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High pressure investigations on carbides, oxides and nitrides 

                                                    (SYNOPSIS) 

High pressures, capable of generating high compressions in materials can alter the 

interatomic interactions drastically which may lead to several interesting phenomena such 

as phase transitions and chemical reactions [1-5]. The effect of pressure on materials can be 

classified into two categories, namely, the lattice effect and the electronic structural change. 

However, these two changes are not totally independent, but one is associated with the 

other. The decrease in interatomic distances or equivalently increase in the density leading 

to changes in the lattice dynamical properties (phonon spectra), free energy and often 

causing the phase transitions to the compact structures characterized by significant changes 

in the physical properties falls under the category of lattice effects.  As the inter atomic 

distance decreases, the overlap of outer electronic orbital’s increases, which affects the 

width of the energy bands, the extent of hybridization of the outer electronic orbital’s and 

position of the energy bands, etc. All these electronic effects lead to interesting changes in 

the physical and chemical properties of materials. For example, the pressure induced 

metallization of hydrogen and oxygen [6-8], metal to insulator transition in sodium around 

200 GPa [9], crystalline to amorphous and amorphous to crystalline phase transformations 

in porous silicon [10, 11] and the high pressure superconductivity of lithium and silane 

above 20 GPa and 90GPa, respectively [12-14] are some of popular high pressure studies 

reported in past.  

Experimentally, the high pressures in the materials are generated either by static 

compression methods or by dynamic compression (shock compression) methods. In the 

static compression technique [4], material is compressed slowly; for which, temperature 

inside the sample during the experiment remains constant i.e. the static compression is an 

isothermal process. In static method one can compress the material hydrostatically by 

selecting a suitable (fluid or gas) pressure transmitting medium surrounding the sample [4, 

15]. On the other hand, in shock loading methods, materials are compressed uniaxially with 

very high rate of pressurization (rise times ~ few tens of nanoseconds), leading to the 

increase in both temperature and entropy of the materials. Under static compression, the 

duration of the pressure on the material can be as long as we desire whereas, in case of 
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shock compression the duration of pressure pulse is of order of few microseconds 

depending upon the size of the sample. These differences in two compression techniques 

sometimes lead to different results on the materials. For example, tantalum (Ta) having bcc 

structure at ambient conditions has been reported  to remain stable in this phase up to ~ 170 

GPa in static compression experiments [16], whereas it transform to ω phase at ~ 45 GPa 

under shock loading [17]. 

The diamond anvil cell (DAC) apparatus is widely used to generate static pressures in 

the materials [4, 15].  The modern diamond anvil cell (DAC) apparatus can generate high 

static pressures of multimegabar. Apart from the high pressure studies the modern DACs 

equipped with laser heating techniques have facilitated the investigation of material 

behaviour under high pressure-high temperature environment [18]. The advent of third stage 

synchrotron sources and neutron spallation sources have added the new dimensions to the 

diagnostics required for characterization of the behaviour of material subjected to high 

pressure [19-21]. The significant progress has also been made in development of dynamic 

pressure generation techniques. Development of two stage guns, laser shock techniques and 

electromagnetic launchers has made it possible to generate extreme state of high transient 

pressure and temperature in materials [22-29]. The combination of static and dynamic 

pressure studies of materials have made it possible to access the new regimes of equation of 

state of materials. 

Apart from the experiments, the modern ab-initio electronic band structure calculation 

methods based on the density functional approach have also been proved useful to not only 

reproduce the experimental results but also to predict the behaviour of materials under high 

pressure and high temperature [9-37]. For example, in case of sodium, high pressure 

experiment revealed that it becomes optically transparent around ~200GPa [9] but the 

quality of the XRD pattern for the transparent phase was insufficient to find the exact 

structure solution hence theoretical calculations have been employed as a tool to identify the 

high pressure phase, which confirmed it to be hexagonal phase (Na-hP4 ).This insulating 

state is formed due to p-d hybridizations of valence electrons and their repulsion by core 

electrons into the interstices of the six-coordinated highly distorted double-hexagonal close-

packed structure. Atomic structure is the most important piece of information about 

crystalline solids: Just from the knowledge of topology of the structure, a precise structural 
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model and many physical properties of crystals can be determined with state of the-art 

quantum-mechanical methods. In some cases, where it is not possible to solve crystal 

structure from experimental data, the theoretical structure prediction becomes crucially 

important. For example, when experimental data are of poor quality for structure solution 

(defective or small samples, especially at high pressures and temperatures) theory provides 

the last hope to this. Apart from this, theory is the only way of investigating matter at 

extreme conditions which are inaccessible with today’s experimental techniques. Even with 

so much advancement in the experimental methods both in synthesis technique as well as 

measurements techniques still it is difficult to understand the structural changes at ambient 

as well as under high pressure conditions in many cases [38]. For example, in simple metal 

calcium, the ab-initio calculations of Oganov et al. [39] predicted a β-tin type tetragonal 

structure (space group I41/amd) to be more favorable above 33 GPa. However, the high 

pressure x-ray diffraction measurements by Mao et al. [40] reported a phase transition 

around 32 GPa and indexed this as rhombohedral structure (space group R-3m) at 300 K 

and orthorhombic structure (space group Cmmm) below 30 K. This discrepancy between 

theory and experiment, latter solved by Li et al. [41] repeating the experiment on this 

material. In this new experimental study authors have reported that the high pressure phase 

formed around 35 GPa is indeed a β-tin type tetragonal structure, consistent with theoretical 

prediction. Also with the evolution of structural prediction methods such as Universal 

Structure Predictor: Evolutionary Xtallography (USPEX) it has been possible to predict the 

unusual stoichiometries in many compounds under high pressure. For example, in sodium 

chloride using USPEX algorithm in conjunction with ab-initio electronic band structure 

method, the stable NaCl3 and Na3Cl have been predicted under high pressure [42]. 

Interestingly, these predictions have been realized experimentally in recent studies [42] . 

Similarly, in xenon oxide various stoichiometries such as XeO, XeO2, XeO3 have been 

predicted to be stable at different pressures [43].  

The ab-initio electronic structure calculations can be carried out using two 

approaches, one in which, the ions are assumed to be fixed rigidly at their location 

(adiabatic approximation) and other in which the corrections due to atomic vibrations are 

also taken into account. The calculations limited to the rigid periodic arrangement of atoms 

(ions) in the solid are termed as static lattice calculations. Under this approximation the 
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interaction energy between the ions depends on their separation or equivalently on atomic 

position. The interactions are categorised as (i) long-range Coulomb interactions and (ii) 

short-range interactions. However, in lattice dynamic  calculations, using quasi harmonic 

approximation (QHA), one proceeds a step further by calculating the phonon spectra from 

the knowledge of forces and structures obtained from static lattice model calculations. The 

study of lattice vibrations in condensed matter is of considerable interest because several 

physical properties of crystals like the specific heat, thermal conductivity, thermal 

expansion, sound velocity etc. are related to the vibrations of atoms in solids [44, 45]. The 

lattice vibration spectra basically relate the energy of the thermal motions of the atoms to 

the corresponding wavelength. The collective motions of atoms in solids forming travelling 

waves are quantized in terms of ‘‘phonons” and these are determined from the knowledge 

of the interatomic interactions. The resulting vibrational spectra act as a sensitive probe for 

the local bonding and chemical structure. Further, very low-frequency modes can be 

associated with phase transformations, and imaginary frequencies provide an indication that 

the calculated structure is not the stable one.  So lattice dynamics (phonons) play a 

dominant role in deciding the structural stability of the materials.  

             The present thesis attempts to understand various aspects of material behavior under 

high pressure – high temperature by resorting ab-initio static lattice and lattice dynamic 

calculations as a tool for investigations. The high pressure- high temperature behavior of 

binary compounds reported in the present thesis includes the oxides, carbides and nitrides of 

transition and actinide metals. The oxide includes CdO, the carbides include ScC, YC, TaC, 

ThC and UC, and the nitrides include CeN. The main goal was to add further understanding 

to the high pressure structural, elastic and lattice dynamic stability of these binary 

compounds formed by combining the transition metals or actinide metals to simple elements 

of group IV, V and VI of the periodic table. Apart from structural stability analysis, the 

thermo-physical properties like equilibrium volume, bulk modulus, specific heat, entropy, 

vibrational free energy and thermal expansion as a function of temperature have also been 

derived. All these binary compounds exist in rocksalt structure (B1) at ambient conditions 

and have attracted attention of researchers due to their technical as well as academic 

importance. For example, in case of UC and ThC having high stiffness and high melting 

point, the major interest is due to their importance as nuclear fuel materials in the generation 
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IV nuclear reactors [46, 47]. In order to develop the technologies for the nuclear cycle based 

on carbide fuels, it is important to understand structural, thermo-physical and mechanical 

properties of these compounds. As far as transition metal carbides ScC, YC and TaC are 

concerned, the extreme hardness, good strength even at elevated temperatures and high 

melting point exhibited by these carbides makes them important scientifically as well as 

technologically [48-59]. Some of the potential technological applications are in cutting tools 

and optoelectronics. The academic interest on these materials comes due to the existence of 

mixed bonding (both metallic and covalent) which is believed to be responsible for high 

hardness and high melting points of these materials. The CeN which is one of the mono 

nitride of rare earth metal shows anomalous physical properties such as unusually small 

lattice parameters [60- 62]. The anomalous physical properties of this mono nitride are 

attributed to the peculiar behavior of 4f electron of Ce ion. The unusual physical properties 

make this compound interesting both academically and industrially. Transition metal oxides 

are systems with large variability of structures and chemical bonding which brings about 

different magnetic, electrical and optical properties. These unique properties make these 

compounds suitable for applications like new memories smaller transistors and smart-

sensors in different semiconductor industries. The technological applications have attracted 

the interest on the high pressure behavior of these materials. The cadmium oxide is one of 

the attractive semiconductor materials. It has many industrial applications such as in the 

production of solar cells, liquid-crystal displays, electro chromic devices, light-emitting 

diodes, etc.[63-66]. So, in order to fully exploit this semiconductor material, it is necessary 

to obtain a good understanding of the physical properties of CdO, and in particular, its 

structural and thermodynamic properties under high pressure [67-73].  

 

        The first chapter gives a brief description to the basic concepts and scopes of the high 

pressure research, and outlines of the research work to be presented in the successive 

chapters of the thesis. Besides this it also describes the different methods used to generate 

high pressure in materials and various characterization techniques utilized to understand the 

behavior of materials under high pressure. Also, a brief description of modern DFT based 

ab-initio electronic band structure methods employed for understanding the material 

response under high pressures has been presented in this chapter. The brief description of 
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the structural prediction method used for the pressure induced phase transformations and the 

outline of the methodology used for determination of elastic property and lattice dynamics 

have been described. 

        The Second chapter deals with the theoretical calculations carried out on CdO. In CdO, 

the main focus was to analyze the structural stability under high pressure and to determine 

the pressure dependent elastic and vibrational properties (lattice-dynamics). For this 

purpose, first the ab-initio calculations at 0 K have been performed to analyze structural 

stability by choosing the structures namely B1, primitive orthorhombic (Pmmn) and CsCl 

type (B2). The 0 K calculations have been utilized to derive the 300 K isotherm after adding 

finite temperature corrections within quasi harmonic approximations. Additionally, 

employing the theoretically determined thermal equation of state in conjunction with 

Rankine Hugoniot relation, the Hugoniot of B1 phase of this material has been derived. 

Additional calculations have been performed to determine the shear elastic moduli and 

phonon dispersions as a function of hydrostatic compression. The structural stability 

analysis suggests that the B1 phase will transforms to B2 phase at ~ 87 GPa in good 

agreement with experimental value of 90.6 GPa [68]. The inclusion of finite temperature 

corrections determined from lattice dynamic calculations within quasi harmonic 

approximation to the 0 K calculations lowers this transition pressure by ~1GPa at 300 K. 

The 300 K isotherm agrees reasonably with the experimental data. Various thermo physical 

properties such as atomic volume, bulk modulus, its pressure derivative, Debye 

temperature, thermal expansion coefficient and specific heat at ambient conditions derived 

from theoretical calculations are  27.59(A
0
)
3
/atom, 111 GPa , 4.94, 273 K, 4.445×10

-5
/K  

and 7.564×10
-23

 J/K/formula unit as compared to  the  experimental data of 

26.05(A
0
)
3
/atom, 129 GPa, 4.71,  255 K , 4.2×10

-5
/K and 7.195×10

-23
 J/K/formula unit, 

respectively [74-77]. The pressure dependent elastic constants have been determined for 

both B1 and B2 phase. For the B1 phase, the elastic constants C11, C12, and C44 of 168.29 

GPa, 76.02 GPa and 46.13 GPa determined at zero pressure compare well with the other 

theoretical values of 183.99 GPa, 76.02 GPa and 45.78 GPa, respectively [69]. For B2 these 

values are determined to be 303.09 GPa, 48.15 GPa and -25.99 GPa. The negative value of 

the shear modulus C44 for B2 phase indicates elastic instability of B2 structure at ambient 

conditions. Further, the elastic stability of these structures has been examined up to 160 
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GPa. The C44 modulus of B1 phase displayed a monotonic decrease with increasing 

pressure and vanished at ~ 126 GPa, suggesting the development of elastic instability in B1 

phase around this pressure. In contrast the B2 phase was found to remain elastically 

unstable up to a pressure of ~ 38 GPa and beyond this pressure it emerged as an elastically 

stable structure. To know the dynamical stability of B1 and B2 phase, the phonon dispersion 

curves (PDC) have been calculated for both the phases at ambient conditions and at various 

high pressures. Up to 116 GPa, the phonon dispersion for B1 phase displays the positive 

vibrational frequency in all symmetry directions of Brillouin zone confirming the dynamic 

stability of this structure up to this pressure. For the B2 phase the imaginary frequencies 

persists up to 56 GPa and thereafter all the frequencies become positive making the 

structure dynamically stable beyond this pressure. The analysis of elastic and dynamic 

stability as a function of hydrostatic compression suggested that the pressure induced B1 to 

B2 transition in CdO is driven by soft transverse acoustic phonon mode at the Brillouin 

zone boundary. 

