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SYNOPSIS 

The reactor physics calculations of nuclear reactor core are traditionally performed in two 

steps. First, the isolated heterogeneous fuel assembly (FA) is treated in detail using multigroup 

transport theory. This calculation is performed with reflective or zero leakage current boundary 

condition. Few group homogenized parameters of FA are generated as a result of this calculation. 

These parameters are used to perform core calculations using traditional finite difference or 

nodal methods employing diffusion theory. This averaging of the individual FA cell and 

neutronics properties assumes zero flux gradient at assembly interfaces which is not fully correct 

as the fuel assemblies in operating reactors are invariably of different enrichments with UOX or 

MOX type, different fuel burnup and may contain water rod / control absorber rod cells, 

burnable absorbers of gadolinium or boron type. The few-group homogenized parameters depend 

on non-local history effects as the fuel burnup is strongly dependent on the spatial neutron 

spectrum history as well as non-linear neighbor effects arising due to changes in the intra-

assembly and intra-group spatial flux gradients caused by changes in the neighboring fuel 

assemblies or cells such as control rod insertion etc [1]. Also, the micro pin level flux 

distribution and hot spot thereof are lost in final core calculation and the core results represent 

average core behavior only. 

The safety limitations in a reactor calculation can be relaxed by the application of the 

advanced core analysis method with higher prediction accuracy [2]. Since the prediction error of 

such a core analysis code would be smaller compared to the traditional diffusion theory based 

codes, the design safety margin for an advanced core calculation method can be reduced. When 

the safety limitations are relaxed, more aggressive fuel loading pattern, which cannot be adopted 

with the utilization of conventional core analysis method, can be designed thereby increasing the 
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efficiency of nuclear power generation through reducing fuel cycle cost and increasing plant 

capacity factor. For these reasons and as a consequence of the heterogeneities described earlier 

and also to decrease and quantify the uncertainties of the numerical simulations for safety 

relevant phenomena, there is a need to develop core simulation methods which are based on 

transport theory and use fine scale discretisation in neutron energies and space. 

The objective of this dissertation is to develop a core simulation method that is based 

solely on transport theory and does not require homogenization of fuel assembly or use of 

discontinuity factors. For this purpose, we have examined the possibility to use the interface 

current method based on 2D collision probability theory to study the reactor performance and 

safety analysis and fuel cycle evaluations for reactor cores employing hexagonal geometry. The 

other notable codes with the capability to perform 2D whole-core transport calculations are 

CASMO [3], CRX [4], DeCART [5], PARAGON [6], APOLLO2 [7] and MOCUM [8]. All of 

these codes except PARAGON use the method of characteristics (MOC) as transport solver. 

PARAGON employs the interface current method in 2D square geometry. The application of 

interface current method to perform large whole core pin by pin simulation in hexagonal 

geometry is novel and not reported in literature and is being done for the first time.  

It is observed that the application of 2D CP method for analysis of complex and large 

cores will ensure increased accuracy and hence would provide a faster and much simpler 

alternative when compared to much more complicated neutronic computer codes in addressing 

the feasibility and effectiveness of fuel cycle strategies. The thesis consists of six chapters 

 Chapter 1 gives the brief introduction and approach to perform reactor core calculations. 

The need to perform the detailed pin by pin simulation of reactor core and basis to select the 

interface current method based on 2D collision probability for whole core simulation in 2D 
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hexagonal geometry is also described. The extant international neutronic codes with the 

capability to perform full core simulations in 2D geometry are presented in this chapter. 

 Chapter 2 gives the detailed mathematical description of interface current method based 

on 2D collision probability. A transport theory code TRANPIN is developed to perform the 

whole core pin by pin calculation in 2D hexagonal geometry. In the traditional pin by pin 

analysis, the fuel pin or other heterogeneous cells present in the fuel assembly are homogenized 

and treated as single mesh. In the present method, the lattice cell is not homogenized. The 

heterogeneous lattice structure of fuel rod and absorber rod cells are sub divided into finer 

regions. The transport equation for the full core is solved using the interface current method 

based on 2D collision probability (CP) method. In the interface current method, the problem 

domain is split into smaller heterogeneous lattice cells. Here the unit entity is lattice cell 

consisting of a single fuel or absorber rod and its associated coolant. Each lattice cell is divided 

into several sub regions. The external boundary of lattice cell is divided into a set of finite 

surfaces. The zone to zone coupling in the lattice cell is achieved using region to region CPs. The 

coupling between the cells in the same FA and cells of different FAs is achieved by expanding 

the angular flux leaving or entering a lattice cell into a finite set of linearly independent functions. 

We have used a double P2 (DP2) expansion of angular flux in the half space created by each 

surface of lattice cell. The approach to perform the whole core pin by pin calculation is 

developed in two steps. As a first step, the interface current method is applied on a single fuel 

assembly. This is required because, although 2D CP method is used in codes like CLUB [9], 

WIMS [10], HELIOS [11] etc, the use of DP2 expansion for hexagonal lattice assembly is not 

reported in literature. This methodology was developed for a single FA and incorporated in the 
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lattice analysis code VISWAM. After benchmarking and validating the lattice level results, the 

method was extended to perform the pin by pin whole core calculation.  

 Chapter 3 gives the results of benchmarking and validation exercise of application of 

interface current method at lattice level. The implementation of interface current method in 

lattice analysis code VISWAM was benchmarked against a simplified heterogeneous benchmark 

problem that is typical of a high temperature reactor [12]. The primary aim of the benchmark is 

to assess the accuracy of diffusion or transport methods for reactor calculations. The benchmark 

is derived from the experimental data of High Temperature Engineering Test Reactor (HTTR) 

start-up experiments. The benchmark provides the six group macroscopic cross section for all the 

materials required. The interface current method in VISWAM code was further developed for a 

detailed burnup analysis of an FA cell. The burnup strategy used in VISWAM code was 

validated using the theoretical Computational Benchmark of VVER-1000 OECD LEU and MOX 

FA cells [13]. This benchmark has been proposed to certify the lattice calculation codes for 

utilizing weapons grade plutonium by converting it to mixed-oxide (MOX) fuel for nuclear 

reactors. The benchmark model consists of two different assemblies of low enriched uranium 

(LEU) and MOX that are typical of the advanced designs for the VVER-1000 reactors. The 

multiplication factor with burnup, fission density distribution and cell averaged isotopic densities 

are compared and discussed in this chapter. The results obtained using DP2 expansion show least 

deviation from benchmark mean values. The reactivity loads of (Xe, Sm) and isothermal 

temperature show an improved prediction by DP1/DP2 models. The detailed results are 

presented in this chapter. 

 Chapter 4 gives the scheme and methodology of interface current method used in whole 

core calculation code TRANPIN. The spatial discretisation of whole core using fine meshes, the 
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numbering scheme of the meshes, connectivity of the meshes and iteration scheme adopted for 

the solution method are presented in detail. When the fine energy group structure is used for core 

calculation, the whole core simulation was seen to be a formidable task demanding very large 

computer storage and CPU time. The calculation could be performed by using inherent 

symmetry available in the core geometry. For this purpose a 60° rotational symmetry was 

introduced in TRANPIN. The methodology to use rotational symmetry boundary condition is 

also described. 

 In Chapter 5, the results of benchmarking exercise of TRANPIN code are presented. The 

code TRANPIN has been validated against two benchmark problems i) a simplified high 

temperature engineering test reactor (HTTR) benchmark problem [14] and ii) OECD VVER-

1000 MOX Core Computational Benchmark [15]. The HTTR benchmark, a heterogeneous 2D 

problem in hexagonal geometry, is proposed to test the accuracy of modern transport methods 

for neutronics analysis. This problem was derived from the High Temperature Engineering Test 

Reactor start-up experiment and is a simplified benchmark problem which is obtained by 

removing the detailed design specific material and structural details of HTTR while retaining the 

heterogeneity and major physics properties from the neutronics viewpoint. The benchmark 

provides the 6-group, transport corrected macroscopic cross section library for four fuel types 

corresponding to the four enrichment levels considered in the core, four graphite cross sections 

(corresponding to graphite in fuel blocks, in control rod blocks, and in permanent and 

replaceable reflector blocks), and cross sections for burnable poison pins and control rods which 

had been obtained by a detailed lattice calculations using HELIOS code system. 

 TRANPIN code has been validated against the OECD VVER-1000 MOX Core 

Computational Benchmark. This benchmark is proposed to investigate the physics of a VVER-
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1000 reactor whole core using two-thirds LEU and one-third MOX fuel assemblies and for 

certification of calculation codes for future MOX fuel utilization in VVER-1000 reactors. This is 

required due to essential differences in physics behavior of MOX and standard LEU fuels. The 

benchmark model consists of a full-size 2-D VVER-1000 core with heterogeneous 30% MOX-

fuel loading. The core consists of 28 FAs considered in 60° rotational symmetry. The system has 

an infinite axial dimension and vacuum boundary condition is applied on the side surface. The 

core is surrounded by a reflector. The reflector is a very complicated structure consisting of a 

thin film of water gap, steel baffle with water holes, steel barrel, down comer water and steel 

pressure vessel. The equilibrium VVER-1000 core structure has been simplified in order to 

consider only two types of fuel assemblies with a fixed set of burn-ups. UOX FAs have average 

fuel burn-ups of 0, 15, 32 and 40 MWd/kg, and MOX FAs have average fuel burn-ups of 0, 17 

and 33 MWd/kg. The benchmark provides the isotopic composition of all the fuel materials at 

each burnup and various structural materials like clad, guide tube, borated coolant, steel baffle, 

steel barrel and steel vessel required in the problem. It is to be noted that the OECD benchmark 

is analyzed using ultra fine WIMS library ‘HTEMPLIB’ in 172 energy groups for first time 

using CP method. This approach is novel since the full core calculations are normally performed 

with cross sections prescribed in few energy groups by energy condensation using some prior 

transport simulations. The 172 group cross sections of fuel rings and structural materials of core 

and reflector zones were generated by VISWAM code and were used for core calculations in 

TRANPIN.  

The core keff obtained using DP2 calculation shows an improved agreement with 

benchmark results compared to DP0/DP1 result for HTTR analysis. The δkeff, w.r.t benchmark, 

obtained using DP2 is seen 0.0091 as compared to 0.0192/0.0143 for DP0/DP1 calculation. 
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The %RMS deviation in block averaged fission density distribution is seen as 0.77%, 0.42% and 

0.47% for DP0, DP1 and DP2 calculation respectively. In the OECD VVER-1000 MOX Core 

Computational Benchmark analysis, the assembly averaged fission density distribution is 

significantly improved using DP1 model. The detailed discussion of these results is presented in 

this chapter. Chapter 6 gives the conclusion and summary of the present research. The 

feasibility of using interface current method based on 2D collision probability, obtained using 

DP2 expansion of angular flux, is demonstrated for single lattice fuel assembly cell and whole 

core calculation in 2D hexagonal geometry. The broad observations and scope for future work is 

discussed in this chapter. The list of publications arising out of this thesis work is given in the 

end.  
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CHAPTER – 1  

INTRODUCTION 

1.1 Background 

 India is pursuing an active three stage nuclear power program. There are presently 21 

nuclear power reactors in operation with an installed capacity of 5780 MW [1]. This includes the 

developed PHWR–220/540, BWR–160 and VVER–1000 MWe reactor. Four units of 700 MWe 

PHWR, one unit of 500 MWe PFBR and another unit of VVER–1000 MWe reactor in 

collaboration with Russia at Kudankulam are in an advanced stage of construction and 

commissioning. Four more units of VVER–1000 MWe reactor are planned at Kudankulam.  

India plans to augment its installed capacity to 63,000 MW by 2032 [2]. The capacity 

addition plan in the medium term for reaching a capacity of 63,000 MW by 2032 envisages 

addition of indigenous PHWRs with capacity of 4200 MW (6X700) based on natural uranium, 

7000 MW from PHWRs based on reprocessed uranium from LWR spent fuel, 40000 MW from 

imported LWRs and the balance through 500 MW/1000 MW FBRs. Other reactors like the 300 

MWe Advanced Heavy Water Reactor (AHWR), a technology demonstrator for thorium 

utilization and Indian LWR under development are also planned [2]. India is also carrying out 

the design of an innovative 600 MWth high temperature reactor (HTR) for commercial hydrogen 

production. 

The LWRs to complete the planned target of 40000MW are expected to be advanced 

Generation III reactors such as AP1000, EPR, VVER-1200, ESBWR etc. The physics simulation 

and analysis of these reactors is very challenging due to their complex design. To cater to the 

challenging physics design requirements of the operating, imported and/or indigenous reactor 

developments, there is a need to develop indigenous state of the art computational capability. 
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The reactor physics calculation of nuclear reactor core pertains to the estimation of 

neutron flux distribution in the reactor system. The neutron distribution in a reactor system is 

described by the steady state Boltzmann transport equation. The integro–differential form of 

Boltzmann transport equation is given by  

,ԦݎሬሬԦ߶൫׏ ሬሬሬԦ.ߗ ,ሬሬሬԦ ߗ ൯ܧ ൅ ,Ԧݎ௧ሺߑ  ,Ԧݎሻ߶൫ܧ ,ሬሬሬԦ ߗ ൯ܧ ൌ
߯

݇௘௙௙
 න ᇱܧ݀ න ᇱߗ݀ ,Ԧݎ௙ሺߑ ,Ԧݎᇱሻ߶൫ܧ ,ᇱሬሬሬሬԦߗ ᇱ൯ܧ ൅ 

׬ ᇱܧ݀ ׬ ᇱߗ݀ ,Ԧݎ௦൫ߑ ᇱሬሬሬሬԦߗ ՜ ,ሬሬሬԦ ߗ ᇱܧ ՜ ,Ԧݎ൯߶൫ܧ ,ᇱሬሬሬሬԦߗ  ᇱ൯.             ሺ1.1ሻܧ

where ݎԦ, ,ሬሬሬԦ ߗ  ௙ areߑ ௧ andߑ .represent space, angular direction and energy respectively ܧ

the total and fission neutron cross sections respectively and ߶ represents the neutron flux 

distribution. ߯ is the normalized fission spectrum, and ݇௘௙௙ is the effective neutron multiplication 

factor or eigenvalue of the system.  

The reactor physics calculations are traditionally performed in two steps. First, the 

isolated heterogeneous fuel assembly (FA) is treated in detail and Eq. (1.1) is solved in 

multigroup formalism for the 2D FA. This full or symmetric part of FA calculation is performed 

with reflective or zero leakage current boundary condition. Few group homogenized parameters 

of FA are generated as a result of this calculation. These parameters are used to perform core 

calculations using traditional finite difference or nodal methods employing diffusion theory. This 

averaging of the individual FA cell and neutronics properties assumes zero flux gradient at 

assembly interfaces which is not a true representation as the fuel assemblies in operating reactors 

are invariably of different enrichments with UOX or MOX type, different fuel burnup and may 

contain water rod/control absorber rod cells, burnable absorbers of gadolinium or boron type. 

The few-group homogenized parameters depend on non-local history effects such as the fuel 

burnup which is strongly dependent on the spatial neutron spectrum history as well as non–linear 
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neighbor effects arising due to changes in the intra–assembly and intra–group spatial flux 

gradients caused by changes in the neighboring fuel assemblies or cells such as control rod 

insertion etc [3]. Also, the micro pin level flux distribution and hot spot thereof are lost in final 

core calculation and the core results represent average assembly behavior only. 

As a consequence of these heterogeneities, and to decrease and quantify the uncertainties 

of the numerical simulations for safety relevant phenomena, there is a need to develop core 

simulation methods that cover several scales in neutron energies and space. The safety 

limitations in a reactor calculation can be reliably assured or relaxed by the application of the 

advanced core analysis method with higher prediction accuracy [4]. Since the prediction error of 

such a core analysis code would be smaller compared to the traditional diffusion theory based 

codes, the design safety margin for an advanced core calculation method can be reduced. When 

the safety limitations are ensured, more aggressive fuel loading pattern, which cannot be adopted 

with the utilization of conventional core analysis method, can be designed thereby increasing the 

efficiency of nuclear power generation through reducing fuel cycle cost and increasing plant 

capacity factor. For these reasons and to remove the approximations associated with traditional 

diffusion theory codes, there is a need to develop core simulation methods which are solely 

based on transport theory and use fine scale discretisation in neutron energies and space. The 

application of advanced transport methods for whole core reactor simulation without the 

intermediate homogenization has become feasible owing to the availability of high speed (a few 

GHz) large memory (terra bytes) computers and parallel processing algorithms.  

1.2 Present Status of Simulation Methods in India 

 In India for the simulation of thermal reactors the traditional two step core simulation 

approach is followed currently. The history of the development and usage of this methodology 
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spans four decades in which many lattice and core level computational tools have been 

developed. The current status of lattice level and core analysis developments is presented in the 

following sections. 

1.2.1 Lattice Calculation Codes 

 The following lattice simulation codes have been developed and are being used to 

perform detailed burnup dependent fuel assembly/cluster calculations. 

 EXCEL: The lattice burnup code EXCEL [5], based on the combination of 1-D multi–

group transport theory and 2–D few group diffusion theory, solves the FA cell problem in 

hexagonal geometry. The fuel pins in the FA are classified into pin cell types based on 

enrichment and Dancoff factors. The hexagonal pin cell boundary is cylindricalised to allow 1–D 

treatment of the Wigner–Seitz cell and uses the white boundary condition. The heterogeneities 

present in the FA cell such as water rods, burnable poison rods and control rods are treated by 

special 1–D super cell simulations. For 1–D transport, the code uses the first flight collision 

probability method. The 2–D fuel assembly cell is treated by few group diffusion theory using 

centre–mesh finite difference method. The EXCEL code can be used to obtain infinite neutron 

multiplication factor (k∞), the few group homogenized lattice parameters of fuel assemblies in 

the hexagonal lattice and isotopic compositions as a function of burnup, boron in coolant, fuel 

temperature, moderator (coolant trapped in guide tubes/inter assembly gaps) temperature, coolant 

temperature/density, saturated xenon and samarium loads, in the absence/presence of control 

rods.  

 SUPERB: SUPERB is used to perform FA calculation in square geometry [6]. The 

solution method and basic approach in SUPERB is similar to EXCEL code system described 

above.  
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 CLUB: CLUB is a multigroup integral transport theory code for analysis of cluster 

geometries [7]. CLUB is based on a combination of interface current method and the Pij method. 

In this method the fuel cluster cell is divided into multiple fuel rings surrounded by annular 

homogeneous regions of pressure tube, air gap, calandria tube and moderator. Each fuel ring is 

divided into the individual homogeneous zones containing fuel pins, their clad and the associated 

coolant regions. The fuel zones can be optionally subdivided into more regions. Disjoint clad 

regions in the fuel ring are treated as a single region. The associated coolant region can be 

subdivided by input specification into multiple concentric ring regions. It is assumed that the ring 

contains same type of fuel rods. The interaction between zones within a ring is obtained using 

the Pij method. The interaction between the fuel ring regions of the cluster and the outer 

homogeneous annular regions of PT/Air Gap/CT and moderator regions are obtained using 

interface currents. 

RICANT: RICANT solves FA problem in square geometry. The one–zone rectangular 

cells in the 2–D FA are solved using interface current method [8]. The interface currents are 

obtained by expanding the angular flux in un–normalized double P2 expansion functions. The 

angular flux expansion functions consider all the six terms in the expansion.  

LWRBOX: LWRBOX treats the FA problem in square geometry using the interface 

current method as flux solver [9]. In this method, the lattice cell is divided into several connected 

cells which can further be subdivided into homogeneous zones. The interaction between various 

zones within a cell and their contribution to outgoing currents at region interfaces are directly 

calculated by the CP method [9]. 

 VISWAM: The lattice analysis code VISWAM has been developed with an aim to unify 

computational tools into a single package [10]. VISWAM can be used to study the lattice FAs in 
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square, hexagonal and ring cluster geometries. VISWAM has been developed completely in 

modular structure in FORTRAN 90. Initially, the calculation method adopted in VISWAM was 

similar to the EXCEL/SUPERB. New calculation modules were added to VISWAM, the details 

of which are described later. 

 In addition to these indigenous codes, some international codes such as WIMSD5 are also 

used to perform lattice calculations. 

1.2.2 Core Calculation Codes 

 The following 3D core calculation codes have been developed and are being used to 

perform 3D core analysis for various reactor applications.  

 TRIHEXFA: TRIHEXFA is a few group 3D diffusion theory code for simulating reactor 

cores in hexagonal geometries [11]. The large hexagonal FA is divided into 6n2 triangular 

meshes, where n is the number of equal divisions on a side of the hexagon. Triangular mesh 

description of the core is obtained by an auto triangularization procedure by the code itself. 

TRIHEXFA code reads the few group cross section files generated by EXCEL code for each FA 

type as a function of burn-up, boron and other reactor state parameters. For a given problem the 

user needs to specify essentially the core power, flow, burn-up state, coolant temperature, control 

device configuration etc. The program recognizes the zone of influence of a control device and 

appropriate control perturbations are taken into account. Space or power dependent cross section 

perturbations due to saturated Xenon, Sm, Doppler, coolant temperature and density are modeled 

in five energy group simulations. TRIHEXFA is used for the fuel cycle analysis of 1000 MWe 

VVER core. 

 CEMESH/COMESH: CEMESH/COMESH codes are used to perform 3D core 

calculations for square geometries such as PHWR [12, 13]. COMESH is a corner mesh finite 
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difference code. It can simulate reactivity devices explicitly using α = J/φ type boundary 

conditions in two energy groups. CEMESH code is a centre-mesh finite difference code. It uses 

the two group lattice parameter database generated by PHANTOM code system [13] for PHWR 

fuel clusters as a function of burnup, soluble boron in moderator, coolant/moderator temperature, 

moderator purity values, fuel temperature, saturated xenon and various types of control type 

perturbations. PHANTOM–CEMESH code system has been validated against the Phase–B 

physics experiments of NAPS, KAPS reactors and their operational data as a function of core 

burnup. 

 HEXPIN: The code HEXPIN has been developed for reactor core analysis with a pincell 

size mesh description up to pressure vessel in hexagonal geometry [14]. HEXPIN uses the centre 

mesh finite difference method to solve 3D diffusion equation in few groups. The input to 

HEXPIN code consists of fuel assembly type disposition in the core. The geometrical disposition 

of fuel and non–fuel cells within each fuel assembly is constructed by HEXPIN using the output 

of hexagonal lattice cell burnup code EXCEL for each fuel assembly type. 

 FEMINA: The 3D diffusion theory code FEMINA uses the flux expansion method [15]. 

It is a 3D diffusion theory based code for Cartesian geometries. Here the 3D diffusion equations 

are integrated in the transverse direction and the resulting set of 1-D equation are then solved. 

The partially integrated fluxes are expanded in terms of local higher order polynomials. The 

polynomial expansion allows one to use coarser meshes in large sized cores. 

 ATES3: ATES3 (Anisotropic Transport Equation Solver in 3D) is an indigenously 

developed neutral particle transport code in 3-Dimensional Cartesian XYZ geometry [16]. It 

solves steady state forms of linear multi-group neutron transport equation by discrete ordinates 

(SN) method. The spatial variable is discretised by finite difference approximation along with the 
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well–known Diamond Difference scheme. The angular variable is discretised into discrete 

directions. The code can handle isotropic as well as anisotropic scattering. It has options to use 

conventional solution algorithms as well as some modern computational techniques based on 

Krylov Sub–space methods. 

 ARCH: ARCH code (Analysis of Reactor Transients in Cartesian and Hexagonal 

Geometries) solves the neutron diffusion equation in 3D Cartesian and triangular geometry [17]. 

The solution is performed in few neutron energy groups using Finite Difference Method (FDM). 

The discretised diffusion equation results in a large linear system of equations in the form of   

AX = B, which is solved by conventional as well as advanced Krylov Subspace algorithm based 

schemes. 

1.3 Whole Core Pin–by–Pin Simulation without Homogenization 

 The various core simulation codes described in Section 1.2.2 need few group 

homogenised parameters obtained using prior isolated transport calculation of a single FA cell. 

This is true both for core calculation methods based on either assembly homogenization as 

shown in Fig. 1.1(a) or pin homogenization shown in Fig. 1.1(b). As described in Section 1.1, 

this transport calculation is performed with reflective/rotational symmetry boundary or zero 

leakage current boundary condition. The limitations of this calculation have been discussed in 

detail in Section 1.1. In the recent times, there is a phenomenal improvement in computer 

processing power. Massive parallel computer with thousands of processors are now available. 

This has encouraged the development of accurate models for whole core pin–by–pin calculation. 

The objective of this dissertation is to develop a core simulation method that is based solely on 

transport theory and does not require homogenization of fuel assembly or use of discontinuity 

factors. For this purpose, a new transport theory code TRANPIN has been developed to perform 
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the whole core pin-by-pin calculation in 2D hexagonal geometry. TRANPIN solves the transport 

equation for the full core using the interface current method based on 2D collision probability 

(CP) method. Many international labs are engaged in developing the detailed and precise whole 

core transport theory models in 2D and 3D geometries [18]. Before describing the details of 

TRANPIN code system, the following section describes in brief the present international status 

of 2D whole core calculation efforts. The discussion on 3D development is not presented as it is 

beyond the scope of this thesis work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 – Comparison of Geometry Discretization in TRANPIN with other Core 

Simulation Methods 

(a) – Conventional Two Step 
Core Simulation Approach 

(b) – Conventional Pin–by–Pin 
Core Simulation Approach 

(c) – TRANPIN Core Simulation Approach 
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1.3.1 Literature Survey 

 A detailed literature survey has been done to assess the methodologies developed 

elsewhere in the world. The following codes are capable of performing 2D whole core 

calculations [18]: 

 CASMO: CASMO is a lattice analysis code of Studsvik Inc. of USA which has been 

used for few group constant generation for BWR and PWR for 25 years [19]. In the recent 

version of CASMO, CASMO–4, the transport equation is solved using the Method of 

Characteristics (MOC) in 2D rectangular geometry with completely heterogeneous models up to 

pin level and used for whole core calculation [19, 20]. The assembly physical mesh is divided 

into ~5000 regions, with each pincell being split into radial and azimuthal zones [20]. Neutron 

sources in each zone are approximated as spatially flat and isotropic. The code has been applied 

and tested against BWR critical assembly geometry and quarter core model of full 2D BWR 

geometry in eight energy groups [20].  

 CRX: The Korean assembly calculation code CRX based on the method of 

characteristics has been extended to treat whole–core heterogeneous calculation [21]. For the 

heterogeneous transport calculation for such large scale problems, a modular ray tracing in which 

all lattice cells have the same ray distribution for each direction is used to reduce the computer 

memory requirement [21]. In this scheme, the ray tracing is performed for only different types of 

cells. The code has been used to analyse an 8X8 whole core problem consisting of MOX and 

UO2 fuel assemblies.  

 DeCART: DeCART code has been developed as part of a U.S.–Korean collaborative 

INERI project and solves the 2D and 3D whole core transport problem in square and hexagonal 

geometries [22, 23, 24]. In order to deal with the heterogeneity at the pin cell level, the two-
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dimensional (2–D) Method of Characteristics (MOC) is used [22]. The 3–D whole core transport 

solution is obtained by 2–D/1–D coupling scheme which is realized within the framework of    

3–D coarse mesh finite difference (CMFD) formulation which serves the dual functions of 

accelerating the 2–D radial MOC solutions [22]. The code employs the modular ray tracing 

scheme. The code has been tested against a number of numerical and critical benchmarks [23, 

24].  

 PARAGON: PARAGON is Westinghouse’s state–of–the–art code for two–dimensional 

lattice calculations. It is based on collision probability and interface current coupling methods 

and has the ability to solve problems with any size of spatial, angular, and energy discretization 

[25]. The 2D whole core capability of PARAGON has been tested against a two–dimensional 

PWR core model in square geometry and its ability to run large problems with increasing 

coupling–orders of the interface current method is demonstrated [25]. 

 APOLLO2: The APOLLO2 spectral transport code, developed at the CEA France, is 

widely used for assembly cross section generation and direct transport calculations, including a 

large range of applications in reactor physics, criticality safety studies and fuel cycle analysis 

[26]. APOLLO2 flux solvers for 2D square and hexagonal FA geometry are based either on the 

collision probability method (CPM)–full CPM, interface-current techniques (ICT) and simplified 

ICT (multi cell methods)–or on different spatial discretization of the discrete ordinates form of 

the transport equation comprising finite differences, transverse nodal and short and long 

characteristics (MOC) methods [26]. The 2D whole core calculations with APOLLO2 make use 

of the MOC module. APOLLO2 whole core calculation has been benchmarked against 2D PWR 

and HTGR benchmarks [26]. 
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MOCUM: The transport theory code MOCUM is based on the method of characteristics 

as the flux solver with an advanced general geometry processor for two–dimensional rectangular 

and hexagonal lattice and full core neutronics modeling [27]. The code uses unstructured meshes 

for spatial discretization of single pin, assembly and full core geometries. The code has been 

verified and validated against various benchmarks representing rectangular, hexagonal, plate 

type and CANDU reactor geometries. 

