, the following two error metrics are defined for measuring the accuracy of the predictions from 

the source identification model: 

Root mean square error in concentration 

predictions : 
𝑅𝑀𝑆_Concn = �∑ ∑ �𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�

2𝑁𝑇
𝑗=1

𝑁𝑂
𝑖=1

𝑁
 (5.15) 

Root mean square error in source 

strength predictions: 
𝑅𝑀𝑆_source = �∑ ∑ �𝑆𝑖,𝑡𝑃𝑟𝑒𝑑 − 𝑆𝑖,𝑡𝐴𝑐𝑡𝑢𝑎𝑙�

2𝑁𝑅
𝑡=1

𝑁𝑆
𝑖=1

𝑁
 (5.16) 

where,   𝑁𝑆 = no of sources or injection wells, 𝑁𝑅 = no. of release years, 𝑆𝑖,𝑡𝑃𝑟𝑒𝑑 = Predicted 

concentration of the ith source in the tth release year, 𝑆𝑖,𝑡𝐴𝑐𝑡𝑢𝑎𝑙 = Actual source concentration of the ith 

source in the tth release year. The first of the error metric 𝑅𝑀𝑆_𝐶𝑜𝑛𝑐𝑛 is a measure of the effectiveness of 

the PSO optimization algorithm while the second error metric 𝑅𝑀𝑆_𝑠𝑜𝑢𝑟𝑐𝑒 is a measure of performance 

of the source identification model as a whole. It may be noted that the primary objective of the 

optimization algorithm is to minimize the difference between the measured and predicted concentrations 

only. It does not directly minimize the differences between the predicted and the actual source strengths. 

Therefore both the metrics have been defined to gauge the performance of the model. 

The number of objective (fitness) function evaluations (iterations) is an important factor which directly 

controls the convergence of the PSO and is a measure of efficiency of the optimizer. More iterations 

produce better results but at the cost of more computation time. A convergence study with respect to the 

number of iterations has been conducted for this case study. Table 5.4 shows the results of this 

convergence analysis. It is observed that the RMS_Concn values are very low even with only 103 

iterations while the RMS_Source has much slower rate of convergence. This implies that the optimizer is 

very effective in minimizing the fitness function. The slower convergence rate in identifying the disposal 

fluxes despite very close matching of predicted and observed concentrations, as inferred from the low 

values of RMS_Concn, is due to the non-uniqueness of the source identification problem (Atmadja and 

Bagtzoglou, 2001b). Several sets of source strengths (disposal fluxes) may lead to nearly the same spatial 

and temporal concentration distribution.  
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Figure 5.10 Breakthrough curves at the observation wells 

Table 5.4: Convergence with respect to iterations 

No. of iterations RMS_Source RMS_Concn 

103 9.574 0.0035 

5x 103 5.033 5.867 x 10-4 

10 x103 3.593 4.514 x 10-4 

50 x 103 3.366 3.768 x 10-4 

105 1.645 2.575 x 10-4 

Table 5.5 shows the comparison of the source predictions of the PSO based source identification model 

with 105 iterations to those predicted by linear programming and stepwise regression used by Gorelick et 

al.(1983). It can be seen that the source identification model with PSO optimizer yields better results in 

comparison to the model values of Gorelick et al.(1983) which uses linear programming and stepwise 

regression as the optimizer. This may be readily inferred from the smaller value of RMS_Source for the 



 
Simulation-Optimization models for source identification 
 

143 
 

PSO based SO model. In fact, looking at Table 5.4 and Table 5.5 shows that the PSO based model already 

yields better results than the linear programming model of Gorelick et. al (1983) when the number of 

iterations touches 5 x 104. Most of the disposal fluxes were correctly identified to within 10% of their 

value except for a point where the error was around 30%. It may also be observed that a few erroneous or 

spurious sources are also predicted by the SO model. However their magnitudes are very small and can be 

safely ignored. 

Table 5.5: Comparison of PSO based SO model source release rate predictions with 

conventional optimization approaches 

Disposal Site Year 

Actual 
release 
rates 

(gm/s) 

SO model with 
PSO optimizer 
(105 iterations) 

(gm/s) 

Prediction by SO model of Gorelick et 
al.,(1983) 

Linear 
Programming 

Stepwise regression 
(20 variable) 

1 

1 51 51 51 51 
2 0 0 0 -0.04 
3 0 0 0 -0.08 
4 24 24 21 22 

2 

1 15 15 15 14 
2 9 9 9 10 
3 11 11 11 11 
4 0 0 0 -0.08 

3 

1 47 44 62 55 
2 44 46 39 40 
3 8 7 8 7 
4 0 0 0 0.4 

4 

1 27 24 26 29 
2 35 34 37 37 
3 0 1 0 -1 
4 0 0 0 0.3 

5 

1 0 0 0 -0.02 
2 0 3 0 -0.03 
3 12 16 11 11 
4 16 17 11 12 

RMS Source 1.645 3.8079 2.3798 
 

5.6 Sensitivity study of PSO parameters 
To understand the impact of the PSO parameters, a sensitivity study is conducted for these parameters. 

The steady state case of contaminated effluent leakage from an underground pipe, discussed in section 

5.5.2, is re-examined here.  
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The convergence of the PSO optimizer is heavily influenced by the values of the two parameters namely 

–size of the swarm population and the values of the acceleration coefficients. There are no fixed criteria 

for choosing the optimal values of these parameters. Clerc and Kennedy (2002) and Trelea (2003) have 

provided empirical values of these parameters. In the absence of any criteria to find the optimal values of 

the parameters, a sensitivity study is conducted to obtain the optimal values of these parameters. In this 

section, the contaminant leak magnitudes predicted by the PSO based SO model is studied for various 

parameter values of the PSO. 

The following two (root mean square (RMS) quantities or error metrics are defined to study the 

convergence behavior of the source identification model: 

 𝑅𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒 = �∑ �𝑆𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑆𝑖𝑎𝑐𝑡𝑢𝑎𝑙�
2𝑁𝑆

𝑖=1
𝑁

 (5.17) 

 𝑅𝑀𝑆𝑐𝑜𝑛𝑐 = �∑ �𝐶𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑖𝑎𝑐𝑡𝑢𝑎𝑙�
2𝑁𝑂

𝑖=1
𝑁

 (5.18) 

where, 

  𝑆𝑖𝑎𝑐𝑡𝑢𝑎𝑙 = Actual Source flux of the ith potential source 

 𝑆𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑=Predicted Source flux of the ith potential source 

 𝐶𝑖𝑎𝑐𝑡𝑢𝑎𝑙 = Measured Concentration of the contaminant at the ith observation point 

 𝐶𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = Predicted Concentration of the contaminant at the ith observation point 

 𝑁𝑆 = Total number of potential sources 

 𝑁𝑂 = Total number of measurement /observation points for the contaminant 

𝑅𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒 is the root mean square error in the prediction of the source fluxes while 𝑅𝑀𝑆𝑐𝑜𝑛𝑐 is the root 

mean square error of the contaminant concentration prediction by the SO model. 

5.6.1 Swarm population size sensitivity 
The results of the sensitivity study with respect to the size of the swarm used in the optimization are 

summarized in the Table 5.6. The source strength predictions from these population size studies are 

shown in Table 5.7. It can be seen that a swarm size of 190 particles gives the best predictions of the 

source strengths.  

It can be seen from the Table 5.6 and Table 5.7 above that the swarm size does affect the final outcome 

but in a limited manner. Though a swarm size of 190 yields the best estimate of the source strength 

predictions, a swarm size of 100 and above yields nearly the same results –the variations are negligible. A 
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larger swarm size leads to more computational time. Therefore a swarm size of 100 may be a good 

balance between accuracy and computational cost. 

 

Table 5.6 : Swarm population size sensitivity study 

Population 
Size 

RMS 
(source strength) 

RMS 
(Concentration) 

Mean fitness 
(25 runs) 

Total time taken 
(hrs.) 

30 15.8066 0.1477 2.20E-08 1.9186 
40 15.4236 0.1441 2.02E-08 2.2512 
50 14.6535 0.1369 2.07E-08 2.6636 
75 12.1509 0.1135 1.37E-08 3.5945 

100 11.219 0.1048 1.24E-08 4.5952 
125 10.0134 0.0934 9.76E-09 5.5421 
150 12.2016 0.1138 1.34E-08 6.737 
160 9.8637 0.0921 9.42E-09 7.0776 
170 9.6576 0.0902 8.96E-09 7.446 
175 10.7321 0.1003 1.22E-08 7.6448 
180 10.5751 0.0988 1.01E-08 7.8158 
185 12.4234 0.116 1.30E-08 8.1277 
190 9.1197 0.0844 8.98E-09 8.354 
195 11.713 0.1094 1.25E-08 8.4806 
200 11.0438 0.1032 1.08E-08 8.7552 
210 12.7987 0.1195 1.43E-08 9.2336 
225 9.3608 0.0872 8.98E-09 9.9299 
250 11.5115 0.1075 1.13E-08 10.9005 
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Table 5.7: Source strength predictions for various sizes of the swarm population 

Actual 
Source 

Strength 

Source strength predictions for various population sizes 
Population Size (λ) 

40 50 75 100 125 150 160 170 180 190 195 200 210 225 250 

0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

518.4 
516.2 516.3 516.6 516.8 516.9 516.6 517.0 517.0 516.9 517.1 516.7 516.8 516.5 517.0 516.7 

0 
3.1 2.9 2.4 2.2 2.0 2.4 2.0 1.9 2.1 1.8 2.3 2.2 2.5 1.9 2.3 

350 
348.9 348.9 349.1 349.2 349.3 349.1 349.3 349.3 349.2 349.3 349.1 349.2 349.1 349.3 349.2 

0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0 
26.5 25.1 20.8 19.2 17.2 20.9 16.9 16.6 18.1 15.6 20.1 18.9 22.0 16.1 19.7 

259.20 
223.8 225.5 231.3 233.4 236.2 231.2 236.5 237.0 234.9 238.2 232.3 233.8 229.8 237.7 232.7 

0 
13.0 12.4 10.2 9.5 8.4 10.3 8.3 8.1 8.9 7.7 9.9 9.3 10.8 7.9 9.7 
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5.6.2 Acceleration coefficients sensitivity study 
The acceleration coefficients namely 𝜙1 and 𝜙2 play a very vital role in the overall convergence of the 

particle swarm optimizer. These parameters control the trade-off between exploitation and extrapolation 

aspects of the PSO optimizer. The results of the sensitivity study with respect to the various values of 

these parameters are summarized in the tables Table 5.8 and Table 5.9. 

Table 5.8: Sensitivity study with respect to the acceleration coefficients 

𝝓𝟏 𝝓𝟐 = 𝟒.𝟏 − 𝝓𝟏 
RMS 

(Source Strength) 
RMS 

(Concentration ) 
Mean 

Fitness 
Total time taken 

(Hrs.)# 

1.85 2.25 9.76 0.09 8.66E-09 8.4885 

1.9 2.2 10.26 0.09 1.02E-08 8.4991 

1.95 2.15 10.89 0.10 1.11E-08 8.4682 

2 2.1 11.71 0.11 1.18E-08 8.4656 

2.05 2.05 10.73 0.10 1.07E-08 8.2733 

2.1 2 10.60 0.10 1.12E-08 8.5265 

2.15 1.95 13.21 0.12 1.51E-08 8.511 

2.2 1.9 11.93 0.11 1.39E-08 8.3608 

2.25 1.85 14.08 0.13 1.84E-08 8.3812 

2.3 1.8 14.67 0.14 2.03E-08 8.4142 

2.35 1.75 14.26 0.13 1.95E-08 8.3039 

 

Table 5.9: Sensitivity study with respect to the acceleration coefficient (below ϕ=1.8) 

𝝓𝟏 
RMS 

(Source Strength) 
RMS 

(Concentration ) 
Mean 

Fitness 

Total time 
taken 
(Hrs.) 

1.8 8.84 0.08 7.09E-09 17.5349 
1.75 7.02 0.07 5.40E-09 17.3838 
1.7 7.53 0.07 5.19E-09 17.5729 

1.65 7.89 0.07 5.85E-09 17.511 
1.6 7.08 0.07 5.21E-09 17.7042 

1.55 5.07 0.05 2.56E-09 17.5879 
1.5 5.64 0.05 3.26E-09 17.3843 

1.45 5.16 0.05 2.65E-09 17.5497 
1.4 5.28 0.05 2.64E-09 17.546 
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In this study the sum of the acceleration coefficients 𝜙1 and 𝜙2 have been kept constant to 4.1 as 

recommended by Clerc and Kennedy (2002). The swarm size has been kept at 190 which is the best value 

of swarm size found from the sensitivity analysis in the previous section. It is seen that from the table 

above that the optimum value of 𝜙1 is 1.55 which yields the minimum value of the RMS error in source 

strength and concentrations predictions. 

Table 5.10 and Table 5.11 shows the source strength predictions corresponding to the different values of 

the acceleration parameters used in the Table 5.8 and Table 5.9. Figure 5.11 shows the change in the 

values of fitness function, root mean square (RMS) error in source strength and concentrations predictions 

with changing values of the acceleration coefficient. 

It may be observed, from the results presented in tables 6.8 – 6.11, that though the best source strength 

estimates were obtained at 𝜙1 = 1.55, the impact of the acceleration coefficients are limited. The changes 

in the final outcome of the source strength predictions changes minimally with respect to the values of 

acceleration coefficients. Therefore the acceleration coefficient can be set arbitrarily within the range of 

1.4 to 2.1 without significant loss of accuracy  

It may be observed from the Figure 5.11  that the results of the particle swarm optimization improve in 

general with decreasing values of the acceleration coefficient 𝜙1. However as the figure shows there are 

erratic behavior of this trend at higher values. 
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Table 5.10 : Source strength predictions for values of acceleration coefficients in the range of 1.8 to 2.3 
Actual 
Source  

Strength 

Source strength predictions for various values of 𝝓𝟏 ( 𝝓𝟐 = 𝝓−𝝓𝟏 ;𝝀 = 𝟏𝟗𝟎) 

𝜙1 = 1.8 𝜙1 = 1.85 𝜙1 = 1.90 𝜙1 = 1.95 𝜙1 = 2.0 𝜙1 = 2.05 𝜙1 = 2.1 𝜙1 = 2.15 𝜙1 = 2.2 𝜙1 = 2.25 𝜙1 = 2.3 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

518.4 517.4 517.0 516.8 516.8 516.7 516.8 516.9 516.5 516.7 516.4 516.3 
0 1.3 1.9 2.1 2.2 2.3 2.2 2.1 2.6 2.4 2.8 2.9 

350 349.5 349.3 349.2 349.2 349.1 349.2 349.2 349.0 349.1 349.0 348.9 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 11.4 16.7 17.6 18.7 20.1 18.4 18.2 22.7 20.5 24.2 25.2 

259.2 244.0 236.8 235.6 234.2 232.3 234.5 234.8 228.8 231.8 226.8 225.5 
0 5.6 8.2 8.6 9.2 9.9 9.0 8.9 11.1 10.1 11.9 12.4 

 

Table 5.11: Source strength predictions for values of acceleration coefficients in the range of 1.4 to 1.75 
Actual Source  

Strength Source strength predictions for various values of 𝝓𝟏 ( 𝝓𝟐 = 𝝓−𝝓𝟏 ; 𝝀 = 𝟏𝟗𝟎) 

𝝓𝟏 = 𝟏.𝟕𝟓 𝝓𝟏 = 𝟏.𝟕𝟎 𝝓𝟏 = 𝟏.𝟔𝟓 𝝓𝟏 = 𝟏.𝟔𝟎 𝝓𝟏 = 𝟏.𝟓𝟓 𝝓𝟏 = 𝟏.𝟓𝟎 𝝓𝟏 = 𝟏.𝟒𝟓 𝝓𝟏 = 𝟏.𝟒𝟎 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

518.4 517.4 517.3 517.2 517.4 517.7 517.6 517.6 517.6 
0 1.4 1.5 1.6 1.4 1.0 1.1 1.0 1.1 

350 349.5 349.5 349.4 349.5 349.6 349.6 349.6 349.6 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 12.0 12.9 13.5 12.1 8.7 9.7 8.9 9.1 

259.2 243.1 241.9 241.1 242.9 247.5 246.2 247.3 247.1 
0 5.9 6.3 6.7 6.0 4.3 4.8 4.3 4.5 
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Figure 5.11 : Sensitivity study with respect to the acceleration coefficients in the range of 1.8 to 2.3 
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Figure 5.12: Sensitivity study with respect to the acceleration coefficients in the range of 1.4 to 1.8 
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5.6.3 Sensitivity study w.r.t. sum of constriction coefficient 
In this final sensitivity study, the effect of changing the value of the sum of constriction coefficients, 𝜙 on 

the source strength predictions is studied. The swarm size has been fixed at 190 and the acceleration 

coefficient 𝜙1has been set at 1.55. Both these values are found from the previous sections as the optimum 

values of the said parameters. Table 5.12 shows the performance of the PSO optimizer where the changes 

in the error metrics are tabulated with respect to the changing values of the sum of the constriction 

coefficients. Table 5.13 shows the source strength predictions corresponding to the various values of the 

sum of the constriction coefficients used in Table 5.12. From these tables, it can be seen that the optimal 

values of the constriction coefficient is at 𝜙 = 4.2. However, it may be observed from the tables that sum 

of constriction coefficients in the range of 4.1 to 4.3 yields identical results but beyond a value of 4.4 and 

above the errors quickly grows. 

Figure 5.13 shows graphically the outcomes of the sensitivity studies with respect to the values of the sum 

of constriction coefficients. 

Table 5.12 : Sensitivity study of the sum of constriction coefficients  
( 𝝓𝟏 = 𝟏.𝟓𝟓;  𝝓𝟐 = 𝝓−𝝓𝟏 ; 𝝀 = 𝟏𝟗𝟎) 

𝝓 RMS 
(Source Strength) 

RMS 
(Concentration ) 

Mean 
Fitness 

Total time taken 
(Hrs.) 

