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Synopsis 

 
The study of the vibrations of the atoms and molecules in a crystal is known as lattice 

dynamics. The temperature is interpreted in a material by its atomic vibrations. In order to 

have a complete picture of crystalline materials, a deep understanding of lattice dynamics is 

required. The propagation of sound waves in crystals, Raman scattering of light and 

absorption of certain frequencies in the infra-red spectral region are some of the experimental 

observations of lattice dynamics. Without lattice dynamics it is not possible to explain 



 

xx 
 

various thermodynamical properties such as phase transitions, thermal conductivity, thermal 

expansion etc.  Further, atomic vibrations also contribute to free energy in the form of 

entropy besides vibrational energy itself. In crystalline solids the motion of atoms are not 

random but follow certain rules defined by the neighboring atoms in the system.  In 

crystalline solids these well defined collective motions are quantized and are called as 

“phonons”.  To characterize and understand the various properties in solid, it is highly 

desirable to study these phonons with the help of theoretical tools and inelastic-neutron/light 

scattering experiments.  

It is not always possible to perform experiment at high temperature and pressure 

conditions; in such cases, the simulation studies are used to predict the material properties 

under these extreme conditions. For this purpose, theoretical studies based on lattice 

dynamical methods are necessary for exploring the entire spectrum of thermal vibrations in 

crystals. The data obtained from experimental techniques are used to test and validate the 

theoretical methods. Once validated successfully, these methods may further be used to 

predict the thermodynamic properties at various thermodynamical conditions.  The author has 

used the state of the art density functional theory methods to compute the total energy and 

forces, hence the phonons in entire Brillouin zone for various compounds. To validate the 

theoretical results, the author has also carried out inelastic neutron scattering experiments.   

The thesis consists of eight chapters. Application of density functional theory to a 

variety of oxide materials to understand the role of phonons in their functional properties of 

negative thermal expansion (NTE), multiferroicity or super-ionic conduction is presented. 

The motivation for studying the various compounds, details of the work done and the 

significance of the results obtained are given below in the brief description of various 

chapters. 
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Chapter 1 describes the basic experimental and theoretical tools used to study 

the thermodynamical properties.  The techniques of inelastic neutron scattering and 

lattice dynamics have been explained briefly.  Lattice dynamical calculations of phonons 

may be carried out using either a quantum-mechanical ab-initio density functional theory 

(DFT) approach or an atomistic approach involving semi-empirical interatomic potentials. 

The work described in this thesis pertains mainly to the former approach. At low temperature 

the amplitude of atoms about their equilibrium positions are small and the interaction 

between atoms can be assumed to be harmonic in nature.  The DFT method is used to 

calculate the total energy and force constants in the system for any given atomic 

configuration. The force-constants will follow the symmetry of the crystal, which are used to 

determine the lattice dynamics of the system. Inelastic neutron scattering is best suited to 

study the phonon behavior of solids. The wavelength of the thermal neutrons is comparable 

to the interatomic distances in a crystal, and energies are also of the same order as the energy 

of the phonons. The relation of the phonon frequencies with wave vector is called the phonon 

dispersion relation. On the other hand, the distribution of phonons of different energy in the 

entire Brillouin zone is known as the phonon density of states. Measurement of phonon on 

single crystal provides the information of the phonon dispersion relation while polycrystalline 

samples give information of the phonon density of states. The experimental technique used 

for the measurements of temperature dependence of phonon density of states using the IN4 

time-of-flight spectrometer at high flux reactor of Institut Laue-Langevin, Grenoble, France  

is also described in this Chapter. 

Chapter 2 describes the relation between nature of bonding and negative 

thermal expansion behavior in M2O and MCN (M=Au, Ag and Cu) compounds.  A 

comparative study of the dynamics of M2O and MCN ( M = Au, Ag and Cu)  using first 

principle calculations based on the density functional theory is given.  A good match between 



 

xxii 
 

the calculated phonon density of states and that derived from inelastic neutron scattering 

measurements is obtained for Cu2O and Ag2O. The author performed experiments on Cu2O 

and Ag2O powder sample but not on Au2O due to non-availability of sample. The calculated 

thermal expansions of Ag2O and Cu2O are negative, in agreement with available 

experimental data, while it is found to be positive for Au2O. The low energy phonon modes 

responsible for this anomalous thermal expansion are identified. The charge density  in the 

three compounds are calculated and it is found that the magnitude of the ionic character of the 

Ag2O, Cu2O, and Au2O crystals is in decreasing order, with an Au-O bond of covalent nature 

strongly rigidifying the Au4O tetrahedral units. Here for the first time it is seen that the nature 

of chemical bonding and open space in the unit cell are directly related to the magnitude of 

thermal expansion coefficient.  

The author has carried out the temperature dependent measurements of phonon 

spectra in quasi one-dimensional metal cyanides MCN (M=Cu, Ag and Au) from 150 to 310 

K.  Ab-initio lattice dynamics calculations have been performed to interpret the phonon-

spectra as well as to understand the anamolous thermal expansion behavior in these 

compounds. We bring out the differences in the phonon mode behavior to explain the 

differences in the thermal expansion behavior among the three compounds. The chain-sliding 

modes are found to contribute maximum to the negative thermal expansion along „c‟ axis in 

the Cu- and Ag- compounds, while the same modes contribute to positive thermal expansion 

in the Au- compound. Several low energy transverse modes lead to positive thermal 

expansion along „a‟ and „b‟ axis in all the compounds. The calculated elastic constants and 

Born effective charges are correlated with the difference in nature of bonding among these 

metal cyanides.  

Chapter 3 describes theoretical studies on ZrW2O8 about thermal expansion 

behavior and its origin.  The author has performed ab-inito density functional theory 
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calculation of phonons in cubic phase of ZrW2O8 in the entire Brillouin zone and identified 

specific anharmonic phonons that are responsible for large negative thermal expansion (NTE) 

in terms of translation, rotation and distortion of WO4 and ZrO6. The calculations have been 

used to interpret the experimental phonon spectra as a function of pressure and temperature.  

The phonons showing anharmonicty with temperature are not necessarily the same as those 

showing anharmonicity with pressure although both are of similar frequencies. Only the latter 

phonons are associated with NTE. Therefore the cubic and/or quartic anharmonicity of 

phonons is not relevant to NTE but just the volume dependence of frequencies.  

Chapter 4 describes the experimental and theoretical studies on spin phonon 

coupling and pressure driven phase transition in multiferroic compound GaFeO3 and 

YMnO3. An extensive phonon study on multiferroic GaFeO3 is described in this chapter. 

Inelastic neutron scattering measurements are performed over a wide temperature range, 150 

to 1198 K. First principles lattice dynamical calculations are done for the sake of the analysis 

and interpretation of the observations. The phonon spectra are calculated in two ways namely 

with and without including the magnetic interactions. The two sets of calculations highlight 

pronounced difference due to magnetic interaction in the energy range of the vibrations of the 

Fe and O ions. Therefore, magnetism induced by the active spin degrees of freedom of Fe 

cations plays a key role in stabilizing the structure and dynamics of GaFeO3. Moreover, the 

computed enthalpy in various phases of GaFeO3 is used to gain deeper insights into the high 

pressure phase stability of this material.  

In YMnO3, the author has carried out temperature-dependent inelastic neutron 

scattering measurements  over the temperature range 50 - 1303 K, covering both the 

antiferromagnetic to paramagnetic transition (70 K), as well as the ferroelectric to 

paraelectric transition (1258 K). Measurements are accompanied by first principles 

calculations of phonon spectra for the sake of interpretation and analysis of the measured 



 

xxiv 
 

phonon spectra in the room temperature ferroelectric (P63cm) and high temperature 

paraelectric (P63/mmc) hexagonal phases of YMnO3. The comparison of the experimental and 

first-principles calculated phonon spectra highlight unambiguously a spin-phonon coupling 

character in YMnO3. This is further supported by the pronounced differences in the magnetic 

and non-magnetic phonon calculations. The calculated atomistic partial phonon contributions 

of the Y and Mn atoms are not affected by inclusion of magnetic interactions, whereas the 

dynamical contribution of the O atoms is found to change. This highlights the role of the 

super-exchange interactions between the magnetic Mn cations, mediated by O bridges.   

Chapter 5 describes our experimental and theoretical studies on stability of quasi 

two dimensional CaFeO2 and SrFeO2, spin phonon coupling and high temperature 

distortion. A detailed ab-initio lattice dynamical analysis of the Fe-O infinite-layer 

compounds CaFeO2 and SrFeO2 in various magnetic configurations is presented. These 

indicate strong spin-phonon coupling in SrFeO2 in contrast to that in case of CaFeO2. The 

available powder neutron inelastic scattering data on SrFeO2 from 5 K to 353 K in the 

antiferromagnetic phase has been analyzed using the ab-initio calculations. These suggest 

distortion of the ideal infinite planer structure above 300 K. From ab-initio calculations in 

SrFeO2 as a function of volume, it is seen that the distortion in SrFeO2 above 300 K is similar 

to that in CaFeO2 at ambient conditions. The distortion of the planer structure of CaFeO2 

involves doubling of the planer unit cell that may be usually expected to be due to a soft 

phonon mode at the M-point (1/2 1/2 0). However, ab-initio calculations show quite 

unusually that all the M-point (1/2 1/2 0) phonons are stable, but two stable M3
+
 and M2

- 

modes anharmonically couple with an unstable Bu mode at the zone centre and lead to the cell 

doubling and the distorted structure. Magnetic exchange interactions in both the compounds 

have been computed on the basis of the ideal planar structure (P4/mmm space group) and 

with increasing amplitude of the Bu phonon mode. These reveal that the magnetic exchange 
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interactions reduce significantly with increasing distortion. The ab-initio phonon calculations 

have been extended to high pressures, which reveal that, above 20 GPa of pressure, the 

undistorted planer CaFeO2 becomes dynamically stable.  

Chapter 6 describes the role of phonon and phase transition in perovskite 

structure compounds NaNbO3, PrMnO3 and CaMnO3.  Sodium niobate (NaNbO3) 

exhibits an extremely complex sequence of structural phase transitions in the perovskite 

family and therefore, provides an excellent model system for understanding the mechanism of 

structural phase transitions. The author has performed the temperature dependence inelastic 

neutron scattering measurements and first principles lattice dynamical calculations in sodium 

niobate. The measurements are carried out in various crystallographic phases of this material 

at various temperatures from 300 K to 1048 K. The computed phonon density of states is 

found to be in good agreement with the experimental data. The calculations are useful to 

assign the characteristic Raman modes in the antiferroelectric phase, which are due to the 

folding of the T (=95 cm
-1

) and  (=129 cm
-1

) points of the cubic Brillouin zone, to the 

A1g symmetry. Further, the author has also computed enthalpy in various phase of sodium 

niobate and found that the orthorhombic structure with space group Pbcm could transform to 

the Pbnm structure at high pressure. The calculated phase transition pressure is fairly close to 

the experimental value. 

Further detailed lattice dynamical calculations of vibrational properties in RMnO3 (R= 

Ca and Pr) is presented. The temperature dependence of phonon spectra in RMnO3 has been 

measured by A. I. Kolesnikov of Oak Ridge National Laboratory, USA.  The  measurements  

performed in the temperature range  from 7 K to 1251 K covered all the relevant 

characteristic transition temperatures in CaMnO3, while for PrMnO3 data was collected over 

6-150 K covering the magnetic transition. The author performed the interpretation and 

analysis of the observed phonon spectra using ab-initio phonon calculations.  The effect of 
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pressure on the structural distortions in orthorhombic phase of CaMnO3 and PrMnO3 is 

discussed. On application of pressure, it is found that the variations of Mn-O distances are 

isotropic for CaMnO3 and highly anisotropic for PrMnO3. The calculated structure as a 

function of pressure in PrMnO3 shows that suppression of Jahn-Teller distortion as well as 

insulator to metal transition occurs simultaneously. The calculations show that this transition 

may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported 

in the literature, since the tetragonal phase is found to be dynamically unstable although it is 

found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO3 does 

not show any phase transition up to 60 GPa.  

Chapter 7 describes our theoretical studies on superionic and battery materials 

Li2O and LiMPO4 (M=Mn, Fe). Studies on the vibrational and elastic behavior of lithium 

oxide, Li2O around its superionic transition temperature has been described. Phonon 

frequencies calculated using the ab-initio density functional theory (DFT) are in excellent 

agreement with the reported experimental data.  Further, volume dependence of phonon 

dispersion relation has been calculated, which indicate softening of zone boundary transverse 

acoustic phonon mode along [110] at volume corresponding to the superionic transition in 

Li2O. This instability of phonon mode could be a precursor leading to the dynamical disorder 

of the lithium sub-lattice.  

In LiMPO4 (M=Mn, Fe), the author has performed ab-initio density functional theory 

calculations as a function of volume to understand the microscopic picture of Li sub-lattice.   

Here the aim has been to correlate the diffusion of lithium and dynamical instability in 

LiMPO4.  The lattice dynamics calculations indicate instability of zone-centre as well as 

zone-boundary phonon modes along [100] at unit cell volume corresponding to elevated 

temperature. 
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Chapter 8 of this thesis gives the summary and the future direction based on the 

work described in this thesis. The research work described in the thesis uses the techniques 

of lattice dynamics calculations and inelastic neutron scattering measurements to understand 

the thermodynamic properties of various compounds. The   role of phonons in leading to 

various thermodynamical properties like thermal expansion, specific heat, temperature and 

pressure driven phase transitions and ionic conduction in various compounds is analyzed in 

detail.  The nature of bonding and their relation with anomalous thermal expansion behavior 

has been studied. In addition, the spin-phonon coupling has been investigated in multiferroic 

and perovskite compounds. The various temperature and pressure driven phase transitions in 

multiferroic and perovskite structure compounds have been found to be associated with 

dynamical instabilities. Further, the correlation between phonon instability and conduction of 

Li ion in superionic and battery materials is established. The calculations have greatly aided 

the planning and execution of the various experimental measurements. The calculations 

enabled to understand the microscopic picture of the dynamics in various solids leading to the 

manifestations of several unique properties. The experience gained from the study of spin-

phonon coupling, phase-transition mechanism and negative thermal expansion driven by 

phonons will be of immense help in understanding the physics as well as their application 

aspects. This experience gained would also be useful for studying the structure and dynamics 

of more complex geophysical and technologically important solids. 
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List of Figures 

Figure 1.1 Schematic diagram of IN4 spectrometer at ILL.  

Figure 1.2 Flow chart of phonon calculation.  

Figure 1.3 Visualizing the Hohenberg–Kohn  implications. 

Figure 1.4 Visualizing the Kohn-Sham theorem.  

Figure 1.5 Flow chart of density functional theory calculation scheme. 

Figure 1.6 Schematic representation of the pseudo-wavefunction of an  ultrasoft 

pseudopotential compared to the pseudo-wavefunction of a norm-conserving pseudopotential. 

Figure 2.1 The calculated low energy part of the phonon dispersion relation of M2O (M=Ag, 

Au and Cu).  The Bradley-Cracknell notation is used for the high-symmetry points along 

which the dispersion relations are obtained. =(0,0,0); X=(1/2,0,0); M=(1/2,1/2,0) and 

R=(1/2,1/2,1/2). 

Figure 2.2 Experimental (symbols plus line) and calculated (solid line) neutron-weighted 

phonon density of state of M2O (M=Ag, Au and Cu) compounds. The calculated spectra have 

been convoluted with a Gaussian of FWHM of 15% of the energy transfer in order to 

describe the effect of energy resolution in the experiment. 

Figure 2.3 Normalized partial density of states of various atoms and total one-phonon density 

of states in M2O (M=Ag, Au and Cu) compounds. 

Figure 2.4 The calculated Grüneisen Parameter of M2O (M=Ag, Au and Cu). The 

calculations for Ag2O are shown here for comparison with Au2O and Cu2O. 

Figure 2.5 Volume thermal expansion (αV) coefficient as a function of temperature in M2O 

(M=Ag, Au and Cu). The calculations for Ag2O are shown here for comparison with Au2O 

and Cu2O. 
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Figure 2.6 The calculated and experimental volume thermal expansion of M2O (M=Ag, Au 

and Cu). 

Figure 2.7 Volume thermal expansion (α) coefficient contributed from phonons of energy E. 

Figure 2.8 Polarization vectors of selected phonon modes in M2O (M=Ag, Au and Cu). The 

numbers after the wave vector (Γ, X, M and R) gives the Grüneisen parameters of Ag2O, 

Au2O and Cu2O respectively Key: M, grey spheres; O, brown spheres.   

Figure 2.9 Calculated and experimental  specific heat as a function of temperature of M2O 

(M=Ag, Au and Cu). 

Figure 2.10 The calculated mean square amplitudes of various atoms in M2O (M=Ag, Au 

and Cu).  

Figure 2.11 The calculated charge density for Ag2O, Cu2O and Cu2O in (011) plane. 

Figure 2.12 The structure of AuCN and HT-CuCN/AgCN as used in the ab-intio 

calculations. Key: C, red sphere; N, blue sphere; Cu/Ag/Au green sphere 

Figure 2.13 The measure neutron inelastic spectra MCN (M=Cu, Ag and Au) at 150 K, 240 

K and 310 K. 

Figure 2.14 (a) Comparison of the experimental phonon spectra for MCN (M=Cu, Ag and 

Au) at 310 K. (b) Comparison of the experimental phonon spectra for LT and HT phases of 

CuCN at 150 K.  

Figure 2.15 The comparison between the measured (310 K) and calculated phonon  spectra 

of MCN (M=Cu, Ag and Au).   

Figure 2.16 The calculated dispersion relation along various high symmetry direction of 

MCN (M=Cu, Ag and Au) at lattice constant at 10 K (black) and 310 K (red). The C-N 

stretching modes at about 270 meV are not shown. The Bradley-Cracknell notation is used 

for the high-symmetry points. HT-CuCN/AgCN:  T1(1/2,1/2,-1/2)R≡ (0, 1, 1/2)H , (0,0,0)R≡ 

(0, 0, 0)H ,T2(1/2,1/2,1/2)R≡ (0, 0, 3/2)H, F(1/2,1/2,0)R≡ (0, 1/2, 1)H, L(0,1/2,0)R≡ (-1/2, ½  
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½)H; In AuCN: (0,0,0)H, A(0 0 1/2)H, K(1/3,1/3,0)H, H(1/3 1/3 1/2)H, L(1/2 0 1/2)H and 

M(1/2,1/2,0)H.   Subscript R and H correspond to rhombohedral and hexagonal notation 

respectively. 

Figure 2.17 The calculated phonon partial density of states of various atoms in MCN (M=Cu, 

Ag and Au) for structure at 10 K. The x-scale the C-N stretching modes at about 270 meV are 

not shown. 

Figure 2.18 (a) The calculated average Grüneisen parameters  (E)  averaged  over various 

phonon of energy E in the whole Brillouin zone. (b) The contribution of phonons of energy E 

to the volume thermal expansion coefficient (αV) as a function of E at 300 K. 

Figure 2.19 The calculated and experimental thermal expansion behavior of MCN (M=Cu, 

Ag and Au). 

Figure 2.20 The calculated displacement pattern of various phonon modes in AuCN and HT-

CuCN and corresponding Grüneisen parameters. The first line below each figure represents 

the size of the supercell. The second line below the figure give the high symmetry point, 

phonon energies and Grüneisen parameters, respectively. In the bottom panel (HT-CuCN and 

AgCN) the second and third line below the figure corresponds to HT-CuCN and AgCN 

respectively.   Key: C, red sphere; N, blue sphere; Cu/Ag/Au green sphere. 

Figure 3.1 The calculated (0 K) and experimental (300 K) [5] neutron-weighted phonon 

spectra in ZrW2O8. For better visibility the experimental phonon spectra[5] is shifted along 

the y-axis by 0.03 meV
-1

.The calculated zone-centre optic modes, A, E, F(TO) and F(LO) are 

also shown. 

Figure 3.2  Calculated low-energy part of the pressure dependent dispersion relation for 

ZrW2O8. =(0,0,0); X=(1/2,0,0); M=(1/2,1/2,0) and R=(1/2,1/2,1/2).  

Figure 3.3 The calculated Grüneisen parameters as a function of phonon energy. 
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Figure 3.4 (a) The calculated and experimental relative volume thermal expansion for  

ZrW2O8, (VT /V300-1) × 100 % , VT and V300 being the cell volumes at temperature T and 300 

K respectively.  (b) The contribution of phonons of energy E to the volume thermal 

expansion as a function of E at 300 K from the ab-initio calculation as well as phonon data . 

Figure 3.5 Polarization vectors of selected phonon modes in  ZrW2O8. The numbers after the 

wave vector (X and M) give the phonon energies and Grüneisen parameters respectively. The 

lengths of arrows are related to the displacements of the atoms.  The atoms are labeled as 

indicated in Ref.[1]. 

Figure 3.6 Calculated potential wells of selected phonon modes in ZrW2O8. The numbers 

after the wave vector (X and M) give the phonon energies and Grüneisen parameters 

respectively. 

Figure 3.7 Calculated temperature dependence of selected phonon modes in ZrW2O8. The 

numbers after the wave vector (X and M) give the phonon energies and Grüneisen parameters 

respectively. For comparison, the experimental temperature dependence of phonon peak at 

3.8 meV in the density of states[5] is also shown, which involves average over entire 

Brillouin zone.  

Figure 4.1 Crystal structure of GaFeO3 in the Pc21n space group. The atoms are labeled 

following Table 4.1. 

Figure 4.2 Temperature dependent inelastic neutron spectra of GaFeO3. Top panel: the low-

Q and high-Q Bose factor corrected S(Q,E), where both the energy loss (0 - 10 meV) and the 

energy gain (-100 - 0 meV) sides are shown. Bottom panel: the low-Q and high-Q, unity-

normalized, phonon density of states, g
(n)

(E), inferred from the neutron energy gain mode 

S(Q,E) data, within the incoherent approximation. 

Figure 4.3 The calculated and experimental neutron inelastic scattering spectra of GaFeO3. 

The experimental data consist of the “High Q” data collected at 315 K. The calculated spectra 
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have been convoluted with a Gaussian of FWHM of 15% of the energy transfer in order to 

describe the effect of energy resolution in the experiment. 

Figure 4.4 The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA). The atoms are labeled following Table 4.1. “FM”, 

“FNM” and “PNM” refer to fully relaxed magnetic, fully relaxed non-magnetic and partially 

relaxed non magnetic calculations, respectively. 

Figure 4.5 The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA) and the generalized gradient approximation (GGA) in 

the fully relaxed magnetic (FM) structure in Pc21n space group. The atoms are labeled 

following Table 4.1. 

Figure 4.6 The calculated zone centre phonon modes of GaFeO3 (orthorhombic phase, space 

group Pc21n). Open and closed symbols correspond to calculations performed within the 

local density approximation (LDA) and generalized gradient approximation (GGA), 

respectively. A1, A2, B1 and B2 correspond to the group theoretical representations of the 

system symmetry.   

Figure 4.7 The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA) in Pc21n space group.  “FM_Ga_SC” and “FM” refer 

to the fully relaxed magnetic calculations with and without the semi core electrons of the Ga 

atoms respectively. The atoms are labeled following Table 4.1. 

Figure 4.8 (a, c, e) The calculated enthalpy  (H=+PV) difference in the Pc21n and R3c 

phases with respect to the Pbnm phase of GaFeO3 as a function of pressure within the local 

density approximation (LDA). (b, d, f) The calculated total energy () in the Pbnm phase of 

GaFeO3 as a function of pressure within the LDA. The explanation of the labeling FM, 

FM_Ga_SC, FM_GaFe_SC is described in Section III.  
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Figure 4.9 The LDA-calculated equation of state of various phases of GaFeO3 and a 

comparison with available experimental data [31]. V refers to the volume per formula unit at 

pressure P. Vo refers to the volume per formula unit of Pc21n phase at ambient pressure. The 

explanation of the labeling FM, FM_Ga_SC, FM_GaFe_SC” is described in Section 4.1. 

Figure 4.10 Schematic representation of the crystal structure of the  room -temperature 

(space group P63cm) and the high-temperature (space group P63/mmc) phases of YMnO3. 

The atoms are labeled following Table 4.4. Key: Y, blue spheres; Mn, green spheres; and O, 

red spheres. 

Figure 4.11 Temperature dependent neutron inelastic spectra of YMnO3. Top panel: the low-

Q and high-Q Bose factor corrected S(Q,E), where both the energy loss (0 - 10 meV) and the 

energy gain (-20 - 0 meV) sides are shown. Bottom panel: the low-Q and high-Q, unity-

normalized, neutron inelastic spectra, g
(n)

(E), inferred from the neutron energy gain mode 

S(Q,E) data, within the incoherent approximation. 

Figure 4.12 The calculated and experimental neutron inelastic spectra of YMnO3. The 

experimental data were collected at 315 K, and averaged over the high-Q region. The 

calculated phonon spectra have been convoluted with a Gaussian of FWHM of 10% of the 

energy transfer in order to describe the effect of energy resolution in the experiment. For 

better visibility, the experimental and calculated phonon spectra are shifted vertically with 

respect to each other. Multiphonon as calculated using the Sjølander formalism has been 

subtracted for comparison with the calculations. 

Figure 4.13 The calculated atomistic partial phonon density of states (Y, Mn and O)  in the 

low temperature phase (space group P63cm) of  YMnO3, within the local 

density approximation (LDA). 

Figure 4.14 The calculated shift of the zone centre optic phonon modes in “PNM” and 

“FNM” configurations with respect to the “FM” model calculation. 
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Figure 4.15 The calculated phonon dispersion relations along the high-symmetry directions 

of the ambient-temperature (space group P63cm) and the high-temperature (space group 

P63/mmc) hexagonal phases of YMnO3. The zoom of the calculated phonon dispersion 

relations in the ambient temperature (P63cm) and high temperature phase (P63/mmc) with a 

super cell of √3×√3×1 are also shown. The high-symmetry points are: K (1/3 1/3 0), A (0 0 

1/2) and Γ (0 0 0). The size of the hexagonal unit cell is nearly same in the P63cm and super 

cell of P63/mmc. 

Figure 4.16 The displacement patterns of the lowest phone mode at K and Γ points in the 

high-temperature phase (space group P63/mmc) of YMnO3. The lengths of arrows are related 

to the displacements of the atoms.  Key: Y, blue spheres; Mn, green spheres; and O, red 

spheres. 

Figure 4.17 A symmetry-based correlation between the zone centre modes in the low-

temperature phase (P63cm) and the K-point (1/3,1/3,0) and  K*-point (-1/3,-1/3,0) modes in 

the high-temperature phase (P63/mmc). 

Figure 5.1  Structures of planer CaFeO2 (P4/mmm) and distorted CaFeO2(P-421m). The ab 

plane in these structure are depicted by violate sheet.  Supercell‟s compatible to the magnetic 

unit cell are shown, i.e. a √2× √2 × 2 supercell of the P4/mmm structure and 1×1×2 supercell 

of P-421m structure.The oxygen atoms in the distorted structure are shifted along z axis by 

±δ. Key: Ca, blue spheres; Fe, golden spheres; O, red spheres. 

Figure 5.2  Experimental phonon spectra of SrFeO2 (P4/mmm) at various temperatures in the 

antiferromagnetic phase. 

Figure 5.3  Experimental and calculated phonon spectra of SrFeO2 (P4/mmm).The partial 

atomic contributions to total neutron weighted phonon density of states are shown with dotted 

lines. The calculated spectra have been convoluted with a Gaussian of FWHM of 7meV of 
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the energy transfer in order to describe the effect of energy resolution in the experiment. In 

order to compare with the experimental data the calculated spectrum is scaled by 6%. 

Figure 5.4 Calculated partial densities of states of various atoms in 

SrFeO2(P4/mmm),CaFeO2 (P4/mmm) and CaFeO2(P-421m). 

Figure 5.5 Calculated dispersion relation of SrFeO2 and CaFeO2in P4/mmm space group.. 

The solid and dashed lines correspond to calculations at ambient pressure and 5 kbar, 

respectively. The Bradley-Cracknell notation is used for the high symmetry points along 

which the dispersion relations are obtained: Γ=(0, 0, 0), Z = (1/2, 0, 0) , M = (1/2, 1/2 , 0). A 

= (1/2, 1/2, 1/2), R = (0, 1/2, 1/2), X = (1/2, 0, 0). 

Figure 5.6 Polarization vectors of selected zone center modes of CaFeO2in P4/mmmFor each 

mode, the assignment and frequency are indicated in meV units. The „i‟ after the phonon 

energy indicates that mode is unstable. The length of the arrows is related to the displacement 

of the atoms. The absence of an arrow on an atom indicates that the atom is at rest. The 

number after the mode assignment gives the phonon frequency. Key: Ca, blue spheres; Fe, 

golden spheres; O, red spheres   (1 meV=8.0585 cm
-1

). 

Figure 5.7 The energy landscape of p-CaFeO2 obtained by exciting the pair of phonons with 

different amplitude. (a) A
3+

and Bu modes (b) M
3+

 and A
3+

 modes (c) M
2– 

andA
3+ 

modes (d) 

M
3+

and Bu modes and (e) M
2–

and Bu modes. The energies E are per magnetic unit cell. 

Figure 5.8 Energy barrier from the p-CaFeO2 (P4/mmm) to the d-CaFeO2 (P-421m). ζ 

corresponds to the distortion vector as obtained from the difference in atomic co-ordinates of 

the  d-CaFeO2 and p-CaFeO2 structures phases as given in TABLE 5.4. The energies E is per 

magnetic unit cell. 

Figure 5.9 (a) The calculated x and z-coordinate of the oxygen and z-coordinate of the 

calcium  atom in the d-CaFeO2 as a function of pressure. As given in Table 5.4 the oxygen 
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and calcium atoms occupy the Wyckoff sites 4e(x+1/2, -x, -z) and (1/2 0 –z) respectively. (b) 

The calculated phonon dispersion of planer CaFeO2 at ambient and 30GPa. 

Figure 5.10 Calculated dispersion relations of SrFeO2(P4/mmm) and 

CaFeO2(P4/mmm)including the A, C, G antiferromagnetic and FM configurations. 

Figure 5.11 The various J exchange interaction parameters in SrFeO2 (P4/mmm) and p-

CaFeO2(P4/mmm).   

Figure 5.12 The calculated magnetic exchange interaction parameters (J‟s) in SrFeO2 

(P4/mmm) and p-CaFeO2(P4/mmm) compound at different amplitude of Bu phonon mode 

distortion.   

Figure 6.1  Comparison of the calculated (filled circles) long-wavelength phonon frequencies 

with the available experimental data (stars)[17, 39, 40]  for both the antiferroelectric (AFE) 

and the ferroelectric (FE) phases.  

Figure 6.2 The temperature dependence of the phonon spectra of NaNbO3 as observed by 

neutron inelastic scattering.  

Figure 6.3 The experimental (dotted line at 303 K) and calculated (solid line at 0 K) phonon 

spectra for NaNbO3 in the antiferroelectric phase (Pbcm). The calculated spectra have been 

convoluted with a Gaussian of FWHM of 15% of the energy transfer in order to describe the 

effect of energy resolution in the experiment. 

Figure 6.4 The calculated partial density of states for various atoms and the total phonon 

density of states for NaNbO3, in both the antiferroelectric orthorhombic (Pbcm) phase (solid 

line) and the ferroelectric rhombohedral (R3c) phase (dashed line). 

Figure 6.6  Computed phonon dispersion relations for cubic phase (Pm-3m) of NaNbO3 

compared to reported experimental inelastic neutron scattering (INS) single crystal data (red 

circles) (Ref. [43]).  
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Figure 6.7  Ab initio derived eigenvectors of selected zone-centre and zone-boundary 

unstable phonon modes at the Г, M, R, T and X  points for the cubic phase of NaNbO3. The 

lengths of arrows are related to the displacements of the atoms.  Key: Na, cyan; Nb, blue; O, 

brown. 

Figure 6.8 The eigenvectors of the two antiferroelectric modes, at (a) =93 cm
-1

 and (b) 129 

cm
-1

 of NaNbO3, induced by the folding of the T ( q= ½ ½ ¼ ) and  ( q= 0 0 ¼ ) points of the 

Brillouin zone under the cubic phase, respectively. (Key: Na: violet spheres; Nb: blue 

spheres; O: brown spheres). 

Figure 6.9 Enthalpy difference (H) between the indicated ferroelectric (R3c), 

antiferroelectric (Pbcm), and paraelectric (Pbnm) phases of NaNbO3 as calculated using ab-

inito DFT calculation.  

Figure 6.10 The neutron inelastic spectra of CaMnO3 at low temperatures, the data were 

summed over (a) Q=0.5-7 Å
-1

 and (b) Q=4-7 Å
-1

 respectively. The peak at 20 meV is due to 

spin-wave excitations, not due to phonons (1 meV=8.0585  cm
-1

). 

Figure 6.11 The (Q,E) contour plot of S(Q,E) data for CaMnO3 at T=7 K measured at 

SEQUOIA with incident neutron energy of 110 meV is shown at top. Strong intensity 

excitations at low temperatures (7 K and 110 K) below E=20 meV and Q=3.5 Å
-1

 are due to 

magnetic spin-wave excitations. The excitations around 30, 45, 55, 60, 65, 70, and 90 meV 

are due to phonons (their intensities increase with increasing Q).  

Figure 6.12 The temperature dependence (above 300 K) of the neutron inelastic spectra of 

CaMnO3, the data were summed over (a) Q=0.5-7 A
-1

 and (b) Q=4-7 A
-1

 respectively. 

Figure 6.13  Comparison between the experimental (T=300 K) and calculated neutron 

inelastic spectra of CaMnO3 using (a) local density approximation and (b) generalized 

gradient approximation. Experimental data are summed over 4-7 Å
-1

. The phonon 
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calculations are carried out in the fully relaxed magnetic (FM) configuration. The calculated 

phonon spectra have been convoluted with a Gaussian of FWHM of 4.5 meV to account for 

the effect of energy resolution in the experiment. 

Figure 6.14  (a) The calculated partial phonon density of states of various atoms in CaMnO3 

with in LDA and GGA approximations.  (b) The calculated partial density of states of 

CaMnO3 in various configurations with in GGA. “FRM”, “FNM” and “PNM” refer to fully 

relaxed magnetic, fully relaxed non-magnetic and partially relaxed non magnetic calculations, 

respectively. The energies of unstable modes in PNM-GGA are plotted as negative energies.  

Figure 6.15  Top panel:  Temperature dependent neutron inelastic spectra of PrMnO3 

summed over various Q-range.  Bottom panel: Contour plot of S(Q,E) spectra for PrMnO3 

measured at 6 K  (right) and 150 K (left). A dispersed spin wave excitation is clearly seen 

below 20 meV and 1.5 A
-1

 at 6 K. In 150 K spectra, weakly dispersed magnetic excitation 

around 15 meV is observed. 

Figure 6.16 (a) Comparison between the experimental (T= 150 K) and calculated phonon 

spectra in PrMnO3.  Experimental data are summed over 4-7 Å
-1

. (b) The calculated partial 

phonon density of states of various atoms in PrMnO3. The phonon calculations are carried out 

in the fully relaxed magnetic (FRM) configuration in the generalized gradient approximation 

(GGA). 

Figure 6.17 (Color online) Pressure dependence of pseudocubic lattice parameters for (a) 

CaMnO3 and (b) PrMnO3 compared to reported experimental data for CaMnO3 [70-72] and 

PrMnO3 [28] respectively. Pressure dependence of Mn-O bond length and distortion of MnO6 

ochtahedra as calculated are shown in (c) CaMnO3 and (d) PrMnO3, respectively.  

Figure 6.18. (a) Enthalpy difference (H) between the orthorhombic (Pnma) and tetragonal 

(I4/mcm) phases of PrMnO3 as calculated using ab-inito DFT calculation. (b) The computed 

phonon dispersion relations for PrMnO3 in tetragonal phase 
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Figure 7.1 Phonon dispersion from first principles density functional theory under 

generalized gradient approximation (GGA-DFT). The full and dashed lines correspond to 

calculations performed at a= 4.57 Å and a= 4.88 Å respectively. The open symbols 

correspond to reported experimental[8] data.  

Figure 7.2  Motion of individual atoms for zone boundary TA mode  along [110] direction  at 

lattice parameter corresponding to a= 4.88 Å. Key; O: red spheres, Li: blue spheres. 

Figure 7.3 Softening of zone boundary transverse acoustic (TA) phonon along [110]. Δa 

correspond to difference in lattice parameter from equilibrium. The equilibrium value of 

lattice parameter, a in GGA and LDA calculations are 4.57 Å, and 4.45 Å respectively. 

Figure 7.4 Structure of LiMPO4 (M=Mn, Fe) (orthorhombic Pnma space group) derived from 

xcrysden software at T = 0 K. Key; Li: Red spheres, M=Mn or Fe: Yellow spheres, P: Green 

spheres, O: Blue spheres. 

Figure 7.5 The comparison of the calculated and experimental neutron inelastic scattering 

spectra for LiMPO4 (M=Mn, Fe) available in the literature [18] at ambient pressure at 300 K. 

The ab-initio calculation is carried out at 0 K. The experimental spectra comprises of 

magnetic and phonon contribution, while computed results pertain to phonon contribution 

alone.The calculated spectra have been convoluted with a Gaussian of FWHM of 0.5 meV to 

10% of the energy transfer in order to describe the effect of energy resolution in the 

experiment. 

Figure 7.6  The calculated partial densities of states in LiMPO4 (M=Mn,Fe). The solid and 

dashed lines correspond to the calculations carried out using ab-initio. 

Figure 7.7 The Calculated phonon dispersion for LiMPO4 (M=Mn, Fe) from ab-initio density 

functional theory under generalized gradient approximation (GGA-DFT). 

Figure 7.8 The low-energy part of the phonon dispersion relation from ab-initio density 

functional theory under generalized gradient approximation (GGA-DFT). The full and dashed 
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lines refer to the phonon dispersion corresponding to calculated unit cell parameters 

a=10.42(10.55) Å, b = 6.06 (6.17) Å, c = 4.75 (4.79) Å and a = 10.77 (10.66) Å, b = 6.20 

(6.22) Å, c = 4.88 (4.83) Å for LiFePO4 (LiMnPO4). The zone-centre and zone-boundary 

phonon modes in LiFePO4 and LiMnPO4 soften at unit cell volume corresponding to the 

higher temperature.  This region is hitherto defined by us as dynamically unstable regime. 

The thick lines shows the phonon branches undergoing large softening in the dynamically 

unstable regime. 

Figure 7.9 Zone-boundary and zone-centre modes as a function of unit cell volume. The 

zone-centre and zone-boundary phonon modes in LiFePO4 and LiMnPO4 soften at unit cell 

volume corresponding to higher temperatures.   

Figure 7.10 Motion of individual atoms for zone boundary and zone centre modes  at unit 

cell volumes corresponding to ambient and dynamically unstable region. The numbers after 

the mode assignments give the phonon energies of mode in Fe(Mn) compound. i after the 

phonon energy indicates that mode is unstable. A 2×1×1 super cell of the primitive unit cell is 

shown for zone boundary mode at (0.5 0 0). The zone-centre and zone-boundary phonon 

modes in LiFePO4 and LiMnPO4 soften at unit cell volume corresponding to higher 

temperatures.  Key; Li: Red spheres, M=Mn or Fe: Yellow spheres, P: Green spheres, O: 

Blue spheres. 
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Chapter 1 

An Introduction to Lattice Dynamics, 

Density Functional Theory and Inelastic 

Neutron Scattering Techniques  

 

1.1 Introduction 

The understanding of thermodynamic properties of solids has important applications 

in diverse areas like condensed matter physics, materials science, mineralogy, geophysics, 

etc. It is of interest to undertake theoretical studies of materials to understand (i) how the 

structural changes across phase transitions manifest in the vibrational and thermodynamic 

properties and, (ii) the underlying physics that leads to improved material properties. 

Experimental studies at high pressures and temperatures are often quite limited. Thus the 

development of accurate models for theoretical studies of  materials is of importance. An 

important requirement for the calculation of thermodynamic properties of solids is an 

accurate description of the phonon spectra.  The phonon spectra can be directly measured 

using the inelastic neutron scattering technique. The experiment data can be analyzed using 

the lattice dynamical calculations. The calculated phonon spectra are used to derive the 

thermodynamic properties. The calculations are useful us to understand the microscopic 

origin of exotic material properties and their response to various thermodynamic conditions. 

The organization of this chapter is as follows:  The brief description about various 

types of materials studied is described in section 1.2.  There are a few spectroscopic 
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techniques which are used to measure phonons as well as other low energy excitation like 

magnons. We will be describing some of them with their merit and demerits in section 1.3.2.   

We have used the most powerful technique to measure phonon, ie neutron inelastic scattering 

technique which is described in detail in section 1.3.1. We have used   the technique to 

measure density of states.   

The theory of lattice vibrations is very well established.  Various physical properties 

and thermodynamical properties of solids depend on their lattice-dynamical behavior.  In 

section 1.4, we will describe the theory of lattice dynamics which is used to compute the 

various thermodynamical properties of the compound.  

We have used the density functional theory (DFT) to study a variety of oxide 

materials to understand the role of phonons in their functional properties of negative thermal 

expansion (NTE), multiferroicity or super-ionic conduction In section 1.5, formalism of 

density functional theory has been discussed. The pseudopotential method, which is used to 

study all the compounds, is been briefly described in section 1.6. The section 1.7 is about the 

detailed of various software‟s.  And finally conclusion of the chapter is drawn in section 1.8. 

 

1.2 Functional Material 

Functional materials are important due to their scientific interest and applications. 

Their properties can be tuned by external stimuli. Few specific examples include ferroelectric 

materials, magnetic materials, multiferroics, negative thermal expansion materials, 

semiconductors, piezoelectrics, ionic conductors and many more.  We have studies two 

classes of functional materials, namely negative thermal expansion (NTE) materials and 

multiferroics. Negative thermal expansion materials exhibit volume contraction on heating. 

Multiferroics exhibit different kind of interactions simultaneously, which bring novel 
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physical phenomena and offer possibilities for new device functions. The range of exploitable 

properties is very large, and includes, for example: semiconducting behavior, magnetism, 

dielectric properties, piezoelectricity, pyroelectricity, and the ability to alter refractive indices 

with electric field or stress, the ability to conduct ions in the solid state or store atoms for 

later use. The materials can be used in various applications including information and 

communications technology, energy generation and storage, transport, healthcare, defense, 

consumer goods etc. Many of the applications depend upon the use of multiple functional 

materials. A brief  description of the class of compounds studied is given below. 

 

1.2.1 Negative Thermal Expansion Materials 

Usually materials expand on heating; however, some materials show anomalous 

thermal expansion behavior like volume contraction. Further, it has been observed that 

materials with large thermal expansion coefficients have very poor thermal shock resistance. 