1.3.2 Development of TRANPIN 

 All the codes except PARAGON listed in the previous section use MOC as transport 

solver. Due to the availability of computational resources, the methods based on collision 

probability (CP) have gained renewed interest. Altiparmakov et al [28] proposed a solution 

method that extends the capabilities of the collision probability approximation to large–size 

neutron transport problems and successfully applied it to a 2D model of a quarter core of a heavy 

water power reactor of CANDU type. Hemprabha et al. [29, 30] have recently applied the 

collision probability method to single pincell and multi–hexagonal assemblies in 3D geometry. It 

is planned to develop a 3D pin–by–pin transport theory code with fuel depletion capability to 

augment the indigenous core calculation capabilities described in Section 1.2 and meet the future 

challenges. As a first step to achieve this goal, a new transport theory code TRANPIN has been 

developed to perform the whole core pin–by–pin calculation in 2D hexagonal geometry. The 

following integral form of transport equation (described here in one group form for simplicity) is 

solved in TRANPIN for the large scale full core problem:  

߶൫ݎԦ, ሬሬሬԦ൯ ߗ ൌ ߶൫ݎௌሬሬሬԦ, ሬሬሬԦ൯݁ିఛೄ ߗ ൅ ଵ
ସగ

׬  ܴ݀Ԣோೄ
଴ ݍ ቀݎԢ ሬሬሬԦቁ ݁ିఛሺோᇲሻ.                                         ሺ1.2ሻ 

where ݎௌሬሬሬԦ ൌ ሬሬԦ ݎ െ ܴௌ ߗ ሬሬሬԦ is an arbitrary point on the line passing through ݎ ሬሬԦ in the direction ߗ ሬሬሬԦ on 

the surface S bounding the volume V, where boundary conditions will be applied and ᇱሬሬሬሬԦݎ  ൌ
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–ሬሬԦ ݎ ܴᇱߗ ሬሬሬԦ . τ and  ߬ௌ  are the optical distances between  ݎ ሬሬԦ and  ݎᇱሬሬሬሬԦ   and between  ݎ ሬሬԦ and ݎௌሬሬሬԦ   

respectively. The total source density ݍሺݎ ሬሬԦሻ for a group of energy E is isotropic and defined as 

ሬሬԦሻ ݎሺݍ ൌ ׬  ᇱܧ௦ሺߑᇱܧ݀ ՜ ,Ԧݎሻ߶ሺܧ ᇱ ሻ ൅ܧ  ఞሺாሻ
௞೐೑೑

׬ ,Ԧݎᇱሻ߶ሺܧ௙ሺߑߥᇱܧ݀  ᇱ ሻ.                       ሺ1.3ሻܧ

TRANPIN employs the interface current method based on 2D collision probability (CP) 

method for solving Eq. (1.2) for whole core reactor problem. The use of interface current method 

to perform large scale whole core calculations in hexagonal geometry is not reported in literature. 

A well known advantage of interface current method based on 2D CP compared to full CP 

method is that we need to calculate the dense region to region coupling matrices Pij matrices only 

for distinct lattice cells in the whole core. The use of interface current method alleviates the very 

important problem of huge memory requirements that arise if a direct CP method is applied to 

treat large medium whole core problems. Also this reduction in the coupling of the spatial 

variables in the interface current method permits an iterative cell–by–cell solution. 

In the traditional pin–by–pin analysis [14] as shown in Fig. 1.1(b), the fuel pin or other 

heterogeneous cells present in the FA are homogenized and treated as a single mesh. In the 

present method, the lattice cell is not homogenized. The heterogeneous lattice structure of fuel 

rod and absorber rod cells are sub divided into finer regions as shown in Fig. 1.1(c). The region 

beyond the regular hexagonal lattice is also subdivided in finer regions as shown in Fig. 1.1(c). 

The external boundary of lattice cell is divided into a set of finite surfaces. The zone to zone 

coupling in the lattice cell is achieved using region to region CPs. The coupling between the cells 

in the same FA and cells of different FAs is achieved by expanding the angular flux leaving or 

entering a lattice cell into a finite set of linearly independent functions. The angular flux in the 

half space created by each surface of lattice cell has been expanded in a double P2 (DP2) 

Legendre polynomial.  
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The theory of interface current method implemented in TRANPIN is described in detail 

in Chapter–2. In the TRANPIN code, the discretized flux and outgoing current equations are 

solved in a multigroup formalism. The code is designed to consider any group structure. 

TRANPIN can take the microscopic cross sections directly from the cross section libraries used 

traditionally for lattice calculations. Presently, the 172 group cross section libraries in WIMS 

format can be used in TRANPIN [31, 32].  

TRANPIN is the whole core calculation code which does not require cross sections 

generated by a prior transport calculation of the FA i.e. no separate lattice calculation is required. 

However it was decided to first test the interface current method using DP2 expansion for single 

lattice FA calculation. The CP method is an accurate and versatile method which exists in most 

of the popular lattice analysis codes. The double P0/P1 (DP0/DP1) Legendre expansions of 

angular flux had been applied in two–dimensional fuel assembly cell calculation codes such as 

CASMO [33], PHOENIX [34], APOLLO [35] and DRAGON [36]. Sanchez [37] and 

Ouisloumen et al [38] have applied the CP method to hexagonal assemblies with DP1 expansion. 

The use of DP2 expansion for single lattice FA in hexagonal geometry is not reported in 

literature to the best of our knowledge. Since TRANPIN is expected to include a fuel depletion 

model for whole core calculation, so the burnup characteristics of the DP2 model for a single FA 

were needed to be studied before employing this model for performing whole core calculation. 

Therefore, the DP2 lattice model was incorporated the lattice analysis code VISWAM. The 

benchmarking and validation exercise of the burn up model is presented in Chapter–3.  

In Chapter–4 the spatial discretisation of whole core using fine meshes, the numbering 

scheme of the meshes, connectivity of the meshes and iteration scheme adopted for the solution 

method is presented in detail.  
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Two heterogeneous whole core benchmark problems in 2D geometry were analyzed. The 

numerical results of benchmarking and validation exercise of TRANPIN are presented in detail 

in Chapter–5. Chapter–6 provides the summary and conclusion of the present thesis work. The 

broad observations and scope for future work is discussed in this chapter. 

1.4 Summary 

 India is planning to increase its present nuclear installation capacity to 63GW by 2032. 

This will be achieved by a mix of indigenously developed and imported nuclear power plants. 

The physics modeling of these reactors is a very challenging task due to their complex design. 

To cater to the challenging physics design requirements of the operating, future and indigenous 

reactor developments, there is a need to develop indigenous state of the art computational 

capability. Currently the two step core computational methodology is adopted in India. This 

methodology has its limitations due to assembly homogenization errors. It is planned to develop 

a state of the art 3D pin–by–pin calculation tool. As a first step to achieve this goal, a whole core 

transport theory code TRANPIN in 2D hexagonal geometry has been developed. The code 

performs the full core calculation, without homogenizing the various lattice cells present in the 

FAs, in multi group formalism. The TRANPIN employs interface current method based on 2D 

CP. Application of the 2D CP method with DP2 approximation of the angular flux to hexagonal 

assembly / core geometry is a novel feature of TRANPIN code. 
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CHAPTER – 2 

FORMALISM OF INTERFACE CURRENT METHOD 

The interface current method is a form of nodal methods used to study and solve the 

integral form of transport equation. The idea of a nodal method is to divide the solution domain 

into regions (or nodes) and to use an approximation to describe the transfer between nodes [39]. 

The solutions for adjacent nodes are linked by using approximate expansions for the angular 

fluxes entering and leaving the nodes. In a nodal method, only the unknown fluxes local to a 

node are directly connected to one another. This results in a set of dense matrices, one for each 

node, that are connected by means of their interface values. Consequently, such a method can be 

subjected to a node–by–node iterative solution in which the known incoming angular fluxes and 

the internal sources are used to calculate the outgoing angular fluxes.  

Interface currents are used to link the solutions in cells of optically large solution domain 

such as whole core. This is especially helpful for treatment of multidimensional whole core 

geometries where a direct application of the CP method would require accurate multidimensional 

numerical quadrature over large regions [39]. Also, the interface current method reduces the 

coupling of the spatial variables, thus permitting an iterative cell–by–cell solution. This results in 

a reduction of the computing time necessary for the calculation of the collision probability matrix 

and for the solution of the system of equations for the fluxes. The interface current method based 

on 2D collision probability (CP) has been implemented in the lattice analysis code VISWAM 

and a new pin–by–pin whole core code TRANPIN has been developed employing this method. 

This chapter describes the theory and formalism of interface current method implemented 

in VISWAM and TRANPIN code systems. First the integral form of transport equation is 

derived in Section 2.1. In Section 2.2, this integral form of transport equation is integrated over 
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the solution domain to derive the discretized form of transport equation. The discretized equation 

has four collision probability matrices. The properties of these matrices and their formulae are 

derived in 2D geometry in Sections 2.3 and 2.4. Section 2.5 gives the numerical integration 

scheme for computing the collision probability integrals. The normalization scheme of these 

matrices and solution scheme to evaluate scalar flux are described in Sections 2.6 and 2.7 

respectively.  

2.1 The Integral Form of Transport Equation  

 The integro-differential form of neutron transport equation is [40, 41, 42, 43] 

ሬሬሬԦ.ߗ ,ԦݎሬሬԦ߶൫׏  ,ሬሬሬԦ ߗ ൯ܧ ൅ ,Ԧݎሺߑ  ,Ԧݎሻ߶൫ܧ ,ሬሬሬԦ ߗ ൯ܧ ൌ ,Ԧݎ൫ݍ  ,ሬሬሬԦ ߗ  ൯                                ሺ2.1ሻܧ

The neutron transport equation in (2.1) essentially gives the exact equation for angular 

neutron flux by simply balancing the various mechanisms by which neutrons can be gained or 

lost from an arbitrary volume V within the system. The two terms on left give the removal of 

neutrons due to streaming and neutron loss due to collisions. Here ߑሺݎԦ,  ሻ is the total neutronܧ

cross section. The term on right describes the total neutron production in V. The source 

,Ԧݎ൫ݍ ,ሬሬሬԦ ߗ  ൯ is given byܧ

,Ԧݎ൫ݍ ,ሬሬሬԦ ߗ ൯ܧ ൌ ׬  ᇱܧ݀ ׬ ᇱߗ݀ ,Ԧݎ௦൫ߑ ᇱሬሬሬሬԦߗ ՜ ,ሬሬሬԦ ߗ ᇱܧ ՜ ,Ԧݎ൯߶൫ܧ ,ᇱሬሬሬሬԦߗ ᇱ൯ܧ ൅  ࣭ሺݎԦ,  ሬሬሬԦሻ            ሺ2.2ሻ ߗ

 Here ࣭൫ݎԦ,  ሬሬሬԦ൯ includes fission source and any external source present. In order to simplify ߗ

the discussion, one group formulation is considered which omits the energy dependence. Here 

the streaming operator ሺߗ.ሬሬሬԦ ׏ሬሬԦሻ is just directional derivative along the direction of neutron travel. 

If s is the distance travelled by neutron along direction ߗ ሬሬሬሬԦ, the streaming operator can be written 

as directional derivative  

ሬሬԦ ൌ׏ ሬሬሬԦ.ߗ  
݀

 ݏ݀
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 If Eq. (2.1) is written at ݎ ሬሬԦ ൅   ሬሬሬԦ then ߗ ݏ

ௗ
ௗ௦

߶൫ݎ ሬሬԦ ൅ ,ሬሬሬԦ ߗ ݏ ሬሬሬԦ൯ ߗ ൅ ሬሬԦ ݎ൫ߑ  ൅ ሬሬԦ ݎሬሬሬԦ൯߶൫ ߗ ݏ ൅ ,ሬሬሬԦ ߗ ݏ ሬሬሬԦ൯ ߗ ൌ ሬሬԦ ݎ൫ݍ  ൅ ,ሬሬሬԦ ߗ ݏ  ሬሬሬԦ൯                  ሺ2.3ሻ ߗ

 To derive the integral transport equation, one has to look back along the line from where 

neutrons are coming. Therefore defining R = -s, from which d/ds = -d/dR and equation (2.3) 

becomes 

െ ௗ
ௗோ

߶൫ݎ ሬሬԦ െ ,ሬሬሬԦ ߗ ܴ ሬሬሬԦ൯ ߗ ൅ ሬሬԦ ݎ൫ߑ  െ ሬሬԦ ݎሬሬሬԦ൯߶൫ ߗ ܴ െ ,ሬሬሬԦ ߗ ܴ ሬሬሬԦ൯ ߗ ൌ ሬሬԦ ݎ൫ݍ  െ ,ሬሬሬԦ ߗ ܴ  ሬሬሬԦ൯            ሺ2.4ሻ ߗ

 The derivative in R is removed by using the integrating factor 

݌ݔ݁ ቂെ ׬ –ሬሬԦ ݎ൫ߑ ܴԢ ߗ ሬሬሬԦ൯ ܴ݀Ԣோ
଴ ቃ                                                                      ሺ2.5ሻ 

which has the property  

೏
೏ೃ݁݌ݔ ቂെ ׬ –ሬሬԦ ݎ൫ߑ ܴԢ ߗ ሬሬሬԦ൯ ܴ݀Ԣோ

଴ ቃ ൌ  െߑ൫ݎ ሬሬԦ െ ݌ݔሬሬሬԦ൯݁ ߗ ܴ ቂെ ׬ –ሬሬԦ ݎ൫ߑ ܴԢ ߗ ሬሬሬԦ൯ ܴ݀Ԣோ
଴ ቃ        ሺ2.6ሻ 

 Hence multiplying Eq. (2.4) by the itegrating factor and using the property in (2.6)  

ି 
ௗ

ௗோ
߶൫ݎ ሬሬԦ– ,ሬሬሬԦ ߗ ܴ ݌ݔሬሬሬԦ൯݁ ߗ ቎െ න –ሬሬԦ ݎ൫ߑ ܴᇱߗ ሬሬሬԦ൯ ܴ݀ᇱ

ோ

଴

቏ ൌ 

–ሬሬԦ ݎ൫ݍ  ,ሬሬሬԦ ߗ ܴ ݌ݔሬሬሬԦ൯݁ ߗ ቂെ ׬ –ሬሬԦ ݎ൫ߑ ܴԢ ߗ ሬሬሬԦ൯ ܴ݀Ԣோ
଴ ቃ ሺ2.7ሻ 

 Integrating this equation along the neutron path from 0 to R gives 

߶൫ݎԦ, ሬሬሬԦ൯ ߗ ൌ න ܴ݀′

ோ

଴

–ሬሬԦ ݎ൫ݍ ,ሬሬሬԦ ߗ′ܴ ݌ݔሬሬሬԦ൯݁ ߗ ቎െ න –ሬሬԦ ݎ൫ߑ ′′ܴ݀ ሬሬሬԦ൯ ߗ ′′ܴ

ோ′

଴

቏ 

                     ൅ ߶൫ݎ ሬሬԦ– ,ሬሬሬԦ ߗ ܴ ݌ݔሬሬሬԦ൯݁ ߗ ቎െ න –ሬሬԦ ݎ൫ߑ ′′ܴ݀ ሬሬሬԦ൯ ߗ ′′ܴ

ோ

଴

቏                                                     ሺ2.8ሻ 
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 The expressions in the exponentials are line integrals of the total cross section along the 

line of neutron travel. From the analogy to the transmission of light, the optical path between ݎ ሬሬԦ 

and ݎ ሬሬԦ– ܴᇱߗ ሬሬሬԦ is referred as 

߬൫ݎ ሬሬԦ, –ሬሬԦ ݎ ܴᇱߗ ሬሬሬԦ൯ ൌ ׬  –ሬሬԦ ݎ൫ߑ ܴԢԢ ߗ ሬሬሬԦ൯ ܴ݀ԢԢோᇲ

଴                                              ሺ2.9ሻ 

 Using this definition of optical path, Eq. (2.8) takes  the following form 

߶൫ݎԦ, ሬሬሬԦ൯ ߗ ൌ ߶൫ݎ ሬሬԦ െ ,ሬሬሬԦ ߗ ܴ ,ሬሬԦ ݎെ߬ሺൣ݌ݔሬሬሬԦ൯݁ ߗ –ሬሬԦ ݎ ሬሬሬԦሻ൧ ߗ ܴ ൅  න ܴ݀Ԣ
ோ

଴

–ሬሬԦ ݎ൫ݍ ܴԢ ߗ ሬሬሬԦ, ,ሬሬԦ ݎെ߬ሺൣ݌ݔሬሬሬԦ൯݁ ߗ –ሬሬԦ ݎ ܴᇱߗ ሬሬሬԦሻ൧ 

ሺ2.10ሻ 

 Equation (2.10) is the required form of integral transport equation. If the nature of source 

defined in Eq. (2.2) is isotropic in the laboratory system or assumed to be isotropic by utilizing 

the transport approximation to the scattering cross section, the angular dependence of q in above 

equation can also be omitted and the equation (2.10) takes the following form 

߶൫ݎԦ, ሬሬሬԦ൯ ߗ ൌ ߶൫ݎ ሬሬԦ– ,ሬሬሬԦ ߗ ܴ ,ሬሬԦ ݎെ߬൫ൣ݌ݔሬሬሬԦ൯݁ ߗ –ሬሬԦ ݎ  ሬሬሬԦ൯൧ ߗ ܴ

൅ ଵ
ସగ ׬ ܴ݀Ԣோ

଴ –ሬሬԦ ݎ൫ݍ ܴԢ ߗ ሬሬሬԦ൯݁ൣ݌ݔെ߬ሺݎ ሬሬԦ, –ሬሬԦ ݎ ܴᇱߗ ሬሬሬԦሻ൧     ሺ2.11ሻ 

 If the medium is bound by a surface S, Eq. (2.11) can be written in terms of the known 

incoming neutrons by taking R as the distance from ݎ ሬሬԦ back along the flight path in the direction 

ሬሬԦ ݎ ,ሬሬሬԦ to the point ߗ െ  ሬሬሬԦ, where the neutrons enter the problem domain. Therefore Eq. (2.11) can ߗ ܴ

be written as 

߶൫ݎԦ, ሬሬሬԦ൯ ߗ ൌ ߶൫ݎௌሬሬሬԦ, ሬሬሬԦ൯݁ିఛೄ ߗ ൅ ଵ
ସగ

׬  ܴ݀Ԣோೄ
଴ ݍ ቀݎԢ ሬሬሬԦቁ ݁ିఛሺோᇲሻ                           ሺ2.12ሻ 

where ݎௌሬሬሬԦ ൌ ሬሬԦ ݎ െ ܴௌ ߗ ሬሬሬԦ is an arbitrary point on the line passing through ݎ ሬሬԦ in the direction ߗ ሬሬሬԦ on 

the surface S and ݎᇱሬሬሬሬԦ ൌ –ሬሬԦ ݎ ܴᇱߗ ሬሬሬԦ. 
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The equation for scalar flux is obtained by integrating equation (2.12) over all angles. 

Thus  

߶ሺݎԦሻ ൌ ׬ ߶൫ݎԦ, ሬሬሬԦ൯ ߗ ሬሬሬԦ ߗ݀  ൌ ׬  ߶൫ݎௌሬሬሬԦ, ሬሬሬԦ൯݁ିఛೄଵ ߗ
ௌ ሬሬሬԦ ߗ݀ ൅ ଵ

ସగ ׬ ׬ ݍ ቀݎԢ ሬሬሬԦቁ ݁ିఛሺோᇲሻோೄ
଴ ܴ݀Ԣଵ

ௌ  ሬሬሬԦ ሺ2.13ሻ ߗ݀

Now  

ሬሬሬԦ ߗ݀ ൌ  ൫ఆ.ሬሬሬԦ ௡ො൯ௗௌ
ோೄ

మ   and ݀ݎ ሬሬԦ ൌ  ܴଶܴ݀ ݀ߗ ሬሬሬԦ                                             ሺ2.14ሻ 

Using these, above equation can be rewritten as 

߶ሺݎԦሻ ൌ ׬  ௘షഓೄ

ோೄ
మ ൫ߗ.ሬሬሬԦ ො݊ି൯ଵ

ௌ ߶ି൫ݎௌሬሬሬԦ, ሬሬሬԦ൯݀ܵ ߗ ൅ ׬  ௘షഓሺೃሻ

ସగோమ
ଵ

௏ ݍ ቀݎԢ ሬሬሬԦቁ  ԢሬሬሬሬԦ                              ሺ2.15ሻ ݎ݀

where ߶ି൫ݎௌሬሬሬԦ,  .ሬሬሬԦ൯is the incoming angular flux at surface S ߗ

The outgoing flux at surface S can be obtained from Eq. (2.12) as it is valid at any point. 

The outgoing flux is given by 

߶ା ቀݎԢௌሬሬሬሬሬԦ, ሬሬሬԦቁ ߗ ൌ ߶ି൫ݎௌሬሬሬԦ, ሬሬሬԦ൯݁ିఛೄ ߗ ൅ ଵ
ସగ

׬  ܴ݀Ԣோೄ
଴ ݍ ቀݎԢ ሬሬሬԦቁ ݁ିఛሺோᇲሻ                                   ሺ2.16ሻ 

 A boundary condition is required in order to close the system of Eqs. (2.15) and (2.16). 

The boundary condition can be written in terms of a relation between the outgoing and incoming 

angular flux on the surface S as [40] 

߶ି൫ݎௌሬሬሬԦ, ሬԦሻ൯ߗ ൌ ׬ ,ௌሬሬሬԦݎ൫ ݐ ᇱሬሬሬሬԦߗ ՜ ,ௌሬሬሬԦݎሬԦ൯ ߶ା൫ߗ  ᇱሬሬሬሬԦ.                               ሺ2.17ሻߗ݀ ᇱሬሬሬሬԦ൯ߗ

where t describes the transmission or albedo factors at the surface S. 

2.2 Discretized Flux Equation 

 The system of Eqs. (2.15) and (2.16) gives an exact description of the flux distribution 

inside the region under consideration as well as the outgoing angular flux through the surface 

enclosing the region for a given incoming angular flux. In order to solve these equations, some 

numerical approximations are required for the scalar fluxes inside the cells and for the angular 

fluxes leaving and entering the cell surfaces. In the present research work, the flat flux 
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approximation is considered inside the region, i.e. scalar flux ߶ሺݎԦሻ is constant in each region of 

the solution domain. Also the cross sections and the source inside each region are assumed 

constant. If solution domain is divided into NV regions of volume Vi then [41] 

Σ(ݎԦ) = Σi for r א Vi , 

q(ݎԦ) = qi for r א Vi . 

 Here, the external boundary S is considered to be composed of NS surfaces of area Sα. The 

angular flux on these surfaces is approximated by a series expansion in terms of half–range 

spherical harmonics 

߶േ൫ݎௌሬሬሬԦ, ሬሬሬԦ൯ ~ ଵ ߗ
గ

∑ േܬ
ఔሺݎௌሬሬሬԦሻ߰ఔሺߗ ሬሬሬԦ, ݊േ ሬሬሬሬሬሬԦሻேഌ

ఔୀ଴ .                                                  ሺ2.18ሻ  

where ఔܰ  is the number of terms retained in the expansion,  ܬേ
ఔ are the expansion coefficients and 

߰ఔ are the linearly independent functions which are taken as orthonormal and satisfy the 

following orthonormality condition 

,ሬሬሬԦ ߗ൫׬  ݊േ ሬሬሬሬሬሬԦ൯߰ఔ൫ߗ ሬሬሬԦ, ݊േ ሬሬሬሬሬሬԦ൯߰ఔ൫ߗ ሬሬሬԦ, ݊േ ሬሬሬሬሬሬԦ൯݀ߗ ሬሬሬԦ ൌ  ఓఔ                                    ሺ2.19ሻߜߨ 

The spatially averaged fluxes and partial currents are defined as 

߶௝ ൌ  ଵ
௏ೕ

׬ ߶ሺݎԦሻ ݀ݎԦ ଵ
௏ೕ

                                                         ሺ2.20aሻ 

ఈܬ
ା ൌ  ଵ

ௌഀ
׬ Ԧሻ ݀ܵ ଵݎሺܬ

ௌഀ
                                                          ሺ2.20bሻ 

Now Eq. (2.15) can be integrated over each region i of the solution domain. Therefore 

integrating Eq. (2.15) over volume Vj of jth zone and multiplying the result by Σj 

௝ߑ න ߶ሺݎԦሻ ݀ݎԦ 
ଵ

௏ೕ

ൌ ௝ߑ  ෍ න න
݁ିఛೄ

ܴௌ
ଶ ൫ߗ.ሬሬሬԦ  ො݊ି൯

ଵ

ௌ

߶ି൫ݎௌሬሬሬԦ,  Ԧݎ݀ ሬሬሬԦ൯݀ܵ ߗ
ଵ

௏ೕ

ேೄ

ఈୀଵ

൅ ߑ௝ ෍ න න
݁ିఛሺோሻ

ଶܴߨ4

ଵ

௏೔

ݍ ቀݎԢ ሬሬሬԦቁ  Ԧݎ݀ ԢሬሬሬሬԦ ݎ݀
ଵ

௏ೕ

ேೇ

௜ୀଵ

                                                                      ሺ2.21ሻ 
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Now using Eq. (2.20) in Eq. (2.21) and defining 

௝ܲ௜ ൌ ఀೕ

௏೔
׬ ׬ ௘షഓሺೃሻ

ସగோమ
ଵ

௏೔
Ԧ ଵݎ݀ ԢሬሬሬሬԦ ݎ݀

௏ೕ
.                                                        (2.22a) 

௝ܲఈ
ఔ ൌ ఀೕ

ௌഀ
׬ ׬ ௘షഓೄ

ସగோೄ
మ ߰ఔሺߗ ሬሬሬԦ, ݊ି ሬሬሬሬሬሬԦሻ൫ߗ.ሬሬሬԦ ො݊ି൯ଵ

ௌഀ
Ԧ ଵݎ݀ ܵ݀

௏ೕ
.                                      (2.22b) 

Eq. (2.21) becomes 

௝ߑ ௝ܸ߶௝ ൌ ∑ ∑ ௝ܲఈ
ఔ ܵఈିܬ,ఈ

ఔேഌ
ఔୀ଴

ேೄ
ఈୀଵ ൅  ∑ ௝ܲ௜ ݍ௜

ேೇ
௜ୀଵ .                                          (2.23) 

 Here ݍ௜ ൌ  ௜ܵ ௜ܸ ൅ ௦௜ߑ ௜ܸ߶௜ is the total source in region i, Si is the fission and scattering 

source in a group and ߑ௦௜ is the self scattering cross section within the group. Here ௝ܲ௜  is called 

the region to region collision probability and is defined as the probability of a neutron emitted 

uniformly and isotropically in region i and having its first collision in region j. ௝ܲఈ
ఔ  is called 

surface to region collision probability and is defined as the probability of neutron entering 

through surface α in mode ν and having first collision in region j.  

The expression for outgoing current through each discretized surface is obtained using Eq. 

(2.16). For current through surface ߙ, multiplying Eq. (2.16) with ߗ.ሬሬሬԦ  ො݊ା݀ߗሬԦ and integrating over 

surface  

න ߶ା൫ݎᇱ
ௌሬሬሬሬሬԦ, ሬሬሬԦ.ߗሬሬሬԦ൯ ߗ  ො݊ା ݀ߗሬԦ݀ܵ 

ଵ

ௌഀ

ൌ  ෍ න ݁ିఛೄ

ଵ

ௌ

߶ି൫ݎௌሬሬሬԦ,  ሬԦ݀ܵߗሬሬሬԦ ො݊ା݀.ߗሬሬሬԦ൯ ߗ
ேೄ

ఉୀଵ

൅ ෍ න
1

න ߨ4 ܴ݀Ԣ

ோೄ

଴

ݍ ቀݎԢ ሬሬሬԦቁ ݁ିఛሺோᇲሻ ߗ.ሬሬሬԦ ො݊ା݀ߗሬԦ݀ݎԦ ݀ܵ
ଵ

ௌഀ

ேೇ

௜ୀଵ

 

ሺ2.24ሻ 

Now using Eq. (2.20) and  
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ܴௌ
ଶ݀ߗሬԦ ൌ ሬሬሬԦ.ߗ   ො݊ି݀ܵ 

ܴଶ݀ߗሬԦܴ݀ ൌ  Ԧݎ݀

and defining 

ఈܲ௜
ఔ ൌ ଵ

௏೔
׬ ׬  ௘షഓೄ

ସగோమ ߰ఔሺߗ ሬሬሬԦ, ݊ା ሬሬሬሬሬሬԦሻோೄ
௏೔

ሬሬሬԦ.ߗ ො݊ା ݀ݎԦ݀ܵ ଵ
ௌഀ

.                         ሺ2.25aሻ 

ఈܲఉ
ఔఓ ൌ ׬ ׬ ௘షഓೄೄᇲ

ସగோೄ
మ ߰ఔ൫ߗ ሬሬሬԦ, ݊ା ሬሬሬሬሬሬԦ൯߰ఓ൫ߗ ሬሬሬԦ, ݊ି ሬሬሬሬሬሬԦ൯ߗ.ሬሬሬԦ ො݊ା  ߗ.ሬሬሬԦ ො݊ି ݀ܵᇱ݀ܵ .                  (2.25bሻ 

Eq. (2.24) becomes 

ܵఈܬା,ఈ
ఔ ൌ  ∑ ∑ ఈܲఉ

ఔఓ ିܬ,ఉ
ఓ

ఉܵ
ேഋ
ఓୀ଴

ேೄ
ఉୀଵ ൅  ∑ ఈܲ௜

ఔ ௜ ேೇݍ 
௜ୀଵ .                                        ሺ2.26ሻ 

 Here ఈܲ௜
ఔ  , called escape probability, is defined as the probability that neutrons emitted 

uniformly and isotropically in region i will escape through surface α in mode ν. ఈܲఉ
ఔఓ is called the 

surface to surface transmission probability and defined as the probability of neutrons entering 

through surface β in mode μ to be transmitted through the cell and out through surface α in mode 

ν without making a collision. It should be noted that all the probability matrices in Eqs. (2.22) & 

(2.25) have a physical meaning of probabilities only for ߤ, ߥ ൌ 0. For higher values of ߥ & ߤ, 

they are components of probabilities and are traditionally called probabilities [44]. 