4.1 6.29 0.06 3.88E-09 17.6502 

4.2 0.09 0.00 1.02E-12 17.6088 

4.3 3.49 0.04 1.31E-08 18.9474 

4.4 70.76 0.77 1.25E-06 20.3984 

4.5 98.18 4.61 5.95E-05 17.3611 

4.6 115.81 5.82 1.20E-04 17.3067 

4.7 140.38 11.55 3.80E-04 17.4244 

4.8 129.62 10.53 5.59E-04 17.2875 
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Table 5.13: Source strength predictions from sensitivity study w.r.t. sum of constriction coefficients 

Actual 

Source 

Strength 

Source strength predictions for various values of 𝝓  (𝝓𝟏 = 𝟏.𝟓𝟓 𝒂𝒏𝒅 𝝓 = 𝝓𝟏 + 𝝓𝟐 ; 𝝀 = 𝟏𝟗𝟎) 

𝝓 = 𝟒.𝟏 𝝓 = 𝟒.𝟐 𝝓 = 𝟒.𝟑 𝝓 = 𝟒.𝟒 𝝓 = 𝟒.𝟓 𝝓 = 𝟒.𝟔 𝝓 = 𝟒.𝟕 𝝓 = 𝟒.𝟖 

0 0.0 0.0 0.0 0.0 0.0 0.1 2.2 3.7 

0 0.0 0.0 0.0 0.0 0.0 0.2 2.4 0.4 

518.4 517.5 518.4 517.6 507.6 430.5 415.4 378.7 407.5 

0 1.3 0.0 1.1 16.7 153.3 182.9 233.2 195.7 

350 349.5 350.0 349.6 339.2 219.0 186.3 136.6 148.7 

0 0.0 0.0 0.0 4.5 55.0 72.1 111.0 119.8 

0 10.8 0.2 6.0 121.1 110.5 126.7 119.4 119.4 

259.2 244.7 259.0 251.2 96.9 116.4 99.9 93.9 92.8 

0 5.3 0.1 2.9 59.4 52.5 56.8 63.1 61.8 
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Figure 5.13 :Sensitivity w.r.t. sum of constriction coefficients 
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In summary, the sensitivity studies with respect to the parameters of the PSO optimizer yields the 

following optimal values: 

Population Size (𝜆) = 190 

Acceleration parameter (cognitive), 𝜙1 = 1.55  

Constriction coefficient, 𝜙 = 4.2 

Inertia weight (𝜒) corresponding to the optimal value of the constriction coefficient 𝜙 = 4.2 is given by: 

 𝜒 =
2

𝜙 − 2 + �𝜙2 − 4𝜙
= 0.6417    

The source strength predictions corresponding to the above optimal values of the PSO parameters are 

given in the Table 5.14 below: 

Table 5.14: Comparison of actual and predicted source strength with optimal parameters 

Actual source strength 
(l/day) 

Predicted Source Strength 
(l/day) 

0 0 
0 0 

518.4 518.4 
0 0.02 

350 350.0 
0 0 
0 0.2 

259.2 259.0 
0 0.1 

It can be seen that the source strength predictions with the optimal values of the parameters is nearly 

indistinguishable from the true values. 

5.7 Closure 
Simulation-optimization approach is a very powerful tool for groundwater source identification. It also 

provides flexibility in that there are several ways for performing the simulation and optimization. In the 

present study, a simulation-optimization model RPCM-PSO-SO has been developed for groundwater 

source identification. This model uses the meshfree RPCM model as the simulator and PSO as the 

optimizer. The meshfree model does away with the requirement to create a mesh unlike conventional 

methods such as FDM, FEM etc. which are grid based methods. This avoids the computationally cost step 

of mesh creation. PSO is a swarm intelligence based optimization technique. It is very simple to 

implement and can be easily integrated with any simulation model. The RPCM-PSO-SO model takes 

advantage of the benefits of both the meshfree and PSO techniques.  The developed SO model have been 

verified by applying to test problems available in the literature and found to perform satisfactorily. In the 
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next chapter, this model is applied to a hypothetical problem and a field case problem. The practical 

issues that may be encountered in a real field situation such as lack of data, irregular or intermittent 

concentration data, uncertainties in the field data, random location of the surveillance borewells etc. have 

been considered to test the robustness of the developed SO model.  
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Chapter 6 

Simulation-Optimization models –Results and Discussions 

6.1 Introduction 
This chapter presents different case studies and scenarios to demonstrate the groundwater source 

identification using RPCM-PSO based Simulation-Optimization approach. The first case presented is a 

modified version of the steady state contaminated effluent leakage problem discussed in section 5.5.2. 

Instead of the two leak sources in that problem, various scenarios are examined where effluents leakage 

takes place from more points of leakage. A transient field case study of contamination in an unconfined 

aquifer is considered in section 6.3. The model attempts to reconstruct the release histories of two 

disposal sites from the concentration measurements over a period of time. 

The source identification model is applied to a real aquifer with hypothetical sources in section 6.4. To 

test the robustness of the proposed approach, additional scenarios which simulates limited amount of 

concentration data, missing concentration data, intermittent or irregular data collection etc. have been 

studied. In these studies the observation borewells were placed along the path of the contaminant plume 

and hence each of them receives significant contaminants over the simulation period. To study the effect 

of the location of the observation borewells with respect to the sources, an additional case study was taken 

up in the next section wherein the observation borewells were placed randomly and not necessarily in the 

contaminant plume path. The ability of the model to identify the sources, where all the sources are located 

in a small region of the domain and maximum interference of the releases from each source over the 

simulation period is expected, is being examined in the next section. 

Since errors are unavoidable in measuring the solute concentration, any source identification model must 

take into consideration errors in the concentration data which is used as the input data to the model. 

Section 6.7 explores ways to deal with uncertain concentration data. Smoothing of the input data, 

applying constraints from field information, using weighting to reduce the contribution of the erroneous 

data etc. have been considered in this section. 

6.2 Steady state problem –multiple releases scenario 
In this section, the simulation-optimization approach demonstrated in chapter 5 is further 

investigated for its robustness. While the steady state problem studied by Gorelick et al.,(1983) and 

discussed in section 5.5.2 consists of two sources of leak, in this section the number of leaks or sources is 

increased and the capability of the PSO base source identification to identify the sources is examined. 
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Different case scenarios are studied where the number of actual sources of leaks is increased from 2 to the 

case where all the potential sources are leaking. The same problem of effluent leakage through an 

underground pipe (Gorelick et al., 1983) is being reinvestigated but here it is assumed that there are seven 

potential points of leakage instead of nine as was the case earlier (Figure 6.1). It is assumed that the 

effluent (pollutant) has been flowing continuously within the pipe and contains high concentrations of the 

non-reactive pollutants –chloride and tritium. Several observation or surveillance borewells are located 

within the modeling region which is used for detecting and measuring the concentration of the pollutant 

found in the groundwater. 

 
 

Figure 6.1: Hypothetical Aquifer system for steady state pollutant source identification. 
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Given this concentration data and the location of all the potential sources, the optimization model seeks to 

find a set of simulated sources (i.e. source strength vector) which yields closest match to the concentration 

data. The following 3 types of objective functions are defined to measure the matching between predicted 

and observed concentrations: 

(i) 
Sum of squared residuals,   𝑅 = ∑ �𝐶𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑�
2

        𝑁
𝑖=1  (6.1) 

(ii) 
Sum of squared normalized residuals,   𝑅 = ∑ �𝐶𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐶𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐶∗
�
2

   𝑁
𝑖=1  (6.2) 

(iii) Sum of absolute residuals,   𝑅 = ∑ �𝐶𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑�         𝑁

𝑖=1  (6.3) 

where, 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 

 𝐶∗ = 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  or some smoothed value of 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

The optimization model seeks to minimize the value of R with respect to various sets of the source 

strength vector in order to determine the pipe leak locations and leak magnitudes. Since PSO is being 

used for optimization in this work, the sets of source strength vectors acts as the particles of the swarm. 

Several particles are generated randomly to start the search process. Each particle moves around (i.e. is 

perturbed) in the search space trying to find the lowest value of the objective function (referred to as 

fitness function in this context) till all the particles converge to the global minima. Additional constraints 

are applied to stop the particles from crossing the search boundary. In the present case, the constraint on 

the source strength is that it cannot be negative but the upper limit is unbounded. 

The results of the source identification using PSO optimization is shown in Table 6.1. It tabulates the 

source fluxes from the 7 potential sources as predicted by the simulation-optimization model alongside 

the true leak magnitudes i.e. source fluxes in l/d. It can be seen that the SO model using PSO as the 

optimizer is able to predict the source locations III and VII and their leak magnitudes very accurately. For 

the rest of the potential leak points, it has predicted a leak magnitude of zero which means no leakage is 

taking place from these points. All the 3 objective function types in equations 6.1, 6.2 and 6.3 lead to the 

same results. Therefore any of them can be used for the source identification problem. 

The PSO parameters used in the simulation are (Clerc and Kennedy, 2002): 

 Population or Swarm size : 40 

 Acceleration Coefficients:  

 𝜙1 = 2.05 ; 
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  𝜙2 = 2.05 

 𝜒 = 2
𝜙−2+�𝜙2−4𝜙  

= 0.7298     𝑤ℎ𝑒𝑟𝑒  𝜙 = 𝜙1 + 𝜙2 > 4 

Table 6.1: Prediction of Leak locations and magnitude by PSO model 

Potential Source 
Location 

True 
 Leak Magnitudes 

(l/d) 

PSO Predicted  
Leak Magnitudes 

(l/d) 
Difference 

I 0 0 0 
II 0 0.3 -0.3 
III 518.4 518.3 0.1 
IV 0 1.1 -1.1 
V 0 0.5 -0.5 
VI 0 0.7 -0.7 
VII 259.2 259.6 -0.4 

Table 6.3 shows the computational performance of the PSO optimizer using the objective function type in 

equation (6.3) i.e. sum of squared normalized residuals while Table 6.4 compares the concentrations at 

the observation points as predicted by the PSO model against the observed concentrations. The source 

fluxes as shown in Table 6.1 is average of source fluxes predicted by 25 independent runs of the PSO 

model. As seen from Table 6.3, the convergence in each run was achieved by using less than 2000 fitness 

function evaluations only which is quite impressive for a PSO based optimization problem. The variations 

among the independent runs of the model are also very small, which shows that the PSO model is very 

stable. It can also be seen from Table 6.4 that the predicted and observed concentrations match exactly. 

To test the robustness of the source identification model, some variations of the above problem are 

considered. Let the number of leak sources be increased one by one at other locations in addition to the 

existing sources.  

Table 6.2 shows four variations of the original problem with increasing number of leak sources: 

Table 6.2: Additional cases with changing number of leak sources 

Cases Leak sources and their magnitudes/fluxes (l/d) 
I II III IV V VI VII 

Case 1 : 3 Leak sources   518.4  350  259.2 
Case 2: 4 Leak sources 200  518.4  350  259.2 
Case3: 5 Leak sources 200  518.4  350 150 259.2 
Case 4 : 6 Leak sources 200  518.4 100 350 150 259.2 
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Table 6.3: Performance of the PSO Table 6.4: Comparison of the predicted and 
observed concentrations 

 

Run Time 

taken 

(sec) 

Number of 

Function 

Evaluation

s 

Fitness value 

(sum of 

normalized 

squared 

residual) 

1 0.55 1721 9.24E-16 

2 0.54 1594 9.47E-16 

3 0.57 1756 6.65E-16 

4 0.42 1225 9.97E-16 

5 0.6 1911 9.43E-16 

6 0.61 1812 9.27E-16 

7 0.51 1575 9.41E-16 

8 0.37 1068 9.55E-16 

9 0.56 1760 9.62E-16 

10 0.50 1483 9.60E-16 

11 0.61 1883 9.60E-16 

12 0.55 1623 9.99E-16 

13 0.5 1584 7.09E-16 

14 0.63 1916 9.34E-16 

15 0.54 1628 7.01E-16 

16 0.59 1642 9.91E-16 

17 0.52 1571 9.98E-16 

18 0.55 1604 8.53E-16 

19 0.55 1600 9.43E-16 

20 0.36 1111 9.33E-16 

21 0.48 1504 9.95E-16 

22 0.62 1832 8.63E-16 

23 0.61 1791 6.46E-16 

24 0.41 1270 9.75E-16 

25 0.55 1722 9.81E-16 

Avg. 0.532 1607 9.08E-16 

 
 

Observation 

Point 

Predicted 

Concentra

tion (mg/l) 

Observed 

Concentra

tion 

(mg/l) 

Difference 

1 2805.0 2805.0 0 

2 2922.4 2922.4 0 

3 2440.6 2440.6 0 

4 2568.5 2568.5 0 

5 2868.2 2868.2 0 

6 3054.0 3054.0 0 

7 2095.2 2095.2 0 

8 2776.0 2776.0 0 

9 2700.1 2700.1 0 

10 2238.8 2238.8 0 

11 1340.3 1340.3 0 
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For each of the cases listed in table 9 the source identification model is re-run to identify the leak sources. 

The predictions of the PSO source identification model are shown in Table 6.5 through Table 6.8. 

Table 6.5: 3 Leak Sources at locations III, V and 

VII 

Table 6.6: 4 leak sources at locations I, III, V 

and VII 

 

Potential 

Source 

Location 

True 

 Leak 

Magnitudes 

(l/d) 

PSO 

Predicted  

Leak 

Magnitudes 

(l/d) 

Diff. 

I 0 1.2 -1.2 
II 0 0.6 -0.6 
III 518.4 518.4 0 
IV 0 0.6 -0.6 

V 350 350 0 

VI 0 1.3 -1.3 

VII 259.2 257.6 1.6 
 

Potential 

Source 

Location 

True 

 Leak 

Magnitudes 

(l/d) 

PSO 

Predicted  

Leak 

Magnitudes 

Diff. 

I 200 199.79 0.21 
II 0 0 0 
III 518.4 516.8 1.6 
IV 0 3.6 -3.6 

V 350 346.3 3.7 

VI 0 1. 7 -1.7 

VII 259.2 259.3 -0.1 

  

Table 6.7: 5 Leak sources at locations I, III, V, 

VI and VII 

Table 6.8: 6 Leak Sources at locations I, III, IV, 

V, VI and VII 

 

Potential 

Source 

Location 

True 

 Leak 

Magnitudes 

(l/d) 

PSO 

Predicted  

Leak 

Magnitude 

(l/d)s 

Diff. 

I 200 199.9 0.1 
II 0 0 0 
III 518.4 517.5 0.9 
IV 0 2.1 -2.1 

V 350 347.9 2.1 

VI 150 151.0 -1.0 

VII 259.2 259.3 -0.1 
 

Potential 

Source 

Location 

True 

 Leak 

Magnitudes 

(l/d) 

PSO 

Predicted  

Leak 

Magnitudes 

Diff. 

I 200 199.8 0.2 
II 0 0.2 -0.2 
III 518.4 519.3 -0.9 
IV 100 97.9 2.1 

V 350 352.1 -2.1 

VI 150 149.1 0.9 

VII 259.2 259.1 0.1 

It is seen that noises or errors start appearing in identification of the leak sources (Table 6.5 through Table 

6.8), even though they are quite small. For example, in Table 6.5 there are actually 3 leak sources viz, I, 
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III, V and VII. The PSO model has identified these major sources but also has predicted very small 

(noises) leakages from other locations as well. Referring to Table 6.9, it is seen that the number of 

function evaluation required by the PSO model has increased drastically e.g. for the case 1 (3 leak 

sources) the average number of function evaluations required for convergence has gone up to more than 

75,000 as compared to less than 2000 function evaluation for the case with 2 leak sources (Table 6.1). For 

the cases with more than 3 leak sources present in the aquifer, the number of fitness function evaluations 

required for convergence is upwards of one million. This shows that the limitations/weakness of the PSO 

optimizer. 

The two RMS error metrics defined in equation (5.17) and (5.18) being used here to study the 

convergence behavior of the source identification model. 𝑅𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒 is the root mean square error in the 

prediction of the source fluxes while 𝑅𝑀𝑆𝑐𝑜𝑛𝑐 is the root mean square error of the contaminant 

concentration prediction by the SO model. Since the exact source strengths and contaminant 

concentration distribution are assumed to be known exactly, these quantities can be calculated. Table 6.9 

shows the values of these error metrics for different cases and for various number of function evaluations 

used in the PSO optimization: 

Table 6.9: Convergence analysis of the Source identification model 

No 

of 

sour

ces 

RMS error in source flux prediction for various 

numbers of function evaluations of the PSO 

RMS error in contaminant concentration 

prediction for various numbers of function 

evaluations of the PSO 

No of PSO Function Evaluations No of PSO Function Evaluations 

103 5x103 104 5x104 105 106 103 5x103 104 5x104 105 106 

2 0.04 0 0 0 0 0 0.02 0 0 0 0 0 

3 117.37 46.21 23.92 0.06 0.0 0.0 7.66 2.89 1.51 0.00 0 0 

4 146.02 142.42 116.1 102.5 87.69 2.10 3.06 2.30 1.87 1.65 1.42 0.03 

5 115.07 107.72 85.38 78.43 58.61 1.22 4.53 1.97 1.39 1.27 0.95 0.02 

6 78.90 89.05 115.7 56.66 45.21 1.18 3.42 1.76 1.89 1.05 0.83 0.02 

7 111.58 106.80 94.35 95.03 105.3 70.3 1.56 0.85 0.58 0.55 0.60 0.40 

It can be seen that the source identification model generally improves with increasing the number of PSO 

function evaluations. For the case with only two sources, it requires very small number of function 

evaluations to correctly predict the unknown sources. But for the cases with more number of sources, the 

number of function evaluation i.e. iterations of the PSO has to be significantly increased in order to be 

able to predict the source fluxes to acceptable error. For the case with 7 sources, the model is unable to 
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predict the source fluxes correctly even with 106 iterations. But looking at the concentration prediction 

errors, it is seen that the models is able to predict the concentration very accurately even when it is unable 

to predict the source fluxes acceptably. This may be due to the non-uniqueness of source identification 

problems. The PSO optimization is able to minimize the objective function i.e. the difference between 

predicted and measured contaminant concentrations, which it is supposed to minimize. The convergence 

of the PSO with the number of function evaluations can be seen from the Figure 6.2. It can be seen that 

with increasing number of iterations of the PSO, the source prediction improves. But this improvement 

comes at the cost of increasing computational time. 

 

Figure 6.2: Convergence of Source identification model w.r.t. PSO function evaluations 
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6.3 Transient source identification – unconfined aquifer case 
Consider the unconfined aquifer of size 900 m by 540 m shown in Figure 6.3. It is bounded by 

impermeable boundaries on the two sides (Figure 6.3). The other two boundaries are constant head 

boundaries with head values of 100m and 88m respectively. Two contaminant disposal sources 𝑆1 and 𝑆2 

are releasing contaminants over a period of 5 years with source fluxes as per the schedule given in Table 

6.10. Of the two disposal sources only S1 is assumed to be operational over the disposal period of 5 years. 

Three observation borewells namely, 𝑂1,𝑂2 and 𝑂3 located downstream, measures the contaminant 

concentration over a simulation period of 10 years. The aquifer parameters values are: 𝑘𝑥𝑥 =

0.0001 m/s ,𝑘𝑦𝑦 = 0.0001 m/s , porosity (𝜃) = 0.20, longitudinal dispersivity (𝛼𝐿) = 30.5 m, transverse 

dispersivity (𝛼𝑇) = 12.2. The thickness of the aquifer is 30.5 m. The locations of the sources and the 

observation borewells are given Table 6.11. 