The stability and integrity of materials subjected to high temperatures or large temperature 

fluctuations is a problem related to their thermal expansion properties. The issue of stability 

and integrity of material can be addressed using a composite of negative thermal expansion 

material with positive thermal expansion material. These materials have various usages in jet 

engine, mirrors in telescopes or waveguides etc, where dimensional stability is necessary for 

positioning in precision optics. 

When we heat a material the changes in the lattice parameters is attributed to 

anharmonic nature of vibrational potential of atoms or molecule. In crystalline material, the 

vibration of the atoms are understood in terms of lattice vibrational modes ie phonons. Each 

phonon mode has different nature of atomic displacement pattern. Thermal expansion in 

solids cannot be fully appreciated by only considering the lengthening of bonds. Different 
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bond lengths and bond strengths also affect the extent of thermal expansion. Hence the 

impact on the thermal behavior of a three-dimensional structure necessitates additional 

considerations. In solids, all the lattice vibrational modes must be considered. Some of the 

vibrational modes can lead to an increase in unit cell size, while other vibrational modes can 

result in a decrease. In addition, different vibrational modes of various energies are excited at 

different temperatures. Thermal expansion behavior of a solid, therefore, depends upon the 

energies of various vibrational modes. 

 In this category of functional materials, we have studied three different typres of 

compounds, namely ZrW2O8, M2O (M=Ag, Au and Cu) and MCN (M=Ag, Au and Cu). The 

first two belongs to category of framework compounds.  However MCN are quasi-one 

dimensional material. The author has performed temperature dependent measurement of 

inelastic neutron spectra of Ag2O, Cu2O, AgCN,  AuCN,  HT-CuCN and LT-CuCN 

compounds.  The lattice dynamics calculations in all above compounds have also been 

carried out. The calculations are able to explain the origin of anomalous thermal expansion 

behavior and correlate this with low energy phonons, nature of bonding, open structure and 

elastic constants.  

 

1.2.2 Ferroelectric, Magnetic and Multiferroic 

Materials  

The progress in experimental and theoretical studies of ferroic materials has leads to a 

lot of interest in the investigation and design of functional materials with desired novel 

functionality. Functional properties arise from coupling of different interactions and external 

stimuli likes: stress, electric field, magnetic field. Due to vast technological application and 
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scientific interest an attention has drawn on ferroic materials like: ferroelectric, 

ferromagnetic, piezoelectrics, and multiferroic. Among the functional properties, the 

electronic and magnetic properties have attracted much attention of scientific community due 

to its vast application. The rich physics and wide varieties of novel properties of magnetic 

materials are related to a delicate balance between charge, spin, and orbital degree of 

freedom.  

Multiferroic material is defined as a material showing more than two ferroic 

properties in a single phase. The applicability of multiferroic materials is vaster than that of 

ferroelectric or ferromagnetic materials. Further, the magnetoelectric materials, whose 

characteristics, include the emergence of simultaneous electric and magnetic ordering, offer 

opportunities for multifunctional device application. This justifies the intense research going 

on this class of materials, and the keen interest they are subject to, at both the fundamental 

and practical sides [1-14]. Magnetism in transition metals containing materials is induced by 

the active spin components in the d-shell levels. On the other hand, ferroelectricity occurs 

generally in the absence of d-electrons. Hence it is intriguing to observe multiferroicity since 

this phenomenon involves a simultaneous emergence of both the properties. The 

classification of multiferroic is based on the nature of the fundamental mechanism though 

emergence of ferroelectricity. The emergence of ferroelectricity is associated with inversion-

symmetry breaking. The field describing broken inversion-symmetry (e.g. polarization) 

depends on linearly on the degree of freedom relevant to transition is known as proper 

ferroelectric and if this dependence is nonlinear (quadratic or higher order) then it called as 

an improper ferroelectric. Ferroelectricity in PbTiO3, BaTiO3, KNbO3, and BiFeO3 is 

example of proper ferroelectric and associated with polar optical phonon. The example of 

improper ferroelectrics are: YMnO3 (arises from combination of zone boundary and zone 

centre phonon), LuFe2O4 (arises due to superposition of two distinct charge-order state: 
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electronic in nature), TbMnO3, YMn2O5 or TbMn2O5 (arises due to certain type of spin 

ordering and magnetic ferroelectric). 

 Khomskii [15] suggested a classification for magneto-electric multiferroic materials 

as type I and type II multiferroics. In the type I multiferroics the origin of magnetism and 

ferroelectricity are different and they possess a high ferroelectric transition temperature (Tc) 

and generally magnetoelectric coupling is weak. On the other hand for type II multiferroics 

the origin of ferroelectricity is governed by magnetism hence they exhibit strong 

magnetoelectric coupling but have low ordering temperature.  We have listed below few 

examples of multiferroic and their classification according to Khomskii. 

 

Type I mutiferroic 

Lone-pair: Example: BiFeO3, BiMnO3,  PbVO3 

Phonon driven Improper Ferroelectricity: example: InMnO3 and YMnO3 

Improper-Ferroelectric from charge ordering: Pr1-xCaxMnO3, LuFe2O4 

 

Type II mutiferroic 

Magnetically Driven Improper Ferroelectricity: TbMnO3, Ni3V2O8 

From Collinear magnetism (exchange Striction): YMn2O5 

Phonon mediated linear magnetoelectric coupling: TbMn2O5, GaFeO3, AlFeO3 

 

Understanding the mechanism of multiferrocity is of considerable importance for the 

design of new multiferroics at controllable conditions (temperature and pressure). Hence the 

electric and magnetic properties attributed to the dynamics of ions and electrons need to be 

studied and explored. In this thesis, we have studied various kinds of compounds ranging 

from magnetic, ferroelectric and multiferroic of type I and II. Our aim is to investigate the 
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role of phonon in various phase transitions and their coupling with spin.  The compounds 

namely: GaFeO3, YMnO3, PrMnO3, CaMnO3, NaNbO3, SrFeO2 and CaFeO2 have been 

studied using combination of inelastic neutron scattering and first principles lattice dynamics 

simulations. The author has performed the lattice dynamics calculations in all the above 

compounds and explained the coupling of magnetic degree of freedom with the atomic 

degree of freedom, various pressure and temperature driven phase transition and role of 

phonon and its manifest on physical properties. The neutron inelastic measurement have been 

performed on GaFeO3, YMnO3 and NaNbO3.   

 

1.2.3 Superionic Compounds and Battery Materials 

Fast ion conductors are one of the functional materials which possess high values of 

ionic conductivity at relatively modest temperatures. Such compounds find extensive 

technological applications in solid state batteries, gas sensors and fuel cells. The search for 

better solid electrolytes (i.e. higher ionic conductivities, higher power densities, lower cost, 

environmentally friendly, etc.) is a particularly active area of research.  The author has 

performed first principles lattice dynamics simulation on superionic compounds and battery 

materials Li2O, LiMnPO4 and LiFePO4. The author is able to correlate the specific phonon 

mode which may lead to onset of the superionic behavior in the compound. In other battery 

material LiMPO4 (M=Mn, Fe), the lattice dynamics calculations indicate instability of zone-

centre as well as zone-boundary phonon modes at unit cell volume corresponding to elevated 

temperature and may result in the onset of diffusion of Li  in these compounds. 
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1.3 Theory of Inelastic Neutron Scattering 

The inelastic scattering of any radiation from a system involves exchange of energy 

and momentum between the system and the probing radiation. Thermal neutrons as a probe 

can exchange a part of their energy and momentum with an excitation in the system. They 

may lose part of their energy in creating an excitation in the system or may gain energy by 

annihilation. Thus, the nature of the excitation can be probed by measuring the energy and 

momentum of the neutrons before and after the scattering event from a system. During the 

process the sum of energy and momentum of the neutron and system will remain conserve. 

This can be expressed mathematically by using following equations: 

 

 ( , )i fE E q j                             (1.1)      

 
i f( ) ( )   k k Q G q                                                                                                  (1.2)                                 

                                                             

where ki, kf are incident and the scattered neutron wavevectors and Q is the wavevector 

transfer (scattering vector) associated with the scattering process. q is the wavevector of the 

excitation with energy   and G is a reciprocal lattice vector of the system under study, Ei 

and Ef are the incident and scattered neutron energies and   is the energy transfer to the 

system in the scattering process. The +(-) sign indicates that the excitation is annihilated 

(created) in the scattering process. Hence, the experimental technique of neutron scattering to 

determine the nature of excitations in the system involves study of the inelastic spectrum of 

scattered neutrons. The energy and wavevector of neutrons are measured using a 

spectrometer.   

In the scattering process, the inelastic scattering cross-section of the process is 

measured and this is directly proportional to the dynamical structure factor S(Q, ω) 
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(characteristic of the system), which  is the double Fourier transform of the space-time 

correlation function of the constituents of the system  including the phonon. Peaks in S(Q, ω)  

correspond to these elementary excitations[16-18]. The measurements on single crystals give 

information about the q dependence of phonon (phonon dispersion relation), while 

polycrystalline samples provide frequency distribution of the phonons (phonon density of 

states  g()). The measurement of phonon dispersion relation is not always possible because 

a suitable single crystal may not be available. The complete phonon dispersion relation is 

often available only along high symmetry directions of the Brillouin zone. Therefore, in order 

to obtain a complete picture of the dynamics, it is useful to determine the phonon density of 

states.   

The scattering from the sample can occur by creation or annihilation of one or more 

excitations (phonon) in the system. The neutron scattering structure factor[17, 19] [19,20] 

due to a one-phonon inelastic process is given by  

 

2
(1) ' (1)

coh j

j

1 1
S ( , ) A {n( ) } F ( ) ( ) ( ( j))

2 ( j) 2 2
          




q

Q Q Q G q q
q


                        (1.3) 

where, 

(1) coh

j k k

k k

. ( j, k)
F ( ) b exp{ W ( ))exp(i . k))

m

 
 

Q q
Q Q G r(                                                     (1.4) 

 

where  A

 is the normalization  constant and  bk,  mk and r(k), neutron scattering length, mass 

and the coordinate of the k
th

 atom, respectively. ξ is eigenvector of  excitation, 
1( )

jF (Q)  is 

one-phonon structure factor, exp(-Wk(Q)) is the Debye-Waller factor. Q and  ω are the 
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momentum and energy transfer on scattering of the neutron, respectively, while n(ω) is the 

phonon- population factor.  

The upper and lower signs (eq. 1.3) in   or   correspond to loss and gain of  the 

energy of the neutrons, respectively. The two delta functions in eq. (1.3) stand for the 

conservation of momentum and energy. These two conditions allow the determination of the 

phonon dispersion relation ωj(q). From a large number of such measurements on a single 

crystal, one can identify several points of the phonon dispersion relations.  

From eq. (1.4) it is clear that phonon cross-sections depend strongly on Q and ω, apart 

from the atomic structure of the solid itself. For measuring a phonon having the eigenvector 

ξ, the scattering vector Q should be chosen such that it is aligned parallel to ξ as much as 

possible. Since Q = G q and for longitudinal mode q ⊥ξ one should chose G⊥q for 

observation of a longitudinal mode. For transverse modes q ξ  and one requires G ⊥q.  

For simple structures, the eigenvectors may be determined entirely from the symmetry 

of the space group. Thus the structure factors Fj(Q) may be entirely determined from the 

crystal structure. For more complex structures, the space-group symmetry only classifies the 

phonons into a number of irreducible representations.  The number of phonons associated 

with each representation is same as that of number of symmetry vectors. The eigenvectors 

could be any linear combinations of the symmetry vectors associated with the irreducible 

representation. Calculation of individual structure factors can be done from the knowledge of 

the eigenvectors which can be obtained from the lattice dynamics calculation. These 

calculations help in identifying the regions in reciprocal space, where the neutron-scattering 

cross-sections are large.  
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1.3.1 Phonon Density of States Measurements Using 

IN4C Spectrometer 

The time-of-flight spectrometer detects a large (Q, ω) space volume in a single run. 

This is done by the simultaneous use of several detectors equipped with the respective TOF 

electronics. The change in energy and the scattering vector Q is obtained by measuring the 

flight time and the scattering angle of the neutrons from a beam pulsing device (chopper) to 

the detectors. The energy of the neutrons is fixed before or after the scattering process.  For 

measurement of phonon density of states the scattered neutrons from the sample are collected 

over a wide range of scattering angles. By choosing a suitable high incident neutron energy, 

measurement of the scattering function S(Q, ω) over a wide range of momentum and energy 

transfers can be undertaken and the data can be averaged over a wide range of Q.   

 

 

 

 

 

 

 

 

 

FIG 1.1 Schematic diagram of the IN4 spectrometer at ILL, Grenoble, France (after 

www.ill.fr). 

 

http://www.ill.fr/
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IN4C is a time-of-flight spectrometer used for the study of excitations in condensed 

matter. It works in the thermal neutron energy range (10-100 meV). The instrument is 

consisting of two spectrometer units. The main component of the spectrometer is two 

background choppers, the double curvature mono-chromator with four faces and the Fermi 

chopper. The background choppers are rapidly pulsating beam shutters which act as a low-

pass filter. Thus one can eliminate most of the fast neutrons and gamma rays from the beam 

that give rise to background noise in the spectra.  A suitable energy is selected from the 

thermal neutron spectrum with the crystal monochromator. The monochromator, an assembly 

of 55 crystal pieces, concentrates the divergent incident beam onto a small area at the sample 

position. Hence the full use of the available solid angle gives a high incident flux.  The Fermi 

chopper rotates at speeds of up to 40000 rpm. It transmits short neutron pulses (10- 50 µs) to 

the sample. The time-of-flight of neutrons between the chopper and the sample (1-5 ms) can 

be measured by using precise electronic circuitry. The sample environment is designed to 

accommodate standard cryostats and furnaces. A radial collimator around the sample position 

is used to cut the scattering from the sample environment. The secondary flight-path is in 

vacuum to avoid parasitic scattering of the transmitted neutrons. The detector bank (
3
He 

detector tubes , length 300 mm, width 30 mm, elliptical section, pressure 6 bar) covers 

scattering angles from 10
o
 to 120°. The time-of-flight spectra measured at various angles are 

further treated in order to obtain the scattering function S(Q, w) that is characteristic of the 

properties of the sample.  The measurements on polycrystalline samples of GaFeO3, YMnO3, 

MCN (M=Ag, Au and Cu), Ag2O and Cu2O is carried out by the author using the time-of-

flight IN4 spectrometer (Fig. 1.1) at the Institut Laue Langevin (ILL), France.  
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1.3.2 Other Experimental Techniques 

Inelastic X ray scattering (IXS) is a recently evolved technique and used to measure  

phonon in the entire Brillouin zone. The energy of the X-rays are in the order of KeV, 

however the energy of phonons is of the order of meV.  Hence one would need a high 

resolution instrument. This can be done using perfect single crystal at the cost of huge 

intensity loss. Hence with the synchrotron radiation source, where the incident flux is very 

high, one can perform the IXS measurements. The IXS has following advantage over INS  

 

 Large (Q,ω) space.  

 Requires microgram samples hence suitable for high pressure experiments. 

 Energy resolution that is independent of the energy transfer. 

 Nearly no intrinsic backgrounds. 

 

The first two advantages are probably the most significant. The first follows from the 

fact that x-ray energies (~20 keV) are much larger than the measured energy transfers (~1 to 

200 meV), unlike neutrons where the probe energy is often very similar to the phonon 

energy, ~50 meV. The technique is  especially important for the study of liquid samples 

where one would like access to large energy transfer at small momentum transfers[20], and is 

less important for crystalline materials where one can often work in higher Brillouin zones. 

The access to small samples, follows from the very high flux and brilliance of synchrotron 

radiation sources, with the option to focus beams easily to ~100 microns in diameter, and, 

with some losses, to ~10 microns. It means that one can investigate small samples, including 

samples at very high (e.g. earth‟s core) pressures in diamond anvil cells, and small crystals of 

new materials. The latter is especially important in the world of modern materials synthesis, 
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where often the size of the single crystals are very small.  . Neutrons remain advantageous 

when high - energy resolution is needed, as backscattering spectrometers provide sub-meV 

resolution, at least for smaller energy transfers. Neutrons remain extremely competitive when 

large single crystals of heavier materials are available, whereas, x-rays are limited by the 

short penetration length into the sample.  

Raman scattering[21], is due to inelastic scattering of the incident photons whereby 

energy is transferred to or received from the sample due to changes in the vibrational or 

rotational modes of sample molecules, causing a change in the energy, and therefore the 

frequency of the scattered light. If the incident photon gives up energy to the sample it is 

scattered with a red shifted frequency and referred to as stokes shift. If the solid/molecule is 

already in an exited energy state, and gives energy to the scattered photon, the output has a 

blue-shifted frequency, and is referred to as anti-stokes shift. The selection rule governing 

Raman scattering is determined by changes in polarizibility during the vibration, which is 

different from another vibrational spectroscopic technique – infrared spectrometry (IR). In 

the case of IR spectroscopy[22, 23], the frequency of incident light has to match the energy 

differences between ground and excited vibrational states; and the subsequent energy loss of 

the incident light is detected. The molecular vibration where there is a change in dipole 

moment can only be observed in the IR spectroscopy. Raman scattering spectrum provides 

essentially the same type of information as the infrared (IR) absorption spectrum, namely, the 

energies of vibrational modes in solid.  

Further, Brillouin light scattering[24, 25] is the inelastic scattering of an incident 

optical wave field by thermally excited elastic waves (usually called acoustic phonons). From 

an empirical point of view, the two types of scattering (Raman and Brillouin) differ only in 

the distinction that optical phonons are involved in Raman scattering and acoustic modes are 

involved in Brillouin scattering. Due to the small frequencies of acoustic phonons for small q 
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vectors, the Brillouin lines are separated by small frequency shifts, of the order of less than 1 

cm
-1

, from the Rayleigh line. For this reason it is not possible to use a grating monochromator 

as for Raman scattering, but rather a Fabry-Perot interferometer must be used. 

 However, the above methods differ fundamentally in mechanism and selection rules, 

and each has specific advantages and disadvantages. The major disadvantage of optical 

spectroscopy techniques is due to large wavelength (~5000 A) of the incident radiation. That 

would allow to  probe only a tiny region of the Brillouin zone close to zone centre. However 

various phase transitions and properties of the materials are contributed from entire Brillouin 

zone. Further selection rule for Raman and IR techniques restrict their applicability in few 

compounds, whereas there is no such limitation is neutron inelastic technique. We can 

measure any phonon mode in the entire Brillouin zone. The advantage of the Raman and IR 

techniques are that the radiation flux in these techniques is much higher than neutron, hence 

data can be collected in very short times.  Moreover these techniques can easily be set up in 

small laboratories, whereas neutron inelastic requires major facility of reactor.  

 

1.4 Theoretical Techniques 

It is very important to analyze and interprete the measured data as well as understand 

the various physical and thermodynamical properties like elastic constant, specific heat, 

thermal expansion etc. The character and energy of atomic dynamics in solid as well as the 

individual atomic contribution to the spectra and other thermodynamical properties are 

difficult to obtain from measurements. Theory of lattice dynamics is a well established 

technique, it help us to understand the measured spectra and their atomic origin. Hence the 

theory of lattice dynamics plays a key role to simulate the observed spectra in various 

thermodynamical conditions.  Also there are various thermodynamical conditions where 
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direct measurement is not possible. The simulations are very useful to interpret the 

experimental data. Simulation and experimental techniques complement each other and 

provide complete information about a system. In following section we will be describing the 

lattice dynamics techniques to compute the vibrational spectra and derived thermodynamical 

quantities.  

 

1.4.1 Theory of Lattice Dynamics 

The theory of lattice dynamics is based on two basic approximation Born-Openheimer 

approximation and harmonic approximations. According to Born-Openheimer approximation 

in a system of electron and ion, we can treat the equation of motion of electron and ion 

separately since the electronic degree of freedom is much faster than ionic degree of freedom 

because of the mass difference. Here one can assume that electron will follow instantaneously 

the ionic motion.  This is called Born- Openheimer approximation; this approximation will 

fail if the ionic and electronic motion becomes comparable. 

Now the Hamiltonian of the crystalline system is given by: 

 
2
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k km

 
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                           (1.5) 

Where Φ is the crystal potential energy of the system and  given by 
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 
  ; 

where l and l’ is a three dimensional crystal cell index and k and k’ is atom index in l
th

 and l’
th

 

cell respectively. Now if we can expand the total crystal potential   in terms of atomic 

displacement 
l

u
k



 
 
 

  of k
th

 atom in l
th

 cell along α Cartesian direction.  
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In equilibrium configuration the force on every atom will be zero. Hence this will lead to the 

first derivative of potential energy to be precisely zero.  

 At low temperature if the amplitude of vibrations i.e. atomic displacements are not 

very large then we can ignore the higher order term beyond the quadratic term, this is called 

as harmonic approximation. We will see the pros and cons these approximations soon. 

Using the Born-Openhiemer and harmonic approximation, one can solve the 

Hamiltonian. The equation of motion by solving the Hamiltonian is 
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In crystalline system, force constant will satisfy the translational sum rules. This sum rule is 

of great importance in practical calculations as it enables the determination of the “self force 

constant” 
0 0
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 and this is given by 
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where the prime in summation implies the exclusion of the l=l‟ and k=k‟. 
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 Any perturbation in the system of crystalline material, which is a three dimensional 

periodic system can be written in terms of plane waves. Hence atomic displacement of k
th

 

atom of  l
th

 unit cell at any instantaneous time t can be expanded as sum of plane waves   
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Now using equation (1.9) in (1.7), we will get 3n simultaneous equations                                      
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Where α= x, y, z and k‟=1, n (n is number of atoms in unit cell) and  
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The above equation can be written in matrix form  

Ω(q)U(q)=D(q)U(q)                                      (1.12) 

 where                                                                                     
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D(q) is known as dynamical matrix and it is a Hermitian matrix. The diagonalization of above 

matrix will have the form 

   2

3( ) 1 nD q q                   (1.15) 

Solving the equation (1.15), 3n eigenvalues are obtained which are 2 ( )j q , (j=1,2,…,3n). 

Because, the dynamical matrix is Hermitian, the eigenvaues are real and its eigenvectors are 

orthogonal to each other. The components of the eigenvectors 
j( ) q  determine the pattern of 

displacement of the atoms in a particular mode of vibration. Corresponding to every direction 

in q-space, there are 3n curves =j(q), (j=1,2,…3n). Such curves are called phonon 

dispersion relations. The index j, which distinguishes the various frequencies corresponding 

to the propagation vector, characterizes various branches of the dispersion relation. 

Dispersion relation must satisfy the crystal symmetry. Though, some of these branches are 

degenerate because of symmetry, in general they are distinct. The form of dispersion relation 

depends on the crystal structure as well as on the nature of the interaction between atoms. 

Because of the translational invariance three phonon frequencies are zero at q=0.  These three 

branches are referred to as acoustic branches. The remaining (3n-3) branches have finite 

frequencies at  q=0,  which are labeled as optic branches. This will give 3n eigenvalues and 

eigenvectors. The eigenvalues are the square of phonon frequency at given q, hence we have 

3n phonon at any given q. For a stable system all the phonon frequencies at any q must be 

positive. 

The distribution of ω(q) is known as density of states. Mathematically it can be represented as 
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                           (1.16)                                                        

 

Here δ(x) is the Dirac delta function. 

The eiqgenvector at any q point for given phonon mode will determine the direction and 

relative amplitude of atomic motion in a crystalline solids, it is also known as polarization 

vector.  

 

1.4.2 Thermodynamical Functions 

By knowing the phonon spectrum we can calculate the various thermodynamical 

quantities contributed from phonons. The theory of lattice dynamics described in previous 

section allows us to determine the phonon frequencies in the harmonic approximation. The 

theory is strictly valid in harmonic approximations; those properties which are consequence 

of anharmonic character of lattice vibrations cannot be accounted within this approximation 

like thermal conductivity, thermal expansion, specific heat at high temperature and 

multiphonon process etc.  

The number of phonons excited in thermal equilibrium at any temperature is given by 

Bose-Einstein distribution n(ω)
B

1

exp( /k T) 1

 
 

  
. At high temperatures, 

j( ) q   << kBT, 

the number of phonons in a given state is directly proportional to the temperature and 

inversely proportional to their energy. Anharmonic effects are relatively small at low 

temperature. These effects become more important at high temperatures. This change at high 

temperatures affects physical properties of the crystal.  In the quasiharmonic approximation 

(where, the vibrations of atoms at any finite temperature are assumed to be harmonic about 
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their mean positions appropriate to the corresponding temperature), the thermodynamic 

properties of a crystal are based on the energy distribution of these phonon vibrations; 

however, in magnetic system the other low energy excitations like magnon will also play the 

role in determining these properties.  

The partition function of a single harmonic oscillator is given by 
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In a crystalline system vibrational modes (phonon mode) are orthogonal to each other; hence 

the partition function of the system is given by   
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Here the partition function of the crystalline system is written as a product of partition 

functions of single phonon; this is the major advantage of harmonic oscillator. This is only 

valid when the oscillators are independent.   Various thermodynamic properties of the crystal 

derived from the partition function involve summations over the phonon frequencies in the 

entire Brillouin zone and can be expressed as averages over the phonon density of states. The 

Helmholtz free energy F and entropy S are given by 
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The energy E of the crystal with volume V is 

vib

dF
E F T (V) E

dT
                      (1.22) 

where  (V) is the static lattice energy and Evib,  the vibrational energy at temperature T. 
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where n(ω) is the population factor given by  

 

B

1
n( )

exp( /k T) 1
 

 
                                                                                                     (1.24) 

 

The specific heat  Cv(T) is given by   
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The calculated phonon density of states can be used to compute the specific heat.  While 

lattice dynamical calculations yieldCV, the specific heat at constant volume, experimental 

heat capacity data correspond to CP, the specific heat at constant pressure.  The difference 

CP-CV is given by 

2

p v vC (T) C (T) [ (T)] BVT                                                                        (1.26)                                                             

where αV is the volume thermal expansion and B is the bulk modulus defined as  

dP
B V

dV
                    (1.27) 

Thermal expansion in materials is often expressed using the volume coefficient of thermal 

expansion (CTE).
 

The volume CTE, α, is defined with the following relationship: 
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where V is volume and T is temperature at constant pressure, P. Thermal expansion is always 

in the direction of increasing entropy and this can be expressed by applying a Maxwell 

relation to equation (1.28) as follows: 
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 where S is entropy and B
T 

is the isothermal bulk modulus, which is always positive and 

signifies the change in volume with increasing temperature is always in the direction of 
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increasing disorder. The sign of α is related to that of  
T

S

V

 
 
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. A positive sign for α shows 

increasing entropy with increasing volume; while a negative sign for α denotes increasing 

disorder when the volume decreases at constant temperature. As pressure increases and 

volume decreases under non-isothermal conditions, entropy decreases in materials exhibiting 

normal thermal expansion and α is positive in these compounds. NTE is anomalous in this 

limited scope as materials with NTE show increasing entropy with decreasing volume. Using 

thermodynamical relations it can be shown that  
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Here γ is known as Gruniesen parameter and defined as 
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The procedure of the calculation of thermal expansion is applicable when explicit 

anharmonicity of phonons is not very significant, and the thermal expansion arises mainly 

from the implicit anharmonicity, i.e., the change of phonon frequencies with volume.  Due to 

very large Debye temperatures in most of these systems the quasiharmonic approximation 

seems to be suitable up to fairly high temperatures.   We have discussed the role of implicit 

and explicit anharmonicity as well as validity of quasiharmonic approximation is Chapters 2-

3.   

The various ground state properties of a material are derivatives of the total energy at 

T=0 or free energy F at finite temperature. In Table 1.1 we have shown the variable on left 

side and the corresponding properties on right side. 

 

TABLE 1.1 Various physical variable (left) and corresponding physical properties obtained 

from derivatives of total energy with respect to these physical variables. 

Second derivative of Etot or F wrt                     Physical property 

di, dj Atomic displacement Force constant (Phonons) 

Ei, Ej          Electric field Dielectric tensor 

εij, εkl                Strain  Elastic constants matrix 

Ei, εjk              Electric field, strain Piezoelectric coefficient 

Ei,dj          Electric field, Atomic displacement Born dynamical charges 

di, εij           Atomic displacement, strain Strain phonon coupling 

Hi,Hj          Magnetic field Magnetic susceptibility 

Ei,Hj         Electric field, Magnetic field Electromagnetic coupling 

Hi, εjk   Magnetic field, strain Piezomagnetic coefficient 
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By calculating the total energy at different thermodynamical conditions one can calculate the 

various properties of the materials. In the next section we will be discussing about density 

functional theory (DFT) method to compute the total energy. 

 

1.4.3 Flow Chart of Phonon Calculation 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1.2  Flow chart of PHONON calculation using DFT methods. 
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Fig 1.2 shows the flow chart of phonon calculation. Using DFT methods (The computer 

codes will be discussed later) the structure of a given compound is optimized (i.e. atomic 

position and lattice parameter such that the force on individual atom is less than 0.001 eV/Å). 

Further, the relaxed structure is used to compute the response function like dielectric tensor 

and Born effective charges. In the supercell approach of phonon frequencies calculation, a 

supercell of appropriate dimension is generated using the optimized structure parameters. 

Further, different atomic configuration of a given supercell is generated using the symmetry 

adapted displacement of individual atoms along various high symmetry directions. Now 

using the DFT method Hellman-Feynaman forces of individual atom in supecell is obtained 

for each configuration. The interactomic force constant of pair of atoms are calculated using 

the Hellman-Feynman forces. The phonon frequencies in the entire Brillouin zone are 

calculated using the interatomic force constants. The dielectric constants and Born effective 

charges can be used to calculate to longitudinal optical and transverse optic modes splitting. 

In next section we will describe the basics of ab-initio density functional theory. 

The Born effective charge is defined as the derivative of the energy with respect to 

atomic displacements and electrical field.  When studying materials with long-ranged force 

constants, such as oxides or semiconductors, one needs to consider the effect of long-range 

interaction on phonon frequencies. This is incorporated with Born effective charge tensor and 

dielectric constants. 

In quantum mechanics, the force is the derivative of expectation value of Hamiltonian 

with respect to the atomic coordinates, this requires the three first derivative terms. 

Hellmann-Feynman theorem[26]  says that the first derivative of the Hamiltonian with 

respect the atomic coordinates is equal to the expectation value of derivative of Hamiltonian. 

This is known as Hellmann-Feynman (HF) forces.   
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1.5 Ab-initio Density Functional Theory 

The Density functional theory method is known to calculate the total energy from first 

principles.  This technique does not necessarily require any experimental input like structure, 

bond length, lattice parameters and phonon frequencies etc.  Usually it is difficult to predict 

the minimum energy crystal structure among a large number of possibilities; therefore the 

known structure is used as the starting point for further optimization. Ab-initio density 

functional theory is proven to be most accurate technique till now to compute the total energy 

at T=0K.  The theory is based on solving the Hamiltonian of the system including electron 

and ions together. The valence electrons are the fundamental entity controlling the nature of 

bonding, volume, charge and various other properties. The theory in principle is exact 

however in practice it includes approximations at the level of exchange and correlation. We 

will discuss the detail of these approximations in next sections.   

The behavior of electron in the vast environment of other electrons, ions and 

electromagnetic field controls the many physical and chemical and thermodynamical 

properties of the material. The many–body Hamiltonian operator that governs the behavior of 

a system of interacting electrons and nuclei in atomic units takes the form 
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                   (1.35)               

 

The summations over i and j correspond to electrons, and summations over I and J 

correspond to nuclei of the system  ri, RI and ZI is i
th

 electron spatial coordinate, position and 

charge on I
th

 nuclei respectively. Examining Eq. (1.35), we find that it basically consists of 

five terms being in order namely the kinetic energy of the electrons, the attractive electron–
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nuclei interaction, the electron–electron repulsive interaction, the kinetic energy of the nuclei, 

and the nuclei–nuclei repulsive interaction. This further can be written in a compact form in 

the following manner: 

 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( ) ( )e eN ee I NNH T r V r R V r T R V R                   (1.36) 

 

Where the various kinetic and potential operators depend on the positions of the electron and 

nuclei positions r and R, respectively.  Eq. (1.35) would be much more tractable to solve if it 

were separable in electron and ion coordinates, but the electron–nuclei interaction term VeN 

prevents this as it depends explicitly on both the positions of the electrons r as well as the 

positions of the nuclei R. However the mass of an electron is negligible in comparison to the 

atomic masses in the system. Thus the nuclei can be assumed to remain stationary from the 

point of view of an electron. As the spatial configuration of nuclei might change, we assume 

electrons will instantly find themselves adjusted to the new spatial configuration of nuclei. 

Furthermore, in fixing the nuclei positions, the potential energy from the nuclei–nuclei 

interaction becomes constant. This is known as the Born–Oppenheimer, or adiabatic, 

approximation as already discussed in section 1.3.4. Now we are also effectively disregard 

the kinetic energy of the nuclei because of the heavy mass. Now the Hamiltonian becomes: 

 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( )e eN ee NN e NNH T r V r R V r V R H E                     (1.37) 

 

The ˆ
eH is known as the electronic Hamiltonian, as it describes the motion of electrons in a 

fixed environment of atomic nuclei. It can be further broken down into having terms of 

internal and external character by writing  
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int
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , )e e extH r T r V r V r R                   (1.38) 

 

We need a formulation of an actual problem we can try to solve, and ideally, this problem is a 

connection to how the real world behaves, and the solution to which tells us something about 

the behavior of electrons in the real world.  

 

ˆ
eH E                     (1.39) 

 

This is an eigenvalue problem. This equation connects the electronic hamiltonian operator 

ˆ
eH  for a system of electrons with its stationary solutions Ee. These stationary solutions turn 

out to be the eigen solutions to the above equation, where each eigenfunction solution Ѱ is 

known as a many–body electronic wavefunction.  The electronic wavefunction Ѱ describes 

the state of all electrons in the system, and is a function of the set of the spatial locations of 

each electron {ri}. The electronic energy associated with each solution wavefunction also 

depends implicitly on nuclei positions: 

 

       0 0; ,i e er R E E R                   (1.40) 

 

Now  we assume implicitly the parametric dependence of the wavefunction and energies on 

the positions of the nuclei {RI}  , and we omit this from our expressions. 

From Eq. (1.38) we have a Hamiltonian operator which dictates the behavior for a 

given system of N electrons moving about a fixed arrangement of atomic nuclei. These set of 

N electrons are described by their locations in space by the set of their spatial coordinates 
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{ri}.  The electrons are fermions; we have to also include information about their spin state. 

To incorporate this property, we add an additional spin degree of freedom s to the spatial 

coordinate r of an electron, and we can then write general coordinate of the electron is x 

given by 

                                    x = {r, S}                                                                  (1.41) 

We are now able to fully describe the electrons in the many–body wavefunction in terms of 

the augmented coordinates x. We will use it to enforce a property that electrons obey, known 

as the Pauli exclusion principle. This principle says that no two electrons can possess the 

same quantum state. In other words, they may not occupy both the same position in space and 

have the same spin state. Hence in order to include the effect of spin, the wave–function of 

the electrons is constructed such that it is anti–symmetric. Thus an interchange of any two 

electrons in the system would change the sign of the wavefunction in the following manner: 

 

   1 2 2 1, ,..... , ,.....N Nr r r r r r                   (1.42) 

 

Another condition imposed on the many–body wavefunction is the normalization of the wave 

function, i.e. for a wave function describing N electrons we have 

 

 
2

1 1,.... .... 1N Nr r dr dr                     (1.43) 

 

and thus N electrons are described to exist in the system with unit probability. The single 

particle density in N electron system is defined as                                             

                                        

 
2

2 2( , .... ) ....N Nn r N r r r dr dr                                      (1.44) 
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which yields the intuitive result that integrating the single–particle density over all of space 

will yield the total number of particles in the system, i.e.                  

                                             

 n r dr N                                                                              (1.45) 

 

Determining the ground state wave–function for the Schrödinger Eq. (1.39) in terms of the 

many–body electron wave function Eq. (1.40) is only really tractable for simple systems with 

relatively very few electrons. One approach that transforms the many–body Schrödinger 

wave equation into a simple one–electron equation is known as the density functional theory 

formalism, or DFT. A central property of DFT is that it recasts the basic variable of our 

equations from being the ground state electronic wave function  1 2, ,... Nr r r  to that of the 

ground state electron density n0(r), where  

 

   
2

0 0 2 2, ,... ....N Nn r N r r r dr dr                                               (1.46) 

 

and hence it effectively reduces the 3N degrees of freedom to just 3 for an N–electron 

system. Density functional theory is able to predict the ground state energy and wavefunction 

of  the system, all the ground state properties of systems can be determined using the theory. 

In principle DFT is an exact theory of the ground state of a system, however due to lack of 

the exact form the exchange–correlation functional, the theory works on certain assumptions 

and approximations to this functional. This can have varying levels of sophistication and 

numerical overhead in calculation, while still providing acceptable results. However the 
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approximated exchange–correlation functional would reflect the behavior of the true 

functional as much as possible.  

Density functional theory is based on two pillars, one is known as Hohenberg and 

Kohn theorem and another is Kohn-Sham  theorem. 

 

1.5.1     Hohenberg–Kohn Theorem 

 

 

 

 

 

 

FIG 1.3 Visualizing the Hohenberg–Kohn  implications, where C denotes a constant.  

 

Hohenberg–Kohn Theorem 1.  

For any system of multiple interacting particles in an external potential Vext(r), the 

potential  Vext(r) is determined uniquely, except for a constant C, by the ground state particle 

density n0(r). 

Hohenberg–Kohn Theorem 2.  

A universal functional for the energy E[n] in terms of the density n(r) can be defined, 

valid for any external potential Vext(r). For any particular  Vext(r), the exact ground state 

energy of the system is the global minimum value of this functional, and the density n(r) that 

minimizes the functional is the exact ground state density n0(r).  

HK 
ˆ ( )extV r C

 

 0n r  

 { }i r   0 { }r  
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If we consider N electrons in an external potential  0
ˆ ,extV r R  as defined in the 

electronic hamiltonian ˆ
eH from Eq. (1.38) and  the many body wavefunction is given by 

Ѱ(r) =  Ѱ(r1; r2; … rN), we can define the functional 

                                                                                  

       ( ) int
ˆ ˆ[ ] min n r eF n r T r V r r                                      (1.47) 

 

where the minimum is taken over all wavefunctions  Ѱ(r) that construct the density n(r). The 

functional F is a universal in the sense that it does not depend on the system details we are 

dealing with nor of the external potential  0
ˆ ,extV r R , i.e. it is independent of R0. If we name 

E0 and n0(r) to be the ground state energy and density, respectively, then the above said two 

basic theorems of DFT are 

                                                                                              

 0 0
ˆ[ ] , ( ) [ ]extE n V r R n r dr F n E                     (1.48) 

 

for  all n(r), and 

                                                                                      

   0 0 0 0
ˆ , [ ]extV r R n r dr F n E                  (1.49) 

 

In order to prove the variational principle in Eq. (1.48), we introduce the notation min ( )n r  for 

an electronic wave function that minimizes Eq. (1.47) such that 

                                                                               

   ( ) min int min
ˆ ˆ[ ] min n n

n r eF n T r V r                   (1.50) 
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Writing    

   0 0, ,ext ext ii
V r R V r R   

         0 min int 0 min 0
ˆ ˆ ˆ ˆ, [ ] ,n n

ext e extV r R n r dr F n T r V r V r R E                  (1.51) 

 This proves the first theorem of Hohenberg- Kohn theorem in Eq. (1.48). Further using the 

property of the ground state once again, we have 

 

           0 0

0 0 int 0 0 min int 0 min
ˆ ˆ ˆ ˆ ˆ ˆ, ,

n n

e ext e extE T r V r V r R T r V r V r R                   (1.52) 

 

By subtracting the external potential from both the sides we have 

                                                                                                      

       0 0

0 int 0 min int min
ˆ ˆ ˆ ˆn n

e eT r V r T r V r                               (1.53) 

 

However from (1.50) definition of 0

min

n  tells us 

                                                                                                                                                                                                                                 

       0 0

0 int 0 min int min
ˆ ˆ ˆ ˆn n

e eT r V r T r V r                   (1.54) 

 

which is only possible if both sides of the expression are equal, i.e. 

                                                                                                    

       0 0

0 int 0 min int min
ˆ ˆ ˆ ˆn n

e eT r V r T r V r                   (1.55) 

 

Hence finally we can write the ground state energy  
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       0 0 0 int 0
ˆ ˆ ˆ,ext eE V r R n r dr T r V r          

       0 0

0 min int min
ˆ ˆ ˆ,

n n

ext eV r R n r dr T r V r      

   0
ˆ , [ ]extV r R n r dr F n                                                               (1.56) 

And this proves the second theorem of Hohenberg-Kohn. Hence all the ground state 

properties can be derived by knowing the functionals of the ground state density. This also 

proves that the density n(r) is a basic variable, rather than the electronic wave function Ѱ(r).  

However the Hohenberg-Kohn theorem did not tell us about the form of functional in Eq.  

(1.47). If we can construct a satisfying approximation to the true functional F[n], for Eq. 

(1.48), we can then perform a minimization of this equation, and can accordingly obtain 

approximations to both the true ground state energy E0 and the true ground state density n0(r). 

 

1.5.2 Kohn–Sham Approach 

  Another breakthrough in the field of DFT is led by the famous theorem of Kohn-

Sham. The philosophy of the Kohn–Sham (KS) approach is to map the many–body system to 

a one body system that will have the same solution, but be easier to solve.  

 

 

 

         

 

FIG 1.4  Visualizing the KS ansatz that bridges the true multi–particle wave function system 

on the left with the auxiliary system on the right based on single–particle wave functions. 

HK HK0  0n r   KSV r  

 i r   1,..i N r

 

KS 
ˆ ( )extV r C   0n r  

 { }i r   0 { }r  
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The KS ansatz is the assumption that the ground state density of the fully interacting multi–

body system is equal to that of some other fictitious system where the electrons do not 

interact. This reduces the complexity of treating a system of N mutually interacting electrons 

to that of treating N individual non–interacting electrons. Since the electrons in the mapped 

system do not interact hence we can solve this as a single electron problem in an effective 

field. The KS ansatz is based on the following two assumptions: 

 

KS Ansatz 1. The precise ground state density of a system can be represented by the 

ground state density of an auxiliary system whose electrons do not interact. This first 

assumption is visualized in Fig. 1.4   which connects the ground state density n0(r) found for 

a non–interacting system with the true ground state density of a fully interacting many–body 

system. 