 Eqs. (2.23) & (2.26) are the required discretized equations for a cell under consideration. 

The physical interpretation of Eq. (2.23) is that the two terms on the right are the contributions to 

the collision rate in a region of cell from the neutrons entering through all the surfaces of the cell 

and sources within all the regions respectively. Similarly, in Eq. (2.26), the two terms on right 

give the contribution to the outward current through a surface of cell from the inward currents 

from all other surfaces of the cell plus the sources within all regions of the cell [44]. The 

boundary condition given in Eq. (2.17) closes this system of equations. Here, the albedo 

boundary condition of the following form [40, 41] has been used 
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߶ି൫ݎௌሬሬሬԦ, ሬሬሬԦ ߗ െ 2ሺ݊ௌሬሬሬሬԦ . ሬሬሬԦሻ൯ ߗ ൌ ,ௌሬሬሬԦݎ൫ߚ  ,ௌሬሬሬԦݎሬሬሬԦ൯߶ା൫ ߗ  ሬሬሬԦ൯                              ሺ2.27ሻ ߗ

where ߚ൫ݎௌሬሬሬԦ, ሬሬሬԦ ߗ ሬሬሬԦ൯ is the reflection coefficient at the surface S and ߗ െ 2ሺ݊ௌሬሬሬሬԦ .  ሬሬሬԦሻ is the final ߗ

direction in which neutron travels after reflection as shown in Fig. 2.1. 

 

 

 

 

 

 

Fig. 2.1 – Specular Reflection of neutron at the surface 

 Under the approximations described above, Eq. (2.27) takes the following discretized 

form  

ܬି ,ఈ
ఔ ൌ  ∑ ∑ ఈఉܣ

ఔఓ ା,ఉܬ 
ఓேഋ

ఓୀ଴
ேೄ
ఉୀଵ .                                        ሺ2.28ሻ 

where ܣఈఉ
ఔఓ   is the boundary condition matrix which gives a relation between the outgoing current 

on a given surface and the incoming current on different surfaces. Typically for purely reflective 

boundary conditions this matrix will be equivalent to the product of two Kronecker delta 

functions  ߜఈ,ఉ and ߜఓ,ఔ. 

2.3 Properties of the Collision Probability Matrices 

 The four types of collision probabilities defined in Eqs. (2.22) and (2.25) satisfy some 

reciprocity and conservation relations. The reciprocity relations arise due to the symmetry of the 

optical distance i.e. ߬ ቀݎ ሬሬԦ, Ԣ ሬሬሬԦቁݎ ൌ ߬ ቀݎԢ ሬሬሬԦ, ሬሬԦቁ ݎ . The collision probabilities satisfy the following 

reciprocity relations  

 ሬሬሬԦߗ

߶ା 

߶ି 

݊ௌሬሬሬሬԦ 

ܵ 
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௝ߑ ௝ܸ ௜ܲ௝ ൌ ௜ߑ ௜ܸ ௝ܲ௜ .                                                        ሺ2.29aሻ 

௜ܲఈ
ఔ ൌ ସఀ೔௏೔

ௌഀ
ఈܲ௜
ఔ .                                                          ሺ2.29bሻ 

ܵఈ ఉܲఈ
ఔఓ ൌ ఉܵ ఈܲఉ

ఓఔ.                                                           ሺ2.29cሻ 

where it is assumed that the angular representation functions satisfy [40] 

߰ା,ఈ
ఔ ൫ߗ ሬሬሬԦ൯ ൌ  ߰ି,ఈ

ఔ ሺെߗ ሬሬሬԦሻ                                                         ሺ2.30ሻ 

The following classical conservation relations satisfied by collision probability matrices 

can be derived using integro-differential transport equation: 

∑ ௝ܲ௜
ேೇ
௝ୀଵ ൅ ∑ ఈܲ௜

଴ேೄ
ఈୀଵ ൌ 1.                                                        ሺ2.31aሻ 

∑ ௝ܲఈ
ఔேೇ

௝ୀଵ ൅ ∑ ఉܲఈ
ఔ଴ேೄ

ఉୀଵ ൌ  ଴ఔ.                                                       ሺ2.31bሻߜ

 The physical interpretation of Eq. (2.31a) is that a neutron born in region i must either 

collide in the other regions or escape from it. Similarly, Eq. (2.31b) represents that a neutron 

entering through a surface should either collide in one of the zones or escape through one of the 

surfaces. These reciprocity and conservation relations should be utilized to reduce the number of 

collision probability calculations and guarantee the neutron conservation. 

2.4 Calculation of Collision Probabilities 

 Eqs. (2.22) and (2.25) give the general form for the four types of collision probability 

matrices in 3D geometry. Here, the description pertains to the application in 2D hexagonal 

geometry. Here the term ‘2D geometry’ is referred to the geometry which is infinite in z 

direction but finite in the plane perpendicular to it. The general two dimensional space element 

used for calculating collision probabilities is shown in Fig. 2.2. Out of the four collision 

probability matrices, the surface to region probabilities are normally not computed by direct 

numerical integration to save computational efforts. Reciprocity relation in Eq. (2.29b) is utilized 
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to directly calculate these probabilities from escape probability. So here only the description of 

remaining three collision probability matrices is discussed. For calculating the different 

components of collision probabilities, the angular flux in each of the half space created by every 

bounding surface is expanded into P2 Legendre polynomials. The following properly 

orthonormalized angular representation functions for DP2 expansion of angular flux are used [9, 

41] 

߰േ ,ఈ
଴ ൌ 1.                                                      ሺ2.32aሻ 

߰േ ,ఈ
ଵ ൌ 2 sin ߴ sin ߱.                                            ሺ2.32bሻ 

߰േ ,ఈ
ଶ ൌ 3√2ሺsin ߴ cos ߱ െ ଶ

ଷ
ሻ.                                         ሺ2.32cሻ 

߰േ ,ఈ
ଷ ൌ ଶ଴

√ଵ଻
ሺ sinଶߴ െ ଷ

ହ
sin ߴ cos ߱ െ ଻

ଶ଴
ሻ.                                   ሺ2.32dሻ 

߰േ ,ఈ
ସ ൌ √306ሺ sinଶߴ cosଶ ߱ െ ଶ

ହଵ
sinଶ ߴ െ ଶ଴

ଵ଻
sin ߴ cos ߱ ൅ ଵ଺

ହଵ
ሻ.             ሺ2.32eሻ 

߰േ ,ఈ
ହ ൌ ଷ଴

√ଵଵ
ሺ sinଶߴ cos ߱ sin ߱ െ ଼

ଵହ
sin ߴ sin ߱ሻ.                            ሺ2.32fሻ 

 Here ߴ is the angle between neutron tracking direction and polar axis, and ߱ is the angle 

which projection of the neutron direction on 2D plane makes with the outward (+) or inward (-) 

normal to surface ߙ as shown in Fig. 2.3. Here first function (Eq. 2.32a) corresponds to the P0 

expansion, the first three functions (Eq. 2.32a to 2.32c) correspond to the P1 expansion and all 

six functions (Eq. 2.32) constitute the P2 expansion. 
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Fig. 2.3 – Angle of projection of neutron direction on 2D plane with inward/outward 

normal to lattice cell surfaces 
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Fig. 2.2 – Definition of 2D Space element
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 Here, first general 3D volume and surface integrals are simplified in 2D geometry. For 

this purpose, spherical coordinate system is used. The volume element ݀ݎ ሬሬԦ and surface element 

݀ܵ in spherical coordinate system is written as 

ሬሬԦ ݎ݀ ൌ ܴଶܴ݀ sin ߴ  ሺ2.33aሻ                                                      .߶݀ߴ݀

ܴௌ
ଶ sin ߴ ߶݀ߴ݀ ൌ ሬሬሬԦ.ߗ   ො݊ି݀ܵ.                                                      ሺ2.33bሻ 

Using this the volume and surface integrals for a function ݂ሺݎ ሬሬԦሻ are simplified as [41] 

׬ ௙ሺ௥ ሬሬሬԦሻ
ோమ ሬሬԦ ݎ݀ ൌ ׬  ݀߶ ׬ sin ߴ ߴ݀ ׬ ݂ሺ߶, ,ߴ ܴሻܴ݀

ഏ
మ

ିഏ
మ

ଶగ
଴ .                           ሺ2.34ሻ 

׬  ௙ሺ௥ ሬሬሬԦሻ
ோమ ሬሬሬԦ.ߗ  ො݊ି݀ܵ ൌ ׬  ݀߶ ׬ sin ߴ ,߶ሺ݂ߴ݀ ,ߴ ܴௌሻ

ഏ
మ

ିഏ
మ

ଶగ
଴ .                           ሺ2.35ሻ 

Using the notation, ݐ ൌ ܴ sin ,߶and if ݂ሺ (see Fig 2.2)  ߴ ,ߴ ܴሻ ൌ  ݂ሺ߶, ߨ െ ,ߴ ܴሻ is 

symmetric in polar angle, Eqs. (2.34) and (2.35) become 

׬ ௙ሺ௥ ሬሬሬԦሻ
ோమ ሬሬԦ ݎ݀ ൌ  2 ׬ ݀߶ ׬ ߴ݀ ׬ ݂ሺ߶, ,ߴ ݐሻ݀ݐ

ഏ
మ

଴
ଶగ

଴ .                           ሺ2.36ሻ 

׬ ௙ሺ௥ ሬሬሬԦሻ
ோమ ሬሬሬԦ.ߗ  ො݊ି݀ܵ ൌ  2 ׬ ݀߶ ׬ sin ߴ ߴ݀ ׬ ݂ሺ߶, ,ߴ ݐௌሻ݀ݐ

ഏ
మ

଴
ଶగ

଴ .                           ሺ2.37ሻ 

2.4.1 Region to Region Collision Probabilities 

 Using the result in Eq. (2.36), Eq. (2.22a) reduces to 

௝ܲ௜ ൌ ఀೕ

ଶగ௏೔
׬ ݀߶ ׬ ߴ݀ ׬ ݕ݀ ׬ ᇱݐ݀ ׬ ଴ݐ݀

௬א௝ ݁ିఛሺோሻ
ഏ
మ

଴
ଶగ

଴ .                                  (2.38) 

 The optical distance ߬ሺܴሻ in Fig. (2.2) can be written as 

߬ሺܴሻ ൌ  ቐ
ఀ೔ሺ௧೔ି௧ᇲሻା∑ ఀೖ௧ೖ

ೕషభ
ೖస೔శభ ାఀೕ௧

ୱ୧୬ ణ
݅ ݎ݋݂        ൐ ݆

ఀ೔ሺ௧೔ି௧ᇲሻ
ୱ୧୬ ణ

݅ ݎ݋݂                                  ൌ ݆
                                          ሺ2.39ሻ 

 Using this definition of ߬ሺܴሻ in Eq. (2.38), the equation becomes  

௝ܲ௜ ൌ
௝ߑ

ߨ2 ௜ܸ
න ݀߶ න ߴ݀ න ݕ݀ න ᇱݐ݀

௧೔

଴
න ݐ݀

௧ೕ

଴

଴

௬א௝
݁ି

ఀ೔ሺ௧೔ି௧ᇲሻା∑ ఀೖ௧ೖ
ೕషభ
ೖస೔శభ ାఀೕ௧

ୱ୧୬ ణ

గ
ଶ

଴

ଶగ

଴
.  
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 On solving the integration over ݐ and ݐᇱ and doing some algebra the following expression 

is obtained 

௝ܲ௜ ൌ
1

௜ߑߨ2 ௜ܸ
න ݀߶ න ଷ൫߬௜௝൯݅ܭൣ െ ଷ൫߬௜௝݅ܭ ൅ ߬௜൯ െ ଷ൫߬௜௝݅ܭ ൅ ௝߬൯ ൅ ଷ൫߬௜௝݅ܭ ൅ ߬௜ ൅ ௝߬൯൧ ݀ݕ 

௬೘ೌೣ

௬೘೔೙

ଶగ

଴

. 

ሺ2.40ሻ 
where the analytical integration over polar angle ߴ is absorbed in the Bickley-Naylor function of 

third order Ki3. The general Bickley-Naylor function of order ‘n’ is defined as 

௡ሺ߬ሻ݅ܭ ൌ ׬ ି݁ ߴ௡ିଵ݊݅ݏ ߴ݀ ഓ
౩౟౤ ഛ

గ/ଶ
଴                                                 ሺ2.41ሻ 

When i = j, the integral over ݐ in Eq. (2.36) must be divided into two different parts since 

the expression for τ with ݐ ൑ ݐ ′ is different from the one when ݐ ൐ ݐ ′ [41]. Therefore  

௜ܲ௜ ൌ
௜ߑ

ߨ2 ௜ܸ
න ݀߶ න ߴ݀ න ݕ݀ න ᇱݐ݀

௧೔

଴
ሾන ݁ିఀ೔ሺ௧ᇲି௧ሻ

ୱ୧୬ ణ ݐ݀
௧ᇲ

଴

଴

௬א௜
൅ න ݁ିఀ೔ሺ௧ି௧ᇲሻ

ୱ୧୬ ణ ݐ݀
௧೔

௧ᇲ
ሿ

గ
ଶ

଴

ଶగ

଴
.  

 Solving the integration, the following expression for self collision probability  ௜ܲ௜  is 

obtained 

௜ܲ௜ ൌ 1 െ ଵ
ଶగఀ೔௏೔

׬ ݀߶ ׬ ሾ݅ܭଷሺ0ሻ െ ௬೘ೌೣ ݕ݀ ଷሺ߬௜ሻሿ݅ܭ
௬೘೔೙

ଶగ
଴ .                         ሺ2.42ሻ 

 Eqs. (2.40) and (2.42) are the required expressions for the region to region collision 

probabilities. Since the sources and scattering are assumed to be isotropic, the region to region 

collision probabilities have no angular dependence. Here it is to be noted that the limits of y 

integration in Eqs. (2.40) and (2.42) depend on the azimuthal angle ߶ . It is limited to the 

minimum and maximum values of y at that angle as shown in Fig 2.2. Since all the chords do not 

pass for all the y values through the regions i/j, only part of the y interval contribute to ௝ܲ௜  or ௜ܲ௜. 
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2.4.2 Region to Surface Escape Probability 

 Using the expression for volume element in Eq. (2.33) and the result in Eq. (2.37), the 

escape probability for a neutron born isotropically in region i through surface ߙ in mode ߥ in Eq. 

(2.25a) reduces to the following form in 2D geometry  

ఈܲ௜
ఔ ൌ ଵ

ଶగ௏೔
׬ ݀߶ ׬ ߴ݀ ׬ ݕ݀ ׬ ܴ݀ sin ߴ ߰ఔ൫ߗ ሬሬሬԦ, ݊ା ሬሬሬሬሬሬԦ൯݁ିఛೄሺோሻ 

ഏ
మ

଴
ଶగ

଴ .                         (2.43) 

Now using ݐ ൌ ܴ sin  above Eq. reduces to ,ߴ

ఈܲ௜
ఔ ൌ ଵ

ଶగ௏೔
׬ ݀߶ ׬ ߴ݀ ׬ ݕ݀ ׬ ,ሬሬሬԦ ߗఔሺ߰ ݐ݀ ݊ା ሬሬሬሬሬሬԦሻ ݁ିఛೄሺ௧ሻ/ ୱ୧୬ ణ௧೔

଴

ഏ
మ

଴
ଶగ

଴ .                         (2.44) 

 The optical distance ߬ௌሺݐሻ from region i is written as 

߬ௌሺݐሻ ൌ ఀ೔ሺ௧೔ି௧ሻା∑ ఀೖ௧ೖ
బ
ೖస೔శభ

ୱ୧୬ ణ
                                               (2.45) 

Using this definition of optical distance in Eq. (2.44) and performing the integration 

over ݐ  

ఈܲ௜
ఔ ൌ ଵ

ଶగఀ೔௏೔
׬ ݀߶ ׬ ߴ݀ ׬ ,ሬሬሬԦ ߗఔሺ߰ ݕ݀ ݊ା ሬሬሬሬሬሬԦሻ ݊݅ݏଶߠ ሺ݁ି ഓೞ

౩౟౤ ഇ െ ݁ି
ሺഓ೔శഓೞሻ

౩౟౤ ഇ  ሻ௬೘ೌೣ
௬೘೔೙

ഏ
మ

଴
ଶగ

଴ .        (2.46) 

 The different components of region to surface escape probability are obtained using 

expansion functions (2.32) in Eq. (2.46). Substituting these functions in Eq. (2.46) and using the 

definition of Bickley-Naylor function in Eq. (2.41), the following expressions for different 

components are obtained 

ఈܲ௜
଴ ൌ ଵ

ଶగఀ೔௏೔
׬ ݀߶ ׬ ሾ݅ܭଷሺ߬௜ௌሻ െ ଷሺ߬௜݅ܭ ൅ ߬௜ௌሻሿ݀ݕ ௬೘ೌೣ

௬೘೔೙

ଶగ
଴ .                 (2.47a) 

௜ܲௌഀ
ଵ ൌ  ଶ

ଶగఀ೔௏೔
׬ ݀߶ ׬ sin ߱ఈ ሾ݅ܭସሺ߬௦ሻ െ ସሺ߬௜݅ܭ ൅ ߬௦ሻሿ௬೘ೌೣ

௬೘೔೙

ଶగ
଴  (2.47b)                     .ݕ݀

௜ܲௌഀ
ଶ ൌ  െ2√2 ௜ܲௌഀ

଴ ൅ ଷ√ଶ
ଶగఀ೔௏೔

׬ ݀߶ ׬ cos ߱ఈ ሾ݅ܭସሺ߬௦ሻ െ ସሺ߬௜݅ܭ ൅ ߬௦ሻሿ௬೘ೌೣ
௬೘೔೙

ଶగ
଴  (2.47c)  .ݕ݀

௜ܲௌഀ
ଷ ൌ  ଵ

√ଵ଻
ቂെ15 ௜ܲௌഀ

଴ െ 2√2 ௜ܲௌഀ
ଶ ൅ ଶ଴

ଶగఀ೔௏೔
׬ ݀߶ ׬ ሾ݅ܭହሺ߬௦ሻ െ ହሺ߬௜݅ܭ ൅ ߬௦ሻሿ݀ݕ௬೘ೌೣ

௬೘೔೙

ଶగ
଴ ቃ. (2.47d) 
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௜ܲௌഀ
ସ ൌ  √ଷ଴଺

ହଵ
ቂെ24 ௜ܲௌഀ

଴ െ 10√2 ௜ܲௌഀ
ଶ ൅ ଵ

ଶగఀ೔௏೔
׬ ݀߶ ׬ ሺ51ܿݏ݋ଶ߱ఈ െ 2ሻሾ݅ܭହሺ߬௦ሻ െ௬೘ೌೣ

௬೘೔೙

ଶగ
଴

ହሺ߬௜݅ܭ ൅ ߬௦ሻሿ݀ݕቃ.            (2.47e) 

௜ܲௌഀ
ହ ൌ  ଵ

√ଵଵ
ቂെ8 ௜ܲௌഀ

ଵ ൅ ଷ଴
ଶగఀ೔௏೔

׬ ݀߶ ׬ cos ߱ఈ  sin ߱ఈሾ݅ܭହሺ߬௦ሻ െ ହሺ߬௜݅ܭ ൅ ߬௦ሻሿ௬೘ೌೣ
௬೘೔೙

ଶగ
଴  ቃ.   (2.47f)ݕ݀

 Here not all the directions of ߶  and intervals of y contribute to the integration. The 

integration over ߶ is limited to those directions which pass through surface α and integration 

over y is limited to y values passing through the region i. 

2.4.3 Surface to Surface Transmission Probability 

 Using the result of surface integral in Eq. (2.37), the expression for surface to surface 

collision probability in Eq. (2.25b) becomes  

ఈܲఉ
ఔఓ ൌ ଶ

గ ௌഀ
׬ ݀߶ ׬ ߴ݀ ׬ ݕ݀ sinଶ ߴ ߰ఔ൫ߗ ሬሬሬԦ, ݊ା ሬሬሬሬሬሬԦ൯ ߰ఓ൫ߗ ሬሬሬԦ, ݊ି ሬሬሬሬሬሬԦ൯݁ିఛೄሺோሻ

ഏ
మ

଴
ଶగ

଴ .                   (2.48) 

 The optical path between the surfaces ߙ and ߚ is written as 

߬ௌሺܴሻ ൌ
∑ ఀೖ௧ೖ

ಿೇ
ೖసభ

ୱ୧୬ ణ
ൌ ఛഀഁ

ୱ୧୬ ణ
                                               (2.49) 

 Substituting this in Eq. (2.48) gives 

ఈܲఉ
ఔఓ ൌ ଶ

గ ௌഀ
׬ ݀߶ ׬ ߴ݀ ׬ ௬೘ೌೣݕ݀

௬೘೔೙
sinଶ ߴ ߰ఔ൫ߗ ሬሬሬԦ, ݊ା ሬሬሬሬሬሬԦ൯ ߰ఓ൫ߗ ሬሬሬԦ, ݊ି ሬሬሬሬሬሬԦ൯݁ି

ഓഀഁ
౩౟౤ ഛ

ഏ
మ

଴
ଶగ

଴ .             (2.50) 

 This gives the general expression for transmission probability from surface β to surface α. 

The different components of transmission probability are obtained by using the expansion 

functions in Eq. (2.32) for incoming and outgoing angular fluxes in above equation. These 

expressions are given in Appendix A for different combinations of ߤ and ߥ. It is to be noted that 

all the components of  ఈܲఉ
ఔఓ given in Appendix A are not computed numerically. Reciprocity 

relation in Eq. (2.29c) is utilized to minimize the computational efforts. Here too, only those y 

and ߶ intervals contribute to integration which pass through both surfaces α and β.  
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2.5 Computation of Collision Probability Integrals 

2.5.1 Evaluation of Bickley-Naylor function 

 As seen in above expressions for collision probabilities, the integration over polar angle 

is replaced by the Bickley-Naylor functions defined in Eq. (2.41). With the usage of angular flux 

expansion functions in Eq. (2.32), the Bickley-Naylor functions of the order of 3 to 7 need to be 

numerically evaluated. In the present research work, the method given in [41 and 45 ] has been 

adopted. This method uses the Rational Chebyshev Approximations to evaluate the Bickley-

Naylor functions Kin(x) for n=1 to 10. The Bickley-Naylor functions satisfy a recursive relation 

enabling a function of any order to be found if three Bickley-Naylor functions of consecutive 

order are known. These formulae known as forward and backward recursion formula are given 

by the following equations: 

ሺ݊ െ 1ሻ ݅ܭ௡ሺݔሻ ൌ ሻݔ௡ିଷሺ݅ܭሾ ݔ െ ሻሿݔ௡ିଵሺ݅ܭ ൅ ሺ݊ െ 2ሻ ݅ܭ௡ିଶሺݔሻ –  (2.51a)                    ݀ݎܽݓݎ݋݂

ሻݔ௡ሺ݅ܭ ݔ ൌ ሺ݊ ൅ 2ሻ ݅ܭ௡ାଷሺݔሻ ൅ ሻݔ௡ାଶሺ݅ܭ ݔ െ ሺ݊ ൅ 1ሻ݅ܭ௡ାଵሺݔሻ െ  (2.51b)                 ݀ݎܽݓܾ݇ܿܽ

To get the best accuracy [45], forward recursion formula is used for 0 ൑ ݔ ൑ 6  and 

backward recursion formula is used for ݔ  ൐ 6 . For ݔ  ൐ 6 , ሻݔሺ଼݅ܭ  , ሻ andݔଽሺ݅ܭ   ሻ areݔଵ଴ሺ݅ܭ 

calculated and used in backward recursion to derive ݅ܭ௡ሺݔሻ for n= 7, 6,...,1. For 0 ൑ ݔ ൑ 6 , 

 ሻ forݔ௡ሺ݅ܭ ሻ are calculated and used in forward recursion to deriveݔଷሺ݅ܭ ሻ andݔଶሺ݅ܭ ,ሻݔଵሺ݅ܭ

n=4, 5,...,10. 

2.5.2 Quadrature Set Used 

 The calculation of probabilities using Eqs. (2.40), (2.42), (2.47) and different components 

of Eq. (2.50) given in Appendix A involves the evaluation of double integrals over y and ߶ 

numerically. These integrations are approximated by using numerical quadrature for angle and 

space. The problem domain is considered under different angles of rotation. For each value of ߶ 
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in the quadrature, a set of parallel lines, called tracks, are drawn. In the present work, the 

equidistant ray tracking method has been used. The tracking method is described in detail in 

Appendix B. If ݓ௬ and ݓ஺ are the weights associated with y and ߶ respectively then 

׬ ݂ሺݕ, ߶݀ ݕ݀ ሻߠ ൌ  ∑ ∑ ,௣ݕ஺௤݂ሺݓ௬௣ݓ ߶௤ሻ௤௣ .                                 (2.52) 

 For evaluating these probabilities, two types of quadrature viz. equiangular and Gauss-

Legendre quadrature can be used for angular variable ߶. If N angles are chosen between 0 and π, 

then weights for equiangular quadrature are given by 

஺ݓ ൌ ሺ௕ି௔ሻ
ே

ൌ గ
ே

.                                                       (2.53) 

And the angular points are given by 

௜ߠ ൌ ቀ݅ െ ଵ
ଶ
ቁ ஺ݓ ൌ ቀ݅ െ ଵ

ଶ
ቁ గ

ே
  ; ݅ ׊  ൌ 1, ܰ.                                      (2.54) 

 The integration points and weights can also be obtained using the Gauss–Legendre 

quadrature. The integration points and weights in the Gauss–Legendre quadrature are selected in 

such a way that: 

׬ ݂ሺݔሻ ݀ݔଵ
ିଵ ൌ  ∑ ௜ሻேݔ௜ ݂ሺݓ

௜ୀଵ .                                                (2.55a) 

is exact when ݂ሺݔሻ is a polynomial of order (2N–1) or lower [46]. This can be ensured by 

selecting  ௜ for each order N as the zeros of the Legendre polynomials PN(x). Once theݔ 

integration points have been computed, the associated weights can be obtained using: 

௜ݓ ൌ ଶ
൫ଵି௫೔

మ൯ሾ௉ಿᇲ ሺ௫೔ሻሿమ.                                                      (2.55b) 

If the limits of integration are a & b, the following transformation can be used 

׬ ݂ሺݔሻ ݀ݔ௕
௔ ൌ  ∑ ௜ݓ

ᇱ ݂ሺݔ௜
ᇱሻே

௜ୀଵ .                                               (2.56a) 

such that 

௜ݓ
ᇱ ൌ ሺ௕ି௔ሻ

ଶ
 ௜.                                                             (2.56b)ݓ
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௜ݔ
ᇱ ൌ ሺ௕ି௔ሻ

ଶ
௜ݔ ൅ ሺ௕ା௔ሻ

ଶ
.                                                       (2.56c) 

For integration limits of 0 to π, Gauss–Legendre points and weights corresponding to 

N=2 to 20, and for 24, 28, 32, 64 and 96 can be used in VISWAM and TRANPIN code systems.  

 For y integral, trapezoidal quadrature set is used. If the limits of y integration are from a 

to b and if Ny parallel lines are drawn, the separation between two lines or weight is given by 

௬ݓ ൌ ݕ݀ ൌ ሺ௕ି௔ሻ
ே೤

.                                                   (2.57) 

Here it should be noted that the tracking needs to be done only for a=0 to b=π, since the 

contribution from π to 2π will be associated with the probability  ௜ܲ௝ which is symmetric to ௝ܲ௜. 

