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Abstract

This study attempts to systematically study the thermodynamic stability

and detailed atomistic mechanism involved in the phase transformations in the

pure Zr, ThO2 and their alloys using atomistic simulation techniques. Zr-based al-

loys are the basic components of the structural materials in pressurized heavy water

reactors and ThO2 based mixed oxides are excellent alternative fuels for the current

light water reactors and upcoming advanced heavy water reactors. These materials

show variety of phase transformations of displacive, mixed-mode (diffusive-cum-

displacive) and superionic nature. Thermo-physical and mechanical properties of

these materials are governed by the phases present in their parent matrix and sub-

sequent phases that arise during the thermal treatment of the alloys.

In this thesis, ab-initio estimation of formation energies of chemically ordered

ω phases, viz., Zr2Al, Zr3Al2Nb and Zr4AlNb show that a pure displacive β → ω

transformation is not energetically favorable for chemically disordered bcc (β) phase

at these compositions. Density functional theory (DFT) calculated ground state en-

ergy landscape suggested that for the ω like collapse to occur, a certain degree of

chemical ordering is a pre-requisite. This study also presents a systematic theo-

retical investigation of most energetically favorable atomistic pathways for α → ω

transformation in pure Zr out of many experimentally proposed pathways. The low-

est barrier pathway is a suitable combination of smallest strains and atomic shuffle,

an essential criterion for diffusionless displacive transformation. The most favor-

able transformation pathway has a C2/c common space group along the transition

pathway with an enthalpy barrier of 22 meV/atom at 0 K.

With increasing temperature, ThO2 shows “superionic transitions” where

the material allow the macroscopic movement of oxygen ions through its structure,

leading to exceptionally high (liquid-like) values of ionic conductivity whilst in the

solid state. This behavior typically occurs at elevated temperatures (∼ 0.8×melting

temperature) and is characterized by the rapid diffusion of a significant fraction of



oxygen ions within an essentially rigid framework formed by the Th sublattice. This

study evaluates the most probable directions of diffusion and actual diffusion paths

of the oxygen atoms in the superionic regime using atomistic simulations. Moreover,

the calculated diffusion barriers indicate that 〈001〉 is the easy direction for anion

migration in superionic state. With further increase of temperature, B1u phonon

mode continues to soften and become imaginary at a temperature of 3430 K (below

melting temperature of ∼ 3600 K). The calculated temperature variation of single

crystal elastic constants shows that the fluorite phase of ThO2 remains elastically

stable in the superionic regime, though the B1u phonon mode becomes imaginary

in that state. This leads to anionic disorder at elevated temperature. Tracking of

anions in the superionic state as a function of time suggests a hopping model in

which the oxygen ions migrate from one tetrahedral site to another via octahedral

interstitial sites.

The melting behavior of ThO2, UO2 and PuO2 as well as (Th,U)O2 and

(Th,Pu)O2 mixed oxides (MOX) is studied using molecular dynamics (MD) simu-

lations. The MD calculated melting temperatures of ThO2, UO2 and PuO2 using

two-phase simulations, lie between 3650-3675 K, 3050-3075 K and 2800-2825 K,

respectively, which match well with experiments. The variation of enthalpy incre-

ments and density with temperature, for solid and liquid phases of ThO2, PuO2 as

well as the ThO2 rich part of (Th,U)O2 and (Th,Pu)O2 MOX are also reported.

The MD calculated melting temperatures of (Th,U)O2 and (Th,Pu)O2 MOX show

good agreement with the ideal solidus line in the high thoria section of the phase

diagram and an evidence for a minimum is identified around 5 atom% of ThO2 in

the phase diagram of (Th,Pu)O2 MOX.

PuO2 is emulated by CeO2 in many laboratory scale experiments as CeO2

and PuO2 have quite similar physico-chemical properties. This thesis also presents

a systematic study of thermal properties of (Th,Ce)O2, (Th,Pu)O2 and (Th,U)O2

MOX. In this study, we employ classical MD simulations to calculate the thermal

expansion and thermal conductivity of these MOX and our calculated values are

compared with available experimental data. We also present the experimental work

done to validate some of our calculated results. Our combined MD simulations and

ii



dilatometry/high temperature XRD measurements indicate that incorporation of

CeO2, PuO2 and UO2 in ThO2 systematically increases coefficient of thermal expan-

sion. Similarly, the MD calculated and laser-flash measured thermal conductivity

values indicate that incorporation of PuO2 in ThO2 (by 6 wt.%) reduces thermal

conductivity between 0.6-1.2 Wm−1K−1 in the 973-1613 K temperature range com-

pared to pure ThO2. Similarly, the incorporation of UO2 in ThO2 (by 6 wt.%)

reduces thermal conductivity values between 0.5-1.1 Wm−1K−1 in the temperature

range between 873-1873 K. The MD calculated thermal property results show good

agreement with experimental results wherever available. Though, the factors like

porosity, sample inhomogeneity, etc., have not been taken into our calculations. The

chapter concludes that using the present MD simulation methodology, the thermal

properties of (Th,Pu)O2 and (Th,U)O2 MOX could be predicted over a wide tem-

perature and composition range and complement experimental observations.
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Å. The thermal conductivity values are calculated at 300, 400, 500,

750, 1000, 1250, 1500, 1750 and 2000 K temperature. . . . . . . . . 167

8.6 Variation of lattice parameter of Th1−xUxO2 (x = 0, 0.0625, 0.125,

0.1875, 0.25 and 0.3125) in the 300-1300 K temperature range along

with our HT-XRD data. The lattice parameters are calculated form

300-3000 K in 100 K interval and the error bars in the calculated
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Chapter 1

Introduction

1.1 Background

Phase stability and phase transformations are of utmost importance for physicist,

chemists, metallurgist, ceramists and others involved in the study of solids. This

multi-disciplinary field is not only academically important but also has technolog-

ical relevance. Accompanying a phase transformation, there are changes in some

physical properties and structure of the material. Often, transformed structures

show deleterious change in physical and mechanical properties in the desired pres-

sure and temperature range. Hence, there is always a motivation to tailor material

properties by controlling their phase transformation behavior in the desired tem-

perature and/or pressure range. In order to do so, it is necessary to understand

the mechanistic details of phase transformation or “phase transformation pathway”

(PTP). The study of PTP gives us a vivid picture of actual microscopic phase trans-

formation (PT) mechanism and enable us to tune PT behavior by suitable addition

of alloying elements and/or change in alloy treatment environments. Moreover,

knowledge of basic thermodynamic properties over the temperature and/or pres-

sure range is necessary to understand structural and mechanical stability of the

phases. The study of phase stability and phase transformation becomes even more

important and challenging for materials commonly utilized in nuclear industry as

structural components and basic fuels.

In recent times, the world has witnessed a renewed interest in nuclear energy

as it is the only CO2-free source of energy at the gigawatt scale. Presently, nuclear

energy provides only 15% of the total global energy requirements [1,2]. Major hin-

drances to increase this number come mainly from disposal of radioactive waste and

limited resources of natural uranium, among many other. This exorbitant amount
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of waste with the presence of weapon-grade plutonium is a major concern lead-

ing to nuclear proliferation [3–6]. A potential solution to this problem lies in the

use of thorium-based, rather than uranium-based, fuel cycle in working commercial

nuclear power plants. Thorium fuel cycle itself has several potential advantages

over uranium-plutonium fuel cycles as it tends to reduce the proliferation of spent

fuel and plutonium production. It reduces the long-lived minor actinides produc-

tion compared with the uranium-plutonium cycle, which is certainly an ecological

advantage. The waste generated from thorium fuel cycle has lesser amounts of

actinides and the rate of decrease of radio-toxicity level is much faster compared

to that in uranium fuel cycle [3]. Therefore, thoria based fuels have an attractive

prospect mainly due to its abundance, to reduce the need for enrichment in the

fuel cycle, the high conversion ratios achievable, less radioactive fission product

generation and also due to other neutron and thermal physical properties.

The engineering designs of nuclear reactors are largely governed by materials

properties of fuel, their cladding, fuel elements and their structural components [7].

Zirconium based alloys have been established as vital materials in reactor technol-

ogy, functioning as fuel cladding, pressure tubes and fuel spacer grid materials due

to their good oxidation, corrosion and creep resistance. The requirement of ther-

mal neutron transparency accounts for the rejection of many established materials

used for structural applications at high temperature and corrosive environments [7].

Among all the existing alloys zirconium-based alloys like zircaloy-2, zircaloy-4 and

Zr-2.5%Nb, which are currently being used for reactor core structural applications,

qualify best with regard to the desired properties. One of the major problems faced

with these materials is related to the hydrogen pick up and irradiation growth.

Due to the very limited solubility of hydrogen in these structural materials, various

hydride phases precipitate on thermal cycling and particularly during the shutting

down of the reactors. The problem of irradiation growth, resulting in undesirable

change in the macroscopic dimensions of the components, is again associated with

the anisotropy of the low temperature α phase crystal structure. Thus a material

having an isotropic cubic matrix with high solubility for interstitial hydrogen would

be better suited for structural applications in nuclear reactor.

There is a constant search for new materials which can be used as alternate

nuclear fuels as well as materials which have suitable combination of properties in

reactor environment as structural components. A limited number of elements sat-

isfy the criterion of a low thermal neutron absorption cross-section, the number of

alloys suitable for reactor core structural applications are very few. Since the early

days of zirconium technology it was known that alloys based on the Zr-Al system
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are stronger than most of the other zirconium based alloys [8]. The dilute alloys

of this binary system, however, showed catastrophic failure due to enhanced cor-

rosion caused by the aluminium bearing porous oxide film [8]. Later on, Schulson

et al. [9–13] showed that Zr3Al based alloys is a potential material for structural

components of reactors. Basic thermal and physical properties of these fuel and

structural component material are influenced by their phase transformation behav-

ior and thermodynamic parameters of product and parent phases.

The knowledge of basic thermal properties of relatively new fuel materials

is also important for fuel design, performance modeling and assessment of safety

issues. The fuel materials always possess inherent radioactivity. Therefore, exper-

imental determination of thermal properties requires extensive safety precautions

and remote handling of samples. Experiments can be performed in a limited tem-

perature and/or composition range. Similarly, the experimental evaluation of PTP

may be hindered due to differing time scales between microscopic processes and

experimental observations.

Over the last few decades there has been a significant increase in the usage of

simulation tools within the scientific community for the basic and applied research.

With rapidly growing computational processing power and continuing development

of basic algorithms, atomic scale modeling has become a valuable tool to provide

useful insights into the behavior of atoms on spatial and temporal scales often inac-

cessible to traditional experimental investigations. This thesis adopts atomic scale

simulation techniques to expand our understanding of phase transformation path-

way and to determine thermodynamic properties of Zr and ThO2 based materials.

1.2 Motivation

Zirconium aluminides have been actively considered as potential candidate materials

for structural components in nuclear industry because of their suitable combination

of properties like high strength, good corrosion and oxidation resistance [14, 15].

However, one of the major problems in their applications is their low ductility in

the low-to-intermediate temperature region due to the presence of unwanted omega

(ω) derivative phases which embrittle the Zr3Al based alloy [16]. Other inherent

problems like, inadequate control over the distribution of undesirable phases [10],

irradiation induced amorphization [13], etc., prevented Zr3Al based materials to be

used for structural applications in nuclear reactors. Schulson [11] reviewed the work

on Zr3Al and showed that some of these problems could be solved by altering the
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initial microstructures by controlling the grain size and shapes and by introducing

new phases. In this connection, a ternary addition (e.g. Nb) in Zr3Al was thought

to be beneficial. The effect of Nb on the transformation behavior in Zr3Al alloys

has not been well studied. A systematic study of the effect of Nb addition is desired

to explore their potential as a structural material in nuclear reactors.

Moreover, group IV elements exhibit two distinct allotrimorphs - stable low-

temperature hexagonal close-packed (hcp) α and stable high-temperature body-

centered cubic (bcc) β phases. Alloys of these elements, containing a critical concen-

tration of β-stabilizing elements, form a metastable, non-closed-packed hexagonal

ω phase upon rapid cooling from the high-temperature single β phase field followed

by isothermal/athermal annealing [17,18]. The ω phase forms by displacive mecha-

nism involving periodic displacement of lattice planes. Importantly, the formation

of the ω phase has been actively studied over a decade due to its complex formation

mechanism and its deleterious influence on mechanical and superconducting prop-

erties [14–17, 19–24], especially in Zr and Zr-rich Zr-Al alloys. For these reasons,

the mechanism of ω formation is of high relevance in these alloys for controlling its

formation mechanism.

In zirconium aluminides, one often encounters another ω transformation in

which the disordered β transforms to ordered ω structures where chemical ordering

of the ω-lattice occurs through diffusional atomic movements. The overall pro-

cess can be viewed as superimposition of displacive and diffusive processes. The

quantitative determination of thermodynamic tendencies leading to diffusive and/or

displacive processes at different stages of the transformation delineates the actual

pathway on the free energy landscape. This study aims to investigate the formation

mechanism and basic thermodynamic tendencies in ω phase formation in pure Zr,

Zr-rich Zr-Al binary and Zr-Al-Nb ternary alloys using a computational approach.

Investigations of thorium 232Th as a fuel for nuclear power reactors started

in parallel with those of uranium and plutonium. Thorium seemed an attractive

prospect mainly due to its abundance, the opportunity to reduce the need for en-

richment in the fuel cycle, the high conversion ratios (to 233U) achievable in a

thermal neutron spectrum and other neutron and thermal physical properties stud-

ied at the early stages of nuclear power program. Despite this rather long list of

advantages and fast depletion of uranium resources, thorium is not yet challenging

the use of uranium fuel on a commercial basis, although research efforts regarding

the thorium fuel cycle continue [2–5]. In nature, 232Th is fertile, and by absorbing

slow neutrons in the reactor environment it can transmute to 233U [3], which is

fissile. Therefore, 232Th based fuels need a fissile material as a ‘driver’ (such as 235U
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or 239Pu) to facilitate a nuclear chain reaction. Thus, 232Th based mixed oxides

(MOX) ((Th,U)O2 and (Th,Pu)O2) are considered as a potential fuel for various

reactor systems (viz., conventional pressurized water reactors (PWR), advanced

heavy water reactors (AHWR) and thermal breeder reactors) [2–5]. It has already

been established that (Th,Pu)O2 MOX fuel can be used in PWRs without any

significant change in the reactor design [2–5]. Nevertheless, since it has not been

widely used, a number of thermo-physical properties that are available to designers

and regulators of UO2 based fuels are not so well established for ThO2 based fuels.

To predict the in-pile behavior and performance of (Th,U)O2 and (Th,Pu)O2

MOX fuels, a primary knowledge of their phase transformation behavior and thermo-

physical and transport properties such as thermal expansion, melting point, elastic

modulus (bulk, shear and Young modulus), ionic conductivity, heat capacity and

thermal conductivity is of utmost importance. The melting and superionic behavior

of ThO2 based MOX are important to assess their thermodynamical and structural

stability. The melting temperature is also an important engineering parameter for

nuclear fuel design and safety assessment, as it defines operational limits of nuclear

fuel in its application environment and it limits the power that can be extracted

from the fuel elements.

Thermal expansion values, on the one hand, decide the extent of thermal

stresses the fuel is going to experience during burn-up in the reactor, while on the

other hand, these are crucial in determining the fuel assembly-clad gap and the effec-

tive heat transport. The temperature variation of bulk, shear and Young modulus

gives an estimation of the mechanical stability of fuels in the reactor operating con-

dition. Further, thermal conductivity of nuclear fuels is one of the most important

properties which influences the processes such as swelling, grain growth and fission

gas release and limits the linear power of the reactor. The temperature of nuclear

fuels is controlled by its specific heat capacity as well as thermal conductivity.

Determination of these properties of (Th,Pu)O2 MOX by experimental means

is very difficult due to associated radiotoxicity, high specific activity and prolifer-

ation risk of PuO2 based systems and require extensive and expensive safety pre-

cautions [3, 4, 6]. As a result, the number of experimental studies addressing the

thermo-physical and thermodynamical properties of (Th,Pu)O2 MOX is limited.

This study aims also to investigate important thermal properties of (Th,U)O2,

(Th,Pu)O2 MOX using a computational approach followed by validation of those

results through experimental measurements.
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1.3 Objectives

There are range of issues that atomic scale simulation can be used to investigate

with regard to thermodynamics of Zr and ThO2 based nuclear materials. The

“equilibrium” phase stability of pure Zr and ThO2 and their alloys is well studied

by experiments. Initial work in the transformation of phases focused on orientation

relationships between initial phase and final product, [17, 18, 25–27] and measure-

ments of some thermodynamic property (electrical conductivity, thermal diffusivity,

etc.) showing discontinuous change across the transition temperature and/or pres-

sure [28–32]. Actual “atomistic pathway” which is operative in the transformation

of phases have never been explored. A major hindrance to study “atomistic path-

way” by experimental means is the fast moving transformation front. This study

attempts to systematically study the detailed atomistic mechanism involved in the

phase transformations in the pure Zr, ThO2 and their alloys whether the nature

of transformation is pure displacive, mixed-mode (diffusive-cum-displacive), supe-

rionic or melting using atomistic simulation techniques. The quantitative determi-

nation of thermodynamic tendencies for these transformations at different stages of

transformation enables delineation of the actual pathway on the free energy land-

scape. This thesis covers the following phase transformation studies:

(a) Evolution of omega (ω) phase from ground state alpha (α) phase in pure Zr by

displacive transformation mechanism,

(b) Evolution of chemically ordered omega (ω) phase from disordered bcc (β) phase

in Zr-rich Zr2Al and Zr2Al-Nb alloys by diffusive-displacive transformation

pathway,

(c) Evolution of superionic phase in ThO2 at elevated temperature and

(d) Melting behavior of (Th,Pu)O2 and (Th,U)O2 MOX fuels

Moreover, the study of thermal properties (e.g., thermal expansion, thermal

conductivity, enthalpy, etc.) of ThO2 based MOX (e.g. (Th,Ce)O2, (Th,Pu)O2 and

(Th,U)O2) as a function of temperature is also covered in this work.

1.4 Organization of the Thesis

The rest of the thesis is chapter-wise organized as follows:
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Chapter 2: A detailed survey of the literature (experimental and theoretical) rel-

evant to this work is presented in this chapter

Chapter 3: A brief description of the theoretical simulation tools (First-principles,

classical molecular dynamics, etc.) used in this work is presented in this

chapter

Chapter 4: A first-principles study of the evolution of omega (ω) phase from

ground state alpha (α) phase in Zr by pure displacive transformation pathway

is presented in this chapter

Chapter 5: A first-principles study of the evolution of chemically ordered omega

(ω) phase from disordered bcc (β) phase in Zr-rich Zr2Al and Zr2Al-Nb alloy

by replacive-displacive transformation pathway is presented in this chapter

Chapter 6: A combined first-principles and molecular dynamics study of the evo-

lution of the superionic phase in ThO2 is presented in this chapter

Chapter 7: A study of the melting behaviors of (Th,U)O2 and (Th,Pu)O2 MOX

using classical molecular dynamics simulations is presented in this chapter

Chapter 8: A study of the thermal expansion and thermal conductivity of (Th,Pu)O2

and (Th,U)O2 MOX using classical molecular dynamics simulations is de-

scribed and compared with experimental data. Moreover, study of the ther-

mal properties of (Th,Ce)O2 MOX which is a surrogate material to (Th,Pu)O2

MOX is also reported along with experimental validation in this chapter

Chapter 9: Finally, a summary of results and main conclusions of the work are

reported in this chapter. While performing these studies a number of issues

arose, which were not addressed in this work. These are also described in this

chapter along with future scope of the work.
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Chapter 2

Historical Perspective

2.1 Phase Transformations and its Pathways

Solid-solid phase transformations are ubiquitous in nature and are of fundamental

interest in the field of materials science. A solid undergoes a phase transition when a

particular phase of the solid become unstable under a given set of thermodynamic

conditions. Mapping of competing phases and associated phase transformations

(with pressure, temperature and impurities) can provide predictive design for im-

proved control of alloy properties. phase transformation can be mechanistically

classified as either reconstructive or diffusive and displacive [17, 25]. The former

involves atomic movements from the parent to the product lattice sites by random

diffusional jumps where the first and/or second-coordination bonds are broken and

reformed. The latter involves cooperative movements of large numbers of atoms

in a diffusionless process where changes in higher coordination can be effected by

distortion in the primary bond. Atomic movements in displacive transformations

can be accomplished by a homogeneous distortion, shuffling of lattice planes, static

displacement waves or a combination of these.

2.1.1 Displacive Transformation in pure Zr

Two examples of a displacive phase transformations are (a) martensitic transforma-

tion: the transformation of hcp alpha-phase (α) to a hexagonal omega structure (ω)

and (b) ω transformation: the transformation of bcc beta-phase (β) to a omega

structures (ω), where, the hcp and bcc lattice is transformed into the hexagonal

omega-structure, respectively, by a periodic displacement of lattice planes and are

mostly observed in Ti and Zr based alloys.
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(a) Martensitic Transformation

A martensitic phase transformation is “first-order, displacive, diffusionless, athermal

structural phase transformation.” A first-order transformation has discontinuity in

a structural variable, such as volume, along with transformational hysteresis. The

displacive nature requires the unit cell of the parent lattice to distort continuously

into the unit cell of the daughter lattice. Such a change produces orientation re-

lations between the phases: Certain vectors and planes in the parent phase will

be parallel to unique vectors and planes in the daughter phase. This is written as

as [x1x2x3]parent||[y1y2y3]daughter and (h1h2h3)parent||(k1k2k3)daughter for the parallel

vectors and planes, respectively. The phase transformation happens very quickly,

often on the order of the speed of sound in the material [17,25]. At these speeds, the

phase transformation is diffusionless, as the atoms do not have time to travel very

far, though there may still be small relaxations during the transformation. Finally,

the kinetics of the transformation are athermal: the amount of daughter phase in

the crystal depends only on the driving force (temperature or applied stress), not

the holding time [25,33].

α and ω Crystallography

Figure 2.1 shows the crystal structure for α-Zr: hexagonal closed-packed

(hcp). Each basal plane is a hexagonal layer with a lattice constant of aα = 3.233

Å; alternating layers are stacked like hard-spheres in an ABAB pattern. This two-

atom unit cell (space group P63/mmc [18]) has atoms at Wyckoff positions (c):

(1
3

2
3

1
4
) and (2

3
1
3

3
4
). The ideal c/a ratio of

√
8/3 = 1.633 produces twelve nearest

neighbors exactly a distance aα away. In Zr, the c/a ratio is the slightly lower

1.592; thus, each atom has 6 neighbors at 3.20 Å.

Figure 2.1 also shows the crystal structure of ω-Zr. The ω phase is a hexag-

onal structure (space group P6/mmm) with three atoms per unit cell; AlB2 being

the prototype. The geometry is very layered: the first layer (A) is made from

atoms at the Wyckoff position (a):(0 0 0), and the next layer (B) from atoms at the

Wyckoff positions (d):(1
3

2
3
c

2a
) and (2

3
1
3
c

2a
) where c

2a
∼ 0.62. The lattice constant of

the hexagonal lattice is very wide (aω = 5.05 Å), while the spacing from A to next

A layer is small (cω= 3.15 Å). Atoms in the honeycomb B layer have a total of 9

neighbors: 3 at 2.92 Åin the same B layer and 6 at 3.32 Å in the A layers above

and below. Atoms in the hexagonal A layer have a total of 12 neighbors: 12 at 3.32

Å in the B layers above and below. The volume per atom in ω is 2.5% lower than α,
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Figure 2.1: A schematic representation of the atoms on the basal plane for α and
ω. Two ineqivalent lattice sites are shown as solid and open circle.

as it is a high pressure phase. Thus, the symmetry of the crystal is high and there

are 24 point-group operations, the same as for a simple hexagonal lattice. The ω

phase has a quite open structure and packing ratio (∼ 0.57) is larger than that of

the simple cubic lattice (∼ 0.52), but substantially lower than the bcc (∼ 0.68), fcc

or hcp structure (∼ 0.74).

α → ω Martensitic Transformation in Zr: Experimental Studies

The first study on pure Zr involving high-pressure room temperature resistiv-

ity measurements has shown a phase transition at a pressure of about 60 kbar [18].

Jayaraman et al. [34] have also detected transformations in Ti and Zr at 80-90 kbar

and 50-60 kbar, respectively, using the same technique. In the beginning, these

transformations were thought to be the α→ β transformation, as the high temper-

ature β phase was supposed to be the denser phase. Jamieson et al. [35, 36], later

on, identified the high-pressure phase to be one with a simple hexagonal structure

(ω phase). The work of Jamieson also demonstrated the difficulties in determining

the equilibrium α↔ ω phase boundary in Ti and Zr as the transformation is associ-

ated with a large hysteresis. Due to this large hysteresis, it is possible to retain the

high pressure ω phase at ambient pressures. Detailed high-pressure investigations

revealed that the transformation pressures are different under continuous loading

and step loading [37, 38]. Using the equilibrium transformation data compiled by

Kutsar and German [38] for the α→ β, β → ω and α→ ω transformations, Sikka

et al. [18] have constructed a schematic pressure-temperature phase diagram for the

group IV transition metals. Figure 2.2 shows the triple point coordinates (Pt, Tt),
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the equilibrium and the hysteresis line superimposed on the pressure-temperature

phase diagram of Zr.

Figure 2.2: A schematic representation of the phase diagram of Zr. Three main
phases: the room temperature α (hexagonal-closed packed), the high temperature
β (body-centered cubic), and the high pressure ω (hexagonal structure) can be
identified. The α→ ω transformation and its reverse ω → α are strongly hysteric;
the finish transformations are indicated by the dashed lines. At room temperature,
when Zr is pressurized to ω and then returned to atmospheric pressure, there is
retained ω phase in the α phase. The ω phase is removed by annealing at Tω→α
= 470 K. The ω ↔ α room temperature equilibrium pressure Pα→ω of 2.2 GPa is
found at the discontinuity in shear strength under pressure (caused by ω particles
in α). The dotted line continues the ω ↔ α equilibrium line from the triple point
(Pt, Tt) down to atmospheric pressure to guide the eye. (reproduced from Sikka et
al. [18])

The α → ω transformation has also been studied in dynamic (shock) ex-

periments involving pressure pulses of microsecond duration. These phase trans-

formations under shock conditions are usually observed as discontinuities in shock

velocity (Us) versus particle velocity (Up) plots. McQueen et al. [39] have noticed

the discontinuities in Us versus Up plots for Ti (175 kbar, 370 K), Zr (260 kbar,

540 K) and Hf (400 kbar, 725K). The transition pressures under shock loading con-

ditions have been found to be substantially higher than those reported for static

pressure conditions. An extensive hysteresis in the α/ω transition has also been

observed in shock pressure experiments.
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It has been noticed that the transformation pressure, Pα→ω
s , determined

by different research groups, shows a fairly high scatter for pure Zr (22 kbar to

60 kbar) [18]. This large scatter has been attributed to variations in the pressure

exposure time, the starting microstructure, the impurity content and the hydrostatic

component of the applied pressure.

Moreover, Zhau et al. [40] measured unit-cell parameters of α, β and ω-

zirconium metal at pressures up to 17 GPa and temperatures up to 973 K. From

these measurements, thermal and elastic properties for the three phases of zirconium

have been derived. Compressional and shear wave velocities as well as unit-cell

volumes across the α − ω transition of Zr have been measured up to 10.5 GPa at

room temperature by Liu et al. [41] using ultrasonic interferometry in conjunction

with synchrotron radiation. In the pressure range of 5.0 to 6.2 GPa, a mixture of

α and ω phase is clearly identified and the α phase is completely transformed to ω

phase at 6.8 GPa. The measured velocity jumps across the α−ω transition are 9.6%

and 13.1% for P and S waves, respectively. Negative pressure dependence for the

shear modulus of α-Zr has been found at pressures from 1.4 to 2.9 GPa, which may

be ascribed to the shear instability of the α phase prior to transition. According

to velocity data, the onset pressure of the α− ω transition is determined to be 4.0

GPa.

Experimentally, it is only possible to correlate orientation relationships (ORs)

between the parent and the product phases [18]. Previous experimental exami-

nations based on electron diffractometry were analyzed leading to three possible

suggestions for ORs for the formation of ω from α in pressure treated pure Zr.

The first structural model was predicted by Usikov and Zilbershtein (UZ) [42] in

which α→ ω transformation proceeds via thermodynamically unstable β-phase un-

der static pressure treatment. The OR’s were derived by a lattice correspondence

matrix which itself was the product of already known α → β and β → ω transfor-

mation matrices. Two omega variants (both having the same strains but different

shuffles) predicted by this procedure are listed below,

(0001)α||(0111)ω; [1120]α||[1011)ω OR I

(0001)α||(1120)ω; [1120]α||[0001)ω OR II.
(2.1)

Rabinkin, Talianker and Botstain (RTB) [43] reported another OR where

direct α → ω transformation model under static pressure treatment was consid-

ered and it was concluded that only three crystallographically equivalent variants

corresponding to OR II of UZ were possible. The OR of RTB is similar to that
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previously reported by Silcock [44] for Ti based alloys. The atomic movements pro-

posed by Silcock and RTB for direct α → ω transformation are generally similar

in nature but differ in detail. Later on, Kutsar et al. [45] reported the α/ω OR in

the shock treated Zr to be the same as the OR II of UZ. Finally, Song and Gray

(SG) [26] in shock compressed Zr have reported a new OR, viz.,

(0001)α||(1011)ω; [1010]α||[1123)ω OR III (2.2)

which appeared distinct from those previously reported in static high pres-

sure experiments. Later on, by analyzing selected area diffraction patterns of shock

loaded Zr samples, G. Joyti et al. [46] showed that OR III observed by SG is in fact

a subset of OR I observed by UZ. They also pointed out that α→ ω transformation

mechanism in Zr remains similar in both conditions.

In literature, there have been attempts to correlate α → ω transformation

to phonon softening mechanism. Anomalous behavior of transverse optical phonon

mode (E2g) of α-Zr has been observed at Γ-point of the hcp brillouin zone in Ra-

man scattering experiments under pressure [47]. It has also been elaborated that

frequencies of E2g phonon mode (νE2g) is related with C44 shear elastic constant

by an empirical relation and α → ω transformation is associated with softening

of C44 as well [48]. In these experiments, the measured νE2g are continuously get

softened under pressure and coexistence of α and ω-phase was observed even up

to 16 GPa confirming the sluggish kinetics of this transformation [47] even though

experimentally reported transition pressure is in the range of 2.2-7 GPa. It has also

been suggested that s→ d electron transfer dominates the structural sequence ob-

served under pressure for group IV transition metals [18,49]. Therefore, theoretical

study of C44 and E2g phonon mode dynamics as function of pressure is required

to understand the role of this phonon in α → ω transformation. Moreover, the

study of electronic band structure as function of pressure will help understanding

the driving mechanism for this transformation.

α → ω Martensitic Transformation in Zr: Computational Studies

Previous theoretical studies have been aimed to study phase diagram of

pure Zr as well as to determine thermal and mechanical properties of α, β and ω

phases. Ostanin et al. [50] used the full-potential linear muffin-tin orbital (FP-

LMTO) method within the local density approximation (LDA) and generalized

gradient approximation (GGA) to calculate the total energy and equilibrium lat-
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tice properties for the observed phases of Zr. The temperature dependences of the

free energy, specific volume, bulk modulus, Debye temperature, and Grun̈eisen con-

stant were calculated for these structures within the Debye model. The P-T phase

diagram constructed from the calculated thermodynamical Gibbs potentials within

the GGA fitted well the available room-temperature data on the α→ ω and ω → β

transitions. At ambient pressure, calculated Tβ→α = 1193 K, which is close to the

observed experimental value.

Hao et al. [51] calculated the phase diagram of α → ω of Zr by using the

density-functional theory and quasiharmonic lattice dynamics. This work is based

on the calculation of the Gibbs free energy of α and ω phases, and for each fixed

temperature the phase transition pressure is determined by the point at which the

two free energies cross. The calculated phase boundary was in better agreement

with the available experimental data than other theoretical results. Their calculated

results found that the alpha structure as most stable at zero temperature and this

conclusion agreed well with that of Schnell and Albers [52]. For the omega structure

the phonon dispersions were predicted. The calculated volume thermal expansion

coefficients for α-Zr were also predicted and the results were in good agreement

with the experimental data at T > 100 K.

Hao et al. [53] also investigated the effect of hydrostatic pressure on the

structures of zirconium metal at zero temperature using the projector augmented

wave (PAW) within the Perdew-Burke-Ernzerhof (PBE) form of the GGA. The

calculated ω → β transition at around 26.8 GPa, which was in excellent agreement

with the experimental values. They also found that the ω phase is most stable

at 0 K and 0 GPa. This conclusion is supported by first-principles calculations

of Schell et al. [52] and Jona et al. [54]. The elastic constants of ω-Zr under high

pressures were calculated and the compressional and shear wave velocities increased

monotonically with increasing pressure. The results were in good agreement with

the available experimental data and the pressure dependences of three anisotropies

of elastic waves were also presented.

Recently, Hu et al. [55] investigated the structures, phonon dispersions, phase

transitions and thermodynamics of Zr from first-principles calculations. At zero

temperature, α-Zr transformed to ω-Zr at 0.98 GPa and then to β-Zr at 31.6 GPa.

The axial ratio c/a increased with increasing pressure for α-Zr, but it was nearly

invariant under compression for ω-Zr. Within the quasi-harmonic Debye model,

the full phase diagram of Zr was obtained. The zero pressure phase transition from

α-Zr to β-Zr occurred at 1130 K. The transition pressure from α-Zr to ω-Zr at

300 K was 2.10 GPa and the predicted triple point was at 6.35 GPa, 910 K, which
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was close to the experimental data. The thermal properties including the entropy,

isotherm, isobar and thermal pressure in a wide range of pressure and temperature

were predicted successfully.

In all experimental observations, the α → ω transformation pathways are

always inferred from the OR between the parent and the product phases. Also,

for a given set of ORs multiple transformation pathways can be inferred and deter-

mining energetically favorable one by experimental means is exceedingly difficult.

Hence, the actual atomistic pathway for α → ω transformation in pure Zr is still

not properly understood, despite several attempts. Previous theoretical studies are

mainly emphasized on the determination of phase diagram and α → ω transfor-

mation pressure. No previous theoretical study attempts to determine atomistic

mechanism of α→ ω phase transformation in pure Zr.

(b) bcc(β) → ω transformation

The occurrence of ω-phase was first observed by Frost et al. [19] in aged Ti-

8%Cr alloys. This phase has also been observed in many other alloy systems where

the high temperature bcc phase is stable up to room temperature. In particular,

alloys based on group IV B elements (Ti, Zr and Hf) have shown pronounced ten-

dency toward the β → ω transformation under pressure and/or thermal treatment.

As a metastable phase, it has also been observed in other bcc alloys based on noble

metals [56–58] and transition metals [59–63].

The mechanism of the bcc (β) → ω transformation can be represented as

the collapse of the (222)β plane due to a propagation of 2/3 < 111 >β longitudinal

displacement wave, causing two neighboring (222)β plane to move toward each other

by a displacement in the [111] direction, while each third plane remains unmoved

and so on (Figure 2.3). This type of transformation is called displacive because

it involves cooperative (military-like) movement of atoms over small distances (a

fraction of lattice translation vectors) [17, 18]. If the collapse is complete (Figure

2.3(c), ideal ω), six-fold rotation symmetry is generated around the specific < 111 >

direction along which collapse of lattice planes occurred; while a trigonal symmetry

is attained (resulting structure is associated with a trigonal space group P3m1) for

incomplete collapse (Figure 2.3(b), non-ideal ω, ω′′) [17, 18].
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Figure 2.3: Schematic diagram showing stacking of the (222)bcc planes of the bcc
(cubic symmetry) (a) ω′ structure (partial collapse of the planes, trigonal symmetry)
(b) and ω (AlB2) structure (full collapse of two of the planes, hexagonal symmetry).
Systematic collapse of the bcc planes (marked as 1 and 2) into a single plane (-1.5)
generates AlB2 structure. Planes marked as 0 remain stationary. The parameter
Z is a measure of the movement of the second and third plane along with their
Wyckoff counterparts.

2.1.2 Diffusive-Displacive Transformation in Zr-Al alloys

In general, a phase transformation in a solid results in the creation of one or more

new phases within the matrix phase. The operative transformation mechanisms,

diffusive and displacive, may interact or compete with each other. There are rec-

ognized examples of phase transformations in solids that appear to exhibit the

characteristics of both diffusional and displacive transformations. In fact, in most

solid-solid phase transformations, the concomitant displacive-diffusional mechanism

is the rule rather than an exception [14–17,20–22].

The formation of ordered derivatives of the ω phases from disordered bcc

phases is accomplished by coupled diffusive-displacive phase transformation pro-

cesses. In these transformations replacive ordering is usually mediated through

thermally activated atomic diffusion (resulting in change in composition and chem-

ical ordering) for decorating specific sub-lattice sites by specific atomic species in

the disordered parent structure [17,22,64]. It is also important to note that chemi-

cal ordering which involves only the chemical rearrangement of constituent atomic

species leading to an ordered phase without changing the basic lattice framework

of the disordered phase is designated as replacive transformation [17,22].

The best known alloy system where this interplay of diffusive and displacive

17



process is observed is eutectoid steel. The high temperature austenite phase typi-

cally decomposes into pearlite, i.e., ferrite plus cementite (iron carbide, Fe3C), by

a diffusive process. For fast cooling rates, a transformation from austenite (face-

centered cubic) to metastable martensite (base-centered tetragonal) may, instead,

take place. Such coupled diffusive-displacive transformations have also been ob-

served in other materials, for instance, Ti, Zr and Hf based alloys. Group IV

elements exhibit two distinct allotrimorphs - stable low temperature hexagonal

close-packed (hcp) α and stable high temperature body centered cubic (bcc) β

phases. Alloys of these elements, containing a critical concentration of β-stabilizing

elements, form a metastable, non-closed-packed hexagonal ω phase upon rapid cool-

ing from the high temperature single β phase field followed by isothermal/athermal

annealing [17,18,22].

Importantly, the formation of the ω phase has been actively studied over a

decade due to its complex formation mechanism and its deleterious influence on

mechanical and superconducting properties [14–17, 20–22]. Especially, the Zr and

Zr-rich alloys, a representative of group IV element, have several attractive mechan-

ical properties including high ductility, strength and resistance to corrosion as well

as mechanical and irradiation damage. For these reasons, it is an interesting class of

materials for multiple applications ranging from structural components in nuclear

reactors to a solid solution strengthener in superalloys [14–17, 20–22]. The present

study aims to investigate the formation mechanism and basic thermodynamic ten-

dencies in ω phase formation in Zr rich Zr-Al-Nb alloys.

(a) Athermal and Isothermal β → ω Transformations

The formation of metastable ω phase in Ti and Zr alloys from the high tem-

perature single β phase field, containing a critical concentration of β stabilizing

elements, has been classified as either athermal or isothermal based on kinetics of

the transformations [17, 18]. The athermal β → ω transformation is purely dis-

placive in nature involving collapse of the {111} planes of the bcc phase via a

shuffle mechanism, diffusionless and is of first order. The ω phases so obtained has

a composition very close to that of the β phase. These transitions do not require

any thermal activation and proceed with the velocity of elastic disturbances in the

crystals. In contrast, if a solid solution of the alloy of concentration beyond the

athermal range is maintained at temperatures for which the diffusion rates are ap-

preciable, favorable concentration fluctuations can occur in the β-matrix creating

solute-lean embryos of composition lying within the athermal range. These solute-

lean embryos can then transform to ω-phase by the (111) plane collapse mechanism.
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Therefore, from the viewpoint of instabilities in the β phase, the athermal ω results

from a pure structural instability while the isothermal ω results from concurrent

compositional and structural instabilities. These multiple ω phases encountered in

Ti and Zr alloys can be attributed to the competing structural and compositional

instabilities, inherent within the bcc β phase of these alloys on quenching from

high temperatures [17, 18, 22, 64–68]. Eventually, on annealing for long periods of

time these metastable ω precipitates are replaced by the equilibrium α phase, the

former having a significant influence on the morphology, size-scale and distribu-

tion of the latter. As the underlying mechanisms are different, the morphological

features are also different for ω phases in the β matrix. The composition range

over which athermal ω-phase forms has been shown to depend on the type of so-

lute and, according to some investigators, [64,65] on the electron-atom ratio of the

alloy which is controlled by the solute valence and concentration. For example,

athermal ω phase forms in a limited range of concentration of the alloying element

which for the Zr-Nb alloys is limited to the range of 5-17% Nb [64–67]. On the

other hand, a modulated structure of ω particles in a beta matrix develops when

alloys in the composition range 12-25% Nb is aged at appropriate temperatures [68].

(b) Experimental Studies in Zr-Al and Zr-Al-Nb Alloys

Several studies on phase transformation in Zr2Al based alloys have shown

that a number of metastable phases can be produced in these alloys by non equilib-

rium processing techniques [22]. The metastable phases reported are the disordered

bcc (β), hcp (α), B2, DO19, ω and its ordered derivatives, e.g., B82, D88, etc. These

phases undergo various phase reactions during subsequent thermal treatments, fi-

nally leading to the formation of the equilibrium L12 structure. On the other hand,

the formation of the L12 phase under equilibrium condition occurs through sluggish

peritectoid reactions and requires very long aging time for completion. In addition,

alloy compositions close to Zr3Al are amenable to amorphization by mechanical

alloying or by irradiation by heavy ions [69]. The formation of metastable phases

under non equilibrium condition provides an alternative path for the attainment of

equilibrium phase and therefore has significant practical applications. Many of the

transformation sequences, involving one or more metastable phases, have been iden-

tified and it has been shown that the formation of these metastable phases appears

to show a hierarchical sequence [17] expressed in the form of a symmetry tree which

is not unique to Zr-Al system but is known to exist in other alloy systems too. The

most common feature of these transformations is the formation of ω phase and its

ordered derivatives, which provides a path where lattice registry is maintained and
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the phase transformation occurs through progressive attainment of a close packed

structure from one that is relatively open [17].

The presences of chemically ordered ω-based structures of intermetallic phases

such as Zr2Al (P63/mmc symmetry, B82) and Zr5Al3 (P63/mcm symmetry, D88)

have already been reported in Zr3Al and Zr3Al-Nb alloys. Banerjee and Cahn et

al. [23] have reported the occurrence of a β → B82 transformation in a rapidly

solidified Zr3Al alloy which undergoes spinodal decomposition of β phase prior to

the formation of the chemically ordered Zr2Al phase (B82 structure) by ‘athermal’

β → ω transformation in the Al enriched regions. Tewari et al. [24] reported the

formation of Zr5Al3 phase (D88 structure) in rapidly solidified (Zr3Al)-Nb (3 and

10 wt.% Nb) alloys. The evolution of the D88 phase in β (partially ordered B2)

matrix, which could be regarded as one of the ordered derivatives of the ω phase,

could be described in terms of a superimposition of the concentration and displacive

ordering waves in the β phase. Concentration ordering waves corresponds to order-

ing of Al atoms as well as vacancy in the β matrix, whereas, displacive ordering

waves corresponds to periodic displacement of {222}β planes. On further aging, β

+ Zr5Al3 phase converts to Zr2Al (B82) by Zr diffusion in the structural vacancy

positions. The formation of ordered ω phase by concomitant replacive-displacive

processes is the obscure part of these transformations.

The formation of trigonal (incomplete) ω phase (ω′′) in Ti-Al-Nb alloys have

also been reported by several experiments [70–76]. Strychor et al. [75] have reported

the formation of ordered ω structures in Ti-Al-Nb alloys. The high-temperature

phase in this case has the B2 structure which, on quenching, transforms into an

ordered ω′′ structure having the space group P3m1. Bendersky et al. [70] con-

structed the symmetry tree showing the symmetry changes that occur during the

gradual lattice collapse associated with the β → ω displacement ordering and the

accompanying chemical ordering in a coupled displacive/replacive ordering process

in Ti3Al2.25Nb0.75 alloy.

On the contrary, very few experimental studies have been attempted to un-

derstand equilibrium phase stability and phase transformation in Zr-rich Zr2Al-Nb

alloy. The binary intermetallic phases Zr4Al3, Zr5Al3 and Zr2Al appearing in the Zr-

Al system are considerably extended in the ternary Zr-Al-Nb system [77]. Hansen

et al. [77] studied isothermal section of Zr-Al-Nb alloys at 925 ◦C and predicted 19

at% Nb solubility in (Zr,Nb)2Al, where, (Zr,Nb)2Al forms in a Ni2In (space group

P63/mmc) prototype structure having composition close to Zr59Nb20Al21.

20



(c) Computational Studies

Earlier, Nguyen-Manh et al. [78] employed first principles full-potential linear

muffin-tin orbital (FPLMTO) approach within local density approximation (LDA)

to calculate the stability of the ordered omega phase in the aluminides of transition

metals, viz., Zr, Ti, Nb and V. They investigated only the displacive mode of the

transformation leaving replacive part of the transformation unaddressed. In another

theoretical investigation by Sanati et al. [79] on ordered omega phase formation in

Ni2Al alloy using the FPLMTO method, it was shown that rearrangement of the

atoms within a supercell tends to inhibit ω-type transformations. Sanati et al. [80]

also studied electronic structure, phase stability, and chemical ordering of the omega

phase in a Ti3Al2X (X = Nb, V) alloy by employing a pseudopotential based first-

principles plane wave method. Their study also indicated that the formation of the

omega phase in Ti3Al2X is a displacive-replacive coupled transformation. In these

two studies, it was shown that the replacive transformation involving random jumps

of atoms within the unit cell occurred, keeping the chemical composition intact, in a

fashion so as to maximize the number of Ni-Al (for Ni2Al) and Ti-Al (for Ti3Al2Nb)

bonds present as the 1st nearest neighbor in the unit cell. Sanati et al. [81] also

examined B2 → ω′′ → B82 transformation using first principles calculations in

Ti3Al2Nb alloy and concluded that configurational entropy plays a major role in

the formation of B82 phase. Recently, S. Nag et al. [82] showed, using a combination

of both experimental and theoretical techniques, that in Ti-Mo alloys the displacive

component in the product phase changes continuously with changing composition

lending credence to mixed mode nature of formation of ordered-ω phase.

Most of the earlier experimental studies in Zr-Al and Zr-Al-Nb alloys ex-

plained the formation of ordered ω phase on the basis of symmetry analysis and

no relative thermodynamic stability analysis of the phases which appeared in the

process of transformation was carried out. Moreover, it is also not clear whether

replacive and displacive processes occur in quick succession or they interact and/or

compete with each other in these transformations. Whether diffusion is making

a suitable chemical environment (chemical composition and/or chemical order) for

the displacive process to take place or the vice versa? These questions have not been

addressed adequately either experimentally or theoretically. Moreover, no previous

computational study attempts to determine phase transformation pathway in Zr-Al

and Zr-Al-Nb alloys involving replacive and displacive process.
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2.1.3 Superionic Transition in ThO2

Superionic conductors are those materials that allow the macroscopic movement

of ions through their structure, leading to exceptionally high (liquid-like) values of

ionic conductivity whilst in the solid state. This behavior typically occurs at ele-

vated temperatures and is characterized by the rapid diffusion of a significant frac-

tion of one of the constituent species within an essentially rigid framework formed by

the other species [28–32]. Many compounds, including XF2 (X = Ca, Ba, Sr, Pb),

XSi2 (X = Mg, Sn, Ge, Pb), and XO2 (X = Ce, Pr, Th, U, Pu), crystallize in the

face-centered cubic fluorite structure (CaF2 type), where the cation is coordinated

to eight anions, and the anion is surrounded by four cations. They show unusually

high (“liquid-like”) anionic conductivity (values in the range 10−2− 1 Ω−1cm−1) in

the solid state far below their melting points [28–32]. Among them, thorium dioxide

(ThO2), a typical superionic conductor, has drawn considerable attention in recent

years due to its wide applications as ultra-high temperature material, nuclear fuel

material and solid-state electrolyte [29, 83–85]. Moreover, owing to its prominent

hardness, ThO2 has potential applications as a high-k dielectric material and a laser

host [85]. Doped thoria, (Th,M)O2−x, where M represents a dopant metal, has su-

perior characteristics in terms of its application as a candidate solid electrolyte.

This is because of considerably high O ion conductivity caused by oxygen vacancy

formation on doping with lower-valent cations [28,29,32,83,84]. Thoria is also im-

portant for its potential use in nuclear energy applications [28, 29,32].

