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Synopsis
Among the various fields of astronomy (Radio, Infrared, Optical, Ultraviolet, X-ray, γ-

ray), ground based γ-ray astronomy is the youngest entrant. This field was pioneered

by the Whipple group who made the first detection of TeV γ-rays from the Crab Neb-

ula in the year 1989 [1]. Subsequently, over the next decade, γ-rays were detected from

various astrophysical sources [2, 3, 4, 5, 6, 7, 8]. This field has seen remarkable progress

in recent years with the source count increasing from just a single source in 1989 to 175

confirmed TeV γ-ray sources [9] as of now. The detection of cosmic γ-rays is based on the

principle of the detection of Cherenkov photons produced by cosmic rays in the atmo-

sphere. When cosmic rays enter the Earth’s atmosphere, they interact with atmospheric

nuclei by hadronic and electromagnetic interactions. Electrons and the cosmic γ-rays

interact electromagnetically, i.e. they generate secondary particles by pair production

and the bremsstrahlung process. The hadronic cosmic rays, namely protons and ionized

nuclei, interact via the hadronic interaction and also give rise to a number of secondary

particles. Such generation of secondary particles in the atmosphere is called an Exten-

sive Air Shower (EAS). The hadronic showers create π0 particles that decay into γ-rays

making it difficult to distinguish these hadronic showers from genuine showers initiated

by γ-rays. The secondary particles generated in EAS move with relativistic speed and

generate Cherenkov radiation in the atmosphere. The technique to detect the image gen-

erated by the Cherenkov photons produced in EAS is known as the Imaging Atmospheric

Cherenkov Technique (IACT). The present generation of IACT based telescopes includes

MAGIC [10], H.E.S.S.-I [11] and VERITAS [12]. MAGIC telescope consists of 2 x 17 m
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diameter telescopes on the Canary island of La Palma. The VERITAS telescope is an

array of 4 x 12 m diameter telescopes in southern Arizona, USA. H.E.S.S.-I consists of

an array of 4 x 12 m diameter telescopes in Namibia. H.E.S.S.-II is a 28 m diameter

telescope [13] installed in the centre of the H.E.S.S.-I array. All these telescopes except

H.E.S.S.-II have energy threshold ∼ 100 GeV. In order to augment the capability of IACT

based telescopes in the few GeV to few TeV energy range, an international consortium

of worldwide researchers are setting up an open observatory known as the Cherenkov

Telescope Array (CTA) [14]. CTA will consist of two large arrays of IACTs, one in the

Northern Hemisphere with an emphasis to study extragalactic objects and a second ar-

ray in the Southern Hemisphere to observe galactic sources. The Southern array which

is being set up first will deploy IACT based telescopes of various diameters to cater to

the wide energy range of few tens of GeV to > 100 TeV. A compact array of 4 x 23 m

diameter telescopes will cater to the lower end of the energy range.

In the same endeavour, Astrophysical Sciences Division, BARC† , India

has also proposed an IACT based telescope known as the MACE (Major Atmospheric

Cherenkov Experiment). MACE is a 21m diameter and 25 m focal length telescope

presently being installed at Hanle in Ladakh, India (320 46
′
46” N, 780 58

′
35” E) at

an altitude of 4270 m a.s.l. It will deploy a photomultiplier tube (PMT) based imaging

camera consisting of 1088 pixels with a uniform pixel resolution of 0.125◦ and a field of

view of ∼ 3.4◦ × 4◦. Out of the 1088 pixels, the innermost 576 pixels (24 × 24) will be

used for trigger generation. The trigger field of view is ∼ 2.6◦ × 3◦. The light collector

0† Bhabha Atomic Research Centre
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of the telescope will be made of 356 mirror panels of 984 mm × 984 mm size fixed at a

square pitch of 1008 mm on a paraboloid shaped basket. Each panel will consist of four

488 mm × 488 mm facets of spherical mirrors made of aluminum with a quartz coating.

The total light collector area will be ∼ 337m2. The mirror facets have a graded focal

length which ensures that the on-axis spot size is minimum at the focal plane.

The conventional method for γ-hadron segregation, introduced by Hillas

works effeciently in the high energy range (> 500 GeV), however, its efficiency reduces

drastically below this energy. Therefore, the ground based gamma ray astronomy com-

munity has started exploring various options including multivariate methods for data

analysis. These methods fall under the umbrella of machine learning methods and em-

ploy statistical tools to decipher hidden relationships, if any, among a few or a collection

of attributes/parameters with comparatively little computing infrastructure. Machine

learning methods have been explored in the field of ground based gamma ray astron-

omy for quite some time with the earliest efforts being initiated by Bock [15]. Later

on, for γ-hadron segregation, the effectiveness of tree based multivariate classifiers was

demonstrated by two ground based observatories MAGIC [16] and HESS [17,18,19].

Since MACE telescope is expected to have an energy threshold below 100

GeV, we also employed a machine learning method named Random Forest (RF) to carry

out the γ-hadron segregation. The algorithm for RF was developed by Leo Breiman

and Adele Cutler∗ and can be used for classification and regression problems. RF is

an ensemble of simple tree predictors where each tree makes a prediction and the final

0∗ http://www.stat.berkeley.edu/breiman/RandomForests/
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prediction is made by aggregating over the ensemble. The classification tree forms the

basic building block of this method. The principle of RF method is based on combining

many binary decision trees constructed using several bootstrap samples taken from the

training sample and from each node randomly choosing a subset of input variables. The

RF method combines the concept of bagging [20] and Random Split Selection [21]. The

classification tree is constructed by binary recursive partitioning of the data set. Each

partitioning splits the data sets into different branches. In the present work, the basic aim

of the application of RF is to segregate Cherenkov photons generated by the cosmic γ-

rays from the background consisting of the Cherenkov photons generated by other cosmic

ray particles like protons, electrons and alpha. For this purpose, the present problem is

treated as a binary classification problem where one of the classes ‘γ’ is to be segregated

from the other class consisting of protons, electrons and alpha particles. Each entry of

training sample consisting of two classes is known as an event and is characterized by

a vector containing various image (Hillas) parameters. Since each tree in RF method

is constructed by introducing a randomness, the collection of such randomly generated

trees is known as the RF.

The research presented in the thesis involves determination of the sensitivity

estimate for the MACE telescope by employing the RF method using a Monte Carlo

simulation database. Since the MACE telescope is expected to be operational by

2017, it was decided to first apply the RF method on the already operational

IACT based telescope TACTIC observational data to validate it and then

subsequently apply this method for carrying out the γ-hadron segregation for
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the MACE telescope and then estimate its sensitivity.

This thesis is divided into two parts. The first part deals with the ap-

plication of various machine learning methods for γ-hadron segregation for TACTIC

telescope. Various machine learning methods such as the Random Forest, Artificial Neu-

ral Network, Linear Discriminant, Naive Bayes Classifiers, Support Vector Machines as

well as the conventional Dynamic Supercut method were evaluated and compared by

simulating triggering events with the Monte Carlo method. It was demonstrated that

the RF method is the most sensitive machine learning method for γ-hadron segregation.

Thereafter, the Random Forest method was validated by re-analysing the Markarian 421

(Mrk 421) data collected by the TACTIC γ-ray telescope. Markarian 421 in a high state

was observed by TACTIC during December 07, 2005 - April 30, 2006 for 202 h. Previous

analysis of this data led to a detection of flaring activity from the source at energy >

1 TeV. Within this data set, a spell of 97 h revealed strong detection of a γ-ray signal

with daily flux of > 1 Crab unit on several days. Application of this method led to an

improvement in the signal detection strength by ∼ 26% along with a ∼ 18% increase in

detected γ rays compared to the conventional Dynamic Supercuts method. The resul-

tant differential spectrum obtained was represented by a power law with an exponential

cut off Γ = −2.51 ± 0.10 and E0 = 4.71 ± 2.20 TeV. Such a spectrum was consistent

with previously reported results and justifies the use of RF method for analyzing data

from atmospheric Cherenkov telescopes. The second part of this thesis deals with the

estimation of sensitivity of the MACE telescope by using the RF method. In this study,

we discuss the sensitivity estimate of the MACE telescope by using a substantially large
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Monte Carlo simulation database at 50 zenith angle. Due to its very high altitude and

large light collector area, the MACE telescope is able to achieve a low energy threshold

which is estimated to be ∼ 38 GeV at 5◦ zenith angle. It will also be able to detect a

minimum of ∼ 2.7% Crab flux in 50 hrs of observation.

The contents of the thesis are organized as follows

� Chapter 1: We introduce the field of VHE γ-ray astronomy. Various γ-ray pro-

duction mechanism will be discussed briefly.

� Chapter 2: We will discuss extensive air showers and Imaging Air Cherenkov

Technique. This chapter will also discuss the estimation of Hillas parameters. We

will also discuss the details of TACTIC telescope briefly.

� Chapter 3: We will discuss various machine learning methods such as RF method,

Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers and

Support Vector Machines and compare them with the conventional method. The

superiority of RF method will be brought out by using the Monte Carlo simulation

database for the TACTIC telescope. This chapter will also discuss the validation of

RF method by using the observational data on Mrk 421 collected with the TACTIC

telescope.

� Chapter 4: We will introduce the MACE telescope in this chapter and will discuss

the estimation of its sensitivity by using a huge Monte Carlo simulation database

from 10 GeV – 20 TeV energies at 5◦ zenith angle.

� Chapter 5: Finally in Chapter 5, we present the main conclusions of the thesis

along with the future plans.
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1.1. Introduction

1.1 Introduction

Among the various fields of astronomy (Radio, Infrared, Optical, Ultraviolet, X-rays,

gravitational wave astronomy, γ-rays) ground based very high energy (VHE) γ-ray as-

tronomy is one of the the youngest entrants. This field was pioneered by the Whipple

group who made the first detection of TeV γ-rays from the Crab Nebula in the year

1989 [1]. Since then this field has seen remarkable progress.

Energy Range (eV) Energy Range Classification Platform

5.5× 105 − 1× 107 0.51 - 10 MeV low/nuclear satellite

1.0× 107 − 3× 107 1 - 30 MeV medium satellite

3.0× 107 − 1× 1010 30 MeV - 10 GeV high satellite

1.0× 1010 − 1× 1014 10 GeV - 100 TeV very high ground

1.0× 1014 − 1× 1017 100 TeV - 100 PeV ultra high ground

1.0× 1017 − 1× 1020 100 PeV - 100 EeV extremely high ground

Table 1.1: gamma ray energy ranges

With the advent of more and more sensitive telescopes based on atmospheric Cherenkov

technique, an unprecedented number of VHE sources has populated the gamma ray sky.

The source count in this field has increased from just a single source in 1989 to 175

confirmed TeV γ-ray sources. The scientific motivation for VHE gamma ray astronomy

is multi-faceted. The origin of cosmic rays since its discovery is one of the long standing
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1. VHE γ RAY ASTRONOMY

questions. The cosmic rays span the highest energy end of electromagnetic spectrum

covering energies from 106 eV – 1020 eV. Broadly speaking, the entire energy range can

be subdivided into various sub energy ranges, as given in Table 1.1.

1.2 Cosmic rays

In early 1900s, Henri Becquerel discovered that certain elements are unstable and trans-

mute to other elements by emitting particles. These particles were named as radiation

and the process was referred to as radioactive decay. It was observed that an instrument

named electroscope would spontaneously discharge in the presence of radioactive materi-

als. However, when the electroscope was taken to higher altitude, it was noticed that the

electroscopes were still discharging although the radioactive matter was absent. It was

inferred that this discharge was taking place in presence of some unknown background

radiation. In order to investigate the origin of this background, the measurement of radi-

ation level at different heights was carried out with electroscope in a balloon by Austrian

physicist Victor. F. Hess. Hess went as high as 5 kms in his balloon. It was quite

interesting to observe that the radiation levels were increasing with increasing height.

It was inferred that the radiation is entering the atmosphere from outer space and this

radiation was named as cosmic Radiation. This radiation is now known as the Cosmic

Rays. He wrote [2] . . .

� The results of the present observations are most easily explained by assuming that

this radiation enters the atmosphere from above; It was also found that this ra-

diation produced ionization even in closed vessels. It was also observed that this

phenomenon was taking place at the same rate even during the nights and solar
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1.2. Cosmic rays

eclipse. So, sun as the source of this radiation was also ruled out . . .

This radiation, very soon was experimentally observed by the Wilson cloud chamber. For

the discovery of the cosmic rays, Victor Hess was awarded Nobel prize in 1936 [3].

A nice description of early history of Cosmic Ray Studies is given in [4].

Soon after the discovery of cosmic rays, a flurry of activity took place in the field of

cosmic rays. The discovery of tracks in a cloud chamber was successfully carried out by

Skobelzyn (1929) [5,6] in the Soviet Union. By using the electroscopes and ion chambers,

Milliken and his students [7] had resolved important question that their origin was extra

terrestrial. Milliken coined the term cosmic rays. Anderson was the graduate student of

Milliken who asked him to build a cloud chamber to study the cosmic radiation. This

chamber started operation in 1932 and tracks of positive and negative particles were

observed. Although Milliken insisted that positive particles must be proton, Anderson

by placing a 0.6-cm lead plate across the middle of the chamber observed that a particle

moving upward and losing energy as it passed through the plate; its momentum before

entering the plate was 63 MeV
c

and 23 MeV
c

on exiting. It had to be a positive particle

and positron was discovered [8,9]. Another discovery of an elementary subatomic particle

called the muon in cosmic ray was announced by Seth Neddermeyer and Carl Anderson.

The positron and the muon were the first of series of subatomic particles discovered using

cosmic rays. In 1938, Auger discovered ”extensive air showers [10] by noticing that two

detectors located many meters apart, at Alps, both signaled the arrival of particles at

exactly the same time. Based on his measurements, Auger concluded that he observed

showers with energies of 1015 eV. Kenneth Greisen, Vadem Kuzmin and Georgi Zatsepin

5



1. VHE γ RAY ASTRONOMY

in 1966 pointed out [11] that high energy cosmic rays would interact with the cosmic

microwave background and the maximum energy of cosmic ray particles could not have

energies greater the 5 × 1019 eV. The Fly’s Eye cosmic ray research group [12] in 1991

observed a cosmic ray event with an energy of 3×1020 eV. The AGASA group, Japan [13]

in 1994 reported an event with an energy of 2 × 1020 eV. The latest available result is

presented in [14]. The measured flux of ultrahigh energy cosmic rays is in the energy

range 1017.2 to 1020.5 eV. They also observed two breaks in the energy spectrum. The

observed break was consistent with the GZK cutoff and the ankle. The measured energy

of the GZK cutoff was ∼ 5.6 × 1019 eV.

1.3 Spectrum

Cosmic rays can be divided into two types: Primary cosmic rays and secondary cosmic

rays. Primary cosmic Rays are stable charged particles accelerated to enormous energies

by astrophysical sources. They predominantly consists of protons or hydrogen nucleus.

The charged component of of Primary cosmic rays is [15] as follows:

Protons ∼ 86%

α particles ∼ 11%

Electrons ∼ 1%

Heavy nuclei ∼ 2%

Apart from it, there is a very small proportion of positrons and anti protons. The neutral

component of primary cosmic rays are γ-rays (0.01%), neutrinos and antineutrinos [16].

The secondary cosmic rays are particles produced by the interactions of primary cosmic

rays with the interstellar gas or atmospheric nuclei. Broadly, cosmic rays can be divided
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1.3. Spectrum

into four categories:

� Galactic cosmic rays – coming from outside the solar system.

� Extragalactic cosmic rays – coming from outside our galaxy.

� Solar Energetic Particles – associated with solar flares and other energetic solar

events.

� Anomalous Cosmic Rays – coming from the interstellar space at the edge of the

heliopause.

The cosmic ray spectra observed by various experiments is shown in Figure 1.2. It

is clear from the figure that the cosmic ray flux decreases from ∼ 1 particle m−2

s−1 at energies around 100 GeV to below 1 particle m−2 year−1 for the energy 1016

eV. The spectrum of primary cosmic rays shows a typical power law distribution

with spectral index of -2.7 from a few GeV to 3× 1015 eV. This region of spectrum

is known as the ”Knee”.

dN

dE
∼ E−2.7 (1.1)

Beyond 3 × 1015 eV, the spectrum steepens with a spectral index of -3 and for

energies more than 3×1018 eV – the ankle, a flattening is observed. An upper limit

on the energy of cosmic ray sources was theoretically estimated by Greisen [17]. This

suppression at the highest energy end was independently estimated by Greisen and

Kuzmin & Zatsepin [11]. This cut off is known as the GZK cut off. Cosmic ray

experiments like HiRes [18] has shown the suppression of CR spectrum by a factor

of two in comparison to the power law extrapolation above 3 × 1019 eV.
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Figure 1.2: Cosmic ray spectra from various experiments (adapted from
http://www.physics.utah.edu/ whanlon/spectrum.html)

1.4 Sources of cosmic rays

The most important plausible sources of cosmic rays are the following:
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1.4. Sources of cosmic rays

– Supernova Remnant : accelerates the particles at the shock front of energies

up to the knee region (one acceleration mechanism). It is to be noted that the

origin of knee is unknown. During the final stages of the star evolution when

the gravitational pressure takes over the thermal pressure generated by the

fusion reaction, the star core collapse takes place followed by explosion. The

expanding outer shell of the star is known as the supernova remnant (SNR).

The total energy radiated by supernova are ∼ 1049 ergs [19].

– Active Galactic Nuclei (AGNs) : AGNs are the compact region at the

centre of a galaxy with their luminosity much higher than the normal galaxy

over some or all the bands of the electromagnetic spectrum. AGNs are the most

probable astrophysical sources of Ultra high Energy Cosmic Rays (UHECR)

accelerating particles up to 1021 eV.

– Gamma Ray Burst (GRBs) The GRBs are extragalactic and extremely

energetic transient emissions of gamma rays. The total energy radiated by

GRBs are ∼ 1051−54 ergs, i.e. their energy exceeds hundred times the total

energy radiated by a supernova.

– Binary star systems : One of the companions of such a system is neutron

star or black hole. The compact star accretes mass from the companion star.

The particle acceleration in these systems are possible either due the internal

shocks in the jets formed in the vicinity of the compact object or due to the

termination of pulsar wind. The VHE gamma rays are then produced due to

9



1. VHE γ RAY ASTRONOMY

the presence of optical photons or gas supplied by the companion star.

– Star-forming galaxies : These are young galaxies with very high star for-

mation rate compared to regular galaxies and inject very large kinetic power

into the interstellar medium via supernova explosions and supersonic stellar

winds and generate cosmic rays.

1.5 Gamma rays

Unlike the charged components of the cosmic radiation, cosmic γ-ray photons are

not influenced by magnetic fields and therefore, are the best entity to point back to

their source location to understand the origin of cosmic rays. Therefore, the study

of gamma rays allows to understand the physical properties of the sources and the

acceleration mechanisms at work.

The first study of Gamma ray astronomy in 100 MeV range was

initiated by Morrison [20] where he estimated the flux of cosmic gamma-ray sources.

Although the flux of cosmic gamma rays were overestimated, it initiated a series

of space based experiments to detect the gamma ray emission from astrophysical

sources. In 1961, the Explorer XI satellite [21] carried the first gamma-ray telescope

into Earth’s orbit. This satellite detected 22 cosmic γ-ray events and 22,000 events

due to charged cosmic rays but nonetheless the field of Gamma-ray astronomy was

born. The next satellite, Vela was a set of satellites, launched in pairs in the

years 1963 to 1970 detected the first gamma ray burst in 1963. In the year 1975,

0∗ http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/explorer11.html
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1.5. Gamma rays

European Space Agency (ESA) launched Cos-B satellite. It was the first satellite

dedicated to study the gamma rays. During six years of its operation, it carried out

an extensive survey of the Galaxy in the energy range 50 MeV – 5 GeV. Compton

Gamma-ray Observatory was launched in the year 1991 to study the high energy

photons from 20 KeV – 30 GeV energy range. Apart from the detection of gamma

rays from Milky way, it discovered point sources of Gamma-rays outside the plane

of the galaxy.