 

The third chapter of the thesis reports the detailed theoretical investigations carried out 

in transition metal carbides ScC, YC and TaC. The theoretical work includes the analysis of 

structural stability, determination of equation of state, elastic and lattice dynamic properties 

as a function of hydrostatic compression. The comparison of enthalpies of B1 structure, 

Primitive orthorhombic (Pmmn) and B2 phase at various pressures suggested that the 

ambient pressure B1 phase of ScC will transform to the Pmmn phase at ~80 GPa. In case of 

YC the same transition occurs at ~ 30 GPa. In TaC instead of Pmmn phase, the B2 structure 

becomes stable around 472 GPa. This theoretical prediction is open for experimental 

confirmation. Various thermo physical and elastic properties such as volume, bulk modulus, 

its pressure derivative and elastic constants C11, C12, and C44 have been determined at zero 

pressure. For ScC in B1 phase, these are determined to be 25.43(A
0
)
3
/atom, 161.9 GPa, 

4.18, 304.4 GPa 72.5 GPa and 46 GPa, respectively. These quantities for YC are evaluated 

be 33.23 (A
0
)
3
/atom, 125.2 GPa, 4.14, 226.5 GPa, 74.5 GPa and 53.7 GPa, respectively. In 

case of TaC these parameters are found to be 22.4(A
0
)
3
/atom, 342 GPa, 3.93, 723 GPa 151 

GPa and 178 GPa, respectively. Further, these quantities compare well with the available 

experimental data [48, 59, 78-81]. The examination of elastic behavior along the hydrostatic 
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compression path revealed that the B1 structure will become elastically unstable at ~ 210 

GPa in ScC and at ~ 180 GPa in YC, much beyond the B1 to Pmmn transition pressure. In 

TaC also, the B1 phase remains elastically stable much beyond the B1 to B2 transition 

pressure.  The phonon dispersion relations determined at various pressures from lattice 

dynamic calculations showed that the phonon frequencies for B1 phase become imaginary 

around 110 GPa in ScC and around 28 GPa in YC, suggesting that the B1 to Pmmn 

transition in these materials is driven by phonon softening. In case of TaC it has been found 

that the B1 phase remains dynamically stable even beyond the B1 to B2 transition pressure 

(up to ~ 600 GPa). Besides this for ScC and YC, the phonon frequencies (ω), their pressure 

derivative coefficients and Gruneisen parameter (γ) of several modes at high symmetry 

points Γ, X and L of Brillouin zone in B1 phase have also been calculated. The negative TA 

Gruneisen parameter at X point for both the materials indicates that the frequency at this 

point decreases with increasing pressure. Additionally the frequencies of various modes 

calculated in our work have been compared with other published data [59] for both the 

materials.  

The fourth chapter presents the theoretical high pressure investigations on CeN. In 

high pressure energy dispersive X-ray diffraction measurements it has been reported that the 

B1 phase of this material transforms to B2 structure at ~ 65 GPa [82].  This transition 

observed in this material is in contrast to that observed in mononitrides of left and right 

nearest neighbors of Ce in periodic table i.e. LaN and PrN [83,84]. In these two materials 

the observed high pressure phase was low symmetry tetragonal (P4/nmm) (B10) structure. 

This distinct high pressure behaviour shown by CeN led us to perform the high pressure 

theoretical investigations on this material. The comparison of enthalpies calculated as a 

function of hydrostatic pressure for B1, B10 and B2 structures suggests that the B1 phase 

will transform to B10 structure at 53 GPa, which upon further compression will transform 

to B2 phase at 200 GPa. This theoretical prediction is in contrast to the existing 

experimental report and opens for experimental confirmation. In order to understand the 

discrepancy between the theory and experiment, the theoretical X-ray diffraction pattern 

have been calculated for both the B10 and B2 phases around 75 GPa (well above the 

transition pressure) and it was observed that most of the intense peaks, except few weak 
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peaks (211, 301) of the calculated B10 phase coincide either with that of B1 or with B2 

phase. In the experimental EDXRD pattern recorded at ~ 77 GPa, many peaks e.g. (222) 

and (400) of B1 phase and (210) B2 phase which displayed a good strength in theoretical 

pattern were hardly visible in the experimental pattern. These observations suggest the need 

for more experiments up to still higher pressures to develop these peaks significantly if at 

all present in the experiment. Further, the elastic stability of B1structure has been examined 

upto 160 GPa. The C11and C12 elastic constants displayed a monotonic increase while C44 

modulus displayed a monotonic decrease with increasing pressure and vanished at ~ 100 

GPa i.e. much beyond the B1 to B10 transition pressure. Additionally, the lattice dynamic 

stability of CeN has also been analysed. To know the dynamical stability of B1 B10 and B2 

phases we have calculated the PDC and phonon density of states (PDOS) at ambient 

conditions as well as with higher compression. At zero pressure the positive frequencies in 

all symmetry directions of Brillouin zone of B1 phase showed the stability of this phase at 

ambient conditions. With increasing pressure the transverse acoustic (TA) frequency in the 

midway of Γ-X direction decreases and becomes imaginary at the transition pressure (53 

GPa) whereas B10 phase emerges as a dynamical stable phase at this pressure , in 

agreement with the static calculations. The B2 phase, however, still remains dynamical 

unstable but at higher pressure of around 200 GPa it shows positive frequencies in all 

symmetry directions of Brillouin zone, confirming its dynamical stability. These results of 

lattice dynamic calculations support outcome of our static lattice calculations. Various 

physical properties such as volume, bulk modulus and its pressure derivative, at ambient 

conditions derived from theoretical calculations are 31.85(A
0
)
3
/atom, 168.2 GPa and 4.02 as 

compared to the experimental values of 31.71(A
0
)
3
/atom, 156 GPa and 4.0, respectively. 

For B10 and B2 these parameters are calculated to be 30.55(A
0
)
3
/atom, 99.1GPa and 4.90, 

and 28.39(A
0
)
3
/atom, 159.3GPa and 4.47, respectively.  
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     The theoretical investigation on carbides materials is extended to monocarbides of light 

actinides i.e.  UC and ThC. The experimental studies [85-87] on these carbides have 

reported that the UC undergoes B1 to primitive orthorhombic transition (Pmmn) at ~ 27 

GPa, whereas, the ThC remains stable in B1 phase even up to 50 GPa. Theoretical studies 

have been performed to analyze structural stability of these two materials under hydrostatic 

pressure. In agreement with the experiment in UC our calculations have shown that the B1 

phase will transform to Pmmn structure around 20 GPa.  The static lattice calculations have 

been substantiated by lattice dynamic calculations, which displayed that the B1 phase will 

become dynamically unstable around transition pressure due to vanishing of long 

wavelength TA phonons. This outcome of the lattice dynamic calculations has been 

supported by the behavior of C44 shear elastic modulus examined as a function of pressure. 

It has been found that this modulus fails around the transition pressure, indicating that the 

B1 to Pmmn phase transition in UC is shear driven.  Various thermo physical quantities 

such as atomic volume, bulk modulus, its pressure derivative and Debye temperature of  

29.77(A
0
)
3
/atom,185.2 GPa ,3.59 and 206 K, respectively are in good agreement with  the 

experimental values of 30.5(A
0
)
3
/atom,160 GPa , 3.6 and  366 K, respectively [101]. In 

ThC, however, our theoretical results are not in agreement with the experimental reports 

[86, 87]. The comparison of enthalpies, derived for various phases from 0 K total energy 

calculations at several hydrostatic compressions, yielded a high pressure structural sequence 

of B1 → Pnma → Cmcm → B2 with transition pressures of ~ 19 GPa, 36 GPa and 200 

GPa, respectively. The discrepancy between the theory and the experiments could be due to 

the substoichiometry of the thorium monocarbide samples used in the experimental study.  

The theoretical finding opens scope for conducting more experiments with varying 

substiochiomerty of ThC samples to understand the role of this on the structural stability of 

ThC under high pressure. Further, in order to substantiate the results of static lattice 

calculations, the phonon dispersion relations for these structures have been derived from 

lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the 

B1 phase fails dynamically at ~ 33.8 GPa whereas the Pnma phase appears as dynamically 

stable structure around this pressure. Similarly, the Cmcm structure also displays dynamic 

stability in the regime of its structural stability. The B2 phase becomes dynamically stable 

much below the Cmcm to B2 transition pressure. Apart from this, various thermophysical 
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properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, 

Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300K have 

been derived and compared with available experimental data [88-93]. Further, the behavior 

of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined 

as a function temperature and compared with the experimental data of Danan [91]. All these 

results are discussed in details in chapter five of the thesis. 

 

The thesis will be concluded in the sixth chapter giving a discussion and summary of 

results of the overall work presented followed by further research scope open and 

theoretical problem in the present field. 
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Figure 1.1: Schematic diagram of Diamond anvil apparatus used for generating 

high static pressures in samples 
9 

 

Figure 1.2: (a) Hypothetical broad stress wave profile at time = t0. The length of 

the vector indicates the speed of the point in the profile, which increases with 

stress at that point. (b) At some instant t1 the wave front attains a finite constant 

width (τs) due to balancing of sharpening effect caused by non linearity and 

spreading effect from viscosity and thermal conductivity of material for which a 

steady shock wave with constant front width (τs) propagates into the material. 
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Figure 1.3: Schematic P-V diagram showing the compression curves. The 

Hugoniot lies above the isentrope which lies above the isotherm. For isentrope and 

isotherm, the thermodynamic path coincides with the locus of state. For Hugoniot 

which is the locus of shock states, the thermodynamic path is a straight line 

(Rayleigh line) from (P = 0, V = 0) to (P, V) state on the Hugoniot curve. The 

magenta colured curve is the release isentrope. The difference of yellow shaded 

areas below and above the Rayleigh line indicates the residual heat upon unloading 

from peak shocked state 
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Figure 1.4: Comparison of a wave function in the Coulomb potential of the 

nucleus (red) to the one in the pseudopotential. 
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Figure 1.5: Illustration of the evolutionary algorithm for crystal structure 

prediction. 
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Figure 1.6: Heredity operator combines spatial slices from different parent 

structures to form an offspring structure. 
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Figure 1.7: Permutation operator produces from parent structure to permuted 

structure by swapping atom pairs. 
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Figure 1.8: Mutation operator produces from parent structure to muted structure 

by using strains to lattice vectors. 

 

53 

Figure 2.1: Enthalpy of B2 phase relative to that of B1 phase for CdO at various 

pressures. The inset displays the Gibbs free energy of B2 phase relative to B1 

phase at 300 K. 
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Figure 2.2: Comparison of theoretical isotherm at 300K of CdO with experimental 

data of Liu et al. and Zhang et al. 
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Figure 2.3: Theoretically determined Hugoniot of CdO in B1 phase. 
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Figure 2.4: Theoretically calculated elastic moduli of CdO single crystal in B1 80 
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phase as a function of pressure. Here B is bulk modulus, C′ =(C11-C12)/2 and C44 

are shear moduli. 

 

Figure 2.5: Pressure dependent elastic moduli of CdO in B2 phase. 80 

Figure 2.6: Total energy of rhombohedral cell relative to that of B1 phase as a 

function of α at various compressions. 
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Figure 2.7: Theoretically calculated phonon spectra and phonon density of states 

of CdO in B1 phase at transition pressure. 

 

82 

Figure 2.8: The square of the acoustic phonon frequency at X point in the Brilouin 

zone of B1 phase as function of pressure. Also, plotted is the pressure dependent 

shear elastic modulus C44. 

 

84 

Figure 2.9: Theoretically calculated phonon spectra and phonon density of states 

of CdO in B2 phase at zero pressure and B1 → B2 transition pressure. 

 

85 

Figure 2.10: Pressure dependence of phonon frequency of lowest acoustic branch 

of CdO at M point in B2 phase. The inset displays the square of this frequency as a 

function of pressure. 

 

85 

Figure 3.1: The relation between the Pmmn and B1 structure has been displayed. 

The Pmmn structure (1×1×2 supercell shown in left figure) has Sc(Y) atom located 

at 2a (0 0 z1, ½ ½ -z1) and C atom located at 2b (0 ½ z2, ½ 0 –z2). The big and 

small filled circles correspond to Sc (Y) and C atom, respectively. The atoms 

labeled as 1, 2 and 3 represent the atoms lying on front, middle and back planes 

normal to b axis of Pmmn cell. The arrows display the directions of atomic 

movement required to convert the Pmmn cell into B1 structure. The right side 

figure shows the B1 structure (the cell bounded by thick lines) represented as bct 

cell with the b/a and c/a ratio is √2 and 1, and z1 = z2 = ¼. 
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Figure 3.2: The axial ratios and z1 and z2 parameters of Pmmn phase of ScC and 

YC as a function of pressure. 
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Figure 3.3: Enthalpy of B1, Pmmn and B2 phases relative to that of B1 phase for 

ScC and YC at various pressures. For pressures ≤ 80 GPa in ScC and ≤ 30 GPa, 

the optimum value of b/a and c/a ratio is √2 and 1, and z1 = z2 = ¼, indicating that 

the Pmmn phase is identical to B1 structure up to these pressures. 
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Figure 3.4: The equation of state of ScC and YC. 
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Figure 3.5 The pressure dependent elastic constants of ScC and YC in B1 phase. 100 

Figure 3.6: Phonon dispersion relations for ScC and YC in B1 phase at various   

pressures. 
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Figure 3.7: The Square of the transverse acoustic phonon frequency at X point in 

the Brillouin zone of B1 phase as a function of pressure for ScC and YC. Also 

plotted is the variation of C44 modulus with pressure. 
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Figure 3.8: Phonon dispersion relations for Pmmn and B2 phases at ~ 100 GPa in 

ScC and ~ 50 GPa in YC. 
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Figure 3.9: Electronic density of states of ScC and YC for B1 and Pmmn phase. 
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Figure 3.10: Enthalpy difference of B2 , B3 , B4 and  B8 with respect to B1 

structure. 
107 

Figure 3.11:  Equation of state of TaC with experimental data of Liermann et al. 
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Figure 3.12: Pressure dependent elastic constants of B1 phase. 

 

Figure 3.13: Pressure dependent elastic constants of B2 phase. 

 

Figure 3.14: The Phonon spectra and density of states of B1 phase. 