The manner in which the superionic state is achieved has been proposed [28–32] as

a means to classify superionic materials, namely:

1. Type I superionic materials become superionic at temperatures above a first-

order structural phase transition. This behavior is typified by the superionic

α-phase of AgI. In this material the ionic conductivity increases by around

three orders of magnitude, on passing through the β − α phase transition at

420 K.

2. Type II superionic materials attain high levels of ionic conductivity follow-

ing a gradual and continuous disordering process within the same phase. Be-

low the superionic transition, Tc, the number of conducting defects increases

rapidly before saturating above Tc. The superionic transition is often accom-

panied by an anomaly in the specific heat and lattice expansion. β − PbF2

displays typical type II superionic behavior.
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3. Type III superionic materials do not have a clear phase transition, but

achieve high levels of ionic conduction via increased mobility of a (gener-

ally fixed) number of thermally activated defects. An Arrhenius plot of the

temperature dependence of the ionic conductivity for a type III superionic

conductor would show linear behavior. Sodium β-aluminas are typical type

III superionic materials.

(a) Experimental Studies

In the recent past, there have been a few attempts to study structural and

anionic diffusion properties of ThO2 as a superionic conductor. Willis et al. [86]

measured the Bragg reflections of ThO2 by neutron diffraction in the temperature

range between 293-1373 K and determined mean-square thermal displacements of

the atoms in ThO2 as a function of temperature. They observed that, with the

rise of temperature, the oxygen atoms tend to move from fluorite-type positions

at (0.25, 0.25, 0.25) towards the large interstitial sites at (0.5, 0.5, 0.5) along <

111 > direction. At 1273 K, the mean atomic co-ordinates of the oxygen atoms are

(0.25 + δ, 0.25 + δ, 0.25 + δ), where δ = 0.014 for ThO2. This relaxation effect

indicates that either oxygen sublattice is disordered or they vibrate anharmonically

across the ideal lattice sites along the [111] direction. Similarly, Clausen et al.

[87] and Hutchings et al. [88] observed presence of Frankel disorder of the oxygen

sublattice in the single crystal of stoichiometric ThO2 above 2300 K in their coherent

diffuse quasi-elastic neutron scattering experiments. Their study on single crystal

UO2 also showed presence of Frankel disorder of the oxygen sublattice above 2000

K. The presence of Frankel disorder was determined by allowing a fraction, nd,

of the oxygen ions to leave their regular lattice sites when fitted to the higher-

temperature data. The cations were assumed to remain on their regular sites. The

defective oxygen ions were assumed to occupy either or both of the two types of

‘defect’ sites in the ‘empty’ oxygen cubes: the 12 ‘I’, interstitial sites at positions

near the mid-point of the regular anion sites, such as ±(0.25 + y, 0.25 − y, 0), and

the 8 ‘R’, relaxed anion sites at ±(x, x, x) relative to the cation sites. The cations

were assumed to remain on their regular lattice sites and the diffuse scattering was

assumed to arise primarily from anion-anion correlations.

The relative population of these sites could be given by one of six different

possible models as described by Dickens et al. [89] and designated as I-VI. The

models were fitted to the data at each temperature. The measured intensities were

carefully corrected for thermal diffuse scattering, extinction and absorption before

being fitted to the models. It should be emphasized that nd includes both the
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true Frankel vacancies and those arising from relaxation. It was found that the

value of nd resulting from fits to the data was relatively independent of the model

used; however, the fraction of these ‘vacancies’ which form true Frankel pairs was

deduced from a model, and the ‘best’ model was taken as that one which gave

the best account of both diffraction and diffuse scattering data. The simplest such

cluster model was one based on a single Frankel pair, where the interstitial is located

at an ‘I’ site and causes its two nearest neighbors to relax towards the center of

adjacent empty cubes at ‘R’ sites (model VI). These were labeled as 3 : 1 : 2

clusters, where the v : i : r notation denotes the number of vacancies : Frankel

interstitials : relaxed anions. The optimum values of x = 0.34 ± 0.01 and y =

0.05 ± 0.03 were found to be almost independent of temperature for UO2. Similar

results were also observed for ThO2 [87, 88]. Moreover, neutron scattering data

showed an increase of nd by a factor of 2.5 at temperature ∼ 2800 K compared

to its value at ∼ 2500 K for ThO2 [88]. The anion disorder is also reflected in the

behavior of the acoustic and optic phonon modes where neutron scattering measured

lifetimes decrease rapidly. However, well defined long-wavelength acoustic modes

were observed upto 2930 K, enabling the elastic constants UO2 to be measured

upto 2930 K, indicating that their contribution to the thermal conductivity would

remain significant. The inelastic scattering from lattice modes gave no indication

of the nature of the electronic disorder excited in UO2. A similar thermally induced

oxygen lattice disorder was also observed in ThO2 [88].

Indirect evidence for superionic behavior within ThO2 was provided by mea-

surements of its enthalpy by drop calorimetry and differentiation of these data with

respect to temperature to obtain specific heat (Cp(T )). Fischer et al. [90] mea-

sured enthalpy increments of ThO2 using an induction heated drop calorimeter

in the 300-3643 K temperature range and found discontinuities in the measured

enthalpy-temperature curve. Moreover, the heat capacity value changes discontin-

uously from a value of 96.97 J mol−1 K−1 to 142.33 J mol−1 K−1 at 2950 K and

remains constant up to a temperature of 3643 K. They suggested that a diffuse or

order-disorder phase transition occurs at approximately 80% of the melting temper-

ature. Therefore, ThO2 is an type II superionic material which attains high level

of ionic conductivity following a gradual and continuous disordering process within

the same fluorite structure.

Moreover, Nafe et al. [91] analyzed the ionic conductivity of Th1−xYxO2−0.5x

(0.05 ≤ x ≤ 0.29) compounds over a wide temperature range (between 300-2000 K)

and suggested that at low and medium temperature range, the ionic conductivity

increases with temperature at a higher rate in compounds having high Y concentra-
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tions. As higher Y doping concentrations leads to creation of higher oxygen vacancy

concentrations and hence higher anionic conductivity with increase of temperature.

But at temperatures above 1500 K, the ionic conductivity reaches a saturated value

irrespective of doping concentration. Similarly, Hohnke et al. [92] emphasized that

an electrical transport occurs by thermally activated hopping of oxygen ions via

empty anion sites which reaches a maximum at x∼0.07 for (Th,D)O2−x (D=trivalent

cation doping) regardless of dopant size and charge (below 1673 K). These results

clearly indicate that the mechanism involved for high ionic conductivity above 2000

K is fundamentally different from thermally activated oxygen hopping mechanism

purely mediated by vacancies occurring at lower temperatures.

(b) Computational Studies

There are a few theoretical studies describing the electronic structure and su-

perionic behavior of ThO2 to which we draw attention. For example, Mo et al. [93]

calculated the electronic structure and frequency dependent dielectric constant of

ThO2, UO2 and (Th,U)O2 utilizing the Heyd-Scuseria-Ernzerhof method (HSE)

using a screened hybrid density functional. The HSE calculated structural proper-

ties and the electronic band-gap correctly reproduced the experimental band-gap.

Martin et al. [94] used molecular dynamics simulations to investigate the thermal

expansion, oxygen diffusion, and heat capacity of pure thoria and uranium doped

(1-10%) thoria between 1500 K and 3600 K. The MD calculated diffusion coefficients

of ThO2 showed increase above 3000 K, due to superionic conductivity. Williams

et al. [95] calculated the effect of grain boundaries (Σ3, Σ5, Σ9, Σ11 and Σ19) on

oxygen diffusion also using molecular dynamics simulation in UO2. They showed

higher oxygen diffusion near the grain boundaries compared to that in bulk UO2.

They also found that oxygen diffusion is enhanced at all boundaries and in the

adjacent regions with a strong dependence on temperature and the local structure.

Finally, Potashnikov et al. [96] performed comprehensive analysis using MD simu-

lations to study anion self diffusion in UO2. This study considered 10 interatomic

potentials to calculate the diffusion coefficient, superionic transition temperature

and defect formation energies within the standard MD simulations framework.

There are no computational study to determine transformation pathway from

normal → superionic phase in ThO2. Moreover, no previous theoretical study de-

scribes anion transport mechanism in superionic phase and correlation of phonon

modes in the evolution of superionic phase.
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2.1.4 Melting Behavior of (Th,U)O2 and (Th,Pu)O2 MOX

In the past decade, there has been a renewal of interest in studying the feasibility

of thorium-based fuel as a potential advanced fuel for Generation IV nuclear energy

systems producing fewer minor actinides than in uranium-based fuel [3–5]. There-

fore, considerable attention is being devoted to develop, for example, the thorium

molten salt reactor (MSR), (Th,U)O2 or (Th,Pu)O2 mixed oxide (MOX) fuel for

conventional pressurized water reactors (PWR) and advanced heavy water reac-

tors (AHWR), as well as the thorium fueled accelerator driven sub-critical reactor

(ADSR). The AHWR system, fueled by (Th,U)O2 or (Th,Pu)O2 MOX, is being

actively pursued in India and other countries as a viable route to utilize the vast

thorium reserves.

AHWR fuel element cluster consist of three concentric rings around a central

rod and each fuel pin contains fuel pellets in Zircaloy-2 clad tubes. The fuel in the

two inner rings of an AHWR fuel cluster contains UO2 in ThO2 where the UO2 is

mainly 233U. The uranium percentage in the UO2/ThO2 fuel is 3% UO2 in ThO2 in

the inner ring and 3.75% UO2 in ThO2 in the middle ring. The outer ring contains

PuO2 in ThO2 in two axial zones, 4.0% PuO2 in the bottom half of the cluster and

2.5% PuO2 in the top half of the cluster [5]. The radial and axial variation of fissile

loading controls the power/critical heat flux ratio, a standard design parameter

that is even more important in this design due to the use of natural circulation

cooling of the reactor core at full power. In these reactor fuels, ThO2 based MOX is

considered as 232Th is not itself fissile and upon absorbing a neutron in the reactor

environment will transmute to 233U [5], which is an excellent fissile fuel material.

Therefore, 232ThO2 fuels need a fissile material as a ‘driver, such as 235U or 239Pu, to

initiate the fission required to convert 232Th to fissile 233U so that a chain reaction

can be maintained.

Moreover, AHWR with low enriched uranium (AHWR-LEU) has a signifi-

cantly lower requirement of mined uranium per unit energy produced as compared

to most of the current generation thermal reactors. AHWR-LEU incorporates a

number of passive safety features and is associated with a fuel cycle having reduced

environmental impact. The advantages of this concept shall be effective utilization

of fissile material, no shielding requirement during fabrication, lesser cost of fuel,

minimization of waste and reduced safety concerns (proliferation risks). The pro-

posed AHWR-LEU fuel element cluster has the same construction as the AHWR but

the fuel composition is entirely different. The composition of the fuel is (Th,U)O2

with U enriched upto 19.75% of 235U. The uranium percentage in the UO2/ThO2
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fuel is different in each of the three rings, upto 18% UO2 in ThO2 in the inner

ring, up to 22% UO2 in ThO2 in the middle ring, and up to 22.5% in the outer

ring [97]. Therefore, uranium percentage in (Th,U)O2 MOX fuel of < 25% is of

practical interest from AHWR and AHWR-LEU fuel.

The melting behavior of actinide oxides and their MOX is a fundamental

property of a nuclear material related to its thermodynamical and structural sta-

bility. The melting temperature is also an important engineering parameter for

nuclear fuel design and safety assessment, as it defines operational limits of nuclear

fuel (for both UO2 and ThO2 based) in its application environment [3–5]. The onset

of melting at the centerline of the fuel rod has been widely accepted as an upper

limit to the allowable thermal rating of a nuclear fuel element [3–5]. The melting

point (MP) must be taken into account when designing a new fuel, as it limits the

power that can be extracted from the fuel element. Knowledge of the melting point

is also important for the fabrication of chemically homogeneous fuel pellets of MOX

(such as (Th,U)O2 and (Th,Pu)O2) since ThO2 and UO2 have high melting points

of 3663 K and 3100 K, respectively, and relatively low diffusion coefficients at nor-

mal sintering temperatures [4]. Thorium dioxide exists up to its melting point as

a single cubic fluorite phase, isomorphous, and completely miscible with UO2 and

PuO2. Moreover, the melting points of the nuclear fuels are depreciated by factors

such as; stoichiometry and composition, irradiation dose, impurities and their con-

centrations.

(a) Experimental Studies

In order to understand the thermo-physical behavior of thoria based MOX

fuels under reactor operation conditions, subject to irradiation, and to predict their

performance under accidental conditions, thermodynamic quantities such as, melt-

ing temperatures, enthalpy and densities of those solids as well as their liquid phases

need to be evaluated. Moreover, determination of these thermodynamic proper-

ties for (Th,Pu)O2 MOX by experiment is very difficult due to the radioactivity

and toxicity of PuO2 based systems, which require extensive and expensive safety

precautions [3–5]. As a result, the number of studies addressing these thermody-

namic quantities for PuO2 and (Th,Pu)O2 MOX is small. During the last four

decades, even though melting temperatures and high temperature thermodynamic

quantities for ThO2 and UO2 have been widely investigated by various experimen-

tal techniques, melting behaviors of PuO2, (Th,U)O2 and (Th,Pu)O2 MOX are

much less in evidence [90, 98–123]. Important thermodynamic quantities such as

density and enthalpy increment of both solid and liquid phase as well as heat of
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fusion are only available for pure UO2 [116, 118, 119]. For ThO2, these thermody-

namic quantities for the solid phase are available only over a limited temperature

range [90, 113–115, 117] and no data is available for the liquid phase. Recently,

B
..
ohler et al. [102] and Bruycker et al. [112] determined melting temperatures of

PuO2 using a laser heating method and pyrometry. Valu et al. [124] determined

enthalpy increments of Th1−xPuxO2 (for x = 0, 0.03, 0.08, 0.30, 0.54, 0.85 and

1) using drop calorimetry in the temperature range 476 K to 1790 K. Still, high

temperature enthalpy and density values of solid PuO2, (Th,Pu)O2 and(Th,U)O2

MOX as well as their respective liquid phases are not available.

(b) Computational Studies

No previous computational study is available to determine melting temper-

atures of (Th,Pu)O2 and (Th,U)O2 MOX across the composition range. Martin et

al. [94] used molecular dynamics (MD) simulations to investigate the thermal expan-

sion, oxygen diffusion and heat capacity of pure thoria and uranium doped (1-10%)

thoria between 1500 K and 3600 K. Using MD simulation, Cooper et al. [125] deter-

mined thermal expansion coefficient, enthalpy and specific heats of (Ux,Th1−x)O2

(x= 0, 0.25, 0.50, 0.75 and 1.0) MOX between 300 and 3600 K. These studies have

not compared their MD calculated values thoroughly with available experimental

values and they have not extended their study for the liquid phase. Moreover,

these studies have not considered variation of density for solid and liquid phases of

(Th,Pu)O2 and (Th,U)O2 MOX across the composition range.

2.2 Thermal Properties of ThO2 based MOX

2.2.1 Experimental Studies

In view of reactor fuel property evaluation, during the last three decades, thermal

properties (thermal expansion and thermal conductivity) of ThO2 and (Th,U)O2

MOX have been studied widely [6, 126–136] and a summary of literature infor-

mation on thermal expansion and thermal conductivity measurements about the

compounds investigated, methods of measurement/analysis and the temperature

range of investigation are given in Table 2.1.

(a) (Th,U)O2 MOX

The literature data on thermal expansion shows Th1−xUxO2 MOX with x <
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0.06 has been well studied by Tyagi et al. [127, 128] and for 0.25 > x > 0.06 range

very few studies have been attempted. Among these, Momin et al. [130] reported

lower CTE of 7.1 x 10−6 K−1 for Th0.8U0.2O2 compared to 9.5 x 10−6 K−1 for ThO2

in 298-1600 K temperature range. On the contrary, Rodriguez et al. [131] reported

CTE of 12.5 x 10−6 K−1 for Th0.8U0.2O2 in 1100-2400 K temperature range. There-

fore, considerable scatter in CTE value exists which can be attributed to different

methods of preparation of samples which ultimately lead to samples of different

stoichiometry and impurity contents. Moreover, the scattering in reported thermal

conductivity values of (Th,U)O2 MOX exists in the same composition and tem-

perature range. In most of the studies, thermal conductivity values are reported

for different density of pellets and no impurity content evaluation were performed.

So, it is difficult to comprehend the source of discrepancy of thermal expansion

and thermal conductivity data for these samples unless the above parameters are

known. Hence, it is imperative for fuel designer to measure the thermal expansion

of the samples prepared by their own methods. One of the primary goal of this

study is to generate thermal expansion data for (Th,U)O2 MOX in a range which

is of interest from AHWR and AHWR-LEU fuel composition.

(b) (Th,Pu)O2 MOX

Determination of thermal properties of (Th,Pu)O2 MOX by experimental

means is very difficult due to associated radiotoxicity, high specific activity and

proliferation risk of PuO2 based systems and require extensive and expensive safety

precautions [4,6,137,138]. As a result, the number of experimental studies address-

ing the thermal and melting properties of (Th,Pu)O2 MOX is limited.

However, PuO2 is emulated by CeO2 in many laboratory scale experiments

on (Th,Pu)O2 as CeO2 and PuO2 have quite similar physico-chemical properties,

namely, ionic size in octahedral and cubic coordinations, melting point, standard

enthalpy of formation and specific heat [6, 138]. Hubert et al. [139] suggested

that ThO2 and PuO2 form an ideal solid-solution in the entire composition range.

Mathews et al. [140, 141] and Tyagi et al. [127] determined thermal expansion of

Th1−xCexO2 (x=0, 0.04, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) MOX

using dilatometry and high temperature X-ray diffraction (HT-XRD) techniques;

whereas only Cozzo et al. [142] determined thermal diffusivity and conductivity

of Th1−xPuxO2 MOX (x = 0.0, 0.03, 0.08, 0.3 and 1.0) over a temperature range

between 500 K and 1600 K. Basak et al. [134] determined thermal conductivity of

ThO2-4wt.%PuO2 MOX over a temperature range between 923-1773 K.
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Table 2.1: Summary of literature data on thermal expansion coefficient and thermal
conductivity of ThO2 and (Th,U)O2 MOX

UO2 composition Temperature Thermal Expansion Remarks

(in wt.%) Range (K) Coefficient (10−6 K−6)

0, 4, 10, 20 293-1773 - Dilatometry, Kutty et al. [126] (2008)

0, 2, 4, 6 293-1623 9.67, 9.82, 10.09, 10.37 HT XRD, Tyagi et al. [127] (2004)

0, 2 298-1473 9.58, 9.74 HT XRD, Tyagi et al. [128] (2000)

13, 55, 91 298-1973 10.33, 10.83, 11.45 HT-XRD, Anthonysamy et al. [129] (2000)

0, 20 298-1600 9.5, 7.1 HT-XRD, Momin et al. [130] (1991)

0 293-2273 9.67 Rodriguez et al. [131] (1981) review

20 1100-2400 12.5 Rodriguez et al. [131] (1981) review

UO2 composition Temperature Thermal Conductivity

(in wt.%) Range (K) reported for % of Remarks

theoretical density

4, 10, 20 298-1500 95 Kutty et al. [126] (2008)

12 573-1573 82.2 Ronchi et al. [136] (2003)

2 300-1200 Unknown Pillai et al. [132] (2000)

<20 273-1073 - Bakker et al. [6] (1997) review

<30 273-2200 - Konings et al. [133] (1995) review

2 800-2100 100 Basak et al. [134] (1989)

0, 20, 100 773-1773 - Rodriguez et al. [131](1981) review

2.2.2 Computational Studies

Theoretical studies on thermal properties of (Th,Pu)O2 and (Th,Ce)O2 MOX have

been scantily reported. Xiao et al. [143] calculated thermodynamics and thermal

properties of Th1−xCexO2 MOX using first principles based calculations with pro-

jector augmented wave (PAW) pseudopotential formalism for x = 0.0, 0.25, 0.50,

0.75 and 1.0. The choice of these higher MOX compositions in the first principles

based calculations came mainly due to limitation on the maximum supercell size

and hence available computational resources.

Over the last few decades there have been continuous effort to determine ther-

mal, thermo-mechanical, diffusion properties and their change due to irradiations

for UO2 based fuels using molecular dynamics (MD) simulations employing classical

pair potentials [144–146]. On the other hand, very few studies attempted to study

similar properties for ThO2 based fuels. Initially, Martin et al. [94] used molec-

ular dynamics simulations to investigate the thermal expansion, oxygen diffusion,

and heat capacity of pure thoria and uranium doped (1-10%) thoria between 1500

K and 3600 K. The MD calculated diffusion coefficients of ThO2 showed increase
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above 3000 K, due to superionic conductivity. Behera et al. [147] developed several

ThO2 interatomic potential of the functional form Buckingham and Buckingham-

Morse to study cohesive energy, elastic properties and surface energies of ThO2.

Later on, Cooper et al. [125, 148] developed an interatomic potentials for AcO2

(Ac=Am,Ce,Cm,Np,Th,Pu and U) by adopting a Buckingham-Morse-Many-body

functional form. This potential is capable of reproducing a range of thermo-physical

properties (lattice parameter, bulk modulus, enthalpy and specific heat) between

300 and 3000 K. Cooper et al. [125] also developed an interatomic potential for

(Th,U)O2 MOX and using molecular dynamics, the thermo-physical properties of

the (Ux,Th1−x)O2 (x= 0, 0.25, 0.50, 0.75 and 1.0) system have been investigated be-

tween 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal

expansion coefficient, enthalpy and specific heat at constant pressure is explained

in terms of defect formation and diffusivity on the oxygen sublattice.

The mechanical and thermal properties at these high concentrations of MOX

calculated from ab-initio and/or MD simulations are of little use for the design of

AHWR fuel where compositions of x < 0.08 are of practical interest. Therefore, ad-

ditional work is required to determine thermal properties of (Th,Ce)O2, (Th,Pu)O2

and (Th,U)O2 MOX in a composition range of interest and wide temperature range

followed by through experimental validation. Under this scenario, the MD simu-

lation technique is a powerful tool to evaluate thermal properties of MOX in the

desired composition range as well as in the high temperature regime which is not

easily accessible to experimental techniques.
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Chapter 3

Theoretical Methodologies

3.1 Introduction

Over the last few decades there has been a significant increase in the usage of

computational methods within the scientific community for the basic and advanced

research. With rapidly growing computational precessing power and continuing

development of basic algorithms, atomic scale modeling has become a valuable tool

to provide a useful insight into the behavior of atoms on spatial and temporal scales

often inaccessible to traditional experimental investigations.

Atomistic simulations can, broadly, be divided into two categories, quan-

tum mechanical calculations and classical mechanical calculations with empirically

derived potential set. In quantum mechanical simulations (often referred to as

ab-initio) many-body Schrödinger equation is solved. Solution of the Schrödinger

equation gives a large quantity of the information related to electronic structure

of the system. For the simplest cases ab-initio calculations are considered to be

exact but various approximations needs to be adopted while studying larger sys-

tems to make the calculations tractable. Early quantum mechanical calculations

were limited to simple system like H+
2 or He atom. Despite consideration of empiri-

cal approximations, significant computational resources are required even for these

simple system. The advent of Density Functional Theory (DFT) has expanded the

scope of ab-initio simulations to include complex molecular systems and condensed

matter.

The second category of atomistic simulation may be characterized as a

method of “particle tracking”. Operationally, it is a method for generating the

trajectories of a system of N particles by direct numerical integration of Newton’s

equations of motion, with appropriate specification of an interatomic potential and
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suitable initial and boundary conditions. This is an atomistic modeling and sim-

ulation method when the particles in question are the atoms that constitute the

material of interest. The underlying assumption is that one can treat the ions

and electrons as a single, classical entity and they do not yield information about

electronic structures. Despite this apparent limitation, classical “particle tracking”

simulations can be extremely useful for predicting phase stability, phase transforma-

tions, thermo-physical and thermo-mechanical properties. Compared to ab-initio

calculations, the “particle tracking” method employing pair potentials requires sig-

nificantly less computational power and can easily be applied to much larger aggre-

gate of atoms (in some cases million of atoms).

In the subsequent sections, theoretical foundations and computational method-

ologies related to atomistic simulations are described.

3.2 Electronic Structure Theory

The state of any quantum-mechanical system is described by a mathematical object

Ψ(r,σ) (wave function) in the configurational space of all independent variables that

describes the system. The wave function is not an observable itself but |Ψ(r,σ)|2d3r

gives the probability of finding the state at position, r, with spin, σ, in an elementary

volume d3r in real space. The time evolution of the wave function is given by the

Schr
..
odinger equation

− i~∂Ψ

∂t
= ĤΨ (3.1)

where Ĥ is a mathematical operator called Hamiltonian. For a system of interacting

nuclei and electrons, Hamiltonian operator is consisting of sum of kinetic energy

operator K̂ due to the motion of electrons and nuclei and potential energy operator

(V̂ ) arising from interactions between nuclei-nuclei, nuclei-electron and electron-

electron, represented as:

Ĥ = K̂electrons + K̂nuclei + V̂electrin−electron + V̂nuclei−nuclei + V̂nuclei−electron (3.2)

Ĥ = − ~2

2m

∑
i

∇2
ri
− ~2

2

∑
I

1

MI

∇2
RI

+ V̂ (r,R), (3.3)

where r = (r1, r2, r3, ...) and R = (R1,R2,R3, ...) are the positions of the electrons

and nuclei, respectively.
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V̂ (r,R) =
∑
i<j

e2

| ri − rj |
+
∑
I<J

ZIZJe
2

| RI −RJ |
−
∑
i,I

ZIe
2

| ri −RI |
(3.4)

describes the Coulomb interactions between nuclei and electrons. Among the solu-

tions of eq.(3.1) we are mainly interested in the stationary states, in which some

observables of the physical system, e.g., total energy, have well defined and constant

values. Such solutions are provided by a time independent Hamiltonian like eq.(3.2)

and the problem is simplified, consequently, to a time independent Schrödinger

equation of the form

ĤΨ = EΨ (3.5)

Solving the above eq.(3.5) for a large number of interacting nuclei-electron system

is a daunting task. The aim of the physical theory is to provide us with basic

approximations, which are both solvable and accurate. In the first simplification

one makes use of the fact that the mass of a nucleus MI is much larger than the

mass of an electron m and as a result, the motion of the nuclei is much slower

than that of electrons. Thus, one can consider the positions of the nuclei as fixed

and account only for the electron degrees of freedom. This is known as the Born-

Oppenheimer approximation and the wave function of electrons moving in the

external field of fixed nuclei is described by the following equation

(− ~2

2m

∑
i

∇2
ri

+ V̂ee + V̂ext(R))ΨR(r) = E(R)ΨR(r) (3.6)

for fixed nuclear positions both the energy and wave functions of electrons depend

on, V̂ee, the Coulomb interaction between electrons and V̂ext, the Coulomb interac-

tion between electrons and fixed nuclei. Equation (3.6) is an eigen value problem and

solution of this equation gives both ΨR(r) and E(R). For the Hamiltonian, ΨR(r)

is the electronic wave function, which is a function of each of the spatial coordinates

of each of the N electrons, so ΨR(r) = ΨR(r1, r2, ..., rN) and E is the ground-state

energy of the electrons. In principle, this equation is exactly solvable analytically

with desired accuracy using Configuration Interaction or Quantum Monte-Carlo.

However, in reality, only system with small number of interacting electrons (e.g.,

small molecules and clusters) can be treated with this method.

Equation (3.6) suggests that the electronic wave-functions belong to a 3N

dimensional space, i.e, Ψ ∈ R3N . To get an order of magnitude estimate of this

complexity, consider a material system with 100 electrons and consider a discretiza-

tion of the real line, R, with just 100 points. Electronic structure calculation of this

34



system, which involves solving the eigenvalue problem given by eq. (3.6), requires

the computation of eigenvalues and eigenfunctions of an astronomical 100300x100300

matrix. This translates into a computational complexity that is so huge, that it

makes the computation of materials properties using quantum mechanics infeasible.

The situation looks even worse when we look again at the Hamiltonian, Ĥ.

The term in the Hamiltonian defining electron-electron interactions is the most

critical one from the point of view of solving the equation. The form of this contri-

bution means that the individual electron wave function cannot be found without

simultaneously considering the individual electron wave functions associated with

all the other electrons. In other words, the Schr
..
odinger equation is a many-body

problem.

The only plausible way is to somehow replace the many electron problem

to an effective one-electron problem by introducing one-electron approximation,

which assumes the electrons to move in the mean field of other electrons and ions.

Historically, the first such self-consistent field approximation was the Hartree-Fock

theory which treats parallel spin electron exchange interaction exactly (via a deter-

minantal wave function), but completely neglects the other (i.e., anti-parallel spin)

electrostatic contribution due to Coulomb correlation. The various approximate

methods developed over more than 5 decades constitute the theories of electronic

structure [149]. The most popular among them is density-functional theory, which

is discussed below.

3.2.1 Density Functional Theory (DFT)

The utilization of the electron density as a central quantity and hence the for-

mulation of the many-particle problem within a single-particle framework is the

essence of the DFT. Thus, the major statement of the DFT is that the exchange-

correlation energy can be expressed solely in terms of the electron density ρ(r).

Thus, the many-body physical system is described by a physical object, the elec-

tron density in the real 3-dimensional space, instead of an abstract multi-variable

mathematical object, the wave function. Hohenberg and Kohn have shown that

such a description is exact for the ground state and they developed an exact formal

variational principle for the ground-state energy, in which the electron density ρ(r)

is the variable function.

According to the postulates of quantum mechanics, the expectation value of
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the energy E of the many-body system for an arbitrary state is calculated as

E =
〈
Ψ|Ĥ|Ψ〉

=
∑
i

∫ (∏
i

dri

)
Ψ∗(r)

(
− ~2

2m
∇2
ri

+
1

2

∑
j 6=i

e2

| ri − rj |
−
∑
I

ZIe
2

| ri −RI |

)
Ψ(r)

(3.7)

Since the electrons are indistinguishable particles, the summation in eq. (3.7) can

be performed and the above expression can be represented by distribution functions

E =E[ρ(r), ρ12(r, r′)]

=− ~2

2m

∫
dr[∇2ρ12(r, r′)]r′=r +

e2

2

∫
dr
ρ12(r, r′)

|r− r′|
dr′ +

∫
drρ(r)U(r)

(3.8)

Thus, the total energy of the many-electron system is a functional of one-electron

density ρ(r)

ρ(r) = N

∫ ( N∏
i=2

dri

)
|Ψ(r, ..., ri, ..., rN)|2, (3.9)

and two-particle density ρ12(r, r′)

ρ12(r, r′) = N(N − 1)

∫ ( N∏
i=3

dri

)
|Ψ(r, r′, ..., ri, ..., rN)|2. (3.10)

The two-particle density eq.(3.10) represents interaction between electrons and

makes difficult to solve eq.(3.6) exactly. Equation (3.6) can also be represented

as

Ĥ =
∑
i

Hi +
1

2

∑
i<j

e2

|ri − rj|

Hi = − ~2

2m
∇2
i + V (ri)

(3.11)

where Hi is the Hamiltonian of a single electron interacting with all nuclei. If

we neglect electron-electron interactions then we are dealing with single electron

problem

Ĥ =
∑
i

Hi, Ĥiψi = Eiψi,

E =
∑
i

Ei, Ψ(r) =
∏
i

ψi(ri),
(3.12)
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and the two-particle density would become product of one-electron densities

ρ12(r, r′) = ρ(r)ρ(r′). (3.13)

Totally omitting electron-electron interaction is grossly incorrect, however, electron-

electron electrostatic repulsion can be incorporated within one-electron approxima-

tion. In this picture, electron-electron interaction is replaced with one-electron

effective potential where one given electron is moving in the average field generated

by rest of the electrons, i.e.,

Ĥ =
∑
i

(Hi + Veff (ri)) =
∑
i

H′i. (3.14)

This idea essentially leads to the Hartree approximation and the energy of a many-

body system becomes a functional of only one electron density

EH [ρ(r)] =− ~2

2m

∫
dr
[
∇2ρ12(r, r′)]r′=r+

e2

2

∫
dr
ρ(r)ρ(r′)

|r− r′|
dr′ +

∫
drρ(r)U(r).

(3.15)

In this approximation the electron-electron interaction energy would be overesti-

mated for three reasons: (a) Owing to the Pauli exclusion principle the electrons

are kept out of each other’s way. This leads to the lowering of electron-electron

interaction energy by the so-called exchange energy (b) Mutual electrostatic re-

pulsion of electrons also keep the electrons apart. This repulsion, termed as the

correlation energy, further lowers the electron-electron interaction energy (c) In-

teraction of an electron with itself is also included in EH [ρ(r)] which needs to be

excluded. The sum of the corrections that need to be added to the Hartree energy

to correctly define electron-electron interaction energy is called the “exchange and

correlation energy” [150]. It is also important to note that electrons are having

quantum spin character and as fermions obey Pauli exclusion principle. According

to this exclusion principle, two electrons can not be in the same quantum state and

consequently two electron having same spin can not be found at the same place.

Therefore, many-body wave function must satisfy exchange symmetry.

The electron correlation means that

ρ12(r, r′) 6= ρ(r)ρ(r′). (3.16)

Further understanding of correlation can be obtained by introduction of correlation
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function h(r, r′) as

ρ12(r, r′) = ρ(r)ρ(r′)
[
1 + h(r, r′)]. (3.17)

By integration of eq. (3.17) and (3.10) gives∫
dr′ρ12(r, r′) =

(
N +

∫
dr′ρ(r′)h(r, r′)

)
ρ(r) = (N − 1)ρ(r)

where

∫
dr′ρ(r′)h(r, r′) = −1.

(3.18)

By defining exchange-correlation hole as

ρxc(r, r
′) = ρ(r′)h(r, r′) (3.19)

the energy of the many-electron system can be written as

E[ρ(r)] =− ~2

2m

∫
dr
[
∇2ρ12(r, r′)]r′=r +

e2

2

∫
dr
ρ(r)ρ(r′)

|r− r′|
dr′+

e2

2

∫
dr
ρ(r)ρxc(r, r

′)

|r− r′|
dr′ +

∫
drρ(r)U(r).

(3.20)

It is observed that the electron correlation due to exchange symmetry and instan-

taneous interactions between the electrons gives rise to a non-local distribution of

exchange-correlation holes and lowers the energy of the system by reducing the

contribution of Coulomb repulsion.

Let’s consider the many-body system described by 3.6, which is a collection

of N electrons moving under the influence of an external potential U(r) and the

mutual Coulomb repulsion. The DFT of Hohenberg, Kohn, and Sham [151, 152],

which represents the ground-state energy of the material system in terms of the

ground state electron-density ρ0(r), described as

ρ0(r) = N

∫ ( N∏
i=2

dri

)
|Ψ0(r, ..., ri, ..., rN)|2. (3.21)

The basic theorems which are the pillars of the DFT were formulated by

Hohenberg and Kohn can be summarized as follows:

(a) Theorem 1: For a non degenerate ground state, Ψ0, the external potential

U(r) is uniquely determined (to within an additive constant) by the density distri-

bution ρ0(r).
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Let’s consider the many-body system described by (3.6), which is a collection of N

electrons moving under the influence of an external potential U(r) and the mutual

Coulomb repulsion. We denote the electronic density in the ground state Ψ0 by

equation (3.21) which is clearly a functional of U(r). Conversely U(r) is a unique

functional of ρ0(r), apart from a trivial additive constant.

A straightforward corollary of the above statement is that the ground-state

energy E0 is also uniquely determined by the ground-state charge density or, in

mathematical terms, E0 is a functional of ρ0(r)

E0[ρ0(r)] =< Ψ0|Ĥ|Ψ0 >= F [ρ0(r)] +

∫
drρ0(r)U(r),

where F [ρ0(r)] =< Ψ0|T̂ + V̂ee|Ψ0 >

(3.22)

is a universal functional of the charge density ρ0(r), valid for any many-body system.

As F [ρ0(r)] does not depend on the external potential and therefore it is a universal

functional.

(b) Theorem 2: For a given U(r), the correct ρ0(r) minimizes the (nodegener-

ate) ground state energy, which is unique functional of ρ0(r)

In other words, the true ground state density is the density that minimizes E[ρ],

and that the other ground state properties are also functional of the ground state

density, with the constraint ∫
drρ0(r) = N (3.23)

It is well known for a system of N particles, the energy functional of Ψ

E[Ψ] =< Ψ|Û(r)|Ψ > + < Ψ|T̂ + V̂ee|Ψ > (3.24)

has a minimum at the correct ground state Ψ0, relative to arbitrary variations of Ψ

in which the number of particles is kept constant. In particular, let Ψ be the ground

state associated with a different external potential U ′(r). Then by eq. (3.24) and

(3.22)

E[Ψ] = F [ρ(r)] +

∫
drρ(r)U(r) > F [ρ0(r)] +

∫
drρ0(r)U(r) = E[Ψ0] (3.25)

Thus the minimal property of eq. (3.22) is established relative to all density func-

tions ρ(r) associated with some other external potential U ′(r).
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The classical Coulomb energy (Hartree term) can be extracted from F [ρ0]

F [ρ(r)] =
e2

2

∫
dr
ρ(r)ρ(r′)

|r− r′|
dr′ +G[ρ(r)], (3.26)

and then the ground-state energy of an interacting inhomogeneous electron gas in

a static external potential U(r) can be written as

E0[ρ0(r)] =

∫
drρ0(r)U(r) +

e2

2

∫
dr
ρ(r)ρ(r′)

|r− r′|
dr′ +G[ρ(r)] (3.27)

where G[ρ(r)] is a universal functional of the density. In this way, DFT exactly

reduces the N-body problem to the determination of a 3-dimensional function ρ(r),

which minimizes the functional E[ρ(r)]. However, the functional G[ρ(r)] is not

known and an exact expression for E[ρ(r)] is unlikely to be found. At this point we

have to make another approximation.

3.2.2 Kohn-Sham equations

Kohn-Sham equations [152] provide an approach for practical implementation of

DFT. In this formulation, the system of interacting electrons is mapped on to an

auxiliary system of non-interacting electrons having the same ground-state density

ρ0(r). The universal functional can be represented as

G[ρ0(r)] = Ts[ρ0(r)] + Exc[ρ0(r)] (3.28)

where Ts[ρ0(r)] and Exc[ρ0(r)] is the kinetic energy of a system of non-interacting

electrons and the exchange-correlation energy of an interacting system with den-

sity ρ0(r), respectively. For a system of non-interacting electrons the ground-state

charge density can be represented as a sum over one-electron occupied states, de-

scribed by wave functions ψiσ(r), called the Kohn-Sham orbitals,

ρ0(r) =
∑
iσ

|ψiσ(r)|2. (3.29)

Minimizing the total energy under the constraints of orthonormality∫
drψ∗iσ(r)ψjσ′(r) = δijδσσ′ (3.30)
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for the one-electron orbitals by applying the variational principle to the Kohn-Sham

functional, one finds a set of one-electron Schrödinger equation:

(
HKS − εiσ

)
ψiσ(r) = 0, (3.31)

where Kohn-Sham Hamiltonian HKS is defined as

HKS = − ~2

2m
∇2 + VKS(r) = − ~2

2m
∇2 + VH(r) + Vxc[ρ0(r)] + U(r)

and Vxc[ρ0(r)] =
δExc[ρ0(r)]

δρ0(r)

(3.32)

The set of the Kohn-Sham equations is a set of self-consistent equations that resem-

ble the conventional Hartree and Hartree-Fock equations, but also include exchange

and correlation effects. However, we still do not know the analytical expression for

the exchange-correlation functional Exc.

3.2.3 Approximations to Exchange-Correlation functionals

The electron-electron interactions are accounted for by the exchange-correlation

functional Exc[ρ(r)]. No analytical form of this functional exists and computations

rely on approximations, most commonly the local density and generalized gradient

density approximations (LDA and GGA, respectively).

In local density approximation (LDA), the material is divided infinitesimally

into small volumes, with each volume contributing to the total exchange correlation

energy by an amount equal to that of an identical volume filled with a homoge-

neous electron gas that has the the same density [153]. The exchange-correlation

energy functional by this method for the homogeneous electron gas is given by, The

exchange-correlation functional can be written in terms of exchange-correlation en-

ergy density (εxc[ρ(r)]) as

ELDA
xc [ρ(r)] =

∫
drεLDAxc [ρ(r)]ρ(r) (3.33)

where εLDAxc (ρ(r)) is the exchange-correlation energy per electron in a uniform elec-

tron gas of density ρ. For a homogeneous gas of electrons the charge density ρ(r)

is constant, but even for this simple system the exact analytical form of εxc(ρ(r)) is

unknown. However, numerical results from Monte-Carlo calculations by Ceperley

and Alder [154] have been parameterized by Perdew and Zunger [155] with a simple
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analytical form

εxc[ρ0(r)] =

−0.4582/rs − 0.1423/(1 + 1.0529
√
rs + 0.3334rs), rs ≥ 1

−0.4582/rs − 0.0480 + 0.0311ln rs − 0.0116rs + 0.0020rsln rs, rs ≤ 1

(3.34)

where rs = (3/4πn)1/3 in atomic units (e2 = ~ = m = 1).

In Generalized Gradient Approximation (GGA), the exchange-correlation

contribution of every infinitesimal volume not only depends on that volume, but

also on the density in neighboring volumes. Thus, the gradient in density between

different volumes is also taken into account in this approach:

EGGA
xc [ρ(r)] =

∫
drεGGAxc [ρ(r),∇ρ(r)]ρ(r) (3.35)

GGA exists in different flavors. The GGA of Perdew and Wang (PW91) [156, 157]

is a non-empirical functional based on fitting to a numerical GGA produced by the

real-space cutoff procedure. The GGA of Perdew, Burke, and Ernzerhof (PBE) [158]

is a non-empirical functional with parameters derived to satisfy a specific set of exact

constraints.

3.2.4 DFT+U and Hybrid Functionals

Transition metal or rare-earth metal ions with partially filled d or f shells usually

contain strongly correlated electrons. Because of the orbital-independent potentials

in LDA and GGA, they cannot properly describe such systems. For example, LDA

predicts transition metal oxides to be metallic with itinerant d electrons because

of the partially filled d shells. Instead, these transition metal oxides are Mott

insulators and the d electrons are well localized. In order to properly describe these

strongly correlated systems, orbital-dependent potentials should be used for d and

f electrons. There are several approaches available nowadays to incorporate the

strong electron-electron correlations between d electrons and f electrons. Of these

methods including the self-interaction correction (SIC) method [159], Hartree-Fock

(HF) method [160], GW approximation [161], LDA+U method [162] and Hybrid

DFT method [163, 164] is the most widely used one. In this thesis LDA+U and

Hybrid DFT method is used. So a short description of LDA+U and Hybrid DFT

method is given below.

In the LDA+U method, the electrons are divided into two classes: delocal-

ized s, p electrons which are well described by LDA (GGA) and localized d or f
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electrons for which an orbital-dependent term 1
2
U
∑

i 6=j ninj should be used to de-

scribe Coulomb d-d or f-f interaction, where ni are d- or f-orbital occupancies. The

total energy in LDA+U method is given as [162]:

ELDA+U
tot [ρσ(r), {nσ}] = ELDA[ρσ(r)] + EU [{nσ}]− Edc[{nσ}] (3.36)

where σ denotes the spin index, ρσ(r) is the electron density for spin-σ electrons

and {nσ is the density matrix of d or f electrons for spin-σ, the first term is the

standard LDA energy functional, the second term is the electron-electron Coulomb

interaction energy given by [162]:

EU [{nσ}] =
1

2

∑
{m},σ

{〈m,m′′|Vee|m′m′′〉nmm′,σnm′′m′′′−σ−

(〈m,m′′|Vee|m′m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉)nmm′,σnm′′m′′′−σ}
(3.37)

where m denotes the magnetic quantum number, and Vee are the screened Coulomb

interactions among the d or f electrons. The last term in Eq. (3.97) is the double-

counting term which removes an averaged LDA energy contribution of these d or f

electrons from the LDA energy. It is given by [162]:

Edc[{nσ}] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (3.38)

where Nσ = Tr(nmm′,σ) and N = N↑ +N↓. U and J are screened Coulomb and ex-

change parameters. As a simple approximation, if the exchange and non-sphericity

is neglected, Eq. (3.97) is simplified to [162]:

ELDA+U
tot = ELDA +

1

2
U
∑
i 6=j

ninj −
1

2
UN(N − 1) (3.39)

The orbital total energies εi are derivatives of Eq. 3.98 with respect to orbital

occupations ni:

ni =
δE

δni
= εLDA + U(

1

2
− ni) (3.40)

In this simple consideration, the LDA orbital energies are shifted by −U
2

for

occupied orbitals (ni = 1) and by +U
2

for unoccupied orbitals (ni = 0), resulting in

lower and upper Hubbard bands separated by U , which opens a gap at the Fermi

energy in transition metal oxides.

In hybrid functionals approach, a portion of the Hartree-Fock non-local ex-

change EHF
X is mixed with the exchange term taken from standard PBE (EPBE

X ).
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This is used to generate the unscreened PBE0 functional:

EPBE0
XC = αEHF

X + (1− α)EPBE
X + EPBE

C (3.41)

Usually α varies between 0 and 1 but previous work by Perdew et al. [165] has

suggested a value of α = 0.25 as derived from perturbation theory. Due to the non-

local nature of the functional above, the convergence as a function of cutoff energy

can be very slow when using a plane-wave basis set. To alleviate this problem, Heyd-

Scuseria-Ernzerhof [166,167] suggested separating the exchange term into short and

long range terms and truncating the slow decaying long range term leading to a

screened functional:

EHSE06
XC = αEHF,sr

X (µ) + (1− α)EPBE,sr
X (µ) + EPBE,lr

X (µ) + EPBE
C (3.42)

µ is the screening parameter, it is used to partition the short and long range using

complementary error and error functions (erfc and erf respectively) according to

[168]
1

r
= sr(r) + lr(r) =

erfc(µr)

r
+
erf(µr)

r
(3.43)

An optimum value for µ was found empirically to be 0.207 Å−1 [166, 167, 169].

Setting µ = 0 restores the PBE0 functional while for µ→∞, HSE06 is reduced to

PBE.

3.2.5 The plane-wave basis set

In order to get the desired information about the system of interacting electrons and

nuclei we have to solve a set of differential equations for the Kohn-Sham orbitals

3.31 in a self-consistent way. One can expand the Kohn-Sham orbital |ψ〉 in an

infinite set of linearly independent basis vectors |i〉 of the Hilbert space

|ψ〉 =
∑
i

ci|i〉 (3.44)

In the expansion (3.44) the coefficients ci are numbers. Within this representation,

the Kohn-Sham differential equations become a set of linear equations∑
j

(
Hij − εSij

)
= 0 (3.45)
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where Hij = 〈i|HKS|j〉 is Kohn-Sham Hamiltonian matrix and Sij = 〈i|j〉 is overlap

matrix. As a result of this transformation, we now deal with lists of numbers ci,

Hij, and Sij, that are appropriate for numerical modeling. Since computers can only

deal with finite sets of numbers, the exact expansion of the wave function (3.44)

must be approximated by a finite set of coefficients ci. Therefore, we have to use a

truncated basis set of vectors and solve the matrix equation (3.45) for a finite set of

coefficients ci. We can do this truncation in a controllable way and have the desired

accuracy in the approximation, which is something that, up to this point, has not

been attained with the exchange-correlation functional approximation. Now the

task of practical implementation of DFT is reduced to the methods of solving the

matrix equation (3.45) and to the choice of a suitable basis set. Different basis sets

gave rise to different electronic structure methods.

There are two kinds of basis sets of vectors that are mostly used in modern

electronic structure calculations. The first emerged from the idea that the one-

electron wave functions ψ(r) of electrons in an assembly of atoms resemble the

wave functions φα(r of electrons in isolated atoms

ψ(r) =
∑
α

cαφα(r) (3.46)

The other choice of basis functions originates from the idea that electrons in con-

densed matter behave like free particles and consequently, the one-electron orbital

can be expanded in a set of plane waves exp(ikr)

ψ(r) =
∑
k

ck exp(ikr) (3.47)

These two quite different basis sets, usually called localized and plane wave basis

sets, respectively, have produced two large classes of widely used computational

methods: (i) the linear augmented-plane-waves [170, 171] and linear maffin-tin or-

bital [172,173] methods, and (ii) the ab-initio pseudopotential methods [174–176].

The advantages of using plane wave function as basis set are listed below:

1. unbiased and independent of atom positions in the unitcell as well as species

2. for a large number of atoms in condensed matter the plane wave methods have

been much more successful as the wave functions can be made as accurate as

necessary by simply increasing the number of plane waves, which helps the

method to be systematically improvable

3. complete orthonormal set and easy to handle
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4. efficient calculation of convolution by using fast Fourier transformation (FFT)

to switch between real space mesh and reciprocal mesh

5. for a periodic system like crystals plane wave is natural choice of basis set due

to Blöch theorem

6. forces acting on atoms are equal to Hellmann-Feynman forces, no basis set

correction to the forces (no pulay forces)

7. no preconception is required regarding the form of the solution and no basis

set superposition error.