2.6 Normalization of Collision Probabilities 

The collision probabilities calculated should satisfy the reciprocity and conservation 

relations given in Eqs. (2.29) & (2.31). Since the collision probabilities are computed using 

numerical integrations , the conservation relations may not get satisfied due to discretizing error. 

The conservation relations can be enforced by several normalizing schemes [41]. A method 

proposed by Villarino et al [47] has been adopted in the present work. In this method, we define 

௜ܲ௝
ு ൌ  ሺݓ௜ ൅ ௝ሻݓ ௜ܲ௝.                                               (2.58a) 

ఈܲఉ
ு ൌ ൫ݓఈ ൅ ఉ൯ݓ ఈܲఉ.                                                (2.58b) 

 Where ௜ܲ௝
ு and ఈܲఉ

ு  are the corrected probabilities and ௜ܲ௝  and ఈܲఉ  are the uncorrected 

ones. The conservation laws are ensured by requiring 

∑ ሺݓ௔ ൅ ௕ሻݓ ௔ܲ௕ ൌ 1௔ .                                                   (2.59a) 

∑ ௔ݓ ௔ܲ௕௔ ൅ ௕ݓ ∑ ௔ܲ௕௔ ൌ 1.                                                  (2.59b) 

֜ ௕ݓ       ൌ ଵି∑ ௪ೌ௉ೌ್ೌ,ೌಯ್
௉್್ା∑ ௉ೌ್ೌ

.                                                   (2.59c) 
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where the indices a and b run over all regions and surfaces. The Eq. (2.59c) is iteratively solved. 

Initially all the w’s are assigned a value of 0.5, which is the value they would have if there were 

no errors in the probabilities. The iteration process uses an under relaxation factor of 0.7 [47]. 

The solution for ݓ௔
௞ାଵ is assumed converged if  

max ቀ௪ೌ
ೖశభି௪ೌ

ೖ

௪ೌ
ೖశభ ቁ ൑ ߳.                                                        (2.60) 

or after a preset number of iterations, currently 20. The value used for ߳ is 10–5. The advantage of 

this method is that by using weight factors, probabilities which are zero remain zero e.g., the self 

transmission probabilities ఈܲఈ. 

 To enforce the conservation relation (2.31b) for higher components of probabilities, the 

diagonal normalization scheme has been used. In this scheme, the error is found using (2.31b) as 

ఈߝ
ఔ ൌ ଴ఔߜ െ ∑ ௝ܲఈ

ఔேೇ
௝ୀଵ െ ∑ ఉܲఈ

଴ఔேೄ
ఉୀଵ ߥ ׊       ൐ 0.                            (2.61) 

 This error is adjusted in the diagonal elements of transmission probability i.e. 

ఈܲఈ
ఔ ൌ ఈܲఈ

ఔ ൅ ఈߝ
ఔ.                                                         (2.62) 

2.7 Use of Boundary Condition and Solution of CP Equations 

The multigroup transport equations to be solved in a cell containing ௏ܰ regions form a 

linear system. The solution method described in [43] has been adopted. In the two linear 

equations defined by Eqs. (2.23) & (2.26), the source ݍ௜ , written in terms of group source and 

self scattering source, is given by 

௜ݍ  ൌ ௜ߑ 
௦߶௜ ௜ܸ ൅  ௜ܵ ௜ܸ .                                                     (2.63) 

The group source ௜ܵ  is defined as 

௜ܵ ൌ ൭∑ ௦௜ߑ
௚ᇲ՜௚߶௜

௚ᇲீ
௚ᇲୀଵ
௚ᇲஷ௚

൅ ఞ೒

௞
∑ ௙௜ߑߥ

௚ᇲ
߶௜

௚ᇲீ
௚ᇲୀଵ  ൱.  

Defining the vectors for collision rate  

(2.64) 
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ሼ܎ሽ௜ ؠ ௜߶௜ߑ ௜ܸ.                                                      (2.65a) 

the partial currents 

ሼܒାሽఈ ؠ ܵఈܬା,ఈ
ఔ .   and   ሼିܒሽఈ ؠ ܵఈିܬ,ఈ

ఔ .                                   (2.65b) 

and the source 

௜ݏ ؠ  ௜ܵ ௜ܸ .                                                                 (2.65c) 

the source ݍ௜ given by Eq. (2.63) can be written in the vector form as 

q = C f + s.                                                                (2.66) 

where C is a diagonal matrix defined by  

ሼ۱ሽ௜௝ ൌ ௜௝ߜ
ఀೕ

ೞ

ఀೕ
.                                                                (2.67) 

Thus Eqs. (2.23) & (2.26), can be written in the matrix for as  

܎ ൌ ܙ ܄܄۾  ൅  (2.68)                                                         .۸ି ܁܄۾

۸ା ൌ ܙ ܄܁۾  ൅  (2.69)                                                         .۸ି ܁܁۾

where PVV  is defined as the matrix of region to region, PVS as the matrix of surface to region, 

PSV as the matrix of region to surface and PSS as the surface to surface collision probabilities 

respectively. The boundary condition used here is in the form of a relation between the average 

outgoing angular flux on surface ఉܵ  and the average incoming angular flux on a different 

surface ܵఈ. In matrix form this can be written as 

۸ି ൌ  ۸ା.                                                            (2.70a) ۯ 

In case of albedo boundary condition, the coupling boundary condition matrix can be 

written as 

ఈఉܣ
ఔఓ ൌ  ఔఓ.                                                        (2.70b)ߜఈఉߜఈߚ 
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where ߚఈ is the reflection coefficient at surface ߙ. In the case of vacuum boundary condition 

ఈߚ  ൌ 0 will be used (as in TRANPIN) whereas in the case of total reflection at surface ߚ ,ߙఈ ൌ

1 (for VISWAM) is used. 

So Eq. (2.69) takes the form 

۸ା ൌ ሺ۷ െ  (2.71)                                                   .ܙ ܄܁۾ ሻି૚܁܁۾ۯ

Eqs. (2.68) & (2.71) are iteratively solved using the conventional inner-outer iteration 

scheme to calculate partial currents across the surfaces and collision rates in each region. Also a 

self scattering reduction scheme is adopted for Eq. (2.68) i.e. all the information of self scattering 

of a group is transferred to left side so that Eq. (2.68) takes the following form 

܎ ൌ ሺ۷ െ ۱ሻି૚ሺܛ ܄܄۾ ൅  ۸ିሻ.                                               (2.72) ܁܄۾

2.8 Summary 

 The detailed theoretical formulation of interface current method based on 2D collision 

probability, implemented in lattice code VISWAM and core calculation TRANPIN, is presented 

in this Chapter. The interface current method is based on the integral form of transport of 

equation. Starting with the integro–differential form of transport equation, the integral transport 

equation is derived for an arbitrary volume V within the system. The integral transport equation 

is discretized over the solution domain which results in two linear equations for collision 

densities in the discretized zones of region V and outgoing currents from the surfaces of region V. 

The two linear equations for collision densities and outgoing neutron current have four collision 

probability matrices. These collision probability matrices are simplified for application to the 

hexagonal 2D geometry. The expressions for the matrices are obtained by simplifying the 3D 

space and surface integrals for application to 2D geometry. The expressions for angular 

dependent components of the collision probability matrices are obtained by considering the 
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angular flux expansion in double P2 Legendre polynomials. Two quadrature sets for angular 

variable and one for the ordinate variable are available for numerical evaluation of the collision 

probability matrices. A numerical scheme is used to modify the collision probability matrices so 

as to preserve the conservation relations in order to guarantee neutron balance. The power 

iteration method is used to solve the linear set of discretized equations.  
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CHAPTER – 3  

BENCHMARKING AND VALIDATION OF SINGLE ASSEMBLY 

CALCULATION 

 As discussed in Chapter 1, the application of DP2 expansion of angular flux in hexagonal 

geometry is not reported in literature. So it was essential to test this method for single fuel 

assembly (FA) before employing this method for core calculation. Therefore the interface current 

method using DP2 expansion was implemented in the lattice analysis code VISWAM [10, 48]. 

The mathematical formulation of the interface current method is described in detail in Chapter 2 

and the Appendices thereof. A detailed benchmarking and validation exercise was taken up for 

the present method incorporated in VISWAM. Two benchmark problems, viz. a heterogeneous 

benchmark problem that is typical of a high temperature reactor (HTTR) proposed by Zhang et al. 

[49] and VVER – 1000 OECD lattice burnup computational benchmark [50], are studied using 

VISWAM. The present research work is oriented towards the development of TRANPIN code 

into a full 3D whole core transport theory code to study burnup dependent fuel cycle 

characteristics. The VVER – 1000 OECD computational benchmark was specially chosen to 

study the detailed lattice level burnup characteristics with the DP2 method incorporated in 

VISWAM as this study is not available in literature. This chapter gives the results of 

benchmarking and validation exercise in VISWAM.  

3.1 HTTR Benchmark  

 Zhang et al. [49] have proposed a simplified heterogeneous benchmark problem that is 

typical of a high temperature reactor. The primary aim of benchmark is to assess the accuracy of 

diffusion or transport methods for reactor calculations. The benchmark is derived from the 
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experimental data of High Temperature Engineering Test Reactor (HTTR) start-up experiments, 

which was built by Japan in the late 1990s. The HTTR is a high-temperature gas cooled 

prismatic block reactor. The HTTR has helium as coolant and graphite in fuel blocks serves as 

the moderator. The fuel pins consist of fuel compacts, which are composed of coated UO2 fuel 

particles (TRISO) embedded in a graphite matrix. For reactivity control, the reactor contains 

burnable poison (BP) rods, composed of boron carbide and carbon, and control rods (CR), 

consisting of B4C and carbon inside an Alloy 800H sleeve [49]. However in the present 

benchmark, many design specific details of HTTR have been simplified. For instance the coated 

fuel particles and the graphite matrix are homogenized into a mixed fuel material. The 

benchmark problem is therefore heterogeneous down to the pin level. Due to this no double 

heterogeneity treatment of TRISO fuel particle is required. The problem, however, retains the 

significant features from a neutronics point of view such as realistic heterogeneity at the block 

level. The details of physics simplifications and justifications thereof can be found in [49].  

Two geometric configurations in [49] have been analyzed viz. the single pincell and 

single fuel block in the present work. The fuel block and fuel pin considered in the benchmark 

problem, shown in Fig. 3.1, have a hexagonal shape. The fuel pin pitch is 5.15cm and fuel pin 

diameter is 4.1cm. The fuel block consists of 33 fuel pins, 3 burnable poison (BP) rods and one 

central graphite pin as shown in Fig. 3.1. The BP rod has a diameter of 1.5 cm. The fuel block 

pitch is 36cm. The fuel pin and fuel block consider seven cases of fuel enrichment ranging from 

3.4 to 9.9 wt%. The benchmark provides the six group macroscopic cross section for all the 

materials required. These cross sections had been obtained by the benchmark proposers using 

detailed lattice calculations by HELIOS code system. The benchmark gives the results calculated 

using MCNP5 with this 6-group cross section library. 
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Fig. 3.1 – Fuel Pin and Fuel Assembly Cell  

3.2 Discretization of the Geometry 

 In order to calculate multiplication factor and flux we need to calculate the four types of 

collision probability (CP) matrices defined in Eqs. (2.40), (2.42), (2.47) and (2.50). For pincell 

geometry, the mesh structure considered is shown in Fig. 3.2. The fuel and coolant regions were 

divided into finer circular regions. The fuel region was divided in three regions of equal volume 

and outside coolant region was divided into eight regions of equal thickness. As a result the 

pincell has annular shells embedded in the hexagonal geometry. Due to annular structure inside 

the hexagon, 1D annular treatment was done to calculate region to region collision probabilities 

for circular regions i.e. the integration over azimuthal angle in Eqs. (2.40) & (2.42) is performed 

analytically and only y integration is evaluated numerically. Only for the outermost region 2D 

method was required. The albedo boundary condition with reflection coefficient of unity is used 

at each of the six surfaces of the hexagonal pincell for single pincell calculation. 
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probability integrals. Table 3.1 gives the comparison of multiplication factor calculated with DP0 

model for single pincell (DP1/DP2 model is not applicable to single pincell) with MOCUM & 

Monte Carlo results of benchmark for all seven fuel enrichments. The MOCUM code has used 

1/12 hexagon for unit cell calculation and 1/6 hexagon for assembly calculation. The 

discretization parameters used in MOCUM are: 24 azimuthal angles, 0.01 cm ray spacing and  

10–7 multiplication factor convergence criterion [27]. The results show a good agreement with a 

maximum deviation of 0.01% in k∞ w.r.t. the Benchmark and MOCUM results.  

Table 3.2 gives the comparison of k∞ for seven fuel assembly types with DP0 model in 

VISWAM. The deviation of (–0.182%) w.r.t. benchmark is obtained for first enrichment (–0.148% 

w.r.t. MOCUM) whereas the deviation for all other enrichments is within ±0.08% (±0.06% w.r.t. 

MOCUM). Table 3.3 gives the results with VISWAM k∞ obtained using DP1 and DP2 expansion 

of angular flux. The results with DP1/DP2 expansion show maximum error of –0.176%/–0.168% 

for first enrichment. The maximum error for other enrichments is found within ±0.08% for both 

DP1 and DP2 results. In the current problem with graphite moderator there is no steep flux 

gradient within the fuel assembly as may be present in an assembly with light water as moderator. 

Therefore the use of DP1 expansion is rather adequate to get the results within desirable 

accuracy. Use of higher order DP2 expansion functions gives nearly the same eigenvalue. 

 Tables 3.1 & 3.2 also compare the typical running time for VISWAM and MOCUM 

results. The VISWAM results are obtained on a windows machine equipped with 3.0GHz dual 

core processor and 2GB RAM. It is seen that VISWAM CPU time is significantly less compared 

to MOCUM but the accuracy achieved is comparable. Also it should be noted that MOCUM 

code is parallelized version and runs on advanced configuration machines whereas the VISWAM 

is running in serial mode only. It is seen from Table 3.3 that the DP1 and DP2 models require 8 
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or 13 sec compared to 5 sec of DP0 model due to the computation of extra components of CPs 

for higher angular flux expansion. 

 Fig. 3.5 gives the comparison of fission density distribution, obtained using DP2 

expansion, for first enrichment type with benchmark results. The statistical uncertainties for 

benchmark results are less than 0.01%. The comparison is good and shows a maximum absolute 

deviation of 0.78%. The RMS error in the power distribution is seen as 0.13%. No significant 

differences in fission density distribution were noted with DP0 and DP1 expansion for first 

enrichment. Figs. 3.6 to 3.11 give the fission density distribution for other enrichment types 

using DP0 and DP2 expansion functions. This data is not available in the benchmark. The 

maximum absolute deviation of 0.2% is observed for enrichments of 4.8% & 5.2% between DP0 

and DP2 values. This maximum absolute deviation is seen as 0.3% for enrichments of 6.3%, 

6.7%, 7.9% and 9.9%. The %RMS errors for fuel of enrichments 4.8% & 5.2% are 0.02%, 0.03% 

for enrichments of 6.3%, 6.7%, 7.9%, and 0.04% for enrichment of 9.9% respectively. 

Table 3.1 – Comparison of k∞ for Pincell with VISWAM DP0 Model 

Enrich 
ment 

(wt.%) 

k∞ Δk/k(%) w.r.t. Run Time(sec) 

VISWAM MOCUM Benchmark
(±0.00002) Benchmark MOCUM VISWAM MOCUM

3.4 1.13512 1.13516 1.13519 0.01 0.00 1.0 19.1 
4.8 1.19575 1.19584 1.19577 0.00 0.01 1.0 14.5 
5.2 1.20683 1.20694 1.20688 0.00 0.01 1.0 13.2 
6.3 1.23524 1.23530 1.23531 0.01 0.01 1.0 12.0 
6.7 1.24322 1.24333 1.24326 0.00 0.01 1.0 11.7 
7.9 1.26042 1.26044 1.26044 0.00 0.00 1.0 10.7 
9.9 1.28922 1.28926 1.28933 0.01 0.00 1.0 10.4 
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Table 3.2 – Comparison of k∞ for Fuel Assembly with VISWAM DP0 Model 

Enrichment 
(wt.%) 

k∞ Δk/k(%) w.r.t. Run Time 

VISWAM Benchmark
(±0.00002) MOCUM Benchmark MOCUM VISWAM 

(sec) 
MOCUM

(min) 
3.4 1.03930 1.04119 1.04084 –0.182 –0.148 5.0 4.48 
4.8 1.15214 1.15307 1.15283 –0.080 –0.060 5.0 3.76 
5.2 1.17212 1.17287 1.17265 –0.064 –0.045 5.0 3.61 
6.3 1.22183 1.22212 1.22192 –0.024 –0.007 5.0 3.31 
6.7 1.23790 1.23802 1.23787 –0.010 0.002 5.0 3.05 
7.9 1.27344 1.27323 1.27305 0.016 0.030 5.0 2.80 
9.9 1.32022 1.31962 1.31951 0.046 0.054 5.0 2.40 

Table 3.3 – Comparison of k∞ for Fuel Assembly with Higher Expansion of Angular Flux 

Enrichment 
(wt.%) 

k∞ Δk/k(%) w.r.t. 
Benchmark

VISWAM 
Run Time (sec) 

VISWAM Benchmark 
(±0.00002) DP1 DP2 DP1 DP2 DP1 DP2 

3.4 1.03936 1.03944 1.04119 –0.176 –0.168 8.0 13.0 
4.8 1.15238 1.15244 1.15307 –0.060 –0.054 8.0 13.0 
5.2 1.17238 1.17245 1.17287 –0.041 –0.036 8.0 13.0 
6.3 1.22217 1.22223 1.22212 0.004 0.009 8.0 13.0 
6.7 1.23821 1.23826 1.23802 0.015 0.019 8.0 13.0 
7.9 1.27385 1.27390 1.27323 0.049 0.052 8.0 13.0 
9.9 1.32070 1.32074 1.31962 0.081 0.084 8.0 13.0 

 

Fig. 3.5 – Comparison of Fission Density Distribution for 3.4% Enrichment 
(Uncertainty in Benchmark Results <0.01%) 
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Fig. 3.6 – Fission Density Distribution for 

4.8% Enrichment 

 

Fig. 3.7 – Fission Density Distribution for 

5.2% Enrichment 

 

Fig. 3.8 – Fission Density Distribution for 

6.3% Enrichment 

 

Fig. 3.9 – Fission Density Distribution for 

6.7% Enrichment 
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Fig. 3.10 – Fission Density Distribution 

for 7.9% Enrichment 

 

Fig. 3.11 – Fission Density Distribution 

for 9.9% Enrichment 

3.3.1 Sensitivity of k∞ on Discretization Parameters 

 The k∞ of the fuel assembly depends on the discretization parameters used to calculate the 

collision probability matrices of the distinct zones and the expansion of angular flux on the 

surfaces of these zones. In order to evaluate these effects, a sensitivity study was performed by 

varying the discretization parameters for fuel of enrichment 4.8%. Two azimuthal angle sets of 

32 & 64 are used. Four track separations of 0.1189, 0.0595, 0.0238 & 0.0119cm are used for 

each azimuthal angle set. The angular flux expansions of DP0, DP1 & DP2 were used for each 

combination of azimuthal angle and track separation. Table 3.4 gives the k∞ values obtained for 

each discretization set using three angular expansions and their % deviation from the benchmark 

value. A horizontal glance in Table 3.4 shows that once an optimum discretization parameter set 

is obtained, there is no significant improvement in the Eigenvalue. Therefore four sets of track 

separation were only studied. Also the finer angular discretization of azimuthal angles doesn’t 

change the k∞ values significantly, but it increases the virtual memory requirement and 
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computation time for the problem. However, the expansion of the angular flux affects the 

Eigenvalue more strongly as seen from Table 3.4. 

 The k∞ of the fuel assembly can also depend on the mesh discretization considered within 

the single pincell shown in Fig. 3.2. Table 3.5 gives the results of the sensitivity study of this 

discretization on k∞. In this study three configurations are considered in which the fuel region of 

the pincell is divided in 3, 4 and 5 concentric rings. For each of this configuration, the outer 

graphite region of the pincell is varied by dividing it into a set of 7, 8, 9 and 10 rings. 32 

azimuthal angles and a track separation of 0.0396 cm is used for evaluation the collision 

probability matrices. As seen from Table 3.5, the finer mesh discretization does not affect the 

Eigenvalue strongly in comparison to angular flux expansion. It may be noted that the above 

observation is specific to the problem analyzed. In some other problem with steep flux gradients 

fine mesh discretization may be warranted 

Table 3.4 – Sensitivity of k∞ with Discretization Parameters vis–a–vis Angular Expansion 
of Flux for Fuel Assembly (for 4.8% Fuel) 

Order of 
Angular 

Expansion of 
Flux 

Number of Azimuthal Angles 
32 64 

Track separation (cm) Track separation (cm) 
0.1189 0.0595 0.0238 0.0119 0.1189 0.0595 0.0238 0.0119 

DP0 1.15202 1.15214 1.15214 1.15215 1.15204 1.15214 1.15215 1.15216
DP1 1.15224 1.15238 1.15237 1.15239 1.15225 1.15237 1.15239 1.15239
DP2 1.15230 1.15244 1.15244 1.15246 1.15231 1.15243 1.15246 1.15246

 Δk/k(%) w.r.t. Benchmark value of 1.15307(±0.00002) 
DP0 –0.091 –0.080 –0.081 –0.079 –0.090 –0.081 –0.080 –0.079 
DP1 –0.072 –0.060 –0.061 –0.059 –0.071 –0.061 –0.059 –0.059 
DP2 –0.066 –0.054 –0.055 –0.053 –0.066 –0.055 –0.053 –0.053 
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Table 3.5 – Sensitivity of k∞ with Mesh Discretization within Pincell for Fuel Assembly (for 4.8% Fuel) 

Order of 
Angular 

Expansion of 
Flux 

Number of Azimuthal Angles=32, Track Separation = 0.0396 cm 
No. of fuel rings=3 No. of fuel rings=4 No. of fuel rings=5 
No. of coolant rings No. of coolant rings No. of coolant rings 

7 8 9 10 7 8 9 10 7 8 9 10 

DP0 1.152196 1.152194 1.152193 1.152193 1.152195 1.152194 1.152193 1.152192 1.152195 1.152194 1.152193 1.152193

DP1 1.152443 1.152441 1.152441 1.152440 1.152442 1.152441 1.152440 1.152440 1.152443 1.152441 1.152440 1.152440

DP2 1.152510 1.152508 1.152507 1.152507 1.152509 1.152508 1.152507 1.152507 1.152510 1.152508 1.152507 1.152507
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3.4 VVER–1000 OECD Computational Benchmark  

 The VVER–1000 computational benchmark has been proposed by the expert group at 

OECD/NEA. The primary aim of the benchmark is to certify the calculation codes for utilizing 

weapons grade (WG) plutonium by converting it to mixed–oxide (MOX) fuel for nuclear 

reactors. The benchmark model consists of two different assemblies that are typical of the 

advanced Russian designs of the VVER–1000 reactor [50]. The benchmark exercise consists of 

two assembly types: a uniform LEU fuel assembly with 12 U/Gd rods (UGD variant) and a 

profiled MOX fuel assembly with 12 U/Gd rods (MOXGD variant). The VVER–1000 FA is 

hexagonal in shape having 331 lattice locations. In the UGD FA, 331 locations are distributed 

into 312 fuel pin locations (12 of which are U/Gd rods), one central tube and 18 guide tubes as 

shown in Fig. 3.12. The fuel pins in UGD FA have 3.7 wt.% enrichment. The 12 U/Gd pins have 

a 235U enrichment of 3.6 wt.% and a Gd2O3 content of 4.0 wt.%. The MOXGD assembly, shown 

in Fig. 3.13, contains fuel rods with three different plutonium loadings. The central region of 138 

fuel pins contains MOX with 4.2 wt.% fissile plutonium (containing 93 wt.% 239Pu), two rings of 

96 fuel rods has 3.0 wt.% fissile plutonium, and an outer ring of 66 fuel rods is loaded with 2.0 

wt.% fissile plutonium. The 12 U/Gd rods in MOXGD FA are in the same locations as in the 

UGD assembly configuration and have the same Uranium and Gd content. 

 The benchmark exercise required the calculations to be performed in various reactor 

states. These states are listed in Table 3.6. The calculation in S1 state is to be performed up to 

burnup of 40 MWd/KgHM using the power density of 108 MWth/m3 (corresponding linear heat 

rate of 166.2 W/cm). The calculation at other states (S2 to S5) is to be done using the number 

densities generated in S1 state at burnup levels of 0, 20 & 40 MWd/KgHM. The requested results 

include k∞, assembly average isotope concentrations and average concentrations in selected cells 
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with burn-up for S1 state and k∞ and fission rate distributions at burnup 0, 20, and 40 

MWd/kgHM for states S2 to S5. 

Table 3.6 – Calculation States 

State Description Fuel 
Temp(K)

Non–Fuel
Temp(K) 

135Xe & 
149Sm 

Boron 
(ppm) 

Moderator 
Density(g/cc) 

S1 Operating poisoned 
state 1027 575 Equilibrium 

Conc. 600 0.7235 

S2 Operating non–
poisoned state 1027 575 0.0 600 0.7235 

S3 Hot state 575 575 0.0 600 0.7235

S4 Hot state without boric 
acid 575 575 0.0 0 0.7235 

S5 Cold state 300 300 0.0 0 1.0033 

3.5 Nuclear Data Used 

 The benchmark provides the isotopic composition of all the materials required in the 

problem. VISWAM uses multi group cross section libraries in WIMS/D format for lattice level 

calculations. The present calculations were done using a high temperature library ‘HTEMPLIB’ 

based on JEFF–3.1 nuclear data library [31]. This library has cross section data for 185 nuclides 

in 172 energy groups. The burnup chain in HTEMPLIB library is extended up to 252Cf. The 

library has resonance tabulation for 48 nuclides. The resonance integral tables are available up to 

a temperature of 2500 K. Equivalence relations are used for obtaining resonance self-shielded 

cross sections. Mutual shielding of a mixture of resonance nuclides is treated in accordance with 

the procedures described by Stammler and Abbate [51]. For the burnable poison nuclide Gd, 

only five isotopes viz. 154Gd, 155Gd, 156Gd, 157Gd, 158Gd are available in the HTEMPLIB library. 

The isotopes 152Gd &160Gd are not available. Since their absorption cross sections are negligible 

compared to those of 155Gd or 157Gd, the concentration of 152Gd & 160Gd given in benchmark 

specification were added to those of 154Gd &158Gd respectively. It is believed that this 

approximation would have negligible influence on the quality of results of the analysis. 
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Fig. 3.12 – UGD Fuel Assembly 

 
Fig. 3.13 – MOXGD Fuel Assembly 
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3.6 Results of VVER–1000 OECD Computational Benchmark  

 The two lattice analysis methods available in VISWAM code system, as described in 

Chapter 1, are used to study the present benchmark. In the tables and figures, the hybrid method 

of 1D transport and 2D diffusion theory is denoted by PIJ=1 and the interface current method is 

described by PIJ=2. The results of PIJ=2 are further split into three descriptions: DP0, DP1 and 

DP2. These three descriptors correspond to the results obtained by using DP0, DP1 and DP2 

expansion of angular fluxes respectively, at the surfaces of distinct cells. All the results are 

obtained with convergence criterion of 10–7 & 10–5 for multiplication factor and scalar flux 

respectively. The results in the following Section 3.6.1 discusses the need to consider higher 

order expansion of angular flux in interface current method. The detailed benchmark results and 

comparison thereof is presented in subsequent sections. The mesh division inside single pincell, 

side and corner mesh in the fuel assembly is similar to that discussed in Section 3.2. The fuel 

region is divided in three regions of equal volume, one region is considered in clad and outside 

coolant region is divided into seven regions of equal thickness. 

3.6.1 Effect of Expansion of Angular Flux 

 The Eigenvalue depends on the discretization parameters of the problem and order of 

expansion terms in the angular flux. In order to quantify the effects of the angular expansion of 

the interface current on the solution vis–à–vis the discretization parameters of the problem, a 

sensitivity study is performed. This study is performed only for UGD FA in S2 state at zero 

burnup. All the results in this section are obtained using 172 group JEFF–2.2 library [32] since 

the reference MCNP4B results available in the benchmark report [50] have used this data library 

in continuous energy format. Table 3.7 gives the k∞ values obtained using two azimuthal angle 

sets. The track separation for each angular set is varied from 0.03 cm to 0.003 cm. As seen from 
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Table 3.7, the k∞ values do not vary significantly after an optimum discretization. However, the 

k∞ obtained by using higher order flux anisotropy shows an improved matching with reference 

MCNP result. The results obtained using DP1 anisotropy show an improvement of around 4 mk 

in k∞ as compared to DP0 values and 0.5 mk using DP2 anisotropy w.r.t. DP1 values. Here it 

should be noted that the difference in eigenvalue w.r.t. MCNP can be due to certain 

approximations used in VISWAM code, notably the resonance self shielding model using 

equivalence principles and the treatment of overlapping of resonance absorption of various fuel 

nuclides. However, since these approximations are present in all the three calculations using DP0, 

DP1 and DP2 anisotropy, the relative difference between the three calculations gives the 

numerical estimate of the effect of angular flux expansion. 