Most of what we know of gamma rays has come from satellite based

observations, but at energies above tens of GeV, study of gamma rays from ground-

based detectors have made considerable progress. Guiseppe Cocconi suggested to

measure gamma ray sources at TeV energies at the International Cosmic Ray Con-

ference (ICRC) in Moscow in 1959 [22]. He over estimated the flux of gamma rays

from the Crab Nebula. He suggested that the flux could be ∼ 1000 times higher

than the background. Chudakov and his group built a system of 12 telescopes in

Katsiveli, Crimea, near the shore of the Black Sea in 1960. The first method of

searching for high energy gamma rays of cosmic origin was published in 1961 by

Zatsepin and Chudako [23]. They observed a number of sources as possible gamma

ray emitters. They had a total of 47 scans of Crab Nebula, 191 scans of Cygnus

A, 20 scans of Cassiopea A, 20 scans of Virgo A, 7 scans of Perseus A and 7 scans

of Sagittarius A [24]. There was no significant detection of gamma ray from any of

these sources. They gave a upper limit of 5.5× 10−11 photons per cm2 per second

in ∼ 5.5 h of observation for the threshold of ∼ 4 − 5 TeV. However, it is inter-
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1. VHE γ RAY ASTRONOMY

esting to note that now we know that above 4 TeV, the flux from Crab nebula is

2.5× 10−12 photons per cm2 per second, i.e. they over estimated the Crab flux 20

times. But this observation ruled out the estimated flux from the Crab nebula by

Cocconi. With the Crimea experiment, the experimental foundation of the field

of gamma ray astronomy was laid. In 1967, the construction of a 10 m diameter,

F/0.7 telescope on Mount Hopkins at the Whipple observatory [25] at a height of

2300 m above sea level (a.s.l.) was started. The telescope started operation in 1968

with ten PMTs. Trevor Weekes joined this project in 1966. For next 2 decades,

Trover Weekes and his team worked tirelessly. A key milestone came in 1985 when

the Cherekov photons distribution was parameterized by Hillas [26]. The major

breakthrough in the field of ground based gamma ray astronomy happened in the

year 1989 where the very first confirmed detection of gamma way signal from Crab

nebula at 9σ statistical significance [1] was demonstrated by the Whipple telescope

and the field of ground based gamma ray astronomy was formally born.

1.5.1 Importance of γ-ray astronomy

Over the last two decades, the field of γ-ray astronomy has acquired a solid sci-

entific foundation. Due to a wealth of invaluable scientific information provided

by this branch of astronomy, its contribution was recognized at the 33rd Interna-

tional Cosmic Ray Conference (ICRC) [27] by a modification to the organization

of its scientific program. Since 2013, ICRC now devotes a dedicated gamma-ray

sessions which is further sub-divided into experimental, instrumentation and the-

oretical branches [28]. Since the γ-rays are uncharged, they can travel in straight
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1.5. Gamma rays

line and therefore, carries a signature of the original direction of the astrophysical

source. This aspect of γ-rays makes them one of the most valuable tools to study

not only the location of the source, but also it can help in understanding and there-

for unravelling the physical processes operating inside the astrophysical laboratory.

One of the most fundamentals questions which can be addressed by the γ-ray as-

tronomy is to determine the origin of cosmic rays. The contribution of galactic

cosmic rays to the total cosmic rays, their spectrum and astrophysical properties

is the domain of interest. Apart from it, the dynamics of relativistic outflow like

jet and winds [29] can very well be studied by this field. Observation of γ-rays can

also provide clue about the dark matter annihilation [30]. γ-ray astronomy also

plays very important role in constraining the intergalactic magnetic and photon

radiation fields in the Universe [31]. Fundamental physics questions like violation

of the Lorentz invariance can also be studied [32] by using the γ-ray photons. A

very nice review [33] about γ-ray astronomy describes the happenings of the field

in a coherent way.

1.5.2 γ-ray production mechanism

The radiation (optical-UV-X-rays) from stars is characterized by blackbody radia-

tion. However, the gamma ray emission is characterized by non thermal radiation.

Since the gamma rays are uncharged, apart from studying the non thermal universe,

its study has a direct linkage towards understanding the origin of cosmic rays, a

profound question since last one century. Gamma rays can be produced by leptonic

as well as Hadronic particles. The main production process for gamma rays are:
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1. VHE γ RAY ASTRONOMY

1.5.2.1 π0 decay

High energy protons interact with the matter and decay into a variety of π mesons.

Approximately one third of them are π0 mesons which immediately decay into two

γ-rays. The minimum kinetic energy of a proton to produce a π0 meson is given by

Eth = 2 mπ0 c2(1 +
mπ0

mp

) ∼ 280MeV (1.2)

The energy of the γ-ray photon emitted by a π0 at rest is peaked at Eγ = mπ0c
2/2=

67.5 MeV.

1.5.2.2 Synchrotron Radiation

Synchrotron Radiation is emitted when a charged particle is accelerated in the

presence of magnetic field. The synchrotron power radiated by a relativistic electron

is given by [34]

Psyn =
2

3
r2
e c γ2 β2 B2 sin2 α (1.3)

where re = e2/me c2 is the classical electron radius and γ is the Lorentz factor of

the electron. For isotropic distribution of mono energetic electrons

Psyn =
4

3
β2 γ2 c σT UB (1.4)

where σT is the Thomson cross section and UB = B2/8π is the magnetic field energy

density. Because of the higher mass of proton than electron (mp ∼ 1836me), syn-
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1.5. Gamma rays

chrotron radiation from protons is negligible. Only electrons/positrons contribute

to the synchrotron emission. The synchrotron spectrum emitted by an electron of

energy γ me c2 moving with pitch angle α can be written as [34]

Psyn(γ, ν) =

√
3 e3B sin α

me c2
F

(
ν

νc

)
(1.5)

where ν is the frequency of the emitted photon and

νc =
3 eB γ2

4π me c
sin α (1.6)

is the critical frequency. The synchrotron power function F (x) contains a modified

Bessel function. The shape of the synchrotron spectrum is estimated by estimating

the shape of F (x). The peak of synchrotron spectrum is located at ≈ 0.29(ν/νc).

1.5.2.3 Inverse Compton Scattering

In the Inverse Compton process, a low energy photon, called the seed photon, say

generated by the Synchrotron radiation, is upscattered by a relativistic particle, say

electron and a considerable fraction of electron energy is transferred to the photon

to increase its energy. The energy of Compton boosted photon is given by [35,36]

Eγ ' 4/3〈ε〉 γ2 for γ ε ¿ me c2 (1.7)

and
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1. VHE γ RAY ASTRONOMY

Eγ ' 〈Ee〉/2 for γ ε À me c2. (1.8)

The seed photons for the Inverse Compton scattering may be produced by Syn-

chrotron radiation, star field, cosmic microwave background etc.

Example 1 [37]: An Isotropic radio photons at ν0 = 1 GHz, inverse Compton up-

scattered by electrons having Lorentz factor γ = 104 will have the average frequency

〈ν〉 = 109 Hz
4

3
(104)2 ≈ 1.3× 1017 Hz (1.9)

which corresponds to the X-ray radiation. Likewise, if an electron is having an

energy of ∼ 1.7 × 1013 eV and it hits an microwave background seed photon with

energy ∼ 7× 10−4 eV, this seed photon will be up scattered to a photon of energy

1 TeV.

In the Thomson regime, the radiative power emitted due to inverse Compton scat-

tering of an isotropic soft photon distribution can be written as [34]

Pcom =
4

3
β2 γ2 c σT Uph (1.10)

where Uph is the energy density of the seed photons. We can have a comparison of

power emitted due to Synchrotron and Inverse Compton process by comparing the

1http://www.cv.nrao.edu/course/astr534/InverseCompton.html
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1.5. Gamma rays

equation (1.4) and (1.10). By this comparison, we get

Psyn

Pcom

=
UB

Uph

(1.11)

It is to be noted that Synchrotron and inverse-Compton losses both have the same

electron-energy dependence (∝ γ2). Therefore, the effects of both Inverse Compton

and Synchrotron losses on the spectra are indistinguishable.

1.5.2.4 Bremsstrahlung

When a charged particle, say electron, moves in a electric field, say in the field

of atomic nucleus, it gets accelerated by the strong nuclear charge and an electro-

magnetic radiation [38] is produced. It is called the Bremsstrahlung radiation or

free-free emission. This radiation plays an important role in the theory of exten-

sive air showers. This radiation is of two types: thermal and relativistic. Ther-

mal Bremsstrahlung occurs when the particles are at uniform temperature. Their

characteristic behavior is described by Maxwell-Boltzmann distribution. In astro-

physical context, such process is operating in intra cluster medium consisting of

cold ionized plasma and accretion disk of [39,40]. The Relativistic Bremsstrahlung

process operates in the dense astrophysical environment such as γ-Cygni supernova

remnant [41].

1.5.3 Gamma ray absorption

The absorption of gamma rays can takes place via γ-matter interaction and γ-γ

interaction. In Gamma matter interaction, the γ radiation ionizes the matter via
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1. VHE γ RAY ASTRONOMY

three processes: the photoelectric effect, Compton scattering, and pair production.

Photoelectric effect and Compton scattering are two main process through which

gamma rays interact with the matter. The interacting γ-rays lose either full or a

part of its energy in such process. The photoelectric effect is dominant form of

energy transfer in X-rays and Gamma ray photons below 50 KeV energy. In this

process, gamma ray photon interacts with the medium and the electron transfers its

total energy to an atomic electron. This electron is ejected and the kinetic energy of

emitted electron is equal to the energy of incident photon minus the binding energy.

However, the cross section of this process becomes too small at higher energies. The

Compton scattering is the dominant process in the γ-ray energy in the range from

few hundred keV to 10 MeV and pair production is dominant process of energy

loss from high energy to very high energy range. In pair production, an elementary

and its antiparticle (electron-positron, or muon-antimuon, or proton-antiproton) is

created in the field of nucleus. If the γ-ray photon is present, it produces a pair of

electron and positron. It is one of the most important processes in the field of very

high energy gamma ray astronomy. The threshold for pair production is > 1.02

MeV. The pair production process becomes a dominant process above 30 MeV.

1.5.4 γ-γ interaction

The extragalactic background light (EBL)2 is produced by the first stars formed

in the universe. The EBL consists of radiation from the infrared (IR), through

the optical, ultraviolet (UV) excluding the cosmic microwave background (CMB).

2The EBL, defined as the emission in the 0.1 to 1000 µm wavelength region.
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This radiation is dominated by emission from all the stars. For constraining the
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Figure 1.3: Cosmic ray EBL spectra from various experiments. This Figure is adapted
from [42]

EBL intensity, modeling is an important tool. Figure 1.3 shows many EBL mea-

surements, constraints and models [42]. The EBL affects the spectrum of VHE

sources, predominantly blazars, in the ∼10 GeV to 10 TeV energy regime and plays

an important role in the propagation of high energy γ-rays, predominantly emitted

by blazars. Therefore, the study of high energy blazars allows one to constrain

the EBL models. In addition to it, once the EBL determination is available from

various observation, this knowledge allows the determination of intrinsic spectrum

of VHE γ-ray sources, thereby providing insights into the high energy astrophysical

processes like particle acceleration mechanisms operating in these sources.
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1. VHE γ RAY ASTRONOMY

1.5.4.1 γ-ray absorption by pair production

When a VHE γ-rays travels from cosmological distances, it suffers en-route absorp-

tion because of its interaction with low energy photons provided by the EBL. If the

θ

γ

γ

e

e
+

Figure 1.4: γ-γ pair production reaction.

energy of γ-ray photon is Eγ and the energy of EBL photon is Eebl, then the interac-

tion of high energy photon with the EBL photons lead to particle anti-particle pair

creation when the total γ-ray energy in the center of momentum frame system ex-

ceeds the rest frame energy of the two particles [43]. This means that some of high

energy γ-ray photons will not arrive at the telescopes, i.e., the γ-ray photons from

the distant sources will be attenuated by the EBL. The threshold for the creation

of an e++e− pair is given by [44]:

εth(Eγ, θ, z) =
2 (me c2)2

Eγ (1− cos θ)
(1.12)

For head on collisions, i.e. θ = 0, we get εthEγ = 0.26× 1012. Here all the energies

are in eV. Some important results are shown in Table 1.2. This table is adapted

from [35]
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1.5. Gamma rays

Radiation Energy Eγ

2.7 K CMBR 6.0× 10−4 eV ≈ 4× 1014 eV

starlight ∼ 2.0 eV ≈ 1011 eV

X-rays ∼ 1.0 KeV ≈ 3× 1011 eV

Table 1.2: gamma ray energy ranges

1.5.5 Cosmic γ-ray horizon (CGRH)

Cosmic γ-ray horizon is a measure of opacity of the universe towards γ-ray photons.

It can act as a probe of estimating the distance of astrophysical γ-ray sources. It

is to be noted that the density of EBL depends on the redshift, therefore, the

probability of such interaction is a function of the redshift of the emitting sources.

The distance travelled by the γ-ray photon can be given in terms of the optical

depth. It is given by e−τ(E,z). The coefficient τ(E, z) is called optical depth. The

cosmic γ-ray horizon (CGRH) is the energy at which the optical depth

is equal to unity.

1.5.5.1 Determination of CGRH

Suppose we know the intrinsic spectrum of high energy γ-ray emitting sources.

When this spectra is compared with the observed spectra, the difference in their

spectra is caused by the EBL. The blazars emit photons through synchrotron emis-

sion and inverse Compton scattering. Using a simultaneous observation of a set

of 15 blazars from Fermi LAT satellite, Imaging atmospheric Cherenkov telescopes
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1. VHE γ RAY ASTRONOMY

(IACT) (H.E.S.S., MAGIC, VERITAS) and from the data covering the entire elec-

tromagnetic spectrum (radio -γ-rays) [45], the observed spectrum of blazars were

modelled. Their spectrum from infrared to γ-rays was fitted to obtain the intrinsic

spectra of blazars upto few tens of GeV, till the energy range when imaging at-

mospheric Cherenkov telescope covers the higher energies. The γ-ray photons flux

in the TeV energy range gets attenuated by the EBL. By comparing the difference

in the flux between the intrinsic spectra of blazars with that of obtained from the

IACT, the optical depth was estimated. Once the optical depth was available ex-

perimentally, one can estimate the CGRH. The estimated CGRH from a sample of

15 blazars is shown by Figure 1.5. This Figure is adapted from [46]. The shaded

region represents the uncertainties from the EBL modeling of observed data.
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Figure 1.5: The CGRH estimated from a sample of 15 blazars by [46]. Dark blue lines are
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Figure 2.1: Summary of Chapter 2. The size of word represents the number frequency.
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Ground based γ-ray astronomy is a rather new discipline. The first successful detection

of the TeV source, Crab Nebula [1] took place in the year 1989. With a small lull in the

field, the next detection took place in the year 1992 when the second TeV γ-ray source

Markarian 421 [47] was detected and subsequently in 1996, the Mrk501 [48] was detected.

Slowly a series of such extragalactic sources [49, 50, 51, 52, 53] were discovered. With the

advent of more and more sensitive systems, the catalogue [54] of TeV γ-ray sources saw

the addition of newer and newer sources. With just a single source in 1989, this field has

now 175 confirmed TeV γ-ray sources (Figure 2.2 [54]).

2.0.6 Ground based observatories

The study of universe in γ-rays from ground is challenging because the γ-rays get absorbed

in the atmosphere. Before the successful implementation of ground based detection of

γ-rays, satellite was the only medium available for investigating the high energy universe.

Presently the study of known universe in MeV to ∼ 10 GeV range is carried out by

satellite-borne instrument Fermi Large Area Telescope (Fermi-LAT) [55] which has a

field of view ∼ 2 steradian. The Fermi telescope spans a broad γ-ray energy range from

tens of MeV to ∼ 300 GeV, although it is to be noted that the sensitivity of telescope

beyond 10 GeV is quite poor. The biggest constraining factor for the poorer sensitivity of

satellite based experiments is its limited effective area. As long as there was no substantial

improvement in the effective area, there was very little chance of probing the very high

energy universe effectively. This goal was attained by the successful working of ground

based telescopes based on detecting atmospheric Cherenkov radiation. The medium of

detecting the Cherenkov radiation can either be water or air. The water based Cherenkov
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2. GROUND BASED γ-RAY ASTRONOMY

Figure 2.2: TeV γ-ray sources as shown in TeV catalogue.
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detectors detect the Cherenkov radiation produced in the clear water. Such detectors

consist of many water tanks distributed over a large area. The High Altitude Water

Cherenkov Observatory (HAWC) [56, 57, 58, 59] is a γ-ray observatory located in Mexico

at an altitude of 4100 meters at 18◦ 5941N 97◦1830.6W. It is a continuously operated, TeV

gamma-ray observatory with more sensitivity angular resolution and background rejection

than the Milagro γ-ray observatory [60, 61] in New Mexico. The HAWC observatory

consists of an array of 300 water Cherenkov detectors. The prompt emission from gamma

ray burst above 50 GeV can also be detected by this instrument. This observatory is in

operation and produced some interesting results [62]. HAWC has observed Crab between

November 2014 and February 2016 on a daily basis. They obtained a continuous 400-days

light curve. In their observation, they did not detect any flaring activity from Crab in

the TeV energy range. Their result is in contrast with the results obtained from AGILE

satellite which reported [63] the discovery of strong γ-ray flares from the Crab Nebula.

The observation from HAWC will be relevant in assessing the variability of from this

important source, i.e. Crab. This detector has the capability to observe extragalactic

source like Mrk421, Mrk501 on a daily basis. The one year continuous observation from

November 2014 to February 2016 of Mrk421 has shown that the source is emitting flux

at the steady level whereas in the case of Mrk501 observation, although the source was

emitting at a steady level on 6th of April 2016, it detected Mrk 501 with a flux 2.2 times

larger than the Crab Nebula flux [64]. HAWC is working as a prime survey instrument

for high-energy γ-ray astrophysics. It will help in understanding the high energy universe

with unprecedented sensitivity.
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2. GROUND BASED γ-RAY ASTRONOMY

When the medium of Cherenkov photon generation is air, various observa-

tories has made significant advances in the field of high energy γ-ray universe. The suc-

cessful detection of TeV γ-rays in 1989 proved to be a turning point in studying the very

high energy universe which was earlier inaccessible to satellite based telescopes. These

telescopes work on the principle of detecting very feeble and brief (∼ ns) Cherenkov light

pulse generated by the relativistically moving electron in the atmosphere. Compared to

∼ 1 m2 effective area of satellite based telescope, the effective area of ground based tele-

scopes is ∼ 105 m2. Although it should be noted that the ratio of γ-rays to hadron events

is ∼ 10−3, and hence the γ-hadron segregation is a major issue. However, this issue is

well addressed by Imaging Atmospheric Cherenkov Technique (IACT) based telescopes.

And by using a stereoscopic system with two or more telescopes, the rejection of hadronic

events improves by a factor of 100, angular resolution and energy resolution improves and

becomes better than ∼ 0.1◦ and 15% respectively [31]. In order to get the maximum sen-

sitivity of an stereoscopic array, the telescope spacing should be large enough to provide

a sufficient baseline but small enough that multiple telescopes fit within the Cherenkov

light pool. The optimum spacing for stereoscopic system has provided unprecedented

sensitivity to IACT based telescopes with respect to any satellite based telescope in the

γ-ray energy window. A summary IACT based telescope is given in Table 2.1.