 

KS Ansatz 2. The auxiliary hamiltonian is formed such that it contains the regular kinetic 

energy operator  21

2
T     , but the potential is replaced by an effective potential  effV . 

An extremely useful simplification that can be made in the second assumption is that of using 

an effective potential  effV  that is local. That is to say, an electron at point r will only „feel‟ its 

local neighborhood. To see how the single–electron KS approach ties in that of many–

electron HK theory, we start with the KS energy functional. The energy functional from the 

KS approach is 

                                                                                                              

     0

1ˆ[ ] [ ] [ ]
2

KS ext Hartree xcE n T n n r V r V r dr E n
 

    
 

               (1.57) 
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where 0T̂  is the kinetic energy of a system with density n and lacking electron–electron 

interactions. The term HartreeV  is the classical Coulomb potential for electrons, also known as 

the Hartree potential. Finally, EXC is the so–called exchange–correlation energy. The first 

term and integral can be calculated exactly, while the last term, the exchange–correlation 

functional, incorporates both the exchange and correlation energies, as well as the 

„remainder‟ of electron kinetic energy and anything else that might be lacking in order for the 

energy functional EKS to be the true energy functional E from Eq. (1.48). It is only this term 

for which we need to construct a satisfying, approximate functional, since the form of the true 

functional is not known. 

The major problem with DFT is that the exact exchange and correlation functional are 

not known except for the free electron gas. However, great progress has been made with 

remarkably simple approximations. One of the simplest exchange–correlation functional 

applied in DFT is the local–density approximation (LDA) functional, first used and 

developed by Kohn and Sham[27]. This functional approximates the exchange–correlation 

energy of a point in a system to being the same as that of a point in a homogenous electron 

gas of the same density. It turns out that the kinetic energy term 0T̂  for the non–interacting 

electrons can account for a large part of the full kinetic energy term ˆ
eT for the many–body 

interacting system[28]. Thus only a relatively small part of the energy contributed to the 

functional EKS comes from EXC, and thus our calculated ground state properties become 

relatively well approximated despite a rough estimate of the exchange–correlation energy. If 

we apply the variational principle[28] to Eq. (1.57), we get                                                                      

                             

 
   

   
 

0
ˆ [ ]ˆ ˆKS xc

ext Hartree

E n T E n
V r V r

n r n r n r

  


  
                                            (1.58) 
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where µ is the Lagrange multiplier associated with the constraint of keeping the number of 

electrons in the system constant. We can now compare this with a similar equation, but where 

we neglect electron–electron interactions, getting 

                 

 
   

 0
ˆ

ˆKS

eff

E n T
V r

n r n r

 


 
                                                 (1.59) 

 

where we have  ( )effV r as an effective potential that not only incorporates the nuclei and 

external effects, but also the so–called effective potential of the other electrons, although no 

explicit interaction is given. The equations Eq. (1.58) and Eq. (1.59) are identical, provided        

                                                                                   

     
 
[ ]ˆ ˆ ˆ xc

eff ext Hartree

E n
V r V r V r

n r




                                      (1.60) 

 

whose solution we can find by solving a set of single–particle Schrodinger equations for 

noninteracting particles for each electron in the system 

 

     ˆ ˆ , 1,2,3,....eff i i iT V r r r i N    
 

              (1.61)  

 

with the density being constructed up from each electron‟s fictitious wave function   i r

and given as                                           

   
2

1

N

ii
n r r


                                                  (1.62) 

Thus we can present an overview of the KS single–particle equations, for which we solve for 

the ground state density n0(r), in Eqs. (1.63)–(1.65).  
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       ˆ ˆ ˆ
eff ext Hartree XCV r V r V r V r                  (1.63) 

 

     ˆ ˆ
KS effH r T r V r                                                                         (1.64)    

                                                                                                        

     ˆ
KS i i iH r r r                   (1.65) 

 

One unanswered issue is that the effective potential from Eq. (1.63) depends on the average 

location of the electrons in the system, and this is not known a priori. As we will see in the 

following section, determining this is done via a self–consistent approach, using an initial 

guess of the density n(r). 

In order to treat the problem of dealing with the Schrödinger equation and its 

associated wavefunction on a computer, the wavefunction itself is expanded into components 

of a basis set  n comprised of a total of n basis functions. 

                                                                                                                                                                                                                                                

   
1

n

j jj
r c r


                                                     (1.66)                                                                                                       

 

The original wavefunction can then described as a column vector of coefficients with respect 

to the set of n basis functions like this: 

   1 2 3 4 5 5, , , , ,....
T

r c c c c c c c                   (1.67) 

 

where the superscript (T ) denotes transposition. 



Chapter 1: An Introduction to Lattice dynamics……….. 

 

 

 

41 

 

In principle, for an arbitrary wave function  r to be able to be described exactly by 

a basis set expansion, a complete set of basis functions    would be needed, and thus an 

infinite number of coefficients ci would describe  r . Since this is not practical for 

implementation, a finite basis set is utilized, and the wave function would be described 

exactly only in terms of the subspace that the finite basis set would define. If we look at how 

this affects the Schrödinger equation, either in Eq. (1.39) or Eq. (1.65), we substitute Eq. 

(1.66) into either one and obtain 

 

   
1 1

ˆn n

j j j jj j
c H r c r  

 
                  (1.68) 

 

We multiply both sides by  *

i r  where the superscript (*) denotes complex conjugation, 

getting 

 

       * *

1 1

ˆn n

i j j i j jj j
r c H r r c r    

 
                (1.69) 

 

We then integrate both sides over r to get 

 

       * *

1 1

ˆn n

i j j i j jj j
r c H r dr r c r dr    

 
                (1.70) 

 

       * *

1 1

ˆn n

i j j j i jj j
r c H r dr c r r dr    

 
                (1.71) 

 

which we rewrite as 
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1 1

n n

ij j ij jj j
H c S c

 
                   (1.72) 

 

where the Hamiltonian matrix H‟s elements are 

 

   * ˆ
ij i j jH r c H r dr                     (1.73) 

 

and the overlap matrix S‟s elements 

   *

ij i jS r r dr                               (1.74) 

 

The main result is that Eq. (1.73) shows us that we have transformed our operator–based 

Schrödinger equation to the following matrix–based generalized eigenvalue problem: 

                                      

Hc Sc                                                                  (1.75) 

 

From Eq. (1.74), we can see that if the chosen basis set   is orthogonal, the overlap matrix 

S reduces to the identity matrix I, and Eq. (1.75) reduces to the regular eigenvalue problem 

  Hc c .  In figure 1.5 the flow chart of DFT calculation scheme is shown.  
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FIG 1.5 Flow chart of DFT calculation scheme. 

 

1.6 Pseudopotential  

In planewave basis set DFT calculations, the main problem arises when dealing with 

rapidly fluctuating electron densities in the vicinity of atomic cores. One needs a very large 

number of plane waves in order to describe such fluctuations properly. The only possibility to 

save a purely planewave basis set is to discard core states. The exclusion of the core states 

from the direct consideration means that one has to deal in the following not with the effect 
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of bare nuclei potentials, but rather with the potentials screened by the core electrons. This 

potential is more smooth and shallow than the true one. This simplification gives rise to a 

family of pseudopotential methods in contrast to the all-electron methods (i.e., those where 

all electrons, valence and core electrons, are treated in the same way). Historically, the 

pseudopotential approach is related to the orthogonalized plane wave method (OPW), in 

which the basis set consists of plane waves, orthogonalized to lower - lying core states .The 

most straightforward way of screening the true potential with a fixed core density is not 

practically used. The Coulomb field of a not fully compensated bare charge remains singular 

at the nuclei. Moreover, a true valence wavefunction must have nodes in the intra-atomic 

region for ensuring its orthogonality to the core states. The description of these nodes by 

plane waves needs high cutoffs. In reality, one works with smooth node-free pseudofunctions 

generated in a shallow pseudopotential. The construction of a pseudopotential typically starts 

with the choice of an appropriate reference configuration (e.g., Fe3d74s1) and 

pseudopotential radii rc, which can be different for different l-channels. As a rule, the 

following conditions are imposed: 

 

 The pseudofunction must have no nodes (in order to avoid wiggles that would 

demand for higher cutoff). 

 The pseudofunction matches the all-electron one beyond the cutoff radius. 

 Norm conservation, meaning that the charge contained within the pseudopotential 

radius is the same for the pseudofunction and the all-electron one. Otherwise, 

deviations from this rule give rise to ultrasoft pseudopotentials. 

 The eigenvalues corresponding to pseudofunctions must be equal to those of the all-

electron solution at least for the reference configuration. 
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Now-a-days, pseudopotentials being in use are usually of ab-initio nature. They are generated 

(with the use of certain approximations and criteria) from the true (all-electron) solutions for 

free atoms or ions. As it was mentioned above, there can be some deviations from the rule of 

norm conservation for pseudopotentials. Namely, Vanderbilt (Vanderbilt, 1990) suggested to 

abandon the norm-conservation condition, that would allow to make the pseudolization radius 

rc essentially larger (see Fig. 1.6), limited only by the condition that the spheres of this radius 

centered on different atoms must not overlap in a simulation. A big advantage would be that 

pseudopotentials generated with larger rc are much softer and hence a much lower planewave 

cutoff is needed. 

The ultrasoft pseudopotentials can be characterized by some important features: 

 The cutoff radius R, beyond which all all-electron and pseudo-properties 

(wavefunctions, potential) coincide, is only limited by next-neighbor distance. 

 The necessary plane wave cutoff for the plane wave basis is drastically reduced. 

 The amount of computational work (in the generation of pseudopotential) is 

increased. But most of these additional efforts need not to be repeated in the course of 

iterations. 

 If the local potential in the sphere varies in the course of iterations, it can be 

considered as part of pseudopotential, so the pseudopotential develops itself as the 

calculation proceeds (similar to all-electron methods). 

 The main area of application of ultrasoft pseudopotentials is for large systems, where 

the relative cost of the pseudopotential generation is relatively low, as compared to 

solving the electronic structure problem. For the latter, a low planewave cutoff is a 

major advantage. 
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1.6.1  Projector-Augmented Wave Method 

 

 

 

 

 

 

 

 

FIG 1.6 Schematic representation of the pseudo-wavefunction of an ultrasoft pseudopotential 

compared to the pseudo-wavefunction of a norm-conserving pseudopotential. 

 

The Projector-Augmented wave method (PAW) has been developed by Peter Blochl 

in 1994 [29]. The new method was needed to enhance the accuracy and computational 

effciency of the plane wave pseudopotential approach and to provide the correct wave 

functions, rather than the ficticious wave functions provided by the pseudopotential approach. 

The PAW method describes the wave functions by a superposition of different terms: There 

is a plane wave part, the pseudo wave function, and expansions into atomic and pseudo-

atomic orbitals at each atom. On one hand, the plane wave part has the flexibility to describe 

the bonding and tail region of the wave function, but fails to describe correctly all the 

oscillations of the wave function near the nuclei. On the other hand, the expansions into 

atomic orbitals are well suited to describe the nodal structure of the wave function near the 

nuclei, but the local orbitals lack flexibility to describe the bonding and tail regions. The 

PAW method combines the virtues of both numerical representations in one well-defined 



Chapter 1: An Introduction to Lattice dynamics……….. 

 

 

 

47 

 

basis set. In order to avoid solving two electronic structure calculations, i.e., one with plane 

waves and one using atomic orbitals, the PAW method does not determine the coefficients of 

the atomic orbitals variationally. Instead, they are unique functions of the plane wave 

coefficients. The PAW method is in principle able to recover rigorously the density 

functional total energy, if plane wave and atomic orbital expansions are complete. This 

provides a systematic way to improve the basis set errors. 

 

1.6.2 Local Density Approximation (LDA) and 

Generalized Gradient Approximation (GGA) 

Two famous approximations used in density functional theory to account the 

exchange correlation effect of many body system to effective one body problem of Kohn-

Sham approach are known as the local density approximation (LDA) already discussed in sec 

1.3.7.2    and gradient density approximation (GGA). In local density approximation the 

exchange correlation is a functional of local density   only.  This is known as simplest 

exchange correlation functional. It was used for a generation in material science, but is not 

accurate enough for many chemical proposes.  Typical calculated discrepancy observed using 

LDA approximations are overestimated binding energy, underestimated lattice parameters, 

incorrect phase stability order etc. To address this issue the gradient of the electron density is 

also considered as a functional variable of exchange correlation. This is known as generalized 

gradient approximation (GGA). GGA greatly reduce bond dissociation energy error and 

generally improve transition state barrier. Typically but not always this is more accurate than 

LDA. But, unlike LDA, there is no single universal form. GGA requires knowledge of two 

variable densities and gradient of density.  LDA works well with nice covalent systems and 
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simple metal. However GGA give good result for molecules, H-bonded materials, and highly 

varying densities.  

 

1.7 Software’s 

1.7.1 Quantum ESPRESSO 

Quantum ESPRESSO[30] is an integrated suite of Open-Source computer codes for 

electronic-structure calculations and materials modeling at the nanoscale. It is based on 

density-functional theory, plane waves, and pseudopotentials. It can calculate the phonon in a 

crystalline material using density functional perturbation method (DFPT)[31] or supercell 

approach.  The author has used this software to calculate the phonon dispersion relation of 

Li2O using DFPT methods.  

 

1.7.2 Vienna Ab-initio Simulation Package (VASP) 

The Vienna Ab initio Simulation Package (VASP) [32, 33] is a computer program for 

atomic scale materials modeling, e.g. electronic structure calculations and quantum-

mechanical molecular dynamics, from first principles. The total energy of the system and 

Hellman Feynman forces is computed by solving the Kohn-Sham equations.  In VASP, 

central quantities, like the one-electron orbitals, the electronic charge density, and the local 

potential are expressed in plane wave basis sets. The interactions between the electrons and 

ions are described using norm-conserving or ultrasoft pseudopotentials, or the projector-

augmented-wave method. 

We have used the software to compute the total energy, pressure, Born dynamical 

charges, charge density and Hellman Feynman forces for ZrW2O8, M2O, MCN (M=Ag, Au 
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and Cu), GaFeO3, YMnO3, AFeO2 (A=Ca and Sr), NaNbO3, RMnO3 (R=Ca and Pr) and 

LiMPO4 (M=Fe and Mn). 

 

1.7.3 PHONON 5.10 

PHONON-5.10 is a software developed by K. Parlinski [34] for calculating phonon 

dispersion curves, and phonon density spectra of crystals from a set of Hellmann-Feynman 

forces calculated within an ab-initio program. One can use VASP, Wien2k or any other 

software package to compute the Hellmann-Feynman forces. Phonon builds a crystal 

structure, using one of the 230 crystallographic space groups, finds the force constant from 

the Hellmann-Feynman forces, builds the dynamical matrix, diagonalizes it, and calculates 

the phonon dispersion relations. It also calculates the polarization vectors, and the irreducible 

representations (Gamma point) of phonon modes, and calculates the total and partial phonon 

density of states. For polar crystals the LO/TO mode splitting can be included.  This software 

has been used to compute the phonon dispersion relation and density of states calculation for 

ZrW2O8, M2O, MCN (M=Ag, Au and Cu), GaFeO3, YMnO3, AFeO2 (A=Ca and Sr), 

NaNbO3, RMnO3 (R=Ca and Pr) and LiMPO4 (M=Fe and Mn).  

 

1.8 Conclusions 

This thesis is focused to understand the role of  phonons in the functional properties 

of materials. We have given the details of the  formalism to determine the frequency and 

wavevector of the  phonon modes. The method consists of taking a Taylor expansion of the 

crystal potential in terms of atomic displacements, using Newton‟s second law and the 

translational invariance of the crystal, and solving the resulting equations.  The neutron 
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inelastic techniques have been used to measure the inelastic spectra of all the compounds. 

Besides these we have also discussed other experimental techniques with their merits and 

demerits.  
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Chapter 2 

Nature of Bonding and Negative Thermal 

Expansion Behavior in M2O and MCN 

(M=Ag, Au, Cu) Compounds 

 

2.1 Introduction 

The phenomenon of large negative thermal expansion (NTE) in ZrW2O8 over a wide 

range of temperatures has lead to extensive research [1-17] in this area since last two decades.  

In fact, the phenomenon was observed long back in water. The polyhedral framework 

compounds with large open structure are mostly found to exhibit this phenomenon e.g 

ZrV2O7, TaV2O5, Sc2(MoO4)3, HfV2O7 etc. The discovery of colossal thermal expansion 

behavior in metal cyanides compounds [15, 18, 19]  has further accelerated the research in 

this field. The discovery of NTE has lead to industrial applications of these compounds in 

various areas like fiber optics, coatings, electronics and mirror substrates to tooth fillings etc.  

Most of the compounds exhibiting negative thermal expansion behavior consist of 

rigid polyhedral units around metal ions. The polyhedral units are mutually connected via 

terminal oxygen’s. The terminal oxygen plays an important role in governing the thermal 

expansion behavior in such compounds. ZrW2O8 is very popular compound in this category. 

It shows isotropic negative thermal expansion behavior from 0.3 K to 1050 K. Its structure 

remains cubic up to 1050 K, however there is an order-disorder transition around 450 K. The 
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low energy transverse phonon modes in the compound are found to be very anharmonic in 

nature, which led to transverse displacement of oxygen and causes NTE in ZrW2O8[20-23].   

The other frame work compounds such as ZrV2O7, HfV2O7 also show similar behavior 

although there structures are different than that of ZrW2O8. A number of experimental and 

theoretical studies have been performed on such compounds. These studies suggest that the 

transverse vibration of oxygen and distortions of polyhedron units are mainly responsible for 

negative thermal expansion.  

In the case of M2O (M=Ag, Cu and Au)[24-26] compounds, the metal ion M acts as 

terminal atom to connect M4O polyhedral and plays important role in NTE behavior.  The 

difference in the thermal expansion behaviour in these compounds mainly arises due to the 

difference in nature of bonding. The phonon calculations show that NTE in oxygen mediated 

compound is mainly supported by the structure i.e. open structure. However in compounds 

where metal atoms play the role of terminal entity, the nature of bonding between metal atom 

and oxygen is also found to be important in governing the thermal expansion behavior.  

Recently metal cyanides have gained attention.  Zn(CN)2 was the first compound in 

this category[27]. The structure consists of tetrahedral framework of Zn connected with four 

cyanide units. The tetrahedral units are connected through CN, which provide the flexibility 

to bend the tetrahedra and results in NTE behaviour. The isostructural cyanide   Cd(CN)2 also 

exhibit NTE behavior. The magnitude of negative thermal expansion coefficient is found to 

be larger[17]  in comparison to Zn(CN)2. NTE has been explained in terms of rotations, 

translations and deformations of M(C/N)4 coordinated tetrahedra[28, 29].  The compounds 

consist of polyhedra units connected via C≡N, and are known to provide more flexibility in 

comparison to those where polyhedrals  are connected via oxygens. It seems the structure 

consisting of -C≡N- units provide much flexibility for the bending motion, which is found to 

be one of the major causes of NTE behavior in cyanides. In this chapter, results obtained on 
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compounds M2O and MCN (M=Ag, Au, Cu) are given in sections 2.2 and 2.3 respectively. 

 

2.2 M2O (M=Au, Ag, Cu) Compounds 

The compounds M2O (M=Ag, Cu and Au) [25, 26] crystallize in a simple cubic lattice 

(space group Pn-3m). The M atoms are linearly coordinated by two oxygen atoms, while 

oxygen is tetrahedrally coordinated by M atoms. Ag2O shows a large isotropic negative 

thermal expansion (NTE) over its entire temperature range of stability, i.e. up to ~ 500 

K, while Cu2O only shows a small NTE below room temperature. At the moment, no 

experimental data are found in the literature for Au2O, but we anticipate that our simulations 

on this isostructural system will generate effort in this direction.  Extensive experimental data 

including specific heat measurements[30, 31], Raman and IR detection of long-wavelength 

optically active phonons[32, 33] together with neutron derived phonon dispersion relations 

and phonon density of states[34, 35] have been reported for Cu2O while the calculations of 

the volume thermal expansion in Ag2O and Cu2O have also been published[35, 36]. EXAFS 

measurements on Ag2O and Cu2O[37-40] indicate that the mechanism at the origin of their 

NTE involves deformations of the M4O tetrahedral units (M = Ag, Cu), rather than simple 

rigid units vibrations. Also it has been suggested[40] that the large difference between the 

NTE coefficient of Ag2O and Cu2O not only originates from a mass effect but also from 

differences from the chemical interaction  

Here we present the neutron measurements of the phonon density of states of Ag2O 

and Cu2O, and ab-initio calculations of all three metal oxides. Much insight into the physics 

at play in the NTE properties of these systems can be derived from a systematic study of the 

series Cu, Ag, Au. This implies using the same simulation technique and the same 

experimental apparatus. We find that Ag2O and Cu2O have a NTE while we find that Au2O 
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has a large positive expansion with increasing temperature. In the next sections, we discuss 

the origins for these large differences in the amplitude and sign of the thermal expansion 

coefficients between these isostructural compounds. Using the density functional perturbation 

approach we calculate the Born effective charge dielectric constant and other properties. We 

find that Au2O has a less ionic character than Ag2O and Cu2O and discuss the consequences 

of tighter Au-O bonds on the lattice expansion and anharmonicity of the crystal.  

Polycrystalline samples of Cu2O and Ag2O (99.9% purity purchased from Sigma 

Aldrich) were wrapped inside a thin Aluminum foil and fixed at the end of an orange cryostat 

stick for the measurements. The measurements were done in the neutron-energy-gain mode 

using the incident neutron energy of 14.2 meV (2.4 Å) at 320 K.  

The calculation of phonon is performed using supercell method implemented in 

PHONON 5.10 software[41]. The Hellman-Feynman forces were calculated by the finite 

displacement method (displacement 0.04 Å) using a 2×2×2 super cell. Total energies and  

Hellman-Feynman forces calculations were performed using Vienna ab-initio simulation 

package (VASP)[42, 43]. The plane wave pseudo-potential with plane wave kinetic energy 

cutoff of 880 eV, 1000 eV and 1200 eV for Ag2O, Cu2O and Au2O respectively was used. 

The integrations over the Brillouin zone were sampled on a 8×8×8 grid of k-points generated 

by the Monkhorst-pack method[44] for all three compounds. The calculated unit cell 

parameters for Ag2O and Cu2O are in agreement with the experimental data[25] (see TABLE 

2.1), while the calculated lattice parameter for Au2O is in agreement with previous 

calculations[45, 46]. 
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2.2.1 Results and Discussion   

2.2.1.1 Phonon Spectra    

As expected for isostructural compounds, the dispersion curves below 10 meV in 

Ag2O and Au2O are found to be similar, while in Cu2O these modes are shifted to higher 

energies, which can be understood considering the smaller mass of Cu Fig 2.1. In general, we 

find a very good agreement between both our calculations for Cu2O and those of Bohnen et 

al.[35], together with their experimental dispersion curves reported in their paper, and with 

the measured phonon spectra measured (Fig. 2.2) in this study for Cu2O and Ag2O[47]. The 

latter observations validate our approach using ab-initio calculations, and give us confidence 

into the properties we derive from them, especially those extended to Au2O. 

The computed partial densities of states are shown in Fig. 2.3. These are obtained by 

atomic projections of the one-phonon eigenvectors and reflect the contribution of the 

different atoms to the spectrum. The contributions due to Ag, Cu or Au are located below 20 

meV, the lightest atom Cu (63.54 amu) having its contributions extending up to the larger 

frequency. The masses of Ag (107.87 amu) and Au (197.97 amu) being different, one would 

also expect a renormalization of the phonon frequencies. However the first two peaks in the 

density of states are at nearly the same energies i.e. 3 meV and 6 meV. This observation 

suggests that the chemical bonds in Ag2O and Au2O are of different strength. The oxygen 

vibrations in all the three compounds extend over the entire phonon spectral range with 

maximum weight for frequencies above 50 meV.  The M-O stretching modes in Cu2O, Au2O 

and Ag2O are up to 75 meV, 70 meV and 65 meV respectively.  
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FIG 2.1  The calculated low energy part of the phonon dispersion relation of M2O (M=Ag, 

Au and Cu).  The Bradley-Cracknell notation is used for the high-symmetry points along 

which the dispersion relations are obtained. =(0,0,0); X=(1/2,0,0); M=(1/2,1/2,0) and 

R=(1/2,1/2,1/2).  

 

The different spectral range for these modes may reflect the different M-O bond 

lengths and difference in nature of M-O bonding. The smallest Cu-O bond (1.866 Å) results 
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in shifting of energies up to the highest spectral range of 75 meV. However Ag-O and Au-O 

bond lengths 2.082 Å and 2.078 Å respectively in Ag2O and Au2O are similar but the stretch 

mode of Au is at larger frequencies. This suggests that the Au-O bond may have a more 

covalent nature as compared to the Ag-O bond for which an ionic nature dominates.  

   

 

 

 

 

FIG 2.2   Experimental (symbols plus line) and calculated (solid line) neutron-weighted 

phonon density of state of M2O (M=Ag, Au and Cu) compounds. The calculated spectra have 

been convoluted with a Gaussian of FWHM of 15% of the energy transfer in order to 

describe the effect of energy resolution in the experiment. 

 

 

 

 

 

 

FIG 2.3 Normalized partial density of states of various atoms and total one-phonon density 

of states in M2O (M=Ag, Au and Cu) compounds.  

 

Finally, the lowest transverse acoustic modes in Ag2O and Au2O give rise to the first 

peak in the density of states at about 3 meV, clearly observed in the phonon spectra (see Fig. 

2.2 and 2.3). The equivalent peak in the Cu2O spectrum is observed at 6 meV.  
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2.2.1.2 Pressure Dependence of Phonon Modes and 

Thermal Expansion Behavior 

In the quasi-harmonic approximation the volume thermal expansion coefficient[48] of 

a crystalline material, is given by the following relation: 
1

( )V i Vi

i

C T
BV

   . Here 

i
i

i

dEV

E dV
   is the mode Grüneisen parameter, which is a measure of the volume/pressure 

dependence of the phonon frequency. CVi(T) is the specific heat contribution of the i
th

 phonon 

mode (of energy Ei) at temperature T, while B and V stand for the volume and the bulk 

modulus of the compound, respectively.  In the above relation, all the quantities but Γi are 

positive at all temperatures. Therefore the sign and magnitude of Γi govern the thermal 

expansion of the lattice, while the phonon energy range over which Γi is negative determines 

the temperature range over which the material will show NTE. 

The calculated elastic constants and bulk modulus are given in TABLE 2.1. The 

experimental data [49] are only available for Cu2O which agree very well with our calculated 

values. The calculated pressure dependence of the phonon dispersions (see Fig. 2.1) shows 

that in case of the Ag2O and Cu2O crystals, the lowest energy modes along Γ-X-M and Γ-M 

line soften with pressure in contrast to the modes along the M-R and Γ-R line. The softening 

is found to be negligible in Au2O. The low energy optic modes in Ag2O also soften in 

contrast to the case of Au2O, where these modes harden on increasing the pressure. The 

pressure dependence of the phonon spectra have been calculated in the entire Brillouin zone 

to allow for the calculation of the energy dependence of the Grüneisen parameter Γ(E) (Fig. 

2.4 and Fig. S2[24]) and further processed to obtain the thermal expansion coefficient αV(T)                                                                                            

(Fig. 2.5) as discussed below. For Ag2O and Au2O, the energy range for negative Γ(E) 
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extends up to ~3.5 meV. However the magnitude is much larger for the former compound, 

reaching a value of -40 for the lowest modes, while for Au2O the maximum negative Γ(E) 

reaches -10. For Cu2O the phonons below 6.5 meV have negative Γ(E)  with a maximum 

negative value of -4.5. The latter results are completely coherent to those obtained by Bohnen 

et al.[35] using the same approach. The calculated volume thermal expansion coefficient 

αV(T) is plotted on Fig. 2.5 as a function of temperature. 

 

 

 

 

 

 

 

 

 

FIG 2.4 The calculated Grüneisen Parameter of M2O (M=Ag, Au and Cu). The calculations 

for Ag2O are shown here for comparison with Au2O and Cu2O. 

 

Negative thermal expansion is calculated in Ag2O over its temperature range of 

stability of about 500 K, while Cu2O and Au2O have negative αV(T) below room temperature 

and below 16 K, respectively. The most negative αV(T) values for Ag2O (-44 ×10
-6

 K
-1

) and 

Cu2O (-8 × 10
-6

 K
-1

) are respectively obtained at 40 K and 75K. The maximum negative 

value of αV(T) for Au2O is much reduced compared to the other two compounds and reaches 

~ -2 ×10
-6

 K
-1 

at T ~ 8 K. As mentioned in the previous section, one understand the absence  
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TABLE 2.1 Comparison of the calculated structural parameters and elastic constants of 

M2O (M=Ag, Au, Cu) with the experimental data. The experimental data of lattice 

parameters for Ag2O and Cu2O is at 15 K and 293 K respectively, while the calculations are 

performed at 0 K. The values in the brackets give the experimental data of the lattice 

constants[25] and elastic constants and bulk modulus[49].  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.5   Volume thermal expansion (αV) coefficient as a function of temperature in M2O 

(M=Ag, Au and Cu). The calculations for Ag2O are shown here for comparison with Au2O 

and Cu2O. 

 

 Calc.  

 a (Å) 

C11(GPa) C44(GPa) C12(GPa) B(GPa) 

Ag2O      4.81  

(4.745) 

80.0  0.6  70.8  73.8  

Au2O     4.80   101.1  2.4  94.9  97.1 

Cu2O     4.31  

(4.268)    

127.2 

(121) 

6.3 

(10.9) 

105.4  

(105) 

112.7  

(112) 
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of NTE in the Au2O lattice as resulting from the combination of two effects: 1) reduced 

absolute values of negative Γ(E) (compared to Ag2O) and 2) reduced energy range for the 

phonon modes with negative Γ(E) (compared to Cu2O). The comparison between the 

available experimental data of volume thermal expansion along with our calculations is 

shown in Fig 2.6. We have also calculated (Fig. 2.7) contributions of phonons as a function of 

energy E to the volume thermal expansion at 300 K. As shown in Fig. 2.7 the maximum 

negative contribution to volume thermal expansion coefficient is from the modes of energy 

around 4 to 5 meV. The nature of the low energy phonon modes contributing to the NTE can 

be visualized through animations[45, 46]. 

 

 

 

 

 

 

 

FIG 2.6 The calculated and experimental [25, 26] volume thermal expansion of M2O 

(M=Ag, Au and Cu).  

 

The eigenvectors of a selection of them have also been plotted on Fig. 2.8.  The 

lowest -point optical mode corresponds to the rotation of M4O tetrahedral and the lowest X 

and M point modes have negative Grüneisen parameter in all the three compounds. X-point 

mode involves bending of M-O-M chains. The M atoms connected to various M4O have 

different displacements indicating significant distortion of M4O tetrahedra. This mode seems 

to contribute maximum to NTE in Ag2O.  The M-point mode involves rotation, translation as 



Chapter 2: Nature of Bonding and Negative Thermal………. 

 

 

64 

 

well as distortion of the M4O tetrahedra, while for R-point the amplitude of all the atoms is 

similar and it indicates translational motion of M4O as a rigid unit. 

 

 

 

 

 

 

 

 

FIG 2.7   Volume thermal expansion (α) coefficient contributed from phonons of energy E.  

 

 

 

 

 

 

 

 

 

 

 

FIG 2.8 Polarization vectors of selected phonon modes in M2O (M=Ag, Au and Cu). The 

numbers after the wave vector (Γ, X, M and R) gives the Grüneisen parameters of Ag2O, 

Au2O and Cu2O respectively Key: M, grey spheres; O, brown spheres.   
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2.2.1.3 Specific Heat and Mean Squared Thermal 

Amplitudes 

 

 

 

 

 

 

 

 

FIG 2.9 Calculated and experimental[30, 31] specific heat as a function of temperature of 

M2O (M=Ag, Au and Cu).  

 

We have used the calculated total and partial phonon density of states to calculate the 

temperature dependence of the specific heat Cp (Fig. 2.9) and the mean squared displacement 

<u
2
> of the atoms (Fig 2.10) of the three compounds. The calculated Cp agrees very well with 

the experimental data. In particular, the sharp rise at low temperatures is correctly 

reproduced, which proves again that the low-energy part of the calculated phonon spectra is 

reliable, at least for the Cu2O and Ag2O lattices.  Also, the calculated specific heats of Ag2O 

and Au2O are nearly same which is consistent with the similarity of the low energy part of the 

phonon spectra of both the compounds (Fig. 2.3). Also, our calculations reproduce very well 

the lower specific heat at low temperatures of the Cu compound, which is a consequence of 
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the general energy up shift of the singularities in the phonon spectra of Cu2O compared to 

Ag2O (and Au2O). 

 

 

 

 

 

 

 

 

 

FIG 2.10 The calculated mean square amplitudes of various atoms in M2O (M=Ag, Au and 

Cu). The experimental data of Cu2O are from Ref. [50].  

 

For Ag2O, we calculate that both the Ag and O atoms have similar <u
2
> values at all 

T (see Fig. 2.10), and that these values are much larger than those calculated for the Au2O 

and Cu2O compounds for the same T. In particular, they are found to be twice those 

calculated for Au2O, an effect that can easily be understood considering the mass ratio 

between Ag and Au for a similar density of states. We calculate that the <u
2
> values are the 

smallest for the Cu2O compound, as resulting from its phonon spectrum renormalized to 

higher frequencies.  For comparison the experimental data[50] of <u
2
> of atoms in Cu2O are 

also shown, which are in qualitative agreement with our calculations, although with even 

smaller <u
2
>.   
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2.2.1.4 Bonding in M2O (M=Ag, Au, Cu)  

It is clear that the large difference in the thermal expansion that we calculated for the 

three M2O compounds reflects a difference in the bonding from one compound to the other. 

In addition, the presence of large voids in the unit cell renders the structure even more 

sensitive to subtle differences in bond strength.  In order to understand the nature of the M—

O bonding we have calculated the charge density for the three compounds (Fig. 2.11). We 

find that the bonding character of the Ag-O bond is more ionic than that of the Cu-O bond. 

We find that the Au-O bond is highly directional with the charge density elongated towards 

the O atom i.e. indicating a covalent nature, as suggested by previous studies[51]. The change 

of bonding from an ionic to a covalent character is due to different intra-atomic hybridization 

between the d, s and p states[45, 46].  The computed Born effective charges (see TABLE 2.2) 

for oxygen atoms in Ag2O, Cu2O and Au2O are -1.28, -1.18 and -0.54 respectively. The latter 

values also reflect the larger ionic character for the Ag-O bond compared to Au-O. The 

compounds Ag2O and Au2O have an almost identical lattice parameter (Ag2O =4.81 Å and 

Au2O =4.80 Å) and similar Ag/Au-O bond lengths.  However, the covalent and directional 

Au-O bond rigidifies the Au4O tetrahedra, making them less susceptible to distortion, 

bending or rotation than their Ag4O counterpart. This is revealing the microscopic origin of 

the large NTE in Ag2O. As discussed in the previous sections, we found that Ag2O shows a 

large softening of its transverse acoustic modes along the Γ-X-M line with increasing 

pressure while in Au2O this softening is not observed. Also in case of Ag2O high energy 

optical modes also show softening in contrast to Au2O, where these modes become hard with 

pressure.  Now if we compare the Cu2O and Ag2O cases, for which the nature of bonding is 

almost similar, we find that both compounds exhibit negative thermal expansion. However 

there is a large difference in the magnitude of the thermal expansion coefficient. The Cu-O 
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(1.87 Å) bond length is much smaller than the Ag-O (2.08 Å) bond. The Cu4O tetrahedral 

units are therefore much more compact than Ag4O, rendering distortion less favorable in 

Cu4O as compared to Ag4O. In addition, the difference in the open space in the unit cell 

between the two compounds leads to differences in the magnitude of the distortions and 

hence difference in the NTE coefficient. Here the open structure nature of the lattice regulates 

the extent of the NTE. 

 

 

 

 

 

 

FIG 2.11 The calculated charge density for Ag2O, Cu2O and Cu2O in (011) plane.  

 

TABLE. 2.2 Calculated Born effective charges (Z) in M2O (M=Ag, Au, Cu). 

 

 

 

 

 

 

 

 

 

 

Atom Zxx Zxy Zxz Zyx Zyy Zyz Zzx Zzy Zzz 

Ag2O  

O -1.28 0 0 0 -1.28 0 0 0 -1.28 

Ag 0.64 0.63 0.63 0.63 0.64 0.63 0.63 0.63 0.64 

Au2O  

O -0.54 0 0 0 -0.54 0 0 0 -0.54 

Au 0.27 0.92 0.92 0.92 0.27 0.92 0.92 0.92 0.27 

Cu2O  

O -1.18 0 0 0 -1.18 0 0 0 -1.18 

Cu 0.59 0.44 0.44 0.44 0.59 0.44 0.44 0.44 0.59 
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2.3 MCN (M=Ag, Au and Cu) Compounds 

The thermal expansion behavior in low dimension MCN (M=Cu, Ag and Au) 

compounds shows anisotropic thermal expansion behavior.  The structure of the compounds 

has been determined by various groups[10, 52-57].  X-ray powder diffraction measurements 

have been performed[52] over a temperature range of 90-490 K. The structure of the cyanides 

is chain like and resembles a quasi one dimension structure. These chains consist of C≡N 

units connected via metal ions (M-C≡N-M). The structure seems to be simple, however the 

compounds shows C/N disorder along the chain in terms of random flipping of C/N 

sequence. The higher dimension cyanides like Cd(CN)2, Ni(CN)2 and Zn(CN)2 are also 

known to show C/N disorder behavior.  

CuCN crystallizes in two different structures named as low temperature and high 

temperature phase at ambient condition depends on the method of synthesis. The low 

temperature (orthorhombic, C2221) and high temperature (hexagonal, R3m) phase of CuCN 

in the manuscript are termed by LT- CuCN and HT-CuCN, respectively.  The low 

temperature phase is a modulated structure of the high temperature phase. The modulation in  

LT-CuCN[57] is observed from previous neutron diffraction study. The structure of LT-

CuCN consists of long Cu-C≡N-Cu modulated chains, each containing five 

crystallographically distinct Cu atoms, which form a wave consisting of nine CuCN units.  

At ambient condition, AgCN and HT-CuCN crystallizes in hexagonal R3m (space 

group no. 160) cell. However AuCN crystallizes in P6mm (space group no. 183) structure. 

The unit cell of AgCN and HT-CuCN consist of three formula units.  However the structure 

of AuCN consists of single formula unit. All the three compounds have three atoms in their 

primitive unit cell. The crystal structures as shown in Fig. 2.12 indicates that in AuCN all 
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chains (M-C≡N-M) are parallel along to c-axis while in HT-CuCN and AgCN the adjacent 

parallel chains are shifted by an amount of c/3 along c-axis.  

Earlier reverse Monte Carlo simulations of the diffraction data have been performed 

to understand the local structure of these cyanides[52]. The buckling in the M-C≡N-M chains 

is found[52] to increase with  temperature.  The magnitude of buckling is governed by nature 

of bonding between metal ions and C≡N unit. The analysis suggests that HT-CuCN have 

large distortion perpendicular to the chain direction. Similar behavior is also observed in 

AgCN and AuCN; however, the magnitude of such distortion is very small in AuCN. The 

magnitude of distortion in all three compounds increases with temperature and found to be 

correlated[52]  with the thermal expansion coefficient along the chain direction (αc). The 

thermal expansion coefficient is positive in the a-b plane, however large NTE is found along 

the chain. The coefficient of negative thermal expansion along the chain direction for HT-

CuCN, LT-CuCN,  AgCN and AuCN is -27.9×10
-6

 K
-1

, -53.8×10
-6

 K
-1

, -14.8×10
-6

 K
-1

 and -

6.9×10
-6

 K
-1

 respectively[52, 57].  

 

 

 

 

 

 

 

FIG 2.12   The structure of AuCN and HT-CuCN/AgCN as used in the ab-intio calculations. 

Key: C, red sphere; N, blue sphere; Cu/Ag/Au green sphere 
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Raman and infrared measurements have also been done[56] on MCN compounds. 

These measurements are limited to zone centre, hence they do not provide  complete 

information about dynamics of the compounds. Here we present the temperature dependent 

inelastic scattering measurements on these cyanides. The measured spectra have 

contributions from all phonon modes from entire Brillouin zone. Our studies provide 

vibrational properties of these cyanides and the analysis of vibrational spectra using ab-initio 

phonon calculations is useful to understand the thermal expansion behavior of these cyanides. 

The inelastic neutron scattering measurements of all three MCN (M=Ag, Au and C) 

compounds were performed at three temperatures from 150 K, 240 K and 310 K. About 1 cc 

of polycrystalline samples of MCN have been used for the measurements. The low 

temperature measurements were performed using a helium cryostat. For these measurements 

we have used an incident neutron wavelength of 2.4 Å (14.2 meV) in neutron energy gain 

setup.  

The phonon calculations for HT-CuCN, AgCN and AuCN are performed considering 

the periodic lattice model using the experimental structure parameters as given in Table 2.3. 

The model is an approximation of the real situation where we have neglected the C/N 

disorder.  The low temperature phase of CuCN is a modulated structure of the high 

temperature phase. The required supercell to perform the calculations makes it 

computationally very expensive. Our interest is to understand the differences in thermal 

expansion behavior in terms of vibration, elastic constants and nature of bonding in these 

quasi one-dimensional metal cyanide systems, hence we have performed theoretical analysis 

on linear systems only.   

There are 3 atoms in the primitive unit cell of HT-CuCN, AgCN  (R3m) and AuCN 

(P6mm) phase, which gives 9 degree of freedom. The 9 displacement patterns are required to 

compute the phonon frequencies. For accurate force calculations we displaced the atoms in 
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both the direction (±x,±y,±z) hence the number of displacements are double (18).  The energy 

cutoff is 580 eV and a 8 ×8 × 8 k point mess have been used to obtain energy convergence in 

total energy of the order of meV, which is sufficient to obtain the required accuracy in 

phonon energies. The Monkhorst Pack method is used for k point generation[44]. The 

exchange-correlation contributions were approached within PBE generalized gradient 

approximation (GGA)[58]. The phonon spectra have been calculated in partially relaxed 

configuration. In partially relaxed only atomic coordinates are relaxed at fixed lattice 

parameter obtained from neutron diffraction data at 10 K and 310 K[52, 55, 57, 59]. 

 

TABLE 2.3 The structure of various cyanides[55, 59] (T=10 K) as used in the ab-initio 

calculations of phonon spectra. The ‘a’ and ‘c’ lattice constants and atom coordinates in the 

hexagonal unit cell are given. 

 

 

 

 

 

 

  

 

.  