 

Figure 3.15: The Phonon spectra and density of states of B1 phase 

 

Figure 3.16:  Frequency of LA and TA phonons as a function of pressure at M 

point of Brillouin of B2 phase. 

Figure 3.17:  Helmholtz free energy of B1 phase of TaC  as function volume for 

various temperatures 

Figure 3.18: The volume/f.unit and volume thermal expansion coefficient of B1 

phase of TaC as a function of temperature with thermal expansion data of [32]. 

 

Figure 3.19: The bulk modulus of B1 phase of TaC as a function of pressure. 
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Figure 4.1:A relationship between B10 (tetragonal with space group P4/nmm) and B2 

structure in CeN.  The atomic shuffle needed for B10 structure to transform to B2 

structure. In the B10 structure, the nitrogen atoms occupy the 2a (0 0 0, ½  ½  0) site and 

cerium atoms occupy the 2c (0  ½  z,  ½  0  -z) location (for B10 structure, z is a free 

internal parameter). The B10 structure becomes identical to the B2 phase for z = 0.5 and 

c/a = 1/√2. The cell formed by dotted lines in the right hand side figure is the B2 unit cell 

formed from the B10 structure. 
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Figure 4.2: 2 The c/a ratio and z-parameter of B10 phase of CeN as a function of 

pressure. The vertical line indicates that for pressures ≥ 200 GPa the optimum 

value of c/a ratio and the z parameter of B10 phase become 1/√2 and 0.5, 

respectively. 
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Figure 4.3: Enthalpy of B1 and B10 phases relative to that of B2 phase for CeN at 126 
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various pressures. For pressures ≥ 200 GPa, the optimum value of axial ratio and z 

parameter of B10 phase become 1/√2 and 0.5, respectively, indicating that the B10 

phase reduces to B2 structure. 

 

Figure 4.4:Theoretically determined isotherm of CeN. Also shown are 

experimental data for comparison. 
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Figure 4.5: Theoretically calculated elastic constants of CeN single crystal in B1 

phase as a function of pressure. 
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Figure 4.6: Theoretically determined phonon spectra of CeN in B1 phase at zero 

pressure. The projected phonon density of states is also plotted in the right side. 
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Figure 4.7: Theoretically calculated phonon spectra and projected phonon density 

of states of CeN in B1, B10 and B2 phases at ~ 60 GPa i.e. around the theoretical 

B1 → B10 transition pressure. 

 

Figure 4.8: Theoretically calculated phonon spectra and projected phonon density of     

states of CeN in B2 phase at ~ 225 GPa i.e. just above the theoretical B10 → B2 transition 

pressure.   

                           

Figure 4.9: The square of the acoustic phonon frequency at X and (1/2 0 1/2) point  

in the Brilouin zone of B1 phase and at M point in the Brillouin zone of B2 phase 

as function of pressure. 

 

Figure 4.10: The calculated angle dispersive x-ray diffraction of B1, B2 and B10 

Phases of CeN at ~ 75 GPa. 

 

Figure 4.11: Enthalpy of B1 and B10 phases relative to that of B2 phase for LaN 

at various pressures. 

 

Figure 4.12: Optimized c/a ratio and z parameter of B10 Phase in LaN. Also 

plotted the experimental data [15]. 
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Figure 5.1: The unit cell of Pnma structure (top) and Cmcm structure (bottom) of 

ThC. The large spheres represent the thorium atoms and small spheres show the 

carbon atoms. 
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Figure 5.2: Enthalpies of Pnma, Cmcm, and B2 phase with respect to that of B1 

phase as a function of pressure (left figure) for ThC. The enthalpy of B2 structure 

relative to that of Cmcm phase at various pressures (right figure). 
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Figure 5.3: Optimized axial ratios and free internal parameters for Pnma structure 

and Cmcm phase of ThC as a function of pressure. 
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Figure 5.4: The isotherm of ThC. The solid lines correspond to the theoretical 

isotherm at 0K. The symbols ▲ and ▼ show experimental data from Ref. (4) and 

Ref. (13). 
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Figure 5.5: Electronic density of states of ThC in B1 phase at 0 GPa and 20GPa, 

respectively. 
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Figure 5.6: Electronic density of states of ThC in Pnma, Cmcm and B2 phase at 20 

GPa, 50 GPa and 225 GPa, respectively. 
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Figure 5.7: Elastic constants of B1 phase of ThC as a function of pressure. The 

filled symbols and solid lines represent the values determined in the present work. 

The open symbol display the elastic constants calculated from FP-LAPW 

calculations (Ref. 43). 
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Figure 5.8: Theoretically determined phonon spectra of ThC in B1 phase at 0, 25 

and 35 GPa, respectively. 
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Figure 5.9: TA (X) phonon frequency as a function of pressure for B1 phase of 

ThC. 
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Figure 5.10: Theoretically determined phonon spectra of ThC for Pnma phase at 

25 GPa, for Cmcm phase at 45 GPa, and for B2 phase at 125 GPa and 225 GPa, 

respectively. 
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Figure 5.11: Theoretically calculated zero pressure equilibrium volume and 

volume thermal expansion coefficient of B1 phase of ThC as a function of 

temperature. 
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Figure 5.12: Theoretically calculated zero pressure bulk modulus of B1 phase of 

ThC as a function of temperature. 

 

Figure 5.13: Theoretically calculated zero pressure heat capacity of ThC in B1 

phase as a function of temperature. 
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Figure 5.14: Theoretically calculated zero pressure Helmholtz free energy of ThC 

in B1 phase as a function of temperature. Also plotted are various components of 

the free energy. The solid curves represent the theoretical values and symbols 

correspond to the experimental data (Ref. 45). 
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Figure 5.15: Comparison of energy of B1 phase of UC calculated for non 

magnetic and antiferromagnetic case using FP-LAPW method. 

 

164 

Figure 5.16: Comparison of equation of state of B1 phase of UC calculated for 

non magnetic and antiferromagnetic case using FP-LAPW method also plotted are 

experimental data [10]. 
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Figure 5.17: The relation between the Pmmn,B1 and Immm structure. The Pmmn 

structure (1×1×2 supercell shown in left figure) has U atom located at 2a (0 0 z1, ½ 

½ -z1) and C atom located at 2b (0 ½ z2, ½ 0 –z2). The big and small filled circles 

correspond to U and C atom, respectively. 
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Figure 5.18: The axial ratios of Pmmn phase of UC as a function of pressure with 

experimental data [10]. 
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Figure 5.19: The internal parameters  ( z1 and z2 ) of Pmmn phase of UC as a 

function of pressure.. 
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Figure 5.20: Enthalpies of Pmmn and Immm phase with respect to that of B1 

phase as a function of UC. 
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Figure 5.21: Comparison of equation of state of B1 and Pmmn phase of UC with 

experimental data [10]. 
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Figure 5.22: The calculated angle dispersive x-ray diffraction of Pmmn and 

Immm(bco) Phases of UC at ~ 30 GPa. Arrows in XRD plot are the peaks which 

are not present in Immm (bco) phase. 
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Figure 5.23: Elastic constants as a function of pressure for B1 phase of UC 

determined from static lattice calculations. 
 

Figure 5.24: Phonon spectra and phonon density of states of UC at ambient 

pressure and above transition pressure for B1 phase. Also plotted are the 

experimental data at zero pressure. The circles and diamonds correspond to the 

experimentally measured longitudinal and transverse phonons, respectively. 
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Chapter 1 
 

Introduction 
1.1  Preface 

 

Pressure is a thermodynamical variable which leads to very large change in volume and 

interatomic distances, which can be an order of magnitude higher than the change possible with 

temperature variation. The effect of pressure is to decrease the interatomic distances causing the 

increased overlapping or mixing of outer electronic orbitals. This increased overlapping leads to 

shifting and broadening of the energy bands resulting in interesting changes in the physical and 

chemical properties of materials including the structural phase transformations, solid to liquid 

transitions, metal to insulator transitions, formation of new stoichiometric compounds etc [1-5]. 

Discovery of various important pressure induced phase transitions and measurement of high 

pressure equation of state (EOS), shock Hugoniot, pressure dependent elastic constants and 

strength properties of materials have been proved very important in both applied and basis 

sciences. For example, in applied science the high pressure EOS, shock Hugoniot, elastic 

constants and pressure induced phase transitions serve as key inputs for hydrodynamic codes 

used for simulation of various situations such as reactor accidents, effect of missile attacks and 

shock propagation through geological media, fission/fusion energy systems and analysis of many 

problems related to geophysics, astrophysics. On basic sciences, many new phase 

transformations have been discovered for example, the pressure induced metallization of fluid 

molecular hydrogen and in oxygen around 140GPa and 96 GPa [6, 7-8], metal to insulator 

transition in sodium around 200 GPa [9]. Other interesting pressure induced phase transitions 

occurs in porous silicon (π-Si) where it undergoes a crystalline phase transition from diamond 

type structure to a primitive hexagonal structure around ~20 GPa during compression whereas, 

upon decompression, it first undergoes amorphization [10, 11] and then this amorphous phase 

again transforms to hexagonal phase under further increase of pressure showing a kind of 

memory effect. Similarly, the pressure induced superconductive transition in lithium above 30 

GPa and in silane above 90 GPa [12-14] are some of popular high pressure studies reported in 

past.  
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Experimentally, the high pressures in the materials are generated either by static compression 

methods or by shock compression methods. In the static compression technique [4], material is 

compressed slowly and the temperature inside the sample during the experiment remains 

constant i.e. the static compression is an isothermal process. In static method one can compress 

the material hydrostatically by selecting a suitable (fluid or gas) pressure transmitting medium 

surrounding the sample [4, 15]. On the other hand, in shock loading methods, materials are 

compressed uniaxially with very high rate of pressurization (rise times ~ few tens of 

nanoseconds), leading to the increase in both temperature and entropy of the materials.  

 

Apart from the experiments, the modern ab-initio electronic band structure calculation 

methods based on the density functional approach have also been proved useful to not only 

reproduce the experimental results but also to predict the behaviour of materials under high 

pressure and high temperature [9-30]. In recent years, new theoretical techniques have become 

available to explore the energy landscape of different chemical systems [30-38]. It has been 

possible to predict new phases in many compounds under high pressure. For example, in simple 

metal calcium using Universal Structure Predictor:Evolutionary Xtallography (USPEX) 

algorithm in conjunction with ab-initio electronic band structure method  Oganov et al. [39] 

predicted a β-tin type tetragonal structure (space group I41/amd) to be more favorable above 33 

GPa. However, in contrast to this theoretical prediction, Mao et al. [40], in high pressure x-ray 

diffraction measurements reported a phase transition to rhombohedral structure (space group R-

3m) around 32 GPa at 300 K which upon cooling to 30K at the constant pressure transformed to 

orthorhombic structure (space group Cmmm). This discrepancy between theory and experiment 

has been solved by Li et al. [41] later by repeating the experiment on this material and 

confirming the occurrence of β-tin type tetragonal structure around 35GPa. Similarly, it has been 

also possible to predict the unusual stoichiometries in many compounds under high pressure. For 

example, in sodium chloride the stable NaCl3 and Na3Cl have been predicted under high pressure 

[42] which have been realized experimentally also [42].  

 

In view of the important role played by pressure induced structural phase transitions, high 

pressure EOS, pressure dependent elastic constants and dynamical stability of materials, it is 
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important to determine these properties for understanding the several aspects of the material 

behaviour under high pressures. The present thesis deals with such studies carried out on some 

binary carbides, oxides and nitrides materials. The oxide includes CdO, the carbides include 

ScC, YC, TaC, ThC and UC, and the nitride includes CeN.  All these binary compounds exist in 

rocksalt structure (B1) at ambient conditions and have attracted attention of researchers due to 

their technical as well as academic importance. For example, in case of UC and ThC having high 

stiffness and high melting point, the major interest is due to their importance as nuclear fuel 

materials in the generation IV nuclear reactors [43, 44]. In order to develop the technologies for 

the nuclear cycle based on carbide fuels, it is important to understand structural, thermo-physical 

and mechanical properties of these compounds. As far as transition metal carbides ScC, YC and 

TaC are concerned, the extreme hardness, good strength even at elevated temperatures and high 

melting point exhibited by these carbides makes them important scientifically as well as 

technologically [45-56]. Some of the potential technological applications are in cutting tools and 

optoelectronics. The academic interest on these materials comes due to the existence of mixed 

bonding (both metallic and covalent) which is believed to be responsible for high hardness and 

high melting points of these materials. The CeN which is one of the mono nitride of rare earth 

metal shows anomalous physical properties such as unusually small lattice parameters [57-59]. 

The anomalous physical properties of this mono nitride are attributed to the peculiar behaviour of 

4f electron of Ce ion. The unusual physical properties make this compound interesting both 

academically and industrially. Transition metal oxides are systems with large variability of 

structures and chemical bonding which brings about different magnetic, electrical and optical 

properties. These unique properties make these compounds suitable for applications like new 

memories smaller transistors and smart-sensors in different semiconductor industries. The 

technological applications have attracted the interest on the high pressure behaviour of these 

materials. The cadmium oxide is one of the attractive semiconductor materials. It has many 

industrial applications such as in the production of solar cells, liquid-crystal displays, electro 

chromic devices, light-emitting diodes, etc.[60-63]. So, in order to fully exploit this 

semiconductor material, it is necessary to obtain a good understanding of the physical properties 

of CdO, and in particular, its structural and thermodynamic properties under high pressure [64-

70]. The main goal of the present work is to add further understanding to the high pressure 

structural, elastic and lattice dynamic stability of these binary compounds formed by combining 
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the transition metals or actinide metals to simple elements of group IV, V and VI of the periodic 

table. Apart from structural stability analysis, the thermo-physical properties like equilibrium 

volume, bulk modulus, specific heat, entropy, vibrational free energy and thermal expansion as a 

function of temperature have also been derived.  

The thesis to be presented is divided into six chapters. The present chapter provides the 

outline of the work to be presented in the subsequent chapters along with the current status of 

high pressure research including the basics of high pressure, the methods of generation of high 

pressure and various diagnostic techniques utilized for determining the behaviour of the 

materials under pressure. Also discussed are the theoretical methods (ab-initio calculations) 

available to simulate the high pressure response of the materials. 