 
Figure 6.3: Hypothetical unconfined aquifer 

A coupled meshfree RPCM flow and solute transport model as formulated in chapter 4 was constructed. 

The flow equation for an unconfined aquifer is non-linear. Newton-Raphson iteration method has been 

applied to find the solution iteratively. The breakthrough curves at the borewells resulting from the source 

disposals are shown in the Figure 6.4. The time step size used in the simulation was 30 days (monthly). 

The breakthrough curves shown in the Figure 6.4 serve as the measured concentration for the source 

identification model. From this input concentration data, the source identification model seeks to 

construct the release histories of the sources (Table 6.10). 
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Table 6.10: Source flux from the 
contaminant sources 

 

Year of 

release 

Source flux (gm/sec) 

𝑆1 𝑆2 

1 48.8 0 

2 0.0 0 

3 10.0 0 

4 42.0 0 

5 36.0 0 
 

Table 6.11: Locations (coordinates) of the 
sources and wells 

 

Source / 

observation well 

(x,y) locations  

(m) 

S1 (100, 343) 

S2 (123, 203) 

O1 ( 254, 365) 

O2 (340, 247) 

O3 (615, 288) 
 

A concentration response matrix as described in section 5.4 is created. The PSO optimization model uses 

this concentration matrix to evaluate the predicted concentrations from different trial sets of source fluxes. 

 

Figure 6.4: Breakthrough curves at the observation borewells 

A swarm size of 50 particles was used in the PSO. The acceleration coefficients have been kept as: 

𝜙1 = 2.05  and 𝜙2 = 2.05. The source predictions from the RPCM-PSO-SO model are as shown in 
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Table 6.12. The source predictions are indistinguishable from the actual releases. This may be expected 

since the model uses rather a very long series of concentration data (10 years) from the three observation 

wells and the no uncertainty is present in the concentration data. This drastically reduces the chances of 

non-uniqueness in the solutions and consequently the PSO optimization model will be able to quickly 

converge on the true solutions. Table 6.13 which shows the computational performance of the RPCM-

PSO-SO model confirms this observation. The model convergence happens in less than a 1000 iterations 

of the PSO. It may be mentioned that the source predictions are averaged over 25 independent runs of the 

PSO to remove any statistical randomness present. 

Table 6.12: Source predictions from the SO model 
 

Source 
Year of 

release 

Actual 

Source 

flux 

(gm/sec) 

RPCM-PSO-SO 

model predicted 

source flux 

(gm/sec) 

𝑆1 

1 48.8 48.80 

2 0.0 0.1 

3 10.0 10.02 

4 42.0 42.1 

5 36.0 36.03 

𝑆2 

1 0.0 0.0 

2 0.0 0.1 

3 0.0 0.2 

4 0.0 0.0 

5 0.0 0.1 

Table 6.13: Computational performance of 
the SO model 

 

Run 
Time 
taken 
(sec) 

No. of 
iterations 

Value of 
fitness 

function 
1 1.36 814 7.34E-16 
2 1.48 813 8.86E-16 
3 1.29 788 9.51E-16 
4 1.85 796 8.98E-16 
5 1.4 819 7.98E-16 
6 1.43 765 2.94E-16 
7 1.31 770 8.39E-16 
8 1.34 735 8.50E-16 
9 1.26 752 6.97E-16 

10 1.39 779 9.13E-16 
11 1.46 819 9.72E-16 
12 1.48 774 9.91E-16 
13 1.33 783 9.04E-16 
14 1.36 750 7.26E-16 
15 1.51 809 9.64E-16 
16 1.36 750 8.92E-16 
17 1.41 769 9.54E-16 
18 1.48 806 7.12E-16 
19 1.43 805 6.63E-16 
20 1.35 811 8.03E-16 
21 1.37 798 8.82E-16 
22 1.14 687 8.88E-16 
23 1.3 761 9.65E-16 
24 1.25 741 9.05E-16 
25 1.33 782 8.51E-16 
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6.4 Field case study - time-dependent sources  

Here we consider the field case study given in chapter 4 in section 4.12 to study the source identification 

problem. This case study investigates the leaching of contaminants from storage sites or tanks which has 

been occurring intermittently over a period of time. Consider the aquifer as shown in Figure 6.5 (refer to 

section 4.12).  As shown in section 4.12, the study area is bounded by a lake on the north, north-east, west 

and south-west boundaries. There are no water bodies on the rest of the boundary. The area to be modeled 

is approximately 4.5 km2. The water level in the lake is used as the constant head value at the boundaries 

bounded by the lake.  The flux boundary value is estimated and adjusted during calibration of the model 

(Guneshwor et al., 2016). Six hypothetical sources located at 𝑆1,𝑆2,𝑆3,𝑆4,𝑆5 and 𝑆6 are releasing TDS 

(Total Dissolved Solids) as a contaminant through leaching over a period of four years according to the 

concentration data given in Table 6.14. It is assumed that after the 4 years of release, the sites stop 

releasing any contaminants. Four observation wells viz. OB-1, OB-2, OB-3 and OB-4 records the 

contaminant (solute) concentrations due to the releases from the sources over a period of 10 years 

(simulation period). 

This case study has been taken from Guneshwor et al.,(2016). Six potential hypothetical sources located 

at 𝑆1,𝑆2,𝑆3,𝑆4 , 𝑆5 and 𝑆6 are releasing contaminant over a period of four years according to the release 

schedule given in Table 6.14 . It is assumed that after the 4 years of release, the sites stop releasing any 

solutes/contaminants to the aquifer. Five surveillance (observation) bore wells viz, 𝑂1,𝑂2,𝑂3,𝑂4 and 𝑂5 

located in the study area records the contaminant (solute) concentrations due to the releases from the 

sources over a period of 10 years (simulation period). 

Table 6.14 : Release schedule of the sources 

Release Year 
Source Releases (in ppm) 

S1 S2 S3 S4 S5 S6 

1st year 1000 1500 890 0 0 500 

2nd year 0 1200 1000 0 0 700 

3rd  year 900 500 0 1000 850 0 

4th year 0 0 800 1300 1100 0 
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Figure 6.5: Model area with the sources and observation bore wells (reduced number of bore wells) 

The model area was divided into a regular grid of 1008 nodal points corresponding to 

∆𝑥 = 49.6 𝑚 ,∆𝑦 = 42.8 𝑚 (Guneshwor et al.,2016). The flow and transport modeling was carried out 

using radial point collocation method as outlined in section 4.12. Figure 6.6 shows the contour of 

hydraulic head distribution in the study area. There is a recharge zone in the area and the groundwater 

flow directions radiate out from this zone in all the directions (Guneshwor et al., 2016). The main flow 

direction is in the south-east directions. The sources 𝑆4,𝑆5 and 𝑆6 are located downstream along this 

direction while the sources 𝑆1 and 𝑆2 are located along the north-western flow path. 

The transport model tracks the migration of the contaminants for a period of 10 years (3650 days) 

including the 4 years during which the release took place. The time step size used in the transport model 

is ∆𝑡 = 10 𝑑𝑎𝑦𝑠 . The concentration values at the observation bore wells are recorded for every 30 days 

(monthly) to construct the breakthrough curves at the wells. Each breakthrough curves therefore contains 

123 concentration data (3650/30 plus the initial and the last time steps). 
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Figure 6.6 : Head distribution in the aquifer and groundwater flow directions 

The breakthrough curves at the 5 observation bore wells serve as the measured concentration data and 

used as input to the source identification model. The goal of the source identification model is to 

reconstruct the release history of the sources from this given concentrations data. The use of breakthrough 

curves is justified since generally in any field scenario, concentrations are measured through water sample 

collection only at a few surveillance (observation) borewells at a set time interval of sample collection 

e.g. weekly, monthly, bi-monthly etc. over a period of time, normally few years. 

A concentration response matrix was constructed similar to the case for steady state effluent flow through 

an underground pipeline as mentioned in section 5.5.2. Each column of this matrix stores the 

breakthrough curves at the five observation borewells resulting from unit release from each of the sources 

in a particular release year. For example, the first column stores the concentrations at every recorded time 

steps for the observation borewells due to a unit release from the first source in the first year. The second 

column corresponds to the unit release from the 2nd source in the first year of release; the third column 

corresponds to unit release from the 3rd source and so on. When the columns (block) for all the sources in 

N 

E 



 
Simulation-Optimization models –Results and Discussions 

171 
 

the first year of release are completed, the columns (block) for the second of year of release are populated. 

This is followed by the data for the 3rd and 4th year of the releases. Thus the concentration response matrix 

will have a size of : (5*123) x (6*4) i.e. 615 x 24 

For this transient case, the following two objective functions are used for minimization: 

(i) Sum of squared differences between predicted and 

observed concentrations: 
𝑆 = ���𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�

2 
𝑁𝑇

𝑗=1

   
𝑁𝑂

𝑖=1

 (6.4) 

(ii) Sum of absolute values of the differences between  

      predicted and observed concentration: 
𝑆 = ���𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�  

𝑁𝑇

𝑗=1

   
𝑁𝑂

𝑖=1

 (6.5) 

where, 

   𝑁𝑂 = no. of observation bore wells 

𝑁𝑇 = no. of time steps 

𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 = Predicted concentration at ith observation point at jth time step 

𝐶𝑖,𝑗𝑂𝑏𝑠 = Observed/measured concentration at ith observation point at jth time step 

As for the steady case, the following two error metrics are defined for measuring the accuracy of the 

predictions from the source identification model: 

Root mean square error in concentrati  

predictions : 
𝑅𝑀𝑆_Concn = �∑ ∑ �𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�

2 𝑁𝑇
𝑗=1    𝑁𝑂

𝑖=1

𝑁
 (6.6) 

Root mean square error in source 

strength predictions: 
𝑅𝑀𝑆_source = �∑ ∑ �𝑆𝑖,𝑡𝑃𝑟𝑒𝑑 − 𝑆𝑖,𝑡𝐴𝑐𝑡𝑢𝑎𝑙�

2 𝑁𝑅
𝑡=1    𝑁𝑆

𝑖=1

𝑁
 (6.7) 

where,   𝑁𝑆 = no. of sources or injection wells., 𝑁𝑅 = No of release years ,𝑆𝑖,𝑡𝑃𝑟𝑒𝑑 =Predicted 

concentration of the ith in the  tth year , 𝑆𝑖,𝑡𝐴𝑐𝑡𝑢𝑎𝑙 = Actual source concnetrtaion of the ith source in tth release 

year 

6.4.1 Case A: Extended period of concentration data 
6.4.1.1 Results and discussion 

The results from the source identification model for this transient field case study are given in Table 6.15 

while Figure 6.7 shows the comparison of the measured and predicted breakthrough curves at the 

observation bore wells. The PSO optimization model used a population size of 100.  
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Table 6.15 : Source strength prediction comparison for different objective type functions 

Source Year of 
release 

Actual 
Source 
(ppm) 

Predicted Source strength (ppm) for different types of the 
objective function used 

Objective type 1: 
sum of squared 

residuals 

Objective type 2: 
sum of normalized  
squared residuals 

Objective type 3: 
sum of absolute 

residuals 

1 

1 1000 1000 1027 1000 
2 1500 1500 756 1500 
3 890 890 830 890 
4 0 0 1072 0 

2 

1 0 0 1091 0 
2 500 500 1138 500 
3 0 0 939 0 
4 1200 1200 921 1200 

3 

1 1000 1000 833 1000 
2 0 0 1040 0 
3 0 0 906 0 
4 700 700 887 700 

4 

1 900 900 1193 900 
2 500 500 924 500 
3 0 0 857 0 
4 1000 1000 918 1000 

5 

1 850 850 998 850 
2 0 0 1157 0 
3 0 0 884 0 
4 0 0 1080 0 

6 

1 800 800 1129 800 
2 1300 1300 1139 1300 
3 1100 1100 1066 1100 
4 0 0 1042 0 

RMS (Source strength) 0 700.1302 0.0048 
RMS (concentration) 0 296.4406 0 

Mean fitness 9.94E-16 Does not 
converged 2.03E-03 

The convergence criteria set for the PSO optimization is that either the maximum number of fitness 

function evaluations is 105 or the fitness function value is smaller than 10-15. The criteria on the value of 

the fitness function is set very low in order to allow the PSO optimization to reach maximum number of 

function evaluations set i.e. emphasis has been given to the number of function evaluation. Usually the 

performance of any PSO optimization is measured in terms of number of function evaluation needed to 

achieve convergence. 
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Figure 6.7 : Comparison of measured and predicted breakthrough curves at the 5 observation 
bore wells 

It is observed from Table 6.15 that the source identification model could exactly construct the release 

histories of the sources for this case study. The computational performance of the optimization model can 

be seen in Table 6.16. This table also compares the computational performance of the optimization model 

for both types of the objective or fitness function defined in equations (6.7) and (6.8). While Table 6.15 

indicates that employing both the types of objective function in the optimization yields nearly the same 

results when it comes to source prediction, Table 6.16 shows that the model that uses sum of squared 

residuals as the objective function is computationally very efficient requiring less than 10,000 fitness 

function evaluations to achieve the preset convergence criteria. The simulation was carried out in 

MATLAB on a HP Z800 workstation. 
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Table 6.16: Computational Performance of the optimization model 

Iteration/run 

Objective function: sum of absolute 
residuals 

Objective function: sum of squared 
residuals 

Time 
taken(s) 

No. of 
function 

evaluations 

Fitness 
function 

value 

Time 
taken(s) 

No. of 
function 

evaluations 

Fitness 
function 

value 
1 165.23 100000 3.98E-03 13.14 7963 1.00E-15 
2 165.88 100000 3.59E-05 13.21 7851 9.99E-16 
3 165.33 100000 1.56E-09 15.56 8996 9.99E-16 
4 166.33 100000 6.37E-03 13.54 7935 9.96E-16 
5 174.92 100000 1.86E-08 15.24 9275 9.78E-16 
6 188.31 100000 7.52E-03 12.97 7808 9.98E-16 
7 171.57 100000 4.71E-03 11.35 6809 9.94E-16 
8 166.75 100000 8.05E-04 9.55 5693 1.00E-15 
9 206.03 100000 6.12E-06 9.74 5962 9.96E-16 

10 170.1 100000 3.41E-03 13.75 8241 9.96E-16 
11 168.37 100000 5.96E-06 12.81 7749 9.86E-16 
12 210.56 100000 1.12E-03 8.62 5132 9.93E-16 
13 170.36 100000 2.23E-03 8.56 5169 9.97E-16 
14 169.63 100000 2.01E-05 8.55 5063 9.89E-16 
15 161.89 100000 1.00E-09 14.17 8584 9.92E-16 
16 197.04 100000 2.32E-09 12.45 7417 9.99E-16 
17 164.66 100000 2.60E-03 14.67 8853 9.89E-16 
18 168.37 100000 5.25E-04 16.55 7934 9.97E-16 
19 163.5 100000 6.37E-03 12.89 7679 9.89E-16 
20 164.13 100000 1.28E-03 14.42 8734 9.98E-16 
21 163.52 100000 2.71E-03 13.75 8361 9.72E-16 
22 165.03 100000 6.33E-03 12.16 7427 9.98E-16 
23 166.22 100000 9.59E-06 13.48 8091 9.92E-16 
24 163.32 100000 2.73E-04 13.38 8134 9.97E-16 
25 158.3 100000 4.15E-04 14.22 8587 9.96E-16 

 

6.4.2 Case B: Limited amount of data 
The previous case considers that the concentration data is available for an extended period of time and 

assumes no missing data over the entire period. This may be divergent from the actual field situation 

where regular monitoring may start only after detecting solute concentrations that exceed a particular 

regulatory limit and may continue only for a limited period or number of years. In such cases, the 

concentration data will be limited. Figure 6.8 shows how a typical concentration data for such cases might 

look like. Monitoring starts when the solute concentration in the surveillance borewells crosses 200 ppm 

or more. These monitoring period have been chosen arbitrarily to represent a typical field condition. 
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Figure 6.8 Concentration measurement starts after it crosses a certain level 

Table 6.17 below shows the results of the source predictions for this case study. It is observed that with 

5000 iterations only convergence was achieved. This may be expected since even though the data has 

been reduced, still it represents an abundance concentration data. Further the data is assumed to be free 

from uncertainties. These means that the non-uniqueness of the solution is significantly less. It may be 

noted that longer the data series the lesser the problem of non-uniqueness. . The PSO optimizer will be 

able to find this global minimum sufficiently close. When we further reduce the concentration data series, 

it is expected the PSO optimizer may take more iterations to converge. As the Table 6.17 shows there are 

some spurious source predictions. However their magnitudes are relatively less and hence may ne 

neglected. 

Figure 6.9 presents another case where the concentration data was even more limited. The measurement 

period was limited to only a few years typically 3 to 4 years and represents the peak period of the 

concentration profile in each borewell. The result of the source identification model for this case is 

presented in the Table 6.18 below. As expected the model took more number of PSO iterations to 

converge. 
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Table 6.17: Results of source identification with limited observation data 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted 
source 
(ppm) 

Percentage 
error 

1 1 1000 1179 -17.9 
 2 1500 1496 0.3 
 3 890 885 0.6 
 4 0 3  
2 1 0 4  
 2 500 500 0.1 
 3 0 41  
 4 1200 1195 0.4 
3 1 1000 998 0.2 
 2 0 1  
 3 0 0  
 4 700 701 -0.2 
4 1 900 873 3.0 
 2 500 500 0.0 
 3 0 0  
 4 1000 1000 0.0 
5 1 850 849 0.1 
 2 0 1  
 3 0 6  
 4 0 1  
6 1 800 800 0.0 
 2 1300 1300 0.0 
 3 1100 1100 0.0 
 4 0 0  

RMS_Source 37.9 
RMS_Concn 0.19 

With 5000 iterations, the source predictions were having high errors along with significant spurious 

source predictions. As the number of iterations is increased to 10,000, the source predictions have become 

very close to the actual source releases. This case study shows that the RPCM-PSO-SO model is effective 

in field situation with limited available concentration data. 
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Figure 6.9: Limited amount of concentration data 

Table 6.18: Source identification with a few years of concentration measurements 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted source 
(ppm) 

5000 
iterations Percent error 10,000 

iterations Percent error 

1 1 1000 1384 -38.4 1006 -0.6 
 2 1500 1472 1.8 1499 0.0 
 3 890 879 1.2 890 0.0 
 4 0 12  0  

2 1 0 26  0  
 2 500 494 1.3 500 0.0 
 3 0 168  4  
 4 1200 1184 1.3 1200 0.0 

3 1 1000 993 0.7 1000 0.0 
 2 0 7  0  
 3 0 15  0  
 4 700 698 0.3 700 0.0 

4 1 900 829 7.9 898 0.2 
 2 500 497 0.7 500 0.0 
 3 0 0  0  
 4 1000 1000 0.0 1000 0.0 
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5 1 850 851 -0.1 850 0.0 
 2 0 0  0  
 3 0 4  0  
 4 0 1  0  

6 1 800 800 0.0 800 0.0 
 2 1300 1300 0.0 1300 0.0 
 3 1100 1099 0.1 1100 0.0 
 4 0 0  0  

RMS_Source 87.36 1.46 
RMS_Concn 0.93 0.02 

6.4.3 Case C: Missing data in concentration measurement 
It is possible that there are missing data or gaps in concentration data measurement over a prolonged 

period of time. The simulation-optimization model should take into account such solute concentration 

data. Figure 6.10 shows a typical example of concentration data with missing data in between. 

