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Synopsis

Introduction

Equations of state(EOS) of fluids have wide applications in the fields of high

energy density physics, astrophysics and in chemical physics. For example,

in high energy density physics experiments, the system passes through states

with widely varying densities and temperatures which include the fluid state

of the material. Hydrodynamic simulation of those experiments requires EOS

of the materials involved. Another example is the fluid extraction process in

chemical technology which requires the liquid vapor phase diagrams of the

fluids. Because of such applications, an accurate knowledge of EOS and phase

transitions of materials in the fluid state is an important requirement.

The available theoretical methods to obtain thermodynamic properties of

fluids can be broadly divided into two categories. They are, (i) computer

simulations ( molecular dynamics and Monte Carlo methods) and (ii) semi-

analytical methods based on classical statistical mechanics (e.g. perturbation

theory, integral equation theory etc). The ab-initio simulations, like ab-initio

molecular dynamics[1,2], although accurate, require huge computational time

and it is currently impossible to generate EOS data libraries using these meth-

ods. The classical molecular dynamics or Monte-Carlo simulations[3] which

require the interaction potential between the particles as input are relatively

much faster than ab-initio simulations but even so it is still impractical to use

the classical simulation methods to generate EOS data libraries. However, the

results obtained using these methods may be used for comparison purposes as

a benchmark to assess the reliability of semi-analytical methods.

Among the semi-analytical methods based on classical statistical mechan-

ics, two different approaches are prominent. One is based on a self-consistent

solution of the Ornstein-Zernike equation and an approximate closure, both

of which relate the radial distribution function and the direct correlation func-

x
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tion. This approach, called the integral equation theory[4], gives the struc-

tural properties of the fluid like radial distribution function etc. at a given

temperature and density. Using the knowledge of structural properties, the

EOS can be obtained either in virial route relating pressure to radial distribu-

tion function, or in energy route relating internal energy to radial distribution

function or in the compressibility route relating the isothermal compressibility

to direct correlation function. However, it has been observed that the EOSs

obtained using these three routes are inconsistent with one another because of

the approximate closure used. It has also been found that the Ornstein-Zernike

equation doesn’t have a solution in the phase transition region[5]. The second

kind of approach is the thermodynamic perturbation theory[4] in which a sys-

tem whose properties are known is taken as reference and the properties of

the system under consideration are obtained as a perturbation over those of

the reference system. Thus a given thermodynamic quantity, for example, the

Helmholtz free energy is written as a series in which each term depends on

the distribution functions of the reference system. This series is called the high

temperature series. The nth term in the series depends on distribution func-

tions up to order 2n. Since it is not possible to obtain distribution functions of

order more than two, only the first term of the series can be calculated exactly if

the radial distribution function of the reference system is known. To calculate

the second order term approximately, Barker and Henderson suggested an ap-

proximation called the local compressibility approximation[6]. However, for

potentials with short range, the local compressibility approximation method

was not accurate[7]. Apart from this, the thermodynamic perturbation theory

and the integral equation theory, being mean field theories, do not account

for fluctuations which become important close to the critical region. Also, the

isotherms obtained using these methods are unphysical in the coexistence re-

gion and have to be corrected. In the recent past, a method has been proposed

by White[8] to include the fluctuation contribution to the Helmholtz free en-

ergy of a fluid. The method, which is called Global Renormalization Group
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Theory (GRGT), takes the mean field free energy as input and improves over

it by adding contributions from fluctuations in a step-by-step manner. It was

claimed that the method improved the accuracy of EOS throughout the liq-

uid vapor phase diagram apart from giving correct description in the critical

region. However , the method required some parameters to be adjusted and

lacked a rigorous formulation.

In spite of the deficiencies in the theories described above, the calculations

are simpler and faster than the simulations by orders of magnitude. This ad-

vantage makes the methods suitable for large scale EOS calculations. How-

ever, there is scope for improvement of accuracy of the methods which forms

the basis of our work. We found that the GRGT is a suitable starting point

for our study as the method attempts to evaluate the partition function in a

more accurate manner and gives a qualitatively correct description of physics

throughout the phase diagram.

Brief account of work done

The aim of our study is to develop and implement accurate methods to obtain

the EOS of fluids. In a nutshell, the study we carried out is the following:

1. The GRGT is derived in a generalized way starting from the square-

gradient functional for the Helmholtz free energy[9] and using Wilson’s phase

space cell approach[10]. The method is applied to square-well and Lennard-

Jones fluids. It is observed that the isotherms become flat in the two-phase

region after GRGT correction. Also an improvement in accuracy is observed

in the obtained liquid vapor phase diagrams in the critical region. However,

the applications showed that the results obtained using GRGT are sensitive to

the assumed initial coarse-graining length scale in the method[11]. We con-

cluded that the mean field Helmholtz free energy and the coefficient of the

square-gradient term in the Helmholtz free energy functional (called influence

parameter) used in the GRGT calculations were inaccurate and their inaccu-
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racy was the reason for sensitivity of GRGT results to the initial coarse-graining

length scale.

2. We combined the ideas of thermodynamic perturbation theory and inte-

gral equation theory and developed a method to obtain a perturbation series

for the mean field Helmholtz free energy , radial distribution function and

other structure related functions. The method is based on introducing a cou-

pling parameter 1 in the pair potential and expanding the correlation functions

and Helmholtz free energy as a series in the coupling parameter. The terms in

the Coupling Parameter Expansion (CPE) are obtained using the integral equa-

tion theory. In this work, we assumed that the bridge function[4] required to

solve the Ornstein-Zernike equation does not depend on the coupling param-

eter. We applied our method to the square-well fluid with hard-sphere fluid

as the reference system assuming an empirical form for the closure given by

Malijevsky and Labik[12] to solve the Ornstein-Zernike equation. Using the

new method, we obtained the radial distribution function and the Helmholtz

free energy of square-well fluids of various ranges at various temperatures

and densities and also their liquid vapor phase diagrams. The new method

improved the results enormously over those obtained using existing perturba-

tion methods[13] when compared with available simulation data. However,

we observed that the coexistence region becomes too narrow close to the criti-

cal region as compared to the simulation data.

3. The perturbation method we developed is generalized[14] by relaxing

the assumptions mentioned in point 2 so that it can be applied to any pair po-

tential. The method is applied to square-well and Lennard-Jones fluids and

liquid vapor phase diagrams are obtained. We also obtained the influence

parameter and calculated the surface tension of square-well fluids of various

ranges as a function of temperature. The obtained results are compared with

available simulation data and are found to improve the agreement over the

earlier calculations in point 2.

1The coupling parameter switches on and off the perturbation when varied from 1 to 0.
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4. We showed the equivalence of the CPS obtained within our method to

that of high temperature series [4,15] for pairwise additive interaction poten-

tials[18]. As a consequence of the equivalence, we showed that the terms of

the coupling parameter series scale inversely with temperature if the repulsive

part of the potential has a hard-core.

5. We used the improved Helmholtz free energy and influence parameter,

obtained using the perturbation theory we developed, in the GRGT and ap-

plied it to square-well fluids. We obtained the critical exponents using our

method and observed that they are non-classical (differing from mean field)

and belong to the Ising universality class, conforming to the earlier observa-

tions[8]. We also studied the Yang-Yang anomaly[16,17] in square-well fluids

using the GRGT. All the obtained results[19] were found to be an improve-

ment with respect to the perturbation method outlined in points 2 and 3 in the

critical region when compared with available simulation data.

6. Application of the GRGT to realistic systems requires the inter-atomic

pair potentials to be known. We obtained the parameters of empirical pair

potentials of simple metals (Sodium and Potassium) using the cold curve[20].

The cold curves have been obtained using the density functional theory based

code VASP[2]. The same potentials have been studied in GRGT as well as clas-

sical molecular dynamics and the obtained liquid vapor phase diagrams have

been compared with experiments. The results of GRGT were found to be in

good agreement with simulation results validating the GRGT method. GRGT

and simulation results with our emiprical potentials were found to be in closer

agreement with expriments than results from other pair potentials existing in

the literature[21].
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Organization of thesis

The thesis is organized as follows:

In chapter 1, we discuss the various existing liquid state theories(integral equa-

tion theory, thermodynamic perturbation theory and renormalization group

theory) in detail. The current status of the methods is briefly reviewed and a

basis is set for the study we carry out in further chapters. An outline of the

thesis is given.

In chapter 2, we derive the GRGT starting from the square gradient func-

tional using Wilson’s phase space approach[10]. Numerical implementation

of the method is described with application to square-well and Lennard-Jones

fluids. The obtained results are compared with simulation data from literature

and analyzed.

We discuss the method we developed to obtain terms of the CPE in chap-

ter 3. Initially, a simplified version of the method is discussed and applied to

square-well fluids. The results are compared with those of simulations from lit-

erature and are analyzed. Later, a generalized version is described and applied

to square-well and Lennard-Jones fluids. The results of generalized version are

compared with available simulation data and earlier results. Also, application

of the method to obtain surface tension is explained and applied to square-well

fluids.

In chapter 4, we show that the CPE and the perturbation series obtained by

Zwanzig are equivalent in the case of pairwise additive interaction potentials.

The consequences of equivalence are discussed.

The CPE method is combined with the GRGT and applied to square-well

fluids in chapter 5. Application of the CPE+GRGT to study equation of state,

critical exponents and Yang-Yang anomaly is discussed and the results are an-

alyzed.

In chapter 6, we describe a method to obtain parameters of pair potentials

of simple metals using their ab-initio cold curves. Details of obtaining the cold
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curve from ab-initio calculations are provided. The potentials have been ob-

tained for Potassium and Sodium. Details of the classical molecular dynamics

simulations we did to obtain the liquid vapor coexistence data using the pair

potentials are presented. Finally, application of the CPE+GRGT method to

these metals using the above developed potentials is described. The results

are compared with the simulation and experimental data and analyzed.

The thesis is concluded in chapter 7. Main conclusions of the thesis are

summarized here. A discussion on future work is given.
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CHAPTER 1
Background

Liquid is a state of matter intermediate between solid and gas. A naive dis-

tinction between a solid and a liquid is the flowing property. Liquids have

negligible shear modulus when compared to solids. From a microscopic view-

point, Bragg diffraction pattern of a solid contains sharp peaks showing a long

range order in arrangement of the atoms whereas the Bragg diffraction pat-

tern of a fluid contains diffuse maxima indicating a short range ordering of the

atoms. A liquid and a gas are indistinguishable in terms of the above men-

tioned properties. The liquid and the gas are distinguishable and coexist only

between the triple point and the critical point. Below the triple point, the liq-

uid ceases to exist and above the critical point, the distinction between them

in terms of low and high density phases ceases to exist. A typical phase dia-

gram of a simple liquid is shown in Fig.(1.1). Theoretical modeling of a fluid

accounting for the liquid-vapor phase transition was originated by Van der

Waals with his derivation of the famous Van der Waals equation in 1873. Since

then the theoretical modeling of properties of a fluid has been a major topic

of research which has seen many breakthroughs. The aim of this thesis is to

develop an accurate method to obtain the thermodynamic properties of a sim-

ple classical fluid incorporating the effects of fluctuations which are generally

neglected. Following is a brief discussion of the methods which are used in the

study carried out in subsequent chapters.

1.1 Basic Definitions

The system we consider is a simple classical fluid which is a collection of N

particles interacting with a given spherically symmetric pair potential u(r) in

1



2 1.1. BASIC DEFINITIONS

Figure 1.1: Phase diagram of a simple fluid

a volume V at an absolute temperature T . The system is assumed to be ho-

mogeneous and isotropic with a average (number) density ρ = N/V . Above

assumptions remain valid throughout the thesis.

1.1.1 Canonical partition function

Canonical partition function QN(V, T ) of the system is defined as

QN(V, T ) =
1

N !λ3N
D

∫
exp(−βU)d~r1d~r2...d~rN (1.1)

where λD = ~/
√

2mkBT is the thermal De-Broglie wavelength and β = 1/kBT .

The term depending on λD is obtained by integrating out the momentum de-

grees of freedom. U is the total potential energy of the system obtained by

summing over the positions of all the particles.

U =
1

2

∑
i

∑
j

u(|~ri − ~rj|) (i 6= j) (1.2)
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The integral in Eq.(1.1), leaving out the constant prefactor, is called the config-

uration integral and is denoted as ZN(V, T ). It is understood that the integral

is over the total volume for each particle co-ordinate.

1.1.2 n- particle density

The equilibrium n − particle number density in canonical ensemble is defined

as

ρn(~r1, ~r2, ..~rn) =
N !

(N − n)!

1

ZN

∫
exp(−βU(~r1, ~r2, . . . , ~rN)))d~rn+1d~rn+2...d~rN

(1.3)

From the above definition, the single particle density is written as

ρ1(~r) =
N

ZN

∫
exp(−βU(~r, ~r2, . . . , ~rN))d~r2...d~rN

=

〈∑
j

δ(~r − ~rj)

〉
(1.4)

and ∫
d~rρ1(~r) = N (1.5)

Thus for a homogeneous and isotropic system, ρ1(~r) = ρ = N/V . ρ1(~r) may be

related to the probability of finding a particle at a particular position. Along

similar lines, the two particle density can be written as

ρ2(~r, ~r′) =
N(N − 1)

ZN

∫
exp(−βU(~r, ~r′, . . . , ~rN)))d~r3d~r4...d~rN

=
1

2

〈∑
i

∑
j

δ(~r − ~rj)δ(~r′ − ~ri)

〉
. (i 6= j) (1.6)

ρ2(~r, ~r′) is related to the probability of finding a particle at a particular position

~r1 and another particle at a position ~r2 which gives a sense of correlation be-

tween the two particles’ positions. If the particles are un-correlated as in the

case of ideal gas, then ρ2(~r, ~r′) = ρ1(~r)ρ1(~r′).

A measure of the deviation from ideal(un-correlated) behavior may be ob-



4 1.1. BASIC DEFINITIONS

 0

 0.5

 1

 1.5

 2

 2.5

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

g(
r)

r

Figure 1.2: Radial distribution function of Lennard-Jones fluid at temperature 2.88 and density 0.85
in reduced units.

tained from the two particle correlation function defined as

h(~r, ~r′) =
ρ2(~r, ~r′)− ρ1(~r)ρ1(~r′)

ρ1(~r)ρ1(~r′)
(1.7)

The deviation from un-correlated ideal gas behavior may be viewed as corre-

lation and thus the name pair correlation function to h(r).

1.1.3 Radial Distribution Function (RDF)

From Eq.(1.7), we define two particle distribution function as

g(~r, ~r′) =
ρ2(~r, ~r′)

ρ1(~r)ρ1(~r′)
(1.8)

Thus g(~r, ~r′) = h(~r, ~r′) + 1. For a homogeneous and isotropic system, g(~r, ~r′) =

g(|~r − ~r′|) and is called the radial distribution function (RDF). The RDF plays

a key role in describing the structure and thermodynamics of liquids. Fourier

transform of g(r) is called the structure factor and is experimentally measur-

able through scattering experiments[1]. A typical plot of RDF is shown in

Fig.(1.2). Physical meaning to g(r) may be given using Percus’ interpretation

of the single particle density ρ1(r) at a distance r as ρg(r) provided a parti-

cle of the fluid is located at the origin[1]. Thus the number of particles in the

shell between r and r + dr is given by 4πr2drρg(r). Hence the peaks in g(r)

(see Fig(1.2)) represent shells of neighbors indicative of short range ordering
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of atoms in the liquid state. It can be seen from Fig.(1.2) that g(r) becomes zero

as r → 0. In-fact it practically dies down well before r approaches zero indicat-

ing a strong repulsive interaction between particles at smaller distances. The

distance at which the RDF practically becomes zero may be taken as diameter

of a particle for practical purposes. It can also be seen from Fig.(1.2) that the

RDF tends to unity at large distances implying the dying down of correlations

between widely separated particles, which is expected in the case of fluids.

1.1.4 Thermodynamic properties from RDF

If the RDF is known, thermodynamic properties of a fluid with particles inter-

acting via a pairwise additive potential can be expressed as integrals involving

the RDF[1]. The excess internal energy Eex, which is the total internal energy

E minus the ideal gas contribution Eid, is given by the energy equation

Eex

N
= 2πρ

∫ ∞
0

u(r)g(r)r2dr. (1.9)

The pressure P is related to g(r) by the below equation called the virial equation:

βP

ρ
= 1− 2πβρ

3

∫ ∞
0

du(r)

dr
g(r)r3dr. (1.10)

Also, the isothermal compressibility χ may be obtained using g(r) from the

following equation

ρχ

β
= 1 + 4πρ

∫ ∞
0

(g(r)− 1)r2dr (1.11)

Above equation is called the compressibility equation. Thus, with the knowledge

of g(r) for a given temperature and density, one can use any one of the above

equations and obtain a thermodynamic potential and then calculate the other

physical quantities using thermodynamic relations. The problem of calculat-

ing g(r) theoretically is discussed in the next section.
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1.2 Integral Equation Theory

In the previous section, the role played by g(r) in describing the thermody-

namic and structural properties of a fluid has been discussed. In this section

we describe briefly the methods for obtaining the RDF and other structure re-

lated quantities.

1.2.1 Born-Green equation

One method to obtain RDF is by solving the Born-Green equation obtained

by terminating the Yvon-Born-Green hierarchy of equations for particle den-

sities using the Kirkwood superposition approximation[2, 3]. The Born-Green

equation is the following

−∇1 (lng(~r1, ~r2) + βu(~r1, ~r2)) =

βρ

∫
∇1u(~r1, ~r3)g(~r1, ~r3) [g(~r2, ~r3)− 1] d~r3 (1.12)

The results obtained using this method were seen to be accurate only at low

densities [4].

1.2.2 Ornstein-Zernike equation and various approximate clo-

sures

A popular method to obtain g(r) is the Integral Equation Theory based on

solving the Ornstein-Zernike Equation(OZE) along with a closure relation[1,

5]. The OZE for a homogeneous and isotropic fluid is given by

h(r) = c(r) + ρ

∫
h(r′)c(|r − r′|)d3r′ (1.13)

Above equation basically is a separation of the pair correlation function into

two parts: the first part c(r) is called the direct correlation function and the

remaining part on the R.H.S. of the above equation is called the indirect cor-

relation function (denoted as y(r)). The c(r) is the correlation between two

particles which are within the range of potential of interaction and thus di-
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rectly interacting whereas the y(r) is the correlation between particles whose

interactions are not direct but mediated by other particles. Eq.(1.13) has two

unknowns h(r) and c(r). To Solve OZE one more equation called the closure

relation is required, the exact form of which is given by

c(r) = exp(−βu(r) + y(r) +B(r))− y(r)− 1 (1.14)

Eq.(1.14) has been obtained using diagrammatic methods[1]. In the above

equation B(r) is called the bridge function. Eq.(1.13) and Eq.(1.14) can be self-

consistently solved to obtain g(r) and c(r) if the B(r) is known. However, the

exact form ofB(r) is unknown. Thus the problem of obtaining g(r) boils down

to the problem of devising a form for B(r).

The simplest approximation to B(r) is taking it to be 0. This approximation

is called the Hyper-Netted Chain(HNC) approximation[6]. Another simple

approximation given by Percus and Yevick[7](PY) is the following

B(r) = ln[1 + y(r)]− y(r) (1.15)

The PY approximation is basically a linearized form of HNC w.r.t. y(r). Both

the PY and HNC closures tend to the correct asymptotic form (i.e., exp(−βu(r)))

in the low density limit(ρ → 0). Also, the closures give correct expressions for

the second and third terms in the virial expansion of EOS. However, because

the forms of B(r) are approximate, it is found that the equations of state(EOS)s

obtained using the three routes i.e., the energy equation (1.9), the virial equa-

tion (1.10) and the compressibility equation (1.11), differ from each other. This

is a common problem with all the approximate closures. However, the HNC is

a special case where the energy and virial routes are found to be equivalent.

The PY and HNC closures have been used to obtain solutions of OZE for

various potentials. The PY approximation gives accurate results for the Hard

Sphere fluid. Also it is analytically solvable in this case. Regarding the per-

formance of these closures, it is found that the PY approximation is more ac-

curate than HNC for strongly repulsive and short ranged potentials because

of cancellation of errors. The accuracy of the closures is seen to decrease with
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decrease in temperature.

Various advanced approximate forms for B(r) are available in the litera-

ture. A good discussion of various forms of the bridge function and their per-

formance is given in a review by Bomont[5]. As explained earlier, the incon-

sistency between the EOS obtained from various routes is a general problem

for any approximate closure. Methods have been proposed in which the con-

sistency between various routes is imposed by adjusting the parameters in the

closure or a mixture of closures. Some examples are RHNC (Reference HNC),

RY (Roger Young) closure, HMSA closure, SCOZA (Self consistent Ornstein

Zernike Approximation) [8] etc.

With the improved closures, the accuracy of the calculated thermodynamic

properties increased enormously. However, it was found that for each closure,

there is a region in the thermodynamic phase space where solution to OZE

does not exist. The self-consistency conditions make the numerical schemes

complicated. Apart from this, it has been found that the methods become

less accurate at low temperatures and for potentials with shorter ranges. In

the next section, we discuss an alternate method to obtain the thermodynamic

properties of fluids.

1.3 Thermodynamic Perturbation Theory

The basic idea of Thermodynamic Perturbation Theory (TPT) is the distinct

role played by the repulsive and attractive parts of the pair potential[1, 9–11].

It has been observed that the structure factor of a fluid at a given temperature

and density is mostly determined by the repulsive part of the pair potential

which is steep and short ranged. The potential energy due to attractive part

of the potential which is weak and long ranged forms a uniform background

in which the particles move. It only adds corrections to the structure. This

idea motivates splitting of the u(r) into a reference part which is dominantly

repulsive and an attractive part which is treated perturbatively. Assuming that

the properties of the reference fluid like Helmholtz free energy, RDF etc. are

known, the properties of the fluid under consideration are expressed in terms
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of the properties of the reference fluid. The method briefly[1] is given below.

1.3.1 Basic derivation

Let the pair potential be split and written as follows

u(r, ζ) = uref (r) + ζuper(r) (1.16)

where ζ is called the coupling parameter which when varied from 0 to 1 switches

the potential u(r) from the reference system potential to the potential of the

system under consideration. ζ is a parameter introduced only for the ease of

calculating the perturbation expansion and is set equal to 1 at the end of the

calculation. Thus the total potential energy of the system for a given configu-

ration of particles is U = Uref + ζUper where each of the terms is a double sum

of the corresponding potential over positions of the particles. The Helmholtz

free energy of the system of particles interacting with potential of Eq.(1.16) is

given by

F (ζ, V, T ) = −kBT lnQN(ζ, V, T ) (1.17)

where kB is the Boltzmann constant and QN(ζ, V, T ) is the canonical partition

function of the system with coupling parameter ζ . Using Eq.(1.16), F (ζ, V, T )

may be re-written as

F (ζ, V, T ) = −kBT lnQN(0, V, T )− kBT ln

(
QN(ζ, V, T )

QN(0, V, T )

)
= −kBT lnQN(0, V, T )− kBT ln 〈exp[−βζUper]〉0 (1.18)

Angular brackets in the second term of above equation represent a canonical

ensemble average and the subscript 0 indicates that the average is over the

reference system ensemble.The first term represents the Helmholtz free energy

of the reference system( denoted as F0). Expanding the exponential term in the

angular brackets as a Taylor series around ζ = 0, we get

〈exp[−βζUper]〉ζ=0 = 1− βζ 〈Uper〉0 +
β2ζ2

2!

〈
U2
per

〉
0
− β3ζ3

3!

〈
U3
per

〉
0

+ ....... (1.19)
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Substituting the above equation in Eq.(1.18) and expanding the logarithm (

using log(1 + x) expansion), we get the so called cumulant expansion.

F (ζ, V, T ) = F0 − kBT ln

(
1− βζ 〈Uper〉0 +

β2ζ2

2!

〈
U2
per

〉
0
− β3ζ3

3!

〈
U3
per

〉
0

+ .......

)
= F0 − kBT

(
−βζ 〈Uper〉0 +

β2ζ2

2!

[〈
U2
per

〉
0
− 〈Uper〉20

]
+ ........

)
(1.20)

This is the perturbation expansion for the Helmholtz free energy. The Helmholtz

free energy of the actual system can be obtained by setting ζ = 1. In the above

equation, the term inside the logarithm other than 1 is required to be less than

1 for the expansion to be convergent which is difficult to check. In practice, it

is assumed that the series is convergent if 〈βUper〉 << 1 which is a less strin-

gent condition and is valid for high temperatures. Thus the series is also called

High Temperature Series Expansion(HTSE).

1.3.2 First order correction to Helmholtz free energy

Using the definition of RDF[1] denoted as g(r), the first order correction term

F1 in the HTSE (Eq.(1.20)) is given by

F1 = 〈Uper〉0 =
ρN

2

∫
g0(r)uper(r)(4πr

2dr) (1.21)

1.3.3 Local compressibility approximation

The second order term in HTSE turns out to be a complicated functional of

correlation functions of the reference system up to fourth order. It cannot be

determined exactly as the correlation functions of order higher than two are

unknown. Barker and Henderson[12] proposed local compressibility approxi-

mation to the second order term F2 given by

F2 = −πρN
(
∂ρ

∂p

)
ζ=0

∂

∂ρ

[∫
ρu2

per(r)g0(r)r2dr

]
(1.22)

A simplified version of local compressibility approximation is called the macro-

scopic compressibility approximation where g0(r) is assumed to be indepen-
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dent of pressure p. It is observed that the local compressibility approximation

and the macroscopic compressibility approximation do not improve much the

estimated F with respect to the first order correction, for potentials of inter-

mediate and short ranges[13, 14]. Using the macroscopic compressibility ap-

proximation, a method to sum the series was worked out by Preastgaard[14].

However, it has been seen that the contribution of higher order terms within

the macroscopic compressibility approximation is found to be very small.

Thus within the method described above, the Helmholtz free energy of

a simple classical liquid may be obtained from which other thermodynamic

properties can be calculated. There are however two issues which have a cru-

cial bearing on the accuracy of the obtained results. First is the choice of ref-

erence system. Second is the method used to separate the potential u(r) into

reference and perturbation parts. A brief discussion of these follows.

1.3.4 Choice of the reference system

There are only two reference systems for which analytical fitting formulae to

the Helmholtz free energy which are in good agreement with the computer

simulations are known. One is the hard sphere fluid[15] and the other is the

One Component Plasma. Of these, the hard sphere fluid reference system

is suitable for simple fluids with an empirical interaction potential( for e.g.,

Lennard Jones ) which are of our concern while the one component plasma

reference system is well suited for ionic fluids.