A perfect crystal represents a periodic arrangement of atoms and is described

by a periodically repeated unit cell. In a 3-dimensional space the unit cell is de-

scribed by a set of three vectors ai. The periodicity is described by an infinite

set of vectors Rm =
∑

imiai, where mi are integers and it is called a Bravais lat-

tice. Hence, the Kohn-Sham effective potential is periodic due to the translational

symmetry

VKS(r + Rm) = VKS(r) (3.48)

and the solutions of the Kohn-Sham equation (3.31) are the Bloch functions

ψik(r) = uik(r)exp(ikr), uik(r + Rm) = uik(r), (3.49)

where k is a vector in the reciprocal space. The periodic systems are rep-

resented by plane waves in the same way as periodic functions are represented by

Fourier series. These are generally easy to deal with on the computer.

3.2.6 The pseudopotential approximation

One can consider a Bravais lattice R and its reciprocal lattice G. The Kohn-Sham

wave functions are classified by a band index i and a Bloch vector k in the Brillouin

Zone 3.49. A plane wave basis set is defined as

〈r|k + G〉 =
1√
V
ei(k+G)r,

~
2m
|k + G|2 ≤ Ecut (3.50)

where V is the system volume, and Ecut is the cutoff of the kinetic energy of

plane waves. Thus, the plane wave basis is defined by the crystal structure and by

the cutoff. Unfortunately, the extended character of plane waves makes it difficult to
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accurately reproduce the localized functions of the core states. When an electron

is near the nucleus, it experiences a strong attractive potential, which gives it a

large kinetic energy. This means that the wave vector k of such an electron is very

large and consequently, the basis set must contain a large number of plane waves

to correctly describe that electron, which will make the calculations impractical.

We can deal with the problem of large plane wave basis set, or large cutoff energy,

by replacing the true nucleus potential with a pseudopotential. The interaction

between valence electrons and atomic cores is described by a weak effective potential

which gives a correct picture of the electron states and the energy of the system.

With this idea we assume that the core electrons do not significantly contribute to

chemical bonding and solid state properties. Thus, the core electrons are thought

to be exactly in the same states as in the isolated atom, or to be “frozen” in their

atomic states.

This simplification gives rise to a family of pseudopotential methods in con-

trast to the “all-electron methods” (i.e., those where all electrons, valence and core

electrons, are treated in the same way). Historically, the pseudopotential approach

is related to the orthogonalized plane wave method (OPW), in which the basis set

consists of plane waves, orthogonalized to lower-lying core states ψαcore :

ψk+G(r) = ei(k+G)r −
∑
α

∑
core

〈ψαcore|ei(k+G)r〉ψαcore(r) (3.51)

The most straightforward way of screening the “true” potential with a fixed

core density is not practically used. The Coulomb field of a not fully compensated

bare charge remains singular at the nuclei. Moreover, a true valence wave function

must have nodes in the intra-atomic region for ensuring its orthogonality to the core

states (see figure 3.1). The description of these nodes by plane waves needs high

cutoffs. In reality, one works with smooth node-free pseudofunctions generated in

a shallow pseudopotential. The construction of a pseudopotential typically starts

with the choice of an appropriate reference configuration and pseudopotential radii

rc, which can be different for different l-channels. As a rule, the following conditions

are imposed:

1. The pseudofunction must have no nodes (in order to avoid wiggles that would

demand for higher cutoff).

2. The pseudofunction matches the all-electron one beyond the cutoff radius.

3. Norm conservation, meaning that the charge contained within the pseudopo-

tential radius is the same for the pseudofunction and the all-electron one.
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Otherwise, deviations from this rule give rise to ultrasoft pseudopotentials.

4. The eigenvalues corresponding to pseudo functions must be equal to those of

the all-electron solution - at least for the reference configuration.

Figure 3.1: A schematic representation of the potentials (red lines) and wave func-
tions (blue lines) for an atom. The real potential and wave function are shown with
thin lines, while the pseudopotential and wave function are shown in thick lines.
Outside the cutoff region (vertical black lines) the two are identical.

Nowadays, pseudopotentials being in use are usually of ab-initio nature.

They are “cooked” (with the use of certain approximations and criteria) from the

“true” (all-electron) solutions for free atoms or ions. As it was mentioned above,

there can be some deviations from the rule of norm conservation for pseudopo-

tentials. Namely, Vanderbilt (Vanderbilt, 1990) [175] suggested to abandon the

norm-conservation condition, that would allow to make the pseudolization radius

rc essentially larger, limited only by the condition that the spheres of this radius

centered on different atoms must not overlap in a simulation. A big advantage

would be that pseudopotentials generated with larger rc are much softer and hence

a much lower planewave cutoff is needed. The ultrasoft pseudopotentials can be

characterized by some important features:

1. The cutoff radius R, beyond which all all-electron and pseudo-properties

(wave-functions, potential) coincide, is only limited by next-neighbor distance.

2. The necessary plane wave cutoff for the plane wave basis is drastically reduced.

3. The amount of computational work (in the generation of pseudopotential) is

increased. But most of these additional efforts need not to be repeated in the

course of iterations.
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4. If the local potential in the sphere varies in the course of iterations, it can be

considered as part of pseudopotential, so the pseudopotential develops itself

as the calculation proceeds (similar to all-electron methods).

5. The main area of application of ultrasoft pseudopotentials is for large systems,

where the relative cost of the pseudopotential generation is relatively low, as

compared to solving the electronic structure problem. For the latter, a low

plane wave cutoff is a major advantage.

3.2.7 Projector Augmented Wave

The Projector-Augmented wave method (PAW) has been developed by Peter Blöchl

in 1994 (Blöchl, 1994) [176]. The new method was needed to enhance the accuracy

and computational efficiency of the plane wave pseudopotential approach and to pro-

vide the correct wave functions, rather than the fictitious wave functions provided

by the pseudopotential approach. The PAW method describes the wave functions

by a superposition of different terms: There is a plane wave part, the pseudo wave

function, and expansions into atomic and pseudo-atomic orbitals at each atom. On

one hand, the plane wave part has the flexibility to describe the bonding and tail

region of the wave function, but fails to describe correctly all the oscillations of

the wave function near the nuclei. On the other hand, the expansions into atomic

orbitals are well suited to describe the nodal structure of the wave function near

the nuclei, but the local orbitals lack flexibility to describe the bonding and tail

regions. The PAW method combines the virtues of both numerical representations

in one well-defined basis set. In order to avoid solving two electronic structure

calculations, i.e., one with plane waves and one using atomic orbitals, the PAW

method does not determine the coefficients of the “atomic orbitals” variationally.

Instead, they are unique functions of the plane wave coefficients. The PAW method

is in principle able to recover rigorously the density functional total energy, if plane

wave and atomic orbital expansions are complete. This provides a systematic way

to improve the basis set errors.

A comparison of PAW and ultrasoft pseudopotential (US-PP) are as follows:

1. The radial cutoffs (core radii) are smaller than the radii used for the US-PP

2. PAW potentials construct the exact valence wave function with all nodes in

the core region

3. PAW potential contains the numerical advantages of PP calculations while
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retaining the physics of all electron calculations, including the correct nodal

behavior of the valence electron wave function and the ability to include upper

core states in addition to valence states in the self-consistent iterations.

4. PAW potentials are generally of similar hardness across the periodic table.

The US-PP become progressively softer when move down in the periodic table.

PAW potentials are usually slightly harder than US-PP

5. Most of the PAW potentials were optimized to work at a cutoff of 300-350 eV.

For US-PP, the radial cutoff were chose according to the covalent radius

6. For compounds where often species with very different covalent radii are

mixed, the PAW potentials are clearly superior. FOr one component sys-

tem the US-PP might be slightly faster (at the price of a somewhat reduced

precision)

7. Less parameters involved in the construction of PAW potentials and it has

improved accuracy for magnetic materials, alkali and alkali earth elements,

early 3d elements to left of periodic table, lanthanide’s and actinides etc.

8. PAW avoids transferability problems of PP by calculation of true density

3.2.8 Hellmann-Feynman Forces

Within the framework of the Born-Oppenheimer approximation (3.6) we solve the

many-body problem of interacting electrons in the potential of fixed nuclei. In

crystals with simple structure the positions of the atoms are fixed by the symmetry,

but for more complex systems the equilibrium atomic positions are not known and

we need to calculate them. The nuclei are considered as classical objects and at zero

temperature the equilibrium atomic positions R0, are determined by the minimum

of the total energy Etot of the system, which is the sum of the electronic energy E

(the minimum of the Kohn-Sham energy functional) and the electrostatic energy

EII of the ion-ion interaction.

If we consider the electrons in their ground state for any given configuration

of ions R, the total energy will be a function of the atomic positions

Etot(R) = E(R) + EII(R) (3.52)

The procedure to find the atomic configuration that yields the minimum total energy

is called structural optimization or relaxation. For infinite periodic structure there
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is a distinction between atomic displacements that change the shape and volume

of the unit cell (elastic modes) and atomic displacements internal to the unit cell

(phonon modes). Usually, the optimization of the lattice and of the atomic positions

is done using different procedures.

If the unit cell is fixed, then the problem of finding the minimum of the total

energy as a function of atomic positions can be solved by calculating the gradients

of the energy (forces) with respect to the variables (the positions of nuclei in the

unit cell). There is one thing we must account for when finding the equilibrium

configuration by minimizing forces: gradient algorithms are very likely to bring the

system to the closest local minimum (a zero gradient point), rather than to the

global minimum (the lowest energy minimum).

The derivatives of the total energy Etot with respect to the atomic positions

Ri are called Helmann-Feynman forces. The Hellmann-Feynman theorem states

that for the many body Hamiltonian and wave function, only terms containing ex-

plicit derivatives in the Hamiltonian contribute, while the terms containing implicit

derivatives through the wave functions must vanish:

Fi = − dE
dRi

= − d

dRi

〈Ψ|H|Ψ〉 = −〈Ψ| δH
δRi

|Ψ〉 − F̃i

where F̃i = 〈 dΨ

dRi

|H|Ψ〉+ 〈Ψ|H| dΨ

dRi

〉

= E
( dΨ

dRi

|Ψ〉+ 〈Ψ| dΨ

dRi

〉
)

= E〈Ψ|Ψ〉 = 0.

(3.53)

The Hellman-Feynman theorem must also apply to the DFT approximation of a

many-body problem. By using the expression (3.52), we can write the force as

Fi = −
∫
drρ(r)

δU(r)

δRi

− δEII
δRi

= F̃i (3.54)

where the first two terms explicitly depend on ionic positions (the first is due to

Coulomb interaction between the electrons and the nuclei and is the external po-

tential term in the Kohn-Sham energy functional) and the last term F̃i contains

implicit derivatives through the Kohn-Sham orbitals:

F̃i =
∑
k

∫
dr
(δψ∗k(r)

δRi

δE

δψ∗k(r)
+
δψk(r)

δRi

δE

δψk(r)

)
. (3.55)
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The functional derivative yields the Kohn-Sham Hamiltonian

δE

δψ∗k(r)
= HKSψk(r), (3.56)

and we can write F̃i as

F̃i =
∑
k

∫
dr
(δψ∗k(r)

δRi

HKSψk(r) +
δψk(r)

δRi

HKSψ
∗
k(r)

)
. (3.57)

Furtermore, using the fact that the total number of electrons in the system is

conserved, we obtain the following identity

d

dRi

∫
drρ(r) =

∑
k

∫
dr
(δψ∗k(r)

δRi

ψk(r) +
δψk(r)

δRi

ψ∗k(r)
)

= 0. (3.58)

and we can also rewrite the expression for F̃i as

F̃i =
∑
k

∫
dr
(δψ∗k(r)

δRi

(HKS − εk)ψk(r) +
δψk(r)

δRi

(HKS − εk)ψ∗k(r)
)
. (3.59)

which becomes zero in the ground state. Consequently, as in the exact many-body

case, the forces acting on the atoms are expressed trough the ground state matrix

elements of the gradient of the external potential U(r,R), plus the gradient of the

electrostatic potential due to interactions between nuclei, EII(R):

Fi = −
∫
drρ(r)

δU(r)

δRi

− δEII
δRi

. (3.60)

3.3 Self-consistent Iterative Optimization

The Hohenberg-Kohn theorems assure us that the ground state electronic density

uniquely determines the Hamiltonian, so the Kohn-Sham Hamiltonian is expressed

in terms of ρ. This leads to a circular problem, in which the equations we must use

to calculate ρ themselves depend on ρ. We address this conundrum by guessing an

initial charge density and then iterating to self consistency. A typical DFT code

will follow a simplistic path as shown in Fig. 3.2. The initial charge density guess

is derived from a superposition of atomic charge densities. At the beginning of

the calculation the wave function arrays are populated with random numbers. The

initial charge density is used to construct the Kohn-Sham Hamiltonian. An initial

charge density is guessed based upon an initial structure that is fed into the code.
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Figure 3.2: Flowchart illustrating the iterative scheme for the calculation of ground
state electron density using Kohn-Sham approximation.

That generates an effective potential which is used to solve the one particle Kohn-

Sham equations whose wave functions are used in turn to generate a new charge

density. The process is repeated iteratively until the new density gives an energy

that is consistent with the old density. Once this self-consistency is achieved forces

on the atoms can be calculated by invoking the the Hellman-Feynmann equations.

To get a feel for how this process works it is helpful to look at the inner work-

ings of an actual software package that solves the Kohn-Sham equations. Through-

out the thesis Vienna Ab-initio Simulation Package (VASP) [177] has been used for

the first-principles calculations. Computational details for each of the system are

provided in the individual chapters.
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3.4 First-principles Lattice Dynamics Theory

We solve the Schrdinger equation Eq.(3.1) for an interacting many-particle system

via the Born-Oppenheimer approximation Eq.(3.6) which decouples degrees of free-

dom of electrons and ions. Within this approximation, we freeze the motion of

ions and solve the quantum equation of motion for the ground state of the elec-

tronic subsystem. For a given structure we can optimize the unit cell parameters

and the position of atoms in this cell via Hellmann-Feynman forces and bring the

structure to equilibrium at T = 0 K. Within the framework of the static lattice

model, which neglect the thermal motion of atoms and consider them fixed at some

average positions, we can still explain a large number of material properties, such

as the electronic structure and chemical properties, shapes and symmetry of crys-

tals, material hardness, low temperature structural phase transformations, x-ray,

electron and ion beams Bragg scattering, etc [178]. We know, however, that atoms

actually move around inside the crystal and this motion gives rise to the concept

of temperature. And even at T = 0 K, atoms are not frozen in fixed positions

due to the uncertainty principle [179]. There are a number of properties of matter

that cannot be explained by a static model, such as thermal expansion, structural

phase transition at finite-temperature, including melting, sound propagation and

thermal conductivity, the phenomenon of superconductivity and interaction of ra-

diation with matter, etc [178]. Thus, we need to find an accurate description for the

dynamics of the crystal lattice to account for the thermal motions of ions. In many

cases such a description is possible due to a classical nature of the ionic motion.

The motion of a classical object such as an atom as a whole is determined

accurately by the second Newton’s law of mechanics:

M
∂2R

∂t2
= −∇U(R(t), t) (3.61)

where M is the atomic mass and U(R, t) is the instantaneous potential energy of

the atom at a position R(t). Equation 3.61 is a key equation to describe the lattice

dynamics, and to solve this equation the knowledge of the interatomic interactions

or forces in a crystal is needed. Therefore, the concept Hellmann-Feynman forces

plays an important role in the description of matter at finite temperature and

accurate values of these forces are provided by DFT based ab initio calculations.

In the following, we assume that at finite temperatures ions oscillate about

the equilibrium positions of a static lattice at T = 0 K, and the atomic displacements

are small compared to the interatomic distances. Hence, we can unambiguously
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label each ion with a Bravais lattice site R0
σl about which it oscillates, and the

instantaneous position of this ion can be written as:

Rσl(t) = R0
σl + uσl(t), (3.62)

where uσl is the displacement of an atom σ in a unit cell l. The total energy E0
tot

of the system of interacting electrons and nuclei at T = 0 K, with nuclei fixed at

equilibrium positions R0 = (R0
1, ...,R

0
i , ...,R

0
N) is given by:

E0
tot(t) = EKS(R0) + EII(R0), (3.63)

where EKS is the Kohn-Sham ground state energy of the electronic system in the

external potential of fixed nuclei, and EII is the energy due to the electrostatic

interaction between ions. The total energy of the system with atoms displaced

from their mean equilibrium positions due to thermal agitation can be expanded

for small displacements u as [180]

Etot(R0 + u) = E0
tot +

1

2

∑
σlα,σ′l′β

Φαβ
σl,σ′l′u

α
σlu

β
σ′l′+

1

3!

∑
σlα,σ′l′β,σ”l”γ

Φαβγ
σl,σ′l′,σ”l”u

α
σlu

β
σ′l′u

γ
σ”l” + ....

(3.64)

where, in particular, Φαβ
σl,σ′l′ is the force-constant matrix, given by δ2Etot

δuασlu
β

σ′l′
evaluated

at R0 . Thus, for a distorted lattice, the total energy of the system (with frozen

ions) differs from that of an ideal lattice by the potential energy of the displaced

atoms, which is exactly the quantity required to solve the Newton’s equations of

motion. If we consider only small displacements, such that we can neglect higher

order anharmonic terms in the expansion (3.64), then the problem of the lattice

dynamics is reduced to the problem of a system of independent harmonic oscillators,

which has an exact solution.

The equations of motion describing the lattice dynamics within the approx-

imation of harmonic motion are:

Mσü
α
σl = −∂Etot(R)

∂uασl
=
∑
σ′hβ

Φαβ
σl,σ′l+hu

beta
σ′,l+h′ (3.65)

where h = l − l′ and Φαβ
σl,σ′l+h = Φαβ

σl,σ′l′ , which expresses the fact that the force

matrix depends on relative positions of atoms only. One can see that Eqs.(3.65) are

invariant under the lattice translations within the quasi-harmonic approximation,
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thus the displacements of atoms should satisfy the Bloch theorem:

uσl(t) = eiqR
0
σluσ(q, t) (3.66)

where q is a wave vector defined in the same reciprocal space of wave vectors k that

describes the electronic states, and the problem of the lattice dynamics reduces to

the following eigenvalue problem:∑
s′β

(
Dαβ
σσ′(q)− (ω0

sq)2δσσ′δαβ

)
uβσ′(q) = 0 (3.67)

where Dαβ
σσ′(q) is the Fourier transform of the force constant matrix known as the

dynamical matrix. ω0
sq are the frequencies of the lattice vibrations about the equi-

librium positions at T = 0 K. The approximation is called quasi-harmonic since the

phonon frequencies might depend on volume through the dynamical matrix.

For a crystal structure with n atoms in the unit cell, the system of equa-

tions (3.67) has 3n solutions, labeled s for each reciprocal vector q. Thus, the

displacement of an atom in a crystal can be written as:

uσl(t) =
∑
sq

uσs(q)ei(qR
0
σl−ω

0
sqt), (3.68)

where uσs(q) is the amplitude vector that tells us how the atom σ moves under the

influence of the wave with frequency ω0
sq. It is usual to define a set of new quantities

Q0
sq, referred to as normal mode coordinates, by rewriting Eq.(3.68) as

uσl(t) =
1√
MσN

∑
sq

eσs(q)eiqR
0
σlQsq(t), (3.69)

Since an atomic displacement is always a real quantity, Qsq(t) are subject to the

following constraint Q∗sq = Qs−q. Vectors eσs(q) give the direction in which each

atom σ moves and is called the displacement vectors or the polarization vectors.

On the other hand, these vectors are the eigenvectors of the eigenvalue equations

(3.67) and, in order that the normal modes Qsq to be orthogonal, these eigenvectors

satisfy the following orthogonality conditions:∑
σ

eσs(q)eσs′(−q) = δss′ (3.70)

There are basically two elegant approaches to calculate phonons in a crystal
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by means of ab-initio electronic structure calculations. One strategy, called linear

response method, calculates the dynamical matrix in the framework of the Den-

sity Functional Perturbation Theory (DFPT) [181, 182]. The small displacement

method [183] is based on the fact that for small displacements of atoms from equilib-

rium positions, the relation between forces and displacements is linear (Eq.(3.72)).

(a) Calculating Phonons using Small Displacement Method

Within the quasi-harmonic approximation, the relation between the Hellmann-

Feynman forces, Fσl, acting on atom σ in a unit cell l, and the displacements uσ′l′

is given by the force-constant matrix Φσlα,σ′l′β:

Fα
σl = −∂Etot(u)

∂uασl
=
∑
σ′l′β

Φαβ
σlα,σ′l′βu

β
σ′,l′ (3.71)

and the vibrational frequencies ω0
sq are the eigenvalues of the dynamical matrix

Dσσ′(q), defined as:

Dαβ
σσ′(q) =

1√
MσMσ′

∑
l

Φαβ
σlα,σ′l′βexp[i(q(R0

σ′l′ −R0
σl)]. (3.72)

If the complete force-constant matrix is known, then the dynamical matrix Dσσ′(q),

and the phonon frequencies ω0
sq can be obtained at any q.

All that has to be done is to displace a single atom σ′ from the equilibrium

position R0
σ′l′ in the unit cell l’ in the Cartesian direction β by a small displacement

uβσ′l′ , providing that all other atoms are held fixed at their equilibrium positions R0
σl.

Then, the forces Fα
σl acting on all other atoms give directly the elements of the force-

constant matrix Φαβ
σl,σ′l′ for the given (σ′l′β). In a general case, we have to repeat

this procedure 3n times, where n is the number of atoms in the unit cell, however

the 3D space group symmetry of the lattice reduces this number substantially. The

small displacement method gives the exact force-constant matrix in the limit of

in infinite crystal. In practical calculations, a crystal is replaced by a super-cell,

and in order to get accurate results, the super-cell must be large enough so that

the elements Φαβ
σl,σ′l′ vanish at the boundaries. Because of the periodic boundary

conditions, the dynamical matrix is exactly calculated at reciprocal wave vectors

commensurate with the supercell lattice vectors. The reason is that moving one

atom in the supercell also means moving all its periodic images, and consequently,
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the relation between the force is not linear any more:

Fα
σl = −∂Etot(u)

∂uασl+L
=
∑
L

∑
σ′l′β

Φαβ
σ,l+L;σ′l′u

β
σ′,l′+L′

=
∑
L

∑
σ′l′β

Φαβ
σ,l+L;σ′l′u

β
σ′,l′ ,

(3.73)

where l labels the unit cell position in the supercell, L labels all possible images of

the supercell. The corresponding dynamical matrix is given by

Dαβ
σσ′(q) =

1√
MσMσ′

∑
L

∑
l

Φαβ
σ,l+L;σ′,l′exp[i(q(R0

σ′l′ −R0
σl)]

=
1√

MσMσ′

∑
l+L

exp[iqRL]Φαβ
σ,l+L;σ′,l′exp[i(q(R0

σ′,l′ −R0
σ,l+L)]

(3.74)

where RL is a vector connecting two supercells. One can see, that for reciprocal

vectors q such that qRL = 2nπ the above expression gives the exact dynamical

matrix (3.73).

In this thesis we employ the lattice dynamics software package PHON [184]

in conjunction with the density functional package VASP [177] to obtain lattice dy-

namical behavior from first-principles. PHON finds the optimal (in the least-squares

sense) force constant elements using the singular value decomposition method [184,

185]. Each symmetry inequivalent atom is displaced in each symmetry inequivalent

direction. A supercell is created for each atomic displacement and the Hellmann-

Feynman forces are computed for each atom in the distorted supercell. To avoid

error due to the periodic nature of the boundary conditions, the supercell must be

large enough so that the force constants fall off by at least three orders of magnitude

at the edge of the supercell compared to the center of the supercell centered on an

atom [184].

After their extraction through the fitting process to the Hellmann-Feynman

forces, the force constant matrix is used to construct the dynamical matrix (Eq.

3.74). The diagonalization of the dynamical matrix at a series of wave vectors

(k) along straight lines in reciprocal space gives the phonon dispersion curves for

the crystal. The diagonalization of the dynamical matrix at a set of randomly

distributed (selected by Monte Carlo sampling) k vectors distributed homogeneously

over the first Brillouin zone yields the phonon density of states.

The relation between polarization vectors (ε(k)) and the direction of wave

propagation (k) divide phonon modes into those of longitudinal and transverse na-
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ture. In an isotropic medium, for a given k, it is always possible to choose solutions

such that one of the modes is polarized along the direction of wave propagation

(ε‖k), while two are polarized perpendicular to the direction of wave propagation

(ε ⊥ k). We call the branch with ε‖k the longitudinal branch. The branches with

ε ⊥ k are the transverse branches. An additional classification of phonon modes

derives from the behavior of a phonon branch as k vanishes at the origin of the

Brillouin Zone. Acoustic branches are those that show a vanishing frequency as k

goes to the origin. There are always exactly 3 acoustic branches to match the 3

dimensions of space we experience. 3r-3 of the branches are optical branches, which

maintain finite frequencies of vibration as k goes to 0. These optic branches tend

to be flatter due to the fact that in these modes the intracellular interactions are

stronger than the interactions between cells.

(b) Calculating Phonons using Linear Response Method

The main idea to calculate the phonon dispersion in DFPT is based on

the fact that the linear order variation in the electron charge density upon the

application of a perturbation to the crystal induces a variation in energy up to a

third order of the perturbation [182]. Thus, using the standard perturbation theory,

the linear order variation of the electronic charge density can be calculated using

only the ground state wave-functions of the crystal, which are provided by DFT

calculations. If the perturbation is a vibrational wave with wave-vector q, then the

dynamical matrix at that wave-vector Dσσ′(q) can be obtained by calculating the

change of the charge density to linear order in the perturbation theory.

The advantage of the small displacement method is that it works as an add-

on to any DFT code that provides forces. However, the need to use large supercells

makes it computationally less efficient. The advantage of the linear response method

is that it is capable to give the exact phonon frequencies at requested points, which

is suitable for systems with anomalies in the phonon dispersion.

3.5 Empirical Pair Potential based Classical Molec-

ular Dynamics Calculations

In this category of atomistic simulation, Newton’s law’s of motion are solved as a

function of time for a simulation cell containing a collection of atoms acting under

the influence of forces due to other atoms in the system. Using this method the

time evolution of the atoms in the system can be observed as a function of variables
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such as temperature and pressure.

Molecular dynamics proceeds by solving Newton’s equations of motion to

predict the behavior of atoms within a given supercell. Using a set of forces defined

by an interatomic potential (section 3.5.1), the temporal evolution of the atomic ac-

celerations, velocities and positions can be determined according to Newton’s laws

of motion [186]. By assigning kinetic energy to the system, molecular dynamics

(MD) allows the atomic trajectories to be sampled. The gradient of the poten-

tial energy of an atom, φi(r(t)), with respect to position is used to determine the

direction and magnitude of the atomic acceleration:

r̈(t) =
Fi(r(t))

mi

=
−∇φi(r(t))

mi

(3.75)

where in Cartesian coordinates the force on an atom, Fi, is given by the gradient of

the potential energy, ∇φi, where the mass of the atom is mi and r̈ is the acceleration.

The atomic configuration is used in conjunction with the interatomic po-

tential, to determine the acceleration of the atoms at a given time t (equation

3.75). Using the velocity Verlet integration method [187, 188] it is possible to de-

termine the atomic position and velocity at time t + δt as follows. A second order

differential equation can be split into two first order differential equations, i.e.,

a(t) = v̇(t) = r̈(t) and v(t) = ṙ(t). By Taylor expanding r(t + δt) about r(t) and

v(t+ δt) about v(t) one gets:

r(t+ δt) = r(t) + δtṙ(t) +
δt2

2
r̈(t) +O(δt3)

v(t+ δt) = v(t) + δtv̇(t) +
δt2

2
v̈(t) +O(δt3)

(3.76)

All of the above terms can defined in terms of known quantities except for v̈. How-

ever, Taylor expansion of v̈ remedies this:

v̇(t+ δt) = v̇(t) + δtv̈(t) +O(δt3) (3.77)

All terms in the equation 3.76 can be written in terms of r(t), v(t) and a(t)

r(t+ δt) = r(t) + δtv(t) +
δt2

2
a(t) +O(δt3) (3.78)

v(t+ δt) = v(t) +
δt

2

[
a(t) + a(t+ δt)

]
(3.79)

where the acceleration of an atom, a(t) is defined by the gradient of its potential
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energy, a(t) = −∇φi(r(t))
mi

. This approach of solving Newton’s equations of motion

means that information about the position, r(t), and velocity, v(t), of atoms at time

t is sufficient to determine the atomic trajectories for subsequent steps, that is,

1. Calculate new positions, r(t+ δt), using equation 3.78

2. Determine a(t+ δt) using equation 3.75 and the updated positions

3. Calculate new velocities, v(t+ δt), using equation 3.79 and start again.

By repeatedly solving the velocity Verlet equations the evolution of the system

with time can be examined. Despite significant improvements in the computational

power available system sizes are still very small (103 − 106 atoms) compared to

Avogadro’s number and simulations times are limited to the order of 10−9 second

[189]. As such, the MD simulations presented here are limited to nanometer-sized

systems and nanosecond timescales. Underlying these system constraints is the

need to keep the timestep to only 1 or 2 femto seconds (fs).

Comparing the results of a simulation containing several thousand atoms

with those obtained from a macroscopic sample poses several challenges. For ex-

ample, a volume element in a material is constrained by the surrounding bulk. At

a surface these constraints break down and sometimes quite extensive atomic re-

laxation can occur. In macroscopic systems, only a small percentage of the atoms

are at the surface and therefore contribute little to bulk properties. This is not the

case for the small number of atoms constituting a molecular-dynamics simulation.

Here the surface area to volume ratio is considerable and surface effects can hinder

attempts to obtain bulk properties from such a system. To counteract this, periodic

boundary conditions are introduced.

According to this condition, each atom in the primary simulation cell is

repeated identically in each of the periodic cells. This has the effect of creating a

system that imitates a bulk crystal but, because the atomic positions and velocities

in the periodic cells are identical to those in the primary cell, the information must

only be recorded once for the atoms in the primary cell. The atoms in the periodic

cells are essentially only there to ensure the correct atomic forces in the primary

cell. This is particularly important for ionic systems where the superposition of

Coulomb forces due to a periodic arrangement of charged species creates a long

range electrostatic field. Note that if the trajectory of an atom takes it over the

periodic boundary it appears at the opposite side of the cell. As the primary cell

size is increased the system becomes closer to a true representation of the crystal.
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It is important to select the correct supercell size according to the feature that one

is attempting to study.

Molecular-dynamics calculates the position and velocity of atoms in a model.

A measurable quantity such as temperature is a macroscopic property: somehow

the atomic quantities probed by simulation must be reconciled with bulk properties.

Statistical mechanics provides the bridge between the atomic scale and macroscopic

properties and at its center is the concept of the thermodynamic ensemble. A ther-

modynamic ensemble represents all the different ways in which the positions and

momenta of atoms in a system can arrange themselves, where each state has one

or more extensive quantities in common. Extensive quantities are the independent

thermodynamic variables of a system, from which all other quantities can be ob-

tained. For instance, it is implicit in the description of molecular-dynamics given

above that, as time develops, the total energy of the system remains constant. In

addition the volume and the number of atoms in the system also remain constant.

In other words the state of the molecular-dynamics system at each time-step is a

member of an ensemble where the number of atoms (N), volume (V ) and energy

(E) are the extensive variables. This gives rise to what is known as the NVE of

micro canonical ensemble.

Bulk properties are calculated by ensemble averages, where an observable

value is averaged over all states of a system with a weighting in favor of low energy

states (in NVE this corresponds to high entropy states). Weighting towards low

energy states essentially ensures the bulk properties are averaged according to the

time spent in a given state. In molecular dynamics this is achieved by taking an

average of states sampled over a number of time-steps. However, the simulation

must be in equilibrium to ensure the MD time average corresponds to the ensemble

average and, thus, the true thermodynamic quantity.

3.5.1 The Born Interpretation of Interatomic Forces

The empirical simulations conducted in this thesis assume that it is possible to treat

an ionic lattice using a classical Born like model [190,191], whereby the constituent

ions are represented by a periodic array of point charges. To calculate the total

energy, Φ(r1, ..., rn), of the system requires the summation of the interactions ex-

perienced by each atom as a result of the other atoms in the system. This can be

expressed formally using equation 3.80.
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Φ(r1, ..., rn) =
n∑

i,j=1

Φ2(rij) +
n∑

i,j,k=1

Φ3(rijk) +
n∑

i,j,k,l=1

Φ4(rijkl) + ...... (3.80)

In above equation, the
∑n

i,j=1 Φ2(rij) term refers to the interactions be-

tween pair of ions i and j at a given separation rij. The
∑n

i,j,k=1 Φ2(rijk) and∑n
i,j,k,l=1 Φ2(rijkl) terms describe the interactions of ion triplets and quartets re-

spectively: these terms as well as interactions between higher numbers of ions are

generally truncated owing to the dominance of the pairwise interaction. Equation

3.80 then becomes equation 3.81,

Φ(r1, ..., rn) =
n∑

i,j=1

Φ2(rij). (3.81)

From this point onwards, Φ2(rij) will be written as Eij(rij). The form this

pair potential function takes is a important factor in determining the success of the

model.

Coulomb Potential

It is a fundamental concept in science that the potential energy of a charged

body will be affected by the presence of another charged body (or more accurately,

by its electric field). If two ions i and j, with charges qi and qj respectively are

separated by a distance, rij, then their potential energy can be expressed using the

Coulomb potential:

Ecoulomb
ij =

qiqj
4πε0rij

(3.82)

Ecoulomb
ij represents the potential resulting from the interaction of charges on

ions i and j and ε0 is the permittivity of free space. Partial charges can be used

such that q = Zeff |e|, however they must be proportional to their formal charges

ensuring the system remains charge neutral.

As the magnitude of the Coulombic potential energy decreases as a function

of 1
rij

, it converges slowly, i.e., the Couloumbic interaction is long range. Whilst

this term may seem very simple to calculate, the slow rate of convergence means

it is necessary to consider the influence of a great number of ions for each ion in

the system, thus placing large demands on computational resources. The number

of operations required scales with O(N2), where N denotes the number of atoms
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in the system, making very large systems without a more efficient computational

mechanism unfeasible.

In order to allow rapid and guaranteed convergence of above equation, the

Ewald summation [178] can be employed. The Ewald technique [192] is able to

incorporate periodic boundary conditions and will increase the computational effi-

ciency to O(N), by decomposing interactions into real space and reciprocal space

parts, each of which sum quickly and with guaranteed convergence [193]. The use

of periodic boundary conditions employed in the simulations leads to long-range

periodicity of the simulation cell. This periodicity, can be accurately described in

reciprocal space by a Fourier transform. This avoids the use of a simple and less

accurate truncation of the long-range interactions. For a detailed explanation of

the Ewald technique, see the introductory text by Rapaport [194].

The form of equation 3.82 ensures that the interaction between two like

charged atoms will be repulsive while the interaction between atoms with opposite

charges will be attractive. In fact, considering the Coulombic potential alone, for

two oppositely charged ions, as r → 0 Å, Eij(rij)→ −∞ eV. This implies that the

lowest energy configuration for this system would be for the ions to be sitting atop

one another, which is clearly unphysical. Therefore, there must be some other force

coming into play, at shorter separations, to ensure that the ions do not collapse

onto each other.

Short Range Potential

At small separations, the charge distributions of two adjacent ions will begin

to overlap, resulting in a repulsive force. As the separation, rij, decreases, the extent

of this overlap is increased further, to a point at which it becomes the dominant

force, thus preventing the ions moving to occupy the same space. This repulsive

force arises as a result of the Coulombic interactions between the nuclei as well as,

indirectly, from the Pauli exclusion principle. The Pauli exclusion principle states

that no two fermions may occupy the same quantum state [193]. When electron

clouds overlap the Pauli exclusion principle dictates that the ground state charge

distribution will be of a higher energy, thus increasing the electronic energy.

The short range interactions of ions are approximated by using empirical

potentials. Different short range potential forms have been developed depending on

the bonding of the system studied. For example, the covalency is often described

using the Morse potential [195] and, alternatively, the Buckingham potential [196]

has been developed to describe short range repulsion and attractive van der Waals
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interactions [197]. All such potentials have parameters that underpin their ability

to describe the properties of a material. In particular, the lattice parameter, elas-

tic constants and specific heat have been key experimental properties used in the

selection of candidate parameter sets. Potential forms are described below:

Buckingham Potential

φshort(rij) = Aαβ exp

(
− rij
ραβ

)
− Cαβ

rij
(3.83)

Buckingham-Morse Potential

φshort(rij) =Aαβ exp

(
− rij
ραβ

)
− Cαβ

rij

+Dαβ [exp (−2γαβ(rij − r0))− 2exp (−γαβ(rij − r0))]

(3.84)

Embedded Atom Method Potential

Splitting the energy of the system into a set of independent pair interactions

is a simplification of the atomic interactions of a real system. This is most clearly

identified by the Cauchy violation (C12 6= C44) observed experimentally in a wide

range of oxide elastic constants, including UO2 [198]. If the system energy was truly

the sum independent pair interactions then there would be no Cauchy violation

[199]. Dawes and Basak [200] developed the embedded atom method (EAM) as

a many-body addition to the pairwise description in order to describe metallic

systems, so that the energy of the system can be written as:

Uij =
1

2

∑
i

∑
i 6=j

φαβ(rij) +
∑
i

Fα(ρT ) (3.85)

where the first term is attributed to the highly repulsive pairwise interactions

and the second term is the embedded atom method. ρT represents the total electron

density at atom i due to all surrounding atoms j and is closely approximated by the

sum of the individual atomic densities (i.e., ρT =
∑

i 6=j ρβ(rij)). The embedding

function, Fα, determines the embedding energy of atom i due to the total electron

density of the surrounding atoms, ρT . The selection of a non linear embedding func-

tion, Fα, ensures the pairwise density functions, ρβ(rij), cannot be separated when

describing the total energy of the system, thus making the potential many-bodied.

In other words the bonding between two atoms cannot be described without knowl-

edge of the surrounding atomic positions. Due to the strong analogy between this
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potential description and the electronic structure of metals, the EAM has primarily

been used for modeling metals. Therefore, previous EAM models are beyond the

scope of this thesis, as here only oxides are considered. However, in a later chap-

ter the EAM is used as a perturbation to a more conventional Buckingham-Morse

potential, in order to extend the modeling of actinide oxides beyond a pairwise

description without needing to use shells.

3.5.2 Ensembles

Evans [201] defines an ensemble as “an essentially infinite number of systems char-

acterized by identical dynamics and identical state variables (N, V, E, or T etc.) but

different initial conditions.” The intensive and extensive quantities of the system do

not change between the individual ensemble members sampled by MD timesteps.

If one assumes that in real systems, the atomic kinetic energies follow a

Maxwell-Boltzmann distribution, then by the summation of the velocities of all the

atoms in a system, the macroscopic temperature may be derived. Temperature,

for example, can be calculated by using ensemble averages provided by the MD

simulation instantaneously at every timestep of the simulation. Thus, the temper-

ature of the system is kept in line with the ensemble by controlling the velocities

of the atoms directly. A MD simulation tends to sample energy minimum (some

of which may be metastable) for a given set of ensemble variables. By letting the

system evolve over a period of time, a great number of thermodynamically likely

configurations can be obtained. Assuming a long enough sampling time, the sta-

tistical average of positions with time is approximately equal to the average bulk

properties of all possible structure variations to a point where they can be assumed

to be indistinguishable. This is also known as the ergodic hypothesis [201]. From

these sets of positions, certain properties of the system can then be extracted.

The most fundamental of the three ensembles used, is the micro-canonical

ensemble. It is often referred to as NVE, as it fixes the number of particles in the

system (N), the volume of the system (V), and the energy of the system (E). In

a simulation this means that throughout the simulation, these three factors will

not alter on average. It is the most fundamental, because unlike some of the other

ensembles, it treats energy extensively, allowing the kinetic and potential energies to

vary without constraints. It allows energy changes, provided that the total energy

remains constant between ensemble members. It was used for equilibrium data

collection where temperature control was not required.

In the canonical ensemble (NVT), the number of particles (N), volume (V)
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and temperature (T) of the system are fixed. It was used mainly in cases where

the system is very unstable and would otherwise undergo large and highly unphys-

ical temperature and volume changes, such as during the melt-quench of a glass

composition.

The isothermal-isobaric ensemble (NPT) fixes the number of particles (N),

the system pressure (P) and the system temperature (T). As volume is not fixed

within the NPT ensemble, volume relaxation of the simulation cell can occur. This

allows, for example, predictions of volume change due to radiation damage to be

considered.

3.5.3 Temperature and Pressure Control

In order to calculate thermodynamic properties of the solid materials it is necessary

to control the temperature of the MD simulation using a thermostat. The equivalent

mechanism for pressure is called a barostat and works along the same principles. A

thermostat scales the atomic velocities, which affects the instantaneous temperature

derived from the sum of all atomic momenta (equation 3.86):

N∑
i=1

|−→pi |2

2mi

=
KbT

2
(3N −Nc) (3.86)

where −→pi is the momentum of atom i, kb is the Boltzmann constant, N is the number

of degrees of freedom and Nc the number of constraints. The simplest form of a

thermostat is to scale the velocities of all atoms in the system by a fixed factor

to attain the target temperature. By simply scaling the velocities, energy is not

conserved and thus the generated velocities are not part of the ensemble [202]. In

addition, the lack of temperature oscillations can lead to locally metastable states to

be sampled rather than a wider distribution of possible states, as these fluctuations

may lead to a new, more stable minimum of the potential energy surface.

To produce true members of the isothermal ensembles (NPT, NVT), the

concept of a time delayed energy flux to and from an external energy buffer is

required. The most common analogy for these kind of thermostats is that of a

system coupled to a “heat bath” of the desired system temperature. This heat bath

is used to gradually remove excess kinetic energy from the system, which is moved

into an external energy buffer akin to a hot (or cold) object in a much larger bath of

water, which slowly assumes the same temperature. This allows for the rescaling of

atomic energies, whilst keeping either the total momentum or the total energy (of

the combination of simulation box and heat bath) constant. Equilibration occurs
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for a set period of time, allowing some of the energy to be transferred to or from the

heat bath. In radiation damage simulations, the heat bath is only applied to atoms

crossing the bounding box, as otherwise the energy introduced by a radiation event

is removed too quickly from the system for damage to be adequately modeled.

Unless otherwise stated, a system-wide Berendsen thermostat [203] was used

in NVT calculations. It allows more rapid convergence of the system when compared

to other thermostats (such as Nosé-Hoover), making it more suitable for use during

the early stages of a simulation. The Berendsen thermostat features a heat bath of

a fixed temperature, but does not generate trajectories within the micro-canonical

ensemble, as whilst it does conserve total momentum, it does not conserve energy

[202]. For each atom, a friction term κBer is applied to the unscaled velocity vector
−→v (t+ ∆t) to produce the new velocity vector −→v scaled(t+ ∆t) as follows:

κBer(t+ ∆t) =

[
1 +

∆t

τT

(
σBer

Ekin(t+ ∆t)
− 1

)]1/2

where σ =
N

2
kBText

(3.87)

is the energy of the Berendsen thermostat [203], which depends on the degrees of

freedom N of the system, the external temperature Text, which corresponds to the

temperature of the heat bath and τT , which called the relaxation parameter and

is related to the frequency of temperature fluctuations (kept fixed at 1 ps in all

simulations here). Thus,

−→v scaled(t+ ∆t) = −→v (t+ ∆t)κBer (3.88)

Nosé-Hoover thermo- and barostats [204] were used in NPT simulations.

The Nosé-Hoover algorithm does not adjust the velocities of the next time step

directly, but rather changes the rate at which the velocity changes. This ensures

that all trajectories are in line with the canonical (NVT) ensemble in the real

system and the micro-canonical ensemble in the extended system. However, unlike

Berendsen [203], the lack of direct scaling retards the thermostat effect, and will

lead to stronger oscillations [202]. This is not a serious problem in a system close

to its thermal equilibrium. The velocity change is given by

d−→v (t)

dt
=
−→a (t)

m
− κNH(t)−→v (t) (3.89)

A first order differential equation controls the friction coefficient κNH
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κNH(t)

dt
=

2Ekin(t)− 2σ

qmass
(3.90)

where σ is the thermostat energy as given in equation 3.87, and qmass is the Nosé-

Hoover thermostat mass given by

qmass = 2στ 2
T (3.91)

which depends on the relaxation parameter τT .

The pressure can be maintained at a constant value in a simulation by scaling

the volume or an alternative is to couple the system to a “pressure bath” analogous

to a temperature bath. The rate of change of pressure is given by

dP (t)

dt
=

1

τ p
(Pbath − P (t)) (3.92)

τp is the coupling constant, Pbath is the pressure of the ‘bath’ and P (t) is the actual

pressure at time t. The volume of the simulation box is scaled by a factor λ, which

is equivalent to scaling the atomic coordinates by a factor λ1/3. Thus

λ = 1− κδt
τp

(P − Pbath) (3.93)

The new positions are given by:

r′i = λ1/3ri (3.94)

The constant κ can be combined with the relaxation constant τp as a single constant.

This expression can be applied isotropically (such that the scaling constant is equal

for all three directions) or anisotropically (where the scaling factor is calculated

independently for each of the three axes). In general, it is best to use the anisotropic

approach as this enables the box dimensions to change independently.

In the pressure bath-coupling methods as introduced by Anderson, an extra

degree of freedom corresponding to the volume of the box is introduced in the

system. The kinetic energy associated with this degree of freedom is 1
2
Q(dV

dt
)2,

where Q is the mass of the piston. This can also be considered to be equivalent

to a piston acting on the system. The potential energy of the piston is PV where

V is the volume of the system and P is the desired pressure. The piston of small

mass gives rise to rapid oscillations in the box where as infinite mass gives normal

molecular dynamics behavior. The volume can vary during simulation, with the
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average volume being determined by the balance between the internal pressure of

the system and th desired external pressure. In the Nosé approach a scaled time is

used and the coordinates of the extended system are related to the ‘real’ coordinates

by:

r′i = V −1/3ri (3.95)

3.6 Thermal Properties from MD Simulations

3.6.1 Thermal Expansion

At high temperatures, the anharmonic nature of the atomic interaction becomes

significant and leads to thermal expansion in solids. When analyzing the system

at various temperatures the usual experimental conditions are generated by the

NPT method (with constant number of particle, pressure and temperature). Initial

atomic velocities are generated by using a Monte-Carlo method according to the

Maxwellian distribution. With this initial conditions, the system is allowed to

evolve for several thousand time steps to reach thermal equilibrium. The criterion

of establishing thermal equilibrium for the system at low temperatures is to monitor

equipartition of the kinetic and potential energy. A series of MD simulations are

conducted for several temperatures to calculate lattice parameters and volumes of

the simulation cell at each temperature and hence the thermal expansion coefficient

is determined.

3.6.2 Thermal Conductivity by Green-Kubo method

In Green-Kubo (GK) formalism [205, 206], an estimate of a transport co-

efficient relies on the integral of an accurate time-correlation of the equilibrium

fluctuations of the corresponding heat flux in the system. Mathematically, GK

theorem relates the lattice thermal conductivity tensor κij to the integral of the

ensemble average of the time correlation function of the heat current Ji(t):

κij =
V

kBT 2

∫ ∞
0

〈
Ji(0)Jj(t)

〉
(3.96)

where i, j = x, y, z, V= simulated cell volume, kB= Boltzman’s constant and T=

temperature. Ji(0) and Jj(t) are the instantaneous heat flux in the i direction

at time zero and instantaneous heat flux in the j direction at time t, respectively.

Though the upper limit on the integral is infinite the duration of the simulation
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must only exceed the relaxation time beyond which the integrand vanishes. In

molecular dynamics simulations time is discretized into time-steps, and thus in

practice equation 3.96 becomes a summation

κij =
V∆t

kBT 2

M∑
1

(N −m)
N−m∑
n=1

Ji(m+ n)Jj(n) (3.97)

where N is the total number of time-steps, each of length ∆t, Ji(m+n) the instan-

taneous heat flux in the i direction at time-step m+n and Jj(n) the instantaneous

heat flux in the j direction at time-step n. The instantaneous heat flux, in a given

direction, is evaluated from the energy associated with each atom in the simulation

J =
d

dt

1

V

N∑
i=1

riei (3.98)

where J is the heat flux vector, ri the position vector of atom i and ei the energy

associated with atom i, and the sum is over all N atoms. The energy associated

with each atom is the sum of its kinetic energy and potential energy

ei =
1

2
mivi

2 +
1

2

N∑
j

uij(rij) (3.99)

where mi is the mass of atom i, vi the velocity vector of atom i, and uij(rij)

the pair-wise interaction between atoms i and j when separated by a distance rij.

Substituting equation 3.99 into equation 3.98 we obtain

J(t) =
1

V

[ N∑
i

eivi +
N∑
i

N∑
j 6=i

(fij.vj).rij

]
(3.100)

where ei = energy per atom of i th atom, fij = force on atom i due to neighbor j,

vi = velocity of atom i and rij = ri − rj, where ri is the position vector of atom i.