 

 

 

 HT-CuCN(R3m) AgCN(R3m) AuCN( P6mm) 

a(Å) 5.912 5.905 3.343 

c(Å) 4.849 5.291 5.098 

V( Å
3
)/Z 49.407 53.481 49.828 

M (Cu, Ag Au) 1/3,2/3,1/3 1/3,2/3,1/3 0,0,0 

C 1/3,2/3,0.714 1/3,2/3,0.724 0,0,0.387 

N 1/3,2/3,0.952 1/3,2/3,0.942 0,0,0.613 
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2.3.1 Results and Discussion 

2.3.1.1 Temperature Dependence of Phonon Spectra 

We have measured (Figs. 2.13 and 2.14) the inelastic neutron spectra of MCN 

(M=Cu, Ag and Au) at 150 K, 240 K and 310 K.  As mentioned above the measurements are 

carried out in the energy gain mode which has allowed us to measure only the external 

modes. The C≡N stretching modes appear around 250 meV and would not be possible to 

measure due to the paucity of high energy phonons in the temperature range of the 

measurements.  The phonon spectra of AgCN show peaks (Fig. 2.13) at about 4 meV, 16 

meV, 36 meV and 55 meV.  Further we observe the peak about 36 meV soften with 

temperature. However the peak at about 55 meV becomes more diffusive as temperature 

increases from 150 to 310 K. The intensity of these peaks decrease as the temperature rises. 

The increase in temperature will enhance the vibrational mean square amplitude of atoms; 

hence the Debye Waller factor would in turn reduces the intensity of the peaks. Also the C/N  

disorder is known to increase[52]  with temperature which will further reduce the sharp 

features in the phonon spectra. 

 Further the measured spectra of AuCN show (Figs. 2.13 and 2.14) much broad 

features rather than sharp peaks as seen in spectra of other compounds. The lowest peak is 

about 4 meV and the others peaks are observed around 20 meV, 35 meV, 50 meV and 75 

meV. We could not observe any significant softening of phonon modes in AuCN with 

temperature. However in case of HT-CuCN we observe (Figs. 2.13 and 2.14) that the lowest 

peak in the phonon spectra is at about 7 meV and other peaks are  around 20 meV, 45 meV 

and 70 meV. The lowest energy modes are shifted to high  energies  in comparison  to AgCN. 

This could be partly due to the difference of mass of Cu (63.54 amu) and Ag (107.87 amu). 



Chapter 2: Nature of Bonding and Negative Thermal………. 

 

 

74 

 

We observe significant softening with temperature for phonon modes around 45 meV. The 

magnitude of softening in HT-CuCN is larger than that in AgCN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.13  The measure neutron inelastic spectra MCN (M=Cu, Ag and Au) at 150 K, 240 K 

and 310 K. 

 

In Fig. 2.14(b) we have shown the neutron inelastic scattering spectra measured at 

150 K for high temperature and low temperature phases of CuCN.  We find that the peak at 

around 20 meV in LT-CuCN seems to be broader in comparison to that in HT-CuCN, while 

at 300 K (Fig. 2.14(a)) the width of peaks in both the compounds seems to be same. The 

larger width at low temperature in LT-CuCN may be due to the fact that low temperature 

phase is a modulated structure of the high temperature phase. It seems at higher temperature 
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the effect due to the CN disorder and anharmonicity dominate and the inelastic spectra as 

measured in both the phases appear similar. 

 

 

 

 

 

 

 

 

FIG 2.14  (a) Comparison of the experimental phonon spectra for MCN (M=Cu, Ag and Au) 

at 310 K. (b) Comparison of the experimental phonon spectra for LT and HT phases of CuCN 

at 150 K.  

 

2.3.1.2 Calculated Phonon Spectra and Elastic 

Constants 

The crystal structure of all three metal cyanides is known to show C/N disorder [52]. 

The C-N are randomly oriented along the c direction. The ideal structure of HT-CuCN and 

AgCN consists of chains of -M-CN-M- along c-axes. The ab-initio phonon calculations are 

carried out considering the ordered structure of these compounds. The phonon spectra have 

been calculated at fixed lattice parameters corresponding to experimental structures [52, 55, 

59]  at 10 K and 310 K.  
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We have also calculated the phonon dispersion (Fig 2.16) relation of all three 

compounds along various high symmetry directions namely [100], [001] and [110]. We find 

that in all the three compounds transverse acoustic modes along [001] are unstable. The mode 

involves transverse motion of C and N atoms in the a-b plane. The C/N disorder in the 

compounds might be responsible for stability of the crystal. 

 

 

 

  

 

 

 

 

 

 

 

 

FIG 2.15  The comparison between the measured (310 K) and calculated phonon  spectra of 

MCN (M=Cu, Ag and Au).   

 

The comparison between the experimental and calculated phonon spectra is shown in 

Fig. 2.15. The calculated spectra are able to reproduce all the major features of the observed 

spectra. The structural disorder could lead to a variation of the M-C, M-N and C-N bond 

lengths, which would in turn broadens the peaks as observed in the experimental spectra.  
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This might be one of the reasons for difference in the calculated and experimental spectra of 

MCN.  We notice that for HT-CuCN and AgCN elastic instability is observed along [100] 

and [110].   However, for AuCN these modes are found to be stable. The slopes of the 

transverse acoustic phonon branches (Fig. 2.16) are very low.  Hence small errors in the 

calculation of phonon energies may result in large errors in the calculated elastic constants. 

 

TABLE 2.4  The various elastic constants of metal cyanides MCN (M=C, Ag and Au) in unit 

of GPa at T=0 K. 

 C11 C33 C44 C66  C12  C13  

HT-CuCN 14.0 536.0 4.0 0.4 6.1 11.0 

AgCN 18.5 387.0 5.2 -0.3 8.1 16.0 

AuCN 28.4 755.3 6.5 2.2 15.3 14.0 

 

So the elastic constant of MCN are calculated (TABLE 2.4) using the symmetry-

general least squares method[60]  as implemented in VASP5.2 and were derived from the 

strain−stress relationships obtained from six finite distortions of the lattice. The calculated 

elastic moduli include contributions of distortions with rigid ions and ionic relaxations. The 

elastic constants C11 and C33 are related to the longitudinal phonons polarized along x and z 

axis. It can be seen that there is a large difference in the values of the C11 and C33 elastic 

constants in all the compounds. This indicates large difference in the nature of bonding in a-b 

plane and along c-axis. This is in agreement with the analysis of experimental diffraction data 

which also shows strong one dimensional nature of these compounds. The values of C33 for 

HT-CuCN, AgCN and AuCN are 536 GPa, 387 GPa and 755 GPa respectively. Large value 

of C33 in AuCN (~755 GPa) in comparison to the other two compounds indicates that 
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bonding between the atoms of  -Au-CN-Au- chains is much stronger in comparison to that in 

Ag and Cu compounds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.16 The calculated dispersion relation along various high symmetry direction of MCN 

(M=Cu, Ag and Au) at lattice constant at 10 K (black) and 310 K (red). The C-N stretching 

modes at about 270 meV are not shown. The Bradley-Cracknell notation is used for the high-

symmetry points. HT-CuCN/AgCN:  T1(1/2,1/2,-1/2)R≡ (0, 1, 1/2)H , (0,0,0)R≡ (0, 0, 0)H , 

T2(1/2,1/2,1/2)R≡ (0, 0, 3/2)H, F(1/2,1/2,0)R≡ (0, 1/2, 1)H, L(0,1/2,0)R≡ (-1/2, ½  ½)H; In 

AuCN: (0,0,0)H, A(0 0 1/2)H, K(1/3,1/3,0)H, H(1/3 1/3 1/2)H, L(1/2 0 1/2)H and 

M(1/2,1/2,0)H.   Subscript R and H correspond to rhombohedral and hexagonal notation 

respectively. 
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The C66 elastic constant in all three compounds is very small. All these suggest that CuCN 

and AgCN are close to instability in plane against shear strain. However the AuCN shows 

significant stability against the shear strain. On increasing temperature, the magnitude of 

strain arising due to the vibrational amplitude of atoms perpendicular to chain will depend on 

the bond strength of -M-CN-M-.   The calculated elastic constants as given in TABLE 2.4 

indicates that nature of bonding in AuCN is strongest among all the three cyanides. This is 

consistence with the reverse Monte Carlo analysis of the diffraction data, which indicates that 

AuCN does not show any shear distortion even up to 450 K; however, significant distortion is 

observed in HT-CuCN and AgCN. 

 

2.3.1.3 Partial Phonon Density of States 

The partial density of states provide the contributions of the individual atoms to the 

total phonon spectra. We have calculated (Fig. 2.17) the partial density of states by projecting 

the eigenvector on different atoms. The contribution from M (Cu, Ag and Au) atoms is 

spread up to 35 meV; however, it is most significant contribution only below 10 meV. The C 

and N atoms contribute in the entire energy range up to 280 meV. We observed band gap in 

the phonon spectra from 80 meV to 280 meV. The CN stretching modes are at around 280 

meV. The low energy peak in the partial density of states of Cu (63.54 amu), Ag (107.87 

amu) and Au (197.97 amu) are at 7 meV, 5.2 meV and 5.2 meV respectively. The shift in the 

peak position is partly due to the mass renormalization.  It should be noted that volume per 

primitive cell of HT-CuCN and AuCN compounds is nearly the same at 49.41 Å
3
 and 49.82 

Å
3
 respectively.

 
The lowest energy peak in the Au compound does not follow the mass effect. 

This indicates that the nature of bonding for the AuCN (P6mm) is stronger in comparison to 

HT-CuCN and AgCN (both in R3m). The difference in ionic radii of Cu (0.73 Å), and Au 
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(1.37 Å) along with the similarity in volume per primitive cell of these compounds  further 

supports the idea of difference in nature of bonding. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

FIG 2.17 The calculated phonon partial density of states of various atoms in MCN (M=Cu, 

Ag and Au) for structure at 10 K. The x-scale the C-N stretching modes at about 270 meV are 

not shown. 

 

The partial contributions due to C and N atoms in the HT-CuCN (49.41 Å
3
) and 

AgCN (53.48 Å
3
) in the external mode region (below 80 meV) are up to 75 meV and 62 meV 

respectively. As expected the difference in the energy range of the external modes in the two 

compounds seems to follow the volume effect. The volume of the primitive unit cell of 

AuCN is 49.82 Å
3
. We find that external modes in AuCN extend up to 80 meV.  
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Comparisons of the energy range of the external modes of the three compounds suggest that 

force constants are stiffer in AuCN in comparison to other two compounds. The calculated C-

N bond lengths (Table 2.6) are 1.174 Å, 1.169 Å and 1.163 Å in HT-CuCN, AgCN and 

AuCN respectively. As expected (Fig. 2.17) the energies of the phonon modes in the internal 

mode region simply follow the considerations due to change in C-N bond lengths. From the 

above analysis we can conclude that the nature of bonding along -Au-CN-Au- is stronger 

than that in     -Ag-CN-Ag- and -Cu-CN-Cu-. This is consistent with the calculated Born 

effective charges as discussed in Section 2.5.4.   

 

2.3.1.4 Born Effective Charges  

The computed Born effective charges in all three compounds are listed in Table 2.5. 

We observe that the values of the charge of carbon, nitrogen and M (Cu, Ag and Au) atoms in 

all three compound are different and anisotropic. This anisotropic behavior of the Born 

effective charge suggest difference in nature of bonding along a- and c-axis. We find that for 

M atoms the values of the Born-effective charges along a-axis is large in comparison to that 

along c-axis. However, for C and N atoms this trend is reverse. It is interesting to note that 

for Cu and Ag compounds, the magnitude of Born effective charges along the chain (c-axis) 

has small finite value however in Au compound the value is zero. This suggests a large 

difference in nature of bonding in along M-CN-M chain among various MCN. This could be 

due to the difference in electronegativity of Cu(1.9), Ag(1.93) and Au(2.54) atoms. The zero 

magnitude of Born effective   charge for Au compound along c-axis means that bonding 

along the chain may be either metallic or covalent.  However, MCN are known to be 

insulator, hence the bonding between Au and CN may be covalent in nature.  

 



Chapter 2: Nature of Bonding and Negative Thermal………. 

 

 

82 

 

TABLE 2.5  The Born effective charges of various atoms in unit of e. (Zyy=Zxx; 

Zxy=Zxz=Zyx=0) 

 

 

 

 

 

TABLE 2.6 The various bond length in metal cyanides MCN (M=C, Ag and Au) in unit of Å. 

 

 

 

 

 

 

Further for AuCN (Table 2.4) the magnitude of C33 and C44 elastic constants, which 

are related to the longitudinal and transverse phonon frequencies along c-axis,  is larger in 

comparison to the values for CuCN and AgCN. This also suggests that nature of boding in 

AuCN is stronger in comparison to CuCN and AgCN. 

 

2.3.1.5 Thermal Expansion Behavior 

The lattice parameter as a function of temperature has been reported from neutron 

diffraction measurements at temperature ranging from 90 K to 450K[52]. The measurements 

show that the c lattice parameter decreases with increase in temperature, however, lattice 

parameter a (=b) shows positive expansion behaviour.  The overall volume thermal 

Atom Zxx Zzz 

C(HT-CuCN/AgCN/AuCN) -0.3/-0.4/-0.5 1.4/0.8/1.5 

  N(HT-CuCN/AgCN/AuCN) -0.6/-0.6/-0.5 -1.1/-1.2/-1.5 

Cu/Ag/Au 0.9/1.0/1.0 -0.3/0.4/0.0 

Bond 

length 

HT-CuCN   AgCN  AuCN  

C-N 1.174 1.169 1.163 

C-M 1.841 2.040 1.960 

N-M 1.835 2.081 1.976 
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expansion is found to be positive in all three cyanides and has similar magnitude. The 

negative thermal expansion behavior along c axis is largest in CuCN and least in AuCN. So 

also, the positive expansion along a and b-axis is largest in CuCN and least in AuCN. We 

have computed the thermal expansion behavior using the quasiharmonic approximation. Each 

phonon mode of energy Ei contributes to the volume thermal expansion coefficient[48] given 

by
1

( )V i Vi

i

C T
BV

   , where V is the unit cell volume, B is the bulk modulus, i ( = -

lnEi/lnV) are the mode Grüneisen parameters and CVi the specific-heat contributions of the 

phonons in state i (= qj) of energy Ei.  The volume dependence of phonon frequency is used 

to calculate the thermal expansion behavior. The phonon spectra in the entire Brillouin zone 

have been calculated at two volume corresponding to the experimental structures at 10 K and 

310 K. The calculated Grüneisen parameters are shown in Fig.2.18(a). 

 

 

 

 

 

 

 

FIG 2.18  (a) The calculated average Grüneisen parameters  (E)  averaged  over various 

phonon of energy E in the whole Brillouin zone. (b) The contribution of phonons of energy E 

to the volume thermal expansion coefficient (αV) as a function of E at 300 K. 

 

It can be seen that low energy modes below 4 meV have large positive Grüneisen 

parameters. The calculated partial density of states shows that the contribution at such low 
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energies is mainly from the M( =Cu, Ag and Au) atoms. As shown in Fig. 2.16 the calculated 

transverse acoustic modes in HT-CuCN and AgCN and AuCN are unstable.  For the thermal 

expansion calculation the phonon energies have been calculated at 8000 q points (72000 

phonon modes) in the entire Brillouin zone. We find that among these 72000 modes, the 

number of unstable modes in HT-CuCN and AgCN and AuCN  are 558, 453 and 75 

respectively, which is less than 1%.  The temperature dependence of the unit cell volume is 

calculated without including the unstable modes.  The calculations are qualitatively in good 

agreement with the observed thermal expansion behavior in AuCN, but underestimated the 

experimental magnitude in other two compounds (Fig 2.19).  The underestimate might be 

related to the C/N disorder as discussed below. 

The experimental[52, 57] value of the coefficient of negative thermal expansion 

(NTE) along the chain direction (αc) for HT-CuCN, AgCN and AuCN is -27.9×10
-6

 K
-1

,   -

14.8×10
-6

 K
-1

 and -6.9×10
-6

 K
-1

 respectively, while positive thermal expansion (PTE) in the 

a-b plane (αa)  is  74.8×10
-6

 K
-1

,  65.7×10
-6

 K
-1

 and 57.4 ×10
-6

 K
-1

 respectively. As noted 

above, among the three compounds HT-CuCN  has the highest C/N disorder and it has also 

the highest positive as well as negative thermal expansion coefficients.  AuCN has the least 

C/N disorder and has the smallest values of NTE and PTE coefficients. As mentioned above, 

the ab-initio calculations performed with the ordered structures exhibit the highest number of 

unstable modes for HT-CuCN, while AuCN show the least number of unstable modes. It 

seems C/N disorder stabilizes the structure.  Among cyanides, nickel cyanide Ni(CN)2 has a 

long-range ordered structure in two dimensions (a-b plane) but a high degree of stacking 

disorder in the third dimension. The compound exhibits[61]  NTE in two dimensions (αa= −7 

 10
-6

 K
-1

) along with a very large PTE coefficient (αc= 61.8  10
-6

 K
-1

) perpendicular to the 

layers. Here again it can be seen that disorder along c-axis results in large overall volume 

thermal expansion (αV = 48.5    10
-6

 K
-1

). It appears that the C/N disorder contributes 
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towards positive thermal expansion behavior. The order disorder transition at around 400 K 

in ZrW2O8 reduces
21

 the overall NTE coefficient.  

As noted above, the linear thermal expansion coefficient along ‘a-’ and ‘c-’ axis are 

found to be positive and negative respectively. We are interested to find the modes which 

have large negative and positive Grüneisen parameters and contribute towards thermal 

expansion behavior. The estimated Grüneisen parameters (i) and the specific-heat 

contribution of modes (CVi) from the ab-initio calculations have been used to estimate the 

contribution of the various phonons to the thermal expansion (Fig. 2.18(b)) as a function of 

phonon energy at 300 K.  The maximum contribution to αV seems to be from the low-energy 

modes below 10 meV.  The calculated volume dependence of phonon dispersion curves for 

HT-CuCN,  AgCN and AuCN are shown in Fig. 2.16. The displacement pattern of a few zone 

boundary phonon modes, has been plotted (Fig. 2.20). 

 

 

 

 

 

 

 

 

 

 

FIG 2.19 The calculated and experimental thermal expansion behavior of MCN (M=Cu, Ag 

and Au). 
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The mode assignments, phonon energies and Grüneisen parameters are given in the 

figures. As mentioned above, HT-CuCN and AgCN crystallize in the same space group 

(R3m), hence the eigen vector pattern for symmetrically equivalent phonon modes would be 

similar. The investigation of the displacement pattern of the eigenvectors shows that the 

phonon modes have mainly two kinds of dynamics. One which involves atom vibration along 

the chain and the other in which atoms vibrate perpendicular to the chain. For HT-CuCN and 

AgCN, the adjacent -M-C≡N-M- chains are shifted by  ±c/3 along c-axis. We find that lowest 

zone-boundary modes at F and LD points in the Brillouin zone are found to be unstable. For 

the LD point mode (Fig. 2.20), within a chain, the M and C≡N move with equal 

displacements. The movement of atoms in the adjacent chains is found to be out-of-phase 

with each other.  The motion of the atoms in F-point mode is similar to that in LD-point 

mode. However for F-point mode there is a small component of displacement in the a-b 

plane. Both the modes are found to become more unstable on compression of the lattice. Such 

type of modes would contribute maximum to the NTE along c-axis. However in case of 

AuCN, the K point mode (Fig. 2.20) also shows sliding of -M-C≡N-M- chains  out-of-phase 

with each other.  The mode is found to have small positive   of 1.1. It seems that the chain 

sliding modes mainly contribute to negative αc in HT-CuCN and AgCN compounds and this 

contribution is not seem in AuCN. The vibrational amplitude along the chain would depend 

on the nature of bonding between metal and cyanide (-C≡N-) as well as on the atomic mass 

of metal ion. As mentioned above, this bonding in HT-CuCN and AgCN seems to be similar. 

The smaller mass of Cu (63.54 amu) would lead to large amplitude of thermal vibration along 

the chain in comparison to Ag (107.87 amu) compound, which indicates that the contraction 

along the -M-C≡N-M- chain would be more in the HT-CuCN in comparison to the AgCN, 

which is qualitatively  in agreement[52] with the observed NTE behavior in these 
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compounds. Several modes in which the atoms move perpendicular to the chain have positive 

Grüneisen parameters and would be responsible for positive thermal expansion behavior.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.20  The calculated displacement pattern of various phonon modes in AuCN and HT-

CuCN and corresponding Grüneisen parameters. The first line below each figure represents 

the size of the supercell. The second line below the figure give the high symmetry point, 

phonon energies and Grüneisen parameters, respectively. In the bottom panel (HT-CuCN 

and AgCN) the second and third line below the figure corresponds to HT-CuCN and AgCN 

respectively.   Key: C, red sphere; N, blue sphere; Cu/Ag/Au green sphere.  
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*The Grüneisen parameters values of unstable F and LD-point modes are not given. The 

modes are found to become more unstable on further compression of the lattice. Such type of 

modes would contribute maximum to the NTE along c-axis. 

 

2.4 Conclusions 

We have reported temperature dependent inelastic neutron scattering measurements of 

phonon spectrum for Ag2O, Cu2O, AgCN, AuCN and MCN. A comparative ab-initio 

calculations of phonon spectra as well as thermal expansion behavior in M2O and MCN is 

presented.  The calculations are in good agreement with the experimental inelastic neutron 

scattering phonon spectra. The calculated thermal expansion behavior of these compounds is 

in agreement with the available experimental data. We find that although low energy phonon 

modes of similar energies are present in all the M2O compounds, the nature of bonding as 

well as open space in the unit cell are important in governing the thermal expansion behavior.  

In MCN (M=Cu, Ag and Au), the calculated thermal expansion behavior is found to 

be in qualitative agreement with the available experimental data. We have also identified the 

phonon modes responsible for the anomalous thermal expansion behavior in these cyanides.  

The nature of the chemical bonding is found to be similar in HT-CuCN and AgCN, which is 

significantly different from that in AuCN. The computed elastic constants and Born effective 

charges are correlated with the difference in nature of bonding in metal cyanides. 
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Chapter 3 

Negative Thermal Expansion in Cubic 

ZrW2O8: Role of Phonons in Entire 

Brillouin Zone from Ab-inito Calculations 

 

3.1 Introduction 

The discovery of large isotropic negative thermal expansion (NTE) in cubic phase of 

ZrW2O8  two decades ago has lead to great excitement in the field of material science. Since 

then anamolous thermal expansion behavior has been found in large number of open frame 

work compounds [1-3]. ZrW2O8 has M-O-M’ (M, M’= Zr, W) type of linkages and show[1] 

negative volume thermal expansion coefficient of -29 × 10
-6

 K
-1

 at 300 K. Increasing 

flexibility in the structure has lead to the discovery of compounds exhibiting[4] colossal 

positive and negative thermal expansion. The compounds find applications in forming the 

composites with tailored thermal expansion coefficients useful for applications such as in 

fiber optic communication systems. 

At ambient pressure ZrW2O8 crystallizes [1] in cubic structure (P213, Z=4) that 

consists of ZrO6 octahedral and WO4 tetrahedral units.  Diffraction, spectroscopic as well as 

computer simulation techniques [5-13] have been used to understand the thermodynamic 

behaviour of ZrW2O8. All these works show that anharmonicity of low energy phonon modes 

has major contribution to the observed thermal expansion behavior.  X-ray absorption fine 
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structure (XAFS) measurements [13] led to a suggestion that NTE in ZrW2O8 could be due to 

the translational motion of WO4 tetrahedra along <111> axis along with  correlated motion of 

three nearest ZrO6 octahedra.  The reverse Monte Carlo analysis of the neutron total 

scattering data suggested [10] that WO4 as well as ZrO6 polyhedra rotate and translate as 

rigid units.  Earlier a rigid unit mode model [11] was also used to understand NTE behaviour 

of ZrW2O8.   Hancock et al [12] proposed other modes involving translation and rotation of 

polyhedra. It seems all the phonon modes identified from various techniques could contribute 

to NTE. 

Earlier neutron scattering data [9] as well as theoretical [8] estimates of the 

anharmonicty of the phonons in ZrW2O8 using interatomic potential model indicated that 

modes of energy below 8 meV are responsible for observed NTE. However, estimates based 

on Raman spectroscopy showed [8] that several modes  upto 50 meV contribute to NTE. The 

large disagreement in the energy range as well as nature of the low-energy modes in previous 

works indicated the need for understanding of NTE behaviour in ZrW2O8 using ab-inito 

calculations. Recently ab-initio calculations of zone center phonon modes have been 

published [6].  However the authors concluded [6] that one should fully explore the nature of 

the phonons in the entire Brillouin zone for understanding the mechanism of NTE. Here we 

report such a comprehensive calculations and identify specific zone-boundary modes that are 

highly anharmonic. The calculations are able to reproduce the observed NTE as well as 

anomalous trends of the phonon spectra with increase in temperature and pressure.  

Important soft modes were identified in cubic ReO3 [14] and ScF3 [15] at M and R-

points in the Brillouin zone respectively.  These modes show simultaneously both large 

negative Grüneisen parameter as well as large quadratic anharmonicity, the former leading to 

NTE and latter to the temperature dependence. In case of ZrW2O8, we find that the modes 

that show large negative Grüneisen parameter and contribute to NTE are not necessarily the 
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same as those showing cubic and/or quartic anharmonicity and significant temperature 

dependence. This finding means that the modes found anharmonic in temperature dependent 

measurements are not necessarily relevant to NTE.  

The first-principle calculations of lattice dynamics have been performed using Vienna 

Ab-initio Simulation Package (VASP) [16-19] and PHONON5.2 software’s [20].The details 

are given in reference [21]. The calculations reproduce the equilibrium crystal structural 

parameters, elastic constants and mean squared amplitude of various atoms quite 

satisfactorily as given in Table SI and SII of the reference [21].  

 

3.2 Result and Discussion 

The calculated phonon spectrum is found to be in excellent agreement with the 

experimental phonon spectrum [5]  as shown in Fig. 3.1. The calculated energies of all the 

zone-centre modes are also shown in Fig. 3.1. The calculated partial density of states of 

various atoms shows (Fig. S1 of   [21]) that vibrations due to Zr atoms span only up to 50 

meV, while vibrations due to W and O span the entire energy range.  The W-O stretching 

modes lie in the energy range from 85 -130 meV. The calculated phonon dispersion relation 

along the high symmetry directions is shown in Fig. S2 [21].  The low energy range of 

phonon dispersion up to 50 meV contains large number of non-dispersive phonon branches, 

which give rise to several peaks in density of states.  To emphasis the anharmonic nature of 

low energy phonons, we have also shown the phonon dispersion up to 10 meV (Fig. 3.2) at 0 

and 1 kbar. We find that several phonon branches soften with increasing pressure.  The 

lowest optic mode is calculated at 40 cm
-1

 (~5 meV), which is in excellent agreement with the 

experimental value of 40 cm
-1

 from Raman [7] as well as infra-red measurements [6]. The 

optic modes along with several phonon branches give rise to the first peak in the calculated 
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phonon density of states at 4.5 meV which is observed at 3.8 meV in neutron scattering 

experiments [5]. The low-energy peak also leads to a sharp increase in the specific heat at 

low temperatures (Fig. S3 [21]). The optic modes along with several phonon branches give 

rise to the first peak in the calculated phonon density of states at 4.5 meV which is observed 

at 3.8 meV in neutron scattering experiments [5]. The low-energy peak also leads to a sharp 

increase in the specific heat at low temperatures (Fig. S3 [21]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.1 The calculated (0 K) and experimental (300 K) [5] neutron-weighted phonon spectra 

in ZrW2O8. For better visibility the experimental phonon spectra[5] is shifted along the y-axis 

by 0.03 meV
-1

.The calculated zone-centre optic modes, A, E, F(TO) and F(LO) are also 

shown. 
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FIG 3.2 Calculated low-energy part of the pressure dependent dispersion relation for 

ZrW2O8. The solid and dashed lines correspond to the calculations at ambient pressure and 1 

kbar. =(0,0,0); X=(1/2,0,0); M=(1/2,1/2,0) and R=(1/2,1/2,1/2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.3 The calculated Grüneisen parameters as a function of phonon energy. 

 

The calculation of thermal expansion is carried out using the quasi-harmonic 

approximation. Each phonon mode of energy Ei contributes to the volume thermal expansion 
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coefficient [22] that is given by the relation
1

( )V iT Vi

i

C T
BV

   , where V is the unit cell 

volume, B is the bulk modulus, iT (=-lnEi/lnV) are the mode Grüneisen parameters and CVi 

the specific-heat contributions of the phonons of energy Ei.  The index i run over the various 

phonon branches and all the wave vectors in the Brillouin zone. The Grüneisen parameters 

ΓiT (Fig. 3.3), are numerically calculated from the pressure dependence of phonon modes 

around ambient pressure.  

 

 

 

 

 

 

 

 

 

 

 

FIG 3.4 (a) The calculated and experimental[1] relative volume thermal expansion for  

ZrW2O8, (VT /V300-1) × 100 % , VT and V300 being the cell volumes at temperature T and 300 

K respectively.  (b) The contribution of phonons of energy E to the volume thermal expansion 

as a function of E at 300 K from the ab-initio calculation as well as phonon data [9].  

 

The calculated αV  at 300 K from ab-initio calculation is -22.5 × 10
-6

 K
-1

, while the 

experimental value [1] is about -29 × 10
-6

 K
-1

. The calculated relative volume thermal 

expansion is shown in Fig. 3.4(a). The discontinuity in the experimental data at about 400 K 

is associated with an order-disorder phase transition. We find that there is a slight deviation 

between the experimental data [1] and the calculations at low temperatures due to 
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underestimation of the contribution from low energy phonon modes. Similar underestimation 

of the anharmonicity of low energy phonon modes is also found in cases of Zn(CN)2  [23] as 

well as Ag3M(CN)6 (M=Co,Fe) [24]. The properties of the low energy phonon modes are 

very sensitive to volume of the crystal. DFT calculations overestimate or underestimate 

crystal volume depending on the exchange correlation functional.  

 

TABLE 3.1 The calculated change in energy of selected phonon modes on increase of 

temperature from 0 to 300 K. Ei and ΓiT are the phonon energy at 0 K and Grüneisen 

parameter. ΔEV and ΔEA are the change in the phonon energy due to change in volume 

(implicit anharmonicity), and due to increase in thermal amplitudes of atoms (explicit 

anharmonicity) respectively, and ΔET is the total change in the phonon energy. All the energy 

values are in meV units. 

 

 

 

 

 

 

 

 

 

 

 

The contribution of phonon density of states at energy E to the thermal expansion has 

been determined (Fig. 3.4(b)) as a function of phonon energy at 300 K. We find that the 

Wave vector Ei ΓiT ΔEV ΔEA ΔET 

Γ 4.93 -7.0 -0.22 0.15 -0.07 

Γ 5.21 -5.7 -0.19 0.16 -0.03 

X 3.90 -5.7 -0.14 0.22 0.08 

X 4.16 -2.4 -0.06 0.68 0.62 

M 4.51 -12.7 -0.36 0.42 0.06 

M 4.65 -12.8 -0.37 0.55 0.18 

R 5.29 -11.7 -0.39 -0.38 -0.77 
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maximum contribution to αV is found to be from phonon modes of energy 4.5  1 meV, 

which is consistent with the previous analysis of high pressure inelastic neutron scattering 

measurements [9] as well as diffraction data [5]. The eigenvectors of a few of the low energy 

modes (Table 3.1) that contribute most to NTE have also been plotted (Fig. 3.5 and S4 [21]). 

The nature of these phonons can be best understood by the animations [21].  The lowest -

point mode of 4.93 meV (ΓiT = -7.0) involves out-of-phase translation of two chains 

consisting of WO4 and ZrO6, while the -point mode of 5.21 meV (ΓiT = -5.7) show out-of-

phase rotation of WO4 and translation of ZrO6 in two different chains. These modes also 

involve significant distortion of WO4 tetrahedra formed around W1 and W2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.5 Polarization vectors of selected phonon modes in  ZrW2O8. The numbers after the 

wave vector (X and M) give the phonon energies and Grüneisen parameters respectively. The 

lengths of arrows are related to the displacements of the atoms.  The atoms are labeled as 

indicated in Ref.[1]. 

 

Hancock et al [12] proposed two types of modes for understanding the mechanism of 

NTE. In one of the mode both ZrO6 as well as WO4 in a chain rotate and also translate along 

the <111> axis. As discussed above, for the two lowest optic modes we have not found 
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simultaneous rotational motion of both the ZrO6 as well as WO4. However we find that for 

the -point modes of 3.90 meV (ΓiT = -5.7) and 4.16 meV (ΓiT = -2.4),   the motion of 

polyhedral units is similar to that proposed by Hancock et al [12]. The modes show in-phase 

translation and rotation of WO4 and ZrO6 in a single chain. The motion of tetrahedral and 

octahedral units in two different chains is also in-phase. While the two modes seem to be of 

similar nature, the relative amplitudes of Zr, W atoms and O atoms are found to be different.  

 

   

 

 

 

 

 

 

FIG 3. 6 Calculated potential wells of selected phonon modes in ZrW2O8. The numbers after 

the wave vector (X and M) give the phonon energies and Grüneisen parameters respectively.  

 

The second mode proposed by Hancock et al [12] indicates that ZrO6 octahedron 

rotates opposite to the WO4 tetrahedra. We find that R-point (0.5 0.5 0.5) mode of 5.29 meV 

with ΓiT value of -11.7 show similar behaviour. The two WO4 around W1 and W2 in a chain 

rotate in-phase while ZrO6 rotate out-of phase.  In general we find that in most of the modes, 

amplitude of the free oxygens O3 and O4 are larger as compared to that of shared oxygen’s 

O1 and O2. This means that rotation of WO4 and ZrO6 is accompanied by distortion of these 

polyhedra.  
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FIG 3.7 Calculated temperature dependence of selected phonon modes in ZrW2O8. The 

numbers after the wave vector (X and M) give the phonon energies and Grüneisen 

parameters respectively. For comparison, the experimental temperature dependence of 

phonon peak at 3.8 meV in the density of states[5] is also shown, which involves average 

over entire Brillouin zone.  

 

The -point modes of 4.51 meV and 4.65 meV energy have negative Grüneisen 

parameter ΓiT value of about -12.7 and -12.8 respectively. The mode at 4.51 meV involves in-

phase translation and bending of WO4 and ZrO6 network. The mode is very similar to that 

previously described by Cao et al [13], where a correlated motion between WO4 and it 

nearest ZrO6 is shown to lead NTE.  However, for 4.65 meV mode we find out-of-phase 

translation of WO4 and ZrO6 in two chains.  

The temperature dependence of phonon density of states of ZrW2O8 shows [5] 

hardening of the peak at 3.8 meV to 4.05 meV on increase of temperature from 50 K to 300 

K. On the other hand, the same peak is found to soften with pressure [9] although both 

increase in pressure and temperature involve compression of the lattice. Temperature and 

pressure variation of the phonon energy is known to occur due to anharmonicity of the 
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interatomic potential. The change in phonon energies is due to two effects. The so called 

“implicit” anharmonicity, refers to the volume dependence of the phonon spectra that can be 

calculated in the quasiharmonic approximation. The second is the “explicit” anharmonicity, 

which refer to the changes in phonon frequencies due to large thermal amplitude of atoms. 

The change in phonon energies with temperature is due to both the “implicit” as well as 

“explicit” anharmonicities, while the pressure effect only involves the implicit part. We 

would also call the “implicit” and “explicit” parts as volume and amplitude effects 

respectively. 

In a complex crystal it is quite difficult to estimate the anharmonic effects rigorously. 

However, one can make certain simplifying assumptions and arrive at qualitative trends in the 

shifts of selected phonons as a function of temperature. The potential wells of a few of the 

phonon modes at high symmetry points in the cubic Brillouin zone have been calculated and 

used to estimate the temperature dependence of the phonon frequencies. The detailed 

procedure for calculation of explicit part of the temperature dependence of phonon modes can 

be found in reference [21] as well as in Refs.[25-27].  

The potential wells (Fig.3.6 and S5 [21]) of the seven modes of energy around 4.5 

meV, along the high symmetry points namely , ,  and R in the cubic Brillouin zone, 

have been calculated. The energy of modes may increase or decrease with increase of 

temperature, depending on the nature of anharmonicity. The potential wells for  point mode 

of energy at 4.93 and 5.21 meV (Table SIII [21]) have cubic as well as quadratic 

anharmonicity, while all the remaining five modes have only quadratic anharmonicity. The 

potential well for M point mode of 4.65 meV with Grüneisen parameter ΓiT value of about -

12.7 has also been plotted at 1 kbar. As expected the width of the well is slightly increased 

due to softening of phonon mode on compression. 
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The anharmonicity parameters (Table SIII [21]) as obtained from fitting of equation 

(S1 [21]) to the potential well are used for calculating the temperature dependence of phonon 

modes. We find (Fig. 3.7 and S6 [21]) that zone boundary mode of energy 4.16 meV (0 K) at 

X-point shows maximum hardening and shifts to 4.78 meV on increase of temperature to 300 

K. The low energy -point modes do not respond to temperature and remain nearly invariant 

with temperature. The R-point mode of energy 5.29 meV shows normal behaviour of 

decrease of phonon energy with increase of temperature.  The calculated energy shift for low 

energy modes on increase of temperature from 0 to 300 K is given in Table 3.1. Ab-initio 

calculations are able to qualitatively explain the experimentally observed [5] temperature 

dependence of low energy phonon spectra of ZrW2O8 (Fig. 3.7).  

We would like to draw attention to the fact that the modes at M and R point show 

large implicit anharmonicity. These modes are important for understanding the NTE 

behaviour. However as far as temperature dependence is concerned, the X-point mode having 

low negative Grüneisen parameter ΓiT value of -2.4 shows maximum temperature 

dependence. Recently in case of NTE compounds ScF3 [15] and ReO3 [14] respectively, R-

point and M-point modes are found to show large pressure as well as temperature 

dependence. The authors also found large quadratic anharmonicity for the same modes. We 

would like to say that quadratic anharmonicity is useful to explain the large temperature 

dependence of R-point and M-point modes and is not relevant to NTE. 
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3.3 Conclusions 

To summarize, the ab-initio density functional calculations of phonons modes of 

ZrW2O8 have been reported in the entire Brillouin zone. Certain phonon modes are found to 

be highly anharmonic in nature.  The calculations agree quite well with the reported NTE 

behavior of ZrW2O8.  We have also been able to explain the observed anomalous pressure as 

well as temperature variation of the energies of phonon modes.  The increase of the frequency 

with temperature essentially results from the cubic and/or quadratic anharmonic part of the 

phonon potential, which is able to explain the temperature dependence of low energy modes 

as reported in the literature.  
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Chapter 4 

Spin-Phonon Coupling and Phase 

Transitions in Multiferroic Compounds 

GaFeO3 and YMnO3 

 

4.1 Introduction 

Materials showing more than two ferroic properties (magnetism, electricity, and 

elasticity) simultaneously come under the umbrella of multiferroics whose characteristics 

include the emergence of simultaneous electric and magnetic orderings, offering therefore 

opportunities for multifunctional device applications. This justifies the intense research going 

on this class of materials, and the keen interest they are subject to, at both the fundamental 

and practical sides [1-15]. Magnetism in transition metals containing materials is induced by 

the active spin components in the d-shell levels. On the other hand, ferroelectricity occurs 

generally in the absence of d-electrons. Hence it is intriguing to observe multiferroicity since 

this phenomenon involves a simultaneous emergence of both the properties. Over the last few 

decades, various multiferroic materials have been discovered which exhibit magnetoelectric 

(ME) coupling. However, most of the magnetoelectric multiferroics possess magnetic and 

ferroelectric transition temperatures far from the ambient one. For example in the case of 

BiMnO3 [14], the Curie temperature, TC, is about 100 K while the Neel temperature, TN, is 

close to 750 K. This results in a weak magnetoelctric coupling at the ambient conditions. 
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Practically, the weak coupling materials are not potentially useful. However, there are few 

mechanisms allowing to tune these properties simultaneously; like magnetic ferroelectricity 

induced by frustrated magnetism, lone pair effect, charge-ordering, and local non-

centrosymmetry. For instance, the charge ordering driven magnetic ferroelectricity is 

observed in a large number of rare earth oxides [11, 12]. Understanding the mechanism of 

multiferrocity is of considerable importance for the design of new multiferroics at 

controllable conditions (temperature and pressure). Hence the electric and magnetic 

properties attributed to the dynamics of ions and electrons need to be studied and explored. 

In this chapter, results obtained on multiferroic compounds GaFeO3 and YMnO3 are given in 

sections 4.2 and 4.3 respectively. 

 

4.2 GaFeO3 

 

 

 

 

FIG 4.1 Crystal structure of GaFeO3 in the Pc21n space group. The atoms are labeled 

following Table 4.1. 
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GaFeO3 belongs to the class of multiferroic compounds and shows a ME coupling at 

low temperature. It does not contain lead or bismuth species, making it ecologically and 

biologically attractive. At room temperature the structure [15]  is chiral orthorhombic 

(Pc21n), while its parental oxides Fe2O3 and Ga2O3 occur [16]  in the rhombohedral and 

monoclinic phases, respectively. The orthorhombic structure of GaFeO3 has eight formula 

units per unit-cell, with two different symmetry inequivalent sites of iron and gallium atoms; 

Fe1, Fe2, and Ga1 and Ga2, respectively.  The tetrahedral sites are occupied by Ga1, while 

Ga2, Fe1 and Fe2 occupy all the octahedral sites (Fig. 4.1). The electric polarization is found 

[15] to be along the b axis at ambient conditions. Ideally, the magnetic structure of GaFeO3 is 

expected to reflect an antiferromagnetic ordering, since the magnetic moments of Fe1 and 

Fe2 cations are antiparallel. However due to the observed disorder on the Fe and Ga sites 

[15], a ferri-magnetic transition is observed below 225 K, instead [15, 17]. The magnetization 

axis was found to be along c-axis.  

In a first principles study, authors [18, 19] suggest that distorted octahedra, GaO6 and 

FeO6, in GaFeO3 lead to a noncentrosymmetric structure, which might be responsible for the 

electric polarization.  The authors also showed that the site disorder involving the interchange 

of Fe and Ga2 sites is highly probable and consistent with the presence of the observed Fe 

disorder [15] with the Ga2 site. They indicate that the minimum of total energy is reached 

when adopting an antiferromagnetic spin configuration. However, anti site disorder of Fe and 

Ga atoms between octahedral Ga and Fe sites lead to a finite magnetic moment, and GaFeO3 

behaves like a ferrimagnet. It has been concluded that significant orbital magnetic moment of 

Fe ions is attributed to the local distortion of oxygen octahedra and the off centering of the 

iron atoms.  Interestingly, the unequal distribution of Fe spins in GaFeO3 is due to the Ga-Fe 

disorder. This material is known to exhibit piezoelectricity and ferrimagnetism, with a Curie 

temperature, TC, of about 225 K. This could be enhanced by a site disorder between Ga and 
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Fe. It has been shown that the TC could be enhanced [20] to  ~ 350 K by increasing the Fe 

content to about 40% (Ga2−xFexO3 (x=1.40). The magnetic structure and magnetoelectric 

properties of Ga2−xFexO3 (0<x<1.1) were extensively studied by T. Arima and coworkers 

[15]. The authors found that the saturated magnetization as well as the ferrimagnetic phase 

transition temperature increases with increase in Fe content, while the coercive force 

decreases. The linear and quadratic ME coefficients measurements show that the electric 

polarization is largely modulated when a magnetic field is applied parallel to the direction of 

the spontaneous magnetization.  However it has a negligible effect when the field is applied 

parallel to the spontaneous polarization axis. Thin films of GaFeO3 are reported to exhibit 

[21, 22]  ferroelectricity at room temperature, which makes them practically useful at the 

nano-level. We note also that the ball milling transforms [23] the structure of GaFeO3 from 

orthorhombic to rhombohedral (R3c). 