 

Figure 6.10 : Concentration data with missing or data gaps 

The results of the source identification model for this case are presented in the Table 6.19 below. The 

number of iterations used for the results presented in the table is 30,000 iterations of the PSO. This is 

significantly higher than in the preceding cases. Further the errors are also substantial in two release 
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events. One significant spurious source is also predicted but as compared to the magnitude of the release 

events it is still very small. However, the model correctly predicted most of the release events with 

sufficient accuracies.  

Table 6.19: Source identification with missing observed concentration data 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted 
source 
(ppm) 

Percentage 
differences 

1 1 1000 1352 -35.2 
 2 1500 1488 0.8 
 3 890 881 1.0 
 4 0 5  
2 1 0 6  
 2 500 500 0.1 
 3 0 144  
 4 1200 1180 1.7 
3 1 1000 995 0.5 
 2 0 1  
 3 0 0  
 4 700 702 -0.3 
4 1 900 792 12.0 
 2 500 496 0.8 
 3 0 0  
 4 1000 1000 0.0 
5 1 850 847 0.3 
 2 0 2  
 3 0 9  
 4 0 1  
6 1 800 800 0.0 
 2 1300 1300 0.0 
 3 1100 1100 0.0 
 4 0 0  

RMS_Source 80.88 
RMS_Concn 0.33 

 

6.4.4 Case D: Intermittent solute concentration data  
To simulate irregular or intermittent concentration data measurements, let us consider the data presented 

in the Figure 6.11. It represents serious missing data and misses some of the important periods in the 

breakthrough curves at the wells. This can happen where water samplings are done very irregularly and 
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leading to a very poorly monitored system. It is expected that the source identification model will have 

difficulties in reconstructing the release events. 

 

Figure 6.11: Intermittent or irregular concentration data 

The source identification model is run with the above intermittent concentration profiles. The source 

predictions of the source identification model are presented in Table 6.20. However, the number of 

iterations required to achieve the convergence is now 105 iterations. It is observed that the source 

identification model was able to predict the sources accurately despite the missing data. The spurious 

sources are also small. Referring to Figure 6.11 it is observed that the missing periods are not very 

prolonged. Also it has been assumed that the concentration data has no uncertainties thereby reducing the 

problem of non-uniqueness significantly. This case study demonstrates that the source identification 

model is effective in handling intermittent or irregularly sampled concentration data. 
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Table 6.20: Source identification with intermittent concentration data 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted 
source 
(ppm) 

Percentage 
error 

1 1 1000 944 5.6 
 2 1500 1505 -0.4 
 3 890 890 0.0 
 4 0 0  
2 1 0 0  
 2 500 500 0.0 
 3 0 31  
 4 1200 1205 -0.4 
3 1 1000 999 0.1 
 2 0 0  
 3 0 0  
 4 700 700 0.0 
4 1 900 851 5.4 
 2 500 507 -1.5 
 3 0 0  
 4 1000 1000 0.0 
5 1 850 850 0.0 
 2 0 0  
 3 0 47  
 4 0 4  
6 1 800 800 0.0 
 2 1300 1300 0.0 
 3 1100 1100 0.0 
 4 0 0  

RMS_Source 19.16 
RMS_Concn 0.06 

 

6.5 Effect of location of the observation wells 

6.5.1 Random placement of wells 
It may be mentioned here that the borewells used in the preceding case study were all placed along the 

major flow path of the groundwater so that very significant concentration values of the solute are recorded 

by the borewells. To understand the effect of the borewell locations on the source identification model, 

the same problem is studied but with a different locations or distribution of the observation borewells. 

Figure 6.12 shows the locations of the borewells for this case study. 
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Figure 6.12: Model area with the sources and observation bore wells at different locations 

The grid structure used is the same as in the preceding study. The transport model tracks the migration of 

the contaminants for a period of 10 years (3650 days) including the 4 years during which the release took 

place. The time step size used in the transport model is ∆𝑡 = 10 𝑑𝑎𝑦𝑠 and the time-stepping scheme used 

is the Crank-Nicholson method. The concentration values at the observation bore wells are recorded for 

every 30 days (monthly) to construct the breakthrough curves at the wells. Figure 6.13 shows the 

breakthrough curves of the four observation borewells. The breakthrough curves at the four observation 

bore wells serve as the measured concentration data and used as input to the source identification model. 

The goal of the source identification model is to reconstruct the release history of the sources (Table 6.21) 

from this given concentrations data. The use of breakthrough curves is justified since generally in any 

field scenario concentrations are measured through water sample collection only at a few surveillance 

(observation) bore wells at a set time interval of sample collection e.g. weekly, monthly, bi-monthly etc. 

over a period of time, normally few years. 
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Table 6.21: Strength of the sources during the leaching period 

Release Year 
Source strength (in ppm) 

S1 S2 S3 S4 S5 S6 

1st year 1000 1500 890 0 0 500 

2nd year 0 1200 1000 0 0 700 

3rd  year 900 500 0 1000 850 0 

4th year 0 0 800 1300 1100 0 

 

A concentration response matrix is constructed as described in section 5.2. Each column of this matrix 

stores the breakthrough curves at the four observation bore wells resulting from unit release from each of 

the sources in a particular release year.  

 

Figure 6.13 Breakthrough curves at the observation borewells 

The results of the convergence study of the source identification model are presented in Table 6.22 and 

Fig.6.14 where the variation of error metrics viz., RMS_Source and RMS_Concn with the number of 

iterations is shown. It may be observed that acceptable values of RMS_Source are obtained when the 

number of iterations crosses 30 x 103. As observed in the previous case study, the RMS_Concn values are 

much smaller even with just 103 iterations. This implies that the optimization algorithm is very effective 

in matching the observed and model predicted concentrations ( minimizing the objective function) but due 

to non-uniqueness of source identification problem, the source strength predictions are not accurate when 
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the number of iteration are low. Table 6.23 presents the comparison of the actual source strengths with 

those predicted by the PSO based SO model. The source strength predictions are presented for 3x103 and 

5x103 iterations of the particle swarm optimizer. With 3x103 iterations, though the source predictions are 

accurate to within 15% of the actual values, many erroneous sources are also predicted. When the number 

of iterations touches 5x103, the magnitude of these spurious source predictions has been reduced to levels 

which can be safely ignored. It is observed from Table 6.23 that the source identification model could 

construct the release histories of the sources with high accuracy i.e. within 8% error. The very low value 

of the 𝑅𝑀𝑆_𝐶𝑜𝑛𝑐𝑛 suggest that the PSO algorithm was very effective in minimizing the difference 

between simulated and measured concentration values 

Table 6.22: Convergence w.r.t. number of iterations 
 

No. of 
terations RMS_Source RMS_Concn 

103 719.79 0.423 

5 x 103 251.21 0.149 

10 x 103 180.5 0.093 

20 x 103 105.27 0.046 

30 x 103 53.024 0.024 

50 x 103 20.34 0.008  

 Fig.6.14 Convergence of source predictions with iterations 
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Table 6.23 : Source strength predictions from the PSO based source identification model 

Source Year of 
release 

Actual Source 
strength 
(ppm) 

Source Strength predictions from the PSO 
based SO model (ppm) 

30 x 103 iteration 50 x 103 iteration 

1 

1 1000 1054 1031 
2 1500 1585 1552 
3 890 888 889 
4 0 1 0 

2 

1 0 5 1 
2 500 469 491 
3 0 77 27 
4 1200 1360 1257 

3 

1 1000 997 999 
2 0 2 1 
3 0 4 1 
4 700 661 691 

4 

1 900 827 878 
2 500 373 462 
3 0 3 1 
4 1000 1000 1000 

5 

1 850 848 850 
2 0 29 9 
3 0 10 3 
4 0 19 6 

6 

1 800 800 800 
2 1300 1299 1300 
3 1100 1099 1100 
4 0 16 4 
𝑅𝑀𝑆_𝑠𝑜𝑢𝑟𝑐𝑒 53.024 20.34 
𝑅𝑀𝑆_𝑐𝑜𝑛𝑐𝑛 0.024 0.0082 

 

6.5.2 Analysis with Limited Data 
The previous case considers that the concentration data is available for an extended period of time and 

assumes no missing data over the entire period. This may not be always true in actual field situation 

where regular monitoring may start only after detecting solute concentrations that exceed a particular 

regulatory limit and may continue only for a limited period or number of years. In such cases, the 

concentration data will be limited. Fig.6.15 shows how a typical concentration data for such cases might 
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look like. Monitoring starts when the solute concentration in the surveillance borewells crosses 200 ppm 

or more. These monitoring period have been chosen arbitrarily to represent a typical field condition. 

Except for borewell OB-4, whose monitoring period is two and half years, the rest of the borewells has a 

monitoring period between 3 to 5 years. Due to the reduction in the concentration data, more number of 

iterations might be required to achieve convergence. Alternatively if more information from the field is 

available, it can be incorporated into the model to fasten the convergence. One such commonly available 

information in industrial waste disposal facilities is the information on the level of contamination of the 

waste being handled by the facility. Such information can then be incorporated as constraints in the 

model. For example, if the maximum concentration (level) of the contaminant that a disposal facility 

handles is available, it may be used as a global constraint on all the potential sources in the optimization 

model. It is common in industrial practice, such as in nuclear industry, to classify wastes according to the 

concentration level of the contaminant being handled. Further in certain cases, within a disposal facility 

there may be many disposal sites and each disposal site is designated to handle a specified (or pre-

classified) level of waste. In such cases, individual constraints (local constraints) can be imposed on each 

disposal sites (sources) in the optimization model. 

 

Fig.6.15 Water quality monitoring for a limited period of time. 
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Both the above cases of source strength constraining have been illustrated in the present study and 

compared to the case where no constraints are placed on the sources. In the first case, maximum source 

strength of 2000 ppm (global constraint) is imposed on all the disposal sites. Referring to Table 6.21, it is 

approximately 30% more than the highest release concentration of all the sources during the 4 year 

release period and has been chosen arbitrarily for illustration. It will demonstrate that only a rough 

estimate of constraint on the concentration is needed for the source identification model. For the case 

where individual constraints are to be imposed on each disposal site, the upper limit on the concentration 

for each site may be obtained from the maximum release concentration of each site during the 4 year 

release period (by referring to Table 6.21). Table 6.24 shows the caps on the concentration level of the 

contaminants handled by each disposal site as used in the source identification model. 

Table 6.24: Concentration level of waste (contaminant) handled by individual disposal sites 

Constraints on the individual disposal sites – maximum allowable concentration (level) of 

contaminant (waste) handled by each disposal site (in ppm) 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

1500 2000 1500 2000 1500 1000 

It may be observed, as in the first case, that these values are set to a value higher than the maximum 

release concentration of each site during the 4 year release period (see Table 6.21) to demonstrate that 

only a rough estimate is required. These limits were set arbitrarily. 

The source identification model is run with and without the constraints as discussed above. Table 6.25 

shows the results of convergence study with respect to the number of iterations of the particle swarm 

optimizer for different scenarios discussed above. In Table 6.27, the actual source predictions by the SO 

model after 50x103 iterations are shown for the different scenarios. It is observed that (i) when there is no 

constraint on the solute concentration of the sites, most of the disposal events have been identified to 

within 20% of the actual value except for two disposal events where the errors were relatively larger at 

39% and 54%. Also a few erroneous sources were predicted but their magnitudes are very small and may 

be ignored; (ii) the source predictions are improved when constraints are placed on the maximum 

concentration level of the contaminant. The best prediction was observed when individual upper limits 

(local constraints) are placed on the concentration of the releases for each disposal sites followed by the 

case where a facility wide upper limit (global constraint) was placed on the concentration of the releases 

from the disposal sites. In the former case, most of the disposal events were predicted within 5% of the 

true value except for two disposal events where the errors were 13% and 36%. The magnitude of the 

spurious sources predicted by the model has also reduced drastically. 
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It may be observed (Table 6.26) that the RPCM-SO model has slower convergence when no constraint is 

placed on the magnitude of the releases. This is inferred from the relatively high values of the 

RMS_Source. However, the predictions are improved by placing constraints on the source releases. This 

is because the solution search space has been drastically reduced by placing constraints. When local 

constraints are placed on individual sites, the search space is the lowest. Consequently the impact of non-

uniqueness issue associated source identification will be mitigated to a large extent as a result of the 

reduced search space. Imposing the constraints calls for more information from the field. But such 

informations are generally available. In case this information is not directly available, a rough estimate 

can be made from the type of waste being disposed. 

Other information from the field, if available, can be incorporated into the SO model to improve the 

convergence and also accuracy of the predictions. The only way to mitigate the effect of non-uniqueness 

of groundwater source identification problem is to provide more information to the inverse model. 

Incorporating more field information can drastically reduce the solution search space and hence improve 

convergence. Field information can also be used to rule out any significant erroneous sources predicted by 

the model. Increasing the length of the borewell monitoring period will also improve the model 

predictions as the case studies presented in this study shows. 

Table 6.25: Convergence w.r.t. iterations for different scenarios 

No. of 
iterations 

No upper limit placed on 
the concentration of source 

releases 

2000 ppm upper limit 
concentration placed on 

the releases from the 
sources 

Separate upper limit on the 
concentration of source 

releases for each disposal 
site 

RMS_Source RMS_Concn RMS_Source RMS_Concn RMS_Source RMS_Concn 

1000 1780.00 0.95 197.31 0.24 169.46 0.15 

5000 1630.00 0.32 143.38 0.06 133.58 0.05 

10000 1440.00 0.19 133.26 0.037 126.39 0.029 

20000 278.50 0.09 125.57 0.017 106.17 0.015 

30000 129.02 0.06 107.09 0.013 96.70 0.011 

50000 107.17 0.02 74.76 0.008 46.29 0.006 

In this study, it is implicitly assumed that the potential sources of leak are known a priori and also that the 

aquifer parameters are known exactly. The first assumption is not very restrictive since in any real 

groundwater contamination situation, the suspected sources or facilities are always known. For example, 

if a chloride contamination is found in the groundwater, then all the facilities and underground pipes 
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which handle chloride are the potential sources. The second assumption of no uncertainty in aquifer 

parameters does not represent the actual field conditions since aquifer parameters are known to have 

significant measurement errors. However, if calibrated aquifer parameters are available then they can be 

readily used in the model presented in this study. 

Table 6.26: Source strength predictions from the SO model 

Source Year of 
release 

Actual 
Source 

strength 
(ppm) 

Source Strength predictions of the SO model 
 for 50 x 103 iteration  (in ppm) 

No constraint 
placed on the 

releases 

Global constraint on 
maximum release 

concentration  

Local constraint on 
maximum concentration 
imposed on individual 

disposal sites 

1 

1 1000 1135 924 1029 
2 1500 1782 1327 1562 
3 890 884 893 889 
4 0 3 5 7 

2 

1 0 66 46 34 
2 500 230 260 320 
3 0 54 22 20 
4 1200 1335 1253 1252 

3 

1 1000 998 999 999 
2 0 17 11 8 
3 0 10 4 2 
4 700 421 513 603 

4 

1 900 889 896 891 
2 500 491 498 488 
3 0 0 0 0 
4 1000 1002 1002 1001 

5 

1 850 849 848 849 
2 0 33 14 17 
3 0 1 1 1 
4 0 3 4 3 

6 

1 800 800 800 800 
2 1300 1299 1300 1300 
3 1100 1100 1100 1100 
4 0 6 5 4 

𝑅𝑀𝑆_𝑠𝑜𝑢𝑟𝑐𝑒 107.17 74.76 46.29 
𝑅𝑀𝑆_𝑐𝑜𝑛𝑐𝑛 0.02 0.008 0.006 
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The number of borewells used has also been reduced to examine the capability of the model when there is 

lesser input concentration data. Table 6.27 below shows the results of this study. 

Table 6.27:Output of the source identification model (random location of the borewells) 

Source Year of 
release 

Actual Source 
(ppm) 

Predicted Source strength (ppm) 
objective function : sum of squared residuals 

Predicted source strength Error 

1 

1 1000 1016 -15.89 
2 1500 1525 -25.25 
3 890 889 0.58 
4 0 0 -0.11 

2 

1 0 0 -0.44 
2 500 497 2.83 
3 0 18 -18.4 
4 1200 1235 -35.18 

3 

1 1000 999 0.78 
2 0 0 -0.24 
3 0 0 -0.49 
4 700 698 1.99 

4 

1 900 898 1.92 
2 500 499 1.06 
3 0 0 -0.03 
4 1000 1000 0.01 

5 

1 850 850 -0.2 
2 0 4 -3.84 
3 0 0 -0.07 
4 0 0 -0.46 

6 

1 800 800 -0.01 
2 1300 1300 0.1 
3 1100 1100 -0.13 
4 0 1 -1.08 

RMS (Source strength) 10.21  
 

It is observed that errors start appearing in the source identification model predictions. This means that 

the locations or distributions of the borewells have some effect on the model predictions.  

 

6.6 Transient field case study –case when all potential sources are confined in a zone 
Figure 6.16 shows a case where all the contaminant sources are located in a small zone within the model 

area. In this case it is expected that there will be maximum interference in the contaminant contributions 
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from the sources. The ability of the SO model to predict the sources by resolving these complex 

interferences is being studied in this section. The location of the observation borewells have also been 

kept at randomly located points (as in the preceding case, section 6.5), not necessarily in the direction of 

the contaminant plume.  