 

The second chapter deals with the theoretical calculations carried out on CdO. In CdO, 

the main focus was to analyze the structural stability under high pressure and to determine the 

pressure dependent elastic and vibrational properties (lattice-dynamics). For this purpose, first 

the ab-initio calculations at 0 K have been performed to analyze structural stability by choosing 

the structures namely B1 and CsCl type (B2). The 0 K calculations have been utilized to derive 

the 300 K isotherm after adding finite temperature corrections within quasi harmonic 

approximations. Additionally, employing the theoretically determined thermal equation of state 

in conjunction with Rankine Hugoniot relation, the Hugoniot of B1 phase of this material has 

been derived. Further calculations have been performed to determine the shear elastic moduli and 

phonon dispersions as a function of hydrostatic compression. The structural stability analysis 

suggests that the B1 phase will transforms to B2 phase at ~87 GPa in good agreement with 

experimental value of 90.6 GPa [65]. The pressure dependent elastic constants have been 

determined for both B1 and B2 phase upto ~200 GPa. All the elastic moduli of B1 phase at zero 

pressure have positive values and upon compression all of these, except the shear modulus (C44), 

display increasing trend with pressure. The C44 modulus displaying opposite trend with 

increasing pressure decreases monotonically with increasing pressure and vanishes at ~126 GPa, 

suggesting the development of elastic instability in B1 phase around this pressure. In contrast, for 

the B2 phase, all the elastic moduli at zero pressure have been found to be negative and remain 

negative up to the pressure of ~ 38GPa, suggesting that this structure is elastically unstable up to 
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this pressure and emerges as an elastically stable structure thereafter.  The dynamical stability of 

B1 and B2 phase has been tested by calculating the phonon dispersion curves (PDC) at ambient 

conditions and at higher pressures.  For B1 phase, all the phonon frequencies below the pressure 

of 116 GPa have been found to be positive, but for pressures ≥ ~116 GPa all the phonon 

frequencies become imaginary making the structure unstable dynamically beyond this pressure. 

The situation for the B2 phase is different; it shows imaginary frequencies up to 56 GPa and 

thereafter all the frequencies become positive making the structure dynamically stable beyond 

this pressure. The analysis of elastic and dynamic stability as a function of hydrostatic 

compression suggests that the pressure induced B1 to B2 transition in CdO is driven by soft 

transverse acoustic phonon mode at the Brillouin zone boundary. 

 

In the third chapter of the thesis the detailed theoretical investigations carried out in transition 

metal carbides ScC, YC and TaC have been reported. The theoretical work includes the analysis 

of structural stability, determination of equation of state, elastic and lattice dynamic properties as 

a function of hydrostatic compression. The comparison of enthalpies of B1 structure, Primitive 

orthorhombic (Pmmn) and B2 phase at various pressures suggested that the ambient pressure B1 

phase of ScC will transform to the Pmmn phase at ~80 GPa. In case of YC the same transition 

occurs at ~ 30 GPa. In TaC instead of Pmmn phase, the B2 structure becomes stable around 472 

GPa. This theoretical prediction is open for experimental confirmation. Various thermophysical 

and elastic properties such as volume, bulk modulus, its pressure derivative, elastic constants 

have been determined. The phonon dispersion relations determined at various pressures from 

lattice dynamic calculations show that the phonon frequencies for B1 phase in ScC are positive 

at zero pressure and remain positive upto 110 GPa. For YC, however, this phase displays 

positive phonon frequencies up to 28 GPa. These results suggest that the B1 phase in ScC and 

YC will become dynamically unstable beyond 110 GPa and 28 GPa, respectively. Further, this 

also suggests that the B1 to Pmmn transition in these materials is driven by phonon softening. In 

case of TaC it has been found that the B1 phase remains dynamically stable much beyond the B1 

to B2 transition pressure upto maximum pressure 600 GPa. Besides this for ScC and YC, the 

phonon frequencies (ω), their pressure derivative coefficients and Gruneisen parameter (γ) of 

several modes at high symmetry points Γ, X and L of Brillouin zone in B1 phase have also been 

calculated. The negative TA Gruneisen parameter at X point for both the materials indicates that 
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the frequency at this point decreases with increasing pressure. Additionally the frequencies of 

various modes calculated in our work have been compared with other published data [56] for 

both the materials. In TaC, the calculations have been extended to determine the temperature 

effect on volume and bulk modulus of B1 phase using quasiharmonic approximation (QHA). 

Apart from the phonon dispersion relations, the pressure dependent elastic constants have also 

been calculated for both B1 and B2 phase upto 200 GPa in both the materials. 

 

The fourth chapter presents the theoretical high pressure investigations CeN one of the mono 

nitride of rare earth metal. In high pressure energy dispersive X-ray diffraction measurements it 

has been reported that the B1 phase of this material transforms to B2 structure at ~ 65 GPa [71]. 

This transition reported in this material is in contrast to that observed in mononitrides of nearest 

neighbors of Ce in periodic table i.e. LaN and PrN [72, 73]. In these two materials the observed 

high pressure phase is a low symmetry tetragonal (P4/nmm) (B10) structure. The distinct high 

pressure behavior of CeN as compared to that shown by LaN and PrN led us to perform the high 

pressure theoretical investigations on this material. Our calculations on CeN suggest that the B1 

phase in this material will also transform to B10 structure at ~53 GPa which upon further 

compression will transform to B2 phase at 200 GPa.  So, according to our theoretical analysis 

instead of direct B1 to B2 transition, the CeN will undergo transition sequence of B1 to B10 to 

B2 phase at 53 GPa and at 200 GPa, respectively. In order to further support our results, the 

theoretical X-ray diffraction pattern have been calculated for both the B10 and B2 phases around 

75 GPa (well above the transition pressure) and it has been found that most of the intense peaks, 

except few weak peaks (211, 301) of the calculated B10 phase coincide either with that of B1 or 

with B2 phase. In the experimental EDXRD pattern recorded at ~ 77 GPa, many peaks e.g. (222) 

and (400) of B1 phase and (210) B2 phase which display a good strength in theoretical pattern 

are hardly visible in the experimental pattern, suggesting the need for more experiments to either 

confirm the existence of B2 phase or rule out its occurrence. Further, the elastic stability analysis 

of the B1 structure up to 160 GPa, suggests that the B1 to B10 transition in this compound is not 

related to elastic failure. However, the lattice dynamic simulations carried out at different 

pressures indicate that this transition is related to the lattice dynamic instability occurring around 

the transition pressure due to vanishing of transverse acoustic (TA) frequency in the midway of 

Γ-X direction. Additionally, it is found from present theoretical analysis that the B2 phase is 
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dynamically unstable below the 200 GPa and acquires dynamical stability only around 200 GPa. 

These results of lattice dynamic calculations support outcome of the static lattice calculations. 

The theoretical investigation on carbides materials is extended to monocarbides of light 

actinides i.e. UC and ThC and presented in fifth chapter of the thesis. The experimental studies 

[74-76] on these carbides have reported that the UC undergoes B1 to primitive orthorhombic 

transition (Pmmn) at ~ 27 GPa, whereas, the ThC remains stable in B1 phase even up to 50 GPa. 

Theoretical studies have been performed to analyze structural stability of these two materials 

under hydrostatic pressure. In agreement with the experiment in UC the present calculations have 

shown that the B1 phase will transform to Pmmn structure around 20 GPa. The static lattice 

calculations have been substantiated by lattice dynamic calculations, which displayed that the B1 

phase will become dynamically unstable around transition pressure due to vanishing of long 

wavelength TA phonons. This outcome of the lattice dynamic calculations has been supported by 

the behavior of C44 shear elastic modulus examined as a function of pressure. It has been found 

that this modulus fails around the transition pressure, indicating that the B1 to Pmmn phase 

transition in UC is shear driven. In ThC, however, our theoretical results do not agree with the 

experimental reports [75,76]. The comparison of enthalpies, derived for various phases from 0 K 

total energy calculations at several hydrostatic compressions, yielded a high pressure structural 

sequence of B1 → Pnma → Cmcm → B2 with transition pressures of ~ 19 GPa, 36 GPa and 200 

GPa, respectively. The discrepancy between the theory and the experiments could be due to the 

substoichiometry of the thorium monocarbide samples used in the experimental study. The 

theoretical finding opens scope for conducting more experiments with varying substiochiomerty 

of ThC samples to understand the role of this on the structural stability of ThC under high 

pressure. Further, in order to substantiate the results of static lattice calculations, the phonon 

dispersion relations for these structures have been derived from lattice dynamic calculations. The 

theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ~ 33.8 

GPa whereas the Pnma phase appears as dynamically stable structure around this pressure. 

Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural 

stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition 

pressure.  
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The last chapter of the thesis summarises and conclude the overall work presented in the 

thesis. The summary and conclusion is followed by the further research scopes open in these 

areas.  

Though, the present thesis deals with high pressure theoretical investigations on the 

materials, it is worth to give a brief account of the available modern high pressure experimental 

methods and diagnostic techniques also for sake of completeness. Therefore, the following 

section describes briefly the various experimental methods used to generate high pressures in 

materials and diagnostic techniques used to characterize the state of material under high 

pressures. Following to this is presented the modern ab-initio electronic band structure methods 

available for simulation of material behaviour under high pressure.  The methods used for the 

simulations of materials to be presented in this thesis are described with greater length. 

 

1.2  Experimental methods for high pressure generation  

Experimentally, the high pressures in the materials are generated either by static compression 

methods or by dynamic compression (shock compression) methods. In the static compression 

technique [4], material is compressed slowly; for which, temperature inside the sample during 

the experiment remains constant i.e. the static compression is an isothermal process. In static 

method one can compress the material hydrostatically by selecting a suitable (fluid or gas) 

pressure transmitting medium surrounding the sample [4, 15]. On the other hand, in shock 

loading methods, materials are compressed uniaxially with very high rate of pressurization (rise 

times ~ few tens of nanoseconds), leading to the increase in both temperature and entropy of the 

materials. Under static compression, the duration of the pressure on the material can be as long 

as we desire whereas, in case of shock compression the duration of pressure pulse is of order of 

few microseconds depending upon the size of the sample. These differences in two compression 

techniques sometimes lead to different results on the materials. A brief description of two 

compression techniques is provided in following sections. 

1.2.1 Static Compression Techniques 

1.2.1.1   Method of Generation of Static High Pressure 
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Static compression technique was first introduced by Nobel Laureate P. W. Bridgman. He 

built the piston-cylinder device where the sample is compressed in a cylinder by two opposed 

pistons [75]. This basic apparatus was improvised later. This was followed by the invention of 

Bridgman anvil cell where the material under examination is sandwiched between two anvils of 

tungsten carbide. The quest for still higher pressures led to the invention of the diamond anvil 

cell (DAC) [77-83] (a sketch is shown in Fig. 1.1) which works on the same principle as the  

Bridgman cell; the only difference being the material used for the anvils is the hardest material 

known so far. The sample, here, is squeezed between two opposing single crystals of diamond. 

Various diagnostic techniques used to analyze the state of sample under high pressure include the 

measurement of electrical resistance, Mossbauer spectroscopy, x-ray diffraction, Raman and 

Brillouin spectroscopy, optical absorption spectroscopy etc. 

Diamond anvil

Gasket (e.g.  Re, Stainless steel)

Sample inside

the gasket drill

Force

Force

Ruby

 

Figure 1.1: Schematic diagram of Diamond anvil apparatus used for generating high static 

pressures in samples. 

    As shown  in the figure 1.1,  the  material to   be  squeezed  is  placed  in  the  hole  of  metal 

gasket made of hard material rhenium or stainless steel, which is fixed on the flat tip (size ~ 200-

500 µm) of the bottom anvil. The pressure in the material is generated by compressing the anvils 
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against each other. In order to generate hydrostatic compression the sample is surrounded by a 

fluid pressure transmitting medium. The commonly used pressure transmitting mediums are 4:1 

methanol-ethanol mixture, Xe, Ar, He and H2 [4]. The methanol-ethanol mixture is used up to 10 

GPa, however, the gases Xe, Ar, He and H2 are used up to higher pressures of ~ 100 GPa. The 

DAC developed by Mao and Bell can generate static pressure of about 200 GPa in samples [82, 

83].  Still higher pressures of more than 500 GPa are reported to be achieved by using improved 

DAC [84]. Very recently, the micro-semi-balls of nano-crystalline diamonds have been used as 

second stage of conventional diamond anvil cell and this extends the achievable pressure in this 

device to above 600 GPa [85]. To study high pressure behaviour of materials at elevated 

temperatures the new version of diamond anvil cell known as LHDAC has been developed [86]. 

This DAC uses laser heating arrangements and can generate high temperatures and pressures > 

3000 K and >100 GPa, respectively. This instrument is useful for understanding the state of 

material in the conditions existing in the interior of the earth. 

 

1.2.1.2 Diagnostic Techniques in Static High Pressure Experiments 

The commonly used microscopic techniques for characterization of pressurized sample are x-

ray diffraction [87], inelastic x-ray spectroscopy [88], extended x-ray absorption fine-structure 

(EXAFS) [89], X-ray fluorescence (XRF) [90], Mössbauer spectroscopy (SMS) [91], nuclear 

forward and inelastic scattering (NFS and NIS) [92], neutron diffraction, Raman scattering, IR 

scattering and Brillouin scattering [4, 93-99] commonly used for online characterization of the 

pressurized sample in DAC. 

The x-ray diffraction technique is one of the microscopic techniques used widely for 

characterization of samples subjected to high pressures in DAC. A significant advancement has 

been made in this technique after the birth of synchrotron radiation sources around the world.  

The European Synchrotron Radiation Source (ESRF), the Advanced Photon Source (APS) in the 

United States, the Japanese source SPRING-8 and National Synchrotron Light Source (NSLS) at 

Brookhaven National Laboratory are examples of some of the third generation synchrotron 

sources. The synchrotron radiation generated from such sources spans a broad spectrum from the 

far infrared to hard x-rays; it is pulsed and naturally polarized; and it is ~ 10
3
 -10

4
 times brilliant 
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than the beams from conventional x-ray machines. The high brilliance along with the possibility 

to tune the wavelength of the x-rays, to control their polarization, and to choose between a single 

wavelength or a range of wavelengths makes this radiation an excellent probe for normal and 

magnetic materials, biomolecules, polymers and allowing to explore phase diagram, chemical 

reactivity, properties of elements and compounds  [100]. The high brilliance of synchrotron 

radiation makes it a very powerful tool for characterizing the low Z elements (e.g. H2, Li) or 

materials composed of low Z elements (e.g. hydrogen storage material NaBH4) and quantitative 

analysis of phase composition specially for phases present in extremely low concentration < 1%. 