For fluids with inter particle interaction modeled using square-well poten-

tial, Yukawa potential etc., or in general any potential with a hard sphere repul-

sive part and a weak attractive tail, the hard sphere system is the natural ref-

erence system. However, for systems with inter-particle interactions modeled

using potentials like Lennard-Jones potential for which the repulsive part is

not a hard sphere potential, the separation is not immediately obvious. Various

ways of separating u(r) have been proposed in these cases. Most prominent

of theses are the Barker and Henderson(BH) prescription[16] and the Weeks

Chandler and Anderson(WCA) prescription[17]. The BH prescription is as fol-
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lows

uref (r) = u(r) r ≤ σ

= 0 r > σ

uper(r) = 0 r ≤ σ

= u(r) r > σ (1.23)

where σ is the distance at which u(r) changes sign. The WCA prescription is

uref (r) = u(r) + ε r ≤ b

= 0 r > b

uper(r) = −ε r ≤ b

= u(r) r > b (1.24)

where b is the separation at which the potential is minimum and ε is the depth

of the potential. It can be seen that the above kind of separations do not natu-

rally lead to hard sphere system as reference system. However BH and WCA,

along with their prescriptions for separation of u(r), have given methods to

relate the properties of the reference system with potential uref (r) to that of the

hard sphere system.

In the BH method[16], the Helmholtz free energy F0 and the RDF g0(r) of

the reference system are approximated to be those of hard sphere reference

system with the hard sphere diameter DHS chosen to be

DHS =

∫ σ

0

[exp(−βu(r))− 1]dr (1.25)

BH applied their theory to the Lennard-Jones fluid and found that the results

are in excellent agreement with simulations when the Helmholtz free energy

is calculated upto the second order perturbation term correction (F2).

In the WCA method, F0 is approximated by the free energy of the hard

sphere system (FHS ) and g0(r) is assumed to be g0(r) = exp(−βuref (r))yhs(r),

where yhs(r) is the cavity distribution function of the HS system. (The cavity
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distribution function is defined as exp(−βu(r))g(r)). The diameter DHS of the

hard sphere is obtained by solving the equation

∫ b

0

r2yhs(r)dr =

∫ b

0

r2exp(−βu0(r))yhs(r)dr (1.26)

Above equation has to be solved numerically using an iterative procedure. It

was found that the convergence of the perturbation series with WCA prescrip-

tion is faster as compared to the BH prescription. Subsequently, there have

been many improvements over the WCA method[18, 19].

Apart from the BH and WCA methods and their improvements, Mansoori

and Canfield developed a variational method based on the Gibbs-Bogoliubov

inequality in which the HS diameter is treated as a variational parameter[20,

21]. Using the variational principle, Kerley developed a perturbation theory in

which the zero temperature isotherm is used in lieu of the pairwise interaction

potential[22].

Second order HTSE with local compressibility approximation or macro-

scopic compressibility approximation gave good results for fluids with inter-

action potentials with ranges varying from long to intermediate. However, the

method was seen to become inaccurate for short ranged potentials and adding

higher order corrections within the macroscopic compressibility approxima-

tion did not lead to a significant improvement with when compared with sim-

ulation results.

1.3.5 Zhou’s method

A new method to obtain the Helmholtz free energy within TPT was developed

by Zhou in 2006[23]. The perturbation series for Helmholtz free energy was

obtained in an alternative way called the coupling parameter expansion(CPE).

Differentiating F (ζ, V, T ) in Eq.(1.17) w.r.t. ζ and re-writing it in terms of the

RDF of system, Zhou obtained

F (ζ, V, T ) = F0 +
ρN

2

∫ 1

0

dζ

∫
gζ(r)uper(r)d

3r (1.27)
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In the above equation, expanding gζ(r) (which is a function of V and T also) as

a Taylor series in ζ around ζ = 0 and integrating over ζ , we get

F (ζ = 1, V, T ) = F0 +
ρN

2

∫
r2druper(r)

{
g0(r) +

1

2!

dg

dζ

∣∣∣∣
0

+
1

3!

d2g

dζ2

∣∣∣∣
0

+ ...

}
(1.28)

It can be seen that the first term in the above expansion is same as that of HTSE

(see Eq.(1.21)). To obtain the nth order term, dng
dζn

∣∣∣
0

is required. Zhou obtained

it by solving for g(ζ, r) using Integral Equation Theory for various values of

ζ close to 0 and further calculating the numerical derivative at each r. Using

this method, Zhou obtained the Helmholtz free energy upto fifth order[24].

Zhou’s method, when applied to various simple fluids like the square-well

fluid showed a remarkable improvement in the results as compared to those

obtained using second order HTSE within macroscopic compressibility ap-

proximation. However, Zhou’s method was exceedingly numerical and the

derivatives obtained required further smoothing procedures to remove un-

wanted numerical fluctuations. In the subsequent chapters we describe a new

method we developed for calculating terms of CPE, which is equivalent to the

Zhou’s method but is based on fundamental arguments and is much easier to

implement.

1.4 Renormalization Group Theory

Theories described above are called mean field theories. Basic assumption of

a mean field theory is that the potential (energy) experienced by a particle is

the mean (a weighted average) of the potential due to the surrounding parti-

cles. Landau and Ginzburg gave a more general and unified way of under-

standing a mean field theory. According to Landau-Ginzburg theory, if the

partition function is written as a functional integral over all possible config-

urations of the order parameter1, then the mean field approximation amounts

to approximating the functional integral as the maximum value of the inte-

1The concept of order parameter is explained below.
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grand. It is also called the saddle point approximation[25, 26]. The mean field

theories do not account for fluctuations in the order parameter which become

especially important close to the critical point of a continuous phase transition

(commonly known as second order phase transition). We first give below, a

brief discussion of the experimental facts regarding continuous phase transi-

tions. Then we give a brief review of theoretical developments for explaining

the second order transitions ending up with a discussion on ideas of Renor-

malization Group Theory(RGT) put forward by Kenneth G. Wilson[27] which

succeeded in explaining the observed experimental facts close to the second

order transitions.

1.4.1 Continuous phase transitions

The study of continuous phase transitions started around the year 1869 with

Thomas Andrews’ experiments on CO2 showing that a transition from the

gaseous to liquid phase of CO2 can be made in a continuous way without any

sudden change in density. Andrews coined the term ”critical point” which he

meant as the point in the thermodynamic phase space (T, ρ, P space in case

of fluids), where the distinction between a gas and a liquid disappears. A

similar phenomenon has been observed in magnets (ferromagnetic materials)

where the materials lost their magnetic properties above some temperature i.e.,

the material would be ferromagnetic (with non-zero net magnetization) below

a certain temperature and paramagnetic (zero net magnetization) above that

temperature. Analogous to the case of fluids, this temperature is also called

the critical temperature. Again, in binary alloys, it was found that the ordered

arrangement of atoms disappears above a particular temperature. In all of the

above three examples, there is a continuous transition from one phase to other

at a point in the thermodynamic phase space called the critical point. The most

interesting fact is the experimentally observed universality in the behavior of

the above apparently unrelated systems close to the critical point.
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1.4.2 Critical exponents

It has been observed that systems undergoing a continuous phase transition

follow certain universal scaling laws close to the critical regions, the exponents

of which have been measured experimentally and are called critical exponents.

They are the following:

Exponent β: The zero field magnetization m of a ferromagnet is found to scale

as

|m| ∝ (Tc − T )β T → T−c (1.29)

Similarly, the difference between the liquid densityρl and vapor densityρv of a

fluid scales as

ρl − ρv ∝ (Tc − T )β T → T−c . (1.30)

Also in the case of a binary mixture, the difference between concentrations of

one of the compounds in the two phases close to critical temperature scales as

c1 − c2 ∝ (Tc − T )β T → T−c . (1.31)

Surprisingly, the value of β in all these cases has been found experimentally to

be same and is close to 0.32.

Exponent α: The specific heat of a ferromagnet, a fluid and a binary alloy

close to their corresponding critical points is found to diverge according to the

scaling law,

C ∝ (Tc − T )−α T < Tc

∝ (T − Tc)−α T > Tc (1.32)

Again, the value of α is close to 0.1 for all the above cases.

Exponent γ: This exponent is related to the divergence of zero-field suscepti-

bility close to the critical temperature which follow the scaling law,

χ ∝ (Tc − T )−γ T < Tc

∝ (T − Tc)−γ T > Tc (1.33)
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In the case of ferromagnetic materials, χ is the magnetic susceptibility whereas

in the case of a fluid, χ is the isothermal compressibility. The measured value

of γ for different materials is 1.2.

Exponent δ: This exponent is related to the variation of magnetization m with

external magnetic field along the critical isotherm in the case of a ferromagnetic

material. The corresponding scaling law is

m ∝ h1/δ (1.34)

In the case of a fluid, the exponent δ is related with the following scaling law

ρ− ρc ∝ (P − Pc)1/δ (1.35)

The exponent δ has been measured to be close to 4.8.

Apart from α, β, γ and δ, there are two more exponents ν and η which are

related to the divergence of correlation length and the power-law decay of the

correlation function.

As explained above, the puzzling fact is the universality exhibited close to

the critical point. The various critical exponents are identical not just for vari-

ous fluids or for various magnetic materials close to their corresponding crit-

ical point but between continuous transitions of completely different types,

independent of materials involved. This in turn amounts to saying that the

behaviour near the critical point is independent of microscopic Hamiltonians.

The microscopic details of the system are irrelevant when the system is close

to its critical point.

1.4.3 Landau - Ginzburg theory

The para-ferro transition in ferromagnetic materials was first explained by

Weiss and Curie. The liquid-vapor transition was first explained by Van der

Waals and the order-disorder transition in binary mixtures was first explained

by Bragg and Williams[28, 29]. But these theories were based on microscopic

Hamiltonians specific to the transition apart from being mean field theories.
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Landau, in 1937, gave a unified (mean field) theory of continuous transitions

which can be used for all the cases above. Landau also generalized the con-

cept of order parameter originally introduced by Bragg and Williams for binary

alloys.

The concept of order parameter is based on the following observation: When

a system is taken from above the critical point to below, allowing the contin-

uous transition to take place, there is a reduction of symmetry. For example,

in a ferromagnetic system, above the critical point there is no net magnetiza-

tion and the system is rotationally invariant. Below the critical temperature,

a net magnetization pointing in a particular direction exists destroying the ro-

tational invariance. Similar is the order-disorder transition in binary alloys.

Thus there is a reduction of symmetry when a system passes from T+
c to T−c

because of some ”order” developing in the system. To capture this change

in symmetry, a parameter called the order parameter has been introduced. In

continuous phase transitions, the order parameter changes continuously from a

non-zero value below the critical temperature to a zero value above the crit-

ical temperature. For a magnetic material, the magnetization m is the order

parameter. For a fluid, ρl − ρv is the order parameter.

Landau’s theory was based on the understanding that the continuous phase

transition is a collective phenomenon where the microscopic details of the in-

teractions between the particles are integrated out i.e., they are coarse grained.

Thus, the basic idea of Landau’s theory[30] was to write the Gibbs free energy

as a functional of coarse-grained order parameter density by Taylor expand-

ing it around the critical point. The temperature dependence of coefficients of

the expansion terms were obtained from symmetry considerations. Since Lan-

dau’s theory has been extensively discussed in the literature[25, 26, 29], the

detailed derivation of the Ginzburg-Landau free energy functional is omitted

here. However, the obtained partition function and Landau free energy are

given below for the sake of completeness.

The partition function is written as a functional integral

Q =

∫
. . .

∫ ∏
i

Dsi(~r)exp

[
−H[s]

T

]
(1.36)
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Table 1.1: critical exponents obtained using Landau theory

- α β γ δ ν η

Landau 0 1/2 1 3 1/2 0
Exact 0.1 0.32 1.2 4.8 0.6 0.05

where si(~r) is the ith component of the order parameter field.
∫
Dsi(~r) implies

the functional integration over all possible functions(configurations) of the or-

der parameter.

H[s] =

∫
V

{
a0 + a2s

2(~r) + a4s
4(~r)− hs1(~r) + c|∇s(~r)|2

}
(1.37)

where a0 = −kBT ln(2), a2 = const.(T − Tc), a4 = const.(kBT ). The ex-

pansion doesn’t contain a first order gradient term as it violates the rotational

symmetry of the underlying microscopic Hamiltonian.

As explained above, Landau’s theory amounts to replacing the functional

integral in the partition function(Eq.(1.36)) with the most probable functional

form of s(x) which is a constant obtained by minimizing Eq.(1.37). The crit-

ical exponents obtained using the Landau’s theory are given in Table.(1.1).

Landau’s theory brings out some important facts. It explains how singular-

ities can arise in physical quantities even when the Hamiltonian is a regular

function. It also explains the universality in the exponents as none of them

depend on parameters of the model.

The values of exponents obtained in this way are called classical exponents.

The exponents obtained using Landau’s theory do not match with the experi-

mental observations. According to Landau’s theory, the exponent α = 0. Thus

the Landau’s method could not predict the observed divergence in specific

heat. The other calculated exponents also deviate from the experimental val-

ues. Apart from the small deviation from experimental exponents, there is

another shortcoming in Landau’s theory. The critical exponents are indepen-

dent of the parameters in the model implying their universality. However, the

universality is overstated; there is no dependence on spatial dimension in the

exponents. As a result, the exponents do not satisfy some general scaling laws
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(to be discussed later).

An improvement to Landau’s theory was effected by adding the contribu-

tion of Gaussian fluctuations to the Landau free energy. The contribution of

these fluctuations is such that the exponent α now depends on the spatial di-

mension d for d < 4 whereas other exponents remain unchanged. It is also

seen that the effects of fluctuations are large for d < 4 and negligible for d > 4.

Thus the dimension d = 4 above which the Landau theory becomes exact is

called the upper critical dimension. The dimension d = 1 is called the lower

critical dimension below which there is no phase transition.

Perturbation theory beyond the quadratic approximation proved unsuc-

cessful as each term in the series diverges upon inclusion of fluctuations. Thus

the mean field theories of Landau type turned out to be inadequate to calcu-

late the observed critical exponents. However, the Landau theory brought out

some facts giving a direction for further improvements.

1.4.4 Scaling Hypothesis

The critical exponents discussed in Section 1.4.2 are not independent as they

are related to the thermodynamic quantities which are themselves related. Us-

ing the scaling hypothesis, it was shown that the critical exponents are actually

related. The scaling hypothesis is basically the assumption that, near the critical

point, the correlation length1 (hereafter denoted as ξ) is exceedingly large and

is the only characteristic length in the system so that the microscopic details

are unimportant. The scaling approach has been developed independently by

Widom, Domb and Hunter, Patashinkii and Pokrovskii in attempts to incorpo-

rate the non-classical exponents in the mean field theory.

As a result of scaling approach, out of the six exponents {α, β, γ, δ, η and ν}
only two are found to be independent while others are related by the follow-

ing four equations called scaling laws.

1Correlation length is basically the length up to which the correlations in order parameter
persist. The two point correlation function is defined as Γ(~r) = 〈s(~r)s(0)〉 − 〈s(~r)〉 〈s(0)〉.
Close to the critical point, Ornstein and Zernike showed that Γ(~r) ≈ e−r/ξ/r which shows
that the correlation function and hence the correlation length also diverges as critical point is
approached.
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Fisher : γ = ν(2− η) (1.38)

Rushbrooke : α + 2β + γ = 2 (1.39)

Widom : γ = β(δ − 1) (1.40)

Josephson : νd = 2− α (1.41)

In the Josephson law(also called the hyper-scaling law), d is the spatial dimen-

sionality. The derivation of above laws is given in standard text books[26, 29]

and hence is not discussed here.

1.4.5 Renormalization Group Transformation

Kadanoff developed a generalized way of obtaining the scaling laws between

the critical exponents using the block spin transformation[31] which was the

first step towards the renormalization group theory(RGT) of critical phenom-

ena. However, Kadanoff’s ideas didn’t lead to any rigorous calculation scheme

and there were too many ad-hoc assumptions some of which were unjustified.

A rigorous and complete formalism of effecting the renormalization group trans-

formation was developed by K. G. Wilson[27] in 1971. The basic idea was that

the (excessively large) correlation length ξ near the critical point being the only

important length scale in the system, variations at length scales smaller than ξ

do not effect the physics (large length scale behavior) of the system. Thus, the

short wavelength fluctuations are systematically integrated out to obtain an

effective Hamiltonian which contains only long wavelength modes approach-

ing ξ. We briefly explain below the basic steps of the renormalization group

transformation in a nutshell[32].

Coarse grain: This step is basically tantamount to decreasing the resolution

by increasing the length scale of the system. One way of effecting the coarse

graining procedure is to divide the system into blocks of certain length a′ << ξ

in space and average out the microscopic variables in each block. a′ = la > a,
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the length scale of the original system. For example, in a ferromagnet, we aver-

age the magnetization s(~r) in each block so that we have a coarse grained system

with length scale a′ and magnetization s′(~r).

s′(~r) =
1

ld

∫
s(~r′)ddr′

where d is the spatial dimension.

Rescale: The original resolution of the system is to be restored by rescaling all

the lengths by a factor l.

r′ = r/l

This is done so that the symmetries in the original system and the coarse

grained system can be compared.

Renormalize: The order parameter is re-scaled so that the variations in the

coarse-grained order parameter match with those of the original one. To effect

this, a scaling factor α is introduced as below

s′(~r) =
1

αld

∫
s(~r′)ddr′

We give below an example of an application of RGT using the Wilson’s

phase space approach. We chose the Gaussian model which is a convenient

pedagogical tool.

The Hamiltonian of the Gaussian model is

H[s]

T
=

∫
V

[
a2s(~r)

2 + c|∇s(~r)|2
]
ddr (1.42)

where a2 and c are temperature dependent parameters. The partition function

is given by

Z =

∫
Ds(~r)e−H[s]/T (1.43)

We now carry out the above mentioned steps as follows

coarse grain: The above Hamiltonian with order parameter s(~r) (assumed

to be having a single component) already contains effects of fluctuations up



23 1.4. RENORMALIZATION GROUP THEORY

to some wavelength λ. Thus s(x) contains fluctuations of wavelengths greater

than λ and can be written in terms of Fourier modes as

s(~r) =
1

Ld/2

∑
k≤Λ

exp(ik · x)s~k (1.44)

where Λ = 2π/λ Now to coarse grain, the fluctuations of order parameter in

the wave length band (λ, qλ) where q > 1 are integrated out and an effective

Hamiltonian is obtained. The partition function remains unchanged in the

process.

We first write

s(~r) = s′(~r) + φ(~r) (1.45)

where

s′(~r) =
1

Ld/2

∑
k≤Λ/q

exp(ik · x)s~k (1.46)

φ(~r) =
1

Ld/2

∑
Λ/q<k≤Λ

exp(ik · x)s~k. (1.47)

The partition function is then re-written as

Z =

∫
Ds(~r)e−H[s′+φ]/T

=

∫
Ds′(~r)e−H[s′]/T

∫
Dφ(~r)e−H[φ]/T (1.48)

where
H[φ]

T
=

∫
V

ddr
[
a2φ

2(~r) + c|∇φ(~r)|2
]
. (1.49)

To partially integrate the partition function i.e., the part containing φ(x),

Wilson introduced a function called the Wilson’s function. The basic idea

behind the Wilson’s function (w(x)) was to capture the effect of fluctuations

within a given wave-vector band Λ/q < k < Λ. Then the volume spanned in

the Fourier space is given by

Vk = (2Λ)d − (2Λ/q)d = (2Λ)d(1− q−d) (1.50)
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Thus the minimum volume Ω spanned by w(x) in coordinate space is

Ω = (2π)d/Vk (1.51)

The function w(x) should satisfy the following properties:∫
Ω

ddrwi(~r) =

∫
V

ddrwi(~r) = 0 (1.52)∫
Ω

ddrwi(~r)wj(~r) =

∫
V

ddrwi(~r)wj(~r) = δij (1.53)

Wilson assumed that w(x) is localized around x = 0 within Ω and is negligible

outside. It is further assumed that gradients of w are orthogonal i.e.,∫
Ω

ddr∇wi(~r)∇wj(~r) =

∫
V

d~r∇wi(~r)∇wj(~r) ≈ k2
mδij (1.54)

where km = 2π
λm

and λm is the mean wavelength in the band (λ, λ/q).

A function which approximately satisfies these conditions, as chosen by

Wilson is

w(~r) =
±1√

Ω
(1.55)

where + sign is for half of the volume and − sign is for the other half volume.

Now, using w(~r) the partial integration in Eq.(1.48) is done as follows:

First, we expand φ(~r) as

φ(~r) =
∑
l

φl(~r)wl(~r). (1.56)

Using above expansion and the properties of w(~r) in Eq.(1.48), we get

Z =

∫
Ds′e

−H[s′]
T

∏
l

[
dφle

−(a2+ck2
m)φ2

l

]
(1.57)

which can be re-written as

Z =

∫
Ds′e

{
−H[s′]
T

+ 1
Ω

∫
V ddr ln(I(0))

}
(1.58)
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where

I(0) =

∫
dφle

−(a2+ck2
m)φ2

l (1.59)

The fact that the above equation doesn’t depend on s′(~r) is specific to the Gaus-

sian model. The term containing I(0) thus becomes irrelevant for the present

study as it just adds a constant term to the free energy and doesn’t contribute to

the emergence of singularities and non-analyticites in the derived quantities.

We now perform the next steps of the transformation i.e., the rescaling and

renormalization together,

~r → ~r′ =
~r

q
(1.60)

s′(~r)→ α(q)s(~r′)

to the Hamiltonian H[s′] to obtain H ′[s]. It can be shown that the factor α(q) =

qa where a = 1 − η/2 − d/2[25] (d is the dimensionality of the system.) The

Hamiltonian after the RG transformation becomes

H ′[s(~r′)]/T =

∫
V

d~r′
[
a′2s(~r

′) + c′|∇s(~r′)|2
]

(1.61)

where

a′2 = a2q
dq2−η−d

c′ = cq−η (1.62)

Above equation gives the relation between the parameters of the original Hamil-

tonian with those of the transformed Hamiltonian. It can be seen from Eq.(1.62)

that by repeated application of the RG transformation (hereafter denoted as

Rq), the parameter related to c becomes zero if η 6= 0 which implies that there

is no gradient in the density and thus no correlations. Thus, in order to allow

for correlations, we have to choose η = 0 which makes c′ = c. With the choice

of η = 0, we get a′2 = a2q
2. Also, existence of critical point (or fixed point of the

transformation) implies that, at the critical point, the parameters reach a value
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given by

Rq {a∗2, c∗} = {a∗2, c∗} (1.63)

A non-trivial fixed point can be seen (by inspection) to occur if a∗2 = 0 with c

being arbitrary.

With the above knowledge we may obtain the correlation length exponent

ν as follows: The correlation length ξ of the original and the renormalized

system are related as

ξ(a2, c) = qξ(a′2, c
′) = qξ(a′2, c) (1.64)

If ã2 is the parameter obtained from a2 close to the critical region after l RG

transformations, then it can be expanded as,

ã2 = q2l(A(T − Tc) +B(T − Tc)2 + . . . ) (1.65)

Thus

ξ(ã2, c) = qlξ(Aq2l(T − Tc) + . . . ) (1.66)

As T → Tc and for large l, for the ξ to diverge, we require

q2l ≈ (T − Tc)−1 (1.67)

which implies (as T → Tc)

ξ(ã2, c) ≈ (T − Tc)−1/2ξ(A+ . . . ). (1.68)

Thus ν = 1/2.

Knowing the values of the exponents ν and η, the other exponents can be

obtained using the scaling laws described above. The other exponents turn out
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to be

α = (4− d)/2 d ≤ 4

β = (d− 2)/4

γ = ν(2− η)

δ = (d+ 2)/(d− 2) (1.69)

The Gaussian model is exactly solvable and the exact exponents are the same

as those obtained above. Wilson’s method is able to obtain the exact critical

exponents for the Gaussian model.

The above discussion is just to illustrate the RG transformation as done us-

ing the Wilson’s phase cell approach. The above method has been found to be

useful to obtain the correct critical exponents. But to obtain the critical point

and improved phase diagrams, the microscopic Hamiltonian of the system is

required. White[33] developed a way of implementing the Wilson’s RG trans-

formation method in fluids. Our work is a development (generalization) of

White’s method which will be discussed in the next chapter.

1.4.6 Outline of the Thesis

In the Chapter II, we describe White’s implementation of Wilson’s RG fol-

lowed by our generalized derivation of the RG theory for fluids. We apply

our method to square-well fluids and Lennard-Jones fluids and analyze the re-

sults. The analysis paves the way for improvement in the mean field theory

which is an input into the RG theory for fluids.

In Chapter III, we describe the perturbation theory we have developed to

obtain the Helmholtz free energy. The method is applied to square-well fluids

and compared with simulation results.

In Chapter IV, we show the equivalence of the perturbation theory we have

developed with that developed by Zwanzig’s method in the case of pair po-

tential. We also discuss the advantages of our method in terms of ease in im-

plementation.

In Chapter V, we combine the perturbation method we described in Chap-
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ter III and the RG method described in Chapter I and apply the method to

square-well fluids to obtain Liquid Vapor Phase Diagrams(LVPDs). We also

obtain the critical exponents using our method and study the Yang-Yang anomaly

using the method.

In Chapter VI, we apply our method to liquid metals and obtain the liquid

vapor phase diagrams which are compared with simulation results.

The thesis is concluded in Chapter VII with a discussion of the results that

have been obtained, possible short comings of our study and directions for

future improvements.



CHAPTER 2
Global Renormalization Group Theory For Simple

Fluids

As explained in Chapter 1, the mean field theories fail to accurately describe

the thermodynamics of fluids near the critical point and predict classical criti-

cal exponents. The renormalization group theory (RGT) developed by Wilson

[27] takes into account fluctuations at all length scales and thus predicts non-

classical critical exponents and the observed universal features near the critical

point. However, the method evolved by Wilson is suitable only asymptotically

close to the critical point in a regime determined by the Ginsberg criterion. Re-

cently, theories have been developed for fluids which tend to a mean field the-

ory away from the critical point and crossover to RGT as the critical point is ap-

proached. One of the developments along these lines is the global renormaliza-

tion group theory (GRGT) originated by White [33–35] and modified by Tang

et. al. [36, 37] and Lue and Prausnitz [38]. The other methods include HRT

developed by Parola and Reatto [39], the non-perturbative renormalization

group techniques [40], and the self consistent solutions to Ornstein-Zernike

approximation for special form (screened Coulomb) of potentials [8, 41].

