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NOMENCLATURE 

 

 

Alpha (α) Weighing Factor Describes the weight of previously evaluated 

population in updating the distribution function 

B Burn-up Burn-up of individual channel 

CP Channel Power Channel power of individual channel 

DF Distribution Function A function used to generate a population of loading 

patterns 

D Discharge burn-up Design / Target discharge burn-up of individual type 

of fuel 

RF Refueling factor Describe the priority of a channel for refueling 

Resh F Reshuffling factor Describe the priority of a channel for reshuffling 

 Refueling Schemes  

 On- Power Refueling Refueling operation is carried out during reactor 

operation 

 Off Power / Batch 

Refueling 

Refueling operation is carried out after shuting down 

the reactor 

 Direct Refueling The burnt fuel is replaced by fresh fuel 

 Refueling with  

reshuffling 

The fresh bundle is placed at a site of partially burnt 

fuel and the partially burnt fuel is placed to a more 

burnt fuel location and the fully burnt fuel is 

discharged 
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SYNOPSIS 

 

Nuclear energy is a superior alternative to conventional (petroleum and coal) energy 

resources as it is clean, economic and capable of large scale power production. With the 

reactor operational knowledge of more than sixty years [1] and better understanding of 

nuclear technology, the design and safety of nuclear reactors have considerably improved. 

Over this period of time, several different nuclear reactor concepts have emerged because of 

technology progress. There are persistent research efforts for safe and economic operation, 

lower waste generation and better fuel utilization in nuclear reactors. The main aim for the 

fuel management in a nuclear reactor is to realize higher fuel utilization without 

compromising the safe operation. Optimum utilization of fuel in all stages of reactor 

operation is a complex problem for all reactors. The focus of this thesis is to review the 

optimization problems related to fuel management in heavy water moderated reactors with 

unique fuel cycle features like Advanced Heavy Water Reactor (AHWR) [2,3]. Different 

optimization techniques in general were studied and specific techniques were developed for 

AHWR which have ascertained enhanced utilization of fuel at any stage of reactor operation.  

For commercial power production, different types of thermal reactors are operational in 

different regions of the world. In USA, Europe, China and Japan, majority of the thermal 

reactors presently being operated for commercial power production are light water reactors 

(LWRs). Pressurized Heavy Water Reactors (PHWRs) [4] plays a greater role for nuclear 

power production in case of Canada and India. The neutron economy in PHWRs is better 

than LWRs as it uses heavy water moderator, small length Natural Uranium NU bundles, on-

power refueling and a very small amount of excess reactivity is managed. Whereas, in case of 

LWRs, slightly enriched Uranium (SEU) is used along with light water moderator and 

refueling is always off-power (batch refueling). The use of SEU results in large initial excess 

reactivity which is compensated by dissolving a neutron poison (Boron) in the moderator.  
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In India, about 18 pressurized heavy water reactors (PHWRs) are in operation. The very well 

defined three stage program of India is outlined below: 

Stage-I:  Development and expansion of NU based PHWRs 

Stage-II: Development of Fast breeder Reactors (FBRs) using re-processed Pu from 

discharged NU of stage I reactors 

Stage-III: Development of advanced Th-U-233 based sustainable reactors  

As a step towards developing technologies for Th-U233 based next generation reactors, 

Advanced Heavy water reactor (AHWR) is being designed. Purpose of AHWR is to design a 

unique reactor with all the advanced safety features, where Thorium based reactor 

technologies will be used and developed by utilizing past experience and expertise of 

PHWRs & LWRs. The AHWR has a very unique fuel cycle where full length cluster having 

high target discharge burn-up fuel (40-60 GWd/Te) is being used with on-power refueling. 

Due to this unique fuel cycle feature of AHWR, the fuel management in equilibrium core will 

be quite different from any conventional reactor presently in operation or construction. The 

distinctive fuel cycle of AHWR necessitates the development of special refueling scheme for 

efficient fuel utilization in equilibrium core and transition phase. A good portion of this thesis 

has been devoted to development of special refueling scheme, which can demonstrate a safe 

and economic operation of AHWR during transition phase and equilibrium phase.  

The initial core of AHWR is also quite different from LWRs and PHWRs. The AHWR initial 

core will require minimum two types of clusters for initial core loading for flat flux 

distribution. The applicability of different modern optimization algorithms has been analyzed 

for AHWR initial core loading pattern optimization (LPO) problem. In second portion of this 

thesis, population based algorithms (Genetic algorithm (GA) and Estimation of distribution 

algorithm (EDA)) have been developed to address AHWR initial core loading pattern 

optimization problem.  
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A brief description of these two problems (in-core fuel management for AHWR and initial 

core LPO of AHWR) and development of optimization techniques to address these problems 

is given below. 

Loading pattern optimization (LPO) during each refueling stage is the main challenge in 

LWRs like pressurized water reactors (PWRs) and boiling water reactors (BWRs). Whereas, 

in case of heavy water reactors like pressurized heavy water reactors (PHWRs), the 

development of refueling scheme is relatively simple mainly due to on-line refueling, use of 

small length bundle and natural uranium as fuel. The use of small length bundle and 

flexibility of multi-bundle shift scheme helps in controlling the ripples in power due to 

refueling. Even though the PHWRs possess best neutron economy, the use of natural uranium 

fuel in PHWRs limits the achievable burn-up to ~7000 MWd/Te and as a result large amount 

of discharged fuel has to be managed. The Advanced Heavy Water Reactor (AHWR) uses 

both the features of PWRs (high discharge burn-up fuel) and PHWRs (on-power refueling) 

and has several inherent passive safety features. The AHWR uses (Th, U, Pu) MOX or (Th, 

LEU) MOX fuel with boiling light water as coolant and heavy water as moderator. The 

AHWR is designed to have good neutron economy and owing to higher discharge burn-up, 

lower waste is expected. However, during on-power refueling with full length channel and 

high enrichment fuel, the challenge is to control the refueling ripples and maintaining the 

power distribution and operational parameters under their design limits. The special refueling 

strategy has an objective to control the flux distribution and hence power peaking due to on-

power refueling. In the special refueling scheme, it is proposed that each refueling operation 

should be followed by reshuffling operations so that refueling ripples are contained within 

their design limit. The special refueling scheme requires selection of two channels (one for 

refueling and one for reshuffling) at each refueling. For selecting two appropriate channels 

from a typical core consisting of ~444 fuel channels, we have to study 
444

P2 number of 
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possible combinations. Simulation of all these combinations and finding out the best one 

seems very cumbersome and time consuming. The best combination found out this way will 

be used for one refueling only. For every refueling one has to simulate same number of 

combinations. Selection of channels for refueling and reshuffling is a complex problem. 

AHWR has a very long transition period (~10-15 years), where different types of fuel are to 

be managed. In our work, we have introduced a concept of refueling factor and reshuffling 

factor. These factors will give the priority for a particular cluster for refueling and reshuffling 

and are assigned to each fuel cluster of the core. Based on these factors, a set of refueling 

inputs is generated and simulated. If the refueling input gives satisfactory result, we will burn 

the core for few days till the excess reactivity is exhausted and refueling factors and 

reshuffling factors are modified to proceed for the next refueling. If the refueling input does 

not give satisfactory results, then next set of channels with lower priority is considered. Two 

different computer codes have been developed, where the selection of fuel channels for 

refueling/reshuffling has been automated. These programs are developed such that the fuel 

cluster which has achieved its target discharge burn-up is selected for discharge on priority 

keeping the power peaking in control. Several 3D diffusion calculations are required for 

simulating all these refueling schemes. Parallel processing on shared memory interface has 

been used to reduce the time for fuel cycle study for AHWR. The new optimization technique 

developed as part of this thesis could successfully demonstrate the in-core fuel management 

in AHWR and an improved fuel utilization. 

In order to maximize the power output, it is required to achieve a flat flux distribution in the 

reactor core. The flux flattening in equilibrium stage of any reactor is achieved by differential 

burn-up zones. In initial core of a reactor, flux flattening is achieved with different types of 

fuels which have differential reactivity (different fissile content). In AHWR, the equilibrium 

cycle cluster has been designed to have a high discharge burnup (~40-60 GWd/Te) and hence 
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has a higher excess reactivity. The direct use of equilibrium core cluster in initial core will 

lead to requirement of large quantity of poison in moderator to suppress this excess reactivity, 

which will adversely affect different reactivity feedbacks and worth of reactivity devices and 

shut down system (SDS). In LWRs, the initial core fuel clusters have lower enrichment than 

equilibrium core fuel clusters. In PHWRs, for flux flattening in initial core, Th or depleted 

Uranium (DU) or deeply depleted U (DDU) has been used along with NU bundles [5-6]. For 

AHWR, two initial core clusters with lower enrichment (2% fissile) is being considered for 

initial core clusters. The loading of initial core clusters in the core locations is a complex 

combinatorial optimization problem. The problem is to find out the location and number of 

channels of different types of fuels to be loaded for best fuel utilization in initial core and 

maintaining safe and continuous operation. In second part of this thesis, initial core LPO 

problem of AHWR has been solved. This type of problem can be solved by defining one 

objective function and then maximize or minimize it.  Two types of optimization methods are 

available in literature to find the optimum solution to this problem named as conventional 

methods and modern methods. The conventional methods include gradient based techniques 

like Gauss Newton Method [5], Steepest decent method [7] etc. These techniques require a 

good understanding of problem and how the parameters are related to objective function. The 

application of these methods is very difficult and a very small area of search space is 

explored.  Modern methods based on evolutionary algorithms are frequently being used for 

fuel loading pattern optimization problems. Genetic algorithm (GA) [8-10] simulated 

annealing (SA) [11] and Ant Colony Algorithm (ACO) [12] are few examples of population 

based evolutionary algorithms which have been successfully applied for core reloading 

optimization problems of Pressurized water reactors (PWRs). In these modern optimization 

algorithms, a two step procedure is followed. In first step, a pool of randomly generated 

solutions is evaluated and in second step, new set of solutions is generated by considering 
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feedback from the current evaluations. In case of EDA, the weighing factor ‘α’ considered for 

updating the probability distribution function, initial distribution function and population of 

one pool of candidate solution are the feedback parameters. A very small value of ‘α’ (<0.1) 

has been considered good for better search space exploration. In our study, we have observed 

that the proper value of various parameters in different feedback parameters is very 

important. Considerable improvement in optimized solution is observed when, a better choice 

of these internal parameters is considered. In this thesis, we have observed that a small value 

of ‘α’ is not adequate for AHWR initial core LPO problem. A comprehensive study has been 

done which has given a new direction for more improvement in population based algorithms 

for LPO problems.  

As a part of this thesis, a computer code based on estimation of distribution (EDA) [13] has 

been developed to optimize the initial core of AHWR. The distributed memory parallel 

computer system AGGRA at BARC was used for parallelization. Suitable values for various 

internal parameters (‘α’ and population size) to be considered for AHWR initial core loading 

pattern optimization problem have been estimated. For the sake of comparison and 

completeness, the initial core optimization of AHWR by using Genetic algorithm (GA) has 

also been addressed. The thesis comprises of seven chapters. 

Chapter 1 presents brief introduction to the nuclear reactors. It is followed by a summary of 

scope and review of previous work of the studies carried out in the present thesis. The design 

features and fuel cycle of AHWR is described. An outline of the thesis is given at the end of 

this chapter. 

In Chapter 2, a basic description of reactor core calculations in steady state has been 

presented. A brief description of the computational tools used for simulation of steady state 

of nuclear reactor is also given. The transport theory code ITRAN [14] has been used to 

perform lattice level calculations. The calculations were performed by using 69-group library 
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based on ENDF/B-VI.8 nuclear data obtained from IAEA. The whole core simulation were 

done in to two energy groups using a 3D diffusion theory based code FEMINA [15] based on 

nodal expansion method..  

In Chapter 3, a special refueling scheme for AHWR core is described, which is an optimal 

combination of refueling strategies used in LWRs and PHWRs. Each refueling operation is 

combination of refueling and one reshuffling operation to control the local power peaking. 

Generally the experience and knowledge base in a form of ‘‘IF-THEN’’ rule-sets [16] are 

used along with other specific search control strategies. However, the direct implementation 

of heuristic information in the form of factors has been tried. These factors are further 

translated for describing the preference of a channel for refueling or reshuffling.  A computer 

code CARS has been developed based on the above principles. The computer code CARS  

provides all the micro details like fresh fuel requirement, storage space for discharged fuel, 

behavior of maximum channel power (MCP), maximum mesh (bundle) power (MMP), 

channels selected for refueling/reshuffling, discharge burn-up achieved and boron 

requirement, etc. for the entire life of reactor. 

Chapter 4 describes the problems observed during core follow-up studies for AHWR done 

with CARS:   

(a) Power peaking problem during the pre-equilibrium phase (transition phase).  

(b) Due to the quarter core mirror symmetry, certain channels near to axis symmetry were 

getting over due for refueling (described later). As a result some other channels were getting 

discharged pre-maturely and leading to overall loss in discharge burnup.  

(c) Very long computation time (7-10 days) 

The following improvements in CARS were done to address these problems.  

(a) Adoption of double reshufflings along with refueling 

(b) Use of π/2 rotational symmetry instead of mirror symmetry 
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(c) Use of parallel processing to accelerate the speed 

A refueling strategy based on a suitable combination of three refueling schemes viz. refueling 

without reshuffling, refueling with single reshuffling and refueling with double reshuffling 

scheme is adopted. The refueling strategy was evolved after including the zonal power of 

each zone as an important parameter of the strategy. As a result the flux distribution at each 

refueling was maintained near to the equilibrium core flux distribution. The use of CARS has 

reduced the manual efforts for the selection of channels for refueling to a great extent. The 

CARS has made the study of various types of equilibrium core clusters for AHWR in a very 

short time. It has also helped in the design and optimization of burnable poison content in the 

equilibrium core cluster. 

In Chapter 5, the basic loading pattern optimization (LPO) problem is defined. Different 

optimization techniques (Modern methods and Conventional methods) are discussed for 

solving LPO problem. The size and search space for AHWR initial core LPO is described. 

The AHWR core consists of 444 fuel lattice locations. By exploiting symmetry of the core, 

the problem size for AHWR initial core optimization reduces to 2
62

 (10
18

), which is also a 

very large size problem. Simulation of all these loading patterns to choose the best loading 

pattern is not practical in a finite time scale. This type of combinatorial optimization problem 

can be solved by defining an objective function and then maximizing it. The objective 

function of the problem is based on K-effective, SDS-1 worth, boron in moderator and radial 

peaking. The objective function is defined by using penalty method. In appendix referred in 

this section, the most adequate value of various parameters in objective function has been 

estimated. We have applied Estimation of distribution algorithm (EDA) (modern method) to 

optimize initial core loading pattern (LP) of AHWR. In EDA, new solutions are generated by 

sampling the probability distribution model estimated from the selected best candidate 

solutions. The weighing factor ‘α’ decides the fraction of current best solution for updating 
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the probability distribution function after each generation. A comprehensive study on 

parameters like population size, weighing factor ‘α’ and initial probability distribution 

function has been done. It is observed that choosing a very small value of ‘α’ may limit the 

search of optimized solutions in the near vicinity of initial probability distribution function 

and better loading patterns which are away from initial distribution function may not be 

considered with due weightage. It is also observed that increasing the population size 

improves the optimized loading pattern, however, the algorithm still fails if the initial 

distribution function is not close to the expected optimized solution. We have tried to find out 

the suitable values for ‘α’ and population size to be considered for AHWR initial core loading 

pattern optimization problem. 

In Chapter 6, the initial core optimization of AHWR has been tackled by applying Genetic 

algorithm (GA). The objective function in GA is defined in the same way as in chapter 5, 

such that during the optimization process, all the variable of objective function (MCP, MMP 

and SDS-1 worth) meet the pre-determined designed limit. The dependence on population 

size and initial distribution function on the optimized loading pattern is studied and most 

adequate values for AHWR initial core LPO have been estimated. It was observed that the 

algorithm has failed with population size of 24. However, when the initial distribution 

function is near to optimized solution, the results are better. By increasing the population size 

to 240 or 1200, optimized loading pattern similar to EDA is achieved. A discussion on the 

computational cost and simulation time is also given. 

Finally, Chapter 7 gives a summary of the research work carried out in this thesis and scope 

for future extension of this work. In this chapter, the various aspects of optimum fuel 

utilization during initial phase, transition phase and equilibrium phase have been emphasized. 

This study allows us to demonstrate fuel cycle of AHWR, where, on-power refueling and 

high target discharge burnup clusters are used. The new technique developed for AHWR for 
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in-core fuel management has opened a scope for further study to develop refueling strategy 

for use of slightly enriched Uranium (SEU) or DUPIC fuel (Direct Use of PWR fuel In 

CANDU reactors) and Thorium based fuels like (Th, Pu) MOX or (Th, U) MOX, in PHWR 

for lower waste generation and achieving higher discharge burnup. In the present thesis work, 

a better understanding of the fundamental principles that govern fuel management during 

initial, transition and equilibrium stage of any reactor has been achieved. The outcome of the 

research work is also useful to provide guidance for improvement in current optimization 

techniques to tackle LPO problems. 
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CHAPTER 1 

Introduction 

 

 

 

1.1 Nuclear Power 

The faster consumption of conventional (petroleum and coal) energy resources and their 

environmental effects, makes nuclear energy a superior alternative as it is cost effective, clean 

source and capable of large scale power generation. As of today, ~10% (WNA, 2016) of total 

electricity generated in the world is being produced from nuclear power reactors. The design and 

safety of nuclear reactors has improved with the better understanding of nuclear technology and 

reactor operational experience of more than sixty years (NEI, 2016). With this knowledge and 

technology advancement, several different nuclear reactor concepts have emerged. The nuclear 

reactors can be broadly classified in two categories as thermal reactors and fast reactors (Stacey 

(2001); Duderstadt and Hamilton (1976)). In thermal reactors, slow neutrons (average neutron 

energy < 1eV) are used to do the fission reaction. The high value of fission cross section at lower 

neutron energy is helpful to maintain a fission chain reaction even with very small fissile 

inventory. As the neutrons produced in a fission reaction are fast (Energy in MeV), a moderator 

(low mass material like light water, heavy water or graphite etc.) is used to slow down the 

neutrons. The fast reactors have average neutron energy in keV range and thus any low mass 

material in the core region of reactor is avoided. The large number of neutrons liberated per 
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fission reaction with fast neutrons is useful to convert the fertile atoms to fissile nuclei 

(breading), however, to maintain the fission chain reaction larger fissile inventory will be 

required because of lower fission cross section in fast energy region of neutrons.  

Due to simpler design and lesser complexities, thermal reactors are more explored and are 

installed in all parts of the world. Most of the thermal reactors presently being operated in the 

world for commercial power production are light water reactors (LWRs). The LWRs require 

slightly enriched Uranium (SEU) as fuel and off-power refueling (batch refueling). There is 

another class of thermal reactors called Pressurized Heavy Water Reactors (PHWRs). The 

PHWRs require Natural Uranium (NU) as fuel and heavy water as moderator along with on-

power refueling. In India, about 18 pressurized heavy water reactors (PHWRs) (Bhardwaj 

(2006)) are in operation. India has a very well defined three stage program, where in first stage; 

NU will be used in PHWRs. In second stage, The Plutonium (Pu) reprocessed from the 

discharged fuel of PHWRs will be used in fast breeder reactors (FBRs) and in third stage, 

advanced (Th, U-233) based sustainable reactors will be developed. As a step towards 

developing technologies for Th-U233 based next generation reactors, Advanced Heavy water 

reactor (AHWR) (Sinha and Kakodar (2006)) is being designed. In AHWR, operational 

experience and expertise of PHWRs is being utilized and advanced safety features are 

incorporated along with development of Thorium based technologies  

1.2 Fuel management in thermal reactors 

The fuel management for any type of reactor is a topic of research and there are incessant efforts 

to improve the fuel utilization for better economic operation and lower waste generation. The 

main objective in multi-stage decision process of fuel loading, safe and continuous operation and 
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refueling of a nuclear power reactor is to minimize the unit cost of electricity produced. 

Optimization problems in LWRs, such as optimum fuel assembly pattern with burnable poison 

rods and optimum core loading pattern with different fuel types or different burn-up zones etc. 

have been focused in many studies and as these problems deal with multiple variables which 

interact with each other, they are quite complex problems. For example, enrichment optimization 

of fuel for Gd-bearing assembly takes into consideration several variables such as loading of Gd, 

radial and axial peaking, cycle length, number of feed assembly, fuel cycle cost, etc. The primary 

aim for the fuel management in a nuclear reactor is to achieve higher fuel utilization without 

compromising the safety during operation. Optimum utilization of fuel in all stages of reactor 

operation is a complex problem for all reactors. The focus of this thesis is to review the 

optimization problems related to in-core fuel management, specifically, initial core loading 

pattern optimization and problems related to refueling in heavy water moderated reactors. The 

basic fuel cycle of any thermal reactor has three stages named as initial core, transition core and 

equilibrium core. The reactor is designed with the aim to live its ~90% life in equilibrium core 

only. In the equilibrium core the global parameters are fixed and only certain variation in local 

parameters is permitted. The fuel in equilibrium core has different burn-up zones for flat flux 

distribution. However, in case of initial core only fresh fuel is available. Therefore, to achieve 

flat flux distribution, differentially reactive (different fissile content or poison Gd etc content) 

clusters are used. 