For example, in Li the occurrence of new rhombohedral phase and cubic polymorph with 16 

atoms per unit cell under high pressure could be confirmed through sufficiently intense 

synchrotron radiation diffraction (SRD) [101]. In nominal high purity α-alumina ceramic, the 

SRD could clearly establish the presence of trace levels of β- alumina and anorthite 

(CaAl2Si2O8), which was inconclusive from conventional x-ray diffraction [102]. The 

synchrotron radiation has been used for Mossbauer spectroscopy also. For example, the 

detection of the antiferromagnetic to paramagnetic transition in SrFe2As2 at 4.2 GPa and 13 K 

could be done through Mossbauer spectroscopy using SRD [103]. 

 

The measurement of pressure generated in the sample due to static compression is carried out 

using either the internal pressure markers or pressure dependence of ruby fluorescence. In first 

method the pressure generated in the sample is determined by adding internal pressure marker 

material (whose EOS is known) such as Mo, Cu, Pd or Ag with the sample in DAC [4]. The 

compression generated in the sample and pressure marker material is determined from collected 

x-ray diffraction data of sample and marker. The corresponding pressure in the sample is then 

inferred from the known EOS of marker material. In the second method the pressure dependence 

of R1 (6943Å) line of Ruby fluorescence is used to determine the pressure generated in the 

sample at a given compression [4]. The calibration of ruby fluorescence pressure scale for this 

purpose is carried out using isothermal EOS of marker materials derived from shock wave 

experiments [4]. The calibration so obtained relates the pressure and the shift in R1 line as 

follows [83]: 
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 with ∆λ is the ruby R-line shift (= 0.365 Å/kbar) and A = 19.04 Mbar and B = 7.665. 

The detection of pressure induced structural phase transitions and determination of their 

mechanisms is carried out by performing x-ray diffraction; Raman or IR spectroscopy in the 

compressed state, and electron diffraction and electron microscopy measurements on samples 

retrieved after pressurization. The continuous monitoring of the evolution of the new structure in 

the sample material in DAC experiments through x-ray diffraction or Raman, IR spectroscopy is 

carried out in in-situ mode as a function of applied pressure. Further, the in-situ measurements 

are useful to detect the reversible phase transitions in the materials. For example, the reversible 

cubic to amorphous phase transitions in negative thermal expansion materials ZrMo2O8 and 

HfMo2O8 [104], scheelite phase to fergusonite phase transition in BaWO4 [105] could be 

detected by in-situ x-ray diffraction measurements. Though both the x-ray diffraction, and 

spectroscopy measurements are equally important for detecting the structural transitions in 

materials sometimes the sub structural changes that remain undetected through x-ray diffraction 

are observed only through Raman measurements e.g. sub-structural amorphization in Co(OH)2 

[106], where the Co-O substructure remains intact but O-H substructure gets disordered under 

pressure. In this case, the x-ray diffraction which is sensitive to only change in Co-O 

substructure, does not see any change in the structure of Co(OH)2, however, the Raman 

measurements which are sensitive to location of H atom also, could reveal disordering of O-H 

substructure manifested by broadening of the peak width of the O-H stretch mode. The electron 

microscopy measurements are useful for not only to detect the pressure induced irreversible 

phase transitions but also to determine the lattice correspondence between the parent and product 

phases, which in turn is used to understand the mechanism of the phase transition. For example, 

the lattice correspondence between the parent α (hcp) phase and product ω phase derived from 

electron diffraction patterns obtained from partially ω (three atom simple hexagonal) 

transformed samples of group IV transition elements and their alloys subjected to high static and 

dynamic pressures has been used to understand the mechanism of this transition [107-113]. 
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Apart from these microscopic techniques, the macroscopic method of electrical resistance 

measurements is very useful in detecting the pressure induced phase transitions, e.g. in Ti and Yb 

through continuous monitoring of the electrical resistances under pressure, Singh [114, 115] has 

not only detected the α → ω transition in Ti and fcc → bcc transition in Yb but also investigated 

the kinetics of these transitions.  

 

 

The pressure dependent elastic moduli of materials are determined through high pressure x-

ray diffraction measurements in DAC experiments [116-118]. Singh et al. [116] have developed 

a formalism to determine the elastic moduli at high pressures through x-ray diffraction 

measurements performed under non-hydrostatic conditions. To generate non-hydrostatic stresses 

the samples are directly compressed between diamond anvils i.e. no pressure transmitting 

medium is used. Employing this formalism, Singh et al. [116] determined the elastic moduli for 

bcc Fe at 4.6 GPa, its high pressure hexagonal phase at 52 GPa, and fcc FeO at 8.3 GPa. Through 

same formalism and similar measurements, the pressure dependence of elastic moduli in Mo up 

to 25 GPa has been determined by Duffy et al. [117]. In niobium, the pressure dependence of 

elastic compliances was determined up to 145 GPa [118] using x– ray diffraction in transmission 

geometry. In addition to x-ray diffraction, various other methods such as ultrasonic pulse echo 

experiments and Brillouin scattering [119-122] are also used to determine the elastic constants of 

materials. In the ultrasonic methods, an ultrasound transducer generates an ultrasonic pulse and 

receives its echo after reflection from sample free surface. The velocity of the sound in the 

sample is determined from the measured time lapse between the pulse and its echo and known 

thickness of the sample which in turn is related to the elastic modulus. In order to determine all 

the elastic constants, sound waves with longitudinal and transverse polarization are propagated in 

various crystallographic directions in single crystals [119]. The Brillouin scattering, where the 

incident monochromatic light photon interacts with the acoustic phonon of the material and 

either it absorbs a phonon or it emits a phonon, which causes a decrease or increase in 

wavelength of the scattered photon. By measuring the wavelength of incident and scattered 

photon and applying the conservation of energy and crystal momentum one can determine the 

sound velocity and hence the corresponding elastic modulus. All the elastic moduli, or 

equivalently elastic constants, of a material can be determined by performing Brillouin scattering 
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from single crystal samples of different orientation. For example, the three independent elastic 

constants namely C11, C12 and C44 of a material having cubic structure can be determined by 

performing Brillouin scattering from [100] and [110] or  [100] and [111] oriented single crystals 

[120, 121]. These methods are limited to low pressures < 25 GPa. 

 

1.2.2 Shock Compression Techniques 

1.2.2.1 Basic Concepts of Shock Compression  

A shock wave is said to be generated in the material when a sudden deposition of high 

energy on a material by some means causes an impulse of compression in the material which 

travels with supersonic speed with respect to the uncompressed material ahead of it and produces 

a near-discontinuous changes in density and pressure across the wave front [123]. This is in 

sharp contrast to subsonic sound waves, where all thermodynamic quantities vary continuously 

through the medium. The formation of shock wave in a medium can be understood as follows: 

Suppose a sudden deposition of energy on a material surface introduces a compression wave 

into it. This compressive disturbance travels in the interior of the material as a broad stress wave 

as displayed in Fig.1.2a. Every point in this profile travels with a velocity  

uC
dt

dx
+=          (1.1) 

Where C represents the sound velocity and u corresponds to the material velocity at a pressure P. 

As the compressibility of most of the materials decreases with increasing pressure, so both C and 

u increase with increasing pressure, thus making the point near to the crest to travel faster than 

that away from the same i.e. starting from foot to the crest of the profile the velocity goes on 

increasing (shown by the vectors in Fig 1.2a), which in turn sharpens the wave front. This 

sharpening effect arising due to dependence of sound speed on amplitude of pressure is opposed 

by the spreading effects due to viscosity and thermal conductivity of the material. Hence at some 

latter time t = t1, when the two opposing effects start balancing each other the steady shock wave 

front with finite constant width ( Fig. 1.2b) propagates in to the material. For a steady shock 
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wave the conservation of mass, momentum and energy across the discontinuity can be written as 

a set of differential equations [123, 124], which lead directly to the Rankine-Hugoniot 

relationships between the specific volume V, the stress (shock pressure) P, the particle velocity u 

the shock velocity D and the specific internal energy E : 

( )uDD −= ρρ0 (Mass Conservation)      (1.2) 

DuPP 00 ρ=−
 
(Momentum Conservation)                (1.3) 

( )( )VVPP
2

1
EE 000 −+=− (Energy Conservation)    (1.4) 

where, the subscript ‘0’ refers to the initial values in front of the advancing shock wave. Further, 

the following useful relationships can be deduced from Eqs. (1.2) and (1.3). 
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Fig.1.2: (a) Hypothetical broad stress wave profile at initial time = t0. The length of the 

vector indicates the speed of the point in the profile, which increases with stress at that point. (b) 

At some instant t1 the wavefront attains a finite constant width (τs) due to balancing of 

sharpening effect caused by non linearity and spreading effect from viscosity and thermal 

conductivity of material for which a steady shock wave with constant front width (τs) propagates 

into the material 

 

Under shock compression the thermodynamic path followed by material while going from 

initial state (P0, V0) to a final state (P, V) is a line known as Rayleigh line having slope D
2
/V0

2
 

and represented by Eq. (1.5). Only the initial and final states on this line are the equilibrium 

states and can be measured i.e. in a shock process it is possible to achieve only one P, V data 

point. Therefore, to generate various P, V data of a material under shock compression a number 

of shock wave experiments, each with different shock velocity need to be conducted. The curve 

connecting these P, V data (reached from the same initial P0, V0 state) is known as shock adiabat 

or Hugoniot. In other words, the Hugoniot of a material is the locus of all the possible 

equilibrium states that can be achieved from a given initial state, but the successive states along 

which cannot be achieved one from another by a shock process.  
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Fig 1.3 Schematic P-V diagram showing the compression curves. The Hugoniot lies above 

the isentrope which lies above the isotherm. For isentrope and isotherm, the thermodynamic path 

coincides with the locus of end states. For Hugoniot which is the locus of shock states, the 

thermodynamic path is a straight line (Rayleigh line) from (P = 0, V = 0) to (P, V) state on the 

Hugoniot curve. The magenta colured curve is the release isentrope. The difference of yellow 

shaded areas below and above the Rayleigh line indicates the residual heat upon unloading from 

peak shocked state. 

 

Fig. 1.3 displays the differences between the isotherm, isentrope and Hugoniot passing 

through the common initial state. The red, blue and green curves represent the isotherm, 

isentrope and Hugoniot, respectively, starting from the same initial state (P0, V0). Isotherm and 

isentrope are thermodynamic paths i.e. during isothermal or isentropic compression; the material 

actually passes through each successive point along the isotherm or isentrope as it approaches the 

final state. Unlike isotherm or isentrope, the Hugoniot is not a thermodynamic path that is 

followed during shock compression; instead a state on Hugoniot can be reached from a given 

initial state via Rayleigh line as shown in Fig.1.3.  
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The process of shock compression is irreversible in nature and is accompanied by increase in 

entropy. Also, the temperature of the shock recovered sample is more than that of the initial 

unshocked state. Further, it is clear in Fig. 1.3 if the compression to volume V is carried out 

isothermally, then the increase in internal energy will be the area of the curved triangle OBC 

below the isotherm. However, under shock loading, the internal energy deposited on the 

compressed material is the area of the triangle OAC. The difference of the area OAC and OBC 

corresponds to the heat energy deposited by the shock on compressed material, which results in 

the thermal pressure. It may be noted that a small fraction of supplied energy goes in to 

generation of defects also. Fig. 1.3 clearly shows that with increasing, compression more and 

more energy goes into generation of thermal pressure. After passage of the shock, the material 

unloads through the release isentrope as shown in the figure 1.3. The difference of the area of 

triangle  OAC  and  curved  triangle  under  release isentrope represents the heat deposited on the 

terminal material.  

 

1.2.2.2 Techniques of Shock Wave Loading 

 

Shock wave in a material can be generated by rapid deposition of energy or by high 

velocity impact. Different forms of energy like chemical, mechanical, electrical, magnetic and 

radiation have been used for producing shock waves in materials. These can be classified as 

explosive driven systems, pulse radiation (laser, electron, X-ray, neutron, ion beam, photons 

etc.), gas guns, electric guns, rail guns and magnetic flux compression [124, 125-136]. 

 

The shock compression in materials can be achieved by several techniques such as gas 

guns, explosive systems, pulse radiation and electromagnetic launchers. The gas guns working 

on the principle of single stage, double stage or three stage acceleration of the projectile use 

hydrogen, helium or nitrogen as the propelling gases [128-130]. Apart from the gas guns the 

propellant derived guns known as propellant guns are also used to accelerate the projectile. The 

chemical explosives can be used to generate high shock pressures of several megabars in the 

materials by impacting the stationary target plate by a flyer plate propelled by gases generated 
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due to detonation of the explosive.  Electric gun is one of the examples of the electromagnetic 

launchers in which the thin flyer of light insulating material such as Mylar can be propelled to a 

velocity of several km/s by the hot vapours of metallic foil exploded by rapid electrical 

discharge. The maximum velocity of the flyer plate achieved so far using such system is more 

than ∼30 km s
−1

 [133-135]. The electric gun developed in our laboratory at Bhabha Atomic 

Research Centre has the ability of launching a 0.5 g flyer up to a velocity of 6.6 km/s [132].  

Extremely high shock pressures have been generated by direct irradiation of high intensity laser 

light (10
12

 to 10
14

 Wcm
−2

). In such experiments, the thickness of the sample is of a few hundred 

µm and diameter is less than ~ 1mm. The temporal shape of the laser beam is often variable to 

produce shock waves [136].  