First Principle studies of zone centre phonon modes and Raman measurements were 

reported on the isostructural compound AlFeO3 by Kumar and coworkers [24]. The Raman 

measurements have been performed in the temperature range 5 - 315 K. The observed spectra 

showed that the intensity of the Raman mode at 1230 cm
-1

 vanishes to zero above 250 K. It 

was concluded that this mode originates from a two magnon Raman process. The authors also 

reported first principles calculation of the zone center phonon modes in magnetic ordered and 

disordered structure. They found a strong interaction between spin and lattice vibrations [24].  

X-Ray as well as neutron diffraction, dielectric, Raman and IR measurements have been 

reported on GaFeO3 [25-30]. No structural phase transition was observed [30]  in the 

temperature range 14 - 1368 K. A dielectric anomaly [26] has been observed at the magnetic 

transition temperature. A spin-phonon coupling is reported [28] to take place below 210 K by 

observing the discontinuity in the peak position of the Raman mode at 374 cm
-1

.  Raman and 

Mossbauer spectroscopic studies on GaFeO3 have also been reported [29]. 
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TABLE 4.1 Comparison between the experimental (4 K) and calculated (0 K) structural 

parameters of GaFeO3 (orthorhombic phase, space group Pc21n).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Expt. FM(GGA) FM(LDA) PNM(LDA) FNM(LDA) 

 a (Å) 8.7193 8.8516 8.6610 8.6610 8.4791 

 b (Å) 9.3684 9.5232 9.2923 9.2923 8.7713 

 c (Å) 5.0672 5.1491 5.0355 5.0355 4.9999 

       

O1 x 0.3228 0.3221 0.3233 0.3154 0.3255 

 y 0.4262 0.4268 0.4291 0.4405 0.4517 

 z 0.9716 0.9825 0.9836 0.9860 0.9802 

       

O2 x 0.4864 0.4868 0.4857 0.4853 0.4789 

 y 0.4311 0.4323 0.4330 0.4413 0.4555 

  z 0.5142 0.5190 0.5190 0.5331 0.5312 

       

O3 x 0.9979 0.9970 0.9969 0.9877 0.9851 

 y 0.2022 0.2022 0.2014 0.2091 0.2216 

  z 0.6541 0.6579 0.6564 0.6599 0.6605 

       

O4 x 0.1593 0.1615 0.1621 0.1564 0.1590 

 y 0.1974 0.1996 0.2005 0.2049 0.2123 

  z 0.1480 0.1570 0.1575 0.1684 0.1662 

       

O5 x 0.1695 0.1683 0.1677 0.1667 0.1651 

 y 0.6717 0.6726 0.6742 0.6820 0.7001 

  z 0.8437 0.8422 0.8447 0.8245 0.8309 

       

O6 x 0.1736 0.1671 0.1664 0.1658 0.1632 

 y 0.9383 0.9391 0.9394 0.9365 0.9509 

  z 0.5166 0.5180 0.5217 0.5247 0.5372 

       

Fe1 x 0.1538 0.1539 0.1549 0.1678 0.1709 

 y 0.5831 0.5834 0.5836 0.5894 0.6049 

  z 0.1886 0.1857 0.1883 0.1691 0.1689 

       

Fe2 x 0.0346 0.0316 0.0308 0.0269 0.0186 

 y 0.7998 0.7956 0.7961 0.8000 0.8168 

  x 0.6795 0.6721 0.6739 0.6772 0.6785 

       

Ga1 x 0.1500 0.1520 0.1510 0.1503 0.1462 

 y 0.0 0.0 0.0000 0.0000 0.0000 

  z 0.1781 0.1749 0.1770 0.1789 0.1873 

       

Ga2 x 0.1593 0.1608 0.1607 0.1561 0.1589 

 y 0.3073 0.3089 0.3095 0.3139 0.3204 

  z 0.8106 0.8167 0.8160 0.8189 0.8181 
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The authors observed a disordered nature of the compound. The peak width of the 

phonon mode at 700 cm
-1

 shows an anomalous large broadening around the Curie 

temperature, which is a measure of anharmonicity. The data was interpreted within the 

context of coupling of phonons and the Fe spins. Further, the stability of GaFeO3 has been 

studied [31] under pressure; up to about 65 GPa. The compound undergoes a phase transition 

[31] from Pc21n to Pbnm phase at about 25 GPa. Increasing further the pressure to 53 GPa, 

the Pbnm phase also undergoes first order phase transition due to quenching of the Fe 

magnetic moment. Spin waves measurements have been reported by inelastic neutron 

scattering [32-34] in similar systems (TmFeO3, ErFeO3, YFeO3 and TbFeO3). It comes out 

that an incommensurate phase was evidenced [34] in TbFeO3, upon applying a magnetic 

field. 

The various studies available on GaFeO3 are based on structural and electronic 

considerations. A limited amount of work on phonon dynamics has been reported, but it was 

restricted to the zone centre phonon modes.  Presently, we provide a detailed analysis of 

lattice dynamics and spin phonon coupling in GaFeO3, where both the zone-centre and zone-

boundary modes are covered. A better understanding of the dynamics governing the 

thermodynamical aspects of this promising multiferroic looks necessary for future 

fundamental and practical developments. In this context, we have measured the phonon 

density of states over a wide temperature range 150-1198 K.  We have computed the phonon 

spectrum from first principles density functional theory to quantitatively explore the 

dynamics. The study is done in the ordered phase, by first considering the magnetic 

interactions and then neglecting them to better explore the possible interplay and effect of the 

spin degrees of freedom on the lattice dynamics [35, 36]. Further, the total energy and 

enthalpy is estimated in various phases to determine the relative phase stability of GaFeO3. 

The equation of state has been calculated and compared with the available experimental data.  
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The measurements were performed at several temperatures in the range 150-1198 K at 

IN4C spectrometer at the Institut Laue Langevin (ILL), France. The low temperature 

measurements were performed using a standard orange cryostat. For the high temperature 

range, the sample was put into a quartz tube insert and mounted into a furnace. The other end 

of the quartz tube was kept open in the air. For these measurements we have used an incident 

neutron wavelength of 2.4 Å (14.2 meV), performing in the up-scattering mode (neutron 

energy gain). The momentum transfer, Q, extends up to 7 Å
-1

.  

The plane wave energy cutoff for density functional theory calculations were set to 

620, 720 and 740 eV, with soft pseudopotentials, then including only the Ga semi core 

electrons, and also with semi core electrons of both Ga and Fe, respectively using VASP [37, 

38]. A 4×4×4 k-points mesh for the Brillouin zone integration was found to be suitable for 

the required convergence. Total energies were calculated for 60 generated structures resulting 

from individual displacements of the symmetry inequivalent atoms in the orthorhombic 

(Pc21n) phase, along the six inequivalent Cartesian directions (±x, ±y and ±z). Phonons are 

extracted from subsequent calculations using the direct method as implemented in the Phonon 

software [39]. The free energy calculations of GaFeO3 are also done in the Pbnm and R3c 

phases. The GGA was formulated by the Perdew–Burke–Ernzerhof (PBE) density 

functional[40]. The LDA was based on the Ceperly–Alder parametrization by Perdew and 

Zunger [41]. The valence electronic configurations of Ga, Fe and O as used in calculations 

for pseudo potential generation are s
2
p

1
, d

7
s

1
 and s

2
p

4
, respectively. Both non-spin-polarized 

and spin polarized calculations were performed. The magnetic calculations have been carried 

out for the A-type antiferromagnetic ordering in the Pc21n phase. Moreover, since GaFeO3 is 

known to be a Mott insulator, the on-site Hubbard correction is applied using the Dudarev 

approach [42] using Ueff=4 eV [43-47]. Both full (lattice constants and atomic positions) and 

partial (only atomic positions) geometry relaxations were carried out. Hereafter, the labeling 
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“FM” and “FNM” refer to fully relaxed magnetic and fully relaxed non-magnetic 

calculations. Further, “PNM” refers to the partially relaxed non-magnetic calculation, where 

we used the structure obtained from “FM” and relaxed only the atomic positions without 

magnetic ordering. The structural details relevant to the present calculations are summarized 

in Table 4.1. Further, we performed fully relaxed magnetic calculations (labeled as 

FM_Ga_SC) including the semi core electrons of the Ga atoms having the electronic 

configuration d
10

s
2
p

1
.  The equation of states as well as the free energy of GaFeO3 has also 

been evaluated in the fully relaxed magnetic calculations (labeled as FM_GaFe_SC) by 

considering d
10

s
2
p

1
 and p

6
d

7
s

1 
electronic configuration for Ga and Fe atoms, respectively. 

 

4.2.1 Results and Discussion 

4.2.1.1 Temperature Dependence of Phonon Spectra 

The phonon spectra of GaFeO3 (Fig. 4.2) were measured up to 1198 K, across the 

magnetic transition (~ 225 K). The magnetic signal is expected to be more pronounced at low 

Q, and to vanish at high Q, following the magnetic form factor. Therefore, two Q-domains 

were considered; i.e., high-Q (4 to 7 Å
-1

) and low-Q (1 to 4 Å
-1

). The temperature dependence 

of the Bose factor corrected S(Q,E) plots of GaFeO3 are shown in Fig 4.2. At low 

temperatures (upto 315 K), the low-Q data shows a larger elastic line as compared to the 

high-Q spectra. Presently, given the lack of detailed magnetic measurements, we speculate 

that this quasi-elastic scattering may originates from spin fluctuations which disappear at high 

temperatures. In the high temperature range, only phonons contributes significantly to the 

spectra, and therefore the width of the elastic line is similar in both the Q ranges. 

 



Chapter 4: Spin-Phonon Coupling, Phase Transitions ……….. 

 
 

117 
 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.2 Temperature dependent inelastic neutron spectra of GaFeO3. Top panel: the low-Q 

and high-Q Bose factor corrected S(Q,E), where both the energy loss (0 - 10 meV) and the 

energy gain (-100 - 0 meV) sides are shown. Bottom panel: the low-Q and high-Q, unity-

normalized, phonon density of states, g
(n)

(E), inferred from the neutron energy gain mode 

S(Q,E) data, within the incoherent approximation. 

 

The phonon spectra inferred from the S(Q,E) data, within the incoherent 

approximation, are also shown in Fig. 4.2.  The phonon spectra consist of several peaks 

located around 20, 30, 55 and 80 meV. We find that both the high Q as well as the low Q data 

show large variation in the intensity as a function of temperature.  At low energy (below 40 

meV), the low Q data are more intense in comparison to the high Q data. Further for the low 

Q part, at 150 K below the magnetic transition temperature (~225 K), there is a large intensity 

of the low energy inelastic spectra (~ 20 meV) as compared to the data collected at higher 

temperatures. This is expected to be due to a strong magnetic signal. At 848 K, it is found 
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that in both the low Q as well the high Q data, there is a considerable decrease of the intensity 

of the low energy peaks around 20 meV. Although GaFeO3 undergoes a paramagnetic to 

ferri-magnetic transition [15] around 225 K, a paramagnetic scattering persists in the low 

energy range around 20 meV, at 240 and 315 K. The intensity in the higher energy range, 

above 55 meV, of the high Q data does not show significant temperature dependence, 

confirming a pure phonon contribution in these spectral regime. Above 848 K, there is a loss 

of intensity, due to paramagnetic scattering, and only phonons contribute in this range. 

GaFeO3 does not show any structural phase transition at high temperature. However 

polyhedral (GaO4, GaO6, FeO6) distortions are found to increase upon heating up to 1198 K 

[30]. This might be an additional reason for the broadening of the phonon spectra above 60 

meV at high temperatures, besides the increased thermal amplitudes.  

 

4.2.1.2 Magnetic Ordering and Calculated Phonon 

Spectra 

The microscopic origin of the polarization in multiferroic materials is attributed to the 

hybridization of the electronic orbitals producing a polar charge distribution and ionic 

displacements from the related centro-symmetric positions. Hence, it is important to study the 

lattice dynamics in order to understand the ME properties of multiferroics. Detailed 

electronic structure calculations of GaFeO3 are reported in the literature [18, 19, 44]. 

However, phonon studies over the whole Brillouin zone are missing. Calculations of 

(electronic) structure and dynamics would help to gain newer and deeper insights into the 

various physical properties and possible phase transitions of this kind of materials.  
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The calculated Fe magnetic moment in the equilibrium structure in the Pc21n phase at 

Fe1 and Fe2 sites are 4.1 μB and 4.1 μB, respectively, which is  in agreement with the reported 

experimental values [15]  of 3.9 μB, 4.5 μB.  Neglecting the spin degrees of freedom in the 

calculations leads to a collapse of the b-lattice parameter, with a value decreasing from 9.29 

Å to 8.77 Å.  However by considering Fe magnetism, the calculated value of b-lattice 

parameter is brought to agreement with the observation (Table 4.1).  

Fig. 4.3 compares the experimental and calculated phonon spectra. The “FNM” 

calculation results in a shift of all the modes to higher energies. This is due to the fact that the 

b-axis is underestimated in FNM calculations, leading to an overestimation of the phonon 

energies.  Interestingly, the model calculations “FM” and “PNM” provide a very good 

agreement with the experimental spectra. We notice however some differences in the low 

energy part of the phonon spectra. The difference comes in fact from the value of the Fe 

magnetic moment in the two numerical models. The main effect of the Fe spin degrees of 

freedom is to soften the calculated phonon energies around 30 meV, bringing them hence 

closer to the experimental values. This demonstrates the role of magnetic interactions in 

GaFeO3, in a similar way to other recent phonon studies in other systems [35, 36].  

The “FM”-based calculated phonon spectra (Fig. 4.3) lead to peaks centered around 

20, 30, 55 and 80 meV. The experimental spectra show peaks at 20 and 30 meV and clear 

humps at 55 and 80 meV. GaFeO3 is known to have a Ga-Fe disorder, from diffraction 

measurements [15]. However our phonon calculations were done in the ordered phase (Table 

4.1). The structural disorder could lead to a large variation of the Ga/Fe-O bonds, and would 

then result in a broadening of the peaks, as experimentally observed. 
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FIG 4.3  The calculated and experimental neutron inelastic scattering spectra of GaFeO3. 

The experimental data consist of the “High Q” data collected at 315 K. The calculated 

spectra have been convoluted with a Gaussian of FWHM of 15% of the energy transfer in 

order to describe the effect of energy resolution in the experiment.  

 

The difference in the phonon spectra (Fig. 4.3) from the various calculations can be 

understood from the estimated atomistic contributions in terms of the partial density of states 

from LDA calculations (Fig. 4.4). The difference is primarily due to the nature of the 

chemical bonding, in the magnetic and nonmagnetic configurations, as well as the related 

volume effect. We find that vibrations of Fe and Ga atoms extend up to 45 meV, while the 

dynamics of the oxygen atoms spreads over the entire spectral range, up to 100 meV.  The 

vibrational aspects due to the two Ga symmetry inequivalent atomic sites remain nearly 

invariant in all the three calculation types, while the Fe vibrations show a considerable 

change. The intensity of vibrational density of states of the Fe2 atoms is enhanced around 20 

meV. The vibrations of Fe1 as calculated around 30 meV in the non-magnetic calculations 

are found to soften magnetically, and exhibit a peak around 20 meV. “FNM” calculations 

predict the oxygen vibrations to extend up to about 100 meV. The overestimation in the range 

of vibrations is primarily due to the non-inclusion of the Fe magnetic moment which results 
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in a contraction of the unit cell. The “FM” and “PNM” model calculations show that the 

vibrations of all the oxygen atoms soften in the energy range 60 - 100 meV. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.4 The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA). The atoms are labeled following Table 4.1. “FM”, 

“FNM” and “PNM” refer to fully relaxed magnetic, fully relaxed non-magnetic and partially 

relaxed non magnetic calculations, respectively. 

 

A further interesting finding consists of the vibrations of the O5 atoms, as extracted 

from the “FM” calculation type.  The O5 atoms are connected only to the Fe1 and Fe2 atoms 

(Figure 4.1). The O5 vibrations (Figure 4.4) around 60 meV are related to the Fe magnetism. 

This dynamics is found to shift to lower energies at about 30 meV in the “FM” calculations. 

Given the known effect of the density functional approximation (LDA or GGA) on the 

volume description (LDA tends to underestimate the volume value and GGA shows the 
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opposite trend), we compare the “FM” calculated phonon spectra from LDA and GGA 

approaches. The unit cell volume from LDA and GGA calculations is estimated to be 405.3 

Å
3 

and 434 Å
3
, respectively. The experimental value is 413.9 Å

3 
[15]. 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.5  The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA) and the generalized gradient approximation (GGA) in 

the fully relaxed magnetic (FM) structure in Pc21n space group. The atoms are labeled 

following Table 4.1.  

 

The low energy part of the phonon spectra, which is sensitive to Fe magnetism, is 

nearly the same in both LDA and GGA (Figures 4.3 and 4.5). Above 50 meV, some 

variations are however noticed. The GGA calculated phonons above 50 meV are found to be 

slightly at lower energies as compared to LDA calculated phonons. Both the exchange-

correlation methods lead to an overall good matching with the observations. 

 



Chapter 4: Spin-Phonon Coupling, Phase Transitions ……….. 

 
 

123 
 

 

 

 

 

 

 

 

 

 

 

FIG 4.6 The calculated zone centre phonon modes of GaFeO3 (orthorhombic phase, space 

group Pc21n). Open and closed symbols correspond to calculations performed within the 

local density approximation (LDA) and generalized gradient approximation (GGA), 

respectively. A1, A2, B1 and B2 correspond to the group theoretical representations of the 

system symmetry.   

 

Under the orthorhombic (Pc21n) symmetry, GaFeO3 possesses 120 zone centre modes 

corresponding to the irreducible representations:  = 30A1+30A2+30B1 +30B2. Figure 4.6 

compares the determined zone centre phonon modes from the various calculation types. The 

LDA and GGA approximations lead basically to the same phonon energies. Several modes 

are found to significantly differ when comparing the magnetic and non magnetic cases. This 

confirms a spin-phonon coupling behavior. The change in energies of the modes below 25 

meV is mainly due to the magnetic interactions, while the high energy phonons are 

influenced by the volume effect. 
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FIG 4.7 The calculated partial phonon density of states of various atoms in GaFeO3 within 

the local density approximation (LDA) in Pc21n space group.  “FM_Ga_SC” and “FM” 

refer to the fully relaxed magnetic calculations with and without the semi core electrons of 

the Ga atoms respectively. The atoms are labeled following Table 4.1.  

 

Further, fully relaxed magnetic calculations (FM_Ga_SC) including the semi core 

electrons of the Ga atoms (d
10

s
2
p

1
) are performed. The detailed comparison of the “FM” and 

“FM_Ga_SC” calculated phonon spectra (Fig. 4.3 and Fig. 4.7) shows that the low energy 

phonons below 40 meV are not affected by the inclusion of the semicore d-shell electrons of 

the Ga atoms. The only noticeable difference is detected in the high energy modes which 

soften by about 1 meV.  Both the calculations are in good agreement with the experimental 
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data. The calculated partial densities of states (Fig. 4.7) indicated that the changes in the high-

energy range are associated with the change in the partial contribution of O atoms.  

 

4.2.1.3 High Pressure Phase Stability of GaFeO3  

The high pressure measurements [31], up to 70 GPa (increasing and decreasing 

cycles), revealed a very rich phase diagram of GaFeO3. Arielly and coworkers reported the 

emergence of a new orthorhombic phase (space group Pbnm) above 25 GPa, upon increasing 

pressure. The transition was found to fully establish at 45 GPa.  In this phase all the Ga atoms 

have eight co-ordinations. However in the Pc21n phase, two different Ga sites are 

distinguishable; one with a six-fold symmetry, and the other possessing a four-fold 

coordination. Increasing further the pressure to about 53 GPa results in another first order 

transition with significant drop of the volume. However,  the system remains in the same 

orthorhombic space group (Pbnm). At this pressure value (53 GPa), the magnetic interactions 

weaken due to the broadening of the iron d-bands. Mossbauer measurement reveals that the 

Neel temperature is close to 5 K, at about 77 GPa. Further decreasing the pressure to the 

ambient value, the hexagonal R3c phase was found to be the stable one, which is different 

from the originally starting orthorhombic Pc21n phase, at ambient conditions. In the literature 

[31], only the lattice parameters of GaFeO3 are available in the Pbnm and R3c phases. The 

related atomic co-ordinates are missing. We have therefore started from the atomic co-

ordinates of LuFeO3 and LiNbO3, as provided in Refs. [48] and [49] respectively. Mossbauer 

spectroscopy reveals the existence of magnetic ordering in GaFeO3 [31] even at high 

pressures. The crystal structure of GaFeO3 in Pbnm and R3c phases has been calculated by 

relaxing the atomic co-ordinates as well as lattice parameters. The total energy has been 

calculated in both the phases in various antiferromagnetic configurations represented by the  
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TABLE 4.2 The calculated structural parameter of GaFeO3 in the orthorhombic (Pbnm) and 

hexagonal (R3c) phases within the local density approximation (LDA) in the fully relaxed 

magnetic structure (FM). In the orthorhombic phase the O1, O2, Fe and Ga atoms are 

located at 4c (x, 1/4, z), 8d (x, y, z), 4b(1/2, 0, 0) and 4c (x, 1/4, z), respectively, while in the 

hexagonal phase O, Fe and Fe occupy the positions 36f (x, y, z), 12c (0, 0, z) and 12c (0, 0, 

z), respectively. The experimental lattice parameters are from Ref.[31].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Orthorhombic Pbnm phase   

  Expt. (25.7  GPa) Calc. (25 GPa) 

 a 4.948(4) 4.793 

 b 5.165(20) 4.965 

 c 7.0000(8) 7.241 

O1 x  0.413 

 y  0.250 

 z  0.142 

O2 x  0.323 

 y  0.076 

 z  0.672 

Fe x  0.500 

 y  0.000 

 z  0.000 

Ga x  0.059 

 y  0.250 

 z  0.987 

Hexagonal R3c phase 

  Expt. (0.2  GPa) Calc. (0 GPa) 

 a 5.036(2) 4.981 

 b 5.036(2) 4.981 

 c 13.585(7) 13.425 

O x  0.969 

 y  0.333 

 z  0.080 

Fe x  0.000 

 y  0.000 

 z  0.018 

Ga x  0.000 

 y  0.000 

 z  0.309 
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A, C, and G ordering types. Computationally, we found that the Pbnm phase is the most 

stable when adopting the G-type antiferromagnetic ordering, while the R3c phase stabilizes 

with the A-type antiferromagnetism. The calculated structural details under the Pbnm and 

R3c phases at 25 GPa and ambient pressure, respectively, are given in Table 4.2. Therein the 

available experimental lattice parameters are also shown. 

 

TABLE 4.3 The calculated elastic constants (in GPa units) of GaFeO3 in the orthorhombic 

phase (space group Pc21n) in the fully relaxed magnetic structure (FM) at ambient pressure. 

 

Elastic Constant  GGA LDA 

C11 291.8 344.6 

C12 137.2 163.3 

C13 119.8 148.4 

C22 257.5 300.0 

C23 127.0 159.0 

C33 250.3 284.6 

C44 62.5 72.7 

C66 83.7 95.1 

 

Presently, the high-pressure equation of state, total energy () and enthalpy 

(H=+PV) of various phases of GaFeO3 were estimated for the fully relaxed magnetic (FM) 

configuration. The GGA calculated enthalpy showed that the high-pressure Pbnm phase is 

more stable than the Pc21n phase at ambient pressure. Fig. 4.8(a) presents the enthalpy 

difference from LDA calculations, for the Pc21n  and R3c phases with respect to the Pbnm 

phase. Above 23 GPa, the Pbnm phase is found to be stable when comparing to Pc21n. The 

application of pressure leads to a change in the correlation between the electronic motions 

and affects the magnetic interaction. A quenching of the Fe magnetic moment in the Pbnm 
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phase is found at 47 GPa, which triggers a sudden drop of the volume and increases the total 

energy (Fig. 4.8(b)). This is in agreement with the high pressure data [31] which shows a 

similar behaviour around 53 GPa. The values of the magnetic moments on the Fe-atoms 

remain about 4.1 μB from ambient pressure to below 47 GPa and then decrease to 1.0 μB at 

this transition. 

The calculated phase diagram is qualitatively in a good agreement with the 

observation. It should be mentioned that it is difficult to identify experimentally the high 

pressure equilibrium phases, due to the large hysteresis.  Fig. 4.9 shows the comparison 

between the LDA-calculated and experimental relative change of the unit cell volume in 

various phases of GaFeO3 as a function of pressure. A very good agreement is noticed 

between our calculations and the measurements [31] in the Pc21n and R3c structures; 

however, the volume in the Pbnm phase is underestimated. Table 4.3 gathers the LDA and 

GGA calculated elastic constants. The estimated bulk modulus values from LDA and GGA 

calculations, in the Pc21n phase, are 207 and 178 GPa, respectively. The LDA determined 

value is found to be in a better agreement with the experimental bulk modulus value (226 

GPa) [31]. As expected, the GGA underestimates the elastic constants by about 15% with 

respect to LDA, given that GGA tends to overestimate the calculated unit cell volume. This 

results in lowering the calculated bulk modulus values. 

Further, the total energy () and enthalpy (H=+PV) of various phases of GaFeO3 

are estimated from LDA for the fully relaxed magnetic (FM_Ga_SC) configuration including 

the semi core electrons of the Ga atoms. Here again we found that computationally the Pbnm 

and R3c phases are most stable when adopting the G-type antiferromagnetic ordering and A-

type antiferromagnetism respectively. The FM_Ga_SC calculated enthalpy difference in the 

various phases shows that the Pbnm phase is stable above 30 GPa (Fig. 4.8(c)) when 

comparing to Pc21n. The pressure increase leads to a quenching of the Fe magnetic moment 
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in the Pbnm phase at 36 GPa, resulting in an increase of the total energy (Fig. 4.8(d)) and a 

sudden drop of the volume. We also find that the Fe magnetic moment is quenched in the R3c 

phase, when the pressure is raised to 45 GPa. The FM_Ga_SC calculated relative change of 

the unit cell volume as a function of pressure (Fig. 4.9) in various phases is found to be in a 

qualitative agreement with the experimental data [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.8 (a, c, e) The calculated enthalpy  (H=+PV) difference in the Pc21n and R3c phases 

with respect to the Pbnm phase of GaFeO3 as a function of pressure within the local 

density approximation (LDA). (b, d, f) The calculated total energy () in the Pbnm phase of 

GaFeO3 as a function of pressure within the LDA. The explanation of the labeling FM, 

FM_Ga_SC, FM_GaFe_SC is described in Section III.  
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Environment of the Fe in GaFeO3 is strongly asymmetric, therefore polarization of the 

low-lying semi core states could influence the total energy. In this context, we have also 

calculated total energy () and enthalpy (H=+PV) within LDA framework  for the fully 

relaxed magnetic configuration (FM_GaFe_SC) including the semi core electrons of both the 

Ga and Fe atoms. As in the above two types of calculations, the G-type and A-type 

antiferromagnetic ordering is found to be stable for Pbnm and R3c phases respectively. The 

comparison of the enthalpy of the Pc21n and Pbnm phases shows (Fig. 4.8(e)) that the former 

phase is stable up to 26 GPa. Further increase in pressure leads to stability of GaFeO3 in the 

Pbnm phase. This is due to quenching of the Fe magnetic moment which leads to an increase 

of the total energy and a sudden drop of the volume. In the R3c phase, the Fe magnetic 

moment is also found to quench at 28 GPa. A comparison of the experimental [31] and 

calculated equation of state from FM_GaFe_SC calculations is shown in Fig. 4.9.  

The equation of state is found (Fig. 4.9) to be qualitatively different as obtained from 

calculations performed in FM, FM_Ga_SC, FM_GaFe_SC configurations.  We find that 

comparison of enthalpy in the Pc21n and  Pbnm phases,  in the FM and FM_Ga_SC 

calculations, reveals a stability of GaFeO3 in the Pbnm phase above 36 and 26 GPa, 

respectively, while no such phase transition is found in the FM_GaFe_SC calculations. As 

shown in Fig. 4.9, quenching of the magnetic moment at high pressure in the Pbnm structure 

induces a number of phase transitions in the different calculations. However, in the R3c phase 

no quenching of Fe magnetic moment was found in FM calculations. While we notice that Fe 

moment was found to quench (Fig. 4.9) in both FM_Ga_SC, FM_GaFe_SC calculations, and 

leading to a phase transition.  
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FIG 4.9 The LDA-calculated equation of state of various phases of GaFeO3 and a 

comparison with available experimental data [31]. V refers to the volume per formula unit at 

pressure P. Vo refers to the volume per formula unit of Pc21n phase at ambient pressure. The 

explanation of the labeling FM, FM_Ga_SC, FM_GaFe_SC” is described in Section 4.1.  

 

The FM calculated enthalpy value under the Pc21n phase is -7.196 eV/atom, while in 

the R3c phase this is estimated to be -7.209 eV/atom, indicating that the R3c phase is more 

stable as compared to Pc21n.  The calculated energy difference between the two phases is 

rather small (~13 meV/atom). On the other hand the FM_Ga_SC  and  FM_GaFe_SC LDA 

calculated enthalpy values indicate that, at ambient pressure, the Pc21n phase is energetically 

favorable by ~4 meV/atom and ~6 meV/atom in comparison to the R3c phase. However the 

Pc21n phase is found to be stable only below 2 GPa. As discussed and highlighted above, the 

inclusion of the semi core electrons in the atomistic pseudo potentials has only a minor 
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influence on the obtained dynamical properties, while these seem to induce some qualitative 

changes in the equation of state.   

 

4.3 YMnO3  

Yttrium Manganese oxide (YMnO3) keeps attracting a keen interest as it is known to 

exhibit ferroelectricity and antiferromagnetism simultaneously [50]. At ambient conditions 

the compound has a hexagonal P63cm structure. Above 1258 ±14 K, a ferroelectric to 

paraelectric phase transition occurs, and the system crystallizes [51] under the hexagonal 

P63/mmc space group (Fig. 4.10). Below 70 K, YMnO3 has an A-type  antiferromagnetic 

ordering. The ferroelectric phase consists of six formula units of YMnO3. The structure is a 

framework network of MnO5 bipyramids and YO7 units. The MnO5 units are tilted with 

respect to the c-axis and Y
3+

 ions are shifted by ±δ from a-b plane along the c-axis. The high-

temperature phase has two formula units of YMnO3. The Mn
3+

 ions are coordinated by five 

oxygens, whereas the Y
3+

 ions are coordinated by six symmetrically equivalent oxygens, 

forming MnO5 bipyramids and YO6 units, respectively. All Y
3+

 ions lie in the a-b plane. The 

ferroelectric P63cm phase is connected to the high-temperature P63/mmc structure by the 

tripling of the corresponding unit cell. Moreover there is a loss of the mirror symmetry 

perpendicular to the c axis due to the tilting and distortion of the MnO5 bipyramids and the 

displacement of the Y atoms. This triggers the emergence of the spontaneous electric 

polarization of the system. The exact nature of this ferroelectric transition is still under debate 

[8, 52-60]. Compounds [61, 62] with reduced rare-earth ionic radius (Ho, Er, Tm, Yb, Lu and 

Y) crystallize in a hexagonal structure (space group P63cm), whereas an orthorhombic (space 

group Pnma) phase is reported for compounds with larger rare-earth ionic radius (La, Ce, Pr, 
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Nd, Sm, Eu, Gd, Tb and Dy). A hexagonal-to-orthorhombic structural phase transition [63] 

can take place at elevated temperatures, under pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.10 Schematic representation of the crystal structure of the  room -temperature (space 

group P63cm) and the high-temperature (space group P63/mmc) phases of YMnO3. The atoms 

are labeled following Table 4.4. Key: Y, blue spheres; Mn, green spheres; and O, red 

spheres. 

 

Although ferroelectricity in YMnO3 is believed to be due to the tripling of the unit 

cell, there is however an ambiguity about a second transition observed at ~ 920 K in this 

material. It was suggested [64]  that this transition can be considered as a hidden order in 

which a residual symmetry, displayed by [64] the trimerization order parameter, is 
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spontaneously broken. In this context, a generic P63cm ↔ P3c1 ↔ P-3c1 phase diagram was 

proposed, corresponding to the observation in another isostructural compound (InMnO3). 

High-resolution powder neutron diffraction investigation [51] of the structural behavior of the 

multiferroic hexagonal polymorph of YMnO3 has been reported over the temperature range 

300 - 1403 K. These measurements showed that on heating the ambient-temperature polar 

P63cm structure undergoes a centrosymmetric P63/mmc transition at 1258 ±14 K. This 

corroborated the absence of the previously suggested [56] intermediate phase with space 

group P63/mcm. Further, the measurements also provided evidence for an isosymmetric phase 

transition (i.e., P63cm to P63cm) at ≈ 920 K, which involves a sharp decrease in polarization.   

Most of the dynamical probes of manganites are based on Raman and infrared 

techniques [65, 66]. These are limited to the zone centre modes.  Available INS 

measurements on single crystals are limited to low energies, below 20 meV [67, 68]. 

However a better understanding of thermodynamical behavior of a material requires a 

complete description of phonon spectra in the entire Brillouin zone (zone-centre and zone-

boundary). Therefore INS can be used to probe phonons in the entire Brillouin zone. In this 

context, we present temperature-dependent measurements of phonon spectra in YMnO3, over 

the temperature range 50 - 1303 K .i.e. in the low-temperature (P63cm), as well as in the 

high-temperature (P63/mmc) phase of YMnO3. Our measurements are accompanied by first 

principles density functional-based magnetic lattice dynamics calculations for the sake of 

analysis and interpretation of the neutron data. Phonon dispersion relations in the entire 

Brillouin zone have been calculated in both the high- and low-temperature hexagonal phases 

of YMnO3. Unstable phonon modes in the high-temperature phase are related to the 

stabilization of the low-temperature phase.  

The inelastic neutron scattering measurements were carried out, at several 

temperatures in the range 70 - 1303 K, using the direct-geometry thermal neutron time-of-
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flight IN4C spectrometer at the Institut Laue-Langevin (ILL), France. The low-temperature 

measurements were performed using a standard orange cryostat. For the high-temperature 

range, the sample was put into a quartz tube, and mounted in a furnace. The other end of the 

quartz tube was kept open in the air. An incident neutron wavelength of 2.4 Å (14.2 meV) 

was used, performing in the up-scattering mode (neutron energy gain). The momentum 

transfer, Q, extends up to 7 Å
-1

.
  

The calculations were carried out with and without considering the magnetic 

interactions using VASP.  This is for the sake of understanding the effect of the spin degrees 

of freedom on the lattice dynamics [35, 36, 69]. The A-type antiferromagnetic ordering, in 

both the hexagonal phases, was adopted in the magnetic calculations. The on-site Coulomb 

interaction was accounted for within the Dudarev approach [42] using Ueff = U − J= 7.12 eV 

[70, 71]. The labels; „FM‟, „PNM‟ and „FNM‟ are aberrative of fully magnetic, partially 

nonmagnetic and fully non magnetic as explained in section 4.1.  An energy cutoff of 800 eV 

and a 6×6×2 k-points mesh for the Brillouin zone integration are used and found to satisfy the 

required numerical convergence. Total energies were calculated for 24 generated structures 

resulting from individual displacements of the symmetry inequivalent atoms in the room 

temperature hexagonal (P63cm), and high temperature (P63/mmc) phases, along the six 

inequivalent Cartesian directions (±x, ±y and ±z). Phonons are extracted from subsequent 

calculations using the direct method as implemented in the Phonon software [39].  

 

4.3.1 Results and Discussion 

4.3.1.1 Temperature Dependence of Phonon Spectra 
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The INS measurements are performed across the magnetic and structural transition 

temperatures. In addition to the temperature dependence of the INS spectra, we present the 

data in terms of the Q-dependence as well, in order to map out both magnetic and lattice 

(phonon) excitations. The magnetic signal is expected to increase  as Q decreases, following 

the magnetic form factor [72]. However, in the case of phonons, the form factor exhibits a 

Q
2
– like dependence (multiplied by the Debye-Waller factor exp(-2W(Q) ), hence the 

intensity of the phonon signal increases with Q in the range of our measurements up to 7 Å
-1

.  

   

 

 

 

 

 

 

 

 

 

 

 

FIG 4.11 Temperature dependent neutron inelastic spectra of YMnO3. Top panel: the low-Q 

and high-Q Bose factor corrected S(Q,E), where both the energy loss (0 - 10 meV) and the 

energy gain (-20 - 0 meV) sides are shown. Bottom panel: the low-Q and high-Q, unity-

normalized, neutron inelastic spectra, g
(n)

(E), inferred from the neutron energy gain mode 

S(Q,E) data, within the incoherent approximation. 
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So also, the phonon signal increases with temperature due to increased population of 

the phonons. On the other hand, the magnetic signal decreases with increase of temperature. 

Hereafter the Q-dependence is limited to compare INS spectra in the low-Q (1 - 4 Å
-1

) and 

high-Q (4 - 7 Å
-1

) regions. The measured temperature dependence of the dynamical scattering 

function S(Q,ω) within the low-Q  and high-Q regions is shown in Fig. 4.11(a) and Fig 

4.11(b), respectively. At 50 K the observed peak around 10 meV is of magnetic nature, given 

its Q-dependence (stronger at low-Q and absent at high-Q). Above 70 K the compound 

undergoes [50, 73]  a paramagnetic transition. Our data at 150 and 315 K show an 

appreciable broadening of the elastic peak which may results from the paramagnetic 

scattering.  The increase in the temperature would lead to a decay of the paramagnetic 

fluctuations, which   reduces the width of the elastic peak. Above 848 K the width of the 

elastic line stays close to the instrumental resolution, indicating that the paramagnetic 

scattering vanishes at high temperatures.   The neutron inelastic spectra are depicted in Fig. 

4.11(c) and Fig. 4.11(d), for the low-Q and high-Q regions, respectively. For the low-Q data, 

the low-energy excitations below 20 meV show a pronounced change as a function of the 

temperature. However such a trend is not observed in the high-Q data, confirming a more 

phonon-like character in this spectral range. Both the magnetic and phonon excitations are 

present in the low-Q part, whereas the high-Q data contains mainly phonon contributions. A 

prominent peak is observed in the low-Q data of the neutron inelastic spectra at 50 K and 

decaying strongly with temperature.  The INS measurements [67, 68] carried out on a single 

crystal of YMnO3 indicate that the dispersion of spin waves lies within the energy range 5 - 

15 meV. This is in agreement with our measurements where we also find a large change in 

the intensity in the low-Q data, across the Neel temperature (TN~70 K). The stretching modes 

(Fig. 4.11) around 80 meV, at 315 K, are found to soften as the temperature increases to 848 

K. This might primarily be due to the increase of the Mn-O bond lengths leading to such a 
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softening. The crystal structure and the phonon spectrum of the compound (Fig. 4.11(d) do 

not show large changes even above the Neel temperature of 70 K when the antiferromagnetic 

ordering is destroyed, which suggests that some kind of local magnetic order persists above 

70 K. Our earlier work on GaFeO3 shows [74] that magnetic signal is present well above the 

magnetic ordering temperature of 225 K. We therefore believe that in YMnO3 also above 70 

K in the paramagnetic phase local magnetic order as well as paramagnetic fluctuations may 

be present which give rise to the magnetic signal in the low-Q region at 150 K and 315 K. 

The structural phase transition (P63cm to P63/mmc) in YMnO3, occurring at 1258 ±14 

K, involves a structural distortion and a ferroelectric to paraelectric transition. It is well know 

that the phase transition from ferroelectric to paraelectric is driven by a softening of a zone 

boundary phonon mode at the K-point. We did not observe any significant change across the 

transition (up to 1303 K). It should be noted that the neutron inelastic spectra measurements  

were performed on a polycrystalline sample, and are averaged over the whole Brillouin zone. 

Therefore it would be crucial to detect small changes in specific dispersion branches, which 

may only be measured efficiently using a single crystal. 

 

4.3.1.2 Effect of the Magnetic Ordering on the 

Calculated Phonon Spectra 

The purpose of the three model calculations (“FM”, “FNM”, and “PNM”) described 

in Section III is to study the effect of the cell volume and magnetic interactions on the 

phonon spectra. The comparison between the relaxed and the experimentally refined 

structural parameters are gathered in TABLE 4.4. Further, a comparison between calculated 

and refined [51] bond lengths is provided in TABLE 4.5. The calculated magnetic moment 



Chapter 4: Spin-Phonon Coupling, Phase Transitions ……….. 

 
 

139 
 

per Mn atom is 3.99 μB and 3.95 μB, from LDA and GGA, respectively. However neutron 

diffraction measurements [75, 76] reported that, below TN, the Mn moment has a value of ~ 3 

μB. YMnO3 is a non collinear magnetically frustrated two dimensional system [50]. The Mn-

Mn distance in the a-b plane and along c-axis is 3.5 Å and 6.05 Å respectively. Therefore, the 

magnetic interaction in the a-b plane is much stronger than that along c-axis, which indicates  

low dimensionality of  the magnetic structure in YMnO3. The nearest neighbor 

antiferromagnetic exchange interaction and hexagonal magnetic lattice in the a-b plane 

results in a magnetically frustrated [77] spin configuration.  The spin frustration parameter 

(θCW/TN,  θCW and TN are Curie-Weiss (CW) and Neel temperature respectively) [53] for 

YMnO3 is close to 10. The large value of spin frustration parameter for YMnO3 [78]  can be 

partly due to the low dimensionality of the Mn networks in addition to the geometrical 

frustration effects. The deviation from the calculated value might be due to magnetic 

fluctuations associated with frustration and/or low dimensionality.  