Table 6.28: Concentration of the leaked contaminants 

Concentration of the leaked contaminant from the sources 
(ppm) 

S1 S2 S3 S4 S5 

1300 750 1200 950 800 

The sources in this case are assumed to be continuously leaking (leaching) for the entire simulation 

period. The concentrations of the releases from the sources are given in Table 6.28 above. The 

breakthrough curves at the observation borewells corresponding to the releases from the sources is shown 

in the Figure 6.17. The grid structure and other parameters are the same as in the preceding cases. 
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Figure 6.16: Case study with when all the sources are located in a small zone 

The results of the source identification model are shown in the Table 6.29. The objective function used in 

this case is the sum of square of the residual between the predicted and observed concentrations. The 

number of PSO iterations used is 50 x 103. The source concentrations are predicted within 10% of their 

true values. Thus it may be concluded that the RPCM-PSO-SO model is able to resolve the inherent 

complexities due to interferences of the source contributions.  
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Figure 6.17: Breakthrough curves at the observation wells (all sources are confined in a small zone) 

 

Table 6.29: SO model predictions of the source concentration 

Source 
Actual Source 
concentration 

(ppm) 

RPCM-PSO-SO model predictions 

Predicted source 
concentration 

(ppm) 
Error Percentage 

error 

1 1300 1375 75 5.8 

2 750 797 47 6.3 

3 1200 1164 -36 -3.0 

4 950 870 -80 -8.4 

5 800 823 23 2.9 
RMS (Source strength) 56.7 
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6.7 Source identification with measurement errors in the concentration data 
In the case studies presented above, it has been implicitly assumed that the observed concentration data 

has no uncertainty or error. This assumption may not hold in actual field conditions as uncertainties are 

unavoidable in any measurement. In this section, we discuss the various ways of dealing with erroneous 

concentration data. 

6.7.1 Simulating measurement errors 
To simulate uncertainty or errors in the measured concentration data, the true/observed concentration data 

(as predicted by the forward run of the groundwater flow and transport model) is perturbed by adding a 

random noise. Each perturbed datum was assumed to be sampled from a normal distribution having the 

exact datum as its means. This is achieved by adding normal random deviates as below: 

 𝐶𝑛𝑚𝑒𝑎𝑠 = 𝐶𝑛𝑚𝑒𝑎𝑠 + 𝛿. ξn.𝐶𝑛𝑚𝑒𝑎𝑠 (6.8) 

Where 𝐶𝑛𝑚𝑒𝑎𝑠is the nth measured data, 𝛿 is a scale factor which determines the magnitude of the 

noise/perturbation and 𝜉𝑛 is the nth normal random deviate. In this study, two values of 𝛿 = 0.05 and 

𝛿 = 0.1 are used to represent moderate and high noise levels. The field case source identification model 

as described in section 6.2 is being re-considered here for uncertainty analysis with the perturbed 

concentration data.  

 

Figure 6.18: Perturbations corresponding to scaling factor 𝜹 = 𝟎.𝟎𝟓 
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Figure 6.18 shows the errors or noise corresponding to application of a scaling factor 𝛿 = 0.05. It is seen 

that the errors are as high as 17% of their true value. This represents a moderate level of measurement 

error in the solute concentration. It can also be seen from the histogram in the figure that the errors are 

normally distributed within this range. To simulate higher levels of errors, a scaling factor of 𝛿 = 0.1  is 

applied. 

Figure 6.19 shows the errors or noise corresponding to application of a scaling factor of 𝛿 = 0.1. It can be 

seen that the errors go as high as 37% of their true value which is fairly high level of error. 

 

Figure 6.19: Errors corresponding to scaling factor 𝜹 = 𝟎.𝟏 

6.7.2 Dealing with erroneous concentration data 
Since the groundwater source identification problem is an ill-posed problem (Atmadja and Bagtzoglou, 

2001b), it is very sensitive to errors in the input data. The non-uniqueness of the source identification can 

lead to significant errors while using optimization models. The only way to overcome the non-uniqueness 

issue is to incorporate more field information into the model. As discussed in section 6.5, one such 

commonly available information in industrial waste disposal practices is the approximate level of 

contamination of the waste being handled by the facility or by the individual disposal sites within a 

disposal facility. This information may be used to impose constraints (global or local) on the potential 

sources thereby reducing the feasible search space and also reducing chances of unrealistic predictions. 

Other informations from the design and operation of the waste disposal facility, if available, may be used 
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to rule out spurious predictions or improve the quality of the predictions. Another way to deal with 

measurement errors in the concentration data is to use smoothing of the data which has been discussed in 

the next section. 

6.7.3 Data smoothing 
It is a common practice to smoothen experimentally measured data to extract the underlying relationship 

between the dependent and independent variables and reduce the experimental noises. In this study, a 

simple moving average smoothing of the perturbed concentration data is performed. A moving average 

filter smooth data by replacing each data point with the average of the neighboring data points defined 

within a span. The smoothing is done by using the following difference equation, 

 𝑦𝑠(𝑖) =
1

2𝑁 + 1
(𝑦𝑖+𝑁 + 𝑦𝑖+𝑁−1 + ⋯+ 𝑦𝑖−𝑁) (6.9) 

where 𝑦𝑠(𝑖) is the smoothed value for the ith data point, N is the number of neighboring data points on the 

either side of 𝑦𝑠(𝑖) and 2N+1 is the span. For example, let us smooth a given data series using a moving 

average filter with a span of 5. The first four elements of the smoothed data 𝑦𝑠 are given by, 

 

𝑦𝑠(1) = 𝑦1 

𝑦𝑠(2) =
𝑦1 + 𝑦2 + 𝑦3

3
 

𝑦𝑠(3) =
𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

5
 

𝑦𝑠(3) =
𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6

5
 

(6.10) 

In this study, a single run of the moving average smoothing with a span of 7, chosen arbitrarily, has been 

performed on the perturbed concentration data to demonstrate the technique. This smoothing has been 

applied to smoothen the perturbed concentration data (Figure 6.18 and Figure 6.19) of the field case study 

described in 6.2. Since the exact concentration data is known, an RMS error can be used to quantify the 

amount of error and measure the performance or effectiveness of the smoothing operation of the 

concentration profile for each of the 5 borewells. Table 6.30 shows the performance of the smoothing 

operation. It may be observed that the smoothing has significantly brought down the average error (RMS 

error) for most of the borewells. This shows that the smoothing operation is able to recover some of the 

underlying relationship between the concentration and time which has been lost by the perturbation of the 

concentrations. However this smoothing has varying effect on the borewells since the concentration 

profile vary widely from borewell to borewell. In usual practice of exploratory data analysis, it is not 
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uncommon to perform several smoothing operations (passes) on the measurement data using different 

spans. But in this study, a single pass or operation has been performed to illustrate the technique. 

Table 6.30: Performance of the moving average smoothing 

Borewell 
Number 

Scaling factor 𝛿 = 0.05 Scaling factor 𝛿 = 0.1 
RMS error without 

smoothing 
RMS error with 

smoothing 
RMS error without 

smoothing 
RMS error with 

smoothing 
1 25.923 25.233 53.798 31.905 
2 21.322 15.571 38.638 24.905 
3 21.947 7.492 42.674 14.708 
4 21.277 8.320 34.313 14.491 
5 20.254 7.759 37.308 15.966 

The effectiveness of the smoothing can be seen graphically also. Figure 6.20 and Figure 6.21 shows the 

plot of the exact , perturbed and smoothed concentration profiles for two selected observation borewells 

viz, borewell no.1 and 3, for the case study described in section 6.2. These correspond to the case of 

moderate amount of error/noise as depicted in Figure 6.18. The smoothing is able to capture the trend of 

the concentration profile to a large extent.  

 

Figure 6.20: Perturbation (𝜹 = 𝟎.𝟎𝟓) and smoothing of concentration profile for borewell no.1 

 



 Source identification with measurement errors in the concentration data 
 

198 
 

 

Figure 6.21: Perturbation (𝜹 = 𝟎.𝟎𝟓) and smoothing of the concentration profile of borewell no. 3 

For the case of high errors corresponding to scaling factor of 𝛿 = 0.1 (as depicted in Figure 6.19), Figure 

6.22 and Figure 6.23 shows the same plot of the exact, perturbed and smoothed concentration profiles for 

the two selected observation borewells. It may be observed the trend of the data has been more or less 

captured by the smoothing operation. 

 
Figure 6.22:Perturbation (𝜹 = 𝟎.𝟏) and smoothing of concentration profile for borewell no.1 
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Figure 6.23: Perturbation (𝜹 = 𝟎.𝟏) and smoothing of the concentration profile of borewell no. 3 

 

6.7.4 Transient field case with uncertain concentration data 
The field case study discussed in section 6.2 are re-run with perturbed concentration data to simulate 

measurement errors. As mentioned in previous discussion, two levels of perturbation or errors are applied  

(i) Moderate level of error with maximum errors as high as 17% of the true concentration value 

(ii) High levels of error with maximum errors as high as 37% of the true concentration value 

These perturbed data are then smoothed with a one pass of moving average smoothing with a span of 7. 

The smoothed data is then inputted to the source identification model. Table 6.31 shows the predicted 

sources from the Simulation-Optimization model. The number of iterations used in the PSO optimization 

is 50x103. It may be observed that the source identification model was able to identify all the major 

disposal events with acceptable accuracy. However, the error was around 49% for one disposal event 

even though the model could identify this release event. In this context, it is desirable to get more 

information from the field to deal with such predictions. It may also be observed that a few spurious 

(noise) source predictions were made however their magnitudes are small and may safely be ignored. 

Additional field knowledge may also be used to rule out or reject such noises.  
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Table 6.31: Source prediction with erroneous concentration data (moderate level of errors) 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted 
source 
(ppm) 

Percentage 
error 

1 1 1000 800 20.0 
 2 1500 1481 1.3 
 3 890 888 0.2 
 4 0 0  
2 1 0 150  
 2 500 464 7.2 
 3 0 0  
 4 1200 1323 -10.3 
3 1 1000 962 3.8 
 2 0 0  
 3 0 76  
 4 700 621 11.3 
4 1 900 630 30.0 
 2 500 747 -49.4 
 3 0 0  
 4 1000 1003 -0.3 
5 1 850 779 8.4 
 2 0 35  
 3 0 0  
 4 0 14  
6 1 800 807 -0.9 
 2 1300 1235 5.0 
 3 1100 833 24.3 
 4 0 69  

RMS_Source 188.9 
RMS_Concn 8.3 

Table 6.32 shows the results for the second case characterized by high levels of measurement errors in the 

concentration. The measurement errors are as high as 37% of their true values. The number of iteration 

used in the PSO optimization is 50x103. As seen from this table, the source identification model was able 

to identify all the major disposal events with acceptable accuracy. However for two disposal events the 

errors were above 40% of the true value. Also the overall error in the predictions were a little higher 

compared to the preceding case with moderate level of measurement errors in the concentration data as 

indicated by the higher value of RMS_Source. The spurious errors are also more prominent even though 

they are small enough to be treated as noises. 
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Table 6.32: Source prediction with erroneous concentration data (high level of errors) 

Source 
Year 

of 
release 

Actual 
source 
(ppm) 

Predicted 
source 
(ppm) 

Percentage 
error 

1 1 1000 1104 -10.4 
 2 1500 1563 -4.2 
 3 890 848 4.7 
 4 0 7  
2 1 0 120  
 2 500 475 5.1 
 3 0 0  
 4 1200 1515 -26.3 
3 1 1000 891 10.9 
 2 0 93  
 3 0 150  
 4 700 629 10.1 
4 1 900 540 40.0 
 2 500 712 -42.4 
 3 0 0  
 4 1000 1079 -7.9 
5 1 850 744 12.4 
 2 0 35  
 3 0 0  
 4 0 144  
6 1 800 832 -4.0 
 2 1300 1330 -2.3 
 3 1100 725 34.1 
 4 0 67  

RMS_Source 235.4 
RMS_Concn 11.0 

 

6.7.5 Handling uncertainties using weighting 
In this section, the effect of giving weightage to the uncertain measured data is being explored. Giving 

weightage to each measured data can be highly subjective to the extent of being unrealistic in actual field 

practice. However when such information is conceivable, it may be used directly in the model to deal 

with the uncertainties. Applying weighting to the uncertain measured data can reduce their impact or 

importance on the objective function. When weighting is applied, the objective function is modified as, 
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 𝑆 = ��𝑤𝑖𝑗�𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 − 𝐶𝑖,𝑗𝑂𝑏𝑠�
2 

𝑁𝑇

𝑗=1

   
𝑁𝑂

𝑖=1

 (6.11) 

Where, 

𝑁𝑂 = 𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑟𝑒 𝑤𝑒𝑙𝑙𝑠 

𝑁𝑇 = 𝑛𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 

𝐶𝑖,𝑗𝑃𝑟𝑒𝑑 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖𝑡ℎ  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑗𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

𝐶𝑖,𝑗𝑂𝑏𝑠 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 /𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑗𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

𝑤𝑖𝑗 = 𝑤𝑒𝑖𝑚ℎ𝑡𝑖𝑛𝑚 𝑣𝑎𝑙𝑢𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑗𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

To study the effect of uncertainty or errors in the measured concentration data, the true/observed 

concentration data (as predicted by the forward run of the groundwater flow and transport model) is 

perturbed by adding a random noise. This is achieved by adding random numbers within a specified limit 

i.e. spread around the true value. For example to add a 10% spread of random error or noise around the 

true value, the true concentration value is perturbed as below: 

 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑐𝑜𝑛𝑐 = 𝑡𝑟𝑢𝑒_𝑐𝑜𝑛𝑐 + (1.1− 0.9) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ 𝑡𝑟𝑢𝑒_𝑐𝑜𝑛𝑐 (6.12) 

where 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) is a uniformly distributed random number in [0,1]. Different scenarios are 

considered here to analyze the impact of uncertainties on the concentration data. Following parameters 

are changed to study the ability of the model to handle uncertainties: 

1. The amount of uncertainty in the data i.e. the spread of the noise are varied viz. 10%, 20% 

and 30% 

2. Number of concentration data points with uncertainties is varied viz. 300, 400, 500 and 600  

concentration data points are perturbed and their effects examined. 

The weighting factor is a subjective quantity which should be decided by the modeler based on the 

reliability of the field data collected. It can be any complex function. But in this study we have given the 

weighting factor to be a quantity between 0 and 1. Smaller the weight lesser its contribution to the 

objective function and hence lesser the influence of the corresponding data points on the source 

identification model.  

Table 6.33 and Table 6.34 show the results from uncertainty analysis of the source identification problem. 

The uncertainty in the input data is simulated by adding perturbations of varying amounts to randomly 

selected measured concentration data. The tables show the cases when 300, 400, 500 and 600 

concentration data are perturbed out of a total of 615 measured concentration data. The amounts of 
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perturbations or error used are 10%, 20% and 30%. A uniform weighting of 0.1 is given to all the 

perturbed data. 
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Table 6.33: Results of Uncertainty analysis 

Source 
Year of 
release 

Actual 
Source 
(ppm) 

Number of perturbed data: 300 Number of perturbed data: 400 
Amount of 

perturbation: 10% 
Amount of 

perturbation: 20% 
Amount of 

perturbation: 30% 
Amount of 

perturbation: 10% 
Amount of 

perturbation: 20% 
Amount of perturbation: 

30% 
Predicted Diff Predicted Diff Predicted Diff Predicted Diff Predicted Diff Predicted Diff 

1 

1 1000 1000 0 1001 -1 1000 0 1000 0 1000 0 1000 0 
2 1500 1500 0 1500 0 1500 0 1500 0 1500 0 1500 0 
3 890 890 0 890 0 890 0 890 0 890 0 890 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 500 500 0 500 0 500 0 500 0 500 0 500 0 
3 0 0 0 1 -1 0 0 5 -5 0 0 0 0 
4 1200 1200 0 1200 0 1200 0 1200 0 1200 0 1200 0 

3 

1 1000 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 700 700 0 700 0 700 0 700 0 700 0 700 0 

4 

1 900 900 0 899 1 900 0 897 3 900 0 900 0 
2 500 500 0 500 0 500 0 500 0 500 0 500 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 1000 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 

5 

1 850 850 0 850 0 850 0 850 0 850 0 850 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 1 -1 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 

1 800 800 0 800 0 800 0 800 0 800 0 800 0 
2 1300 1300 0 1300 0 1300 0 1300 0 1300 0 1300 0 
3 1100 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 

RMS (Source strength) 3.83E-06 0.4 0.05 1.27 0.12 0.06 
RMS (Concentration) 17.94 35.26 54.69 19.93 41.07 60.79 
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Table 6.34 : Results of Uncertainty analysis 

Source Year of 
release 

Actual 
Source 
(ppm) 

Number of perturbed data: 500 Number of perturbed data: 600 
Amount of 

perturbation: 10% 
Amount of 

perturbation: 20% 
Amount of 

perturbation: 30% 
Amount of 

perturbation: 10% 
Amount of 

perturbation: 20% 
Amount of 

perturbation: 30% 
Predicted Diff Predicted Diff Predicted Diff Predicted Diff Predicted Diff Predicted Diff 

1 

1 1000 1492 -492 1258 -258 1325 -325 1148 -148 1388 -388 1381 -381 
2 1500 1476 24 1479 21 1481 19 1455 45 1588 -88 1521 -21 
3 890 878 12 886 4 884 6 893 -3 861 29 859 31 
4 0 2 -2 1 -1 0 0 1 -1 1 -1 0 0 

2 

1 0 9 -9 1 -1 0 0 30 -30 0 0 0 0 
2 500 500 0 500 0 500 0 500 0 500 0 460 40 
3 0 269 -269 245 -245 610 -610 0 0 696 -696 0 0 
4 1200 1171 29 1169 31 1149 51 1463 -263 1256 -56 919 281 

3 

1 1000 983 17 989 11 969 31 941 59 924 76 1062 -62 
2 0 4 -4 1 -1 8 -8 14 -14 55 -55 21 -21 
3 0 12 -12 0 0 0 0 0 0 36 -36 9 -9 
4 700 702 -2 704 -4 704 -4 698 2 700 0 656 44 

4 

1 900 666 234 810 90 621 279 183 717 238 662 0 900 
2 500 522 -22 495 5 523 -23 597 -97 778 -278 859 -359 
3 0 1 -1 0 0 6 -6 27 -27 27 -27 0 0 
4 1000 1003 -3 1000 0 998 2 942 58 998 2 939 61 

5 

1 850 851 -1 846 4 807 43 571 279 658 192 187 663 
2 0 4 -4 4 -4 17 -17 83 -83 40 -40 116 -116 
3 0 158 -158 12 -12 99 -99 458 -458 732 -732 0 0 
4 0 14 -14 2 -2 10 -10 30 -30 0 0 4 -4 

6 

1 800 800 0 800 0 801 -1 811 -11 802 -2 798 2 
2 1300 1300 0 1300 0 1299 1 1246 54 1280 20 1141 159 
3 1100 1101 -1 1102 -2 1097 3 1058 42 1330 -230 808 292 
4 0 0 0 0 0 1 -1 55 -55 11 -11 183 -183 

RMS (Source strength) 128.57 75.32 154.33 196.65 273.95 271.81 
RMS (Concentration) 22.43 45.86 71.86 24.92 47.72 73.12 
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6.8 Model application – merits and limitations 
The developed RPCM-PSO-SO model for groundwater source identification offers a number of 

advantages over other existing techniques. It also has a few limitations and some assumptions are made 

implicitly. However, as discussed in the sections below, the limitations are not very serious in nature and 

will not pose a hindrance to the application of the model. It may be mentioned that the structure of the SO 

model is very simple and it is potentially applicable to a wide range of source identification problems. 