 

The magnetic flux compressions method is another class of high pressure generation methods 

which can be used to generate isentropic compression in the materials [133, 134]. As Hugoniot 

of a material is a curve in EOS surface that is generated from a series of shock compression 

experiments, similarly, compression isentrope is a class of curve that explores another region of 

EOS surface. Unlike in shock compression experiments where single datum is obtained in one 

experiment, in isentropic compression experiment (ICE) one can generate a full isentrope in a 

single experiment. Recently, Sandia National Laboratory has developed a Z accelerator facility 

to produce 0.5 Mbar isentropic compressions in solids [135]. In magnetic compression 

techniques high magnetic fields (more than 100 Tesla) are generally produced in pulsed form 

using capacitor banks. These fields may be further enhanced through compression of metallic 

liners (cylindrical shells) in which initial magnetic field may be trapped and then compressed 

using secondary energy source such as another capacitor bank or chemical explosives. Apart 

from the isentropic compression these devices have been used to generate shock compressions 

also by accelerating the flyer plates to velocities of several km/s. The Z-accelerator of Sandia 

National Laboratory has been used to launch flyer plates of aluminium with thickness ~ 1 mm 

with ultrahigh velocities up to ~ 34 km/s not achievable with conventional gas guns [137]. 

Recently, the combination of static and dynamic compressions methods have been used with 

laser irradiation to achieve pressures of order of TPa on the samples [138]. Here, a sample is 
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compressed inside a diamond anvil cell and laser induced shock wave further pressurizes this 

pre-compressed sample to generate the pressures of ~ 10-100 TPa. 

 

 

1.2.2.3 Diagnostic Techniques in Shock Wave Experiments  

 

In shock wave experiments the measurements technique can be broadly classified in two 

categories namely macroscopic (continuum) measurement techniques and microscopic 

measurement techniques depending upon the nature of properties to be measured. The 

macroscopic measurement techniques include impact velocity measurement, shock arrival 

measurement, time resolved stress profile and particle/free surface velocity history 

measurements. The impact velocity can be measured using electrical pins or optical technique. 

The shock velocity in the target material is generally measured using electrical and optical 

transducers. For measurement of shock velocity, the electrical sensors are placed at various 

known depths in the target from the impact surface and shock arrival timings at sensor locations 

is recorded, which is then used to determine the shock velocity in the target material [139-140]. 

The piezoresistive manganin gauges [141] have been mostly used to record the time resolved 

stress profile [142-143]. The interferometery techniques [144-149] such as velocity 

interferometer system for any reflector (VISAR) [144-145] and optically recording velocity 

interferometer system (ORVIS) [146] are used for measuring particle/free surface velocity 

history of the shock loaded target plate. ORVIS employs a streak camera to record the 

interference data with subnanosecond time resolution. Later, line imaging variations on these 

techniques [147-149] have been extended to encode spatial information from streak camera 

detectors. Adapting these techniques to the context of laser-driven targets has enabled precise 

measurement of the motion of a variety of shock-related phenomena in laser-driven targets, 

including the motion of free surfaces, of shocked interfaces, and of ionizing shock fronts in a 

wide variety of transparent media. These macroscopic (continuum) techniques can provide 

quantitative information about shock induced phase transitions (both reversible and irreversible), 

mechanical failure (fracture strength, Hugoniot elastic limit (HEL) and yield strength) at high 

strain rates and melting. These techniques however, do not provide the atomic level scale of such 

phenomena.  
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Though in-situ microscopic measurements in shock wave experiments are not easy, still  

there are some laboratories in the world that have recently developed capabilities of Raman 

measurements and real time x-ray diffraction measurements in shock wave experiments [150-

155]. In polycrystalline magnesium, Milathianaki et al. [150] have detected the shock induced 

hcp to bcc phase transformation using online x-ray diffraction measurements. Similarly, in shock 

loaded iron Kalantar et al. [151] have detected the bcc to hcp structural transformation through 

in-situ x-ray diffraction measurements. Sub-nanosecond temporal resolution of X ray diffraction 

has been used to show that single crystal of silicon can sustain very high elastic strain [152]. 

More recently, Dolan et al. using real time optical transmission and imaging measurements in 

multiple shock wave compression up to peak pressure of 5GPa, have reported the solidification 

of water on nanosecond time scale [155]. 

 

1.3  Computational methods for high-pressure research 

The past few decades have seen dramatic improvements in the ability to simulate 

complicated physical systems using computers. For example, there is a significant advancement 

in the computational simulations methods used to calculate the electronic band structure of 

solids. The knowledge of electronic band structures in turn has been utilized to examine 

structural stability, to determine equation of state, elastic properties of materials, dynamical 

(phonon) properties as a function of pressure. The predictive capabilities of modern electronic 

band structure methods have facilitated the determination of structural phase transitions, equation 

of state and pressure dependent elastic and mechanical properties of materials prior to 

experiments. 

 

Properties of a material e.g., EOS, elastic moduli, phonon frequencies etc. depend upon the 

crystal structure it acquires. Therefore, for proper understanding of material behavior under 

pressure it is essential first to analyze the structural stability. For a material, at a given 

thermodynamic condition (pressure, temperature and specific volume), the thermodynamically 
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favourable structure is the one which has the lowest free energy and it is found by determining 

and comparing the free energies for various plausible structures. Depending upon the 

thermodynamic condition the different forms of free energy are used for structural stability 

analysis. For example, for constant volume and temperature condition the thermodynamically 

favorable structure is the one for which the Helmholtz free energy (F) is lowest. However, for 

constant pressure and temperature condition it is the minimum Gibbs free energy (G) which is 

used to determine the possible stable crystal structure. These free energies are defined as follows: 

The Helmholtz free energy, which is function of thermodynamic variables T and V is: 

 

TSEF −=          (1.7) 

 

With E, T and S are total internal energy, temperature and entropy, respectively. Further, the total 

internal energy is expresses as ),(),()(),( TVETVEVETVE eTc ++= , with Ec, ET and Ee are 0 

K energy, Lattice thermal energy and electronic excitation energy, respectively.  

 

Similarly, the Gibbs free energy which is function of thermodynamic variables T and P is: 

 

� � � � ��         (1.8) 

 

With P and V are the pressure and volume thermodynamic variables. 

It may be noted that for T = 0, the Helmholtz free energy reduces to total internal energy at 0 

K and the Gibbs free energy reduces to PVEH c += , where H is defined as enthalpy. The term 

Ec can be determined through electronic band structure methods, however, the lattice thermal 

energy, electronic excitation energy and the entropy contribution can be determined by using the 

physical quantities such as elastic moduli and density of electronic states obtained from ab-initio 
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calculations in the continuum model like Debye model. In other approach one can also use quasi 

harmonic approximation to determine the vibrational free energy due to phonons by taking both 

acoustic as well as optic mode contribution from the phonon density of states. 

The pressure from the total energy is determined as 

� �  	 
�
�         (1.9) 

Thus the equation of state can be drawn by calculating the pressure at various compressions. 

The total energy calculations can be performed on specifically deformed lattice and by 

calculating the energy of the deformed lattice the elastic constants can be calculated.  

 

The Hartree-Fock [156-158] method, density functional theory (DFT) [159,160] and 

quantum Monte Carlo [161] approaches are the three most popular ab initio methodologies used 

for calculations of electronic band structure and 0K total energy Ec. Apart from this there are a 

number of models and approximations e.g. nearly free electron model, tight binding model, 

muffin-tin approximation and k-p model, developed to calculate the electronic band structures of 

solids.  

 

In the nearly free electron model, the interactions among electrons are completely ignored. 

The wave function is periodic in wave vector space which is given by: 

 

Ψ�,���� �  ���.������        (1.10) 

 

Where, n is the n
th

 energy band, wavevector k is related to the direction of electron motion, r is 

the position in the crystal and the  ����� is periodic over the lattice vector R: 

 

 ����� �  ���� 	 ��        (1.11) 
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Here the interaction between the ion cores and the conduction electrons are modelled as ‘weak’ 

perturbing potentials.  

 

Other opposite extreme to this model is the tight binding model where the electrons stay 

most of the time to the constituent atoms. Here Ψ��� is approximated by a linear combination of 

atomic orbitals. ����� 
 

Ψ��� �  ∑ ��,��,� ���� 	 ��      (1.12) 

 

Further improvement of the tight binding model is the well known Hubbard model, where 

the Hamiltonian of the interacting particles in the lattice consists of two terms: a kinetic energy 

term which describes the tunneling (hopping) of particles between sites of the lattice and a 

potential term for the on-site interaction. If interaction between particles of different sites of the 

lattice is considered, the model is referred as the extended Hubbard model.  

 

Various electronic band structure methods such as Korringa-Kohn-Rostoker 

approximation (KKR), augmented plane wave (APW), linearized muffin-tin orbital (LMTO) and 

Green’s function methods use the muffin-tin approximation. The muffin-tin approximation 

basically is shape approximation of the potential around an electron in the solid. In the methods 

using this approximation, the lattice is divided in two parts. Around the atom the potential is 

approximated to be spherically symmetric and electron wavefunction spanned as a linear 

combination of spherical harmonics multiplied by a radial wavefunction. Outside this spherically 

symmetric potential, the potential is assumed to be flat i.e. constant or zero and linear 

combination of plane waves are used to span the wavefunction of the electron.  
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In the k.p perturbation theory (p=momentum operator) the term k.p is taken as 

perturbation in the Hamiltonian. The total Hamiltonian is represented as:  

�� � � � �!"         (1.13) 

Where  � � #$%& �  � is the unperturbed Hamiltonian and  

�!" � ħ$($%& � ħ �.)&   is the perturbation term.  

The perturb energy to the unperturbed Hamiltonian (which is the exact Hamiltonian for the k = 

0, i.e., at the Gamma point) is calculated. 

 

The starting point of ab-initio electronic band structure methods is the Hartree –Fock theory 

[156-158]. This method is based on determining the exact wave function for any state of the 

many electron system and then finding the total energy at that state by solving the Schrödinger 

equation. Further, the ground state energy of the system is calculated by variationally minimizing 

the energy with respect to the wave function i.e. the ground state wave function is the one which 

minimizes the total energy. The accuracy here depends upon the exactness of the state wave 

function which is approximated to be the single determinant (Slater’s determinant) wave function 

constructed out of individual electron wave function that takes into account the antisymmetry 

requirement. The antisymmetry requirement incorporated in the many electron wave function 

introduces an additional potential energy term known as exchange energy which is purely due to 

Pauli exclusion principle and is different from the conventional Coulomb repulsive term. The 

Hatree Fock method gives quite accurate results for small systems like atoms or molecules but 

fails when applied for solids i.e. systems containing a large number ~ 10 
23

 of electrons. The 

reason for this could be associated to following facts:  (i) The potential energy due to exchange 

effects is taken in full, however, in many electron systems the exchange interaction should be 

screened by the correlation hole (defined as the region around the electron of particular spin 

depleted of the other electron of the same spin). In other words the separation between electrons 

with parallel spins and that between the electrons with antiparallel spin is assumed to be same in 

Hatree –Fock method, however, in practical this is not so as due to Pauli principle the electrons 

with parallel spin cannot approach each other as closely as do electrons with antiparallel spin, 
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therefore the exchange energy calculated using this method is more than the actual value. (ii) The 

binding between the correlation hole and electron has been ignored. Additionally, the assumption 

that many electron wave function can be expressed in terms of linear combination of the 

products of many single electron wave functions, which is not necessarily true; in fact an 

adequate wave function must involve ~ 10 
23

 parameters i.e. as many parameters as the number 

of electrons in the solid.  Because of these problems it is difficult to work with this method for 

large systems. This difficulty gave birth to the well known density functional theory. 

 

As all the theoretical analysis on various materials presented in the subsequent chapters of 

the thesis have used the band structure calculation methods based on the well established density 

functional approach, a separate section has been provided to describe the density functional 

theory.  

 

1.4 Density Functional Theory 

In first-principles (ab initio) methods, an attempt is made at solving the Schrödinger 

equation without any empirical system specific parameters. Such simulations give, in principle, 

all relevant information on the atomic, electronic and magnetic structure of materials. However, 

they are computationally very demanding (~10
3
 times more expensive than atomistic 

simulations) and cannot be done without approximations. As mentioned above, for solids there 

are three most popular ab initio methodologies Hartree-Fock method [156], density functional 

theory (DFT) [159-160] and quantum Monte Carlo [161] approach. It is also worth to mention 

that the hybrid density-functional approaches [162], which are mostly used in molecular 

chemistry related simulations, have become very popular in recent days. The methods based on 

density-functional approach are mostly employed in condensed matter research due to the 

computational efficiency and comparatively good accuracy offered by these. 

 

Density functional theory is a quantum mechanical description of the electronic band 

structure of many body system particularly atoms, molecules and the condensed phase. The 
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theory deals with the calculation of total energy of the many body system from the first principle 

by solving the Schrodinger equation without taking any approximation on the potential of the 

system under consideration. With this theory the properties of the system under consideration 

can be determined from the total ground state energy functional i.e. the energy is a function of 

density which itself is a function of position co-ordinate. As it is not dependent on any particular 

parameters, these calculations are more reliable than any model calculations where many 

parameters are used to optimize the potential of the system and then predict the properties of the 

system. In the present thesis, the problems addressed stem ultimately from the calculations 

involving how matter behaves under pressure. A brief outline of the basic principle of the theory 

is given below. 

 

The central concept of DFT is to describe the total energy of many-body interacting system 

via its particle density and not via its many-body wavefunction. Its main aim is to reduce the 3N 

degrees of freedom of the N-body system to only three spatial coordinates through its particle 

density. Its basis is the well known Hohenberg-Kohn (HK) theorem [159], which claims that all 

ground state properties of a system can be considered to be unique functionals of its ground state 

density and the exact ground state will be found when the exact density is found. Together with 

the Born-Oppenheimer (BO) approximation [163] and Kohn-Sham (KS) ansatz [164], practically 

accurate DFT calculations have been made possible via approximations for the so called 

exchange-correlation (XC) potential, which describes the effects of the Pauli principle and the 

Coulomb potential beyond a pure electrostatic interaction of the electrons. Since it is impossible 

to calculate the exact XC potential (by solving the many-body problem exactly), two common 

approximations, the so-called local density approximation (LDA) and generalized gradient 

approximations (GGA), are implemented to get the XC energy contribution towards the total 

energy.  

In many cases the results of DFT calculations for condensed-matter systems agreed quite 

satisfactorily with experimental data, especially with better approximations for the XC energy 

functional since the 1990s. Also, the computational costs were relatively low compared to 

traditional ways which were based on the complicated many-electron wavefunction, such as 

Hartree-Fock theory [156-158] and quantum Monte Carlo (QMC) [161]. 