The calculated phonon spectra are compared with the measured ones (at 315 K) in 

Fig. 4.12. The “FM” type calculation using GGA reproduces the low energy features of the 

measured phonon spectra. The peak in the experimental spectra at about 52 meV is estimated 

around 45 meV.  Further the Mn-O stretching modes are underestimated around 67 meV, 

while experimentally these are observed around 80 meV.  The GGA determined structural 

parameters clearly show that both the „a‟ and „c‟ lattice parameters are overestimated by ~ 2 

%. This results in the overestimation of the various Mn-O bond lengths, which leads to the 

underestimation of the energies of the Mn-O stretching modes. Results of the FM-LDA 

calculations are found to be close to the experimental data. This is in agreement with the 

correct estimation of the structural parameters as well as bond lengths using this model 

calculation (TABLE 4.4 and 4.5). Consequently in the following we adopt the LDA density 

functional.  
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TABLE 4.4 Comparison between the calculated and room temperature experimental[51] 

structural parameters of YMnO3 (Hexagonal phase, space group P63cm). The experimental 

structure (space group P63cm) consists of Y1 and O3 atoms at 2a(x,y,z), Y2 and O4  at 

4b(x,y,z), and  Mn, O1, and O2 at 6c(x,y,z) Wyckoff site. “FM”, “FNM” and “PNM” refer to 

fully relaxed magnetic, fully relaxed non-magnetic and partially relaxed non magnetic 

calculations, respectively. 

  Expt. FM(GGA) FM(LDA) PNM(LDA) FNM(LDA) 

 a (Å) 6.14151 6.236 6.095  6.095  5.838 

 b (Å) 6.14151 6.236 6.095  6.095  5.838 

 c (Å) 11.4013 11.599  11.416 11.416 12.013   

       

O1 x 0.3074 0.308  0.306 0.307  0.302  

 y 0.0000 0.000  0.000  0.000  0.000  

 z 0.1626 0.164  0.164  0.169  0.161 

       

O2 x 0.6427 0.641 0.640 0.640  0.636  

 y 0.0000 0.000  0.000  0.000  0.000  

 z 0.3355 0.336 0.336  0.342  0.339  

       

O3 x 0.000  0.000  0.000  0.0000 0.0000 

 y 0.000  0.000  0.000  0.0000 0.0000 

 z 0.4744 0.475  0.476  0.4876 0.475 

       

O4 x 0.3333  0.333  0.333 0.333  0.333  

 y 0.6667 0.667 0.667 0.667 0.667 

 z 0.0169 0.021 0.021 0.028 0.020 

       

Mn x 0.3177 0.333  0.333  0.336 0.333  

 y 0.0000 0.000  0.000  0.000  0.000  

 z 0.0000 0.000  0.000  0.000  0.000  

       

Y1 x 0.0000 0.000  0.000  0.000  0.000  

 y 0.0000 0.000  0.000  0.000  0.000  

 z 0.2728 0.274  0.275  0.276 0.274 

       

Y2 x 0.6667 0.667 0.667 0.667 0.667 

 y 0.3333 0.333  0.333  0.333  0.333  

 z 0.7325 0.732 0.731  0.731  0.733 
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FIG 4.12 The calculated and experimental neutron inelastic spectra of YMnO3. The 

experimental data were collected at 315 K, and averaged over the high-Q region. The 

calculated phonon spectra have been convoluted with a Gaussian of FWHM of 10% of the 

energy transfer in order to describe the effect of energy resolution in the experiment. For 

better visibility, the experimental and calculated phonon spectra are shifted vertically with 

respect to each other. Multiphonon as calculated using the Sjølander formalism has been 

subtracted for comparison with the calculations. 

 

The calculated phonon spectra (Fig. 4.12), using the three model calculations PNM, 

FM, FNM, are closely similar up to ~ 25 meV. A significant change is observed at higher 

energies. To gain deeper insights into the phonon spectra, we extracted the atomistic partial 

contributions to the calculated phonon density of states (Fig. 4.13).  The Y and Mn atoms are 

found to contribute mainly below 50 meV, while the O atoms are dynamically active within 



Chapter 4: Spin-Phonon Coupling, Phase Transitions ……….. 

 
 

142 
 

the range 40 - 90 meV.  In all the three model calculations the contributions from Y and Mn 

atoms remain nearly unperturbed in the entire energy range.  On the other hand, the 

differences in the phonon spectra are found to originate from the dynamics of the oxygen 

atoms. Such differences from the various calculations are primarily due to the nature of the 

chemical bonding, in the magnetic and nonmagnetic configurations, as well as a volume 

effect in this case as well. By comparing the FNM and FM phonon calculations we 

highlighted an effect of magnetism and cell volume on the phonon spectra.  

 

 

 

 

 

 

 

 

 

FIG 4.13 The calculated atomistic partial phonon density of states (Y, Mn and O)  in the low 

temperature phase (space group P63cm) of  YMnO3, within the local 

density approximation (LDA). 

 

By comparing the FM and PNM calculated phonon spectra we can identify the 

specific modes sensitive to magnetic interactions. In both FM and PNM, the calculated lattice 

parameters (TABLE 4.4) are similar. However there are slight changes in the related atomic 

positions. We find that the calculated Mn-O1 and Mn-O2 bond lengths show a large 

difference in both the calculations (TABLE 4.5). The FM calculated bond lengths are closer 
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to the experimentally refined ones. The calculated values of Mn-O2 are 1.879 Å and 1.806 Å 

in “FM” and “PNM”, respectively. The significant shortening of the Mn-O2 bond length as 

compared to the refined value of 1.891 Å [51], results in a hardening of the modes (Fig. 4.13) 

around 80 meV in the “PNM” calculations. The overestimation (TABLE 4.5) of Mn-O1 bond 

lengths in the “PNM” calculations leads to a softening of the modes involving O atoms, in 

comparison with “FM” calculations.  Further, we find that the PNM-calculated low-energy 

modes around 40 meV for the planar O3 and O4 atoms soften significantly in comparison 

(Fig. 4.13) to the “FM” calculations. The difference in the calculated phonon spectra in both 

FM and PNM is due to the fact that in the PNM calculations the Mn
3+

 magnetic moment is 

zero, while the FM calculated magnetic moment of Mn
3+

 is 3.99 μB.  Therefore, the super 

exchange interactions between Mn cations, mediated by O atoms, influence the partial 

phonon spectra involving oxygens. It it worth to notice that the Mn phonon modes seems to 

be insensitive to the magnetic moment exhibited on the Mn site. The FNM calculated 

structure (TABLE 4.5) shows that the “c” lattice parameter has a value of 12.01 Å, while the 

experimentally refined value is 11.40 Å [51]. The “a” lattice parameter is found to be 

underestimated (5.838 Å) in comparison to the experimental value of 6.1415 Å.  All the four 

FNM calculated Mn-O bond lengths (TABLE 4.5) are more isotropic.  This leads to an 

underestimation of the energies of the Mn-O stretching modes (Fig. 4.13) around 80 meV in 

the “FNM” calculations in comparison to the “FM” calculations. Fig. 4.14 shows the change 

in the energy of the estimated zone centre modes in the PNM and FNM configuration, with 

respect to FM calculations. There is a noticeable deviation when comparing energies from 

magnetic and non-magnetic calculations. The maximum shift in phonon energies is observed 

for high energy Mn-O stretching modes. This supports a spin-phonon coupling behavior, that 

is, the coupling of the magnetic structure with phonons.  The change in the energies of the 
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modes around 30 meV is mainly due to magnetic interactions, while the high energy 

stretching modes are most influenced by the estimated Mn-O bond lengths. 

 

TABLE 4.5 Comparison between the calculated and room temperature 

experimental[51](293 K) bond lengths (in Å units) in YMnO3 (Hexagonal phase, space group 

P63cm). “FM”, “FNM” and “PNM” refer to fully relaxed magnetic, fully relaxed non-

magnetic and partially relaxed non magnetic calculations, respectively. 

 

 

 

 

Bond Expt.  GGA (FM) LDA(FM) LDA(PNM) LDA(FNM) 

Mn-O1 1.855 1.911 1.881 1.940 1.934 

Mn-O2 1.891  1.901 1.880 1.806  1.939  

Mn-O3 1.973 2.099 2.051 2.051 1.968  

Mn-O4 2.106 2.091  2.045  2.049  1.961  

Y1-O1 2.268 2.304 2.255  2.232  2.244 

Y1-O2 2.308 2.351  2.302  2.322 2.256 

Y1-O3 2.299 2.334  2.290  2.418 2.389  

Y2-O1 2.275  2.302 2.255  2.231  2.220  

Y2-O2 2.300  2.340 2.292  2.331  2.261 

Y2-O4 2.458  2.451  2.403 2.323 2.556 

Mn-Mn 3.632 3.599  3.519 3.507 3.372 

Mn-Y1 3.243  3.346  3.272  3.277 3.320  

Mn-Y2 3.701  3.399  3.681 3.677 3.755 

Y1-Y1 5.701 5.799  5.708 5.708 6.006  

Y1-Y2 3.575  3.634  3.555  3.556 3.410  

Y2-Y2 3.546 3.600  3.519  3.519  3.371 
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FIG 4.14 The calculated shift of the zone centre optic phonon modes in “PNM” and “FNM” 

configurations with respect to the “FM” model calculation.  

 

4.3.1.3 Phonon Spectra in the Room Temperature 

(P63cm) and High-Temperature (P63/mmc) 

Hexagonal Phases  

The calculated phonon spectra of YMnO3 were subject of previous works [60, 70, 79]. 

The estimated phonon dispersions have been reported [79] in the entire Brillouin zone, at 

room temperature in the P63cm hexagonal phase. However, only calculations of phonon 

modes at the zone centre and K-point were reported [60] in the high-temperature hexagonal 

phase (P63/mmc). The group theoretical analysis along with the first-principles phonons 

calculations at zone centre is used to understand [60] the mechanism of multiferroicity in 

YMnO3. Alina et al. [80] calculated the zone-centre phonon modes using LDA, and they 

reassigned the Raman modes. We went beyond obtaining only the zone-centre modes by 

extracting also phonon dispersion relations (Fig. 4.15), in the entire Brillouin zone and along 
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various high-symmetry directions in both the hexagonal phases (P63cm and P63/mmc). We 

discuss also the relationship between the phonon modes at the ferroelectric (P63cm) to the 

paraelectric (P63/mmc) phase transition. 

 

 

 

 

 

 

 

 

 

FIG 4.15 The calculated phonon dispersion relations along the high-symmetry directions of 

the ambient-temperature (space group P63cm) and the high-temperature (space group 

P63/mmc) hexagonal phases of YMnO3. The zoom of the calculated phonon dispersion 

relations in the ambient temperature (P63cm) and high temperature phase (P63/mmc) with a 

super cell of √3×√3×1 are also shown. The high-symmetry points are: K (1/3 1/3 0), A (0 0 

1/2) and Γ (0 0 0). The size of the hexagonal unit cell is nearly same in the P63cm and super 

cell of P63/mmc.  
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TABLE 4.6  The calculated structures in the ambient temperature and super cell (√3×√3×1) 

of high temperature phase.  The super cell (√3×√3×1) of high temperature phase is 

equivalent to the room temperature hexagonal phase (P63cm).  The distortion vector is 

obtained from the difference in atomic co-ordinates of the ambient temperature (P63cm) and 

super cell of high temperature phases. The amplitude of the eigen vector of O1 is scaled to 

match with the distortion vector. 

 

 

 

 

 Ambient 

temperature 

phase (P63cm) 

Supercell of high 

temperature 

phase (P63/mmc) 

Distortion 

vector in 

fractional 

coordinates 

Eigen vector of the unstable K3 

mode in the high temperature 

phase (P63/mmc)   

 a 

(Å) 

6.095  6.165     

 b 

(Å) 

6.095  6.165   

 c 

(Å) 

11.416 11.223    

      

O1 x 0.306 0.333 -0.027 -0.027 

 y 0.000  0.000  0.000 0.000 

 z 0.164  0.1665  -0.003 0.000 

      

O2 x 0.640 0.667 -0.027 -0.027 

 y 0.000  0.000  0.000 0.000 

 z 0.336  0.334 0.002 0.000 

      

O3 x 0.000  0.000  0.000 0.000 

 y 0.000  0.000  0.000 0.000 

 z 0.476  0.500  -0.024 -0.039 

      

O4 x 0.333 0.333  0.000 0.000 

 y 0.667 0.667 0.000 0.000 

 z 0.021 0.000 0.021 0.020 

      

Mn x 0.333  0.333  0.000 0.000 

 y 0.000  0.000  0.000 0.000 

 z 0.000  0.000  0.000 0.000 

      

Y1 x 0.000  0.000  0.000 0.000 

 y 0.000  0.000  0.000 0.000 

 z 0.275  0.250  0.025 0.019 

      

Y2 x 0.667 0.667 0.000 0.000 

 y 0.333  0.333  0.000 0.000 

 z 0.731  0.750 -0.019 -0.018 
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The calculated phonon dispersion relations in both the room-temperature (space group 

P63cm) and the high-temperature (space group P63/mmc) phases are shown in Fig. 4.15.  The 

phonon modes are found to be stable in the entire Brillouin zone, in the low-temperature 

phase. However, phonon instability is clearly noticed in the high-temperature phase, at the 

symmetry point K (1/3 1/3 0). The unstable mode is highly anharmonic in nature, and it 

become stable at higher temperatures due to anharmonicity. It has been proposed [52, 67] that 

the condensation of the unstable phonon mode at K point drives the transition to the low-

temperature structure of YMnO3. This mode is not polar in nature. However, ferroelectricity  

 

 

 

 

 

 

 

 

FIG 4.16 The displacement patterns of the lowest phone mode at K and Γ points in the high-

temperature phase (space group P63/mmc) of YMnO3. The lengths of arrows are related to 

the displacements of the atoms.  Key: Y, blue spheres; Mn, green spheres; and O, red 

spheres. 

 

in the improper ferroelectric YMnO3 arises from the coupling of the unstable K-point mode 

with a stable mode at the Γ-point. The latter is polar in nature and, therefore, contributing to 

the ferroelectricity in the room -temperature phase. The eigenvectors of these modes have 

been extracted from our ab-initio calculations. The displacement pattern of unstable mode at 

K- Point Γ- Point 
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the K point is shown in Fig 4.16.  At the K-point, the mode consists of an unequal 

displacement of two Y atoms in opposite direction, along with an out-of-phase rotation of 

MnO5 bipyramid units, around the c-axis. The unequal amplitude of motions of the O atoms 

induces a distortion of the MnO5 units. The displacement pattern of the stable mode at the Γ-

point consists of a motion of O atoms belonging to the plane formed by the Mn atoms of the 

MnO5 units. We have also calculated the phonon dispersion relation of high temperature 

phase (P63/mmc)  of YMnO3 (Fig. 4.15) with a super cell of √3×√3×1 which is equivalent to 

room temperature hexagonal phase (P63cm).  The structure as used in the phonon calculations 

is given in TABLE 4.6. The comparison of the two structures show that in the room 

temperature phase (P63cm) atomic positions are slightly distorted in comparison to the 

structure obtained from the √3×√3×1 super cell of the high temperature phase (P63/mmc). The 

group theoretical classification at zone centre of low temperature phase (P63cm) is 

10A1+5A2+5B1+10B2+30E1+30E2 while the classification at K point in the high temperature 

phase (P63/mmc) is given by 2K1+2K2+3K3+3K4+12K5+8K6. The freezing of unstable K 

point mode in the high temperature phase will lead to transition to the room temperature 

phase.  Group theoretical analysis shows that the unstable modes at the K-point (1/3 1/3 0) 

and K*-point  (-1/3 -1/3 0) [of imaginary energy = 18.7 i meV] belong to the K3  

representation in P63/mmc and condenses into stable modes of  A1 [of energy =21.0 meV] 

and B2 [of energy =16.9 meV] representations at the Gamma point in the room temperature 

phase (P63cm). A symmetry-based correlation between the zone centre modes in the low-

temperature phase and the K-point modes in the high-temperature phase is given in Fig 4.17. 

The difference in the atomic co-ordinates of room temperature phase (P63cm) and the 

√3×√3×1 super cell of the high temperature phase (P63/mmc) is a measure of the distortion 

required to stabilize the ambient temperature phase. The eigen vectors of the unstable K3 

mode of high temperature phase (P63/mmc) for the super cell is  given in Table 4.6. The 
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eigen vector of the K3 mode is in good agreement  with the distortion vector, which 

corroborates the previous results [51, 60] that freezing of the unstable K3  mode is 

responsible for phase transition to the ambient temperature phase.  

 

 

 

 

 

 

 

 

 

 

FIG 4.17 A symmetry-based correlation between the zone centre modes in the low-

temperature phase (P63cm) and the K-point (1/3,1/3,0) and  K*-point (-1/3,-1/3,0) modes in 

the high-temperature phase (P63/mmc). 

 

4.4 Conclusions 

We have reported measurements of neutron inelastic scattering spectra of  the 

multiferroic material GaFeO3 and YMnO3 over a wide temperature range covering all the 

relevant characteristic transition temperatures.  In GaFeO3, across the magnetic transition 

temperature, at 225 K, there is an increase of the intensity of the low energy phonons around 

20 meV, associated with the dynamics of the Fe atoms. The low energy vibrations exhibit a 

significant Q dependence up to about 848 K, indicating a persistence of the paramagnetic 
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spin fluctuations up to very high temperatures. GaFeO3 is not subject to any structural high-

temperature phase transition. However, the increase of the distortion amplitudes of the 

various polyhedral units might be at the origin of the gradual broadening of the stretching 

modes around 60 meV. The ab-initio phonon calculations highlighted unambiguously a spin-

phonon coupling in GaFeO3. The enthalpy calculations in various phases showed that the 

quenching of the Fe magnetic moment leads to the observed high pressure structural phase 

transition at 47 GPa.  

In YMnO3, the room temperature phase is found to be subject to a strong spin-phonon 

coupling. The calculated phonon dispersion relations in the entire Brillouin zone indicate 

phonon instability in the high-temperature (P63/mmc) hexagonal phases of YMnO3, at the 

symmetry point K (1/3 1/3 0). Unstable phonon modes may lead to a stabilization of the low-

temperature (P63cm) phase.  
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Chapter 5 

Phonons and Stability of Infinite-Layer 

Iron Oxides SrFeO2 and CaFeO2 

 

5.1 Introduction 

Low-dimensional magnetic systems have received much attention due to their exotic 

magnetic and electronic properties. Iron forms a large number of oxides with FeO4 tetrahedral, 

FeO5 pyramidal or FeO6 octahedral configurations. The gillespite mineral BaFeSi4O10 was the 

first example with iron in square planar coordination [1], which is stabilized by four-member 

rings of SiO4. The compounds AFeOy (A = Sr, Ca; y ~ 2.5) adapt a brownmillerite structure 

consisting of tetrahedral and octahedral layers [2]. Later the synthesis of a metastable phase 

SrFeO2 using a topochemical reaction of SrFeOy was   reported [3]. SrFeO2 is distinct (from 

BaFeSi4O10) in that square-planar FeO4 units are connected with each other to form extended 

FeO2 layers that are separated by strontium atoms (Fig. 5.1). The resultant structure is 

isostructural with the infinite-layer structure SrCuO2 (P4/mmm).The Fe
2+

 ion is in a high spin 

state (S = 2) with the electronic configurations of (dz2)
2
(dxz,dyz)

2
(dxy)

1
(dx2−y2)

1
 [4]. SrFeO2 is an 

AFM insulator with a high ordering temperature TN of 473 K, while at high pressure it 

undergoes a spin transition to S = 1 accompanied by a transition to a ferromagnetic (FM) 

half-metallic state[5]. Magnetic properties of SrFeO2 have been examined by density 

functional theory (DFT) band structure and total energy calculations[4, 6]. Recently high 

pressure study [7] on SrFeO2 based on first principles DFT simulation is performed to explain 
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the antiferromagnetic to ferromagnetic phase transition at high pressure.  In the last decade 

plenty of studies [7-20] have been reported on planer AFeO2 (A = Ca, Sr) and their 

derivatives.  

 

 

 

 

 

 

 

 

FIG 5.1 Structures of planer CaFeO2 (P4/mmm) and distorted CaFeO2(P-421m). The ab 

plane in these structure are depicted by violate sheet.  Supercell’s compatible to the magnetic 

unit cell are shown, i.e. a √2× √2 × 2 supercell of the P4/mmm structure and 1×1×2 

supercell of P-421m structure.The oxygen atoms in the distorted structure are shifted along z 

axis by ±δ. Key: Ca, blue spheres; Fe, golden spheres; O, red spheres. 

 

When Sr is replaced by Ca with a smaller ionic radius, the infinite-layer structure becomes 

corrugated [21]. In CaFeO2 (P-421m), oxygen atoms move along the z direction to distort 

FeO4 square planar unit toward a tetrahedral shape. This distortion affects the exchange 

interaction and leads to a reduction in TN (420 K). The origin of this distortion in CaFeO2 is 

discussed in terms of phonons. Ab-initio density functional perturbation theory (DFPT) 

calculation of the zone centre phonon modes has also been reported [6, 21]. For CaFeO2 

assuming the P4/mmm space group, two unstable phonon modes are indicated, one of which 

involves out-of-plane translation motion of the oxygen atoms along z-axis, while the other 
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zone boundary mode shows in-plane rotation of the FeO4 squares. Recently, a high-resolution 

neutron diffraction study at various temperatures [22] has demonstrated that even in SrFeO2 

the ideal infinite-layer structure is destabilized upon approaching to the Neel temperature 

(473 K). The analysis shows a local transverse mode creates buckling in the FeO4 planes, 

resulting in lowering the tetragonal symmetry. Such transverse distortion created by local 

structural instability significantly weakens the exchange interactions. 

In order to obtain further insight into structural instability of SrFeO2 and CaFeO2 as 

well as its effect on exchange parameters, we have performed the ab-initio phonon 

calculations for planar SrFeO2 (P4/mmm) and both planar and distorted CaFeO2 (P4/mmm 

and P-421m), termed here after by p-CaFeO2 and d-CaFeO2, respectively, in various magnetic 

configurations in the entire Brillouin zone. The longitudinal and transverse optic (LO-TO) 

splitting has been taken into account in the calculations of phonon frequencies. These 

calculations are useful to interpret the measured spectrum and able to explain the origin of 

distortion in CaFeO2 as well as high-pressure stability of CaFeO2. Our calculations show that 

SrFeO2 (P4/mmm) and d-CaFeO2 (P-421m) are dynamically stable with the G-type AFM 

structure, while p-CaFeO2 (P4/mmm) is dynamically unstable at ambient pressure. The 

calculated phonon density of states of SrFeO2 has been compared with the powder inelastic 

neutron scattering result. 

The inelastic neutron scattering experiments were performed by Hiroshi Kageyama of 

Kyoto University, Japan using the MARI time of flight spectrometers at ISIS, UK. The 

measurements were done in the neutron-energy-loss mode using incident neutron energy of 

120 meV at several temperatures from 5 to 353 K.  

The Vienna ab initio simulation package (VASP) [23, 24] was used for calculations. 

The plane wave pseudo-potential with plane wave kinetic energy cutoff of 400 eV was used 

for both compounds. The integrations over the Brillouin zone were sampled on a 4×4×4 grid 
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of k-points generated by Monkhorst-pack method [25]. The generalized gradient 

approximation (GGA) exchange correlation given by Perdew, Becke and Ernzerhof [26, 27] 

with projected-augmented wave method has been used. Since the compounds contain 

localized Fe 3d electrons at ambient pressure, we have used the simplified approach to the 

LSDA+U, introduced by Dudarev et al. [28]. The onsite interaction term U was taken to be 

4.0 eV for d electrons of iron. We have included the G-type AFM magnetic ordering in both 

compounds.  

Phonon spectra for SrFeO2 and CaFeO2 were extracted using the PHONON software 

[29]. All the phonon calculations are carried out in the fully relaxed configuration.  The 

relaxed unit cell parameters are given in TABLE 5.1. We have also carried out an additional 

calculation of phonon modes in SrFeO2 and p-CaFeO2 (P4/mmm) as described in Section IV. 

The exchange parameter has been calculated using a Heisenberg spin Hamiltonian with forth 

neighbour interaction. To determine the magnetic ground state and discuss the magnetic 

properties of SrFeO2, we considered four more ordered spin structures besides the FM state, 

namely, the AF1 state with q= (½ ½ ½), the AF2 state with q = (0 0 ½), the AF3 state with q 

= (½ ½ 0) and the AF4 state with q = (½ 0 ½). 

 

5.2 Results and Discussion 

5.2.1 Experimental and Calculated Phonon Spectra 

of Planar SrFeO2   

The measured neutron inelastic spectra of SrFeO2 over a temperature range from 5K 

to 353 K shown in Fig 5.2. SrFeO2 exhibits the G-type AFM order below 473 K. The data 

were averaged over a high-Q regime of 9-10Å
–1 

to avoid paramagnetic contributions to the 
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phonon data. In Fig 5.3, we have shown the computed neutron weighted phonon spectra 

together with experimental spectra at T=5K. Here, the measured spectra were corrected from 

multiphonon contributions as calculated using Sjolander formalism[30]. In order to probe the 

individual atomic contribution, we also calculated the neutron weighted partial density of 

states. The calculations were done under GGA approximation. The GGA is expected to 

overestimate the lattice parameters and in turn underestimate the phonon frequencies. When 

the calculated energy spectrum is scaled by 6%, we obtained an excellent agreement between 

theory and experiment (Fig. 5.3), which partially justifies the use of our theoretical tool for 

other thermodynamical properties. 

 

 

 

 

 

 

 

 

 

 

FIG 5.2 Experimental phonon spectra of SrFeO2 (P4/mmm) at various temperatures in the 

antiferromagnetic phase. 

 

We have also calculated the partial phonon density of states associated with various atoms (in 

Figure 5.4). This helps to assign the peaks in the experimental spectra. We note that the first 
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peak around 15 meV (Fig. 5.4) has contributions from Sr atoms. The peaks around 25 meV, 

30 meV and 40meV have large contributions from oxygen and iron atoms. The phonon 

spectra above 40 meV have mainly contributions from oxygen atoms. At higher temperature 

(Fig. 5.2), one can observe that the peaks about 15 meV and 25 meV retain their spectral 

features, while the peak about 30 meV shifts to higher energy. Furthermore, the peaks are 

significantly broadened above 300 K, which might be related[22] to the distortion in the 

planer structure of SrFeO2, which is discussed later in this chapter . 

 

 

 

 

 

 

 

 

 

FIG 5.3  Experimental and calculated phonon spectra of SrFeO2 (P4/mmm).The partial 

atomic contributions to total neutron weighted phonon density of states are shown with 

dotted lines. The calculated spectra have been convoluted with a Gaussian of FWHM of 

7meV of the energy transfer in order to describe the effect of energy resolution in the 

experiment. In order to compare with the experimental data the calculated spectrum is scaled 

by 6%. 
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5.2.2 Phonon Spectra in SrFeO2 and CaFeO2 

We have calculated the phonon spectra of SrFeO2 and d-CaFeO2 and p-CaFeO2 in a 

relaxed geometry. The calculated lattice constants and experimental values are given in Table 

5.1. In Fig. 5.4, we show the calculated partial and total density of states for CaFeO2 and 

SrFeO2. We find that the p-CaFeO2 is dynamically unstable as observed in the previous 

study[21].  It may be noted that Ref.[21] provides the calculations of phonon modes at few 

selected points in the Brillouin zone. However our calculations of phonon spectra in entire 

Brillouin zone successfully give a complete picture of dynamics.  They allow one to 

understand the differences in the calculated phonon spectra of d-CaFeO2 and p-CaFeO2 and 

compare with those of SrFeO2. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.4 Calculated partial densities of states of various atoms in SrFeO2(P4/mmm),CaFeO2 

(P4/mmm) and CaFeO2(P-421m). 
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The calculated phonon spectra of d-CaFeO2 and SrFeO2 are significantly different 

(left panel Fig. 5.4). In SrFeO2, the contribution from oxygen is extended in the entire 

spectral range up to 80 meV, while in d-CaFeO2 it ranges up to 70 meV. Given the larger unit 

cell of SrFeO2, one would naively expect that the phonon spectra in d-CaFeO2 are broader 

than those inSrFeO2, which is in contrast to the calculated result. This difference is 

understood in terms of the difference in bonding nature in Fe-O: the Fe-O stretching bond is 

stronger in planer geometry than that of distorted one. The A-site contribution in SrFeO2 is 

limited to 35 meV, while in CaFeO2 this extends up to 45 meV, which seems to follow the 

mass difference of Ca (40.08 amu) and Sr(87.62 amu). No major difference is observed in the 

Fe spectra.  A further comparison of calculated phonon spectra in p-CaFeO2 and SrFeO2, as 

shown in the right panel of Fig. 5.4, reveals that it simply follows the volume consideration. 

In the p-CaFeO2, the oxygen partial density of states extends from 10i to 90 meV, while the 

unstable modes in p-CaFeO2 are found to be stable in the d-CaFeO2. It seems that oxygen 

dynamics plays an important role in stabilizing the distorted structure.   

 

TABLE 5.1 Comparison of the calculated structural parameters of SrFeO2 and CaFeO2 with 

the experimental data. For isotropic temperature factors experimental data [14] and 

calculations are given at 293 K. 

 SrFeO2, 

P4/mmm 

Expt. [3]  

SrFeO2 

P4/mmm 

Calc. 

CaFeO2, 

P-421m 

Expt [6] 

CaFeO2 

P-421m 

Calc. 

a(Å) 3.991 4.042 5.507 5.550 

c(Å) 3.474 3.497 3.355 3.443 

Biso(Sr/Ca) Å
2
 0.470 0.440 0.485 0.580 

  Biso(Fe) Å
2
         0.470 0.380 0.590 0.490 

  Biso(O) Å
2 

Volume/ atom 

0.790 

13.83 

0.610 

14.28 

0.909 

12.72 

0.660 

13.26 
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TABLE 5.3 Calculated Born effective charges (Z) as well as dielectric constants (ε) in 

various phases of SrFeO2 and CaFeO2.  

 

 

 

 

 

 

 

 

 

 

 

 

The partial densities of states have been used for the calculation of the mean square 

amplitude for various atoms at different temperatures. The comparison between the 

calculated values and the experimental data at 300 K is given in Table 5.1. The calculated 

temperature factors for Sr/Ca, Fe and O are similar in both compounds. The difference in 

nature of the in-plane and out-of-plane bonding may result in large anisotropic values of u
2
 

along the x and z axis. The observation is in agreement with the recent measurements[22] of 

u
2
 in SrFeO2.The larger values of u

2
 of various atoms in d-CaFeO2 in comparison 

withSrFeO2may be due to smaller unit cell of d-CaFeO2in addition to the difference in 

bonding nature.  

In order to compare the nature of bonding in d-CaFeO2, p-CaFeO2 and SrFeO2, we 

have computed the Born dynamical charge tensor (Table 5.3). Thanks to the high local site 

 Zxx Zxy Zyx Zyy Zzz 

SrFeO2(P4/mmm)  εxx = 5.02, εzz = 5.82 

Sr 2.29 0 0 2.29 2.97 

Fe 2.97 0 0 2.97 0.35 

O -3.16 0 0 -2.10 -1.66 

p-CaFeO2(P4/mmm)  εxx = 5.80, εzz = 6.35 

Ca 2.35 0 0 2.35 2.78 

Fe 2.82 0 0 2.82 0.63 

O -3.03 0 0 -2.14 -1.71 

d-CaFeO2 (P-421m) εxx = 4.97, εzz = 4.94 

Ca 2.26 -0.07 -0.07 2.26 2.65 

Fe 2.79 -0.13 0.13 2.79 0.74 

O -2.53 0.41 0.41 -2.53 -1.69 
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symmetry of Ca/Sr, Fe and O atoms, the Born effective charge tensors in planar structure 

(P4/mmm) have only few non-zero diagonal elements, namely in-plane (Zxx = Zyy) and out-of-

plane (Zzz) components. The calculated components of Born effective charges for p-CaFeO2 

and SrFeO2 are very close. However, we observed a large difference in the Fe charges along z 

direction (Zxx component) between p-CaFeO2 and SrFeO2. This might be due to difference in 

inter-planar separation of FeO4 layers in p-CaFeO2 and SrFeO2 along the c direction, 

attributed to the difference in ionic radii between Ca and Sr. Furthermore, a comparison of 

the Born effective charge tensors in p-and d-CaFeO2 reveals that Born effective charges for 

Ca and Fe are nearly the same. The out-of-plane (Zzz) component for O atoms is nearly same, 

while there is a large difference in the in-plane (Zxx, Zyy) components. This indicates that the 

nature of Fe-O bonding in the x-y plane in planer and distorted structure is quite different.  

The p-CaFeO2 and SrFeO2 (P4/mmm) has 4 atoms in unit cell, which results in 12 

vibrational modes for each wave vector. Group theoretical symmetry analysis[29] was carried 

out to classify the phonon modes belonging to various representations. The group theoretical 

decomposition of the phonon modes at the zone centre (Γ point) and zone boundary (M and 

A points) are given by: 

                    Γ=3A2u + Bu + 4Eu 

     M= M1
+
+ M2

+
+M3

+
 +M4

+
+ 2M5

+
+M2

–
+ M3

–
+ 4M5

– 

        
A= A1

+
+ A2

+
+A3

+
 +2A4

+
+ 4A5

+
+ A3

–
+ 2A5

–  

At the Γ point, all the modes are infrared active. For d-CaFeO2 (P-421m), the 

classification of modes at the Γ point is given by:              

                 Γ=3A1 + A2 + 2B1 + 4B2 + 7E 
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TABLE 5.2 (a) The calculated zone centre optic phonon modes for SrFeO2 (P4/mmm) and d-

CaFeO2 (P-421m) in meV units. (1 meV=8.0585 cm
–1

). 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, all the modes are Raman active, with the B2 and E modes being also 

infra-red active. The calculated zone centre modes are given in Table 5.2(a). The lowest 

energy Bu mode (9.43 meV) in SrFeO2  is smaller than the lowest A1 mode (15.16 meV) in 

CaFeO2, which should arises from the larger unit cell volume in SrFeO2 in comparison with 

CaFeO2. The zone boundary modes for p-CaFeO2 (P4/mmm) have also been calculated 

(Table 5.2(b)). 

 

 

 

 

 

 SrFeO2 

(P4/mmm) 

CaFeO2 

(P4/mmm) 

CaFeO2 

(P-421m) 

 

Au 

 

23.7 

44.7 

 

 

24.9 

44.4 

 

A1 

 

15.2 

26.9  

35.7  

Bu 9.4 

 

13.7i A2 65.4 

 

 

Eu 

21.2 

35.0 

62.6 

 

23.1  

33.9 

71.4  

 

B1 

20.2  

44.6  

    

B2 

25.2  

48.9 

60.5  

    

 

E 

16.0  

27.8  

29.7  

38.9 

41.6 
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TABLE 5.2 (b) The calculated zone boundary modes for CaFeO2 (P4/mmm) in meV units. (1 

meV=8.0585 cm
–1

). M5
+
, M5

-
, A5

+
 and A4

- 
are doubly degenerate modes. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 Dynamical Instabilities in Planer CaFeO2 and 

Stabilization of Distorted CaFeO2 at Ambient 

Pressure 

The calculated phonon dispersion relations along various high symmetry directions in 

SrFeO2, p- and d-CaFeO2 are shown in Fig. 5.5. All the modes in the entire Brillouin zone 

are found to be stable in SrFeO2 and d-CaFeO2, while in p-CaFeO2 the low energy Bu mode at 

the zone centre and A3
+
 mode

 
at A(½½½) point are unstable.  We have performed the 

amplitude mode analysis[31], which indicates that the distortion in p-CaFeO2 is induced by 

CaFeO2 (P4/mmm) 

M3
+
 8.2 A3

+
 11.5i 

M5
+
 12.6 A5

+
 17.9 

M2
–
 13.7 A3

-
 19.9 

M5
–
 19.1 A4

+
 29.5 

M3
–
 21.9 A5

+
 30.4 

M5
–
 43.0 A5

-
 36.8 

M2
+
 48.6 A2

+
 46.4 

M4
+
 56.7 A4

+
 50.2 

M1
+
 73.1 A1

+
 68.6 
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Bu, M3
+
 and M2

– 
phonon modes. Our calculation of phonon dispersion relation in high 

symmetry phase of p-CaFeO2 gives stable phonons at M(½½ 0) point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.5 Calculated dispersion relation of SrFeO2 and CaFeO2in P4/mmm space group.. The 

solid and dashed lines correspond to calculations at ambient pressure and 5 kbar, 

respectively. The Bradley-Cracknell notation is used for the high symmetry points along 

which the dispersion relations are obtained: Γ=(0, 0, 0), Z = (1/2, 0, 0) , M = (1/2, 1/2 , 0). A 

= (1/2, 1/2, 1/2), R = (0, 1/2, 1/2), X = (1/2, 0, 0). 

 

The M3
+
 mode involves the in-phase rotation of FeO4 units about z axis, while the M2

– 
 

mode involves the out-of-phase displacement of neighbouring Ca atoms along z. The unstable 

Bu mode at zone centre involves the displacement of oxygen atom along ±z direction and 

another unstable A3
+ 

mode at A(½ ½ ½) involves the out-of-phase rotation of FeO4 about z 



Chapter 5: Phonons and Stability of Infinite.  .  .  .  .  . 

172 

 

direction in the alternative layer. In summary, M3
+
, Bu and A3

+
 modes could be responsible 

for the shifting of oxygen positions, while M2
– 

mode is responsible for the shifting of Ca 

position. The strong coupling between the low energy phonon modes in p-CaFeO2 has been 

also discussed in Ref.[21]. These characteristic phonon modes are represented in Fig. 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.6 Polarization vectors of selected zone center modes of CaFeO2in P4/mmmFor each 

mode, the assignment and frequency are indicated in meV units. The ‘i’ after the phonon 

energy indicates that mode is unstable. The length of the arrows is related to the 

displacement of the atoms. The absence of an arrow on an atom indicates that the atom is at 

rest. The number after the mode assignment gives the phonon frequency. Key: Ca, blue 

spheres; Fe, golden spheres; O, red spheres   (1 meV=8.0585 cm
-1

). 
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In order to obtain further insights into the structural instability in p-CaFeO2, we have 

calculated the energy profiles (Fig. 5.7) of p-CaFeO2 by exciting pairs of phonon modes 

simultaneously with different amplitude. The unstable modes  A3
+
 and Bu  will not give a 

minimum  in the total energy at zero phonon distortion. One may expect some minima at 

finite distortion created by these unstable phonon modes. The calculated energy profile of Bu  

phonon mode with different distortion amplitude of A3
+
 phonon mode is shown in Fig. 5.7(a). 

As we increase the amplitude of any one of the mode, the energy profile of the other phonon 

mode transforms from a double-well potential to a single-well potential. However, the A3
+ 

mode is found to stabilize with only a small amplitude of the Bu mode.  The Bu phonon mode 

is also found to get stabilized at finite distortion resulting by A3
+ 

mode. The energy profiles as 

obtained from simultaneous excitation of A3
+ 

with M3
+
 and A3

+ 
with M2

–
 are shown in Fig. 

5.7(b) and 5.7(c), respectively. One can see that the distortion in M3
+
 or M2

– 
modes also 

stablizes the unstable A3
+
 mode.  However, the required magnitude of distortion of M2

– 
mode 

is much larger than that of M3
+
. In Fig. 5.7(d) and 5.7(e), we show the energy profiles as 

obtained from simultaneous excitation of Bu mode with M3
+
 and Bu mode with M2

– 
mode 

respectively. The distortion of M3
+
 leads to a single minima for the Bu mode but at very high 

energy. On the other hand, the M2
–
 mode does not stabilize the zone centre Bu instability as it 

remains a double-well even at large distortion of M2
–
 mode.  In conclusion, the Bu and the 

modes at M point show anharmonic coupling with the unstable mode at A point.  The 

coupling between A3
+ 

and Bu mode leads to stabilization of A3
+ 

mode (Fig. 5.7(a)) prior to Bu. 

The stabilization of Bu at finite amplitude of A3
+ 

and  M3
+ 

is not of any consequence (Fig. 

5.7(a, d))  as it does not lead to a deeper minima in total energy.  It is clear that any of the 

mode coupling involving only two modes as discussed above does not explain the observed 

distortion in CaFeO2.  
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TABLE 5.4 The calculated structures of d-CaFeO2 (P-421m) and (√2×√2×1) super cell of p-

CaFeO2 (P4/mmm). The super cell (√2×√2×1) of p-CaFeO2 is equivalent to the d-CaFeO2.  

The distortion vector is obtained from the difference in atomic co-ordinates between d-

CaFeO2 and p-CaFeO2 structures phases. The eigen vector of the unstable Bu and stable M3
+
 

and M2
-
 modes in the p-CaFeO2 phase for the super cell is also given.  A linear combination 

of Bu , M3
+
 and M2

-
  modes with appropriate weight factor is used to generate the observed 

distortion vector  as given in the last column of the table. 

 

 

 P-421m 

CaFeO2 

P4/mmm 

CaFeO2 

Distortion 

vector  

Bu M3
+
 M2

-
 0.25Bu+0.085M3

+

+0.141M2
-
  

 a (Å) 5.550  5.622        

 b (Å) 5.550  5.622      

 c (Å) 3.443 3.234       

         

O1 x 0.720 0.750 0.030 0.000 0.354 0.000 0.030 

 y 0.780 0.750 -0.030 0.000 -0.354 0.000 -0.030 

 z -0.120 0.000 0.120 0. 500 0.000 0.000 0.120 

         

O2 x 0.280 0.250 -0.030 0.000 -0.354 0.000 -0.030 

 y 0.220 0.250 0.030 0.000 0.354 0.000 0.030 

 z -0.120 0.000 0.120 0.500 0.000 0.000 0.120 

         

O3 x 0.220 0.250 0.030 0.000 0.354 0.000 0.030 

 y 0.720 0.750 0.030 0.000 0.354 0.000 0.030 

 z 0.120 0.000 -0.120 -0.500 0.000 0.000 -0.120 

         

O4 x 0.780 0.750 -0.030 0.000 -0.354 0.000 -0.030 

 y 0.280 0.250 -0.030 0.000 -0.354 0.000 -0.030 

 z 0.120 0.000 -0.120 -0.500 0.000 0.000 -0.120 

         

Ca1 x 0.500 0.500 0.000 0.000 0.000 0.000 0.000 

 y 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 z 0.400 0.500 0.100 0.000 0.000 0.707 0.100 

         

Ca2 x 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 y 0.500 0.500 0.000 0.000 0.000 0.000 0.000 

 z 0.600 0.500 -0.100 0.000 0.000 -0.707 -0.100 

         

Fe1 x 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 y 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

         

Fe2 x 0.500 0.500 0.000 0.000 0.000 0.000 0.000 

 y 0.500 0.500 0.000 0.000 0.000 0.000 0.000 

 z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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As mentioned above the amplitude mode analysis[31] indicates that the distortion in 

p-CaFeO2 is induced by Bu, M3
+
 and M2

– 
phonon modes. The calculated structures of d-

CaFeO2 (P-421m) and (√2×√2×1) super cell of p-CaFeO2 (P4/mmm) is given in TABLE 5.4. 