The three loading pattern optimization (LPO) problems in the reactor fuel cycle are, 1) Initial 

core LPO problem 2) Optimum utilization of fuel during transition phase and management of 

different kinds of fuels 3) LPO for equilibrium core at each refueling. 
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The initial core LPO problem is to find the number of different types of fuel clusters and their 

location in the core such that k-effective is maximized and worth of reactivity devices is in 

design limit. Now if the core has 400 locations and we have 3 different fuels then there are 3
400

 

different ways to load the core. The symmetry of core can reduce the problem size but still it is 

observed that the search space is too large to carry out an exhaustive search, therefore, different 

optimization techniques are developed to find the optimum solution. 

With the initial reactivity suppressed by addition of poison in the moderator, the reactor will 

operate for sometime till refueling is required. During first few refuelings, initial core clusters are 

required to be discharged with priority (lower design discharge burn-up) and the equilibrium 

core clusters are loaded. In this case, a cluster with higher burn-up may be ignored to be 

discharge if it has not reached its design discharge burn-up. In this case we have a restriction of 

considering the fuel type and discharge burn-up.  

Once the core has been loaded with equilibrium core clusters, we have to optimize the core 

loading pattern at each refueling for target discharge burn-up and full power operation. Now let 

us consider, if the core (400 channels) is required to be refueled with 80 fuel clusters (20% of 

core). Therefore, about 
400

P80 number of possible candidate solutions will be available.  

It is observed that both PHWRs and LWRs have fuel management optimization described above 

however the size of search space may be different. The fuel management and LPO problems in 

case of PHWRs and LWRs has been studied many times. The AHWR has unique features like 

high discharge burn-up fuel and on-power refueling and low power density, which requires a 

different refueling scheme than considered in conventional reactors. Therefore, in this thesis the 

fuel management during initial, transition and equilibrium phase of AHWR fuel cycle has been 
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considered and optimization techniques have been developed for efficient utilization of fuel 

during various stages of reactor. 

1.3 Design features of AHWR 

As recalled from section 1.1, AHWR (Sinha and Kakodkar, 2006; Kakodkar, 1998) plays a very 

significant role in the road to development towards third stage of Indian nuclear power program. 

AHWR is a Th based reactor, where better features of PWRs (like use of high discharge burn up 

fuel, lower waste generation) and PHWRs (like on power refueling low excess reactivity, better 

neutron economy) are amalgamated together. The AHWR is a unique reactor which is designed 

for commercial utilization of Thorium and integrated technological demonstration of the 

Thorium cycle. The AHWR is a 920 MWth (fission power 980 MWth), vertical pressure tube 

type thorium-based reactor cooled by boiling light water and moderated by heavy water, where 

inherent safety features like negative coolant void reactivity and heat removal through natural 

circulation are employed. The AHWR design incorporates our experiences in design, operation 

and safety analyses/aspects of PHWRs and BWRs. The aims of the design are to achieve 

relatively higher fraction of power from Th-
233

U, self-sustenance in 
233

U, a high discharge 

burnup with minimum makeup fuel and negative void reactivity coefficient. Plutonium is used as 

makeup fuel to achieve high discharge burnup and self-sustaining characteristics of Th-
233

U fuel 

cycle. Since plutonium is being used as the makeup fissile feed, it is required to minimize the 

inventory of plutonium and also its consumption, which is another important objective. The 

plutonium being considered is from discharged fuel from PHWRs. The fuel cycle of AHWR is 

based on (Th-
233

U-Pu) MOX fuel in closed cycle mode with target discharge burnup of ~ 40 

GWd/Te. The fuel cluster for AHWR is known as D5 cluster (A Chakraborty et al. (2015)) as 
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shown in Fig 1.1. It consists of a circular array of 54 fuel pins with central support rod an

support tube.  

The fuel cluster or assembly has a central solid structural support rod of OD 18 mm and made of 

Zircalloy-2. The central support rod is termed as displacer rod. The displacer rod is surrounded 

by a central structural tube of OD 36

is termed as displacer tube and it is perforated to inject coolant directly on fuel pins during 

LOCA. The displacer tube surrounded by three concentric arrays of fuel pins containing 12, 18

and 24 fuel pins in the inner, intermediate and outer rings respectively. 

cluster, the 12 pins of the innermost ring contain 6%

middle contain 3.9% Pu in (Th, Pu) MOX. The 24 pins of the outer

of Uranium in (Th, U) MOX (the lower half of the active fuel contain

contain 3.3 % U). The U-233 content in the Uranium has been assumed to be about 78%. To 

Figure 1.1    Cross section of the AHWR (Eq. Core) fuel cluster
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make the cluster suitable for on-power refueling the excess reactivity of the cluster has to be 

suppressed by adding 2% Gadolinium (burnable poison) in two fuel pins of the inner ring. The 

cross section of the fuel cluster is shown in Figure 1.1. The basic fuel cycle is based on the fact 

that the AHWR core should be self-sustaining in U-233. The U-233 required is to be bred in situ, 

therefore it is proposed to have an initial core with Depleted Uranium – Plutonium MOX as fuel 

to conserve Plutonium resources and U-233 is being produced in-situ in the intermediate core 

using (Th, Pu) MOX. There will be gradual transition from the initial core to intermediate core 

and from intermediate core to equilibrium core. Therefore the initial core needs to be refueled 

with intermediate core fuel clusters containing (Th, Pu) MOX as fuel. After sufficient inventory 

build-up of U-233, the intermediate core shall be refueled with equilibrium core clusters to attain 

self-sustaining in U-233 in equilibrium state of AHWR. 

The reactor core of AHWR consists of 513 lattice locations in a square lattice pitch of 225 mm. 

Of these, fuel assemblies occupy 452 locations and 61 locations are reserved for the reactivity 

control devices and shut down system-1. Among the 61 locations for the reactivity devices, 37 

locations are used for housing the 37 Shutoff Rods (SORs) of Shut Down System#1 (SDS#1). 

The remaining 24 are used for housing the control rods (CRs) for short-term reactivity 

compensation and power maneuvering during normal operation. The boron carbide (B4C) 

packed in SS tubes placed between SS shells is used as control element of the control rods and 

shut off rods.  

An alternate fuel cycle for AHWR consisting of Low Enriched Uranium (LEU) in Thorium 

matrix is also considered in once through mode. The LEU has been assumed to be composed of 

19.75% U-235 and 80.25% U-238. The AHWR with (Th, LEU) MOX fuel is known as AHWR-

LEU (DAE, 2016; Thakur et al., 2011) and is being designed with average fissile content of 
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~4.2% in fuel such that the target discharge burnup of ~ 60GWd/Te is achieved in once through 

mode. The core layout of AHWR-LEU is shown in Fig 1.2. 

 

Figure 1.2   Layout of the AHWR / AHWR-LEU core 

1.4 Optimization techniques related to fuel management in nuclear reactors 
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Real world optimization problems often require the maximization or minimization of certain 

function or parameter. It is observed that many times the different variables involved in the 

problem have contradicting nature. For example, in case of optimization problem related to chip 

design, the designer has the primary objective to compactly fit millions of circuits in small area 

to reduce the signal processing delay. But a too closely packed circuit will lead to immense heat 

generation and may affect the working of the chip. Therefore, the designer has to optimize the 

chip satisfying the primary aims like compactness, less signal processing delays, lower noise and 

lower heat generation etc. Similar kind of optimization problems are formulated in all fields like 

manufacturing industry, traffic handling, airline staff management, lecture scheduling in 

universities and inventory management etc. In general, any optimization problem is defined as; 

Minimize or Maximize f(x1,…,xn)  (objective function) 

subject to   gi(x1,…,xn) ≥ 0           (functional constraints) 

                     x1,…,xn ∈ S                 (set constraints) 

x1,…,xn are called decision variables. In other words, the target is to find maximum or minimum 

value of objective function f(x1,…, xn) such that x1,…,xn satisfy the constraints. 

One of the most common optimization problems is known as traveling salesman problem (TSP) 

which is a special case of quadratic assignment problem (QAP). In QAP, the problem is to assign 

a set of n facilities to set of n locations. For each pair of locations, a distance is specified and for 

each pair of facilities a weight or flow is specified. The problem is to assign all facilities to 

different locations such that cost is minimized. In other words, the aim is to minimize the sum of 

the distances multiplied by the corresponding flows. In case of TSP, there are n cities. The 

salesman starts his tour from City 1, visits each of the cities exactly once and returns to City 1.  

For each pair of cities i,j there is a cost cij associated with traveling from City i to City j. The goal 
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is to find a minimum-cost tour. The reason for discussing these optimization problems here is 

their obvious similarities to the nuclear reactor fuel management problems. A reactor fuel 

loading pattern optimization for initial core or refueling is also an assignment problem, where, 

the different fuel types are allotted to different locations in the core with the aim of maximizing 

fuel utilization or minimizing cost of generated electricity and uninterrupted reactor operation. 

As an example, consider the initial core optimization problem of PHWR 220 (Mishra et al., 

2009). There are 306 channels in PHWR 220. The left–right symmetry of the core can be 

exploited to reduce the size of optimization problem. Therefore, 153 channels can be considered. 

Each channel consists of 12 fuel bundles. Therefore, there are 153 · 12 = 1836 fixed bundle 

locations. The initial core optimization problem is to arrange the given number of Th bundles in 

these locations in an optimum manner. For example, for 30 Th bundles, the problem size is 

1836
C30 (approximately 10

65
). It is necessary to make 3D diffusion calculations in different states 

of reactor to estimate the merit of any solution candidate. Further, the number of Thorium 

bundles may not be fixed and the size of problem will be significantly more (2
1836

) in that case. 

1.5 Review of optimization techniques used for nuclear reactor fuel 

management 

Loading pattern optimization (LPO) is required for initial core as well as at each refueling in case 

of LWRs. Significant research (Ahn and Levine (1985), Linear Programming (Sauar (1971)), 

dynamic programming (Wall and Fench 1965)), knowledge based methods (Galprin and Kimhy 

(1991), Lin et al. (1998), Genetic algorithm (GA) (Goldberg, 1989; Parks, 1996; Chapot et al., 

1999), simulated annealing (SA) (Stevens et al., 1995) and Ant Colony Algorithm (ACO) 
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(Machado and Schirru, 2002)) has been carried out on subject of optimum utilization of fuel in 

LWRs and different optimization techniques have been explored.  

In-core fuel management in reactors with on-power refueling like PWHRs is much easier as the 

search space at each refueling is quite small and maximum burn-up channel in the preferred zone 

is chosen for refueling. Multiple short bundles in PHWRs provides great flexibility to adopt 

suitable bundle shift scheme to control the local peaking due to refueling in PHWRs and makes 

the choice easier. However, for use of high burn up fuel in PHWRs (Choi, 2008, Gupta et al, 

2008), the complexities will increase many fold and special refueling schemes are required.  

LPO of initial core of PHWR is also a complex combinatorial optimization problem. Research 

(Balakrihnan and Kakodkar (1994), Mishra et al, (2009)) has been carried out to improve fuel 

utilization in initial core of PHWR also.  

The loading pattern optimization techniques for initial core LPO or refueling can be broadly 

divided in to two classes’ namely deterministic class and stochastic class.  

1.5.1 Deterministic Class 

As the name suggests, in case of deterministic class, the relation between control variables and 

target parameters will be described explicitly in form of mathematical equations. The 

understanding of problem and the relation of optimization target with internal parameters is 

required.  

As an example, in Balakrishnan and Kakodkar (1994), to optimize initial of PHWR with Natural 

U and Thorium (Th) bundles, the objective function has been considered as: 
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OF = (WbB)
2
 + (WcC)

2
 + (WtT)

2
 + (W1S1)

2
 + (W2S2)

2
    (1.1) 

Where, B is the maximum bundle power; C is the maximum channel power; T is the maximum 

coolant channel outlet temperature; S1 and S2 are the decreases in worth of SDS-1 and SDS-2 

from their nominal values respectively; and Ws are a set of weights for different decision 

objectives. Five decision variables have been considered which are represented as: 

         X = [x1, x2, x3, x4, x5]         (1.2) 

x1 is number of Th bundles, x2 & x3 is average distance of Th bundles from SDS-1 and SDS 2 

respectively. x4 and x5 is average distance of Th bundles from core center and core periphery, 

respectively.  

A five dimensional vector which is a function of decision variable (x1, x2, x3, x4, x5) is defined.  

Y=�
� ���(��, �	, �
,��, ��)���(��, �	, �
,��, ��)������, �	, �
,��, ����������, �	, �
,��, ����	�	���, �	, �
,��, ����

�
             (1.3) 

the objective function can be written as: 

 OF = [Y 
T
]· [Y]      (1.4) 

The jacobian matrix of the objective function is  
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    � = �
��� ����� ⋯ �� �����⋮ ⋱ ⋮�	 �!"��� ⋯ �� �!"���#

$    (1.5) 

The minimization has been performed using Gauss method to minimize a function which is 

defined as sum of squares of variables,: 

    [ J
T
 J] ·[ &']  = ‒ [J

T
] · [ Y ]      (1.6) 

By solving equation (1.6), &' is evaluated, and all the five decision variables are modified to 

generate the next candidate solution. The process is repeated till the desired results are achieved. 

The implementation of this method is very difficult and a lot of intuition and previous experience 

is required. Firstly, it is not known, what should be the first guess LP for starting the process of 

optimization? It is observed that if the first guess is far away from optimized solution, the 

optimized solution may not be very good and algorithm may trap in local minima. Secondly, a 

very limited area of search space is explored as every iteration is derived by results of previous 

solutions. Thirdly, at each iteration new decision variables are used to map a new core 

configuration. It is very difficult manual process.  

For example, if we start with and initial guess loading pattern with 30 Th bundles, and let us say 

it is observed after solving (1.6), ∆x1 is +4. Then, we have to map a new core configuration 

where number of Th bundles is 34 and their average distance from SDS-1 and SDS-2 is x2 + ∆x2, 

x3 + ∆x3 respectively and average distance from core center and core periphery is x4 + ∆x4, x5 + 

∆x5 respectively. Designing a new core configuration based on these decision variables require 

more intuition and is very time consuming. These types of difficulties have been observed in 
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various types of gradient based methods used for LPO problem (Ahn and Levine (1985), Linear 

Programming (Sauar (1971)). In general, the calculus based methods require very few 3D 

diffusion calculations, depend on the existence of derivatives and are too much problem 

dependent. 

1.5.2 Stochastic Class 

The best way to solve a combinatorial optimization problem is to check all the feasible solutions 

in the search space. However, checking all the feasible solutions is not always possible, 

especially when the search space is large. Due to the difficulties observed in gradient based 

techniques and considerable enhancement in computer technology, more aggressive methods 

were developed in which random numbers have been used and a vast area of search space is 

explored. The use of random variable does not mean that the search is directionless. The 

direction of search is governed by the fittest candidate of previous generation. In these methods, 

relation between decision variables and optimization objective is not used. The objective 

function is defined in similar way as in deterministic class; however, no explicit equations are 

used to update the decision variables. Many Meta-heuristic algorithms have been devised and 

modified to solve these problems. The Meta-heuristic approaches are not guaranteed to find the 

optimal solution since they evaluate only a subset of the feasible solutions, but they try to 

explore different areas in the search space in a smart way to get a near-optimal solution in less 

cost and time. Methods based on simulated annealing (SA) (Park (1987) and genetic algorithm 

(GA) (Goldberg (1989), Poon and Parks (1993) have been introduced and a fair bit of success is 

achieved in finding a better optimized solution. Further heuristic information has been used in 

many cases (Jiang et al. (2006), Hamaida et al. (1999)) to improve the performance of algorithm. 

There are other examples like Artificial neural network (ANNs, Sadighi et. al (2002), Ant 
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Colony optimization (ACO, Machado and Scirru (2002), Tabu Search (Lin et al.(1998))) where 

nuclear LPO problems have been solved using modern techniques. These modern population 

based evolutionary algorithms are very efficient and simple to implement. 

The GAs have been used more frequently for LPO problems and considerable number of 

research papers are available ((Poon and Parks (1993), Parks (1996), Chapot et al. (1999), 

Pereira and Lapa (2003 and Ziver et al. (2004), Jiang et al. (2006)). This is the reason that many 

times researchers consider GA as a benchmark to their applied / developed new method. As we 

have applied GA and Estimation of distribution algorithm (EDA) in chapter 6 and 5 respectively 

and detail description of how to apply this method to nuclear fuel LPO problems has been given 

there. However, the general description of how this population based method work is described 

through an example of function maximization using GA (Goldberg (1989)); 

Let us consider, the objective is to maximize the function F(x) = x
2
 where x ϵ [0, 31] using GA. 

In the first step of optimization, the parameter x is coded in binary form as a finite length string. 

x in binary base can take values from 00000 to 11111 for x ϵ [0, 31] in decimal base. A pool of 

candidate solution by random number generator is generated and the fitness value of function is 

evaluated for this candidate solution pool as given in table 1.1. The basic implementation of GA 

consists of three steps namely; 

 1) Reproduction  

2)  Crossover 

 3) Mutation.  

 As can be observed from Table 1.1, the number of counts to be considered based on fitness 

value of current strings, is 1 for string 1 & 4 , 2 for string 2 and 0 for string 3. It means when 

random number is used to generate the next population for reproduction, string 3 will not appear.  
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Table 1.1 Description of GA (step 1) 

String No  
Initial 

population  

X value  F(x)  F
i
/ƩF  F

i
/avg. F  Actual 

count  

1  0 1 1 0 1  13  169  0.14  0.58  1  

2  1 1 0 0 0  24  576  0.49  1.97  2  

3  0 1 0 0 0  8  64  0.06  0.22  0  

4  1 0 0 1 1  19  361  0.31  1.23  1  

Sum   1170  1.00  4.00  4.00  

Avg   293  0.25  1.00  1.00  

Max   576  0.49  1.97  2.00  

Therefore, while selecting the probable candidates for mating and reproduction, string 2 will 

appear twice while both strings 1 and 4 will appear only once and string 3 will not appear at all 

as shown in Table 1.2.  

Table 1.2 Description of GA (step 2) 

String 

No 

Initial 

population 
Mate * 

Crossover 

site* 

New 

Population 

X 

value 

F(x) 

value 

1  0 1 1 0 1  2  4  01100  12  144  

2  1 1 0 0 0  1  4  11001  25  625  

3  1 1 0 0 0  4  2  11011  27  729  

4  1 0 0 1 1  3  2  10000  16  256  

Sum      1754  

Avg      439  

Max      729  

*Randomly selected 
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As a next step, crossover site is chosen randomly. Many different cross over and mutation 

operators have been developed to deal with the data structure representation. A two point cross 

over operator is used here. After the crossover, new population is generated as shown in Table 

1.2. Finally the fitness value of F(x) has been evaluated for new population. It is observed that 

the maximum and average value of F(x) has improved from 576 & 293 to 729 & 239 

respectively. This process is repeated till the maximum value of f(x) saturates. 

In this section, we have reviewed different optimization algorithms which include conventional 

calculus based methods and modern population based algorithms. We have also tried to 

understand the basic implementation, advantages and disadvantages of both types of algorithms. 

In present thesis, the applicability of various optimization techniques discussed above will be 

used for fuel management of AHWR at various stages. In the next section, the outline of the 

thesis is given. 

1.6 Outline of thesis 

In this chapter, we have first introduced the importance of nuclear power in relation to world and 

for India’s perspective. Then the India’s three stage program is mentioned and significance of 

AHWR has been highlighted. The various optimization problems in context to nuclear reactor 

fuel management have been described in the conventional LWRs and PHWRs. The unique 

design features of AHWR have been described. Further, to solve the optimization problems, 

different optimization techniques already studied in literature have been investigated.  

As the primary focus of this thesis is on the development of optimization techniques for fuel 

management in heavy water moderated reactors, we have considered the complete fuel cycle of 

AHWR-LEU as a case study in this thesis.  
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In Chapter 2, a basic description of reactor core calculations in steady state has been presented. A 

brief description of the computational tools used for simulation of steady state of nuclear reactor 

is also given.  

In Chapter 3, a special refueling scheme for AHWR core is described, which is an optimal 

combination of refueling strategies used in LWRs and PHWRs. Each refueling operation is 

combination of refueling and one reshuffling operation to control the local power peaking. 

Generally the experience and knowledge base in a form of ‘‘IF-THEN’’ rule-sets are used along 

with other specific search control strategies. However, the direct implementation of heuristic 

information in the form of factors has been tried. These factors are further translated for 

describing the preference of a channel for refueling or reshuffling.  A computer code CARS has 

been developed based on the above principles. The computer code CARS  provides all the micro 

details like fresh fuel requirement, storage space for discharged fuel, behavior of maximum 

channel power (MCP), maximum mesh (bundle) power (MMP), channels selected for 

refueling/reshuffling, discharge burn-up achieved and boron requirement, etc. for the entire life 

of reactor. 

Chapter 4 describes the problems observed during core follow-up studies for AHWR done with 

CARS:   

(a) Power peaking problem during the pre-equilibrium phase (transition phase).  

(b) Due to the quarter core mirror symmetry, certain channels near to axis symmetry were getting 

over due for refueling (described later). As a result some other channels were getting discharged 

pre-maturely and leading to overall loss in discharge burnup.  