28 

 

 

1.4.1 Born-Oppenheimer (BO) Approximation 

The significance of the BO approximation is to separate the movement of electrons and 

nuclei. Since the nuclei are much heavier than electrons (the mass of a proton is about 1836 

times the mass of an electron), the nuclei move much slower (about two order of magnitude 

slower) than the electrons. For example, even for the lighter material say helium, its ion is ~ 10
4
 

times heavier than the electron. For the same momentum the speed of ion will be much less as 

compared to that of electron (~1/10000 of speed of electron).This assumption is appropriate as 

long as temperatures are not high enough Therefore we can separate the movement of nuclei and 

electrons. The underlying theory is given below which is the first step of DFT approximation. 

The Hamiltonian of a many-body condensed-matter system consisting of nuclei and electrons 

can be written as:           

�*+* � 	 ∑ ħ$%,-  .�/%  0 	 ∑ ħ$%&1  .�2%  � � 3%  ∑ 4-456$7�/8�970,:0;< � 3%  ∑ 6$7�28�=7�,<�;< 	  ∑ 4-6$|�/8�2|0,� (1.14)  

where the indexes I, J run on all nuclei of the system, i and j on all the electrons, RI and MI are 

positions and masses of the nuclei, ri and me of the electrons, ZI the atomic number of nucleus I. 

The first two terms are the kinetic energies of the nuclei and the electrons respectively, the third 

term is the potential energy of nucleus-nucleus Coulomb interaction, the fourth term is the 

potential energy of electron-electron Coulomb interaction and the last term is the potential 

energy of nucleus-electron Coulomb interaction. The time-independent Schrödinger equation for 

the system reads: 

�*+*?�@�AB , @�2B� � C ?�@�AB , @�2B�     (1.15) 

where  ?�@�AB , @�2B�is the total wave function of the system. In principle, everything about the 

system is known if one can solve the above Schrödinger equation. However, it is impossible to 

solve it in practice as it is a partial differential equation entangled with large number of variables. 

A so-called Born-Oppenheimer (BO) approximation made by Born and Oppenheimer [163] in 

1927 comes here for rescue. When we consider the movement of electrons, it is reasonable to 
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consider the positions of nuclei are fixed, thus the total wavefunction of the electrons and nuclei 

can be decoupled in the following way: 

  ?�@�AB , @�2B� �  D�@�AB�E�@�2B ;  @�AB�     (1.16) 

where D({RI}) describes the nuclei and φ({ri} ; {RI}) the electrons (depending parametrically on 

the positions of the nuclei). With the BO approximation, Eqn. (1.15) can be divided into two 

separate Schrödinger equations: 

 

�6  E�@�2B ;  @�AB� � ��@�AB� E�@�2B ;  @�AB�     (1.17) 

Where 

�6 � 	∑ ħ$%&1  .�2%  � � 3%  ∑ 4-456$7�/8�970,:0;< � 3%  ∑ 6$7�28�=7�,<�;< 	  ∑ 4-6$|�/8�2|0,� (1.18) 

and 

G	 ∑ ħ$%,-  .�/% �  ��@�AB� 0 HD�@�AB� �  C"D�@�AB�     (1.19)  

Eqn. (1.17) is the equation for the electronic problem with the nuclei positions fixed. The 

eigenvalue of the energy V ({RI}) depends parametrically on the positions of the nuclei. After 

solving Eq. (1.17), V ({RI}) is known and by applying it to Eqn. (1.19), which has no electronic 

degrees of freedom, the motion of the nuclei is obtained. Eqn. (1.19) is sometimes replace by a 

Newton equation, i.e., to move the nuclei classically, equating ∇∇∇∇V with the forces.  

 

Now we can consider that the electrons are moving in a static external potential Vext(r) 

formed by the nuclei, which is the starting point of DFT. The BO approximation was extended 

by Bohn and Huang known as Born-Huang (BH) approximation [165] to take into account more 

non-adiabatic effect in the electronic Hamiltonian than in the BO approximation. 
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1.4.2  Kohn-Sham Ansatz 

It is the Kohn-Sham (KS) ansatz [164] that puts Hohenberg-Kohn theorems into practical use 

and makes DFT calculations possible with even a single personal computer. This is part of the 

reason that DFT became the most popular tool for electronic structure calculations. The KS 

ansatz was so successful that Kohn was honoured the Nobel Prize in chemistry in 1998. 

The KS ansatz is to replace the original many-body system by an auxiliary independent-

particle system and assume that the two systems have exactly the same ground state density. It 

maps the original interacting system with real potential onto a fictitious non-interacting system 

whereby the electrons move within an effective Kohn-Sham single-particle potential VKS(r).For 

the auxiliary independent-particle system, the auxiliary Hamiltonian is 

 Ĥ!K � 	 3%  .% � �!K���       (1.20) 

in atomic units.  

  For a system with N independent electrons, the ground state is obtained by solving the N one-

electron Schrodinger equations, 

L	 3%  .% � �!K���M ����� �  εO �����     (1.21) 

where there is one electron in each of the N orbitals ψi(r) with the lowest eigenvalues εi. The 

density of the auxiliary system is constructed from: 

P��� �  ∑  |�����|%Q�R3         (1.22) 

which is subject to the conservation condition: 

SP��� T� � U        (1.23) 

The non-interacting independent-particle kinetic energy TS[n(r)] is given by, 
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     V KWP���X �  	 3%∑ S��Y���Q�R3 .%����� T�    (1.24) 

Now a new quantity, the universal functional F[n(r)] ,can be rewritten as 

�WP���X �  VKWP���X � CZWP���X � C[\WP���X    (1.25) 

where EH[n(r)] is the classic electrostatic (Hartree) energy of the electrons, 

   CZWP���X �  3%  ] �����^�_`|�8�_|  T� T�"      (1.26) 

and EXC[n(r)] is the exchange correlation energy, which contains the difference between the 

exact and non-interacting kinetic energies and also the non-classical contribution to the electron-

electron interactions, of which the exchange energy is a part. Since the ground state energy of a 

many-electron system can be obtained by minimizing the energy functional CWP���X � �WP���X � SP����6a*���T�, subject to the constraint that the number of electrons N is 

conserved, 

b@�WP���X � S P����6a*���T� 	 µ�SP��� T� 	 U�B � 0   (1.27) 

and the resulting equation is 

µ �  efW����Xe���� � �6a*���       (1.28) 

    � bVKP���δP��� � �!K��� 
where µ is the chemical potential, 

�!K��� �  �6a*��� � �Z��� � �[\���     (1.29) 

              � �6a*��� � bCZWP���XbP��� � bC[\WP���XbP���  

is the KS one-particle potential with the Hartree potential VH(r) 
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�Z��� �  h�iW����Xh����         (1.30) 

            �  j P��"�|� 	 �"|  T�" 
and the XC potential VXC(r) 

�[\��� �  h�klW����Xh����         (1.31) 

Eqns. (1.21), (1.22), (1.29) together are the well-known KS equations, which must be solved 

self-consistently because VKS(r) depends on the density through the XC potential. In order to 

calculate the density, the N equations in Eqn. (1.21) have to be solved in KS theory as opposed 

to one equation in the TF approach. However an advantage of the KS method is that as the 

complexity of a system increases, due to N increasing, the problem becomes no more difficult, 

only the number of single-particle equations to be solved increases. Although exact in principle, 

the KS theory is approximate in practice because of the unknown XC energy functional 

EXC[n(r)]. An implicit definition of EXC[n(r)] can be given as: 

 

C[\WP���X � VWP���X 	 VKWP���X � C��*WP���X 	 CZWP���X  (1.32) 

where T[n(r)] and Eint[n(r)] are the exact kinetic and electron-electron interaction energies of the 

interacting system respectively. It is crucial to have an accurate XC energy functional EXC[n(r)] 

or potential VXC(r) in order to give a satisfactory description of a realistic condensed-matter 

system. The most widely used approximations for the XC potential are the local density 

approximation (LDA) and the generalized-gradient approximation (GGA). 

 

1.4.3   Local Density Approximation (LDA) 

The Local Density Approximation (LDA) was firstly proposed by Kohn and Sham, and used 

in the early works. Although the exact XC energy functional EXC[n(r)] should be very 
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complicated, but simple approximations to it have been successful not only to predict various 

properties of many systems reasonably well but also greatly reduce computational costs, leading 

to the wide use of DFT for electronic structure calculations. Of these approximations, the local 

density approximation (LDA) is the most widely used one. In LDA, the XC energy per electron 

at a point r is considered the same as that for a homogeneous electron gas (HEG) that has the 

same electron density at the point r. The total exchange-correlation functional EXC[n(r)] can be 

written as, 

C[\mnoWP���X �  S P���p[\q+&�P����T�     (1.33) 

                        � jP���Wp[q+&�P���� � p\q+&�P����XT� 

          � C[mnoWP���X � C\mnoWP���X 
for spin unpolarized systems and 

 

C[\mnoWPr���, Ps���X �  S P���p[\q+&�Pr���, Ps����T�   (1.34) 

 

for spin polarized systems[14], where the XC energy density p[\q+&�P���� is a function of the 

density alone, and is decomposed into exchange energy density p[q+&�P���� and correlation 

energy density p\q+&^P���` so that the XC energy functional is decomposed into exchange 

energy functional C[mnoWP���X and correlation energy functional C\mnoWP���X linearly.  

 

The LDA is very simple, where corrections to the exchange-correlation energy due to the in 

homogeneities in the electronic density are ignored. The LDA approximations it tends to 

underestimate atomic ground state energies and ionization energies, while overestimating 

binding energies. It makes large errors in predicting the energy gaps of some semiconductors. 

Different approximations like generalized gradient approximations (GGA) has been proposed for 

EXC[n(r)] like Perdew and Zunger [166] Its success and limitations lead to approximations of the 

XC energy functional beyond the LDA, through the addition of gradient corrections to 

incorporate longer range gradient effects. The LDA has also been extended to LDA+U method to 
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account for the strong correlations of the d electrons in transition elements and f electrons in 

lanthanides and actinides. 

 

1.4.4  Generalized Gradient Approximation  

The LDA is restricted to be applied to systems with slowly varying density. As mentioned 

above, the LDA neglects the in-homogeneities of the real charge density which could be very 

different from the HEG. The XC energy of inhomogeneous charge density can be significantly 

different from the HEG result. This leads to the development of various generalized-gradient 

approximations (GGA) which include density gradient corrections and higher spatial derivatives 

of the electron density and may give better results than LDA in many cases.  

The definition of the XC energy functional of GGA is the generalized form of Eqn. (1.42) of 

LDA to include corrections from density gradient ∇ n(r) as 

C[\ttoWPr���, Ps���X �  S P���p[\q+&�Pr���, Ps���, ∇ Pr���, ∇ Ps����T� (1.35) 

 

GGA improves the shortcomings of LDA's poor description of strong inhomogeneous 

system. Many different reformulations and extensions of GGA have been proposed and tested 

over the years. Traditionally, physicists favor a non-empirical approach, deriving approximations 

from quantum mechanics and avoiding fitting to specific finite systems. One of the physics type 

of GGA functionals is the Perdew-Burke-Ernzerhof (PBE) [167], which is widely used in 

material sciences. On the other hand, chemists typically use a few or several dozen parameters to 

improve the accuracy on a limited class of molecules, like LYP [168] and its revised version 

BLYP functional [169], which has smaller errors for main-group organic molecule energetic than 

PBE, but does badly for the correlation energy of metals. GGA generally works better than LDA, 

in predicting bond length and binding energy of molecules, crystal lattice constants, and so on, 

especially in systems where the charge density is rapidly varying. However GGA sometimes 

overcorrects LDA results in ionic crystals where the lattice constants from LDA calculations fit 

well with experimental data but GGA will overestimate it. Nevertheless, both LDA and GGA 
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perform badly in materials where the electrons tend to be localized and strongly correlated such 

as transition metal oxides and rare-earth elements and compounds. This drawback leads to 

approximations beyond LDA and GGA. 

 

1.4.5 Semi-local functional 

Universal GGAs such as PBE work for a wide range of systems, but they are still limited in 

accuracy. One approach is to devise GGAs that are specialized for certain classes of compounds. 

PBEsol [170] GGA is an example: it recovers the original gradient expansion for exchange, and 

its correlation piece is adjusted to reproduce surface energies accurately. Due to its diminished 

gradient dependence, PBEsol is biased towards solids and yields better lattice constants and other 

equilibrium properties of densely packed solids than PBE. However, it is generally less accurate 

for molecular bond energies. 

 

1.4.6 Orbital-dependent functional  

Another major problem of standard LDAs and GGAs is that they could not describe the 

system when the electrons tend to be localised and strongly interacting, such as transition metal 

oxides, rare earth elements and compounds. In order to properly describe these strongly 

correlated systems, orbital-dependent potentials should be used for d and f electrons. There are 

several approaches available nowadays to incorporate the strong electron-electron correlations 

between d electrons and f electrons. Of these methods including the self-interaction correction 

(SIC) method [171], Hartree-Fock (HF) method [172], and GW approximation [173], LDA+U 

method [174] is the most widely used one. 

In the LDA+U method, the electrons are divided into two classes: delocalized s, p electrons 

which are well described by LDA (GGA) and localized d or f electrons for which an orbital-

dependent term 
3%  u ∑ P� P<�;<  should be used to describe Coulomb d − d or f − f interaction, 

where ni are d- or f- orbital occupancies. The total energy in LDA+U method is given as[164]: 

C*+*mnovwWxy���, @PyBX �  CmKnoWxy���X � CwW@PyBX 	 Cz{W@PyBX  (1.36) 
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C*+*mnovwWxy���, @PyBX �  CmKnoWxy���X � 3%  u ∑ P� P<�;< � uU�U 	 1�/2 (1.37) 

And 

N=∑ P� �          (1.38) 

where σ denotes the spin index, xy��� is the electron density for spin- σ electrons and @PyB is the 

density matrix of d or f electrons for spin-σ, the first term is the standard LDA energy functional, 

the second term is the electron-electron Coulomb interaction energy [171]. The last term in Eqn. 

(1.37) is the double counting term such that which removes an averaged LDA energy 

contribution of these d or f electrons from the LDA energy.  