The difference in the atomic coordinates of room temperature phase (P63cm) and the 

(√2×√2×1 super cell of the p-CaFeO2 (P4/mmm) is a measure of the distortion required to 

stabilize the d-CaFeO2 (P-421m). The eigen vectors of the unstable Bu and stable M point 

modes of p-CaFeO2 (P4/mmm) for the super cell are given in Table 5.4. The eigen vector as 

obtained with appropriate weight of Bu (52%) and M3
+
 (18%) and M2

-
 (30%) point modes is 

used to generate the observed distortion vector, which matches very well with the distortion 

vector. This clearly shows that the coupling between B2u, M3
+
, and M2

– 
point modes is able to 

explain the observed distortion in planer structure and stabilizes d-CaFeO2.   Usually the cell 

doubling in the plane may be expected due to a soft mode at the M(½½ 0) point. However, in 

the present case all the modes at the M-point are stable and instabilities are found at Γ and A 

point. We find that the stable M-point modes (M3
+ 

and M2
–
) couple anharmonicity with the Γ 

point Bu phonon and result in the cell doubling in the a-b plane. It also turns out that the soft 

mode at the A-point does not have any role in inducing the distortion or the cell doubling.  

We have also determined the energy barrier between the p-CaFeO2 (P4/mmm) and the 

d-CaFeO2 (P-421m) structures. We started with the calculated structure (TABLE 5.4) of p-

CaFeO2 (P4/mmm). The distortion vector as given in TABLE 5.4 is further used to obtain 

(Fig 5.8) the profile of the energy barrier. The energy barrier between the two structures is 

calculated to be 0.3 eV. The calculations clearly show that a minimum in the profile is 

obtained at unit distortion in the p-CaFeO2, thus confirms the stability of d-CaFeO2. Our ab-

initio calculations for SrFeO2 reveal that with increase of volume a Bu mode becomes 

unstable. This unstable mode is similar to that found in p-CaFeO2 at ambient conditions.   
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FIG 5.7 The energy landscape of p-CaFeO2 obtained by exciting the pair of phonons with 

different amplitude. (a) A
3+

and Bu modes (b) M
3+

 and A
3+

 modes (c) M
2– 

andA
3+ 

modes (d) 

M
3+

and Bu modes and (e) M
2–

and Bu modes. The energies E are per magnetic unit cell. 

 

We suggest that the distortion in SrFeO2 as revealed from the phonon measurements 

at above 300 K is similar to that known in d-CaFeO2 at ambient conditions.  This is 

qualitatively in agreement with the nature of distortion reported [22] from an analysis of the 

total neutron scattering in SrFeO2 at around 450 K. 
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FIG 5.8 Energy barrier from the p-CaFeO2 (P4/mmm) to the d-CaFeO2 (P-421m). ζ 

corresponds to the distortion vector as obtained from the difference in atomic co-ordinates of 

the  d-CaFeO2 and p-CaFeO2 structures phases as given in TABLE 5.4. The energies E is per 

magnetic unit cell. 

  

5.2.4 Phase Transition from Distorted to Planer 

CaFeO2 at High Pressure 

At high pressure, the interlayer separation between FeO4 planes reduces, which may 

stabilize the planer structure of p-CaFeO2. The comparison of the distorted and planar 

structure (TABLE 5.4) at ambient pressure shows that difference in the two structures arises 

due to distortion in the atomic positions of the oxygen and calcium atoms in the p-CaFeO2. 

The calculated x and z-coordinate of the oxygen and z-coordinate of the calcium  atom in the 

d-CaFeO2 as a function of pressure is shown in Fig. 5.9(a), which indicates that with increase 

of pressure the distorted structure finally transform to the p-CaFeO2 (Fig.  5.9(a)) at around 

20 GPa.  In order to check the dynamical stability of the p-CaFeO2 structure, we calculated 
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the phonon dispersion relation in the entire Brillouin zone at 30 GPa. As shown in Fig. 5.9(b), 

all the phonon modes in p-CaFeO2 are indeed dynamically stable. This suggests a second 

order phase transition to the distorted to planar structure.  

 

 

 

 

 

 

 

FIG 5.9 (a) The calculated x and z-coordinate of the oxygen and z-coordinate of the calcium  

atom in the d-CaFeO2 as a function of pressure. As given in Table 5.4 the oxygen and calcium 

atoms occupy the Wyckoff sites 4e(x+1/2, -x, -z) and (1/2 0 –z) respectively. (b) The 

calculated phonon dispersion of planer CaFeO2 at ambient and 30GPa. 

 

5.2.5 Spin Phonon Coupling and Magnetic Exchange 

Interaction Parameters in Planar SrFeO2 and 

CaFeO2 

The electronic structure calculations as reported in the literature[18]  show a 

possibility of electromagnetic coupling in planar BaFeO2 as well as distorted CaFeO2. In 

addition, a significant change was shown in electronic contribution to the total density of 

states of different atoms with different magnetic configurations (A, C, G antiferromagnetic 

and ferromagnetic F). In A-type antiferromagnetic configuration Fe atoms interact 
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ferromagnetically within a-b plane and antiferromagnetically to adjacent a-b plane. In C-type 

configuration the intraplaner interaction between Fe atoms is antiferromagnetic in nature but 

interplaner interaction is ferromagnetic. However in G-type configuration all Fe atoms 

interact antiferromagnetically with nearest Fe atoms.  This motivated us to perform the 

phonon calculations of p-CaFeO2 and SrFeO2 in various antiferromagnetic magnetic 

configurations, namely, A, C, G as well as in the ferromagnetic (F) configurations. As shown 

in Fig. 5.10, we could not observe significant difference in the calculated phonon dispersion 

relations for p-CaFeO2 in various magnetic configurations. The zone-centre and zone-

boundary instabilities remained present in all the calculations while their magnitude of 

instabilities changed slightly. This shows that the p-CaFeO2 structure is not dynamically 

stable in the above said magnetic structures. 

 

TABLE 5.5  Calculated lattice parameters and bond length of CaFeO2 and SrFeO2 in 

various magnetic configurations (A, C, G type antiferromagnetic and Ferromagnetic F).  

 

 CaFeO2 SrFeO2 

 G C A F G C A F 

a(Å) 3.975 3.976 3.994 3.993 4.042 4.042 4.061 4.061 

b(Å) 3.975 3.976 3.994 3.993 4.042 4.042 4.061 4.061 

c(Å) 3.234 3.238 3.229 3.232 3.497 3.499 3.487 3.488 

Fe-O(Å) 1.987 1.988 1.997 1.996 2.021 2.021 2.031 2.031 

Interlayer 

Separation(Å) 

3.234 3.238 3.229 3.232 3.497 3.499 3.487 3.488 

 

As mentioned above, SrFeO2 is found dynamically stable with the G-type AFM 

ordering. We find that zone centre Bu mode for SrFeO2 becomes unstable in FM and A-type 

spin configurations, while in C-type and G-type it is dynamically stable. In FM and A type 

configurations, the parallely aligned Fe moments within the layer result in a slightly larger 
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Fe-O bond length (2.03 Å) in comparison to the Fe-O bond (2.02 Å) in C and G type 

configurations with anti-parallelly aligned Fe moments (see Table 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.10 Calculated dispersion relations of SrFeO2(P4/mmm) and 

CaFeO2(P4/mmm)including the A, C, G antiferromagnetic and FM configurations. 
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The phonon spectra are also sensitive to the interlayer distances in the quasi two-

dimensional systems. The calculations performed including the C type and G-Type structures 

on SrFeO2 seem to result in a slightly larger interlayer separation (TABLE 5.5), in 

comparison to the A- and F-type configurations. Figure 5.10 shows that a small change in 

interlayer distance caused by different magnetic interaction gives significant influences on 

phonon spectra. These calculations suggest that nature of magnetic configurations have 

significant impact on the structural stability as well as anharmonicity of phonons. As 

mentioned above, the phonon spectra in SrFeO2 change significantly with the change in 

magnetic configurations, implying a strong spin phonon coupling. However, phonons in p-

CaFeO2 show a weak dependence with change in magnetic configurations, indicating a weak 

spin-phonon coupling of phonons. 

 

  

 

 

 

 

FIG 5.11 The various J exchange interaction parameters in SrFeO2 (P4/mmm) and p-

CaFeO2(P4/mmm).   

 

Analysis of the high-resolution neutron diffraction measurements on SrFeO2 

shows[22] that the exchange parameters are reduced significantly above 300 K along with the 

local distortion in the planer geometry. We calculated the exchange interaction parameters J1, 

J2, J3 and J4 for SrFeO2 and CaFeO2 (see Fig. 5.11). The calculated exchange parameters at 

different amplitudes of phonon distortion of Bu mode (Fig. 5.12)show that with the increase 
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in the distortion amplitude of Bu phonon mode, the exchange parameters indeed reduce 

significantly, in consistent with the experiment[32]. At high temperature, the amplitude and 

population of low energy modes should be significantly large and hence the distortion 

involving out-of-plane oxygen motion (Fig. 5.6) would be enhanced.  

 

 

 

 

 

 

 

 

 

 

 

FIG 5.12 The calculated magnetic exchange interaction parameters (J’s) in SrFeO2 

(P4/mmm) and p-CaFeO2(P4/mmm) compound at different amplitude of Bu phonon mode 

distortion.   

 

5.3 Conclusions 

  We have reported detailed measurements of the temperature dependence of the 

phonon density-of-states of SrFeO2 in the antiferromagnetic phase (P4/mmm). The phonon 

spectrum shows anharmonic broadening above 300 K, which is consistent with the reported 

distortion of the planer structure.The phonon spectra of SrFeO2 have been analysed based on 
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detailed ab-initio lattice dynamical calculations in the magnetic state. Our calculations show 

that Fe magnetism is essential for stabilizing the P4/mmm structure of SrFeO2. However the 

calculations carried out in the same space group for CaFeO2 result in dynamically unstable 

structure. The lattice contraction in CaFeO2 in compare to SrFeO2 does not explain the 

presence of phonon instabilities, which may be due to difference in nature of bonding in 

SrFeO2 and CaFeO2. The anharmonic  coupling of the unstable Bu mode with two stable zone 

boundary modes at the M point are shown to lead to the distortion in the planer structure 

(P4/mmm) and stabilization of d-CaFeO2 (P-421m). These observations are consistent with 

the available experimental structural data. The spin exchange interaction parameters are 

found to decrease with increase in the distortion of the planer structure as described by the 

amplitude of Bu phonon mode. Calculations at high pressures predict that the undistorted 

planer CaFeO2 would stabilize. 
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Chapter 6 

Lattice Dynamics and Phase Transitions in 

Perovskites  NaNbO3 and RMnO3 (R= Ca 

and Pr) 

 

6.1 Introduction 

The materials with perovskite structure have been a subject of intense numerical 

investigations by means of first-principles calculations [1-5]. Virtually, all perovskites exhibit 

high-symmetry (cubic) structure at high temperatures. Materials exhibiting ferroelectric/ 

piezoelectric properties are a subject of keen interest due to their potentially practical 

applications ranging from high density memories to advanced robotic technology (as sensor 

and actuator) [6-13].  Phonons have been known to play a key role in the understanding of 

structural phase transitions in ferroelectrics. Most of the ferroelectric transitions are governed 

by softening of phonon modes in the high symmetry phase. 

Further, the perovskite with transition-metal oxides show a variety of interesting 

physical properties, such as dielectric, magnetic, optical, and transport properties [14-25]. 

The study of perovskite manganite RMnO3 (R= Ca, La, Pr etc) has been of great relevance 

[20-33]. The cubic perovskite structure has unstable modes at T=0 and it is therefore subject 

to energy-lowering distortions like zone-center distortions  and zone-boundary distortions 

involving rotations and/or tilting of the oxygen octahedral results in sequence of  phase 
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transition as a function of temperature and pressure. In this chapter, results obtained on 

perovskites NaNbO3 and AMnO3 (A= Ca and Pr) are given in sections 6.2 and 6.3 

respectively. 

 

6.2 NaNbO3 

Niobate based materials are environment friendly and appropriate for wide 

piezoelectric applications due to their piezo-response that is comparable to Pb(Zr Ti)O3. One 

of the end members, NaNbO3 is a well-documented antiferroelectric that also finds 

applications in high density optical storage, enhancement of non-linear optical properties, as 

hologram recording materials, etc [10-12, 34]. Relaxor type behavior in NaNbO3 based solid 

solutions has also been reported  [34]. Beyond the technological application, NaNbO3 has 

been a rich model system for understanding of the mechanism of structural phase transitions. 

This system exhibits one of the most complex sequences of structural phase transitions in the 

perovskite family [35, 36]. Above 913 K, it has a paraelectric cubic phase (Pm-3m). On 

lowering the temperature it undergoes transition to a series of antiferrodistortive phases in 

this order: tetragonal (T2) P4/mbm, orthorhombic (T1) Cmcm, orthorhombic (S) Pbnm, 

orthorhombic (R) Pbnm, orthorhombic (P) Pbcm phases, and a rhombohedral R3c phase. 

Previous studies based on neutron diffraction in the temperature range 17 to 350 K [35]  

provided  experimental evidence for the coexistence of the ferroelectric (FE) R3c phase and 

the antiferroelectric (AFE) phase (Pbcm) over a wide range of temperatures. This phase 

coexistence and the reported anomalous dielectric response are consistent with competing 

ferroelectric and antiferroelectric interactions.  

The focus of our study is to correlate the specific phonon modes relevant to the 

observed structural distortions of antiferroelectric phase. We have calculated the phonon 
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spectra of NaNbO3 in antiferroelectric orthorhombic (Pbcm), ferroelectric rhombohedral 

(R3c) and cubic (Pm-3m) phases and identified the characteristic antiferroelectric Raman 

modes, which are responsible for stabilization of antiferroelectric phase. We have calculated 

the enthalpy as a function of pressure of various phases of NaNbO3 and identified the 

mechanism of pressure driven phase transitions. We have also succeeded in assigning the 

Raman and infrared modes, which are essential for the understanding of the nature of 

structural phase transitions induced by the change of the temperature, pressure, and 

composition. We also report results of inelastic neutron scattering measurements of phonon 

spectra in different crystallographic phases of sodium niobate from 300 K to 1048 K. The 

results of inelastic neutron scattering experiment provide an opportunity to validate our 

calculations as well as important insights into the correlations between vibrational spectra and 

phase transitions.  

The temperature dependent inelastic neutron scattering experiment on NaNbO3 from 

300 K to 1048 K was carried out using the IN4C spectrometer at the Institut Laue Langevin 

(ILL), Grenbole, France. The measurements were done in the neutron-energy-gain mode 

using the incident neutron energy of 14.2 meV (2.4 Å).   Several inelastic runs were recorded 

on increase of temperature from 300 K to 1048 K. An energy cutoff of 1100 eV and 888 

K-points mesh are found to be sufficient for an accuracy of 10
-4

 eV in total energy 

calculations. Table 6.1 compares the calculated and experimental structural parameters for 

both the phases. The calculated lattice parameters are found to be slightly overestimated as 

compared to the experimental ones, as expected from GGA calculations. Total energies and 

Hellmann-Feynman forces were calculated for Pbcm, R3c and Pm-3m phases using VASP. 

Phonon frequencies, Raman modes and dispersion relations were extracted from subsequent 

calculations using the direct method [37] as implemented in the PHONON software [38].  
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FIG 6.1  Comparison of the calculated (filled circles) long-wavelength phonon frequencies 

with the available experimental data (stars)[17, 39, 40]  for both the antiferroelectric (AFE) 

and the ferroelectric (FE) phases.  

 

At room temperature NaNbO3 crystallizes in the orthorhombic phase (Pbcm) with 8 

f.u. per unit cell (40 atoms). This leads to 120 phonon branches (3 acoustic modes + 117 

optical modes). From the group theoretical analysis, the irreducible representations of the 

zone-centre optical phonons are optical = 15Ag + 17B1g + 15B2g + 13B3g + 13Au + 14B1u + 

16B2u + 14B3u, where the Ag, B1g, B2g and B3g modes are Raman active, whereas the modes Au 

are both Raman and infrared inactive. The modes B1u, B2u and B3u are infrared active. Hence, 

60 Raman active modes are expected in the orthorhombic phase (Pbcm).  At low-temperature 

NaNbO3 is rhombohedral (R3c) with 2 f.u. per unit cell (10 atoms), resulting in 30 phonon  

TABLE 6.1 Experimental [35] and ab-initio calculated structural parameters of NaNbO3 in 

the orthorhombic, antiferroelectric phase (Pbcm) and in the rhombohedral, ferroelectric 
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phase (R3c). The structural information of ferroelectric (R3c) phase compared with the result 

obtained by reference [5] (second row) with the Wu and Cohen version of GGA.   

 

Orthorhombic Antiferroelectric phase (Pbcm) 

 Experimental positional coordinates Calculated  positional coordinates 

Atoms x y z x y z 

Na1 0.247 0.75 0.00 0.260 0.7500 0.000 

Na2 0.227 0.789 0.25 0.259 0.796 0.250 

Nb 0.242 0.282 0.131 0.243 0.279 0.125 

O1 0.329 0.25 0.00 0.310 0.250  0.00 

O2 0.208 0.278 0.25 0.191 0.227 0.25 

O3 0.530 0.040 0.138 0.542 0.033 0.140 

O4 0.975 0.489 0.107 0.960 0.456 0.110 

 Lattice Parameters (Å) 

Aorth= 5.5012 (Å); Borth = 5.5649 (Å),  

Corth= 15.3972 (Å) 

Lattice Parameters (Å) 

Aorth= 5.568 (Å); Borth= 5.645 (Å),  

Corth= 15.603 (Å) 

 

Ferroelectric Rhombohedral phase ( R3c) 

 Experimental positional coordinates Calculated  positional coordinates 

Atoms x y z x y z 

Na 0.272 0.272 0.272 0.273 

0.272
a
 

0.273 

0.272
a
 

0.273 

0.272
a 

Nb 0.016 0.016 0.016 0.014 

0.016
a
 

0.014 

0.016
a
 

0.014 

0.016
a
 

O 0.320 0.183 0.747 0.312 

0.318
a
 

0.184 

0.191
a
 

0.749 

0.749
a
 

 Lattice Parameters (Å) 

arhom= 5.552 (Å), =59.16 (deg) 

Lattice Parameters (Å) 

arhom=5.637 (Å), =58.94 (deg) 

arhom=5.570 (Å), =59.15 (deg)
a 

a
Reference [5]. 

branches (3 acoustic modes + 27 optical modes).  The irreducible representations of the zone-

centre optical modes are: optical = 5A1 + 4A2 + 9E. The A1 and the doubly degenerate E 
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modes are both Raman and infrared active, whereas the A2 mode is both Raman and infrared 

inactive. Therefore, 23 Raman active phonons are expected in the rhombohedral phase (R3c). 

A proper understanding of the functionality and phase transition behaviour of the 

materials requires that the structural information as obtained from diffraction techniques 

should be adequately complemented by spectroscopic investigations like Raman and infrared 

spectroscopies. The mode assignments from Raman and infrared spectroscopies are essential 

to understand the nature of phase transition as a function of temperature, pressure, and 

composition. The assignment of phonon modes also helps to identify the atomic motions 

which drive the observed phase transition(s). The computed zone centre phonon frequencies 

for both the antiferroelectric and ferroelectric phases are shown in Figure 6.1. As expected, 

the ferroelectric phase has less Raman modes than those found in the antiferroelectric phase. 

 

6.2.1 Results and Discussion 

6.2.1.1 Phonon Dynamics and Inelastic Neutron 

Scattering of NaNbO3 

Figure 6.2 depicts the evolution of inelastic neutron scattering (INS) spectra for 

NaNbO3 at T= 303, 783, 838, 898, and 1048 K. The spectra correspond to different 

crystallographic phases. Five features (broad peaks centered on 19, 37, 51, 70 and 105 meV) 

can be easily identified. At 303 K, additional well resolved peaks below 37 meV are also 

observed. Their intensity decreases significantly with increasing temperature. Remarkably, 

the peak around 70 meV, shifts significantly towards lower energies with increasing 

temperature, while the others do not change in a noticeable way.  At 783 K, a prominent 

change is observed and the spectra become more diffusive than that at 303 K. The variation 
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of the INS spectra is associated with the occurrence of phase transitions. Prominent changes 

in the phonon spectra are usually expected across strong first order phase transitions, while 

weak first or second order phase transitions lead to minimal changes. Upon heating, sodium 

niobate undergoes a strong first order phase transition at 680 K. On the other hand, all the 

other phase transitions above 783 K are of a weak first or second order in nature. Thus, a 

prominent change is only observed in the phonon spectra at 783 K, as compared to that at 303 

K.  Further heating above 783 K leads to phonon spectra resembling each other. 

 

 

 

 

 

 

Fig 6.2. The temperature dependence of the phonon spectra of NaNbO3 as observed by 

neutron inelastic scattering.  

 

Figure 6.3 compares the experimental and calculated neutron-weighted phonon 

density of states of NaNbO3, in the antiferroelectric phase. The calculations are found to be in 

fair agreement with the measurements. All the observed features are computationally well 

reproduced. Our ab-initio lattice dynamics calculations show that both the ferroelectric (R3c) 

and the antiferroelectric (Pbcm) phases are dynamically stable (all frequencies are real). All 
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the calculations were performed at zero-temperature. The calculated free energies of 

ferroelectric (-7.8102 eV/atom) and antiferroelectric (-7.8082 eV/atom) phases are 

comparable. The small energy (~ 2 meV/atom) difference between the two phases could 

explain the coexistence of both the phases observed in neutron powder diffraction 

experiments [35]. R. Machado et al, [5] have also computationally investigated the relative 

phase stability of sodium niobate and reported the similar behavior.   

 

 

 

 

 

 

 

 

 

FIG 6.3 The experimental (dotted line at 303 K) and calculated (solid line at 0 K) phonon 

spectra for NaNbO3 in the antiferroelectric phase (Pbcm). The calculated spectra have been 

convoluted with a Gaussian of FWHM of 15% of the energy transfer in order to describe the 

effect of energy resolution in the experiment. 

 

Recently, Lu Jiang et al [41] have performed refinements of neutron diffraction data 

to determine the local structure by the pair distribution function (PDF) method. They reported 

that the ground states of NaNbO3 in the low-temperature antiferroelectric and ferroelectric 

phases have the R3c symmetry, even though in the long range the system shows the Pbcm 

symmetry or the coexistence of two phases. They argued that this structure tends to form 
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nano-twins with irregular spacing, resulting in the appearance of a long-range 

antiferroelectric (Pbcm) phase. As mentioned earlier, the ferroelectric phase (R3c) phase has 

slightly lower energy in comparison to antiferroelectric phase (Pbcm). This suggests that 

ferroelectric phase is most likely and consistent with the results of Lu Jiang et al. [41]. 

However, it is difficult to confirm the formation of nano twins with irregular spacing using 

theoretical calculation. Due to its structural complexity, we have not modeled the twin 

structure.  

The ab-inito derived atomistic partial densities of states are shown in Figure 6.4. The 

oxygen atoms contribute dynamically in the whole spectral range, upto 120 meV, while Nb 

atoms mainly contribute upto 75 meV. The vibrations due to Na atom extend upto 40 meV. 

Computed partial density of state of Na reveals the presence of three peaks in antiferroelectric 

phase and two peaks for ferroelectric phase. It can also be seen that spread in the partial 

density of state associated with Na is more in antiferroelectric phase as compared to 

ferroelectric phase. It can be interpreted in terms of Na-O bond lengths. For the 

antiferroelectric phase, there are two types of sodium and four types of oxygen atoms, which 

result in significant variation in bond length (change in the force constant), and in turn result 

in more spread in the partial density of state. While in the ferroelectric phase, we have only 

one type of Na and O atom. In the ferroelectric phase Na atoms are shifted from centre of the 

oxygen cage and results in two different Na-O bond lengths. Similar interpretation also holds 

for partial density of states of niobium and oxygen atoms. It should be noticed that shorter 

bond lengths in ferroelectric phase (w.r.t antiferroelectric phase) results in the extending of 

the energy range of the total density of states. It is interesting to note that band gap in the 

phonon density of states for ferroelectric phase is larger as compared to that in 

antiferroelectric phase.   
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FIG 6.4 The calculated partial density of states for various atoms and the total phonon 

density of states for NaNbO3, in both the antiferroelectric orthorhombic (Pbcm) phase (solid 

line) and the ferroelectric rhombohedral (R3c) phase (dashed line). 

 

The structural phase transitions in Perovskite-type materials (ABO3) originate from 

the competing interactions between different phonon instabilities occurring in the cubic 

phase. These transitions belong generally to two classes: ferrodistortive (FD) and 

antiferrodistortive (AFD)[6, 7, 13, 42]. The FD and AFD phase transitions are driven by zone 

centre (q=0) and zone- boundary phonons (q≠ 0), respectively. Known examples of these 

transitions are the cubic to tetragonal phase transition in BaTiO3 and PbTiO3, for the 

ferrodistortive case, and in SrTiO3 and CaTiO3 for the antiferrodistortive case [13, 42]. The 

evolution of these phase transitions depends on the condensation sequence of the soft modes 

M3 and R25. The zone boundary R25 mode is three fold degenerate and the M3 mode is 
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nondegenerate. The triply degenerate R25 soft mode is made up of three components 

corresponding to the rotational degrees of freedom of the BO6 octahedra around the three 

separate [001] axes. If one of the components condenses at the transition point, the resulting 

structure would be tetragonal I4/mcm, and the coupled condensation of the three components 

would lead to a rhombohedral R3c structure. However, when with successive phase 

transitions associated with both the M3 and R25 soft modes, the sequence of the phase 

evolution depends in a complex way on the condensation sequence of the soft mode [13, 42].  

 

 

 

 

 

 

 

FIG 6.6  Computed phonon dispersion relations for cubic phase (Pm-3m) of NaNbO3 

compared to reported experimental inelastic neutron scattering (INS) single crystal data (red 

circles) (Ref. [43]).  

 

Recently, Izumi and coworkers performed a detailed inelastic neutron scattering study in the 

cubic phase of NaNbO3 [43]. Their measurements show gradual softening of the transverse 

acoustic (TA) phonon modes at the zone boundary points M (½ ½ 0) and R (½ ½ ½). This 

indicates instabilities of the in-phase and out-of-phase rotations of the oxygen octahedra 

around the [001] direction. The softening of these modes suggests low-lying flat transverse 

acoustic dispersion relations along the zone-boundary line M-R (T-line). As the temperature 
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is decreased, these modes soften and become stable below the phase transition temperature. 

In order to detect these phonon instabilities using first principle technique, we have calculated 

the phonon dispersions from the zone centre () to the zone boundary points R and M (Figure 

6.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 6.7  Ab initio derived eigenvectors of selected zone-centre and zone-boundary unstable 

phonon modes at the Г, M, R, T and X  points for the cubic phase of NaNbO3. The lengths of 

arrows are related to the displacements of the atoms.  Key: Na, cyan; Nb, blue; O, brown. 

 

In general, we find a very good agreement between our calculations and R Machado 

et al [5], together with the experimental data from the literature [43]. Small deviations are 

expected as calculations were obtained at 0 K whereas inelastic neutron scattering data were 

acquired at in cubic phase (970 K).  
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From Figure 6.6 one can see that, in contrast to SrTiO3 [44], the polar instability 

strength at the  point is stronger than the antiferrodistortive instabilities at the R and M 

points, and it extends over a wider region of the Brillouin zone. Further, the strength of the M 

and the R point instabilities are quite similar. Interestingly, the branches along the  -R and 

-M directions, show dramatic changes when reaching the R and M points. When moving 

away from M to R, two unstable modes are detected. One of them is rather flat and the other 

one shows rapid stiffening and becomes stable. Moreover, one of the stable modes become 

unstable at T (½  ½ ¼) point. Our results are consistent with other theoretical works in the 

literature [5].   

Above 950 K, NaNbO3 occurs in the cubic phase. On decreasing the temperature, it 

transforms to a tetragonal phase (P4/mbm). The first structural transformation is from cubic 

to tetragonal structure, where the unit cell is doubled in the plane perpendicular to the rotation 

axes of the M3 mode. By further lowering the temperature, condensation of the R25 phonon 

leads to the orthorhombic Cmcm (T2) phase. Unstable phonon-branches along the M-R line 

contribute to the occurring successive phase transitions. These phonons play an important 

role in stabilizing the different phases (P, S and R) in NaNbO3. The orthorhombic structures 

of the S, R and P phases result from the condensation of the phonon mode (q= ½, ½, g); with 

g= 1/12, 1/6 and 1/4. These orthorhombic phases originate from the modulation of the high 

symmetry cubic phase, associated with the phonon modes at q= (½, ½, g). Further, the 

freezing of all the R25 modes and a zone-centre phonon stabilizes the low-temperature 

ferroelectric rhombohedral phase. The detailed descriptions of the polar mode (responsible 

for ferroelectricity) and the rotational modes (R25 and M3) are found to be similar to those 

reported by R Machado et al [5]. 
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FIG 6.8 The eigenvectors of the two antiferroelectric modes, at (a) =93 cm
-1

 and (b) 129 

cm
-1

 of NaNbO3, induced by the folding of the T ( q= ½ ½ ¼ ) and  ( q= 0 0 ¼ ) points of the 

Brillouin zone under the cubic phase, respectively. (Key: Na: violet spheres; Nb: blue 

spheres; O: brown spheres). 

 

Deeper insights into phonon dynamics can be gained by performing an analysis of the 

eigenvectors corresponding to specific phonon modes, relevant to the present study. These 

are derived from our ab-initio calculations and are plotted in Figure 6.7. The eigenvector of 

the unstable -point zone-centre phonon mode at i meV indicates clearly that niobium 

and oxygen atoms are moving in opposite directions. This leads to the formation of a dipole, 

and induces ferroelectricity. The eigenvectors corresponding to the unstable modes at M and 

R points (=14i meV) exhibit an in-phase and out phase rotation of the oxygen octahedra, 
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leading to a doubling of the unit cell. The analysis of the eigenvector of the X-point zone 

boundary mode  at =15i  meV suggests that, similar to the zone centre mode,  Nb and O 

atoms move in opposite directions within a layer of the basal plan, and this motion is anti-

phased in an adjacent layer.  This results in a zero total dipole moment in unit cell. The 

displacement patterns are therefore related to antiferroelectricity. The mode at the T-point 

having the phonon frequency =14i meV possesses an eigenvector displacement indicating a 

multiplication of the unit cell. 

The antiferroelectric phase is found to accompany new super lattice reflections in 

powder neutron diffraction data [35, 36]. This is confirmed by the appearance of new Raman 

lines in Raman spectroscopy. These lines become active due to the folding of the 

corresponding specific zone-centre points, below the antiferroelectric phase transition 

temperature. Below the antiferroelectric phase transition, strong modifications of the Raman 

scattering patterns are observed [17, 39, 40, 45-47] accompanying the appearance of new 

Raman modes around 93 cm
-1

 and 123 cm
-1

. Further, a sudden enhancement of the intensity 

of the bands within the two frequency ranges 150-300 cm
-1

 and 500-650 cm
-1

 are also noted. 

We have assigned the two lines at 93 cm
-1

 and 123 cm
-1

 as belonging to the A1g irreducible 

representation, and we have identified them as originating from the folding of the T (93 cm
-1

) 

and  (129 cm
-1

)  points of the Brillouin zone under the cubic phase. The eigenvectors 

corresponding to the two AFE modes of NaNbO3, as extracted from our ab initio lattice 

dynamical calculations are shown in Figure 6.8. The mode at 93 cm
-1

 involves significant 

motions of Na, Nb and O, which are located at the sites 4d (¼+u, ¾+v, ¼), 8e (¼+u, ¼+v, 

⅛+w) and  ( ½ +u,0+v, ⅛+w), respectively. However, the Raman mode at 129 cm
-1 

reflects a 

significant displacement of all the atoms. 
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6.2.1.2 High Pressure Behaviour 

 

 

 

 

 

 

 

 

 

FIG 6.9 Enthalpy difference (H) between the indicated ferroelectric (R3c), antiferroelectric 

(Pbcm), and paraelectric (Pbnm) phases of NaNbO3 as calculated using ab-inito DFT 

calculation.  

We have also studies the pressure driven phase transition in sodium niobate. 

Application of pressure modifies the structural parameters, such as the Nb–O bond length, 

Nb–O–Nb bond angles, and the distortion of the NbO6 octahedra. Figure 6.9 depicts the 

computed pressure dependence of the difference in the enthalpy H= Hi-HR3c of various 

phases of sodium niobate. For the lower pressure (Pc=3.3 GPa), only ferroelectric (R3c) phase 

has the lowest enthalpy (H), as it is the well-known ground state of NaNbO3 at T=0 K. 

However at pressure above 3.3 GPa, the antiferroelectric phase (Pbcm) becomes favorable 

over the ferroelectric (R3c) phase. Further increasing the pressure above 10 GPa, the 

paraelectric phase (Pbnm) becomes favourable over the other two phases. Thus, the 

calculation predict (figure 6.5) that sodium niobate may undergo successive phase transitions 

from ferroelectric to antiferroelectric (at 3.3 GPa) to paraelectric (at 10.5 GPa) phases. The 
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phase transition pressure is fairly close to experimental values (8 GPa) for antiferroelectric to 

paraelectric phase.  

 

6.3 RMnO3 (R= Ca and Pr) 

CaMnO3 crystallizes in the distorted orthorhombic structure (space group Pnma) and 

consists of single-valent Mn
4+

 ions and does not exhibit Jahn-Teller distortion. At ambient 

conditions, it is paramagnetic and at ~130 K it undergoes a G type antiferromagnetic (AFM) 

transition [48]. In high temperature x-ray diffraction study, H Taguchi et al [49, 50] showed 

that oxygen deficient CaMnO3 undergoes orthorhombic to tetragonal phase at 1169 K and 

finally transforms in cubic phase at 1186 K. Doping of trivalent and tetravalent ions at Ca
2+ 

site provides additional electrons into eg orbital of Mn ions and causes a variety of phase 

transitions, e.g from collinear G-type AFM insulator to canted G-type AFM metal, collinear 

C-type AFM insulator etc. This suggests that we can tune the magnetic phase transition with 

a small amount of electron doping. For example, solid solution of (1-x)CaMnO3- xPrMnO3 

(Ca1-xPrxMnO3) exhibits a variety of ground state, namely: G- AFM insulator, CE- type 

charge ordered state, CE-type AFM spins ordering, canted AFM state which consists a 

mixture of AFM and ferromagnetic (FM) clusters, depending on temperature and 

composition [49-55]. The other end member of solid solution, PrMnO3 also crystallizes in the 

orthorhombic phase but it exhibits [32] a strong Jahn-Teller distortion of MnO6 octahedral 

associated with the ordering of eg orbital and undergoes A-type antiferromagnetic spin 

ordering below 95 K [32]. The difference in magnetic structure of CaMnO3 and PrMnO3 is 

attributed to different occupancy of d electron in Mn ions. Hence it is intriguing to study the 

role of magnetic interaction on lattice vibration.  
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The structural, physical and magnetic properties of RMnO3 (R= Ca and Pr) were 

investigated by variety of experimental techniques [27, 56-62]. The physical properties of 

these materials are governed by a delicate interplay of charge, spin, orbital, and lattice 

degrees of freedom. To understand the relation among these interactions, first principles 

calculations have been performed in cubic and orthorhombic phases. Using a density 

functional theory approach within the local spin density approximation, S. Bhattacharjee et 

al, [63] have computed structural, dielectric and dynamical properties of orthorhombic phase 

of CaMnO3. They have computed whole set of zone-center phonon modes and assignment of 

experimental data has been proposed.  F.P. Zhang et al [60] had investigated geometry, 

ground state electronic structure and charge distributions of CaMnO3. Effect of compressive 

and tensile strains on a magnetic phase transition in electron-doped CaMnO3 was 

theoretically studied by H. Tsukahara et al [61]. Further the first principles calculations of 

structural, electronic and magnetic properties of the PrMnO3 as well as the calculation of 

zone centre phonon modes in the cubic phase were reported by B. Bouadjemi [62].  

Understanding of various functional properties of derived compounds PrxCa1-xMnO3 

needs complete study of electronic and dynamical properties of the parent compound 

CaMnO3 and PrMnO3. In spite of various experimental and theoretical investigations, the 

temperature dependence of phonon spectra for CaMnO3 and PrMnO3 is still missing. In the 

present study, we report results of inelastic neutron scattering measurements of phonon 

spectra at different temperatures of CaMnO3 and PrMnO3. The interpretation and analysis of 

the observed phonon spectra have been performed using ab-initio phonon calculations. 

Previous first-principles calculations on CaMnO3 were focused mainly on the electronic 

structure[60-63]. Here, we report a first-principles study of phonon dynamical properties of 

the ground-state orthorhombic phase in the entire Brillouin zone. We also investigated the 

effect of pressure on the structural distortions in orthorhombic phase of CaMnO3 and 
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PrMnO3. The calculated structure as a function of pressure in PrMnO3 shows that suppression 

of Jahn-Teller distortion and insulator to metal transition occurs simultaneously. We provide 

the evidence that although tetragonal phase as reported in the literature is energetically 

favored over orthorhombic phase above 20 GPa, but it is found to be dynamically unstable. 

Inelastic neutron scattering measurements were performed by Dr. Alexander I. 

Kolesnikov using the Fine Resolution Chopper Spectrometer (SEQUOIA) [64, 65] at the 

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. The data were collected 

using fixed incident neutron energy of 110 meV, which allowed for the measurement of 

excitations up to energy transfers of ∼100 meV. The low temperatures scans (4-300 K) were 

carried out using the closed cycle helium refrigerator. For high temperature measurements up 

to 1250 K samples were heated in air. We have used furnace (called MiCAS) with a quartz 

tube insert that allows controlling the atmosphere of sample.  

The calculation of phonon spectra in the Pnma space group has been performed using 

the first-principles density functional theory and both the local density approximation (LDA) 

or generalized gradient approximation (GGA) for CaMnO3. However, for PrMnO3, GGA has 

been used. The total energy calculations have been done using an energy cutoff of 1100 eV. 

A grid of 888 K-points was used according to the Monkhorst-Pack (MP) scheme [66]. We 

have used the G-type and A-type antiferromagnetic structures in orthorhombic phases for 

CaMnO3 and PrMnO3 respectively. The choice of magnetic structures is based on the 

previously reported configurations obtained from neutron diffraction measurements [32, 48, 

67]. However in the tetragonal phase of PrMnO3 the magnetic structure has not been known. 

So we have calculated the enthalpy of the tetragonal phase of PrMnO3 including different 

antiferromagnetic configurations, namely A, C, G type, and ferromagnetic configurations. 

The calculations show that ferromagnetic structure is favored in comparison to the other 

structures. In the cubic phase G-type antiferromagnetic and ferromagnetic structures are 
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adapted for CaMnO3 and PrMnO3 respectively. The supercell approach or direct method is 

used to calculate the phonon frequencies in entire Brillouin zone implemented in 

PHONON5.12 software [38].  

The phonon calculations are performed in various magnetic and nonmagnetic 

configurations to see the effect of spin degrees of freedom on phonons. In the fully relaxed 

calculations the atomic coordinates and lattice parameter have been relaxed. However 

partially relaxed nonmagnetic calculation (PNM) refers to fix lattice parameter as used in 

magnetic calculations with relaxing the atomic coordinates. Hereafter, the labeling “FM” and 

“FNM” refer to fully relaxed magnetic and fully relaxed nonmagnetic calculation.  

 

6.3.1 Results and Discussion 

6.3.1.1 Temperature Dependence of Neutron 

Inelastic Spectra in Orthorhombic Phase of 

CaMnO3 

CaMnO3 is known to undergo paramagnetic to antiferromagnetic (AFM) transition at 

~ 130 K [48, 67]. Other transitions are observed from orthorhombic to tetragonal phase at 

1169 K and then to cubic phase at 1186 K. The phonon spectra of CaMnO3 (Figs. 6.10-12) 

were measured from 7 up to 1250 K, across the magnetic transition (~130 K) and the 

structural phase transitions at high temperatures. The neutron inelastic spectra were collected 

over wide range of momentum transfer (Q) from 0.5-7 Å
-1

. The magnetic signal is expected 

to be more pronounced at low Q, and it decreases as Q increases, following the magnetic 

form factor. Hence we have integrated the inelastic scattering function S(Q,E) in two ranges, 
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namely total Q range (0.5-7 Å
-1

) and high Q (4-7 Å
-1

), the later one represents mostly the 

contribution from the neutron scattering on phonons. The data collected at 7 K show intense 

peak at about 20 meV in the low Q data (Figs. 6.10, 6.11).  The observed peak around 20 

meV is largely contributed from magnetic excitations and shows strong Q dependence 

intensity (stronger at low-Q and weaker at high-Q). However as the temperature increases the 

contribution from spin excitation becomes weaker. Above the magnetic transition 

temperature (TN=130 K) we also see that the intensity of peak at 20 meV is decreasing with 

increase in temperature up to 601 K (Fig. 6.12). 

 

 

 

 

 

 

 

 

FIG 6.10. The neutron inelastic spectra of CaMnO3 at low temperatures, the data were 

summed over (a) Q=0.5-7 Å
-1

 and (b) Q=4-7 Å
-1

 respectively. The peak at 20 meV is due to 

spin-wave excitations, not due to phonons (1 meV=8.0585  cm
-1

). 

 

At temperatures 951 K and above the intensity does not change with increase in 

temperature. This indicates that the contributions from the paramagnetic scattering persist up 

to very high temperatures of 601 K. Fig. 6.11 illustrates the experimental S(Q,E) measured 

for  CaMnO3 in the low temperature range from 7 to 300 K.  The data collected at 7 K clearly 

show the signature of spin-wave excitations which are probably gaped at Q=1.45 Å
-1

, 
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corresponding to Bragg peak (011) (the gap is not resolved with the current experimental 

setup, providing energy resolution ~2 meV at the elastic line).  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 6.11. The (Q,E) contour plot of S(Q,E) data for CaMnO3 at T=7 K measured at 

SEQUOIA with incident neutron energy of 110 meV is shown at top. Strong intensity 

excitations at low temperatures (7 K and 110 K) below E=20 meV and Q=3.5 Å
-1

 are due to 

magnetic spin-wave excitations. The excitations around 30, 45, 55, 60, 65, 70, and 90 meV 

are due to phonons (their intensities increase with increasing Q).  

 

Further we noticed that at higher temperature (T=110 K) the intensity of these 

excitations are strongly redistributed to lower energies, the peak position shifts from 19.5 

meV at 7 K to 16.5 meV at 110 K. At T>TN (in paramagnetic state) at small Q values (Q<3.5 

Å
-1

) we observe spin-fluctuation excitations extended from elastic line up to ~20 meV. It is 
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evident from figure 6.11 that the nature of neutron scattering intensity S(Q, E) changes above 

TN from inelastic (due to well defined spin excitation) to quasielastic (due to stochastic spin- 

fluctuations) and the intensity also spreads over a broader range of Q.  The intensity of these 

spin fluctuations corrected for the thermal population Bose factor leads to a peak in g(E), 

which is plotted in Figs. 6.10 & 6.12, that decreases with temperature increase.  