(c) Very long computation time (7-10 days) 

The following improvements in CARS were done to address these problems.  
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(a) Adoption of double reshufflings along with refueling 

(b) Use of π/2 rotational symmetry instead of mirror symmetry 

(c) Use of parallel processing to accelerate the speed 

A refueling strategy based on a suitable combination of three refueling schemes viz. refueling 

without reshuffling, refueling with single reshuffling and refueling with double reshuffling 

scheme is adopted. The refueling strategy was evolved after including the zonal power of each 

zone as an important parameter of the strategy. As a result the flux distribution at each refueling 

was maintained near to the equilibrium core flux distribution.  

In Chapter 5, the basic loading pattern optimization (LPO) problem is defined. Different 

optimization techniques (Modern methods and Conventional methods) are discussed for solving 

LPO problem. The size and search space for AHWR initial core LPO is described. The AHWR 

core consists of 444 fuel lattice locations. By exploiting symmetry of the core, the problem size 

for AHWR initial core optimization reduces to 2
62

 (10
18

), which is also a very large size problem. 

Simulation of all these loading patterns to choose the best loading pattern is not practical in a 

finite time scale. This type of combinatorial optimization problem can be solved by defining an 

objective function and then maximizing it. The objective function of the problem is based on K-

effective, SDS-1 worth, boron in moderator and radial peaking. The objective function is defined 

by using penalty method. In appendix referred in this section, the most adequate value of various 

parameters in objective function has been estimated. We have applied Estimation of distribution 

algorithm (EDA) (modern method) to optimize initial core loading pattern (LP) of AHWR. In 

EDA, new solutions are generated by sampling the probability distribution model estimated from 

the selected best candidate solutions. The weighing factor ‘α’ decides the fraction of current best 

solution for updating the probability distribution function after each generation. A 
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comprehensive study on parameters like population size, weighing factor ‘α’ and initial 

probability distribution function has been done. It is observed that choosing a very small value of 

‘α’ may limit the search of optimized solutions in the near vicinity of initial probability 

distribution function and better loading patterns which are away from initial distribution function 

may not be considered with due weightage. It is also observed that increasing the population size 

improves the optimized loading pattern, however, the algorithm still fails if the initial 

distribution function is not close to the expected optimized solution. We have tried to find out the 

suitable values for ‘α’ and population size to be considered for AHWR initial core loading 

pattern optimization problem. 

In Chapter 6, the initial core optimization of AHWR has been tackled by applying Genetic 

algorithm (GA). The objective function in GA is defined in the same way as in chapter 5, such 

that during the optimization process, all the variable of objective function (MCP, MMP and 

SDS-1 worth) meet the pre-determined designed limit. The dependence on population size and 

initial distribution function on the optimized loading pattern is studied and most adequate values 

for AHWR initial core LPO have been estimated. It was observed that the algorithm has failed 

with population size of 24. However, when the initial distribution function is near to optimized 

solution, the results are better. By increasing the population size to 240 or 1200, optimized 

loading pattern similar to EDA is achieved. A discussion on the computational cost and 

simulation time is also given. 

Finally, Chapter 7 gives a summary of the research work carried out in this thesis and scope for 

future extension of this work. In this chapter, the various aspects of optimum fuel utilization 

during initial phase, transition phase and equilibrium phase have been emphasized. This study 

allows us to demonstrate fuel cycle of AHWR, where, on-power refueling and high target 
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discharge burnup clusters are used. The new technique developed for AHWR for in-core fuel 

management has opened a scope for further study to develop refueling strategy for use of slightly 

enriched Uranium (SEU) or DUPIC fuel (Direct Use of PWR fuel In CANDU reactors) and 

Thorium based fuels like (Th, Pu) MOX or (Th, U) MOX, in PHWR for lower waste generation 

and achieving higher discharge burnup. In the present thesis work, a better understanding of the 

fundamental principles that govern fuel management during initial, transition and equilibrium 

stage of any reactor has been achieved. The outcome of the research work is also useful to 

provide guidance for improvement in current optimization techniques to tackle LPO problems.
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CHAPTER 2 

Simulation Tools 

 

 

 

2.1 Introduction  

In last chapter we have discussed that the main focus of this thesis is related to fuel management 

in heavy water moderated reactors and in particular AHWR fuel cycle has been considered. 

Before discussing the development of optimization techniques for efficient fuel utilization at all 

stages of reactor operation, it is necessary to understand the simulation of a nuclear reactor in 

any configuration. Therefore, in this chapter, we have briefly discussed the basic simulation tools 

used for nuclear reactor simulation. A three dimensional model is required which can simulate 

the reactor with all its heterogeneities and different materials like fuel, control assembles and 

structural materials etc. Solution of reactor core problems with minimum approximation can be 

reached by solving neutron transport equation and using Monte-Carlo methods in some special 

cases. However, there is continues stress to reduce the computational time and computational 

cost to perform these calculations. Therefore, a fairly good approximation and efficient way of 

doing neutronics simulations in a very short time is to divide the core in to similar looking 

regions (lattice) like fuel channels. In these regions, heterogeneities are homogenized by solving 

exact transport equation and average few energy group diffusion theory parameters are 

generated. These few group parameters describe the interaction probability of a particular 
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neutron-nuclear reaction and are commonly known as macroscopic cross sections (∑). These 

parameters are used for the given reactor geometry to solve the diffusion equation to estimate 

various reactor operational parameters like k-effective and core flux distribution etc.  

In section 2.2, Neutron transport equation has been discussed and capabilities of lattice code 

ITRAN used to simulate AHWR lattice is also described. In section 2.3, three dimensional 

diffusion theory code FEMINA used to simulate AHWR core is described. Section 2.4 outlines 

the summery of this chapter.  

2.2 Neutron transport equation 

The equation for angular neutron density n(r, E, Ω, t) at any arbitrary volume V in a system can 

be derived by considering the various processes by which neutrons are gained or lost. The 

various mechanisms by which the neutrons can appear or disappear or leave the volume V are 

defined below (Duderstadt and Hamilton (1976); Lewis and Miller (1984):- 

Gain terms 

I. Neutron sources like fission or external neutron source 

II. Neutrons streaming in to V from other regions 

III. Neutron in V with initial parameters E' and   Ω´ can be scattered from a nucleus and have 

final energy E and Ω 

Loss terms 

IV. Leakage out term from the region V 

V. Collision term (absorption or scattering) 
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The rate of change of number of neutrons in volume V = I + II + III – IV – V  (2.1) 

If we define each gain and loss term in equation (2.1) then we find  

∫ d3r [
∂n

∂t
+ v Ω ·  ∇n + v∑t(r, E) n − ∫ dE′ ∫ dΩ′v′∑s(E′ → E, Ω′ →  Ω) n(r, E′, Ω′, t) −4π

∞
0V

 S (r, E, Ω, t)] dE dΩ = 0         (2.2) 

For this integral to be zero for any volume V, the integrand is =0 

Hence the neutron balance equation is  

1

v

∂φ

∂t
+ Ω · ∇φ + ∑t(r, E)φ(r, E, Ω, t) =  ∫ dΩ′ ∫ dE′ ∑s(E′ → E, Ω′ →  Ω) φ (r, E′, Ω′, t) +∞

04π

S (r, E, Ω, t)           (2.3) 

Where, φ (r, E, Ω, t) is neutron flux at r with energy E and moving in direction Ω at time t. 

∑*(r, E) = Total macroscopic cross section for energy E at r 

∑-�E′ → E, Ω
′ →  Ω� = Macroscopic scattering cross section 

S(r, E, Ω, t) is source term. It includes fission source and external source. 

Therefore, S(r, E, Ω, t) = Sf(r, E, Ω, t) + Se(r, E, Ω, t) 

Where Sf(r, E, Ω, t) is fission source and Se(r, E, Ω, t) is external source term 

The fission source term can be defined as 

Sf(r, E, Ω, t) =  
χ(E)

4π
∫ dΩ′ ∫ dE′ ν(E′)∑f(r, E′) φ (r, E′, Ω′, t)∞

04π   (2.4) 

Here, /(0) is the neutron energy distribution given by fission spectrum.  
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ν(E) is the total number of fission neutrons produced in one fission 

∑1(r, E′) = Macroscopic fission cross section 

As, our main concern is to solve steady state equation only, we can write the K- eigenvalue 

problem without any external source as: 

Ω · ∇φ (r, E, Ω) + ∑*(r, E)φ(r, E, Ω) −  5 dΩ′ 5 dE′ ∑-�E′ → E, Ω′ →  Ω� φ �r, E′, Ω′� =∞7�π

�8  S1 (r, E, Ω)            (2.5) 

Where Sf is given by equation (2.4) 

The homogenized few group cross sections for AHWR lattice have been generated by solving 

neutron transport equation using lattice code ITRAN. In all our calculations, the ENDF-B/ VI.8 

has been used as the basic evaluated nuclear data cross section library.  

ITRAN can solve the neutron transport equation and perform the calculations based on the first 

flight collision probability (CP) method (Krishnani, 1981) or a method based on combination of 

interface current (IC) formalism and CP method (Krishnani, 1982) for various geometries like 

Slab, Spherical, Cylindrical, cluster geometries, 2-D rectangular geometry of LWR (BWR and 

PWR). The code ITRAN has been used starting from the 69 group WIMSD nuclear data library 

(ENDF/B-VI.8) to generate 2 group lattice cross-sections for various fuel elements, control 

materials, guide tubes and structural materials for AHWR core. These condensed cross sections 

are used in the second step of reactor simulation using diffusion theory code FEMINA (Kumar 

and Srivenkatesan, 1984). 

2.3 Neutron Diffusion equation 
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As discussed in section 2.1, a good approximate and quick solution of real reactor physics 

problem can be achieved by dividing the core into lattices where heterogeneities are 

homogenized by solving exact transport theory. The few energy group parameters are then used 

to solve the diffusion equation. The diffusion equation is simplified form of transport equation 

with the following assumptions: 

I. First assumption is that the angular flux is weakly dependent on angle (linearly 

anisotropic) 

II. Secondly, the rate of time variation of the current density is much slower than the 

collision frequency.  

III. Fission sources of neutrons are isotropic 

The final form of time dependent diffusion equation after considering above assumptions to 

transport equation is  

1

v

∂Φ
∂t

− ∇ · D(r, E)∇Φ + ∑t(r, E)Φ(r, E, t) =  ∫ dE′ ∑s(E′ → E) Φ (r, E−, t) + S (r, E, t)∞
0  

 ………(2.6) 

Here,    Φ(r, E, t) =  5 dΩ  φ (r, E, Ω, t)∞

0
       (2.7) 

D(r, E) is diffusion coefficient. Fick’s law has been used to relate neutron current density J (r,E) 

to Diffusion co-efficient as shown below 

J(r, E) =  −D(r, E) >?(@,A)>@     (2.8) 

The final form of steady state multi-group diffusion equation in form of K-eigen value can be 

written as  
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−∇ · DB(r)∇ΦB(r) + ∑B@ (r)ΦB(r) −  C(BDEB  ∑BF→BΦBF(r))  = 1K χB C ν∑BD1 (r)BD ΦBD(r) 

Here g=1,2,3..  (2.9)  

The practical problems can be solved by using neutron diffusion equation by various numerical 

techniques like finite difference method (Menon et al. (1981) and nodal expansion method etc. 

The continuous diffusion equation is converted in to a set of linear equations by descretization of 

space in to meshes.  Finite difference method is very straightforward and simple method to solve 

diffusion equation. But it has a requirement that the mesh size should be of the order of diffusion 

length and hence a very large number of unknowns will appear for a typical power reactor. 

Therefore, too much computer time is consumed as for accurate results, dense packing of meshes 

is required. As the main aim is to estimate assembly level power distribution and by considering 

mesh size smaller than the assembly size, unnecessary computational time will be involved. This 

has resulted in development of coarse mesh techniques like nodal methods (Kumar and 

Srivenkatesan (1984)). 

Nodal methods give an algorithm which is quite similar to finite difference method and are used 

for a long time because of simple implementation. In nodal methods, the diffusion equation is 

integrated over the large homogeneous regions called nodes to obtain a nodal balance relation 

with average surface currents and fluxes as unknowns. In the conventional nodal (Delp et al. 

(1964); Goldstein et al. (1967)) methods, the currents are eliminated from the equation using 

special coupling coefficients, which are defined as ratio of average surface current and fluxes in 

a node. The special coupling coefficients are estimated a priori by applying simplifying 

assumptions or by using auxiliary fine mesh calculations. This makes the methods less accurate, 
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still they provide acceptable results for static problems. But then conventional methods are not 

suited for kinetics calculations, as the coupling coefficients tend to change from time to time and 

thus will have to be calculated repeatedly. 

To circumvent the problem of re-estimation of coupling coefficients many higher order nodal 

schemes such as nodal expansion method (NEM) (Finnemann (1975); Finnemann et al. (1977)), 

polynomial method (Sime and Henry (1976); Shober and Henry (1976)), analytical nodal method 

(Shober et al. (1977)), nodal green’s function method (Lawrence and Dorning (1978)) have been 

developed. In these methods, currents are treated explicitly to obtain coupling between adjacent 

nodes. This is done by first integrating the 3D diffusion equation over transverse directions. The 

set of one dimensional equations thus obtained is then solved in different manner in various 

methods. These methods are proved to be very computationally efficient compared to FD 

methods because the calculation of currents is simple and inexpensive. The power distribution 

obtained from these methods are also accurate for nodes as large as size of fuel assembly. The 

computer code FEMINA has used nodal expansion method for calculation of flux distribution. 

With reactor operation, the fuel composition as well as flux distribution, both changes 

concurrently. Therefore, for fuel depletion (burn-up) calculations, it is assumed that for a short 

interval of time (known as burn-up step) the variation in flux is insignificant and thus the fuel 

can be depleted at the same rate. For next burn-up step, new fluxes are calculated by considering 

the modified fuel composition and the fuel is depleted for next burn-up step.    

In general the flow chart of reactor core simulation is shown in Fig 2.1 

2.4 Summary 



Chapter 2 Simulation Tools 

 

29 

 

In this chapter, general simulation of reactor core has been described. A brief description and 

capability of various tools used for reactor core simulation of AHWR has been given.  

 

Fig 2.1 Flow chart of reactor core simulations 

The lattice calculations for the AHWR equilibrium core cluster were performed by using 

Neutron Transport Theory computer code ITRAN (Krishnani, 1982). The calculations were 

performed by using 69-group library based on ENDF/B-VI.8 nuclear data obtained from IAEA 

(IAEA, 2016). Two group cross sections with burn up were generated using ITRAN. These two 

group cross sections are further used in core calculations by diffusion theory code FEMINA 

Nuclear Data (ENDF/B-VI.8) WIMS format 

Lattice level calculations using ITRAN 

(solution of neutron transport equation) 

Lattice geometry, material used 

and fuel composition / enrichments Thermal hydraulic parameters 

Homogenized few group cross sections for fuel, control rods 

and structural materials etc 

Core level calculations using FEMINA 

(solution of diffusion equation) 

Reactor operational parameters (K-effective, 

flux distribution, power distribution etc)  

Burn-up calculations including refueling 
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(Kumar and Srivenkatesan, 1984). The steady state calculations for follow up and refueling are 

also performed by FEMINA. In the optimization techniques developed for refueling studies of 

AHWR-LEU or for initial core optimization of AHWR-LEU, executive file of FEMINA has 

been used multiple times with different inputs. The operational parameters estimated by 

FEMINA for all the input cases have been used to decide the direction of search for optimization 

solution.  
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CHAPTER 3 

Special Refueling Scheme for AHWR 

 

 

 

 

3.1 Introduction 

The primary aim for fuel management in any reactor is to have best fuel utilization and keeping 

all the safety parameters in their design limit along with maintaining 100% full power of reactor. 

As discussed in Chapter 1, with respect to fuel management, thermal reactors can be broadly 

divided into two categories defined as reactors with on power refueling and reactors with off 

power (batch refueling). In both types of reactors, the fuel management is a complex 

combinatorial optimization problem with several constraints and has many solutions. The search 

space is very large and optimal solution requires an exhaustive study which may not be feasible 

in finite scale of time in many cases.  

Fuel reload problems for reactors adopting batch refueling like PWRs are being addressed in a 

better way using evolutionary algorithms such as simulated annealing (SA) (Stevens et. al., 

1995), genetic algorithm (GA) (Goldberg, 1989; Parks, 1996; Chapot et al., 1999), estimation of 

distribution algorithm (EDA) (Jiang et. al. 2006), artificial neural network (ANN) (Sadighi et al., 

2002) and ant colony algorithm (ACO)(Machado and Schirru, 2002) etc. Evolutionary 

algorithms belong to stochastic optimization techniques which are inspired by natural evolution 
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processes. Galperin et. al. (Galperin and Nissan, 1988; Galperin et.al, 1989) proposed a solution 

to this nuclear reload problem using heuristic search method and knowledge based method. Due 

to the vast search space involved in this problem, the use of the artificial intelligence will give 

more satisfactory results. These methods usually require high end computational machines and 

parallel processing for efficiently and effectively scanning a large space of the solutions. On the 

other hand, in heuristic search methods, very few possible solutions are simulated and the best 

among them is referred as final solution.  

In-core fuel management in reactors with on-power refueling like PWHRs is much easier as the 

search space at each refueling is quite small and maximum burn-up channel in the preferred zone 

is chosen for refueling. Multiple short bundles in PHWRs provides great flexibility to adopt 

suitable bundle shift scheme to control the local peaking due to refueling in PHWRs and makes 

the choice easier.  Choi (Choi, 2000) developed an automated fuel management program for 

CANDU reactors. The use of this program for developing refueling strategy and generating the 

core parameters for about 500 FPDs of operation in CANDU-6 reactor takes a day. Manually 

doing this job will take a much larger time. In his later work (Choi, 2008) he studied the use of 

DUPIC (Direct Use of PWR spent fuel in CANDU) fuel during transition phase and in 

equilibrium phase. The task of optimum fuel utilization was more complicated and the refueling 

scheme was changed from 8-bundle shift to 2-bundle shift scheme to control the local peaking 

due to replacement of burnt fuel with higher fissile content fuel. The studies have shown that the 

use of DUPIC fuel will give better fuel utilization. The average enrichment in DUPIC fuel is 

~1.5%. If higher enrichment of ~3-4% is used, the complexity involved in fuel cycle study will 

increase significantly and the refueling rate will decrease. Gupta et.al (Gupta et.al, 2008) has 

shown that the use of 3- 4% 
235

U in Th matrix in PHWR cluster will give a better fuel utilization. 
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But the on-power refueling challenges involved in the high burn-up PHWR design needs to be 

addressed properly. If we have to study the performance and feasibility for achieving high 

discharge burn-up for reactors having on-power refueling (like PHWRs and AHWRs), the micro 

details of the fuel cycle studies are mandatory.  

The AHWR (Sinha and Kakodkar, 2006; Kakodkar, 1998) is being designed as 920 MWth (300 

MWe), vertical, pressure tube type reactor with boiling light water as coolant and heavy water as 

moderator. The fuel cycle of AHWR is based on (Th-
233

U-Pu) MOX fuel in closed cycle mode 

with target discharge burnup of ~ 36.5 GWd/Te. However, an alternate fuel cycle consisting of 

Low Enriched Uranium (LEU) in Thorium matrix is also considered in once through mode. The 

LEU has been assumed to be composed of 19.75% 
235

U and 80.25% 
238

U. The AHWR with (Th, 

LEU) MOX fuel is known as AHWR-LEU (DAE, 2016; Thakur et al., 2011) and is being 

designed with average fissile content of ~4.2% in fuel such that the target discharge burnup of ~ 

60GWd/Te is achieved in once through mode. On-power refueling, negative coolant void 

reactivity and heat removal through natural circulation are salient features of AHWR /AHWR-

LEU. Table 3.1 gives a description of important physical parameters of AHWR-LEU. The 

AHWR-LEU is being designed for 100 years life and the transition period from initial phase to 

equilibrium phase is fairly long time (~7-10 Full Power Years). To ascertain that the core 

operational parameters like maximum channel power (MCP) and maximum mesh power (MMP) 

are within their design limits and to find out the requirement of fresh fuel and storage space for 

discharged fuel inventory, the full refueling study from initial phase to equilibrium phase is 

required.  The preliminary study has shown that the natural circulation limits the heat removal 

capacity of coolant for a channel to only 2.85 MW(th) for a maximum cluster peaking of 1.15. 

The design parameters MCP and MMP have a limit of 2.85 MW(th) and 200kW(th) respectively. 
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Table 3.1Description of the AHWR LEU reactor core 

No. of channels 444 

Lattice pitch, mm 225 

No of RR / AR/ SR / SORs 8 / 8 / 8 / 45 

Fuel (Th-LEU)MOX 

No. of rings in a cluster / total no. of pins 3 / 54 

No of fuel pins in each ring 12 / 18 / 24 

Multi-purpose displacer tube (annular) 

Material / OD / Thickness , mm Zr-2 / 36 / 3 

Solid rod inside displacer, Material/OD Zr-2  /18 mm 

Pressure tube 

ID / OD,   mm 120 / 128 

Material  / Density, g/cc Zr-2.5%Nb /  6.55 

Calandria tube 

ID / OD, mm 163.8 / 168 

Material / Density,  g/cc Zircaloy-2 / 6.55 

Avg. fuel temperature, K 

Avg. fuel density, g/cc 

723 

9.3 

Coolant material 

Temperature, K 

Average density, g/cc 

Light water 

558 

0.45 

Moderator material 

Temperature, K 

Average density, g/cc 

Heavy water 

340.5 

1.089 

Generally, initial core consists of at least two types of fuel clusters which are different from 

equilibrium core clusters. Hence during transition phase (period of operation between initial core 

and equilibrium core), various types of fuel clusters have to be managed properly such that the 

safety margins are maintained and operational parameters are within the design limits.  