6.8.1 Merits 
As demonstrated in this chapter, the RPCM-PSO-SO model is applicable in field scale problems of any 

complexity. It is able to handle most of the practical problems that may arise in any field situation. Most 

of the proposed methods for groundwater source identification are applicable only to a limited number of 

problems and have serious other limitations that potentially prevent them from being applied in real field 

cases. Simulation-optimization models in general are more widely applicable than other methods and also 

avoid the mathematical complexities associated with other inversion models.  

The developed RPCM-PSO-SO model also offers a number of computational advantages apart from 

being applicable in real field problems. The meshfree RPCM simulation model does away with the 

requirement to create a mesh unlike conventional methods such as FDM, FEM etc. which are grid based 

methods. This avoids the computationally cost step of mesh creation and facilitates other applications 

such as adaptive analysis. The PSO optimization model is very simple to implement and can be easily 

integrated with any simulation model.  

6.8.2 Limitations 
However the developed model has also some limitations. Being a recently developed method, the 

meshfree RPCM simulation model has a few technical issues yet to be addressed (Guneshwor et al., 2016) 

such as the optimal choice of shape parameters, size and shape of the local support domain etc. The shape 

parameter, in particular, has a profound impact on the accuracy and stability of the RPCM method. The 

choice of these parameters is subjective. However it does not pose any serious hindrance to the 

application of the method since a simple sensitivity or parametric study may be conducted to determine 

these parameters. The PSO optimization model used in the source identification model also has a few 

issues to be addressed, most pertaining to the optimal choice of parameters, and can also be 

computationally intensive if the convergence is slow. 

The RPCM-PSO-SO model implicitly assumes that calibrated aquifer parameters are used. It does not 

take into account the uncertainties in hydro-geological parameters. The use of breakthrough curves 

apparently requires extended period of concentration data collection. The later issue, however, is not as 
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serious as it may appear. As demonstrated through the case studies, the source identification model is able 

to handle limited and intermittent concentration data. Uncertainty in the concentration data pose a 

problem for any simulation-optimization based source identification model. However, as discussed in this 

chapter, there various ways in which uncertain concentration data may be tackled. 

6.9 Closure 
Groundwater source identification is vital aspect to effective remediation of contamination. This chapter 

has explored the applicability of the developed RPCM-PSO-SO source identification model to various 

problems. It also has examined the ability of the model to handle various problems that may arise in real 

field situations. It has been observed that the model is able to handle source identification problems of 

varying complexities. The model can handle practical levels of uncertainties in the concentration data. 

The source predictions are very good to satisfactory in all the cases. The developed RPCM-PSO-SO 

model thus may be used as an effective practical tool for groundwater source identification. 
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Chapter 7 

Summary and Conclusions 

7.1 Summary 
Groundwater flow and transport models are widely used for planning and remediation of groundwater 

resources. The objective of the present study is to determine or backtrack the sources of pollution in an 

aquifer from the given field measurements of concentration distributions. The approach used in this work 

is to run forward simulations of the transport model and check the solutions with the field measured data. 

Owing to the non-uniqueness of the solution and the infinite number of plausible combinations, one needs 

to follow an optimization method to obtain the best fitted solution. Such a model where forward 

simulation is linked to an optimization model is generally known as simulation-optimization (SO) model. 

In this study a new SO model is developed for source identification. The forward modeling is performed 

using meshfree radial point collocation method. Though grid based methods such as finite difference and 

finite element are the dominant methods currently used for groundwater modeling, these methods have 

many shortcomings due to the use of a fixed grid or mesh. The creation of mesh is a major component 

being computationally expensive and also difficult to solve field problems. Moreover, because of the need 

to create mesh, adaptive analysis of a problem is also difficult to carry out as several re-meshing or re-

zoning are required. Meshfree methods, on the other hand, do not suffer from the above shortcomings and 

is increasingly becoming popular. In this study, a collocation based meshfree method known as Radial 

Point Collocation Method (RPCM) has been developed for application in groundwater modeling. In this 

method, the basis function used for interpolation of the state variable is a class of functions called the 

Radial Basis Function (RBF). Two of the most widely used RBFs viz, Multi-Quadrics RBF (MQ-RBF) 

and Exponential EBF (EXP-RBF) have been examined in this work. The applicability of the RPCM 

method has been validated through several numerical examples for both the one and two-dimensional 

problems and also for transient cases. Several issues that arise in application of the RPCM has been 

examined and addressed. Some of the major issues that have been examined in this study are: 

• determination of the optimal values of the shape parameter of the RBF function 

• handling derivative boundary conditions,  

• regularization of singular sources or sinks 

• handling high-Peclet number transport problem 

• use of sub-domain approach for handling problems with material heterogeneity  
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Groundwater flow and transport modeling using meshfree RPCM method forms the forward modeling 

part of the source identification model. For optimization, the particle swarm optimization (PSO) has been 

utilized in this study. It is a nature-inspired swarm intelligence algorithm that relies on interactions of 

simple processing units (also known in artificial intelligence as agents). It offers many advantages over 

other optimizers in that the implementation is very simple and straight forward and that there are 

relatively fewer parameters which has to be adjusted. In this study, the canonical PSO with Clerc’s 

constriction coefficients is implemented. 

The basic goal of an optimization based model for source characterization is to identify source 

characteristics (location, disposal duration, and solute mass flux or volume disposal rates). The objective 

is to search for a feasible set of source characteristics which minimize some function of the deviations 

between the observed and the simulated values of concentrations and hydraulic heads. This can be 

achieved by minimizing the weighted sum of the squared deviations (or absolute deviations) between 

observed values of spatially and temporally varying hydraulic head and/or concentration, and the 

corresponding simulated values of hydraulic head and concentration. 

Initially, the source identification in groundwater has been demonstrated through a hypothetical aquifer 

where leaks of effluents or contaminants are assumed to occur at selected points. Case studies for both the 

steady state and transient contaminant releases have been studied. A field case study has been also studied 

in this work. The concentration distribution data (which form the observed/field measured concentration 

data) is generated by a forward run of the groundwater flow and transport model (RPCM) by assuming 

leaks at certain points with specified solute fluxes. From this baseline concentration data, the SO model 

tries to locate and quantify the leaks by minimizing the difference between the observed and predicted 

concentrations. A concentration response matrix (section 5.3.4) has been defined in the SO model which 

drastically improves the efficiency of the model. 

Uncertainty in the field data namely concentration measurement has been simulated through randomly 

introduced perturbations to the input data. The amount of error or perturbations introduced has been 

varied to examine the tolerance of the model to input data. Since groundwater source identification 

problem is inherently ill-posed, it is therefore very sensitive to errors in the input data. The only way to 

deal with the non-uniqueness issue of groundwater source identification is to incorporate more field 

information into the model. Various methods were examined to deal with uncertain concentration data. 

Smoothing of the input data, applying constraints from field information, using weighting to reduce the 

contribution of the erroneous data etc. are some of the techniques that have been examined in this study. 
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In this study, the developed RPCM-PSO based simulation-optimization model has been found to be 

effective in groundwater pollution source identification. 

The simulation-optimization model developed in this study can be used in environmental forensics to 

address questions related to release histories and sources of contamination in the environment. 

Environmental forensics generally involves the reconstruction of past environmental events, such as the 

timing, types and amounts, and sources of chemical or contaminant releases to the environment. 

Questions requiring environmental forensic applications usually relate to understanding the extent, 

duration, and responsibility for environmental contamination sites in a regulatory and/or legal context. 

These approaches are also integral to environmental due diligence remediation cost recovery. The model 

developed in this study will be able to resolve these questions pertaining to environmental forensics 

especially when it comes to groundwater contamination. As shown in this study, the model was able to 

reconstruct the operational histories of disposal sites with acceptable accuracy. 

7.2 Conclusions 
Following are the conclusions from this study: 

a) Meshfree Radial point collocation method(RPCM) 

 The developed RPCM model has been applied to one and two dimensional problems. The 

output from the model is compared to the output obtained by analytical and FEM models 

and found to be in very good agreement. 

 A few issues in the application of the meshfree methods are yet to be addressed such as 

choosing the optimal value of shape parameters, size and shape of the local support 

domain etc. In particular, the value of shape parameter was found to have a profound 

impact on the accuracy. 

 It was demonstrated that the above issues do not pose any significant hurdle in 

application of the method. With a simple numerical sensitivity or parametric analysis, 

these parameters can be determined.  

 The meshfree RPCM method does away with the need to construct a grid or mesh, is 

relatively easy to implement and offers good accuracy.  

 As shown in this study, both the MQ-RBF and EXP-RBF gave almost equal accuracy and 

either of them can be used for the interpolation without concerning about losing accuracy, 

provided the proper shape parameter values are used. 

 It has also been demonstrated that the proposed method can easily handle the numerical 

instability associated with high Peclet transport problems. 
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 Another issue of the RPCM method is the inability to capture heterogeneity of the 

problem due to smooth nature of the RBF functions used in interpolation. These problems 

are alleviated by using the subdomain collocation approach. 

 Though several issues arises in application of the meshfree RPCM method, as 

demonstrated in this study, they can be easily handled and does not pose any serious 

hindrance. 

Considering the significant advantages offered by the meshfree RPCM model, it can be concluded 

that the RPCM can serve as a good alternative to the finite difference and finite element methods. 

 

 

b) PSO as optimization model 

 For optimization, the canonical particle swarm optimization with Clerc’s constriction 

coefficient has been implemented.  

 As compared to other non-linear optimization algorithms, PSO offers many advantages in 

that it is very simple to implement and there are relatively fewer parameters to adjust.  

 On the downside, there are issues of convergence and stagnation which need special care 

in selecting the parameters such as swarm size, acceleration coefficients etc.  

 The choices of these parameters are subjective and based on hit and trial runs. In this 

study, it was determined by sensitivity study that the optimal values of the PSO 

parameters are: swarm size in the range of 100 to 200, acceleration coefficient in the 

range of 1.4 to 2.1 and the sum of the constriction coefficients in the range of 4.1 to 4.3. 

 Despite these minor issues, as demonstrated in this study PSO can be applied effectively 

in groundwater inverse modeling. 

c) Source identification using simulation-optimization model 

 In this study, groundwater pollutant source identification has been performed through the 

use of Simulation-Optimization (SO) model. 

  A major advantage of this approach is that the SO model is free from the complex 

mathematical formulations associated with other inverse modeling techniques.  

 The application of the SO model has been demonstrated through various case studies 

with known leakage sources. Both the steady state and transient contaminant release 

cases studies has been studied.  
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 The source identification approach has been compared to an existing linear programming 

and regression based source identification approach. It was found that the PSO based 

model gave comparable accuracies.  

 The use of the concentration response matrix has drastically improved the efficiency of 

the SO model. 

 It is found that the SO model proposed in this work is able to locate and quantify the 

main leak sources within acceptable accuracy. However, it also produces some noise or 

identified a spurious minor source which has to be isolated or ruled out. 

d) Application to field  problem  

 The developed RPCM-PSO-SO model has been applied to a case of confined aquifer 

field problem of 4.5 sq. km for source identification and has been found to be very 

effective 

 The model attempts to reconstruct the release histories of several disposal sites from the 

concentration measurements over a period of time. The model was able to predict the 

sources within 5% of their true value. 

 Robustness of the proposed approach examined by considering additional scenarios 

which simulates limited amount of concentration data, missing concentration data, 

intermittent or irregular data collection etc. have been studied. The model was able to 

predict most of the sources within 20% of their true value 

 Effect of the location of the observation borewells with respect to the sources 

examined by placing the wells randomly and not necessarily in the contaminant 

plume path. The model predicted most of the sources within 5% of their true 

value. 

 A case study was taken up where all the potential sources are located within a 

small zone in the domain. The model was able to predict the sources within 9% 

of their true value. 

e) Handling concentration data with measurement errors 

 Being ill-posed problem, groundwater source identification problem is very sensitive to 

input errors. Only way to deal with non-uniqueness is incorporating more field 

information into the model. 

 Case studies taken up which simulates measurement errors in the concentration data. 

 Measurement uncertainties simulated by perturbing the concentration data with random 

error. Both moderate and high levels of measurement errors were simulated with 

maximum errors as high as 17% and 37% of the true values respectively 
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 Various ways of dealing with erroneous concentration data were examined namely, 

 Smoothing of the input data to recover the underlying relationship 

 Imposing global and local constraints on the sources from field information 

 Incorporating field information to rule out spurious predictions 

 Giving weights when such information is conceivable or available 

 The RPCM-PSO-SO model was able to deal with all these issues effectively 

 Proposed model was able to cope with the uncertain input data but the prediction 

accuracies are reduced along with spurious sources or noises. More field information 

needed to improve the accuracies and rule out the spurious sources. 

 

7.3 Research contributions 
Following are the important research contributions from the present study: 

 Simulation models based on meshfree RPCM are developed for both groundwater flow and solute 

transport through groundwater. The two models are coupled (CFTM-RPCM) so that it can be 

used for complete modeling of the flow and transport process in aquifers. 

 An optimization model based on PSO has been developed which uses regrouping of particle 

swarms to deal with stagnation problem. This model also incorporates velocity clamping and 

confinement of particles. 

 For groundwater source identification, a simulation-optimization model (RPCM-PSO-SO) has 

been developed by using a meshfree RPCM simulator and PSO as the optimizer. 

 Application of the RPCM-PSO-SO model to hypothetical and field case studies for groundwater 

source identification were carried out. Developed model was applied to various field situations 

such as missing or incomplete data, irregular or intermittent data etc. Effect of the location of 

observed borewells were also studied. 

 Application of the RPCM-PSO-SO model to cases with uncertain concentration data was carried 

out and the model has been found to be effective in dealing with the uncertainties.. 
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7.4 Scope for Future works 
Following are the further scope in this research area: 

Forward modeling using meshfree RPCM: 

1. Method to objectively identify the optimal value of the shape parameters of the radial basis 

functions used in interpolation. So far hit and trial or sensitivity study is the dominant means to 

determine this parameter 

2. More works need to be done for heterogeneous problems. Though subdomain collocation 

approach can handle heterogeneous problems, too many subdomains will need to be created in 

case of highly heterogeneous problems and the method can become very inefficient. 

Simulation optimization model using PSO: 

1. There are a multitude of variants or types of PSO each with incremental improvements in certain 

aspects of swarm optimization. The choice of a PSO variant can be quite confusing. A single 

standard may be developed for PSO. 

2. The source identification model used in the study requires more number of observation bore wells 

or measurement points than the possible potential numbers of sources for convergence to occur 

for the steady state case. In the transient case, this was not an issue since there is an abundance of 

the input concentration data Improvements in the optimization algorithm are required to alleviate 

this shortcoming. 

3. The capability of the SO model to handle uncertainty in the input concentration data needs to be 

improved. While use of weighting could improve its error tolerance, it could not alleviate this 

issue. 

4. More field case studies involving different contaminant release scenarios may need to be modeled 

to test the robustness of the proposed source identification model. 

5. Further development of the SO model to cater to the requirements of environmental forensics 

applications pertaining to groundwater contamination. 

  





REFERENCES 

215 
 

REFERENCES 
Ajmera, T., & Rastogi, A. (2008). Artificial Neural Network Application on Estimation of Aquifer 

Transmissivity. Journal of Spatial Hydrology, 8(2), 15-31. 

Ala, N., & Domenico, P. (1992). Inverse analytical techniques applied to coincident contaminant 

distributions at Otis Air Force Base, Massachussets. Ground water, 32, pp. 212-218. 

Alapati, S., & Kabala, Z. (2000). Recovering the release history of a groundwater contaminant using a 

non-linear least squares method. Hydrological Processes, 14(6), 1003-1016. 

Alhuri, Y., Ouazar, D., & Taik, A. (2011). Comparison between local and global Mesh-free methods for 

Ground-Water modeling. IJCSI International Journal of Computer Science Issues, 8(2), 337-342. 

Alice, T. ,Eldho, T.I. and Rastogi,A. (2014) A comparative study of point collocation based MeshFree 

and finite element methods for groundwater flow simulation, ISH Journal of Hydraulic 

Engineering, 20(1), 65-74 

Anderson, M. P. (1984) Movement of contaminants in groundwater: groundwater transport--advection 

and dispersion, Groundwater Contamination, 37-45, National Academic Press Washington, DC 

Anderson, M., & Woessner, W. (2002). Applied Groundwater Modeling: Simulation of flow and 

advective transport. New York: Academic Press. 

Armando, D., & Oden, J. (1995). Hp clouds-a meshless method to solve boundary value problem. TICAM 

Report, 95-105. Austin: University of Texas. 

Ashyraliyev, M., Blom, J., & Verwer, J. (2008). On the numerical solution of diffusion-reaction equations 

with singular source terms. Journal of Computational and Applied Mathematics, 216(1), 20-38. 

Atluri, S., & Zhu, T. (1998). A new Meshless Local Petrov-Galerkin (MLPG) approach in computational 

mechanics. Comput. Mech., 22, 117-127. 

Atmadja, J., & Bagtzoglou, A. (2001a). Pollution Source Identification in heterogeneous media. Water 

Resources Research, 37(8), 2113-2125. 

Atmadja, J., & Bagtzoglou, A. (2001b). State of the art report on Mathematical Methods for Groundwater 

Pollution Source Identification. Environmental Forensics, 2, 205-214. 



  
 

216 
 

Bagtzoglou, A., Dougherty, D., & Tompson, A. (1992). Application of Particle Methods to Reliable 

Identification of Groundwater Pollution Sources. Water Resources Management, 6, 15-23. 