 Table 3.8 gives the comparison of k∞ and deviation in mk from reference MCNP values 

for states S2 to S5 for UGD & MOXGD FAs. The results obtained using DP0, DP1 & DP2 terms 

are compared with reference MCNP values. As seen from Table 3.7, the discretization 

parameters of 32 azimuthal angles and track separation of 0.01cm are optimum. The results in 

Table 3.8 and subsequent sections are obtained using this set of discretization parameters. As 

seen from Table 3.8, the multiplication factor k∞, for both UGD & MOXGD FAs, shows a 

gradually improved matching with MCNP results as the order of flux anisotropy is increased. 

The results with DP2 anisotropy are closest to MCNP values. This shows the need to consider 

higher order anisotropy in angular flux in the codes using interface current method.  
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Table 3.7 – Variation of k∞ with Discretization Parameters and Angular Expansion 
of Flux for UGD Fuel Assembly in S2 state 

Order of 
Angular 

Expansion 
of Flux 

Number of Azimuthal Angles 
32 64 

Track separation (cm) Track separation (cm) 
0.03 0.01 0.006 0.003 0.03 0.01 0.006 0.003 

DP0 1.16932 1.17069 1.17059 1.17065 1.16936 1.17048 1.17065 1.170648
DP1 1.17479 1.17624 1.17604 1.17612 1.17449 1.17582 1.17613 1.17609 
DP2 1.17552 1.17694 1.17679 1.17687 1.1751 1.17649 1.17683 1.17679 

 Δρ (in mk) w.r.t. Benchmark value of 1.18000 
DP0 7.74 6.74 6.82 6.77 7.71 6.89 6.77 6.77 
DP1 3.76 2.71 2.85 2.80 3.98 3.01 2.79 2.82
DP2 3.23 2.16 2.32 2.26 3.54 2.53 2.28 2.31 

Table 3.8 – Comparison of Eigenvalue with Reference MCNP Results in Different States 

Results of UGD FA 
 k∞ Δρ (mk) w.r.t. MCNP 
 S2 S3 S4 S5 S2 S3 S4 S5 

MCNP 1.18000 1.19250 1.25310 1.32350 – – – – 
DP0 1.17069 1.18630 1.24524 1.31307 6.74 4.38 5.04 6.00 
DP1 1.17624 1.19118 1.25113 1.31784 2.71 0.93 1.26 3.24
DP2 1.17694 1.19187 1.25207 1.31875 2.16 0.44 0.66 2.72 

Results of MOXGD FA 
MCNP 1.19220 1.20910 1.24300 1.32560 – – – – 

DP0 1.18122 1.20008 1.23407 1.31521 7.79 6.21 5.82 5.96 
DP1 1.19002 1.20811 1.24349 1.32301 1.54 0.68 –0.32 1.48 
DP2 1.19118 1.20918 1.24485 1.32424 0.72 –0.06 –1.20 0.78 

 
 The detailed pin by pin fission density distribution in 1/6th UGD fuel assembly for S2 

state at zero burnup is compared with MCNP values. The pin wise location map of 1/6th fuel 

assembly, given in benchmark report, used for fission density comparison is shown in Fig. 3.14. 

The fission density distribution obtained using DP0, DP1 & DP2 expansion is compared with 

MCNP values in Fig. 3.15. The fission density distribution, in general, shows a satisfactory 

comparison with MCNP result. The maximum % relative deviation from MCNP values for DP0, 

DP1 and DP2 expansion is seen as –2.55%, 2.23% and 2.02% respectively. The %RMS 
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deviation in fission densities for three cases is seen to be 1.03%, 0.549% & 0.462% respectively. 

The minimum RMS deviation is seen for results obtained using DP2 expansion. 

 
Fig. 3.14 – Pin numbers in 1/6th FA for fission density Comparison 

 
Fig. 3.15 – Fission density for 1/6th UGDFA in S2 state  
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3.6.2 Burnup Strategy for the Benchmark Analysis 

 With burnup, calculating CP matrices for all the fuel pins in the assembly is 

computationally expensive. In VISWAM, the unit cells are divided into fuel and non–fuel cells. 

The fuel cells are further divided into groups based on the enrichment and Dancoff factor, 

proximity to water pins and their location in the layer of fuel pins. Using this criterion, 6 non–

fuel and 16 distinct fuel cells are identified for UGD FA. Six non–fuel and 17 distinct fuel cells 

are identified for MOXGD FA. The burnup type distribution is shown in Fig. 3.16 for both LEU 

& MOX FAs. The full hexagons in the outermost layer shown in the Fig. 3.16 are for 

representation purpose only. Actual size and shape of the meshes in outermost water layer is 

considered for simulation purpose. For burnup calculation, out of 397 locations (312 fuel pin 

cells and 19 water rod cells of regular hexagonal shape and 60 meshes of shape shown in Fig. 

3.3a (side cells) and 6 meshes of shape shown in Fig. 3.4a (corner cells) pertaining to the thin 

outer water layer beyond regular cells), CP matrices are calculated for these geometrically and 

materially distinct cells only. At higher burnup, the CP calculation for non–fuel cells need not be 

performed. The S1 state was followed up to 40 MWD/KgHM using the power density of 108 

MW/m3 given in benchmark. The calculation is performed using burn up step of 0.25 up to 6 

MWD/KgHM, 0.5 up to 10 MWD/KgHM, 1.0 up to 20 MWD/KgHM and 2.0 up to 40 

MWD/KgHM. The fine burn up steps were selected up to 10 MWD/KgHM to model Gd 

depletion accurately. The calculation for states S2 to S5 are performed using the number 

densities generated in S1 state after setting the nuclide density of some nuclides like Xe, Sm to 

zero as may be required. It may be noted that for S1 state at zero burnup 135Xe and 149Sm are 

considered to be having equilibrium concentrations. In VISWAM code saturated xenon is 

considered at all burnups and samarium was considered to build up naturally. It normally 
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requires a few weeks to reach its equilibrium value. For the present analysis a special provision 

was made to compute the equilibrium concentration of 149Sm at zero burnup. 

 
Fig. 3.16 – Burnup type Distribution considered in VISWAM for the two 

FA types of LEU & MOX (Negative nos. are for non fuel cells like water slots/GTs) 

3.6.3 Comparison of Multiplication factor (k∞)  

 Figs. 3.17 and 3.18 show the variation of k∞ with burnup for S1 state for UGD FA and 

MOXGD FA respectively as compared with five other evaluations of MCU, TVS–M, WIMS8A, 

HELIOS, MULTICELL and benchmark mean (BM) values. Here the BM values refer to the 

arithmetic mean of all the submitted evaluations [50]. These values are given in Tables 3.9 and 

3.10 for UGD FA and MOXGD FA respectively. Deviations in k∞ from the BM values were 

estimated for the four VISWAM models as a function of burnup. For UGDFA, k∞ obtained using 

PIJ=1 and PIJ=2 :( DP0, DP1 and DP2) show a deviation of –7.11, –9.50, –5.40 and –4.87 mk 
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respectively w.r.t. BM values at zero burnup. This deviation reduces to –5.64, –1.45, +0.81, 

+1.05 mk respectively at the burnup of 40 MWD/KgHM. At burnup of 7 MWD/KgHM the peak 

value of k∞ is seen for PIJ=2 models whereas PIJ=1 model predicts the Gd peak at 6 

MWD/KgHM. At this burnup the deviations in k∞ are seen as –10.47, –8.08, –2.16 and –1.60mk 

respectively for the four VISWAM models. The Gd burning characteristics and peak is more 

accurately predicted with DP1/DP2 model. This is expected as DP1/DP2 model can predict the 

steep flux gradients across the Gd pincell more precisely compared to isotropic flux expansion 

and diffusion theory model. The MOXGD FA shows a difference of –7.04, –5.72, +0.32 and 

+1.11 mk for PIJ=1 and PIJ=2:(DP0, DP1 and DP2) models respectively w.r.t. BM values at zero 

burnup. These difference values are –6.71, –1.22, 0.00 & +0.07mk respectively at 40 

MWD/KgHM burnup. The results for MOXGD FA show relatively less deviation in k∞ with BM 

values compared to UGD FA with DP1 & DP2 models. It should be noted that the present 

analysis has been carried out using JEFF 3.1 dataset whereas the benchmark values are obtained 

using JEFF–2.2 or ENDFB–VI datasets. Overall the calculation with DP1/DP2 shows a 

satisfactory matching with BM and other evaluations given in benchmark report for both the 

variants of UGD FA and MOXGD FA. 
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Fig 3.17 – Comparison of Multiplication Factor with burnup for UGD FA in S1 State 

 
Fig 3.18 – Comparison of Multiplication Factor with burnup for MOXGD FA in S1 State 
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Table 3.9 – k∞ of UGD FA in S1 state with burnup 

Burnup 
(MWd/kgHM) 

k∞ 

PIJ=1 
PIJ=2 

MCU TVS-M WIMS8A HELIOS MULTICELL BM MEAN 
DP0 DP1 DP2 

0 1.1259 1.1229 1.1281 1.1288 1.1353 1.1353 1.1328 1.1355 1.1363 1.1350 
1 1.1245 1.1229 1.1284 1.1291 1.1364 1.1345 1.1303 1.1361 1.1370 1.1349 
2 1.1256 1.1247 1.1305 1.1312 1.1354 1.1355 1.1318 1.1377 1.1382 1.1357 
3 1.1260 1.1259 1.1321 1.1328 1.1388 1.1359 1.1330 1.1387 1.1386 1.1370 
4 1.1264 1.1270 1.1336 1.1344 1.1377 1.1365 1.1341 1.1395 1.1389 1.1373 
5 1.1269 1.1283 1.1354 1.1362 1.1390 1.1375 1.1358 1.1407 1.1394 1.1385 
6 1.1279 1.1301 1.1375 1.1383 1.1408 1.1390 1.1380 1.1421 1.1404 1.1401 
7 1.1278 1.1309 1.1385 1.1392 1.1427 1.1403 1.1392 1.1430 1.1414 1.1413 
8 1.1255 1.1295 1.1371 1.1379 1.1421 1.1390 1.1371 1.1414 1.1404 1.1400 
9 1.1204 1.1253 1.1328 1.1336 1.1344 1.1346 1.1318 1.1365 1.1363 1.1347 
10 1.1130 1.1186 1.1259 1.1267 1.1284 1.1273 1.1240 1.1291 1.1295 1.1277 
11 1.1044 1.1103 1.1175 1.1183 1.1178 1.1185 1.1150 1.1203 1.1209 1.1185 
12 1.0956 1.1015 1.1086 1.1094 1.1099 1.1092 1.1058 1.1112 1.1117 1.1096 
13 1.0867 1.0927 1.0997 1.1005 1.0996 1.1000 1.0966 1.1020 1.1025 1.1002 
14 1.0782 1.0840 1.0909 1.0917 1.0923 1.0910 1.0877 1.0931 1.0935 1.0915 
15 1.0696 1.0755 1.0823 1.0831 1.0827 1.0821 1.0790 1.0843 1.0846 1.0825 
20 1.0303 1.0357 1.0419 1.0426 1.0403 1.0405 1.0383 1.0435 1.0427 1.0411 
25 1.0014 1.0065 1.0120 1.0126 1.0039 1.0022 1.0017 1.0061 1.0041 1.0036 
30 0.9608 0.9659 0.9701 0.9706 0.9703 0.9665 0.9681 0.9714 0.9681 0.9689 
35 0.9361 0.9406 0.9439 0.9443 0.9415 0.9332 0.9372 0.9391 0.9343 0.9371 
40 0.9019 0.9053 0.9072 0.9074 0.9091 0.9025 0.9088 0.9091 0.9029 0.9065 
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Table 3.10 – k∞ of MOXGD FA in S1 state with burnup 

Burnup 
(MWd/kgHM) 

k∞ 

PIJ=1 
PIJ=2 

MCU TVS-M WIMS8A HELIOS MULTICELL BM MEAN 
DP0 DP1 DP2 

0 1.1473 1.1490 1.1570 1.1581 1.1551 1.1585 1.1494 1.1595 1.1606 1.1566 
1 1.1322 1.1345 1.1427 1.1438 1.1421 1.1448 1.1355 1.1454 1.1457 1.1427 
2 1.1211 1.1235 1.1319 1.1329 1.1278 1.1337 1.1232 1.1344 1.1349 1.1308 
3 1.1114 1.1140 1.1224 1.1235 1.1188 1.1241 1.1133 1.1249 1.1255 1.1213 
4 1.1028 1.1055 1.1140 1.1150 1.1114 1.1154 1.1047 1.1164 1.1169 1.1130 
5 1.0950 1.0978 1.1063 1.1074 1.1020 1.1074 1.0970 1.1086 1.1090 1.1048 
6 1.0879 1.0908 1.0994 1.1004 1.0914 1.1002 1.0899 1.1016 1.1017 1.0970 
7 1.0814 1.0843 1.0929 1.0940 1.0860 1.0936 1.0836 1.0951 1.0951 1.0907 
8 1.0754 1.0785 1.0871 1.0881 1.0798 1.0875 1.0779 1.0892 1.0890 1.0847 
9 1.0698 1.0731 1.0817 1.0827 1.0725 1.0820 1.0728 1.0838 1.0834 1.0789 
10 1.0647 1.0682 1.0768 1.0777 1.0698 1.0769 1.0682 1.0788 1.0783 1.0744 
11 1.0598 1.0634 1.0719 1.0729 1.0640 1.0722 1.0639 1.0742 1.0735 1.0696 
12 1.0550 1.0589 1.0673 1.0683 1.0606 1.0675 1.0596 1.0697 1.0688 1.0653 
13 1.0502 1.0543 1.0626 1.0635 1.0565 1.0624 1.0550 1.0650 1.0638 1.0605 
14 1.0450 1.0495 1.0575 1.0584 1.0514 1.0567 1.0498 1.0599 1.0583 1.0552 
15 1.0394 1.0442 1.0520 1.0529 1.0463 1.0504 1.0442 1.0542 1.0523 1.0495 
20 1.0075 1.0131 1.0194 1.0201 1.0126 1.0148 1.0127 1.0220 1.0178 1.0160 
25 0.9821 0.9877 0.9929 0.9935 0.9837 0.9803 0.9820 0.9897 0.9836 0.9839 
30 0.9471 0.9524 0.9560 0.9564 0.9577 0.9487 0.9540 0.9598 0.9520 0.9544 
35 0.9256 0.9306 0.9332 0.9334 0.9320 0.9196 0.9283 0.9321 0.9228 0.9270 
40 0.8961 0.9005 0.9015 0.9016 0.9075 0.8931 0.9048 0.9065 0.8958 0.9015 
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3.6.4 Reactivity Effects in different states 

 The different loads of reactivity in mk are calculated using the formula described below 

ሺ݅݊ ݉݇ሻ ߩ∆ ൌ ቆ
1

݇௙௜௡௔௟
െ  

1
݇௜௡௜௧௜௔௟

ቇ ൈ 1000 

where the initial and final states are as given in Table 3.11. 

Table – 3.11 Initial and Final States for Reactivity Loads 

Reactivity Effect Initial State Final State
Xe+Sm S1 S2 
Doppler S3 S2 
Boron S3 S4 

Isothermal S4 S5 

3.6.4.1 Equilibrium Xe and Sm Poisoning Effect 

 Table 3.12 gives the equilibrium Xe and Sm loads for UGD and MOXGD FA variants 

calculated using four models. These results are compared with BM values. The calculated loads 

show a good agreement with BM values. Maximum difference is seen for DP0 model at zero 

burnup for both UGDFA and MOXGD FA. They are –0.41 mk and –0.99 mk respectively w.r.t. 

the BM values of 30.28 mk and 24.20 mk for the two types of FAs. At 40 MWD/KgHM burnup, 

the maximum deviation from BM values is observed for PIJ=1 results. They are –1.57 mk and    

–1.55 mk for the two fuel types w.r.t. BM values of 38.63 and 36.65 mk. It is seen that the DP1 

and DP2 models are better than the DP0 and the diffusion calculation (PIJ=1) at all burnups. The 

thermal flux gradient in coolant region is predicted more accurately by full transport theory 

simulation (PIJ=2) as compared to hybrid method of transport and diffusion calculation (PIJ=1). 

This may explain the relatively larger deviation in xenon and samarium load calculated using 

PIJ=1 option. 
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3.6.4.2 Fuel Temperature Effect 

 Table 3.13 gives the comparison of fuel temperature effect or Doppler load obtained 

using four models with BM values for UGD and MOXGD FAs. The Doppler load is calculated 

corresponding to a change in fuel temperature from 1027K to 575K. It is observed that the 

Doppler load calculated by VISWAM models increase less with burnup compared to the change 

in BM values. For UGD fuel it is calculated to be higher than the BM value while at higher 

burnup they are lower than the BM value. At zero burnup, a maximum deviation of +1.85 mk 

from BM value of 9.8 mk is seen for DP0 model for UGD FA. The minimum difference of +1.27 

mk is noted for DP2 method for this case. At 20 MWD/KgHM the deviations are the least and 

are less than –0.6 mk. At 40 MWD/KgHM, the maximum deviation is seen to be –2.8 mk w.r.t. 

BM value of 15.63 mk for DP2 method. The closest matching is seen for DP0 model (–1.54 mk). 

For MOXGD FA, the comparison is better at 0 & 20 MWD/KgHM. The maximum difference of 

0.22 mk is seen for PIJ=1 at zero burnup w.r.t. BM value of 12.18 mk. At 20 MWD/KgHM the 

maximum deviation is –0.98 mk for DP2 model w.r.t. BM value of 13.84 mk. At 40 

MWD/KgHM this deviation increases further to –3.16 mk for DP2 calculation w.r.t. BM value of 

15.98 mk. The relatively large deviation in the Doppler load can be related to the resonance 

treatment in the multiple fuel rings. This will be discussed further along with the results of radial 

distribution of 239Pu in Gd fuel pin later in Section 3.6.5.3. 

3.6.4.3 Soluble Boron Effect 

 Table 3.14 gives the effect of soluble boron or boron load for UGD and MOXGD FAs. 

The boron load corresponds to the change in boron concentration of 600 ppm between isothermal 

states S3 and S4. Both for LEU and MOX assemblies, the boron load obtained using four 

methods are over–predicted compared to the BM values. For UGD FA, at zero burnup, the 
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maximum deviation of –1.79 mk is noted for PIJ=1 method w.r.t. BM value of –40.27 mk. At 40 

MWD/KgHM, the maximum difference becomes –2.55 mk for DP2 method w.r.t. BM value of  

–51.37 mk. For MOXGD FA, the maximum deviation is seen for DP2 model. It is –1.18 mk at 

zero burnup w.r.t. BM value of –23.2 mk and –2.45 mk at 40 MWD/KgHM w.r.t. BM value of    

–42.64 mk. The minimum deviation in boron load is obtained with DP0 model at all the three 

burnup points for both the FA variants. 

3.6.4.4 Isothermal Temperature Effect 

 The isothermal temperature load is obtained for an isothermal temperature change from 

575K in S4 state to 300K in S5 state. Table 3.15 gives the comparison of isothermal temperature 

load obtained using VISWAM with BM values. The isothermal temperature load is over 

predicted by PIJ=1 and DP0 models for both LEU and MOX cases. DP1/DP2 model shows 

much less over–prediction. For UGD FA, at zero burnup, the maximum difference of –6.21 mk 

is seen for PIJ=1 and the minimum difference of –0.41 mk is seen for DP2 method w.r.t. BM 

value of –41.69 mk. At 40 MWD/KgHM, these values become –7.56 mk and –2.29 mk 

respectively w.r.t. BM value of –50.36 mk. For MOXGD FA, the same trend as for UGD FA is 

observed. The maximum and minimum deviations in MOXGD FA are seen as –4.81 mk & +0.08 

mk respectively at zero burnup for PIJ=1 and DP2 models w.r.t. BM value of –47.96 mk. At 40 

MWD/KgHM burnup, these values change to –8.15 mk and –2.16 mk respectively w.r.t. BM 

value of –52.73 mk. The relatively larger deviations are also seen for DP0 model. The DP1/DP2 

models take care of the flux anisotropy near strong absorber like Gd or near water GTs more 

accurately. Hence the thermal flux gradients near Gd and in coolant regions are accurately 

calculated using these models. 
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Table 3.12 –Equilibrium Xe & Sm Poisoning Effect 

Burnup 
(MWD/KgHM) 

UGD Fuel Assembly 

k∞ in Operating poisoned state (S1) k∞ in Operating non-poisoned state (S2) Equilibrium Xe+Sm Load (mk) 

PIJ=2 
PIJ=1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 
DP0 DP1 DP2 DP0 DP1 DP2 DP0 DP1 DP2 

0 1.12289 1.12808 1.12876 1.12591 1.13500 1.16297 1.16826 1.16898 1.16588 1.17540 –30.69 –30.49 –30.48 –30.45 –30.28 
20 1.03567 1.04191 1.04263 1.03033 1.04110 1.07552 1.08210 1.08287 1.07077 1.08070 –35.78 –35.65 –35.64 –36.66 –35.20 
40 0.90533 0.90721 0.90741 0.90189 0.90650 0.93840 0.94033 0.94053 0.93582 0.93940 –38.93 –38.82 –38.81 –40.20 –38.63 

MOXGD Fuel Assembly 

0 1.14900 1.15703 1.15809 1.14726 1.15660 1.18325 1.19065 1.19178 1.18103 1.18990 –25.19 –24.40 –24.41 –24.92 –24.20 
20 1.01314 1.01943 1.02015 1.00748 1.01600 1.04738 1.05411 1.04599 1.04250 1.05040 –32.27 –32.27 –32.28 –33.34 –32.23 
40 0.90059 0.90157 0.90163 0.89608 0.90150 0.93152 0.93260 0.92453 0.92784 0.93230 –36.87 –36.91 –36.91 –38.20 –36.65 

 

Table 3.13 –Fuel Temperature Reactivity Effect  

Burnup 
(MWD/KgHM) 

UGD Fuel Assembly 

k∞ in Hot State (S3) k∞ in Operating non-poisoned state (S2) Doppler Load (mk) 

PIJ=2 
PIJ=1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 
DP0 DP1 DP2 DP0 DP1 DP2 DP0 DP1 DP2 

0 1.17894 1.18367 1.18431 1.18161 1.18910 1.16297 1.16826 1.16898 1.16588 1.17540 11.65 11.14 11.07 11.42 9.80 
20 1.09090 1.09674 1.09742 1.08531 1.09590 1.07552 1.08210 1.08287 1.07077 1.08070 13.11 12.34 12.24 12.51 12.83 
40 0.95097 0.95195 0.95202 0.94760 0.95340 0.93840 0.94033 0.94053 0.93582 0.93940 14.09 12.98 12.83 13.28 15.63 

 MOXGD Fuel Assembly 

0 1.20059 1.20841 1.20944 1.19859 1.20740 1.20740 1.19065 1.19178 1.18103 1.18990 12.21 12.34 12.25 12.40 12.18 
20 1.06294 1.06874 1.06940 1.05702 1.06590 1.06590 1.05411 1.04599 1.04250 1.05040 13.98 12.99 12.86 13.18 13.84 
40 0.94403 0.94403 0.94396 0.93948 0.94640 0.94640 0.93260 0.92453 0.92784 0.93230 14.23 12.98 12.82 13.35 15.98 
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Table 3.14 – Soluble Boron Effect 

Burnup 
(MWD/KgHM) 

UGD Fuel Assembly 
k∞ in Hot State (S3) k∞ in Hot State without boric acid(S4) Boron Load (mk) 

PIJ=2 
PIJ=1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean DP0 DP1 DP2 DP0 DP1 DP2 DP0 DP1 DP2 

0 1.17894 1.18367 1.18431 1.18161 1.18910 1.23873 1.24447 1.24536 1.24340 1.24890 –40.94 –41.28 –41.39 –42.06 –40.27 
20 1.09090 1.09674 1.09742 1.08531 1.09590 1.14575 1.15352 1.15455 1.14060 1.15070 –43.88 –44.88 –45.09 –44.66 –43.46 
40 0.95097 0.95195 0.95202 0.94760 0.95340 1.00003 1.00310 1.00353 0.99687 1.00250 –51.59 –53.57 –53.92 –52.16 –51.37 

 MOXGD Fuel Assembly 

0 1.20059 1.20841 1.20944 1.19859 1.20740 1.23564 1.24487 1.24619 1.23452 1.24220 –23.63 –24.24 –24.38 –24.28 –23.20 
20 1.06294 1.06874 1.06940 1.05702 1.06590 1.10140 1.10897 1.10997 1.09600 1.10420 –32.85 –33.94 –34.18 –33.65 –32.54 
40 0.94403 0.94403 0.94396 0.93948 0.94640 0.98372 0.98564 0.98592 0.97949 0.98620 –42.74 –44.72 –45.09 –43.48 –42.64 

 

Table 3.15 – Isothermal Temperature Effect 

Burnup 
(MWD/KgHM) 

UGD Fuel Assembly 
k∞ in Hot State without boric acid(S4) k∞ in Cold State without boric acid(S5) Isothermal Temperature Load (mk) 

PIJ=2 
PIJ=1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean 

PIJ =2 
PIJ =1 BM 

Mean DP0 DP1 DP2 DP0 DP1 DP2 DP0 DP1 DP2 

0 1.23873 1.24447 1.24536 1.24340 1.24890 1.30878 1.31338 1.31426 1.32214 1.31750 –43.21 –42.16 –42.10 –47.90 –41.69 
20 1.14575 1.15352 1.15455 1.14060 1.15070 1.21796 1.22326 1.22410 1.21369 1.21790 –51.75 –49.42 –49.21 –52.80 –47.95 
40 1.00003 1.00310 1.00353 0.99687 1.00250 1.06001 1.05941 1.05951 1.05795 1.05580 –56.58 –52.99 –52.65 –57.92 –50.36 

 MOXGD Fuel Assembly 

0 1.23564 1.24487 1.24619 1.23452 1.24220 1.31649 1.32408 1.32527 1.32055 1.31940 –49.70 –48.06 –47.88 –52.77 –47.96 
20 1.10140 1.10897 1.10997 1.09600 1.10420 1.17722 1.18167 1.18244 1.17216 1.18140 –58.48 –55.48 –55.22 –59.28 -54.28 
40 0.98372 0.98564 0.98592 0.97949 0.98620 1.04503 1.04248 1.04233 1.04160 1.05300 –59.64 –55.32 –54.89 –60.88 -52.73 
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3.6.5 Comparison of Fuel Isotopic Composition with Burnup 

 The isotopic composition of fuel nuclides 235U, 236U, 238U, 239Pu, 240Pu, 241Pu, 242Pu, 

fission products 135Xe & 149Sm and burnable poison isotopes 155Gd & 157Gd are compared with 

BM values and other evaluations in benchmark report. These isotopic compositions were 

requested as assembly averaged compositions and compositions in the corner cell 1 & 

gadolinium cell 24 in Fig. 3.14. 

3.6.5.1 Assembly Average Isotopic Composition 

 Figs 3.19 to 3.29 give the assembly averaged isotopic compositions of the above eleven 

nuclides for UGD and MOXGD FAs. The plots include the four VISWAM models, the BM 

mean and five other evaluations of MCU, TVS–M, WIMS8A, HELIOS and MULTICELL. 

There is good agreement between all the evaluations for main fuel isotopes of 235U, 238U & 239Pu. 

Hence they are seen nearly as a single graph. From the figures it is seen that there is a wider 

spread in the calculated number densities of fuel isotopes 236U, 240Pu, 241Pu & 242Pu as evaluated 

by various submission groups for both UGD and MOXGD FAs. The isotopic compositions 

obtained using four methods of VISWAM lie within the band of spread of all submissions for 

UGD and MOXGD FAs.  

 In UGD case, the isotopic compositions of 135Xe obtained using four methods are similar 

up to about 10 MWD/KgHM but differ subsequently. Beyond 10 MWD/KgHM, the results of 

DP1/DP2 are closer to the BM values. Higher concentrations are seen for DP0/PIJ=1 method 

compared to the BM values. For MOXGD FA, the difference between DP1/DP2 and other 

models starts from zero burnup and continue till 40 MWD/KgHM. In this case, the BM results 

are closer to DP0/PIJ=1 values.  



70 
 

 As seen from Fig. 3.27, the 149Sm concentrations show larger spread for evaluations by 

various groups. Equilibrium concentration of 149Sm at zero burnup is considered only in TVS–M 

and HELIOS. Since in VISWAM code we have considered equilibrium 149Sm at zero burnup, the 

mean of these two codes is used for benchmark comparison purpose. The results obtained with 

DP1/DP2 model always predict lower concentrations compared to DP0/PIJ=1 method. The BM 

values are seen to be closely matching with DP1/DP2 values. 