It important to note that in the Green-Kubo calculations, finite-size effect

are important and the calculated values converge towards experimental values with

increasing system size. Such convergence must be checked for in order to ensure

that calculated values are accurate.
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Chapter 4

Finding Lowest Energy Barrier

Pathway for α→ ω Martensitic

Transformation in Zr

4.1 Introduction

This chapter presents a systematic theoretical investigation of atomistic pathways

for α → ω transformation adopting two approaches. In the first approach, we

model transformation pathways by examining the experimentally proposed Usikov

and Zilbershtein (UZ) [42], Rabinkin, Talianker and Botstain (RTB) [43] and Song

and Gray (SG) [26] pathways (see section 2.1.1 (a) for details). We calculate

transformation energy barrier for these three pathways by first-principles calcula-

tions employing Nudged Elastic Band (NEB) method and by comparison we suggest

the lowest barrier pathway. In the second approach, initially, we generate trans-

formation pathways by applying a symmetry analysis program based on search for

an intermediate unstable common structure with definite space group symmetry G

between parent G1 (α, space group: P63/mmc) and product G2 (ω, space group:

P6/mmm) structures having no group-subgroup relation. Then, we calculate their

energy barriers by first-principles calculations. Finally, we correlate pathways ob-

tained from these two approaches to decide the most energetically favorable one.

The second approach also ensures to generate all possible pathways that exist (with

a given range of lattice strains and atomic shuffles) other than experimentally re-

ported pathways.

The second approach deals with the problem of finding the most likely path-

way for a G1 → G → G2 transformation which eventually reduces to produce a
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relevant subset of possible pathways and sorting them by their energy barriers.

There are infinitely many unique pathways to transform one crystal continuously

into another; however, only a few of them do not involve movement of individual

atoms by an appreciable distance. We produce the set of pathways (G’s) with min-

imum total shape change (strain) and minimum atomic motion (shuffle) from its

parent structure (G1). The symmetry analysis program generated pathways are

sorted by using the first-principles calculated energy barrier of each transforma-

tion pathway. We further determine the change in transformation barrier height

due to application of pressure for the lowest energy barrier pathway. Finally, we

calculate transverse optical phonon mode (νE2g), C44 and electronic band struc-

tures of α-phase as a function of pressure to identify actual driving force for this

transformation.

In the next section (section 4.2) a description of methodology for the first-

principles calculations, elastic and phonon frequency calculations are described.

Then, the details of the experimentally proposed UZ, RTB and SG pathways are

described followed by their enthalpy barrier calculations in section 4.3. After that,

symmetry analysis based program generated pathways are described followed by

their enthalpy barrier calculations in section 4.4. In this section experimentally

proposed and symmetry based program generated pathways are correlated to iden-

tify the most energetically favored pathway and its pressure variations. Finally, in

section 4.5 pressure variation of transverse optical phonon mode (νE2g), C44 and

electronic band structure of α phase are presented for finding driving force for this

transformation.

4.2 Computational Details

Our theoretical investigation includes examination of TPs, elastic stability, dynam-

ical stability and electronic band structure of α Zr under hydrostatic compression.

All the calculations have been performed employing plane wave based ab-initio sim-

ulator Vienna Ab-initio Simulation Package (VASP) [177] with generalized gradient

approximation (GGA) for the exchange and correlation potentials as parameterized

by Perdew, Burke and Ernzerhof (PBE) [158]. The frozen core all electron projector-

augmented wave (PAW) potentials [176] were used for the ion-electron interactions

with 4s 4p 5s 4d states as valence states for Zr. The expansion of electronic wave

functions in plane waves was set to a kinetic energy cut-off of 400 eV for all the struc-

tures and brillouin zone integration was done using the k-point mesh of 18×18×14,

10×10×10 and 22×16×6 Monkhrost-Pack [208] grid in the full Brillouin zone for
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our 4, 6 and 12 atoms supercell calculations, respectively, to ensure energy conver-

gence to within 0.1 meV/atom. The Methfessel-Paxton technique [209] was used

for free energy calculations with a modest smearing of 0.1 eV, which resulted in a

very small entropy term (<0.1 meV/atom) in all the cases. The relaxation of the

atomic positions, the unit cell shape and size were performed using the conjugate

gradient algorithm until the atomic forces are less than 5 meV/Å and the stresses

are smaller than 0.01 GPa.

In order to determine elastic moduli, the total energy at a given volume is

calculated as a function of appropriate strain (e). The energy of the strained lattice

is expressed as follows [210]:

Ec(e, V ) = Ec(0, V ) +
1

2
V

6∑
i=1

6∑
i=1

Cijeiej (4.1)

The second order derivative of this energy with respect to strain provided

the elastic moduli. The hcp Zr single crystal has 5 independent elastic constants,

C11, C12, C33, C13 and C44. To determine shear modulus C44, we used following

volume conserving strain:


1 0 α

0 α2

1−α2 0

α 0 0

 (4.2)

Phonon calculations were performed using the small displacement method

based code PHON [184]. The interatomic forces were obtained using first-principles

calculations with 54 atom (3×3×3 supercell of hcp unitcell) supercell. To obtain

the force constants for the phonon calculations, atomic displacements of 0.03 Å were

employed.

4.3 Atomistic Details and Enthalpy Barriers of

Experimentally Proposed Pathways

4.3.1 UZ Pathway [42]

In order to study UZ pathway, it is useful to visualize the α → ω transformation

in two steps, α → β and β → ω. In the first step, α → β transformation was

studied at constant volume via inverse Burgers pathway [211] and considering a
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base centered orthorhombic cell having lattice parameters:

a0(λ1) =
aβ
δ(λ1)

; b0(λ1) = δ(λ1)aβ
√

2; c0 = aβ
√

2

δ(λ1) = 1 +
(
(
3

2
)
1
4 − 1

)
λ1

(4.3)

and with 4 atom basis at:

0,
3 + λ2

12
b0(λ1),

1

4
c0; 0,

9 + λ2

12
b0(λ1),

1

4
c0

0,
9− λ2

12
b0(λ1),

3

4
c0; 0,

3− λ2

12
b0(λ1),

3

4
c0

(4.4)

where λ1=λ2=1 and λ1=λ2=0 correspond to hcp and β lattice, respectively. λ1

represents the shear deformation and λ2 represents the shuffle displacement. The

calculated equilibrium lattice parameter for β Zr (aβ) was 3.5818 Å. This transfor-

mation causes atomic movement of 0.42 Å accompanied by 3.6% contraction along

the [1120] direction and 6.2% expansion along the [1100] direction [44].

Figure 4.1: Energy barrier of β → ω transformation for possible range of atomic
shuffles. Normalized atomic shuffle parameter 6z = 0 and 1 correspond to β and ω
structure, respectively.

In the second step, β → ω transformation requires only a shuffle of λ3 =

aβ
√

3
12
∼ 0.52 Å. Details of the atomic movements of this transformation is described
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in Figure 4.1. The trigonal C6 incomplete ω-phase (shown in Figure 4.1 is based on

the P3m1 space group (International Table No. 164). This is a prototype structure

of CdI2 and has 3 atoms per unitcell: (1a) 0 0 0, (2d) 1/3 2/3 2/3-z and 2/3

1/3 1/3+z. In CdI2 structure Cd atom occupy the (1a) Wyckoff position and the

I atoms occupy the (2d) positions. When z = 0, this structure transforms into

the hexagonal C32 complete ω-structure. When z = 1/6, it is equivalent to the β

structure for c/a =
√

3/8. The hexagonal C32 complete ω-phase is based on the

P6/mmm space group (International Table No. 191). This is a prototype structure

of AlB2 and has 3 atoms per unitcell: (1a) 0 0 0, (2d) 1/3 2/3 1/2 and 2/3 1/3

1/2. In AlB2 structure Al atom occupy the (1a) Wyckoff position and the B atoms

occupy the (2d) Wyckoff positions. Figure 4.1 also depicts GGA-PBE calculated

energy barrier for the β → ω transformation and transformation barrier for this

pathway is 80.8 meV/atom.

4.3.2 RTB Pathway [43]

Figure 4.2 describes the direct transformation RTB pathway which involves signif-

icant atomic shuffles and relatively small strains. The energy barrier calculations

of RTB pathway were performed considering a 12 atom hcp supercell using calcu-

lated equilibrium lattice parameters aα (3.2314 Å) and cα (5.1748 Å) with atomic

positions as described in Table 4.1.

In RTB pathway, each atom shuffles by 0.87 Å on the (0001)α plane. The

accompanying strains required to produce the ω lattice with correct c/a ratio was

determined by performing a lattice shape relaxation using DFT-GGA at constant

volume of a supercell having hcp lattice vectors but atomic positions corresponding

to the ω lattice. The lattice strains (ε’s) obtained by this procedure is listed in

Table 4.1 and it can be noted that εxεyεz ∼ 1, as we performed our calculations at

constant volume. It can be noted that for the hcp supercell εx=εy=εz=1. Moreover,

the PAW-PBE calculated strains of -2.22% along [1210]α direction, -2.09% along

[0001]α direction and 4.46% along [1010]α direction are in good agreement with

experimentally determined strains of -2.97%, -2.14% and 3.94% along the respective

directions [43].

4.3.3 SG Pathway [26]

Figure 4.3 illustrates another direct transformation pathway described by SG which

involves small atomic shuffles and strains. The details of the PAW-PBE calculated
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Figure 4.2: The RTB pathway: in each (0001)α stacking plane three neighboring
closed-pack [1210]α atomic rows are displaced by a distance aα

4
along [1210]α di-

rection and the next three parallel atomic rows are displaced by the same distance
along the opposite direction [1210]α produces atomic arrangement corresponds to
that of [1210]ω plane of distorted ω structure. An additional small atomic shuffle of
aα
√

3
24

along [1010]α direction is also required to produce ideal ω structure. This shuf-
fle is accompanied by strain components of -2.97% along [1210]α direction, -2.14%
along [0001]α direction and 3.94% along [1010]α direction to produce a hexagonal
ω structure with correct c/a ratio. The orientation relations connecting the α and
ω supercells are (0001)α ‖ (1210)ω; [1210]α ‖ [0001]ω.

atomic positions and strains are described in Table 4.1. In SG pathway all 6 atoms in

the supercell shuffles by 0.47 õn the (0001)α plane and 4 atoms out of 6 additionally

shuffles by 0.51 Å out of the (0001)α plane accompanied by strains of εx = 0.906,

εy = 1.113 and εz = 0.997 produces ω supercell from α as also given in Table 4.1.

For this pathway, strains were determined as described for the RTB pathway. It

is also crucial to note that orientation relationships between ω supercell and α:

(0001)α ‖ (1111)ω; [1120]α ‖ [0111]ω as described in Figure 4.3 which is a subset of

(OR I): (0001)α ‖ (0111)ω; [1120]α ‖ [0111]ω.

The NEB calculations were performed by taking 9 images to determine en-

thalpy barrier for RTB and SG direct transformation pathways. The NEB method
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Figure 4.3: The SG pathway: in each stacking (0001)α plane atoms of label 1, 3,

5 and atoms of label 2, 4, 6 are moved by aα
√

3
12

along [1010]α and [1010]α directions,
respectively. This shearing movement can be decomposed into two equal movements
by a fraction ± 1

12
along A1 and A2 (as described in Table 1). Additionally, atoms

of level 2, 3 and 3, 4 are shifted by a fraction − 1
12

and 1
12

of A3 lattice vector
along A3, respectively. In this process (0001)α plane transforms into (1011)ω plane.
The arrows indicate atom movements along the (0001)α plane only. This shuffle is
accompanied by lattice strain ε such that A′(ω) = εA(α) to produce a hexagonal
ω structure with correct c/a ratio. The supercell lattice vectors are also shown (as
described in Table 1) in this figure. The atomic arrangements in this figure are
depicted according to our choice of supercell. The orientation relations connecting
the α and ω supercells are (0001)α ‖ (0111)ω; [1120]α ‖ [0111]ω.

generates a discrete pathway (by generating a chain of images) connecting initial

and final states. By relaxing atomic positions and lattice shape at constant volume,

it passes through the transition state to guarantee that the final pathway lies along

the minimum energy pathway to produce true energy barrier. Figure 4.4 shows the

change in enthalpy along α→ ω transition path for the RTB and SG pathway. The

SG pathway has the lowest barrier height of 22 meV/atom compared to 58 meV/

atom and 73.7 meV/atom for the RTB and UZ pathway, respectively.
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Figure 4.4: GGA-PBE Calculated enthalpy barrier versus reaction co-ordinate as a
function of pressure for the RTB and SG pathway using ab-initio NEB method with
9 intermediate images. At 0 GPa enthalpy barrier for the SG pathway is almost
3 times lower than the RTB pathway. With increasing pressure barrier for the SG
pathway also decreases and even at 17.13 GPa barrier is not zero.

4.4 COMSUBS Generated Pathways

We applied a space-group symmetry based method employing group-subgroup re-

lations for characterizing martensitic transformation, called COMSUBS [212] pack-

age, to generate possible TPs (or mapping G1 → G → G2) via G from G1 (with

our PAW-PBE calculated lattice parameters aα = 3.2314 Å, cα = 5.1748 Å) to

G2 (with aω = 5.0575 Å, cω = 3.1572 Å) by considering both strains and atomic

displacements. The mapping is restricted by the constraint that the symmetry G

must be maintained along the entire path G1 to G2. This program finds possible

paths taken by atoms in a martesitic phase transition which is accomplished by

finding maximal common subgroups of the two phases. This methodology has al-

ready been successfully implemented to determine TP for pressure induced NaCl

→ CsCl transformation in the past [213].

This methodology includes user defined input of allowed strain tolerance,
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Table 4.1: Details of the α and ω supercell generated to study RTB and SG pathway.
The strains required to produce the ω lattice with correct c/a ratio from α shown
in the table are our PAW-PBE calculated values.

Pathway Supercell and Strains Atomic Positions Atomic Positions
for α for ω

0 1/4 2/9 -1/4 1/4 5/24

0 1/4 5/9 1/4 1/4 13/24

A1=a0εxx̂ 0 1/4 8/9 -1/4 1/4 21/24

A2=-c0εyŷ 0 3/4 1/9 -1/4 3/4 3/24

A3=-3
√

3a0εz ẑ 0 3/4 4/9 -1/4 3/4 11/24

RTB 0 3/4 7/9 1/4 3/4 19/24

strains 1/2 1/4 1/18 1/4 1/4 1/24

εx=0.978 1/2 1/4 7/18 3/4 1/4 9/24

εy=0.979 1/2 1/4 13/18 3/4 1/4 17/24

εz=1.044 1/2 3/4 5/18 1/4 3/4 7/24

1/2 3/4 11/18 3/4 3/4 15/24

1/2 3/4 17/18 3/4 3/4 23/24

A1 = a0

√
3

2
εxx̂+ a0

3
2
εyŷ 0 0 0 1/12 -1/12 0

A2 = −a0

√
3

2
εxx̂+ a0

3
2
εyŷ 1/6 5/6 1/2 1/12 11/12 1/2

A3 = a0εyŷ + c0εz ẑ 1/3 1/3 0 5/12 1/4 -1/12

SG strains 1/2 1/6 1/2 5/12 1/4 5/12

εx=0.906 2/3 2/3 0 3/4 7/12 1/12

εx=1.113 5/6 1/2 1/2 3/4 7/12 7/12

εx=0.997

nearest neighbor (NN) distances and unit-cell size change. We used the following

criteria:

(a) only 6 and 12 atom supercells with principal elements of the strain tensor

being less than 1.2 and greater than 0.8 is considered

(b) relative to the center of mass, no atom shuffles more than 1.3 Å and

(c) considering only subgroups where the NN distance in the structure is halfway

between G1 and G2 is greater than 2.85 Å.

The basis for setting up these criteria is the displacive-diffusionless nature
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Table 4.2: Maximal common subgroup (G) of the two phases G1 = P63/mmc and
G2 = P6/mmm of Zr. G provides a possible path for the transition from G1 to G2 as
G1 → G→ G2. We give the atomic positions and supercell lattice vectors of G1 and
G2 in terms of the conventional lattice vectors a1 = a0(1

2
x̂−

√
3

2
ŷ), a2 = a0(1

2
x̂+

√
3

2
ŷ),

a3 = c0ẑ of Gi (a0 and c0 are the respective equilibrium lattice parameters of Gi).
In the last column an estimate of the approximate barrier height is given.

Common Supercell α Wyckoff ω Wyckoff
Barrier

Height

Subgroups Lattices Positions Positions (meV/atom)

α: origin (1/2 1/2 1/2)

C2/c (1,0,-2),(1,2,0),(1,0,1) 2(e) 0, 11/12, 1/4 2(e) 0, 1, 1/4 66.3

(15) ω: origin (0 0 -1/2) 4(f) 1/6, 5/12, 7/12 4(f) 1/6, 1/2, 2/3

(1,-1,2),(-1,-1,0),(0,0,-2)

α: origin (1 3/2 0) 4(d) 3/4, 31/36, 1/4 4(d) 1, 7/8, 1/4

Pbcm (1,0,0),(3,6,0),(0,0,1) 4(d) 3/4, 7/36, 1/4 4(d) 1/2, 5/24, 1/4 67.7

(57) ω: origin (-1/2 0 0) 4(d) 3/4, 19/36, 1/4 4(d) 1/2, 13/24, 1/4

(0,0,-1),(-2,2,0),(1,1,0)

α: origin (0 0 0) 2(e) 2/3, 1/4, 2/9 2(e) 3/4, 1/4, 1/4

P21/m (-1,0,0),(0,0,1),(0,3,0) 2(e) 2/3, 1/4, 8/9 2(e) 7/12, 1/4, 11/12 89.1

(11) ω: origin (0 -1/2 0) 2(e) 2/3, 1/4, 5/9 2(e) 11/12, 1/4, 7/12

(0,0,1),(1,1,0),(-1,1,1)

α: origin (0 0 0) 4(c) 5/6, 1/4, 5/6 4(c) 1, 1/4, 3/4

Pnma (2,1,0),(0,0,-1),(0,3,0) 4(c) 5/6, 1/4, 1/6 4(c) 3/4, 1/4, 1/12 115.0

(62) ω: origin (0 1/2 0) 4(c) 5/6, 1/4, 1/2 4(c) 3/4, 1/4, 5/12

(0,0,-2),(1,1,0),(1,-1,0)

2(i) 1/8 1/3 0 2(i) 1/8 3/8 1/8

α: origin (0 0 0) 2(i) 3/8 0 1/3 2(i) 3/8 1/8 3/8 304.6

P1 (0,0,2),(1,2,0),(-1,1,0) 2(i) 1/8 2/3 1/3 2(i) 1/6 2/3 1/2

(2) ω: origin (1/2 1/2 1/2) 2(i) 3/8 1/3 2/3 2(i) 5/12 5/12 3/4

(0,-1,-3),(-1,-1,0),(-1,0,-1) 2(i) 1/8 0 2/3 2(i) 1/12 1/12 3/4

2(i) 3/8 2/3 0 2(i) 1/3 5/6 0

2(i) 1/24 19/24 5/12 2(i) 1/8 3/4 1/2

α: origin (-1/2 1/2 1) 2(i) 23/24 7/8 11/12 2(i) 1/8 11/12 5/6 355.7

P1 (1,0,1),(-1,2,1),(-1,-1,1) 2(i) 1/24, 11/24, 3/4 2(i) -1/8, 5/12, 5/6

(2) ω: origin (1/2 1 -1/2) 2(i) 13/24, 23/24, 3/4 2(i) 5/8, 11/12, 5/6

(0,0,-2),(0,2,-1),(1,1,-1) 2(i) 13/24, 7/24, 5/12 2(i) 3/8, 1/4, 1/2

2(i) 11/24, 3/8, 11/12 2(i) 3/8, 5/12, 5/6

of this transformation. A displacive transformation distorts the lattice and changes

the shape of the crystal, while diffusionless character restricts movement of atoms

small compared to the nearest neighbor distances [17, 33]. Therefore, we consider

only strain components within range of ± 20% compared to G1 structure and NN

distance at the halfway is 93.5% of the average of 3.19 Å and 2.92 Å. It can be

noted that the NN distance is 3.19 Å in G1 and 2.92 Å in G2. With these criteria,
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we obtained 6 subgroups, which we list in Table 4.2. We also give our PAW-PBE

calculated enthalpy barriers for the halfway structures (G) in table 4.2 by calculating

energies of the G1, G2 and G structures for each pathway.

From Table 4.2, four lowest energy barrier pathways can easily be noticed out

of possible 6 pathways. We then analyzed these four lowest energy barrier pathways

using a symmetry analysis program FINDSYM [212] and found out that pathway

with Pnma, Pbcm and C2/c subgroups are identical with the experimentally pro-

posed UZ, RTB and SG pathways, respectively. Another pathway with subgroup

P21/m follows the OR II and was studied using NEB calculations and the bar-

rier height of this pathway is same as that of RTB pathway (shown in Figure 4.2).

Therefore, symmetry based pathway generation program and model pathways given

from experimental inputs essentially outline the same subset of possible pathways.

It can also be noted that during the transformation the closest nearest-neighbor

distance is 3.01 Å for SG pathway which is larger than 2.93 Å and 2.91 Å for

the RTB and UZ pathway, respectively. Therefore, the SG pathway is a suitable

combination of small strains, small relative atomic shuffle - which are the essential

criterion for diffusionless displacive transformation. It can also be noted that the

calculated barrier height for C2/c TP (generated using COMSUBS) is higher than

that for SG, as the structure we used (as written by COMSUBS output) to cal-

culate the enthalpy barrier for C2/c TP lies exactly halfway between G1 and G2,

assuming atomic displacement and lattice strain parameters are varying linearly

from G1 to G2 [212,213]. Enthalpy barrier calculated with this halfway structure is

approximate and estimates only the upper bound on the barrier height. The path

from G1 to G2, which passes over the lowest barrier, will most likely not follow this

linear variation in atomic displacement and lattice strain parameters. Figure 4.4

also shows the change in enthalpy along α→ ω transition path for the SG pathway

as a function of pressure. As pressure increases the enthalpy of ω decreases com-

pared to α and even at 17.13 GPa the transformation is not complete. This result

is also in agreement with the experimental fact that even at 16 GPa, the Raman

frequencies corresponding to both α and ω were observed [47].

4.5 Precursor to α→ ω transformation

The hcp structure allows one Raman active phonon mode which is transverse opti-

cal phonon mode (E2g) at Γ point of the hcp brillouin zone. Figure 4.5 illustrates

the energy variation (compared to undistorted supercell of hcp) of zone centre E2g

mode as function of different compressed volume V (with respect to the equilibrium
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Figure 4.5: Variation of calculated potential energy versus zone center phonon
mode (E2g) in terms of normalized atomic displacement as a function of volume
compression. The inset figure shows variation of the calculated zone center phonon
frequencies and calculated values of C44 as a function of volume compression. The
calculated values of νE2g = 79.3 cm−1 and C44= 24.8 GPa at ambient pressure
are in good agreement with respective experimental values of 87 cm−1 [47] and 33
GPa [215] (room temperature). Solid boxes show experimental values of νE2g as a
function of pressure [47].

volume V0) using frozen phonon method [214]. For V/V0 = 1, the effective po-

tential has a minimum at zero atomic displacement. With increasing pressure, the

effective potential transforms into double well from a single well having maxima at

equilibrium atomic position between V/V0 values of 0.847 and 0.824, correspond-

ing to the pressure range of 20.47 - 24.83 GPa, which is much higher than the

experimentally observed α → ω transformation pressure. Additionally, we calcu-

lated phonon dispersion curves using small displacement method and C44 elastic

constant for different pressure and the calculated results are also plotted in Figure

4.5. Even though the calculated νE2g values as a function of pressure from phonon

dispersion curve show similar behavior compared to experimental values, the cal-

culated νE2g underestimates the experimental values over the whole pressure range

and can be attributed to the thermal entropy effects as experimental values were

obtained at 300 K. Moreover, the calculated νE2g at V/V0 = 0.824 is negative and

is consistent with the fact that the calculated potential landscape for the E2g mode

became double well nature at this compression.

We also calculated band structure of hcp Zr along different symmetry di-
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Figure 4.6: Band structure of α Zr along high symmetry directions at ambient
pressure (solid line), at 9.363 GPa (large dotted line) and distorted hcp lattice to
simulate a zone center TO E2g mode (small dotted line) at ambient pressure.

rections at ambient pressure and at 9.36 GPa along with distorted hcp lattice to

generate E2g phonon mode at ambient pressure (illustrated in Figure 4.6). With

increasing pressure around special k-point ‘M’ a d-like band moves up continuously

leaving the Fermi level behind (indicted by arrows in Figure 4.6). This same feature

is observed with E2g phonon mode distorted hcp lattice indicating that this trans-

formation is, in fact, driven by change in the topology of band structure, which

leads to softening of E2g phonon mode and C44 under compression.

4.6 Summary

Our systematic theoretical study of finding basic atomistic mechanism leads to the

direct SG pathway being the energetically most preferred one for pressure induced

α→ ω transformation in pure Zr. This pathway is a suitable combination of small

strains and small relative atomic shuffle compared to the NN distances, which are

the essential criterion for diffusionless displacive transformation. The most favorable

TP has a C2/c common space group along the TP and has an enthalpy barrier of

22 meV/atom at 0 K. Our calculations show, the pressure induced softening of

shear elastic constant (C44) and transverse optical phonon frequency at Γ point is

a precursor to this transformation. We also find the topological change in the band

structure around special k-point ‘M’ is associated with this transformation.
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Chapter 5

β → ordered-ω Phase

Transformation Pathways in Zr-Al

Alloys

5.1 Introduction

In chapter 4, a modeling strategy is presented to determine the phase transforma-

tion pathway on the free energy landscape of a displacive transformation where a

maximal common-subgroup (G) is determined in a diffusionless-displacive trans-

formation of α (G1, P63/mmc) → ω (G2, P6/mmm) in pure Zr. In this chapter,

we present results of theoretical studies to determine phase transformation path-

way in a diffusive-displacive transformation. One example of a mixed-mode phase

transformation is the transformation of disordered β-phase to a variety of ordered

ω structures in Zr rich Zr2Al and Zr2Al-Nb alloys. Here, the bcc lattice is trans-

formed into the hexagonal ω-structure by a periodic displacement of lattice planes

(described in section 2.1.1) while the decoration of the ω-lattice by different atomic

species occurs through diffusional atomic movements. This study presents results of

the quantitative determination of thermodynamic tendencies for diffusive vis-a-vis

displacive processes at different stages of the transformation to delineate the actual

pathway on the free energy landscape.

In the present work, we attempt to understand the mechanism of forma-

tion (or transformation pathway) of ordered-ω (Zr2Al phase having B82 structure,

space grp. P63/mmc) by replacive-displacive processes in an alloy of Zr2Al (having

disordered bcc (β) structure) by employing purely a first-principles computational

methodology. The essential idea behind selecting this particular configuration (com-
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position and structure) is that experimentally, at this composition, the sequence of

formation of various ordered ω phase have already been reported [23]. We also

determine relative stability of ordered ω and several disordered configurations of

ω and β structures. We also correlate instability with respect to ω-type atomic

displacements in Zr2Al alloy and the number of Zr-Al bonds present in the unit

cell.

To extend this study, formation of chemically ordered athermal ω phases hav-

ing compositions Zr3Al2Nb and Zr4AlNb from respective disordered β phase of same

composition through coupled replacive-displacive processes is also investigated. In

order to represent a structure which is compositionally close to Zr59Nb20Al21 alloy,

we consider 16.67 atom% Nb substitutions in Zr2Al binary phase (see section 2.1.2).

We select two compositions, viz., Zr3Al2Nb and Zr4AlNb for our calculations be-

cause this compositions arise naturally as a ternary extension of Zr2Al phase (Ni2In

prototype structure) if one Zr atom is replaced by Nb atom leading to Zr3Al2Nb and

if one Al atom is replaced by Nb atom leading to Zr4AlNb in a 6 atom unitcell. For

Zr2Al-Nb systems, only “athermal ω” (no change in composition during the trans-

formation) has been studied. To the best of our knowledge, no other theoretical

study has been attempted to study the formation of Zr3Al2Nb and Zr4AlNb ternary

alloys. The present study is concerned with the electronic origin of disordered β →
chemically ordered athermal ω transformations in Zr3Al2Nb and Zr4AlNb alloy em-

ploying purely a first-principles based approach. In this transformation replacive

ordering is mediated through random atomic jumps (keeping composition intact to

parent phase) for decorating specific sublattice sites by specific atomic species in

the disordered parent structure. First principles calculations are used to calculate

crystal structure parameters, structural stabilities and electronic properties for β

and ω structures. We also compare mechanical stability and ductility of Zr2Al and

Zr3Al2Nb as well as Zr4AlNb phases.

5.2 Disordered β → ordered-ω Athermal Trans-

formation Pathway in Zr2Al alloy

The equilibrium Zr2Al (B82) structures can be viewed as chemically ordered deriva-

tives of the ω structure. The β → B82 transition can be accomplished by decorating

the β (bcc) lattice with ordered arrangements of different atomic species and intro-

ducing a lattice collapse akin to the β → ω transition [17,22,23].

Banerjee et al. [23] studied the phase evolution process during rapid solidifi-
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cation of an alloy close to Zr3Al composition and the quenched-in structure shows

a supersaturated β phase with composition modulation resulting from spinodal

decomposition. On subsequent ageing, the amplitude of composition modulation

along the < 100 >β directions increases and finally the aluminium enriched regions

of cuboidal shape undergo the β → B82 transition. Each single cuboidal block is

seen to transform into a single B82 particle. The absence of multiple variants of B82

crystals within a cuboidal block, unlike that observed in the β → ω transformation

on quenching, suggests that the transformation is driven by an instability towards

the development of concentration and displacement waves.

5.2.1 Description of Crystal Structures

The B82 structure of the Zr2Al phase belongs to space group P63/mmc (194) and

its prototype is Ni2In with 6 atoms per unit cell:

Ni : (2a) 0 0 0 and 0 0 1/2,

In : (2c) 1/3 2/3 1/4 and 2/3 1/3 3/4,

Ni : (2d) 1/3 2/3 3/4 and 2/3 1/3 1/4.

As discussed by Bendersky et al. [70], all the relevant structures related to the

omega phase formation can be indexed by P3m1 space group which is a subgroup

of both the parent and daughter structures. Therefore, all the relevant structures

(bcc, ω′ and ω (B82)) can be represented by a general lattice with Wyckoff positions

as:

(1a) 0 0 0

(1b) 0 0 1/2

(2d1) 1/3 2/3 1/6+Z and 2/3 1/3 5/6-Z

(2d2) 2/3 1/3 1/3-Z and 1/3 2/3 2/3+Z.

The bcc and B82 lattices can be realized for Z = 0 (Figure 5.1(a) with c/a

=
√

6/2 (ideal value)) and Z = 1/12 (Figure 5.1(c)), respectively. Similarly, the ω′

structure is realized for 0<Z<1/12 (Figure 5.1(b)).

5.2.2 Computational Methodology

The ground-state energy calculations were performed using a plane wave based

code, viz., the Vienna Ab-initio Simulation Package (VASP) [177]. The VASP is

based on the density functional theory (DFT) and we used generalized gradient

approximation (GGA) for the exchange and correlation potentials as parameterized
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Figure 5.1: (a) Stacking of the (222)β planes of the bcc Zr2Al phase, (b) ω′′ structure
(partial collapse of the planes), (c) ω structure (full collapse of two of the planes).
The parameter Z is a measure of the movement of the second and third plane along
with their Wyckoff counterparts. When all planes are equidistant, Z = 0, and
the first plane is at a distance 1/6 of c/a above the lowest plane. As the shuffle
progresses to completion, this plane moves up by 1/12 of c/a (the plane above it
simultaneously moves down by 1/12 of c/a).

by Perdew, Burke and Ernzerhof (PBE) [158]. The frozen core all electron projector

augmented wave (PAW) potentials [176] were used for the ion-electron interactions.

For Zr: 4s 4p 5s 4d and for Al: 3s 3p states were used as valence states. The

expansion of electronic wave functions in plane waves was set to kinetic energy cutoff

(Ecut) of 350 eV for all the structures. The Brillouin-zone integration was done using

the Monkhorst-Pack [208] k-point mesh. The Methfessel-Paxton technique [209] was

used for free energy calculations with a modest smearing of 0.1 eV, which resulted

in a very small entropy term (<0.1 meV/atom) in all the cases. For each structure,

optimization was carried out with respect to Ecut and k-point meshes to ensure

convergence of total energy to within a precision better than 1 meV/atom.

In order to calculate the ground state energy of the ordered Zr2Al config-

uration, we studied all possible distinct arrangements of the Zr and Al atoms in

the six-atom bcc unit cells as shown in 5.1. We optimized the lattice constant ‘a’

of all these bcc configurations (taken in the hexagonal symmetry as described in

previous section). Then, we calculated their energies as a function of displacement

parameter (Z) along the (111)bcc direction. The lattice parameters (a, c/a) of the

intermediate structures (with different Z value) that arise in the transformation
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β → ω were optimized for each configuration.

5.2.3 Relative Stability of the Phases

Table 5.1 enlists our results for equilibrium lattice parameters (a and c/a), bulk

moduli (B0) and energies of formation (Eform) for pure Zr (hcp), Al (fcc) and or-

dered B82 (Zr2Al) along with available experimental [216–223] and other theoretical

results [224,225]. The ground state cohesive energy (Ec(V )) was fitted to the Birch-

Murnaghan equation of state [226] state as a function of volume to determine the

cell parameters, equilibrium volume (V0) and bulk modulus using equation:

Ec(V ) =
B0V

B′0(B′0 − 1)

[
B′0(1− V0

V
) + (

V0

V
)B

′]
+ E0 (5.1)

where B0 is bulk modulus, B′0 is the pressure derivative of B0 and E0 is a constant.

The energy of formation (Eform) is the quantity of interest to determine stability

of these phases. The energy of formation (Eform) is calculated as:

Eform(ZrxAly) =
1

NZr +NAl

[
EC(ZrxAly)− xEC(Zr)− yEC(Al)] (5.2)

where EC(ZrxAly) is the cohesive energy of ZrxAly phase, and Ec(Zr), EC(Al) are

the cohesive energies per atom of Zr (hcp) and Al (fcc) phases, respectively. NZr

and NAl refer to the number of Zr and Al atoms in the unit cell of ZrxAly.

As seen in Table 5.1, our DFT-GGA results of equilibrium lattice parameters

(a and c/a) are in good agreement (within ∼ 1-4% with the experimental values,

wherever available) and other theoretical results for the Zr, Al and B82 phases.

Our GGA results for B0 of pure Zr and Al phases are within 3-6% of respective

experimental values; while that for the B82 phase, the calculated value is in good

agreement (within 2%) with the other theoretical results.

The calculated ground state cohesive energies of all ordered configurations of

the bcc-Zr2Al structure are listed in Table 5.2. It can be seen that the configurations

marked {a}, {b} and {c} in Figure 5.2 are the most stable configurations for their

energies are the lowest and degenerate. The following relations hold for the energies

of configurations (Figure 5.2): E{a}=E{b}=E{c}, E{d}=E{e}, E{f}=E{g}=E{h}
and E{a}<E{d}<E{f}. In Table 5.2, the energy difference of each configuration

is compared to E{a}(=E{b}=E{c}). Also listed are the number of Zr-Al, Zr-Zr

and Al-Al bonds present in the first and second nearest neighborhood for each

configuration. We designate the configuration (Figure 5.2 {a}) as Γ-Zr2Al. As can
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be seen from Table 5.1, the energy of formation of this ordered configuration was

calculated to be -0.241 eV/atom.

Table 5.1: DFT-GGA ground-state properties of Zr-Al system along with pure
Zr (hcp) and Al (fcc) phases. Experimental (in parenthesis) and other calculated
ab-initio values in braces are also given.

Structures a (Å) c/a B0 Eform

(GPa) (eV/atom)

fcc Al 4.042 75.9

Fm3m (4.032) [216] - (88.2 [217],79.4 [218], 0.000

(225) {4.044} [224] 82.0 [219])

{74.2} [224]

hcp Zr 3.265 1.5920 93.6

P63/mmc (3.229) [220] (1.5921) [220] (97.2) [221] 0.000

(194) 3.208 [224] (1.59987) [224] 95.9 [224]

Γ-Zr2Al 3.465 - - -0.241

ordered bcc

B82-Zr2Al 4.923 1.2066 100.6 -0.364

P63/mmc (4.894 [222], (1.2114 [222],

(194) 4.882 [223]) 1.2122 [223]) {-0.389 [224],

{4.882} [224] {1.2020} [224] {105.2} [224] -0.370 [225]}

5.2.4 Ordered ω Phase Formation: Replacive versus dis-

placive process

In order to examine how the cohesive energy of ordered bcc Zr2Al configuration

(Γ-Zr2Al) changes as a function of magnitude of plane collapse (Z), we calculated

its energy as a function of Z and the result is shown in Figure 5.3. We calculated

energies of all other configurations ({b} - {h} of Figure 5.2) also as a function

of extent of plane collapse (parameterized by Z) and the results are also given

in Figure 5.3. In the figure 5.3, the energies of all configurations as function of

normalized displacement parameter are plotted with respect to that of the most

stable configuration (depicted as Γ in Table 5.1 and configuration {a} of Figure

5.2). It is clear from Figure 5.3 that only the Γ-Zr2Al configuration of bcc-Zr2Al

phase can reduce its energy significantly through the displacive process. This was

the reason we designated this particular configuration as Γ-Zr2Al in the first place.

The energies of all other configurations increase or decrease slightly with the extent

of plane collapse. In other words, the displacive process in the bcc-Zr2Al structure
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Figure 5.2: All possible arrangements ({a}-{h}) of Zr and Al atoms on the bcc
lattice corresponding to bcc Zr2Al alloy. Dark gray and light gray circles represent
Zr and Al atoms, respectively.

Table 5.2: Difference between cohesive energies of possible configurations of the
bcc-Zr2Al composition compared to the Γ-Zr2Al configuration (E-EΓ−Zr2Al) and
number of first and second nearest neighbour (nn) Zr-Al, Zr-Zr and Al-Al bonds.
Bond lengths (in brackets (Å)) of these 1st and 2nd nn bonds of configurations {a},
{b} and {c} in their bcc and ω′ (24% plane collapse) structures are also enlisted.

Config- Z E-EΓ−Zr2Al Number of Number of Number of

-urations (meV/atom) Al-Zr bonds in Zr-Zr bonds in Al-Al bonds in

1st and 2nd nn 1st and 2nd nn 1st and 2nd nn

{a} 0.00 (bcc) 0.00 16 (3.00), 6 (3.47) 8 (3.00), 9 (3.47) -

0.02 -36.3 6 (2.93), 4 (3.00) 2 (3.00), 6 (3.04) -

{b} 0.00 (bcc) 0.00 16(3.00),6(3.47) 8(3.00),9(3.47) -

0.02 34.4 3(2.93),4(3.00) 3(3.00),2(3.04) -

{c} 0.00 (bcc) 0.00 16(3.00),6(3.47) 8(3.00),9(3.47) -

0.02 34.4 3(2.93),4(3.00) 3(3.00),2(3.04) -

{d} 0 (bcc) 161.7 12, 12 10, 6 2

{e} 0 (bcc) 161.7 12, 12 10, 6 2

{f} 0 (bcc) 181.6 10, 12 11, 6 3

{g} 0 (bcc) 181.6 10, 12 11, 6 3

{h} 0 (bcc) 181.6 10, 12 11, 6 3
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prefers an arrangement where every Al atom is surrounded by Zr atoms (see Table

5.2) because of stronger Zr-Al bonds supporting the ordering tendency in this alloy.

In overall, the present calculations suggest that the configuration with maximum

number of Zr-Al bonds has greater tendency for ω-type atomic displacements.
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Figure 5.3: The variation of energy difference (E-EΓ − Zr2Al) as a function of
magnitude of ω-type collapse of atomic planes for all configurations corresponding
to bcc-Zr2Al phase (see Figure 5.2), where EΓ−Zr2Al is cohesive energy of the most
stable configuration Γ. Here, the ω and bcc structures correspond to normalized
displacement parameter equals to 1.0 and 0.0, respectively.

Table 5.2 also enlists the cohesive energy differences (compared to ground

state cohesive energy of Γ-Zr2Al structure) of the intermediate ω′ structures (Z=0.02,

24% plane collapsed compared to their respective bcc configurations) of configura-

tions {a}, {b} and {c} along with number of Zr-Al, Zr-Zr and Al-Al bonds present

as first and second nearest neighbors as well as their bond lengths. The number of

Zr-Al and Zr-Zr bonds present in configuration {a}, {b} and {c} are same in their

bcc structures. The number of these bonds as well as bond lengths start changing

due to ω type displacements. Configuration {a} in its ω′ structure, is having more

number of Zr-Al bonds as 1st nearest neighbor as compared to ω′ structures of con-

figurations {b} and {c}. From this observation it can be deduced that the presence

of more number of Zr-Al bonds as first nearest neighbor makes the configuration
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more favorable energetically in the bcc structure as well as helps the configuration

to achieve ordered ω structure through displacive transformation by reducing the

Zr-Al bond lengths.

The electronic origin of the correlation between the number of Zr-Al bonds

and the stability of the structure can be understood by analyzing its electronic

structure. In Figure 5.4, we show total as well as partial density of states (DOS)

of configuration {b} of Zr2Al structure (for both Z= 0 and Z=1/12), the most

stable configuration Γ (Z=0) and the corresponding B82 (Z=1/12) structure. The

total DOS of both the bcc configurations, viz., {b} at Z=0 and G (see Figure

5.4 (i) and (iii)) are almost identical with strong mixing between Zr-d and Al-p

states near the Fermi energy (EF ) and the presence of a pseudo gap near the EF

between the bonding and antibonding states; though the degree of interaction is

more in configuration Γ than in configuration {b} for Z=0. On the other hand, the

partial DOS of B82 (Figure 5.4(iv)) shows the strongest d-p interactions and more

pronounced pseudo gap between the bonding and antibonding states compared

to all other configurations. Also, the number of states at EF (N(EF )) for B82

is 0.89 states/atom which is the lowest compared to that of other configurations,

viz., N(EF )=1.11 states/atom for both configurations Γ and {b} with Z=0 and

N(EF )=1.30 states/atom for configuration {b} with Z=1/12. These observations

clearly confirm the high stability of B82 structure as compared to configurations

{b} (for both Z=0 and Z=1/12) and Γ.

5.3 Disordered β → ordered-ω Athermal Trans-

formation Pathways in Zr2Al-Nb Alloys

5.3.1 Phase Stability and bcc → ω Transformation

In order to decide which lattice position Nb atom is going to occupy in bcc lattice

of Zr2Al, we examined several atomic configurations by performing simple trans-

lational and/or rotational symmetry operations and found out 6 and 10 distinct

configurations of bcc-Zr3Al2Nb (Figure 5.5) and bcc-Zr4AlNb (Figure 5.6), respec-

tively. The unit cells of both bcc-Zr3Al2Nb and bcc-Zr4AlNb have six atoms as

shown in Figure 5.5 and 5.6. We constrained the c/a ratio to
√

6/2 (ideal value)

and optimized the lattice constant (a) for all bcc structures having distinct atomic

configurations (shown in Figure 5.5 and 5.6). The calculated ground state cohesive

energies of all configurations of the bcc-Zr3Al2Nb and bcc-Zr4AlNb are listed in
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Figure 5.4: Total and partial density of states (DOS) of Zr2Al structure for (i)
configuration {b} with Z=0 (ii) configuration b with Z=1/12 (iii) configuration Γ
and (iv) B82 showing strong interaction between Zr-d and Al-p states.

Table 5.3. The configuration shown in figure 5.5(a) is the most stable configuration

and we designate this configuration as Γ-Zr3Al2Nb for convenience. In Table 5.3,

the energy difference of each configuration compared to Γ-Zr3Al2Nb and number

of Zr-Al and Zr-Nb bonds present in the first nearest neighborhood (NN) for each

configuration are also listed. Based on the general description of the crystal struc-

ture given in section 2, Zr atoms occupy the Wyckoff sites (1a) and (2d2), the Al

atoms the site (2d1), and the Nb atoms the site (1b) in Γ-Zr3Al2Nb.

There is a striking similarity between Γ-Zr3Al2Nb configuration and most

stable bcc structure in Γ-Ti3Al2Nb in the previous study of Sanati et al. [227]. The

experimentally measured site occupancies of the ω′′-phase in Ti4Al3Nb alloy indi-

cate that the phase transformation first involves a change in chemical order with a

transfer of Nb atoms out of collapsing planes (Figure 5.1) into stationary ones [70].

It is suggested that the absence of the Nb atoms from the collapsing planes is be-

cause of the strong interaction between Ti and Al atoms (due to considerably large

negative heat of mixing between them). Therefore, transition-metal-Al interactions

are the origin of the both the chemical ordering and the ω-phase formation in the
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B2 phase of TiAl-X (X = Nb, V) system [70, 228, 229]. A similar argument can be

extended to understand stability of bcc Zr3Al2Nb alloy. In bcc Zr4AlNb, configu-

rations (a), (g) and (i) are having same cohesive energies and these configurations

are more stable compared to other configurations. Though energetically degenerate

configurations, viz., (a), (g) and (i) of Zr4AlNb structure are symmetrically equiv-

alent in the bcc structure, but these configurations become distinct during ω-type

collapse (See Figure 5.8). There is an order of magnitude differences in the ener-

gies (Ebcc−Emost stable) between different configurations corresponding to Zr3Al2Nb

and Zr4AlNb alloys. In other words, chemical ordering effects are predominant in

Zr3Al2Nb alloy as compared to those in Zr4AlNb alloy.

Figure 5.5: Different arrangements of the atoms for Zr3Al2Nb alloy with an under-
lying bcc structure. Black, white and gray atoms show Zr, Al and Nb, respectively.
Systematic collapse of the bcc planes (marked as 2, 3 and 5, 6) into a single plane (2-
3 and 5-6) generates ω structure while keeping planes marked as 1 and 4 stationary.
This is true for all the configuration.

Then, starting from the Γ-Zr3Al2Nb, we varied the positions of the (222)bcc

planes in small steps along [111]bcc direction as shown in Figure 5.5 and optimized

the lattice parameters (a, c/a) for each new structure that arises in the transforma-

tion path. We calculated total energy as a function of atomic plane displacement

Z (where Z is a dimensionless parameter varying between 0 and 1/12 in units of

c/a) and our results are shown in Figure 5.7. The lattice corresponds to Z=0 is the

Γ-Zr3Al2Nb structure and Z=1/12 corresponds to the complete ω structure. The

incomplete ω structure is realized for 1/12 > Z > 0. From Figure 5.7 it is evident

that minimum in energy vs atomic plane displacement curve occur at a structure

with 77% collapse of atomic planes - designate this structure as ω′ with space group

P3m1. Finally, the ground state structural parameters (a, c/a) and Bulk moduli

(B0) for the Γ, ω′ (at the energy minima) and ω-Zr3Al2Nb along with pure Nb (bcc)

are listed in Table 5.4. We have calculated structural and cohesive parameters of
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Figure 5.6: Different arrangements of the atoms for Zr4AlNb alloy with an under-
lying bcc structure. Black, white and gray atoms show Zr, Al and Nb, respectively.
Systematic collapse of the bcc planes (marked as 2, 3 and 5, 6) into a single plane (2-
3 and 5-6) generates ω structure while keeping planes marked as 1 and 4 stationary.
This is true for all the configuration.

B82-Zr2Al and incorporated in Table 5.4 for the sake of comparison.

Moreover, adopting the same methodology as described above (section 5.2.2),

we calculated total energy as a function of atomic plane displacement (Z) for

Zr4AlNb (Figure 5.5) and the results are shown in Figure 5.8. It is evident from

Figure 5.8 that the minimum in energy versus atomic plane displacement curve oc-

curs for configuration (i) and (j) with full collapse of atomic planes (Z = 1/12, ideal

ω, space group P3m1). The calculated ground state structural parameters (a, c/a)

and Bulk moduli (B0) for the ω-Zr4AlNb is also listed in Table 5.4. A comparison

of Figures 5.7 and 5.8 clearly shows that a prominent structural instability exists in

Zr3Al2Nb alloy as compared to that in Zr4AlNb alloy. Moreover, atomic arrange-

ments corresponding to configurations (i) and (j) of Zr4AlNb show an energy barrier

of ∼8 meV/atom in the energy versus displacement (Z) curve. On the other hand,

no energy barrier exists in the energy versus displament (Z) curve for (a), (e) and

(f) configurations of Zr3Al2Nb alloy.
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Table 5.3: Difference between energy of possible distinct configurations and the
most stable configuration and number of first nearest neighbor Zr-Al and Zr-Nb
bonds. Though energetically degenerate configurations, viz., (a), (g) and (i) of
Zr4AlNb structure are symmetrically equivalent in the bcc structure, but these
configurations behave differently during ω-type collapse.