The basic aim of GRGT is to calculate Helmholtz free energy of a fluid by

including all contributions from density fluctuations. The mean field free en-

ergy density (f0) includes effects of fluctuations at length scales less than and

of the order of the range of the potential. One way of representing the den-

sity fluctuations is to expand them in terms of Fourier modes, each mode cor-

responding to a particular wavelength. If λ0 is the wavelength up to which

fluctuations are accounted for in f0, then density fluctuations beyond mean

field theory will contain only longer wavelengths. GRGT starts with f0 as ref-

erence free energy density and contributions from fluctuations of wavelength

29
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greater than λ0 are added in a recursive manner. In the first step, the contribu-

tion δf1 arising from the wavelength band (λ0, λ1) is calculated and added to

f0 to obtain a new free energy density f1, thereby accounting for fluctuations

up to λ1. In the next step, f1 takes the place of f0 and δf2 from fluctuations

in the band (λ1, λ2) is calculated and added to f1 to obtain f2. This process is

repeated until the free energy density converges to a well defined function of

mean density. All the above calculations are done at a constant temperature T.

In published approaches to GRGT[33], the density fluctuations within a phase

cell are assumed to vary as a cosine function. The GRGT method has a basic

free parameter which is the the initial wavelength (λ0) up to which fluctuations

are accounted for in mean field theory. White introduced another parameter

z which is a scale factor used to multiply the phase cell volume. Apart from

these, White and other workers introduced additional parameters which have

been adjusted in order to get good agreement with experimental / simulation

data for critical constants i.e., critical temperature Tc, critical density ρc and

critical pressure Pc.

In the present work[42] we start with the square-gradient approximation to

(Helmholtz) free energy functional[43]. We then show that the scheme for com-

puting contributions to free energy density δfn at nth iteration can be obtained

in a more rigorous and general way than the derivation of White. The present

method has the advantage that it allows us to incorporate any mean field free

energy density and direct correlation function into GRGT. The assumption of

cosine variation of density fluctuations is relaxed by using Wilson’s functions.

We also suggest a qualitative way of inferring the two parameters λ0 and z. In

Sec 2.1 we discuss the new theory in detail. Sec 2.2 shows its relationship to

earlier approaches. In Sec 2.3 the theory is applied to square-well and Lennard-

Jones fluids. We discuss the need to use accurate mean field theories for ob-

taining accurate liquid-vapor phase diagram (LVPD). The chapter is concluded

in Sec 2.4.
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2.1 Theory

The square-gradient approximation for the Helmholtz free energy functional[43]

for a system of particles interacting with a spherically symmetric pair potential

and occupying a volume V at a temperature T is given by

F [ρ(~r)] =

∫
d~r {f0[T, ρ(~r)] + fG[T, ρ(~r)]|∇ρ(~r)|2} (2.1)

where f0 is the coarse-grained free energy density. The second term fG arises

only due to contributions from density fluctuations. ρ(~r) is the number density

in an infinitesimal volume around ~r. A simple approximation to f0 for a fluid

described by a pair potential is the first order TPT result. Using the hard sphere

reference system, the free energy density functional can be expressed as

f0[ρ(~r)] = fHS[ρ(~r)] +
ρ2(~r)

2

∫
d~r′uatt(r

′)gHS[ρ(~r), r′] (2.2)

where fHS[ρ(~r)] is the free energy density functional of a hard sphere reference

fluid, uatt(r) is the attractive part of the potential and gHS[ρ, r] is the RDF1 of

the hard sphere system. The coefficient fG of gradient term is given by

fG[ρ(~r)] =
1

12β

∫
d~r′r′2c[ρ(~r), r′] (2.3)

where β = 1/kBT and c[ρ(~r), r] is the DCF.

To set up a consistent notation, we will continue to denote the total fluctu-

ating density by ρ(~r). The mean density will be written as ρ̄ without any argu-

ments. As said earlier, we expand the density fluctuations into Fourier modes,

each mode corresponding to a specific wavelength. Then the total range of

wavelengths can be divided into bands with endpoints λ0, λ1, λ2, . . . , etc. The

coarse grained mean field theory free energy density f0(ρ̄) contains effects of

all fluctuations up to λ0. In other words, fluctuations of wavelengths less than

λ0 are absent in the model. We will use ρn to denote the density consisting of

fluctuations exclusively from the wavelength band (λn−1, λn), while ρ∗n will be

its complement. As ρ0(~r) has no meaning within the model, the mean den-

1Square brackets indicate that gHS [ρ, r] is a functional of ρ(~r) and a function of r.
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sity and all the fluctuations are also expressed in ρ∗0(~r), that is , ρ(~r) = ρ∗0(~r).

For convenience, we do not show explicitly temperature (T ) in the expressions

and formulae which follow. However it is assumed that the whole calculation

is to be done at a specific temperature T . Also we do not show the explicit

dependence of fluctuating density on ~r when the expression becomes cumber-

some. Like mean field theory free energy density, the generalized free energy

functional f0[ρ(~r)] also contains a coarse graining length λ0. However, it also

contains contributions from fluctuations with wavelength greater than λ0. In

other words f0[ρ(~r)] ≡ f0[ρ∗0(~r)]. Gradients in density arise from fluctuations

of wavelength greater than λ0. So we also have fG[ρ(~r)] ≡ fG[ρ∗0(~r)]. Now the

canonical partition function may be written as

e−βV f(ρ̄) =
∑
[ρ(~r)]

e−β F [ρ(~r)] =
∑

[ρ∗0(~r)]

e−β
∫
d~r(f0[ρ∗0(~r)]+fG[ρ∗0(~r)]|∇ρ∗0| 2) (2.4)

where the sum is over all density fluctuations of wavelengths greater than λ0.

2.1.1 Partial summing of fluctuations

The renormalization group theory involves summing the above partition func-

tion over a band of fluctuations in (λ0, λ1) thereby obtaining the free energy

density δf1[ρ∗1] from density fluctuations in that band. Then, δf1[ρ̄] is added,

with appropriate volume factors, to the mean field theory free energy density

f0(ρ̄) to obtain a new free energy f1(ρ̄). The f1(ρ̄) will contain contributions

from density fluctuations up to wavelength λ1. This process can then be contin-

ued in a recursive manner to include contributions from all wavelength bands.

For implementing the first step in the scheme, the density ρ1(~r) is written as

ρ1(~r) = ρ∗0(~r)− ρ∗1(~r) (2.5)

This separation is fully justified when we consider an expansion of Eq.(2.5) in

terms of Fourier modes. We also separate the free energy density as

f01[ρ1(~r)] = f0[ρ∗0(~r)]− f0[ρ∗1(~r)] (2.6)
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where f01[ρ1(~r)] is the part of f0[ρ∗0(~r)] containing fluctuations belonging only

to the band (λ0, λ1). The second term on RHS contains density fluctuations

with wavelengths greater than λ1. Once the definition of ρ1(~r) in Eq.(2.5) is

justified, Eq.(2.6) follows as f0[ρ∗1(~r)] can be readily computed.

In a similar manner we rewrite the term containing |∇ρ∗0|2 as

fG1[ρ1, |∇ρ1|] = fG[ρ∗0]|∇ρ∗0|2 − fG[ρ∗1]|∇ρ∗1|2 (2.7)

The term fG1[ρ1, |∇ρ1|] is thus simply the difference between two functionals

defined in terms of fG.

Using Eqs.(2.5), (2.6) and (2.7), the partition function can be written as

e−βV f(ρ̄) =
∑

[ρ∗1(~r)]

e−β
∫
d~r(f0[ρ∗1(~r)]+fG[ρ∗1]|∇ρ∗1|2) × e−β

∫
d~r δf1[ρ∗1,|∇ρ∗1|] (2.8)

The second exponential term, which defines δf1[ρ∗1, |∇ρ∗1|], is

e−β
∫
d~r δf1[ρ∗1,|∇ρ∗1|] =

∑
[ρ1(~r)]

e−β
∫
d~r(f01[ρ1]+fG1[ρ1,∇ρ1]) (2.9)

Eq.(2.9) shows that there are two contributions in δf1[ρ∗1, |∇ρ∗1|]. One is from

the coarse grained mean field theory free energy density and other is from the

gradient term. All contribution to free energy density from fluctuations in the

range (λ0, λ1) are contained in δf1[ρ∗1, |∇ρ∗1|].

2.1.2 Wilson’s phase cell method

In order to evaluate the RHS of Eq.(2.9), we use Wilson’s phase cell method

for functional integration as explained in the intorduction(see Ref.[25]). The

total volume of the system is divided into cells of volume V1. Each cell volume

V1 is such that ρ1(~r) varies significantly within it while ρ∗1(~r) has only slow

variation. Interaction between the cells is neglected. Thus fluctuations ρ1(~r)

within a cell is unaffected by variations in other cells. In order to represent a

function like ρ1(~r), Wilson introduced functions which are non-zero within a

particular cell and zero elsewhere. These can be expressed, approximately, in
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terms of Fourier modes in the interval (λ0, λ1). Properties of Wilson’s functions

are discussed in chapter 1. We give them here again for completeness. Wilson’s

function in the ith cell is given by

φi(~r) = ± 1√
V1

(2.10)

where + sign is for one half of the cell and − sign is for the remaining half and

zero elsewhere. These functions satisfy the following properties

∫
V

d~rwi(~r) =

∫
(V1)i

d~rwi(~r) = 0 (2.11)∫
V

d~rwi(~r)wj(~r) =

∫
(V1)i

d~rwi(~r)wj(~r) = δij (2.12)∫
V

d~r∇φi(~r)∇wj(~r) =

∫
(V1)i

d~r∇wi(~r)∇wj(~r) ≈ k2
mδij (2.13)

where (V1)i is the volume of the ith cell, km = 2π
λm

and λm is the mean wave-

length in the band (λ0, λ1). Using Wilson’s functions, ρ1(~r) can be represented

as

ρ1(~r) =
∑
i

αi wi(~r) (2.14)

With this representation for ρ1(~r), the functional integral in Eq.(2.9) can be writ-

ten as a multiple integral over the set of variables {αi}:

e−β
∫
d~r δf1[ρ∗1,|∇ρ∗1|] =

∏
i

∫
d(αi ×

√
V1) e

−
∑
i β

∫
V1
d~r(f01[ρ1]+fG1[ρ1,∇ρ1]) (2.15)

The integration variable is taken as (αi×
√
V1) to make the integral dimension-

less. Now, using Eq.(2.6), the integral of f01[ρ1] over the cell volume V1 can be

written as

∫
V1

d~rf01[ρ1] =
V1

2

(
f0[ρ∗1(~r) +

αi√
V1

] + f0[ρ∗1(~r)− αi√
V1

])

)
− V1f0[ρ∗1(~r)] (2.16)
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The simplest approximation in Wilson’s phase cell method (see Ref. [25]) is to

assume that ρ∗1(~r) within the cell volume V1 can be replaced by its value at the

cell center. Generalization of the method to account for its variation has also

been worked out [44]. Thus we obtain

∫
V1

d~rf01[ρ1] =
V1

2

(
f0[ρ∗1(~r0) +

αi√
V1

] + f0[ρ∗1(~r0)− αi√
V1

])

)
− V1f0[ρ∗1(~r0)]

(2.17)

Now f0[ρ∗1(~r0)] is a constant within V1, and so its argument ~r0 will be omitted

hereafter. The implications of this approximation in limiting the size of V1

w.r.t. the the wavelength λ1 will be discussed later. Using Eq.(2.7), the integral

of fG1[ρ1, |∇ρ1|] over the cell volume V1 can be written as

∫
V1

d~rfG1[ρ1, |∇ρ1|] =

∫
V1

d~r{fG[ρ∗0](|∇ρ∗1|2 + |∇ρ1|2 + 2∇ρ∗1.∇ρ1)− fG[ρ∗1]|∇ρ∗1|2}

(2.18)

Similar to the approximation for ρ1(~r), we further replace ∇ρ1(~r) by its value

∇ρ1(~r0) at the cell centre. Then, the first term on the RHS of Eq.(2.18) becomes

∫
V1

d~rfG[ρ∗0]|∇ρ∗1|2 =
V1

2

(
fG[ρ∗1 +

αi√
V1

] + fG[ρ∗1 −
αi√
V1

]

)
|∇ρ∗1|2 (2.19)

For obtaining the second term, which is proportional to |∇ρ1|2, first of all we

note from the shape of Wilson’s functions that ∇ρ1 is non-zero only when ρ1

changes sign and hence becomes zero. Thus we get

∫
V1

d~r fG[ρ∗0(~r)]|∇ρ1|2 =

∫
V1

d~rfG[ρ∗1(~r)]α2
i |∇φi(~r)|2 = fG[ρ1(~r0)∗]α2

i k
2
m (2.20)

where we have replaced fG[ρ∗1(~r)] by its value at the center. The last equality

follows from the orthogonality condition in Eq.(2.13). Within the same approx-

imation, the third term on the RHS of Eq.(2.18) vanishes on integration over V1

as there is no overlap of wave vectors in ρ∗1 and ρ1. Thus Eq.(2.18) reduces to
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∫
V1

d~rfG1[ρ1, |∇ρ1|] =
V1

2

(
fG[ρ∗1 +

αi√
V1

] + fG[ρ∗1 −
αi√
V1

]

)
|∇ρ∗1|2

−V1fG[ρ∗1]|∇ρ∗1|2 + fG[ρ∗1]α2
i k

2
m (2.21)

Using Eq.(2.17) and Eq.(2.21) in Eq.(2.15) and converting the total volume in-

tegral of δf1[ρ∗1, |∇ρ∗1|] to a sum over the cells, we obtain

e−βV1 δf1(ρ∗1,|∇ρ∗1|) =

∫
dα×

√
V1 e

−βV1δf [ρ∗1,|∇ρ∗1|,V1,km,α] (2.22)

where the cell index i on αi is omitted. The exponent in the integrand δf [ρ∗1, |∇ρ∗1|, V1, km, α]

is defined as

δf [ρ∗1, |∇ρ∗1|, V1, km, α] =
1

2

(
f0[ρ∗1 +

α√
V1

] + f0[ρ∗1 −
α√
V1

]− 2f0[ρ∗1])

)
+

1

2

(
fG[ρ∗1 +

α√
V1

] + fG[ρ∗1 −
α√
V1

]− 2fG[ρ∗1]

)
|∇ρ∗1|2 + fG[ρ∗1]

α2

V1

k2
m (2.23)

Changing the integration variable to x = α/
√
V1, Eq.(2.22) can be expressed as

− βV1 δf1(ρ∗1, |∇ρ∗1|) = ln

{
V1

∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,km,x]

}
(2.24)

where δf [ρ∗1, |∇ρ∗1|, km, x] is given by

δf [ρ∗1, |∇ρ∗1|, km, x] =
1

2
(f0[ρ∗1 + x] + f0[ρ∗1 − x]− 2f0[ρ∗1])

+
1

2
(fG[ρ∗1 + x] + fG[ρ∗1 − x]− 2fG[ρ∗1]) |∇ρ∗1|2 + fG[ρ∗1]x2k2

m (2.25)

In Eq.(2.24), the range of integration is [0, min{ρ, ρmax − ρ}] where ρmax corre-

sponds to the fluid-solid transition density. As the integrand is an even func-

tion of x, we take x ≥ 0. The upper limit arises from the requirement that

the arguments of f0[ρ∗1 ± x] and fG[ρ∗1 ± x] are restricted to lie in the interval

(0, ρmax).
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2.1.3 Redefining the correction term

The aim in calculating δf1[ρ∗1, |∇ρ∗1|] is to obtain the correction from density

fluctuations of wavelength in the band (λ0, λ1). This can be added to the mean

field theory free energy containing density fluctuations up to λ0. The corrected

free energy will then contain effects of fluctuations up to λ1. Therefore, to

avoid any spurious effects, it is necessary to renormalize δf1[ρ∗1, |∇ρ∗1|] to be

zero when λ1 is replaced by λ0, which is the coarse graining length in the start-

ing mean field theory . The term to be subtracted can be obtained simply by

replacing km in Eq.(2.24) by k0 = 2π/λ0. Thus we redefine δf1(ρ∗1, |∇ρ∗1|) as

−β V1δf1[ρ∗1, |∇ρ∗1|] = ln

{
V1

∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,km,x]

}
−ln

{
V1

∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,k0,x]

}
(2.26)

Thus the final expression for δf1[ρ∗1, |∇ρ∗1|] is given by

δf1[ρ∗1, |∇ρ∗1|] = − 1

βV1

ln

{∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,km,x]∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,k0,x]

}
(2.27)

Above expression is quite general in that all the features of the original Helmholtz

free energy functional F [ρ] are retained in it. That is, f0[ρ(~r)] and fG[ρ(~r)] are

sufficiently general and do not refer to any specific liquid state theory. Also,

the appearance of gradient term in the expression for δf [ρ∗1, |∇ρ∗1|] is new. After

evaluating Eq.(2.27) for small values of |∇ρ∗1|2, the LHS can be approximated

as δf1[ρ∗1, 0] + δf ′1[ρ∗1, 0]|∇ρ∗1|2 where δf ′1 denotes derivative with |∇ρ∗1|2. Addi-

tion of this result to f0[ρ∗1] + fG[ρ∗1]|∇ρ∗1|2 will generate the functional for next

iteration. Thus f0[ρ∗1] as well as fG[ρ∗1] will be corrected after the first iteration.

However, the contribution of derivative term would be small as the depen-

dence of the direct correlation function c[ρ(~r), r] on density is generally weak

in the fluid phase.
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2.1.4 GRGT iterations for Free energy density

The iterative scheme in GRGT for free energy density is as follows. For a given

temperature T , the zeroth iterate is the mean field theory free energy density

f0(ρ̄). The correction term δf1 at first iteration is obtained by substituting ρ̄ in

place of ρ∗1 in Eq.(2.27). However, for obtaining the numerical results for this

work, we shall restrict fG(ρ̄) to be a function of the mean density only. Then,

terms multiplying |∇ρ∗1| will be absent even in Eq.(2.25). Results which will

include the effects of these terms will be reported separately. For the remaining

discussions, the correction δf1 can be written explicitly as a function of mean

density, and is given by

δf1(ρ̄) = − 1

βV1

ln

{∫
dx e−βV1 δf(ρ̄,kn,x)∫
dx e−βV1 δf(ρ̄,k0,x)

}
(2.28)

where δf(ρ̄, kn, x) can be written as

δf(ρ̄, kn, x) =
1

2
(f0(ρ̄+ x) + f0(ρ̄− x)− 2f0(ρ̄)) + fG(ρ̄)x2k2

n (2.29)

We now have the first order corrected free energy density

f1(ρ̄) = f0(ρ̄) + δf1(ρ̄) (2.30)

At this stage, f1(ρ̄) contains contribution of density fluctuations up to wave

length λ1. However, it is devoid of any contribution from higher wavelengths.

But the process can be repeated to get f2(ρ̄) using Eq.(2.28) and Eq.(2.29) with

V2 and f1(ρ̄) replacing V1 and f0(ρ̄) respectively. Thus the second order iterate

will contain density fluctuations up to λ2. Continuation of the process will

yield a converged free energy density containing fluctuations up to any desired

level.

The volume of the phase cell at the level of nth iteration is

Vn =

(
zλn
2

)3

; λn = 2nλ0; kn =
2π

λn
(2.31)
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where z and λ0 are two free parameters in the theory. These have been adjusted

in earlier applications [34] to get good agreement with vapor-liquid phase di-

agram of model systems. However, we shall fix their values based on simple

arguments, and look for the accuracy that can be achieved with the method

described.

2.1.5 Determining free parameters

The parameter z may be inferred in the following way. If the density fluctu-

ations in ρ1 have wave numbers between Λ0/q < Λ < Λ0, then the volume

occupied by them in k-space is Vk = (2Λ0)3 − (2Λ0/q)
3. Then the minimum

volume Vmin occupied by the fluctuation wave-packet in real space is (λ
2
)3 q3

q3−1
,

where λ = 2π/Λ0. Comparing this volume Vmin with the phase cell volume at

nth iteration, we get z = q/(q3 − 1)1/3. For q = 2, which is a compromise value

for practical calculations, Vmin = (λ
2
× 1.0455)3 and hence z = 1.0455.

The second parameter may be inferred using an estimate of the correla-

tion length in the mean field theory. The correlation length can be related to

the RDF corresponding to the temperature and mean density under consider-

ation. In the present method λ0 is the typical wavelength up to which mean

field theory accounts for fluctuations. The GRGT takes into account all density

fluctuations starting from λ0 including those present in the initial mean field

theory free energy density f0. Thus λ0 can be taken as the shortest wavelength

which is accounted for in the mean field theory. In a strict sense, it may not be

possible to assign a precise value for λ0. Here take it to be twice the position

of the first peak (representing nearest neighbor correlations) of 4πr2h(r) where

h(r) = g(r) − 1 corresponding to the highest density in the liquid phase( for a

given temperature) i.e., the density near the melting line.

2.2 Relation to earlier GRGT’s

Earliest developments of GRGT by White[34] assumed some specific forms of

the free energy density functional. The Mean Spherical Approximation (MSA)

was employed as the mean field theory by Tang and co-workers [36, 37]. Lue
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and Prausnitz [38] developed a slightly more general approach somewhat sim-

ilar to the development presented here. These approaches are briefly discussed

below.

2.2.1 White’s Theory

The expression derived by White[34] for δf1(ρ∗1) can be recovered with some

specific choices in our general approach. First of all, the mean field theory free

energy density is taken as the first order perturbation theory result

fMFT [ρ̄] = fHS[ρ̄] +
ρ̄2

2

∫
d~ruatt(~r)gHS(ρ̄, r) (2.32)

The functional f0[ρ(~r)] is explicitly defined by introducing the total density into

hard sphere component as

f0[ρ(~r)] = fHS[ρ(~r)] (2.33)

The fluctuating part corresponding to the term fG[ρ(~r)]|∇ρ(~r)|2 (see Eq.(2.3)) is

taken as

ρ2(~r)

2

∫
d~r′ cos(~k.~r′)uatt(r

′)gHS[ρ(~r), r′] (2.34)

The cosine term has been introduced in an ad-hoc way to bring in an explicit

dependence of fluctuating part on wave vector. If the cosine term is expanded,

one can easily see that the first term which is independent of k is the first order

correction term to free energy density (second term in Eq.(2.32)). The second

term depends on k2 and can be seen to be exactly equal to the last term in

Eq.(2.29) if one uses −βuatt(r)gHS(r) for direct correlation function. The nor-

malization of δfn is different in that the denominator in Eq.(2.27) is computed

with k0 = 0. The parameters λ0 and z are adjusted for getting agreement with

simulation data.
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2.2.2 Tang’s Theory

Tang and co-workers have developed a MSA solution for the Lennard-Jones

fluid. The first order perturbation theory can be modified (after defining an

equivalent hard sphere diameter) to incorporate the RDF from MSA in addi-

tion to the hard sphere function. Thus functional f0[ρ(~r)] (see Eq.2.2) is defined

as

f0[ρ(~r)] = fHS[ρ(~r)]+
ρ2(~r)

2

∫
d~r′uatt(r

′)

(
gHS[ρ(~r), r′] +

gMSA[ρ(~r), r′]

2

)
(2.35)

Tang and co-workers [36] consider the term corresponding to fG[ρ(~r)]|∇ρ(~r)|2

as follows. The attractive part of the potential introduces long wavelength

fluctuations which they expressed as

1

2

∫
d~r1

∫
d~r2uatt(|~r1 − ~r2|)

(
ρ(2)(~r1, ~r2)− ρ2(~r1)g[|~r1 − ~r2|, ρ(~r1)]

)
(2.36)

Where ρ(2)(~r1, ~r2) is two particle density and ~r = ~r1 − ~r2. Here the assumption

is that the above term, which cancels out in the mean field picture, gives the

contribution of fluctuations. Corrections to mean field theory are then derived

by assuming that the fluctuations in f0 can be treated using Wilson’s method

and that in fG[ρ(~r)]|∇ρ(~r)|2 by introducing a cosine function explicitly depen-

dent on wave vector. The normalization of δfn is somewhat similar to that in

White’s theory. A slightly different formulation for fG was also considered in

[37].

2.2.3 Lue-Prausnitz Theory

Lue and Prausnitz pursued an approach somewhat similar to our method de-

scribed in this work, though there are some important differences. Their start-

ing free energy functional is

F [ρ(~r)] =

∫
d~r {f0[ρ(~r)]− aρ2(~r) +

a

2
ξ2|∇ρ(~r)|2]} (2.37)
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where aξ2 = 1
6

∫
d~rr2uatt(r) is a special case of fG obtained by substituting

−βuatt(r) for c[ρ(~r), r]. The functional f0 is taken as the MSA free energy den-

sity and White’s method is followed.

Our formulation starting with the square gradient free energy functional is

more general since the coefficient of square gradient in the above Eq.(2.37) is

a special case of fG in the present case. As discussed earlier, the general form

of fG leads to new terms in the iterative corrections. More specifically, δf1 con-

tains additional terms proportional to square gradient of density (see Eq.2.25),

which is new to the theory. Thus our method has the advantage that it can

be coupled with integral equation theories[5] through the direct correlation

function c[ρ(~r), r]. Also, Wilson’s phase cell method for functional integration

is effected very much in line with his original ideas thereby bringing a close

analogy between magnetic and fluid theories. We also find that the normaliza-

tion of correction terms can be introduced for the sake of removing fluctuation

contributions within the coarse graining length scale.

2.3 Square Well and Lennard-Jones fluids

We have applied the theory discussed above to square well fluids of ranges 3.0

and 1.5 and Lennard-Jones fluids with the following approximations. Reduced

units (ε/kB = σ = 1 where ε is the well depth, kB is the Boltzmann constant,

σ is hard sphere diameter ) are used throughout. Firstly, as mentioned in the

discussion above Eq.(2.28), the square-gradient term in δf1 has been neglected

restricting fG and thus c[ρ, r] to be functions of average density ρ̄. Secondly,

we take for f0, the free energy density obtained from first order perturbation

theory (Eq.(2.2)). For the reference system free energy density, fHS , we used

the Carnahan-Starling [15] expression. We have chosen λ0 to be the first peak

of 4πr2h(r) of the hard sphere system at density corresponding to its fluid-

solid transition ( ρ̄ = 1.02). This choice is made because the structure of any

fluid is mainly determined by the repulsive core. Further, the sensitivity of

LVPD to λ0 is assumed to be small. At this density, the λ0 turned out to be

4.05. We have done calculations using two simple forms for the direct corre-
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Figure 2.1: Subcritical isotherm of square well fluid of range = 3.0 at temperature T = 9.0.
Temperature(T), Pressure(P) and density(ρ) are in reduced units . (dashed line: mean field
theory with VanderWaals loop), (solid line : pressure after five iterations), (dotted line: fully
converged pressure).

lation functions: First is given by c1(r) = −βuatt(r)gHS(r) and the second is

c2(r) = (1 − eβuatt(r))gHS(r) (dependence of c(r) and gHS(r) on average den-

sity is not shown explicitly for notational convenience). Our calculations used

gHS(r) obtained for the hard sphere system from Percus Yevick(PY) closure.