Bear, J. (1979). Hydraulics of Groundwater. New York: McGraw Hill Publishing. 

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: An 

overview and recent developments. Comput. Methods Appl. Mech. Engg., 139, 3-47. 

Belytschko, T., Lu, Y., & Gu, L. (1994). Element-free Galerkin methods. Int. J. Numer. Methods Eng., 

37, 229-256. 

Bernal, F., Guitierrez, G., & Kindelan, M. (2009). Use of singularity capturing functions in the solution of 

problems with discontinuous boundary conditions. Engineering Analysis with Boundary 

Elements, 33, 200-208. 

Birchwood, R. (1999). Identifying the location and release characteristics of a groundwater pollution 

source using spectral analysis. Proceedings of the 19th Annual American Geophysical Union 

Hydrology Days Conference (pp. 37-50). Fort Collins, Colorado: Colorado State University. 

Bonet, J., & Kulasegaram, S. (2000). Correction and stabilization of smooth particle hydrodynamics 

methods with application in metal forming simulation. Int. J. Numer. Methods Eng., 47(6), 1189-

1214. 

Butcher, J., & Gauthier, T. (1994). Estimation of residual dense NAPL mass by inverse modelling. 

Ground Water, 32, pp. 71-78. 

Carasso, A. (1972). The Backward beam equation: Two A-stable schemes for parabolic problems. SIAM 

Journal of Numerical Analysis, 9(3), 406-434. 

Carrera, J., & Neuman, S. (1986). Estimation of Aquifer Parameters Under Transient and Steady State 

Conditions: 1. Maximum Likelihood Method Incorporating Prior Information. Water Resources 

Research, 22(2), 199-210. 

Chadalavada, S., Datta, B., & Naidau, R. (2012). Optimal identification of groundwater pollution sources 

using feedback monitoring information: a case study. Environmental Forensics, 13(2), 140-153. 

Chandhini, G., & Sanyasiraju, Y. (2007). Local RBF-FD solutions for steady convection-diffusion 

problems. International Journal of Numerical Methods in Engineering, 72, 352-378. 



REFERENCES 

217 
 

Chen, J.-S., Wang, L., Hu, H.-Y., & Chi, S.-W. (2009). Subdomain radial basis collocation method for 

heterogeneous media. International Journal for Numerical Methods in Engineering, 80, 163-190. 

Cifti, E., Avci, C., Borekci, O., & Sahin, A. (2012). Assessment of advective–dispersive contaminant 

transport in heterogeneous aquifers using a meshless method. Environ Earth Sci, 67, 2399-2409. 

Clayton, M. (2005). Groundwater Contaminant Source Identification Using Hybrid Optimization 

Methods. EWRI 2005: Impacts of Global Climate Change (pp. 1-7). Anchorage, Alaska: ASCE. 

Clerc, M. (2006). Stagnation analysis in particle swarm optimization or what happens when nothing 

happens. Technical Report CSM-460, University of Essex, Department of Computer Science. 

Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability,and convergence in a 

multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. 

Cooley, R. L. (1977). A method of estimating parameters and assessing reliability for models of steady 

state groundwater flow: 1. Theory and numerical properties. Water Resour. Research, 13(2), 318-

324. 

Datta, B., Chakrabarty, D., & Dhar, A. (2009). Simultaneous identification of unknown groundwater 

pollution sources and Estimation of aquifer parameters. Journal of Hydrology, 376, 48-57. 

Delleur, J. (2007). The Handbook of Groundwater Engineering (2nd ed.). Boca Raton: CRC Press. 

Desai, Y., Eldho, T., & Shah, A. (2011). Finite Element Method with Applications in Engineering. New 

Delhi: Pearson. 

Donea, J., & Huerta, A. (2003). Finite Element Methods for Flow Problems. West Sussex(England): 

Wiley. 

Driscoll, T., & Fornberg, B. (2002). Interpolation in the limit of increasingly flat radial basis functions. 

Computers and Mathematics with Applications, 43(3-5), 413-422. 

Emsellem, Y., & Marsily, G. (1971). An Automatic Solution for the Inverse Problem. Water Resources 

Research, 7(5), 1264–1283. 

Evers, G., & Ghalia, M. (2009). Regrouping Particle Swarm Optimization: A new Global Optimization 

Algorithm with improved performance consistency across benchmarks. Proceedings of the 2009 

IEEE International Conference on Systems, Man, and Cybernetics, pp. 3901-3908 San 

Antonio,Texas. 



  
 

218 
 

Fedoseyev, A., Friedman, M., & Kansa, E. (2002). Improved multiquadrics method for elliptic partial 

differential equation via PDE collocation on the boundary. Comput. Math. Appl., 43, 439-455. 

Fornberg, B., & Wright, G. (2004). Stable Computation of multiquadric interpolants for all values of the 

shape parameter. Comput. Math. Appl., 47, 497-523. 

Franke, C., & Schaback, R. (1997). Solving Partial Differential Equations by Collocation using Radial 

Basis Functions. Applied Mathematics and Computation, 93, pp. 73-82. 

Freeze, R., & Cherry, J. (1979). Groundwater. Englewood Cliffs,New York: Prentice Hall. 

Gingold, R., & Monaghan, J. (1977). Smoothed particle hydrodynamics: theory and applications to non-

spherical starts. Monthly Notices R. Astron. Soc., 181, 375-389. 

Goldberg, M., Chen, C., & Bowman, H. (1999). Some recent results and proposals for the use of radial 

basis functions in the BEM. Engineering Analysis with Boundary Elements, 23, pp. 285-296. 

Gorelick, S., Evans, B., & Remson, I. (1983). Identifying Sources of Groundwater pollution: An 

optimization approach. Water Resources Research, 19(3), 779-790. 

Guneshwor L., S., Eldho, T., & Vinod Kumar, A. (2016). Coupled groundwater flow and contaminant 

transport simulation in a confined aquifer using meshfree radial point collocation 

method(RPCM). Engineering Analysis with Boundary Elements, 66, pp. 20-33. 

Gurarslan, G., K. (2015) Solving inverse problems of groundwater-pollution-source identification using a 

differential evolution algorithm, Hydrogeology Journal, 23(6), 1109-1119 

Gutierrez, G., & Florez, W. (2008). Issues of the local radial basis collocation method implementation for 

solving second order partial differential equation. Mecanica Computacional I, XXVI, pp. 2241-

2252. 

Gzyla,G., Zaninib, A.,Fraczekc, R. & Kuraa, K.(2014) Contaminant source and release history 

identification in groundwater: A multi-step approach, Journal of Contaminant Hydrology, 157, 

59-72 

Harbaugh, A., & McDonald, M. (1996). MODFLOW: A modular thre-dimensional finite-difference 

groundwater flow models. USGS. 

Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 

76, pp. 1905-1915. 



REFERENCES 

219 
 

Hester, R.E. and Harrison, R. M. (2008) Environmental Forensics, Royal Society of Chemistry, Springer 

Huang, C., Li, J., & Kim, S. (2008). An inverse problem in estimating the strength of contaminant source 

for groundwater systems. Applied Mathematical Modeling, 32, 417-431. 

Huyakorn, P. S., & Pinder, G. F. (1983). Computational Methods in Subsurface Flow. San Diego: 

Academic Press. 

Jha, M., & Datta, B. (2013). Three-Dimensional Groundwater Contamination Source Identification Using 

Adaptive Simulated Annealing. Journal of Hydrologic Engineering, 18(3), 307-317. 

Jung, J.-H. (2009). A Note on the Spectral Collocation Approximation of Some Differential Equations 

with Singular Source Terms. Journal of Scientific Computation, 39, 49-66. 

Kansa, E. (1990). Multiquadrics - a scattered data approximation scheme with applications to 

comptational fluid-dynamics-II: Solutions to parabolic, hyperbolic and elliptic partial differential 

equations. Comput. Math. Appl.,, 19, 147-161. 

Kansa, E., & Carlson, R. (1992). Improved accuracy of multiquadric interpolation using variable shape 

parameters. Comput. Math. Appl, 24, 99-120. 

Kansa, E., & Hon, Y. (2000). Circumventing the Ill-Conditioning Problem with Multiquadric Radial 

Basis Functions. Computers and Mathematics with Applications, 39, 123-137. 

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proc of IEEE International Conference 

on Neural Networks, pp. 1942-1948, Piscataway, IEEE Press. 

Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. Proceedings 

ofthe IEEE congress on evolutionary computation (CEC) (pp. 1671–1676). Honolulu, HI. 

Piscataway: IEEE Press. 

Larsson, E., & Fornberg, B. (2005). Theoretical and computational aspects of multivariate interpolation 

with increasingly flat radial basis functions. Comput. Math. Appl., 49, 103-130. 

Lee, C., Liu, X., & Fan, S. (2003). Local multiquadric approximation for solving boundary value 

problems. Computational Mechanics, 30, pp. 396-409. 

Leichombam,S.and Bhattacharjya ,R.K.(2016) Identification of Unknown Groundwater Pollution Sources 

and Determination of Optimal Well Locations Using ANN - GA Based Simulation - Optimization 

Model, Journal of Water Resource and Protection, 8, 411-424 



  
 

220 
 

Li, J., Chen, Y., & Pepper, D. (2003). Radial basis function method for 1-D and 2-D groundwater 

contaminant transport modeling. Computational Mechanics, 32(1-2), 10-15. 

Libersky, L., Petscheck, A., Carney, T., Hipp, J., & Allahdadi, F. (1993). High strain Lagrangian 

hydrodynamics. J. Comput. Phys., 109, 67-75. 

Ligget, J. (1987). Advances in the boundary integral equation method in subsurface flow. Water 

Resources Bull., 23(4), 637-651. 

Liu , W., Jun, S., & Zhang, Y. (1995). Reproducing Kernel Particle Method. Int. J. Numer. Methods Eng., 

20, 1081-1106. 

Liu, G., & Gu, Y. (1999). A point interpolation method. Proceedings of 4th Asia-Pacific Conference on 

Computational Mechanics, (pp. 1009-1014). Singapore. 

Liu, G., & Gu, Y. (2005). An Introduction to Meshfree Methods and Their Programming. New York: 

Springer. 

Lucy, L. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J., 82, 1013-1024. 

Madych, W., & Nelson, S. (1990). Multivariable interpolation and conditionally positive definite 

functions II. Math. Comp., 54, pp. 211-230. 

Mahar, P., & Datta, B. (2000). Identification of Pollution Sources in Transient Groundwater Systems. 

Water Resources Management, 14, 209-227. 

Mahar, P., & Datta, B. (2001). Optimal Identification of Ground-Water Pollution Sources and Parameter 

Estimation. Journal of Water Resources Planning and Management, 127(1), 20–29. 

Medina, A., & Carrera, J. (1996). Coupled estimation of flow and solute transport parameters. Water 

Resour. Research, 32(10), 3063-3076. 

Meenal, M., & Eldho, T. (2011). Simulation of groundwater flow in an unconfined aquifer using 

meshfree point collocation method. Engineering Analysis with Boundary Elements, 35, 700-707. 

Meenal, M., & Eldho, T. (2012a). Simulation-optimization model for groundwater contamination 

remediation using meshfree point collocation method and particle swarm optmization. Sadhana, 

37(3), 351-369. 



REFERENCES 

221 
 

Meenal, M., & Eldho, T. (2012b). Two-dimensional contaminant transport modeling using meshfree 

point collocation method (PCM). Engineering Analysis with boundary Elements, 36, 551-561. 

Melensk, J., & Babuska, I. (1996). The Partition of Unity Finite Element Method: Basic Theory and 

Applications. Computer Methods in Applied Mechanics and Engineering, 139, 289-314. 

Mhatre, A., Guneshwor, L., & Sharma, V. (2010). Report on Groundwater modeling of KAPS site. 

BARC, Mumbai: Unpublished. 

Michalak, A., & Kitanidis, P. (2004). Estimation of historical groundwater contaminant distribution using 

the adjoint state method applied to geostatistical inverse modeling. Water Resources Research, 

40, W08302, doi:10.1029/2004WR003214. 

Milnes, E., & Perrochet, P. (2007). Simultaneous identification of a single pollution point-source location 

and contamination time under known flow field conditions. Advances in Water Resources, 30(12), 

2439-2446. 

Monaghan, J. (1982). Why particle methods works. SIAM J. Sci. Stat. Comput., 3(3), 422-433. 

Monaghan, J. (1988). An introduction to SPH. Comput. Phys. Commun., 48(1), 89-96. 

Napoles, G., Grau, I., & Bello, R. (2012). Constricted particle swarm optimization based algorithm for 

global optimization. Polibits, 46, 5-11. 

Neupauer, R., & Wilson, J. (1999). Adjoint method for obtaining backward-in-time location and travel 

time probabilities of a conservative groundwater contaminant. Water Resources Research, 

35(11), pp. 3389-3398. 

Nguyen, V., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods: A review and computer 

implementation aspects. Mathematics and Computers in Simulation, 79, 763-813. 

Ogata, A., & Banks, R. (1961). A Solution of the Differential Equation of Longitudinal Dispersion in 

Porous Media. Washington, DC: U.S. Geological Survey,U.S. Government Printing Office. 

Onate, E. (1998). Derivation of stabilized equations for numerical solution of advective-diffusive 

transport and fluid flow problems. Comput. Methods Appl. Mech. Engg. , 151 , 233-265. 

Ortega, J., & Rheinboldt, W. (1970). Iterative Solution of Nonlinear Equations in Several Variables. 

Philadelphia: SIAM. 



  
 

222 
 

Pepper, D., & Heinrich, J. (1992). The Finite Element method: Basic Concepts and Applications. Taylor 

& Francis. 

Pinder, G. F. (1973). A Galerkin-finite element simulation of groundwater contamination on long Island, 

New York. Water Resource Research, 9(6), 1657-1669. 

Prasad, K., & Rastogi, A. (2001). Estimating net aquifer recharge and zonal hydraulic conductivity values 

for Mahi Right Bank Canal project area,India by genetic algorithm. Journal of Hydrology, 243, 

149-161. 

Praveen Kumar, R., & Dodagoudar, G. (2008). Two-dimensional modelling of contaminant transport 

through saturated porous media using the radial point interpolation method (RPIM). Journal of 

Hydrogeology, 16, 1497–1505. 

Rastogi, A. (2007). Numerical Groundwater Hydrology. Mumbai: Penram International Publishing 

(India). 

Richtmyer, R., & Morton, K. (1967). Difference Methods for Initial Value Problems. New York: John 

Wiley & Sons. 

Rippa, S. (1999). An Algorithm for selecting a good value for the parameter c in radial basis function 

interpolation. Advances in Comput. Math., 11, pp. 193-210. 

Rude, U., Kostler, H., & Mohr, M. (2003). Accurate multigrid techniques for computing singular 

solutions of elliptic problems. 11th Copper Mountain Conference on Multigrid Methods. 

Sampat, P. (2000). Groundwater Shock: The Polluting of the World's Major Freshwater Stores. World 

Watch Magazine, 13(1) : www.worldwatch.org/node/481. 

Sampat, P. (2000, January/February). Groundwater Shock: The Polluting of the World's Major 

Freshwater Stores. World Watch Magazine, 13(1). 

Schaback, R., & Wendland, H. (2000). Adaptive greedy techniques for approximate solution of large RBF 

systems. Numer. Algorithms, 24, pp. 239-254. 

Segerlind, L. J. (1984). Applied Finite Element Analysis. New York: John Wiley and Sons. 

Sharan, M., Kansa, E., & Gupta, S. (1997). Application of the Multiquadric Method for Numerical 

Solution of Elliptic Partial Differential Equations. Applied Mathematics and Computations, 84, 

pp. 275-302. 



REFERENCES 

223 
 

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. Proceedings of the IEEE 

International Conference on Evolutionary Computation, 10.1109/ICEC.1998.699146, pp. 69–73. 

Sidauruk, P., Cheng, A.-D., & Ouazar, D. (1998). Ground Water Contaminant Source and Transport 

Parameter Identification by Correlation Coefficient Optimization. Groundwater, 36(2), 208–214. 

Singh, R., & Datta, B. (2004). Groundwater Pollution Source Identification and Simultaneous Parameter 

Estimation Using Pattern Matching by Artificial Neural Network. Environmental Forensics, 5(3), 

143-153. 

Singh, R., & Datta, B. (2006). Identification of Groundwater Pollution Sources using GA-basec linked 

Simulation Optimisation Model. Journal of Hydrologic Engineering, 11(2), 101–109. 

Singh, V., & Sarma, M. (2009). Groundwater Data generation at KAPS. Technical Report No. NGRI-

2009-GW-673. Hyderabad (India): National Geophysical Research Institute. 

Skaggs, T. H., & Kabala, Z. J. (1994). Recovering the release history of a groundwater contaminant. 

Water Resources Research, 30(1), 71-79. 

Skaggs, T., & Kabala, Z. (1995). Recovering the history of a groundwater contaminant plume: Method of 

quasi-reversibility. Water Resources Research, 31(11), 2669-2673. 

Snodgrass, M., & Kitanidis, P. (1997). A geostatisticaal pproacht o contaminants ourcei dentification. 

Water Resources Research, 33(4), 537-546. 

Srivastava D. & Singh, R.M. (2014) Breakthrough Curves Characterization and Identification of an 

Unknown Pollution Source in Groundwater System Using an Artificial Neural Network (ANN), 

Environmental Forensics, 15(1), 2014 

Stallman, R. (1956). Numerical analysis of regional water levels to define aquifer hydrology. 

Transactions American Geophysical Union, 37(4), 451-460. 

Strack, O., & Haitjema, H. (1981). Modeling double aquifer flow using a comprehensive potential and 

distributed singularities 1. Solution for homogeneous permeabilities. Water Resour.Res., 17(5), 

1535-1549. 

Sun, A., Painter, S., & Wittmeyer, G. (2006). A constrained robust least squares approach for contaminant 

source release hsirtory identification. Water Resources Research, 42(4), W04414, 

doi:10.1029/2005WR004312. 



  
 

224 
 

Swathi, B., & Eldho, T. (2013). Groundwater flow simulation in confined aquifers using Meshless Local 

Petrov-Galerkin (MLPG) method. ISH Journal of Hydraulic Engineering, 19(3), 335-348. 

Tornberg, A., & Engquist, B. (2004). Numerical approximation of singular source terms in differential 

equations. Journal of Computational Physics, 200, 462-488. 

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter 

selection. Information Processing Letters, 85, 317-325. 

Wagner, B. J. (1992). Simultaneous parameter estimation and contaminant source characterization for 

coupled groundwater flow and contaminant transport modelling. Journal of Hydrology, 135(1-4), 

275-303. 