 The calculated concentrations of 155Gd & 157Gd from PIJ=2 are seen higher compared to 

those calculated from PIJ=1 method with burnup. This observation is true for both UGD and 

MOXGD FAs. This indicates faster depletion of Gd in PIJ=1 model. This also results in shifting 

of peak k∞ to earlier burnup (Fig.3.17). 

3.6.5.2 Isotopic Composition in Corner and Gadolinium Pins 

 The benchmark required the isotopic compositions of various nuclides in two individual 

cells 1 & 24 (see Fig. 3.14). Cell 1 is a corner pin which is UO2 pin in UGD FA and MOX pin 

MOXGD FA. Cell 24 is gadolinium pin in both the FA types. Figs. 3.30 to 3.38 give the isotopic 

composition of various nuclides in cell 1 for UGD and MOXGD FAs. Figs. 3.39 to 3.49 give the 

isotopic composition of various nuclides in cell 24 for UGD and MOXGD FAs. The 

observations described in previous paragraph are, in general, true for the Figs 3.30 to 3.49. The 

isotopic compositions of VISWAM generally agree with BM values and lie within the band of 

variation of other evaluations. 

3.6.5.3 Radial Variation of Isotopic Composition 

 The radial variation of isotopic composition was studied for cell 24 with Gd. The fuel 

region is divided into five rings of equal volume. Figs. 3.50 & 3.51 give the variation of isotopic 
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composition of 235U & 239Pu with fuel ring radius at 40 MWD/KgHM for UGD and MOXGD 

FAs. Figs. 3.52 & 3.53 give the variation of isotopic composition of 155Gd & 157Gd with fuel ring 

radius at 2 MWD/KgHM for the two FA variants. The VISWAM values show a good agreement 

with benchmark values for Gd isotopes. For 235U, the values predicted by VISWAM are lower 

compared to BM value and other evaluations for UGD FA, whereas, the values are higher for 

MOXGD FA. For 239Pu, no radial variation is observed. The reason for this was scrutinized and 

it was observed that radial shape is present at early stages of burnup. This is seen in Fig 3.51a, 

where the 239Pu concentration is plotted at 5 MWD/KgHM. However, as burnup progresses, the 

239Pu in the outer ring, though produced more, depletes also faster compared to inner rings. 

Hence at 40 MWD/KgHM, the 239Pu attains nearly equal value in all the rings in VISWAM 

models. The BM values however show an enhanced level of 239Pu in the outer ring even at higher 

burnup. It may be stated here that in VISWAM code there is no provision to distinguish the 

background cross section in the five fuel rings, i.e., the 238U capture cross section is nearly the 

same in all five fuel rings for resonance groups. If one can consider the inner rings to be shielded 

by the outer ones, it may be possible to prescribe higher resonance capture cross section for the 

outer rings [52]. This could increase the 239Pu formation in the outer ring. It is felt that such 

improved resonance treatment would also influence the Doppler load calculation and can help in 

better agreement with BM values for Doppler load. 
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Fig 3.19 Assembly Average number density of 235U with 

burnup 

 
Fig 3.20 Assembly Average number density of 236U with 

burnup 

 
Fig 3.21 Assembly Average number density of 238U with 

burnup 

  
Fig 3.22 Assembly Average number density of 239Pu with 

burnup 
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Fig 3.23 Assembly Average number density of 240Pu with 

burnup 

  
Fig 3.24 Assembly Average number density of 241Pu with 

burnup 

  
Fig 3.25 Assembly Average number density of 242Pu with 

burnup 

  
Fig 3.26 Assembly Average number density of 135Xe with 

burnup 
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Fig 3.27 Assembly Average number density of 149Sm with 

burnup 

  
Fig 3.28 Assembly Average number density of 155Gd with 

burnup 

  
Fig 3.29 Assembly Average number density of 157Gd with 

burnup 

 
Fig 3.30 235U Number density with burnup in Cell – 1 
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Fig 3.31 236U Number density with burnup in Cell – 1 

  
Fig 3.32 238U Number density with burnup in Cell – 1 

  
Fig 3.33 239Pu Number density with burnup in Cell – 1 

  
Fig 3.34 240Pu Number density with burnup in Cell – 1 
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Fig 3.35 241Pu Number density with burnup in Cell – 1 

  
Fig 3.36 242Pu Number density with burnup in Cell – 1 

  
Fig 3.37 135Xe Number density with burnup in Cell – 1 

  
Fig 3.38a 149Sm Number density with burnup in Cell – 1 
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Fig 3.38b 149Sm Number density with burnup in Cell – 1 

  
Fig 3.39 235U Number density with burnup in Cell – 24 

  
Fig 3.40 236U Number density with burnup in Cell – 24 

  
Fig 3.41 238U Number density with burnup in Cell – 24 
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Fig 3.42 239Pu Number density with burnup in Cell – 24 

  
Fig 3.43 240Pu Number density with burnup in Cell – 24 

  
Fig 3.44 241Pu Number density with burnup in Cell – 24 

  
Fig 3.45 242Pu Number density with burnup in Cell – 24 
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Fig 3.46 135Xe Number density with burnup in Cell – 24 

  
Fig 3.47a 149Sm Number density with burnup in Cell – 24 

  
Fig 3.47b 149Sm Number density with burnup in Cell – 24 

  
Fig 3.48 155Gd Number density with burnup in Cell – 24 
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Fig 3.49 157Gd Number density with burnup in Cell – 24 

 
Fig 3.50 235U Number density with Radius in Cell – 24 at 40 

MWD/KgHM 

  
Fig 3.51 239Pu Number density with Radius in Cell – 24 at 

40 MWD/KgHM 

  
Fig 3.51a 239Pu Number density with Radius in Cell – 24 at 

5 MWD/KgHM 
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Fig 3.52 155Gd Number density with Radius in Cell – 24 at 2 

MWD/KgHM 

 

 

 

  
Fig 3.53 157Gd Number density with Radius in Cell – 24 at 2 

MWD/KgHM 
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3.6.6 Fission Density Distribution 

 The fission density distribution for S1 state with burnup is given in Tables 3.16 & 3.18 

for UGD and MOXGD FAs respectively. Tables 3.17 & 3.19 give the fission density distribution 

with burn up for states S2 to S5 for the two FA variants. In the benchmark, the pin with 

maximum r.m.s. deviation was selected and the fission density in this pin was compared at each 

burnup. We have taken the same pin location for comparison. In these tables, the values obtained 

using VISWAM–DP2 model alone are compared with different evaluations and BM values. As 

seen from Tables 3.16 & 3.18, the comparison for fission density distribution is very good. The 

maximum deviation w.r.t. BM values for UGD FA is 2.03% (at 2 MWD/KgHM) and –2.71% (at 

12 MWD/KgHM) for MOXGD FA in S1 state. For UGD FA at the beginning of burnup, the pin 

with maximum deviation is Gd pin and is located at pin location 24 (Fig. 3.14). At the end of 

burnup, pin with maximum deviation is uranium pin number 1 at the corner of the FA. For 

MOXGD FA at the beginning of burnup, pin with maximum deviation is pin number 1 at the 

corner of the assembly and at the end of burnup pin with maximum deviation is Gd pin number 

35. For states S2 to S5, the comparison of fission density distribution with BM and other 

evaluations is very good. For UGD FA, the maximum deviation of 1.85% w.r.t. BM is observed 

in S2 state at zero burnup. The maximum deviation for MOXGD FA is –2.62% for S5 state at 

zero burnup.  

 The detailed pin by pin fission density distribution in 1/6th fuel assembly, for S2 to S5 

states at zero burnup, is compared with BM values. The BM values are obtained using standard 

arithmatic mean definition and includes MCNP evaluations also. The pin wise location map of 

1/6th fuel assembly used for fission density comparison is as shown in Fig. 3.14. The deviations 

in fission density calculated using four methods of VISWAM w.r.t. the BM values are given in 
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Figs. 3.54 & 3.55 for S2 state at zero burnup for UGD and MOXGD FAs respectively. It is 

observed that the maximum deviation from BM values is the least for the results obtained using 

DP2 model. Therefore only DP2 results are chosen for further comparison. Figs. 3.56 to 3.59 

give the comparison of VISWAM fission density distribution (obtained using DP2 model) with 

BM for states S2 to S5 at zero burnup for UGD FA. A maximum relative deviation of 1.2% is 

seen for states S2 to S3. For S4 state, the maximum relative deviation of 2.07% is observed. Figs. 

3.60 to 3.63 give the comparison of VISWAM fission density distribution (obtained using DP2 

model) with BM for states S2 to S5 at zero burnup for MOXGD FA. The maximum relative 

deviation of –3.09% is seen for S5 state. This deviation is seen in pin 56 in S5 state. For states S2 

to S4, the maximum relative deviation is seen of the order of 2.50%. The relatively larger 

deviation pins are seen on the periphery of the MOXGD FA. The fission density distribution 

shows a satisfactory comparison, both for UGD & MOXGD FAs, in states S2 to S5. 
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Table 3.16 –Fission rate Distribution in S1 state with Burnup for UGD Fuel Assembly 

 Burnup (MWD/KgHM) 
0 2 4 6 8 10 12 14 15 20 40 

Mean Value 
Maximal R.M.S. 1.91 2.23 2.04 1.95 1.35 0.91 0.91 1.00 0.87 0.85 1.26 

Pin N 63 35 24 24 24 1 1 1 1 19 6 
Fission Rate 0.987 0.443 0.560 0.697 0.822 1.052 1.049 1.048 1.046 0.978 0.980 

VISWAM Fission Rate 0.985 0.452 0.570 0.707 0.825 1.054 1.051 1.050 1.050 0.980 0.981 
Deviation from Mean Value –0.20 2.03 1.79 1.43 0.36 0.19 0.19 0.19 0.38 0.20 0.10 

MCU Fission Rate 1.005 0.441 0.555 0.691 0.819 1.055 1.054 1.058 1.05 0.965 0.959 
Deviation from Mean Value 1.85 –0.38 –0.82 –0.88 –0.41 0.31 0.48 0.94 0.41 –1.29 –2.13 

TVS–M Fission Rate 0.993 0.436 0.552 0.696 0.831 1.046 1.043 1.041 1.04 0.983 0.987 
Deviation from Mean Value 0.63 –1.51 –1.36 –0.16 1.05 –0.54 –0.57 –0.68 –0.55 0.55 0.73 

WIMS8A Fission Rate 0.998 0.457 0.579 0.720 0.837 1.038 1.035 1.033 1.033 0.987 0.990 
Deviation from Mean Value 1.14 3.33 3.52 3.32 1.75 –1.31 –1.33 –1.41 –1.26 0.92 1.01 

HELIOS Fission Rate 0.981 0.447 0.559 0.694 0.815 1.059 1.056 1.054 1.053 0.975 0.979 
Deviation from Mean Value –0.61 0.93 –0.07 –0.51 –0.91 0.73 0.70 0.58 0.71 –0.28 –0.08 

MULTICELL Fission Rate 0.957 0.432 0.553 0.685 0.810 1.060 1.056 1.054 1.053 0.979 0.985 
Deviation from Mean Value –3.01 –2.37 –1.27 –1.77 –1.48 0.82 0.71 0.57 0.69 0.11 0.47 

Table 3.17 –Fission rate Distribution in S2 to S5 state with Burnup for UGD Fuel Assembly 

 
Burnup (MWD/KgHM) 

S2 State S3 State S4 State S5 State 
0 20 40 0 20 40 0 20 40 0 20 40 

Mean Value 
Maximal R.M.S. 2.55 0.88 1.17 2.25 1.13 1.39 2.37 0.96 1.36 2.48 1.37 1.8 

Pin N 35 1 6 35 64 6 35 58 6 35 1 6 
Fission Rate 0.324 1.04 0.982 0.323 1.041 0.981 0.312 0.967 0.98 0.22 1.068 0.97 

VISWAM Fission Rate 0.330 1.045 0.982 0.323 1.036 0.980 0.313 0.966 0.989 0.224 1.059 0.976 
Deviation from Mean Value 1.85 0.48 0.00 0.00 –0.48 –0.10 0.32 –0.10 0.92 1.82 –0.84 0.62 

MCU Fission Rate 0.318 1.048 0.963 0.32 1.062 0.958 0.308 0.953 0.957 0.218 1.084 0.943 
Deviation from Mean Value –1.75 0.77 –1.95 –0.86 2.00 –2.37 –1.38 –1.47 –2.32 –0.96 1.54 –2.82 

TVS–M Fission Rate 0.319 1.032 0.989 0.318 1.037 0.989 0.308 0.972 0.987 0.217 1.07 0.971 
Deviation from Mean Value –1.44 –0.77 0.70 –1.48 –0.40 0.79 –1.38 0.50 0.75 –1.41 0.23 0.07 

WIMS8A Fission Rate 0.336 1.028 0.992 0.333 1.032 0.992 0.323 0.978 0.991 0.229 1.05 0.985 
Deviation from Mean Value 3.76 –1.13 0.98 3.32 –0.84 1.09 3.52 1.13 1.14 3.82 –1.67 1.53 

HELIOS Fission Rate 0.329 1.047 0.981 0.327 1.038 0.981 0.317 0.966 0.979 0.222 1.078 0.967 
Deviation from Mean Value 1.52 0.63 –0.14 1.21 –0.30 –0.03 1.34 –0.11 –0.04 1.00 1.02 –0.36 

MULTICELL Fission Rate 0.317 1.045 0.986 0.316 1.037 0.986 0.306 0.967 0.984 0.215 1.056 0.986 
Deviation from Mean Value –2.09 0.50 0.40 –2.19 –0.45 0.52 –2.11 –0.05 0.47 –2.46 –1.13 1.58 
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Table 3.18 –Fission rate Distribution in S1 state with Burnup for MOXGD Fuel Assembly 

 Burnup (MWD/KgHM) 
0 2 4 6 8 10 12 14 15 20 40 

Mean Value 
Maximal R.M.S. 1.82 1.65 1.49 1.51 1.86 2.41 2.93 2.97 2.89 2.19 1.59 

Pin N 1 36 36 45 35 35 35 35 35 35 35 
Fission Rate 0.991 1.093 1.100 1.119 0.521 0.590 0.664 0.730 0.756 0.828 0.954 

VISWAM 
Fission Rate 0.982 1.106 1.110 1.124 0.513 0.579 0.646 0.712 0.740 0.825 0.962 

Deviation from Mean Value –0.91 1.19 0.91 0.45 –1.54 –1.86 –2.71 –2.47 –2.12 –0.36 0.84 

MCU Fission Rate 1.002 1.068 1.080 1.101 0.517 0.588 0.660 0.726 0.750 0.826 0.945 
Deviation from Mean Value 1.13 –2.29 –1.81 –1.58 –0.72 –0.42 –0.58 –0.54 –0.76 –0.28 –0.91 

TVS–M Fission Rate 0.982 1.100 1.104 1.121 0.531 0.608 0.690 0.759 0.785 0.848 0.964 
Deviation from Mean Value –0.89 0.64 0.37 0.20 1.97 2.97 3.93 3.98 3.87 2.37 1.09 

WIMS8A Fission Rate 0.963 1.082 1.089 1.108 0.522 0.589 0.659 0.722 0.747 0.819 0.946 
Deviation from Mean Value –2.78 –0.97 –1.04 –0.97 0.29 –0.22 –0.66 –1.07 –1.12 –1.18 –0.83 

HELIOS Fission Rate 1.000 1.100 1.105 1.119 0.506 0.570 0.637 0.701 0.728 0.805 0.939 
Deviation from Mean Value 0.92 0.64 0.45 0.00 –2.80 –3.55 –4.03 –3.94 –3.70 –2.87 –1.58 

MULTICELL Fission Rate 1.007 1.115 1.122 1.145 0.527 0.598 0.673 0.742 0.769 0.845 0.975 
Deviation from Mean Value 1.62 1.98 2.03 2.36 1.26 1.22 1.34 1.58 1.71 1.95 2.23 

Table 3.19 –Fission rate Distribution in S2 to S5 state with Burnup for MOXGD Fuel Assembly 

 
Burnup (MWD/KgHM) 

S2 State S3 State S4 State S5 State 
0 20 40 0 20 40 0 20 40 0 20 40 

Mean Value 
Maximal R.M.S. 1.79 2.19 1.60 1.87 2.07 1.47 1.83 2.09 1.57 2.21 3.20 2.99 

Pin N 1 35 35 45 35 35 1 35 56 1 56 56 
Fission Rate 0.990 0.827 0.954 1.109 0.827 0.955 0.999 0.823 0.909 1.031 0.902 0.918 

VISWAM Fission Rate 0.982 0.824 0.964 1.122 0.830 0.969 0.988 0.827 0.911 1.004 0.887 0.914 
Deviation from Mean Value –0.81 –0.36 1.05 1.17 0.36 1.47 –1.10 0.49 0.22 –2.62 –1.66 –0.44 

MCU Fission Rate 0.997 0.822 0.944 1.077 0.824 0.946 1.004 0.816 0.931 1.053 0.928 0.940 
Deviation from Mean Value 0.70 –0.60 –1.09 –2.90 –0.39 –0.91 0.55 –0.80 2.43 2.10 2.87 2.36 

TVS–M Fission Rate 0.982 0.847 0.964 1.119 0.846 0.963 0.991 0.843 0.902 1.042 0.917 0.935 
Deviation from Mean Value –0.82 2.43 1.01 0.88 2.27 0.87 –0.75 2.48 –0.76 1.03 1.65 1.82 

WIMS8A Fission Rate 0.963 0.819 0.948 1.103 0.819 0.949 0.971 0.816 0.907 0.998 0.894 0.913 
Deviation from Mean Value –2.71 –0.99 –0.62 –0.55 –0.94 –0.58 –2.77 –0.76 –0.22 –3.24 –0.91 –0.62 

HELIOS Fission Rate 1.000 0.804 0.939 1.115 0.804 0.940 1.009 0.801 0.912 1.046 0.916 0.931 
Deviation from Mean Value 0.99 –2.83 –1.57 0.51 –2.76 –1.50 1.07 –2.66 0.34 1.38 1.57 1.39 

MULTICELL Fission Rate 1.008 0.843 0.976 1.132 0.842 0.975 1.018 0.837 0.893 1.018 0.856 0.873 
Deviation from Mean Value 1.84 1.99 2.27 2.06 1.81 2.12 1.90 1.73 –1.80 –1.26 –5.17 –4.95 
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Fig. 3.54 Deviation in Fission Density Distribution w.r.t. BM Mean for S2 state of UGD FA 

at zero Burnup using four calculation methods 

 
Fig. 3.55 Deviation in Fission Density Distribution w.r.t. BM Mean for S2 state of MOXGD 

FA at zero Burnup using four calculation methods 
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Fig. 3.56 Fission Density Distribution for S2 state of UGD FA at Burnup = 0 MWD/KgHM 

 

 
Fig. 3.57 Fission Density Distribution for S3 state of UGD FA at Burnup = 0 MWD/KgHM 
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Fig. 3.58 Fission Density Distribution for S4 state of UGD FA at Burnup = 0 MWD/KgHM 

 
Fig. 3.59 Fission Density Distribution for S5 state of UGD FA at Burnup = 0 MWD/KgHM 
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Fig. 3.60 Fission Density Distribution for S2 state of MOXGD FA at Burnup = 0 

MWD/KgHM 

 
Fig. 3.61 Fission Density Distribution for S3 state of MOXGD FA at Burnup = 0 

MWD/KgHM 
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Fig. 3.62 Fission Density Distribution for S4 state of MOXGD FA at Burnup = 0 

MWD/KgHM 

 
Fig. 3.63 Fission Density Distribution for S5 state of MOXGD FA at Burnup = 0 

MWD/KgHM 
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3.7 Summary 

 The interface current method using double P2 (DP2) expansion of angular flux at lattice 

cell surfaces has been implemented in the lattice analysis code VISWAM. The VISWAM code 

was used to analyse heterogeneous HTTR benchmark and VVER–1000 OECD LEU and MOX 

Computational Benchmark problems. The results are compared for a single fuel pin and fuel 

assembly cell calculations. The results show a good agreement in k∞ for pincell and assembly 

calculation (within 0.01% and 0.18%) for HTTR benchmark. The maximum difference in fission 

density distribution is 0.78% for the lowest enrichment. The RMS error in the power distribution 

is seen as 0.13%. For VVER–1000 OECD benchmark, the k∞ comparison shows improved 

agreement with reference MCNP values by using higher order expansion functions. The results 

using P1 anisotropy show an improvement of around 4 mk in k∞ as compared to P0 values and 

0.5 mk using P2 anisotropy w.r.t. P1 values. The %RMS deviation in fission densities for P0, P1 

& P2 cases is seen to be 1.03%, 0.549% & 0.462%. A sensitivity study of k∞ with discretization 

parameters vis–a–vis angular expansion of flux for fuel assembly was performed for both the 

benchmarks. It was seen that the flux anisotropy affects the results more strongly after an 

optimum set of discretization parameters.  

 The burnup characteristics of DP2 model were studied using VVER–1000 OECD LEU 

and MOX Computational Benchmark. The calculation was carried out using all the methods 

available in VISWAM. While using the interface current method, the calculation was performed 

by using P0, P1 and P2 expansions of angular flux at the lattice cell boundary. The calculated 

results were compared with BM values and other evaluations given in benchmark report. The 

comparison of k∞ shows a smooth variation with burnup. The least deviation from BM is 

obtained using P2 expansion. The reactivity effects of (Xe, Sm) and isothermal temperature are 
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predicted better by DP1/DP2 models. Doppler load shows more deviation. It is felt that the 

resonance treatment in multiple fuel rings should be suitably modeled to take care of the rim 

effect which will improve the prediction of Doppler load. The boron load comparison is seen 

satisfactory. The assembly average and individual cell isotopic composition of fuel nuclides and 

selected fission products like 135Xe and 149Sm show a good comparison with BM values. The 

fission density distribution was compared for primary and branching calculation with burn up. 

The comparison shows good agreement with BM values. The maximum deviation is seen to be 

2.03% for UGD FA and –2.71% for MOXGD FA. The detailed pin by pin fission density 

distribution for 1/6th FA at zero burnup for branching calculations showed a good agreement 

with BM values. The results obtained using P2 expansion of angular flux showed, in general, 

least deviation from BM values. 

 The burnup approach used in VISWAM for DP2 model has performed satisfactorily for 

the prediction of variation of k∞ with burnup, prediction of various reactivity effects, variation of 

isotopic densities with burn up and pin wise fission density distributions in the assembly. So this 

model can be adopted for performing 2D/3D whole core calculation using DP2 model of 

interface current method. 
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CHAPTER – 4  

SCHEME AND METHODOLOGY OF WHOLE CORE  

PIN–BY–PIN CALCULATION 

The two step calculation method to perform whole core calculation and its limitations has 

been discussed in Chapter – 1. Due to advances in computing processing power, pin–by–pin fine 

mesh core calculation methods are being considered as high potential algorithm for next–

generation core analysis tools. The basic approach in the whole core transport theory methods is 

not to homogenize the lattice cells. Each lattice cell location in the fuel assembly (FA) is 

subdivided into finer regions. The interface current method based on 2D collision probability has 

been used for performing whole core calculation. A transport theory code TRANPIN has been 

developed to perform a whole core pin–by–pin calculation in 2D hexagonal geometry. The 

subdivided regions inside the lattice cell are connected using the 2D collision probabilities. The 

coupling of individual lattice cells within the assembly and assembly to assembly coupling in the 

core is achieved using interface currents. The interface currents are obtained by expanding the 

angular flux leaving or entering the lattice cell surface into double orthonormal PN polynomials. 

The theoretical details of the interface current method incorporated in TRANPIN has been 

described in detail in Chapter – 2. This Chapter describes the spatial discretisation of whole core 

using fine meshes, the numbering scheme of the meshes, connectivity of the meshes and iteration 

scheme adopted for the solution method. When there is an inherent symmetry one can solve for 

the symmetric portion of the core, thereby saving both memory and computational time. 

Rotational symmetry boundary condition in the whole core is normally considered [11]. 

Application of this boundary condition gets very complicated when the whole core is modeled by 
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a pin–by–pin approach. This Chapter also describes the methodology to apply the rotational 

symmetry boundary condition as implemented in TRANPIN, in the whole core problem 

discretized with complex microstructures of various heterogeneous cells of the problem.  

4.1 Conventions Considered in TRANPIN 

 To perform the core calculation in a deterministic numerical code, the geometry needs to 

be discretized. In TRANPIN, the meshes appearing in the whole core discretized geometry are 

numbered in two stages. First, the fuel assembly locations including reflector in the solution 

domain of core are numbered from core centre to boundary hexagonal layer in a spiral manner. 

This is illustrated in Fig. 4.1 for a representative 60° symmetric core problem. The numbering 

scheme is shown for 1/6th of core problem. Afterwards, the lattice cells inside each fuel assembly 

are also numbered from fuel assembly centre to outermost layer in a spiral manner as shown in 

Fig. 4.2 for a representative assembly discussed in Fig. 3.12/3.13 of Chapter–3. The spiral 

numbering of meshes helps in starting the iterative solution process from the most important 

region of the solution domain i.e. the core centre.  

The surfaces of the hexagonal fuel assembly are numbered cyclically from bottom left 

side in anti clockwise direction as shown in Fig. 4.3. As seen in Figs. 3.1, 3.12 or 3.13 of 

Chapter–3, there is a regular hexagon structure within the fuel assembly. Beyond this regular 

structure, there is a thin layer of moderator. In this layer, two distinct geometric shapes are 

encountered which are designated as side meshes (Fig.3.3a) and corner meshes (Fig.3.4a). The 

surface numbering convention in these meshes is shown in Fig.4.4. The surface numbering 

convention for (4.4b) & (4.4c) is fixed i.e., the numbering is also rotated along with the shape so 

that the surface number doesn’t change on rotation of these meshes.  
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4.2 Mesh Connectivity in TRANPIN 

In the interface current method, as seen from Eq. (2.28) of Chapter–2, the meshes are 

linked through interface currents as follows: 

௜௡ܬ ൌ  ௢௨௧ ௢௙ ௡௘௜௚௛௕௢௨௥ܬ 

i.e. the incoming current into the mesh is obtained from the outgoing current from the 

neighbouring mesh through the common surface. The meshes within an assembly location are 

connected to their neighbours through one of the common surfaces shown in Fig. 4.4. At the 

outermost layer of FA, only mesh shapes shown in Fig. 4.4b & 4.4c appear. The inter assembly 

coupling is achieved through these meshes only. This is illustrated in Fig. 4.5. Due to the 

numbering convention described above, the side meshes are connected only through common 

surface 1 and the corner meshes are connected through surfaces 1 & 2 to the corresponding 

meshes in neighbouring FAs.  