A very good review on IACT instruments is available in [31, 65, 66]. Depending on

optimum cuts, the telescope systems such as H.E.S.S., VERITAS (Table 2.1) could detect

the sources of ∼ 1% of the strength of the Crab Nebula [66] 1. Although the IACT based

telescope have very good dynamic range in the high energy end, the lowest possible γ-ray

1(νFν ∼ 3× 10−13 erg cm−2 s−1 around 1 TeV)
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2.1. Atmospheric Cherenkov Radiation

Instrument Lat. Long. Alt. Tels. Area Pixels FoV Thresh. Sens.
(◦) (◦) (m) (m2) (◦) (TeV) (% Crab)

H.E.S.S. -23 16 1800 4 428 960 5 0.1 0.7
VERITAS 32 -111 1275 4 424 499 3.5 0.1 1
MAGIC 29 18 2225 1 234 574 3.5† 0.06 2
CANGAROO -31 137 160 3 172 427 4 0.4 15
Whipple 32 -111 2300 1 75 379 2.3 0.3 15
HEGRA 29 18 2200 5 43 271 4.3 0.5 5
CAT 42 2 1650 1 17.8 600 4.8† 0.25 15

Table 2.1: Properties of selected air-Cherenkov instruments, including two of his-
torical interest (HEGRA and CAT). † These instruments have pixels of two different
sizes. This table is Adapted from [65].

detection is in the range of ∼ 10 GeV because of the limitation induced by the fluctuations

in air-shower development. The present day Cherenkov instruments is still away from

this fundamental limit.

In this chapter, we introduce the fundamentals of atmospheric Cherenkov radiation. We

will also briefly discuss the TACTIC (TeV Atmospheric Cherenkov Telescope with Imag-

ing Camera) telescope.

2.1 Atmospheric Cherenkov Radiation

When a charge particle moves through a medium with speed more than the phase velocity

of light, the emitted radiation is known as the Cherenkov radiation. This radiation was

experimentally discovered by P. A. Cherenkov in 1934 [67]. Frank and Tamm in 1937 [68]

gave its theoretical interpretation. All three shared Noble prize in 1958 [69]. The emission

of radiation is due to an asymmetric polarization of the medium in the front and at the

rear of the particle. This asymmetry gives rise to a varying electric dipole momentum

and hence the radiation is produced. Figure 2.3 shows the geometrical interpretation of

atmospheric Cherenkov radiation. The emission is observed only at particular angle only
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2. GROUND BASED γ-RAY ASTRONOMY

Figure 2.3: Geometrical interpretation of Cherenkov radiation.

with respect to the particle track. The angle is known as the Cherenkov angle (θ). A

plane wavefront BC is formed when the waves from the arbitray points P1, P2, P3 over

the AB track are coherent. This coherence takes place when the particle and light travel

time is same, i.e. time for the particle to travels from A to B = light travelling time from

A to C [70].

cos θ =

c
n(λ)

∆T

β.c.∆T
(2.1)

where ∆T is the time in which the particle moves from A to B, n is the refractive index

of the medium, v = β c is the particle’s velocity. The Cherenkov radiation is represented

by equation (2.1). The main characteristics of Cherenkov radiation are:

� for a given medium there is a minimum velocity for a particle called critical veloc-

ity.

βmin =
1

n
(2.2)
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2.1. Atmospheric Cherenkov Radiation

below which no radiation takes place. At βmin, θ = 0◦ i.e. radiation is emitted along

the particle track. On the other hand, if particle moves slower than the radiation

(v < c/n), the equation (2.1) has no solution and hence no radiation takes place.

� The angle of emission is maximum when β = 1, i.e. the particle is ultra relativistic.

Therefore,

θmax = cos−1

(
1

n

)
(2.3)

� In the x-ray region, n(ω) is always < 1, so the radiation is forbidden. So emission

in the x-ray region is impossible because the refractive index n is less than unity.

In addition to above conditions, two further conditions need to be fulfilled to achieve

coherence:

� The length l of the track of the particle in the medium should be large compared

with the wavelength λ of the radiation in question, otherwise diffraction effects will

become dominant.

� The velocity of the particle must be constant during its passage through the medium,

i.e. the differences in the times for particle to traverse successive distances λ should

be small compared with the period λ
c

of the emitted light.

2.1.1 Cherenkov light distribution

The number of Cherenkov photons per unit of track length of the particle and per unit

of wavelength (i.e. the intensity of Cherenkov radiation) is given by the Frank-Tamm

formula [68]:

d2N

dxdλ
=

2παz2

λ2
×

(
1− 1

β2 n2(λ)

)
(2.4)
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Figure 2.4: Spectra of Cherenkov light emitted by vertical γ-ray showers of different
primary energy at 10 km height is represented by solid curves while the corresponding
detected spectra (effect of absorption by ozone and scattering) at observational level is
represented by dashed curves. This figure has been adopted from [71].

where α = e2/~ c = 1/137 is the structure constant.

Therefore, the number of photons per unit length and radiation wavelength depends on

charge and velocity of the particle. Since the intensity is proportional to 1/λ2, short

wavelengths dominate. Most of the photons in Cherenkov emission are therefore

produced in a short wavelength range i.e. in UV and blue.

For electron moving along a track of length l, the number of emitted

Cherenkov photon in the wavelength range λ1 and λ2 is then given by [72]

N = 2παl ×
(

1

λ2

− 1

λ1

)
×

(
1− 1

β2 n2(λ)

)
(2.5)
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2.1. Atmospheric Cherenkov Radiation

The differential photon spectrum of Cherenkov photons is shown in Figure 2.4 for photons

emitted at 10 km and observed at 2 km altitude. There is a clearcut difference in the

observed and emitted Cherenkov photon spectrum. The atmospheric absorption is more

efficient toward the shorter wavelengths. It happens due to atmospheric absorption of

cherenkov photons.

2.1.2 Threshold energy for Cherenkov emission

The threshold energy (Emin) for a particle to emit Cherenkov radiation in the atmosphere

is given by

Emin = γmin m0c
2 =

m0c
2

√
1− β2

min

=
m0c

2

√
1− 1/n2

(2.6)

where m0 is the rest mass of the particle.

At the sea level, the refractive index of air is ∼ 1(1.00029), the equation (2.3) shows that

the maximum emission angle for the cherenkov radiation is ∼ 1.3◦. Therefore, the energy

threshold for Cherenkov radiation on ground for electrons, muons, and protons are 21.3

MeV, 4.4 GeV, and 39.1 GeV respectively.

2.1.3 Height dependent Cherenkov emission

The energy threshold for Cherenkov radiation production depends on the height of at-

mosphere because the refractive index of medium is a function of height. The height

dependent energy threshold for Cherenkov radiation is given by [72]

Emin =
m0c

2

√
2η0e−h/h0

(2.7)
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where η0 = 2.9×10−4, h0 ∼ 8 km is scale height of atmospheric pressure. As the height of

the observation location increases, the threshold energy for Cherenkov radiation increases.

For electron, Emin is 42 MeV at an altitude of 10 km.

2.1.3.1 Maximum angle for Cherenkov emission

Figure 2.5: The distribution of Cherenkov emission angle with height.

The maximum angle θmax for particles with β ∼ 1 can be obtained from the expression

cos θmax =
1

1 + η0 exp(−h/h0)
= 1− η0 exp(−h/h0) (2.8)

Therefore, the angle of Cherenkov emission decreases with the increase in height. This

dependence is shown in Figure 2.5.

2.1.3.2 Cherenkov light pool

A cartoon of Cherenkov emission from a single particle moving downwards is shown in

Figure 2.6. The Cherenkov emission from a charged particle is characterized a cone with

an emission angle of ∼ 1◦. As the charged particles move downward in the atmosphere,
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2.1. Atmospheric Cherenkov Radiation

Figure 2.6: The left panel of above figure shows the atmospheric Cherenkov emission from
a single particle moving downwards [73]. The right panel shows the Lateral Cherenkov
photon distribution for (1 TeV ) γ-rays photons and (2 TeV ) protons shower..

the Cherenkov radiation generates a light pool as it reaches the observation level. The

lateral distribution of Cherenkov pool typically has a radius of ∼ 120 - 125 meters.

The resultant Cherenkov pool on the ground has ∼ 100 photons m−2. Such a lateral

distribution for 1 TeV γ and 2 TeV protons [74] is shown in the right panel of Figure

2.6. The flat distribution of Cherenkov photons takes place on account of focussing of

Cherenkov photons because of changing Cherenkov emission angle.

2.1.3.3 Cherenkov light pulse duration

In a dispersive medium like atmosphere, the emission angle for Cherenkov radiation is

different for different wavelengths and this angle also changes with the change in height.

Hence the Cherenkov pulse has a spread. The observed duration along the particle track
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at a distance r′ as shown in Figure 2.7 is

4t =
r′

β · c · (tan θ′max − tan θmax). (2.9)

Let us consider the emissions of Cherenkov photons at two points A and B, assuming

Figure 2.7: Cherenkov pulse duration [71].

that photons are emitted along the track of the particle. The measured time difference

between the detection of photons can be written as

δt =
η0 h0

c
(exp−h′/ho − exp−h/h0). (2.10)
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Let us take h′ = 6 km and h = 10 km, we get δt ∼ 1.3 ns. The total pulse duration

will be the sum of these two effects (i.e. spread in pulse width because of difference

in Cherenkov emission angles because of different wavelengths and because of different

height. When the development of a 1 TeV γ photon induced EAS shower is simulated

through the Monte Carlo procedure, the value of Cherenkov pulse duration turns out to

be ∼ 5 ns.

2.2 Cherenkov Radiation in Extensive Air Showers

When the cosmic rays enter the atmosphere, they interact with atmospheric nuclei by

hadronic and electromagnetic interaction. Electrons and γ-rays interact electromagnet-

ically, i.e. they generate secondary particles by ’pair production’ and ’Bremsstrahlung’.

The hadronic cosmic rays, namely protons and ionized nuclei interact via the hadronic

interaction and also give rise to a numbers of secondary particles. The generation of

secondary particles in the atmosphere is called the Extensive Air Shower.

2.2.1 Electromagnetic Showers

In the electromagnetic case, the loss of energy is due to ’pair production’ and ’Compton

scattering’. A very high energy γ-ray photon of minimum energy 1.022 MeV in the

presence of atmospheric nuclei converts into relativistic electron-positron pairs (’pair

production’). The first such interaction takes place at a height of ∼ 20 km above sea level

(a.s.l.). These secondary electrons and positrons lose energy mainly via Bremsstrahlung

to produce γ-rays. The resulting γ-rays produce more electron-positron pairs and these

pairs in turn again produce more γ-rays. This cascade stops when ionization becomes the

dominant channel to lose energy. The energy at which this condition is satisfied is called
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Figure 2.8: Electromagnetic and hadronic Extensive Air Showers

the critical energy Ec (which is ∼ 83 MeV for an electron in air). Almost simultaneously,

when the average photon energy falls below 1.02 MeV, pair production stops and the

number of secondary shower particles reaches its maximum. This height is known as the

shower maximum. The shower maxima happens between ∼ 13 km and ∼ 7 km for γ rays

energies between ∼ 50 GeV to few TeV. After shower maxima, the number of shower

particles decay exponentially and the shower rapidly dies down.

2.2.1.1 Toy model of Electromagnetic showers

The basic approximation of the development of electromagnetic showers was introduced

by Heitler [15]. This model considered the processes of pair production and Bremsstrahlung
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2.2. Cherenkov Radiation in Extensive Air Showers

radiation emitted by the light charged leptons. It was assumed that at each vertex, the

energy is equally distributed between particles produced and the radiation and both the

radiation length for electron and interaction length for photon have same value, i.e. Xγ
0

= Xe
0 = X0. (Radiation Length is defined as the length over which the electron is left

with 1
e

of its original energy. This equals 7/9 of the mean free path for pair production.

The radiation length for electron (X0) for Bremsstrahlung is 36.8 g cm−2 in air). The

interaction length in another unit is defined as R = X0ln2

Figure 2.9: Heitler model for EM shower development

According to this simple model (Figure 2.9), after n radiation length, the

number of particles is N(n) = 2n with an mean energy of E0

2n . At the shower maximum,

the total number of particles (e/e−1 and photons) are

Nmax = E0/Ec = 2n. (2.11)
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Therefore, the number of particles produced in an electromagnetic shower is given by

N(> E) =

∫ n(E)

0

Ndn =

∫ n(E)

0

2ndn =
E0/E

ln2
(2.12)

From this equation, the differential energy spectrum of the particles is given by

dN/dE ∝ 1/E2 (2.13)

Therefore, according to Heitler model, we get

� The depth at which the shower reaches its maximum is proportional to the logarithm

of the primary γ-ray energy.

� The number of particles at shower maxima are proportional to the energy of the

primary γ-ray energy.

Both of above conclusions are supported by the study carried out by Monte Carlo simu-

lations.

2.2.2 Hadronic Showers

When the high energy cosmic ray proton enters the top of atmosphere, it decays into pi-

ons. The hadronic showers mainly contain the decaying products of pions. Out of these

pion products, the neutron pions decay into γ-rays, which again initiates the showers

having the electromagnetic characteristics and therefore, these events are impossible to

distinguish from those generated by the electromagnetic case. The schematic of electro-

magnetic and hadronic extensive air showers is shown in Figure 2.8. Nearly 90% of the
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secondary particles in a hadronic shower are pions and remaining 10% are kaons and

antiprotons. Out of total pions, one third of neutral pion (π0) from the hadronic showers

decay into γ-rays. Once the gamma rays from neutral pions are produced, they decay as

an electromagnetic shower and hence it is impossible to distinguish this hadronic shower

portions from genuine γ-ray initiated showers. The interaction length for protons is ∼ 83

gm cm−2 whereas for gamma rays it is ∼ 36.8 gm cm−2. Therefore, the hadronic showers

penetrate deeper into atmosphere compared to electromagnetic showers of similar energy.

In case of hadronic showers, the transverse momentum carried out by pions and kaons is

reflected in the larger lateral extent of extensive air shower compared to the electromag-

netic showers. The intrinsic difference in the extensive air showers produced because of

γ rays and protons is shown in Figure 2.10 [75].

The segregation of γ-rays initiated showers from the sea of cosmic ray showers is quite

challenging because hadronic showers with the neutral pion decay in the γ-rays, in addi-

tion of cosmic rays outnumbering the γ-rays.

2.2.3 The Imaging Atmospheric Cherenkov Technique

When the high energy cosmic rays enter the atmosphere, they generate secondary parti-

cles in extensive air showers. These particles move with relativistic speeds and generate

Cherenkov radiation in the atmosphere. The ground based detectors are used to detect

this radiation. Such detectors collecting the Cherenkov photons falling on these tele-

scopes are known as the Imaging Atmospheric Cherenkov Technique based telescopes.

These telescopes consist of having a camera which collect the Cherenkov photons after

getting reflected from the mirror. The camera consists of photomultiplier tubes which is
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Figure 2.10: Monte Carlo simulation of a) 100 GeV γ: top left panel b) 100 GeV pro-
tons:top right panel, c) 1 TeV γ: bottom left panel b) 1 TeV protons:bottom right panel
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Figure 2.11: Imaging Atmospheric Cherenkov Technique

connected by the fast electronics which digitize the Cherenkov photon pulse and record

it. The spatial distribution of such photons on the camera plane is known as the Im-

age. This image is detected by the telescope, that is why this telescope is known as the

Imaging Atmospheric Cherenkov Technique based telescope or simply IACT. The basic

philosophy of this technique is shown in Figure 2.11.

2.2.3.1 Basic Principle

For an Atmospheric Cherenkov telescope, to a first approximation, we can derive an

expression for the energy threshold at the trigger level . This approximation has been

adopted from [76]. The light signal detected by the PMT camera is given by

S =

∫ λ1

λ2

kE(λ)T (λ)η(λ)Adλ (2.14)
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where C(λ) is the Cherenkov photon flux, E(λ) is the shower Cherenkov emission spec-

trum (proportional to 1/λ2), T(λ) is the atmospheric transmission and k is a constant

which depends on the shower and the geometry. The sky noise B is given by:

B =

∫ λ1

λ2

B(λ)η(λ)τAΩdλ. (2.15)

where B(λ) is the night sky background, A is the mirror area, η(λ) is the photon collection

efficiency, τ is the trigger resolving time, Ω is the solid angle. The signal must be detected

above the fluctuations in the night-sky background during the integration time (τ) of the

pulse counting system. The signal to noise ratio, therefore, at the trigger level is given

by

S

N
=

S√
B

=

∫ λ1

λ2

C(λ)[η(λ)A/ΩB(λ)τ ]1/2dλ. (2.16)

The smallest detectable light pulse is inversely proportional to S/N; the minimum de-

tectable gamma ray then has an energy threshold, ET given by

ET ∝ 1

C(λ)

√
B(λ)Ωτ

η(λ)A
(2.17)

It is clear from the equation 2.17 that for a IACT based telescope, the energy threshold

can be lowered by

� installing the telescope at darker sites.

� using a large light collector area.

� increasing the mirror reflectivity
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� increasing the quantum efficiency of PMT

2.2.3.2 Flux sensitivity of Cherenkov telescope

If S is the number of gamma rays detected from a given source in a time T, and Aγ is

the collection area for gamma-ray detection, then γ-ray signal at some energy threshold

E is given by

S = Fγ(E)AγT (2.18)

The telescope will register a background B, given by

B = FcrAcr(E)ΩT (2.19)

where Acr(E) is the collection area for the detection of cosmic rays of energy E. The

cosmic ray background has a power law spectrum

Fcr(> E) ∝ E−1.7 (2.20)

And if we assume that the gamma-ray source has the form

Fγ(> Eγ) ∝ E−aγ
γ (2.21)

Then the standard deviation is

Nσ ∝ S√
B
∝ E(0.85−aγ) Aγ√

AcrΩ

√
T (2.22)
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The minimum number of standard deviations (σ) for a reliable source detection is gener-

ally taken as 5. It is clear from the last equation that in order to get a confirm detection,

the collection area for the γ-rays should be as large as possible. At the same time the

product AcrΩ should be as small as possible. Therefore, the success of IACT based

telescopes depends on efficient rejection of cosmic rays background in addition to high

retention of γ-rays.

2.3 Parameterization of Cherenkov Radiation

The spatial distribution of Cherenkov photons on the camera plane is known as the

Image. This distribution of Cherenkov photons is different for γ-rays and protons and

hence γ-hadron segregation can be carried out on the basis of their shape and orientation.

A typical Cherenkov photons distribution on the image plane of the camera generated by

carrying out the Monte Carlo simulation for > 1 TeV γ and 2 TeV protons energy range

for a hypothetical camera shown in Figure 2.12.

A representative cartoon of Hillas parameter is shown in Figure 2.13. The

image parameterization was introduced by Hillas and hence these parameters are known

as Hillas parameters [26]. Image properties (analyzed off line) provide the information

about the nature, the energy and the incoming direction of the primary particle of the

shower. The Hillas parameters are characterized by carrying out the moment analysis [77,

78] of the images. Various image parameters and their correlation with the atmospheric

Cherenkov radiation is summarized below.

� Length (L) & Width (W) : The rms spread of Cherenkov light along the ma-
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Figure 2.12: spatial distribution of cherenkov photons on the image plane of the camera.
The top panel shows the distribution of γ-ray photons initiated shower in > 1 TeV energy
range. The bottom panel shows it for proton initiated shower for energies > 2 TeV.

jor/minor axis of image is known as the Length/width of an image. The Hillas pa-

rameter length demonstrates to the longitudinal development of the shower, whereas,
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Figure 2.13: cartoon of few image parameters

the parameter width represents the lateral development of the shower.

� Distance (D): A first level measure of γ-initiated extensive air showers core distance

is given by the distance parameter. The distance parameter represents the distance

from the image centroid to the position of γ-ray source in the field of view. It

is defined as the angle between the shower axis and the line joining the shower

maximum and the telescope.

� Size (S): The total number of photoelectrons in a Cherenkov image is represented

by the size parameter. This parameter is related to the energy of the primary cosmic

ray particle.