Zr3Al2Nb

Configurations E-EΓ(meV/atom) No. of Al-Zr bonds No. of Zr-Nb bonds

(a),Γ 0 16 8

(b) 266 7 5

(c) 248 8 6

(d) 223 7 5

(e) 138 10 2

(f) 102 11 3

Zr4AlNb

Configurations E-Ebcc(meV/atom) No. of Al-Zr bonds No. of Zr-Nb bonds

(a) 0 8 8

(b) 45 5 5

(c) 19 6 6

(d) 39 6 6

(e) 26 6 6

(f) 45 5 5

(g) 0 8 8

(h) 19 6 6

(i) 0 8 8

(j) 45 5 5

The bulk modulus (B0) and equilibrium volume (V0) were obtained by fitting

the ground state cohesive energy (EC) versus volume data to the Birch-Murnaghan

equation of state [226]. As seen in Table 5.4, our VASP-GGA results of equilibrium

lattice parameters (a and c/a) are in good agreement (within 1-4% with the exper-

imental values and other theoretical results for the Zr, Al, Nb and B82-Zr2Al. Our

GGA calculated results of a and c/a for ω-Zr3Al2Nb and ω-Zr4AlNb overestimates

experimentally determined a (within 5%) and underestimates experimentally deter-

mined c/a (within 4%), respectively [77]. It is also crucial to note that the exper-

imentally reported (Zr,Nb)2Al is compositionally close to Zr59Al20Nb21 in contrast

to our chosen compositions Zr50Al33.33Nb16.67 (Zr3Al2Nb) and Zr66.67Al16.67Nb16.67

(Zr4AlNb). Our GGA results for B0 of pure Zr, Al and Nb phases are within 3-6%
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Figure 5.7: Calculated total energy as a function of atomic displacement for 6
distinct Zr3Al2Nb configuration.

of respective experimental values; while that for the B82-Zr2Al, the calculated value

is in good agreement (within 2%) with the other theoretical results. For Zr3Al2Nb

and Zr4AlNb phases, there are no previous theoretical predictions available in the

literature.

The heat of formation (Eform) is the quantity of interest for the determina-

tion of the stability of the phases and to assess strength of interatomic bonding. In

view of this, we calculated the heat of formation of binary Zr2Al, ternary Zr3Al2Nb

(Γ, ω′ and ω) and ω-Zr4AlNb. The heat of formation (Eform) can be described as:

Eform(ZrxAlyNbz) =
1

NZr +NAl +NNb

[
EC(ZrxAlyNbz)−xEC(Zr)−yEC(Al)−zEC(Nb)]

(5.3)

whereEC(ZrxAlyNbz) is the cohesive energy of ZrxAlyNbz phase, and Ec(Zr),

EC(Al) and EC(Nb) are the cohesive energies per atom of Zr (hcp), Al (fcc) and

Nb (bcc) phases, respectively. NZr, NAl and NNb refer to the number of Zr, Al and

Nb atoms in the unit cell of ZrxAlyNbz. Table 5.4 shows that Eform value of the

ω′-Zr3Al2Nb is more negative than the Γ and ω structures which confirms higher

stability of ω′ compared with Γ and ω structures. ω-Zr4AlNb is less stable than
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Figure 5.8: Calculated total energy as a function of atomic displacement for 10
distinct Zr4AlNb configuration. Energy values in the y axis are given with respect
to configuration (i).

ω′-Zr3Al2Nb and Eform value of ω-Zr4AlNb is almost four times lower compared to

that of ω′-Zr3Al2Nb. Moreover, chemically ordered ω-Zr2Al (B82) is more stable

than both ω′-Zr3Al2Nb and ω-Zr4AlNb ternary derivatives.

In order to further revel the change in nature of bonding due to ω-type atomic

displacements in Zr3Al2Nb, we compare total and angular momenta-decomposed
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Table 5.4: DFT-GGA ground-state properties of Zr3Al2Nb (Γ,ω′ and B82), ω-
Zr4AlNb along with pure Nb (bcc) phase. Experimental (in parentheses) and other
calculated ab-initio values in braces are also given. References [77] enlist experi-
mental values of a and c/a for Zr59Al20Nb21 alloy.

Structures a (Å) c/a B0 Eform

(GPa) (eV/atom)

bcc Nb 3.3227 1.0000 171.0 -

Im3m (229) (3.3024) [219] (173.0) [230] -

3.2929 [231] 175.2 [231] -

Γ-Zr3Al2Nb 3.4144 - 113.5 -0.312

P3m1 (164)

ω′-Zr3Al2Nb 4.8196 1.2370 114.0 -0.350

P3m1 (164) (4.6100) [77] (1.2826) [77]

ω-Zr3Al2Nb 4.8184 1.2367 114.7 -0.332

P3m1 (164)

ω-Zr4AlNb 4.8964 1.2248 105.2 -0.078

P3m1 (154)

B82-Zr2Al 4.9230 1.2066 100.6 -0.364

P63/mmc (194)

density of states (DOS) for Γ and ω′-Zr3Al2Nb structures in Figure 5.9 (a) and (b),

respectively. As seen in both the figures, a low lying band in the energy range -7.5

to -4.5 eV is dominated by Al s electrons and is separated by a narrow forbidden

gap from other densities. This is the result of strong hybridization between s band

of Zr and Al. In the valence band region the bonding and antibonding states are

separated by a pseudo gap and the Fermi level (EF ) lies in the bonding region. In

this region Al-p, Zr-d and Nb-d states are bonded strongly by hybridization. In

the conduction band region (region mostly above EF ) the non-bonding d states are

present and total DOS resembles the Zr-d DOS. These features are similar in both

Γ and ω′-Zr3Al2Nb DOS but there are some differences. The width of the forbidden

gap (which separates low lying bands and valence bands) and depth of the pseudo

gap is higher in ω′ than in Γ-Zr3Al2Nb. This signifies the degree of covalent bonding

is higher in ω′ than Γ-Zr3Al2Nb. Similar higher degree of covalent bonding can also

be observed in he bonding states of ω′-Zr3Al2Nb as Zr-Al bond distances are smaller

in ω′ than in Γ-Zr3Al2Nb.
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Figure 5.9: Total and partial DOS of (a) Γ and (b) ω′-Zr3Al2Nb. Fermi energy
(EF ) is represented by vertical line.

5.3.2 Mechanical Stability of ω′-Zr3Al2Nb, ω-Zr4AlNb and

B82-Zr2Al alloys

Elastic constants are the measure of the resistance of a crystal to an externally

applied stress. Generally, the single-crystal elastic constants can be obtained by

calculating the total energy as a function of appropriate lattice deformation. De-

pending on the crystal symmetry and the type of lattice deformation imposed, the

curvature of the total energy versus strain curves can define either a particular elas-

tic constant or a combination of elastic constants. The internal energy (E(V, {ei}))
of a crystal under an infinitesimal strain ei, with respect to the energy E(V0, 0) of

the unstrained geometry, can be written as

E(V, {ei}) = E(V0, 0) +
V0

2

6∑
i,j=1

Cijeiej +O(e3) (5.4)

where V0 is the volume of the unstrained system with E(V0, 0) being the corre-

sponding energy, Cij’s are the single-crystal elastic constants and the strain tensor

ε = ei, ej, ... is given in Voigt notation. These elastic constants can be determined by

a polynomial fitting of the calculated deformation energy ∆E = E(V, ei)−E(V0, 0)
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as a function of the strains as given in Table 3 for the hexagonal and trigonal crys-

tals [232, 233]. For a hexagonal system, there are 5 independent elastic constants,

viz., C11, C12, C13, C33 and C44 [180]. Similarly for trigonal system, there are 6 inde-

pendent elastic constants, viz., C11, C12, C13, C33, C44 and C14 [234]. The maximum

strains used for total energy fitting to derive elastic moduli were kept within 2% of

the undeformed lattice vectors in these calculations.

Table 5.5: The listing of strains (ei) used for the calculation of elastic constants at
0 K for the ω′-Zr3Al2Nb, ω-Zr4AlNb and B82-Zr2Al (the unlisted ei’s = 0).

Crystal Strain ∆/V0

e1 = e2 = δ C11 + C12δ
2

Hexagonal/ e1 = −e2 = δ C11 − C12δ
2

Trigonal e3 = δ 1
2
C33δ

2

e5 = δ 2C44δ
2

e1 = e2 = e3 = δ 1
2
(2C11 + 2C12 + 4C13 + C33)δ2

only for Trigonal e1 = e4 = δ 1
2
(2C11 + 4C13 + 4C14)δ2

Mechanical stability of a crystalline structure is manifested by positive strain

energy against any homogeneous elastic deformation. For hexagonal and trigonal

crystals, the requirement of mechanical stability leads to the following restrictions

on its elastic constants [180,234]:

C12 > 0;C33 > 0;C44 > 0;C11 > C12 and (C11 + C12)C33 > 2C2
13 (hexagonal)

C11 > C12; (C11 + C12)C33 > 2C2
13 and (C11 − C12)C44 > 2C2

14 (trigonal).

Table 5.6 enlists PAW-PBE calculated single crystal elastic constants of ω′-

Zr3Al2Nb, ω-Zr4AlNb and B82-Zr2Al along with previous theoretically calculated

values for B82-Zr2Al [235]. PAW-PBE calculated single crystal elastic constant

values are in agreement with previously calculated values. The calculated elastic

constants of ω′-Zr3Al2Nb, ω-Zr4AlNb and B82-Zr2Al obey the mechanical stability

criteria and hence all these structures are mechanically stable. The present calcula-

tions showed that the value of C11 for ω′-Zr3Al2Nb is the largest among these three

structures and value of C11 for B82-Zr2Al is close to that for ω′-Zr3Al2Nb, whereas

for ω-Zr4AlNb it has the smallest value. It is noteworthy that ω-Zr4AlNb has the

largest C12 value followed by that of B82-Zr2Al and ω′-Zr3Al2Nb. From Table 5.6,

it can be seen that the value of C33 become eventually larger going from B82-Zr2Al,

ω-Zr4AlNb to ω′-Zr3Al2Nb, which means B82-Zr2Al is easily deformed along [0001]

direction compared to other two structures. The calculated value of C44 is lowest
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in ω-Zr4AlNb and this value is less than the half of C44 values in ω′-Zr3Al2Nb and

B82-Zr2Al.

The ductility behavior of this alloy can be assessed by evaluating polycrys-

talline elastic properties. The elastic parameters were usually obtained from first-

principle calculations for single crystals but the majority of synthesized and ex-

perimentally examined alloys are prepared and investigated as polycrystalline, i.e.,

in the form of aggregated mixtures of microcrystallites with a random orientation.

Thus, it is necessary to calculate the elastic parameters for polycrystalline materials

and the Voigt-Reuss-Hill (VRH) approximation [236–238] is widely used. Voigt’s

and Reuss’s schemes represent the upper and lower bound for the structural param-

eters, respectively, and the final values of the polycrystalline bulk modulus (BV RH)

and the shear modulus (GV RH) are obtained by the averages of the two:

BV RH =
BR +BV

2
; GV RH =

GR +GV

2
(5.5)

For hexagonal phases the Voigt (BV ) and Reuss (BR) bulk moduli are given

by

BV =
1

9
[2(C11 + C12) + C33 + 4C13]

BR =
(C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13

(5.6)

Similarly, the upper and lower bounds for the shear modulus of hexagonal

phase according to the Voigt (GV ) and Reuss (GR) can be represented as

GV =
1

30
[C11 + C12 + 2C33 − 4C13 + 12C44 + 12C66]

GR =
5

2

((C11 + C12)C33 − 2C2
13)2C44C66

3BVC44C66 + ((C11 + C12)C33 − 2C2
13)2(C44 + C66)

where C66 =
1

2
(C11 − C12)

(5.7)

The isotropic bulk modulus and shear modulus values for polycrystalline

ω′-Zr3Al2Nb and ω-Zr4AlNb were first calculated using the above relations. Table

5.6 enlists single-crystal elastic constants as well as isotropic bulk, shear and Young

modulus of these phases and B82-Zr2Al. We were not able to compare our calculated

values of Young and Shear modulus for Zr3Al2Nb and Zr4AlNb due to unavailability

of any experimental values. The calculated bulk moduli of these structures are in

agreement with that obtained through the fit to Birch-Murnaghan equation of state.
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In general, the large values of shear modulus are indicative of pronounced directional

bonding between atoms. The value of shear modulus for B82-Zr2Al is the largest,

followed by that for ω′-Zr3Al2Nb and ω-Zr4AlNb. As indicated in DOS analysis,

there is a strong directional bonding between Zr and Al atoms in ω′-Zr3Al2Nb

which results in larger values of shear modulus. In contrast, ω-Zr4AlNb is having

less pronounced directional bonding compared to Zr3Al2Nb and Zr2Al in accordance

with calculated shear modulus values. The polycrystalline Young modulus (E) were

then computed from these values using the following relationship:

E =
9BV RHGV RH

3BV RH +GV RH

(5.8)

Young’s modulus is used to provide a measure of the stiffness of the solid,

i.e., the larger the value of E, the stiffer the material. Our calculated E values

indicate ω′-Zr3Al2Nb and B82-Zr2Al are of comparable stiffness but ω-Zr4AlNb is

having smaller E value compared to these two structures.

Brittle/ductile behavior, an important mechanical characteristics of materi-

als, is closely related to their reversible compressive deformation and fracture ability.

The ductile materials can be bent greatly and reshaped without breaking as they

accommodate local stress concentrations. In contrast, brittle materials have only

a small amount of elongation at fracture. In simplest ways, the most widely used

malleability measures are the Pugh’s criterion (G/B ratio) [239] and the Cauchy

pressure (CP) [240]. As it is known empirically, if G/B < 0.5, a material behaves

in a ductile manner, and if G/B > 0.5, a material demonstrates brittleness. As

regards the Cauchy pressure (for example, for cubic crystals CP = (C12 − C44)),

it is often used to explore the geometry of chemical bonding since it yields nega-

tive values for directionally bonded (covalent) solids and positive ones for ductile

metals [241–243]. One may consider two types of Cauchy pressure in an hexagonal

crystal, C12 − C66 and C13 − C44. We have enlisted these two values of CP for

the ω′-Zr3Al2Nb, ω-Zr4AlNb and B82-Zr2Al hexagonal crystal. According to our

calculated values for G/B and CP it is evident that the ductility property of both

ω′-Zr3Al2Nb and B82-Zr2Al is very poor and as expected from the general notion

that the chemically ordered ω phases often shows brittle behavior [1,2,6]. In con-

trast, G/B is less than 0.5 and C13−C44 value is highest for ω-Zr4AlNb. Therefore,

the directional bonding nature in B82-Zr2Al is higher (negative C13 − C44 value)

and it reduces with the addition of Nb in ω′-Zr3Al2Nb. In contrast, less pronounced

directional binding in ω-Zr4AlNb manifests this structure to be ductile.
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Table 5.6: Calculated values of elastic constants for the ω′-Zr3Al2Nb, ω-Zr4AlNb
and B82-Zr2Al.

Elastic Property ω′-Zr3Al2Nb ω-Zr4AlNb B82-Zr2Al

C11 (GPa) 202.0 167.5 195.0 {178.3}
C12 (GPa) 77.1 84.8 80.2 {85.4}
C13 (GPa) 58.6 59.3 54.5 {51.2}
C33 (GPa) 226.3 199.7 190.6 {189.2}
C44 (GPa) 57.9 25.0 67.02 {57.7}
C14 (GPa) -10.8 -1.46 -

Bulk Modulus BHV R (GPa) 113.1 104.6 106.4

Shear modulus GHV R (GPa) 69.9 39.7 70.8

Young’s modulus E (GPa) 173.9 105.7 173.6

G/B 0.613 0.379 0.665

C12 − C66 (GPa) 14.7 43.4 22.8

C13 − C44 (GPa) 0.7 34.3 -12.5

5.3.3 Bond Stability and Bond Strength

Since the number of nearest and second nearest neighbors is changing in ω-type

atomic displacements, we chose a structure in which Zr-Al bonds can exist as the

first and second nearest neighbors. This type of configuration can be visualized from

Figure 5.1(a). Then we calculated Eform for underlying bcc Zr2Al structure which

is -0.240 eV/atom. Comparing this Eform value with that of B82-Zr2Al (-0.364

eV/atom) indicates that Zr-Al bonds are stronger at shorter distances. Similar

kind of bcc structures can also be made with composition Nb2Al and Zr2Nb if Zr

atoms are replaced with Nb in Figure 5.1(a) which corresponds to Nb2Al and Al

atoms are replaced with Nb in Figure 5.1(a) which corresponds to Zr2Nb. Also, B82

structures can be generated if similar atomic replacements are followed in Figure

5.1(c) structure. We calculated Eform value of these structures to determine bond

strength of Nb-Al and Zr-Nb as a function of distance. From these calculations, it

is evident that B82-Nb2Al (-0.286 eV/atom) is more stable than bcc-Nb2Al (-0.220

eV/atom). In other words, Nb-Al bonds are also stronger at shorter distances and

Nb-Al bonds are weaker compared to Zr-Al bonds. But stability of B82-Zr2Nb (-

0.071 eV/atom) and bcc-Zr2Nb (-0.072 eV/atom) is almost similar. In this case,

the stability sequence is reversed compared to previous two situations. So the Zr-

Nb bonds are weak at shorter distances. These parameters indicate that the most
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stable bond is Zr-Al followed by the Nb-Al, and the Zr-Nb bond is the least stable.

Moreover, the Zr-Al bonds are more stable than the Nb-Al at shorter distances.

It can be noted that the Γ-Zr3Al2Nb phase is metastable due to presence

of weak Zr-Nb bonds between the 3rd, 4th and 5th atomic planes. Even though

the strong Zr-Al bonds are present as 1st NN and Nb-Al bonds are present as 2nd

NN in this structure. The Zr-Al bonds can increase their strength by reducing

distances between them and Zr-Nb bonds prefer to expand. So, inherently, Γ-

Zr3Al2Nb structure is destabilized with respect to ω-type atomic displacements. A

similar argument can also be given for the most stable bcc Zr4AlNb configurations.

Therefore, the displacive process in the Γ-Zr3Al2Nb and most stable bcc Zr4AlNb

structure prefers an atomic arrangement where every Al atom is surrounded by Zr

atoms owing to stronger Zr-Al bonds supporting the ordering tendency in this al-

loy. Overall, the present calculations suggest that the configuration with maximum

number of Zr-Al bonds has a greater tendency for omega-type atomic displacements.

Therefore, the ω phase is formed due to the competition between Zr-Al and Zr-Nb

bonding arrangements.

5.3.4 Chemical Ordering versus Displacive Tendencies

To understand the effect of the chemical ordering on the stability of the Γ-Zr3Al2Nb

phase with respect to ω-type atomic displacement, several different structures were

investigated (Figure 5.5). The lattice parameters of each rearranged structure were

optimized. If the calculated energy for the Γ-Zr3Al2Nb structure is represented as

EΓ, the following sequence holds for the structures shown in Figure 5.5: EΓ < Ef <

Ee < Ed < Ec < Eb. In Table 5.3 we enlist the energy difference of each structure

compared to EΓ along with number of Zr-Al and Zr-Nb bonds as the first NN for

different configurations. We found that there is a direct relation between number of

Zr-Al bonds present in the structure and energy of the underlying bcc structures.

The structure with higher number of Zr-Al bond is energetically more stable. Figure

5.7 shows variation of total energy as a function of ω-type atomic displacement

for different atomic configurations (as shown in Figure 5.5). Using the results of

bond strength sequence from the last section we can explain the energy sequence

of different structures. It is evident that the Zr-Al bond is stronger than the Zr-

Nb and Zr-Al bonds are stronger at shorter distances, relative to their positions

in the underlying bcc structure. So it is expected to observe relative instability

towards ω-type atomic displacement for a bcc structure with more number of Zr-Al

bonds. According to our results, the structures in Figure 5.5(e), 5.5(f) and 5.5(a) are
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showing instability towards an ω-type structure formation. Therefore, our results

are in agreement with the previous structural stability analysis.

The calculated ground-state cohesive energies of all ordered configurations of

the bcc-Zr4AlNb structure are listed in Table 5.4. It can be seen that the configura-

tions marked (a), (g) and (i) in Figure 5.6 are the most stable configurations, as their

energies are the lowest and degenerate. The following relations hold for the energies

of configurations (Figure 5.8): E(a) = E(g) = E(i), E(c) = E(h), E(f) = E(b) = E(j)

and E(a) < E(c) < E(e) < E(d) < E(b). In Table 5.3, the energy difference of each

configuration is compared to E(a)(= E(g) = E(i)) along with number of Zr-Al and

Zr-Nb bond present in 1st NN for each configurations. As discussed in the previous

section, the results of bond strength sequence can explain the energy sequence of

different bcc structures. Accordingly, configurations (a), (g) and (i) are more stable

compared to other configurations because of more number of Zr-Al bonds present

in 1st NN. Figure 5.8 shows variation of total energy as a function of ω-type atomic

displacement for different atomic configurations (as shown in Figure 5.6).

Based on the first principles calculations the Figure 5.7 shows the possible

way that structures (b)-(d) can reduce their energies by rearranging atoms to an-

other low energy configuration. On the other hand, for structures (e) and (f), the

energy could be reduced by undergoing a (nondiffusive) structural transformation

to a complete ω structure. However energies of the complete ω structures are higher

than the energy of the ω′-Zr3Al2Nb structure. Thus, after ω-type transformation,

the energy of these systems can be further reduced by diffusion and displacement

of atoms. Similarly, Figure 5.8 shows the possible pathways that structures (a),

(e) and (h) of Zr4AlNb can reduce their energies by rearranging atoms (diffusive

jumps) to another low energy configurations. On the other hand, for structures (g),

(i) and (j), the energy could be reduced by undergoing a (nondiffusive) structural

transformation to a complete ω structure and final ω structure is degenerate for

configurations (i) and (j). Our calculations shown in Fig. 5.7 and Fig. 5.8 reveal

the possible coupled paths (diffusive and displacive) for the Zr3Al2Nb and Zr4AlNb

system for chemical ordering. These kind of transformation paths have also been

observed in different experiments for Ti based alloys [70,228,229]. Therefore, chem-

ical orderings of the atoms play a crucial rule in the stability of the bcc structures

with respect to the ω-type displacive transformation in both Zr3Al2Nb and Zr4AlNb

alloys. Moreover, the driving energies for this solid-solid transformations can easily

be quantified from Figure 5.7 and 5.8 by comparing potential barriers of different

configurations which give ∼270 meV/atom and ∼70 meV/atom for Zr3Al2Nb and

Zr4AlNb alloy, respectively.
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5.4 Summary

We performed first principles calculations to understand possible mechanism of

ordered ω-Zr2Al, ω Zr3Al2Nb and Zr4AlNb phase formation from disordered coun-

terpart by a coupled replacive-displacive transformation mechanism. For the binary

alloy, our ab-initio calculations showed that at any intermediate stage of the trans-

formation, the extent of plane collapse (displacive process) directly depends upon

the degree of replacive ordering achieved by the system. Our calculations also

showed that the displacive process prefers an atomic arrangement where every ‘Al’

atom is surrounded by ‘Zr’ atoms as 1st nearest neighbors in the unit cell. The inter-

pretation in terms of higher number of Zr-Al bonds present as 1st nearest neighbor

in the unit cell clearly shows inherently strong tendency of chemical ordering in this

alloy.

For ternary alloys, our study predicts formation of chemically ordered ω

phase with the trigonal symmetry (space group P3m1, non-ideal ω) in Zr3Al2Nb

and chemically ordered ω phase with the trigonal symmetry (space group P3m1,

ideal ω) in Zr4AlNb alloy. In order to decide position of Al and Nb atoms in the

bcc lattice several symmetrically inequivalent atomic configurations were examined.

Moreover, based on the number of Zr-Al and Zr-Nb bonds present as first nearest

neighbor in the unit cell of each configuration, one can predict the stability of each

rearranged structure.

This study delineates the most probable pathway on the free energy sur-

face of diffusive vis-a-vis displacive transformation by quantitative determination

of thermodynamic tendencies at different stages of the transformation. We believe

that this mechanism is broadly relevant to other coupled replacive-displacive phase

transformations in many alloys.
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Chapter 6

Superionic Transition in ThO2

6.1 Introduction

In this chapter, we presnt results of our computational work done to study su-

perionic phase transformation pathway in ThO2. It is now well established that

cubic fluorite structured materials undergo a transition to the “superionic” regime

at temperatures close to, but below, their melting points. This transition is as-

sociated with (i) a dramatic increase in ionic conductivity [88, 244, 245] although

electronic conductivity remains low (ii) a dynamic disorder in the anion sublat-

tice. But the details of anion transport mechanisms are still not completely un-

derstood [88, 143, 245–249]. Moreover, it is essential to understand microscopic

mechanism responsible for macroscopic superionic conduction.

Within the literature, the study of high temperature superionic transition

in UO2, has remained the subject of interest motivated by its use as a fuel for

nuclear fission reactors [6,28,87,88,250]. But very little attention has been paid to

other fluorite group members, e.g., ThO2. With renewed interest in studying the

feasibility of thoria-based materials as a potential fuel for various reactor systems,

it is essential to study structural stability at extreme thermodynamic conditions. In

the halide compounds, superionic transition temperature (Tc) is typically ∼0.8Tm

(Tm being the melting temperature). For ThO2, which has a Tm = 3600 K, a

superionic transition might then be expected to occur at T ∼ 2900 K. Although this

is well above normal reactor operating temperatures, a detailed knowledge of the

anion diffusion properties of ThO2 is essential for fuel design, performance modeling

and safety analysis. Furthermore, the presence of an additional component in the

heat capacity Cp (due to the onset of any thermally induced Frenkel disorder) has

important consequences when assessing the outcomes of possible reactor accident
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scenarios.

The main objectives of this chapter are: (i) to study lattice dynamical and

mechanical stability of thoria as a function of isotropic lattice strain (dilation) using

first-principles calculations and (ii) to determine the probable directions of diffu-

sion and actual diffusion paths of the oxygen atoms in the superionic regime using

classical molecular dynamic simulations. In these calculations isotropic dilation in

lattice parameter (ε), defines as

ε =
a− a0

a0

(6.1)

(a0 = equilibrium lattice constant and a = strained lattice constant), is a manifes-

tation of high temperature environment in pure ThO2. Using the density function

theory (DFT), the phonon dispersion curves have been calculated as a function

of ε to study dynamical stability of ThO2 as a function of temperature. Classical

molecular dynamics simulations have been performed to determine easy direction

of movement, actual migration pathway of oxygen atoms, and mechanical stability

of the structure which is important to understand the diffusion mechanism in the

superionic region.

6.2 Computation Methodology

The actinide oxides are the members of a class of strongly correlated materials, the

Mott insulators. Their complex physical and chemical properties make them chal-

lenging systems to characterize, both experimentally and theoretically. Chiefly, this

is because actinide oxides can exhibit both electronic localization and delocalization

and have partially occupied f orbitals, which can lead to multiple possibilities for

the ground state. Of particular concern for theoretical work is that the large num-

ber of competing states display strong correlations which are difficult to capture

with computationally tractable methods [251]. Therefore, in this study DFT+U

and Hybrid functional methods have been employed to account for the partially

occupied f orbitals.

The Vienna ab initio simulation package (VASP) was employed to perform

DFT based electronic structure calculations where the Kohn-Sham equations are

solved using a plane wave expansion for the valence electron density and wave

functions [177]. The interactions between the ions and electrons are described by

‘Projector Augmented Wave’ (PAW) potentials, which use smaller radial cutoffs

(core radii) and reconstruct the exact valence wave function with all nodes in the

110



core region [176]. The PAW potentials used in this study are those provided in the

VASP database which treats thorium 6s2 7s2 6p6 6d1 5f1 and the oxygen 2s2 2p4 elec-

trons as valence electrons. Exchange-correlation effects were treated using the local-

density approximation (LDA) in the Ceperley-Alder parametrization and general-

ized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof parametriza-

tion [165] within VASP. The Hubbard U correction was introduced with LDA using

the method as proposed by Dudarev et al. [252], in which the U parameter (reflect-

ing the strength of on-site Coulomb interaction) and J parameter (adjusting the

strength of exchange interaction) are combined into a single parameter Ueff = U−J
to take care of the Coulomb repulsions between the localized f-electrons. To decide

upon a suitable value of Ueff , available experimental data for ground state proper-

ties (e.g., lattice constant, bulk modulus and electronic band-gap) were compared

with LDA+U calculated values. All the calculations were performed with plane

wave cutoff energy of 600 eV. The total energy of ThO2 was optimized with respect

to volume (or lattice parameter) and atomic positions. The conjugate gradient algo-

rithm was used for the unit-cell relaxations until the residual forces and stress in the

equilibrium geometry were of the order of 0.005 eV/Åand 0.01 GPa, respectively.

A 16×16×16 k-point meshe was constructed using the Monkhrost-Pack scheme to

sample the Brillouin zone [208], which provided convergence in the total energy up

to 0.0001 meV/atom.

We further used the screened hybrid functional of Heyd, Scuseria, and Ernz-

erhof (HSE06) functional [253] which takes into account the effects of nonlocal

exchange with 25% Hartree-Fock contribution and a 0.2/Åscreening length. As hy-

brid functional calculations are computationally expensive compared to standard

LDA+U and GGA, we restricted their application to calculate lattice dynamical

properties for limited values of isotropic strain.

To calculate phonon frequencies of ThO2, the small displacement method as

implemented in the PHONOPY [254] program was employed. In this methodol-

ogy, the dynamical matrix is derived by giving small displacements to the atoms in

the supercell from their equilibrium positions and calculating the resulting forces

within the DFT framework. The phonon dispersion of ThO2 at different lattice pa-

rameters was calculated using the GGA and LDA+U by giving appropriate atomic

displacements in a 3×3×3 (81 atoms) supercell. For the supercell force calcula-

tions a k-point mesh of 8×8×8 was used. The splitting between the longitudinal

optical (LO) and transverse optical (TO) phonon modes was corrected using a non-

analytical correction term [255–257]. For the calculation of Born effective charges

and high frequency dielectric constants at different values of lattice strain, a linear
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response method was employed as implemented in VASP. For the ab-initio part of

this study, the temperature effects are considered indirectly by considering isotropic

dilation of the lattice parameter.

The MD simulations to study thermal, mechanical and anion transport prop-

erties were carried out using the LAMMPS [258] code. Long range coulombic in-

teractions were calculated using the Ewald method [192] with the particle-particle

particle-mesh (PPPM) implementation of the method within the MD calculations

to improve computational efficiency [258]. The interatomic potential of ThO2

used, combines the Buckingham-Morse functional form with many-body interac-

tions [148]. The MD supercell had 4000 cations and 8000 anions and was constructed

as an array of 10×10×10 unit cells of ThO2. These structures were equilibrated

with 1 fs time steps in the temperature range 300 K to 3000 K (100 K interval)

with the NPT ensemble (constant number of particles, pressure and temperature)

at zero external pressure using the Berendsen barostat with a time constant of 0.5

ps and the Nosé-Hoover thermostat with a time constant of 0.1 ps. Each simulation

of thermal expansion, mean-square displacements, radial distribution functions was

carried out initially for 400 ps for equilibration at the desired temperature and then

for another 100 ps to get an average value of the thermodynamic quantity.

To calculate the temperature dependent elastic constants, C11, C12 and C44,

a stress-strain method was applied just after the system was equilibrated within

the NPT ensemble at zero external pressure for 200 ps at the desired temperature.

In the stress-strain method, positive and negative box displacements (deformation)

were applied in all the symmetry directions and the resultant changes in stress were

computed to determine elements of the elastic stiffness tensor. The deformation

magnitude in the stress-strain calculations were varied from 10−6 to 10−3 in six

equal steps to ensure converged values of single crystal elastic constants (C11, C12

and C44). From the calculated values of C11, C12 and C44 poly-crystalline Young and

shear moduli were calculated using the Voight-Reuss-Hill approximations [236–238].

6.3 Ground State Properties of ThO2

Table 6.1 compares our GGA and LDA+U calculated values of equilibrium lattice

constant (a0), bulk modulus (B0), pressure derivative of bulk modulus (B′0), single

crystal elastic constants (C11, C12 and C44), high frequency dielectric constants (ε∞)

and Born effective charges (Z∗) of ThO2, with previously reported theoretical and

experimental values in the literature [84, 259–264]. Figure 6.1 shows the variation
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of equilibrium lattice constant (a0), bulk modulus (B0) and electronic energy-gap

(Eg) as a function of Ueff calculated for LDA+U where experimental values are pre-

sented as horizontal solid lines. Analysis of this figure shows that the Hubbard-type

on-site electronic interaction with value Ueff = 5 eV yields a better prediction of

experimental data (shown in Table 6.1) which is also consistent with a previous the-

oretical study [264]. Our LDA+U calculated a0 is in excellent agreement (<0.01%)

with experimentally reported values at room temperature, but our GGA-PBE cal-

culated value is an overestimate (by 0.3%). Our GGA and LDA+U calculated

values of B0 underestimate (4-6%) and overestimate (5.5-7%) experimentally re-

ported values [84, 259], respectively. Our GGA and LDA+U calculated values of

B′0 match well with the experimentally reported value by Idiri et al. [259] (high

pressure synchrotron X-ray diffraction data) but underestimate (by 20%) the value

reported by Olsen et al. [84] (high pressure XRD). Our GGA calculated elastic con-

stants match well (<4%) with single crystal ThO2 elastic constant data measured

by Mecedo et al. [260], but are underestimated compared to those calculated from

the inelastic neutron scattering data of Clausen et al. [261]. Our GGA and LDA+U

calculated values of ε∞ (4.83 and 4.74, respectively) are in good agreement with the

experimental value (4.86) determined by Axe et al. [262]. Our GGA and LDA+U

calculated Z∗ for Th and O (Z∗Th=5.41, Z∗O=-2.71 and Z∗Th=5.38, Z∗O=-2.69, re-

spectively) are in good agreement with previous theoretical calculations [263, 264].

Moreover, our theoretically calculated values of a0, B0, B′0, C11, C12, C44 and ε∞

are in good agreement with GGA and LDA+U calculated values by Lu et al. [263]

and Sevik et al. [264], respectively. Therefore, both GGA and LDA+U provide

comparable descriptions of the ground state properties of ThO2 and therefore both

these approximations were considered for the determination of lattice dynamical

properties of ThO2 as a function of isotropic dilation in lattice parameter.

6.4 Lattice Dynamical Properties of ThO2

Our GGA and LDA+U calculated phonon dispersion curves (shown in Figure 6.2)

are compared with the inelastic neutron scattering measurements of Clausen et

al. [261] at 293 K and Raman scattering measurements of Jayaraman et al. [265] at

295 K. These experimental measurements were performed at room temperature and

more accurate comparison of calculated phonon frequencies at special symmetry k-

points can be made by performing an LDA+U calculation of phonon dispersion

with an expanded lattice taking into account the thermal expansion of ThO2 to

room temperature (9.5-10.0 × 10−6 K−1) [6]. A comparison of LDA+U calculated
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Figure 6.1: Variation of equilibrium lattice constant (a0), bulk modulus (B0) and
electronic energy-gap (Eg) as a function of Ueff calculated for LDA+U . Experi-
mental values are presented as horizontal solid lines in the graph. In this graph we
also show pure GGA calculated values of a0 and B0 for comparison with LDA+U
calculated values. For the calculation of bulk modulus Birch-Murnaghan equation
of state was employed as shown in B0 vs. Ueff plot.

phonon frequencies across the high symmetry paths with neutron scattering data

shows that our LDA+U results agree well with experimental data in reproducing

acoustic phonon frequencies. In almost all symmetry directions of the phonon dis-

persion curve, GGA calculated phonon frequencies are lower compared to LDA+U

calculated values. In this study, the calculations for phonon dispersion curves were

performed on a 3×3×3 supercell with 81 atoms. We checked convergence of LDA+U

calculated phonon frequencies by performing a similar calculation (small displace-

ment method) with a 4×4×4 supercell of 192 atoms and results are shown in sup-

plementary information (Figure 6.3). A comparison of the phonon dispersion curves

calculated with 81 atoms and 192 atoms supercells show frequency values calculated

with smaller the supercell match within 5% of frequency values calculated with the

larger supercell. Therefore, further calculations of the phonon dispersion curve as a

function of isotropic dilation in lattice parameter were performed with the 3×3×3

supercell.
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Table 6.1: Calculated structural, elastic and dielectric properties of ThO2 are com-
pared with previous experimental and theoretical results in the literature. (* = our
HT-XRD study)

Properties This work Previous Experimental Previous Theoretical Work

GGA LDA+U MD Work GGA LDA+U

a0 (Å) 5.618 5.595 5.596 5.598(4) [84], 5.6001(3) [259], 5.619 [263] 5.60 [264]

5.597 ∗

B0 (GPa) 187.4 209.3 192.9 195.3±2.0 [84], 198(2) [259] 190 [263] 216 [264]

B′0 4.23 4.28 - 5.4±0.2 [84], 4.6(3) [259] 4.3 [263]

C11 (GPa) 352.2 375.4 351.9 367 [260], 377 [261] 351.2 [263] 381 [264]

C12 (GPa) 107.8 129.8 113.6 106 [260], 146 [261] 106.9 [263] 134 [264]

C44 (GPa) 74.6 105.8 71.7 79 [260], 89 [261] 74.1 [263] 106 [264]

ε∞ 4.83 4.74 - 4.86 [262] 4.83 [263]

Z∗Th 5.41 5.38 - - 5.41 [263] 5.327 [264]

Z∗O -2.71 -2.69 - - -2.71 [263] -2.663 [264]

In Table 6.2, we enlist out GGA and LDA+U calculated phonon frequencies

as well as experimentally measured phonon frequencies at high symmetry points of

the Brillouin zone, viz., Γ, X and L. Our LDA+U calculated phonon frequencies

of F1u (LO) and F2g modes match well, within ∼1% of the neutron scattering and

Raman scattering data. However, the LDA+U calculated F1u (TO) mode is overes-

timated by 7% compared to the experimental results and the GGA calculated value

is underestimated by 7% compared to the experimental results. At the X point,

our LDA+U calculated phonon frequencies of Eu (acoustical mode) and Eu (op-

tical mode) match well with inelastic neutron scattering measured frequencies but

for the Eg mode, the LDA+U calculated value is overestimated by ∼23%. Over-

all, optical phonon frequencies are lower for GGA calculations compared to those

of LDA+U . The experimentally measured Eu mode [261, 265] matches well with

calculated values. At the L point, our LDA+U calculated phonon frequencies for

Eu (acoustical mode), A1u and Eg match very well with inelastic neutron scatter-

ing measured frequencies [261]. Conversely, LDA+U calculated Eu (optical) and

A1g mode frequencies are overestimated. Moreover, our GGA calculated values are

always underestimated compared to experimental vales [261,265].
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Figure 6.2: Phonon dispersion curve of ThO2 calculated using GGA and LDA+U
compared with inelastic neutron scattering data [261] and Raman scattering mea-
sured data [265] at room temperature. Solid and dotted line represents LDA+U
and GGA calculated phonon frequencies, respectively. Solid circles present experi-
mentally measured data. The notation of the special points is Γ (0,0,0), X (0,0,1),
W (1,1,0) and L (1,1,1).

6.5 Lattice Dynamical Properties as a function of

isotropic strain

Figure 6.4 shows our GGA and LDA+U calculated phonon dispersion curves and

density of states (DOS) for ThO2 at different lattice strains (dilation). It is im-

portant to note that overall as ε increases, the phonon frequencies decrease, as

the material itself becomes softer. The singlet B1u mode softens considerably as a

function of ε at the X point compared to other modes. The Eu doublet mode also

softens but the rate of softening of Eu is small compared to the B1u mode. The

singlet B1u mode crosses the Eu doublet in the range 0.04 < ε < 0.045 and 0.045

< ε < 0.05 for GGA and LDA+U calculated phonon frequencies, respectively. A

maxima in the phonon DOS in the low frequency region can also be observed at ε

= 0.04 and ε = 0.05 for the GGA and LDA+U calculated DOS. A sharp increase

in the phonon DOS is observed at the frequency where the B1u mode intersects the
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Figure 6.3: Phonon dispersion curve of ThO2 calculated using LDA+U and 3×3×3
(81 atoms) as well as 4×4×4 (192 atoms) supercell compared with inelastic neutron
scattering data at room temperature. Solid and dotted line represents calculated
phonon frequencies for 3×3×3 and 4×4×4 supercell, respectively. Solid points are
neutron scattering data as reported by Clausen et al. [261].

Eu mode (or close to it) at the X point. The crossover of the B1u and Eu modes

can be observed clearly in Figure 6.5, where the variation of the B1u and Eu modes

is plotted a function of isotropic lattice strain.

Experimentally determined temperature variation of lattice parameters data

for ThO2 shows 3.8% and 4% lattice strain at ∼3500 K and ∼4000 K, respec-

tively [122]. Our GGA calculated B1u mode gets softer with increasing ε and be-

comes imaginary in the range 0.04 < ε < 0.045. Therefore, our GGA calculated

results predict an overestimated lattice parameter (or corresponding temperature)

to achieve the superionic state compared to those reported experimentally. This

can be attributed to the following: (i) the small displacement method (or harmonic

approximation) to calculate phonon dispersion curve is not valid as temperature

approaches the melting temperature (since anharmonic effects are expected to be-

come important), (ii) while the GGA approximation is reasonably good for predict-

ing ground state structural and mechanical properties of ThO2 and its efficacy at

elevated temperatures is not proven.
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Table 6.2: GGA, LDA+U and HSE06 calculated phonon mode frequencies of ThO2

at high symmetry points of the Brillouin zone (Γ, X and L) are compared with
inelastic neutron scattering and Raman scattering measured phonon frequencies.
The results are shown for isotropic lattice strain (ε) of 0.00.

Symmetry Mode GGA LDA+U HSE06 Experiment

F1u (LO) 16.6 17.3 16.8 16.9 [261], 17.0 [265]

Γ F2g 13.1 14.2 12.1 14.1 [261], 13.9 [265]

F1u (TO) 7.9 9.0 8.2 8.3 [261], 8.4 [265]

A1u 17.9 18.4 18.2 -

Eu 12.7 13.4 13.4 13.3 [261]

X A2u 6.7 8.6 8.1 -

Eg 6.7 7.0 6.7 5.7 [261]

B1u 5.6 6.9 5.5 -

Eu 3.1 3.5 3.4 3.6 [261]

A1u 16.2 16.9 16.5 -

A1g 11.8 12.7 12.6 12.2 [261]

L Eu 11.5 12.4 12.0 11.2 [261]

Eg 9.7 10.6 10.5 10.7 [261]

A1u 5.2 5.8 5.3 5.3 [261]

Eu 2.6 2.8 2.9 2.9 [261]

Figure 6.5 also shows hybrid-functional DFT calculated phonon frequencies

of B1u and Eu modes for ε = 0.0, 0.03, 0.035 and 0.04. Hybrid functional (HSE06)

provides a significant improvement in the electronic structure description and cal-

culated structural properties of ThO2 [251]. It is expected that this functional

would give accurate phonon dispersion comapred to GGA and LDA+U . As hy-

brid functiona DFT calculations are computationally more demanding than the

standard GGA and LDA+U calculations. We limited the force calculations, using

small displacement method to a 2x2x2 supercell of primitive ThO2. For the cal-

culation of LO-TO splitting at Γ point, experimentally determined value of ε∞ =

4.83 [263] was used. The HSE06 calculated equilibrium lattice parameter (a0) of

5.5862 Åis matching well previous experiments [84,259]. Table 6.2 compares hybrid

DFT calculated phonon frequencies with GGA and LDA+U calculated values as

well as neutron scattering and Raman scattering data. The hybrid DFT calculated

phonon frequencies gives higher frequencies of F1u mode at the Γ point, A1g, Eu,

A2u modes at the X point and A1u, A1g, Eu, Eg modes a tthe L point compared to

their GGA calculated values.
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Figure 6.4: Phonon dispersion curve and density of states for ThO2 calculated using
GGA at lattice strain (a) ε = 0.0, (b) ε = 0.04, (c) ε = 0.045 and using LDA+U
at lattice strain (d) ε = 0.0, (e) ε = 0.05, (f) ε = 0.06. Red, blue and black lines in
DOS plot shows partial DOS of Th, O and total DOS, respectively.

6.6 B1u and Eu phonon mode softening at the X

point

Figure 6.5 suggests an almost linear decrease in frequency with increasing lattice

strain for GGA and LDA+U calculated B1u and Eu modes from ε = 0.0 to 0.04.

After ε > 0.04, these mode frequencies decrease abruptly and the B1u mode fre-

quencies becomes smaller compared to Eu mode frequencies in the range 0.05 > ε >

0.04. It was mentioned earlier that there is an increase in the narrow peak in the

PDOS when the B1u and Eu modes cross (or are about to cross) at the X point. In

other words, the occupations of these modes are higher at high temperatures and

possibility of the coupling of these two modes is also high. With further increase of

lattice strain B1u mode becomes imaginary at ε = 0.042 and 0.052, for GGA and

LDA+U , respectively. Using hybrid DFT calculations, we find that the B1u and
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Eu modes cross at ε = 0.03 (corresponding to T = 3000 K [122]) and B1u mode

becomes imaginary at ε = 0.036 (corresponding to T = 3430 K [122]). Therefore,

B1u mode becomes imaginary at a temperature below the melting temperature of

ThO2 (≈ 3600 K) [122].

Figure 6.5: GGA, LDA+U and HSE06 calculated Eu (empty points) and B1u (solid
points) mode frequencies at the X point as a function of linear lattice strain. Solid
lines are drawn only for vidual guidence

The singletB1u mode consists of O ions motion in the [001] direction as shown

in Figure 6.6. If we consider O atoms in the ThO2 unit cell as a row of atoms along

[001], then atomic rows along [110] (and equivalent directions) move in phase and

adjacent atomic rows move in the opposite phase. On the other hand, the doubly

degenerate Eu mode consists of simultaneous Th and O movement perpendicular to

[001]. Figure 6.6 also shows GGA and LDA+U calculated variation of the potential

energy versus zone center phonon mode B1u in terms of the normalized atomic

displacement of O atoms as a function of isotropic dilational lattice strains. For

ε = 0, the effective potential has a minimum at zero atomic displacement. With

increasing ε (or temperature, ε = 0.045), the effective potential transforms into a

double well (from a single well) having maxima at equilibrium atomic position. The

application of isotropic strain (dilation) modifies the potential energy landscape for

the B1u phonon mode in such a fashion that the oxygen atom movement along the

[001] direction towards a nearby tetrahedral oxygen site becomes easier compared
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to other modes of phonon vibrations corresponding to the volume of the superionic

region. Hence, temperature increase could lead to migration of oxygen atoms from

one tetrahedral site to a nearby vacant tetrahedral site along a [001] direction. It

is also important to note that, the effect of ε on the GGA calculated potential

energy is greater than the LDA+U calculated potential energy. This can also be

understood from the calculated phonon frequencies as a function of ε (Figure 6.5),

which shows less softening of the B1u mode for LDA+U values compared to GGA.

Figure 6.6: GGA, LDA+U and HSE06 calculated variation of potential energy
versus zone center phonon mode B1u in terms of normalized atomic displacement
of O atoms as a function of isotropic dilational lattice strains. Actual motion of the
O atoms in the ThO2 unit cell is also shown.

6.7 Transition to Superionic State: The Pathway

6.7.1 Anion Conduction Mechanism

Systematic vibration of oxygen atomic rows along <001> directions leads to a

singlet B1u phonon mode. Similarly, a systematic vibration of Th and O atoms per-

pendicular to < 001 > directions (i.e., in the (110) planes) leads to the Eu phonon

mode. At lower values of ε (< 0.04), these two modes remain uncoupled and mode

frequencies decrease almost linearly with ε. Moreover, the amplitude of vibration
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of the O atoms along < 001 > is higher compared to its amplitude of vibration

perpendicular to <001>. With increasing ε ( 0.04 < ε < 0.05), the amplitude of

vibration perpendicular to <001> increases and the dynamics of O atoms corre-

sponding to B1u and Eu phonon modes become coupled, which is also be manifested

by a sharp increase of the narrow peak in the PDOS when the B1u mode frequency

become smaller than the Eu mode in the phonon dispersion curve. In other words,

coupling of the B1u and Eu phonon modes increases the possibility that the in-

terstitial site is occupied at temperatures close to Tc. The transformation of the

potential energy landscape from single well to double well (|ε| > 0.04) emphasizes

how anions preferentially migrate to interstitial sites along <001>, which leads to

Frankel-like positional disorder. With further increase of ε, the B1u phonon mode

frequencies become imaginary which leads to thermally activated complete disorder

of the anion sublattice. Coupling of the B1u and Eu phonon modes changes the

superionic conductivity regime, where anionic conductivity is mediated by random

anion hopping to interstitial sites along <001> from correlated anionic motion at

interstitial sites F1 (48 g Wyckoff positions) and F2 (32 f Wyckoff positions).