Wang, H., & Anderson, M. (1982). Introduction to Groundwater Modeling with Finite Difference and 

Finite Elelment Methods. New York: W.H. Freeman and Company. 

Wang, J., & Liu, G. (2002). A Point Interpolation meshless method based on radial basis functions. 

International Journal for Numerical Methods in Engineering, 54, 1623-1648. 

Wilson, J., & Liu, J. (1994). Backward Tracking to the source of pollution. In Waste Management from 

Risk to Remediation (Vol. 1, pp. 181-199). Albuquerque: ECM. 

Wilson, J., & Miller, P. (1978). 2D Plume in uniform groundwater flow. Journal of Hydraulic Division, 

ASCE, 4, pp. 503-514. 

Woodbury, A., Sudicky, E., Ulrych, T., & Ludwig, R. (1998). Three-dimensional plume source 

reconstruction using minimum relative entropy inversion. Journal of Contaminant Hydrology, 32, 

131-158. 

Worasucheep, C. (2008). A particle swarm optimization with stagnation detection and dispersion. IEEE 

congress on Evolutionary Computation (CEC 2008), pp. 424-429. 

Wright, G. B. (2003). Radial Basis Function Interpolation: Numerical and Analytical Developments. 

University of Colorado (Boulder). 

Wright, G., & Fornberg, B. (2006). Scattered node compact finite difference type formulas generated 

from radial basis functions. Journal of Computational Physics, 212(1), 99-123. 

Xin, L. (2006). Radial Point Collocation method for solving convection-diffusion problems. Journal of 

Zhejiang University SCIENCE A, 7(6), 1061-1067. 



REFERENCES 

225 
 

Zhang J.,Zeng L., Chen C., Chen D. & Wu L. (2015). Efficient Bayesian experimental design for 

contaminant source identification, Water Resources Research, 51(1), 576-598 

Zheng, C., & Bennet, G. (2002). Applied Contaminant Transport Modeling (2nd ed.). New York: Wiley-

Interscience. 

Zheng, C., & Wang, P. (1998). MT3DMS: A Modular Three-Dimensional Multispecies Transport Model 

for Simulation of Advection , Dispersion and Chemical Reactions of Contaminants in 

Groundwater Systems. University of Alabama. 

Zi, L., & Mao, X. (2011). Global multiquadric collocation method for groundwater contaminant source 

identification. Environmental Modeling and Software, 26, 1611-1621. 

Zienkiewicz, O., & Taylor, R. (2000). The Finite Element Method. Oxford, UK: Butterworth Heinemann. 

Zuppa, C., & Cardona, A. (2003). A collocation meshless method based on local optimal point 

interpolation. International Journal for Numerical Methods in Engineering, 57, 509-536. 





  
 

226 
 

INDEX 

A 

acceleration coefficients, 119, 128, 143-150, 208 

ADE. See advection-dispersion 

adsorption, 29 

advection, 8,  40, 44, 64, 83 

advection-dispersion, 11, 13-16, 19, 39, 43 

advection-dispersion-reaction, 13 

ANN. See  artificial neural networks 

aquifer, 2, 80, 83, 93, 102-105 

 

artificial intelligence, 3, 23, 116, 136, 206 

artificial neural network, 21, 42 

Artificial oscillation, 43 

B 

backtrack, 19, 115, 205 

Bayesian, 15, 19, 41 

breakthrough curves, 14, 19, 22, 127, 137, 164, 168-

182, 190, 203 

Brownian motion, 28 

C 

calibration, 8, 67,  103, 113, 167 

CFTM-RPCM, 67, 106, 109-111, 210 

clamping, 121, 210 

climate changes, 4 

cognitive, 116, 118, 154 

collocation method, 9-18, 49, 57, 91 

compactly supported, 11 

COMSOL, 76, 89, 94, 96, 105 

concentration response matrix, 126-128, 138, 165, 

182, 206, 209 

condition number, 11 

Confinement, 121 

conjugate gradient method, 17 

conservation of mass principle, 27 

constant head, 87, 103, 164, 167 

constraints, 11, 20, 114 

 local, 185 

 global, 186 

constriction, 130, 151-154, 206 

contaminant 

potential source, 2 

contaminant concentration, 3, 14, 143, 162, 164 

contaminant flux, 14 

contaminant plume, 15, 20, 109, 156, 190 

contaminant source, 1, 4, 13-18, 23, 39, 103 

contaminant transport, 8-14, 19, 24-31, 40, 64, 102, 

115 

convergence, 63, 69, 81, 118, 128, 140, 162, 183, 208 

correlation coefficient, 20 

coupled, 4, 12, 71, 87, 88, 102, 131, 164 

Courant number, 44 

Crank-Nicholson, 10, 44, 61, 88, 108, 181 

D 

Darcy, 18, 27, 64, 92, 94 

decision variables, 113-116 

desorption, 29 

differential evolution, 22 

diffusion, 8, 10, 27-30, 40, 65 

direction cosines, 62 

Dirichlet, 32, 55, 73, 80, 91, 108 

discretization, 7, 9, 33, 42, 55-66, 88, 102 

dispersion, 7, 15,  20, 27-32, 41-44, 64-71, 83 

hydrodynamic, 28 

mechanical, 28 

dispersion coefficient, 16 



INDEX 

227 
 

longitudinal, 29 

transverse, 29 

dispersivity, 12 

longitudinal, 108 

transverse, 108 

disposal events, 138, 186, 197 

divergence, 20 

Domain representation, 49 

drawbacks, 14, 23, 40 

E 

effective porosity, 14, 28 

entropy, 19, 41, 221 

error metrics, 72, 140, 151, 162, 170, 182 

explicit method, 42 

Exponential RBF, 52, 59, 84, 87, 205 

F 

feasible set, 114, 206 

feasible search space, 115 

feedback system, 22 

Fick’s 

first law, 28 

second law, 28 

field nodes, 46, 50, 55 

finite-difference, 3, 7-12, 26, 33, 75, 115, 205 

finite-element, 3, 7-11, 26, 33-38, 47, 75, 81, 115, 

205 

first order model, 30 

fitness function, 21, 117, 120, 128, 133, 140, 147, 

158-162, 166, 171 

forensics, 13, 207, 211 

fully implicit, 10 

G 

Gauss-elimination, 68, 70 

Gaussian, 12, 52, 59, 63, 78, 84 

genetic algorithm, 3, 21, 23, 42 

geo-statistical, 14, 19, 23, 40 

global warming, 1, 4 

globally supported, 9, 11, 48, 51 

groundwater 

contamination, 3 

flow and mass transport, 3, 7 

H 

Henry’s equilibrium model, 29 

Hermite-type, 57 

heterogeneous, 8, 10-17, 39, 41, 64, 91, 211 

homogeneous, 8, 27, 41, 60, 64, 92 

hp-cloud, 47, 48 

hydraulic conductivity, 8, 21, 28, 67, 69, 93, 131, 137 

hydraulic head, 14, 59, 106, 137, 168, 206 

hydro-geological parameters, 67, 105, 128 

I 

ill-condition, 9, 11 

ill-posed, 13, 40, 193, 206, 209 

ill-posedness, 13, 18 

individual best fitness, 117 

inertia component, 118 

injection well, 87 

instability, 9, 57, 63, 76, 98, 207 

interface conditions, 91- 94 

intermittent concentration data, 155, 178, 204 

inverse modeling, 5, 9, 13, 208 

J 

Jacobian, 17, 61, 69 

K 

Kansa method, 9 



  
 

228 
 

L 

least squares, 14, 19, 48, 130 

limitations, 3, 14, 23, 35, 40, 162, 203 

linear programing, 14 

linear regression, 20 

linearization, 61 

load vector, 57 

local support domain, 9, 39, 49, 50, 69, 75,  84, 108,  

203, 207 

locally supported,  9, 11, 50 

LU decomposition, 68, 70 

M 

maximum likelihood, 14, 20, 42 

measurement errors, 16, 188, 192, 197 

meshfree methods, 3-9, 24, 37, 45-51, 91, 112, 207 

method of characteristics, 12 

missing data, 173, 177, 184 

mixed integer programing, 14 

moment matrix, 52, 54 

moving average, 194, 197 

MQ-RBF. See Multi-quadrics 

multi-objective, 116 

Multi-quadrics, 9, 52, 59, 84, 108, 205 

N 

neighborhood topology, 117, 120, 128 

Neumann, 9, 32, 55- 66, 73, 91 

Newton-Raphson, 61, 69, 80,164 

non-linear, 8-20, 61, 80,114, 124 

non-uniqueness, 13-19, 40, 115, 140, 193 

normal distribution, 192 

numerical dispersion, 10, 43, 44 

O 

objective function, 3, 17, 115, 127, 138, 158, 171, 

182, 190, 199 

oscillations, 10 

overexploitation, 4 

P 

parameter estimation, 14, 17, 20, 41 

particle swarm optimization, 4, 24, 115, 147, 206 

PDETOOL, 81 

Peaks function, 125 

Peclet, 4, 11, 44, 64, 98, 205 

perturbed, 133, 158, 192, 194-202 

Petrov-Galerkin, 12, 44, 47 

piezometric heads, 8 

point collocation, 5, 9, 49, 55, 66 

point interpolation, 48, 52 

pollution effect, 63 

porosity, 21, 27, 30, 67, 137, 164 

porous media, 10, 18, 28 

probabilistic, 14, 23, 40 

pumping tests, 18, 67, 103 

R 

radial basis function, 4, 9-12, 49, 52 

radial point interpolation method, 10 

Rastrigin function, 124 

reaction, 30, 32, 64, 69 

recharge, 1, 32, 80, 103, 114, 137, 168 

regularization, 15, 40, 63, 205 

relaxation parameter, 61 

remediation, 1, 3, 7, 22, 113, 204 

residual, 36, 132, 160, 190 

retardation, 29 

Reynolds number, 10 

root mean square, 72, 82, 143, 162 

RPCM-GTM, 67 

RPCM-PSO-SO, 128, 154, 165, 175, 191, 203, 210 

RPIM. See radial point interpolation method 



INDEX 

229 
 

S 

search space, 115-122, 125, 133, 158, 187, 193 

seepage, 2, 4, 31,  64, 70, 88 

sensitivity analysis, 11, 18, 33, 84, 89, 100, 128, 147 

shape functions, 11, 36, 50- 60, 65, 68 

shape parameter, 9-13, 53, 73, 84, 100, 108, 112, 203 

simulated annealing, 18, 116 

simulation model, 3, 21-24, 113, 128, 138, 154, 203 

simulation-optimization, 1-5, 16, 18-24, 112, 126, 

130, 154, 177, 204-210 

singular, 17, 52, 63, 76, 205 

Six-Hump Camel back function, 125 

smoothing, 194-197 

social component, 118 

soft computing, 24 

solute transport, 2, 12-24, 33, 42, 64, 71, 87, 112, 

126, 164, 210 

sorption isotherm, 29 

source characteristics, 14, 18, 21, 114, 206 

stability, 9, 13, 40,  53, 61, 74, 89, 203 

stagnation, 122, 208 

state variables, 113, 116 

stepwise multiple regressions, 14 

stochastic, 14, 41, 118 

strong form,  9,  47, 57, 91 

sub-domain, 10, 91-94, 205, 211 

support domain, 13, 37, 48-59, 74, 81-89, 100, 137 

surveillance borewells, 13, 131, 155, 173, 185 

swarm intelligence, 3, 116, 154, 206 

system matrix, 51, 57, 61, 66, 69 

T 

Taylor series, 34-37, 43 

Thin plate spline, 52 

Tikhonov, 16, 40 

time-dependent, 17, 59, 167 

time-stepping, 42, 108, 181 

topology, 120 

tracer tests, 3 

tracking, 4, 9, 15, 26 

transmissivity, 7, 8, 28, 64, 91, 103 

trial function, 36 

truncation error, 43 

U 

uncertainty, 5, 14, 122, 166, 192, 200, 211 

unconfined, 5, 11, 31, 59, 72, 80, 156, 164 

V 

Validation, 5 

velocity update, 118 

W 

weak form, 11, 37, 47-51 

weight function, 36 

well-posed, 40 






	Front matter
	Recommendations of the Viva Voce Committee
	Statement by Author
	Declaration
	List of Publications
	DEDICATIONS
	ACKNOWLEDGEMENTS

	Thesis 
	Table of Contents
	SYNOPSIS
	List of Figures
	List of Tables
	List of Notations and Abbreviations
	Notations
	Abbreviations

	Chapter 1 Introduction
	1.1 General
	1.2 Groundwater pollution problems
	1.3 Groundwater flow and transport modeling
	1.4 Groundwater source identification
	1.5 Simulation-Optimization model for source identification
	1.6 Motivation of the study
	1.7 Objectives of the study
	1.8 Organization of the report

	Chapter 2 Literature review
	2.1 Introduction
	2.2 Groundwater flow and transport modeling
	2.3 Groundwater modeling with meshfree methods
	2.4 Contaminant Source identification in groundwater
	2.5 Simulation-Optimization models for source identification
	2.6 Critical appraisal of literature review
	2.7 Closure

	Chapter 3 Theoretical development - groundwater flow and transport modeling and source identification
	3.1 Introduction
	3.2 Sources of groundwater contamination
	3.3 Mechanisms of Contaminant movement
	3.3.1 Advection
	3.3.2 Diffusion
	3.3.3 Dispersion 
	3.3.4 Retardation and Reactions

	3.4 Governing equations and Boundary conditions
	3.4.1 Groundwater Flow
	3.4.2 Groundwater Solute Transport

	3.5 Groundwater flow and transport modeling - numerical methods
	3.5.1 Finite Difference Method
	3.5.2 Finite Element method
	3.5.3 Meshfree Methods
	3.5.4 Comparison of FEM and Meshfree model

	3.6 Groundwater source identification 
	3.6.1 Source identification Methods
	3.6.1.1 Direct inversion of advection-diffusion equation
	3.6.1.2 Analytical solution and regression
	3.6.1.3 Probabilistic and geo-statistical method
	3.6.1.4 Simulation-Optimization (SO) approach


	3.7 Stability criterion
	3.8 Closure

	Chapter 4 Groundwater flow and transport modeling using meshfree method
	4.1 Introduction 
	4.2 Meshfree method - theoretical background
	4.2.1 Developments in meshfree methods
	4.2.2 Different types of meshfree method
	4.2.3 Radial point collocation method

	4.3 Meshfree method- modeling procedure
	4.3.1 Domain representation
	4.3.2 Function interpolation or approximation
	4.3.3 Formation of system equations
	4.3.4 Solve the global Mesh free equations

	4.4 Radial point interpolation and shape function evaluation
	4.4.1 Approximation using radial point collocation method (RPCM)

	4.5 RPCM formulation for groundwater flow problem
	4.5.1 2D confined flow problem
	4.5.1.1 Time-dependent confined flow problem

	4.5.2 2D unconfined flow problem
	4.5.3 Modeling sources and sinks
	4.5.4 Velocity computation
	4.5.5 Dealing with anisotropy and heterogeneity

	4.6 RPCM formulation for contaminant transport problem
	4.6.1 1D transport problem
	4.6.2 2D transport problem

	4.7 RPCM model development
	4.7.1 Confined aquifer
	4.7.2 Unconfined aquifer
	4.7.3 RPCM transport model
	4.7.4 Coupled flow and transport model
	4.7.5 Model performance evaluation

	4.8 Model verifications
	4.8.1 Model verification for two dimensional mesh free RPCM flow equation
	4.8.1.1 General 2D-PDE equations with RPCM formulation
	4.8.1.2 Confined aquifer
	4.8.1.3 Unconfined aquifer

	4.8.2 One dimensional transport problem
	4.8.3 Two dimensional coupled flow and transport problem

	4.9 Heterogeneous and anisotropic problem 
	4.9.1 Formulation of sub-domain collocation
	4.9.2 Numerical example

	4.10 Solution of highly advective transport problem
	4.11 Sensitivity study of meshfree RPCM model parameters
	4.12 Case study - groundwater flow and transport modeling
	4.13 Closure

	Chapter 5 Simulation-Optimization models for source identification
	5.1 Introduction 
	5.2 Simulation-Optimization model in groundwater
	5.2.1 Simulation models
	5.2.2 Optimization models

	5.3 Particle Swarm Optimization
	5.3.1 Standard or Canonical PSO Algorithm
	5.3.2 Fully Informed Particle swarm
	5.3.3 PSO algorithm
	5.3.4 Velocity clamping
	5.3.5 Confinement
	5.3.6 Regrouping – dealing with stagnation
	5.3.7 Neighborhood topology
	5.3.8 PSO model development
	5.3.9 PSO model verification

	5.4 Source identification using Simulation-Optimization (SO) models
	5.4.1 RPCM Simulation model
	5.4.2 PSO optimization model
	5.4.3 RPCM-PSO SO model development

	5.5 Verification of SO models for source identification
	5.5.1 Problems considered
	5.5.2 Steady state source identification –effluent flow through an underground pipe
	5.5.3 Transient source identification –waste release from disposal sites

	5.6 Sensitivity study of PSO parameters
	5.6.1 Swarm population size sensitivity
	5.6.2 Acceleration coefficients sensitivity study
	5.6.3 Sensitivity study w.r.t. sum of constriction coefficient

	5.7 Closure

	Chapter 6 Simulation-Optimization models –Results and Discussions
	6.1 Introduction
	6.2 Steady state problem –multiple releases scenario
	6.3 Transient source identification – unconfined aquifer case
	6.4 Field case study - time-dependent sources 
	6.4.1 Case A: Extended period of concentration data
	6.4.1.1 Results and discussion

	6.4.2 Case B: Limited amount of data
	6.4.3 Case C: Missing data in concentration measurement
	6.4.4 Case D: Intermittent solute concentration data 

	6.5 Effect of location of the observation wells
	6.5.1 Random placement of wells
	6.5.2 Analysis with Limited Data

	6.6 Transient field case study –case when all potential sources are confined in a zone
	6.7 Source identification with measurement errors in the concentration data
	6.7.1 Simulating measurement errors
	6.7.2 Dealing with erroneous concentration data
	6.7.3 Data smoothing
	6.7.4 Transient field case with uncertain concentration data
	6.7.5 Handling uncertainties using weighting

	6.8 Model application – merits and limitations
	6.8.1 Merits
	6.8.2 Limitations

	6.9 Closure

	Chapter 7 Summary and Conclusions
	7.1 Summary
	7.2 Conclusions
	7.3 Research contributions
	7.4 Scope for Future works

	REFERENCES
	INDEX