Even though the gHS(r) from PY closure is not consistent with the Carnahan-

Starling expression for fHS , the difference in final results would be negligible

from those with a more accurate version of gHS(r). The numerical procedure

used here is similar to that of White [33, 35] and hence is not discussed here.

Similar approximations were used earlier [33–35, 38] but the parameters in the

theory have been adjusted to in order to match the theoretical results with the

simulation data for critical constants. Our aim in carrying out the numerical

work is to see the accuracy in predictions based on the current method in its

simplest form without adjusting the parameters.

A typical subcritical isotherm, for square well fluid of range 3.0, at different

levels of iterations obtained from our theory is shown in fig.(2.1). The mean

field theory pressure is a smooth curve with a Van der Waals loop. As the iter-
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ations proceed, the region inside the binodal becomes oscillatory (as shown in

fig.(2.1)). The amplitude of the oscillations decreases from iteration to iteration,

making the isotherm flatter. Thus the current theory gives a flat isotherm in the

binodal region. We found that, the number of iterations required to obtain a

flat isotherm (or converged free energy density inside the binodal) depends

on the temperature and the initial wavelength λ0. This dependence is seen to

be arising because of the normalization used in δf1 (see Eq.(2.27)). Close to

the critical region, typically few tens of iterations are required for obtaining

a flat isotherm to single precision accuracy. But, far from the critical region,

the number of iterations required increases to a few hundreds. However, in

any case, the free energy density outside the binodal converges to single pre-

cision accuracy within ten iterations. We have also checked that the isotherm

obtained using Maxwell’s construction also converges (within five to ten iter-

ations) to that obtained from the fully converged free energy density. Thus a

prescription for obtaining the coexistence points could be that, close to the crit-

ical region (around 20% from Tc), iterations can be continued till the free energy

density provides a flat isotherm in the binodal, while far from Tc, Maxwell’s

construction may be used.

Liquid Vapor coexistence curves for the square well fluids with ranges 3.0

and 1.5 are shown in fig.(2.2) and fig.(2.3), respectively. GRGT values for the

critical constants (Tc, ρc, Pc) in the case of range 3.0 are (9.83, 0.26, 0.91) while

simulations [45] predict (9.87, 0.26, 0.84), respectively. These results show that

Tc and ρc obtained by GRGT are in excellent agreement with simulation data.

However, the critical pressure Pc has a slightly larger deviation. In this case

we find that the differences between results obtained by using the two forms

of c(r) described above are negligible. Fig.2.2 shows that GRGT results are

significantly better than those of mean field theory as the critical region is ap-

proached. Both match well far from the critical region. There is also excellent

agreement between the simulation data and the GRGT results throughout the

phase diagram.

Critical parameters (Tc, ρc, Pc) for square well fluids with range 1.5 are (1.30, 0.30, 0.14)

using c1(r) and (1.29, 0.32, 0.13) using c2(r). However, simulations [45] predict
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Figure 2.2: Liquid-vapour coexistence curve of square well fluid with range = 3.0. T and ρ are
in reduced units. (dashed line : mean field theory ), (solid line: GRGT), (squares : simulation
data[45])
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Figure 2.3: Liquid-vapour coexistence curve of square well fluid with width = 1.5. T and ρ are
in reduced units. (Dotted line: mean field theory ), (Dash-dot line: GRGT with c1(r)), (Dashed
line : GRGT with c2(r)), (squares: simulation data[45])
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Figure 2.4: Liquid-vapour coexistence curve of Lennard-Jones fluid. T and ρ are in reduced
units. (Upper solid line: HS-WCA), (lower solid line: HS-WCA + GRGT), (Upper dashed line
: BH), (Lower dashed line: BH + GRGT), (squares [46] and triangles [47] simulation data)

(1.218, 0.310, 0.095). Even though the GRGT improves the results with respect

to mean field theory , there are still significant deviations from simulation data

(see Fig.2.3). We also find that there are slight differences between the results

obtained using the two forms of c(r). Results using c2(r) are seen to provide

slightly better Tc and Pc values in comparison to those of c1(r).

The phase diagram obtained using GRGT for Lennard-Jones fluid is shown

in Fig.(2.4). We have done calculations using two mean field theory free ener-

gies. One is the first order Barker-Hendersen (BH)[10] theory and the other is

the Hard-Sphere-Weeks-Chandler-Andersen (HS-WCA) theory of Amotz and

Stell [19]. It can be seen from Fig.(2.4) that the BH theory is not very accurate

along the liquid side of the phase diagram and its deficiency can be noticed in

GRGT + BH theory results also. The HS-WCA is quite accurate in the region

away from the critical point. The phase diagram of GRGT + HS-WCA also
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matches with that of HS-WCA in this region and improves it close to the crit-

ical region. The whole phase diagram agrees well with simulation data. Dif-

ferences in the results for the two different forms of c(r) closures are negligible

in this case also. The critical constants (Tc, ρc, Pc) obtained using GRGT + HS-

WCA are (1.34, 0.33, 0.15) while GRGT + BH provide (1.32, 0.33, 0.14). These

agree well with simulation data (1.31, 0.31, 0.13) [46]. It can be noticed that the

critical constants obtained using the GRGT + BH theory are more close to the

simulation data than the GRGT + HS-WCA results. However, in view of its

performance in the LVPD, we conclude that the high accuracy of GRGT + BH

prediction of critical constants is fortuitous.

Also we have checked the sensitivity of LVPD w.r.t. coarse graining length

λ0 in the case of square-well fluids. The variations of Tc and Pc when λ0 is

varied up to 20% around its original value (4.05) are shown in fig.(2.5). For the

square-well fluid of range 3.0, relative deviation (for both Tc and Pc) is more
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for small values of λ0 and as λ0 is increased, the results tend to simulation

values. This shows that the effects of short range fluctuations will be slightly

overestimated by choosing a smaller value of λ0. In the case of square well

fluid of range 1.5, the relative deviation decreases when λ0 is decreased. Hence

more fluctuation effects of shorter wavelengths than that obtained with λ0 =

4.05 have to be added. In both the above cases, it can be seen that the results

tend uniformly to simulation values as λ0 is appropriately varied. Thus one of

the reasons for the errors (see Fig.2.3) could be the approximate estimate of λ0

chosen based on gHS(r) in the present calculation. A choice based on the g(r)

of the actual system would improve the accuracy of the results. The critical

density ρc is seen to vary negligibly in both cases.

Also, it can be seen that in the case of square well fluid of range 3.0, the sen-

sitivity of the results to λ0 is quite small. This could be because of two reasons.

First, the fluctuation effects are less owing to the larger range of the potential.

Second, the mean field theory used is good enough far from the critical region

and also in qualitative agreement with simulation results even in the critical

region. Also, in the case of Lennard-Jones fluid, it can be seen that the liq-

uid side of the LVPD obtained from GRGT + BH theory didn’t improve over

the BH theory far from the critical region where its agreement with simulation

data is not good. Thus the current method of GRGT requires a mean field the-

ory which is in good agreement with simulation/experimental values far from

the critical region and a proper value of λ0 chosen from the g(r) of the actual

system.

2.4 Summary and Conclusions

In this chapter, we have presented a general derivation of GRGT starting from

the square-gradient approximation for the Helmholtz free energy functional.

White’s assumption of cosine variation of density is relaxed by using Wilson’s

functions to represent the density fluctuations. The generalization of GRGT to

include a general functional (fG) multiplying the gradient term is a new result

and leads to additional terms in the iterative corrections to free energy den-
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sity. We suggested a way to infer the parameters λ0 and z in the theory, rather

than adjusting them for agreement with simulation data. The theory has been

applied to square well fluids of ranges 3.0 and 1.5 and Lennard-Jones fluids.

We have shown that the present method gives a flat isotherm in the two phase

region. We have not explicitly calculated the critical exponents. However, a

flat sub-critical isotherm and a flatter phase diagram close to the critical region

than the mean field theory phase diagram indicate the non-classical behavior

of the critical exponents. Also earlier workers[48] have shown that the method

reproduces non-classical critical exponents. Since our work is a generalization

of the earlier methods, we expect the same to be valid here.

We observed that the present implementation of the GRGT has some short-

comings. The method is inaccurate for fluids with short range potentials even

though there is some improvement over the mean field theory. The sensitivity

of results to variation of λ0 increases with decrease in the range of the potential.

Also, as the range is decreased, the phase diagram close to the critical region

becomes excessively flat. This problem has been reported by other workers

also[49]. Apart from these, the convergence of the GRGT iteration scheme is

slow away from the critical region .

One reason for inaccuracy of the present method for fluids with short range

potentials is error in the mean-field Helmholtz free energy and the coefficient

of the square-gradient term, termed as influence parameter in the literature[50],

used in our calculations. Another possible reason could be the error in the

Wilson’s method of functional integration. However, it is apparent from the

results that the error in the mean-field theory itself is significant throughout

the phase diagram. Since the contribution of GRGT is supposed to be signif-

icant only close to the critical region, it is conjectured that the major error is

from the mean-field terms.

In the next chapter, we develop an improved mean field theory for ob-

taining the Helmholtz free energy and structural properties of a homogeneous

fluid so that the influence parameter may also be obtained.



CHAPTER 3
Coupling parameter expansion in perturbation theory

of simple fluids

3.1 Introduction

In the previous chapter, we concluded that an accurate mean field Helmholtz

free energy and an accurate DCF1 would improve the results of the GRGT. Var-

ious mean field theories for obtaining the thermodynamic properties of simple

fluids have been discussed in chapter 1 along with their limitations. The inte-

gral equation theory gives the correlation functions (i.e., the RDF and DCF) us-

ing which the thermodynamic properties may be obtained from various routes

(i.e., the virial, the energy and the compressibility routes). However, the inte-

gral equation theory has no solution in the phase-coexistence region. Hence

the method cannot be used in conjunction with GRGT. The perturbation theory

as developed by Zhou[23, 24], called the coupling parameter expansion(CPE)

method, seemed promising. However, the finite difference method used in ob-

taining the dng
dζn

∣∣∣
0

is not accurate enough to obtain derivatives of order higher

than three and requires smoothing procedures to remove unwanted fluctua-

tions in the calculated derivatives. Apart from this the method is computa-

tionally much more expensive than the previously existing methods.

In this chapter, we present a new approach to evaluate the terms of the cou-

pling parameter series expansion for Helmholtz free energy which is equiva-

lent to that of Zhou but with added advantages. We assume that the RDF (g(r))

and the DCF (c(r)) of the perturbed system are functions of the coupling pa-

rameter ζ (introduced in Chapter 1) and that they can be expressed as a Taylor

series in ζ around ζ = 0. Then we derive a system of linear equations con-

1The influence parameter is second moment of the DCF.
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necting the derivatives of c(ζ, r) in real space and g(ζ, r) in Fourier space, by

using a general closure relation obtained from diagrammatic analysis and the

OZE [1]. This coupled sets of equations is easily solved in a self-consistent

way to obtain all the required derivatives. Thus the new method avoids using

the finite difference method for obtaining the derivatives of g(ζ, r) and accu-

rate derivatives up to any order can be easily obtained without requiring any

smoothing procedures. Another important advantage of the present theory is

that it gives both g(r) and c(r) of the actual system, apart from the Helmholtz

free energy.

Initially, a simplified version of the theory[51] is derived which assumes

that the derivatives of the bridge function do not depend on ζ . The assumption

is equivalent to the reference hyper-netted chain(RHNC) approximation[52].

The simplified theory (hereafter referred as RHNC-CPE) is applied to square-

well fluids of various ranges and correlation functions and liquid vapor co-

existence curves are obtained. The results are compared with available sim-

ulation data. In the later part of the chapter, a generalized derivation of the

method[53] which accounts for the dependence of bridge function on ζ is given.

The generalized method is applied to square-well and Lennard-Jones fluids

and its performance is analyzed.

The chapter is organized as follows. In section 3.2 first the general CPE

method is derived and later the simplification using RHNC is discussed. In

section 3.3 the RHNC-CPE method is applied to square well fluids. In sec-

tion 3.4, a generalized version of the CPE method is presented. Application

of generalized CPE to square-well and Lennard-Jones fluids is described in

section 3.5. The chapter is concluded in section 3.6.

3.2 Coupling parameter expansion method

Consider a simple classical fluid of particles, at a temperature T, interacting

with a spherically symmetric pair potential u(r) where r is the inter-particle

distance. The potential is split into uref (r), the reference system potential, and

uper(r) the perturbation part. It is assumed that the structural (c(ζ = 0, r) and
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g(ζ = 0, r)) and thermodynamic properties of the reference system are known.

We will denote the radial distribution function , direct correlation function and

the Helmholtz free energy density of the reference fluid as g0(r), c0(r) and f0(ρ),

where ρ is the macroscopic density of the homogeneous fluid. A fictitious

system with interaction potential defined as

u(ζ, r) = uref (r) + ζuper(r) (3.1)

is considered for the perturbation theory, where ζ is the coupling parameter.

The effect of increasing ζ from zero to unity is to gradually switch on the per-

turbation. We postulate that the radial distribution function and direct correla-

tion function of the system with potential u(ζ, r) can be written as a MacLaurin

series in ζ , that is,

c(ζ, r) = c0(r) + ζ

(
∂c

∂ζ

)
ζ=0

+
ζ2

2!

(
∂2c

∂ζ2

)
ζ=0

+ ......... (3.2)

g(ζ, r) = g0(r) + ζ

(
∂g

∂ζ

)
ζ=0

+
ζ2

2!

(
∂2g

∂ζ2

)
ζ=0

+ ......... (3.3)

It is assumed that the series converge for all ζ in [0, 1] and the direct correlation

function and radial distribution function of the actual system can be obtained

by putting ζ = 1. Hereafter we shall denote nth partial derivative of any func-

tion X(ζ, r) w.r.t ζ as X(n)(ζ, r).

A general closure relation for the direct correlation function c(ζ, r) provided

by liquid state theory is [1, 5]

c(ζ, r) = exp(−βu(ζ, r) + y(ζ, r) +B(ζ, r))− y(ζ, r)− 1 (3.4)

where y(ζ, r) is the indirect correlation function defined as h(ζ, r)− c(ζ, r) and

h(ζ, r) = g(ζ, r) − 1 is the total correlation function of the fictitious fluid. The

bridge function B(ζ, r) is a sum of an infinite series of the “bridge diagrams”

[5]. Since g(ζ, r), and hence h(ζ, r), as well as c(ζ, r) are expanded in a series in

ζ , the correlation function y(ζ, r) is also a series in ζ . The nth order coefficient

in its series is given by y(n)(ζ, r) = h(n)(ζ, r)− c(n)(ζ, r).
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In a similar manner, the bridge function B(ζ, r) also should be considered

as a series in ζ . Several approximations toB(ζ, r) in terms of y(ζ, r) and certain

empirical parameters are available [5]. However to simplify the present for-

mulation, we assume that B(ζ, r) is independent of ζ which is nothing but the

RHNC approximation. Thus the bridge function of the perturbed system, close

to ζ = 0, is assumed to be the same as that of the reference system. This ap-

proximation has been used by Zhou [23] as all the derivatives of g(ζ, r), needed

in the theory, are to be computed only at ζ = 0. Adequacy of this assumption,

except for short range potentials, has also been established by Zhou by com-

paring its results with simulation data [24].

3.2.1 Third Order Theory

First of all we shall elaborate the method for third order RHNC-CPE, wherein

the series in Eq.(3.2) and Eq.(3.3) are truncated after the first three terms. As

B(r) is assumed to be independent of ζ , differentiating Eq.(3.4) w.r.t. ζ we get

c(1)(ζ, r) = (−βuper(r) + y(1)(ζ, r))g(ζ, r)− y(1)(ζ, r) (3.5)

where we have used the definition of the g(ζ, r) given by [1, 5]:

g(ζ, r) = exp(−βu(ζ, r) + y(ζ, r) +B(r)) (3.6)

In a similar manner the second derivative is obtained as,

c(2)(ζ, r) = (−βuper(r) + y(1)(ζ, r))2g(ζ, r) + y(2)(ζ, r)(g(ζ, r)− 1) (3.7)

To get another set of relations between c(n)(ζ, r) and y(n)(ζ, r), we consider

the OZE in Fourier space:

h(ζ, k) =
c(ζ, k)

1− ρc(ζ, k)
(3.8)

where h(ζ, k) and c(ζ, k) are the Fourier transforms of h(ζ, r) and c(ζ, r), re-

spectively. For instance, the transform of h(ζ, r) and its inverse are defined
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as

h(ζ, k) = 4π

∞∫
0

sin(kr)

kr
h(ζ, r)dr (3.9)

h(ζ, r) =
1

2π2

∞∫
0

sin(kr)

kr
h(ζ, k)dk (3.10)

Differentiating Eq.(3.8) w.r.t. ζ we obtain

h(1)(ζ, k) = c(1)(ζ, k)s2(ζ, k) (3.11)

where the structure factor s(ζ, k) is defined as

s(ζ, k) =
1

1− ρc(ζ, k)
(3.12)

In a similar way, the second derivative h(2)(ζ, k) is obtained as

h(2)(ζ, k) = c(2)(ζ, k)s2(ζ, k) + 2ρ(c(1)(ζ, k))2s3(ζ, k) (3.13)

Eq.(3.11) and Eq.(3.13) now provide y(1)(ζ, k) and y(2)(ζ, k). As the g(0, r) and

the structure factor s(0, k) of the reference system are known, Eq.(3.5) and

Eq.(3.7) can be evaluated at ζ = 0. Thus the closed set of four linear equa-

tions, defining the third order theory, are given by

c(1)(0, r) = (−βuper(r) + y(1)(0, r))g(0, r)− y(1)(0, r) (3.14)

c(2)(0, r) = (−βuper(r) + y(1)(0, r))2g(0, r) + y(2)(0, r)(g(0, r)− 1) (3.15)

y(1)(0, k) = c(1)(0, k)(s2(0, k)− 1) (3.16)

y(2)(0, k) = c(2)(0, k)(s2(0, k)− 1) + 2ρ(c(1)(0, k))2s3(0, k) (3.17)

We solve this system of equations using a simple iterative method. Starting

with guess solutions for y(1)(0, r) and y(2)(0, r), which are usually taken as zero,

we determine c(1)(0, r) and c(2)(0, r). Then their Fourier transforms are ob-

tained using an fast Fourier transform algorithm, thereby obtaining y(1)(0, k)
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and y(2)(0, k). Inverse Fourier transforms of these functions provide y(1)(0, r)

and y(2)(0, r) for the next iteration, and the procedure is continued till conver-

gence is obtained. More details of the numerical procedure are discussed in

the next section.

The correlation functions c(1, r) and g(1, r) of the actual system are ob-

tained from Eq.(3.2) and Eq.(3.3), respectively, by putting ζ = 1. The CPE

for Helmholtz free energy density f(ρ) of a homogeneous fluid is given by [1]

f(ρ) = fref (ρ) +
ρ2

2

∫ 1

0

dζ

∫
d~r uper(r)g(ζ, r) (3.18)

where fref (ρ) is the free energy density of the reference system. Substituting

Eq.(3.3) in Eq.(3.18) and integrating over ζ , we get

f(ρ) = fref (ρ) +
ρ2

2

∫
d~r uper(r)

(
g0(r) +

1

2!
g(1)(0, r) +

1

3!
g(2)(0, r)

)
(3.19)

Here we have used the shortened notation for the derivatives (∂ng(r)/∂ζn)ζ=0

which is readily obtained as y(n)(0, r) + c(n)(0, r). Thus the method provides

the direct correlation function , radial distribution function as well as the free

energy density.

3.2.2 General Order Theory

The RHNC-CPE method outlined above can be generalized to any arbitrary

order. Writing g(ζ, r) in the short form

g(ζ, r) = exp(f(ζ, r)) (3.20)

f(ζ, r) = −β (uref (r) + ζuper(r)) + y(ζ, r) +B(r) (3.21)

the general expression for its nth order derivative is found to be

g(n)(ζ, r) =

(n−1)∑
m=0

[C(n−1)
m ] f (n−m)(ζ, r) g(m)(ζ, r), n ≥ 1 (3.22)
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where [C
(n−1)
m ] is the binomial coefficient. The derivatives f (n)(ζ, r) are given

by

f (n)(ζ, r) = −βuper(r) δn,1 + y(n)(ζ, r), n ≥ 1 (3.23)

where δn,1 is the Kronecker delta. The derivatives g(n)(ζ, r) can be computed

using Eq.(3.22) in a recursive manner, using f (n)(ζ, r) either from an initial

guess or from the previous iteration. Now, using Eq.(3.6), we rewrite the clo-

sure in Eq.(3.4) as

c(ζ, r) = g(ζ, r)− y(ζ, r)− 1 (3.24)

which readily provides its nth order derivative

c(n)(ζ, r) = g(n)(ζ, r)− y(n)(ζ, r), n ≥ 1. (3.25)

The structure factor introduced in Eq.(3.12) is rewritten as

s(ζ, k) = 1 + ρc(ζ, k) s(ζ, k) (3.26)

This equation can be differentiated using the Leibniz rule to obtain

s(n)(ζ, k) = ρ
n∑

m=0

[Cn
m] c(n−m)(ζ, k) s(m)(ζ, k), n ≥ 1. (3.27)

Transferring the last term in the sum to the l.h.s and using Eq.(3.12) we get

s(n)(ζ, k) = [s(0)(ζ, k)] ρ

(n−1)∑
m=0

[Cn
m] c(n−m)(ζ, k) s(m)(ζ, k), n ≥ 1 (3.28)

Using the values of c(m)(ζ, k) from the current iteration, Eq.(3.28) can be evalu-

ated recursively. Finally, using s(ζ, k) = 1+ρh(ζ, k), the derivatives of y(ζ, k) =

h(ζ, k)− c(ζ, k) are expressed as

y(n)(ζ, k) = ρ−1 s(n)(ζ, k)− c(n)(ζ, k), n ≥ 1 (3.29)

Eq.(3.25) and Eq.(3.29) provide the general equations for the derivatives. These

can be readily solved using the same iteration method outlined for third order
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theory.

3.3 Application to Square Well Fluids

We applied the RHNC-CPE theory described above to square-well fluids as

ample amount of simulation data for different square-well widths are avail-

able for comparison. Radial distribution functions for ranges 1.3 and 1.5 and

phase diagrams for ranges 1.25 to 2.3 are considered to test the accuracy of the

present theory. First order theory is known to be highly inaccurate for these

cases. Results of calculations using third, fifth and seventh order versions of

the present theory are compared with those of first order theory and simula-

tions. Reduced units (ε/kB = σ = 1, where ε is the well depth and σ is hard

sphere diameter) are used throughout.

3.3.1 Numerical Procedure

The numerical procedure used to solve the coupled set of linear equations

for the derivatives c(n)(0, r) and g(n)(0, r) is as follows. It is assumed that

c(0)(0, r) = c0(r) and g(0)(0, r) = g0(r) are known. If only g0(r) is known, c0(r)

can be calculated using the Ornstein Zernike equation and a proper numer-

ical procedure [54, 55]. To compute the derivatives, say, in nth order theory,

Eq.(3.25) in real space and Eq.(3.29) in Fourier space are solved employing

an iterative procedure. First of all, we choose guess solutions for y(m)(0, r),

for all m in the range 1 ≤ m ≤ n, and compute g(m)(0, r), recursively, using

Eq.(3.22). In practice, we take null solutions as the starting guesses. Then,

c(m)(0, r) are obtained using Eq.(3.25). Next, their Fourier transforms c(m)(0, k)

are computed using an FFT algorithm. Mesh widths in the range 0.01 to 0.001

are found to be adequate. These are employed in Eq.(3.28) to obtain s(m)(0, k)

recursively. These functions, when used in Eq.(3.29), provide y(m)(0, k). In-

verse Fourier transformation gives y(m)(0, r). This completes the first iteration.

However, before starting the next iteration, we employ a linear mixing of the

previous and new solutions: αy(m)(0, r)+(1−α)y(m)(0, r)→ y(m)(0, r). They are

then used in Eq.(3.25) for the second iteration. The procedure is repeated until
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the root mean square differences between successive iterates of y(m)(0, r), for

all m, are less than a prescribed tolerance. We find that α = 0.5 and tolerance

of 10−8 are adequate to get accurate solutions.

3.3.2 Structural Properties

For application to square-well fluids, the hard sphere fluid is the natural refer-

ence system. Even though any bridge function can be used in Eq.(3.4), to de-

termine the properties of the hard sphere system, we have used B(r) provided

by Malijevsky and Labik [56], as used by Zhou[24]. The Ornstein Zernike

equation is then solved for the hard sphere system using the standard itera-

tive method [57]. With the properties of hard sphere fluid so determined, the

derivatives up to fourth order (g(n)(0, r), n = 1, 4) from the present theory can

be directly compared with those of Zhou. Fig.3.1 shows this comparison and

we find that the derivatives obtained from the present method and the finite

difference method used by Zhou match with negligible deviations. However,

our numerical scheme is much simpler and even higher order derivatives can

be easily calculated without resorting to any smoothing procedures. Radial

distribution function of square-well fluids obtained using fifth order and sev-

enth order versions of the present theory are plotted in Fig.3.2, Fig.3.3 and

Fig.3.4. For the case of range 1.5 (see Fig.3.2), g(r) obtained using our theory

is in excellent agreement with simulation results [58] except for a very small

deviation in the square-well region for ρ = 0.2. Similar convergence of the

RHNC-CPE series is found for range 1.3 (see Fig.3.3) even though some differ-

ences with simulation data are noticeable at ρ = 0.4 also. In Fig.3.4 we show

g(r) obtained using third, fifth and seventh order versions of the theory for

square-well fluid of range 1.25 at temperature T = 0.56, density ρ = 0.2 and

for square-well fluid of range 1.2 at temperature T = 0.45, density ρ = 0.4.

These cases clearly show that the convergence of the series is slow for short-

ranged potentials at very low temperatures and densities. Thus for extremely

short ranged potentials, contribution from terms higher than sixth order in

Taylor series expansion of g(r) become important. In Fig.3.5, c(r) obtained

using seventh order version of our theory is compared with the simulation re-
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sults of [59] for two cases: square-well fluid of range 1.25 at T = 2.0, ρ = 0.75

and square-well fluid of range 1.2 at T = 2.0, ρ = 0.75. The agreement with

experiment is good in the former case whereas slight deviation is found in the

latter case. Comparison for smaller widths was not possible because of lack of

simulation data for c(r).