Chapter 3 Special Refueling Scheme for AHWR 

 

35 

 

The on-power refueling of AHWR is more challenging vis-à-vis PHWRs in two respects: (1) The 

PHWRs employ small fuel clusters whereas AHWR employ full length fuel cluster thereby 

reducing the flexibility of refueling small number of clusters at a time in PHWRs, (2) the fuel in 

AHWR has high discharge burnup which necessitates high fissile content causing severe ripple 

effect. This may also require fuel shuffling as well (see Sec. 3.2 below). The main focus in this 

chapter is to study the feasibility of on-power refueling for reactors like AHWR or AHWR-LEU 

designed for high discharge burn-up. In this chapter we have accentuated that the conventional 

methods for optimum fuel utilization do not give satisfactory results for reactors like AHWR-

LEU. Therefore specialized tools have been developed for optimal utilization of fuel in 

equilibrium phase and pre-equilibrium phase and specialized refueling strategy for AHWR-LEU 

has been formulated. Section 3.2 describes the requirement of special refueling scheme for 

AHWR. It also describes the results of a refueling study of AHWR with direct refueling. The 

section 3.3 gives the description of the factors based on heuristic approach. The section 3.4 gives 

the implementation of this approach in the form of a computer code. Section 3.5 describes the 

use of this code to study a cluster for AHWR-LEU core. Section 3.6 discusses the conclusions. 

The results have been published in international scientific journal Thakur et. al., 2013 and in 

international conference Thakur et. al., 2011. 

3.2 Requirement of special refueling scheme for AHWR 

The unique features (on power refueling and high discharge burn-up fuel) of AHWR imply that 

its fuel management is a new and complex problem. As a first step, fuel management problem 

was addressed in a similar way as was done for PHWRs and is described as direct refueling. In 

this direct refueling scheme, one of the lower power producing channel which has highest 
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discharge burn-up was chosen for refueling. During the transition phase, both initial core clusters 

and equilibrium core clusters are present in the core. Therefore, the channels were chosen 

considering their fuel type also. It means the initial core clusters were prioritized for refueling 

first. For each refueling, a set of four quarterly symmetric channels were considered which were 

having higher burn-up than others. No criteria were put on the maximum channel power (MCP) 

and maximum mesh power (MMP) after refueling to observe the level of peaking during core 

follow-up. The core refueling studies were carried out from ~ 300 FPDs (on-set of refueling for 

initial core) to ~ 5500 FPDs.  

 

Fig 3.1 Maximum channel power vs full power days for direct refueling 
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Fig 3.2 Maximum mesh power vs full power days for direct refueling 
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refueled fresh equilibrium core cluster. The burnt initial core clusters are being replaced with 

highly reactive fresh equilibrium core clusters having ~ 4.2 % fissile. To reduce the peaking 

during transition phase and equilibrium phase of the core, it is proposed to reduce this reactivity 

difference by adding a reshuffling operation also, which will result in lower peaking after each 

refueling. Therefore, special refueling scheme is proposed in this thesis, which is an optimal 

combination of refueling strategies used in LWRs and PHWRs. In the proposed special refueling 

scheme, each refueling operation is a combination of refueling and one or two reshuffling 

operations (see Fig.3.3) to control the local power peaking.  

 

Fig 3.3 Schematic representation of refueling with single reshuffling scheme in AHWR core 
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Generally the experience and knowledge base in a form of “IF-THEN” rule-sets (Galperin et. al., 

1989) are used along with other specific search control strategies. However, we have tried the 

direct implementation of heuristic information in the form of factors. These factors are further 

translated for describing the preference of a channel for refueling or reshuffling and a computer 

code is developed.  

This computer code can automatically perform the refueling  study for a given period of 

operation and provide all the micro details like fresh fuel requirement, storage space for 

discharged fuel, behavior of maximum channel power (MCP), maximum mesh (bundle) power 

(MMP), channels selected for refueling / reshuffling, discharge burn-up achieved and boron 

requirement etc. for the entire life of reactor. In this chapter, we have considered that each 

refueling is followed by one reshuffling only. To maintain the quarter core symmetry, always a 

mini-batch of four channels is selected for refueling and reshuffling operations. 

3.3 Proposed factors for refueling and reshuffling based on heuristic 

approach 

The main objectives for developing refueling strategy are: - 

i. Maximise the fuel utilization by maximizing its discharge burnup. 

ii. The reactor should operate at rated power (full power) 

iii. The operation parameters like MCP and MMP should be  maintained within their design 

limits during operation 

iv.  If more than one type of fuel (different fissile content) exists in the core, fuel reaching its 

design discharge burnup should be discharged on priority. 
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v. Core power distribution should be maintained close to the equilibrium core power 

distribution to maintain worth of reactivity devices close to design values 

vi. The number of fuel handling operations should be minimum 

As discussed in section 3.2, for facilitating high discharge burnup fuel with on-power refueling, 

the special refueling scheme requires selection of two channels (one for refueling and one for 

reshuffling) at each refueling. For selecting two appropriate channels from a typical core 

consisting of~400 fuel channels, we have to study 
400

P2 number of possible combinations. 

Simulation of all these combinations and finding out the best one seems very cumbersome and 

time consuming. The best combination found out this way will be used for one refueling only. 

For every refueling one has to simulate same number of combinations. The challenge is to find 

appropriate channels at each refueling. The brief description of a few proposed important factors 

used to describe priority of a channel to be considered for refueling or reshuffling is given below. 

These factors are based on simple heuristic logics.  

3.3.1 Refueling factor  

Refueling factor (RF) is the direct measure of the maturity level of a channel for refueling. The 

refueling factor is defined in such a way that it is proportional to its instantaneous burnup of that 

channel. Higher the burnup, higher is the maturity level for its refueling and as a result such a 

channel is given higher priority for refueling. For different fuel types used in the core having 

different design discharge burnup, the refueling factor for a given type of fuel is also inversely 

proportional to its design discharge burnup. 

KL ∝ �N      (3.1) 
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‘B’ is the burn-up of channel and ‘D’ is the design discharge burn-up of fuel type present in 

channel. Based on the burnup criteria, if a channel is matured for refueling but there is local 

power peaking in its neighborhood due to refueling of the channel or due to movement of 

reactivity devices, then the refueling of such a channel may further aggravate the local peaking.  

Hence, the power of the channel to be refueled (relative to its equilibrium power) as well as 

average power of its neighboring channels has also been considered for evaluation of refueling 

factor for a channel. This factor also decides the priority between the two channels having the 

same fuel type and same burnup but their channel powers are different or they are present in 

different flux locations in the core. The refueling factor is inversely proportional to the channel 

power of a channel due for refueling as well as to the channel power of the first and second 

nearest neighbors.  

   KL ∝ �OP·O�·O	       

Where ‘CP’ is channel power of channel, ‘C1’ is average power of 1
st
 neighbors of channel and 

‘C2’ is average power produced by 2
nd

 neighbors of channel 

Or        KL = Q �N·OP·O�·O	        (3.2) 

Here, ‘K’ is proportionality constant. The value of K can be taken as 1. All the channels are 

arranged in descending order of their refueling factors. The preference order for channels to be 

discharged has been decided. 

3.3.2 Reshuffling factor  
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As discussed in section 3.2, to control the power peaking during refueling, refueling with one or 

more reshufflings may be opted. In the reshuffling process, a partially burnt fuel located in low 

flux region is moved to the high flux region, where it replaces highly burnt fuel (the fuel due for 

refueling). The highly burnt fuel is discharged to spent fuel bay. The vacancy created in the low 

flux region (due to movement of partially irradiated fuel) is filled with fresh fuel (Fig. 3.3).  This 

process is called refueling with single reshuffling. Similarly, if one more step is added in 

between then it is called refueling with double reshuffling. The fuel which is moved is assigned a 

parameter termed as reshuffling factor (Resh F). The reshuffling factor is assigned to only 

partially burnt channels and the factor is weighted differently for different reshuffling scheme 

used. The reshuffling factor is modified to account its channel power as well as the channel 

power of its neighboring channels. The channels which are having very low burnup or which are 

near to discharge cannot serve the purpose for reshuffling. Therefore, the channels which have 

burnup nearly half of the design discharge burnup could be appropriate candidates for single 

reshuffling provided it does not result into local peaking in its neighborhood. Keeping this in 

mind, the reshuffling factor is assigned for channels, which are having their burnup in the range 

of one fifth of core average burnup to 1.5 times core average burnup. In this burnup range, the 

channels having lower burnup and located in the lower neutron flux region will be preferred for 

reshuffling. We have defined Resh F as:- 

    Resh F    = 0                                     if  B< Cab5  or B>(1.5 · Cab) 

                                                                       = Q c� · �d · �1 · �2    if   Cab5 <B<(1.5 · Cab) 

Where ‘Cab’ is core average burnup. 
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Here also, ‘K’ is proportionality constant and its value is taken as 1. It is to be noted that in the 

above burnup range, the channels which are having lower burnup and present in low flux regions 

will be more suitable candidates for reshuffling.   

3.4 Development of Code for Automated Refueling Strategy using 

Heuristics (CARSH) 

The development of CARSH started after careful study of the various refueling strategies 

followed in LWRs & PHWRs. The refueling strategies followed in PHWRs as well as in light 

water reactors were translated into logics such that these can be easily programmed. Based on the 

experiences gained during the study of various fuel cycles of AHWR or AHWR-LEU, these 

logics were suitably tuned to the requirements of fuel cycle used. The basic input to the computer 

program is core power distribution, core burnup distribution, types of various fuels present or 

likely to be present in the core, design limits on mesh power as well as channel power and the 

characteristics of the various types of fuel used in the core. The code generates the list of fuel 

channels for refueling in the order of priority. A set of most suitable channels is picked up from 

the list and refueling of these channels (with suitable burnup step) is simulated by the 3D 

diffusion code used to estimate the new power and burnup distribution. The new power and 

burnup distribution is used in the next step for selection of another set of channels for refueling 

and so on the process continues. Presently, its main objective is to automatically develop the 

refueling strategy of AHWR / AHWR-LEU meeting all the design objectives and the 

development of CARSH has been done considering AHWR core.  

The lattice calculations for the AHWR equilibrium core cluster were performed by using 

Neutron Transport Theory computer code ITRAN (Krishnani, 1982) with the ENDF/B-VI.8 
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based IAEA 69 multigroup WIMSD nuclear data library. The calculations were performed by 

using 69- group library based on ENDF/B-VI.8 nuclear data obtained from IAEA (IAEA, 2016). 

Two group cross sections with burn up were generated using ITRAN. These two group cross 

sections are further used in core calculations by diffusion theory code FEMINA (Kumar and 

Srivenkatesan, 1984). The steady state calculations for follow up and refueling are also 

performed by FEMINA. 

The brief description of structure of computer code CARSH is given below.  

3.4.1 Outline of CARSH 

The computer program CARSH reads the burnup distribution, power distribution and the fuel 

type distribution in the core from the output of FEMINA (from where refueling operation has to 

start). Other inputs like fuel types to be loaded in the core, design discharge burnup of different 

fuel types, different zones of the core, operating limits on MCP and MMP etc. are also made 

available. Based on the various refueling rules, the refueling factor is evaluated for all the 

channels. The quarter core symmetry of AHWR core is used to reduce the complexities of the 

problem. Hence the refueling scheme used is mini batch refueling scheme where one mini-batch 

consists of four quarterly symmetric channels.   

The channel with highest refueling factor is chosen for refueling from one quadrant of core. As a 

next step the refueling scheme is chosen. If the channel selected for refueling resides in low flux 

region then direct refueling is chosen otherwise refueling with single reshuffling is adopted. If 

the refueling scheme adopted is refueling with single reshuffling then a channel from same 

quadrant of core is selected for reshuffling based on the reshuffling factors. Based on the channel 

selected from one quadrant of the core, the symmetric channels from the other three quarters are 
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picked to make a mini batch of 4 channels. The selected mini batch of the channels is simulated 

for refueling using FEMINA and the MCP and MMP are observed in the output of FEMINA. If 

the MCP and MMP are beyond the design limits then next preferred set of channel for refueling 

and / or reshuffling (next highest refueling and /or reshuffling factor) is selected and core is again 

simulated. The program this way tries a lot of combinations till it finds a suitable set of channels 

for refueling and / or reshuffling.  

The computer program CARSH thus has two basic modules: 

• Refueling without reshuffling 

• Refueling with single reshuffling 

In both modules, executive file of 3D diffusion theory code FEMINA is called to simulate the 

core with refueling inputs. The decision regarding the adaption of simple refueling or refueling 

with reshuffling is taken based on the channel power and average channel power of nearest 

neighbors of the channel selected for refueling as well as from the comparison of channel power 

distribution with time averaged equilibrium core power distribution. 

A brief flow chart of CARSH is described in Fig3.4. If any preferred input is not available even 

after code execution of few hours, then the design limit is increased (or re-rating of reactor is 

required). The code has a restart option. Hence, whenever required it can be stopped and can be 

started later on. Moreover, the burnup, power distribution, refueling inputs and other outputs are 

stored after each refueling. 
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Fig 3.4 Flow chart of CARSH 
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3.5 Results of simulations carried out by the computer code CARSH 

3.5.1 Refueling of AHWR-LEU using CARSH 

The computer code CARSH has been extensively used for refueling of AHWR-LEU core. This 

exercise was taken up as a test for the capabilities of CARSH and during the process many 

improvements have been carried out. The AHWR-LEU equilibrium core cluster described in 

Table 3.2 has been used to refuel the core from onset of refueling of initial core to ~5100 full 

power days (FPDs) using CARSH. The equilibrium core cluster is having radial and axial 

gradation in enrichment. 

 

 

Fig 3.5a Core average burnup vs full power days 
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Table-3.2 Description of AHWR-LEU cluster studied 

Gd 

content 
Fuel 

Type 

(Fissile 

content) 

Axial 

gradation 

LEU content (%) in various 

rings of cluster 
U-235 

content 

(%) 

K∞ (0 

MWd/TeXe 

sat.) 

Design 

discharge 

burnup  Inner Middle Outer 
Cluster 

Average 

5% 

Gdin 2 

pins of 

inner 

ring 

235
U-Th 

(4.29%) 

Upper 

Half 
30 24 14 20.88 4.12 1.173 

61.0 

GWd/Te Lower 

Half 
30 24 18 22.66 4.47 1.215 

 

 

Fig 3.5b Core excess reactivity vs full power days 
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Fig 3.5c Maximum channel power vs full power days 
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The core refueling study using CARSH has shown that this cluster with Gd could help to control 

the local power peaking to some extent. The study has shown that the average in-core burnup 

achieves a constant value of ~31 GWd/Te at ~ 3300 FPDs (Fig. 3.5a). The in-core excess 

reactivity has been maintained near 10mk throughout the core followup (Fig. 3.5b). 

 

Fig 3.5d Maximum mesh power vs full power days 
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The MMP was maintained well below 200kW during the refueling study. It was also observed 

that after all the initial core clusters have been discharged (at 3300 FPDs), the MCP can be 

maintained close to 2.90 MW. The initial core clusters have been discharged on priority (Fig. 

3.5e). The cumulative discharge burnup of all equilibrium core cluster discharged is ~ 56 

GWd/Te. Further, the discharge burnup of last 100 clusters discharged is ~ 59 GWd/Te. During 

the above mentioned study of refueling strategy for AHWR-LEU core, a mini batch (4 channels 

with quarter core mirror symmetry) refueling scheme was used to control the power peaking. 

 

Fig 3.5e Cumulative discharge burnup vs full power days 
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3.6 Conclusions 

In this chapter, the problems related to fuel management were discussed for reactors with on-

power refueling and off- power refueling. The unique features related to fuel cycle of AHWR-

LEU were also discussed. The in-core fuel management in AHWR-LEU requires on-power 

refueling strategy with high fissile content fuel cluster. Incorporating these two diverse features 

(on-power refueling and high fissile content fuel) belonging to two different types of reactors 

namely PHWRs and LWRs which have contradicting requirements, into one reactor (AHWR-

LEU) is a new and complex problem. It was observed that the conventional way of doing 

refueling in AHWR will not serve the purpose as it is not possible to control the peaking using 

direct refueling. Therefore, a special refueling strategy which is optimal combination of PHWR 

and LWRs refueling strategy was devised. In this special refueling strategy, it is proposed that if 

each refueling operation is followed by reshuffling operation, significant reduction in power 

peaking can be achieved. It is also proposed that by defining a few factors like refueling and 

reshuffling factor, the priority of channels can be defined for selection for refueling or 

reshuffling by giving weightage (assigning refueling and reshuffling factor) to each channel 

based on its channel power, fuel type, location and burn up. 

To choose a set of refueling and reshuffling inputs from a large number of available 

combinations, the channels based on their refueling factor and reshuffling factor can be selected 

for one refueling simulation. A computer code CARSH was developed by using the remedy 

worked out in this chapter. CARSH can automatically generate the various refueling inputs 

(selection of channels for refueling and reshuffling) required for special refueling strategy and 

carry out the refueling simulations for AHWR-LEU core.  
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It is observed that by using this special refueling strategy, peaking during the transition phase 

and equilibrium phase has been substantially reduced. The MCP during transition phase is 

observed below 3.1 MW as compared to 7.0 MW observed during direct refueling. And after the 

transition period is over the MCP can be maintained below 2.9 MW which is very close to 

design limit of 2.85 MW. The MMP can be maintained below its design limit of 200 kW 

throughout the reactor operation period. It is also observed that the target discharge burn-up is 

also achievable if this special refueling scheme is implemented. However, continuous operation 

of reactor is not possible at 100 % FP and there is still scope for improvement by adding more 

reshuffling operations.  
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CHAPTER 4 

Refueling With Double Reshuffling  

 

 

 

 

4.1 Introduction 

The special refueling scheme devised for AHWR (as described in chapter 3) could successfully 

demonstrate its equilibrium fuel cycle to a limited extent. It was observed that a considerable 

scope of enhancement in computer code CARS is there to develop a better refueling strategy 

which can further improve the core operational parameters like MCP and MMP during transition 

period of core. To identify the areas in which improvement is feasible, the micro-details of the 

core parameters extracted in our last study using computer code CARS were carefully 

scrutinized and following observations were made. 

a) The power peaking is more dominant during the pre-equilibrium phase (transition 

phase). And it becomes difficult to control power peaking below design limit of 2.85 

MWth by adopting single reshuffling along with refueling. Further, the in-core 

burnup distribution profile at 3300 FPDs was observed to be different from 

equilibrium core burnup distribution estimated from time average calculations. This 

leads to increase in time to reach the target discharge burnup of cluster.  
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b) To maintain a symmetric power distribution and lower radial peaking, a mini batch of 

4 channels which are quarterly symmetric is chosen at each refueling. We have used 

quarter core mirror symmetry and it was observed that due to the quarter core mirror 

symmetry, certain channels near to axis of symmetry (boundary of quarter core) were 

not getting selected for refueling as it causes power peaking in that region. Therefore 

these channels are getting overdue for refueling (as shown in Fig 4.1). As a result 

some other channels were getting discharged pre-maturely and leading to overall loss 

in discharge burnup. 

 

Fig 4.1 Mirror symmetry of AHWR core  
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c) It takes a long time (7-10 days) to develop the refueling strategy on a personal 

computer. The code has been running everyday for 8-10 hrs.    

In this chapter, we have tried to address the problems faced with the refueling strategy developed 

using single reshuffling scheme by adding few enhancements in computer code CARS. 

Development of a new refueling scheme has been described where each refueling operation is 

followed by two reshuffling operations. A new subroutine was developed which can do 

automatic refueling for AHWR using this scheme. An efficient refueling strategy was developed 

which is a mixture of all the refueling schemes proposed namely direct refueling, refueling with 

single reshuffling and refueling with double reshuffling scheme. To minimize the peaking 

problem near the axis boundary of core, we have tried to exploit rotational symmetry of core. To 

reduce the time period of simulations, parallel processing has been used. Section 4.2 describes 

the various modifications suggested for improvement in results during refueling studies of 

AHWR-LEU and further development of computer code CARS. Section 4.3 details the results 

obtained after developing refueling strategy using the modified version of computer code CARS 

incorporating various new features. Section 4.4 gives the conclusions and scope for future 

research. The results have been published in International scientific journal Thakur et. al., 2013 

and in international conference Thakur et. al., 2011. 

4.2 Modifications in CARS for a better refueling strategy 

As discussed in last section, necessary modifications are required in computer code CARS to 

maintain 100 % FP operation of reactor during transition period. To improve the peaking 

problem during transition phase of core, it is advised that more number of reshuffling operations 

should be done with each refueling. Therefore, we have added one more subroutine in code 
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CARS which selects the set of channels such that each refueling is followed by two reshuffling 

operations. This refueling scheme is named as refueling with double reshuffling scheme. To 

rectify the problem arising due to selection of quarterly mirror symmetric channels, rotational 

symmetry is considered as another modification. Further to reduce the time of simulations, 

parallel processing has been considered. The details of all the modifications are given below.   

4.2.1 Refueling with double reshuffling scheme 

During the transition phase from initial core to equilibrium core, single reshuffling along with 

refueling was not capable to control the power peaking to desirable extent.  