Gavartin et al. [266] calculated the phonon dispersion curve and PDOS of

Li2O at 10 K and 1000 K using the quasi-harmonic approximation and MD simula-

tions and found a crossover of the transverse Raman mode (TR) and the LO mode

as temperature reached the fast-ionic phase transition point. They attributed this

to a change in cationic conductivity mechanism. Mode softening leads to the loss

of the relative phase of Li+ ions moving along the [100] crystal direction (as the TR

mode disappears), so that the ionic motion can be considered as a set of coupled os-

cillators. As soon as a few neighboring ions get in phase, a large amplitude coherent

motion rapidly develops along <100>. Such fluctuations propagate a caterpillar-

like mechanism, whereby a Li+ ion moves into the cube-interstitial position, while

the rest of the chain of ions moves simultaneously along <100>, each ion filling

the site vacated by its nearest-neighbour. Thus, an interstitial ion and a cation

vacancy, separated by a few unit cells, can be created within the same elementary

event. With further increase of temperature, cation transport is mediated through

a hopping mechanism. We believe an equivalent anionic conduction mechanism is

followed in ThO2.

6.7.2 Migration Barrier for Oxygen Movement

In order to gain further insight into the anion conduction mechanism near the

superionic transition point we performed MD simulations to calculate migration
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barriers along different symmetry directions and traced the actual oxygen trajectory

as a function of time in the superionic state. The migration barrier for oxygen

movement was calculated by creating an oxygen vacancy at a regular lattice site

and moving another neighbouring oxygen atom from its initial lattice site towards

the vacant lattice site along [001], [110], and [111] high-symmetry directions. In

appendix A a sketch showing vacancy position and direction of migration of oxygen

atom toward that vacancy site is given (Figure A.1). An oxygen vacancy was created

at a point in 10x10x10 supercell by intentionally removing one oxygen atom from

that point and putting that O atom at an octahedral position of fcc lattice far away

(nearly five unitcells away) from the defect site to maintain the charge neutrality of

the simulation box. Initially, this configuration was optimized and nudged-elastic-

band calculations were performed on the optimized structure by moving another

neighboring oxygen atom from its initial lattice site towards the vacant site. For

this purpose the nudged-elastic-band (NEB) method [267–269] was employed as

embedded in LAMMPS. In this calculation 6 intermediate states were inserted and

diffusion barriers were calculated. This enabled us to identify the easy direction for

oxygen motion towards the vacant site in normal and superionic states. Figure 6.7

shows the NEB calculated oxygen migration barrier along [001], [110] and [111] the

three high symmetry directions for lattice parameter a = 5.6 Å(corresponding to

the normal state) and a = 5.8 Å(corresponding to the superionic state). The MD

NEB calculated oxygen migration barriers along [001], [110] and [111] directions are

0.78 (0.17), 4.77 (4.47) and 5.24 (5.02) eV, respectively, for lattice parameter a =

5.6 Å(and a = 5.8 Å). From this analysis it is evident that the <001> directions

are most favorable for oxygen atom movement in normal and superionic states.

6.7.3 Position-Time plot for oxygen migration

In order to identify the superionic transition temperature (Tc) for ThO2 (corre-

sponding to the potential used in our MD simulations), we initially determined the

mean square displacements (MSD), diffusion coefficients of oxygen atoms and radial

distribution functions (RDF) of oxygen atoms in the temperature range 2500-3500

K (in 100 K intervals). The MD calculated values of MSD and the RDF of oxy-

gen atoms as a function of temperature were determined and the results are given

in Appendix A (Figure A.2, A.3 and A.4, respectively). The analysis of MD

calculated MSD, diffusion coefficients and RDF of oxygen atoms shows that the

superionic transition occurred at 3000 K.

The snapshot of migration for oxygen atoms at 3000 K is shown in Figure
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Figure 6.7: MD calculated migration barrier along [001], [110] and [111] high sym-
metry directions. Solid lines and fill points present MD NEB calculated migration
path for a = 5.6 Å(correspond to normal state). Similarly, doted lines and open
points present MD NEB calculated migration path for a = 5.8 Å(corresponds to
superionic state).

6.8 as a position-time plot for 20 ps duration in the XY and YZ plane. For these

calculations, a 10×10×10 ThO2 supercell was initially equilibrated as an NPT en-

semble at 3000 K for 500 ps at this temperature the MD calculated equilibrium

lattice parameter is 5.803 Å. This previously equilibrated system was then sub-

jected to a 20 ps run as an NVE ensemble and the trajectories of several oxygen

atoms were traced for 20 ps. Among them, the trajectories of two oxygen atoms A

and B are shown in Figure 6.8. It is also important to note that at this tempera-

ture the atoms are not occupying ideal lattice sites but remain in the tetrahedral

region surrounding their ideal lattice sites. Oxygen atom A, initially occupying a

position (0.75, 0.75, 1.75), migrates to a position (0.75, 1.25, 1.75) with a jump

time of ∼0.19 ps. The actual atomic position of the atom A can be obtained by

multiplying these atomic positions by the equilibrium lattice parameter as shown

in Figure 6.8. Atom A resides in the initial position (0.75, 0.75, 1.75) for 11.2 ps

and then migrates to position (0.75, 1.25, 1.75) through a octahedral interstitial

position (0.50, 0.50, 1.50). On the other hand, atom B, which initially occupies

position (5.25, 3.25, 1.75), migrates to position (5.25, 2.75, 1.75) with a jump time

of ∼0.33 ps. Then it moves to position (4.75, 2.75, 1.75) with a jump time of ∼0.6
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ps. Atom B resides in its initial and intermediate positions for 6.00 ps and 9.77 ps,

respectively.

The residence time and jump time is determined by calculating a four com-

ponent vector quantity per atom. The first three components of the vector are the

displacements of a atom from its starting position along x, y and z direction (dx, dy

and dz). The forth component is the total displacement, i.e.,
√

(dx2 + dy2 + dz2).

We plot
√

(dx2 + dy2 + dz2) as a function of simulation time for atoms A and B (in

Appendix A, Figure A.5). From Figure A.5 the residence time and jump time can

easily be determined. Similar calculations are performed at 2900 K and no diffusive

jumps of oxygen atoms are observed (in Appendix A, Figure A.6). Analysis of

these results indicates that the oxygen atoms jump from one tetrahedral position

to another which is between 1st nearest neighborhood to the initial jump site via

a curved diffusion path. Analysis of these results indicates that the oxygen atoms

jump from one tetrahedral position to another. At any given instant the probability

of an atom sitting in the octahedral position is rather small, which is in accordance

with the MD calculated migration barrier values along [001], [110] and [111] direc-

tions. A very low migration barrier along <001> provides oxygen atoms with an

easy migration path for random diffusive jumps in the superionic state. Similar

result have been reported for UO2 [89, 90], β-PbF2 [91] and CuI [270,271].

Neutron diffraction studies using single crystal β-PbF2 showed that the oc-

tahedral sites are not significantly occupied at T > Tc [89]. Instead, an appreciable

fraction of the anion lattice sites are vacant and located at the F1 and F2 sites.

The former was considered to be the location of ‘true’ Frenkel interstitials, situ-

ated between the midpoint of the two nearest neighbour anion sites and the centre

of an anion cube in <110> directions, whilst the latter was attributed to nearest

neighbour lattice anions relaxed away from their regular sites in <111> directions

towards the centers of adjacent empty anion cubes [89]. This leads to the construc-

tion of the two defect cluster models labelled 3:1:2 and 4:2:2 (where the v : i : r

notation is number of vacancies : Frenkel interstitials : relaxed anions) [89]. For

UO2 [87, 88] a detailed description of a similar model is given in section 1. Similar

results have also been reported for γ-CuI [270, 271] where the ionic density distri-

bution shows no or very little occupation of the octahedral sites with increasing

temperature. The MD calculated average potential energy curves obtained for γ-

CuI [270] depict that the energy is a minimum for Cu+ migration at the tetrahedral

sites and rises rapidly at the position of the octahedral site.
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Figure 6.8: Snapshot of the movement of given oxygen atoms (atom A and atom
B) for 20 ps time duration in the XY and YZ plane calculated using molecular
dynamic simulations at 3000 K. Oxygen atoms preferentially occupy and migrate
through tetrahedral positions.

6.8 Temperature variation of single crystal elastic

constants

In order to calculate the mechanical stability of ThO2 elastic constant values were

calculated as a function of temperature using LDA+U , GGA and MD simulations.

Figure 6.9 presents single crystal elastic constants (C11, C12 and C44) over the strain

range 0.00 to 0.05 and also the room temperature single crystal elastic constant val-

ues measured by Macedo et al. [260]. Our MD calculated elastic constant values at

300 K are also listed in Table 6.1 for comparison with GGA and LDA+U calculated

values (at 0 K) and room temperature experimentally reported values. The MD

calculated C12 value matches well with experiment, but C11 and C44 are underesti-

mated (by < 6%). We have plotted MD calculated elastic constant data only upto

2900 K, as the transition of the oxygen sublattice to the superionic states above

this temperature did not allow us to employ this methodology.

In our previous discussion it was said that increasing temperature (repre-
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Figure 6.9: LDA+U , GGA and MD calculated single crystal elastic constants (C11,
C12 and C44) are shown as a function of lattice strains (temperatures) and experi-
mentally measured room temperature values are also shown (measured by Macedo
et al. [260] from single crystal ThO2). Similar symbol with color black, red and
blue represents C11, C12 and C44, respectively.

sented by isotropic strain) resulted in a significant change in B1u and Eu phonon

modes, which in turn changed the elastic properties of single crystal ThO2 (see

section 6.6). From our MD calculated results it was found that C11 shows the most

softening, which is one of the pertinent characteristics of the superionic transition.

C12 and C44 also get softened but the rate of decrease of C11 is higher compared to

other elastic constants, as temperature increases. At this point, it is also important

to note that the value of C12 becomes less than C44 around 2750 K. Our results

show that the phase stability criteria: C11+2C12 > 0, C11-C12 > 0 and C44 > 0 are

satisfied at all temperatures (i.e here values of dilational lattice strain) including the

temperature corresponding to the superionic regime where the B1u phonon mode

is imaginary. Thus, the fluorite phase of ThO2 remains elastically stable upto the

superionic regime. Further, calculations of bulk, shear and Young modulus were

performed and MD calculated values were compared to previous experimentally

reported values shown in Figure 6.9.

Finally, the oxygen atom displacement pattern corresponding to B1u mode

(in ThO2), beyond harmonic region, leads to a phase change to a tetragonal struc-
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ture in ZrO2 and HfO2. However, experimental phase diagram data for ThO2 shows

that the cubic structure is the only stable phase upto melting temperature. ThO2

satisfies mechanical stability criterion (C11+2C12 > 0, C11-C12 > 0 and C44 > 0) for

lattice parameters corresponding to the superionic state. Therefore, the imaginary

phonon mode with ε = 0.045 (for GGA, as shown in Figure 6.3) is indicative of

oxygen sublattice melting or Frankel like disordering of oxygen sublattice.

6.9 Summary

This study reports the density functional theory (DFT) and classical molecular

dynamics (MD) study of the lattice dynamical, mechanical and anionic transport

behaviours of ThO2 in the superionic state. DFT calculations of phonon frequencies

were performed at different levels of approximation as a function of isotropic dilation

(ε) in the lattice parameter. With the expansion of the lattice parameter, there is

a softening of B1u and Eu phonon modes at the X symmetry point of the Brillouin

zone. As a result of the nonlinear decrease at the X point, the B1u and Eu phonon

modes cross each other at ε=0.03, which is associated with a sharp increase in the

narrow peak of the phonon density of states, signifying a higher occupation and

hence a higher coupling of these modes at high temperatures. The mode crossing

also indicates anionic conductivity in the <001> direction leading to occupation of

interstitial sites.

Moreover, MD and nudged elastic band calculated diffusion barriers indicate

that <001> is the easy direction for anion migration in the normal and superionic

states. With a further increase in the lattice parameter, the B1u mode continues

to soften and becomes imaginary at a strain (ε) of 0.036 corresponding to a tem-

perature of 3430 K. The calculated temperature variation of single crystal elastic

constants shows that the fluorite phase of ThO2 remains elastically stable up to the

superionic regime, though the B1u phonon mode is imaginary in that state. This

leads to anionic disorder at elevated temperatures. Tracking of anion positions in

the superionic state as a function of time in MD simulations suggests a hopping

model in which the oxygen ions migrate from one tetrahedral site to another via

octahedral interstitial sites.
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Chapter 7

Melting Behavior of (Th,U)O2 and

(Th,Pu)O2 MOX

7.1 Introduction

In this chapter, we employ classical molecular dynamics (MD) simulations to calcu-

late melting temperature, enthalpy and density as a function of temperature for solid

and liquid ThO2, UO2 and PuO2. These MD calculated results are compared with

available experimental results to assess the simulation methodology and reliability of

the interatomic potentials. Finally, the melting temperatures and thermodynamic

properties of both solid and liquid phases of Th rich (Th,U)O2 and (Th,Pu)O2 MOX

are determined, which are important for AHWR fuel applications [3–5].

7.2 Computational Methodology

7.2.1 Modeling of random solid solutions

A general tactic to generate MOX supercell of (Th,U)O2 consists of randomly re-

placing Th atoms by U atoms in the original supercell of ThO2, conserving the

intended average composition of the MOX. The random distribution of substituted

ions depends on the configurational space available to the input structure and thus

on the size of the simulation supercell. For a given set of potential field parameters,

any calculated thermo-physical quantity is dependent on the accessible configura-

tional space of the system [272]. Therefore, the reliability of these studies become

questionable as different strategies for random distribution of impurity atoms on

supercells, keeping the composition intact, may give different outcomes. In other
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words, there is no guarantee that such random distributions will access the whole

configurational space and hence may not reproduce the bulk behavior of the actual

random solid solution. To overcome this problem, special quasirandom structures

(SQS) were employed to establish solid solution configurations. In the SQS method,

different random configurations are generated which mimics the correlation func-

tions of an infinite random system within a finite supercell. In the present study,

the determination of melting temperatures, enthalpy and density of Th1−xUxO2

MOX was performed using a 96 atom SQS supercell generated from face centered

cubic SQS [272]. In Table 7.1 all the pair and multisite correlation function (Πk,m)

values are compared with those of ideal solid solutions. It is also important to note

that for the compositions (x) > 8/16 nearest neighbor pair and multisite correlation

functions are similar to their x < 8/16 counterparts.

In our study, thermo-physical quantities of Th1−xPuxO2 MOX are calculated

over several randomly generated solid-solution configurations and averages of cal-

culated thermo-physical quantity over those individual configurations are reported.

Specifically ten distinct, random distributions were generated for each composition

and the thermo-physical properties were obtained by averaging over these configu-

rations. The standard deviation of the calculated thermo-physical properties was

found to be negligible. Prior to the final set of calculations a test case was con-

ducted, where the melting temperatures for the ThO2-PuO2 MOX system at a

specific composition were found using both the randomized and SQS structures.

Both methods produced the same melting temperatures, providing confidence to

continue with either method of creating structures.

7.2.2 (Th,U)O2 and (Th,Pu)O2 MOX interatomic poten-

tials

The most recent empirical potential for ThO2, UO2 [148], PuO2 [273] and their

MOX [125] which is employed in this study, combines a pair-wise with a many

body interaction term. The potential energy, Ei, of an atom i with respect to all

other atoms can be represented as:

Ei(rij) =
1

2

∑
i

φαβ(rij)−Gα

(∑
j

σβ(rij)
) 1

2
(7.1)

The pair interaction potential of two particles i and j of species α and β, separated

by rij consists of a long-range Coulomb interaction (φC(rij)) and a short range inter-

action. The short range interactions are given by combining Morse and Buckingham
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Table 7.1: Pair and multisite correlation functions (Πk,m) of SQS-96 structures for
mimicking ideal random Th1−xUxO2 solid-solution (x = 1/6, 2/16, 3/16, 4/16, 5,16
and 6/16).

Πk,m x = 1/16 x = 2/16 x = 3/16 x = 4/16 x = 5/16 x = 6/16

(0.0625) (0.1250) (0.1875) (0.2500) (0.3125) (0.3750)

Π2,1 0.77083 0.56250 0.39583 0.25000 0.14583 0.08333

Π2,2 0.75000 0.58333 0.41667 0.25000 0.08333 0.00000

Π2,3 0.75000 0.54167 0.35417 0.22917 0.12500 0.04167

Π2,3 0.75000 0.50000 0.33333 0.16667 0.08333 0.00000

Π2,3 0.77083 0.56250 0.39583 0.25000 0.14583 0.08333

Π2,3 0.75000 0.50000 0.25000 0.00000 0.25000 0.50000

ideal random 0.76562 0.56250 0.39062 0.25000 0.14062 0.06250

Π3,1 0.68750 0.43750 0.25000 0.12500 0.06250 0.03125

Π3,2 0.66667 0.43750 0.27083 0.10417 0.02083 0.02083

Π3,3 0.66667 0.40625 0.23958 0.12500 0.06250 0.02083

Π3,3 0.64583 0.38542 0.18750 0.09375 0.03125 0.01042

Π3,3 0.64583 0.41667 0.25000 0.12500 0.04167 0.00000

Π3,3 0.62500 0.41667 0.22917 0.12500 0.04167 0.02083

Π3,3 0.62500 0.37500 0.15625 0.09375 0.03125 0.00000

ideal random 0.66992 0.42188 0.24414 0.12500 0.05273 0.01562

Π4,1 0.62500 0.37500 0.12500 0.00000 0.12500 0.12500

Π4,2 0.60417 0.35417 0.18750 0.04167 0.02083 0.02083

Π4,3 0.58333 0.33333 0.16667 0.08333 0.00000 0.08333

ideal random 0.58618 0.31641 0.15259 0.06250 0.01978 0.00391

forms (φM(rij) and φB(rij), respectively). Therefore,

φαβ(rij) = φC(rij) + φB(rij) + φM(rij) (7.2)

φC(rij) =
qiqj

4πε0rij
(7.3)

φB(rij) = Aαβ exp

(
− rij
ραβ

)
− Cαβ

rij
(7.4)

φM(rij) =Dαβ

[
exp

(
−2γαβ(rij − r0

αβ)
)
− 2exp

(
−γαβ(rij − r0

αβ)
)]

(7.5)
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where Aαβ, ραβ, Dαβ, γαβ and r0
αβ are empirical parameters to describe Buckingham

and Morse interactions between atoms i and j. For the Coulombic contribution, an

effective ionicity, Zeff
α is introduced to replace the formal charges of the ions with

charges, qα= Zeff
α e; Zeff

α = 2.2208 for tetravalent cations and Zeff
α = -1.1104 for

oxygen anions.

σβ(rij) =
nβ
r8
ij

(7.6)

The many body part of Equation 7.1 is achieved by a combination of a set

of pairwise interactions (
(∑

j σβ(rij)
)

) between atom i and its nearest atoms and

then passing it through a non-linear embedding function. Equation 7.2 gives the

functional form of σβ(rij) (nβ is the constant of proportionality) and the many-

body energy term is proportional to with Gα being the constant of proportionality

in Equation 7.1.

An error function with a 1.5 Åcut-off distance is also added to Equation

7.6 in order to prevent dominance of non-physical forces arising from the many-

body term over the short-range repulsive terms in the MD simulations. The upper

limit cut-off distance for the interactions described in equations 7.4, 7.5 and 7.6

was set at 11.0 Å. Further details of the potential parameters have been published

previously [125,148].

7.2.3 MD simulations of thermodynamic properties

MD simulations for thermodynamic quantities were carried out using the MD code

LAMMPS [258]. The most recent empirical potential for ThO2, UO2 [148] and

PuO2 [273] as well as their MOX [125] which is employed in this study, combines

a pair-wise with a many body interaction term. The Coulombic interactions were

calculated using the Ewald method [192]. In the present study, the MD supercell

was constructed having 4000 cations and 8000 anions by an array of 10×10×10

unit cells for (Th,U)O2, (Th,Pu)O2 MOX and their end members. To employ SQS

methodology, a 96 atom SQS unitcell was constructed for (Th,U)O2 MOX over the

composition range and a 5×5×5 supercell of the SQS unitcell (4000 cations and 8000

anions) was used for MD simulations. MD runs were performed with a 2 fs time

step in suitable temperature intervals over the temperature range 300 K to 6000

K with the NPT ensemble at zero external pressure using the Berendsen barostat

with a time constant of 0.5 ps and Nosé-Hoover thermostat with a time constant of

0.1 ps. Each simulation of thermodynamical quantities was carried out initially for

40 ps for equilibration (at the desired temperature) and then for another 10 ps to
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get average values of the thermodynamic quantities while heating the system.

To determine thermodynamic quantities for the liquid phase, a supercell

containing 12000 atoms was first heated to 6000 K to melt the system mechanically.

Then the melted system was quenched to 2000 K from 6000 K in intervals of 100 K.

At each temperature the system was equilibrated for 40 ps in the NPT ensemble at

zero external pressure using the Berendsen barostat with a time constant of 0.5 ps

and Nosé-Hoover thermostat with a time constant of 0.1 ps. The thermodynamical

quantities were obtained from the average over the 10 ps run at each temperature.

7.2.4 Two-phase simulations of melting temperatures

We performed two-phase simulations in the isothermal-isobaric (NPT) ensemble to

determine the melting temperatures of ThO2, UO2, PuO2 and (Th,U)O2, (Th,Pu)O2

MOX. A supercell of 36×6×6 unitcells containing 15552 atoms of pure solid ThO2

was thermalized at T1 = 3000 K and P = 0 GPa via MD runs in the NPT ensemble.

Next, atoms in one half of the simulation box (18×6×6 supercell) were kept fixed

in their positions and MD runs were performed for the other half of the simulation

box in the NPT ensemble at a sufficiently high temperature (T2 = 5000 K and P

= 0 GPa) to create a liquid phase. The resulting supercell was then subjected to

MD runs in the NPT ensemble at T3 = 4000 K (which is higher than the expected

melting temperature) and P = 0 GPa, keeping the same half of the atoms fixed.

The result of this process was a supercell containing solid ThO2 at 3000 K in one

half, and liquid ThO2 at 4000 K in the other half. This ensures a minimum differ-

ence of stress between atoms in liquid and solid phases of the supercell [274]. This

supercell was then used in the simulations of solidification and melting of ThO2.

The same methodology was adopted for UO2 and PuO2 but with T1 = 2500 K,

T2 = 5000 K and T3 = 3500 K. In order to determine the melting temperature of

(Th,U)O2 MOX, SQS generated structures were employed with T1 = 2500 K, T2

= 5000 K and T3 = 4000 K. Similarly, for (Th,Pu)O2 MOX, random solid-solution

structures were employed with T1 = 2500 K, T2 = 5000 K and T3 = 4000 K.

For the two-phase calculations a timestep of 2 fs and a Nos-Hoover ther-

mostat and barostat were applied in the constant pressure temperature (NPT)

ensemble, using relaxation times of 0.1 ps and 0.5 ps, respectively. Thus, in this

study, the MOX solid and liquid compositions are identical and thus differ from the

slightly different composition that would exist in thermodynamic equilibrium.
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Figure 7.1: Snapshots of the two-phase MD simulation in the NPT ensemble with
(a) T=3650 K (left panel) and (b) 3675 K (right panel). The red spheres represent O
atoms and the blue spheres represent Th atoms. (a) Initial state of the simulation
box, which contains both liquid and solid phases. (b) Intermediate state of the
simulation box (at 0.6-0.7 ns), where the solid phase propagates to the liquid (at
3650 K) and liquid phase propagates to the solid phase (at 3675 K). (c) Final state
of the simulation box (at 1.7-1.9 ns), when the entire system has turned into a solid
phase (at 3650 K) and vice-verse (at 3675 K).

7.3 Melting Temperatures of pure oxides

7.3.1 ThO2

The two-phase supercell (as described in section 8.1) was heated in the NPT ensem-

ble, where the temperature was increased from T1 to T3 in 100 K intervals. Each

system ran for 1.6 ns of simulation time at a time step of 2 fs. For pure ThO2,

at 3600 K the solid phase of the simulation box progressed to occupy the entire

box. In comparison, at 3700 K the liquid phase of the simulation box progressed to

occupy the entire box. Next, the initial two-phase simulation box was heated from

3600 K to 3700 K in 25 K intervals. Each system was equilibrated for at least 2 ns.

If the final state appeared to have both liquid and solid phases, more MD runs were

performed until the final state of the supercell contained only one phase. Certain

systems required as much as 4 ns of MD runs to arrive at a single phase. The trans-

formation of the two-phase simulation box to a one-phase simulation box near the

predicted melting temperature is presented in Figure 7.1. A similar methodology

was adopted for melting temperature calculations of pure UO2 and PuO2. The MD

calculated range of temperatures where the phase change occurs for ThO2, UO2

and PuO2 are 3650-3675 K, 3050-3075 K and 2800-2825 K, respectively.
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Table 7.2 reports the experimental melting point values for ThO2, which vary

from 3573 K to 3660 K [98–102]. Initially, Lambertson et al. [100] predicted the

melting point of 3623 K by extrapolating the melting point data of (Th,U)O2 com-

positions corresponding to zero UO2 content. Further refinement was carried out

by introducing corrections for the liquidus/solidus curve to incorporate a curvature

correction for the pure ThO2 end to that of the pure UO2 end of the temperature-

composition diagram. Their final recommended value was 3573 K. However, Rand

et al. [99] argued that the curvature corrections made by other researchers on the

ThO2 or UO2 rich side of the temperature composition curve need not be the same

at both terminal compositions, because the loss of ‘O’ from UO2 in the UO2-rich

side might be different from that of the ThO2 rich side and hence recommended a

value of 3643 ± 30 K. Ronchi et al. [101] recently measured the melting temperature

of ThO2 (under both stoichiometric and hypostoichiometric conditions) experimen-

tally by heating a spherical sample with four symmetrically spaced pulsed Nd YAG

lasers and observing the cooling/heating curve with time. For stoichiometric ThO2,

the measured melting point was 3651 ± 17 K [101] and their data is consistent

with the data generated by Benz et al. [98] (3660 ± 100 K) which is also close to

the value of Rand et al. [99]. All these values are markedly different from those of

Lambertson et al. [99]. It is also important to note that the curvature differences at

the uranium- and thorium-rich side of the temperature versus composition diagram

can be attributed to the loss of oxygen. Furthermore, measurements of the cooling

curves of molten ThO2 and ThO1.98 by Ronchi et al. [101] reveal that the stoichio-

metric compound melts congruently at 3651 K, while the hypostoichiometric oxide

displays a liquidus at 3628 K and a solidus transition at 3450 K. Recently, Böhler et

al. [102] revisited the high temperature phase diagram of ThO2-UO2 using a laser

heating approach combined with fast pyrometry via a thermal arrest method and

recommended a melting temperature of 3624 ± 108 K. Finally, our MD calculated

value which lies between 3650 K and 3675 K is consistent with the data of Rand et

al, Ronchi et al., Benz et al., Böhler et al. and even the upper value of Lombertson

et al..

7.3.2 UO2

Experimentally reported melting temperatures of UO2 vary from 3050 K to 3138

K (Table 7.2) [103–110]. The melting point of UO2 given in MATPRO [107] is

3113.15 K and this temperature is given based on the equations for the solids and

liquids boundaries of the UO2-PuO2 phase diagram given by Lyon et al. [103]. The
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recommended value by ORNL [109] for UO2.00 is 3120± 30 K and for PuO2.00 is 2701

± 35 K. In recent experimental measurements of the heat capacity of liquid UO2,

using laser heating of a UO2 sphere, Ronchi et al. [105] made several measurements

of the freezing temperature of UO2 on different samples. For specimens in an inert

gas atmosphere with up to 0.1 bar of oxygen, they obtained melting points in the

interval 3070 ± 20 K. Higher melting temperatures (3140 ± 20 K) were obtained

for samples in an inert gas atmosphere without oxygen. The variation in melting

temperature is in accordance with the expected lower oxygen-to-uranium (O/U)

ratio in the latter samples. The melting point of UO2 drops on variation of the O/M

ratio away from stoichiometry: for example, if the melting point of stoichiometric

UO2 is 3138 K, its value drops to 2698 K at an O/U ratio of 1.68 and to 2773 K at

an O/U ratio of 2.25 [105]. Thus the MD calculated melting temperature, which lies

between 3050 K and 3075 K, is in fairly consistent with experimental data available

in the literature for stoichiometric UO2.

7.3.3 PuO2

The melting point of PuO2 has not been studied as extensively as those of UO2 and

ThO2. Previously, a series of measurements were performed by Lyon et al. [103]

using the thermal arrest technique and induction heating of tungsten-encapsulated

samples. Also, some other researchers [103, 106–109] studied melting of PuO2 and

reported values in the range 2663-2718 K (Table 7.2), using combined visual de-

tection of melting with a variety of experimental setups, including flame melting

under a controlled atmosphere. Kato et al. [111] reported the melting temperature

of PuO2.00 as 2843 K. The recommended value by ORNL [109] for for PuO2.00 is

2701 ± 35 K. Recently; Bruycker et al. [112] studied the melting temperature of

stoichiometric PuO2 by fast laser heating and multi-wavelength pyrometry. The

transition temperatures obtained by this technique (3017 ± 28 K) are in disagree-

ment with those previously proposed on the basis of more traditional measurements.

Our MD calculated melting temperature, which lies between 2800 K and 2825 K,

is lower than the melting point reported by Bruycker et al. [112] and higher than

the recommended value by ORNL [109] but matches well with the value reported

by Kato et al. [111].

It must be emphasized here that raising temperature close to the melting

point may cause loss or gain of oxygen, especially in U- and Pu-based systems,

thereby disturbing the equilibrium between the solid-gas and solid-liquid phases.

The extent of the shift in the melting point due to shift in the equilibrium can be
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Table 7.2: MD calculated melting temperatures of pure ThO2, UO2 and PuO2 are
compared with experimentally measured values available in the literature.

System MD calculated Experimental values (K)

temperature range (K)

3663 ± 100 Benz et al. [98]

3643 ± 30 Rand et al. [99]

ThO2 3650-3675 3573 ± 100 Lambertson et al. [100]

3651 ± 17 Ronchi et al. [101]

3624 ± 108 Bohler et al. [102]

3113 ± 20 Lyon et al. [103]

3138 ± 15 Latta et al. [104]

3075 ± 30 Ronchi et al. [105]

UO2 3050-3075 3120 ± 30 Adamson et al. [106]

3113.15 MATPRO [107]

3138 ± 15 Komatsu et al. [108]

3120 ± 30 ORNL [109]

3050 ± 55 Böhler et al. [110]

2663 ± 20 Lyon et al. [103]

2701 ± 35 Adamson et al. [106]

2647 MATPRO [107]

PuO2 2800-2825 2718 Komatsu et al. [108]

2701 ± 35 ORNL [109]

2843 Kato et al. [111]

3017 ± 28 Bruycker et al. [112]

estimated from experimental results [275], showing melting temperature (of UO2)

of 3147 ± 20 K and 2410 ± 25 K for O/U ratio 2.00 and 2.21, respectively. Unfor-

tunately, this shift in equilibrium due to non-stoichiometry has not been taken into

account in our calculations due to lack of suitable consistent potential parameters

for U and Pu-based systems having mixed valency. In future, such potentials may be

developed to observe the effect of non-stoichiometry on the solid-liquid equilibrium

and hence on the melting point.
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Figure 7.2: MD calculated enthalpy increments (a) and density variation (b) as
a function of temperature in the 300-6000 K range for ThO2 are compared with
experimental values.

7.4 Enthalpies and densities of pure oxides

7.4.1 ThO2

Figure 7.2(a) compares the MD calculated change in enthalpy (H(T )−H(300K))

of ideal ThO2 upon heating in the 300-6000 K range (i.e. for both solid and liquid

phases) and cooling in the 6000-2000 K range, with experimentally available data

[90,113–115]. Throughout the 300-3500 K temperature range the change in enthalpy

matches well with experimental values, except those of Hoch et al. [113]. Figure

2(b) shows our MD calculated density of ThO2 in the 300-6000 K temperature
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Table 7.3: MD calculated enthalpy of fusion of pure ThO2, UO2 and PuO2 are
compared with experimentally measured values available in the literature.

System MD calculated Enthalpy Experimental values (kJ/mol.)

of Fusion (kJ/mol.)

ThO2 63.85 88 ± 6, Fink et al. [116]

90.8, IAEA-TECDOC 1496 (2006) [3]

74.8, Fink et al. [118]

UO2 58.94 70.0 ± 4, Fink et al. [119]

70.0, MATPRO [107]

PuO2 43.21 64 ± 6 [120]

range. The MD calculated values agree well with the experimental values reported

by Momin et al. [117] in the 298-2273 K range. No experimental data are available

for liquid thorium dioxide. Fink et al. [116] estimated the specific heat Cp(liquid)

to be 61.76 J K−1 mol−1 for liquid ThO2, which is adopted here. Then if the

entropy of fusion is assumed to be identical to that of UO2 (24 J K−1 mol−1), it

yields an enthalpy of fusion for ThO2 = 88±6 kJ mol−1. From our MD calculated

H(T )−H(300) versus temperature data, the enthalpy of fusion is calculated from

the width of the discontinuity in the enthalpy axis and it is compared with other

values in Table 7.3. This MD calculated the change in enthalpy (H(T ) −H(300))

data is fitted to a functional form:

H(T )−H(300) = C1θ
[
(eθ/T −1)−1− (eθ/300−1)−1

]
+C2[T 2−3002]+C3e

β/T (7.7)

in the 300-3600 K temperature range, where C1 = 99.391, θ = 637.205, C2 = -

8.129 × 10−3, C3 = 3.35847 × 106, β = 12228.3, T is the temperature in K, the

enthalpy increment, H(T ) − H(300), is in J mol−1 and R2 < 0.99. Similarly, for

the temperature range 3675-6000 K, MD calculated data of H(l, T )−H(s, 300) for

liquid ThO2, in J mol−1, is fitted to equation:

H(l, T )−H(s, 300) = C1 + C2T +
C3

T
(7.8)

where C1 = 4.24348 × 104, C2 = 100.961 and C3 = 9.8998 × 107. A similar set of

equations were previously used to represent enthalpy increments of UO2 for solid

and liquid phases by Fink et al. [119]. The MD calculated density data for solid

ThO2 is fitted to a 3rd order polynomial equation in the 300-3600 K temperature
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range:

ρ(T ) = C1 + C2T + C3T
2 + C4T

3 (7.9)

to yield parameters C1 = 10.084, C2 = -2.4687 × 10−4, C3 = -9.10318 × 10−9 and

C4 = -8.4684 × 10−12, where T is the temperature in K, the density is in g/cm3

and R2 < 0.99. Similarly, the MD calculated density of liquid for ThO2 is fitted to

a linear equation of the form in the temperature range 3675-6000 K:

ρ(T ) = C1 + C2(T − 3675) (7.10)

where C1 = 7.72082 and C2 = -7.45616 × 10−4.
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Figure 7.3: MD calculated enthalpy increments (a) and density variation (b) as
a function of temperature in the 300-6000 K range for UO2 are compared with
experimental values reported by Fink et al. [119].
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7.4.2 UO2

Figure 7.3(a) shows the MD calculated change in enthalpy (H(T ) − H(300K)) of

defect-free UO2 upon heating in the 300-4500 K range, with the reported exper-

imental data by Fink et al. [118, 119] for both the solid and liquid phases. MD

calculated density values for solid and liquid UO2 are compared with experimental

values in Figure 7.3(b). MD calculated values for both solid and liquid phases are

in good agreement with experimental values reported by Fink et al. [119]. From

our MD calculated values the enthalpy of fusion is calculated and compared with

other experimental values in Table 7.3. Previously, Qin et al. [276] also calculated

enthalpy increment and density as a function of temperature (300-5000 K range) for

UO2 and our MD calculated values are in good agreement with their MD calculated

results.

The MD calculated change in enthalpy (H(T)-H(300 K)) values of defect-

free UO2 upon heating match very well upto 2000 K. The underestimation of values

from 2000 K to melting can be attributed to the Schottky defects and contribution

from the electronic defects, which is not taken into account explicitly in these MD

simulations using one-phase approach. Previously, Harding et al. [277] reporting

on the anomalous specific heat of UO2 at high temperatures suggested that there

is a source of entropy, of the order of 10 cal/mol. K. The calculations in their

study show that it is highly unlikely that Frenkel defects on the anion sub-lattice

can provide more than a small proportion of this. However, the contribution from

electronic defects is large and could account for most of this volume. In their study

Harding et al. [277], considered only one small polaron reaction: 2U4→ U3 + U5. It

is apparent that there are others, which, although having a higher activation energy

may make significant contributions close to the melting point. Ronchi et al. [278]

calculated the contributions from each physical process to the heat capacity to

compare with available experimental data and provided an excellent description of

the theoretical understanding. They found that from room temperature to 1000

K, the increase in heat capacity is governed by the harmonic lattice vibrations,

which may be approximated by a Debye model. Between 1000 and 1500 K, the

heat capacity increase arises from the anharmonicity of the lattice vibrations as

evidenced in thermal expansion. The increased heat capacity from 1500 to 2670 K

is due to the formation of lattice and electronic defects with the main contribution

from Frenkel defects. Above the λ-phase transition, the Frenkel defect concentration

becomes saturated and Schottky defects become important. Moreover, spin-phonon

scattering plays a pivotal role in the low temperature thermal properties of UO2
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but not in ThO2 [279].
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Figure 7.4: MD calculated enthalpy increments (a) and density variation (b) as
a function of temperature in the 300-6000 K range for PuO2 are compared with
experimental values.

7.4.3 PuO2

Figure 7.4(a) compares the MD calculated change in enthalpy (H(T )−H(300K))

of ideal PuO2 upon heating in the 300-6000 K range (i.e. for both solid and liquid

phases) and cooling in the 6000-2000 K range, with experimentally reported values

by Valu et al. [124]. Below 1000 K, MD calculated values of the change in enthalpy

match well with experimental values but underestimate experimental values above

1000 K. Figure 7.4(b) shows our MD calculated density of PuO2 in the 300-6000

K temperature range during heating and cooling though no experimental data are

available for solid and liquid PuO2. No data for the heat capacity or enthalpy of
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liquid PuO2 are known, except a single enthalpy measurement by Ogard et al. [120].

The enthalpy of fusion is thus estimated, assuming that the entropy of fusion is

identical to that of UO2 (22.4 J K−1 mol−1), yielding an enthalpy of fusion = 64 ±
6 kJ mol−1.

This MD calculated change in enthalpy (H(T ) − H(300)) data is fitted to

a functional form (equation 7) in the 300-2800 K temperature range, where C1 =

238.77, θ = 1269.05, C2 = -68.9664 × 10−3, C3 = 5.42283 × 106, β = 8740.69, T is

the temperature in K, the enthalpy increment, H(T ) −H(300), is in J mol−1 and

R2 < 0.99. Similarly, for the temperature range 2825-6000 K, MD calculated data

of H(l, T ) −H(s, 300) for liquid PuO2, in J mol−1, is fitted to equation (8) where

C1 = 3.08813 × 104, C2 = 96.033, C3 = 7.6837 × 107. The MD calculated density

data for solid PuO2 is fitted to a 3rd order polynomial (equation 9) in the 300-2800

K temperature range with C1 = 11.7581, C2 = -3.229 × 10−4, C3 = -1.0469 ×
10−8, C4 = -1.6744 × 10−11, T is the temperature in K, the density is in g/cm3 and

R2 < 0.99. Similarly, the MD calculated density of liquid ThO2 is fitted to a linear

equation (10) in the temperature range 2825-6000 K where C1 = 8.4241 and C2 =

-7.2256 × 10−4.

MD calculated enthalpy of fusion values are consistently lower than exper-

imental values. It has been established in this kind of solid dioxides that the for-

mation of oxygen defects, and in particular of Schottky defects and hypo/hyper

stoichiometry, leads to an abrupt increase of the heat capacity as temperature

approaches the melting point [101, 280–284]. One-phase approach to calculate en-

thalpy increments and density does not take into account these effects, resulting

in overall underestimation of MD calculated enthalpy of fusion values compared to

experimental values. Ideally, discontinuous jump in the enthalpy vs temperature

plot signifies melting and/or solidification of the solid-liquid transformation. The

temperature at which the discontinuous jump appears should be melting and/or

solidification temperature. Figs. 7.2, 7.3, 7.4 shows high melting/solidification

temperature by several hundred kelvin compared to equilibrium melting points pre-

dicted by two-phase simulations. At this point it is important to note that, the one

phase approach is employed in the calculation of enthalpy increments and density as

one phase approach is computationally less expensive and easy to implement in the

simulations compared to two-phase approach. In one phase method, the supercell is

subjected to incremental heating under the NPT ensemble until melted. Similarly,

the liquid phase is subjected to the same incremental cooling until recrystallization.

The solid-liquid phase transformation is a first order reaction and associated with

hysteresis. Based on classical nucleation theory, there is a sudden jump in volume
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(or density) upon melting at T+(superheating temperature) in a heating simulation

of a solid, and there is a drop in volume (or density) at T− (supercooling temper-

ature) due to fusion in a cooling simulation of a liquid. The density-temperature

curve (Figs. 7.2, 7.3, 7.4) reveals the hysteresis effects for the MD simulations of a

solid and a liquid. Compared to the hysteresis approach, the two-phase approach is

more meaningful and models a first order transformation where two-phases co-exist

with an interface between them. The hysteresis approach lacks this feature. The

melting temperature Tm is obtained from the solid-liquid coexistence, where the

free energies of solid and liquid states becomes equal. So we adopted the two-phase

simulation method to calculate the high temperature phase diagram of (Th,U)O2

and (Th,Pu)O2 MOX. Superheating and supercooling phenomena are common in

MD simulations of solid-liquid phase transformation [284–286].
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7.5 Melting Temperatures of (Th,U)O2 MOX

High temperature phase diagram studies of the ThO2-UO2 MOX system have pre-

viously been reported by Lambertson et al. [100] using a quench technique, whereas

Latta et al. [121] applied a thermal arrest method to determine the liquidus and

solidus of MOX. The measurements of Latta et al. [121] in the 0-17 mole % ThO2

also show deviation from ideal liquidus-solidus curve and this behavior would be
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consistent with a shallow minimum at 5 mol% ThO2. Moreover, the high tem-

perature phase diagram of ThO2-UO2 MOX can be constructed with the help of

the melting points and enthalpies of fusion of the end members, assuming these

complete solution binaries are ideal solid solutions, (i.e. no change in volume or en-

thalpy on mixing [122]). Assuming an ideal mixing for both the solid and the liquid

(ThO2+UO2) solutions, the solidus and liquidus line can be obtained by solving the

following system of equations:

∆Hm(ThO2)
( 1

Tm(ThO2)
− 1

T

)
= R ln

( 1− xl
1− xs

)
(7.11)

∆Hm(UO2)
( 1

Tm(UO2)
− 1

T

)
= R ln

(xl
xs

)
(7.12)

R is the ideal gas constant (8.314462 kJ. K−1 Mol−1), xs and xl are the UO2

mole fractions on the, respective, solidus and liquidus curves at a given absolute

temperature T (Tm(UO2) < T < Tm(ThO2)). Tm and ∆Hm are the melting tem-

peratures and enthalpies of fusion of the two end members, respectively. As there is

no direct experimental measurement of the heats of fusion for ThO2 or ThO2-UO2

solid solutions, the most probable value is that of Fink et al. [118] for UO2 (i.e. 74.8

± 1 kJ/mol) and the recommended value for ThO2 is 90.8 kJ/mol [3]. Recently,

Böhler et al. [110] revisited the high-temperature phase diagram of ThO2-UO2 using

a laser heating approach combined with fast pyrometry in a thermal arrest method.

According to their study, low additions of ThO2 to UO2 result in a slight decrease

of the solidification temperature and this behviour would be consistent with a mini-

mum at 3098 K around a composition of 5 mol% ThO2. The solid/liquid transition

temperature was then observed to increase with increasing ThO2 fraction.

Figure 7.5 shows the solidus and liquidus lines over the full composition range

of ThO2-UO2 MOX calculated using Equation 7.11. Our MD calculated melting

temperatures are also compared with previous experimental investigations by Latta

et al. [121] and Böhler et al. [110]. These calculated melting temperatures are in

very good agreement for the ThO2 rich part of the phase diagram compared to

the ideal solidus line calculated using Equation 15 and experimentally determined

values by Böhler et al. [110]. In UO2 rich part, the MD calculated values slightly

underestimate the ideal solidus line but the estimated values are within the er-

ror bars of experimental measurements by Böhler et al. [110] (except at the 60 %

composition). Our calculations suggest that the melting temperatures of UO2 and

UO2-6.25 atom% ThO2 are the same, which lie between 3050 K and 3075 K. This
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result is in agreement with the previous experimentally determined melting tem-

perature where a minimum in the phase diagram was found at ∼ 5 mol% of ThO2

by Latta et al. [121] and Böhler et al. [110].

The solidus-liquidus curve in the uranium rich side is expected to influence

by the following facts:

a) The derivation of ideal solidus-liquidus line (from Equation 7.11 and 7.12)

assumes that the heat capacity of the end members is independent of temperature

and composition in the vicinity of the melting transition. On the contrary, previous

experimental studies reported abrupt increase of specific heat due to formation of

Frenkel pairs and order-disorder pre-melting transitions [101,280–283].

b) The creation of oxygen defects is actually likely to occur in uranium-rich

samples, because U has a partially filled 5-f electron shell and can therefore easily

assume the valences +3, +4, +5 and +6 even in the condensed oxide phases [288].

c) Since at high temperatures uranium dioxide can accommodate in the fcc

lattice both oxygen interstitials and vacancies over a wide stoichiometry range (at

least, 1.5 ≤ O/U ≤ 2.25), important variations of the melting point with stoichiom-

etry are expected in conjunction with the appearance of an oxygen solubility gap

when solid solutions UO2±x are melted [275].

The minimum in the uranium rich side of ThO2-UO2 phase diagram is an

outcome of above mentioned effects. Incorporation of all these effects in the cur-

rent state of the MD simulation methodologies is difficult. Two-phase simulations

employed in this study to calculate melting temperature of ThO2, UO2 and MOX

indirectly incorporate the effect of lattice defects (mostly Frenkel defects). Non-

stoichiometry effect requires U+3 - O and U+5 - O interactions to be incorporated

in the potential data set efficiently.

7.6 Melting Temperatures of (Th,Pu)O2 MOX

In an ideal case of no interaction between the solution end members, the ideal

solution solidus and liquidus lines of the binary high-temperature phase diagram

are solely defined by the enthalpies of fusion and the melting temperatures of the

two end members, as shown in Figure 7.6 for ThO2-PuO2 MOX. Figure 7.6 shows

two ideal solidus-liquidus curves, generated by taking into account two different

melting points of PuO2as reported by Bakker et al. [6] and Bruycker et al. [112].

In this definition it is assumed that the heat capacity is same for solid and liquid

phases in the vicinity of melting and only configurational entropy is contributing
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to the Gibbs free energy. Figure 7.6 also compares our MD calculated melting

temperatures with the solidification temperatures measured by Böhler et al. [123]

using a laser heating approach combined with fast pyrometry in a thermal arrest

method, to determine the melting/solidification phase transition in mixed (PuO2

+ ThO2) at high temperature. Our melting temperatures are in good agreement

for the ThO2 rich part of the phase diagram compared to the ideal solidus line and

experimentally determined values by Böhler et al. [123]. In the PuO2 rich part, MD

values underestimate (by 200-300 K) the ideal solidus line as our MD calculated

melting temperature value of pure PuO2 is underestimated by 200 K, compared to

the experimentally determined value by Bruycker et al. [112]. On the other hand,

MD values overestimate (by 50-100 K) the ideal solidus behavior as reported by

Bakker et al. [6]. The MD calculations suggest that the melting temperature of

PuO2-5 atom% ThO2 is lower than pure PuO2 and PuO2-15 atom% ThO2. This

result is in agreement with a previous set of experimental melting temperatures,

which are consistent with a minima in the phase diagram at ∼ 5 mol% of ThO2 by

Böhler et al. [123].
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Table 7.4: MD calculated enthalpy increments (in J/mole) of solid and liquid phases
of (Th,U)O2 and (Th,Pu)O2 MOX are fitted to equation 7.7 and 7.8, respectively
and coefficients are enlisted.