We have also observed that the present approach doesn’t have any numer-

ical convergence problems neither in the two-phase region nor close to the

critical region. In contrast, the integral equation theories generally fail to have

a solution in the two phase region and the numerical algorithms have slow

convergence in the critical region. This is an interesting feature of the present

theory and requires a further detailed investigation with different bridge func-

tions and interatomic potentials. Further, the DCF c(r) = c(1, r) obtained us-

ing the present method can find applications in density functional theories of

inhomogeneous fluids. For example, in the square-gradient functional for in-

homogeneous systems, the coefficient of the gradient term, called influence

parameter, depends explicitly on c(r) of the homogeneous system. As the inte-

gral equation theories generally do not have solutions in the spinodal region,

interpolation techniques are required to obtain the influence parameter[50].

The DCF (c(1, r)) of the actual system obtained from our method can be di-

rectly used to obtain the influence parameter which is required for the GRGT

calculations. The present theory also has the advantage of accommodating any

bridge function for computing the derivatives, though we have used only the

simple hard sphere version for this work.

3.3.3 Liquid-Vapor Phase Diagrams

We compare the liquid-vapor phase diagrams (LVPD) for square-well fluids

of ranges 1.25, 1.375, 1.5 and 2.3 using first order, third order, fifth order and

seventh order versions of the present RHNC-CPE method. These are shown

in Fig.(3.6) together with simulation data for the different ranges. It is clear

that there is an enormous improvement in the results over first order pertur-

bation theory, which is quite apparent for smaller ranges i.e., 1.5 and smaller.

For range 2.3, the difference between fifth order and seventh order RHNC-CPE



61 3.3. APPLICATION TO SQUARE WELL FLUIDS

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

 1  1.5  2  2.5  3

dn g/
dζ

n | ζ
 =

 0

r

SW range = 1.25, T = 0.2, density = 0.75

n = 2

n = 1

(a)

-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50

 1  1.5  2  2.5  3

dn g/
dζ

n | ζ
 =

 0

r

n = 3

n = 4

(b)

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1  1.5  2  2.5  3

dn g/
dζ

n | ζ
 =

 0

r

SW range = 1.25, T = 1.0, density = 0.75

n = 1
n = 2

(c)

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 1  1.5  2  2.5  3

dn g/
dζ

n | ζ
 =

 0

r

n = 3
n = 4

(d)

Figure 3.1: (From top to bottom) First and second figure are derivatives of g(r) up to fourth
order for square-well fluid of range 1.25 at reduced temperature T = 0.2 and reduced density
ρ = 0.75. Third and fourth figure are derivatives of g(r) up to fourth order for square-well
fluid of range 1.25 at reduced temperature T = 1.0 and reduced density ρ = 0.75. (solid line
and dash-dot: present theory), (stars: Zhou’s results [24])
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Figure 3.2: g(r) for square-well fluid of range 1.5 at reduced temperature T = 1.5. Plots from
top to bottom are for reduced density ρ = 0.2, 0.4 and 0.8 respectively. (Solid line: fifth order
RHNC-CPE ), (Dashed line : seventh order RHNC-CPE), (stars: simulation results [58])
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Figure 3.3: g(r) for square-well fluid of range 1.3 at reduced temperature T = 1.0. Plots from
top to bottom are for reduced density ρ = 0.2, 0.4 and 0.8 respectively. (Solid line: fifth order
RHNC-CPE ), (Dashed line : seventh order RHNC-CPE), (stars: simulation results [58])
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Figure 3.4: (Left figure) g(r) for square-well fluid of range 1.25 at temperature T = 0.56
and density ρ = 0.2 in reduced units. (Right figure) g(r) for square-well fluid of range 1.2
at temperature T = 0.45 and density ρ = 0.4 in reduced units. (Dashed line: third order
RHNC-CPE), (Soild line: fifth order RHNC-CPE ), (Dotted line : seventh order RHNC-CPE)
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Figure 3.5: (Left) c(r) for square-well fluid of range 2.5, Temperature T = 2.0, density ρ = 0.75
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Simulations[59])
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is small even in the critical region and we can conclude that the perturbation

series of Helmholtz free energy has practically converged. However, they dif-

fer from the first order RHNC-CPE and simulation data in the critical region.

Similar results are noted even for the cases of range 1.5 even though the error

in first order RHNC-CPE is much larger. For ranges 1.375 and 1.25, the dif-

ferences between the fifth and seventh order RHNC-CPE are quite small, but

noticeable in certain parts of the phase plane. Thus for the cases presented,

convergence of the perturbation series of Helmholtz free energy is satisfactory

and faster than that of the series of g(r) which is expected. However, there is

still significant deviation from the simulation results for the three cases i.e., for

square-well fluids of ranges 1.25, 1.375, 1.5. We also note that neglecting the

ζ dependence of bridge function B(ζ, r) has brought in more asymmetry than

expected in the phase diagram resulting in a shift of the critical point towards

the liquid side. Now that the perturbation series has converged, we can clearly

conclude that the deviation is caused because of the following reasons: first is

the bridge function used in the calculation and the RHNC approximation and

secondly because of long range fluctuations. Improving the results using a

better bridge function is within the scope of the theory. Whereas methods of

renormalization group theory need to be used to bring in better agreement in

the critical region[42].

3.4 Generalized coupling parameter expansion

method

As explained above,there has been significant deviation of the obtained liquid

vapor phase diagrams using the RHNC version of coupling parameter expan-

sion from simulation data for narrow square-well fluids. It was concluded that

the deviation and slow convergence could be because of neglected derivatives

of bridge function w.r.t. ζ in our calculations and the error in the bridge func-

tion we have chosen for calculation.

In this section we describe a generalized version of CPE method[53] with

application to square-well and Lennard-Jones fluids. We use the bridge func-
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tion proposed by Sarkisov[63] with slight modification for square-well fluids[64]

and include its derivatives w.r.t. ζ in the calculation. Thus we refer to the

method as S-CPE hereafter. We obtain RDFs, isotherms and LVPDs for square-

well fluids of various ranges and compare with those obtained from solving

the OZE with the modified Sarkisov bridge function and available simulation

data. We also compare our results with available results of other existing the-

ories.

Also, using the RHNC-CPE, we were able to obtain the g(r) and c(r) inside

the spinodal and close to the critical region without any problems of conver-

gence of the iteration scheme even though our numerical scheme was very

simple. This could be an indication of the existence of the solution to OZE in-

side the spinodal region. The g(r) and c(r) in the two-phase region find appli-

cations in the density functional theory of fluids [43]. One example is the cal-

culation of surface tension. This calculation requires the c(r) in the two phase

region. As the integral equation theories do not have solution in some part of

the liquid vapor coexistence region, earlier calculations of surface tension were

done using an interpolation formula given by Ebner et.al. [65] to obtain c(r) in-

side the two-phase region. Using the generalized coupling parameter expan-

sion we calculate the surface tension for square-well fluids of ranges 1.25, 1.375

and 1.75 using the expression obtained from the square gradient functional for

Helmholtz free energy and compare with simulation results.

As an application of CPE to non-hard sphere reference systems, we ap-

ply it to Lennard-Jones fluid. We use the Sarkisov bridge function[63] for

both reference system and perturbation part. The radial distribution functions,

isotherms and the liquid vapor coexistence curves for the Lennard-Jones fluid

are obtained and compared with those obtained from integral equation theory

and simulations wherever available.

Basic theory is the same as explained in the section 3.2 except for a gener-

alization to include derivatives of bridge function in the calculation. Thus, in

the Eq.(3.21), B(r) is replaced by B(ζ, r). The general expression for nth order
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derivative of g(ζ, r) from Eq.(3.21) now becomes

g(n)(ζ, r) =

(n−1)∑
m=0

[C(n−1)
m ] φ(n−m)(ζ, r) g(m)(ζ, r), n ≥ 1 (3.30)

where [C
(n−1)
m ] is the binomial coefficient. The derivatives φ(n)(ζ, r) are given

by

φ(n)(ζ, r) = −βuper(r) δn,1 + y(n)(ζ, r) +B(n)(ζ, r), n ≥ 1 (3.31)

where δn,1 is the Kronecker delta. The derivatives g(n)(ζ, r) can be computed

using Eq.(3.30) in a recursive manner, using φ(n)(ζ, r) either from initial guess

or from previous iteration. Remaining part of the derivation is exactly same as

earlier.

For example, to obtain Taylor series expansion up to second term, the set of

four equations given by

c(1)(0, r) = (−βuper(r) + y(1)(0, r) +B(1)(0, r))g(0, r)− y(1)(0, r) (3.32)

c(2)(0, r) = (−βuper(r) + y(1)(0, r) +B(1)(0, r))2g(0, r) (3.33)

+B(2)(0, r)g(0, r) + y(2)(0, r)(g(0, r)− 1)

y(1)(0, k) = c(1)(0, k)(s2(0, k)− 1) (3.34)

y(2)(0, k) = c(2)(0, k)(s2(0, k)− 1) + 2ρ(c(1)(0, k))2s3(0, k) (3.35)

have to be solved (where g(0, r) is y(0, r) + c(0, r) + 1 ).

3.5 Applications

3.5.1 Square-Well Fluids: correlation functions and liquid va-

por coexistence curves

Seventh order version of the generalized CPE method is applied to square-well

fluids. (Hereafter in the thesis, by X-CPE we mean seventh order X-CPE unless

specified. X can be RHNC or S etc. While mentioning other orders of CPE, the

order number is specified. ) The closure proposed by Sarkisov with a slight
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modification by Mendoub[64]

B(ζ, r) = (1 + 2y∗(ζ, r))1/2 − 1− y∗(ζ, r) (3.36)

where

y∗(ζ, r) = y(ζ, r) + ρfM(σ+)/2, r < σ (3.37)

= y(ζ, r) + ρfM(r)/2, r ≥ σ

and σ is the Hard sphere diameter is used. We obtained the RDF and DCF of

the reference system using the same bridge function by solving the OZE using

a similar procedure as explained above to maintain consistency. In the above

equation, fM is the Mayer function.

Reduced units (ε/kB = σ = 1, where ε is the well depth and σ is hard sphere

diameter) are used throughout the chapter. For convenience, we denote c(0, r),

g(0, r) by c0(r), g0(r) respectively and c(1, r), g(1, r) by c(r), g(r) respectively. In

Fig.(5.9) we compare g(r) obtained using the S-CPE and that obtained through

Integral equation theory [64] for square-well fluid of range 1.3 for densities

0.2 and 0.8 and temperature T = 1.0. Clearly, there is negligible difference be-

tween results obtained using present method and those obtained from Integral

equation theory . Also, the agreement with simulation results is good. We ob-

served that except for very low temperatures and low densities, results of fifth

order and seventh order S-CPE methods have negligible deviation showing

that the Taylor series has converged. Convergence of the iteration scheme has

been good in the whole phase diagram. g(r) obtained by S-CPE method for

square-well fluid of range 1.25 in the spinodal region at ρ = 0.4 and T = 0.65

is shown in Fig.(3.7). Above observations show that the present method may

be viewed as an alternative way of solving the Ornstein Zernike equation.

In Fig.(3.8) we give plots of LVPDs for square-well fluids of ranges 1.25

and 1.375 respectively obtained using S-CPE with and without including the

derivatives of bridge function in the calculations. We used the Carnahan-

Starling expression for Helmholtz free energy density of the hard sphere ref-

erence system. Our results are compared with simulations, those obtained
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Figure 3.7: Top: g(r) for square-well fluid of range 1.3 for densities 0.2, 0.8. (Circles: sim-
ulation results[58]); (Dashes: Integral equation theory results [64]); (Solid lines: results from
S-CPE). Bottom: g(r) for square-well fluid of width 1.25, temperature T = 0.65 and density
0.4.

from Integral equation theory [64] and our previous RHNC-CPE results using

Malijevsky-Labik brdige function. We also depict the results of SCOZA[66]

and those of Intermediate Range Square Well Equation Of State (IRSWEOS)

developed by Gil-Villegas et al.[68]. The IRSWEOS is an analytical EOS for

square well fluids based on perturbation theory which includes the macro-

scopic compressibility approximation for second order term and higher order

terms.

It can be seen that the LVPDs obtained from the S-CPE are very much im-

proved in the liquid part of the LVPD over those of integral equation theory

[64]. A reason for this improvement is the use of the Carnahan Starling expres-

sion for hard sphere free energy density. A comparison of the LVPDs obtained

by RHNC-CPE with Sarkisov closure and S-CPE shows that the correction due

to the derivatives becomes important close to the critical region and along the

liquid side of the phase diagram. Neglecting them leads to shifting of the crit-

ical point to high density region. Also,it can be seen from the plots that our

results are in close agreement with simulation data than those of SCOZA and
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IRSWEOS.

In Fig.(3.9), pressure isotherms obtained using 3rd, 5th and 7th order S-CPE

method for square-well fluids of extremely short ranges 1.01 and 1.04 are plot-

ted for temperatures 0.255 and 0.37 respectively. The figures depict that the

3rd order results are much closer to the simulation results. A comparison of

the three versions shows that the series is indeed convergent at each density

point. But it is converging to a point away from the simulation results. This is

because of the inaccuracy of the bridge function for very short ranged fluids.

Thus the apparent closeness of the third order perturbation theory results to

the simulation results is fortuitous. However, the results may be improved us-

ing a different choice of bridge function which is accurate for extremely short

range potentials.

3.5.2 Square-well fluids: surface tension

Possibility of obtaining c(r) in two phase region allows for calculation of sur-

face tension of liquids. We use the c(r) obtained from S-CPE to obtain surface

tension for square-well fluids. Formula for surface tension is obtained by Yang

et. al. [69] from square-gradient functional for Helmholtz free energy of in-

homogeneous fluids. A brief derivation is as follows: The square-gradient ap-

proximation for Helmholtz free energy functional of an inhomogeneous liquid

occupying volume Ω at temperature T is given by

F [ρ(~r)] =

∫
d~r {f(ρ(~r)) + fg(ρ(~r))|∇ρ(~r)|2} (3.38)

where f(ρ) is Helmholtz free energy density of homogeneous liquid. The sec-

ond term is the effect of in-homogeneity. ρ(~r) is the number density in an

infinitesimal volume around ~r.F [ρ(~r)], f(ρ(~r)) and fg(ρ(~r)) are all functions of

T even though the dependence is not shown explicitly.

The coefficient fg of gradient term also referred as influence parameter is

fg[ρ(~r)] =
1

12β

∫
d~r′r′2c[ρ(~r), r′] (3.39)

We assume that the liquid-vapor interface is flat and that z-axis is normal to the
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interface pointing out into the vapor from the liquid. In such a case, Eq.(3.38)

becomes

F [ρ(z)] = A

∫
dz {f(ρ(z)) + fg(ρ(z))

∣∣∣∣dρ(~r)

dz

∣∣∣∣2} (3.40)

where A is the surface area. Grand free energy of the system is given as

Γ[ρ(z)] = F [ρ(z)]− µN (3.41)

where µ is the chemical potential of the system and N is the total number of

particles

Minimizing Γ w.r.t. ρ we get

d

dz

[
fg(ρ)

(
dρ

dz

)2
]

=
dγ(ρ)

dz
(3.42)

where γ(ρ) is the grand free energy density.

Integrating above Eq.(3.42) with boundary conditions

ρ(z →∞) = ρg; ρ(z → −∞) = ρl (3.43)

gives
dρ

dz
=

[
γ(ρ)− γ(ρl)

fg(ρ)

]1/2

(3.44)

where ρl and ρg are coexisting liquid and vapor densities for temperature T

under consideration. Surface tension S can be calculated using the formula[50]

S = 2

∫ ∞
−∞

fg(ρ)

(
dρ

dz

)2

dz (3.45)

Using Eq.(3.44) in above equation gives

S = 2

∫ ρl

ρg

[fg(ρ)(γ(ρ)− γ(ρl))]
2 (3.46)

In the above equations γ(ρl) may be replaced by γ(ρg) also as both have same

value.
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Above explained formalism is applied to square-well fluids of ranges 1.375,

1.5 and 1.75 with c(r) obtained from S-CPE as explained above. Fig.(3.10)

shows fg(ρ) as a function of ρ for different temperatures for square-well fluid of

range 1.25. From Fig.(3.10) it can be seen that fg(ρ) becomes negative at high

densities which is unphysical. This might be an artifact of the approximate

bridge function used. However, within the binodal, where fg is required for

the calculation of surface tension(S), it is positive. Surface tensions obtained

from our calculation are plotted as a function of T in Fig.(3.11). Our results

compare well with simulations except close to the critical temperatures.

3.5.3 Lennard Jones Fluid

The theoretical formalism explained in section 3.4 is general and can be ap-

plied to non-hard sphere reference systems also. As an example, we applied

the theory to Lennard Jones fluid. The Lennard Jones potential was split into

reference and perturbation parts according to the Weeks Chandler and An-

derson (WCA)[17] method. In this case, we used for B(ζ, r), the expression

proposed by Sarkisov [63] which is same as Eq.(3.36) with

y∗(ζ, r) = y(ζ, r)− ρβu(rm), r < rm (3.47)

= y(ζ, r)− ρβu(r), r ≥ rm

where rm is the minimum energy point of the Lennard-Jones potential. The

c0(r) and g0(r) of the reference system are obtained by solving the OZE with the

same bridge function. Thus, in effect, we solved the OZE Lennard-Jones fluid

with the above bridge function using the perturbation method. In Fig.(3.12),

we compare the g(r) of Lennard-Jones fluid obtained from S-CPE method with

simulation results. There is excellent agreement between the theory and sim-

ulation results for the cases shown except for a slight deviation in the case

of lowest temperature. In Fig.(3.13), Equation of State(EOS) of Lennard-Jones

fluid for various temperatures calculated using S-CPE method is compared

with those obtained by solving OZE by Sarkisov[63]. Pressure(P) is calculated
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using the virial formula given by

P = ρkBT −
1

6
ρ2

∫ ∞
0

du(r)

dr
g(r)4πr3dr (3.48)

Values obtained by our method matched well with those given by Sarkisov. In

this case also, we could obtain the pressure at all density points in the phase

diagram as g(r) at any point in the phase diagram including critical point

could be calculated which was not possible with integral equation theory. In

Fig.(3.14), LVPD of Lennard-Jones fluid is shown and compared with simula-

tion results. We plotted the LVPD obtained in two ways. One is obtained by

Maxwell construction of pressure isotherm obtained using Eq.(3.48) which is

the so called virial route. Alternatively, LVPD is also obtained from the free-

energy route. It is obtained as follows: Pressure isotherm of the reference fluid

is calculated using Eq.(3.48) with uref (r). From this, Helmholtz free energy

density of the reference fluid is obtained from the formula below

fref (ρ) = ρkBT

∫ ρ

0

(
Pref (ρ

′)

ρ′2
− 1)dρ+ ρkBT ln(ρ) (3.49)

Once the reference free energy is known, method described in section 3.4 can

be applied to get the free energy density of the required system. The pres-

sure isotherm is calculated by differentiating the Helmholtz free energy w.r.t.

volume of the system. Maxwell construction is done to get the coexistence

points. From the figure, it can be seen that the LVPD obtained from the two

routes differ slightly along the liquid part of the coexistence curve. Also, there

is some deviation of both LVPDs from the simulation results. This is due to the

bridge function used. Even though Sarkisov bridge function is supposed to be

quiet accurate, there is some inconsistency between various thermodynamic

routes. Imposition of the thermodynamic consistency between various routes

as a constraint would solve the problem and may improve the accuracy of the

results.
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3.6 Summary

In this chapter we have presented a new approach to the coupling parame-

ter expansion in liquid state theory of simple fluids. The method combines

ideas of thermodynamic perturbation theory and integral equation theories.

This hybrid scheme avoids the problems of integral equation theories in the

two phase region. A simple way to calculate the terms in the perturbation se-

ries expansion to any arbitrary order is illustrated. Apart from the Helmholtz

free energy, the present approach also gives the RDF and DCF of the actual

perturbed system.

Initially, using the RHNC-CPE method, we have obtained thermodynamic

and structural properties of the square-well fluids of various ranges. We have

seen that the Helmholtz free energy series has practically converged by sev-

enth order for the cases considered. However we found that the convergence

of g(r) and c(r) is slower at low temperatures and low densities for short

ranged square well fluids. We also found that the liquid vapor phase dia-

grams of fluids of short ranged potentials obtained using the RHNC-CPE still
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disagree with simulation data. Apart from this, the simplified method works

only for fluids with hard sphere reference system.

An improvement in the accuracy and applicability to non-hard sphere flu-

ids was expected with the generalized version of the CPE method which takes

into account the derivatives of the bridge function in calculating the deriva-

tives of the RDF1. Accordingly, we generalized the method and applied the

S-CPE to square-well fluids to see the improvement in results over the sim-

plified version and to Lennard-Jones fluids to show the applicability of the

method with non-hard sphere reference systems. We also obtained the surface

tension in square-well fluids of various ranges which requires the direct cor-

relation function in the coexistence region and compared with simulation data

from literature. The results showed that the correlation functions obtained us-

ing our method in the coexistence region are accurate.

The applications lead to the following conclusions about generalized CPE.(i)

Inclusion of derivatives of the bridge function in the perturbation theory has a

significant effect on structural and thermodynamic properties of liquids. (ii) If

accurate reference system data is available, it can be used in the perturbation

theory to improve the accuracy of the results over those of integral equation

theory. (iii) The present method may be viewed as an alternative way of solv-

ing the OZE with the advantage that a solution can be obtained in the whole

phase diagram. (iv) The accuracy of the method is limited by the bridge func-

tion used in the calculation.

Thus we now have an improved mean field Helmholtz free energy and

influence parameter calculated from a single theory which can be used in the

GRGT method to obtain the accurate thermodynamic properties globally.

1The derivatives are with respect to coupling parameter



CHAPTER 4
Equivalence of coupling parameter expansion and

Zwanzig’s expansion

4.1 Introduction

In this chapter, we show that the CPE is equivalent to the HTSE in the case of

pairwise additive interaction potentials.

The series expansions for Helmholtz free energy as given by Eq.(1.20) (called

as HTSE) and Eq.(1.28) (called as CPE) apparently look different. In a few re-

cent papers[24, 67, 73–77], it has been argued that the HTSE and CPE are actu-

ally different beyond the first order term. It also has been stated that, only for

the special case of the hard sphere reference system and only for reduced tem-

perature equal to 1, the two series are equal. However, the conclusions were

not based on any rigorous results and the arguments were heuristic. Apart

from this, a function having two different series expansions contradicts the

uniqueness of power series expansion. This raises questions about the valid-

ity of the conclusions made in the papers[24, 67, 73–77]. In view of this, we

re-examine the equivalence of CPE and HTSE and prove rigorously that both

the expansions are equivalent in the case of pair potentials[78]. This result is

not very surprising and can be guessed easily based on the uniqueness theo-

rem. However, the equivalence of CPE and HTSE leads to interesting scaling

relations in the case of fluids with interaction potential having a hardcore re-

pulsion(for example, the square well fluid) if the hardcore repulsive part is

taken as reference. Apart from the scaling of terms of Helmholtz free energy

series with temperature, the terms of series of RDF and the DCF also scale with

temperature. As a consequence, once the terms of CPE are calculated along a

particular isotherm for such fluids, the structure and thermodynamic prop-

82
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erties of those fluids at other temperatures can be obtained using the scaling

relations.

In section 4.2, we prove the equivalence of CPE and HTSE and in section 4.3

we describe the consequences of the equivalence of HTSE and CPE. The chap-

ter is concluded in section 4.4.

4.2 The HTSE and the CPE

Consider a fluid of N interacting particles in a volume V at reduced tempera-

ture T. Reduced units (ε/kB = σ = 1, where ε is the well depth and σ is hard

sphere diameter) are used throughout. The Zwanzig’s expansion or HTSE for

Helmholtz free energy F of the system is given by

F = Fref +
∞∑
n=1

ωn
n!

(−β)n−1 (4.1)

where

ω1 = 〈Uper〉0 (4.2)

ω2 = 〈U2
per〉0 − 〈Uper〉20 (4.3)

ω3 = 〈U3
per〉0 − 3〈U2

per〉0〈Uper〉0 + 2〈Uper〉30 (4.4)

...........

ωs = s!
∑
{nj}

(−1)Σnj−1 (Σnj − 1)!
∞∏
j=1

1

nj!

(
〈Uper〉j0
j!

)nj

(4.5)

The subscript 0 implies that the averages are with respect to the reference sys-

tem ensemble. In the Eq.(4.5), the {nj} implies that the summation is a multiple

sum over all possible nj’s such that the constraint
∑∞

0 jnj = s is satisfied. Here

nj’s are positive integers. It can be seen that for all j > s, nj’s are zero. Above

series for F doesn’t require a pairwise additive interaction potential. However,

in the case of a spherically symmetric pairwise additive potential u(r), the ω1

simplifies to



84 4.2. THE HTSE AND THE CPE

ω1 =
2πN2

V

∫ ∞
0

uper(r)g0(r)r2dr (4.6)

where uper(r) is the perturbation part of u(r) when separated as u(r) = uref (r)+

uper(r). g0(r) is the radial distribution function of the reference system. r is the

radial distance from the origin. ω2 has been shown to depend on correlation

functions up to fourth order. An approximation to ω2, has been derived by

Barker and Henderson[12] as described in section 1.3 of chapter 1.

In the CPE, as mentioned in the introduction, a hypothetical fluid is con-

sidered with total potential energy given by Uζ = Uref + ζUper. Differentiating

F (ζ) w.r.t. ζ and integrating between limits ζ = 0 to ζ = 1 gives

F = Fref +

∫ 1

0

〈Uper〉ζdζ (4.7)

The subscript ζ in the above equation implies that the average is w.r.t. the

ensemble with potential energy Uζ . Expanding 〈Uper〉ζ around ζ = 0 in a Taylor

series and substituting ζ = 1, we get the HTSE. In the case of pairwise additive

potentials, above Eq.(4.7) can be re-written in terms of pair correlation function

( ρ(2)
ζ (1, 2)) of the hypothetical system i.e.,

F = Fref +
1

2

∫ 1

0

dζ

∫
V

d1d2uper(1, 2)ρ
(2)
ζ (1, 2) (4.8)

Following Hansen[1], we denote the position vector ~ri of ith particle by i to

simplify notation. d1 denotes the volume element d~r1 around ~r1. Expanding

ρ
(2)
ζ (1, 2) in a Taylor series around ζ = 0 and substituting in above Eq.(4.8), we

get the CPE for F given by

F = Fref+
1

2

∫ 1

0

dζ

∫
V

d1d2uper(1, 2)

(
ρ

(2)
0 (1, 2) + ζ

dρ(2)

dζ
(1, 2)

∣∣∣∣
0

+
ζ2

2!

d2ρ(2)

dζ2
(1, 2)

∣∣∣∣
0

+ ...........