 

Fig 4.2 Schematic representation of refueling with double reshuffling scheme 



Chapter 4  Refueling With Double Reshuffling 

58 

 

In order to control the power peaking in transition phase (for ~ 33000 FPDs), double reshuffling 

along with refueling scheme was adopted. For incorporating double reshuffling scheme, one has 

to select three quarterly symmetric channels from one quadrant which comprise of 
111

P3 (~ 

1330800) combinations. However, in our remedy, we have avoided simulations of all these 

combinations and tried to minimize the simulation to the best candidates for refueling and 

reshuffling channels. In this scheme the core is assumed to be divided into three zones (namely 

inner, middle and outer zones). In the present case, the three zones have been chosen to be same 

as burnup zones, decided after equilibrium core burnup optimization for time averaged core 

calculations. This will ensure that the burnup profile and power distribution will remain 

comparable to equilibrium core burnup profile and power distribution. The outer zone channel 

with lower burnup is replaced with fresh fuel cluster and the irradiated cluster from the outer 

zone is shifted to middle zone to replace the cluster with relatively higher burnup. Finally the 

irradiated cluster from the middle zone is shifted to the inner (central) zone to replace the fuel 

clusters which are due for discharge to spent fuel bay (Fig. 4.2).  The burnup ranges for shifting 

the fuel from outer zone to middle zone and middle zone to inner zone are decided based on fuel 

type used and burnup distribution available in the core. 

To incorporate this scheme into CARS, the core has been divided into three zones (Fig. 4.2) and 

the refueling factors (as described in chapter 3) have been assigned to all the channels in the 

core. Thus the three channels from three zones (outer, middle and inner) of the same quadrant of 

the core with maximum refueling factors are chosen for refueling with double reshuffling. 

Similarly by adopting quarter core symmetry the channels from other three quadrants are picked 

up for reshuffling and refueling. These combinations are simulated by FEMINA and the 

operational parameters like MCP, MMP and core power distribution is estimated. Further, if the 
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operational parameters are beyond their designed limit then the zone of maximum powered 

channel is observed. The channel with next higher refueling factor from this zone is considered 

for modified refueling input. The process is repeated till we find suitable operational parameters 

after refueling.  

4.2.2 Use of π/2 rotational symmetry instead of mirror symmetry  

It was also observed that the quarter core mirror symmetry was not suitable for refueling of 

certain channels near the quarter core boundary (near the axis of symmetry) and it causes power 

peaking.   

 

Fig 4.3 Mirror symmetry and rotational symmetry of AHWR core  
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More explicitly, the refueling of the channels marked as ‘X’ in Fig 4.3 was commonly being 

rejected due to power peaking, as the symmetric channel in the nearby quadrant is quite close. 

The adoption of reshuffling along with refueling scheme was capable to control the peaking to 

limited extent only. As a result these channels were getting over due for refueling. 

The AHWR core also has a π/2 rotational symmetry. Hence, adoption of π/2 rotational symmetry 

provides sufficient distance between the two channels in the neighboring quadrants. As an 

example the channels marked as ‘Y’ in Fig 4.3 are sufficiently away from the π/2 rotational 

symmetric channels of the other quadrants. Adoption of π/2 rotational symmetry was proved to 

be very useful in reducing power peaking. It was observed that by adopting refueling with double 

reshuffling scheme along with π/2 rotational symmetry, the power peaking during the pre-

equilibrium phase of refueling was controlled substantially. However, following problems were 

observed by adopting double reshuffling scheme; 

� The number of refueling machine operations increased. 

� After sometime during refueling it was observed that there is flux depression in the 

inner region of the core.  

The above mentioned problems were resolved by adopting a refueling scheme based on the 

combination of three refueling schemes viz. refueling without reshuffling (direct refueling), 

refueling with single reshuffling and refueling with double reshuffling scheme. For this purpose 

the zonal power of each zone is monitored and compared with equilibrium core power 

distribution at each step. The flux distribution at each refueling has been maintained near to the 

equilibrium core flux distribution by adopting the desired refueling scheme. The improved flow 

chart of CARS is shown in Fig 4.4. 
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Fig 4.4 Flow chart of CARSH (modified for incorporating double reshuffling scheme along with 

single reshuffling scheme) 
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4.2.3 Use of parallel processing to accelerate the speed 

In this advance era of computing and with the increasing computational power, it is possible to 

enhance the efficiency and speed of a code using parallel processing even on shared memory 

architecture like personal computers. In case of CARS, the parallel processing has been used to 

increase its speed. A parallel processing interface like MPI (Massage passing interface) or 

OpenMP (Open Multi Processing) can be used for task sharing, increasing the efficiency and 

reducing the time for simulations. 

 

Fig 4.5 Schematic diagram of task sharing in parallel processing 

It is easier to convert a sequential program to parallel on a shared memory model using OpenMP. 

Therefore, we have used OpenMP (Barney, https://computing.llnl.gov/tutorials/openMP/) which 

is an application processing interface for parallel processing on shared memory architecture. MPI 

could have been a better alternative if our requirement is higher than 8 cores and across the 

server parallelization is necessity. OpenMP is an implementation of multithreading, a method of 

parallelizing whereby a master thread generates a specified number of slave threads and a task is 

divided among them (Fig.4.5). The threads then run concurrently, with the runtime 

Master Thread 

Slave Thread ‘1’ Slave Thread ‘2’ Slave Thread ‘3’ Slave Thread ‘n’ 

Master Thread  
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environment allocating threads to different processors. The idea is to generate pre-decided 

preferable refueling inputs and then run multiple FEMINA executables with these different 

inputs in parallel mode. We have used OpenMP to parallelize CARS on INTEL i7 960 

(3.20GHz) computer. Right now eight slave threads are being generated which simulates 

different refueling inputs concurrently. The most compatible input is chosen by comparing the 

outputs. If no input is found compatible, then next set of eight inputs will be considered. We 

could reduce the time for simulation of 180 refueling (5700 FPDs) from ~8 days to ~ 1 day, 

thereby getting 8 times improvement in speed utilizing the 8 core computer. 

4.3 Results of Simulations carried out by modified computer code CARSH 

4.3.1  Refueling studies for AHWR-LEU 

 

Fig 4.6 Core average burnup vs full power days 
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Based on the earlier studies on the equilibrium core cluster and making all the improvements 

from past experience in to CARS, the same equilibrium core cluster (Table 3.2, chapter 3) was 

studied to facilitate the on-power refueling of AHWR-LEU.  

 

Fig 4.7. Core excess reactivity vs full power days 
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of~31GWd/Te. The core excess reactivity has been maintained nearly 10 mk throughout the 

follow up as shown in Fig 4.7. The variation of MCP with FPDs is shown in Fig 4.8. It is 

observed that the MCP can be maintained below 2.85 MWth throughout the core followup 

studies. The refueling strategy devised by the modified computer code shows that 100% FP 

reactor operation is possible in all stages of reactor core. The variation of MMP with FPDs is 

shown in Fig 4.9. The MMP has been maintained within the design limit of 200 kW. Figure 4.10 

shows time of the discharge of various types of clusters from the core and it is evident that the 

computer code CARSH has discharged the various types of fuel clusters in the desired order. The 

initial core clusters have been completely discharged from the core at about 3300 FPDs. 

 

Fig 4.8. MCP vs full power days 
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Hence from the 3300 FPDs to 5700 FPDs the refueling operation has been carried out by 

replacing the irradiated equilibrium core cluster with the fresh equilibrium core cluster. A total 

number of 800 channels (200 mini-batches of 4 channels) have been refueled from onset of 

refueling to 5700 FPDs. The discharge burnup of the equilibrium core clusters have been given 

in Fig 4.11. It shows that the discharge burnup of the equilibrium core clusters progressively 

improves to ~ 60.0 GWd/Te. It has been observed that the refueling in the initial 1000 FPDs of 

the pre-equilibrium phase is dominated by refueling with double reshuffling scheme. After 1000 

FPDs onwards the refueling with single reshuffling scheme becomes dominant. The details of 

refueling schemes adopted during the followup are given in Table-4.1. 

 

Fig 4.9 MMP vs full power days 
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Fig 4.10 Cumulative discharge burnup vs full power days 
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(Fig 4.12 and 4.13). To improve core key parameters, single reshuffling scheme was 

incorporated. However, the results were still not very satisfactory during transition phase. Hence, 

double reshuffling scheme has also been used to maintain all the core key parameters within 

design limits. 

The comparison of few core key parameters generated from these refueling strategies is given in 

Table-4.2. The Table-4.2 shows that by using direct refueling scheme (no reshuffling), it is 

impossible to maintain MCP and MMP within the design limits. Also, the discharge burn-up 

achieved is ~55 GWd/Te. 

 

Fig 4.11 Discharge burnup vs number of equilibrium core clusters discharged 
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This is ~5GWd/Te lower than the target discharge burn-up of ~60 GWd/Te. The loss in 

discharge burn-up may be due to refueling ripples and un-even flux distribution due to the 

followed refueling strategy. The adoption of single reshuffling scheme has helped to control the 

power peaking to a significant extent. Moreover, the discharge burn-up also improves to ~58 

GWd/Te.  

Table-4.1 Details of different refuelling schemes adopted during follow up studies 

Burnup 

interval (in 

FPDs) 

Total 

refuelings 

(mini batch) 

Double reshuffling 

refueling scheme 

Single reshuffling 

scheme 

No reshuffling 

(Direct refueling 

scheme) 

0 - 350 0 - - - 

350 - 1380 50 41 9 0 

1380 - 2380 36 8 28 0 

2380 - 5700 114 0 113 1 

Table-4.2 also shows that all the core key parameters can be maintained within design limits by 

incorporating double reshuffling scheme. Figures 4.12 and 4.13 compare the MCP and MMP 

respectively for the different refueling schemes as discussed above. It is observed that the 

variation in MCP and MMP for direct refueling is ranging from 2.5 MW to 6.8 MW and 140kW 

to 360 kW respectively. 

Table-4.2 Comparison of core key parameters for different refuelling schemes 

Refueling 

Scheme 

adopted 

MCP 

(MW) 

MMP 

(kW) 

Discharge 

burnup achieved 

(GWd/Te) 

In-core excess 

reactivity 

maintained (mk) 

Direct 

Refuelling 
2.5<MCP<6.9 140<MMP<380 55 ~10 

Single 

Reshuffling 
2.5<MCP<3.15 140<MMP<185 58 ~10 

Double 

Reshuffling 
2.5<MCP<2.85 140<MMP<180 59 ~10 
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These variations are very large. The variations in MCP and MMP have been controlled to a large 

extent by adopting single reshuffling scheme, where the variation in MCP and MMP  have been 

ranging from 2.5 MW to 3.1 MW and 140kW to 180kW respectively. These results were further 

refined by adopting double reshuffling scheme.  

 

Fig 4.12 MCP variation for different refueling schemes 
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Fig 4.13 MMP variation for different refueling schemes 
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(up to 1400 FPDs) of core to control the peaking. However, the refueling machine operations 

decrease from 3.8 channels/week to 1.9 channels/week as we move from transition phase 

towards the equilibrium phase of core. In the equilibrium core, the refueling with single 

reshuffling plays the dominant role in proposed refueling strategy. To reduce the time period of 

simulations, parallel processing has been used. It is observed that the time for simulations has 

been reduced by a factor of eight.  

The modified computer code CARSH has been used for automatic selection of channels for on-

power refueling study and for developing refueling strategy of AHWR-LEU. It is observed that 

the core operational parameters like MMP, MCP are remained below their design limit at all 

stages of reactor operation. The target discharge burn-up of ~59 GWd/Te is also achievable by 

using this refueling strategy. The use of CARSH has reduced the manual efforts for the selection 

of channels for refueling to a great extent. The CARSH has made the study of various types of 

equilibrium core clusters for AHWR-LEU in a very short time. It has also helped in the design 

and optimization of burnable poison content in the equilibrium core cluster. The CARSH has 

given the knowledge about the micro details of the on-power refueling of the AHWR-LEU core. 

The study has brought many important features of the refueling strategy for AHWR LEU core. 

The present study has been able to develop confidence that the on-power refueling in AHWR-

LEU can be reality.  

For future work, refueling strategy can be planned on the similar lines for Indian PHWRs for 

facilitating the use of high fissile content U based fuel or Th based fuel for lower waste 

generation and higher burnup. As PHWR uses small length bundles and is a forced circulation 

system, better margins are expected as compared to AHWR for controlling the power peaking.  
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The studies described (in chapter 3 and 4) have shown that the efficient fuel utilization could be 

possible in pre-equilibrium (transition phase) and equilibrium phase of reactor operation in 

reactors like AHWR by following specific refueling scheme. However, the fuel utilization during 

initial phase of core is also important and needs to be addressed properly for a complete fuel 

cycle study for AHWR.  



74 

 

CHAPTER 5 

Loading Pattern Optimization Using Estimation of Distribution 

Algorithm (EDA) 

 

 

 

5.1 Introduction  

The unique features of AHWR (on power refueling and high discharge burn-up fuel) necessitates 

the requirement of a special refueling scheme for an efficient fuel utilization in transition and 

equilibrium phase. In the last two chapters (chapter 3 and 4) in-core fuel management in AHWR-

LEU has been demonstrated through the development of specialized refueling scheme. However, 

fuel management during initial phase is also a challenging problem and needs to be addressed. 

The average U-235 content in equilibrium core cluster of AHWR-LEU is about 4.29 %. Loading 

of equilibrium core cluster in initial core of AHWR-LEU will impose the requirement of large 

quantity of poison (Boron) in the moderator to suppress initial excess reactivity. The large 

quantity of Boron dissolved in moderator will adversely affect the worth of control and shut 

down system in addition to its adverse effect on various reactivity feedbacks. Therefore, the 

initial core clusters for AHWR are being designed to have lesser excess reactivity. For flux 

flattening in initial core of AHWR-LEU, two fuel clusters with differential reactivity have been 

considered. The cluster with more reactivity is named as Type-1 and with lesser reactivity is 

called Type-2. The AHWR-LEU core consists of 444 fuel lattice locations. By exploiting 



Chapter 5 Loading Pattern Optimization Using EDA 

75 

 

symmetry of the core, the problem size for AHWR-LEU initial core optimization is 2
62 

(~10
18

). 

Simulation of all these loading patterns is not practical in a finite time scale to choose the best 

loading pattern.  

In this chapter, the complex combinatorial optimization problem of optimization of initial core 

loading pattern (LP) has been solved using one modern population based algorithm named as 

estimation of distribution algorithm (EDA). This optimization problem has similarities with 

PHWR initial core LPO (Balakrishnan and Kakodkar (1994), Mishra (2009)) and with various 

loading pattern optimization problems in LWR fuel cycle. As discussed in chapter 1 & chapter 3 

(section 3.1), population based algorithms are more effective and are frequently being used for 

fuel loading pattern optimization (LPO) problem. Genetic algorithm (GA) (Goldberg, 1989; 

Parks, 1996; Chapot et al., 1999), Simulated Annealing (SA) (Stevens et al., 1995) and Ant 

Colony Algorithm (ACO) (Machado and Schirru, 2002) are few examples of population based 

evolutionary algorithms which have been successfully applied for core reloading optimization 

problems of Light water reactors (LWRs). Estimation of Distribution Algorithm (EDA) (Jiang et. 

al. 2006) has been applied successfully to CONSORT research reactor where five different types 

of fuels are to be loaded in 24 locations with the objective of maximization of k-effective. The 

typical size in this problem is ~10
12

. Jiang et al. has considered a population size of 50 in each 

generation along with a very small value of weighing factor ‘α’ (0.001). Jiang et. al. carried out 

more than 2000 generations and it is only possible because the objective function considered is 

maximization of k-effective only. And the prediction of k-effective is done by Artificial Neural 

Network (ANN) (Jiang et. al. 2006). By using ANN, a large number of loading patterns can be 

analysed for k-effective values in very short time. Mishra et. al., 2009 has successfully applied 

EDA to initial core loading optimization of pressurized heavy water reactors (PHWRs). The 
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problem size is ~10
65

. They have tried to find the optimized loading pattern with fixed number of 

Th or depleted U fuel bundles. They have defined objective function based on penalty method 

(Michalewicz, 1999) and have also used EDA for optimization of initial core of PHWR. Due to 

the complexity of objective function, full 3D diffusion calculations are required which 

necessitate the use of parallel processing. Mishra et. al, 2009 have used earlier experience  

(Balakrishnan and Kakodkar, 1994) for fixing the number of Thorium bundles.  It is also 

observed (Mishra et. al., 2009) that the optimized loading pattern with lower population is better 

than the optimized loading pattern with higher population size in some cases. In their analysis, 

they have considered same value of weighing factor ‘α’ (0.05) for all the population sizes.  

In the optimization analysis presented in this chapter, we have applied EDA to optimize initial 

core of AHWR-LEU and it is observed that the optimization results are very sensitive to 

weighing factor ‘α’ and population size of each generation. It is also observed that while 

choosing a very small value of weighing factor ‘α’ with large population size, algorithm may 

lead to unnecessary computations and may not always lead to a good optimized loading pattern.  

The main focus in this chapter is to optimize the initial core of AHWR-LEU using Estimation of 

Distribution Algorithm (EDA). During this study, it was observed that EDA itself is very 

sensitive to the various internal parameters used for updating the probability distribution function 

after each generation. An extensive study was done to determine adequate parameters used in 

EDA for better optimized loading pattern. We have studied the effect of variation of weighing 

factor ‘α’, population size in each generation and initial distribution function on the final 

optimized loading pattern. 
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In this chapter, we have tried to establish that considering a very small value of weighing factor 

‘α’ for any population size during each generation results in search around local area only. 

Therefore the good solutions which are far away from initial distribution function may not get 

explored. Therefore, with increase in population size, value of weighing factor ‘α’ should also be 

increased for better optimization. The plan of this chapter is as follows 

Section 5.2 gives the details of the initial core optimization problem for AHWR-LEU. Section 

5.3 gives a brief description of earlier attempts for initial core LPO of AHWR. Section 5.4 

describes the objective function considered. Section 5.5 gives the description of EDA and the 

various parameters used in this algorithm. Section 5.6 gives the numerical results for variation of 

weighing factor ‘α’, population size and initial probability distribution function. Conclusions are 

discussed in Section 5.7.   

5.2 AHWR-LEU initial core loading pattern optimization problem 

As described in chapter 1, the AHWR-LEU core consists of 513 lattice locations. Out of 513, 

there are 444 fuel lattice locations and 69 locations are occupied by various control and shut 

down devices comprising of 45 SORs, 8 RRs, 8 ARs, and 8 SRs. There are two types of fuel 

clusters being considered for initial core of AHWR-LEU for flux flattening. Table-3.1 (chapter 

3) presents the core configuration of the AHWR-LEU core and Table-5.1 gives the description of 

initial core clusters considered for present study. Neutron Transport Theory computer code 

ITRAN (Krishnani, 1981; Krishnani, 1982a (pp. 255–260); Krishnani, 1982b (pp. 287–296)) has 

been used to perform the lattice calculations for the AHWR-LEU initial core clusters. The 

calculations were performed by using 69-group library based on ENDF/B-VI.8 nuclear data 

obtained from IAEA (IAEA, 2016). Two energy group cross sections for both the clusters were 

generated using ITRAN. Diffusion theory code FEMINA (Kumar and Srivenkatesan, 1984) 
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based on nodal expansion method has been used to carry out the core level calculations with two 

group crosssections generated using ITRAN.  

Table-5.1 Description of AHWR-LEU cluster studied for initial core optimisation  

Cluster type 
Fuel 

Type  

Gd 

content 

LEU content (%) in various rings of 

cluster 
U-235 

content 

(%) 

K∞ (0 

MWd/TeX

e sat.) Inner Middle Outer 
Cluster 

Average 

Type-1 
(LEU-

Th) 

MOX 

No Gd 13 13 13 13 2.56 1.084 

Type-2 

7% Gd in 

2 pins of 

inner ring 

13 13 13 13 2.56 0.9813 

 

There are 2
444 

(~10
133

) different possible ways with which the two types of fuels can be loaded in 

the core. The quarter core symmetry reduces the number of combinations to 2
111

(~10
33

). The 

problem size can be further reduced to 2
62 

(~10
18

) by exploiting 1/8
th

 mirror symmetry of few 

channels as shown in Fig 5.1. The main objectives for initial core optimization have been defined 

as: 

1.  K-effective is maximized. 

2. Worth of Shut down system should be always greater than design requirement (63mk).  

3. Maximum channel power (MCP) should be below the design limit of 2.6MWth. 

4. Maximum mesh power (MMP) should be below the design limit of 200kWth. 

It is a complex combinatorial optimization problem.  

5.3 First attempt to optimize initial core LP of AHWR-LEU 

The AHWR initial core LPO was first dealt with using a two zone distribution approach (Thakur 

et. al. 2008). In this approach, the core is divided into two zones namely inner zone and outer 
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zone. For flat flux distribution, inner zone is loaded with low reactive clusters and outer zone is 

loaded with high reactive clusters. The optimal number of channels for each type of fuels was 

estimated by optimizing the size of inner and outer zone such that the MCP and MMP achieve its 

design limit. However, in the optimized LP, it was observed that the inner zone has power dip as 

it consists of mainly lower reactive fuel clusters. Further, no constraint was applied for SDS 

worth therefore the required shut down margin was also not available for the optimized LP. 

 

Fig 5.1 Symmetry of AHWR-LEU core 
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As a next step, the implementation of conventional methods like Gauss Newton method 

(Balakrishnan and Kakodkar, 1994) to solve AHWR initial core LPO problem was tried. It was 

observed that use of Gauss Newton method is very difficult in two respects 

(i) This method requires a very good initial guess LP to start with and near to which the 

optimized solution is searched.  