Solid phase enthalpy (300 K-melting point) Liquid phase enthalpy

MOX H(T )−H(300) = C1θ
[

1
(eθ/T−1)

− 1
(eθ/300−1)

]
(melting point-6500 K)

+C2[T 2 − 3002] + C3e
β/T H(l, T )−H(s, 300) = C1 + C2T + C3

T

ThO2 C1=99.391, θ=637.205, C2=-8.129×10−3, C1 = 4.24348×104, C2 = 100.961,

C3=3.35847×106, β=12228.3 C3 = 9.8998×107

Th0.9375U0.0625O2 C1=110.222, θ=731.487, C2=-12.804×10−3, C1 = 3.4106×104, C2 = 102.162,

C3=3.27702×106, β=11344.4 C3 = 9.8998×107

Th0.875U0.125O2 C1=115.830, θ=795.683, C2=-15.229×10−3, C1 = 3.53084×104, C2 = 101.469,

C3=3.07690×106, β=10780.7 C3 = 9.8996×107

Th0.8125U0.1875O2 C1=117.105, θ=803.765, C2=-15.779×10−3, C1 = 2.98641×104, C2 = 102.254,

C3=3.13532×106, β=10737.2 C3 = 9.8997×107

Th0.75U0.25O2 C1=117.565, θ=810.081, C2=-16.092×10−3, C1 = 3.17325×104, C2 = 101.673,

C3=2.97057×106, β=10487.7 C3 = 9.9000×107

Th0.6875U0.3125O2 C1=132.225, θ=865.31, C2=-23.5569×10−3, C1 = 4.2448×104, C2 = 99.1047,

C3=3.03601×106, β=9637.35 C3 = 9.9007×107

Th0.97Pu0.03O2 C1=103.303, θ=715.159, C2=-9.50969×10−3, C1 = 3.32842×104, C2 = 101.59,

C3=3.97188×106, β=12543.8 C3 = 9.89886×107

Th0.95Pu0.05O2 C1=114.168, θ=798.406, C2=-14.1746×10−3, C1 = 3.17318×104, C2 = 101.363,

C3=3.79121×106, β=11672.6 C3 = 9.90000×107

Th0.92Pu0.08O2 C1=117.924, θ=805.625, C2=-16.1121×10−3, C1 = 3.17322×104, C2 = 101.415,

C3=3.52877×106, β=11122.1 C3 = 9.90000×107

Th0.80Pu0.20O2 C1=118.129, θ=798.347, C2=-16.9268×10−3, C1 = 2.97335×104, C2 = 100.395,

C3=3.03574×106, β=10356.2 C3 = 9.89900×107

Th0.70Pu0.30O2 C1=101.116, θ=647.798, C2=-9.52912×10−3, C1 = 2.99031×104, C2 = 99.4849,

C3=2.95858×106, β=11116.8 C3 = 9.89999×107

PuO2 C1=238.770, θ=1269.05, C2=-68.9664×10−3, C1 = 3.08813×104, C2 = 96.033,

C3=5.42283×106, β=8740.69 C3 = 7.6837×107
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Table 7.5: MD calculated density (in g/cm3) of solid and liquid phases of (Th,U)O2

and (Th,Pu)O2 MOX are fitted to equation 7.9 and 7.10, respectively and coeffi-
cients are enlisted.

Solid phase density Liquid phase density

MOX (300 K-melting point) (melting point-6500 K)

ρ(T ) = C1 + C2T + C3T
2 + C4T

3 ρ(T ) = C1 + C2(T − Tm)

ThO2 C1 = 10.0912, C2 = -2.66141×10−4, C1 = 8.22764, C2 = -7.35261×10−4

C3 = -0.456978×10−8, C4 = 1.12×10−11

Th0.9375U0.0625O2 C1 = 10.1478, C2 = -2.582×10−4, C1 = 8.37026, C2 = -7.2469×10−4

C3 = -0.52999×10−8, C4 = 0.94666×10−11

Th0.875U0.125O2 C1 = 10.2002, C2 = -2.4073×10−4, C1 = 8.23388, C2 = -7.18225×10−4

C3 = -2.1128×10−8, C4 = 0.66745×10−11

Th0.8125U0.1875O2 C1 = 10.2482, C2 = -2.09567×10−4, C1 = 8.27608, C2 = -7.41197×10−4

C3 = -4.77534×10−8, C4 = -1.6402×10−12

Th0.75U0.25O2 C1 = 10.3102, C2 = -2.1423×10−4, C1 = 8.29257, C2 = -7.47047×10−4

C3 = -4.9352×10−8, C4 = -1.4689×10−12

Th0.6875U0.3125O2 C1 = 10.357, C2 = -1.85017×10−4, C1 = 8.28532, C2 = -7.27682×10−4

C3 = -7.20112×10−8, C4 = -2.5823×10−12

Th0.97Pu0.03O2 C1 = 10.1003, C2 = -2.2928×10−4, C1 = 8.3892, C2 = -7.3762×10−4

C3 = -2.2473×10−8, C4 = 0.6232×10−11

Th0.95Pu0.05O2 C1 = 10.1777, C2 = -2.5411×10−4, C1 = 8.4166, C2 = -7.2388×10−4

C3 = -7.7185×10−8, C4 = 0.9219×10−11

Th0.92Pu0.08O2 C1 = 10.2065, C2 = -2.4231×10−4, C1 = 8.4241, C2 = -7.2256×10−4

C3 = -1.9516×10−8, C4 = 0.6956×10−11

Th0.80Pu0.20O2 C1 = 10.3781, C2 = -2.0886×10−4, C1 = 8.66711, C2 = -7.3751×10−4

C3 = -5.822×10−8, C4 = 0.0459×10−11

Th0.70Pu0.30O2 C1 = 10.5298, C2 = -1.8369×10−4, C1 = 8.5617, C2 = -7.3224×10−4

C3 = -8.9812×10−8, C4 = 0.7064×10−11

PuO2 C1 = 11.7581, C2 = -3.229×10−4, C1 = 9.9014, C2 = -7.7439×10−4

C3 = -1.0469×10−8, C4 = -1.6744×10−11
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7.7 Enthalpies and Densities of Th rich (Th,U)O2

and (Th,Pu)O2 MOX

The MD calculated changes in enthalpy (H(T )−H(300)) and density of Th0.9375U0.0625O2,

Th0.875U0.125O2, Th0.8125U0.1875O2, Th0.75U0.25O2 and Th0.6875U0.3125O2 for both solid

and liquid phases were fitted to equations 7.7-7.8 as well as 7.9-7.10 and fitting

coefficients are listed in Tables 7.4 and 7.5. Figure 7.7 compares the MD cal-

culated change in enthalpy (H(T ) − H(300)) values of (a) Th0.9375U0.0625O2, (b)

Th0.875U0.125O2, (c) Th0.8125U0.1875O2 and (d) Th0.6875U0.3125O2 MOX upon heat-

ing in the 300-6000 K range, (i.e. for both solid and liquid phases) and cooling

in the 6000-2000 K range with experimentally available data for Th0.98U0.06O2,

Th0.92U0.08O2, Th0.90U0.10O2, Th0.85U0.15O2, Th0.80U0.20O2 and Th0.70U0.30O2 [114,

115,287]. MD calculated values of enthalpy increments are in good agreement with

experimental values at nearby compositions. Figure 7.7 also shows the variation of

fitting equations obtained from our MD calculated data set. No experimental data

are available for liquid (Th,U)O2 MOX.

Similarly, MD calculated changes in enthalpy (H(T )−H(300)) and density of

Th0.97Pu0.03O2, Th0.95Pu0.05O2, Th0.92Pu0.08O2, Th0.80Pu0.20O2 and Th0.70Pu0.30O2

for both solid and liquid phase were fitted to equations 7.7-7.8 as well as 7.9-7.10

and fitting coefficients are listed in Tables 7.4 and 7.5. Figure 7.8 compares the

MD calculated change in enthalpy (H(T ) − H(300)) values of (a) Th0.97Pu0.03O2

(b) Th0.92Pu0.08O2 (c) Th0.80Pu0.20O2 and (d) Th0.70Pu0.30O2 Th0.9375U0.0625O2, (b)

Th0.875U0.125O2, (c) Th0.8125U0.1875O2 and (d) Th0.6875U0.3125O2 MOX upon heating

in the 300-6000 K range (i.e. for both solid and liquid phases) and cooling in the

6000-2000 K range, with experimentally available data [124]. MD calculated values

of enthalpy increments are in good agreement with experimental values.

7.8 Summary

The melting behavior of pure ThO2, UO2 and PuO2 as well as (Th,U)O2 and

(Th,Pu)O2 MOX has been studied using MD simulations at ambient pressure em-

ploying newly developed interatomic potentials that combine Coulomb, Bucking-

ham, Morse and many-body functional forms. It was found that:

1) The MD calculated MT of ThO2 and UO2 lie between 3650-3675 K and

3050-3075 K, respectively, which match well with experiment. For PuO2, the MD

calculated MT value, which lie between 2800-2825 K, falls between previously de-
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termined older experimental values and a recently determined value by Bruycker et

al. [112]. Moreover, MD calculated values of enthalpy increment for the solid phase

of UO2 match well with experimental values but overestimate (by ∼ 50 kJ mol−1)

the value for the liquid phase. Nevertheless the calculated density variation as a

function of temperature for both the solid and liquid phases is in good agreement

with experiment. Our study reports enthalpy increment values of ThO2 and PuO2

for solid as well as liquid phases, which were not reported earlier.

2) Enthalpy of fusion values for ThO2, UO2 and PuO2 are calculated from

the width of the enthalpy discontinuity and calculated values are lower than exper-

imental values as the lattice and electronic defect contribution to the enthalpy is

not taken into account in our one-phase simulations.

3) The MD calculated MT of (Th,U)O2 and (Th,Pu)O2 MOX show good

agreement with the ideal solidus line in the Th rich part of the phase diagram.

The ideal solidus line is, however, underestimated by ∼ 50 K for (Th,U)O2 in the

UO2 rich parts of the phase diagram. Importantly, our study would be consistent

with a minima around 5 atom% of ThO2 in the high temperature phase diagram of

(Th,Pu)O2 MOX.

4) MD calculated enthalpy increments as a function of temperature for ThO2

rich (Th,U)O2 and (Th,Pu)O2 MOX are in good agreement with experiment. Our

MD calculated enthalpy and density values for solid and liquid phases of (Th,U)O2

and (Th,Pu)O2 MOX are fitted to a set of equations to generate a consistent set of

thermodynamic parameters for those quantities.
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Figure 7.7: MD calculated enthalpy increments of (a) Th0.9375U0.0625O2 (b)
Th0.875U0.125O2 (c) Th0.8125U0.1875O2 and (d) Th0.6875U0.3125O2 MOX are compared
with experimental values reported by Dash et al. [115] and Fischer et al. [287].
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Figure 7.8: MD calculated enthalpy increments of (a) Th0.97Pu0.03O2 (b)
Th0.92Pu0.08O2 (c) Th0.80Pu0.20O2 (d) Th0.70Pu0.30O2 MOX are compared with ex-
perimental values reported by Valu et al. [124] at the same compositions.
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Chapter 8

Thermal Properties of (Th,Pu)O2

and (Th,U)O2 MOX

8.1 Introduction

This chapter presents a systematic study of thermal expansion and thermal conduc-

tivity of (Th,Ce)O2, (Th,Pu)O2 and (Th,U)O2 MOX as a function of temperature.

In this study, classical molecular dynamics (MD) simulation is employed to cal-

culate the thermal properties and MD calculated values are thoroughly compared

with experimental data.

Measurement of thermal properties of nuclear fuels under high temperature

conditions is difficult to perform because of the cost of expensive appliances as well

as extensive safety precautions, although the evaluation of the thermal properties

of (Th,Pu)O2 and (Th,U)O2 MOX fuels is of utmost importance. Classical MD

simulation is an efficient technique to obtain the information regarding thermal

properties of MOX over a wide temperature range. In recent years, the thermo-

physical properties of UO2 [289–291], PuO2 [292] and (U,Pu)O2 [291, 293] as well

as ThO2 [125, 148] have been calculated over a wide temperature range (starting

from room temperature) and the calculated results are in good agreement with the

experimental results.

The present work adopts a two pronged theoretical and experimental ap-

proach to study thermal properties (thermal expansion and thermal conductivity)

of (Th,Ce)O2, (Th,Pu)O2 and (Th,U)O2 MOX. The considered compositions of

MOX in this study is based upon its applicability in AHWR (ThO2-1 to 6 wt.%

PuO2 and UO2 MOX) and AHWR-LEU (ThO2-6 to 30 wt.% UO2 MOX). The ther-

mal expansion of Th1−xCexO2 (x = 0, 0.0625, 0.125), Th1−xPuxO2 (x = 0, 0.0625
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and 0.125) and Th1−xUxO2 (x = 0, 0.0625, 0.125, 0.1875, 0.25 and 0.3125) have been

calculated using the MD simulations. MD calculated thermal conductivity values

of Th1−xCexO2 (x = 0, 0.0625, 0.125), Th0.9375Pu0.0625O2 and Th0.9375U0.0625O2 (x

= 0, 0.0625) MOX using Green-Kubo formalism have been compared with those

determined experimentally providing a gateway to more such studies for design of

nuclear fuels. Thermal expansion of ThO2, ThO2-5 wt.%CeO2, ThO2-8 wt.%CeO2,

ThO2-6 wt.% PuO2 and ThO2-6 wt.%UO2 have been measured using dilatometry.

Moreover, thermal expansion of ThO2-x wt.%UO2 MOX (x = 0, 6, 13, 25 and 30)

have been measured using high temperature X-ray diffraction. Thermal diffusivity

of ThO2, ThO2-5 wt.%CeO2, ThO2-6 wt.% PuO2 and ThO2-6 wt.% UO2 have also

been measured using laser flash technique.

All the results related to the (Th,Ce)O2 MOX are discussed in Appendix B.

A brief description of the sample preparation, sample characterization techniques

and thermal property measurements techniques are given in Appendix C.

8.2 MD simulation methodology

The MD calculations of thermal expansion and thermal conductivity of (Th,Pu)O2

and (Th,U)O2 MOX were performed using Buckingham-Morse-manybody (BMM)

potential model (see section 7.2.2) and the LAMMPS MD Simulator [258] in which

Newtonian equations of motion are numerically integrated to predict atom positions

and velocities as a function of time using the forces obtained from the potential

model described before. The long range Coulomb terms were solved using Ewald

summations [192] as implemented within LAMMPS and the cut-off radius for short

range interactions was fixed at 12 Å. In the present study, the MD supercell was

constructed using an array of 10×10×10 unit cells in three mutually orthogonal di-

rections with 4000 cations and 8000 anions for both ThO2 and CeO2. For (Th,Ce)O2

MOX, a 5×5×5 supercell of 96 atom SQS (described in section 7.2.1) was employed

for thermal expansion calculations. These structures were equilibrated with 1 fs

time step in the temperature range between 300 K and 3000 K (100 K interval)

with the NPT ensemble (constant number of particles, pressure and temperature)

at zero external pressure using the with the Berendsen barostat with a time constant

of 5 ps and Nosé-Hoover thermostat with a time constant of 1 ps. Each simulation

of thermal expansion and isothermal compression was carried out initially for 200

ps for equilibration (at desired temperature and pressure) and then for another 100

ps to get average values of the thermodynamic quantities.
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To calculate thermal conductivity of ThO2 and MOX, initially, supercells

were equilibrated by performing a NPT run (with the Nosé-Hoover thermostat and

the Berendsen barostat) to allow the volume to expand for 500 ps, followed by a

NVE run to equilibrate the system at the desired temperature for 200 ps. After

equilibration, the time series data for the heat current was collected under NVE

for 2000 ps. The integral of the heat current auto correlation function (HCACF)

Cij =
〈
Ji(0)Ji(t)

〉
was evaluated using the trapezoid rule and thermal conductivity

was determined as the average value in the stable regime of the integral (described

in section 3.6).

8.3 (Th,Pu)O2 MOX

8.3.1 Thermal Expansion

The MD calculated average lattice parameters (a(T )) of ThO2, Th1−xPuxO2 (x =

0.0625 and 0.125) are plotted as a function of temperature (300-3000 K range) in

Figure 8.1. The HT-XRD studies of ThO2 and Th1−xCexO2 MOX are also shown

in the same figure as no other HT-XRD studies of (Th,Pu)O2 MOX are available

in the literature. The calculated a(T ) for ThO2 and Th0.9375Pu0.0625O2 matches

well with experimentally measured polycrystalline a(T ) for ThO2, Th0.96Ce0.04O2

and Th0.92Ce0.08O2 MOX in the temperature range 300-1500 K. MD calculated

a(T ) for Th0.875Pu0.125O2 MOX slightly underestimates (<2%) HT-XRD values of

Th0.92Ce0.08O2 MOX. The calculated decrease in lattice parameter as a function

of Pu4+ concentration can be attributed to small ionic radius of Pu4+ compared

to Th4+ in eight-fold coordination. Therefore, the interatomic potential as well

as the SQS models are not only capable of predicting exact behavior of a(T ) for

ThO2, but also efficiently estimate a(T ) for small PuO2 doping in ThO2 matrix. We

extended our study by estimating also the a(T ) in the temperature range of 300-

3000 K. This allowed useful predictions to be made, both at operating temperatures

and at extreme temperatures approaching the melting point in view of reactor fuel

applications.

In order to further analyze the thermal expansion behavior of Th1−xPuxO2

MOX, the MD calculated and experimentally measured coefficient of thermal ex-

pansion (CTE, α) are listed in Table 8.1 along with other literature data. The

numerical value of MD calculated α is always greater than the HT-XRD measured

α value. This can be attributed to the fact that our MD calculations are performed

on a model system with homogeneous distribution of PuO2 in ThO2 matrix and
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Figure 8.1: MD calculated lattice parameter variation as a function of temperature
(a(T )) of ThO2, Th0.9375Pu0.0625O2 and Th0.875Pu0.125O2 is compared with HT-XRD
determined values of ThO2, Th0.96Ce0.04O2 and Th0.92Ce0.08O2 MOX. MD values are
calculated in the 300-3000 K temperature range in 100 K interval.

our calculations are not affected from porosity, impurity effects, etc. Nuclear fuel

designers need thermal expansion data generated by dilatometer for estimating the

fuel clad gap during fuel operating conditions under normal and hot spot conditions.

So, Table 8.1 also enlists α vales measured using dilatometry in this study.

Experimental studies using dilatometer indicated that the CTE of (Th,Pu)O2

increases with an increasing PuO2 content due to higher CTE of PuO2 arising from

its lower melting point compared to that of ThO2 and similar observations have

been largely reported on (Th,Ce)O2 system [140,141]. The CTE values observed in

our study showed deviation on the higher side compared to the extrapolated values

for similar compositions of (Th,Ce)O2 in the study conducted by Tyagi et al. [127].

The deviation in CTE values might be due to the different heat treatment during

fabrication and extent of homogeneity in the samples.
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Table 8.1: MD Calculated and experimentally measured thermal expansion coeffi-
cients of ThO2 and (Th,Pu)O2 MOX are compared with available experimental data
for (Th,Ce)O2 MOX. ThO2-5wt%CeO2 and ThO2-8wt%CeO2 corresponds to com-
positions Th0.9253Ce0.0747O2 and Th0.8823Ce0.1177O2, respectively. (TD=Theoretical
Density)

Thermal Expansion Remarks

Coefficients α (10−6 K−1)

ThO2

10.29 (300-1800 K) MD present study

9.99 (300-1450 K) Dilatometry, present study, ThO2

9.04 (293-1123 K) Dilatometry, 96% TD [141]

9.54 (293-1173 K) HT XRD [141]

Th0.9375Pu0.0625O2 MOX

10.55 (300-1800 K) MD present study

10.56 (873-1773 K) Dilatometry, CAP, ThO2-5wt%CeO2 (Air)

10.35 (873-1773 K) Dilatometry, POP, ThO2-5wt%CeO2 (Air)

10.65 (873-1773 K) Dilatometry, CAP, ThO2-5wt%CeO2 (Ar-H2)

10.44 (873-1773 K) Dilatometry, POP, ThO2-5wt%CeO2 (Ar-H2)

9.35 (293-1123 K) Th0.96Ce0.04O2, Dilatometry, 83% TD [141]

9.76 (293-1173 K) Th0.96Ce0.04O2, HT XRD [141]

9.49 (293-1123 K) Th0.92Ce0.08O2, Dilatometry, 83% TD [141]

9.96 (293-1173 K) Th0.92Ce0.08O2, HT XRD [141]

Th0.875Pu0.125O2 MOX

10.90 (300-1800 K) MD present study, BMM model

10.69 (300-1773 K) Dilatometry, CAP, present study, ThO2-8wt%CeO2

10.50 (300-1773 K) Dilatometry, POP, present study, ThO2-8wt%CeO2

9.50 (293-1123 K) Th0.9Ce0.1O2, Dilatometry, 85% TD [140]

8.3.2 Thermal Conductivity

The calculated thermal conductivity of pure ThO2 and Th0.9375Pu0.0625O2 MOX as

a function of temperature (300-2000 K range) is shown in Figure 8.2 along with our

experimentally measured thermal conductivities of ThO2 and ThO2-6%PuO2 MOX

between 873-1513 K and previously reported experimental values by Cozzo et al.

[142]. In order to compare with the reported experimental data, a density (porosity)

correction was applied to the MD calculated values as the latter were calculated for

100% TD. The porosity effect incorporated thermal conductivity (κ) is related with
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the 100% TD thermal conductivity (κ0) by Maxwell-Eucken equation [294]:

κ = κ0
1− p

1 + βp
(8.1)

where β = 0.5, p is the porosity (p = 0.05 for this study) and κ/κ0 = 0.92683. In

other words, 5% porosity incorporated MD calculated thermal conductivity (κ) is

lower compared to κ0 by (1 - 0.92683) × 100% = 7.32% at all temperature. The

MD calculated values decreases with an increase of temperature, which reflects low-

ering of thermal conductivity by the phonon-phonon scattering. Moreover, our MD

calculated values for ThO2 are an overestimation of experimental results of Cozzo et

al. [142] throughout the temperature range. Our MD calculated values are underes-

timated compared to those measured using laser flash technique in the 900-1100 K

temperature range but match very well (within ±1%) in the 1200-1600 K temper-

ature range. Our MD calculated values for Th0.9375Pu0.0625O2 MOX overestimate

experimental results of Cozzo et al. [142] in the 500-900 K temperature range. But

in the high temperature range (>1000 K), the MD calculated values match very

well (with in ±1%) with our laser-flash measured values for ThO2-6wt.%PuO2 and

previous experimental values for ThO2-3wt.%PuO2 and ThO2-8wt.%PuO2 [142].

Importantly, a significant decrease in MD calculated thermal conductivity values

as a result of Pu addition to ThO2 lattice, particularly at low temperatures, is due

to phonon mean free path reduction from lattice-phonon scattering associated with

non-uniform cation sublattice. However, at high temperatures the decrease in MD

calculated values upon Pu addition is less as the phonon mean free path at high

temperatures is governed by the dominant phonon-phonon scattering mechanism.

It is important, therefore, to consider the temperature range over which the

fuel will be operated in the AHWR. The average operating temperature of AHWR

is 700-800 K at the periphery of the pellet and centre line temperature is around

900-1000 K. Our MD calculated results show that the TC of Th0.9375Pu0.0625O2

exhibits a reduction in the range of 21-13% relative to that of pure ThO2 in the

700-1000 K temperature interval. For higher temperature reactors, such as the

Advanced gas-cooled reactor (AGR), where the temperature at the periphery of

the fuel pellet may reach 900-1000 K, the TC of Th0.9375Pu0.0625O2 is found to be

20% lower than that of ThO2. Also, at the peak center line temperature of about

1650 K, the degradation of TC of Th0.9375Pu0.0625O2 is about 14% relative to pure

ThO2. Our laser-flash measured TC showed a decrease of 26% and 20% compared

to pure ThO2 at 973 K and 1613 K, respectively.

For ceramic oxide systems, the behavior of thermal conductivity with tem-
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Figure 8.2: Thermal conductivity calculated by MD simulations as a function of
temperature for ThO2 and Th0.9275Pu0.0625O2 compared with our experimental val-
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POP pellet (95% TD). These values are also compared with reported values of
ThO2, ThO2-3 wt.% and ThO2-8 wt.% PuO2 by Cozzo et al. [142]. Solid lines are
only for visual guidance.

perature is governed by two factors: (i) the phonon-phonon interactions and (ii)

the density of defects (phonon scattering centers) in the lattice. For temperatures

below 1900 K, the contribution of the free electrons on the thermal conductivity

can be neglected for electronically insulator materials [6, 295]. In view of this, the

MD calculated thermal conductivity data was fitted to the standard relation with

phonon conduction, as given below,

κ =
1

A+BT
(8.2)

where, ‘A’ represent scattering due to the presence of impurities, representing defect

thermal resistivity and is independent of temperature and ‘B’ represents scattering

due to phonons and is a function of temperature. The influence of substituted

impurities on the thermal conductivity is attributed to an increase of the parameter

‘A’. This results from interaction of phonon with lattice imperfections, impurities,

isotopic, or other mass differences as well as bulk defects such as grain boundaries
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in the sample. Parameter ‘B’ remains constant theoretically and the second term,

namely ‘B.T’, represents the intrinsic lattice thermal resistivity caused by phonon-

phonon scattering. As the temperature increases, this term becomes predominant.

Table 8.2: Constants A and B of the equations κ = 1
A+BT

for ThO2 and (Th,Pu)O2

MOX calculated from MD simulations and experimental measurements.

System A (m K/W) B (m/W) × 10−4

MD this study

ThO2 0.00315 1.88

Th0.9375Pu0.0625O2 0.00451 2.24

ThO2, Expt. This study 0.02000 1.34

ThO2-6wt.% PuO2 (POP), Expt. this study 0.00424 2.74

ThO2, Cozzo et al. [142] 0.010 2.30

ThO2-3wt.%PuO2, Cozzo et al. [142] 0.035 2.20

ThO2-3wt.%PuO2, Cozzo et al. [142] 0.099 1.69

The MD calculated thermal conductivity data was fitted to the standard

relation with phonon conduction, as shown in Equation 8.2. One pair of A and B

constants is obtained for each composition of solid solution by polynomial fitting

of the thermal resistivity versus temperature data. Table 8.2 shows the determined

values of A and B constants from our MD calculated and experimentally measured

thermal conductivity variation as a function of temperature along with those values

as determined by Cozzo et al. [142]. Figure 8.2 shows thermal conductivity val-

ues of ThO2, ThO2-1wt.%PuO2 for CAP and POP pellets and ThO2-6wt.%PuO2

POP pellet. It is evident from Table 8.2 that our MD calculated B constants are

almost independent of composition of solid solutions which is in accordance with

experimental measurements of Cozzo et al. [142]. On the other hand, the values of

constant A continuously increase with PuO2 concentration in agreement with the

experimental trend. This is attributed to the scattering of the phonons occurring

due to mass and size difference between substituted and host atoms.

8.4 (Th,U)O2 MOX

This study is performed to determine thermal properties of ThO2 and (Th,U)O2

MOX using an empirical potential comprises of Buckingham, Morese and Many-

body (BMM) interactions as described in Chapter 7, section 7.2.1. A similar
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methodology as described in section 8.2 is adopted to perform MD simulations

using BMM potentials. MD calculated values are further validated by performing

experimental measurements, such as, high temperature XRD and dilatometry to

measure thermal expansion as well as laser flash method to determine thermal

diffusivity. A brief description of the sample preparation, sample characterization

techniques and thermal property measurements techniques are given in Appendix

C.

We performed multiple equivalent simulations with different initial condi-

tions, evaluated each of them separately and took average of them to present in this

study. Five equivalent simulations for thermal expansion (TE) and three equivalent

simulations for thermal conductivity (TC) were performed at each temperature the

error-bars for TE and TC calculated values are ±0.0008 Å and from ±0.1 to ±0.3

Wm−1K−1 range in the whole temperature range, respectively.

8.4.1 Experiments

ThO2 and ThO2-x wt% UO2 (x = 6, 13, 25 and 30) MOX pellets were analyzed

for its trace impurities using high resolution sequential inductively coupled plasma-

atomic emission spectroscopy (ICP-AES) to understand the effect of impurities

in the thermal expansion and thermal conductivity behavior of (Th,U)O2 MOX.

Elaborate details of the ICP-AES sample preparation, experimental procedure and

operating conditions are given in Appendix C. Using this method, the transi-

tion metal and lanthanides were examined. In our study, we found similar results

for all the samples and Table 8.3 presents results of only pure ThO2 and ThO2-

6%UO2. Table 8.3 clearly indicates almost all the elements were found to be in

the range 0.3-260 ppm with a precision of maximum ±7.3% root mean square de-

viation (RSD) which confirm a near total purity of the sample with respect to the

above impurities. Therefore, chemical analysis results indicate complete removal

of binder-cum-lubricants added and absence of any extraneous contamination due

to process operations. So, thermal properties of these samples are not expected to

influence by the trace impurities.

Figure 8.3 shows room temperature XRD patterns of ThO2 and ThO2-x

wt.% UO2 (x = 6, 13, 25 and 30) MOX powders. The measured lattice parameters

(a0) of ThO2 and (Th,U)O2 MOX are given in Table 8.4. Our measured a0 for

ThO2, ThO2-6%UO2 and ThO2-13%UO2 are 5.5967 Å, 5.5885 Å and 5.5800 Å,

respectively, matches very well with previous measurement of 5.599 Å, 5.585 Å [127]

and 5.58 Å [129] at respective compositions. The O/M ratio of the POP pellets

162



Table 8.3: Impurity content analysis by ICP-AES

Elements Impurity contains of ThO2 Impurity contains of ThO2-6%UO2

ppm rsd ppm rsd

Zn 58.00 3.41 37.00 2.72

Cu 13.35 1.51 8.48 1.21

Ni 9.45 4.58 8.10 3.72

Co 1.54 0.37 1.23 1.60

Fe 252.53 7.00 179.46 5.13

Mn 8.2 4.19 3.57 3.55

Cr 35.7 4.66 25.96 5.02

Ca 103.83 0.01 31.57 0.03

Mg 78.16 4.25 28.23 3.08

Sr 55.76 0.31 7.24 1.23

Ba 5.65 1.33 4.63 1.32

Li 0.34 1.72 0.10 5.06

Na 235.14 5.66 183.86 2.75

K 78.73 1.04 21.53 3.70

B 67.35 7.38 16.87 4.03

Al 49.05 3.62 56.59 2.86

Ga 169.78 4.62 149.12 2.74

In 4.89 4.02 3.03 3.21

Cd 3.90 3.82 1.47 2.94

Ag 5.04 3.01 3.86 3.02

Pb 13.75 7.28 11.61 6.15

were determined by thermogavimetry (TG) method (described in Appendix C).

The change in weights (gain/loss) before and after the experiment measured by TG

corresponds to the extent of hypo/hyper-stoichiometry and the calculated O/M

ratio was found to be in the range 2.002 to 2.007 with a measurement accuracy of

±0.002. Therefore, our thermal expansion values of (Th,U)O2 MOX powders are

not affected by the hypo-/hyper-stoichiometry of the samples.

8.4.2 Thermal Expansion

(a) HT-XRD

Typical XRD patterns of ThO2-6wt.% UO2 powder for different temper-

atures are given in Figure 8.4. The unit cell parameters were determined as a

function of temperature in the 293 to 1273 K range. Lattice parameters were mea-

sured with an accuracy of ± 0.0005 nm. The lattice parameters of each sample at

different temperatures are given in Table 8.4. The experimental thermal expansion

data was least squares fitted to a third degree polynomial equation for each sample.

The fitting errors for all these compositions were within ±1%. The recommended

percentage thermal expansion data in the temperature range from 293 to 1273 K
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for ThO2-x wt.%UO2 (x = 0, 6, 13, 25 and 30) is given below:

ThO2 :

∆a/a0 × 100(%) = −0.17719 + 0.45880× 10−3 × T + 2.52793× 10−7 × T 2

+ 0.67866× 10−10 × T 3

ThO2 − 6wt.%UO2(Th0.9413U0.0587O2) :

∆a/a0 × 100(%) = −0.15033 + 0.29546× 10−3 × T + 8.18691x10−7 × T 2

+ 3.27958× 10−10xT 3

ThO2 − 13wt.%UO2(Th0.8725U0.1275O2) :

∆a/a0 × 100(%) = −0.21292 + 0.71674× 10−3 × T − 1.57198× 10−7 × T 2

+ 2.84777× 10−10 × T 3

ThO2 − 25wt.%UO2(Th0.7542U0.2458O2) :

∆a/a0 × 100(%) = −0.54082 + 2.30035× 10−3 × T − 23.1553× 10−7 × T 2

+ 11.3387× 10−10 × T 3

ThO2 − 30wt.%UO2(Th0.7047U0.2953O2) :

∆a/a0)× 100(%) = −0.51630 + 2.34762× 10−3 × T − 25.8682× 10−7 × T 2

+ 13.2255× 10−10 × T 3

(8.3)
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Figure 8.3: XRD patterns of ThO2-x wt.% UO2 (x = 0, 6, 13, 25 and 30) MOX
at room temperature. Lines at 40.47◦ and 47.12◦ are due to Pt-Rh sample carrier
(marked as ? in the figure).
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Table 8.4: Variation of lattice parameter a (Å) for ThO2 and ThO2-x wt.%UO2

MOX (x = 6, 13, 25 and 30) with temperature as measured using HT-XRD.

Temperature Lattice parameter variation of (Th,U)O2 MOX

(K) ThO2 ThO2-6%UO2 ThO2-13%UO2 ThO2-25%UO2 ThO2-30%UO2

293 5.5967 (7) 5.5885 (0) 5.5800 (0) 5.5590 (0) 5.5501 (0)

373 5.5970 (8) 5.5916 (17) 5.5826 (23) 5.5595 (15) 5.5534 (14)

473 5.6012 (7) 5.5967 (7) 5.5867 (23) 5.5686 (13) 5.5601 (23)

573 5.6063 (14) 5.6014 (22) 5.5904 (11) 5.5709 (15) 5.5636 (22)

673 5.6110 (4) 5.6056 (4) 5.5955 (19) 5.5755 (14) 5.5681 (33)

773 5.6162 (9) 5.6122 (13) 5.6024 (14) 5.5787 (14) 5.5694 (25)

873 5.6227 (3) 5.6169 (15) 5.6074 (27) 5.5883 (18) 5.5747 (17)

973 5.6283 (8) 5.6224 (16) 5.6130 (11) 5.5898 (12) 5.5819 (19)

1073 5.6343 (13) 5.6274 (23) 5.6206 (35) 5.5957 (25) 5.5886 (32)

1173 5.6401 (7) 5.6342 (10) 5.6275 (27) 5.5993 (27) 5.5938 (12)

1273 5.6506 (18) 5.6448 (31) 5.6383 (25) 5.6180 (33) 5.6095 (32)

(b) Dilatometry

The O/M ratio of the CAP pellet was determined by TG method as de-

scribed previously. The change in weights (gain/loss) before and after the experi-

ment measured by TG corresponds to the extent of hypo/hyper-stoichiometry and

the calculated O/M ratio is shown in Table 8.5. Table 8.5 also compares density,

porosity and O/M values of ThO2-6%UO2 POP and CAP pellets sintered in Ar-

8%H2 atmosphere. ThO2-6wt% UO2 powder (CAP pellet) was analyzed chemically

for its trace impurities using high resolution sequential ICP-AES and similar results
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were found as shown in Table 8.5.

The typical variation of the linear thermal expansion (%) as a function of

temperature (300-1773 K) as measured by dilatometer for ThO2 and ThO2-6%UO2

MOX (CAP and POP pellets). The experimental thermal expansion data are least

squares fitted to a third degree polynomial equation for each sample. The fitting

errors for all these compositions are within ±1%. The recommended percentage

thermal expansion data in the temperature range from 300 to 1773 K for CAP and

POP pellets is given below (T in K):

ThO2 :

(∆L/L0)× 100(%) = −0.19730 + 5.6599× 10−4 × T + 3.54902× 10−7 × T 2

− 7.4276× 10−11 × T 3

ThO2 − 6%UO2(POP) :

(∆L/L0)× 100(%) = 0.01716− 1.56136× 10−4 × T + 1.2326× 10−7 × T 2

− 3.9263× 10−10 × T 3

ThO2 − 6%UO2(CAP) :

(∆L/L0)× 100(%) = −0.20084 + 5.21632× 10−4 × T + 4.36863× 10−7 × T 2

− 1.08349× 10−10 × T 3

(8.4)

Table 8.5: Characteristics of experimental pellets used for thermal property studies.

Fabrication Sintering Density O/M Prosity

route atmosphere (g/cc) (% TD)

POP Ar-8%H2 9.464 2.002 5.9

CAP Ar-8%H2 9.354 2.013 7.0

(c) MD Simulations

The MD calculated average lattice parameters (a(T )) of ThO2 are plotted

as a function of temperature (300-2000 K range) for 10×10×10 supercell in Figure

8.5 (a). The error bar due to initial conditions in lattice parameter calculation at

desired temperature was ±0.0008 Å. This figure also compares MD calculated a(T )

with other experimentally determined a(T ) by HT-XRD [128, 130, 296, 297] and

show very good agreement with the predictions of the potential model. Figure 8.6

compares MD calculated a(T ) as a function of temperature for Th1−xUxO2 (x = 0,

0.0625, 0.125, 0.1875, 0.25 and 0.3125) with our HT-XRD measured a(T ) for ThO2-

x wt% UO2 (x = 0, 6, 13, 25 and 30) in the temperature range of 300 and 1300 K.
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The calculated decrease in lattice parameter as a function of U4+ concentration can

be attributed to small ionic radii of U4+ (0.997 Å) compared to Th4+ (1.05 Å) in

eight-fold coordination. Our MD calculated a(T ) for Th1−xUxO2 (x = 0, 0.0625 and

0.125) exactly matches with HT-XRD measured values for ThO2, ThO2-6wt.% and

13wt.% UO2 samples. On the other hand, our MD calculated a(T ) for Th1−xUxO2

(x = 0.2500 and 0.3125) slightly overestimates our HT-XRD measured a(T ) for

ThO2-25wt.% and 30wt.% UO2 samples. Therefore, our potential model along

with SQS model is capable of reproducing lattice thermal expansion behavior of

ThO2 and (Th,U)O2 MOX in the temperature range of 300 K and 1300 K.

Figure 8.5: Comparison of lattice parameter (a) and thermal conductivity (b) vari-
ation as a function of temperature of pure ThO2 calculated by classical MD simula-
tion and reported experimental values. The lattice parameters are calculated form
300-3000 K in 100 K interval and the error bars in the calculated lattice parameters
are ±0.0008 Å. The thermal conductivity values are calculated at 300, 400, 500,
750, 1000, 1250, 1500, 1750 and 2000 K temperature.
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and the error bars in the calculated lattice parameters are ±0.0008 Å.

Figure 8.7 shows the increase in the lattice parameter as a function tempera-

ture of 5×5×5 supercell of SQS (96 atom unit cell) for compositions Th1−xUxO2 (x

= 0.0625, 0.1250, 0.1875, 0.2500 and 0.3125) in the temperature range between 300

K and 3000 K. Experimentally measured HT-XRD data for Th0.94U0.06O2 [127] and

Th0.87U0.13O2 [129] are also included in the same figure and show very good agree-

ment with the MD calculated values. Even though the HT-XRD measured value

of a(T ) at room temperature for Th0.80U0.20O2 [130] is matching well with our MD

calculated value for Th0.8125U0.1875O2, the behavior of a(T ) for Th0.80U0.20O2 [130] is

significantly different at high temperature compared to our MD calculated values. It

is important to note that, the variation of a(T ) measured using HT-XRD by Momin

et al. [130] for Th0.8U0.2O2 is also significantly different from the other HT-XRD

values for Th0.94U0.06O2 [127] and Th0.87U0.13O2 [129]. This can also be understood

by the fact that thermal expansion coefficient value of Th0.8U0.2O2 (within 300-1600

K temperature range) is lower to pure ThO2 which is in contradiction to other HT-

XRD study [127,129]. Figure 8.7 also illustrates a significant increase in a(T ) for all

compositions of solid solution as well as for the pure systems at high temperatures

(2300-3000 K). This prediction, covering temperature range both at operating tem-

peratures and at extreme temperatures approaching the melting point, is important

to reactor fuel applications.
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In order to analyze further the thermal expansion behavior of ThO2 and

(Th,U)O2 MOX, the MD calculated and experimentally measured (by HT-XRD

and dilatometry) thermal expansion coefficients (α) are listed in Table 8.6 along

with other literature data. Generally, the numerical value of MD calculated α is

always greater than the experimentally measured α values. This can be attributed

to the fact that our MD calculations are performed on a ideal solid-solution model

system not incorporating the effects of porosity, impurity, intrinsic defects, etc..

In contrast, the experimental samples are not devoid of these effects where some

part of the lattice thermal expansion may be accommodated in the porosity of the

samples. Table 8.6 also clearly illustrates that with increase in UO2 concentration

α values of (Th,U)O2 MOX is increasing as the melting point of UO2 (∼3073 K) is

lower than that of ThO2 (∼3573 K) [3,4,6]. Similar observation have already been

reported by various authors [126–129,131] except for Momin et al. [130].

Our HT-XRD measured α values for ThO2 match very well with previous

HT-XRD and our dilatometry measured α values. Our HT-XRD measured α values
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Table 8.6: MD Calculated and experimentally measured thermal expansion coeffi-
cients of ThO2 and (Th,U)O2 MOX compared with available experimental data in
the literature.

Thermal Expansion Remarks

Coefficients α (10−6 K−1)

ThO2

10.28 (300-1800 K) MD present study

9.78 (293-1273 K) HT-XRD, present study

9.99 (300-1773 K) Dilatometry, present study

9.67 (293-1623 K) HT XRD [128]

9.54 (293-1173 K) HT XRD [141]

Th0.9375U0.0625O2

10.47 (300-1800 K) MD present study, Th0.9375U0.0625O2

10.33 (293-1273 K) HT-XRD, present study, ThO2-6wt%UO2

10.10 (300-1773 K) Dilatometry, present study, POP, ThO2-6wt%UO2

10.14 (300-1773 K) Dilatometry, present study, CAP, ThO2-6wt%UO2

10.37 (293-1623 K) HT-XRD, Th0.94U0.06O2 [127]

(Th,U)O2

10.66 (300-1800 K) MD present study, Th0.875U0.125O2

10.66 (293-1273 K) HT-XRD present study, ThO2-13wt.%UO2

10.33 (293-1973 K) HT-XRD, Th0.87U0.13O2 [129]

10.76 (300-1800 K) MD present study, Th0.8125U0.1875O2

10.93 (300-1800 K) MD present study, Th0.75U0.25O2

10.83 (293-1273 K) HT-XRD present study, ThO2-25wt.%UO2

11.05 (300-1800 K) MD present study, Th0.6875U0.3125O2

10.94 (293-1273 K) HT-XRD present study, ThO2-30wt.%UO2

for ThO2-6wt.% and 13wt.%UO2 match very well with previous HT-XRD measured

values. But the α measured from dilatometer for ThO2-6wt.%UO2 (both POP and

CAP pellets) is lower than HT-XRD values. This can be attributed to the fact

that density of the ThO2-6wt.%UO2 MOX pellets are lower (by 6-7%) compared to

theoretical density due to porosity. Nuclear fuel designers require thermal expansion

data generated by dilatometer for estimating the fuel clad gap during fuel operating

conditions under normal and hot spot conditions and importantly this estimation is

a key information (among the many other) to calculate effective heat transfer from

fuel to clad. It is also important to note that the α measured from dilatometer for

ThO2-6wt.%UO2 for both POP and CAP pellets is very similar. Therefore, our
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thermal expansion study indicates CTE is almost independent of inhomogeneity

and porosity effect of the pellets.

8.4.3 Thermal Conductivity
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Figure 8.8: Thermal conductivity as calculated by MD simulations as a function
of temperature for ThO2 and Th0.9375U0.0625O2 compared with our experimental
values of ThO2 and ThO2-6wt.% UO2 (POP and CAP) pellet (both corrected to 95
% TD). These values are also compared with reported values of ThO2-2wt.% UO2

by Pillai et al. [132]. The thermal conductivity values are calculated at 300, 400,
500, 750, 1000, 1250, 1500, 1750 and 2000 K temperature and solid lines are only
for visual guidance.

The MD calculated thermal conductivity of ThO2 as a function of tempera-

ture (300-1800 K range) are shown in Figure 8.5 (b). The error bar due to initial

conditions in thermal conductivity calculation at desired temperature was ±0.1 to

±0.35 Wm−1K−1 range. In order to compare with the reported experimental data, a

density (porosity) correction was applied to the MD calculated values as these were

obtained for 100% TD. The porosity effect incorporated thermal conductivity (κ) is

related with the 100% TD thermal conductivity (κ0) by Maxwell-Eucken equation

(Equation B.2). In other words, 5% porosity incorporated MD calculated thermal

conductivity (κ) is lower compared to κ0 by (1 - 0.92683) × 100% = 7.32% at all

temperature. The MD calculated values decreases with an increase of temperature,

which reflects lowering of thermal conductivity by the phonon-phonon scattering.
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Table 8.7: Constants A and B of the equations κ = 1
A+BT

for ThO2 and (Th,U)O2

MOX calculated from MD simulations and experimental measurements.

System A (m K/W) B (m/W) × 10−4

ThO2, MD, this study 0.0032 1.879

Th0.9375U0.0625O2, MD, this study 0.0174 1.784

ThO2, Expt. This study 0.0307 1.611

ThO2-6wt.% UO2 (POP), Expt. this study 0.0514 2.649

ThO2-6wt.% UO2 (CAP), Expt. this study 0.0547 2.548

ThO2, Kutty et al. [126] 0.0334 1.374

ThO2-4wt.%UO2, Kutty et al. [126] 0.0497 1.475

ThO2, Bakker et al. [6] 0.0004 2.248

ThO2-6wt.%UO2, Bakker et al. [6] 0.0509 1.848

On the other hand, plenty of experimental thermal conductivities measurements

are available in the literature for ThO2 [6, 122, 142, 298] and these are also plot-

ted in Figure 8.5 (b). It is evident that, the calculated thermal conductivities are

in good agreement with the experimental data within ±1 Wm−1K−1 in the whole

temperature range.

In Figure 8.8, the MD calculated thermal conductivity of Th1−xUxO2 (x = 0

and 0.0625) are plotted (corrected to 95% TD) as a function of temperature (400-

2000 K range) along with our experimentally measured values of pure ThO2 and

ThO2-6wt.%UO2 (Th0.9413U0.0587O2) in the 873-1873 K temperature range for POP

and CAP pellets. At low temperatures, the thermal conductivity of the (Th,U)O2

MOX decreases with an increase of the UO2 content. It is also evident that the

decrease in thermal conductivity with UO2 concentration at 500 K is larger than

that at 1500 K. At higher temperatures (above 1200 K), the thermal conductiv-

ity of Th0.9375U0.0625O2 is lower compared to ThO2 in the 0.5-0.1 Wm−1K−1 range.

It is also important to note that experimentally measured κ values for POP pel-

let is higher than the CAP pellets though the difference is within 5%. It further

emphasizes that cumulative effects of porosity majorly and inhomogeneity are af-

fecting the thermal conductivity properties of the CAP pellets. Figure 8.8 also in-

cludes experimentally determined thermal conductivity values of Pillai et al. [132]

for Th0.98U0.02O2 which show lower thermal conductivity values compared to ThO2-

6wt.%UO2 (CAP and POP pellets). At this point it is important to note, Pillai et

al. [132] used a static configuration technique in contrast to dynamical configuration

technique (this study) to estimate thermal conductivity and the density for which
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thermal conductivity values were reported was also not mentioned in [132].

The MD calculated thermal conductivity values are fitted to the equation

8.2 and Table 8.7 enlists A and B values obtained from the MD calculated and

experimentally measured κ versus temperature data along with those values deter-

mined by Kutty et al. [126] and suggested by Bakker et al. [6]. Our MD calculated A

value shows an order of magnitude increase for Th0.9375U0.0625O2 compared to ThO2

and B value remains almost constant. This general feature of increasing A value

with increasing UO2 concentration is matching well with reported data by Kutty

et al. [126] and suggested by Bakker et al. [6]. It can be noted that determined A

values for CAP pellet is higher than POP pellet and this can be attributed to in-

homogeneous distribution of UO2 in ThO2 matrix. So inhomogeneous distribution

is creating more lattice defect centers resulting in higher phonon-lattice scattering

cross-section.

8.5 Summary

MD simulations were performed on ThO2, (Th,Pu)O2 and (Th,U)O2 MOX using

Buckingham-Morse-Manybody type potential functions to systematically evaluate

thermal expansion and thermal conductivity of MOX. The variation of calculated

lattice parameters as a function of temperature for MOX solid solutions are in good

agreement with HT-XRD data which validates our potential parameters used in

this study.

Our combined MD simulations and dilatometry measurements indicate that

incorporation of PuO2 in ThO2 systematically increases coefficient of thermal ex-

pansion. Similarly, MD calculated and laser-flash measured thermal conductivity

values indicate that incorporation of PuO2 in ThO2 (by 6 wt.%) reduces thermal

conductivity values in the 0.6-1.2 Wm−1K−1 range for the 973-1613 K temperature

interval compared to ThO2.

Our combined MD simulations and HT-XRD measurements indicate that

incorporation of UO2 in ThO2 systematically increases coefficient of thermal ex-

pansion but the rate of increase is higher in low UO2 composition range (〈13 wt.%).