� Miss (M): It is the perpendicular distance between the major axis of the image

and the centre of the field of view of the camera. The shower orientation is related

to this parameter.

� Azwidth: This parameter represents the RMS angular size along a line perpendic-
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ular to the line connecting the centroid of the image to the center of field of view.

The shape and orientation parameters are related to it.

� Frac2 (F2): It is defined as the ratio of the sum of the two highest pixel signal

to the sum of all the signals and represents the degree of light concentration and

thereby the compactness of the image.

� Alpha (α): It is the angle of the image between a line joining the centroid of

the image to the centre of the field of view. It is a measure of the orientation of

the shower axis. The γ-ray initiated showers are pointed towards the centre of the

imaging camera (if the observed source is kept in the centre of the camera) and hence

have very small value of α compared to the angles subtended by the background

events on account of their isotropic distribution. It is one of the strongest parameters

for gamma-hadron segregation.

� Asymmetry: It is defined as the third moment of the intensity distribution along

the major axis. It describes the skew of the image along its major axis.

� Leakage: It is defined as the ratio between the light content in the camera two

outer most pixels to the total light content.

2.3.1 Estimation of image parameters

Estimation of the image parameters are carried out on the basis of moment analysis.

The mathematical estimation is adapted from [71]. The zero order moment is the size.

The first-order moments describe the position of the image. The second-order moments

represent the extent of the image. In order to estimate various image parameters, the first
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step involves the determination of the image axis. It can be described as the equation of

a straight line with slope m and intercept C

y = Mx + C (2.23)

The constants M and C are estimated by χ2 minimization, i.e. by minimizing the signal

weighted sum of squares of perpendicular angular distances of the pixels. Suppose xi and

yi denote the pixel coordinates of the ith pixel with origin being the center of the camera

and si denotes the calibrated signal in the PMT, we can write the expression for χ2 as

χ2 =
n∑

i=1

si (yi −M xi − C)2

1 + M2
(2.24)

where n is the total number of pixels. Assuming that both xi and yi have equal errors M

and C can be obtained by differentiating the equation (2.24). The following quantities

can be defined according to their standard definitions,

< x >=

∑n
i=1(si xi)∑n

i=1 si

< y >=

∑n
i=1(si yi)∑n

i=1 si

(2.25)

< x2 >=

∑n
i=1(si x

2
i )∑n

i=1 si

< y2 >=

∑n
i=1(si y

2
i )∑n

i=1 si

(2.26)

< x3 >=

∑n
i=1(si x

3
i )∑n

i=1 si

< y3 >=

∑n
i=1(si y

3
i )∑n

i=1 si

(2.27)
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< xy >=

∑n
i=1(si xi yi)∑n

i=1 si

(2.28)

< x2y >=

∑n
i=1(si x

2
i yi)∑n

i=1 si

< xy2 >=

∑n
i=1(si xi y

2
i )∑n

i=1 si

. (2.29)

Spread of the images in different directions can then be defined in terms of moments as

σx2 =< x2 > − < x >2 σy2 =< y2 > − < y >2 (2.30)

σxy =< xy > − < x >< y > . (2.31)

Some other higher order moments are

σx3 =< x3 > −3 < x2 >< x > +2 < x >3 (2.32)

σy3 =< y3 > −3 < y2 >< y > +2 < y >3 (2.33)

σx2y =< x2y > −2 < xy >< x > − < x2 >< y > +2 < x >2< y > (2.34)

σxy2 =< xy2 > −2 < xy >< x > − < y2 >< x > +2 < y >2< x > . (2.35)
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Defining

d = σy2 − σx2 (2.36)

z =
√

d2 + 4(σxy)2. (2.37)

The constants of the image axis are then written as follows:

M =
d + z

2σxy

(2.38)

C =< y > −M < x > . (2.39)

The image parameters can be calculated from these moments and can be written as

length, L =

√
σx2 + σy2 + z

2
(2.40)

width, W =

√
σx2 + σy2 − z

2
. (2.41)

Since < x > and < y > are the coordinates of the image centroid, therefore

distance, D =
√

< x >2 + < y >2 (2.42)

miss, Ms =

√
1

2
((1 +

d

z
) < x >2 +(1− d

z
) < y >2)− 2σxy < x >< y >

z
(2.43)
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alpha, α = sin−1

(
Ms

D

)
(2.44)

azwidth, Az =
√

(L2 sin2α + W 2 cos2α) (2.45)

asymmetry =
(σx3 cos3φ + σy3 sin3φ + 3σx2 y cos2φ sinφ + 3σx y2 cosφ sin2φ)1/3

L
(2.46)

concentration F2 =
sIst max + sIInd max∑n

i=1 si

. (2.47)

Where sIst max and sIInd max are maximum and second maximum signal respectively con-

tained in pixels of an image. The Hillas parameters in different energy ranges, i.e. Eγ >1

TeV and Eγ > 20 GeV will be shown in chapter 3 and chapter 4 respectively.

2.4 The TACTIC Telescope

The TACTIC (TeV Atmospheric Cherenkov Telescope with Imaging Camera) γ-ray tele-

scope [79] is an IACT based telescope which has been in operation at Mt. Abu (24.6◦N ,

72.7◦E,∼ 1300 m asl), Rajasthan in Western India for the study of TeV γ-ray emissions

from astrophysical sources. The telescope employs a 349-pixel photomultiplier tube imag-

ing camera with a uniform pixel resolution of ∼ 0.3◦ and a ∼ 5.9◦ × 5.9◦ field-of-view to

collect atmospheric Cherenkov events generated by extensive air shower due to charged

cosmic-rays or γ-rays. The TACTIC telescope is shown in Figure 2.14.

The TACTIC telescope uses an F/1 type tracking light-collector of ∼ 9.5
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Figure 2.14: TACTIC telescope

m2 area. It consists of aluminium coated 34 front-face glass spherical mirrors of 60 cm

diameter each with a focal length ∼ 400cm. The innermost 121 pixels (11 × 11 matrix)

are used for generating the event trigger based on the philosophy of Nearest Neighbour

Non-collinear Triplets. The telescope employs a CAMAC based 12-bit Charge to Digital

Converters (CDC). The data acquisition and control system [80] runs on the QNX (version

4.25) real-time operating system. The digitization of triggered events are carried out by
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CAMAC based 12-bit Charge to Digital Converters (CDC). These CDC have a full scale

range of 600 pico coulombs. The relative gain of the photomultiplier tubes is monitored

regularly [81] once in 15 minutes by flashing a red LED, placed at a distance of ∼ 1.5 m

from the camera.

The data acquisition and control of the TACTIC is handled by a network

of PCs. One PC is used to monitor the scaler rates and control the high voltage of

the PMTs. The LED calibration and the data acquisition of the events is handled by

the other PC. These two PCs, named as rate stabilization and the data acquisition nodes

respectively, along with a master node form the multi node Data Acquisition and Control

network of the TACTIC Imaging telescope. The telescope has a pointing and tracking

accuracy of better than ±3 arc-minutes. The tracking accuracy is checked on a regular

basis with so called “pointing runs”, where an optical star having its declination close

to that of the candidate γ-ray source is tracked continuously for about 5 hours. The

pointing run calibration data is then incorporated so that appropriate corrections can be

applied. TACTIC records cosmic-ray events with a rate of ∼ 2.0 Hz at a typical zenith

angle of 15◦ and is operating at a γ-ray threshold energy of ∼ 1 TeV.

The first detection from the TACTIC telescope was a very interesting re-

sults in which TACTIC telescope detected Markarian 501 in high flaring state [82]. The

flaring activity in terms of flux enhancement increased by a factor of 10-Crab-flux during

a contemporaneous multiwavelength observations in April 1997 by Whipple group along

with Telescope array [83] and HEGRA. The TACTIC telescope observed Markarian 501

in April-May 1997 during its very first observing campaign. The source was detected with
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a statistical significance of 14.2 σ. The corresponding source light curve is displayed in

Figure 2.15. The light curves showed excellent morphological similarity during the flar-

Figure 2.15: Comparison of light curves from: (a) top TACTIC (b) middle CAT (c)
bottom TA

ing episodes extending for several days. During the observation of Markarian 501 from
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TACTIC ( (April 9 - May 30, 1997), the source was found flaring at nearly 2 Crab units.

The energy threshold of TACTIC was ∼ (0.7± 0.2) TeV. This result was in excellent

agreement with the source spectrum inferred by independent observations carried out by

the CAT, HEGRA and the Whipple groups.

Thereafter, TACTIC telescope detected various extragalactic sources [84,

85, 86, 87, 88, 89, 90] during the course of its operation. A comprehensive review of the

observation of standard astrophysical source Crab Nebula by the TACTIC telescope was

carried out [91] by taking ∼ 400 h from 2003-2010. The resulting γ-ray rate for the

on-source data is determined to be ∼ (9.31±0.48)h−1. A power law fit dΦ
dE

= f0E
−Γ
0

with f0 ∼ (2.66±0.29) × 10−11cm−2s−1TeV −1 and Γ ∼ 2.56±0.10 was observed. The

spectrum matches reasonably well with that obtained by other groups. A recent upgrade

of TACTIC telescope led to a substantial improvement in the detection sensitivity of the

TACTIC telescope. Compared to 5σ detection of signal in ∼ 25 h, the upgrade lead to

the detection of signal in ∼ 13 h.
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Figure 3.1: Summary of Chapter 3. The size of word represents the number frequency.
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3.1. Introduction

In this chapter, we present a detailed case study of γ-hadron segregation for ground based

atmospheric Cherenkov telescope. We have evaluated and compared various supervised

machine learning methods such as Random Forest, Support Vector Machine, Artificial

Neural Network, Naive Bayes Classifiers, Standard Discriminant Analysis as well as the

conventional dynamic Supercuts method by taking the Monte Carlo simulated events

triggering the TACTIC Cherenkov telescope. It is demonstrated that the Random forest

method is the most sensitive machine learning method for γ-hadron segregation. Subse-

quently, this chapter will discuss the validation of Random Forest method by re-analysing

the Markarian 421 (Mrk 421) data collected by the TACTIC γ-ray telescope.

3.1 Introduction

Multidimensional datasets are very difficult to handle with the conventional methods.

Therefore, when multidimensional data is encountered, the efficiency of these methods

reduces drastically as any inter dependence among various parameters is beyond the

realm of conventional methods. In the case of ground based atmospheric Cherenkov

systems, the typical characterization of signal involves multidimensional data. The

present day Cherenkov systems operate in an energy regime where the conventional

methods are losing their edge on account of fading differences among the discriminat-

ing attributes/parameters between signal and background. Therefore, the ground based

gamma-ray astronomy community has started exploring various options including multi-

variate methods.

The machine learning methods fall under the umbrella of multivariate meth-

ods. The simplicity and intrinsic ability of these methods to scrub out inter dependence, if
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any, among various attributes/parameters has made the field of machine learning methods

as one of the fastest growing scientific disciplines. These methods employ statistical tools

to decipher hidden relationship, if any, among few or a collection of attributes/parameters

with comparatively very little computing infrastructure.

Machine learning methods have become one of the most popular tools to

solve the problems in the data driven world. These methods were originated from the

studies of computational learning theory and pattern recognition in which computers

were enabled to solve the problem without explicitly being programmed. Here the al-

gorithm learns and makes prediction by learning from the data itself. Prior to 1980s,

almost all learning methods were based on linear decision surfaces and had nice theoret-

ical properties. In 1980s, non linear decision surfaces were employed by decision trees

and Neural networks. However, these methods suffered from local minima problem as

well as had little theoretical basis. In 1990s, the computational learning theories were

used in developing efficient learning algorithm for non linear functions having good the-

oretical properties. Support vector Machines are one of these machine learning methods.

Machines learning methods can broadly be classified into three categories. These are:

Supervised learning, Unsupervised learning and Reinforcement learning. In supervised

learning, the input and output labels are available whereas no labels are available in

unsupervised learning.

The machine learning methods have been explored in the field of ground

based gamma ray astronomy for quite sometime. The earliest efforts were initiated by

Bock et. al. [92]. Later on, for γ-hadron segregation, the effectiveness of tree based
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multivariate classifiers was demonstrated by two operational ground based observatories:

MAGIC [93] and HESS [94,95,96]. It is to be noted that no machine learning method is

sacrosanct as far as its superiority over other multivariate methods exist. Each dataset

is unique and the classifier performance is dependent on the dataset under investigation.

Therefore, in order to assess the suitability of a classifier, each dataset needs to be probed

independently.

In this Chapter (3), we compare and evaluate various supervised machine

learning methods to assess their suitability for γ-hadron segregation. A total of 5 ma-

chine learning methods, namely Random Forest, Artificial Neural Network, Linear Dis-

criminant method, Naive Bayes Classifier and Support Vector Machine with Radial Basis

Function and polynomial kernel have been investigated. They are selected in a way to

represent a type of machine learning stream. The Random Forest method represents

the logic based algorithm. The Artificial Neural Network methods are Perceptron based

techniques. The Standard Discriminant method and Naive Bayes Classifier are statistical

learning methods. The Support Vector Machine represents a rather new (1992) machine

learning technique. The plan of the chapter is as follows: Section 3.2 involves the descrip-

tion of the simulation database employed to compare various machine learning methods.

The subsequent sections provide an overview of all the machine learning methods. The

final two sections deal with the critical analysis of all the classifiers and the conclusion

respectively.
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3.2 Database used in this study

A Monte Carlo simulated database was generated by using the CORSIKA air shower

code [97] with the Cherenkov option. The simulations were carried out for the TACTIC

telescope [98] at the Mount Abu observatory altitude of ∼ 1300m. The showers were

generated at zenith angles of 50, 150, 250, 350 and 450. The imaging camera with a total

of 349 pixels was considered with the innermost 121 pixels being used for generating the

trigger. The Cherenkov photons triggered the telescope after encountering the wavelength

dependent photon absorption, reflection coefficient of the mirror facets, light cone used in

the camera and the quantum efficiency of photomultiplier tubes. All the triggered events

underwent the usual image cleaning procedures [99] to eliminate the background noise.

The simulated events triggering the telescope were selected according to the differential

spectral index 2.6 and 2.7 for γ and protons respectively. In order to have a robust and

well contained image inside the camera, the pre-filtering cuts of Size (photoelectrons)

≥ 50 and 0.40 ≤ Distance ≤ 1.40 were applied.

3.2.1 Image parameters for classification

Various Hillas image parameters [26] like length, width, distance, size (photoelectron),

zenith angle can be used as classifying parameters for γ-hadron segregation. However, the

size parameter as well as the zenith angle parameter are not strictly separation parameters

of gamma and hadronic showers. Zenith angle, for instance, by itself can not be used to

separate the events although different image parameters depend on it. Same is true with

the size (photoelectron) parameter. A typical problem with these parameters is that in
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case the training samples for gammas and hadrons have a different distribution in these

parameters, only then these parameters may be reckoned as separation parameters. This

may lead to a rather risky situation, and which is typically handled by preparing the

training samples in such a way that their distributions on those parameters (typically

size and zenith) are as close as possible. In this way, the uncertainty associated with

separation by such parameters as separation parameters have been avoided. Following

this, these parameters could still be used for separation. In this study, such complexities

have been taken into account.

In addition to these parameters, a derived parameter ’dens’, defined [100] as

dens =
log10(size)

length× width
(3.1)

was also used.

The frequency distribution of various Hillas parameters simulated for the

TACTIC telescope is shown in Figure 3.2. A total of two sets of image parameters

were considered. The idea was to investigate various classifiers as a function of image

attributes/parameters. In the first instance, only 5 image parameters: length, width,

distance, size and Frac2 were considered from the simulation database. In the second

case, we considered a total of 7 parameters. Here, in addition to the above mentioned

5 parameters, two additional parameters: zenith angle and dens parameter were also

included. However for the classification purpose, alpha parameter was not considered.

The alpha is a very powerful parameter as it carries the signature of the progenitor (γ or
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Figure 3.2: Frequency distribution of Hillas parameters distribution for Gamma, Proton
initiated showers triggering the TACTIC telescope.

proton). The alpha distribution is expected to be flat for cosmic ray protons whereas it

reflects a peaky behaviour, generally ≤ 18◦ for γ-rays. In order to remove any bias of such

a strong parameter, it was not considered for the classification purpose. Moreover, this

parameter plays a crucial role in the estimation of signal strength. If the alpha parameter
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is used in the classification then the hadronic background can not be evaluated.

3.3 Different classification methods

The problem of γ/hadron segregation is formulated as a two class problem: γ represents

one class and the hadron is the second class. In literature, a large varieties of multivariate

classification methods exist. However, to have a tractable analysis, a few representative

supervised machine learning methods were selected. The classification was carried out by

using 4 different machine learning methods, namely Random Forest (RF), Artificial Neu-

ral Network (ANN), Linear Discriminant method (LDM), Naive Bayes (NB) Classifier

and Support Vector Machine (SVM) with Radial Basis Function (RBF) and polynomial

kernel. Except the RF and the Dynamic Supercuts method, rest of the methods were

used from a commercially available package named STATISTICA [101]. The Random

Forest method was studied by using the original Random Forest code [102].

3.3.1 Conventional method: Dynamic Supercuts

The spatial distribution of Cherenkov photons on the image plane of the camera is pa-

rameterized on the basis of shape and size (light content) of each such image. The con-

ventional parameterization leads to the estimation of the image parameters [26]. In this

technique, various sequential cuts in the image parameters are applied so as to maximize

the γ-ray like signal events and reject maximum number of background events. However,

this scheme has a disadvantage because the width and length parameters grow with the

primary energy. It is observed that width and length of an image are well correlated

with the logarithm of size. And size of the image provides an estimate of the primary

energy. This method of scaling the width and length parameters with the size is known
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as the dynamic Supercuts method [103, 104]. By employing this method, the optimum

number of cut parameters and their values were estimated by numerically maximizing

the so called Quality factor Q [105]. The quality factor is defined as S = εγ√
(εP )

where εγ

and εP are the γ and hadron acceptances respectively. After the numerical maximization

of the quality factor [106, 107], the following set of image parameters were applied for

γ/hadron classification.

Length (L) 0.1100 ≤ L ≤ (0.235 + 0.0265 ln(size))

Width 0.0650 ≤ W ≤ (0.085 + 0.0120 ln(size))

DISTANCE (D) 0.40 ≤ D ≤ 1.40

SIZE (S) S ≥ 50 pe

Alpha (α) ≤ 180

3.3.2 Artificial Neural Network

The ANN consists of many inputs [108] which are multiplied by weights (strength of the

respective signals), and then computed by a mathematical function which determines the

activation of the neuron. Another function computes the output of the artificial neuron.

The specific output demanded by the user can be obtained by adjusting the weights of

an artificial neuron. Multilayer perceptron (MLP) is perhaps the most popular network

architecture which was introduced by Rumelhart and McClelland [109] and discussed at

length in most neural network textbooks [110]. Each neuron performs a weighted sum of

its inputs and passes it through the transfer function to produce the output. In this work
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Figure 3.3: Schematic of a typical artificial neural network

we use a multilayer perceptron network with 5 inputs, minimum hidden units 3, maximum

hidden units 11 and networks to train 20. For classification tasks, the probabilistic output

was generated and misclassification rate was estimated.

3.3.3 Naive Bayes Classifier

The Bayesian classifiers gained prominence in early nineties and perform very well [111,

112]. A Naive Bayes classifier is a generative classifier technique based on the concept of

probability theory. The Bayes theorem plays a critical role in probabilistic learning and

classification. The Bayes theorem states that

p(B/A) =
p(A/B)p(B)

p(A)
(3.2)

where,

p(A) = Independent probability of A

p(B) = Independent probability of B

p(A/B) = Conditional probability of A given B
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p(B/A) = Conditional probability of B given A, i.e. the posterior probability.