(ii) The variable chosen for this method (like average distance of some type of clusters to core 

boundary or core center) needs to be mapped back to position-wise core configuration to form 

the updated loading pattern at each step of optimization process. 

This method was applied for AHWR LPO problem in a similar way as described in chapter 1 

(Balakrishnan and Kakodkar, 1994) and the optimized loading pattern generated from two zone 

studies as described in starting of this section was considered as a initial guess solution. 

However, it was very difficult to update the variables by mapping back to position-wise core 

configuration and we could not succeed in achieving a better optimized loading pattern. 

Therefore, it was decided to use more efficient population based modern methods (evolutionary 

algorithms) for solving initial core LPO problem.  

5.4 Objective function defined for evolutionary algorithms 

As described in chapter 1, Evolutionary Algorithms (EA) uses a black box approach where the 

knowledge of how the objectives are related to the control variables is not used, but an 

evaluation of the candidate solutions is done at each iteration / generation and different learning 

strategies are used to structure information in order to find near-optimal solutions. 



Chapter 5 Loading Pattern Optimization Using EDA 

81 

 

For applying EA to initial core LPO of AHWR, an objective function is defined and is 

maximized. For AHWR initial core, penalty method has been used to define the objective 

function in a similar way to Mishra et al., 2009.  

The objective function (OF) for this problem is defined as 

     fL = (g� ∙ i˗kll) − g	(m�d − 2.6) − g
(mmd − 200) − g�(63.0 − pqrsℎ ql �c�˗1u43rqwxy)   (5.1) 

where A1, A2, A3 and A4 are constants. The description about choice of these constants has been 

given in appendix-I. In this optimization problem, the value of A1 is taken as 1. For optimization 

studies SDS-1 (43 rods, two maximum worth rods failure criteria) worth requirements of 63.0 mk 

have been considered.  

Further, if MCP of a LP is < 2.6, then A2 =0, else A2=0.384. 

Similarly, if MMP< 200, then A3=0, else A3=0.05.  

And worth of SDS-1> 63.0, then A4=0, else A4=0.333.  

Hence, we are considering only the penalty due to design parameters not meeting their design 

limit, but we do not prefer any LP which is having very high margins in peaking or SDS-1 worth. 

The criteria are to maximize the K-effective without compromising full power operation and 

safety of reactor. 

The AHWR initial core is expected to require small amount of neutron poison (~25 ppm of 

Boron) in moderator to compensate initial excess reactivity. Therefore, all the simulations have 

considered with 25 ppm of B in moderator.  

5.5 Estimation of Distribution Algorithm (EDA) 
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We have used estimation of distribution algorithm (EDA) to optimize initial core LP of AHWR. 

EDA is a population based evolutionary algorithm where the optimized solution is achieved by 

sampling the probability distribution model which is generated based on current best solutions. 

We start with an initial probability distribution function and generate probable pool of candidate 

solutions based on this probability distribution function. After evaluation of the objective 

function value for all the candidates in the present sample, the probability distribution function is 

modified by giving some weight to current best solutions. Univariate marginal distribution 

algorithm (UMDA) (Muhlenbein and Paab, 1996;Jiang et al., 2006) has been used to estimate the 

probability distribution in present study. Jiang et. al., 2006 has described three variants of EDA 

named as EDA-S, EDA-G and EDA-H. All the three variants have similar description as given 

below:- 

Step-1: Generate a population (N) of different loading patterns based on initial distribution 

function. This population consists of solution candidates for fitness estimation. In each 

generation, same population size (N) is maintained and is evaluated. However, the candidates in 

the pool are modified from the feedback given by previous generation. 

Step-2: Simulate all the candidates of this population by solving diffusion equation using 

FEMINA and objective function for all the candidates are evaluated.  

Step-3: Select best M <N candidates based on objective function values 

In present study, M  is considered as 25% of N. 

Step-4: The distribution function (DF) for generating loading pattern is modified 

For EDA-S 
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DF (t+1) = DF (t) · (1-α) + α · X    (5.2) 

where, ‘α’ (weighing factor) is a constant and its value is between 0 and 1. DF(t) and X are 

having same structure. ‘t’ represents the generation. 

Where   X = 
�{ · ∑ X}(t){}��     (5.3) 

Xi(t) is 0 or 1 based on the loading of a particular fuel in fuel lattice location. 

This is the most basic form of EDA. However the algorithm can be made more efficient by using 

heuristic information to update the DF. The EDA-H use of heuristic information also 

For EDA-H 

DF (t+1) = DF (t) · (1-α) + α · X    (5.4) 

     DF(t+1)=DF(t+1) ·H
β
         (5.5)  

Where, 'H' contains the heuristic information and 'β' is a scalar adjusting the weight between 

population based learning and heuristic information. 

For EDA-G 

Similarly, another way of enhancing the performance is to use elitism strategy. That is at each 

iteration, current best solution is kept and due weight is given to it for updating DF 

DF (t+1) = DF (t) · (1-α) + α · X + η · Xb    (5.6) 

Step-5: Again generate the population of different loading patterns based on new distribution 

function 

Step-6: Go to step-2 and repeat the cycle till optimization is achieved 
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We have used most basic form of EDA named as EDA-S given by equation 5.1. In our present 

study, two initial distribution functions have been considered. As discussed earlier, the Type-2 

fuel is lesser reactive than Type-1 fuel. It is evident that the optimized core will have more 

number of Type-1 fuel clusters than Type-2 fuel clusters. Hence, both the initial distribution 

functions should generate loading pattern with more number of Type-1 fuel cluster and less 

number of Type-2 fuel clusters. Following is the details of initial distribution function 

considered:- 

I. The distribution function is such that the loading pattern generated by it should have ~60 

% of Type-1 fuel cluster and ~40% of Type-2 fuel clusters 

II. The distribution function is such that the loading pattern generated by it should have ~80 

% of Type-1 fuel cluster and ~20% of Type-2 fuel clusters 

The loading patterns are generated using random numbers by following the criteria that for a 

channel if random number is less than 0.6 or 0.8 then Type-1 will be loaded else Type-2 will be 

loaded. Both the cases have been analysed for three different population sizes (24, 240 and 1200) 

and three different values of ‘α’ (0.05, 0.1 and 0.5). The distributed memory parallel computer 

system AGGRA at BARC was used for parallelization and computation of N (24, 240 or 1200) 

independent objective functions by running FEMINA. 

5.6 Results of EDA on AHWR-LEU initial core loading pattern 

optimization 

The study of varying initial distribution function has been divided in two parts as described 

above.  

Case-I: Initial distribution function is 0.6 for Type-1 and 0.4 for Type-2 
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In this case the loading patterns are generated by generating random number for each fuel 

channel and setting the criteria that if the random number generated is less than 0.6, Type-1 

cluster will be loaded else Type-2 cluster will be loaded. In this way, the Type-1 clusters will be 

~60% and Type-2 clusters will be ~40%. Now three different values of population sizes (24, 240 

and 1200) have been considered. 

Case-I(a):   Population size of 24 in each generation 

 

Fig.5.2 (Case-Ia) Variation of objective function with generations for three values of α (0.05, 0.1 

and 0.5) for population size of 24 in each generation for initial distribution of 0.6 for Type-1 and 

0.4 for Type-2. 
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The three values of α considered are 0.05, 0.1 and 0.5. The first case of population size of 24 and 

α=0.05 belongs to very small population size and very small ‘α’. The best value of objective 

function in 400 generations is 0.9870. After increasing the value of α to 0.1, the best value of 

objective function in 400 generations improved to 0.98790. By further increasing the value of α 

to 0.5, the best value of objective function in 150 generations improves marginally to 0.9965.  

Case-I(b):-   Population size of 240 in each generation 

 

Fig.5.3 (Case-Ib) Variation of objective function with generations for three values of α (0.05, 0.1 

and 0.5) for population size of 240 in each generation for initial distribution of 0.6 for Type-1 

and 0.4 for Type-2 
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The variation of best value of objective function with generation number for different values of 

α, is shown in Fig 5.2. It is observed that there is very small or negligible improvement in 

optimized value of objective function by increasing α from 0.05 to 0.5. 

In the second step, we tried the simulations considering higher population size of 240 in each 

generation. The three values of α considered are 0.05, 0.1 and 0.5. The first case of population 

size of 240 and α=0.05 belongs to moderate population size and very small ‘α’. The best value of 

objective function in ~130 generations is 0.9954. After increasing the value of α to 0.1, the best 

value of objective function in 130 generations improved to 1.0074. By further increasing the 

value of α to 0.5, the best value of objective function in 150 generations improves marginally to 

1.009530. The variation of best value of objective function with generation number for different 

values of α is shown in Fig 5.3. On comparison with case-I(a), it is observed that there is 

significant improvement in optimized value of objective function. It is also observed that for 

very small value of α (0.05), the optimized value of objective function is poor (0.9954) for both 

cases (case 1a & 1b).  

Case-I(c):-   Population size of 1200 in each generation 

By further increasing the population size to 1200 in each generation and considering three values 

of α as 0.05, 0.1 and 0.5, following observations were made. The first case of population size of 

1200 and α=0.05 belongs to large population size and very small ‘α’. The best value of objective 

function in ~130 generations is 0.9955.  
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Fig.5.4 (Case-Ic) Variation of objective function with generations for three values of α (0.05, 0.1 

and 0.5) for population size of 1200 considered in each generation for initial distribution of 0.6 

for Type-1 and 0.4 for Type-2. 

This value is comparable to case-I(a) and I(b) for α =0.05.  It means the algorithm still fails for 

α=0.05. After increasing the value of α to 0.1, the best value of objective function in 130 

generations improved to 1.0079. By further increasing the value of α to 0.5, the best value of 

objective function in 150 generations improves marginally to 1.009530. The variation of best 

value of objective function with generation number for different values of α is shown in Fig 5.4. 
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the population size from 24 to 240 or 1200 for same value of α=0.05, there is very slight or 

negligible improvement in optimized value of objective function to 0.9936 and 0.9956 

respectively. However, after increasing the value of α to 0.1, value of objective function 

improves to 1.0074 in 130 generations for population size of 240 and 1.0079 in 125 generations 

for population size of 1200. By further increasing the value of α to 0.5, value of objective 

function improves to 1.009530 for both the population sizes of 240 and 1200. 

Table-5.2 Properties of loading pattern optimised using EDA for variation of population size and 

α for initial distribution function of 0.6 for Type-1 and 0.4 for Type-2  

α 

Population 

size 

(Generations) 

Initial distribution function of 0.6 for Type-1 and 0.4 for Type-2 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(kW) 

Worth of 

SDS-1 

(mk) 

Type-

1 

Type-

2 

0.05 

24 

(400) 
0.98704 0.98794 2.68 159 63.3 260 184 

240  

(125) 
0.99536 0.99536 2.60 153 63.6 296 148 

1200  

(155) 
0.99551 0.99551 2.59 153 63.3 300 144 

0.1 

24 

(400) 
0.98790 0.98790 2.60 153 63.3 260 184 

240 

(125) 
1.00740 1.00740 2.60 155 63.8 344 100 

1200 

(125) 
1.00790 1.00790 2.59 155 63.9 348 96 

0.5 

24 

(100) 
0.99650 0.99650 2.60 157 64.5 296 148 

240 

(100) 
1.00953 1.00953 2.58 154 63.1 356 88 

1200 

(60) 
1.00953 1.00953 2.58 154 63.1 356 88 

 



Chapter 5 Loading Pattern Optimization Using EDA 

90 

 

Hence, considering very small value of α (0.05) is not correct for AHWR-LEU initial core 

loading optimization problem. By considering small value of α, the optimized solution in near 

vicinity of initial guess distribution function is observed. Table-5.2 shows the results of case-I. 

Case-II: Initial distribution function is 0.8 for Type-1 and 0.2 for Type-2 

From our earlier experience (Thakur, et. al., 2010), we have observed that the optimized initial 

core of AHWR is having ~20% Type-2 clusters and 80% Type-1 clusters.  Hence a case is 

considered where the initial distribution is 80% and 20% for Type-1 and Type-2 respectively. In 

this case the loading patterns are generated by generating random number for each fuel channel 

and setting the criteria that if the random number generated is less than 0.8, Type-1 cluster will 

be loaded else Type-2 cluster will be loaded. In this way Type-1 clusters will be ~80% and Type-

2 clusters will be ~20%. Now three different values of population sizes have been considered 

similar to case-I. 

Case-II(a):-   Population size of 24 in each generation 

The three values of α considered are 0.05, 0.1 and 0.5. The first case of population size of 24 and 

α=0.05 belongs to very small population size and very small ‘α’. The best value of objective 

function in 400 generations is 1.0040. This is better value than 0.98704 observed with same α 

and population size but with different initial distribution function (Case-Ia). After increasing the 

value of α to 0.1, the best value of objective function in 400 generations improved to 1.0044. 

This value is again better value than 0.99536 observed with same α and population size but with 

different initial distribution function (Case-Ia). It shows that EDA gives significantly better 

optimization for small value of α and small population size (24), if the initial distribution 

function is closer to the optimized solution. 
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Fig.5.5 (Case-IIa) Variation of objective function with generations for three values of α (0.05, 

0.1 and 0.5) for population size of 24 in each generation for initial distribution of 0.8 for Type-1 

and 0.2 for Type-2 

By further increasing the value of α to 0.5, the best value of objective function in 130 generations 

reduces drastically to 0.9825. This is worse value than 0.9965 observed with same α and 

population size but with different initial distribution function (Case-Ia). It is showing that the 

algorithm fails for population size of 24 and α=0.5. This is because the population size is very 

small. The variation of best value of objective function with generation number for different 

values of α is shown in Fig 5.5.  
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The three values of α considered are 0.05, 0.1 and 0.5. The first case of population size of 240 

and α=0.05 belongs to moderate population size and very small ‘α’. The best value of objective 

function in ~250 generations is 1.0072. This again is a better optimised value than case-I(b) 

where optimized value is only 0.9954.  

 

Fig.5.6 (Case-IIb) Variation of objective function with generations for three values of α (0.05, 

0.1 and 0.5) for population size of 240 in each generation for initial distribution of 0.8 for Type-

1 and 0.2 for Type-2. 
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function in 130 generations remains same as 1.00953. The variation of best value of objective 

function with generation number for different values of α is shown in Fig 5.6. 

  Case-II(c):-   Population size of 1200 in each generation 

The three values of α considered are 0.05, 0.1 and 0.5. The first case of population size of 1200 

and α=0.05 belongs to large population size and very small ‘α’.  

 

Fig.5.7 (Case-IIc) Variation of objective function with generations for three values of α (0.05, 

0.1 and 0.5) for population size of 1200 in each generation for initial distribution of 0.8 for 

Type-1 and 0.2 for Type-2 
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The best value of objective function in ~130 generations is 1.0050. After increasing the value of 

α to 0.1, the best value of objective function in 130 generations improved to 1.00953. By further 

increasing the value of α to 0.5, the best value of objective function in 130 generations remains 

same as 1.009530. The variation of best value of objective function with generation number for 

different values of α, is shown in Fig 5.7. Table-5.3 describes the results of case-II.  

Table-5.3 Properties of loading pattern optimised using EDA for variation of population size and 

α for initial distribution function of 0.8 for Type-1 and 0.2 for Type-2  

α 

Population 

size 

(Generations) 

Initial distribution function of 0.8 for Type-1 and 0.2 for Type-2 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

SDS-1 

Worth 

(mk) 

Type-1  Type-2  

0.05 

24 

(400) 
1.0040 1.0040 2.60 154 65.1 328 116 

240 

(250) 
1.0072 1.0072 2.59 154 63.1 344 100 

1200 

(145) 
1.0050 1.0050 2.60 156 63.4 336 108 

0.1 

24 

(400) 
1.0044 1.0044 2.60 155 64.5 332 112 

240 

(125) 
1.00953 1.00953 2.58 154 63.1 356 88 

1200 

(125) 
1.00953 1.00953 2.58 154 63.1 356 88 

0.5 

24 

(100) 
0.98259 1.0056 2.66 159 64.0 340 104 

240 

(100) 
1.00948 1.00948 2.59 155 63.2 356 88 

1200 

(50) 
1.00953 1.00953 2.58 154 63.1 356 88 

 

From comparison of Table-5.2 and Table-5.3, it is clear that for all the cases studied, the 

optimized value of objective function is better for case-II than respective case-I. Now, case-I and 
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case-II differ in respect of initial distribution function only. It is observed that Case-I the 

algorithm completely failed for population size of 24. However, we observed much better 

optimization in case-II for same population size of 24. But in both the cases the best optimized 

value is not observed in this population size (24). Hence, it can be concluded that the population 

size of 24 is too small and is not correct for use in EDA on initial core LPO analysis of AHWR-

LEU.  

 

Fig.5.8 Variation of objective function with generations for two population sizes viz. 240 and 

1200 for α=0.5 in EDA and initial distribution of 0.6 for Type-1 and 0.4 for Type-2 as well as for 

initial distribution of 0.8 for Type-1 and 0.2 for Type-2. 
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Similarly, the small value of α=0.05 has not resulted in best value of objective function for any 

case. Therefore, it can also be concluded that the value of α should be greater than 0.05. For 

population size of 240, best value of objective function is observed for α=0.1 and 0.5, however, 

the results are dependent on initial distribution function. For the case where α=0.5 and 

population size is 1200, same value (1.00953) of objective function is observed and there is no 

dependence on initial distribution function.  

The loading pattern corresponding to this value has 88 Type-2 clusters and 356 Type-1 clusters. 

The same optimized value of 1.009530 is observed for α=0.1 and population size of 1200 and 

initial distribution function of 0.8 and 0.2 for Type-1and Type-2 clusters. It shows that if our 

initial distribution function is near to optimized loading pattern, α=0.1 is also adequate and 

minimum population size is 240. However, in no case, α=0.05 has given an adequate 

optimization. Fig 5.8 shows the variation of objective function with generations for two 

population sizes viz. 240 and 1200 for α=0.5 initial distribution of 0.6 for Type-1 and 0.4 for 

Type-2 as well as for initial distribution of 0.8 for Type-1 and 0.2 for Type-2. It is observed that 

almost similar optimization is achieved in all the cases. However, the convergence is faster for 

the case where initial distribution of 0.8 for Type-1 and 0.2 for Type-2 is considered. The 

behavior of average value of DF will give the information about how many Type-1 and Type-2 

clusters will be there in next generation. In Fig 5.9, 5.10 and 5.11 the average value of DF has 

been plotted for all the cases studied. In Fig 5.9a, 5.10a and 5.11a, the starting point is 0.6. This 

is because initially we have uniformly filled 0.6 in all the 62 elements of DF. Now with each 

generation, individual values of 62 element of DF will be updated. This will result in change in 

the average value of DF. Fig 5.9b, 5.10b and 5.11b represents the cases with initial DF of 0.8 for 

Type-1 and 0.2 for Type-2 therefore the starting value is 0.8. From Fig 5.9a and 5.9b, it is clear 
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that the DF is not showing any improvement after ~75 generations for α=0.05 and 0.1. It shows 

that the algorithm has failed. For α=0.5, it has achieved a constant value after ~30 iterations and 

there is no further improvement in DF. It represents that few elements of DF have approached 

the value 1 and others have reached to 0. Since the finalized solution does not show good 

parameters of an optimization, it implies that the algorithm has struck in to local minima. From 

Fig 5.10a and 5.10b, it is observed that for α=0.05 the algorithm has failed similar to the case 

with population size of 24. For α=0.1 and α=0.5, the average value of DF has progressed towards 

0.8 value. For α=0.5, DF has achieved a constant value. The optimized LP achieved shows that 

the MCP, MMP and SDS worth requirements are meeting their corresponding design limits. 

Therefore the optimized LP is a good solution to problem. Similarly for α=0.1, the best 

optimized LP is also a good solution. It is observed that the optimized solutions achieved by 

population size of 240 and α=0.1 or 0.5 are better. From fig 5.11a and 5.11b, it is observed that 

for α=0.05 the average value of DF always remains near initial DF. This shows that only area 

near to initial DF is explored. For case with α=0.1, the improvement in DF is very-2 slow. 

However, for case with α=0.5, the average value of DF approaches 0.8 even when initial DF is 

0.6. A very good LP is achieved by having population size of 1200 and moderate value of α=0.5 

and is shown in Fig 5.12. 
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Fig.5.9 Variation of average value of distribution function with generations for population size 

24 and three values of α (0.05, 0.1 and 0.5) with initial distributions of 0.6 & 0.4 (a) and 0.8 & 

0.2 (b) 
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Fig.5.10 Variation of average value of distribution function with generations for population size 

240 and three values of α (0.05, 0.1 and 0.5) with initial distributions of 0.6 & 0.4 (a) and 0.8 & 

0.2 (b) 
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Fig.5.11 Variation of average value of distribution function with generations for population size 

1200 and three values of α (0.05, 0.1 and 0.5) with initial distributions of 0.6 & 0.4 (a) and 0.8 & 

0.2 (b) 
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Fig 5.12 Core loading pattern of optimized core (1 and 2 represents Type-1 and Type-2 clusters 

respectively) (S, SR, RR and AR shows the locations of SORs, Shim rods, Regulating rods and 

Absorber rods respectively). 