The high temperature neutron inelastic spectra (Fig. 6.12) show strong modification 

with increasing temperature. In particular, the intensity of peaks below 40 meV decreases 

with increasing temperature up to 601 K while the peak around 90 meV shows significant 

shift towards lower energies with increasing temperature. The others peaks do not change in a 

noticeable way. We find that above 1101 K, a prominent change is observed in the neutron 

inelastic spectra, where they are found to be more diffusive as compared to the spectra at low 

temperatures. These changes in the phonon spectra may be associated with phase transitions 

in CaMnO3 which transforms from orthorhombic to tetragonal phase at 1169 K, and finally to 

cubic phase at 1186 K [49]. 

 

 

 

 

 

 

 

FIG 6.12. The temperature dependence (above 300 K) of the neutron inelastic spectra of 

CaMnO3, the data were summed over (a) Q=0.5-7 A
-1

 and (b) Q=4-7 A
-1

 respectively. 
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6.3.1.2 Magnetic Ordering and Calculated Phonon 

Spectra in the Orthorhombic Phase of CaMnO3 

 

 

 

 

 

 

FIG 6.13.  Comparison between the experimental (T=300 K) and calculated neutron 

inelastic spectra of CaMnO3 using (a) local density approximation and (b) generalized 

gradient approximation. Experimental data are summed over 4-7 Å
-1

. The phonon 

calculations are carried out in the fully relaxed magnetic (FM) configuration. The calculated 

phonon spectra have been convoluted with a Gaussian of FWHM of 4.5 meV to account for 

the effect of energy resolution in the experiment. 

 

In order to analyze the experimental data, as stated above, first principle calculations 

have been performed. The fully optimized structure of CaMnO3 in both the “FM” and 

“FNM” configurations using both the local density approximation (LDA) or the generalized 

gradient approximation (GGA) exchange correlation functional are summarized in Table 6.2. 

The calculated atomic positions are in good agreement with the experimental data. It can be 

seen that in both the LDA and GGA, the “FM” calculated structures are found to close to the 
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experimental data [68]. The LDA calculated lattice constants are found to be underestimated 

by 2% in comparison to the experimental data, while GGA gives slight overestimation of 

about 1%. As will be shown latter in the paper, nonmagnetic structures are found to be 

dynamically unstable at T=0 K. The comparison between the experimental data and the 

calculated phonon spectra from both the LDA and GGA are shown in Fig. 6.13. It can be 

seen that all the observed features in the experimental data are fairly well reproduced by the 

calculations. It is evident from this figure that below 55 meV, phonon calculation in fully 

relaxed magnetic configuration using LDA gives better agreement with the experimental data 

in comparison to GGA. However, for the spectral range above 55 meV, the calculated 

phonon spectrum using GGA describes the experiment better than LDA. The high energy (> 

75 meV) phonons are due to Mn-O stretching modes. The observed discrepancy could be 

understood in terms of bond lengths. As shown in TABLE 6.2, the LDA calculation 

underestimates the lattice parameters.  The shorter bond lengths would shift the phonon 

spectra to higher energies in comparison to the experimental data. Similarly the slight 

overestimation of lattice parameter by GGA results in underestimation of the energies of the 

Mn-O modes in the calculation.  

The atomistic contributions in the phonon spectra from the various calculations can be 

understood in terms of the partial density of states. The difference is primarily due to the 

nature of the chemical bonding in the magnetic and nonmagnetic configurations, as well as 

the related volume effect. The computed atomistic partial phonon density of states show (Fig. 

6.14 (a)) that the contribution of the oxygen atoms spreads over the whole energy range, 

while the Mn atoms contribute mainly up to 75 meV. The contribution due to Ca atoms 

extends up to 50 meV. Above 75 meV, the dynamics is mainly due to the Mn-O stretching 

modes.  
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TABLE 6.2. Comparison of experimental and theoretical structural parameters in the 

antiferromagnetic orthorhombic phase (space group: Pnma) of CaMnO3. The Wyckoff sites 

of the atoms are given in the brackets. “FM”, “FNM” and “PNM” refer to fully relaxed 

magnetic, fully relaxed non-magnetic and partially relaxed non magnetic calculations, 

respectively. 

 

Structural 

Parameters 

Expt. 

[69] 

Ref. 

[63] 

This work 

GGA LDA 

FM PNM FNM FM PNM FNM 

Ao (Å) 5.279 5.287 5.3380 5.3380 5.3148 5.2011 5.2011 5.189 

Bo (Å) 7.448 7.498 7.4977 7.4977 7.4238 7.2933 7.2933 7.2386 

Co (Å) 5.264 5.235 5.2949 5.2949 5.2645 5.1396 5.1396 5.1084 

Ca (4c) 

x 

y 

z 

 

0.035 

0.250 

-0.009 

 

0.040 

0.250 

-0.008 

 

0.040 

0.250 

-0.008 

 

0.038 

0.250 

-0.007 

 

0.038 

0.250 

-0.007 

 

0.045 

0.250 

-0.009 

 

0.044 

0.250 

-0.008 

 

0.045 

0.250 

-0.009 

Mn (4b) 

x 

y 

z 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

 

0.00 

0.00 

0.500 

O1 (4c) 

x 

y 

z 

 

0.493 

0.250 

0.068 

 

0.485 

0.250 

0.071 

 

0.489 

0.250 

0.068 

 

0.483 

0.250 

0.062 

 

0.483 

0.250 

0.062 

 

0.488 

0.250 

0.073 

 

0.491 

0.250 

0.070 

 

0.491 

0.250 

0.070 

O2 (8d) 

x 

y 

z 

 

0.290 

0.030 

-0.289 

 

0.287 

0.036 

-0.288 

 

0.288 

0.035 

-0.289 

 

0.287 

0.032 

-0.288 

 

0.287 

0.033 

-0.288 

 

0.290 

0.031 

-0.289 

 

0.290 

0.036 

-0.289 

 

0.29 

0.037 

-0.289 
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 It can be seen (Fig. 6.14 (a)) that the contributions of Ca and Mn are nearly the same 

in the calculations performed using LDA and GGA, while there are significant differences in 

the partial contributions from the O atoms. The difference in the calculated partial 

contribution is mainly in the stretching modes region which is very sensitive to the unit cell 

volume. The underestimation or overestimation of energy of modes is related to the 

calculated structures as given in TABLE 6.2. Results of the FM-GGA calculations are found 

to be close to the experimental data. Consequently in the following we adopt the GGA 

density functional.  

 

 

 

 

 

 

 

 

 

 

FIG 6.14.  (a) The calculated partial phonon density of states of various atoms in CaMnO3 

with in LDA and GGA approximations.  (b) The calculated partial density of states of 

CaMnO3 in various configurations with in GGA. “FM”, “FNM” and “PNM” refer to fully 

relaxed magnetic, fully relaxed non-magnetic and partially relaxed non magnetic 

calculations, respectively. The energies of unstable modes in PNM-GGA are plotted as 

negative energies.  
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To study the effect of magnetic interactions on the phonon spectra, the phonon spectra 

were calculated in three different configurations as said above (“FM”, “FNM”, and “PNM”) 

and shown in Figure 6.14 (b). It is evident from this figure that the phonon spectra calculated 

using PNM results in several unstable modes up to 25i meV. Similarly FNM calculations also 

results in unstable modes with slightly lower energy range (10i meV). The comparison of the 

FM and PNM calculations indicates that magnetic interactions are very important for 

obtaining the dynamically stable structure.  

 

6.3.1.3 Temperature Dependent Neutron Inelastic 

Spectra and First Principle Studies in Orthorhombic 

Phase of PrMnO3  

The compound PrMnO3 is isostructural to CaMnO3; however, the magnetic structure 

is different. The Jahn-Teller transition in PrMnO3 takes place at about 1050 K. It undergoes 

antiferromagnetic spin ordering below 95 K. Here we performed the measurements of 

neutron inelastic spectra of PrMnO3 at two temperatures, 6 and 150 K. The experimental 

S(Q,E) data for PrMnO3 (Fig. 6.15, at the bottom) collected at 6 K clearly shows the 

signature of spin-wave excitations at energies below 20 meV and Q<1.5 Å
-1

, which 

significantly dissipate at 150 K. This behavior is similar to CaMnO3, however the Q 

dependence is completely different. Fig. 6.15 (at the top) shows the phonon spectra, (a) 

summed over momentum transfer (Q)=1-7 Å
-1

 and (b) Q=4-7 Å
-1

. The data collected at 6 K 

show intense excitations with the peak maximum at about 17 meV. However above magnetic 

transition temperature the intensity at 17 meV peak is significantly suppressed but has 

contribution from phonons and paramagnetic fluctuations.  
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FIG 6.15.  Top panel:  Temperature dependent neutron inelastic spectra of PrMnO3 summed 

over various Q-range.  Bottom panel: Contour plot of S(Q,E) spectra for PrMnO3 measured 

at 6 K  (right) and 150 K (left). A dispersed spin wave excitation is clearly seen below 20 

meV and 1.5 A
-1

 at 6 K. In 150 K spectra, weakly dispersed magnetic excitation around 15 

meV is observed. 

  

It is remarkable to notice that in spite of similar structure, room temperature neutron 

inelastic spectrum (Fig. 6.13) of CaMnO3 exhibits well-defined peaks in comparison to the 

data for  PrMnO3 (Fig. 6.16) at 150 K. The difference in the phonon spectra may be due to 

the difference in nature of interactions. The Jahn-Teller distortion is present in PrMnO3, 

while such distortion is not there in CaMnO3. 
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FIG 6.16. (a) Comparison between the experimental (T= 150 K) and calculated phonon 

spectra in PrMnO3.  Experimental data are summed over 4-7 Å
-1

. (b) The calculated partial 

phonon density of states of various atoms in PrMnO3. The phonon calculations are carried 

out in the fully relaxed magnetic (FM) configuration in the generalized gradient 

approximation (GGA). 

The phonon calculations (Figs. 6.16 (a) and (b)) for PrMnO3 are carried out only in 

the fully relaxed magnetic configuration using GGA exchange correlation functions. All the 

observed features are fairly well reproduced (Fig. 6.16(a)) by the computations. The 

computed atomistic partial density of states shows (Fig. 6.16(b)) that the contribution of the 

Mn and oxygen atoms spreads over the whole energy range up to 75 meV, while the 

contribution due to Pr atoms extends up to 50 meV. It should be noted that in the present case 

contributions due to the Mn-O stretching modes do not extend above 75 meV, while in 

CaMnO3 the energy range of these modes is up to 90 meV. The comparison between the 

calculated and experimental phonon spectra shows that stretching modes are underestimated 
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(Fig. 6.16) in the phonon calculations. Further the calculations of zone centre phonon modes 

as shown in Fig. 6.12 also confirm the same. 

 

6.3.1.4 High Pressure Phase Stability of CaMnO3 

and  PrMnO3  

Pressure tunes the interplay between lattice and electronic degree of freedom to a 

much larger extent than any other parameter like temperature and magnetic field. In the 

present section, we discuss the effect of pressure on the structural distortions in the 

orthorhombic phase of CaMnO3 and PrMnO3. The main emphasis of this study are to 

investigate the pressure dependence of the Jahn-Teller distortion (if persist) and existence of 

insulator to metal transition at high pressure.  Figure 6.17 shows the calculated pressure 

dependence of the equivalent pseudo-cubic lattice parameters for the orthorhombic phase of 

(a) CaMnO3 and (b) PrMnO3 using GGA and comparison with experimental data reported in 

the literature [28]. The computed bulk modulus for CaMnO3 and PrMnO3 are found to be 

185.4 (Expt. 224  25) GPa [28, 70-72]  and 137.4 (Expt. 1394) GPa [28], respectively. It is 

evident from the figure that compression is more anisotropic for PrMnO3 as compared to 

CaMnO3. The pressure dependence of the Jahn-Teller distortion, which is evidenced by the 

spatial distribution of Mn-O bond length (d) and defined as ), along-

with three Mn-O distances of the distorted MnO6 octahedra, are shown in Fig 6.17 (c) and 

(d).  It is interesting to notice that computed Jahn-Teller distortion using the above relation 

was found to be two-orders lower for CaMnO3 in comparison to PrMnO3, and could be 

considered as zero. This result is satisfying as CaMnO3 is not known to possess [29] Jahn-

Teller distortion.  
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FIG 6.17. (Color online) Pressure dependence of pseudocubic lattice parameters for (a) 

CaMnO3 and (b) PrMnO3 compared to reported experimental data for CaMnO3 [70-72] and 

PrMnO3 [28] respectively. Pressure dependence of Mn-O bond length and distortion of 

MnO6 ochtahedra as calculated are shown in (c) CaMnO3 and (d) PrMnO3, respectively.  

 

The calculated variations of Mn-O distances are isotropic for CaMnO3 and found to 

be highly anisotropic for PrMnO3. On increasing pressure, long Mn-O2 (l) distance decrease 

faster than the other (Mn-O2(s) and Mn-O1) and becomes nearly equal at around 45 GPa. 

This nearly isotropic behavior of the Mn-O distance at high pressure is attributed to 

disappearance of Jahn-Teller distortion (similar to CaMnO3). Basically, application of 

external pressure opens the Mn-O-Mn angles and in turn shortens the Mn-O bond lengths, 

leading to less distorted octahedra. The calculated Mn magnetic moment in the equilibrium 

structure at  Mn site is  2.6 μB, which is  in agreement with the experimental values  of free 
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Mn
3+

 ( 3.0).  We found that at about 45 GPa the Mn magnetic moment decrease to 1.0 μB 

which could be signature for insulator to metal transition. 

Recently, Mota et al.[28] reported a high pressure study of orthorhombic rare-earth 

manganites using a combination of synchrotron x ray diffraction and Raman scattering 

technique. The authors observed change in the diffraction patterns of PrMnO3 and 

disappearance of the Raman spectrum with pressure. The authors [28] suspected that the 

changes might be related to the structural phase transition from orthorhombic to tetragonal 

(I4/mcm) structure at 45 GPa. However the disappearance of Raman peak could also be due 

to metal to insulator transition. Hence the first principle simulation with pressure will help to 

overcome this ambiguity. Theoretically, we can predict the transition pressure by comparing 

the enthalpy as a function of pressure for different phases. Figure 6.18 (a) depicts the 

computed pressure dependence of the difference in the enthalpy H= Hortho-Htetra of 

orthorhombic and tetragonal phases. We find that at low pressure (Pc=19 GPa) orthorhombic 

phase has the lowest enthalpy (H), as it is the well-known ground state of PrMnO3 at T=0 

K. However at pressure above 19 GPa, the tetragonal phase becomes favorable over the 

orthorhombic phase. The value of the pressure is in agreement to pressure where shear strain 

becomes unstable (see Fig. 7 of ref.13). Mota el al. [28] reported that the strain analysis does 

not give any evidence for the suppression of the Jahn-Teller distortion at this pressure. If we 

recall Fig. 6.17 (d), we find that computed Jahn-Teller distortion decrease rapidly up to this 

pressure and then later it decreases slowly. Based on combined diffraction and Raman data, 

Mota el al. [28] reported that PrMnO3 undergoes orthorhombic to tetragonal structural phase 

transition at around 45 GPa. As mentioned above the calculated pressure dependence of the 

enthalpy suggests that tetragonal phase is energetically favorable over orthorhombic phase 

above P= 19 GPa. In order to investigate the dynamical stability of tetragonal phase, we 

computed the phonon dispersion relation (Fig. 6.18 (b)) in the entire Brillouin zone at 30 
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GPa. The presence of unstable phonon modes in the tetragonal phase, clearly suggests that 

although tetragonal phase is energetically favor over orthorhombic phase, it is dynamically 

unstable. This rules out the possibility of orthorhombic to tetragonal phase transition in 

PrMnO3 around 45 GPa.  

   

 

 

 

 

 

 

 

FIG 6.18. (a) Enthalpy difference (H) between the orthorhombic (Pnma) and tetragonal 

(I4/mcm) phases of PrMnO3 as calculated using ab-inito DFT calculation. (b) The computed 

phonon dispersion relations for PrMnO3 in tetragonal phase. 

 

As shown in Fig. 6.17 the suppression of Jahn-Teller distortion occurs at 45 GPa. 

Further we found that the magnetic moment at Mn site is also quenched at the same pressure. 

The suppression of the Jahn-Teller distortion is expected to decrease the volume at high 

pressures. Thus change in the volume of the unit cell in the experimental data at  around 45 

GPa may be associated with disappearance of Jahn-Teller distortion followed by insulator to 

metal transition. Our band structure calculation also suggests that PrMO3 becomes poor metal 

above 45 GPa. The similar observation is also found in LaMnO3 [73], which show the 

suppression of Jahn-Teller distortion and insulator to metal transition by application of 

pressure. In LaMnO3, Jahn-Teller distortion and orbital ordering are known to be completely 
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suppressed well below the insulator to metal transition. In contrast to LaMnO3, in the present 

case, we notice that suppression of Jahn-Teller distortion and insulator to metal transition 

occurs simultaneously.  

 

6.4 Conclusions 

In NaNbO3, We have reported inelastic neutron scattering measurements of the 

phonon density of states of sodium niobate as a function of temperature. The inelastic neutron 

scattering spectra are correlated to the various crystallographic phases of NaNbO3, and show 

significant changes with increasing temperature. Upon heating, the spectra become more 

diffusive. The computed phonon density of states of NaNbO3 is found to be in good 

agreement with our INS measurements. Using the calculations, we have identified the various 

soft phonon modes at specific points in the Brillouin zone that are associated with various 

phase transition as a function of temperature.  Further, we have found that the characteristic 

antiferroelectric Raman modes, which appear below the antiferroelectric phase transition 

temperature, correspond to the A1g symmetry and are due to the folding of the T (=95 cm
-1

) 

and  (=129 cm
-1

) points of the Brillouin zone, under the cubic phase. 

In RMnO3, we have reported inelastic neutron scattering measurements of the 

CaMnO3 and PrMnO3 in a wide temperature range up to 1251 K. The excitations at 20 meV 

and 17 meV are found to be associated with the magnetic origin for CaMnO3 and PrMnO3 

respectively. The neutron inelastic spectra also show changes across the magnetic as well as 

structural phase transitions temperatures in both the compounds. Measurements show that in 

spite of similar structure the presence of Jahn-Teller distortion PrMnO3 might results in broad 

peaks in the phonon spectra in comparison to CaMnO3 where it exhibits well-defined peaks. 

Theoretical calculation for PrMnO3 suggests that suppression of Jahn-Teller distortion and 
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insulator to metal transition occurs simultaneously, which is in-contrast to LaMnO3. We 

found that at high pressure above 20 GPa tetragonal phase in PrMnO3 is energetically favored 

over orthorhombic phase, however it is found to be dynamically unstable.  
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Chapter 7 

Phonons and Superionic Behavior in 

Battery Materials 

 

7.1 Introduction 

Plenty of research is going on to address the issue of energy storage for clean and 

sustainable energy. The discovery and exploitation of new high performance materials 

requires a greater fundamental understanding of their properties on the atomic scales, leading 

to major advances in rechargeable batteries for portable electronics, electric vehicles and 

large-scale grid storage. Also the issue of global warming and diminishing fossil-fuel 

reserves accelerate the search for efficient energy alternatives. The performance of energy 

storage devices depends crucially on the properties of their component materials. An 

excellent example of innovative materials science is the discovery of the rechargeable lithium 

battery.  

In the area of energy, materials research based on computational methods now play a 

vital role in characterizing and predicting the structures and properties of complex materials 

on the atomic scale. The simulations will be able to predict the material properties at extreme 

conditions as well as supplement the experimental studies.  In this chapter we have presented 

our work based on first principles simulations to understand the diffusion mechanism of Li 

ion in  superionic conductor Li2O and scope of diffusion in electrode materials LiMPO4 

(M=Mn, Fe).  
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7.2 Lithium Oxide (Li2O) 

 Lithium oxide belongs to the class of superionics, which exhibit high ionic 

conductivity above 1200 K. In this case, Li ion is the diffusing species, while oxygen ions 

constitute the rigid framework. The material find large application is attributed to its high 

melting point, relatively low volatility and high Li atom density. At ambient conditions Li2O 

occurs in the anti-fluorite structure with space group O5
h (Fm3m)[1-3]. Oxygen ions are 

arranged in a FCC sublattice with lithium ions occupying the tetrahedral sites.  We have 

performed the first principles lattice dynamics simulations at different volume corresponding 

to ambient and superionic regime. We have identified the phonon mode which might be 

responsible for superionic in the compound. Further, we have also carried out the barrier 

energy calculation for Li migration from one lithium site to adjacent lithium site along 

different direction.  

For Li2O, we have used the Quantum espresso[4] package for the ab-initio phonon 

calculations. Pseudopotential generated by using Perdew Burke Ernzerhof exchange 

correlation functional under generalized gradient approximation (PBE-GGA) [5, 6] and 

Perdew-Zunger correlation functional under local density approximation (PZ-LDA)[7] have 

been used. We have chosen 12×12×12 K mesh for self-consistent field calculations with 

energy cutoff of 280 and 120 Rydberg for GGA and LDA respectively, which is found to be 

sufficient for convergence of the order of meV. 
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7.2.1 Results and Discussion  

7.2.1.1 Phonon Dispersion Relation 

 

 

 

 

 

 

 

 

 

FIG 7.1 Phonon dispersion from first principles density functional theory under generalized 

gradient approximation (GGA-DFT). The full and dashed lines correspond to calculations 

performed at a= 4.57 Å and a= 4.88 Å respectively. The open symbols correspond to 

reported experimental[8] data.  

 

Ab-initio phonon calculations have been carried out with both the LDA and GGA 

schemes. However qualitatively we did not get any substantial improvement using GGA. The 

computed values of Born effective charges for Li and O are 0.9 and -1.8 respectively, while 

the dielectric constant is 2.90. These are in agreement with previous reported[9, 10] values. 

Here we have shown (Fig. 7.1) calculated phonon dispersion relation at relaxed lattice 

parameter a = 4.57 Å (at 0 K) in GGA scheme. The phonon dispersion relation have been 

plotted after including the LO-TO splitting of the modes. The results are in good agreement 
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with reported experimental data. The compound exhibits superionic transition in the vicinity 

of 1200 K. Hence we have performed phonon calculations at various unit cell parameters 

corresponding to superionic regime.  As expected the phonon frequencies along all the three 

direction are found to soften with increase of volume. The softening is found to be small for 

all the modes except for the lowest transverse acoustic (TA) branch along [110] at zone 

boundary.  

 

 

 

 

 

 

 

 

 

FIG 7.2  Motion of individual atoms for zone boundary TA mode  along [110] direction  at 

lattice parameter corresponding to a= 4.88 Å. Key; O: red spheres, Li: blue spheres. 

 

The eigen vector of TA mode has been plotted (Fig. 7.2) corresponding to the unit cell 

parameter of a= 4.88 Å. We find that lithium atoms in the alternate layers move opposite to 

each other along [001] while oxygen’s are at rest. Hence increasing the temperature could 

lead to migration of lithium ions from one site to another vacant site along [001] direction, 

which can easily be visualized from Fig. 7.2. Fig. 7.3 gives the change in the transverse 

acoustic frequency with increasing lattice parameter, as calculated from LDA and GGA 

schemes of ab-initio DFT. The lowest TA mode along [110] at zone boundary is found to 
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soften sharply at volume in the superionic regime. At the superionic transition, some of the 

lithiums might just have sufficient energy to move from their ideal positions and start 

diffusing. It is possible that the softening of these modes might be the precursor to the 

process of diffusion.  Fracchia[11] et al have also reported softening of zone boundary mode 

along [001] in Li2O.  

 

 

 

 

 

 

 

 

 

FIG 7.3 Softening of zone boundary transverse acoustic (TA) phonon along [110]. Δa 

correspond to difference in lattice parameter from equilibrium. The equilibrium value of 

lattice parameter, a in GGA and LDA calculations are 4.57 Å, and 4.45 Å respectively. 
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7.3 LiMPO4 (M=Mn, Fe) 

At ambient conditions, LiMPO4 (M= Mn , Fe)  crystallize in olivine type (Fig. 7.4) 

orthorhombic Pnma[12] space group analogous to mineral Triphylite structure. LiMPO4 are 

paramagnets above their Neel temperatures. In case of LiFePO4[13-15], below TN= 50 K, 

Fe2+ spins align collinear with b-axis, while in LiMnPO4 [16, 17]  Mn2+ spins align along a-

axis below TN = 34 K.  The structure comprises of discrete PO4 tetrahdera and highly 

distorted oxygen octahedra about lithium and transition metal ion, M. The PO4 tetrahdra are 

irregular, with two significantly different sets of O-O distances. Our interest in this study has 

been to understand the dynamics of these compounds and plausible role of phonons in 

triggering the lithium ion movement. We have studied phonons in the entire Brillouin zone, 

softening of phonons with increasing volume.   Here I have calculated the phonon density of 

states and compared with the measured data[18]. The ab-initio calculations are in good 

agreement with the inelastic neutron scattering data.  

For LiMPO4, we have used the Vienna ab initio simulation package (VASP-5.2) [19, 

20]  along with the PHONON package for the phonon calculations. The volume dependence 

of zone centre and zone boundary phonon modes has been calculated using density functional 

perturbation theory implemented in VASP. The plane wave pseudo-potential has been used 

with maximum plane wave energy cutoff of 500 eV for these compounds. The integrations 

over the Brillouin zone has been performed on a 4×7×9 grid of k-points generated by 

Monkhorst [21] pack method. The generalized gradient approximation (GGA) exchange 

correlation given by Perdew Burke and Ernzerhof [6] with projected–augmented wave 

method has been used. First-principles calculations have been carried out for the ground 

states of A-type AFM structures of LiMPO4. The on-site Hubbard interaction for the d-

electrons has been taken care within the approach as introduced by Dudarev [22] et al. The 
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value of the onsite interaction term U=4.3 eV for d electrons for Fe and Mn has been taken 

from previous studies [23]  on LiMPO4 (M=Mn, Fe). Phonon frequencies were extracted from 

subsequent calculations using the PHONON software[24]. 

 

 

 

 

 

 

 

FIG 7.4 Structure of LiMPO4 (M=Mn, Fe) (orthorhombic Pnma space group) derived from 

xcrysden software at T = 0 K. Key; Li: Red spheres, M=Mn or Fe: Yellow spheres, P: Green 

spheres, O: Blue spheres. 

 

Density functional perturbation method (DFPT)  [25] method can be used to calculate 

the phonon frequencies at any given specific q point, However in the force constant approach  

using the PHONON code one can obtain the phonons in the entire Brillouin zone, but it is 

very time expensive. DFPT method has been used to calculate the volume dependence of the 

zone-boundary and zone center modes specifically.  These calculations have been used to 

identify the dynamically unstable regime.  Later the force constant approach has been used 

for calculation of phonon spectra in the entire Brillouin zone at unit cell volumes 

corresponding to ambient as well as dynamically unstable regime.  The results obtained from 

either method are identical except for the longitudinal optic modes that are not obtained in the 

DFPT method. 
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7.3.1 Results and Discussion  

7.3.1.1 Phonon Density of States 

 

 

 

 

 

 

 

 

FIG 7.5 The comparison of the calculated and experimental neutron inelastic scattering 

spectra for LiMPO4 (M=Mn, Fe) available in the literature [18] at ambient pressure at 300 

K. The ab-initio calculation is carried out at 0 K. The experimental spectra comprises of 

magnetic and phonon contribution, while computed results pertain to phonon contribution 

alone.  

 

The comparison between calculated phonon density of states and experimental 

measured neutron inelastic spectra is shown in Fig. 7.5 for  LiFePO4 and LiMnPO4. The 

phonon spectrum extends up to 150 meV.  The general characteristics of the experimental 

features are well reproduced by the calculations. The measurements are found to be in 

agreement with ab-initio calculations.   
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FIG 7.6  The calculated partial densities of states in LiMPO4 (M=Mn,Fe). The solid and 

dashed lines correspond to the calculations carried out using ab-initio. 

 

The parital contribution of the constituent atoms to the total phonon density of states 

in the two olivines computed using ab-initio calculations is shown in Fig. 7.6.  We find that 

Fe/Mn ions contribute largely below 40 meV, while Li being lighter contributes up to 75 

meV. The density found beyond 105 meV is only due to the stretching modes of the PO4 

polyhedra.  
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7.3.1.2 Behavior of Phonons with Volume 

The phonon dispersion has been calculated along the high symmetry directions using 

ab-initio DFT method.  Fig. 7.7 shows the calculations of phonon dispersion relations using 

the ab-initio method. The LO-TO (longitudinal optic and transverse optic) splitting of the 

modes has also been included while plotting the phonon dispersion relation. The phonon 

frequencies are usually expected to soften with increase of volume. The phonon frequencies 

of LiMPO4 (M=Mn, Fe) have been calculated (Fig. 7.8) using ab-initio method as a function 

of volume. The phonon frequencies along all the three high symmetry direction are found to 

soften with increase of volume.  However, the softening is found to be very large for one of 

the zone-centre (ZC) and zone- boundary (ZB) modes along [100] direction. The change in 

the phonon frequency with increasing volume (Fig. 7.9) has been plotted for these ZC and ZB 

modes.  We find that in both the compounds the zone centre optic mode softens first, 

followed in quick succession by the zone-boundary mode with increasing volume. 

For qualitative understanding of the atomic displacement in these unstable modes, we 

have plotted eigen vectors of both these modes (Fig. 7.10). In case of ZC mode at ambient 

volume the displacements of the Li atoms is maximum, while the amplitudes of other atoms 

are less but not negligible. The displacement of the lithium ions is only in the x-y plane. In 

the dynamically unstable regime, the amplitude of Li atoms has increased significantly. The 

Fe atoms are at rest, while the amplitude of P atoms decreased slightly and O atoms do not 

show any change. The component of displacement of Li atoms is non-zero along all the three 

directions but with the highest component along x direction. 
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FIG 7.7 The Calculated phonon dispersion for LiMPO4 (M=Mn, Fe) from ab-initio density 

functional theory under generalized gradient approximation (GGA-DFT). 
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FIG 7.8 The low-energy part of the phonon dispersion relation from ab-initio density 

functional theory under generalized gradient approximation (GGA-DFT). The full and 

dashed lines refer to the phonon dispersion corresponding to calculated unit cell parameters 

a=10.42(10.55) Å, b = 6.06 (6.17) Å, c = 4.75 (4.79) Å and a = 10.77 (10.66) Å, b = 6.20 

(6.22) Å, c = 4.88 (4.83) Å for LiFePO4 (LiMnPO4). The zone-centre and zone-boundary 

phonon modes in LiFePO4 and LiMnPO4 soften at unit cell volume corresponding to the 

higher temperature.  This region is hitherto defined by us as dynamically unstable regime. 

The thick lines shows the phonon branches undergoing large softening in the dynamically 

unstable regime. 
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FIG 7.9 Zone-boundary and zone-centre modes as a function of unit cell volume. The zone-

centre and zone-boundary phonon modes in LiFePO4 and LiMnPO4 soften at unit cell volume 

corresponding to higher temperatures.   

 

For ZB mode (Fig. 7.10), all the atoms have finite displacement in the ambient 

regime. In case of lithium, there is no displacement along z-direction while the displacements 

along x and y directions are comparable. Here again movement is only in the x-y plane. 

While in the high temperature regime, the amplitude of Fe and P atoms have reduced 

substantially and there is a large increase in amplitude of Li atoms. It is interesting to note 

that Li atoms at the corners of the unit cell do not show any substantial change in amplitude. 

This behavior is different as compared to the ZC mode where amplitude of all Li atoms 

increased simultaneously. As far as O atoms are concerned, the amplitudes do not change.   

Careful analysis of the eigen vector of ZB mode also indicates that, there are non-zero 

components along all the three directions. The component along z-direction is least, while the 

largest component is along x-direction.  
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FIG 7.10 Motion of individual atoms for zone boundary and zone centre modes  at unit cell 

volumes corresponding to ambient and dynamically unstable region. The numbers after the 

mode assignments give the phonon energies of mode in Fe(Mn) compound. i after the phonon 

energy indicates that mode is unstable. A 2×1×1 super cell of the primitive unit cell is shown 

for zone boundary mode at (0.5 0 0). The zone-centre and zone-boundary phonon modes in 

LiFePO4 and LiMnPO4 soften at unit cell volume corresponding to higher temperatures.  

Key; Li: Red spheres, M=Mn or Fe: Yellow spheres, P: Green spheres, O: Blue spheres. 

From both the analysis we can see that at ambient temperature, the likely motion of 

lithium is in the x-y plane. If conducive conditions prevail, lithium might move in this plane. 

Earlier calculations and experimental observation [26-30] of thermal ellipsoids of lithium 

ions from neutron diffraction at ambient temperature have shown that lithium ions move 

along y-direction in a curved path. Hence as far as room temperature results are concerned 



Phonons and Superionic Behavior. . . . . . . 

243 

 

our results are in agreement with previous observations. But, with substantial increase in 

temperature, we find that the scenario changes. 

We find that LiFePO4 shows softening (Fig. 7.8) at a higher volume in comparison 

with the Mn counterpart. The percentage change in volume for initiation of phonon instability 

in LiMnPO4 is much lesser as compared to LiFePO4. The phonon instabilities observed at 

higher volume may correspond to higher lithium MSD compared to the ambient volume. The 

main interest in these compounds stems from their use as battery materials. Lithium 

intercalation and subsequent delithiation are the main processes by which energy is 

transferred during its use as battery material. We have so far tried to unveil the role of 

phonons in the initiation of lithium movement crucial for the use of these materials as battery 

material.  

 

7.4 Conclusions 

Phonon dispersion along symmetry directions from ab-initio calculations is in good 

agreement with reported experimental data of Li2O. We find that around the fast ion 

transition temperature, zone boundary TA phonon mode along [110] become unstable. This 

softening of the phonon could be a precursor to dynamical instability. This observation is 

corroborated by the eigenvector of this mode, and could be one of the factors leading to 

diffusion of lithium ions.  We are able to relate the phonon softening with the ease of lithium 

movement at elevated temperature along [001] as against the other two high symmetry 

directions considered.  

A first principles calculation of LiFePO4 and LiMnPO4 has been successfully used to 

understand the phonon dynamics. The calculated density of states is in excellent agreement 

with inelastic spectra of LiMPO4 compounds as available in the literature. The phonon 
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density of states calculated using first principles at volume corresponding to high temperature 

(> 1000 K) in LiFePO4 and LiMnPO4 suggests that there is a significant instability initiating 

in the Li sub-lattice. Analysis of the eigen vectors of these modes at 300 K suggest that if 

conducive conditions for Li movement from its lattice positions are available, the net 

displacement of Li atoms is in the x-y plane. But at higher temperature regime, the pattern of 

displacement suggests that lithium exhibits non-zero displacement along all the directions but 

with the highest component along x direction.    
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Chapter 8 

Summary and Future Direction 

 

8.1 Summary  

The experimental and simulations studies on various compound  presented in the 

thesis show that lattice dynamics calculations along with inelastic neutron scattering 

measurements can be successfully used to study the phonon properties as well as several 

thermodynamic properties of  various novel compounds including negative thermal 

expansion materials and multiferroics. Properties of a material are related with the response 

of the material to external stimuli. Vibration of lattice in crystalline material changes on 

application of external stimuli, hence they also contribute to the physical properties of the 

material. Further, the vibrational frequencies are governed by the interatomic interaction 

between the atoms; hence it is important to know interaction between atoms. The author has 

used the state of the art density functional theory methods to compute the interaction between 

atoms in various crystalline materials. In order to validate the theoretical calculations, the 

author carried out measurements of phonon density of states from the polycrysatlline sample 

using time-of-flight spectrometers. 

The density functional theory methods have been used to compute and analyze the 

various features of the vibrational excitations in the solids,  such as: (i) the frequency  of 

phonons as a function of the wavevector (i.e. the phonon dispersion relation), (ii) the 

polarization vector of the phonons, (iii) the frequency distribution of phonons, (iv) elastic 

constants (v) the thermodynamic properties of the solid  such as the equation of state, specific 
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heat, thermal expansion, etc. and (vi) the variation of phonon frequencies due to pressure (vii) 

effect of magnetic interaction on phonon frequencies etc. The calculations have also been very 

useful in the planning and execution of the experiments, and enabled microscopic 

interpretations of the observed experimental data.  The outcome of the research included in 

this thesis can be summarized as: 

 

 (1) A comparative ab-initio DFT calculation of phonon spectra as well as thermal expansion 

behavior in M2O and MCN (M=Ag, Au and Cu) is presented.  We find that although low 

energy phonon modes of similar energies are present in all the M2O compounds, the nature of 

bonding as well as open space in the unit cell are important in governing the thermal 

expansion behavior.  

In MCN, we have identified the phonon modes responsible for the anomalous thermal 

expansion behavior.  The nature of the chemical bonding is found to be similar in HT-CuCN 

and AgCN, which is significantly different from that in AuCN. The computed elastic 

constants and Born effective charges are in correlation with the difference in the nature of 

bonding in metal cyanides. 

(2) The ab-initio DFT calculations of phonons modes of ZrW2O8 have been performed in the 

entire Brillouin zone.  We have been able to explain the observed anomalous pressure as well 

as temperature variation of the energies of phonon modes.  The increase of the frequency 

with temperature essentially results from the cubic and/or quadratic anharmonic part of the 

phonon potential, which is able to explain the temperature dependence of low energy modes 

as reported in the literature.  

(3) We have performed measurements of neutron inelastic scattering spectra of the 

multiferroic material GaFeO3 and YMnO3 over a wide temperature range (50 -1300 K) 

covering all the relevant characteristic transition temperatures. GaFeO3  does not undergo any 
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structural phase transition at  high-temperature. However, the increase of the distortion 

amplitudes of the various polyhedral units might be at the origin of the gradual broadening of 

the stretching modes around 60 meV. The ab-initio phonon calculations highlighted 

unambiguously a spin-phonon coupling in GaFeO3. The enthalpy calculations in various 

phases showed that the quenching of the Fe magnetic moment leads to the observed high 

pressure structural phase transition at 47 GPa.  

In YMnO3, the room temperature phase is found to be subject to a strong spin-phonon 

coupling. The calculated phonon dispersion relations in the entire Brillouin zone indicate 

phonon instability in the high-temperature (P63/mmc) hexagonal phases of YMnO3, at the 

symmetry point K (1/3 1/3 0). Unstable phonon modes may lead to a stabilization of the low-

temperature (P63cm) phase.  

(4) We have reported detailed measurements of the temperature dependence of the phonon 

density-of-states of SrFeO2 in the antiferromagnetic phase (P4/mmm). The phonon spectrum 

shows anharmonic broadening above 300 K, which is consistent with the reported distortion 

of the planer structure.  Another  isostructural compound CaFeO2 shows strong  coupling of 

the unstable Bu mode with two stable zone boundary modes at the M point  leading to the 

distortion in the planer structure (P4/mmm) and stabilization of d-CaFeO2 (P-421m). These 

observations are consistent with the available experimental structural data. The spin exchange 

interaction parameters are found to decrease with increase in the distortion of the planer 

structure as described by the amplitude of Bu phonon mode. Calculations at high pressures 

predict that the undistorted planer CaFeO2 would stabilize. 

(5) In piezoelectric NaNbO3, We have measured inelastic neutron scattering measurements of 

the phonon density of states of sodium niobate as a function of temperature across the various 

phase transitions. Using the ab-intio DFT calculations, we have identified the various soft 

phonon modes at specific points in the Brillouin zone that are associated with various phase 
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transition as a function of temperature.  The calculated enthalpy in various phase of sodium 

niobate indicate that  that the orthorhombic structure with space group Pbcm could transform 

to the Pbnm structure at high pressure. 

For antiferromagnetic RMnO3(R=Ca, Pr), the inelastic neutron scattering data (5 - 

1250 K) obtained through collaborative experiments has been obtained and analysed. The 

measurements show that in spite of similar structure the presence of Jahn-Teller distortion 

PrMnO3 might result in broad peaks in the phonon spectra in comparison to CaMnO3 where it 

exhibits well-defined peaks. Theoretical calculation for PrMnO3 suggests that suppression of 

the Jahn-Teller distortion and insulator to metal transition occurs simultaneously.  

(6) A first principles calculation of LiFePO4, LiMnPO4 and Li2O has been successfully used 

to understand phonon dynamics. The calculated phonon dispersion relation in Li2O as a 

function of volume shows a zone boundary unstable phonon mode at volume corresponding 

to superionic regime. This softening of the phonon could be a precursor to dynamical 

instability. We are able to relate the phonon softening with the ease of lithium movement at 

elevated temperature along [001]. The calculated phonon density of states at volume 

corresponding to high temperature (> 1000 K) in LiFePO4 and LiMnPO4 suggests that there 

is a significant instability initiating in the Li sub-lattice. Analysis of the eigen vectors of these 

modes at 300 K suggest that if conducive conditions for Li movement from its lattice 

positions are available, the net displacement of Li atoms is in the x-y plane. But at higher 

temperature regime, the pattern of displacement suggests that lithium exhibits non-zero 

displacement along all the directions but with the highest component along x direction.    

 Besides the basic research activities the author also developed various post 

processing codes interfaced with VASP, Quantum Espresso and PHONON-5.2 software’s. 

Author has also installed and tested various codes in ANUPAM supercomputing facility, 

BARC.    
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8.2 Future Direction 

The experience gained during thesis work would be useful for studying the structure 

and dynamics of more complex technologically important solids. The calculated eigen vector 

of phonons is useful to study the phase transition behaviour of solids.  The study of phonon 

anharmonicity and phonon-phonon interaction is a difficult but exciting field. It is difficult 

because we must consider how phonons interact with other phonons. In comparison, our 

understanding today about the vibrational thermodynamics of materials is based on the 

harmonic model in which phonons are independent, avoiding issues of anharmonic lattice 

dynamics. Phonon anharmonicity is an exciting topic because of its fundamental importance 

and broad applications. With the development of modern experimental techniques and the 

progress of the anharmonic phonon theories and computational methodologies, we are in a 

position to study the relation between the phonon anharmonicity and many important 

thermodynamic properties of materials.  We can study the anharmonity of phonon and their 

effect on thermodynamic properties using ab-initio molecular dynamics. The ab-initio 

molecular dynamics technique is a powerful technique but it limited because it is 

computationally very expensive. Now days the supercomputers are very powerful and one 

can perform such massive calculation.  

 On the other hand of experimental activity, the author is also involved in design a 

new triple axis spectrometer at Dhruva. We are planning to measure phonon dispersion 

relation of various multiferroic materials using time of flight technique and triple axis 

spectrometer.  Our aim is to investigate the spin-phonon coupling and their role in 

multiferroicity. In battery materials also we are planning to measure the dispersion relation at 

around superionic temperature. These measurements may provide the information about the 

nature of diffusion in ionic material. 
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