In “Naive Bayes Classification” the different variables/attributes/features are assumed

to be strongly (naive) independent, i.e.,

p(< x1, x2, x3...xn > |y) =
n∏

i=1

Π(xi|y) (3.3)

Using the strong “independence assumption” and the prior probabilities, the most prob-

able class for a given x is estimated. The best class is the most likely or maximum

posteriori (MAP) class. The MAP estimate gives

arg max
B

p(B/A) = arg max
B

p(A/B) p(B) (3.4)

The training and evaluation from this method is very fast but the assumption of strong

independence among parameters is a condition generally not satisfied in the real world

problem.

3.3.4 Standard Discriminant Analysis

Standard Discriminant Analysis is also known as Discriminant Function Analysis (DFA).

DFA combines the aspects of multivariate analysis of variance with the ability to clas-

sify observations into known categories. It is a multivariate technique which not only

contributes in the classification but also estimates how good the classification is. In this

method, the discrimination functions like canonical correlations are constructed and each

function is assessed for significance. The estimation of the significance of a set of discrim-
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inant functions is computationally identical to multivariate analysis of variances. After

estimating the significance, one proceeds for classification. It generally turns out that

first one or two functions play an important role while the rest can be neglected. Each

discrimination function is orthogonal to the previous function.

In the present case, it is known that each class belongs to either γ or hadron.; thus, a

priori probability of these classes are known. In this work, the prior probabilities are

taken for classification.

3.3.5 Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised learning algorithms developed

by Vladimir Vapnik in the mid 90’s for classification and regression problems. SVMs

learn by example to make prediction about new instances. SVMs algorithms are based

on statistical learning theory and has a wide range of applications in the real world

problems. Due to its sound mathematical foundation, SVMs have become one of the

most popular machine learning methods in recent times. The SVM was introduced by

Boser, Guyon and Vapnik [113] in 1992. SVM belong to supervised machine learning

models used for classification and regression. It is based on the concept of decision planes

termed as hyperplanes. The Hyperplanes are constructed in the multidimensional space

for classification. The decision planes separate the classes. SVM estimates the decision

planes between different known classes of objects and applies the decision planes to objects

of unknown classes. These unknown objects are classified based on their position in the

multidimensional parameter space with respect to the separation boundaries. The Basic

idea of SVM incorporates two components: 1. Optimal hyperplane for linearly separable
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structures. 2. Extending the structures which are not linearly separable by mapping the

data to a higher dimensional space, i.e. the kernel trick.

3.3.5.1 Support Vector Machines for binary classification problem

Figure 3.4: Classification problem

Let us consider a dataset consisting of two classes represented by red dots and blue dots.

Now, find a linear surface, technically known as ”hyperplane” which can separate the two

classes (red and blue) and has the largest distance (gap, technically known as ”margin”)

between the border line classes. The largest distance between the border line cases is
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technically known as ”Support Vectors”. A typical example is shown in Figure 3.4. In

Support Vector Machines, the two classes are separated by a optimal hyperplane by

using the biggest possible margin. Margin is a distance between optimal hyperplane and

a vector which lies closest to it. Maximizing the margin between the training patterns

and the decision boundary has many advantages [113]. It amounts to minimizing the

maximum loss, as opposed to some average quantity such as the mean squared error.

This has several desirable consequences: 1) The resulting classification rule achieves an

error less separation of the training data if possible. 2) Outliers or meaningless patterns

are identified by the algorithm and can therefore be eliminated easily with or without

supervision. This contrasts classifiers based on minimizing the mean squared error, which

quietly ignore atypical patterns.

3.3.5.2 Statement of linear SVM

For the case of linearly separable data, let us suppose that for a given set X of training

samples xi ∈ Rd and the corresponding labels yi ∈ {−1, 1}, i = 1, . . . , n, SVM would

like to find a classifier, i.e. a hyperplane to separate the one class from the another

(negative instances from the positive one). As clear from Figure 3.5 that infinite number

of hyperplanes are possible. The SVM tries to find a classifier which maximizes the gap

between data points on the boundaries. These data points are known as the support

vectors.
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Figure 3.5: Statement of linear SVM.

Figure 3.6: A maximal margin hyperplane with its support vectors in linear SVM.

3.3.5.3 Optimal hyperplane for linear SVM

We know that the equation of parallel hyperplanes represented by red line is

~w.~x + b = 0
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Therefore, the equation of parallel hyperplane between negative and positive instances

are

~w.~x + b = 1 (yi = 1)

~w.~x + b = −1 (yi = −1)

Above equations can be written as

~w.~x + b− 1 = 0

~w.~x + b + 1 = 0

We know that the distance between two hyperplanes is |(b1−b2)|
‖w‖ , therefore, the distance D

between two hyperplanes is given by

D =
2

‖ ~w ‖

It is clear from Figure 3.6 that the hyperplane guaranteeing the best performance is

the one where the maximal margin of separation between the two classes is 2
‖~w‖ . Such

hyperplane is known as the optimal hyperplane. Since we want to maximize the gap, i.e.

margin, equivalently we would like to minimize ‖ ~w ‖. It directs to following constrained

75



3. VARIOUS MACHINE LEARNING METHODS

optimization problem:

minimize
(~w,b)

1

2
‖ ~w ‖2 (3.5)

subject to

yi(~w.~x + b) ≥ 1 i = 1, 2, 3 . . . (3.6)

This formulation ensures that maximum margin classifier classifies each instance correctly

because we assumed that data is linearly separable. Then for a given new instance x, the

classifier is f(~x) = sign(~w.~x + b).

3.3.5.4 Dual formulation

The SVM is a binary classifier such that for a given set X of training samples xi ∈ Rd

and the corresponding labels yi ∈ {−1, 1}, i = 1, . . . , N , it finds a maximum-margin

hyperplane separating xi for which yi = −1 from xi for which yi = 1 [114].

In case of dual formalism, the ~w is defined in terms of αi. It is defined as

w =
m∑

i=1

yiαixi, (3.7)

in which αi ∈ R, i = 1, . . . , N , are obtained during optimization. Then, the decision

function of a test sample x is

f(x) = (w·x + b) =

(
m∑

i=1

yiαixi·x + b

)
, (3.8)

here b is the bias term, also obtained during optimization. For non-support vectors xi,

αi = 0.
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The linear decision plane is too much limited in its application because of heterogeneous

nature of experimental data. Here the non linear classifiers based on kernel feature play

a vital role. The kernel functions provide a simple bridge from linearity to non-linearity.

The kernel function (mathematical function) maps the data into higher dimensional hy-

perplane (feature space), where each coordinate corresponds to one feature of the data

items. In this way, the data is transformed into a set of points in a Euclidean space,

leading to the classification.

3.3.5.5 Non linear SVM

In [113], the authors proposed a modification in SVM for the cases in which the training

data are not linearly separated in the feature space. When such a decision surface,

i.e. a hyperplane does not exist to separate two classes, as shown in the left panel

of Figure 3.7 then data is mapped into a higher dimensional space where a separating

Figure 3.7: projection of data into higher dimensional space

77



3. VARIOUS MACHINE LEARNING METHODS

hyperplane is available (right panel of Figure 3.7). This projection of data is carried

out by a mathematical operation, technically known as ”Kernel operation”. Instead of

linearly separating the samples in the original space x of the training samples in X,

the samples are projected onto a higher dimensional space in which they are linearly

separated. One advantage of this method is that in addition to separating non-linear data,

the optimization problem of the SVM remains almost the same: instead of calculating

the inner product ~xi~x, it uses a kernel K(~xi,~x) that is equivalent to the inner product

φ(~xi)φ(~x) in a higher dimensional space φ. When using the kernel trick, we do not need

to know the φ space explicitly.

Using kernels, the decision function of a test sample ~x becomes

f(x) =

(
m∑

i=1

yiαiK(~xi,~x) + b

)
. (3.9)

� The most used kernel for SVM is the RBF kernel [115], defined as follows.

K(~xi,~x) = e−γ||~x−~x||2 . (3.10)

Other useful kernels are

� Gaussian Kernel

K(xi,xj) = e
−‖xi−xj‖2

2σ2 (3.11)

� Polynomial

K(xi,xj) = (xixj)
p (3.12)
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� Sigmoid Kernel (used in neural net)

K(xi,xj) = tanh(κxixj − δ)p (3.13)

In the present work, the Radial Basis Function (RBF) and Polynomial kernels are used.

A polynomial of degree 3 with type 2 classification was employed. The parameter gamma

= 0.2 and ν = 0.5 were considered. For the Radial basis function, these parameters were

0.2 and 0.35 respectively.

3.3.6 Random Forest Method

Random Forest (RF) is a flexible multivariate selection method. The algorithm for Ran-

dom Forest was developed by Leo Breiman and Adele Cutler [102]. The Random Forests

are a combination of tree predictors such that each tree depends on the values of a ran-

dom vector sampled independently and with the same distribution for all trees in the

Forest [116]. The classification tree, also known as the “Decision tree”are machine learn-

ing prediction models constructed by recursively partitioning the data set. Each binary

recursive partitioning splits the data sets into different branches. The tree construction

starts from the root node (the entire dataset) and ends at the leaf. Every leaf node is as-

signed with a class. The Random Forest method combines the concept of ’bagging’ [117]

and ’Random Split Selection’ [118].

3.3.6.1 Bagging

The Random Forest builds on bagging [117] technique where bagging stands for “Boot-

strapping” and “Aggregating” techniques. The basic idea of bagging is to use bootstrap
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Figure 3.8: Bootstrap sampling

re-sampling to generate multiple versions of a predictor and combining them to make the

classification. Bootstrapping is based on random sampling with replacement. It ensures

that the probability of selecting an event in the sampling (with replacement) procedure

is constantly 1
n
. Therefore, the probability of not selecting an event is equal to (1 - 1

n
).

If the selection process is repeated n times, where n is very large, the probability of not

selecting an event will be ∼ 1
3
. Therefore, only 2

3
, i.e. (∼ 70%) events are taken for each

bootstrap sample.

3.3.6.2 Random Split Selection

In addition to bagging, Random Forest also employs “Random Split Selection” [118]. At

each node of the decision tree, m variables are selected at random out of the M input

vectors and the best split is selected out of these m. Typically about square root (M) =

m number of predictors are selected. The Random forest algorithm can be summarized

by Figure 3.9

Two sources of randomness, namely random inputs and random features, make Random
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Figure 3.9: Random Forest algorithm

Forests accurate classifiers. In order to measure the classification power (separation abil-

ity) of a parameter and to optimize the cut value, the Gini index is used which measures

the inequality of two distributions. In the case of two classes (γ and hadrons), Gini index

can be referred to as Binomial variance of the sample scaled to interval [0,1] [100]. For a

node splitting, if Nγ and Nh is the number of γ and hadrons respectively (N =Nγ + Nh)

then the Gini index is defined as

QGini =
4

N
.σ2

binomial = 4
Nγ

N

Nh

N
(3.14)

The classification is achieved by splitting each node into successive nodes. The splitting

of mother node to daughter nodes is carried out by applying a cut value chosen from
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the available attribute/parameters. This cut value is chosen on the basis of Gini index

defined above. The splitting process stops when the number of events falls below a user

defined value, say “stop the splitting process if the events in the node falls below say, 10

events”. The node at which the splitting process stops is known as the terminal node.

Let us say that each terminal node is assigned a class label k where k = 0 represents the γ

event and k = 1 represents hadron event. Suppose the terminal node contains a mixture

of events of different types/classes then one can calculate a mean value by taking into

account the class populations Nh of hadrons and Nγ of gammas.

k =
Nh

(Nh + Nγ)
(3.15)

A typical classification tree is shown in Figure 3.10. We have taken the simulation data

after characterizing the Cherenkov images. The image contains a mixture of two classes,

viz. γ and hadron. In the shown tree, we have used various Hillas parameters. The

cut values like asym ≥ 0.53; length ≥ 0.18, ≤ 0.41 . . . is chosen on the basis of

Gini index. The label 1 represents one class, (in our case γ) and label 2 represents the

other class (hadron in our case). After calculating the value of k for all the trees, the

mean classification is obtained by taking the average of k over all the trees. This mean

classification is known as the hadronness. All the events are now classified on the basis

of hadronness. If its value is closer to 1, we classify the event as hadron like event and if

its values is closer to 0, the event is classified as γ like event.

Breiman [116] estimated the error rate on out-of-bag data (i.e. oob data). Each tree is

constructed on a different bootstrap sample. Since in each bootstrap training set about
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Figure 3.10: Classification tree

one third of the instances are left out (i.e. out-of-bag), we can estimate the test set

classification error by putting each case left out of the construction of the tth tree down

the tth tree. The oob error estimate is the misclassification proportion on oob data.

Figure 3.11 shows the estimated OOB error rate. The number of trees needed by the

Random Forest to utilize its full potential must be chosen large enough in such a way

that the convergence of error σ takes place. Its value is given by [93]

σ(ntree) =

√∑nsample

i=1 (hest
i (ntree)− htrue

i )2

nsample

(3.16)

σ(ntree) is the rms error of the estimated hadronness. hest
i (ntree) denotes the estimated
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hadronness (which depends on the number ntree of combined trees) and htrue
i is the true

hadronness of event i in the sample, which contains nsample events in total. The conver-

gence process is shown in Figure 3.11 for the training of RF on an MC gamma and MC

hadron sample taken from the section 3.2. It is clear that 100 trees are sufficient for error

convergence.
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Figure 3.11: The Error (
√

σ2=rms) of estimated hadronness as function of the number
of trees.

Random Forest Fundamentals

The mathematical foundation of Random Forest method is described in [116]. Some of the

useful variables to predict the strength of classification using this method are described

below:

Definition

A Random Forest is a classifier consisting of a collection of tree structured classifiers

h(x,Θk ), k=1, ... where the Θk are independent identically distributed random vectors

84



3.3. Different classification methods

and each tree casts a unit vote for the most popular class at input x.

Accuracy of Random Forest

The accuracy of Random Forest is characterized by the margin function. The margin

function measures the extent to which the average number of votes at X,Y for the right

class exceeds the average vote for any other class.

If hk(X) are an ensemble of classifiers and with the training set drawn at random from

the distribution of the random vector Y, then the margin function is defined as

mg(X, Y ) = avkI(hk(X) = Y )maxj 6= Y avkI(hk(X) = j) (3.17)

I is the indicator function. The larger the margin, the more confidence in the classification.

Random Forest Prediction

The predictions of the Random Forest are taken to be the average of the predictions of

the trees:

Random Forest Prediction =
1

K

K∑
K=1

KthTree Response (3.18)

where K = total number of trees

Generalization error
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The generalization error is defined as

PE = PY,X(mg(X, Y ) < 0) (3.19)

where the subscripts X,Y indicate that the probability is over the X,Y space. The gen-

eralization error is also knows as the classification error.

In Random Forests, hk(X) = h(X, Θk) . For a large number of trees, all the sequences

Θk converges.

The strength and Correlation of Random Forest is estimated by the generalization error.

For random forest, an upper bound can be derived for the generalization error in terms

of two parameters that are measures of how accurate the individual classifiers are and of

the dependence between them. The interplay between these two gives the foundation for

understanding the workings of random forest.

The expectation value of the margin is called strength. This strength is defined as

s = EX,Y mg(X, Y ). (3.20)

An upper bound for the generalization error is given by

PE ≤ ρ
(1− s2)

s2
(3.21)

where ρ denotes the mean correlation between the trees and s is the strength of the set

of classifiers h(x, θ). To improve the accuracy, the randomness injected in combining the
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trees has to minimize the correlation while maintaining strength.

In this study, the original Random Forest code in fortran [102] was employed

and a total of 100 trees were generated . The variable defined in the above code as

mtry = 2/3 was taken. Almost similar results were obtained in each case. The resultant

output of this code was compared with the implementation of Random Forest in the

statistical package R [119]. It is worth mentioning here that the Fortran code encounter

some memory issues when the number of training/test events crosses a certain threshold.

However, this limitation was not encountered in the Random Forest implementation in

R.

3.4 Comparison of Classification methods

The above listed methods were employed to classify the events into γ and hadron classes.

A total of 7938 events of each type were considered as described in the earlier section.

Around 70% of the events were used for training all the machine learning methods and

rest of the data was used as a test sample. Same training and test data was used by all

the methods to have a one to one correspondence in the results. After training, the test

sample was passed through the trained classifier and prediction of γ and hadron class were

made. Our aim is to identify the best classifier. The accuracy of prediction rules can be

evaluated by the ROC (Receiver Operator Characteristic) curves. These curves were first

time applied to distinguish enemy planes (true signal) from the noise signal (false signal).

The ROC plots are graphical technique [120] to compare the classifiers and visualize their

performance. These curves are applied virtually in the field of decision making, like in

the signal detection theory ( [121] and more recently in the medical field [122].
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3.4.1 Evaluation

We are attending a binary classification problem where the two cases are γ and hadrons.

For a binary classification problem, a total of 4 possible outcomes are possible. The two

outcomes are related to the correct classification for the two classes and two for incorrect

classification. The True Positive (TP) class denotes the correct classification of class γ

and True Negative (TN) class represents the correct classification of class hadron. The

False Negative (FN) class reflects the class γ incorrectly classified as class hadron and

False Positive (FP) class is the incorrect classification of class hadron as class γ. These

four outcomes can be used to estimate the level of misclassification. Each classifier’s

performance was evaluated by generating a confusion matrix which is a 2 × 2 matrix

representing all the above 4 possible outcomes. Table 3.1 shows the generic table for a

two class problem.

Predicted Class

True Class

γ hadron

γ TP FP

hadron FN TN

Table 3.1: Confusion matrix

The four possible outcomes are used to generate the ROC plot. The ROC plot is a di-

agnostics tool for binary classification as a function of a class discriminating cut value,

known as threshold. This matrix, known as the confusion −matrix , evaluates the frac-

tion of correctly/incorrectly classified events. From the confusion matrix, the class γ
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acceptance represented as True positive rate (TPR) was estimated by defining it as

TPR = TP
TP+FN

[120]. The class hadron acceptance, represented as False Positive Rate

(FPR) was estimated by defining it as FPR = FP
FP+TN

. It is to be noted that we are

not generating the ROC curves in the strict sense. The ROC curves, by definition lies

between (0, 0) and (1, 1). In the present study, the hadron acceptance was plotted in

logarithmic axis for better visualization. Therefore, the ROC plots in this study differs

from the conventional ROC plots.

In order to find the best classifier, the decision boundary for prediction was varied. Each

decision boundary generated one point in γ-acceptance (tpr) and hadron acceptance (fpr)

curve. A tpr Vs fpr plot is referred to as a decision-plot. The decision-plot was generated

for each classifier. If the decision-plot inclines towards the left side, it indicates greater

accuracy, i.e. a higher ratio of true positive to false positive. In order to compare various

classifiers, the decision plot is generated for all the machine learning methods. The top

most plot in the decision-plot turns out to be the best classifier because for the same

hadron acceptance, upper plot gives the highest γ-acceptance.

The decision plot is the qualifying metric to select the most suitable classification method.

In addition to the decision-plot, the difference among various classifiers was also quan-

tified by estimating the signal strength at a representative γ-acceptance value. The

decision about the best classifier was arrived by using the “tpr” – “fpr” decision-plot.

The quantifying metric is designated as “signal strength”, defined as σ = S√
(2B+S)

where

S = εγNS and B = εpNB [123] are the signal and background events respectively. Since

the conventional dynamic Supercuts method estimated the γ-acceptance at 57.4%, the
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hadron acceptance from each classifier was derived from the decision-plot at this value.