5.7 Conclusions 

In this work, an effort has been made to optimize the initial core of AHWR-LEU. As a first step, 

use of conventional methods was explored for finding the optimal solution. The optimized 

solution achieved by considering these methods was not satisfactory and therefore use of 
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evolutionary algorithms was considered and the initial core LPO problem was dealt with using 

estimation of distribution algorithm (EDA).  

While applying EDA it was observed, unlike in other optimization studies, (Mishra et. al., 2009, 

Jiang et. al., 2006) very small value (≤0.05) of weighing factor ‘α’ is not producing desired 

optimization. By considering a very small value of ‘α’, the optimization is slowed and more 

solutions are explored to reduce the probability of falling in local minima. In our study we have 

found that the real optimization is happening only in the evolving region of the process. When 

the value of objective function saturates, the new patterns are generated only with the probability 

distribution function and the probability distribution function itself does not changes much. Jiang 

et. al. (2006) has also considered elitism or heuristic information to improve the results. In Jiang 

et al. it is concluded that simple EDA (named as EDA-S) without elitism or heuristic information  

the maximum value of objective function is lower than EDA with elitism or heuristic information 

(called as EDA-G and EDA-H). In our case of initial core optimization of AHWR-LEU, by using 

the general form of EDA (EDA-S) with small value of weighing factor ‘α’ and small population 

size (24), the optimization was not achieved at all. However, we observed that the results can be 

improved by choosing adequate alpha and population size. It is also observed that for a small 

population size (24), although more generations (400) have been simulated but true optimization 

was not achieved. In case of larger population size, fewer generations are simulated and better 

optimization solutions are achieved. It is to be noted that considering a higher population size 

will increase the computational cost but it improves the results. It is observed that choosing small 

population size and small ‘α’ is less computationally costly (< 24×400= 10000 simulations) but 

results are inferior. By having large population size (240 or 1200) and keeping small ‘α’(0.05), 

computational cost is increased (~ 240×125 = 30000 or 1200×125 = 150000 simulations) but 
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there is high probability that the optimized solution achieved will be near to initial distribution 

function (Fig 5.10a and 5.11a). The dependence on initial distribution function is reduced by 

increasing the value of ‘α’. We have observed very good optimization for α=0.5 and population 

size of 1200. The results for α=0.5 show convergence in less than 50 generations. This shows 

that the computational cost for this case (1200×50 = 60000 simulations) is almost six times of 

population size of 24 (α=0.05 and 0.1) and is about twice the case with population of 240 

(α=0.05 and 0.1). The time for doing so many simulations in case of higher population cases may 

be reduced by increasing parallelization. In present study we could parallelize up to 600 CPUs. A 

significant decrease in computational time was observed due to this increased parallelization. 

The cases with population size of 240 and 1200 were although more computationally costly than 

case with population size of 24 but required less simulation time (due to parallelization) as we 

simulated  fewer generations in higher population cases.  

In this chapter, we have studied the dependence of various parameters in EDA on the finalized 

solution. However, we have considered only one method EDA in this chapter. For verification of 

our results it will be better if the same problem is addressed with some other optimization 

technique also. Keeping this in mind, another optimization method GA was considered and was 

used to address same LPO problem for initial core of AHWR in the next chapter. 
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CHAPTER 6 

Loading Pattern Optimization Using Genetic Algorithm (GA) 

 

 

 

6.1 Introduction  

In chapter 5, the initial core LPO problem for AHWR-LEU was introduced and applicability of 

conventional methods and modern methods was discussed. We have used EDA for initial core 

optimization of AHWR-LEU and it was observed that the algorithm is sensitive to value of 

internal parameters. A study was carried to choose the adequate value of these parameters. In the 

end, LP for initial core of AHWR-LEU was optimized. For verification of our results it will be 

better if the same problem is addressed with some other optimization technique. For sake of 

comparison and completeness, in this chapter, we have addressed the initial core LPO of 

AHWR-LEU by using Genetic algorithm (GA) (Goldberg, 1989). The same initial core clusters 

(Table 5.1) and problem size (2
62

) was considered as it was done for EDA. Further, the objective 

function considered is also same as given in equation 5.2. A computer code was developed based 

on GA to optimize the initial core LP of AHWR-LEU.  

The main focus in this chapter is to optimize the initial core of AHWR-LEU using Genetic 

Algorithm (GA). To compare our results with EDA, studies similar to chapter 5 were now 

carried out with GA. The dependence of internal parameters such as initial distribution function 
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and population size in each generation was studied on the optimized solution. An extensive study 

was done to determine adequate value of these parameters used in GA for better optimized 

loading pattern and the results were compared with earlier studies carried out studies using 

EDA. In GA too, similar dependence on population size and initial distribution function in each 

generation is observed. However, by increasing the population size, the results in GA 

optimization improved drastically. And it is observed that our results are contrary to earlier 

published results (Mishra et. al., 2009) for other problems (PHWR initial core LPO problem), 

where EDA is found to be more efficient and produces better results than GA. We have observed 

that for AHWR initial core LPO problem, GA is more efficient than EDA. In the end few 

possible improvements are described which could enhance the performance of EDA. The plan of 

chapter is as follows; 

Section 6.2 gives the description of GA and the various parameters used in this algorithm. 

Section 6.3 gives the numerical results for variation of population size and initial probability 

distribution function considered in GA for AHWR-LEU initial core LPO problem. The 

comparison of results produced by EDA & GA is discussed in Section 6.4. In section 6.5, 

possible improvements in EDA are discussed which could enhance its performance. Section 6.6 

discusses the conclusions. 

6.2 Genetic algorithm (GA) 

The use of GAs has been very frequent for application to various nuclear reloading pattern 

optimization problems. They have been found to be very efficient and have always provided 

plausible solutions to complex combinatorial optimization problem. GA is also population based 

algorithm where optimized solution is evolved by selection of better candidate solutions and 
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putting them in mating pool for recombination and generation of new candidates. In our work, 

we have used tournament selection (Ziver et al., 2004) method for generating the mating pool 

and we have used uniform crossover operator for recombination in mating pool to generate the 

new candidates. A brief description of GA used is as given below:- 

Step-1 Generate a population (N) of different loading patterns based on random initial 

distribution function 

Step-2 Simulate all the candidates of this population by solving diffusion equation using 3D 

diffusion theory code FEMINA and Objective function for all the candidates is evaluated  

Step-3 two person tournament selection is done for creating the mating pool 

Step-4 New candidates of population size N is generated by using uniform cross-over operator 

between different candidates of mating pool  

Step-5 Go to step-2 and repeat the cycle till optimization is achieved 

As discussed in chapter 5, the Type-2 fuel is lesser reactive than Type-1 fuel and therefore the 

optimized core will have more number of Type-1 fuel clusters than Type-2 fuel clusters. Hence, 

similar to chapter 5 studies, two initial distribution functions have been considered and their 

details are given below:- 

III. The distribution function is such that the loading pattern generated by it should have ~60 

% of Type-1 fuel cluster and ~40% of Type-2 fuel clusters 

IV. The distribution function is such that the loading pattern generated by it should have ~80 

% of Type-1 fuel cluster and ~20% of Type-2 fuel clusters 
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However, there is no weighing factor ‘α’ in GA instead a two point tournament selection is used 

to consider the feedback for generation of new candidate solutions in mating pool. In this way, 

following differences have been observed when we compare EDA and GA;  

Selection of feedback candidates; In EDA the probability distribution model is modified by 

considering due weight of current best solutions. However in GA, tournament selection is used 

for creating the mating pool. Therefore, in case of GA the candidates which are at bottom of the 

solution pool also have a chance of getting selected. Therefore, more diverse search is possible in 

case of GA. To increase the diversity of search process in case of EDA, lower value of weighing 

factor ‘α’ is considered better. However, as we have observed during studies in chapter 5, small 

value of weighing factor ‘α’ is not adequate for our problem. 

Generation of new pool of candidate solutions; In case of EDA, new candidates are generated 

by sampling the probability distribution function however in case of GA, mating of various 

candidates in the pool is done by using uniform crossover operator to generate new solutions. 

The process appears to be similar for both the algorithms in following manner; 

In case of EDA, the updated DF will generate more candidate solutions which are near to the 

previous best solutions and in case of GA, the better candidates are mated multiple times 

which leads to generation of more solutions which are near to better candidates.  

6.3 Results of GA on AHWR-LEU initial core loading pattern optimization 

The GA was used to optimize the initial core loading pattern of AHWR-LEU and the study has 

been divided in to two parts as described below.  

Case-I:- Initial distribution function is 0.6 for Type-1 and 0.4 for Type-2 
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Three cases were considered with population size of 24, 240 and 1200 in each generation as it 

was done in EDA. For each case for generating the very first population set, initial distribution 

function 0.6 for Type-1 and 0.4 for Type-2 was considered. It is observed that similar to EDA 

case the algorithm fails for case with population size of 24. However, the maximum value of OF 

is 0.9989, which is slightly better than for the same case with EDA (0.9965). For the cases with 

population size of 240 and 1200, the optimized value is 1.00953. 

 

Fig.6.1 Variation of objective function with generations for three population sizes viz. 24, 240 

and 1200 for GA and initial distribution of 0.6 for Type-1 and 0.4 for Type-2 

The same loading pattern was achieved with EDA. Fig 6.1 shows the variation of best value of 

objective function value for three different population sizes of 24, 240 and 1200. Table-6.1 gives 

the details of optimized loading patterns achieved using GA. 
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Table-6.1 Properties of loading pattern optimized using GA for variation of population size for 

initial distribution function of 0.6 for Type-1 and 0.4 for Type-2 

Populat

ion size 

Initial distribution function of 0.6 for Type-1 and 0.4 for Type-2 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

Worth of 

SDS-1 

(mk) 

Type-1 

Clusters 

Type-2 

Clusters 

24 0.99890 0.99890 2.58 149 64.6 308 136 

240 1.00953 1.00953 2.58 154 63.1 356 88 

1200 1.00953 1.00953 2.58 154 63.1 356 88 

Case-II:- Initial distribution function is 0.8 for Type-1 and 0.2 for Type-2 

Three cases were considered with population size of 24, 240 and 1200 in each generation as it 

was done in EDA. For each case for generating the very first population set, initial distribution 

function 0.8 for Type-1 and 0.2 for Type-2was considered.  

Table-6.2 Properties of loading pattern optimized using GA for variation of population size for 

initial distribution function of 0.8 for Type-1 and 0.2 for Type-2 

Populati

on size 

Initial distribution function of 0.8 for Type-1 and 0.2 for Type-2 

Max. 

Objective 

function 

K-eff MCP MMP 
Worth of 

SDS-1 

Type-1 

Clusters 

Type-2 

Clusters 

24 1.00560 1.00560 2.60 156 64.0 336 108 

240 1.00953 1.00953 2.58 154 63.1 356 88 

1200 1.00953 1.00953 2.58 154 63.1 356 88 
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It is observed that similar to EDA case the algorithm fails for case with population size of 24. 

However, the maximum value of OF is 1.0056, which is slightly better than for the same case 

with EDA (1.0042). For the cases with population size of 240 and 1200, the optimized value is 

1.00953. The same loading pattern was achieved with EDA.  

 

Fig.6.2 Variation of objective function with generations for three population sizes viz. 24, 240 

and 1200 for GA and initial distribution of 0.8 for Type-1 and 0.2 for Type-2 

Fig 6.2 shows the variation of objective function value for three different population sizes of 24, 

240 and 1200. Table-6.2 gives the details of optimized loading patterns achieved using GA and it 

is observed that the best optimized loading pattern achieved with objective function value of 

1.00953 is similar to the loading pattern shown in Fig 5.12. 
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6.4 Comparison of results of GA and EDA 

From the results of chapter 5 & 6, two primary findings have been observed in contradiction to 

earlier reported studies. First, GA is more efficient than EDA for present initial core LPO 

problem of AHWR-LEU. It has been observed from table 6.2 and 6.3 that population size of 240 

is sufficient for our problem whereas EDA requires a minimum population size of 1200 for 

achieving same optimization results. However, Mishra et al., 2009 has shown that EDA gives 

better results than GA for initial core LPO problem of PHWR. Secondly, very small value of 

weighing factor ‘α’ is generally considered good (Mishra et. al., 2009 and Jiang et al., 2006) for 

better exploration of search space. Our study has been started with considering a very small 

value of ‘α’ in EDA but we could not reach the desired optimization. Later, when we tried to do 

the parametric study by varying higher value of ‘α’, better optimization was observed. The 

difference in our results and earlier reported results may be attributed due to different size of 

problem. It should be noted that Mishra et al., 2009 has applied EDA in a little different way 

than as described in this chapter. We have not put any limit on number of Type-2 clusters but 

Mishra et al. has always tried to find the optimum solution in near vicinity of initial distribution 

function. Further, a similar parametric study of varying ‘α’ in EDA is done on PHWR initial core 

optimization problem; different optimized results may be achieved. It is observed for AHWR 

initial core optimization problem that considering very small value of ‘α’ may lead to 

unnecessary calculations. In the present case, even with α=0.5, algorithm takes more number of 

generation than for same case with GA with population size of 240 and a slightly inferior 

optimized LP has been observed. This clearly shows that GA has outperformed EDA. Therefore, 

a couple of improvements are suggested to enhance the performance of EDA (Thakur et. al., 

2015). 
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6.5 Proposed improvements in EDA 

The plus point of EDA is that by considering smaller value of ‘α’, more solutions in search space 

can be explored and convergence of the objective function is delayed. Keeping this in mind, and 

considering that Mishra et. al, 2009 and Jiang et. al, 2006 have emphasized a smaller value of 

‘α’, we have tried to search for improving the algorithm and search for a better solution than 

earlier observed in Fig 5.12.  Therefore two basic modifications have been proposed; 

1) When we exploit the symmetry of core to reduce the problem size, there are ~62 

locations. If we suppose that there are ~80% channels of Type-1 and 20% channels of Type-2 

and define our initial distribution function (DF) in this way, then while generating loading 

patterns, we have to generate very small set (62 numbers only) of random numbers (RNs) 

multiple times. Such a small set is not truly random and it is observed that ~40% of loading 

patterns generated are having variation of more than ±20% from the average DF value. For better 

exploration of search space, a lower value α=0.1 is considered and we have put the restriction 

criteria for random numbers to generate the loading patterns within 20% of present DF. For 

doing this, first we generate a set of 62 random numbers and analyze that the LP generated by 

this set is in ±20% of the averaged DF. If it is NOT then, we ignore this set and generate a new 

set and the process is repeated, till we get the desired random number set. In the next step, the set 

of random numbers which satisfy the restriction criteria is used to generate the loading pattern 

for creating the candidate of pool. The process is repeated to generate all the candidates for pool. 

Fig 6.3 shows the comparison for α =0.1 (population size 1200) with and without restriction 

criteria on random numbers of ±20% for case with initial distribution function of 0.8 for Type-1 

fuel and 0.2 for Type-2 fuel. Fig 6.4 shows the comparison for α =0.1(population size 1200) with 
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and without restriction criteria on random numbers of ±20% for case with initial distribution 

function of 0.6 for Type-1 fuel and 0.4 for Type-2 fuel.  

 

Fig 6.3 Restriction criteria for random numbers for initial distribution of 0.8 for Type-1 and 0.2 

for Type-2 

It was observed that the approach to higher value of objective function is faster when we use the 

restriction criteria on random numbers which results in slight reduction in computational cost. 

However, same value of objective function and similar loading patterns are achieved and no 

improvement in the best value of optimized LP (1.0095) is observed. 
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Fig 6.4 Restriction criteria for Random Numbers for initial distribution of 0.6 for Type-1 and 0.4 

for Type-2 

2) EDA with α=0.5 behaves in a similar way as GA. The convergence is achieved very fast 

in less than 60 generations. However, the search is influenced by the best solution in the previous 

pool. Therefore, to enhance the diversity, instead of choosing best candidates from the pool, 

tournament selection can be applied to choose the better candidates to modify the DF. In this 

way, solution which is at bottom of the pool can also be picked.  

A few simulations were carried out with α=0.5, population size of 240 and initial distribution 

function of 0.6 for Type-1 and 0.4 for Type-2 was considered. It was observed that the optimized 

loading pattern is same to as given in Fig 5.12. Fig 6.5 gives comparison of best value of 
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objective function in each generation for simple EDA and EDA with tournament selection. It is 

observed that EDA with tournament selection converges to higher value. However, the best 

value of objective function is 1.0095 and has not improved further. 

 

Fig 6.5 Tournament selection applied in EDA for initial distribution of 0.6 for Type-1 and 0.4 for 

Type-2 and population size of 240 

6.6 Discussion and Conclusions 

In this work, an effort has been made to optimize the initial core of AHWR-LEU using GA. In 
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initial distribution function is near to optimized solution, the results are better. By increasing the 

population size to 240, the optimized loading pattern similar to EDA is achieved. By further 

increasing the population size to 1200 does not results in any improvement. It can be concluded 

that for any optimization study using GA, an adequate value of parameters used in the 

optimization algorithm should be obtained for the particular problem to enhance the performance 

of GA. It is remarkable that two initial probability distributions, two population sizes and two 

methods (GA and EDA) all give the same end result. It is also observed that contrary to previous 

published work, GA has a better performance than EDA for AHWR initial core LPO problem. 

For GA, a population size of 240 is sufficient as compared to EDA where population size of 

1200 is adequate. 

In this chapter, we have tried various modifications in EDA for improving the performance and 

search for a better optimized LP. Restriction criteria on random numbers and incorporation of 

tournament selection were done which has lead to slight improvement in the performance. A 

search for a better optimized loading pattern has lead us to a better understanding of both the 

algorithms (GA & EDA). In general it is difficult to say which algorithm is better, however, 

present research has elucidated that before applying any optimization algorithm, a study is 

required to choose the adequate value of internal parameters.   

The increased computational parallelization has helped in better exploration of search space 

using these population based methods. However, the exhaustive study to find the optimized 

solution in a short time is still a distant dream. It is also known that there are many redundant 

candidate solutions which do not require exploration but the algorithm (black box) does not 

know about these redundant solutions and keeps on exploring and simulating these candidates 

also which leads to unnecessary increase in computation cost and time. For future study, it is 
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planned to use some conventional method like linear programming or some gradient based 

method to limit the search space so that the redundant solutions can be ignored and an exhaustive 

study is possible.  
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CHAPTER 7 

Conclusions and Scope of Future Research 

 

 

 

7.1    Conclusions 

In this thesis, we have investigated various fuel management problems at different stages of 

reactor operation and optimization techniques have been developed to solve these problems. As 

AHWR plays an important role in India’s nuclear energy development program, fuel cycle of 

AHWR has been considered in detail for demonstration. The thesis has been divided into two 

parts. 

In the first part, fuel management during pre-equilibrium and equilibrium phase of AHWR-LEU 

has been discussed. It was observed that due to the unique features of AHWR like use of high 

discharge burn-up fuel with on-power refueling and low power density, the conventional 

methods for fuel management are not applicable. Therefore, a specific technique in form of a 

special refueling scheme has been developed to demonstrate the proper utilization of fuel during 

pre-equilibrium and equilibrium phase. A special refueling strategy which is optimal 

combination of PHWR and LWRs refueling strategy was devised. In this special refueling 

strategy, it is proposed that if each refueling operation is followed by one or two reshuffling 
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operations, significant reduction in power peaking can be achieved and full power operation is 

possible. However, it was observed that to choose one channel for refueling and one or two 

channels for reshuffling, a lot of manual effort is required. Therefore, it was also proposed that 

the priority of channels for refueling or reshuffling can be decided by defining few factors like 

refueling and reshuffling factor. The refueling and reshuffling factor are assigned to each channel 

by giving weightage based on its channel power, fuel type, location and burn up. In other words, 

refueling factor and reshuffling factors give the maturity of a channel for refueling and 

reshuffling respectively. By introducing the concept of these factors, automatization of 

simulation of refueling inputs is possible and manual efforts can be reduced. To choose a set of 

refueling and reshuffling inputs from a large number of available combinations, the channels 

based on their refueling factor and reshuffling factor can be selected for one refueling simulation. 

A computer code CARS was developed by using this remedy as described in chapters 3. CARS 

can automatically generate the various refueling inputs (selection of channels for refueling and 

reshuffling) required for special refueling strategy and carry out the refueling simulations for 

AHWR-LEU core. In the first step, the special refueling scheme was devised by considering 

each refueling operation is followed by one reshuffling operation. It is named as ‘single 

reshuffling scheme’. The computer code CARS has been used for automatic selection of 

channels for single reshuffling scheme and for development of refueling strategy for AHWR-

LEU. It was observed that the maximum channel power peaking is reduced significantly; 

however, it was still beyond the design limit of 2.85 MW.  

Therefore, in chapter 4, another modification in CARS was done by adding a subroutine based 

on ‘double reshuffling scheme’. In this double reshuffling scheme, each refueling operation is 

followed by two reshuffling operations. It is observed that the core operational parameters like 



Chapter 7  Conclusions and Scope of Future Research 

120 

 

MMP, MCP remained below their design limit at all stages of reactor operation after using 

modified version of CARS which uses a suitable combination of single reshuffling and double 

reshuffling scheme thereby minimizing number of refueling machine operations. The target 

discharge burn-up of ~59 GWd/Te is also achievable by using this refueling strategy. The use of 

CARS has reduced the manual efforts for the selection of channels for refueling to a great extent. 

The CARS has made the study of various types of equilibrium core clusters for AHWR-LEU in a 

very short time. The present study has been able to develop confidence that the on-power 

refueling in AHWR-LEU can be reality. 