)
(4.9)

If the system is homogeneous and isotropic, ρ(2)
ζ (1, 2) becomes equal to ρ2gζ(|1−

2|) and the integral in Eq.(4.9) simplifies. Here ρ is the density of the system

and gζ(r) is the RDF of the hypothetical system.
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4.2.1 Equivalence of HTSE and CPE

It can be easily seen that first order terms in both the series are same; as men-

tioned above, in a homogeneous system, ρ(2)
ζ (1, 2) becomes equal to ρ2gζ(|1−2|)

and
1

2

∫ 1

0

dζ

∫
V

d1d2uper(1, 2)ρ
(2)
0 (1, 2) = ω1 (4.10)

In order to see the equivalence of second term of CPE with that of HTSE,

consider the definition of ρ(2)
ζ (1, 2) i.e.,

ρ
(2)
ζ (1, 2) = N(N − 1)

1

ZN(ζ)

∫
V

d~r(N−2)exp(−βUζ) (4.11)

where

ZN(ζ) =

∫
V

d~r(N)exp(−βUζ) (4.12)

Here
∫
V
d~r(N) implies

∫
V
...
∫
V
d1d2...dN

Now,

dρ
(2)
ζ

dζ
=

N(N − 1)

ZN(ζ)

∫
V

d~r(N−2)(−βUper)exp(−βUζ)

−N(N − 1)

Z2
N(ζ)

∫
V

d~r(N−2)exp(−βUζ)
∫
V

d~rN(−βUper)exp(−βUζ)(4.13)

Substituting the above equation in second order term of CPE we get,

1

2

∫ 1

0

dζ

∫
V

d1d2uper(1, 2)ζ
dρ(2)

dζ
(1, 2)

∣∣∣∣
0

=
N(N − 1)

2ZN(0)

∫
V

d~rN(−βUper)exp(−βUref )uper(1, 2)

− N(N − 1)

2Z2
N(0)

∫
V

d~rNuper(1, 2)exp(−βUref )

×
∫
V

d~rN(−βUper)exp(−βUref )

(4.14)

Consider the first term in the RHS of the above equation. It can be seen that

the integral remains invariant if (1, 2) is replaced by any other possible pair

and there are exactly N(N − 1)/2 possible pairs. The same argument holds

for the second term on the RHS of above Eq.(4.14). Thus the above equation

becomes,
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1

2

∫ 1

0

dζ

∫
V

d1d2uper(1, 2)ζ
dρ(2)

dζ
(1, 2)

∣∣∣∣
0

=
1

ZN(0)

∫
V

d~rN(−βUper)exp(−βUref )Uper

− 1

Z2
N(0)

∫
V

d~rNUperexp(−βUref )

×
∫
V

d~rN(−βUper)exp(−βUref )

= −β〈U2
per〉0 + β〈Uper〉20

= −βω2/2 (4.15)

Now to prove the equivalence of a general term of CPE to that of HTSE, we

first define the following:

P0 = P =

∫
V

d3..dNexp(−βUζ)

P1 =
dP

dζ
=

∫
V

d3..dN(−βUper)exp(−βUζ)

P2 =
d2P

dζ2
=

∫
V

d3..dN(−βUper)2exp(−βUζ)

.......................................

Ps =
dsP

dζs
=

∫
V

d3..dN(−βUper)sexp(−βUζ) (4.16)

and

Z0 = ZN(ζ) =

∫
V

d1..dNexp(−βUζ)

Z1 =
dZN(ζ)

dζ
=

∫
V

d1..dN(−βUper)exp(−βUζ)

Z2 =
d2ZN(ζ)

dζ2
=

∫
V

d1..dN(−βUper)2exp(−βUζ)

.......................................

Zs =
dsZN(ζ)

dζs
=

∫
V

d1..dN(−βUper)sexp(−βUζ) (4.17)

Here d1 implies d~r1 and so on. It can be easily seen that
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1

N(N − 1)
ρ

(2)
ζ (1, 2) =

P0

Z0

1

N(N − 1)

dρ
(2)
ζ (1, 2)

dζ
=

P1

Z0

− P0

Z2
0

Z1

1

N(N − 1)

d2ρ
(2)
ζ (1, 2)

dζ2
=

P2

Z0

− 2
P1

Z2
0

Z1 + 2
P0

Z3
0

Z2
1 −

P0

Z2
0

Z2
1 (4.18)

To get the sth (s ≥ 1) derivative of ρ(2)
ζ (r1, r2), the sth derivative of P0

Z0
is

required which in turn requires the the sth derivative of 1
Z0

. Since Z0 is a well

behaved function, it can be expected that sth derivative of 1
Z0

w.r.t. ζ exits. The

sth derivative of 1
Z0

is [79]

ds

dζs

(
1

Z0

)
= s!

∑
{nj}

(−1)α
α!

Zα+1
0

∞∏
j=1

1

nj!

(
Zj
j!

)nj
α =

∞∑
j=1

nj (4.19)

where
∑
{nj} is again a multiple sum over nj’s such that the constraint

∑∞
j=1 jnj =

s is satisfied. Using Leibnitz formula for calculating the sth derivative of a

product of two functions we get

1

N(N − 1)

dsρ
(2)
ζ (1, 2)

dζs
=

s∑
r=0

s!

(s− r)!r!
Ps−r

dr

dζr

(
1

Z0

)
(4.20)

The (s+ 1)th term in CPE(Eq.(4.9)) is,

Γs+1 =
1

(s+ 1)!

1

2

∫
V

d1d2uper(1, 2)
dsρ

(2)
ζ (1, 2)

dζs

∣∣∣∣∣
0

(4.21)

Substituting Eq.(4.20) in Eq.(4.21) and after some algebra, the (s + 1)th term in
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CPE becomes

Γs+1 =
1

(s+ 1)!

s∑
r=0

s!

(s− r)!
〈(−βUper)s−r+1〉0

−β
∑
{nj}

(−1)αα!
∞∏
j=1

1

nj!

[
〈(−βUper)j〉0

j!

]nj
(4.22)

=
1

(s+ 1)!

−1

β

s∑
r=0

s!
∑
{nj}

(−1)αα!

×
∞∏
j=1

j 6=s−r+1

1

nj!

[
〈(−βUper)j〉0

j!

]nj (ns−r+1 + 1)(s− r + 1)

(ns−r+1 + 1)!

[
〈(−βUper)s−r+1〉0

(s− r + 1)!

]ns−r+1+1

(4.23)

Now consider a set of {n′j}s such that, for all j 6= s − r + 1, n′j = nj and for

j = s− r + 1, n′j = nj + 1. Then,

∞∑
j=1

jn′j =
∞∑
j=1

jnj + (s− r + 1) = s+ 1 (4.24)

and

α′ =
∞∑
j=1

n′j =
∞∑
j=1

nj + 1 = α + 1 (4.25)

Using Eq.(4.24) and Eq.(4.25) in Eq.(4.23), we get,

Γs+1 =
1

(s+ 1)!

−1

β

s∑
r=0

(n′s−r+1)(s−r+1)s!
∑
{n′j}

(−1)(α′−1)(α′−1)!
∞∏
j=1

1

n′j!

[
〈(−βUper)j〉0

j!

]n′j
(4.26)

where n′js satisfy the constraint of Eq.(4.24). It can be seen easily that
∑s

r=0(n′s−r+1)(s−
r+ 1) = s+ 1, as all njs for j > s+ 1 must be zero for the constraint of Eq.(4.24)

to be satisfied. Thus Eq.(4.26) becomes

Γs+1 = (−β)s
∑
{n′j}

(−1)(α′−1)(α′ − 1)!
∞∏
j=1

1

n′j!

[
〈(Uper)j〉0

j!

]n′j
(4.27)

= (−β)s
ωs+1

(s+ 1)!
(4.28)

which is nothing but (s+ 1)th order term in HTSE.
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4.3 Fluids with Hardcore Repulsion

Consider a homogeneous fluid with particles interacting via a pairwise addi-

tive spherically symmetric potential. Let the potential u(r) have a hardcore

repulsion(uref (r)) and a slowly varying attractive part(uper(r)) whose value is

small compared to kbT so that it can be treated as a perturbation. i.e.,

u(r) = ∞ r ≤ r0

= uper(r) r > r0 (4.29)

If the hardcore part is taken as the potential of the reference system, the en-

semble averages w.r.t. the hard-sphere reference system become independent

of temperature. As a result, the ωis in Equations(4.3- 4.5) become independent

of temperature. Hence the HTSE becomes a power series in β = 1/kbT [1].

Since it has now been shown that the terms of CPE are equivalent to those of

HTSE, the terms of CPE also scale with powers of β. sth term of the series is

proportional to βs−1 as can be seen from Eq.(4.28).

It can also be seen that the derivatives of RDF and the direct correlation

function(DCF) also scale with powers of β. Consider sth derivative of ρζ(1, 2).

It can be seen from Eq.(4.20) that each term in the summation in the R.H.S.

depends upon the following term:

Ps−r

Zα+1
0

∞∏
j=1

Z
nj
j (4.30)

which can be re-written as follows

Ps−r

Zα+1
0

∞∏
j=1

Z
nj
j =

Ps−r
Z0

∞∏
j=1

[
Zj
Z0

]nj
=

Ps−r
Z0

βr(〈(−Uper)〉n1
0 〈(−Uper)2〉n2

0 〈(−Uper)3〉n3
0 ......) (4.31)

When evaluated at ζ = 0 with uref (r) as that of hard-sphere, it can be seen from

the Eq.(4.16) that Ps−r depends on βs−r. Since the averages in above Eq.(4.31)

become independent of temperature, the total dependence on β of each term
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in the R.H.S. of Eq.(4.20) would be βs. Thus,

dsρ
(2)
ζ (1, 2)

dζs

∣∣∣∣∣
ζ=0

= ρ2 d
sgζ(r)

dζs

∣∣∣∣
ζ=0

∝ βs (4.32)

Also, since dsgζ(r)

dζs

∣∣∣
ζ=0
∝ βs, its Fourier transform also would be proportional to

βs i.e.,

dsĝζ(k)

dζs

∣∣∣∣
ζ=0

=
dsĥζ(k)

dζs

∣∣∣∣∣
ζ=0

∝ βs (4.33)

where hζ(r) = gζ(r)− 1 is the total correlation function and ĥζ(k) is its Fourier

transform. The Ornstein-Zernike equation for the hypothetical fluid in Fourier

space is given by[1],

hζ(k) =
cζ(k)

1− ρcζ(k)
(4.34)

Using similar arguments given in the case of dsgζ(r)

dζs

∣∣∣
ζ=0

, it can be seen that

dscζ(r)

dζs

∣∣∣∣
ζ=0

∝ βs (4.35)

Thus from the above discussion, it can be seen that, for the class of fluids

with hardcore repulsion, apart from the Helmholtz free energy series, the Tay-

lor series for c(r) and g(r) obtained by expanding around ζ = 0 also becomes

power series in β. As a result, if the coefficients of the series are obtained along

one isotherm, then the whole phase diagram can be obtained provided the se-

ries converges. To obtain the coefficients of the series which are related to the

derivatives of gζ(r) and cζ(r) at ζ = 0, few recently developed methods are

available as discussed in the introduction[23, 51, 53].

To test the scaling relations derived above, we applied the method dis-

cussed in Ref.[53] to square well(SW) fluids. The calculation method used is

exactly the same as in Ref.[53] and hence is not repeated here. We obtained

the derivatives of g(r) of SW fluid of width 0.25 at various reduced tempera-

tures(T) and plotted T n
dngζ(r)

dζn
|0 for n = 1, 2, 3 and 6 in Fig.(4.1). It can be seen
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Figure 4.1: Scaled derivatives of g(r) of square-well fluid of width 0.25 at reduced density
ρ = 0.8 at various reduced temperatures. Solid line: T = 0.9, hollow squares: T = 0.6, crosses:
T =1.5

from Fig.(4.1) that the curves corresponding to each derivative at different tem-

peratures coincide after scaling. Also we obtained the first three coefficients of

the HTSE for SW fluids of width 1.2 and 2.0 using the same method of Ref.[53].

In the case of square-well fluid of width 1.2, the coefficients of HTSE are ob-

tained by calculating the terms of CPE at T = 0.7 and scaling with temperature

according to T nΓn+1 where Γn is nth order term in the CPE for Helmholtz free

energy per particle. In the same way, the coefficients of HTSE for SW fluid of

width 2.0 are obtained by calculating the terms of CPE at T = 2.0 followed

by scaling. The results are compared with simulation data[75] in Fig(4.2) and

Fig(4.3). It can be seen that there is an excellent match between simulation data

and present calculations which confirms the scaling relations.

4.4 Conclusion

We have shown rigorously that the CPE and HTSE are equivalent when the in-

teraction potential is pairwise additive. As a result, we have shown that for flu-

ids with interaction potential having a hardcore repulsion, if the hard-sphere
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Figure 4.2: First three coefficients of HTSE for square-well fluid of width 1.2. Lines are present
results, symbols are simulation data[75]. a1, a2 and a3 are first three coefficients of HTSE for
Helmholtz free energy per particle respectively.
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Figure 4.3: First three coefficients of HTSE for square-well fluid of width 2.0. Lines are present
results, symbols are simulation data[75].a1, a2 and a3 are first three coefficients of HTSE for
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fluid is taken as the reference system, the terms of CPE and the derivatives of

RDF and DCF w.r.t. the coupling parameter follow a scaling relation with tem-

perature. We have also confirmed the scaling relations through applications

of our theory to square well fluids. Thus, for such fluids, if the derivatives of

RDF are known along an isotherm, the structural and thermodynamic proper-

ties can be obtained at any other temperature provided the series is convergent

at that temperature.



CHAPTER 5
Combination of Global Renormalization Group Theory

with Coupling Parameter expansion method:

Application to square-well fluids

5.1 Introduction

In chapter 2 we formulated a generalized GRGT and applied it to obtain the

equation of state of square-well and Lennard-Jones fluids. We noted that the

method, as implemented in chapter 2, is not accurate for fluids with short

range interaction potentials because the mean-field Helmholtz free energy and

the influence parameter used in implementing the GRGT in chapter 2 were in-

accurate for short range potentials. We conjectured that the results of GRGT

would improve if an improved mean-field Helmholtz free energy and an im-

proved influence parameter are used.

In that regard we developed a method to obtain the terms of CPE for Helmholtz

free energy, RDF and DCF of a homogeneous fluid in chapter 3. We applied the

seventh order version of CPE method to square-well fluids of various ranges

and showed that there is enormous improvement in the obtained EOS and the

LVPD . We also have seen that the Helmholtz free energy, the RDF and the

DCF converged by seventh order for square-well potentials with range above

1.25 and were in excellent agreement with simulation results. Using the DCF

obtained from S-CPE, we obtained the influence parameter. To assess the ac-

curacy of our obtained influence parameter, we calculated the surface tension

of square-well fluids which requires the influence parameter as an input. The

calculated surface tensions matched well with simulation results.

Eventhough there were improvements in describing the thermodynamic

properties, the obtained Helmholtz free energy from this procedure is of mean

94
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field type and doesn’t correctly describe the critical behavior. In this chapter,

we use the improved Helmholtz free energy and influence parameter obtained

from S-CPE in the GRGT and apply it to square-well fluids and study the im-

provement in liquid-vapor coexistence curves in the critical region. We also

obtain the critical exponents using the present method. Apart from these, we

also study the Yang-Yang anomaly[80].

The Yang-Yang anomaly is basically the divergence of the second deriva-

tives of both the chemical potential and pressure at the critical point as op-

posed to the divergence of the second derivative of only pressure in the ex-

actly solvable models like lattice gas. The Yang-Yang anomaly was observed

in propane and CO2 for the first time by Fisher and Orkoulaus[81] in the year

2000. Because of the anomaly, the assumption that the description of fluid criti-

cality can be done using two scaling fields, viz. the thermal field (T/Tc−1) and

the ordering field (µ/µc−1) become inadequate. Fisher and Orkoulaus showed

that in addition to these fields, the pressure deviation (P − Pc) also should be

taken into account in order to explain the anomaly. The consequence is an ad-

ditional term in the scaling relation for the coexistence diameter proportional

to (T/Tc − 1)2β with β(= 0.326) being the standard exponent for order param-

eter. Later Fisher and co-workers[82] investigated the anomaly in square-well

fluids using Monte-Carlo simulations.

The chapter is organized as follows. In section 5.2, we give the basic recipe

of the theories used in the calculations. In section 5.3,we apply the method

to square-well fluids of widths 1.375, 1.5, 1.75 and 2.0 and carry out the stud-

ies mentioned above. The results are analyzed and the paper is concluded in

section 5.4.

5.2 Theory

In this section, we give a recipe of the S-CPE and the GRGT that we use in the

applications. The system under consideration contains N classical particles in

a volume V at an average density ρ = N/V and temperature T . The S-CPE

method used here is same as the generalized version discussed in Chapter 3.
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Hence the details are not repeated here.

The GRGT method implemented is almost same as that explained in chap-

ter 2 except for inclusion of the fluctuation contribution due to gradient term

neglected in Eq.(2.27) of Chapter 2. We recollect that the contribution of fluc-

tuations within the wavelength band (λ0, λ1) with mean wavelength λm1 is

∆f1[ρ∗1, |∇ρ∗1|] = − 1

βV1

ln

{∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,k1,x]∫
dx e−βV1 δf [ρ∗1,|∇ρ∗1|,k0,x]

}
(5.1)

where V1 is the volume of the phase cell such that ρ1(~r) varies significantly

within it while ρ∗1(~r) has only a slow variation. The volume V1 is related to the

mean wavelength λm1 . k1 is the wavenumber corresponding to the mean wave-

length λm1 . k0 is the wavenumber corresponding to the mean wavelength(λm0 )

in the band (0, λ0) and

δf [ρ∗1, |∇ρ∗1|, k, x] =
1

2
(f0[ρ∗1 + x] + f0[ρ∗1 − x]− 2f0[ρ∗1])

+
1

2
(fG0 [ρ∗1 + x] + fG0 [ρ∗1 − x]− 2fG0 [ρ∗1]) |∇ρ∗1|2 + fG0 [ρ∗1]x2k2. (5.2)

λm0 is a parameter in the method which may be chosen based on intuition.

λm0 has to be chosen to be large enough so that the density picture holds and

small enough so that the fluctuations not included in the mean field theory get

accounted in the RG iterations. We chose a compromise value which is ”4” in

the reduced units of the problem. Once λm0 is chosen, λm1 is taken to be 2λm0 .

The volumeV1 of the phase cell is taken to be
(
zλm1

2

)3

. In our previous chapter 2,

we showed that the use of Wilson’s method requires z to be close to 1(1.0455).

In chapter 2, we neglected the second term in the RHS of the above equation

assuming it to be small. However, contribution to ∆f1 from the neglected term

may be calculated simply by expanding the exponential corresponding to that
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term assuming it to be small. After some manipulation, we get

∆f1[ρ∗1, |∇ρ∗1|] = − 1

βV1

ln

{∫
dx e−βV1 δ′f(k1,x)∫
dx e−βV1 δ′f(k0,x)

}
+

{∫
dx e−βV1 δ′f(k1,x)fGd(x)∫

dx e−βV1 δ′f(k1,x)
−
∫
dx e−βV1 δ′f(k0,x)fGd(x)∫

dx e−βV1 δ′f(k0,x)

}
|∇ρ∗1|2 (5.3)

In the above Eq.(5.3),

δ′f(k, x) =
1

2
(f0[ρ∗1 + x] + f0[ρ∗1 − x]− 2f0[ρ∗1]) + fG0 [ρ∗1]x2k2 (5.4)

and

fGd(x) =
1

2
(fG0 [ρ∗1 + x] + fG0 [ρ∗1 − x]− 2fG0 [ρ∗1]) . (5.5)

Thus ∆f1 contains two terms. The first term(hereafter denoted as ∆′f1) is a

correction to the free energyf0(ρ∗1) which when added gives the first iterate of

Helmholtz free energy i.e., f1(ρ∗1) = f0(ρ∗1) + ∆′f1(ρ∗1). The coefficient of the

square-gradient in the second term (∆′′f1) is a correction to the Influence Pa-

rameter fG0(ρ∗1) in Eq.(2.3) which when added gives the first iterate of influence

parameter i.e., fG1(ρ∗1) = fG0(ρ∗1) + ∆′′f1(ρ∗1). This completes the first iteration

of the scheme. The free energy thus obtained contains effects of fluctuations

up to a mean wavelength λm1 . In calculating ∆f1 using Eq.(5.3), Eq.(5.4) and

Eq.(5.5), it is assumed that ρ∗1 ≈ ρ.

The second iteration includes the effects of fluctuations with a mean wave-

length λm2 = 2λm1 . The corresponding phase cell volumeV2 is
(
zλm2

2

)3

= 23V1.

The above procedure is repeated with the V2, λm2 , f1(ρ∗1) and fG1(ρ∗1) replacing

their older counterparts and assuming ρ∗2 ≈ ρ. When this is done, we get ∆f2,

the first part of which is added to Helmholtz free energy ( f1(ρ∗2)) and second

part to influence parameter (fG1(ρ∗2)) to obtain f2(ρ∗2) and fG2(ρ∗2).

In the above described method, the mean wavelength of density fluctua-

tions at each iteration is incremented by twice to value in the previous itera-

tion. Thus, λmn = 2nλm0 at the nth iteration and kn = 2π
λmn

. The corresponding

phase cell volume is Vn =
(
zλmn

2

)3

. In evaluating ∆fn[ρ∗n, |∇ρ∗n|], it is assumed
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that ρ∗n ≈ ρ.The procedure is continued until the HFE converges to the required

tolerance.

5.3 Application to square-well fluids

In this section, we apply the S-CPE+GRGT method to square-well fluids of

ranges 1.375, 1.5, 1.75 and 2.0. Reduced units (ε/kB = σ = 1, where ε is the well

depth and σ is hard sphere diameter) are used throughout the paper.

First we obtain the the Helmholtz free energy density f0(ρ, T ) and the influ-

ence parameter f2(ρ, T ) using the S-CPE. For each isotherm, the S-CPE calcu-

lations are done to obtain f0(ρ, T ) and f2(ρ, T ) for densities between 0 and 0.9

with grid spacing 0.01. Then Newton’s interpolation formula is used and the

f0(ρ, T ) and f2(ρ, T ) are obtained with required grid spacing by interpolation.

Typically we used grid spacing between 0.0005 to 0.0001 for the interpolated

Helmholtz free energy density and influence parameter. The Helmholtz free

energy density so obtained is used in GRGT iteration scheme. In all the calcu-

lations, Eq.(5.3) containing the additional correction term to f2(ρ, T ) is used to

obtain GRGT correction. However, we found that the effect of the correction

term is negligible.

5.3.1 Convergence of GRGT iterations

We first studied the convergence of the GRGT iteration scheme. The Root

Mean Square Deviation (RMSD) given by

RMSD =

√∑Nmft
i=1 (fn(ρi)− fn−1(ρi))

2

Nmft

(5.6)

is found to be good and quite fast throughout the phase diagram. The RMSD

reduced to 10−10 within 10 iterations. Regarding the point-wise convergence,

we have seen that for an isotherm below the critical temperature, the rate of

convergence inside the phase coexistence region is different from that outside

the region (see Fig.(5.1)). Outside the phase coexistence region the point-wise
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convergence is quite fast for all densities and was similar to RMSD. Whereas

for densities inside the coexistence region, the convergence is good initially

but became slower after certain iterations at some densities. In Fig.(5.1), we

plot the deviation of Helmholtz free energy density after 100 iterations from

that after 99 iterations for square-well fluid of range 1.5 at temperatures 0.9,

1.1 and 1.15. The deviation is higher for T = 0.9 and also number of such

density points are more for that temperature. The rate of convergence picked

up as the temperature is increased and close (roughly about 10% ) to the critical

temperature, the convergence became similar to that of regions outside the

phase diagram. For T = 1.1, the deviation decreased further and for T = 1.15

there is uniform convergence for all the densities.

The slow point-wise convergence inside the liquid-vapor phase diagram

shows up when thermodynamic quantities related to derivatives of Helmholtz

free energy are calculated. In Fig.(5.2), the isotherms of square-well fluid of

range 1.5 are plotted for T = 1.0 and T = 1.2. It can be seen that the isotherm

has become flat inside the liquid vapor coexistence region after the GRGT cor-

rection. However, because of non-uniform and slow-convergence at some den-

sities, some spikes have appeared in the coexistence region for the T = 1.0

isotherm. The liquid-vapor coexistence points can still be obtained using the

Maxwell’s construction or searching for points of equal chemical potential and

pressure. A similar situation was encountered by Ghobadi and Elliott[83] in

their application of GRGT (in combination with discontinuous molecular dy-

namics and perturbation theory) to fluids of chain molecules. Ghobadi and

Elliott used a stability constraint introduced by Tang[84] and Gross to improve

the shape of the isotherm in the unstable region. However, it was observed

that the flatness of the isotherm in the coexistence region is lost with the intro-

duction of the constraint.[83]. The problem of non-uniform point-wise conver-

gence did not appear in the case of T = 1.2 isotherm where the temperature

is very close to the critical temperature. At this temperature, the rate of point-

wise convergence is similar to the rate of root-mean-square convergence. Thus

the present method may be used to study the critical behavior of fluids without

any smoothing procedures.
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(f99) for square-well fluid of range 1.5 at temperatures T = 0.9, 1.1 and 1.15. The deviation at
T = 1.15 is practically zero.

 0

 0.1

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6

P
re

s
s
u

re

T=1.2

-0.4

 0

 0.4

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

P
re

s
s
u

re

density

T=1.0

Figure 5.2: Isotherms of square-well fluid of range 1.5 at temperatures T = 1.0 and T = 1.2.
Dashes: seventh order CPE, solid line: GRGT. For T = 1.0, the number of GRGT iterations
done were 100. For T = 1.2, the number of GRGT iterations done were 20.



101 5.3. APPLICATION TO SQUARE-WELL FLUIDS

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

T
em

pe
ra

tu
re

density 

Square-well fluid I-order S-CPE
I-order S-CPE + GRGT

S-CPE
S-CPE + GRGT

Simulation

Figure 5.3: LVPD of square-well fluid of range 1.5 in reduced units in (temperature)T Vs
(density) ρ plane. Squares are simulation results[45]. Figure shows LVPDs obtained using
I-order S-CPE, I-order S-CPE+GRGT, S-CPE and S-CPE+GRGT respectively.