The signal strength was estimated by taking NB = 10, 000 and NS = 500 [92]. The
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Figure 3.12: Signal vs background acceptance. The top panel is the classification re-
sult by using the 5 attributes/parameters. The bottom panel represents it for 7 at-
tributes/parameters

decision plot was generated for two sets of image parameters. As mentioned earlier, two

sets were considered to evaluate the classification strength as a function of the number of

image parameters. The decision-plots for these two cases are shown in Figure 3.16. The

comparison shows that Random Forest method yields better classification strength. This
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difference in the classification is albeit small, of the order of ∼ 10% (γ-ray acceptance) for

a given hadron acceptance range. This difference results because of more number of image

parameters and guides us to choose seven image parameters for better classification. The

decision-plot for rest of the methods reflect the same tendency. Any classifier yielding the

maximum gamma acceptance for a given hadron acceptance decides the superiority of the

classifier. Figure 3.13 shows the γ-acceptance as a function of projected hadron-rejection

for 4 representative projected hadron-rejection values, viz 90%, 99.3%, 99.6%, 99.9%. For
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Figure 3.13: Gamma acceptance as a function of projected hadron rejection

a hadron rejection of 99.9%, the RF method yields ∼ 40% γ- acceptance. Compared to

it, the ANN method gets ∼ 3% γ-acceptance. Rest of the two classifiers fair quite poorly.

In addition to estimating the signal strength, the misclassification rate was also estimated

by using the confusion matrix. The misclassification rate and the signal strength are

shown in Table 3.2

The positive effect of more number of parameters is better visible by the quantification of

91



3. VARIOUS MACHINE LEARNING METHODS

Misclassification Rate % Signal Strength

Classification method R5/R7 σ5 / σ7

Random Forest 5.44 / 4.43 15.46 / 15.73

Automated Neural Network 7.40 / 5.82 9.8 / 13.30

Standard Discriminant Analysis 12.11 / 10.08 8.10 / 10.37

Naive Bayes Classifiers 20.57 / 14.00 7.8 / 10.32

Support Vector Machine

i) with RBF kernal 9.18 /16.08 na

ii)with polynomial Kernel 10.19 /16.12 na

Table 3.2: Misclassification rate and signal strength with two sets (7 and 5)image param-
eters

misclassification rate as well as the signal strength. It is to be noted that the entries for

Support Vector Machine in Table 3.2 are absent, only the misclassification rate is given.

It is to be noted that the ANN, DISC, NB methods produce the probabilistic output but

in the case of SVM, the STATISTICA package gives the hard predictions, and hence the

generation confusion matrix is not possible. Table 3.2 for SVM with both the kernels

(RBF and polynomial) suggest that for the given dataset, gamma and hadron acceptance

will remain lower compared to that of RF and ANN method.
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The strength of ROC curves is generally exploited by comparing various classifiers and

the suitable classifier is selected. The classifier is selected on the basis of its position in

the ROC space. However, selecting the classifier on this basis is over simplistic. The

Precision-Recall (PR) curves are more fundamental than the ROC plots. According to

the theorem [124], “For a fixed number of positive and negative examples, one curve

dominates a second curve in ROC space if and only if the first dominates the second in

Precision-Recall space. The precision is defined as Precision = TP
TP+FP

. The Precision

essentially reflects the fraction of examples classified as positive which are truly positive,

i.e., predicted positives (here class γ). The Recall is the True Positive Rate. In the PR

space, the recall is plotted on the x-axis and the Precision is plotted on the y-axis.

The classifier attaining the top position in the PR space and hence in the ROC space (as

per the above mentioned theorem) is declared as the best classifier. Therefore, in order

to conclude the best classifier, it is important to evaluate the classifier performance in

PR space. The Precision-Recall plot is generated for both the sets of image parameters

and is shown in Figure 3.14.

The Random Forest method retains the top most position in the ROC curve as well as

in the PR-space compared to rest of the classifiers. Therefore it is concluded that the

Random Forest method is the best classifier. It is to be noted that the superiority of PR

curve over ROC plots is more pronounced when there is a skew in the class distribution

in a dataset.
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Figure 3.14: Precision Recall curves. The top panel represents the PR curve for the 5
attributes/parameters. The bottom panel represents it for 7 attributes/parameters

3.4.2 Conclusion

Five different machine learning methods were evaluated and compared to decide about the

suitability of these methods for γ-hadron segregation. Given the position of all the meth-

ods in the ROC space, PR-space and the misclassification rate for the given dataset, the

trend reflects the superiority of Random Forest and the Artificial Neural Network com-

pared to rest of the methods, i.e. Standard Discriminant method, Naive Bayes Classifier
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and Support Vector Machine. The signal strength was estimated by using the confusion

matrix at a representative value of γ-acceptance of 0.574. This value was chosen because

the conventional dynamic Supercuts method yields the same γ-acceptance. This method

yields a signal strength of σ0.574 = 12.92, whereas the signal strength are 15.73 and 13.30

from the Random Forest method and the Artificial Neural Network method respectively.

It is clear that these two methods yield better results compared to the conventional dy-

namic Supercuts method. For the given dataset, Random Forest method gives almost

20% improvement in the signal strength over the Artificial Neural Network method. Sim-

ilar trend is repeated in the estimation of misclassification rate. It is difficult to make a

generalized statement about the superiority of Random Forest methods over any other

methods, However, the dominance of Random Forest method in ROC plot as well as

in the Precision-Recall space indicates that for the given dataset, the Random Forest

method is the best classifier. In addition to above classifying metric, the Random Forest

method has additional advantage in terms of computational time over the perceptron

based method like Artificial Neural Network. As the number of perceptrons increase, it

becomes computationally very expensive. Apart form it, unlike Artificial Neural Net-

work method acts as a black box whereas the Random Forest method is quite easy to

understand. Random Forest method demands very little processing capabilities. Random

Forest method takes care of parameters with little or no separation power whereas the

performance of Artificial Neural Network performance is severely affected by the inclusion

of such parameters. Our results are in sync with the earlier study ( [92] carried out by

using the simulated data for the MAGIC telescope.
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3.5 Other machine learning methods

In addition to the five machine learning methods, various machine learning methods from

the TMVA package ( [125]) were tested and their resultant decision-plot is presented. Var-

ious machine learning methods are as follows: Boosting Decision Tree (BDT), BDT with

gradient boost (BDTG), BDT with decorrelation (BDTD) + Adaptive Boost, TMlpANN

(ROOT’s own ANN), Fisher Boost (Linear discriminant with Boosting) and Probability

Density Estimator Range-Search (PDERS). For all these methods, the default settings

given by the TMVA developers were used. It is clear from the decision-plot (Fig. 3.15)

that the RF method outperforms all the other methods.

In the next section, we will validate the Random Forest method by using

the Markarian (Mrk) 421 and Crab Nebula observation of 2005-2006 by the TACTIC

telescope.

3.6 Random Forest method Application on Mrk421

observation

Mrk421 in the high state was observed in 2005 − 2006 by various Imaging Atmospheric

Cherenkov Telescope (IACTs). MAGIC telescope observed this source from April 22 to

April 30, 2006 [126]. Whipple telescope [127] carried out the observation in April and

June 2006. This source was also observed the by TACTIC telescope from 27 December

2005 - 30 April 2006 for a total of ∼ 201 hrs [89]. Previous analysis of this data led to a

detection of flaring activity from the source at Energy > 1 TeV. A spell of ∼ 97 hrs of
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Figure 3.15: The decision-plot of various machine learning methods

this data revealed strong detection of gamma-ray signal with daily flux of > 1 Crab unit

on several days. The analysis was carried out by the Dynamic Supercuts method. Here

we re-analyze the entire dataset using the Random Forest method.

3.6.1 Mrk 421 observation

TACTIC telescope observed Mrk 421 for a total of ∼ 201 hrs between December 07, 2005

- April 30, 2006. The source was observed for six different lunation labelled as Spell I -

Spell VI. The observation was restricted to a zenith angle ≤ 450
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3.6.1.1 Database used for Mrk421 analysis

A Monte Carlo simulated database was generated by using the CORSIKA air shower

code [97] with the Cherenkov option. The simulations were carried out for the TACTIC

telescope [98] at the Mount Abu observatory at an altitude of ∼ 1300m. A total of 74000

γ-ray events in the energy range from 1-20 TeV were selected according to the differential

spectral index 2.6. These events were generated at five zenith angles: 50, 150, 250, 350 and

450. The Cherenkov photons triggered the telescope after encountering the wavelength

dependent photon absorption, reflection coefficient of the mirror facets, light cone used in

the camera and the quantum efficiency of photomultiplier tubes. All the triggered events

underwent the usual image cleaning procedure [99] to eliminate the background noise. In

order to have a robust and well contained image inside the camera, pre-filtering cuts of

size ≥ 50 photoelectrons and 0.40 ≤ distance ≤ 1.40 were applied. It yielded a total of

60000 events for γ-rays.

However, it is generally not advisable to use Monte Carlo hadrons while us-

ing the observation data because the hadronic showers have large fluctuations. Moreover,

the generation of hadron showers is much more time consuming owing to their very small

trigger probability. In the presence of ON or OFF source observational data, there is no

need to use the simulated protons, the cosmic ray protons can be used from the observa-

tional data. In the present study, the actual events recorded by the TACTIC telescope

have been used in place of simulated protons. A database of ∼ 17000 simulated proton

events were generated using CORSIKA. Also same number of events were extracted ran-

domly from ON source observation where all the events with α > 270 were treated as
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cosmic ray proton events. Figure 3.16 shows the comparison of various image parameters

from simulated and observational protons extracted from the ON source observation. It
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Figure 3.16: Comparison of various image parameters like length, width, distance as well
as size (photoelectron) from Monte Carlo simulation protons and real cosmic ray proton
events detected by the TACTIC telescope. We have used 1 photoelectron = 6.3 counts

is evident from this figure that the simulated hadrons mimic the observational hadrons

quite closely. Therefore, simulated protons can safely be replaced by the observational
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events acquired by the TACTIC telescope.

3.6.1.2 Image parameters for classification

The procedure to use of zenith angle and size for classification has been described in

the Section 3.2.1. Before the classification, we first compartmentalize the continuous

zenith angle distribution of observed events by replacing ∼ 100 bin of zenith angle with

a single zenith angle value. Accordingly in the present work, we approximate all the

observational zenith angle between 0− 100 by 50 zenith angle, 10− 200 by 150 etc. After

taking into account all such factors, Hillas parameters used to characterize the Cherenkov

events namely zenith angle, length, width, distance, size (photoelectrons) and Frac2 have

been computed. For the classification purpose, alpha parameter was not considered even

though alpha is a very powerful parameter as it carries the signature of the progenitor

(γ or proton). If the alpha parameter is used in the classification then the hadronic

background can not be evaluated.

3.6.1.3 γ-hadron classification methods

The problem of γ/hadron segregation is formulated as a two class problem: viz γ repre-

sents one class and the hadron is the second class. Here we will apply the Random Forest

method for γ-hadron classification. As mentioned earlier [89], the previous analysis of this

data was carried out by using the Dynamic Supercuts method, described in Section 3.3.1.

By employing this method, the optimum number of cut parameters and their values were

estimated by numerically maximizing the so called Quality factor Q [105], defined as

Q =
εγ√
(εP )

(3.22)
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Here εγ and εP are γ and hadron acceptances respectively. After the numerical maxi-

mization of the quality factor, the set of image parameters are shown in Table 3.3.

Parameter Cut Values

LENGTH (L) 0.11◦ ≤ L ≤ (0.235 + 0.0265× ln S)◦

WIDTH (W) 0.06◦ ≤ W ≤ (0.085 + 0.0120× ln S)◦

DISTANCE (D) 0.52◦ ≤ D ≤ 1.27◦cos0.88θ ;(θ≡zenith ang.)

SIZE (S) S ≥ 450d.c ;(6.5 digital counts≡1.0 pe )

ALPHA (α) α ≤ 18◦

FRAC2 (F2) F2 ≥ 0.35

Table 3.3: Dynamic Supercuts selection criteria [89]

3.6.1.4 γ-hadron segregation using the Random Forest method

A total of 60, 000 γ-ray events resulted after applying the precuts defined in the earlier

section. It was demonstrated (Figure 3.16) that the events extracted from ON Source

observation beyond α ≥ 270 matched well with that of simulated proton events. In order

to have a balanced dataset for γ and hadrons, we extracted a total of 60, 000 events from

the ON source observations available from Mrk 421 and Crab Nebula observations carried

out in 2005− 06. A total of 30, 000 events each from Mrk 421 and Crab Nebula observa-

tions were extracted respectively. For the present study, the zenith angle was restricted

to 450. A total of 70% events from γ and hadrons were used to train the Random forest

and the remaining 30% events were used as a test sample. The frequency distribution of
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Figure 3.17: The top panel shows the simulated γ and observational protons for the
estimation of optimum cut value of the Random Forest output. A total of 34120 events
for simulated γ and actual background events were employed as a test sample. The
bottom panel shows the significance as a function of Random Forest cut value.
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predicted γ and hadron events from Random Forest for a test sample containing 17820 γ

and 16300 background events extracted from actual observation is shown in Figure 3.17.

Any cut value above 0.25 will be able to remove most of the background events, leading

to a better background rejection and hence will result in a better sensitivity. Quantita-

tively, the optimized cut value can be obtained either by maximizing Quality factor or by

maximizing the signal significance. Figure 3.17 also shows the significance as a function

of cut value. On the basis of this optimized significance, a cut value at 0.35 was chosen.

3.6.2 Variable Importance

The Random forest method also helps in evaluating the most important parameters

useful in the classification. Figure 3.18 shows the variable importance of various image

parameters. It shows that the Frac2 parameter is the most important parameter for the

classification. The parameter in the decreasing order of importance are width, length,

zenith, dens and size. The observed variable importance is consistent with that obtained

by similar systems in the TeV energy ranges.

3.6.3 Alpha plot analysis for Mrk 421 using Random Forest

The recorded data with the telescope was subjected to standard image cleaning procedure

[128] using picture and boundary threshold of 6.5σ and 3σ. Image cleaning procedure

yields the pixels containing Cherenkov events only. All such events were processed to

characterize the images using the Hillas parameters [26]. Typically γ-ray events have

narrow elliptical shapes whereas hadronic events are more irregular. These differences in

image shape are used for the segregation of γ/ hadron events. The segregation of γ-ray

like images from the sea of background hadron images by standard Dynamic Supercuts
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Figure 3.18: The variable importance estimated by the Random Forest method

method yields an excess of 1236 γ-ray events with a statistical significance of 11.49 σ [89].

The frequency distribution of ALPHA parameter determines the excess number of γ-ray

events. The background events were extracted from 270 ≤ α ≤ 810 whereas α ≤ 180

defines the region of signal events. Before employing the Random Forest for Mrk 421

data, we validated the method by analyzing the Crab Nebula data observed during the

near same lunation (November 10, 2005 to January 30, 2006). The Random forest method

yielded a total of (1080± 113) events for a total of ∼ 101.44 h of observation. Same data

was analyzed by restricting the zenith angle of observation to 15◦-45◦, a zenith angle

range similar to that of Mrk 421 observation. A total of (634± 73) events were obtained

in an observation time of ∼ 63.33 h with a corresponding γ ray rate of ∼ (10.01 ± 1.1

h−1. This γ-ray rate is designated as a reference of 1 Crab Unit (CU). The same trained
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forest was employed for estimating the excess events as well as the energy spectrum for

Mrk 421. All the observation spells were analyzed individually. The Table 3.4 shows the

spell wise analysis. The significance of the signal was calculated by using Li & Ma [123].

Spell Obs. time γ-ray γ-ray rate Significance

( hrs. ) events (h−1) (σ)

I 9.24 23 (9) 2.49 (0.97) 1.72 (0.37)

II 35.71 322 (275) 9.01 (7.70) 6.91 (5.79)

III 61.53 730 (676) 11.86 (10.99) 13.8 (10.64)

IV 34.54 131 (91) 3.79 (2.64) 3.2 (1.94)

V 31.14 100 (61) 3.38(1.96) 3.2 (1.61)

VI 29.55 151 (123) 5.10 (4.16) 4.0 (3.86)

All data 201.72 1457 (1236) 7.22 (6.13) 14.6 (11.49)

II +III 97.24 1052 (951) 10.82 (9.78) 13.8 (12.00)

Table 3.4: Detailed Spell wise analysis report of Mrk 421 data due to RF (DSC)

The data from all the spells (I-VI) yielded a total of (1457± 90) events with a statistical

significance of 14.6 σ. Figure 3.19 shows the α plot for the Mrk 421 source for the entire

observation ∼ 202 h. It demonstrates that compared to the Dynamic Supercuts method,

which produced a total of (1236±110) events with a statistical significance of 11.5 σ, the

Random Forest method leads to an improvement in the excess γ-ray events by ∼ 18%
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Figure 3.19: On source α plot for Mrk 421 during December 07, 2005 - April 30, 2006 for
∼ 202 h. The expected background events were obtained using the background region
(27◦ ≤ α ≤ 81◦)

and significance by ∼ 26%.

3.7 Energy spectrum of Mrk 421

The primary γ-ray energy reconstruction was carried out by using few Hillas image pa-

rameters by applying the Artificial Neural Network method (ANN) [89,107]. For a single

imaging telescope, the energy reconstruction is a function of image parameters size (num-

ber of phototelectron), zenith angle and Distance. The energy estimation was carried out

by employing a 3:30:1 ( i.e. 3 nodes in the input layer, 30 nodes in hidden layer and

1 node in the output layer) configuration of ANN with back propagation training al-
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gorithm [129]. We used a total of 10,000 γ-ray showers for training the network. The

showers were generated at five zenith angles (50, 150, 250, 350 and 450). The effective area

as a function of zenith angles and energy was estimated by the standard procedure [103].

The trained network provided the weights which were used to estimate the energy of

excess γ-ray events.

The differential photon flux per energy bin is a direct function of zenith

angle, energy-dependent effective area and γ-ray retention. Eventually, the spectrum is

obtained by using the formula

dΦ

dE
(Ei) =

∆Ni

∆Ei

5∑
j=1

Ai,jηi,jTj

(3.23)

where ∆Ni and dΦ(Ei)/dE are the number of events and the differential flux at energy

Ei, measured in the ith energy bin ∆Ei and over the zenith angle range of 0◦ - 45◦,

respectively. Tj is the observation time in the jth zenith angle bin with corresponding

energy-dependent effective area (Ai,j) and γ-ray acceptance (ηi,j). The 5 zenith angle bins

(j=1-5) used are 0◦-10◦, 10◦-20◦, 20◦-30◦, 30◦-40◦ and 40◦-50◦ with effective collection area

and γ-ray acceptance values available at 5◦, 15◦, 25◦, 35◦ and 45◦. The number of γ-ray

events (∆Ni) in a particular energy bin is calculated by subtracting the expected number

of background events from the γ-ray domain events. In order to validate the trained ANN,

the spectrum from Crab Nebula was reproduced. The spectrum of crab nebula is fitted

by a power law with (dΦ/dE = f0E
−Γ) with f0 ∼ (1.944± 0.15)× 10−11cm−2s−1TeV −1
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Figure 3.20: The top panel shows the Crab Nebula spectrum during November 10, 2005
- January 30, 2006 for ∼ 101 hrs. The bottom panel shows the Mrk 421 spectrum during
Spell II and III during December 07, 2005 - April 30, 2006 for ∼ 97.24 hrs.

and Γ ∼ 2.66± 0.08725. After reproducing the Crab Nebula spectrum, we obtained the

spectrum of Mrk 421 for the spells II and III where the the source was emitting at more

than 1 CU. The resultant spectrum is well fitted by a simple power law with exponential

cut off (dΦ/dE = f0(E/E0)
−Γ) with f0 ∼ (3.435 ± 0.33) × 10−11cm−2s−1TeV −1 and
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3.7. Energy spectrum of Mrk 421

Γ ∼ 2.5 ± 0.03429 and E0 = 4.71 ± 2.2. Both the obtained spectra (Figure 3.20) match

well with the previously reported results [89].