In the second part of this thesis, initial core loading pattern optimization problem has been 

discussed for AHWR-LEU to have an efficient utilization of fuel and full power operation from 

beginning of the reactor operation. The general loading pattern optimization problems have been 

described and applicability of conventional methods and modern methods for solving these 

problems has been discussed. As a first step, use of conventional methods was explored for 

finding the optimal solution. The optimized solution achieved by considering these methods was 

not satisfactory as it requires more intuition, manual effort and it searches a very small area of 

the search space. Therefore, use of evolutionary algorithms was considered and the initial core 

LPO problem was dealt with using EDA and GA. While applying EDA it was observed, unlike 

in other optimization studies, (Mishra et. al., 2009, Jiang et. al., 2006) very small value (≤0.05) 

of weighing factor ‘α’ is not producing desired optimization. Therefore, a parametric study was 

carried out to find out the adequate value of weighting factor ‘α’, and population size considered 

in each generation. We have observed a very good optimization for α=0.5 and population size of 

1200. The results for α=0.5 show convergence in less than 50 generations. This shows that the 

computational cost for this case (1200 · 50 = 60000 simulations) is almost six times of 
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population size of 24 (α=0.05 and 0.1) and is about twice the case with population of 240 

(α=0.05 and 0.1). Parallelization on distributed memory systems can be used to significantly 

decrease the computational time. The cases with population size of 240 and 1200 were although 

more computationally costly than the case with population size of 24 but required less simulation 

time (due to parallelization) as we simulated fewer generations in higher population cases.  

 For verification of our results and in search of a better optimized solution, the same problem is 

addressed with another optimization method GA. In GA too, it was observed that the algorithm 

has failed with population size of 24. However, when the initial distribution function is near to 

optimized solution, the results are better. By increasing the population size to 240, the optimized 

loading pattern similar to EDA is achieved. By further increasing the population size to 1200 

does not result in any improvement. It can be concluded that for any optimization study using 

GA or EDA, an adequate value of parameters used in the optimization algorithm should be 

obtained for the particular problem to enhance the performance of algorithm used. It is 

remarkable that two initial probability distributions, two population sizes and two methods (GA 

and EDA) all give the same end result. It is also observed that contrary to previous published 

work, GA has a better performance than EDA for AHWR initial core LPO problem. For GA, a 

population size of 240 is sufficient as compared to EDA where population size of 1200 is 

adequate.  

Further, various modifications in EDA for improving the performance and search for a better 

optimized LP have been tried. Restriction criteria on random numbers and incorporation of 

tournament selection were done which has lead to slight improvement in the performance. A 

search for a better optimized loading pattern has lead us to a better understanding of both the 

algorithms (GA & EDA). In general it is difficult to say which algorithm is better, however, 
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present research has elucidated that before applying any optimization algorithm, a study is 

required to choose the adequate value of internal parameters. 

7.2    Future scope 

For future work, refueling strategy can be planned on the similar lines for Indian PHWRs for 

facilitating the use of high fissile content U based fuel or Th based fuel for lower waste 

generation and higher burn-up. As PHWR uses small length bundles and is a forced circulation 

system, better margins are expected as compared to AHWR for controlling the power peaking.  

For future study related to LPO problems, it is observed that the meta-heuristic algorithms like 

EDA or GA are very much dependent on the internal parameters. As we have seen in present 

thesis that the optimization results are very much sensitive to the value of population size and 

weightage factor ‘α’ considered in EDA. Similarly, optimization results for GA are sensitive to 

population size, cross-over operator and mutation. Therefore instead of doing a parametric study 

for finding out the adequate value of the individual parameter as we have done in this thesis, 

some mathematical model can be developed to achieve the adequate value of these internal 

parameters for a particular problem.   

Another alternate approach to solve LPO problem is to find a way for carrying out the exhaustive 

search of optimal solution. As we have observed that, in case of population based algorithms, it 

is not possible to conclude which algorithm is better. Some algorithm may give better results for 

one problem and other may give better results for some other problem. However, the use of 

modern evolutionary algorithms along with increased computational parallelization has helped in 

better exploration of search space than conventional gradient based methods. But, the exhaustive 

study to find the optimized solution in a short time is still a distant dream even with 
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parallelization as the search space is too large. It is also known that there are many redundant 

candidate solutions which do not require exploration but the evolutionary algorithms does not 

know about these redundant solutions and keeps on exploring and simulating these candidates 

also. This leads to unnecessary increase in computation cost and time. These redundant solutions 

form a good part of the search space and there is possibility that we can reduce the search space 

by ignoring these redundant candidates. Therefore, for future study, it is planned to use some 

conventional method like linear programming or some gradient based method to limit the search 

space so that the redundant solutions can be ignored and an exhaustive study is possible.  
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APPENDIX I 

Objective Function used in EDA & GA for Initial Core LPO of AHWR 

 

 

 

I.1 Introduction  

Estimation of Distribution Algorithm (EDA) and Genetic Algorithm (GA) has been used to 

optimize initial core loading pattern (LP) of AHWR-LEU. The objective function (OF) defined 

for the optimization of initial core loading pattern for AHWR-LEU is of maximum importance 

and the variations in any parameter of objective function may change the direction of 

optimization process. As discussed in section 5.4, the penalty method has been used to define 

OF. The efficiency of the algorithm depends on how correctly the objective function defines the 

optimization problem. The algorithm will be slow or may not reach a true optimization if the 

penalty coefficients (A1, A2, A3 and A4) in OF are not suitably chosen. A comprehensive study 

about the effect of change in various parameters of objective function on optimized loading 

pattern was carried out for both GA and EDA. It was observed that the variation in any 

parameter of objective function leads to similar effect on optimized loading pattern for both the 

algorithms (GA and EDA).  

The main objective in LPO problem is to maximize K-effective while keeping MCP and MMP 

within the specified limits and worth of SDS#1 greater than the specified value. Therefore, while 

estimating the OF value for a particular LP, the penalty on k-effective is forced whenever the 
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specified limit on any operational parameter is breached. The objective function (OF) for 

AHWR-LEU initial core LPO problem is defined as given in equation (I.1) 

OF=A1·k-eff - A2·(MCP - DLMCP) – A3 · (MMP - DLMMP) – A4 · (DLSDS - worth of SDS-1)      (I.1) 

The A1, A2, A3 and A4 are constants.  

Further, DLMCP = 2.6, DLMMP =200 and DLSDS=63.0  

It is to be noted that, IF MCP < DLMCP, A2 = 0 

Similarly, If MMP < DLMMP, A3 = 0  

And If SDS worth > DLSDS, A4 = 0 

Hence, we are considering only the penalty due to design parameters not meeting their design 

limit, but we do not prefer any LP which is having very high margins in peaking or SDS-1 worth. 

The criteria are to maximize the K-effective without compromising full power operation and 

safety of reactor.  

The sensitivity study of variation of parameters in OF has been carried out in two parts. In the 

first part, the effect of individual penalty parameter is studied while in second part the effect of 

change in specified limits of various design parameters (like DLMCP & DLSDS) used in OF has 

been studied. The study has been carried out using both the algorithms (GA and EDA) and 

similar results have been observed. A population size of 240 has been considered for all the cases 

simulated in this study. 

I.2 Effect of variation in penalty coefficients A1, A2, A3 and A4 

The effect of variation of A1, A2, A3 and A4 has been studied in three steps.  In first step, we have 

studied the importance of individual coefficient (A1, A2, A3 and A4). This has been done by 
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considering penalty due to one penalty coefficient at a time and making other coefficients equal 

to 0.  Following four different cases have been studied 

Case i. All the penalty coefficients are made 0. That is A2, A3 and A4 are 0 & A1 =1. It 

shows that the OF is only K-effective 

Case ii. Penalty coefficients due to MCP and SDS worth are made 0. That is A2, A4 are 0 

& A3, A1 are 1. It implies that the penalty due to MMP is considered. 

Case iii. Penalty coefficients due to MMP and SDS worth are made 0. That is A3, A4 are 0 

& A2, A1 are 1.It implies that the penalty due to MCP is considered. 

Case iv.  Penalty coefficients due to MCP and MMP are made 0. That is A2, A3 are 0 & A-

4, A1 are 1. It implies that the penalty due to SDS worth is considered. 

These four cases describe the importance of each design parameters (k-effective, MCP, MMP 

and SDS worth). Table-I.1 describes the properties of optimized loading pattern obtained for 

these four cases. It is expected that operational parameters of the optimized loading pattern in the 

Case-i may not meet the design limit. As the OF does not care for any design parameter and 

progresses with the aim to maximize K-effective only.  From Table-I.1, it is observed that the 

optimized loading pattern has K-effective of 1.0455 and all the channels are Type-1 (high 

reactive). The MCP, MMP and SDS worth of optimized LP are 5.77 MW, 334 kW and 41.9 mK 

respectively. It is observed that neither operational parameter nor SDS worth satisfies design 

requirements.  

In the Case ii, the penalty due to maximum mesh power (MMP) is considered. It implies all the 

other parameters of optimized LP may not fulfill their design requirements. From Table-I.1, it is 

observed that the optimized loading pattern has K-effective of 1.0299 and there are 420 Type-1 

clusters and 24 Type-2 clusters. The MMP of optimized LP is 200 KW which qualifies its design 
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requirements. However, the MCP and SDS worth of optimized LP are 3.48 MW, and 40.5 mK 

respectively and design requirements of MCP and SDS worth are not satisfied. 

In the Case iii, the penalty due to maximum channel power (MCP) is considered. It implies all 

the other parameters of optimized LP may not satisfy their design requirements. From Table-I.1, 

it is observed that the optimized loading pattern has K-effective of 1.0147 and there are 380 

Type-1 clusters and 64 Type-2 clusters. The MCP and MMP of optimized LP are 2.6 MW and 

150 KW which is below its design limit. However, the SDS worth of optimized LP is 52.4 mK 

and does not meet its design requirements. 

Table-I.1 Properties of loading pattern optimized for Different objective function (considering 

penalty due to one parameter only) 

Penalty 

parameter  

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

Worth of 

SDS-1 

(mK) 

Type-1 

Clusters 

Type-2 

Clusters 

None 

(case-i) 
1.0455 1.0455 5.77 334 41.9 444 0 

MMP 

(case-ii) 
1.0299 1.0299 3.48 200 40.5 420 24 

MCP 

(case-iii) 
1.0147 1.0147 2.60 150 52.4 380 64 

SDS worth 

(case-iv) 
1.0097 1.0097 3.39 196 63.9 352 92 

In the case iv, the penalty due to SDS worth is considered. It implies all the other parameters of 

optimized LP may not meet their design requirements. From Table-I.1, it is observed that the 

optimized loading pattern has K-effective of 1.0097 and there are 352 Type-1 clusters and 92 

Type-2 clusters. The MCP of optimized LP is 3.39 MW and which does not meet its design 

requirements. However the SDS worth of 63.9 mk and MMP of 196 KW is observed which is 

below its design limit.  
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From the study of the four cases, it is observed that the maximum penalty is due to SDS worth 

limit followed by MCP and MMP. It is important to note that the MMP is a subset of MCP, 

therefore, the operational parameter MMP is taken care if penalty due to MCP is accounted duly. 

In the second step, the penalty coefficients A2 and A4 are varied in a range from 0.005 to 0.5. 

The value of A1 and A3 is considered as 1 and 0.05 respectively. Following nine cases have been 

considered:- 

Case v. A2=0.005 and A4=0.005 

Case vi. A2=0.005 and A4=0.05 

Case vii. A2=0.005 and A4=0.5 

Case viii. A2=0.05 and A4=0.005 

Case ix. A2=0.05 and A4=0.05 

Case x. A2=0.05 and A4=0.5 

Case xi. A2=0.5 and A4=0.005 

Case xii. A2=0.5 and A4=0.05 

Case xiii. A2=0.5 and A4=0.5 

Table-I.2 and Table-I.3 give details of maximum value of OF observed as well as value of other 

operational parameters (K-effective, MCP, MMP and SDS) in all these cases. 

It is observed from Table-I.3 that by considering a very small value (= 0.005) of A2 and A4, the 

operational parameter MCP of optimized LP exceeds its design limit of 2.6. Now keeping a 

small value of A2 and increasing A4 to 0.5 (case vi, case vii. and x), the MCP of optimized LP 

further increases. However the worth of SDS comes near to design value. Similarly, when A4 has 

a very small value of 0.005 and A2 has a large value of 0.5 (case XI), the SDS worth of optimized 

LP is 62.9 which is slightly lower than its design requirement of 63mk. 
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Table-I.2 Maximum value of OF / K-effective for variation of penalty coefficients A2 and A4 

A1 =1 & 

A3 =0.05 

 
A4 = 0.005 

 
A4 = 0.05 

 
A4 = 0.5 

 
OF 

K-

effective 

 
OF 

K-

effective 

 
OF 

K-

effective 

A2 = 0.005 
 

1.0089 1.0090 
 

1.0090 1.0097 
 

1.0089 1.0098 

A2 = 0.05 
 

1.0095 1.0095 
 

1.0095 1.0095 
 

1.0090 1.0097 

A2 = 0.5 
 

1.0079 1.0084 
 

1.0095 1.0095 
 

1.0095 1.0095 

 

But MCP and MMP are observed to be having satisfactory value. By increasing A4 to 0.5 (case 

xiii), the MCP of optimized LP and the worth of SDS comes near to design value. In the third 

step, minor variations in penalty coefficients are done to increase the efficiency. 

Table-I.3 Parameters of optimized LP for variation of penalty coefficients A2 and A4 

A1 =1 & 

A3 =0.05 

 A4 = 0.005  A4 = 0.05  A4 = 0.5 

 MCP MMP 
SDS 

Worth 
 MCP MMP 

SDS 

Worth 
 MCP MMP 

SDS 

Worth 

A2 = 0.005  2.62 157 64.2  2.74 158 63.3  2.77 160 63.0 

A2 = 0.05  2.58 154 63.1  2.58 154 63.1  2.74 158 63.3 

A2 = 0.5  2.6 154 62.9  2.58 154 63.1  2.58 154 63.1 

 

 In last section, it is observed that better results are expected when penalty coefficients A2 and A4 

are having similar values of 0.5. Further fine tuning of these coefficients has been done to 

achieve a faster convergence. From case xiv to case xviii, A1, A2, A3 and A4 are varied and the 

effect is observed on the optimized loading pattern and approach to reach optimized solution 

(minimum number of generations) is studied. Five different cases have been studied:-  

Case xiv. A1=1, A2=0.5, A3=0.7 and A4=0.5 
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Case xv. A1=1, A2=0.7, A3=0.7 and A4=0.7 

Case xvi.  A1=1, A2=0.384, A3=0.05 and A4=0.5 

Case xvii.  A1=1, A2=0.5, A3=0.05 and A4=0.333 

Case xviii. A1=1, A2=0.384, A3=0.05 and A4=0.333   

Table-I.4 compares the maximum value of OF and other operational parameters for the cases xiv 

to xviii. In case xiv and xv, higher value of A3 (0.7) has been considered. However, it is observed 

from Table-I.4 that slightly lower value of OF is observed than cases xvi – xviii. Therefore, 

better optimization is observed when low values (≤0.05) of A3 is considered.  

Table- I.4 Properties of loading pattern optimized using GA for variation in A1, A2, A3 and A4  

Penalty 

parameter 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

Worth of 

SDS-1 

(mK) 

Type-1 

Clusters 

Type-2 

Clusters 

Case-XIV 1.0094 1.0094 2.58 154 63.1 352 92 

Case-XV 1.0091 1.0091 2.56 152 63.1 348 96 

Case-XVI 1.0095 1.0095 2.58 154 63.1 356 88 

Case-XVII 1.0095 1.0095 2.58 154 63.1 356 88 

Case-XVIII 1.0095 1.0095 2.58 154 63.1 356 88 

 

It is observed from Table-I.4 that all the cases except case xiv & xv have identical optimized 

loading pattern. It takes 34 generations in case xiv to reach the optimized loading pattern 

(1.0094). It was observed that Case xv requires 33 generations to reach maximum value of OF 

(1.0091). Case xvi and xvii requires 23 and 25 generations to reach maximum value of OF 

(1.0095). It is observed that case xviii requires minimum 21 generations to reach optimized LP. 

It is observed that the fastest approach to maximum value of objective function is observed in 
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case xviii. Therefore, from all the above 18 cases it can be concluded that the best value of 

penalty coefficients A1, A2, A3 and A4 is considered in the case xviii with minimum number of 

generations. 

I.3 Effect of variation in limits on MCP and SDS worth 

In the second part of our study, we have tried to vary the design limit on MCP and SDS worth 

and effect on the optimized LP has been observed.  

1.3.1 Sensitivity study due to variation of SDS worth limit in objective function  

 

Fig-I.1 Effect of variation of DLSDS in OF 
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In this part, the effect of variation of SDS worth limit (DLSDS) was studied on the optimized 

loading pattern. Five different cases have been studied where the DLSDS as described in equation-

I.1 has been varied from 53 to 73 (53, 58, 63, 68 and 73). Fig I.1 describes behavior of OF in 

each generation for the five cases studied. Table-I.5 describes the properties of optimized loading 

pattern obtained for all the cases. It is observed from Table-I.5 that with increase in DLSDS from 

53 to 73, the k-effective of optimized LP decreases from 1.0134 to 0.9989 and number of type-2 

cluster increases from 68 to 144. It shows that if the design requirement of SDS worth limit is 

stretched, the no. of type-2 clusters will increase and this will result in lower k-effective. For the 

last two cases in Table-I.5 where DLSDS is 68 & 73 mk respectively, the optimized LPs have 

MCP greater than 2.6. This shows that for these cases, re-rating of reactor is required. For all 

other cases considered all the operational parameters meet their design limit. 

Table-I.5 Properties of loading pattern optimized using GA for variation of SDS worth limit in 

objective function 

SDS 

Worth 

Limit 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

Worth of 

SDS-1 (mk) 

Type-1 

Clusters 

Type-2 

Clusters 

53.0 1.0134 1.0134 2.55 148 53.4 376 68 

58.0 1.0119 1.0119 2.60 153 59.0 368 76 

63.0 1.0095 1.0095 2.58 154 63.1 356 88 

68.0 0.9820 1.0013 2.65 155 68.4 316 128 

73.0 0.9335 0.9989 2.75 162 73.0 300 144 

1.3.2 Sensitivity study due to variation of MCP limit in objective function  
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In this study, the effect of variation of design limit of MCP was studied on the optimized loading 

pattern. Five different cases have been studied where the DLMCP as described in equation-I.1 has 

been varied from 2.4 to 2.8 (2.4, 2.5, 2.6, 2.7 and 2.8). Fig I.2 describes behavior of OF in each 

generation for the five cases studied. Table-I.6 describes the properties of optimized loading 

pattern obtained for all the cases. 

 

 Fig-I.2 Effect of variation of DLMCP in OF 

It is observed from Table - I.6 that with increase in DLMCP from 2.4 to 2.8, the k-effective of 

optimized LP increases from 1.0064 to 1.0098 and number of type-2 cluster decreases from 100 

to 76. It shows that if the design requirement of MCP is relaxed, the no. of type-2 clusters will 

decrease and this will result in higher k-effective. For the first two cases in table-I.6 where 
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DLMCP is 2.4 and 2.5 respectively, the optimized LP has MCP =2.55. This shows that it is very 

difficult to optimize an initial LP with Type-1 and Type-2 cluster with MCP lower than 2.54. For 

these cases, re-rating of reactor is required. For other cases considered, all the operational 

parameters meet their design limit. 

Table-I.6 Properties of loading pattern optimized using GA for variation of MCP limit in 

objective function 

MCP 

Limit 

Max. 

Objective 

function 

K-eff 
MCP 

(MW) 

MMP 

(KW) 

Worth of 

SDS-1 

(mk) 

Type-1 

Clusters 

Type-2 

Clusters 

2.4 0.9488 1.0064 2.54 151 63.7 344 100 

2.5 0.9872 1.0064 2.54 151 63.8 344 100 

2.6 1.0095 1.0095 2.58 154 63.1 356 88 

2.7 1.0096 1.0096 2.65 155 63.1 352 84 

2.8 1.0098 1.0098 2.72 157 63.0 348 76 

 

I.4 Conclusions 

A study on change in various parameters in OF considered in GA and EDA was done and the 

effect on the optimized loading pattern was observed. It is observed that very small value of any 

one of the co-efficient makes the respective penalty almost insignificant, therefore the objective 

function is dependent on the remaining penalties. Similarly, high value of any one of the co-

efficient makes the respective penalty most dominating compared to others. Therefore better 

results may be generated when the weightages to each penalty is almost comparable. In the 

present study, most appropriate value of penalty coefficients has been estimated to be as A1=1, 

A2=0.384 A3 = 0.05 and A4 =0.333. As the MMP is dependent on MCP or more precisely MMP 
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is a sub-set of MCP, therefore, the value of A3 does not play a major role and a very small value 

will be better. The effect due to variation of design limit in SDS worth and MCP limit was also 

studied. It is observed that that if the design requirement of SDS worth limit is stretched, the no. 

of Type-2 clusters will increase and this will result in lower k-effective. It is also observed that if 

the design requirement of MCP is relaxed, the no. of Type-2 clusters will decrease and this will 

result in higher k-effective. It is also observed that it is not possible to achieve MCP lower than 

2.54, with Type-1 and Type-2 clusters. 
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