Similarly, MD calculated and laser-flash measured thermal conductivity values in-

dicate that incorporation of UO2 in ThO2 (by 6 wt.%) reduces thermal conductivity

values in the 0.5-1.1 Wm−1K−1 range for the 873-1873 K temperature interval com-

pared to ThO2. These values are of immense interest for fuel designers of AHWR-

LEU.
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Chapter 9

Conclusions and Future Scopes

The focus of this thesis can, therefore, be divided into two areas. One that aimed

to improve the understanding of detailed atomistic mechanism of phase transforma-

tions of displacive, mixed-mode (replacive-cum-displacive), superionic nature and

melting in pure Zr, Zr2Al-Nb alloys and ThO2 based mixed oxides. Second that

aimed to determine basic thermal properties (enthalpy, density, thermal expansion,

thermal conductivity, melting temperatures) of ThO2 based mixed oxides.

9.1 Summary of Results and Conclusions

9.1.1 Phase Transformation Pathways

This study presents a systematic theoretical investigation to determine most ener-

getically favorable atomistic transformation pathways (TP’s) for α → ω transfor-

mation in pure Zr. Our first-principles study finds direct α → ω TP proposed by

SG has a C2/c common space group along the TP and lowest enthalpy barrier (of

22 meV/atom at 0 K) compared to other TP’s. The lowest barrier pathway is a

suitable combination of small strains and relative atomic shuffle compared to the

nearest neighbor distances, an essential criterion for diffusionless displacive trans-

formation. Our calculations also show that phase transformation is associated with

softening of the shear elastic constant (C44) and Γ point transverse optical phonon

frequence (E2g) with pressure. Application of pressure in α Zr changes the effective

potential landscape for the E2g phonon at Γ point of the Brillouin zone. It is also

found that topological change in band structure around special k-point ‘M’ is a

precursor to this transformation.

In mixed-mode transformations displacive part is intimately connected with
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diffusive part. In Zr2Al, Zr3Al2Nb and Zr4AlNb alloys, mixed-mode phase trans-

formation pave the path to form chemically ordered ω phase. Here, the disordered

bcc lattice (β) is transformed into the hexagonal ω-structure by a periodic dis-

placement of lattice planes while the decoration of the ω-lattice by different atomic

species occurs through diffusional atom movements. In this study, the quantitative

determination of thermodynamic tendencies for diffusive vis-a-vis displacive pro-

cesses at different stages of the transformation delineates the actual pathway on

the free energy surface. In this thesis, ab-initio estimation of formation energies of

chemically disordered and ordered Zr2Al, Zr3Al2Nb and Zr4AlNb alloys shows that

ω like collapse (displacive part) is not energetically favorable for chemically disor-

dered β phase at these compositions. DFT calculated ground state energy suggested

that for the ω like collapse to occur, a certain degree of chemical ordering is a pre-

requisite. Moreover, mechanical stability analysis predicts both ω-Zr3Al2Nb and

B82-Zr2Al are mechanically stable phases with very poor ductility properties. But

degree of directional bonding in B82-Zr2Al is higher and it reduces with addition

of Nb in ω-Zr3Al2Nb. In contrast, being mechanically stable and having less pro-

nounced directional bonding makes ω-Zr4AlNb ductile. It is also established that,

an interplay between relative number of Zr-Al, Zr-Nb and Nb-Al bonds promotes

formation of ω phase in these alloys.

The “superionic transitions” is characterized by the rapid diffusion of a sig-

nificant fraction of one of the constituent species (oxygen for ThO2) within an es-

sentially rigid framework formed by the other species. A combined first-principles

and classical molecular dynamics (MD) simulations were used to investigate “supe-

rionic” transition in ThO2. Our GGA, LDA+U and MD calculated ground state

properties of ThO2 agree well with experimental and previous theoretical calcula-

tions. Phonon dispersion curves along symmetry directions, calculated using first

principles approaches, are in good agreement with reported experimental data at

room temperature. With increasing dilational lattice strain (ε), GGA and LDA+U

calculated B1u and Eu phonon mode frequencies soften at the X point. These de-

crease nonlinearly so that the B1u mode frequencies become smaller compared to

Eu mode frequencies in the range 0.05 > ε > 0.04. This is associated with sharp

increase in the narrow peak of the phonon density of states when the B1u and Eu

modes cross each other (or are about to cross) at the X point. With further increase

of temperature, B1u phonon mode continues to soften and become imaginary at a

temperature of 3430 K (below melting temperature of ∼ 3600 K). Moreover, the

calculated diffusion barriers indicate that 〈001〉 is the easy direction for anion mi-

gration in superionic state. The calculated temperature variation of single crystal
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elastic constants show the fluorite phase of ThO2 remains elastically stable up to

the superionic regime, though the B1u phonon mode is imaginary in that state. This

leads to anionic disorder in the elevated temperature. Tracking of anion positions

in the superionic state as a function of time suggests a hopping model in which the

oxygen ions migrate from one tetrahedral site to another.

Classical MD calculated melting temperatures (MT) of ThO2, UO2 and PuO2

are in good agreement with previously reported experimental data. The MD calcu-

lated change in enthalpy (H(T)-H(300 K)) values of defect-free UO2 upon heating

match very well upto 2000 K. The underestimation of values from 2000 K to melt-

ing can be attributed to the Schottky defects and contribution from the electronic

defects, which is not taken into account explicitly in these MD simulations. En-

thalpy of fusion values for ThO2, UO2 and PuO2 are calculated from the width of

the enthalpy discontinuity and calculated values are lower than experimental values

as the lattice and electronic defect contribution to the enthalpy is not taken into

account in our one-phase simulations. The MD calculated MT of (Th,U)O2 and

(Th,Pu)O2 MOX show good agreement with the ideal solidus line in the Th rich

part of the phase diagram. The ideal solidus line is, however, underestimated by

∼50 K for (Th,U)O2 in the UO2 rich parts of the phase diagram. Importantly,

our study would be consistent with a minima occurring around 5 atom% of ThO2

in the high temperature phase diagram of (Th,Pu)O2 MOX. Equations were de-

veloped and fitted to the MD data that were able to describe enthalpy increment

and density variation of solid and liquid phases of (Th1−xPux)O2 and (Th1−xUx)O2

MOX from 300 to 6000 K. These values are of importance for AHWR fuel design,

performance modeling and safety analysis.

Hence, the work presented here contributes to a clearer understanding of

actual atomistic pathways which are operative in displacive, diffusive vis-a-vis dis-

placive, superionic and melting type phase transformations. This study also elab-

orates the associated change in physical and thermal properties accompanying the

phase transformations.

9.1.2 Thermodynamic Parameters of ThO2 based MOX

Present study adopts a two-pronged theoretical and experimental approach to

determine thermal expansion and thermal conductivity (TC, κ) of Th1−xCexO2,

Th1−xPuxO2 and Th1−xUxO2 MOX as a function of temperature.

The TC decreases with the increase of CeO2 concentration and the decrease

in TC at 500 K is larger than that at 1500 K. At higher temperatures (above 900
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K), the TC of (Th,Ce)O2 MOX is almost independent of the concentration of CeO2.

Our MD calculated κ values of ThO2 overestimates (within 2-0.3 Wm−1K−1 range)

experimentally reported values by Cozzo et al. [142] in the 500-1573 K temperature

range but matches well (within 1-0.1 Wm−1K−1 range) with our experimentally de-

termined values. MD calculated κ values of Th0.9375Ce0.0625O2 and Th0.875Ce0.125O2

also are in good agreement (within 1-0.1 Wm−1K−1 range) with ThO2-3%PuO2 and

ThO2-8%PuO2 values, respectively, reported by Cozzo et al. [142]. Our combined

MD simulations and dilatometry measurements indicate that incorporation of PuO2

in ThO2 systematically increases coefficient of thermal expansion. Similarly, MD

calculated and laser-flash measured TC values indicate that incorporation of PuO2

in ThO2 (by 6 wt.%) reduces TC values in the 0.6-1.2 Wm−1K−1 range for the

973-1613 K temperature interval compared to ThO2.

It is important, therefore, to consider the temperature range over which the

fuel will be operated in the AHWR. The average operating temperature of AHWR is

700-800 K at the periphery of the pellet and the center line temperature is around

900-1000 K. Our MD calculated results show that the TC of Th0.9375Pu0.0625O2

exhibits a reduction in the range of 21-13% relative to that of pure ThO2 in the

700-1000 K temperature interval. For higher temperature reactors, such as the

Advanced gas-cooled reactor (AGR), where the temperature at the periphery of

the fuel pellet may reach 900-1000 K, the TC of Th0.9375Pu0.0625O2 is found to be

20% lower than that of ThO2. Also, at the peak center line temperature of about

1650 K, the degradation of TC of Th0.9375Pu0.0625O2 is about 14% relative to pure

ThO2. Our laser-flash measured TC showed a decrease of 26% and 20% compared

to pure ThO2 at 973 K and 1613 K, respectively.

Coefficient of thermal expansion (CTE) has been measured for (Th,U)O2

MOX (with 0, 6, 13, 25 and 30 wt.% UO2) by high temperature XRD in the 293-

1273 K temperature range and this experimental study is extended by calculating

CTE in the 300-3000 K temperature range using classical MD simulations. Our

combined MD simulations and HT-XRD measurements indicate that incorporation

of UO2 in ThO2 systematically increases CTE but the rate of increase is higher in

low UO2 composition range (<13 wt.%). Similarly, MD calculated and laser-flash

measured TC values indicate that incorporation of UO2 in ThO2 (by 6 wt.%) reduces

TC values in the 0.5-1.1 Wm−1K−1 range for the 873-1873 K temperature interval

compared to pure ThO2. These values are of immense interest for fuel designers

of AHWR. MD calculated thermal property values of ThO2 and (Th,U)O2 MOX

essentially reproduce experimentally determined values without taking into account

effects like, porosity, inhomogeneity, etc.. Using this state-of-the-art MD simulation
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methodology thermal properties of ThO2 and (Th,U)O2 MOX can be predicted over

a wide temperature and composition range.

The thermal conductivity of the ThO2 rich (Th1−xCex)O2, (Th1−xPux)O2

and (Th1−xUx)O2 solid solutions was found to be highly non linear as a function

of composition. Deviations from the perfect end member compositions introduced

phonon scattering due to the non-uniform cation sub-lattice, thereby reducing the

phonon mean free path and the thermal conductivity of the system. The concen-

tration and scattering strength of defects governs the extent to which the phonon

mean free path is reduced. The degradation of thermal conductivity was more

significant for (Th1−xCex)O2 than for (Th1−xPux)O2 and (Th1−xUx)O2 due to the

large lattice parameter mismatch of the end members. Equations were developed

and fitted to the MD data that were able to describe (Th1−xCex)O2, (Th1−xPux)O2

and (Th1−xUx)O2 thermal conductivity from 300 to 2000 K in a composition range

which is of importance for AHWR fuels. Understanding how differing cation sizes

alters thermal conductivity in these systems is useful for the development of mixed

oxide fuels. However, as the breeding of U233 from Th232 is the primary reason for

incorporating Th into the fuel cycle, the fuel conductivity would be expected to

degrade as transmutation proceeds. Being able to predict the rate and extent of

this degradation would be useful to aid in optimizing fuel core performance.

9.2 Limitations and Future Scope of this work

An atomistic model of the phase transformation provides an clear picture of the

transformations irrespective of the mechanism involved in the transformation (dis-

placive, replacive-displacive and superionic). In this study, the energies of the in-

termediate structures that arises during phase transformations (displacive and/or

diffusive type) are calculated using the first-principles calculations and hence the

energies are calculated at 0 K. The transformations are experimentally observed

at high temperatures. The vibrational entropy effects are not included in the cal-

culation of PT energy landscapes. So this study captures inherent chemical and

thermodynamical tendencies in a displacive and replacive-displacive PT. It is ex-

pected that thermal entropy is going to alter PT energy landscape and this study

does not give any estimation for that. Although, the study of superionic transi-

tion in ThO2 considers thermal expansion effect indirectly by performing series of

phonon calculations at elongated lattice parameters.

Experimentally prepared (Th,U)O2 and (Th,Pu)O2 MOX pellets always con-
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tain certain amount of porosity, non-stoichiometry, grain-boundaries and certain

amount of inhomogeneous distribution of UO2 and PuO2 in ThO2 matrix. MD sim-

ulation methodologies adopted in this thesis to study thermal properties does not

account for any of these effects explicitly. Although, porosity effects are considered

in the MD calculated thermal conductivity values by Maxwell-Eucken equation.

Even though, the MD interatomic potential developed for ThO2 and CeO2

works reasonably well to predict thermal expansion and thermal conductivity values

in the 300-2000 K range, the melting temperature is overestimated. These potential

set need further refinement to include very high temperature behavior.

This study can be treated as a template to systematically find an atom-

istic pathway, verifying it and applying it to calculation of transformation barrier.

Applying this approach to the understanding of other displacive and/or diffusional

transformation in element or alloys, has great potential to expand the boundaries of

both physics and materials science. Moreover, clear understanding of phase trans-

formation pathway enables us to go a step forward by predicting change in phase

transformation behavior due to impurities and/or alloying. Mapping competing

phases and the associated phase transformation with pressure, temperature and

impurities can provide predictive design for improved control of alloy properties.

The metastability of the high pressure transformation in Zr (Fig. 4.4) is

clearly seen by the decrease of the activation barrier with increasing pressure. Low

pressure transformations are thermally inhibited by an activation energy. Moreover,

the transient bcc phase has not been seen in equilibrium experiments. Experimental

works on Zr or Zr-2.5%Nb alloy by Perez-Prado et al. [299,300] does see the β phase

at lower pressure and this observation is supported by the non-uniform (shear) stress

applied to the sample [301]. More detailed theoretical works on pathway under

shear stress and experiments at high hydrostatic pressure are needed to further

understand the metastability.

This work was undertaken to partially fulfill the objective of determining

phase equilibrium in actinide MOX systems that is initially required to start the fis-

sion chain reaction. The chemical compositions of the actinide MOX will definitely

be changed during the “burn-up” process in the reactors and initial actinides (Th,

U and Pu) will transmute to minor actinides such as Np, Am and Cm. The results

of this work are important in understanding phase equilibrium in the (Th,U)O2 and

(Th,Pu)O2 MOX, which provides phase stability information at a particular point

in the temperature-composition space. However, as mentioned above, the nuclear

fuels being developed are multi-component alloys (or MOX), and under irradiation,

they transmute to minor actinide elements, which opens up a range of possibilities
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of MOX formation during this process. Thus, it becomes important to integrate the

thermodynamic results obtained from this study, for other binary MOX to obtain

phase equilibrium in ternary or multi-component systems, such as (Th,U,Np)O2,

(Th,U,Am)O2, (Th,Pu,Np)O2, (Th,Pu,Am)O2, etc..

According to previous high temperature melting experiments [102, 104, 110,

121,123], low additions of ThO2 to UO2 result in a slight decrease of the solidification

temperature and this behavior would be consistent with a minimum at 3098 K

around a composition of 5 mol.% ThO2. The solid/liquid transition temperature was

thereafter observed to increase with increasing ThO2 fraction. At high temperatures

UO2 can accommodate in the fcc lattice both oxygen interstitials and vacancies

over a wide stoichiometry range (at least, 1.5 ≤ O/U ≤ 2.25). The variations of the

melting point with stoichiometry are expected in conjunction with the appearance of

an oxygen solubility gap when solid solutions UO2±x are melted [275]. The minimum

in the uranium rich side of ThO2-UO2 phase diagram is an overall outcome of the

abrupt increase of specific heat due to formation of Frankel pairs and order-disorder

pre-melting transitions, non-stoichiometry effect etc.. Incorporation of all these

effects in the current state of the MD simulation methodologies is difficult. Two-

phase simulations employed in this study to calculate melting temperature of ThO2,

UO2 and MOX indirectly incorporate the effect of lattice defects (mostly Frankel

defects). Non-stoichiometry effect requires U+3- O and U+5-O interactions to be

incorporated in the potential data set efficiently. This will allows us to predict the

melting temperature variation as a function of non-stoichiometry. Similar behavior

can also be studied for (Pu,Th)O2 MOX.

Understanding thermal property changes of nuclear fuels under extreme ra-

diation conditions will provide actual performance of the fuel in the operating

stage and this has been a subject of great interests for decades in UO2 based fu-

els [119,302–305]. On the contrary less attention has been paid to ThO2 based fuels.

In order to improve the modeling capability to predict fuel performance, effect of

micro-structural changes on phonon and thermal carrier transport within domains

and at grain boundaries of ThO2 need to be studied separately. Therefore, thermal

property changes of ThO2 having different boundary-to-volume ratios can be ap-

propriately modeled as a function of burnup levels. It is well known that interfacial

resistance of grain boundaries dramatically influences thermal conductivity of poly-

crystalline solids [306]. Therefore, this study can be extended further to calculate

thermal conductivity of ThO2 based fuels in the presence of grain boundaries and

radiation related defects.
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Appendix A

Superionic Transition in ThO2

Figure A.1: Illustration of oxygen migration directions towards a vacant oxygen
site A (black atom) in a 2x2x2 supercell (96 atoms). Atoms B, C and D migrate
to position A along [001], [110] and [111] directions, respectively. This supercell is
taken only to show 3 migration direction and actual calculation was performed in
a 10x10x10 supercell (12000 atoms).
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Figure A.2: MD calculated MSD curve for oxygen between 2500 K and 3200 K (100
K interval). Superionic transition is visible above 2900 K.

Figure A.3: MD calculated diffusivity plot for oxygen between 2500 K and 3300 K
(100 K interval). The jump in the diffusivity value appears at 3000 K and above.
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Figure A.4: MD calculated RDF plot for O-O pair at 2500 K and 3000 K. Below the
fast ionic regime, simulated at 2500 K, RDF of O-O show succession of well-defined
peaks, while in the fast ionic regime O-O RDF peaks are less-well defined from
2nd nearest neighbours onwards. This indicates a diffuse O sub-lattice because of
intensive ionic motion.
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Figure A.5: MD calculated total displacement (
√

(dx2 + dy2 + dz2)) from equilib-
rium position is plotted as a function of simulation time for atom A (upper panel)
and atom B (lower panel) at 3000 K temperature. Inset figures show simulation
time corresponding to which anionic transition occurs from one tertahedral position
to the other.
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Figure A.6: MD calculated total displacement (
√

(dx2 + dy2 + dz2)) from equilib-
rium position is plotted as a function of simulation time for atom A (upper panel)
and atom B (lower panel) at 2900 K temperature. Inset figures show simulation
time corresponding to which anionic transition occurs from one tertahedral position
to the other.
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Appendix B

Thermal Properties of (Th,Ce)O2

MOX

B.1 Determination of Buckingham-type (Th,Ce)O2

MOX Interatomic Potentials

The MD calculations of thermal expansion and thermal conductivity of (Th,Ce)O2

MOX were performed using Buckingham (Buck) and Buckingham-Morse-manybody

(BMM) potential models. A description of the BMM potential model is given in

section 7.2.2. A description to determine potential parameters of Buck potential

model is given below.

In order to determine the interatomic potential functions for ThO2 and CeO2,

we applied Born model of ionic solid, where the ions within the system are consid-

ered to be a series of charged interacting particle with a partial ionic charge. In

this model, an effective ionicity, Zeff
α is introduced to replace the formal charges of

the ions with effective charges, qα = Zeff
α |e|. The pair interaction potential of two

particles i and j, separated by rij in this system consists of long-range Coulomb and

short range Buckingham type repulsive contributions:

φαβ(rij) =
qαqβ

4πε0rij
+ Aαβ exp

(
− rij
bαβ

)
− Cαβ

r6
ij

(B.1)

where α and β are used to label the species of atom i and j, respectively.

Aαβ, bαβ and Cαβ are empirical parameters that describes Buckingham potentials

between atom i and j. An ionic bonding of 67.5% is assumed for each ion in the

present study, i.e., Zeff
α = 2.7 for the tetravalent cations and Zeff

α = -1.35 for the
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oxygen anions. The potential parameters of O2− were obtained from the earlier

work [147, 289]. Firstly, we determined the potential parameters of Th4+ ions to

reduce the difference between calculated and measured properties (i.e., thermal

expansion and bulk modulus). The thermal expansion of ThO2 with a fluorite

structure had been measured in several studies [6, 127, 130, 140, 141]. In addition,

the bulk modulus was also experimentally estimated to be 198 GPa [259]. Figure

B.1 (a) shows that the thermal expansion as obtained from our MD calculations

is in good agreement with the literature data. The volume-pressure relationships

of ThO2 are shown in Figure B.1(b). The bulk modulus obtained from our MD

calculations was estimated to be 216 GPa using a third order polynomial equation

of state.

Secondly, the potential parameters of Ce4+ ions were determined based on

the experimental thermal expansion [140] and the bulk modulus [307] in the same

way as those of Th4+ ions. The thermal expansion and volume-pressure relationship

calculated using the optimized potential parameters of Ce4+ are shown in Figure B.2

(a and b), respectively. The calculated thermal expansion is a little larger than the

literature data at high temperatures [140]. On the other hand, the calculated bulk

modulus of 208 GPa, is slightly larger than the experimental value of 204 GPa [307].

In general, to further improve the reproducibility of mechanical properties, the

interatomic potential function with a high flexibility, e.g., by including the Morse

term, should be provided. But in the present study, we show that our potential

model is sufficient to reproduce thermal properties of ThO2, CeO2 and (Th,Ce)O2

MOX from room temperature to 1750 K. The potential parameters thus obtained

for Th4+ and Ce4+ ions as well as oxygen ions are summarized in Table B.1.

Table B.1: Parameters of the pair-wise interactions described by equation B.1.

Interaction Type A (eV) b (Å) C (eV Å6)

Th-O 26300 0.224857 12.8

Ce-O 7390 0.250 12.8

O-O 919.17 0.332 17.36

The reliability of the generated potential parameters can be cross checked

by systematic study of phase stability of ThO2 and CeO2. Phase stability is a

crucial issue for the simulation of nuclear fuel materials as they are subjected to

high temperature and pressure during applications. We studied ground state phase

stability of ThO2 and CeO2 in a variety of AB2 structures at zero pressure and tem-

perature. The different phases considered are fluorite (cubic, space group: Fm3m
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Figure B.1: Calculated (a) Thermal expansion and (b) isothermal compressibility
of ThO2 is compared with available experimental data in the literature [130, 141,
259,296,297].

Figure B.2: Calculated (a) Thermal expansion and (b) isothermal compressibility
of CeO2 is compared with available experimental data in the literature [141,307].

(225)), anatase (tetragonal, space group: I41/amd (141)), rutile (tetragonal, space

group: P4/2mnm (136)), pyrite (cubic, space group: Fm3m (205)), cotunnite
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Table B.2: Relative lattice energies of different AB2 polymorphs with respect to
fluorite structure calculated from our interaction parameters for ThO2 and CeO2 in
eV/atom. ‘F’ indicates the structures optimized to the same energy as the fluorite
structure.

Structure Fluorite Anatase Rutile Pyrite Cotunnite Coulombite Brookite

ThO2 0.0 0.205 0.158 F 0.669 0.488 0.176

CeO2 0.0 0.065 0.017 F 0.477 0.381 0.409

(orthorhombic, space group: Pnma (62)), columbite (orthorhombic, space group:

Pbcn (60)) and brookite (orthorhombic, space group: Pbca (61)). Table B.2 reports

the calculated phase stability (with respect to flourite phase) of ThO2 and CeO2

with our determined potential parameters. A positive value of the relative energy

indicates the structure to be less favorable than fluorite. Our determined potential

parameters correctly predict the fluorite structure to be the ground state structure.

In these calculations, the pyrite phase was found to have the same energy as that

of the fluorite phase (Table B.2).

B.2 Thermal Expansion

The MD calculated average lattice parameters (a(T )) of ThO2, Th1−xCexO2 (x =

0.0625 and 0.125) are plotted as a function of temperature (300-3000 K range) in

Figure B.3. The HT-XRD studies of ThO2 and Th1−xCexO2 MOX are also shown

in the figure. The calculated a(T ) for Th0.9375Ce0.0625O2 matches well with ex-

perimentally measured polycrystalline a(T ) for Th0.96Ce0.04O2 and Th0.92Ce0.08O2

MOX in the temperature range of 300-1500 K. It can be seen that the calculated

a(T ) for ThO2 is also matching well with experimental measurements in the same

temperature range. The calculated decrease in lattice parameter as a function of

Ce4+ concentration can be attributed to small ionic radii of Ce4+ compared to

Th4+ in eight-fold coordination. Therefore, the generated potential parameters as

well as SQS models are not only capable of predicting exact behavior of a(T ) for

ThO2, but also can efficiently estimate a(T ) for small CeO2 doping in ThO2 ma-

trix. We extended our study by estimating a(T ) for ThO2, Th0.9375Ce0.0625O2 and

Th0.875Ce0.125O2 in the temperature range of 300-3000 K. This allowed useful pre-

dictions to be made, both at operating temperatures and at extreme temperatures

approaching the melting point in reference to reactor fuel applications.

In order to further analyze the thermal expansion behavior of ThO2 and

Th1−xCexO2 MOX, the MD calculated and experimentally measured thermal ex-
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Figure B.3: MD calculated (using Buck (solid line) and BMM (dotted line) model)
unit cell dimension of pure ThO2, Th0.9375Ce0.0625O2 and Th0.875Ce0.125O2 MOX in
the 300-3000 K temperature range is compared with HT-XRD data [141]. The
lattice parameters are calculated from 300-3000 K in 100 K interval. Black, red and
blue lines are for ThO2, Th0.9375Ce0.0625O2 and Th0.875Ce0.125O2 MOX, respectively.

pansion coefficients (α) are listed in Table B.3 along with experimental data. Ther-

mal expansion of ThO2 and ThO2-5 and 8 wt%CeO2 pellets (POP and CAP pellets)

have been measured using a dilatometer. In all previous experimental studies, the

mixed oxide pellets were generally prepared by the conventional powder metallurgy

route of powder processing and pelletization (POP) technique to perform labora-

tory scale experiments. A Coated Agglomerate Pelletization (CAP) process, with

certain added advantage over conventional powder metallurgy route [126,135], can

be implemented directly in making MOX fuel pellets to be later used in AHWR

operated in India and other countries. Details of the pellet preparations and char-

acterizations are described in Appendix C.

The numerical value of MD calculated α is always greater than the experi-

mentally measured α values. This can be attributed to the fact that our MD calcu-

lations are performed on a model system with homogeneous distribution of CeO2 in

ThO2 matrix and with no incorporation of porosity, impurity effects, etc.. In con-
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Table B.3: MD Calculated and experimentally measured thermal expansion coef-
ficients of ThO2 and (Th,Ce)O2 MOX are compared with available experimental
data in the literature. ThO2-5wt%CeO2 and ThO2-8wt%CeO2 corresponds to com-
positions Th0.9253Ce0.0747O2 and Th0.8823Ce0.1177O2, respectively. The Buckingham
(Buck) and Buckingham-Morese-manybody (BMM) models correspond to the po-
tential model employed in those calculations

Thermal Expansion Remarks

Coefficients α (10−6 K−1)

ThO2

10.61 (300-1800 K) MD present study, Buck model

10.29 (300-1800 K) MD present study, BMM model

9.99 (300-1450 K) Dilatometry, present study, ThO2

9.04 (293-1123 K) Dilatometry, 96% TD [141]

9.54 (293-1173 K) HT XRD [141]

Th0.9375Ce0.0625O2 MOX

10.78 (300-1800 K) MD present study, Buck model

10.42 (300-1800 K) MD present study, BMM model

10.56 (873-1773 K) Dilatometry, CAP, ThO2-5wt%CeO2 (Air)

10.35 (873-1773 K) Dilatometry, POP, ThO2-5wt%CeO2 (Air)

10.65 (873-1773 K) Dilatometry, CAP, ThO2-5wt%CeO2 (Ar-H2)

10.44 (873-1773 K) Dilatometry, POP, ThO2-5wt%CeO2 (Ar-H2)

9.35 (293-1123 K) Th0.96Ce0.04O2, Dilatometry, 83% TD [141]

9.76 (293-1173 K) Th0.96Ce0.04O2, HT XRD [141]

9.49 (293-1123 K) Th0.92Ce0.08O2, Dilatometry, 83% TD [141]

9.96 (293-1173 K) Th0.92Ce0.08O2, HT XRD [141]

Th0.875Ce0.125O2 MOX

10.93 (300-1800 K) MD present study, Buck model

10.57 (300-1800 K) MD present study, BMM model

10.69 (300-1773 K) Dilatometry, CAP, present study, ThO2-8wt%CeO2

10.50 (300-1773 K) Dilatometry, POP, present study, ThO2-8wt%CeO2

9.50 (293-1123 K) Th0.9Ce0.1O2, Dilatometry, 85% TD [140]

trast, the experimental samples are not devoid of these effects where some part of

the lattice thermal expansion may be accommodated in the porosity of the samples.

Nuclear fuel designers need thermal expansion data generated by dilatometer for

estimating the fuel clad gap during fuel operating conditions under normal and hot

spot conditions. Experimental studies using dilatometer indicated that the thermal

expansion coefficient of (Th,Ce)O2 increases with an increasing CeO2 content due
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to higher thermal expansion coefficient of CeO2 arising from its lower melting point

compared to that of ThO2.

B.3 Thermal Conductivity

The lattice thermal conductivity of ThO2 was calculated using a supercell com-

prising 8×8×8 fluorite unit cells using Green-Kubo formalism. In Figure B.4, the

normalized HCACF Cxx(t) is presented for ThO2 at T = 500 K and 1500 K. Anal-

ogous result can be obtained for Cyy(t) and Czz(t). A distinctive feature of these

curves is their rapid and regular oscillation around t = 0 ps and the amplitude is

getting smaller gradually with the elapsed time. This kind of oscillatory behavior

is usual in these ceramic oxides [289]. This figure also shows that the amplitude of

HCCF for 500 K is larger than that for 1500 K. In addition, the relaxation time

of the correlation between J(t) and J(0) is longer at the lower temperature. In

the present study, the thermal conductivity was considered to be the value when

the amplitude of fluctuation of the normalized HCCF became almost zero for every

temperature. Similarly, normalized HCCF is presented for CeO2 at T = 500 K and

1500 K in Figure B.5
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Figure B.4: Normalized heat current auto correction function (HCACF) for Cxx as
a function of time for ThO2 at 500 K and 1500 K.

The calculated thermal conductivities of ThO2 and CeO2 as a function of

temperature (300-2000 K range) are shown in Figure B.6 and B.7, respectively.

These calculated values decreases with an increase of temperature, which reflects

lowering of thermal conductivity by the phonon-phonon scattering. On the other
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Figure B.5: Normalized heat current auto correction function (HCACF) for Cxx as
a function of time for CeO2 at 500 K and 1500 K.

hand, a number of experimental thermal conductivities measurements are available

in the literature for ThO2 [6,122,132,142,298] and these are also plotted in Figure

B.6. In order to compare with the reported experimental data, a density (porosity)

correction was applied to the MD calculated values as these were obtained for 100%

TD. The porosity effect incorporated thermal conductivity (κ) is related to the

100% TD thermal conductivity (κ0) by Maxwell-Eucken equation:

κ = κ0
1− p

1 + βp
(B.2)

where β = 0.5 and p is the porosity (p = 0.05 for this study) [294]. As shown

in Figure B.6, the calculated thermal conductivities are in good agreement with

the experimental data within ±1 W m−1 K−1 for temperatures greater than 750

K. While on the lower temperature side (<750 K), our calculated values are, in

general, slightly overestimated compared to the experimental data. For CeO2, the

calculated thermal conductivities (corrected for 95 % TD) are shown in Figure

B.7 along with reported experimental values for CeO2 and PuO2 [142, 308–310].

Our MD calculated thermal conductivities for CeO2 are generally underestimated

(between 0.5 to 3 W m−1 K−1 over the temperature range) as compared to the

experimental measurement of Cozzo et al. [142]. It is also important to note that

the experimental measurements of thermal conductivities by Cozzo et al. [142] for

PuO2 in the 500-1750 K range is significantly larger compared to other experimental

measurements [308–310].
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Figure B.6: Thermal conductivity calculated by MD simulations as a function of
temperature for ThO2 compared with experimental values. Solid line is only for
visual guidance.
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The thermal conductivities of ThO2, CeO2 and MOX solid solutions as cal-

culated for 8×8×8 supercells are shown in Figures B.6 and B.7. To check for de-

pendence of supercell size on the calculation of thermal conductivity, those of ThO2

were calculated at 1250 K for different supercell sizes. The calculated thermal con-

ductivity values are listed in Table B.4, which shows these values to converge for

8×8×8 supercell.

Table B.4: Supercell size dependence of thermal conductivity of ThO2 at 1250 K.

Supercell size (unit cells) Thermal conductivity (W m−1K−1)

5×5×5 3.87

6×6×6 4.65

7×7×7 3.95

8×8×8 3.97

In Figure B.8, the MD calculated thermal conductivity of pure ThO2, Th1−xCexO2

(x = 0.0625 and 0.125) are plotted as a function of temperature (300-2000 K

range) along with experimental results for pure ThO2, 3wt% and 8wt% PuO2 doped

ThO2 [142]. Our experimentally measured thermal conductivity values for ThO2-

5wt% CeO2 (Th0.9253Ce0.0747O2) pellets in the 873-1613 K temperature range for

POP and CAP pellets sintered under different conditions (Ar+7%H2 and Air) are

also presented in Figure B.8 for comparison. At low temperatures, the thermal con-

ductivity of the ThO2-MOX decreases with an increase of the CeO2 content in the

range between 0-12.5 at.% CeO2. As shown in Figure B.8, the thermal conductivity

decreases with the increase of CeO2 concentration and this decrease in thermal con-

ductivity is larger at 500 K than that at 1500 K. This is attributed to the scattering

of the phonons occurring due to mass and size difference between substituted and

host atoms. Experimental observations on conductivity studies show that the pel-

lets fabricated by CAP process exhibited lower thermal conductivity compared to

pellets fabricated by conventional route (POP) in general. At higher temperatures

(above 900 K), the thermal conductivity of ThO2-MOX is almost independent of

the concentration of CeO2.

For ceramic oxide systems, the behavior of thermal conductivity with tem-

perature is governed by two factors: (i) the phonon-phonon interactions and (ii)

the density of defects (phonon scattering centers) in the lattice. For temperatures

below 1900 K, the contribution of the free electrons on the thermal conductivity

can be neglected for electronically insulator materials [6, 295]. In view of this, the

MD calculated thermal conductivity data was fitted to the standard relation with
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Figure B.8: Thermal conductivity calculated by MD simulations as a function of
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phonon conduction, as given below,

κ =
1

A+BT
(B.3)

where, ‘A’ represent scattering due to the presence of impurities, representing defect

thermal resistivity and is independent of temperature and ‘B’ represents scattering

due to phonons and is a function of temperature. The influence of substituted

impurities on the thermal conductivity is attributed to an increase of the parameter

‘A’. This results from interaction of phonon with lattice imperfections, impurities,

isotopic, or other mass differences as well as bulk defects such as grain boundaries

in the sample. Parameter ‘B’ remains constant theoretically and the second term,

namely ‘B.T’, represents the intrinsic lattice thermal resistivity caused by phonon-

phonon scattering. As the temperature increases, this term becomes predominant.
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One pair of A and B constants can be obtained for each composition of solid

solution by polynomial fitting of the thermal resistivity versus temperature data.

Table B.5 shows the determined values of A and B constants from our MD cal-

culated and experimentally measured thermal conductivity variation as a function

of temperature along with those values as determined by Cozzo et al. [142]. Fig-

ure B.8 shows thermal conductivity values of ThO2 and ThO2-5%CeO2 for CAP

and POP pellets sintered at different atmospheres along with the polynomial fitted

curve used to determine the values of constants A and B. It is evident from Table

B.5 that our MD calculated B constants are almost independent of composition of

solid solutions which is in accordance with experimental measurements of Cozzo et

al. [142]. On the other hand, the values of constant A continuously increase with

CeO2 concentration in agreement with the experimental trend. This is attributed

to the scattering of the phonons occurring due to mass and size difference between

substituted and host atoms.

Table B.5: Constants A and B of the equations κ = 1
A+BT

for ThO2 and (Th,Ce)O2

MOX calculated from MD simulations and experimental measurements.

System A (m K/W) B (m/W) × 10−4

MD this study, Buck model

ThO2 0.00254 2.44

Th0.9375Ce0.0625O2 0.00825 2.41

Th0.875Ce0.125O2 0.06460 2.29

MD this study, BMM model

ThO2 0.00315 1.88

Th0.9375Ce0.0625O2 0.00794 2.05

Th0.875Ce0.125O2 0.05363 1.97

ThO2, Expt. This study 0.02000 1.34

ThO2-5wt.% CeO2 (POP) Ar-H2, Expt. this study 0.20519 0.08

ThO2-5wt.% CeO2 (CAP) Ar-H2, Expt. this study 0.22145 1.00

ThO2-5wt.% CeO2 (POP) Air, Expt. this study 0.08605 0.90

ThO2-5wt.% CeO2 (CAP) Air, Expt. this study 0.07449 0.90

ThO2, Cozzo et al. [142] 0.010 2.30

ThO2-3wt.%PuO2, Cozzo et al. [142] 0.035 2.20

ThO2-3wt.%PuO2, Cozzo et al. [142] 0.099 1.69
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Appendix C

Experimental Techniques

C.1 Preparation of ThO2 -X wt% CeO2 (X = 0,

5 and 8) solid solutions

ThO2 and CeO2 powders were used for fabrication of (Th,Ce)O2 pellets. The indi-

vidual powders were characterized for their physical properties and chemical purity.

The O/M ratio of both the powders was 2.00 and the total chemical impurities an-

alyzed in ThO2 and CeO2 powders were found to be <1700 ppm and <500 ppm,

respectively. The (Th,Ce)O2 green pellets for the study were prepared by the fol-

lowing routes:

1. Conventional powder metallurgy of powder processing and pelletization (POP)

technique, and

2. Coated agglomerate pelletization (CAP) technique.

POP technique consisted of weighing of powders and mixing in requisite pro-

portion, milling of powders along with admixed lubricant-cum-binder (Oleic acid

and polyethylene glycol) in high energy ball mill, pre-compaction of mixed powders

at 120-150 MPa, granulation in an oscillatory granulator, sieving and final com-

paction at 300-360 MPa. The CAP technique involved milling of ThO2 powder,

emulsion addition to the powder, extrusion through an extruder and spheroidiza-

tion, drying of spheroids in an oven at 70◦C, coating with second phase powder and

final compaction at 300-360 MPa. The green pellets of ThO2, ThO2-3 wt% CeO2,

ThO2-5wt% CeO2 and ThO2-8wt% CeO2 were fabricated by both the POP and

CAP processes for further experimental studies. The density of the green pellets

was in the range of 64 ± 2% of theoretical density (TD). For comparison, the pellets
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of the experimental batches were sintered together under two different conditions,

viz., i) at 1650◦C in Ar-8%H2 (reducing atmosphere) and ii) in air (oxidizing at-

mosphere) for 4 hours in a batch type resistance heating furnace. Intermediate

temperature soak of 2 hours at 400◦C was provided during sintering operation to

ensure complete removal of binder-cum-lubricants (liquid) added. No additional

procedures, techniques or parametric changes were carried out during experimental

fabrication to influence degree of homogeneity of CeO2 in ThO2 powders and other

properties of pellets.

Pellets were, further, characterized for properties which might influence the

thermal properties of the pellets. Density measurement of pellets was carried out

using Archimedes principle. Pore distribution was observed by optical microscopy

on metallographically prepared samples. Oxygen to metal (O/M) ratio in the thoria-

ceria solid solutions was determined by thermogravimetry (TG) method. Thermo-

gravimetric studies for the sintered pellets were carried out in Mettler Thermo

Analyser (Model: TGA-SDTA LT/1600 MT5) equipment. The powder of a pellet

∼2g was loaded in TG and heated at 1273 K and held isothermally for 3 hrs in a

flowing Ar-8%H2 gas (flow rate: 50 cm3/min) with a heating rate of 10 K/min over

saturated moisture (H2O) content with defined oxygen potential (-100 kcal/mol)

which ensured perfect oxygen stoichiometry to 2.0. Thus, the change in weights

(gain/loss) before and after the experiment measured by TG corresponded to the

extent of hypo-/hyper-stoichiometry from which the O/M ratio was calculated and

buoyancy correction was applied to correct the weight changes.

C.2 Preparation of ThO2 -X wt% UO2 (X = 0, 6,

13, 25 and 30) solid solutions

The (Th,U)O2 green pellets for the study were prepared by conventional powder

metallurgy of powder processing and pelletization (POP) technique using ThO2 and

UO2 powders as starting material. The characteristics of the starting ThO2 and UO2

powders used in this study are given in Table C.1. Fabrication of pellets by POP

route involves weighing of powders for required composition, mixing and milling

of powders along with admixed lubricant-cum-binder (Oleic acid and polyethylene

glycol), pre-compaction, granulation, sieving and final compaction of (Th,U)O2

mixed oxide granules at 300-360 MPa.

The green pellets of ThO2, ThO2-MOX were fabricated by the POP tech-

niques and were further processed for further experimental studies. The density
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of the green pellets was in the range of 60±2% of theoretical density (TD). For

maintaining similar experimental conditions, all the experimental pellets were sin-

tered together at 1923 K in Ar-8%H2 reducing atmosphere for 4 hours at a rate of

2 K/min.. For removal of binder-cum-lubricants (liquid), intermediate temperature

soak of 2 hours at 400◦C was provided during sintering operation. No additional

procedures, techniques or parametric changes were carried out during experimental

fabrication to influence degree of homogeneity of UO2 in ThO2 powders and other

properties of pellets.

Table C.1: Characteristics of starting ThO2 and UO2 powders.

Characteristics ThO2 UO2

Apparent density (g/cc) (by Hall flow meter) 0.70 1.30

Specific Surface area (m2/g) (by BET method) 1.53 3.00

Theoretical density (g/cc) 10.00 10.96

Oxygen to metal ratio (O/M) (by thermogravimetry) 2.00 2.18

Total impurities (ppm) (by ICP-AES analysis) <1200 <700

C.3 ICP-AES

Chemical analysis of impurity contents of (Th,U)O2 sintered pellets was carried out

by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES).

C.3.1 Sample preparation for ICP analysis

The reagents used e.g., TBP, tri-n-octyl phosphine oxide (TOPO), CCl4 and HF

were of analytical reagent grade and HNO3 was of suprapure grade. All glassware

used were made of quartz. Two ThO2 trace element standards namely ThO2 and

ThO2-13%UO2 were analyzed for their trace element contents by ICP-AES after

separating thorium AND Uranium by TBP extractions. For separation of thorium

and uranium, weighed quantities of ThO2 and ThO2-13%UO2 were taken in 100

mL capacity high purity platinum dish. Approximately 10 mL of suprapure conc.

HNO3 was added to the sample taken in the dish and the resultant mixture was

boiled gently on a hot plate. In the boiling mixture 1.5 mL of 0.5 solution of HF was

added to get clear solution. This solution was evaporated to almost dryness. The

residue obtained was dissolved in 1 mL of conc. suprapure HNO3 and evaporated to

dryness. This process of dissolution and evaporation was repeated further for four

times so that HF is completely removed after which, the residue was dissolved in
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10 mL of 4 M HNO3. All these dissolution and evaporation operations were carried

using a hood connected to suction so that corrosive vapors are safely collected in

an aqueous medium and not left in the atmosphere. The volumes of the solutions

obtained after the dissolution of ThO2 and ThO2-13%UO2 were made up to 15

mL with 4 M HNO3. These solutions were extracted four times with equal volume

of 40% solution of TBP in CCl4 and later two times with 0.2 M TOPO in CCl4

to assure that most of the Th and U ions were extracted from the solution leaving

behind only the impurities in the aqueous phase. The aqueous portion was carefully

separated and made up to 25 mL with milli Q water and was analyzed by ICP-AES

and the results were given in section 8.4.1.

C.3.2 Instrument and operating conditions

The analysis was carried out using Atomic Emission Spectrometer (AES), ARCOS,

procured from Germany, with inductively coupled argon plasma as excitation source

and capacitive coupled device (CCD) as a detector system. Instrumental specifica-

tions and optimized operating conditions are given elsewhere [311].

C.4 Thermogravimetry

Oxygen to metal (O/M) ratio in the (Th,U)O2 solid solutions was determined by

thermogravimetry (TG) method. Thermo-gravimetric studies for the sintered pel-

lets were carried out in Mettler Thermo Analyser (Model: TGA-SDTA LT/1600

MT5) equipment. The powder of a pellet ∼ 2g was loaded in TG and heated at 1273

K and held isothermally for 3 hours in a flowing Ar-8%H2 gas (flow rate: 50 cm3/m)

with a heating rate of 10 K/min over saturated moisture (H2O) content with de-

fined oxygen potential (-100 kcal/mol) which ensured perfect oxygen stoichiometry

to 2.0. Thus, the change in weights (gain/loss) before and after the experiment mea-

sured by TG corresponded to the extent of hypo/hyper-stoichiometry from which

the O/M ratio was calculated and buoyancy correction was applied to correct the

weight changes.

C.5 High Temperature XRD

Thermal expansion measurements were performed using High Temperature X-ray

Diffraction (HT-XRD) and Dilatometry. The HT-XRD studies were carried out
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using STOE Diffractometer (theta-theta geometry), fitted with HDK-2.4 high tem-

perature attachment having Platinum-Rhodium (Pt-Rh) sample carrier under high

vacuum. The well ground powder samples were mounted on the Pt-Rh sample

carrier, spot welded at the bottom with a Pt/Pt-13% Rh thermocouple for tem-

perature measurement. The temperature of the sample was controlled by a PID

type temperature controller within ±1 K. Silicon and Platinum-Rhodium stages

were used as standards to calibrate the instrument. The HT-XRD patterns were

recorded at different temperatures, from ambient to 1273 K in the 2θ range of 20-60◦

using monochromatised Cu Kα1 radiation (0.15406 nm). The samples were heated

at the rate of 15 K min−1 and measurements were made at 100 K intervals. The

measurements were carried out in vacuum (1x10−5 mbar). At each temperature,

the sample was soaked for 15 min to stabilize the temperature.

C.6 Dilatometry

Bulk thermal expansion studies were also carried out using a Setaram vertical

Dilatometer. The thermal expansion measurements of ThO2 and ThO2-6wt.%UO2

MOX sintered pellets fabricated by both POP and CAP routes were carried out

at a heating rate of 2 K/min from room temperature to 1773 K in high purity Ar

atmosphere. The accuracy of the measurement of change in length was within ±
0.1 µm. Dilatometer was calibrated with respect to both expansion values as well

as temperature. The expansion data measured were corrected using expansion data

from standard run. The coefficient of thermal expansion (CTE) was calculated by a

software package attached to the dilatometer. The CTE between two temperatures

T1 and T2 was calculated using the relation:

CTE(T1−T2) =
L2 − L1

L0(T2 − T1)
(C.1)

where L0 is the initial length of the specimen at room temperature, L1 and

L2 are the lengths at temperatures T1 and T2 respectively.

C.7 Thermal Conductivity Measurements

Thermal diffusivity measurements of ThO2 and ThO2-6%UO2 sintered pellets fab-

ricated by both POP and CAP routes were done by laser flash method (Ulvac,

Sinku-Riko, Japan). For the thermal diffusivity measurements, the sintered pellet
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was sliced into discs of about 2 mm thickness. Graphite coating was given on the

surfaces of the specimen. A pulse of laser was projected on to the surface of the

pellet and the temperature rise on the opposite surface of the pellet was recorded

as a transient signal by using an infrared detector. The thermal diffusivity (α) was

calculated from the following relationship:

α = WL2/πt1/2 (C.2)

where t1/2 is the time required in seconds to reach half of the maximum

temperature rise at the rear surface of the sample and L is the sample thickness in

millimeter and W is a dimensionless parameter which is a function of the relative

heat loss from the sample during the measurement.

Thermal diffusivity studies were carried out in the temperature range be-

tween 873 K to 1613 K on the reference ThO2 pellet and ThO2-6wt.%UO2 pellets

(POP and CAP). Thermal conductivity was determined from the experimental val-

ues of thermal diffusivity, specific heat and density of the sample using the following

relation:

κm = αCpρ (C.3)

where κm is measured thermal conductivity in W/mK, α is the thermal diffu-

sivity in m2/s, Cp is the specific heat in J/(Kg K) and ρ is the density of the sample

in Kg/m3. Thermal conductivity values were calculated for (Th,U)O2 samples and

were normalized to 95% theoretical density using Eucken and Maxwell correction

factor [294] for porosity and values of β, including its temperature dependence,

reported by Notley and McEwan [312]. For the calculation of the thermal conduc-

tivity, the heat capacity values of pure oxides were taken from Barin et al. [313], and

heat capacity of the MOX were calculated from these values using the Neumann

Kopp’s rule:

Cp(Th1−xUxO2) = (1− x).Cp(ThO2) + x.Cp(UO2) (C.4)
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