3.7.1 Result and Discussion

The extragalactic source Mrk 421 was observed by the TACTIC imaging telescope during

December 07, 2005 - April 30, 2006 for ∼ 202 hrs. Previous analysis of this data using the

Dynamic Supercuts method led to a detection of flaring activity from the source at Energy

> 1 TeV. Here we reanalyzed this data by using the machine learning method Random

Forest. The Dynamic Supercuts method as well as the Random Forest method showed

that the Mrk 421 was in the high state in Spell II and III. The key result of this study

is that the Random Forest method estimated more excess γ-ray like events compared to

previous results [89]. This is so because while the Dynamic Supercuts method estimated

a total of 1236 excess γ-ray like events from the entire data, the Random Forest method

yielded a total of 1457 events, i.e. 221 events more. The signal strength estimated by

the Random Forest method was 14.6 σ as compared to the same obtained by Dynamic

Supercuts method (11.49 σ). The energy spectrum of Mrk 421 as measured by the

TACTIC telescope for spell II and III is compatible with a power law with exponential

cut off. In addition to the source detection in high state in Spell II and III, TACTIC also

observed this source during the last lag of Spell VI in the month of April 2006. It may

be mentioned that during this period, this source was also observed by various groups.

Whipple telescope [127] carried out the observation in April and June 2006. MAGIC

telescope observed this source from April 22 to April 30, 2006 [126]. Both these groups

detected this source in high state. However, TACTIC has only a 4.10 σ (see Table 3.4)
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detection during this period.

The applicability and superiority of Random Forest method over Dynamic

Supercuts method for the TACTIC telescope has been demonstrated by the present

study.

110



4

MACE Sensitivity estimate

111



4. MACE SENSITIVITY ESTIMATE

Telescope
M

a
c
e

Sensitivity

G
a

m
m

a
Ray

Magic

Tr
ig

g
e
r

Gev

Shower Area A
lt

it
u

d
e

E
ff

e
c

ti
v

e

H
ig

h

Source

Threshold

P
ro

to
n

R
a

n
g

e

C
h

e
re

n
ko

v

Camera
Hanle

Iact
Time

Photon

P
a

rt
ic

le

Cosmic

P
ix

e
l

A
n

a
ly

s
is

C
o

m
p

a
re

d

Simulation
Show

C
ra

b

F
lu

x

E
v

e
n

t

Alpha
S

iz
e

Angle

E
le

c
tr

o
n

P
m

t

D
ia

m
e
te

r

Panel

Image

F
e
rm

i

In
te

g
ra

l

Bll

Estimated

G
e
n

e
ra

te
d

M
u

lt
ir

o
w

F
a
c
to

r

Lower

Sigma

Various

Zenith

A
rr

ay

Second

G
ev

te
v

Light

R
e
te

n
ti

o
n

Total

M
o

d
u

le

Background Described

Detect

Energies

Hadron

H
il
la

s

In
it

ia
te

d

Level

M
in

im
u

m

Observation

S
e
n

s
it

iv
e

T
ev

W
id

th

Cut

S
ig

n
a
l

Get

Carlo

C
le

a
rDatabase

D
e
n

s
it

y

Generation

Length

Monte

R
e
fs

p
e
c
s

S
e
g

re
g

a
ti

o
n

Selected

S
it

e

Snr

Stereo

Visible

V
a
lu

e

Photoelectron

A
b

le

Account

Achieve

C
c
n

n

C
o

d
e

E
s
ti

m
a
ti

o
n

Field

H
e
s
s

In
s
ta

ll
a
ti

o
n

L
e
s
s

Low

Method

N
e
a
re

s
t

Nebula
Presently

R
a
n

d
o

m

R
a
te

Right
W

h
e
re

a
s

O
rd

e
r

Pattern

Turn

Figure 4.1: Summary of Chapter 4. The size of word represents the number frequency.
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Figure 4.2: MACE 21m diameter dish in Hyderabad.

The MACE (Major Atmospheric Cherenkov Experiment) is a 21 m diameter γ-ray tele-

scope which is presently being installed at Hanle in Ladakh, India (320 46
′
46” N, 780

58
′
35” E) at an altitude of 4270 m a.s.l. Once operational, it will become the highest

altitude very high energy (VHE) γ-ray telescope in the world based on Imaging Atmo-

spheric Cherenkov Technique (IACT). In this chapter, we discuss the sensitivity estimate
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4. MACE SENSITIVITY ESTIMATE

of the MACE telescope by using a substantially large Monte Carlo simulation database

at 5◦ zenith angle. The sensitivity of MACE telescope is estimated by carrying out the

γ-hadron segregation using the Random Forest method. It is estimated that the MACE

telescope will have an analysis energy threshold of 38 GeV for image intensities above

50 photoelectrons. The integral sensitivity for point like sources with Crab Nebula-like

spectrum above 38 GeV is ∼ 2.7% of Crab Nebula flux at 5 σ statistical significance level

in 50 hrs of observation.

Presently three major operational IACT based telescopes are MAGIC [93],

HESS [?] and VERITAS [130] MAGIC telescope consists of 2 × 17 m diameter telescopes

on the Canary island of La Palma. The analysis energy threshold of stereo MAGIC

telescope is ∼ 84 GeV [93]. The VERITAS telescope is an array of four 12 m diameter

telescopes at southern Arizona, USA. It has an analysis energy threshold of ∼ 135 GeV

[131].HESS telescope, situated in Namibia, is a mixed array consisting of four 12 m

telescopes, named as HESS-I and one 28 m large size telescope, named as HESS-II.

HESS-I alone operates at an analysis energy threshold of ∼ 158 GeV [132] whereas the

preliminary simulation studies show that HESS-II has an analysis energy threshold of ∼

50 GeV [133]. In order to augment the capability of IACT based telescopes in few GeV to

few TeV energy range, an international consortium of worldwide researchers are setting

up an open observatory known as the Cherenkov Telescope Array (CTA) [134]. CTA will

consist of two large arrays of IACT based telescopes, one in the Northern Hemisphere

with an emphasis to study extragalactic objects and a second array in the Southern

Hemisphere to concentrate on galactic sources. The Southern array which is being set up
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first will deploy telescopes of various diameters to cater to the wide energy range of few

tens of GeV to few tens of TeV. A compact array of 4 x 23 m diameter telescopes will

cater to the lower end of energy range.

In the same endeavour, a new Indian initiative in gamma-ray astronomy, the

Himalayan Gamma Ray Observatory (HIGRO), is setting up an IACT based telescope

known as the MACE (Major Atmospheric Cherenkov Experiment) at Hanle in the

Ladakh region of northern India. MACE, presently being set up at an altitude of 4270m,

is a 21m diameter telescope with a total light collector area of ∼ 337 m2 with effective

focal length of ∼ 25 m2. Compared to the high altitude of MACE telescope, MAGIC,

HESS and VERITAS telescopes are operational at an altitude of 2225 m, 1800 m and

1275 m respectively. The idea of an IACT based telescope at high altitude (5 km)

was introduced by Aharonian et al. (2006) [128]. They discussed the concept of a

stereoscopic array of several large imaging atmospheric Cherenkov telescopes having an

energy threshold of 5 GeV. Although it should be noted that they discussed about a stereo

array, whereas MACE is a standalone single telescope. The stereoscopic approach has

many advantages compared to the stand alone IACT. This approach allows unambiguous

reconstruction of shower parameters. It also leads to effective suppression of night sky

background and muon background because of the reduction in the random coincidences,

leading to reduced pixel trigger threshold and hence lower energy threshold. In addition

to it, the hadronic showers are rejected more efficiently compared to a single IACT based

telescope on shape cuts in multiple views. The simultaneous observation of air shower by

stereoscopic telescope, compared to a single telescope, leads to improved shower direction
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4. MACE SENSITIVITY ESTIMATE

reconstruction as well as core location. The main advantage of having a stereoscopic array

of 20 m diameter telescope at an altitude of 5 km is very low γ ray energy threshold ∼ 5

GeV on account of less absorption of Cherenkov photon, as well due to geometric effect

on account of higher altitude leading to higher photon density.

In the present Chapter, we will discuss the performance of the MACE

telescope by estimating its sensitivity. This study is organized as follows. In Section 4.1,

we will introduce the MACE telescope. Section 4.2 will have a discussion the generation of

Monte Carlo simulation database. In section 4.3, we will estimate the Integral sensitivity

for the MACE telescope. Results and discussion will be presented in section 4.4.

4.1 The MACE telescope

The MACE is an Indian effort to set up a very high energy (VHE) γ-ray IACT based

telescope. The installation of this telescope is presently going on at Hanle (320 46
′

46” N, 780 58
′

35” E) in Ladakh, India at an altitude of 4270 m a.s.l. It is a 21

m diameter telescope which will deploy a photomultiplier tube (PMT) based imaging

camera consisting of 1088 pixels. The diameter of each PMT is 38 mm with angular

resolution of 0.125◦ and an optical field of view of the full camera ∼ 3.4◦ × 4◦. In order

to reduce the dead space between the PMTs, a light concentrator having a hexagonal

entry aperture of 55 mm and a circular exit aperture of 32 mm is placed on top of the

PMTs. The imaging camera of MACE telescope has been designed in a modular manner

consisting of 68 modules of 16 channels each. The MACE camera layout has been shown

in Figure 4.3. The detailed trigger scheme is described in [135]. Out of 1088 pixels, the

innermost 576 pixels (24×24) will be used for trigger generation. The trigger field of view
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4.1. The MACE telescope

is ∼ 2.6◦×3◦. Conventionally, the event trigger in an Atmospheric Cherekov Telescope is

generated by demanding a fast coincidence between few PMTs, generally 2-6. Since the γ-

ray images are more compact compared to the background events, the chance coincidence

rate can be reduced by limiting the n-fold topological combination of pixels. The MACE

telescope uses nearest neighbour close cluster patterns. It has an option of using various

programmable trigger configuration such as 2 CCNN (close cluster nearest neighbour

pairs), 3 CCNN (close cluster nearest neighbour triplets), 4 CCNN (close cluster nearest

neighbour quadruplets). Here CCNN is defined as the pattern in which if any one of the

fired pixels is removed, the remaining pixels should be still adjacent. MACE trigger will

be generated in two stages: In the first stage a m-fold coincidence in a module between

nearest neighbor pixels with a coincidence gate width of 5 ns is demanded. In the

second stage, partial triggers from individual modules are collated so that events spread

over adjacent modules (2,3 or 4) satisfying the chosen multiplicity condition generate the

trigger. The MACE camera layout with 3, 4 and 5 CCNN trigger patterns is shown in

Figure 4.3.

MACE Telescope will use a quasi-parabolic light collector to image the Cerenkov flash

on a PMT camera. The light collector of the telescope will be made of 356 mirror panels

of 984 mm × 984 mm size fixed at a square pitch of 1008 mm on a paraboloid shape

dish. Each panel will consists of four 488 mm × 488 mm facets of spherical mirrors made

of aluminum with a SiO2 coating. The total light collector area will be ∼ 337 m2. The

mirror facets have a graded focal length of 25 - 26.5 m which ensures that the on-axis

spot size is minimum at the focal plane.
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Figure 4.3: The MACE camera layout showing a total of 1088 pixels divided into 68 mod-
ules with 16 PMT each. The trigger is generated from the darker shaded area consisting
of 576 pixels. Typical trigger pattern of various programmable scheme (3,4,5 CNNN) is
shown in ed color.

4.2 Generation of Monte Carlo simulation database

A Monte Carlo simulation database at 5◦ zenith angle was generated. The extensive air

shower (EAS) library for MACE simulation was generated using a standard air shower

simulation package CORSIKA (v6.990). This code is developed at Karlsruhe university

and available for use on request. This Monte Carlo method based code simulates the

secondary particle cascade generation in the atmosphere as high energy primary particle

enters the Earth’s atmosphere and undergoes many electromagnetic as well as hadronic
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4.2. Generation of Monte Carlo simulation database

interactions. Many models to simulate these interactions are available in this code and the

Cerenkov light generation by the relativistic leptons as they zip through the atmosphere

is also simulated.

For this work, we have used EGS4 model for the electromagnetic interactions. For low

energy (upto 100GeV) hadronic interactions, we have used GHEISHA model while high

energy interactions are modelled using QGSJet-I model. We have used CEFFIC option

to incorporate the en-route absorption of Cerenkov photon. We have used US standard

atmosphere model supplied with CORSIKA package. The observation level was set to

the altitude of the telescope site. The Earth’s magnetic field values measured at the

Hanle are 31.95 µT for horizontal component along local north direction and 38.49 µT

for vertical component in downwards direction. The Cerenkov photons were stored within

the wavelength range 240 nm – 650 nm as the MACE camera PMTs are sensitive in this

range.

Using this setup, we generated EAS library for four primary particles –

γ-ray, proton, electron and α particle. The spectral indices used are 2.59 [136] for γ-ray,

2.7 for proton, 3.26 for electron and 2.63 for α particle. Other input parameters which

vary with particle type, are listed in Table 4.1. In this work we focused on estimating the

sensitivity of the telescope for on-axis point sources only (view cone angle is maintained

at zero value for γ-ray showers). The protons, electrons and alpha particles are simulated

diffusively in a certain view cone angles, as described in the Table 4.1. We generated

more than 34 million γ-ray showers and nearly 1 billion showers for cosmic rays in two

energy band encompassing over 3 decades of energies using three high-end workstations
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4. MACE SENSITIVITY ESTIMATE

particle Energy Range View cone Scatter No. of showers No. of Triggered
type angle(deg) radius(m) (million) showers

γ-ray
10GeV–20TeV 0o 400 22.8 1,314,306

400GeV–20TeV 0o 500 12.8 1,569,866

proton
20GeV–20TeV 3o 500 356 308,099

400GeV–20TeV 3o 550 64 169,221

electron
10GeV–20TeV 3o 500 384 432,631

400GeV–20TeV 3o 550 64 330,909

α particle 100GeV–20TeV 3.5o 550 326 391,653

Table 4.1: Monte Carlo simulation database

comprising of 32 processors each during the actual runtime of more than six months. The

telescope simulation program took these shower events as input and ray-traced them to

the focal plane of the telescope. The two level trigger logic used in simulation exactly

mimics the actual trigger design to be implemented for the MACE telescope. For trigger-

ing criteria [135], we have used 9 p.e. as the discrimination threshold for a pixel and the

trigger configuration of 4 CCNN pixels was used. For simulation studies, a general pur-

pose IACT simulation code was employed [135] to asses the performance of the MACE

telescope. In brief, the general purpose simulation code incorporated the specification

for the MACE telescope like camera, reflector and trigger configuration along with the

wavelength dependent photon absorption. A poissonian Night Sky Background (NSB)

background in each pixel was added in this code. The NSB observation was carried out
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4.2. Generation of Monte Carlo simulation database

at the MACE telescope installation site [137] during 2003 - 2007 using CCD images taken

with the Himalayan Chandra Telescope (HCT). The estimated NSB rate per pixel turns

out to be ∼ 1.46 photoelectrons [135]. The Cherenkon photons falling on the image plane

of the camera underwent usual image analysis procedure developed by Hillas [26]. The

spatial distribution (of Cherenkov photons) generates different patterns for signal (γ-rays

generated Cherenkov photons) as well as for background (protons, electrons, alpha parti-

cles generated Cherenkov photons) events. This difference in shape and size is exploited

for the extraction of signal. All these parameters are affected by the NSB, therefore, the

conventional practice of image cleaning [99] is employed. We employed a two step image

cleaning procedure: picture and boundary and picture thresholds of 10σ and 5σ was used

respectively. The clean Cherenkov images were characterized by various Hillas image

parameters like Length, Width, Distance, Alpha, Size, Frac2 and asymmetry. Once clean

images were obtained, the γ-hadron segregation was carried out by using the Random

Forest method, described in [138,139].

A typical distribution of various Hillas parameters for all the simulated primaries is

shown in Figure 4.4 and 4.5 . Please note that since the frequency distribution of Hillas

parameters for all the simulated four species in a single plot appears cluttered, we have

presented the distribution for gamma, protons and alpha particles in Figure 4.4 and

frequency distribution of gamma and electrons in Figure 4.5. The Figure 4.6 shows

the Pearson parametric correlation coefficient depicting linear dependence between two

variables for various Hillas parameters. The linear correlation between various parameters

for proton and alpha particle initiated showers is almost similar. However, the linear
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Figure 4.4: Frequency distribution of Hillas parameters for Gamma, proton and alpha
particles initiated showers triggering the MACE telescope.

correlation for gamma and electron events is quite different. Any analysis method which

can decipher the interdependence among various parameters is helpful in gamma and
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Figure 4.5: Frequency distribution of Hillas parameters for Gamma and electron initiated
showers triggering the MACE telescope.

non gamma events segregation. Probably the Random Forest method is quite effective in

scrubbing out the interdependence among various parameters, therefore, the segregation
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of electrons from gamma initiated showers did not hinder the gamma and electron events

segregation although there is just one radiation length difference in gamma and electrons

initiated showers. We have also shown the Length and Width vs Energy distribution plot
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Figure 4.6: The Pearson parametric correlation coefficient showing linear dependence be-
tween two variables for various Hillas parameters for: gamma rays(top most left panel),
protons (top most right panel), electrons (bottom most left panel), alpha particles (bot-
tom most right panel).

for γ and protons in Figure 4.16 (shown in the Appendix 4.5.2).
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4.2. Generation of Monte Carlo simulation database

4.2.1 Height dependent properties of Cherenkov radiation

The TACTIC telescope described in the last chapter is located at an altitude of 1.3

kms a.s.l whereas the altitude of the MACE telescope is ∼ 4.2 kms. The properties

of Cherenkov radiation is very different at these locations. The Figure 4.7 shows the

wavelength dependent Cherenkov emission at these two locations. The difference in the
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Figure 4.7: Wavelength dependent Cherenkov emission for 100 GeV γ-ray showers arriv-
ing within a core distance of 60-80 m at TACTIC (∼ 1.3km a.s.l) and at Hanle (∼ 4.2km
a.s.l) altitude for vertically incident showers.

Cherenkov photon density at these locations can be understood geometrically. Since the

altitude of MACE telescope is higher, geometrically the Cherenkov light pool shrinks at

Hanle altitude leading to increased photon density. The Figure 4.8 shows the difference

in the photon density at TACTIC and Hanle observation level. However, it should

be noted that the increase in the Cherenkov photon density is more for γ-ray initiated

showers compared to the proton initiated showers. The possible reason is the truncation

of hadronic showers compared to γ-ray initiated showers (visible from the Figure 4.9,
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Figure 4.8: Cherenkov Photon density distribution for: Top panel (100 GeV γ-rays),
Bottom panel (300 GeV proton).

showing the development of these showers at Hanle altitude). The Figure 4.10 shows the

integrated longitudinal distribution of Cherenkov photons as a function of atmospheric

thickness X for γ-rays with energies 100 GeV and 1 TeV and for protons of energies 300

GeV and 5 TeV energies. It is clear from this figure that 1 TeV γ-rays initiated showers

gets fully developed (∼ 97% Cherenkov photons production is complete). However, a

sharp contrast is seen the case of proton initiated showers where only ∼ 80% of 300 GeV

proton shower gets completed. Since the proton initiated showers are not fully developed
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Figure 4.9: Development of 100 GeV γ and 300 GeV proton showers.

at Hanle altitude, it might cause problem in γ-hadron segregation at higher energies.

4.3 Integral Sensitivity

The sensitivity of a gamma-ray telescope is determined by its ability to detect gamma-ray

signal in overwhelming presence of cosmic ray background. The sensitivity of a telescope

depends on amount of area over which the detector is sensitive to the events and it will

be called effective area of the telescope. For an IACT based telescope the effective area

is orders of magnitude bigger than the size of the light collector. The effective area of
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TeV γ and 300 GeV & 5 TeV of proton showers. The thick vertical line at X = 614g/cm2

is the atmospheric thickness at Hanle (4.2km a.s.l).