5.3.2 Liquid vapor phase diagrams

Using the CPE+GRGT method, we obtained the LVPDs of square-well fluids

of ranges 1.375, 1.5, 1.75 and 2.0. In Fig.(5.3) and Fig.(5.4), the LVPD of square-

well fluid of range 1.5 is plotted in T V s ρ and P V s ρ planes respectively. The

figures depict the LVPD obtained using I-order S-CPE , I-order S-CPE+GRGT,

S-CPE and S-CPE+GRGT respectively. It can be seen from the figures that the

GRGT correction when applied over I-order S-CPE could not bring satisfactory

improvement. Whereas, the S-CPE itself improved the LVPD enormously over

that of I-order S-CPE. Adding the GRGT correction to the S-CPE brought the

LVPD quite close to the simulation results. Also, the LVPD of I-order S-CPE

+ GRGT is excessively flat close to the critical point. Excessive flatness of the

phase diagram close to the critical region has been reported earlier by Esther

et al.[49] and Ghobadi et al.[83]. In both these works, the authors attempted
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to address the problem by changing the rate of increase of fluctuation wave-

length. But it was observed that changing the rate of increase of fluctuations

deteriorates the values of critical exponents[49]. We observed that the problem

didn’t arise when the S-CPE + GRGT has been used to obtain the LVPD. Also

we show below that the critical exponents obtained using our method compare

well with non-classical Ising model exponents.

The LVPDs obtained using S-CPE+ GRGT for square-well fluids of other

ranges are depicted in Fig.(5.5) and Fig.(5.6). Overall it can be seen that the

addition of GRGT correction improved the LVPD close to the critical region.

The following points have been noted regarding application of CPE+GRGT

in general to obtain the vapor-liquid phase equilibria. It is known that the

mean field theories become exact in the limit of infinitely long ranged potential[86].

This trend was observed in our earlier work[51] in which LVPDs of square-

well fluids of various ranges have been obtained using various orders of CPE.

We observed that the CPE practically converged by third order for fluids with

long-range potentials (e.g., square- well fluid of range 2.3) and was qualita-

tively accurate in predicting the critical constants. Elliott and coworkers[87]

and Jackson and coworkers[88] also found that the third order perturbation

theory is accurate enough for obtaining the vapor-liquid equilibria of various

fluids of chain molecules. However, we observed[51] that the convergence of

CPE slowed down in the coexistence region as the range of the potential is re-

duced and a qualitative convergence has been observed only by seventh order

of CPE. Even with the seventh order version of CPE, a clear deviation from the

simulation data was observed indicating the need for GRGT correction. This is

the reason we used the seventh order CPE+GRGT in the present calculations.

Thus it may be concluded that for long range potentials, the CPE alone may

be sufficient if only the LVPDs are to be obtained. The use of CPE + GRGT

is required for short ranged potentials. In practice one may check the devia-

tion of converged CPE results from those of simulation or experiment and then

decide on addition of the GRGT correction. In the case of square-well fluids,

we observed that the GRGT correction may not be important for the potentials

with ranges greater than 2.0.
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5.3.3 Critical Exponents and Yang-Yang Anomaly

As explained above, the GRGT iteration scheme converges fast close to the

critical point thus permitting a study of the critical behavior predicted by the

method. We obtained the critical exponents α, β, γ and δ for square-well fluids

of ranges 1.375, 1.5, 1.75 and 2.0 using the S-CPE+ GRGT.

We could locate the Tc within a deviation of 0.1% and ρc within a deviation

of 1%. The necessary quantities Cv, K−1
T , LVPD and critical isotherm are ob-

tained in the critical region and the exponents are obtained by fitting the data

to the scaling law of each exponent. Log-log plots of the quantities we obtained

using S-CPE+GRGT close to the critical region are shown in Fig.(5.7). The ex-

ponents we obtained for square-well fluids of various ranges are given in Ta-

ble.5.1 along with the exact exponents of three dimensional Ising universality

class[89]. It can be seen that our method predicts non-classical exponents close

to the three dimensional Ising universality class and the Rushbrooke’s[90] and

the Griffiths’[91] equalities are qualitatively satisfied.

Having obtained non-classical critical exponents we proceeded further to
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study the Yang-Yang anomaly as explained in the introduction. The Yang-

Yang anomaly is as follows: The specific heat capacity at constant volume Cv

of a substance can be written as

Cv = T
d2P

dT 2
− ρT d

2µ

dT 2
(5.7)

where µ is the chemical potential. Yang and Yang predicted that both the sec-

ond derivatives in the above Eq.(5.7) would diverge at the critical point for real

systems. However, in lattice gas and related models, only the pressure deriva-

tive was found to diverge. Thus it is termed as an anomaly by Fisher[81] who

first figured out such an anomaly in CO2 and propane by carefully analyz-

ing the experimental data. Later simulations have been done for square-well

fluid[92] of width 1.5 and it was found that the strength of Yang-Yang anomaly

determined by the

Rµ = (−ρcT
d2µ

dT 2
/(T

d2P

dT 2
− ρcT

d2µ

dT 2
)) (5.8)

parameter( introduced by Fisher ) is −0.042.

We obtained the first(Cp
v ) and second (Cµ

v ) terms of above Eq.(5.7) for the

square-well fluids of ranges 1.375, 1.5, 1.75 and 2.0 along the critical isochore.

The plots of the Cv and each term of the R.H.S. of the Eq.(5.7) are shown in

Fig.(5.8). The figure shows that both the terms diverge. But the divergence of

Cp
v is faster than that of Cµ

v .

To quantify the observation we did the following study. Close to the critical

point we fitted the Cp
v and Cµ

v using a scaling law similar to Eq.(1.32). The

exponents we obtained are listed in table.(5.2). The exponent pertaining to

divergence of Cp
v is denoted as αp and that corresponding to Cµ

v as αµ. We also

plot in Fig.(5.9) the variation of logarithms of Cp
v and Cµ

v with log(Tc − T ) for

square-well fluids of ranges 1.375 and 1.5. From the table.(5.2) it can be seen

that the divergence of Cµ
v is slower than Cp

v . This implies that theRµ parameter

as predicted by GRGT tends to 0 at Tc for all the square-well fluids considered.

Thus the Yang-Yang anomaly as predicted by GRGT is differing from what has

been obtained by simulations[92].
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5.4 Summary and Discussion

In this chapter, we applied the S-CPE + GRGT method to square-well fluids

of various ranges and carried out the following studies to assess the perfor-

mance of the method. We first studied the convergence of the GRGT iteration

scheme. The root mean square convergence is satisfactory for all the temper-

atures. The point-wise convergence of GRGT iterations is quite fast outside

the co-existence region but is slow and non-uniform in the coexistence region

away from the critical point. However, as the critical point is approached, the

point-wise convergence becomes faster and uniform. The LVPDs obtained us-

ing S-CPE+GRGT showed significant improvement over those obtained using

I-order S-CPE + GRGT method. The critical exponents obtained using S-CPE

+ GRGT turned out to be non-classical and of Ising universality class. Finally

we studied the Yang-Yang anomaly using the method. It is observed that the

method predicts the existence of Yang-Yang anomaly but the strength of the

anomaly differs from what was obtained in simulations. A possible reason for

the difference may be the Wilson’s approach used for functional integration

which is too simplified. As can be seen from table.5.1, the method predicted a

higher value for exponent α implying that the method doesn’t capture the cor-

rect divergence behavior of Cv. Hence the GRGT, even though being able to

predict the existence of the Yang-Yang anomaly, may be predicting the rates

of divergences incorrectly. A similar problem was observed with the HRT

also[93]. In fact, the sharp cut-off version HRT doesn’t even yield the diver-

gence of specific heat at the critical point [39].

We conclude the following: The recent developments implementing renor-

malization group ideas in liquid state theories are succesful in predicting ac-

curate vapor-liquid phase equilibria of simple fluids, producing flat isotherms

in coexistence region and predict non-classical critical exponents. However,

the prediction of Yang- Yang anomaly is still a challenge to be achieved. Re-

placing the Wilson’s method in GRGT with a more accurate way of functional

integration may provide a solution.
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Table 5.1: Critical Exponents for square-well fluids of various ranges obtained using GRGT

Range α β γ δ α + β(1 + δ) α + 2β + γ

1.375 0.198 0.321 1.2031 4.808 2.062 2.0431
1.5 0.198 0.3203 1.2041 4.7516 2.040 2.0427

1.75 0.196 0.319 1.208 4.704 2.014 2.042
2.0 0.191 0.335 1.197 4.779 2.126 2.058

Exact 0.110 0.327 1.237 4.789 2.0 2.0

Table 5.2: critical exponents related to second derivatives of pressure and chemical potential

Range αp αµ

1.375 0.238 0.101
1.5 0.216 0.134

1.75 0.241 0.134
2.0 0.222 0.082



CHAPTER 6
Vapor-liquid equilibria of metals

6.1 Introduction

Equation of state of metals in fluid regime is required in various simulations

of high energy density physics [94]. For example, during the unloading of

shocked compressed materials and in exploding wire experiments etc., the ma-

terials (which are metals in most cases) pass through the liquid-vapor coexis-

tence region and become plasma. To perform hydrodynamic simulations of

those experiments, an equation of state of the metals which includes the liquid

vapor phase transition is required. Errors in the LVPDs predicted by equation

of state can lead to serious discrepencies in the simulation results.

In the preceding chapter, we applied the CPE+GRGT to study the square-

well fluids. In this chapter, we apply the method to study liquid metals mod-

eled using empirical pair potentials. We propose a modified form of pair po-

tential and obtain its parameters using the zero Kelvin isotherm of the con-

cerned metal. We also perform classical molecular dynamics simulations using

the potentials and obtain vapor-liquid phase coexistence points which shall be

used for comparison with the results of CPE+GRGT using the same potential.

Details are outlined below.

Calculation of thermodynamic properties of materials invariably requires

the interactions between the particles of the material to be known. Two forms

of empirical pair potentials are widely used to model the inter-particle inter-

actions in metals. They are the generalized Lennard-Jones (GLJ)[95] and the

Morse potentials[96]. The forms of these potentials are given below.

Recently, Sun Jiuxun[97] obtained the parameters of a modified GLJ poten-

tial for various materials and showed that the zero Kelvin pressure isotherm

obtained from this potential is quite accurate when compared with ab-initio

110
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data. However, we observed that the zero Kelvin energy isotherm obtained

from the potential is erroneous. Also we noticed that the modified GLJ poten-

tial with parameters as obtained by Sun cannot be used in simulations and in

theoretical methods for most of the materials[98].

The parameters of Morse potential for various cubic metals have been ob-

tained by Lincoln et. al. [99] using equilibrium lattice parameter, bulk mod-

ulus and cohesive energy data. J.K. Singh et. al. [100] obtained the liquid-

vapor phase diagrams of various metals modeled using the Morse potential as

parametrized by Lincoln et. al. through grand-canonical Monte Carlo simula-

tions. The results of J.K. Singh et. al. show that there is enormous deviation

between the simulation and experimental values in the case of alkali metals.

In the case of other metals like Aluminum, Copper there was no experimen-

tal liquid vapor coexistence data for comparison and an inference could not

be drawn. The deviations would have arisen because of obtaining the poten-

tial parameters using only few physical quantities like cohesive energy, bulk

modulus and lattice parameter which are just equilibrium properties.

Our hunch is that, a potential whose cold curve (zero Kelvin isotherm)

matches with the experimental cold curve or the one obtained from well-trusted

ab-initio calculations, would predict thermodynamic properties accurately over

a wide range of thermodynamic conditions. On the other hand, accurate and

fast ab-initio calculations of the cold curve are possible with the present day

available codes. So in the present work, we use the cold curve obtained from

ab-initio calculations based on density functional theory to obtain parameters

of the potential for various metals. We fit the cold curve obtained from a given

form of potential to that obtained from ab-initio calculation for the concerned

metal. This, in-addition to the potential parameters, gives a clear idea of the ac-

curacy of the cold curve corresponding to a potential away from equilibrium.

We applied the above mentioned method to obtain the parameters of Sodium,

Potassium, Aluminum and Copper. In the case of Morse and GLJ potentials,

we observed that the cold curves obtained from those potential forms do not

accurately fit the ab-initio data away from the equilibrium, particularly in the

case of Sodium and Potassium. Hence we propose a modified form of em-
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Figure 6.1

pirical pair potential for metals; the cold curve of which is expected to fit the

ab-initio data accurately. Parameters of the modified potential have been ob-

tained for Aluminum, Copper, Sodium and Potassium.

With the new potentials in hand, the calculations of equations of state for

the metals could be readily performed. However, in the case of materials being

modeled using empirical inter-particle potentials, the accuracy of the calcula-

tions is decided by two major factors. First is the accuracy of the empirical

potential in representing the inter-particle interactions. Second is the accuracy

of the calculation method (which in our case is CPE+GRGT). In order to get

a correct picture of the distinct roles played by the inter-particle potential and

the CPE+GRGT method in determining the accuracy of the calculated proper-

ties, the essentially exact results predicted by the inter-particle potential model

have to be obtained using simulations. The simulation results when compared

with experimental data give an idea about the accuracy of the potential. The

results of calculations of the theoretical model(CPE+GRGT) when compared

with those of simulations give an idea about the accuracy of the theoretical

method. The basic idea is illustrated in the Fig.6.1.

Thus, with the new potentials, we perform the CPE+GRGT calculations
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and obtain the vapor-liquid coexistence curves. Also, for the purpose of com-

parison with CPE+GRGT results, we perform particle transfer molecular dy-

namics (PTMD)[101–103] simulations with the new potentials and obtain the

vapor-liquid coexistence points[104]. The PTMD is a method to simulate the

liquid vapor coexistence conditions which has been developed taking inspira-

tion from Gibbs Ensemble Monte Carlo method originated by Panagiotopoulos

[47]. A detailed description of the PTMD method is given below. Also we have

done NPT ensemble simulations to obtain isobars of Aluminum and Copper

at 0.3GPa to test the accuracy of the present potentials at lower temperatures.

Finally, the CPE+GRGT results are compared with experimental data and sim-

ulation data.

The chapter is organized as follows. In section 6.2, various forms of pair po-

tentials are given along with the modified form that we propose. Our method

of obtaining the parameters of the pair potentials is also described. In sec-

tion 6.3, we describe the classical molecular dynamics simulations we per-

formed to obtain the vapor liquid coexistence curves and the results are an-

alyzed in comparison with available experimental/simulation data. . In sec-

tion 6.4, the results of CPE+GRGT calculations are compared with obtained

simulation data and experimental data and are analyzed. The chapter is con-

cluded in section 6.5.

6.2 Pair Potential Models for Metals

The GLJ potential is given by

uLJ(r) =
ε

m1 − n1

[
n1

(r0

r

)m1

−m1

(r0

r

)n1
]

(6.1)

Jiuxun[97] proposed a relation between m1 and n1 so that only one is indepen-

dent. The relations are m1 = 6n − 3 and n1 = 3n − 3. Taking his modification

into account, the potential becomes,

uLJ(r) =
ε

3n

[
(3n− 3)

(r0

r

)6n−3

− (6n− 3)
(r0

r

)3n−3
]

(6.2)
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The Morse potential is

uM(r) = ε(e−2α(r−r0) − 2e−α(r−r0)) (6.3)

We propose a new form of pair potential given by

us(r) = ε

[
e−2α(r/r0−1)

(r0

r

)2β

− 2e−α(r/r0−1)
(r0

r

)β]
(6.4)

Attractive part of the above potential is chosen inspired by the screening of

ions by electrons in metals. Repulsive part is chosen ad-hoc as per mathemat-

ical convenience. It can be seen that, by putting β = 0 in above potential we

recover the Morse potential and by putting α = 0,it becomes a Lennard-Jones

type potential. Since the electron-ion screening term is represented by an ex-

ponential term multiplied by the Coulomb term (in the semi-classical picture),

we expect that a similar form with the exponents of the exponential term and

the Coulomb term being adjusted, would represent the interactions in a better

way.

In the case of GLJ potential, r0, n and ε are the parameters. For the Morse

potential, ε, α and r0 are parameters and for the modified potential, ε, α, β, r0

are the parameters. For all the potentials, the potential is minimum at r0 and

the well depth is ε.

6.2.1 Obtaining the Potential Parameters

We use the Energy per particle(U) Vs volume per particle(v) data obtained

from ab-initio calculations to obtain the parameters of the potential for various

metals. Ab-initio calculations have been done using density functional theory

based code VASP[105–108]. Details of the calculations done to obtain the cold

curve are given in the appendix A.

The cold curve for each model potential is written as follows

Ux =
m∑
i=1

δi
2
ux(ai) (6.5)
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where x can be LJ,M or s. Ux is the energy per particle. ai is the distance

of the ith neighbor from a particle situated at origin. δi is the number of ith

neighbors. In the present work we have accounted for interaction up to (m =

)10th neighbor shell. ai is related to volume per atom as follows:

In the case of a fcc solid, ai =
√
ia1 and a1 = a/γ. Where a is the lattice

parameter and γ is the structural constant. For fcc solids, volume per atom

v = a3/4 and γ is equal to
√

2. For simplicity, we write r0 as (4v0)1/3/γ without

loss of generality. Using this information, Eq.(6.5) can be written in terms of

volume per atom v. The equation then becomes

Ux =
m∑
i=1

δi
2
ux(v/v0) (6.6)

For example, using us(r) in U ,

Us =
m∑
i=1

δiε

2

[
e−2α(

√
i(v/v0)1/3−1)

iβ

(v0

v

)2β/3

− 2
e−α(

√
i(v/v0)1/3−1)

iβ/2

(v0

v

)β/3]
(6.7)

In the case of a bcc solid, γ = 2/
√

3 and v = a3/2. However, the ai do

not hold a general relation with a as for fcc solids and have to be carefully

calculated. In this case r0 has been chosen as (2v0)1/3. Writing ai = dia where

di has to be calculated using the crystal structure, equation corresponding to

us(r) is

Us =
m∑
i=1

δiε

2

[
e−2α(di(v/v0)1/3−1)

d2β
i

(v0

v

)2β/3

− 2
e−α(di(v/v0)1/3−1)

dβi

(v0

v

)β/3]
(6.8)

The parameters of each potential model are obtained by fitting the cold

curve Eq.(6.6) to the ab-initio cold curve. The fitted zero Kelvin isotherms

obtained from various model potentials for Aluminum, Copper, Sodium and

Potassium are shown in Figs.(6.2-6.5).

From the figures it can be seen that the cold curve obtained from GLJ poten-

tial is deviates significantly from the ab-initio data away from the equilibrium

in all the cases, in both compression and expansion regimes.
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Figure 6.2: Zero Kelvin isotherm of Aluminum obtained using various potentials. (Dotted
Line: cold curve from GLJ potential fitted to ab-initio data), (Double dots: Cold curve from
Morse potential parametrized by Lincoln et. al.[99]), (Dashes: Cold curve from Morse potential
fitted to ab-initio data), (Solid line: Cold curve from modified potential fitted to ab-initio data),
(circles: ab-initio data). Panel (a) expansion regime. Panel (b) compression regime.
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Figure 6.3: Zero Kelvin isotherm of Copper obtained using various potentials. Depiction same
as Fig.(6.2).
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Figure 6.4: Zero Kelvin isotherm of Sodium obtained using various potentials. Depiction same
as Fig.(6.2).
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Figure 6.5: Zero Kelvin isotherm of Sodium obtained using various potentials. Depiction
same as Fig.(6.2).
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In the case of Aluminum, the cold curve obtained from UML(v) has a quan-

titative deviation from ab-initio data near equilibrium and away from equilib-

rium also, as the cohesive energy predicted by ab-initio calculations and that

used by Lincoln et. al. differed slightly. On the other hand, UM(v) and Us(v)

fit the ab-initio data with same accuracy except for a slight deviation of UM(v)

from the ab-initio data away from equilibrium in the expansion regime.

In the case of Copper, UML(v), UM(v) and Us(v) are equally accurate in the

expansion phase. But in the compression phase, UML(v) has a significant devi-

ation from the ab-initio data.

In the cases of Sodium and Potassium, UML(v) is deviating significantly

from ab-initio data. This could be because of improved accuracy of the present

ab-initio calculations in predicting the cohesive energies. Also, the UM(v) is

deviating from the ab-initio data in the expansion region far from the equi-

librium for both Sodium and Potassium. Whereas in the compression region,

UM(v) is matching reasonably well with ab-initio data in the case of Sodium

and is deviating from ab-initio data in the case of Potassium. It can be seen

that Us(v) matched reasonably well with ab-initio cold curve in both the cases.

Above discussion shows that Us(v) obtained from us(r) fitted the ab-initio

cold curve with better accuracy than those of other potentials in all the cases

discussed. Thus we expect us(r) to give an improved liquid-vapor coexistence

curve than other potentials.

us(r) for Aluminum, Copper, Sodium and potassium is shown in Fig.(6.6).

Parameters for the potential us(r) obtained using the procedure described above

are listed in Table.6.1. For Sodium and Potassium, the parameter β is negative

which makes the potential turn down and go to zero close to origin which is

un-physical. Thus it has to be cutoff at an appropriate point close to the ori-

gin. We found that 0.25r0 and 0.4r0 can be the cut-off points for Sodium and

Potassium respectively. It is assumed that for distances smaller than these, the

potential is constant and equal to that at the cutoff point. This should not affect

the results as the probability of finding a particle inside the repulsive core is

negligible. In order to test the accuracy of modified potential us(r) in the fluid

phase, we have obtained liquid-vapor phase diagrams (LVPDs) for all these
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Figure 6.6: Modified pair potentials of Aluminum, Copper, Sodium and Potassium.

metals modeled using us(r) from PTMD. Also, for Aluminum and Copper, we

have obtained isobars from NPT ensemble simulations.

6.3 Simulation of vapor-liquid phase equilibria

We use the PTMD[101] method, which is a variant of the Gibbs ensemble

Monte Carlo(GEMC) method developed by Panagiotopoulos[47], to obtain the

liquid-Vapor phase coexistence points. The basic idea of PTMD is to simulate

the conditions of liquid-vapor coexistence. The system contains two simula-

tion boxes. Total number of particles in the system is kept constant. However,

exchange of particles between boxes is allowed. One box is assumed to be

situated in an infinite medium of homogeneous liquid at a (given) constant

temperature and the other is assumed to be situated in an infinite medium

of homogeneous vapor at the same temperature. Since the idea is to get the

thermodynamic properties of a macroscopic system, the interface effects are

neglected. The coexistence conditions are simulated by evolving the boxes in

such a way that they have same temperature, pressure and chemical potential

after equilibration.



120 6.3. SIMULATION OF VAPOR-LIQUID PHASE EQUILIBRIA

Initially, each box is given a guess density(i.e., no. of particles and volume).

Equilibration would be faster if the guess densities are closer to the coexisting

liquid and vapor densities. Periodic boundary conditions are applied to each

box to ensure that they represent the bulk coexisting phases. Temperature fluc-

tuations in each box are controlled by Berendsen thermostat [109] so that they

reach the given temperature. Pressures in both the boxes are equalized by con-

trolling their volume fluctuations using a Berendsen barostat1. This is done by

adjusting the volume of each box such that the instantaneous pressure in one

box becomes equal to the instantaneous pressure in the other. The total vol-

ume of the two boxes is not restricted to be constant. The particle transfer step

to equilibrate chemical potentials in both the boxes is carried out after each

five hundred time steps by comparing their chemical potentials. It is done as

follows: A particle is chosen randomly from the box where chemical potential

is more and is removed from it. Correspondingly a particle is introduced into

the other with its potential energy calculated and the velocity taken from the

Boltzmann distribution of corresponding temperature. Care is taken so that

the introduced particle is not too close to any other particle in the box. With

the above three procedures being done during the simulation, the two boxes

evolve in time in such away that they have same temperature, pressure and

the chemical potential after equilibration. Thus the system may phase separate

into liquid in one box and gas in the other with proper choices of initial densi-

ties if the temperature of the system is less than the critical temperature. Plots

showing the typical evolution of temperature, pressure, density and chemical

potential in both the boxes are shown in Fig.(6.7-6.10).

1Details of implementation of thermostat, barostat etc. are given in appendix B
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Figure 6.7: Evolution of temperature in Box 1 and Box 2 in PTMD simulation of Sodium at
2500K using the modified potential.
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Figure 6.8: Evolution of density in Box 1 and Box 2 in PTMD simulation of Sodium at 2500K
using the modified potential.
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using the modified potential.
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Figure 6.10: Evolution of chemical potential in Box 1 and Box 2 in PTMD simulation of Sodium
at 2500K using the modified potential.
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Figure 6.11: Liquid-vapor coexistence curve of Aluminum. Hollow squares: PTMD results
using us(r), filled squares: Monte Carlo data using uML(r) from J.K. Singh et. al. [100], half-
filled circles: GEMC data using EAM potential from Divesh Bhatt et. al. [112]. Long dashes:
I-order S-CPE. Short dashes: S-CPE. Dots: HNC-CPE+GRGT. Solid line: S-CPE+GRGT.

The method described above has been tested for the Lennard-Jones fluid

initially. The phase diagram we obtained matched with that of earlier

simulations[110] validating the code we developed. Then the code is used to

obtain the LVPDs of the metals described above. Time step used in the simu-

lations is 1 femto second and each simulation run has typically 5 × 105 equi-

libration and production steps. Chemical potential has been evaluated using

Widom’s test particle insertion method[111]. At each step 200 test particles are

inserted and chemical potential is calculated after each five hundred steps. To-

tal number of particles used in the simulation are 1728. The initial densities

have been chosen so that after equilibration, both the boxes contain a good

number of particles (atleast more than a hundred) so that the averages are re-

liable and deviations are small.

The Temperature(T) Versus Density(ρ) diagrams for Aluminum, Copper,

Sodium and Potassium are shown in Fig.(6.11-6.14). The critical temperature(Tc)

and critical density (ρc) are obtained by fitting the simulation data to the law



124 6.3. SIMULATION OF VAPOR-LIQUID PHASE EQUILIBRIA

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  1  2  3  4  5  6  7

T
em

pe
ra

tu
re

(K
)

density(g/cc)

Copper

Figure 6.12: Liquid-vapor coexistence curve of Copper. Hollow squares: PTMD results using
us(r), filled squares: Monte Carlo data using uML(r) from J.K. Singh et. al. [100], hollow
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Figure 6.13: Liquid-vapor coexistence curve of Sodium. Squares: PTMD results using
us(r), diamonds: Monte Carlo data using uML(r) from J.K. Singh et. al. [100]. Filled
up-triangles[114], hollow circles[115] and hollow up-triangles[116] are experimental data.
Long dashes: I-order S-CPE. Short dashes: S-CPE. Dots: HNC-CPE+GRGT. Solid line: S-
CPE+GRGT.
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Figure 6.14: Liquid-vapor coexistence curve of Potassium. Squares: PTMD results using
us(r), diamonds: Monte Carlo data using uML(r) from J.K. Singh et. al. [100]. Filled
up-triangles[114], hollow circles[117] and hollow up-triangles[116] are experimental data.
Long dashes: I-order S-CPE. Short dashes: S-CPE. Dots: HNC-CPE+GRGT. Solid line: S-
CPE+GRGT.

of rectilinear diameters.