 
Fig. 4.1 – FA numbering in Core 
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                                  354   353   352   351   350   349   348   347   346   345   344   343                                  

                               355   292   291   290   289   288   287   286   285   284   283   282   342                               

                            356   293   236   235   234   233   232   231   230   229   228   227   281   341                            

                         357   294   237   186   185   184   183   182   181   180   179   178   226   280   340                         

                      358   295   238   187   142   141   140   139   138   137   136   135   177   225   279   339                      

                   359   296   239   188   143   104   103   102   101   100    99    98   134   176   224   278   338                   

                360   297   240   189   144   105    72    71    70    69    68    67    97   133   175   223   277   337                

             361   298   241   190   145   106    73    46    45    44    43    42    66    96   132   174   222   276   336             

          362   299   242   191   146   107    74    47    26    25    24    23    41    65    95   131   173   221   275   335          

       363   300   243   192   147   108    75    48    27    12    11    10    22    40    64    94   130   172   220   274   334       

    364   301   244   193   148   109    76    49    28    13     4     3     9    21    39    63    93   129   171   219   273   333    

 365   302   245   194   149   110    77    50    29    14     5     1     2     8    20    38    62    92   128   170   218   272   332 

    366   303   246   195   150   111    78    51    30    15     6     7    19    37    61    91   127   169   217   271   331   397    

       367   304   247   196   151   112    79    52    31    16    17    18    36    60    90   126   168   216   270   330   396       

          368   305   248   197   152   113    80    53    32    33    34    35    59    89   125   167   215   269   329   395          

             369   306   249   198   153   114    81    54    55    56    57    58    88   124   166   214   268   328   394             

                370   307   250   199   154   115    82    83    84    85    86    87   123   165   213   267   327   393                

                   371   308   251   200   155   116   117   118   119   120   121   122   164   212   266   326   392                   

                      372   309   252   201   156   157   158   159   160   161   162   163   211   265   325   391                      

                         373   310   253   202   203   204   205   206   207   208   209   210   264   324   390                         

                            374   311   254   255   256   257   258   259   260   261   262   263   323   389                            

                               375   312   313   314   315   316   317   318   319   320   321   322   388                               

                                  376   377   378   379   380   381   382   383   384   385   386   387                                  

Fig. 4.2 – Spiral Numbering of Meshes in a Representative Assembly Location 
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Fig. 4.4 – Surface numbers in (a) – hexagonal, (b) – side and (c) – corner meshes within an 

Assembly Location 

While numbering the assembly locations in the core, their six neighbors are also found 

and stored. The convention shown in Fig. 4.3 is followed to determine the assembly neighbors in 

order. The lattice cell numbering in each individual assembly location is identical as shown in 

Fig.4.2. For achieving the proper current coupling on the boundary surfaces of an assembly, it is 

necessary to identify the boundary lattice cells on each surface of a reference FA and the 

corresponding lattice cells of the neighbouring FA in the same order. For this purpose, a full 

sweep of the core solution domain is performed in order to find the neighbors of the peripheral 

meshes of every assembly location. Table–4.1 gives the neighbouring meshes (boundary lattice 

cells) for a representative non boundary assembly no. 14 shown in core map in Fig. 4.1 on each 

of the six sides of the FA. It may be pointed out that the corner lattice cell (single numbers in 

alternate shaded rows of the Table – 4.1) is linked to the two corner cells of two neighbouring 

FAs through common surface 1 or 2, and side lattice cells appearing as a row of lattice cells in 
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Fig. 4.3 – Surface Numbering for Hexagonal Fuel Assembly Location 
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Table 4.1 – Neighbors of Peripheral meshes of FA No. 14 

Surface No.
of FA 14 

Lattice cells of
FA 14 

Lattice cells in the Neighbouring FAs 
(Numbers in bracket are FA numbers) 

1 365 387 (9) &343 (13) 
366 to 375 342 to 333 (13) in order 

2 376 332 (13) & 354 (19) 
377 to 386 353 to 344 (19) in order 

3 387 343 (19) & 365 (20) 
388 to 397 364 to 355 (20) in order 

4 332 354 (20) & 376 (15) 
333 to 342 375 to 366 (15) in order 

5 343 365 (15) & 387 (10) 
344 to 353 386 to 377 (10) in order 

6 354 376 (10) & 332 (9) 
355 to 364 397 to 389 (9) in order 

 The surfaces on the left boundary will undergo –60° rotation whereas on the right 

boundary will undergo +60° rotation. Table–4.2 gives the surface number after rotation by ±60° 

for each of the surfaces. As seen from Table–4.2, the surfaces 1 & 6 of FAs on left rotational 

boundary will be linked to surfaces 5 & 4 of FAs on the right boundary respectively. Similarly, 

the surfaces 4 & 5 of FAs appearing on the right rotational boundary will be linked to surfaces 6 

& 1 of FAs on left rotational boundary respectively. Table–4.3 gives the modified linking of 

peripheral meshes of a representative FA no. 12 appearing on left boundary with the meshes of 

FAs on right rotational boundary. This modified coupling of meshes is obtained after considering 

the rotation of surfaces given in Table–4.2. Similarly, Table–4.4 gives the modified coupling of 

meshes of representative FA no. 29 appearing on right rotational boundary with the meshes on 

left boundary. The meshes appearing on non boundary FA surfaces of rotational symmetry lines 

will follow the linking provided in Table–4.1. It is noted from Table–4.3 & 4.4 that only one 

surface of the two corner meshes appearing on the start and end of the boundary surfaces need to 

undergo modification of neighbors. The unmodified surfaces of these corner meshes are marked 

with asterisk in Tables–4.3 & 4.4. They are interior meshes with no exterior boundary surface. 
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This determination of neighbors and neighboring surfaces is performed in geometry processing 

routine and stored at the start of calculation.  

Table 4.2 – Effect of Rotation on the surfaces of FA  

-60° Rotation 
(Anticlockwise) 

+60° Rotation 
(Clockwise) 

Surface No. Surface after Rotation Surface No. Surface after Rotation 
1 2 1 6 
2 3 2 1 
3 4 3 2 
4 5 4 3 
5 6 5 4 
6 1 6 5 

Table 4.3 – Neighbors of Peripheral meshes of FA No. 12 on left boundary 

Surface No.
of FA 12 

Lattice cells of
FA 12 

Lattice cells in the Neighbouring FAs 
(Numbers in bracket are FA numbers) 

1 365 332 (16) &354 (22) 
366 to 375 353 to 344 (22) in order 

2 376 343(22) & 354* (17) 

6 354 376* (8) & 343 (16) 
355 to 364 342 to 333 (16) in order 

Table 4.4 – Neighbors of Peripheral meshes of FA No. 29 on right boundary 

Surface No.
of FA 14 

Lattice cells of
FA 14 

Lattice cells in the Neighbouring FAs 
(Numbers in bracket are FA numbers) 

4 332 354* (37) & 365 (23) 
333 to 342 364 to 355 (23) in order 

5 343 354 (23) & 376 (17) 
344 to 353 375 to 366 (17) in order 

6 354 365 (17) & 332* (22) 

  * Interior Meshes connected without rotational symmetry 

4.3 Iteration Scheme in TRANPIN 

The purpose of solution scheme is to find the reaction rates or scalar flux in all the 

discretized regions in the whole core. The scalar flux in TRANPIN is obtained using the 

multigroup iteration scheme based on power or source iteration method. The power iteration 
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method makes use of the inner–outer iteration method. For the inner iteration for a group, the 

total source is computed in all the regions. The total source in region i is defined as follows  

௜ݍ  ൌ ௜ߑ 
௦߶௜ ௜ܸ ൅  ௜ܵ ௜ܸ .                                                         (4.1) 

The group source ௜ܵ  is defined as 

௜ܵ ൌ ൭∑ ௦௜ߑ
௚ᇲ՜௚߶௜

௚ᇲீ
௚ᇲୀଵ
௚ᇲஷ௚

൅ ఞ೒

௞೐೑೑
∑ ௙௜ߑߥ

௚ᇲ
߶௜

௚ᇲீ
௚ᇲୀଵ  ൱.  

To start the iteration procedure, an initial source guess is calculated using 1/E flux guess 

from the energy boundaries of the multigroup structure. After computing the total source, the 

solution domain of the whole core is swept to calculate the scalar flux and outgoing current 

components defined by Eqs. (2.23) and (2.26). A self scattering reduction scheme is adopted for 

Eq. (2.23) i.e. all the information of self scattering of a group is transferred to left side as shown 

in Eq. (2.72). This completes one inner iteration. The scattering source component in Eq. (4.2) is 

updated in the next inner iteration for second group. The process is repeated till the completion 

of group loop.  

In the outer iteration loop, the eigenvalue equation is solved. The general form of the 

eigenvalue value problem in TRANPIN can be written in operator notation as [53]: 

ሬԦ߶ ࢀ ൌ ଵ
௞೐೑೑

 ሬԦ.                                                                    (4.3)߶ ࡲ

where F represents the fission and T represents the streaming, absorption, and scattering 

of neutrons. Using the power iteration method to solve Eq. (4.3) results in the following 

߶ሬԦሺ௡ାଵሻ ൌ  ܶିଵ ଵ

௞೐೑೑
ሺ೙ሻ  ሬԦሺ௡ሻ.                                                        (4.4)߶ ࡲ

݇௘௙௙
ሺ௡ାଵሻ ൌ  ฮࡲ థሬሬሬԦሺ೙శభሻฮ

భ

ೖ೐೑೑
ሺ೙ሻ ฮࡲ థሬሬሬԦሺ೙ሻฮ

.                                                               (4.5) 

(4.2) 
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Where n is the outer iteration index. The fission source in Eq. (4.2) is updated after every 

outer iteration. This inner-outer iteration loop is repeated till the desired convergence in 

eigenvalue and scalar flux is reached. The eigenvalue is also estimated using neutron balance. 

4.4 Salient Features of TRANPIN 

TRANPIN performs the whole core calculation without any geometric distortion of the 

problem. The geometry is modeled exactly up to single lattice cell. The geometric discretization 

at lattice cell level is very flexible i.e. the discretization of different regions such as fuel, clad and 

associated coolant in the lattice cell can be performed externally. The solution method permits 

flexibility in choosing the quality of the calculation by both increasing the number of regions 

modeled within the lattice cell and choosing the order of incoming and outgoing angular flux 

expansion at the lattice cell surface.  

The methodology incorporated in TRANPIN uses advanced numerical methods which 

make use of the inherent configuration symmetries to reduce the amount of calculations and 

computational time. This is illustrated in the calculation of collision probabilities. First the 

materially and geometrically distinct fuel assemblies are sorted in the whole core. The collision 

probabilities are only calculated for geometrically and materially distinct lattice cells identified 

within these distinct fuel assemblies. Also symmetry, reciprocity relations and transformation 

laws are used to further reduce these collision probability computations.  

TRANPIN has the capability to model variable pitch within the fuel assembly i.e. the 

lattice cells with non uniform pitch can be linked using interface currents. This will be described 

in detail in Chapter 5.  

TRANPIN has been written in FORTRAN 90 and uses advanced modular structure of the 

language. All the routines in the TRANPIN make extensive use of features such as dynamic 
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memory allocation, modular attributes, array operations, user defined data structures and derived 

types. The code is now compact and modular. It is amenable for augmenting different calculation 

algorithms as may be identified through validation exercise of a variety of benchmark problems.  

TRANPIN can model large problems with many cells/regions in the whole core. The 

discretization of energy domain is fully flexible i.e. it can consider any group structure for 

multigroup modeling of the problem.  

4.5 Summary 

 A whole core transport theory code TRANPIN in 2D hexagonal geometry has been 

developed. The code performs the full core calculation, without homogenizing the various lattice 

cells present in the FAs, in multi group formalism. The code TRANPIN uses the interface 

current method based on 2D collision probability to solve the transport equation for the whole 

core problem. The individual cells in the FA are subdivided into finer regions. The coupling of 

cells within an assembly and inter assembly coupling is achieved using interface currents. The 

incoming/outgoing angular flux at the lattice cells interface is expanded in PN functions. The 

expansion is limited to P2. Albedo boundary condition is applied at the outermost surfaces of the 

cells. The huge memory requirement for whole core transport calculation can be reduced by 

using the intrinsic symmetry of the problem. The 60° rotational symmetry has been implemented 

in TRANPIN code. 
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CHAPTER – 5  

NUMERICAL RESULTS OF WHOLE CORE  

PIN–BY–PIN CALCULATION 

 The whole core pin–by–pin calculation code TRANPIN solves the transport equation for 

the full core using the interface current method based on 2D collision probability (CP) method. 

TRANPIN has been used to analyze two heterogeneous full core benchmark problems in 2D 

geometry viz. a simplified HTTR benchmark problem [54] and the OECD VVER–1000 MOX 

Core Computational Benchmark [55]. This chapter presents in detail the numerical results of the 

application of TRANPIN to the above two problems. The description of the benchmark problems 

is presented in Section 5.1. Section 5.2 gives the results of the analysis. Section 5.3 presents the 

brief summary of this Chapter. 

5.1 Description of Benchmark Problems 

 Two heterogeneous benchmark problems are studied using TRANPIN code system for 

benchmarking and validating the methodology incorporated in TRANPIN. The detailed 

specification of these benchmarks is described below.  

5.1.1 HTTR Benchmark 

 Zhang et al [54] has proposed a heterogeneous 2D benchmark problem that is typical of a 

high temperature reactor in hexagonal geometry, to test the accuracy of modern transport 

methods for neutronics analysis. This problem was derived from the High Temperature 

Engineering Test Reactor (HTTR) start–up experiment, which was built by JAERI, Tokyo, Japan 

in the late 1990’s. The present problem is a simplified benchmark problem which is obtained by 

removing the detailed design specific material and structural details of HTTR while retaining the 
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heterogeneity and major physics properties from the neutronics viewpoint. The detailed physics 

simplifications adopted to arrive the present benchmark configuration are described in detail in 

[54]. 

 The benchmark problem is a whole core heterogeneous 2D configuration in hexagonal 

geometry as shown in Fig. 5.1 (a). The reactor core is modeled as a regular hexagon with a flat–

to–flat distance of 436.4768 cm and is completely filled by a hexagonal lattice cells of fuel, 

control and reflector blocks. These hexagonal blocks are all of uniform size with a block pitch of 

36 cm, except at the periphery in which case there are half blocks along the core edges and 1/3rd 

blocks at the corners. The block lattice configuration, divided into eight regions, is shown in Fig. 

5.1(b). Regions 1 to 4 shown in Fig. 5.1(b) are fuel blocks of increasing enrichment. Regions 5 

and 6 are filled or empty control rod blocks depending on the core configurations considered in 

[54]. In the All Rods IN Configuration studied with TRANPIN and presented in this Chapter, 

both regions 5 and 6 are filled control blocks. Regions 7 and 8 are replaceable and permanent 

reflector blocks, respectively. There are 30 fuel blocks, 19 control blocks, 12 replaceable 

reflector blocks and 108 permanent reflector blocks in the whole core. Vacuum boundary 

conditions are prescribed on the external boundaries of the core. The three fundamental block 

geometries appearing in the core viz. fuel blocks, reflector blocks, and control rod blocks are 

shown in Fig. 5.2. Each fuel block consists of 33 identical fuel pin cells, 3 burnable poison (BP) 

cells and one central graphite pin. The fuel pin pitch in the block is 5.15cm and fuel pin diameter 

is 4.1cm. The BP rod has a diameter of 1.5 cm. The fuel enrichment is uniform within any single 

block but varies from block to block in the core. Each control rod block has a single removable 

control rod of 12.3 cm diameter at its center.  
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 The benchmark provides the 6–group, transport corrected macroscopic cross section 

library for four fuel cross sections (corresponding to the four enrichment levels defined in the 

core), four graphite cross sections (corresponding to graphite in fuel blocks, in control rod blocks, 

and in permanent and replaceable reflector blocks), and cross sections for burnable poison pins 

and control rods. The macroscopic cross section library had been obtained by a detailed lattice 

calculations using HELIOS code system [56]. The six group energy group structure is shown in 

Table 5.1. The details of cross section library generation using HELIOS and the values thereof 

can be found in [54]. 

 

 

Fig. 5.1 – The whole core structure and configuration of the simplified HTTR benchmark. 

(a) Full core structure, (b) Region indexing in the full core.  

(a) (b) 
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Fig. 5.2 – Block structures: (a) fuel blocks, (b) control rod blocks, (c) reflector blocks.  

Table 5.1 – Energy Structure of Group Constants  

Group Upper energy (eV)
1 1.00×107 
2 1.83×105 
3 9.61×102 
4 2.38 
5 0.65 
6 0.105 

5.1.2 OECD VVER–1000 MOX Core Computational Benchmark 

 The expert group at NEA has proposed a computational benchmark to investigate the 

physics of a whole VVER–1000 reactor core using two–thirds low–enriched uranium (LEU) and 

one–third MOX fuel [55]. This benchmark was proposed for certification of calculation codes for 

future MOX fuel utilization in VVER–1000 reactor cores. This is required due to marked 

differences in physics behavior of MOX and standard LEU fuels. The benchmark model consists 

of a full-size 2–D VVER–1000 core with heterogeneous 30% MOX–fuel loading. There are a 

total of 28 FAs (1 central + 27) in the 1/6th symmetric part of the core. The assembly pitch is 

23.6 cm. The system has an infinite axial dimension and vacuum boundary condition is applied 

on the exterior side surface. The core map is shown in Fig. 5.3. The core consists of fresh and 
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burned fuel assemblies (FA) of two types – graded UOX FA with U–Gd burnable absorber (BA) 

rods and profiled MOX FA with U–Gd BA rods. The UOX and MOX FA configurations are as 

shown in Figs. 5.4 and 5.5. Each FA consists of 331 hexagonal lattice cell locations with 312 

fuel pins, 18 guide tube cells with or without control absorber and one central guide tube cell 

with water. The pin pitch within the FA is 1.275 cm. In the UOX FA, the inner 240 fuel pins 

have 4.2 wt% 235U enrichment while outer 66 pins have 235U enrichment of 3.7 wt%. The 6 U/Gd 

pins have a 235U enrichment of 3.3 wt% and a Gd2O3 content of 5.0 wt%. The MOX FA has three 

types of Pu enrichment. The inner 234 pins have MOX fuel with 3.6 wt% Pu, 54 edge pins have 

2.7 wt% whereas and six corner pins have 2.4 wt%. The 18 Gd pins in MOX FA have a 235U 

enrichment of 3.6 wt% and a Gd2O3 content of 4.0 wt%.  

The core is surrounded by a reflector. The reflector is a very complicated structure 

consisting of a thin film of water, steel baffle with inner zigzag boundaries annexing the core and 

outer circular boundary and with water holes to insert surveillance thimbles, steel barrel, down 

comer water acting as thermal shield and steel pressure vessel. The water gap of 3 mm thickness 

is located between fuel assemblies and steel baffle. The VVER–1000 equilibrium core burnup 

distribution has been simplified by considering only two types of fuel assemblies with a fixed set 

of burn–ups. UOX FAs have average fuel assembly burn–ups of 0, 15, 32 and 40 MWd/kg, and 

MOX FAs have average fuel burn–ups of 0, 17 and 33 MWd/kg. The isotopic composition 

should be different in each fuel pin depending on the burnup accumulated in that pin. For 

simplicity, it is assumed that fuel pins of the same type have the same nuclide composition being 

a function only of average FA fuel burnup. The benchmark provides the isotopic composition of 

the all the fuel materials and various structural materials like fuel clad, guide tube, borated 

coolant, steel baffle, steel barrel and steel vessel required in the problem. 
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Fig. 5.3 – Core Map of the Benchmark Problem with 30% MOX Loading 

  
Fig. 5.4 – Graded UOX Fuel Assembly 
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Fig. 5.5 – Graded MOX Fuel Assembly 

5.2 Results and Discussion 

5.2.1 HTTR Benchmark Results 

The TRANPIN results for the HTTR benchmark in all rods in (ARI) condition are 

compared with benchmark results which are obtained using MCNP. The results reported here are 

obtained using a convergence criterion of 10–7 for multiplication factor and 10–5 for flux. The 

results are obtained using 32 azimuthal angles and a ray separation of 0.0396 cm. Gauss–

Legendre quadrature is used for angular integration of collision probability integrals. The 

hexagonal lattice cells in each FA are divided into concentric circles. The resulting mesh 

structure for the lattice cell is shown in Fig. 5.6. The fuel region was divided into three regions of 

equal volume and outside graphite region was divided into eight regions of equal thickness. 

Beyond the regular hexagonal structure in the fuel blocks, the graphite structure is divided into 
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Fig. 5.9 – Numbering Scheme of Blocks in 1/6th Core 

Table 5.2 gives the comparison of core eigenvalue obtained using TRANPIN with 

benchmark value. TRANPIN results are obtained by gradually increasing the order of angular 

flux expansion at the surfaces of distinct cells. The three results correspond to the DP0, DP1 and 

DP2 expansion as described in Section 2.4 of Chapter – 2. It is seen that the results obtained 

using DP2 expansion show the least deviation with benchmark result. The result with DP2 shows 

an absolute deviation of 0.91% w.r.t. the benchmark value. Table – 5.3 gives the block average 

fission density distribution for the 1/6th core obtained using the three angular flux expansions. 

The numbering scheme of blocks in the core and pins inside the blocks, as described in 

benchmark, is shown in Fig. 5.9. The block average fission density obtained using DP1 

expansion shows closest matching with benchmark values. A maximum relative deviation of 

0.93% is seen for block 5. The maximum values for DP0/DP2 expansion are seen to be 1.26% 

for block 6 and 1.02% for block 5 respectively. The %RMS deviation for DP0, DP1 and DP2 

expansion is seen to be 0.775%, 0.419% and 0.463% respectively. The comparison of pin wise 

fission density distribution with benchmark values and the % relative deviation thereof for 

blocks 1 to 6 is given in Figs. 5.10 to 5.15 respectively. These fission densities are normalized to 
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the total number of fuel pins in the whole core (i.e. the total sum of fission densities is 990) as 

specified in benchmark [54]. For blocks 2 & 3, the benchmark provides fission density values for 

only half blocks due to the symmetry of the problem. These blocks shown in Figs. 5.11 & 5.12 

have been completed using reflective symmetry. The relative standard deviations in benchmark 

fission densities for all blocks are between 0.0002 & 0.0003. The pin wise fission densities show 

satisfactory comparison with the benchmark results. The maximum relative deviation for all the 

blocks is less than 4%. The absolute maximum and minimum % relative deviations in the pin 

wise fission densities for the six blocks are 1.78%/0.1%, 2.45%/0.05%, 2.97%/0.02%, 3.1%/0.08, 

3.9%/0.01%, 3.4%/0.05% respectively. It is observed that fission density for interior pins in the 

block, in general, shows a closer matching with benchmark results. The minimum %RMS 

deviation of 0.98% is seen for block 2 and maximum %RMS deviation of 2.39% is seen for 

block 6. The %RMS deviation for blocks 1, 3, 4 & 5 are seen to be 1.25, 1.24, 1.59 & 2.09% 

respectively.  

Table 5.4 gives the comparison of maximum and minimum pin fission densities 

occurring in the core obtained using TRANPIN with benchmark values. The maximum fission 

density is seen at pin number 37 (if hexagonal locations are numbered from left to right and top 

to bottom in Fig. 5.2(a)) in block 2 in Fig. 5.11 whereas the minimum fission density occurs at 

pin number 14 in block 6 in Fig. 5.15. The % relative deviation in maximum and minimum 

fission density is seen as 2.45% and –2.53% respectively. 
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Table 5.2 – Comparison of keff 

Core 

Configuration 

Benchmark 

value 

TRANPIN value Δk 

DP0 DP1 DP2 DP0 DP1 DP2 

All Rods In 0.89623 ±0.00003 0.915417 0.910487 0.905359 0.019187 0.014257 0.009129 

Table 5.3 – Block Averaged Fission Density Distribution in ARI 

Block 
Number 

Fuel 
Type Benchmark

TRANPIN % Deviation 

DP0 DP1 DP2 DP0 DP1 DP2 

1 1 1.023 1.036 1.030 1.030 -1.25 -0.68 -0.68 
2 2 1.057 1.061 1.051 1.052 -0.38 0.57 0.47 
3 2 1.058 1.062 1.051 1.051 -0.38 0.67 0.66 
4 3 0.978 0.971 0.972 0.971 0.72 0.62 0.72 
5 3 0.981 0.973 0.972 0.971 0.82 0.93 1.02 
6 4 0.962 0.950 0.960 0.959 1.26 0.21 0.31 

% RMS Deviation 0.775 0.419 0.463% 

Table 5.4 – Comparison of Maximum and Minimum Pin Fission Density  

Core Configuration
Maximum pin fission density Minimum pin fission density 

Benchmark TRANPIN % Rel. Dev. Benchmark TRANPIN % Rel. Dev.
All Rods In 1.181±0.02% 1.152 2.45 0.859±0.02% 0.881 –2.53 
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Fig. 5.10 – Fission Density Distribution in Block 1 

 

Fig. 5.11 – Fission Density Distribution in Block 2 

 

Fig. 5.12 – Fission Density Distribution in Block 3 

 

Fig. 5.13 – Fission Density Distribution in Block 4 
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Fig. 5.14 – Fission Density Distribution in Block 5 
 
 
 

 

Fig. 5.15 – Fission Density Distribution in Block 6
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5.2.2 OECD Benchmark 

The benchmark problem lists a set of 6 operating states. The results presented here 

correspond to the working state S1 in all rods OUT condition. In this state the fuel and coolant 

temperatures are 1,027 K & 575 K respectively. The coolant has a boron content of 1,300 ppm.  

5.2.2.1 Nuclear Data Used and Cross Section Preparation 

 Since the present problem specifies only the material composition of the required 

materials, the required macroscopic cross sections must be computed. The present calculation 

was done using a high temperature, ultra fine energy group library ‘HTEMPLIB’ based on JEFF-

3.1 nuclear data library [31]. This library has cross section data for 185 nuclides in 172 energy 

groups in WIMS/D format as described in Section 3.5 of Chapter – 3. This library is traditionally 

used to perform lattice calculations such as the production runs of VVER lattice computations of 

Kudankulam NPP in Tamilnadu, India and other applications. The usage of this library to 

perform core calculations is new and not reported in literature to the best of our knowledge.  

In order to compute the macroscopic cross sections, TRANPIN uses Stammler’s model 

[51] to calculate self shielded cross sections. Equivalence relations are used for obtaining 

resonance self–shielded cross sections. In the WIMS libraries, the cross section in 47 resonance 

energy groups is tabulated in the form of resonance integral tables (RITs) for a set of background 

cross sections and temperatures. The background cross section for the problem under 

consideration is computed using the following formula 

௜ߪ
௕ ൌ  ෍ ௝ܰߣ௝ߪ௣௝

௜ܰ௝ஷ௜

൅  
௘ߑ

௜ܰ
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where ௜ܰ  is the isotopic density of the nuclide under consideration, ߣ௜ is the Goldstein-Cohen 

parameter, ߪ௣௜ is the microscopic potential scattering cross section of that nuclide and ߑ௘ is the 

effective potential scattering cross section obtained using equivalence principles for treating the 

heterogeneous lattice as an equivalent homogeneous problem. Using this background cross 

section, the resonance cross sections (absorption and fission) are obtained by a linear 

interpolation of the RITs w.r.t. background cross section and √ܶ where T is fuel temperature in 

Kelvin. Mutual shielding for a mixture of resonance nuclides is treated in accordance with the 

procedures described by Stammler and Abbate [51]. For the burnable poison nuclide Gd, only 

five isotopes viz. 154Gd, 155Gd, 156Gd, 157Gd, 158Gd are available in the HTEMPLIB library. The 

isotopes 152Gd &160Gd are not available. Since their absorption cross sections are negligible 

compared to those of 155Gd or 157Gd, the concentration of 152Gd & 160Gd given in benchmark 

specification were added to those of 154Gd &158Gd respectively. It is believed that this 

approximation would have negligible influence on the quality of results of the analysis. 

5.2.2.2 Results of Analysis 

The TRANPIN results for the OECD benchmark in S1 state are compared with 

benchmark results. Two Monte Carlo based evaluations obtained using MCNP and MCU 

provided in benchmark report [55] are selected for comparison. MCU uses a library named 

MCUDAT-2.1 whereas MCNP uses point data generated mainly from JEFF–2.2. Both of these 

libraries are in continuous energy format. The results reported here are obtained using a 

convergence criterion of 10–7 for multiplication factor and 10–4 for flux respectively. The results 

are obtained using 32 azimuthal angles and a ray separation of 0.01 cm. Gauss–Legendre 

quadrature is used for angular integration of collision probability integrals. The mesh 

discretization of this problem is a daunting task due to the large size of the problem. Fig. 5.16 
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describes the discretization of the problem. The solution domain considered 46 FAs (28 FAs in 

core + 18 FA locations in reflector) as shown in Fig. 5.16 (a). The mesh structure in each FA of 

Fig. 5.16 (a) is shown in Fig. 5.16 (b). The regular hexagonal, side and corner lattice cell 

discretization in each FA of Fig. 5.16 (b) is shown in Figs. 5.16 (c, d and e) respectively. Each 

hexagonal fuel pin in Fig. 5.16 (c) is subdivided into three fuel, one clad and seven coolant 

regions. Tables 5.5 and 5.6 give the comparison of keff obtained by TRANPIN with the 

benchmark results. TRANPIN results are obtained by using DP0 (Table 5.5) and DP1 (Table 5.6) 

expansion of angular flux on the surfaces of distinct lattice cells. It was not possible to run the 

present problem with DP2 expansion due to huge memory requirements discussed in the end of 

this section. It is seen that the DP0 result show a deviation of 4.44 mk from MCNP and 8.44 mk 

from MCU. The results show a good comparison with DP1 expansion. The results show a 

deviation of 1.53 mk from the MCNP and 5.53 mk from the MCU results where the deviation in 

mk is calculated using the following expression 

ሺ݅݊ ݉݇ሻ ߩ∆ ൌ ൬ ଵ
௞ೃ೐೑

െ  ଵ
௞೅ೃಲಿು಺ಿ

൰ ൈ 1000. 

It should be noted that the present benchmark is very challenging and tests the 

applicability of the codes to the problems of practical interest. In the present problem, the strong 

flux gradients are prevailing between LEU and MOX assemblies and strong heterogeneities are 

present within the fuel assemblies. Due to this, the usage of DP0 expansion is inadequate to 

predict the core characteristics. This will become clearer in the comparison of fission density 

distribution. To evaluate the assembly and pin wise fission density distribution, it is very 

important to model the reflector properly in the core. In the present calculation, two additional 

layers of each one assembly pitch in the reflector region were considered beyond the active core.  
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The reflector structure given in the benchmark was mapped on the detailed lattice structure of 

these two hexagonal layers. The lattice cells having 100% water, 100% steel or a combination of 

steel and water in these FA layers were identified. Figs. 5.17 and 5.18 give the comparison of 

assembly average fission rate distribution obtained using DP0 and DP1 expansion with MCU & 

MCNP results respectively. The assembly average fission reaction rates should be averaged over 

the hexagon with a pitch of 23.6 cm [55]. The following normalization rule is applied to the 

assembly average fission rate distribution [55]. The fission rate values R(I), I=1,28 satisfy 

ܴሺ1ሻ ൅ 6 כ  ෍ ܴሺܫሻ
ଶ଼

ூୀଶ

ൌ 163 

where 163 is the number of fuel assemblies in the reactor core and 6 is the number of 60° 

angles of symmetry. The assembly average fission reaction rates obtained using DP0 expansion 

show a very large deviation when compared with the reported Monte Carlo evaluations. This is 

due to the deep flux depression at the core centre when DP0 expansion is used. The assembly 

averaged flux distribution obtained using DP0 and DP1 expansion is shown in Fig. 5.19. As seen 

in Fig. 5.19, the flux values obtained using DP0 are higher in the outer FAs of the core as 

compared to DP1 values but lower in the internal FAs. The detailed cell averaged 172nd group 

flux in central assembly obtained using DP0 and DP1 is shown in Fig. 5.20. In the central 

assembly, both the assembly averaged and cell averaged pin–by–pin 172nd group flux values 

obtained using DP0 expansion are about 1/10th to the values obtained using DP1 expansion. 