MACE telescope for the γ-rays originating from an on-axis point source is estimated

by integrating the total retention factor for γ-rays over all the core distances from the

telescope as shown in the equation 4.3. Normally, the effective area is also a function of

zenith angle but since we are reporting the results at a particular zenith angle, the zenith

angle dependence is not shown explicitly. The effective area is defined as

Aγ
eff (E) = 2π

∞∫

0

dR R× ηγ
total(E, R) (4.1)

Here, ηγ
total is the total retention factor for γ-rays and it includes the trigger retention

factor as well as the retention factor due to γ-selection cut. If dNsimulated is the number

of events used in the simulation and dNselected(E, r) is the number of events triggering

the telescope as well as selected on the basis of γ-selection cut as described above then
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4.3. Integral Sensitivity

the total retention factor is defined as,

ηγ
total(E, r) = ηγ

trigger(E, r) · ηγ
cut(E, r) =

dNselected(E, r)

dNsimulated(E, r)
(4.2)

Similarly the effective area for each of the cosmic ray particles (protons, electrons and α

particles) is estimated by integrating its respective total retention factor at different core

distances over all the core distances as well as over all the angles within the view-cone

solid angle around the optic axis of the telescope, as shown in the following equation;

AXeff (E) = 2π

∞∫

0

dR R

Ωvc∫

0

dΩ ηXtotal(E, R, Ω) ; (X = proton, electron, α) (4.3)

The total retention factor for cosmic ray particles is determined in same manner as in

the case of γ-rays and is shown below,

ηXtotal(E, r, Ω) =
dNselected(E, r, Ω)

dNsimulated(E, r, Ω)
; (X = proton, electron, α) (4.4)

The trigger effective areas for γ-rays and all the three cosmic ray species are shown in the

left panel of Figure 4.11. The after-analysis effective area, Aγ
eff (E), for γ-rays is shown in

the right panel of Figure 4.11 along with the trigger effective area for direct comparison.

The “analysis effective area” is estimated by applying the hadronness cut value of 0.9

with size greater than 50 photoelectrons. The value of hadronness is chosen by optimizing

the sensitivity. It is clear from the right panel of Figure 4.11 that the analysis effective

area for γ rays for the MACE telescope is much lower than the trigger effective area.
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Figure 4.11: Left panel shows the Trigger effective area for the MACE telescope for various
cosmic ray particles like electrons, alpha particles, protons as well as cosmic γ-rays. The
right panel shows the trigger and analysis effective area for cosmic γ-rays.

This effect is especially visible for higher energies. The effective area above 1 TeV shows

large fluctuations on account of poor shower statistics. The effective area after analysis

for proton events is shown in Figure 4.15 (shown in Appendix 4.5.1).

The integral sensitivity of an IACT based telescope is determined by cal-

culating the minimum detectable integral flux of gamma-rays from Crab-like source and

having energies more than pre-determined threshold energy at 5σ confidence level in

50 hours of observation. The threshold energy used in this estimation is the energy at

which the differential trigger rate of gamma-ray events having sizes more than certain

pre-determined size is maximum. For integral sensitivity estimation, we have used 50

photoelectrons as minimum size and subsequently the size is increased by 1.5 times the

earlier value. For each size value we demanded that the source flux for energies more than

the threshold energy should be such that the significance as defined by equation 4.5 had
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4.3. Integral Sensitivity

to be 5σ in 50 hours of observation time and also at least 10 γ-rays should be selected.

Nσ =
Nγ√

Nγ + 2NCR

where, NCR = Np + Ne + Nα (4.5)

Here, Nγ is the number of γ-rays selected after the analysis as described in the earlier

section and it is defined by the following equation,

Nγ = Tobs

Emax∫

Eth

dE
dNγ(E)

dE
Aγ

eff (E) (4.6)

We have used Crab nebula spectrum as measured by HEGRA [136] for this calculation.

And the effective area is calculated using equation 4.3. Similarly the number of cosmic

ray particles selected after the analysis are estimated using the following equation,

NX = Tobs

Ωvc∫
dΩ

Emax∫

Eth

dE
dNX(E, Ω)

dE
Aγ

eff (E) (X = proton, electron, α) (4.7)

The cosmic rays spectra used in this calculation are as reported in [140, 141]. Here, the

cosmic ray flux is assumed to be isotropic within the view-cone solid angle.

Armed with all the required parameters, we have estimated the sensitivity of

the MACE telescope. The minimum analysis energy threshold 1 for the MACE telescope

is estimated to be ∼ 38 GeV for image intensities above 50 photoelectrons. The integral

sensitivity for point like sources with Crab Nebula-like spectrum above 38 GeV is ∼ 2.7%

of Crab Nebula flux at 5 σ statistical significance level in 50 hrs of observation. The

1The energy at which differential trigger rate for a particular progenitor particle above a
certain size range peaks, is called the Threshold energy of the telescope for that particle
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4. MACE SENSITIVITY ESTIMATE

integral sensitivity of the MACE telescope is shown in Figure 4.12. Along with the

MACE sensitivity, we have also shown the sensitivity of the MAGIC-I telescope [142].

It is clear from Figure 4.12 that compared to the MAGIC-I telescope, MACE telescope

will have a lower energy threshold (as expected on account of higher altitude). Also, it is

clear that MACE telescope will be more sensitive than the MAGIC-I telescope upto 150

GeV.
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Figure 4.12: Integral sensitivity of the MACE telescope at 5◦ zenith angle. The sensitivity
of the MAGIC-I telescope is also shown.

4.4 Results and Discussion

We have estimated the sensitivity of the MACE telescope where the γ-hadron segregation

was carried out by employing the Random Forest method. The sensitivity was estimated

by generating a substantially large Monte Carlo simulation database at 5◦ zenith angle.

We generated ∼ 1×109 EAS for various relevant cosmic ray species (γ, Proton, Electron,

alpha particles). The MACE telescope is very sensitive in the low energy range, especially
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below 150 GeV. The analysis energy threshold of MACE telescope turns out to be ∼ 38

GeV for size cut > 50 photoelectrons. The MACE telescope will be able to detect a

minimum of ∼ 2.7% Crab flux in 50 hrs of observation. Since the MACE telescope in

the present study will operate in mono mode, it is worthwhile to compare the sensitivity

of the MACE telescope with respect to the MAGIC-I telescope. Figure 4.12 shows that

MACE telescope is able to achieve a better threshold energy of ∼ 38 GeV whereas the

threshold energy of the MAGIC-I telescope is ∼ 80 GeV. Apart from the lower energy

threshold, MACE telescope appears to be more sensitive than the MAGIC-I telescope

up to an energy of ∼ 150 GeV. The high altitude of MACE telescope compared to

the MAGIC-I telescope leads to a lower energy threshold compared to the MAGIC-I

telescope. It was demonstrated [128] that stereoscopic array of 20 m diameter IACTs

based telescope installed at an altitude of ∼ 5 km can achieve a γ ray threshold energy

of ∼ 5 GeV. Therefore, the MACE telescope on account of higher altitude is expected

to achieve a low energy threshold. It is also shown [135] that for a ∼ 1300 m altitude,

the Cherenkov photon density is ∼ 0.5 photons/m2, while for Hanle altitude it is ∼

0.9 photons/m2 up to a core distance of ∼ 100 m for γ rays of energy 10 GeV. The

increase in Cherenkov photon density with increasing altitude is more pronounced for γ

ray showers than hadron showers. Therefore the trigger probability for γ ray showers is

more than trigger probability for hadron showers leading to better performance of the

MACE telescope in the sub 100 GeV energy range.
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Figure 4.13: The top panel shows the Trigger and analysis effective area for the MACE
telescope for cosmic γ-rays. The bottom panel shows it for the MAGIC-I telescope [143].

4.4.1 MACE telescope sensitivity in the high energy range

Since the sensitivity of the MACE telescope deteriorates compared to the MAGIC-I

telescope in high energy range, its reason was investigated by comparing the effective

area of MACE and MAGIC-I telescope for cosmic γ-rays. In the high energy range (>
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350 GeV), the analysis effective area for the MAGIC-I telescope [143] goes to ∼ 7×104m2

[Trigger effective area ∼ 1 × 105m2] whereas for the MACE telescope, analysis effective

area goes to ∼ 4.5 × 104m2 [Trigger effective area ∼ 1 × 105m2] (Figure 4.13). Clearly,

the analysis effective area of the MACE telescope is ∼ 36% lesser than that of MAGIC-

I telescope. Therefore, the sensitivity of the MACE telescope deteriorates in the high

energy range compared to the MAGIC-I telescope.

Probably MACE camera design (as shown in Figure 4.3) plays a role in

the poorer sensitivity of MACE telescope in the high energy range. It is shown in the

literature [128] that:

� “An inner region with diameter ∼ 3◦ provides high detection efficiency for -rays,

and can be treated as optimal zone for the hardware trigger”.

In the case of MACE camera, the trigger field of view is 2.6◦ × 3◦ which is less than what

is described above. In the above paper, it is also stated that

� “On the other hand, the IACT technique requires that the camera should be larger

than the trigger zone by about one degree, in order to avoid a distortion of the

Cherenkov images because of a limited FoV”.

The MACE camera field of view is 3.5◦ x 4.0◦, which is again lesser than what is mentioned

above (i.e. 1◦ more than the prescribed hardware trigger). In addition to it, as per the

camera design, all the four corners of the camera does not contain any pixel. Due to the

violation of above stated facts as well as no-pixels at the corners, the high energy events

get leaked. We also estimated the leakage of high energy events. It is also found that
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leakage has played a major role for high energy events ( 400 GeV). For example, without

the leakage cut, total number of simulated gamma ray events for Energy > 400 GeV were

1,569,866. After the application of leakage cut of 10%, more than 59% triggered gamma

ray events (642,182) leaked from the MACE camera. So the leakage of high energy events

due to camera design probably leads to poorer sensitivity of the MACE telescope with

respect to MAGIC-I telescope.

4.4.2 Fermi 2FHL sources observable from MACE

To obtain an immediate source list which can be observed for the estimated sensitivity of

MACE telescope, we considered the sources listed in second high energy Fermi catalogue

[144]. These sources were detected by Fermi in the 50 GeV – 2 TeV energy range over

seven years of its operation. To select sources we used the following criteria:

� the source should be visible from the site of MACE telescope.

� the source should have at least 3σ detection in Fermi energy range 171 GeV – 585

GeV (second energy band listed in the catalog).

� the source should have non-zero TS value, signifying mere detection by Fermi, in

the Fermi energy range 585 GeV – 2 TeV (third energy band listed in the catalog).

Above criteria have been set because MACE telescope is sensitive around 100 GeV and

sources in Fermi catalog having 3σ detection in 171 GeV–585 GeV energy range generally

have more than 5σ detection in 50 GeV–171 GeV energy range. Therefore those sources

are the best choice to study the performance of the telescope. The Fermi observed spectra

of the selected sources along with the MACE sensitivity curve are shown in Figure 4.14.

It shows that MACE is expected to detect many more new sources in future. Table 4.2,

136



4.4. Results and Discussion

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 100  1000

E
F

(E
) 

(e
rg

s/
cm

2 /s
)

Energy(GeV)

MACE Sensitivity(50h)

Figure 4.14: MACE integral sensitivity curve along with the sources from second
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cance and are visible at MACE telescope site.
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given in the Appendix 4.5.3 lists the sources selected from the second Fermi high energy

catalogue visible to the MACE telescope.

4.5 Appendix

4.5.1 Effective Area after analysis for protons
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Figure 4.15: Top panel shows the Trigger effective area for the MACE telescope for various
cosmic ray particles like electrons, alpha particles, protons as well as cosmic γ-rays. The
bottom panel shows the trigger and analysis effective area for cosmic protons.

The effective area for protons after analysis is shown in Figure 4.15.
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4.5.2 Length/width vs energy distribution

The Figure 4.16 shows the length and width parameter distribution with energy for γ

and protons. It is evident from this figure that the length parameter has a strong energy

dependence than the width parameter.
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Figure 4.16: The length and width distribution of γ and proton with Energy. The top
panel shows the length vs energy distribution of γ and protons whereas the lower panel
shows it for width vs Energy.
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4.5.3 2FHL Sources visible to MACE telescope

The Table 4.2 list the sources selected from second Fermi high energy catalogue. These

sources are visible to MACE telescope.

Source Name Energy flux Spectral Associated Source
(ergs/cm2/s) index source Class

2FHLJ1713.5-3945e 4.840E-011 2.03 RXJ1713.7-3946 snr
2FHLJ1745.1-3035 2.689E-011 1.25 – unk
2FHLJ1745.7-2900 2.449E-011 2.33 GalCentreRidge spp
2FHLJ1801.3-2326e 2.529E-011 2.55 W28 snr
2FHLJ1805.6-2136e 8.299E-011 1.98 W30 spp
2FHLJ1917.7-1921 1.719E-011 2.44 1H1914-194 bll
2FHLJ1824.5-1350e 2.400E-010 1.89 HESSJ1825-137 pwn
2FHLJ0349.3-1158 1.4700E-011 0.95 1ES0347-121 bll
2FHLJ1834.5-0846e 3.810E-011 2.27 W41 spp
2FHLJ1834.6-0701 1.779E-011 2.25 – unk
2FHLJ1836.5-0655e 5.560E-011 2.03 HESSJ1837-069 pwn
2FHLJ1840.9-0532e 1.219E-010 2.00 HESSJ1841-055 pwn
2FHLJ0811.9+0238 7.039E-012 1.61 PMNJ0811+0237 bll
2FHLJ1923.2+1408e 1.120E-011 3.76 W51C snr
2FHLJ0648.6+1516 1.699E-011 2.00 RXJ0648.7+1516 bll
2FHLJ0319.7+1849 1.210E-011 1.45 RBS0413 bll-g
2FHLJ0534.5+2201 3.520E-010 2.13 Crab pwn
2FHLJ0617.2+2234e 4.970E-011 2.66 IC443 snr
2FHLJ0809.5+3458 1.089E-011 1.09 B20806+35 bll-g
2FHLJ2016.2+3713 9.530E-012 1.74 SNRG74.9+1.2 spp
2FHLJ1104.4+3812 3.290E-010 2.14 Mkn421 bll
2FHLJ2249.9+3826 1.410E-011 1.68 B32247+381 bll
2FHLJ1653.9+3945 1.280E-010 2.13 Mkn501 bll
2FHLJ2021.0+4031e 6.719E-011 1.99 GammaCygni snr
2FHLJ0316.6+4120 1.330E-011 1.34 IC310 rdg
2FHLJ1015.0+4926 3.300E-011 2.50 1H1013+498 bll
2FHLJ2056.7+4939 1.100E-011 2.33 RGBJ2056+496 bcuII
2FHLJ2347.1+5142 2.620E-011 1.85 1ES2344+514 bll
2FHLJ0048.0+5449 7.640E-012 1.30 1RXSJ004754.5+544758 bcuII
2FHLJ0431.2+5553e 4.939E-011 1.66 SNRG150.3+4.5 snr
2FHLJ2323.4+5848 1.640E-011 2.45 CasA snr
2FHLJ2000.1+6508 5.259E-011 1.89 1ES1959+650 bll
2FHLJ0507.9+6737 4.319E-011 2.15 1ES0502+675 bll
2FHLJ0153.5+7113 5.059E-012 1.61 TXS0149+710 bcuI

Table 4.2: Sources selected from second Fermi high energy catalogue, which are
visible at MACE telescope site and satisfy the criteria defined in the text
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4.5.4 MACE present status

The mechanical structure of MACE telescope was first installed at the manufacturing

place, Hyderabad, South India in the year 2014. Thereafter the installation was started

at Hanle. It was halted by the end of November 2015 due to extremely harsh weather

conditions. It is to be noted that the minimum recorded temperature in Hanle is -24◦.

Figure 4.17. shows the mechanical structure of the MACE telescope at Hanle in November

2015 and 16 Octobre 2016).

Figure 4.17: The left panel shows the installation of MACE 21m diameter dish at Hanle
in November 2015. The right panel shows it on October 16, 2016
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In this thesis, we have estimated the integral sensitivity of MACE telescope by carrying

out the γ-hadron segregation using the Random Forest method. Since the MACE tele-

scope will start operation after sometime, it was planned to apply and validate the Ran-

dom Forest method on already operational telescope TACTIC installed in Mount Abu,

Rajasthan, India. Therefore, the first part of this thesis was devoted to demonstrate the

superiority of Random Forest method vis-a-vis various machine learning methods and

thereafter, its validation by using the TACTIC observational data. The Random Forest

method was validated by re-analysing the Markarian 421 (Mrk 421) data collected by the

TACTIC -ray telescope during December 07, 2005 - April 30, 2006. The Application of

this method led to an improvement in the signal detection strength by 26% along with a

18% increase in detected rays compared to the conventional Dynamic Supercuts method.

After the validation of Random Forest method, the sensitivity of MACE telescope was

estimated by using a substantially large simulation database. It was observed that the

conventional method for γ-hadron segregation breaks down at ∼ 140 GeV. We obtained

following results for the MACE telescope by using a Monte Carlo Simulation database

generated at 5◦ zenith angle:

� Due to its high altitude (∼ 4200m), MACE telescope is able to achieve an analysis

energy threshold of 38 GeV for image intensities above 50 photoelectrons.

� The integral sensitivity for point like sources with Crab Nebula-like spectrum above

38 GeV is ∼ 2.7% of Crab Nebula flux at 5 σ statistical significance level in 50 hrs

of observation.

� The sensitivity of the MACE telescope below 150 GeV (γ-ray energy) is better than
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the MAGIC-I telescope.

� The MACE telescope will be able to detect many astrophysical sources available

from second Fermi high energy catalogue visible from the Hanle altitude (Figure

4.14).

5.1 Future outlook

5.1.1 Planned activities

In order to estimate the sensitivity of the MACE telescope in all the zenith angle ranges,

we are generating a similar Monte Carlo simulation database. We will be taking up

following activities:

� A large Monte Carlo simulation database consisting of more than 1 billion showers

has already been generated at 30◦ and 40◦ zenith angle each. The sensitivity of

MACE telescope will be estimated in low (< 30◦) as well as high zenith angle

(> 30◦) ranges.

� The energy reconstruction will be carried out by using the Random Forest method.

� It has been shown by the MAGIC group that for a single dish telescope, by using

the timing information, background gets reduced by a factor two, which in turn

results in an enhancement of about a factor 1.4 of the flux sensitivity to point-like

sources [145]. We have also initiated a study to include the timing information of

the Cherenkov pulses in estimating the revised sensitivity of the MACE telescope.
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5.1.2 Outlook

The operational IACT based telescopes like MAGIC, HESS, VERITAS have revolution-

ized the field of ground based high energy γ-ray astronomy. The last International con-

ference on Cosmic Rays (ICRC2015) [146], announced many spectacular discoveries like

first gravitationally lensed blazar detected at the VHE energies, the first evidence of the

detection of a PeVatron at the Galactic Center, the detection of the most distant blazar

at TeV energies with a redshift of z=0.939, first morphological study of a SNR inter-

acting with a molecular cloud, the first detection of a superbubble (in the LMC), first

detection of pulsed emission from the Crab pulsar above 1 TeV etc. One of the most

exciting developments right now in the field of ground based γ-ray astronomy is taking

shape is the form of CTA (Cherenkov Telescope Array) [147]. CTA is an array of about

∼ 50− 100 Cherenkov telescopes at the northern hemispheres with an emphasis to study

extragalactic objects and another array at Southern hemisphere to concentrate galactic

sources. The array will consist of telescopes of various diameters to cater to the wide

energy range of few tens of GeV to > 100 TeV. A compact array of 4 × 23 m diameter

telescopes will cater to the lower end of the energy range. Apart from the very large field

of view of CTA, which will help CTA to operate in survey mode, the analysis energy

threshold will be ∼ 20 GeV. HESS-II has an analysis energy threshold of ∼ 50 GeV.

In such a golden era of ground based gamma ray astronomy, the timing of setting up the

large diameter (21 m) IACT based telescope by BARC in Northern hemisphere can not

be better. We hope to reap the rich dividend in the field of ground based gamma ray

astronomy with MACE telescope.
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