ρl + ρv
2

= ρc + A(T − Tc) (6.9)

and the power law

ρl − ρv = B(T − Tc)β (6.10)

where ρl and ρv are liquid and vapor densities. A and B are fitting constants

and β = 0.33. Critical parameters we obtained are compared with literature

data and experiments in table.6.2.

In the case of Aluminum, a large collection of data of Tc and Pc of aluminum

obtained from various methods are listed in a recent paper by Morel[118]. The

lowest prediction of Tc was 5115K by Blairs[119] whereas the highest was

9502K[120]. Hess[121] estimated the critical point of Aluminum indirectly

from various experimental data. Hess’ estimates of Tc ranged from 5754K to

8944K. Also the ρc predicted by various authors as listed in Morel’s paper

ranged from 0.3g/cc to 1g/cc whereas the Pc predictions ranged from 0.18GPa
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to 0.94GPa. The huge scatter in predictions do not lead to any conclusive esti-

mate. Our estimates of ρc and Tc are within the predicted ranges. However, our

estimate of Tc was slightly higher than the highest value predicted in literature.

In the Fig.(6.12), the GEMC simulation data obtained by Bhatt el. al.[112] using

embedded atom model (EAM) potentials and the grand canonical Monte Carlo

simulation data obtained by Singh et. al.[100] using uML(r) are also shown. It

can be seen that the LVPDs of our method are close to those of Singh et. al.

In the case of Copper also, the estimates of critical parameters have a huge

scatter as can be seen from the table.6.2. Our estimates are within the range

of available predictions from literature. In Fig.(6.12), the LVPD of Copper ob-

tained by Alexandrov et. al. [113] using the quantum Sutton-Chen EAM po-

tential from GEMC simulations is depicted. In this case also, the LVPDs we

obtained are closer to those obtained by Singh et. al.

For Sodium and Potassium, reliable experimental data of coexistence points

and also the critical point is available. Plots of LVPDs obtained using us(r)

from PTMD along with the data of Singh at. al. using uML(r) and available

experimental data are given in Fig.(6.13) and Fig.(6.14). It can be seen that

our estimates of critical parameters are significantly improved over those of

Singh et. al.[100] In both the cases of Sodium and Potassium, there is a signif-

icant mismatch between UML(v) and ab-initio data (and hence Us(v)). This is

because of the difference in cohesive energies obtained from present ab-initio

calculations and earlier values used by Lincoln et. al. [99]. A significant im-

provement in the LVPDs over those of Singh et. al. reaffirms the accuracy of

the ab-initio results.

The results of our simulations for Sodium and Potassium show that, apart

from equilibrium data like cohesive energy, bulk modulus etc., the accuracy of

the cold curve of a particular potential away from equilibrium plays a major

role in determining the accuracy of the thermal properties of fluids obtained

from that potential. It can be seen from the Figs.(6.13-ref9ch6) there is still

some deviation between our results and experimental coexistence points. The

deviation could be because of various reasons. Firstly, the accuracy of poten-

tials we obtained are restricted by the accuracy of the ab-initio calculations.
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Secondly, it is unclear whether the potential with fixed parameters could take

care of the changes in electronic levels when a liquid-metal transforms into a

vapor-insulator. Thirdly, the excitation of electrons to higher levels with tem-

perature would affect the effective potentials. This has not been taken into

account. Apart from these, the method we described has been used to obtain

parameters of pair potentials for metals keeping in view their utility in theoret-

ical models. However, it can be used with more sophisticated potentials forms

including many body effects like EAM potentials also. This may bring down

the deviation from experimental results.

6.4 Application of CPE+GRGT to metals

The development of a modified potential and a new way of obtaining its pa-

rameters has brought in some improvement in the LVPDs of Sodium and Potas-

sium as obtained from simulations. The LVPDs of Aluminum and Copper did

not differ much from those of Morse potential. Now that we have the simula-

tion data for us(r) in hand, we apply the CPE+GRGT to us(r) to calculate the

LVPDs and compare with the simulation data. The implementation of CPE is

exactly as explained in chapter 3 and hence is not repeated here. It can be seen

from Fig.(6.6) that the range of attractive part and the slope of repulsive part is

different for each potential. Since the accuracy of the results of CPE depends

on bridge function and the performance of a bridge function depends on the

features of the potential like the range of potential, the strength of the repulsive

part, which bridge function is to be used for the potentials is unclear. Hence

we have done CPE calculations using two closures; the Sarkisov closure[63]

and the Hyper-Netted Chain(HNC) closure. The CPE calculations done using

Sarkisov closure are referred as S-CPE and those done using HNC are referred

as HNC-CPE.

In Fig.(6.15) the calculated RDFs of Sodium at 378K, 0.928g/cc and at 820K,

0.82g/cc are compared with available experimental data. At 378K, the S-CPE

did not have a solution whereas the RDF obtained using the HNC-CPE com-

pares well with the experimental data. At 820K, solutions could be obtained
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Figure 6.15: RDF of Sodium. Stars: experimental data. Solid lines: HNC-CPE. Dots: S-CPE.
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using both the methods. However, the RDF obtained using HNC-CPE matched

better with experiment than that of S-CPE. In Fig.(6.16) DCFs of Sodium cor-

responding to the temperatures and densities mentioned above are shown. In

Fig.(6.17), the calculated RDFs of potassium are plotted against experimental

data. In this case also, the HNC-CPE results are more accurate than the S-CPE

results.

In Figs.(6.11 - 6.14), vapor-liquid coexistence curves obtained using the S-

CPE+GRGT and HNC-CPE+GRGT methods are compared with the PTMD re-

sults obtained above, available experimental data and simulation data of other

potentials. We also depict the results of S-CPE and I-order S-CPE calculations.

It can be seen from the figures that the LVPDs obtained using S-CPE+GRGT

are closer to PTMD results than those obtained with HNC-CPE+GRGT for

Sodium, Potassium and Copper. Whereas in the case of Aluminum, the HNC-

CPE+GRGT results are more in agreement with PTMD results than those of

S-CPE+GRGT.

Overall, a decent agreement of results of CPE+GRGT with the simulation

data has been observed. However, the following points are to be noted. From

the above applications, it is clear that the CPE plays a major role in deciding the
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accuracy of the calculations in the whole phase diagram. The improvement by

GRGT is mostly limited to the critical region. The accuracy of the CPE depends

on the bridge function used in the calculation. The present calculations show

the significant role played by the bridge function and the need for an accurate

bridge function.

6.5 Summary and Conclusion

In this chapter, we described a simple way of obtaining parameters of inter-

particle potentials using ab-initio cold curve. We also proposed a modified

form of empirical pair potential for metals. Using this potential, the LVPDs

of Aluminum, Copper, Sodium and Potassium are determined using PTMD

simulations. In the case of Sodium and Potassium, the present phase diagrams

are significantly improved over those obtained from existing Morse potential

when compared with experimental data. In the cases of Aluminum and Cop-

per, we got a new set of LVPDs and critical points which are closer to those

obtained using the existing Morse potentials.

We applied the CPE+GRGT to modified potentials. The RDFs obtained

using HNC-CPE method close to melting compared well with experimental

data. The LVPDs obtained using S-CPE+GRGT are in close agreement with our

simulation results for Copper, Potassium and Sodium whereas in the case of

Aluminum the LVPD obtained using HNC-CPE+GRGT is in close agreement

with present simulation results. Overall, a notable improvement in the LVPDs

obtained using the S-CPE+GRGT over those obtained using just I-order S-CPE

and S-CPE can be observed. The effect of GRGT is to flatten the LVPD close

to the critical region and also to flatten the isotherms in the two phase region.

The deviation of the results of present theory from those of simulations is due

to the approximate bridge function used in the CPE.
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Table 6.1: Parameters for us(r)

metal ε(eV ) r0(Ao) α β
Al 0.220 3.568 2.499 0.7808
Cu 0.321 2.881 3.095 0.792
Na 0.086 4.567 3.968 -0.5573
K 0.088 5.425 5.172 -1.439

Table 6.2: Critical Point Data

metal Tc(K) ρc(g/cc) Pc(GPa) Reference

Al 9643 0.75 0.81 This work
7963 0.44 0.35 Faussurier[122]
8860 0.28 0.31 Likalter[123]
8387 0.38 0.45 Vinayak[124]
8472 0.79 0.51 Singh[100]
5115 – – Blairs[119]

5754-8944 0.43 0.47 Hess[121]
9502 0.90 0.94 Boissiere[120]

Cu 8231 2.05 0.73 This work
5696 1.8 0.11 Aleksandrov[113]
8650 2.6 0.95 Singh[100]
7696 1.93 0.58 Hess(Exp.)[121]
8900 1.04 – Cahill(Exp.)[125]
5140 – 0.4 Martynyuk(Exp.)[126]

Na 3121 0.31 0.109 This work
2497 0.21 0.025 Ohse(Exp.)[127]
3932 0.35 0.129 Singh[100]
2500 0.18 0.037 Vargaftik(Exp.)[128]
2573 0.21 0.035 Dillon(Exp.)[114]

K 2280 0.27 0.037 This work
2280 0.19 0.016 Ohse(Exp.)[127]
3120 0.28 0.053 Singh[100]
2250 0.16 0.016 Vargaftik(Exp.)[128]
2223 0.19 0.016 Dillon(Exp.)[114]



CHAPTER 7
Summary and future scope

7.1 Summary of thesis

In this thesis, an improved method to obtain the Helmholtz free energy of a

simple classical fluid has been developed which includes the physics of liquid-

vapor phase transition in a more rigorous way. The new method is applied

to model fluids like square-well fluid, Lennard-Jones fluid and liquid metals

modeled using empirical potentials with considerable success. Apart from the

development of the theoretical method, molecular dynamics simulations have

been done to obtain vapor-liquid equilibria. Also, density functional theory

calculations of zero Kelvin isotherms of various simple metals has been done.

The following is a summary of the work done in the thesis

1. Derivation of a generalized version of global renormalization group

theory

The starting point of our study was the global renormalization group

theory (GRGT) originated by White. We have derived a generalized ver-

sion of GRGT using the Wilson’s method of functional integration start-

ing from the square-gradient functional for Helmholtz free energy. The

new method has been applied to square-well fluids of ranges 1.5 and 3.0

in reduced units. It is observed that the isotherms below critical point

become flat after the GRGT correction indicating an improved descrip-

tion of physics in the two phase region. The liquid vapor phase dia-

grams(LVPDs) obtained are compared with simulation data and a good

improvement in the critical region has been observed for the fluid with

range 3.0. However, for the fluid with range 1.5 the GRGT correction

was not adequate. We found that the mean field Helmholtz free energy

132
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calculated using first order perturbation theory and the direct correlation

function used in the GRGT were too erroneous for short-range potentials.

2. Coupling parameter expansion(CPE) method

We have developed a new way of obtaining the terms of perturbation

series for mean field Helmholtz free energy of a simple fluid by com-

bining the thermodynamic perturbation theory with integral equation

theory. Initial version of the method assumed reference hyper-netted

chain(RHNC) closure. Later the method has been generalized to use any

closure. The CPE method, with terms calculated up to seventh order,

has been applied to square-well fluids of various ranges and Lennard-

Jones fluid. A significant improvement in accuracy of calculated LVPDs

against simulation data over those of existing methods is observed. The

radial distribution function(RDF), direct correlation functions (DCF) and

surface tension obtained using CPE1 compared well with the available

simulation data.

Overall, the results of CPE method has been a significant improvement

over those of existing theories. The accuracy of the results of CPE away

from the critical region is limited only by the accuracy of the bridge func-

tion used in the calculations. However, the CPE method being a mean

field theory requires an improvement close to the critical region.

In addition, we showed that for a fluid with interaction potential hav-

ing a repulsive core, the terms of CPE for RDF and DCF also scale with

temperature in addition to the terms of Helmholtz free energy series.

3 Combination of CPE method with GRGT

The improved mean field Helmholtz free energy and the DCF obtained

from the CPE are used in GRGT and the improvement in its performance

is studied through application to square-well fluids of various ranges.

The combined method (CPE+GRGT) showed a significant improvement

globally. The combined method could accurately predict the LVPDs of

square-well fluid of range 1.25 and above in reduced units. We also stud-

1By CPE we mean the seventh order version of it unless specified.
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ied the critical scaling laws and Yang-Yang anomaly in square-well flu-

ids. Our method predicted the critical scaling constants conforming to

the Ising universality class. The method could also predict the Yang-Yang

anomaly.

4 Vapor-liquid equilibria of metals

We proposed a modified form of inter-atomic pair potential for metals

and obtained its parameters for Copper, Aluminum, Sodium and Potas-

sium by fitting to the corresponding zero Kelvin isotherm. We performed

the particle transfer molecular dynamics simulations in order to obtain

numerically exact LVPDs predicted by these potentials. The results showed

a significant improvement in LVPDs of Sodium and Potassium over avail-

able simulation data using Morse potential when compared with experi-

mental data. We then applied the CPE+GRGT to theses potentials. Two

sets of calculations were done; one using the hypernetted chain closure

and other using Sarkisov closure. The LVPDs obtained using CPE+GRGT

with Sarkisov closure are in excellent agreement with simulation data for

Sodium, Potassium and Copper whereas in Aluminum’s case, LVPDs ob-

tained using CPE+GRGT with with HNC closure are in close agreement.

Overall, a notable improvement in accuracy of seventh order CPE+GRGT

results over first order CPE results has been observed when compared

against simulation data. However, the calculations show the sensitivity

of results to the bridge function used in the calculations. To get accurate

results, a proper choice of bridge function is necessary.

7.2 Future work

1 Extension of CPE+GRGT to molecular fluids, associating fluids etc.

2 A study of variation of bridge function with temperature and density

using simulations and its implementation in calculations of CPE.

3 Implementation of CPE in classical density functional theory of in-homogeneous

fluids.
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4 Combining the CPE with density functional theory to obtain equation of

state of warm dense plasma.
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APPENDIX A
Calculation of zero Kelvin isotherm from density

functional theory

We used the Vienna Ab-initio Simulation Package(VASP)[105–108] to calculate

the zero Kelvin isotherm. VASP employs density functional theory(DFT) for

electronic structure calculations and Born-Oppenheimer molecular dynamics.

Here we are concerned with the DFT part of it. Vast amount of reviews and

books exist[129–134] which explain DFT in great details and hence is not re-

peated here. However, the basic ideas of DFT to the extent used in our work

and its implementation below is briefly mentioned below.

A.1 Density functional theory in nutshell

DFT is a powerful tool for electronic structure calculations in which the elec-

tron density (ρ(~r))1 is used as the basic variable to describe the system instead

of wave-function. That the ρ(~r) can be used as a basic variable to describe

the system has been proved by Hohenberg and Kohn[135] by showing that

the ρ(~r) and the external potential (vext(~r)), which uniquely fixes the Hamil-

tonian of a many-electron system interacting with external field sources like

Nuclei etc., are uniquely related except for an additive constant. Hohenberg

and Kohn also proved that the ρ(r) which minimizes the the energy functional

is the ground electron density. These two theorems form the basis of density

functional theory. In the proof of the variational principle, Hohenberg and

Kohn assumed that the trial density is a density corresponding to some exter-

nal potential ( called v − representable density). The conditions satisfied by

1This notation is only valid for this Appendix. Also, Hartree atomic units are used in this
appendix.
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such density are unknown and hence it is impractical to implement. Levy[136]

later devised a variational principle which just requires that the density should

give the total number of particles in the system upon integration over its vol-

ume (called N − representalbe density) which is a looser restriction that can be

handled.

The practical implementation of DFT became possible after the algorithm

developed by Kohn and Sham[137] in which the system containing interacting

electrons and nuclei(or ions etc.) is mapped onto a system of non-interacting

electrons in an effective external field. The effective potential looks as follows:

veff (~r) = v(~r) +

∫
ρ(~r′)

|~r − ~r′|
+ vxc(~r) (A.1)

In the above, v(~r) is the external potential due to nuclei etc., second term is the

Hartree interaction term and the third term is called the exchange correlation

potential in which all the effects due to the exchange interaction of electrons

and correlations between electrons are dumped. The approximations in DFT

appear in modeling the vxc(~r).

The simplest form of approximation is the local density approximation

(LDA) in which

vx(~r) = −
(

3ρ(~r)

π

)1/3

(A.2)

is the exchange contribution and

vc(~r) = − 0.44

rs + 7.8
(A.3)

where rs =
(

3
4πρ(~r)

)1/3

is the correlation potential. vxc = vx+vc. In obtaining the

above forms it is assumed that the electron gas is locally homogeneous. The

vx(~r) is derived by Dirac[138] (as an extension of Thomas Fermi method[139]

to include exchange) and vc(~r) is obtained by Wigner[140] using Monte Carlo

simulations. If the densities of the up and down spins are considered sep-

arately, then it is called local spin density approximation(LSDA). There are

various functionals which include the exchange and correlation contributions

within the LSDA like the Gunnarsson-Lundqvist functional[141], Vosko-Wilk-
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Figure A.1: Flow-chart for Kohn-Sham algorithm

Nusiar[142] functional etc.

The validity of local density approximation is accurate when the variation

of density is slow compared to the Fermi wavelength. In an atom, this condi-

tion is not valid close to the nucleus and also asymptotically. In a molecule,

cluster or a solid the condition is seriously violated. However, the calcula-

tions done using LDA are seen to predict the energies of the systems within

10−20% deviation[132]. The big success of this method is that it predicts some

quantities like the bond length in molecules, geometries within an accuracy of

1%. This has been observed as a consequence of cancellation of errors and the

exchange hole sum rule being satisfied by LDA.

The exchange correlation functionals which go beyond the LDA are the

generalized gradient approximation (GGA) functionals. The GGA functionals

allow for local variation of density and their general form is

EGGA
xc [ρ] =

∫
f(ρ(~r), |∇ρ(~r)|)ρ(~r)dr (A.4)

Various parametrizations of GGA are available in literature. The VASP code in-

corporates the Purdue-Wang(PW)[143] functional, Purdue-Burke-Ernzerhof(PBE)[144]
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functional and its revised forms. The PW and PBE analytical functionals are

constructed satisfying some physical constraints. We have used the PBE func-

tional for our calculation.

A flow-chart for Kohn-Sham algorithm is shown in Fig.(A.1).

A.2 Pseudopotential and projector augmented wave

methods

Any system (an atom, a molecule or a solid) will have core-electrons which

are tightly bound to the nuclei and valence-electrons which are loosely bound.

The wavefunction of a core-electron (ψc(r)) is localized around the nucleus and

rapidly varying with rapid oscillations because of high kinetic energy. The

wavefunction of a valence electron (ψv(r)) is spreadout away from the nucleus

but close to the nucleus there are again rapid oscillations because of high ki-

netic energy of the electron. The wiggles in the ψv(r) close to nucleus can also

be inferred from the orthogonality of the ψv(r) with each of ψc(r). The spread-

out part of the ψv(r) can be represented by smaller number of plane waves but

the the part of it close to the nucleus having rapid oscillations requires a huge

number of plane waves to be represented in plane wave basis. This makes

the problem complicated and renders the plane wave basis inadequate. A

workaround for this problem is the orthogonalized plane wave(OPW) method

due to Herring[145]. In the OPW method, the ψv(r) is expanded in a basis of

OPWs instead of simple plane waves. An OPW is written as [146]

φk(r) = ei
~k·~r +

∑
c

Acψ
c
k(~r) (A.5)

The sum is over all core states ψck(r) which are assumed to be known (for

e.g., from tight binding calculation). The unknown Ac are obtained using the

orthogonality of the valence state with each of the core states. The valence

electron wavefunction ψv(r) when expanded in terms of OPWs will contain

a smooth part expanded in a plane wave basis and a rapidly oscillating part

containing the core-electron wavefunctions.
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The pseudopotential(PP) method and the projected augmented-wave (PAW)

method have their origins the OPW method. The basic idea is that for most of

the purposes the core- electrons are inert while valence electrons play an active

role. Hence, if the singular Coulomb potential close to the nucleus is replaced

by a smoother potential such that the valence electron wavefunctions outside

the core region and their energies are not disturbed, the problem gets simpli-

fied and the calculations can be done using lesser number of plane waves. The

ab-initio PPs are those which are obtained with atom as reference state and

does not have any fitting parameters. The main advantage of the PP and PAW

methods is the transferability. The PPs or PAWs obtained with atom as refer-

ence state are useful in other environments like a solid etc.

An elementary description of the PP method is as follows. In this method,

the single electron Schrodinger equation (in this case the Kohn-Sham equa-

tion) for valence electrons is re-written in terms of the smooth part in the OPW

expansion of the valence electron wavefunction (ψ̃v(r)). In doing so, the com-

plicated rapidly oscillating part involving the core-electrons energy levels and

their eigenfunctions is absorbed into an additional term VR(r) in the poten-

tial which turns out to be always repulsive and thus smooths out the rapidly

varying Coulomb potential in the core region of the nucleus and removes the

singularity of Coulomb potential. The PP is

vPS(~r) = veff (~r) + vR(~r) (A.6)

Because of the presence of core-electron wavefunctions, the vR and hence the

vPS are non-local1 There are various types of ab-initio PPs. The ultrasoft-

pseudopotentials(USPP) and the norm-conserving pseudopotentials(NCPP) are

the mostly used ones[131]. The NCPP are generated imposing stricter con-

straints like conserving the norm of pseudo and all electron wavefunctions

etc. and hence are more transferable to other systems. However, for transi-

tion metals with highly localized orbitals, the cutoff radius for ψ̃v(r) becomes

very small and the pseudo-potentials become ”hard” requiring large number

1Both vPS and vR depend on angular momentum quantum number. They also called
semi-local in the sense that the radial part is local.
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of plane waves to expand. The USPP relax the norm conservation by include

augmentation charges to balance the charge difference between all electron

and pseudo wavefunctions. However, in this case, the transferability becomes

less and more number of parameters are to be chosen.

The disadvantages of the PPs are to some extent avoided by the PAW method

[147]. The PAW method basically introduces a transformation from the pseudo

wavefunction to the all electron wavefunction. Using the transformation in a

manner similar to changing the representation from Schroedinger picture to

Heisenberg picture, all the expectation values of operators corresponding to

the physical quantities can be obtained as expectation values of transformed

operators in the space of pseudo wavefunctions. The Kohn-Sham equation is

also re-written in terms of the pseudo wavefunctions and the transformation

operator. Thus, the averages are equivalent to all electron averages and hence

the accuracy of calculations is more than that of PPs.

The VASP code has the options to use NCPP, USPP and the PAW methods.

In our calculations, we used the PAW data sets. The k-point grid is chosen

by inspecting the convergence of total energy for each case. The energy cutoff

typically used is 400eV and the energy convergence criterion is set to 10−6eV .

The energy of an isolated atom has been obtained by taking a large unit cell.

The obtained energy of an isolated atom is subtracted from total energy to get

the cohesive energy.



APPENDIX B
Algorithms used in classical molecular dynamics

B.1 Velocity Verlet Algorithm

Let the simulation box contain N particles interacting with a pairwise additive

potential u(r). The position and velocity of each particle is advanced according

to the following equations[148]

~r(t+ ∆t) = ~r + ~v(t)∆t+
1

2
~a(t)(∆t)2

~v(t+ ∆t) = ~v(t) +
1

2
(~a(t) + ~a(t+ ∆t))∆t (B.1)

where ~r(t), ~v(t) and~a(t)(= ~Fi/m) are position, velocity and acceleration at time

t. ~Fi(= − ∂U
∂ri

) is the force on ith particle.

U =
∑
i

∑
j

u(rij) (i > j) (B.2)

is the total potential energy. m is the mass of the particle. ∆t is the time step

which is generally chosen to be smaller than the fastest timescale in the system.

The typical time step is 10−15s (1 femto second). The velocity Verlet algorithm

satisfies the basic qualities required for a molecular dynamics algorithm such

as i) stability (allows for larger time step), ii) satisfying the laws of conserva-

tion of energy and momentum, iii) time reversibility, iv) fastness and ease of

programming.

B.2 Berendsen Thermostat

The system is assumed to be weakly coupled to the thermal bath maintained

at required temperature (Treq)[109]. The system is evolved in such a way that
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the instantaneous temperature T settles down to (Treq) at an exponential rate

with time constant (τ ). The temperature evolution is according to the following

equation
dT

dt
=
T − Treq

τ
(B.3)

Finite differencing the above equation, we get,

T (t+ ∆t) = T (t) + (∆t)
T − Treq

τ
(B.4)

The velocity of each particle at each step is scaled as below to implement the

thermostat

v(t+ ∆t) →

√
T (t+ ∆t)

T (t)
v(t+ ∆t)

=

√
1 +

∆t

τ

(
1− Treq

T

)
v(t) (B.5)

The Berendsen thermostat doesn’t exactly simulate the trajectories of canonical

ensemble. However, it yields the correct canonical ensemble averages. The

value of τ is chosen to be a value much larger than ∆t

B.3 Berendsen barostat

Analogous to Berendsen thermostat, the Berendsen barostat[109] also assumes

that the system is weakly coupled with the pressure bath which is mimicked

by the following equation
dP

dt
=
P − Preq

τp
(B.6)

which is rewritten as
dV

dt
= B

P − Preq
τp

V (B.7)

In the above equation, V (t) is the volume of the box at time t and B is the bulk

modulus. Finite differencing the above equation we get the scaling factor for
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volume of the simulation box to be

V (t+ ∆t)

V (t)
≈
(

1 +B
P − Preq

τp

)
∆t (B.8)

The coordinates of each particle are also scaled as follows

~r(t+ ∆t)→
(

1 +B
P − Preq

τp

)
(B.9)

Generally B is absorbed in τp and τp is chosen to be a value much larger than

∆t.

B.4 Calculation of Thermodynamic Averages

B.4.1 Average energy

E =

〈∑
i

p2
i

2m
+

1

2

∑
i

∑
j

u(rij)

〉
(i 6= j) (B.10)

where p is momentum. Angular brackets indicate time averaging. rij = |~ri−~rj|

B.4.2 Temperature

Instantaneous temperature T is calculated using

∑
i

p2
i

2m
=

3

2
NkBT (B.11)

Average is calculated by taking the time average of the above equation.

B.4.3 Pressure

Instantaneous pressure is calculated using the virial expression

P = ρkBT +
∑
i

~ri · ~Fi (B.12)

where ρ is the number density.
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B.4.4 Chemical potential

Chemical potential(µ) is the change in the Helmholtz free energy when a par-

ticle is added to or removed from the system. Chemical potential is calculated

using Widom’s test particle insertion method[111] according to which

µ = −kBT ln


〈
exp

(
−Ui
kBT

)〉
ρλ3

D

 (B.13)

In the above equation Ui is potential energy of the test particle. λD is the de-

Broglie wavelength of the particle.
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