Since most of the heterogeneous MOX assemblies are present in the interior of the core (Fig. 5.3), 

the isotropic flux (DP0) model is not able to predict the prevailing flux gradients and the flux 

peaking shifts to outer peripheral LEU assemblies. The prediction of flux gradients in core is 

improved only when DP1 expansion is used. The fission density distribution obtained using DP1 



123 
 

expansion, therefore, show a satisfactory comparison. The results using DP1 expansion show a 

maximum relative deviation of 2.8% w.r.t. MCNP & 2.6% w.r.t. MCU for FA N08. The %RMS 

error is seen to be 2.6% with MCNP and 2.2% with MCU values.  

The benchmark provides detailed pin–by–pin fission density distribution for three 

assemblies N03, N21 & N27 shown in Fig. 5.3. Two of these assemblies are LEU (N21 & N27) 

and one is MOX (N03). All the chosen assemblies are fresh. The pin wise fission densities are 

normalized to total number of locations in the fuel assembly i.e. 331 [55]. Figs. 5.19 to 5.21 give 

the comparison of fission density distribution for these assemblies. The estimated relative 

statistical uncertainty in benchmark values obtained by MCNP and MCU is 1%. The pin–by–pin 

fission density comparison is seen to be satisfactory. It is seen that the TRANPIN values show a 

closer matching with MCU for assemblies N03 & N27 whereas for N21, results are closer to 

MCNP. The %RMS error in MCU results is 1.7%, 2.8% & 1.9% for assemblies N03, N21 & 

N27 respectively. These values for comparison with MCNP results are 2.3%, 1.8% and 2.7% 

respectively.  

Table 5.7 compares the pin fission densities with maximum % relative deviation w.r.t 

MCU and MCNP for the three fuel assemblies. It is seen that the maximum deviation pins are 

different both for MCU and MCNP in the three assemblies. This is because there is a 

considerable difference in the two Monte Carlo evaluations of MCU and MCNP provided in the 

benchmark report. It is seen that the maximum absolute relative deviation in MCNP values w.r.t. 

MCU is 3.5%, 3.8% and 4.1% for assemblies N03, N21 and N27 respectively [55]. In TRANPIN 

calculation, for assembly N03, the maximum relative deviation pin occurs at location 26 (if 

hexagonal locations are numbered from left to right and top to bottom in Figs. 5.4/5.5) with 

relative deviation of –5.02% for MCU. This location shifts to pin number 175 with 4.62% 



124 
 

relative deviation in MCNP comparison. Similarly for assembly N21, the maximum deviation 

pin occurs at location 314 for MCU and 311 for MCNP with relative deviations of –3.73% and   

–3.05% respectively. For assembly N27, the maximum deviation pins are seen at locations 196 

and 35 for MCU and MCNP respectively. It is seen that all these locations are either at the 

periphery of the assembly or one to two layers away from periphery of fuel assembly.  

The present benchmark is huge in size. Since TRANPIN considers the mesh 

discretization to single lattice cell level, the code has huge memory requirements. The present 

problem has been simulated with 46 assembly locations (28 fuel assemblies in the 1/6th core + 18 

reflector assemblies). Each of this assembly has 397 lattice cells (331 regular hexagonal cells + 

60 side cells + 6 corner cells). Each hexagonal cell is further divided into 11 regions as discussed 

in the beginning of this section. Each hexagonal cell has 6 surfaces. Each side and corner cell is 

divided in 4 regions. These cells have 5 surfaces. The energy domain in the present problem is 

divided in 172 energy groups. Therefore, the flux and current unknowns required for the present 

problem can be estimated as follows  

number of flux unknowns = 46 * (331*11+66*4) *172 = 3,08,96,360 

number of current unknowns (DP0) = 46 * (331*6+66*5) *172 *1 = 1,83,24,192 

number of current unknowns (DP1) = 46 * (331*6+66*5) *172 *3 = 5,49,72,576 

number of current unknowns (DP2) = 46 * (331*6+66*5) *172 *6 = 10,99,45,152 

As seen from above, with increasing angular flux expansion, though the scalar flux 

unknowns remain constant, the memory requirement for current components, however, increases 

significantly. Since TRANPIN, presently, is running in serial mode, it was not possible to use 

DP2 expansion of angular flux for the present problem.  



125 
 

Table 5.5 – Comparison of Core keff with DP0 Expansion 

Core 
Configuration 

Benchmark value TRANPIN 
value 

Δk w.r.t. 
MCNP MCU MCNP MCU 

S1 State 
(All Rods OUT) 1.03770 ±0.007% 1.03341 ±0.013% 1.042506 0.004806 0.009096 

Table 5.6 – Comparison of Core keff with DP1 Expansion 

Core 
Configuration 

Benchmark value TRANPIN 
value 

Δk w.r.t. 
MCNP MCU MCNP MCU 

S1 State 
(All Rods OUT) 1.03770 ±0.007% 1.03341 ±0.013% 1.039354 0.001654 0.005944 

Table 5.7 – Comparison of Maximum Deviation Fission Density Pin 

Fuel Assembly 
 N03 N21 N27 

Maximum Deviation for MCU 
TRANPIN 1.046 0.891 0.747 

MCU 0.996 0.858 0.787 
%Rel. Dev. -5.02 -3.73 5.08 
Pin Number 26 314 196 

Maximum Deviation for MCNP 
TRANPIN 0.330 0.878 1.414 

MCNP 0.346 0.852 1.364 
%Rel. Dev. 4.62 -3.05 -3.67 
Pin Number 175 311 35 
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Fig. 5.17 – Assembly Average Fission Density Distribution with DP0 expansion

 
Fig. 5.18 – Assembly Average Fission Density Distribution with DP1 expansion 
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Fig. 5.19 – Assembly Average Flux Distribution in the core with DP0/DP1 expansion  

(Flux Distribution Multiplied by 106 for printing purpose) 
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Fig. 5.20 – Cell Averaged Flux Distribution in 172nd Group in Central Assembly 

(Flux Distribution Multiplied by 109 for printing purpose) 
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Fig. 5.21a – Comparison of Pin-by-pin Fission Density Distribution for Assembly N03 with MCU 
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Fig. 5.21b – Comparison of Pin-by-pin Fission Density Distribution for Assembly N03 with MCNP 
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Fig. 5.22a – Comparison of Pin-by-pin Fission Density Distribution for Assembly N21 with MCU 
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Fig. 5.22b – Comparison of Pin-by-pin Fission Density Distribution for Assembly N21 with MCNP 
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Fig. 5.23a – Comparison of Pin-by-pin Fission Density Distribution for Assembly N27 with MCU 
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Fig. 5.23b – Comparison of Pin-by-pin Fission Density Distribution for Assembly N27 with MCNP 
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5.3 Summary 

 A whole core transport theory code TRANPIN in 2D hexagonal geometry has been 

developed. The code performs the full core calculation, without homogenizing the various 

lattice cells present in the FAs, in multi group formalism. The code TRANPIN uses the 

interface current method based on 2D collision probability to solve the transport equation for 

the whole core problem. The individual cells in the FA are subdivided into finer regions. The 

coupling of cells within an assembly and inter assembly coupling is achieved using interface 

currents. The incoming/outgoing angular flux at the lattice cells interface is expanded in PN 

functions. The expansion is limited to P2. Albedo boundary condition is applied at the 

outermost surfaces of the cells. TRANPIN is used to study two heterogeneous benchmark 

problems viz. a simplified HTTR benchmark problem and the OECD VVER–1000 MOX 

Core Computational Benchmark. The eigenvalue for the core, assembly averaged and 

detailed pin–by–pin fission density distributions compare well with the reported Monte Carlo 

values for the two problems. The OECD problem is studied using ultra fine 172 energy group 

cross section library in WIMS format. Transport modeling by 2D CP method of the whole 

core without homogenizing any sub regions and with ultra fine energy groups is a highly 

sophisticated computational method and can be used to validate other production codes based 

on multistage homogenization and diffusion theory. When a parallel processing is 

implemented, the 2D CP method itself can assume a role of production code. 
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CHAPTER – 6  

SUMMARY AND FUTURE WORK 

1.1 Summary and Conclusion 

 The growing Indian nuclear power program will include the advanced Gen–III or III+ 

reactors. The challenging physics designs of these reactors require the development of state 

of the art core physics simulation methods. The availability of computational processing 

power has made the whole core pin–by–pin calculation as the next generation calculation 

methodology employing higher order transport methods. As part of this research work, a 

whole core pin–by–pin calculation code TRANPIN has been developed which is solely based 

on transport theory. TRANPIN solves the large scale whole core problem in 2D hexagonal 

geometry, using interface current method based on 2D collision probability in multigroup 

formalism, directly without prior homogenization using any lattice transport codes. The two 

step process explained in Chapter 1 has been reduced to a one–step simulation method and 

thus a greater degree of accuracy in simulating complex heterogeneities. The present code 

divides each lattice cell location in the fuel assembly (FA) into finer regions. Here the term 

‘lattice cell’ refers to structured meshes of single regular hexagonal pincell in the fuel 

assembly (Fig. 3.2 of Chapter–3) or the unstructured meshes appearing at the periphery of 

fuel assembly (Figs. 3.3 and 3.4 of Chapter–3). The subdivided regions inside the lattice cell 

are connected using the 2D collision probabilities. The coupling of lattice cells within the 

assembly and assembly to assembly coupling is achieved using interface currents. The 

interface currents are obtained by expanding the angular flux leaving or entering the lattice 

cell surface into double orthonormal P2 (DP2) polynomials. The detailed mathematical 

foundation of interface current method incorporated in TRANPIN is described in detail in 

Chapter–2.  
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 The methodology used in TRANPIN was tested for a single lattice assembly cell in 

hexagonal geometry. This was required as the implementation and validation of burnup 

characteristics with DP2 approximation for a single lattice assembly is not available in 

literature. The method was incorporated in lattice burnup analysis code VISWAM. Initially 

the TRANPIN code was benchmarked against a simplified heterogeneous HTTR benchmark 

problem. The pincell and assembly problems in the HTTR benchmark for seven enrichments 

were analyzed using six group macroscopic cross section provided in the benchmark. The 

results show a good agreement with a maximum error of 0.01% in k∞ for single lattice cell 

for all the enrichments specified in the benchmark problem. For the FA calculation, a 

maximum error of (–0.182%/–0.176%/–0.168%) w.r.t. benchmark in k∞ is obtained for first 

enrichment with DP0/DP1/DP2 expansion whereas the error for all other enrichments was 

seen within ±0.08%. The fission density showed an excellent comparison with benchmark 

results. The RMS error in the fission density distribution was 0.13%. The results are 

presented in Chapter–3. 

The burnup strategy for DP2 model used in VISWAM code was validated using the 

theoretical Computational Benchmark of VVER–1000 OECD LEU and MOX FA. First, the 

effect of flux anisotropy on eigenvalue and fission density distribution of FA was studied. 

The k∞ obtained by using higher order flux anisotropy showed an improved matching with 

reference MCNP result. The results obtained using P1 anisotropy show an improvement of 

around 4 mk in k∞ as compared to P0 values and 0.5 mk using P2 anisotropy w.r.t. P1 values. 

The fission density distributions obtained using DP0, DP1 & DP2 expansion were compared 

with the quoted MCNP values. The %RMS deviation in fission densities for three cases is 

seen to be 1.03%, 0.549% & 0.462%. The minimum RMS deviation was seen for results with 

P2 expansion. The fission density distribution, in general, shows a good comparison with 
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MCNP results. The multiplication factor with burnup, fission density distribution and cell 

averaged isotopic densities were compared and are discussed in detail in Chapter–3. The 

results obtained using DP2 expansion show least deviation from benchmark mean values. 

The reactivity loads of (Xe, Sm) and isothermal temperature show an improved prediction by 

DP1/DP2 models.  

The burnup model applied to single FA calculation using DP2 expansion showed a 

satisfactory performance. The various reactivity effects and isotopic densities predicted 

compared well with the benchmark results as a function of burn up. It is recommended to 

extend and use this model for performing the whole core calculation in 2D/3D geometry.  

 The interface current method was applied for whole core pin–by–pin calculation after 

gaining confidence at the lattice level. TRANPIN discretise the whole core 2D problem down 

to every single lattice cell level with fine subdivisions of each material region. The lattice cell 

division, spatial discretisation of whole core in using fine meshes, the numbering scheme of 

the meshes, connectivity of the meshes in the assembly and assembly to assembly coupling is 

given in Chapter–4. The iteration scheme adopted for the solution method is presented in 

Chapter–4. 

 The code TRANPIN has been applied to two core level 2D benchmark problems i) a 

heterogeneous simplified high temperature engineering test reactor (HTTR) benchmark 

problem and ii) OECD VVER–1000 MOX Core Computational Benchmark. The detailed 

results are discussed in Chapter–5. The HTTR problem is solved using the six group 

macroscopic cross sections provided in the benchmark. TRANPIN results were obtained 

using the DP0, DP1 and DP2 expansion. It is seen that the results obtained using DP2 

expansion show the least deviation with benchmark result. The result with DP2 shows an 

absolute deviation of 0.91% w.r.t. the benchmark value. The block average fission density 
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compares well and shows a maximum relative deviation of 1.02% for one block. The %RMS 

deviation is seen to be 0.463%. The pin–by–pin fission densities show satisfactory 

comparison with the benchmark results. The maximum relative deviation for all the blocks is 

less than 4%. The maximum %RMS deviation in pin–by–pin fission densities was seen as 

2.39%.  

The OECD benchmark is analyzed using ultra fine energy discretization with WIMS 

library in 172 energy groups. Stammler’s model for treating self shielded cross sections is 

used in TRANPIN to calculate the cross sections in resonance energy groups. The calculation 

was performed using DP0 and DP1 expansion and compared with two Monte Carlo 

calculations of MCNP and MCU. It is seen that the DP0 result show a deviation of 4.44 mk 

from MCNP and 8.44 mk from MCU in core keff. The results with DP1 expansion show a 

deviation of 1.53 mk from the MCNP and 5.53 mk from the MCU. It was seen that the DP0 

model could predict the eigenvalue within the acceptable limits but it grossly fails to predict 

assembly average fission density distribution. The results obtained using DP1 expansion 

show a satisfactory comparison. The results obtained using DP1 expansion show a maximum 

relative deviation of 2.8% w.r.t. MCNP & 2.6% w.r.t. MCU for FA N08. The %RMS error is 

seen to be 2.6% with MCNP and 2.2% with MCU values. The pin–by–pin fission densities 

for three assemblies are compared with the two Monte Carlo values. It is seen that the 

TRANPIN fission density values show a closer matching with MCU for assemblies N03 & 

N27 whereas for N21, results are closer to MCNP. The %RMS error in fission density values 

w.r.t. MCU results is 1.7%, 2.8% & 1.9% for three assemblies. The %RMS error in fission 

density values w.r.t. MCNP results was seen as 2.3%, 1.8% and 2.7%.  

Overall, the use of interface current method to perform large scale whore core 

calculation in 2D geometry shows a satisfactory performance. As seen from the above 
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results, the methodology incorporated in TRANPIN shows a promising application to the 

problems of practical interest. 

1.2 Future Work 

 The work performed in this research is oriented to develop the capability to perform a 

full scale 3D whole core calculation. The development of high–fidelity tools for solving 

reactor core neutronics problems that can replace current generation tools used for the design, 

optimization, safety analysis, and operation of current and future–generation reactors is very 

challenging. Smith et al [57] has listed the challenges and important aspects of LWR 

simulation that must be incorporated in truly high–fidelity analysis tools. Current production 

tools, while low–order in nature, rely on clever mathematical and physical approximations to 

overcome computing limitations that existed when they were developed [57]. While modern 

computing eliminates the need for many of these approximations, it is critically important 

that high–fidelity methods be used with sufficient resolution to actually deliver higher 

accuracy than the methods they are intended to replace [57].  

The use of interface current method in TRANPIN has shown a promising future for 

realistic problems in 2D geometry and fulfills the above objectives. The interface current 

method in TRANPIN can be used for performing 3D core calculation. This can be achieved 

either within the approximate framework of 2D/1D coupling scheme or by developing the 

interface current method for performing 3D multi assembly calculations. Although, the 

interface current method introduces some approximations for the angular order of the 

currents, the interface current method has potential for 3D whole core analysis. The 

application of interface current method for performing full scale 3D whole core calculation 

needs further research to develop innovative methods for accurately treating interface 

currents.  
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TRANPIN is currently running in serial format. The speed of calculation in 

TRANPIN can be greatly enhanced by making use of parallel algorithms. The acceleration 

schemes to accelerate the transport solution can be implemented in TRANPIN and future 3D 

code. This may include the conventional methods based on coarse mesh finite difference 

(CMFD) approach or coarse mesh rebalance (CMR) and their higher order variants. 

A very important requirement for performing the reactor physics calculation in 

2D/3D geometry is the accurate treatment of cross section in resonance energy region. 

TRANPIN, currently, uses the multigroup cross section libraries in WIMS format. 

Stammler’s model is used for treating self shielded cross sections in resonance energy range. 

Customized nuclear data libraries for thermal, intermediate and fast spectrum can be 

developed and used for different applications to retain the accuracy in respective applications. 

The resonance self–shielding and mutual shielding models based on sub group approach can 

be developed and used for preparation of cross section in resonance energy range.  

A fuel depletion module to perform the 2D/3D burnup calculation can be added to 

TRANPIN and its 3D variant. The future 3D code can be used to study the fuel cycle 

characteristics of VVER–1000 MWe reactors currently operating at Kudankulam, Tamilnadu, 

India and other indigenous fuel cycle study requirements. 
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APPENDIX A 

EXPRESSIONS FOR DIFFERENT COMPONENTS OF 

TRANSMISSION PROBABILITY 

 The general formula for transmission probability from surface β to surface α, in Eq. 

(2.50), is written in 2D geometry as  
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The different components of transmission probability are obtained using expansion 

functions for incoming and outgoing angular flux in Eq. (2.32) in above equation. For 

different combinations of ߤ and ߥ following expressions are obtained:  
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׬ ݀߶ ׬ ݕ݀ ൣ15ሺ51ܿݏ݋ଶ߱ఈ െ 2ሻ cos ߱ఉ sin ߱ఉ ଻ሺ߬ሻ݅ܭ െ ൫408 ܿݏ݋ଶ߱ఈ ൅

900 cos ߱ఈ cos ߱ఉ െ 16൯ sin ߱ఉ ଺ሺ߬ሻ݅ܭ ൅ ሺ480 cos ߱ఈ ൅ 240 cos ߱ఉሻ sin ߱ఉ ହሺ߬ሻ൧ െ݅ܭ

32 ఈܲఉ
ଵ଴ቃ.                                                                                 (A.35) 
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ఈܲఉ
ସହ ൌ ସ√ଷ଴଺

ହଵ√ଵଵ
ቂ ଵ

గௌഀ
׬ ݀߶ ׬ ݕ݀ ൣ15൫51ܿݏ݋ଶ߱ఉ െ 2൯ cos ߱ఈ sin ߱ఈ ଻ሺ߬ሻ݅ܭ െ ൫408 ܿݏ݋ଶ߱ఉ ൅

900 cos ߱ఈ cos ߱ఉ െ 16൯ sin ߱ఈ ଺ሺ߬ሻ݅ܭ ൅ ሺ480 cos ߱ఉ ൅ 240 cos ߱ఈሻ sin ߱ఈ ହሺ߬ሻ൧ െ݅ܭ

32 ఈܲఉ
଴ଵቃ.                                                                                  (A.36) 

ఈܲఉ
ହହ ൌ

1
11 ൤

8
ఈܵߨ

න ݀߶ න ݕ݀ ൣ225 cos ߱ఈ sin ߱ఈ cos ߱ఉ sin ߱ఉ ଻ሺ߬ሻ݅ܭ

െ 120൫cos ߱ఈ ൅ cos ߱ఉ൯ sin ߱ఈ sin ߱ఉ ଺ሺ߬ሻ൧ ൅݅ܭ 64 ఈܲఉ
ଵଵ൨.                    ሺA. 37ሻ 

 All the above expressions are required in the discretized current equation. It is to be 

noted, however, that all of the above expressions need not be evaluated numerically. The 

numerical evaluation of these expressions is optimized using the reciprocity relations 

satisfied by them. 
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APPENDIX B 

METHOD OF RAY TRACKING 

 A large part of the computational effort in two dimensional collision probability 

calculations is incurred in the evaluation of the coefficient matrices of collision probabilities. 

The collision probability integrals in two dimensions depend on azimuthal angle and space 

variable y. These integrals are numerically evaluated by trapezoidal rule or other quadrature 

formula. This is normally known as ray tracing. For present study, we have adopted 

equidistant ray tracing method. In this method, parallel rays are drawn for each angle and 

their intersection with the hexagon or circular regions are found. The coordinate system used 

for ray tracing is shown in Fig. A.1. The origin is taken as the centre of hexagon or circle.  

A.1 Definition of tracking line 

 For calculating tracks inside hexagon or circle, we need to find the intersection points  

with sides of hexagon and circles. The tracking line is uniquely defined by a point on the line 

 

 

 

 

 

 

 

Fig. B.1 Definition of origin 
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and its slope. The tracking line is shown in the Figure A.1. Its slope is defined by ݉ଵ ൌ tan  .ߙ

We have to define a point on this line to uniquely define it. For this a perpendicular OP is 

drawn on the tracking line from origin O. 

 If p is the length and (a, b) are the coordinates of the foot of perpendicular, then slope 

of perpendicular is given as 

݉ଶ ൌ െ 
1

݉ଵ
 

 Equation of perpendicular line ݕ ൌ ݉ଶݔ ൅ ܿ 

 Since it passes through origin O, so c=0. Point P also lies on this perpendicular line. 

So  

ܾ ൌ ݉ଶܽ 

 Now, distance between points O & P is p. so 

ܽଶ ൅ ܾଶ ൌ  ଶ݌

ܽଶ ൅ ܽଶ݉ଶ
ଶ ൌ  ଶ݌

ܽ ൌ
݌

ඥሺ1 ൅ ݉ଶ
ଶሻ

 ൌ  
 ݉ଵ݌

ඥሺ1 ൅ ݉ଵ
ଶሻ

 

ܾ ൌ ݉ଶܽ ൌ  
െ݌

ඥሺ1 ൅ ݉ଵ
ଶሻ

 

 The coordinates (a, b) and slope ݉ଵ uniquely define the tracking line. The value of p 

is chosen initially as the side of hexagon for the hexagonal cell.  
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A.2 Intersection of tracking line with Circle 

 Once the tracking line is defined, its intersection points are computed with each 

circular region. A circle is uniquely defined by coordinates of its centre (p, q) and radius r. 

The equation of circle is given as 

ሺݔ െ ሻଶ݌ ൅ ሺݕ െ ሻଶݍ ൌ  ଶݎ

For a line passing through point (ݔ௔,  ௔) and slope m we first calculateݕ

ܿ ൌ ௔ݕ െ  ௔ݔ݉

then we calculate following quantities 

ܣ ൌ 1 ൅  ݉ଶ 

ܤ ൌ 2݉ሺܿ െ ሻݍ െ  ݌ 2

ܥ ൌ ଶ݌ ൅  ሺܿ െ ሻଶݍ െ  ଶݎ 

ܦ ൌ ଶܤ െ  ܥܣ4

 If ܦ ൐ 0, the line intersects the circle. The two points of intersection are given as 

ଵݔ ൌ  ି஻ା √஽
ଶ஺

ଵݕ ;  ൌ ଵݔ݉  ൅ ܿ. 

ଶݔ ൌ  ି஻ି √஽
ଶ஺

ଶݕ ;  ൌ ଶݔ݉  ൅ ܿ. 

 These points are stored and then sorted in increasing or decreasing order. If the 

tracking line is vertical (slope=∞) then considering equation of line x=k, we calculate 

ܦ ൌ ଶݎ െ  ሺ݇ െ  ሻଶ݌

 If ܦ ൐ 0, the line intersects the circle. The two points of intersection are given as 

ଵݔ ൌ ଵݕ ; ݇  ൌ ݌  ൅  ܦ√ 
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ଶݔ ൌ ଶݕ ; ݇  ൌ ݌  െ  ܦ√ 

 After computing intersection points, the track length in a circle is computed as 

ݐ ൌ  ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  ଵሻଶݕ

A.3 Intersection of tracking line with Hexagon 

 The intersection of tracking line with hexagon involves the intersection of line with 

hexagonal surfaces. The surfaces of hexagon are numbered as shown in Fig. A.2. If the line 

crosses the hexagon, it will intersect any two surfaces defining the hexagon. The equations of 

surfaces of hexagon are stored and intersection with each surface is checked at a time. Here 

we will describe the method to calculate the point of intersection of two lines.  

 

 

 

 

 

 

 

 If ܣଵݔ ൅ ݕଵܤ  ൌ ଵܥ  and ܣଶݔ ൅ ݕଶܤ  ൌ  ଶ are the equations of two lines, then weܥ

calculate 

ܦ ൌ ଶܤଵܣ  െ  ଵܤଶܣ 

 If |0<|ܦ, the lines intersect and the point of intersection is give as 

1    2 

Fig. B.2 Surfaces of Hexagon 
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4  

 5 

6 

 (௔ݕ ,௔ݔ)
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A 
,ଵݔ)  (ଵݕ

,ଶݔ)  (ଶݕ
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ݔ ൌ  
ଶܤଵܥ െ ଵܤଶܥ

ܦ   ; ݕ ൌ  
ଶܣଵܥ െ ଵܣଶܥ

ܦ  

 The hexagon surface is defined by two vertices. For surface AB, as shown in Fig. A.2, 

the slope of the surface can be obtained using 

݉஺஻ ൌ
௕ݕ െ ௔ݕ

௕ݔ െ ௔ݔ
 

 The intercept on y-axis can be obtained 

஺ܿ஻ ൌ ௕ݕ െ ݉஺஻ݔ௕ 

 Now the equation of line can be written as 

ݕ ൌ ݉஺஻ݔ െ ஺ܿ஻  

 or rearranging 

െ݉஺஻ݔ ൅ ݕ ൌ െ ஺ܿ஻ 

 Thus 

ଵܣ ൌ െ݉஺஻, ଵܤ ൌ 1, ଵܥ ൌ െ ஺ܿ஻ 

 Similarly for tracking line defined in section A.1, we have 

ଶܣ ൌ െ݉ଵ, ଶܤ ൌ 1, ଶܥ ൌ െܿ  ݁ݎ݄݁ݓ ܿ ൌ ܾ െ ݉ଵܽ 

 The intersection point can be found using above formula. Once the intersection point 

is calculated, we have to check whether it lies on hexagon. For this purpose, we will compare 

(x, y) with the coordinates of the vertices of that surface. If the line intersects, say, surface 

AB (Fig. A.2), then point (x, y) will lie on hexagon if x lies between ݔ௔ & ݔ௕ and y lies 

between ݕ௔ & ݕ௕ . After checking the intersection with all six sides, we get two points of 

intersections denoted by ሺݔଵ, ,ଶݔଵሻ and ሺݕ  ଶሻ in Fig. A.2. Now we want to know whichݕ
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surface of the hexagon is intersected first. For this purpose, we arrange both ݔଵ  and ݔଶ 

intersection points in increasing order of their magnitude. With these points we have 

associated surface numbers 1 and 2. This order of their magnitude will give us the order and 

number of the surfaces encountered. The track length inside hexagon is again given by the 

formula 

ݐ ൌ  ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  ଵሻଶݕ

 The above procedure is repeated for all angles and all parallel lines of an angle. The 

coordinates of intersection are stored for calculation of optical length in each energy group 

with different total cross section. 

 After tracking the full geometry, the volume of each zone is numerically computed. 

The formula for numerical volume is given by 

௜ܸ
௡௨௠ ൌ  

1
ߙ

෍ ෍ ஺ݓ
௠ ݓ௬

௡ ݐ௜
௠,௡

௡௠

 

 where ݐ௜ is the track length in region i and ߙ is the angle of integration. The ratio 

between true and numerically integrated volume is a measure of integration accuracy and 

serves as a numerical check for detecting any anomaly in ray tracing. 
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