 

1.4.7 Dispersion corrections 

DFT is widely known to poorly describe long-range dispersion effects. Due to their 

dependence on the local density, the semi-local functionals cannot account for XC effects due to 

the presence of electrons in remote parts of a molecule. There are many attempts to correct this 

by adding a Van Der Waals (vdW) attraction between the nuclei to the nuclear potential energy ( 

Edispersion) 

 

dispersionKSDDFT EEE +=−        (1.39) 

 

and Edispersion can be derived from a empirical force field in  DFT-D2 and DFT-D23 methods of 

Grimme [175], DFT with dispersion functional usually gives accurate results for a restricted 

class of compounds. But the accuracy strongly depends on the quality of the force fields, thus it 

cannot be transferable. A fully non-local non-empirical dispersion correction to GGAs was 

proposed as so called vdW-DF functional [176]. However, its original formulation requires large 

computational cost. It was recently improved by using the algorithm of Roman-Perez and Soler 

which transforms the double real space integral to reciprocal space and therefore could largely 

reduce the computational effort [177, 178]. 
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1.4.8 Basis set 

 

To solve the KS equation without any information from the experiments, a set of functions is 

required to create the wavefuction, which is called basis set. There are three types of basis sets, 

plane wave, atomic orbital and atomic spheres which are generally used. 

 

1.4.8.1  Plane Waves 

In this method, the wavefunctions (eigenfunctions of the KS equations) are expanded in a 

complete set of plane waves e
ik.r

 and the external potential of nuclei are replaced by 

pseudopotentials which include effects from core electrons. Such pseudopotentials have to 

satisfy certain conditions. Most widely used pseudopotentials nowadays include norm-

conserving pseudopotentials [179] (NCPPs) and ultrasoft pseudopotentials [180] (USPPs). 

Plane waves have played an important role in the early orthogonalized plane wave (OPW) 

calculations [181-183] and are generalized to modern projector augmented wave (PAW) method 

[184-186]. Because of the simplicity of plane waves and pseudopotentials, computational load is 

significantly reduced in these methods and therefore it is most suitable for calculations of large 

systems. However, results from plane wave methods using pseudopotentials are usually less 

accurate than results from all-electron full potential methods. And great care should be taken 

when one generates pseudopotential and it should be tested to match results from all-electron 

calculations. The most widely used codes using plane waves and pseudopotentials are plane 

wave self-consistent field (now known as Quantum ESPRESSO) [187] (PWscf), ABINIT [188], 

VASP [189] (which uses PAW method too). 

 

Plane wave basis set is the most natural solution for periodic crystals where they provide 

good understanding and simple algorithms for practical calculations. Its main disadvantage is 

that a huge number of plane waves might be required to describe the dramatic change of the 

wavefunction (for instance, the wavefunction from the deep core electrons to valence electrons). 

There are several ways to overcome this problem - the LAPW method, Projector Augmented 

Wave method, pseudopotential method. Plane wave is perfect fit for periodic boundary 
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conditions. Molecules and surfaces can be treated in an approximate model by inserting vacuum 

layers. However, a very large number of plane waves will be spent. Therefore, a more 

economical way is to consider another type of basis set based on localized orbitals. 

 

1.4.8.2 Localized Atomic(-like) Orbitals 

 

The most well-known methods in this category are linear combination of atomic orbitals 

(LCAO) [190], also called tight-binding (TB) [190] and full potential non-orthogonal local 

orbital (FPLO) [191]. The basic idea of these methods is to use atomic orbitals as the basis set to 

expand the one-electron wavefunction in KS equations. LCAO defines atom centred orbitals as a 

product of the angular (Ylm) and radial (R(r)) parts: 

 

)()( rRYr lmi =ψ         (1.40) 

where the radial part is a linear combination of Slater-type functions or Gaussian-type functions. 

Slater oribtals are more accurate but requires much more computational cost. Gaussian functions 

are usually preferred. 

 

1.4.8.3 Atomic Sphere Methods 

Methods in the class can be considered as a combination of plane wave method and localized 

atomic orbitals. It uses localized atomic orbital presentation near the nuclei and plane waves in 

the interstitial region. The most widely used methods are (full potential) linear muffin-tin 

orbital[192] (LMTO) as implemented in LMTART[193] by Savrasov and (full potential) linear 

augment plane wave[193, 194] (LAPW) as implemented in WIEN2K[195]. 
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1.4.9 Pseudopotentials 
 

A very important idea for efficient implementation of DFT is the pseudopotential. In 

practice, electrons are usually separated into core and valence electrons. The core electrons are 

usually chemically inert, and do not contribute to bonding. There is no need to treat them 

explicitly. Therefore, pseudopotential can be constructed to freeze the core electrons while only 

consider the chemically active valence electrons. A good pseudopotential should satisfy the 

following rules: 

1) The pseudo wave functions (? ���r)) should be identical to the all-electron wavefunctions 

(? o�  (r)) outside the cut-off radius (rc), as shown in Fig.1.4. 

 ? o�  (r) = ? ���r) ,  r > rc       (1.41) 

2) The eigenvalues should be conserved. 

 

 εO o�   �  εO ��         (1.42) 

3) The total charge of each pseudo wave function should be equal the charge of the all-electron 

wave function. 

 

S |? o����|%�� dr = S |? �����|%�� dr     (1.43) 

 

4) The scattering properties of the  pseudopotential should be conserved. 

 

 zz� ln@? o����B�R�����    = 
zz� ln@? �����B �R�����    (1.44) 

 

 

According norm-conserving condition, the pseudopotential Vi(r) can be split into a local part, 

long-ranged and behaving like -Ze
2
/r for  r → ∞  , and  a short-ranged semi local term: 

 

 

V
PP 

=  Vloc + VSL 
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where Vloc(r) is a radial function, and VSL (r) the semi-local part is the deviation from the all-

electron potential inside the core region, The pseudopotential reproduces the true potential 

outside the core region, but is much smoother inside the core. The oscillations of the electron 

wave function inside the core region are eliminated by the pseudopotential. This is a great 

advantage for numerical calculations. A further approximation, the ultrasoft pseudo-potential 

[180], uses more than one projector for each momentum, and further smoothes the electron wave 

function. The projector augmented wave (PAW) method [196] is a general approach for solution 

of the electronic structure. The PAW approach introduces projectors and auxiliary localized 

functions, like ultrasoft type method. However, it also keeps the full all-electron wavefunction in 

a form similar to the general OPW expression. 

 

 

V
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Fig. 1.4 Comparison of a wave function in the Coulomb potential of the nucleus (red) to the one 

in the pseudopotential  
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1.5 Lattice Dynamics and Phonons 

 

Specific heat, thermal conductivity, thermal expansion, sound velocity etc. are related to the 

vibrations of atoms in solids, So the study of lattice vibrations plays an important role in 

condensed matter physics [197,198].Vibrational frequencies are routinely and accurately 

measured mainly using infrared and Raman spectroscopy, as well as inelastic neutron scattering. 

The lattice vibration spectra basically relate the energy of the thermal motions of the atoms to the 

corresponding wavelength. The collective motions of atoms in solids forming travelling waves 

are quantized in terms of ‘‘phonons” and these are determined from the knowledge of the 

interatomic interactions. The resulting vibrational spectra are a sensitive probe of the local 

bonding and chemical structure. Further, very low-frequency modes can be associated with the  

phase transformations, and imaginary frequencies provide an indication of the dynamical 

instability of the structure. So lattice dynamics (phonons) play a dominant role in deciding the 

structural stability of the materials. Accurate calculations of frequencies and displacement 

patterns can thus yield a very good of information on the atomic and electronic structure of 

materials. Forces in DFT can thus be calculated from the knowledge of the electron charge-

density. In general, the Inter atomic force constants can be calculated as finite differences of 

Hellmann–Feynman forces for small finite displacements of atoms around the equilibrium 

positions. For finite systems (molecules, clusters) this technique is straightforward, but it may 

also be used in other technique in solid state physics (frozen phonon) [199]. An alternative 

technique is the direct calculation of inter atomic force constants (IFC) using density-functional 

perturbation theory (DFPT) [200]. Practically, one can build one super cell to give phonons at all 

wave vectors. The results are limited to small super cells.  For instance, one only needs a 

primitive cell to calculate the gamma-point. If we want the entire dispersions for all vectors in 

BZ, a more accurate model should be proposed, for instance density functional perturbation 

theory. So in the next section we have given the theoretical overview of DFPT. 
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1.5.1  Density Functional perturbation Theory (DFPT)  

Born-Oppenheimer adiabatic approximation allows one to decouple the vibrational from 

electronic degrees of freedom. lattice dynamical properties of a system are determined by the 

eigen value p eigen function D of the schordinger equation :    

G	 ∑ ħ$%,-  .�/%  0 � C���HD��� � p D���     (1.45) 

 

Where �/ is the coordinate of the lth nucleus, �/ its mass, R ={�/} the set of all the nuclear 

coordinates, and C��� is the ion electron energy of the system , in general C��� is the ground 

state energy of a system of interacting electrons moving in the field of fixed nuclei, whose 

Hamiltonian – which acts onto the electronic variables and depends parametrically upon R-reads  

������ � 	 ∑ ħ$%&�  .�2%  0 � 3%  ∑ 6$7�28�=7�,<�;< 	  ∑ 4-6$|�/8�2|0,� � CQ���    (1.46) 

 

Where �0 is the charge of the Ith nucleus,  e is the electron charge, and CQ��� is the electrostatic  

interactions between different nuclei:   

CQ � 3%  ∑ 4-456$7�/8�970,:0;<         (1.47) 

 

The equilibrium geometry of the system is given by the condition that the forces acting on 

individual nuclei vanish:  
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   �0 � 	 
���� 
�/ � 0     (1.48) 

 

 

Whereas the vibrational frequencies � are determined by the eigenvalues of the Hessian of the 

Born Oppenheimer energy {E(R)}, scaled by the nuclear masses. 

1 

 T�� � 1
�����

�2C���������	�2�= 0      (1.49) 

The calculation of the equilibrium geometry and of the vibrational properties of a system thus 

requires to compute the first and second derivatives of its Born Oppenheimer energy surface. 

In the Born Oppenheimer approximation, nuclear coordinates act as parameters in the 

electronic Hamiltonian by eq 1.46 .The force acting on the I
th

 nucleus in the electronic ground 

state is thus   

 �0 � 	 
����
�/ � 	 ����� �������/ � �����    (1.50) 

 

Where ���� is the electronic ground state wave function of the Born Oppenheimer Hamiltonian. 

This Hamiltonian depends on R via the electron-ion interaction that is associated with the 

electronic degrees of freedom by the electron charge density. The Hellmann-Feynman theorem 

states in this case that   
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�0 � S P� ��� 
�����
�/ T� 	 
�����
�/       (1.51) 

 

����� �  	  ∑ ���2|�/	�2|�,�         (1.52) 

 

Where ����� is the electron-nucleus interaction, and P���� is the ground state electron 

charge density to the nuclear configuration R. The Hessian of the Born Oppenheimer energy 

surface appearing in eq 1.49 is obtained by differentiating the Hellmann-Feynman forces with 

respect to nuclear coordinates , 
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This equation states that the calculation of Hessian of the Born Oppenheimer energy surface 

requires the calculation of the ground state electron charge density P���� as well as of its 

linear response to the distortion of the nuclear geometry ,. 
�����
�/   

Where ����� is the electron-nucleus interaction, and  P���� is the ground state electron 

charge density to the nuclear configuration R. The Hessian of the Born Oppenheimer energy 

surface appearing in eq 1.49 is obtained by differentiating the Hellmann-Feynman forces with 

respect to nuclear coordinates. The Hessian matrix is usually termed as interatomic force 

constants. 

 

 

 

 



45 

 

1.5.2 Quasi-Harmonic Approximations 
 

The ab-initio electronic structure calculations can be carried out using two approaches one in 

which the ions are assumed to be fixed rigidly at their location (adiabatic approximation) other in 

which the corrections due to atomic vibrations are also taken into account. The calculations 

limited to the rigid periodic arrangement of atoms (ions) in the solid are termed as static lattice 

calculations. Under this approximation the interaction energy between the ions depends on their 

separation or equivalently on atomic position. The interactions are categorised as (i) long-range 

Coulomb interactions and (ii) short-range interactions. However, in lattice dynamic  calculations, 

using quasi harmonic approximation (QHA), one proceeds a step further by calculating the 

phonon spectra from the knowledge of forces and structures obtained from static lattice model 

calculations. From the classical statistical mechanics, it is known that the heat capacity of a 

system of harmonic oscillators does not depend on temperature or on its spectrum. Debye theory 

of heat capacity of solids is one of the landmarks of modern solid-state physics. This model 

naturally explains the low temperature specific heat of solids in terms of the statistical mechanics 

of an ensemble of harmonic oscillators, which can in turn be pictorially described as a gas of non 

interacting quasi-particles obeying the Bose-Einstein statistics. In the Born-Oppenheimer 

approximation, the vibrational properties of solids are determined by their electronic structure 

through the dependence of the ground-state energy on the positional coordinates of the atomic 

nuclei. At low temperature the amplitudes of atomic vibrations are much smaller than  

interatomic distances, and one can assume that the dependence of the ground-state energy on the 

deviation from equilibrium of the atomic positions is quadratic. In this, so called harmonic, 

approximation (HA) energy differences can be calculated from electronic-structure theory. In the 

HA, vibrational frequencies do not depend on interatomic distances, so that the vibrational 

contribution to the crystal internal energy does not depend on volume. As a consequence, 

constant pressure (CP) and constant-volume specific heats (Cv) coincide in this approximation, 

and the equilibrium volume of a crystal does not depend on temperature. Prediction of an infinite 

thermal conductivity, infinite phonon lifetimes, and the independence of vibrational spectra on 

temperature, are the other shortcomings of the HA. A proper account of anharmonic effects on 

the static and dynamical properties of materials would require the calculation of phonon-phonon 

interaction coefficients for all modes in the BZ. The simplest generalization of the HA, which 
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corrects for most of the above mentioned deficiencies, while not requiring any explicit 

calculation of anharmonic interaction coefficients, is the QHA. As a practical application the 

constant-volume specific heat, the entropy, the phonon contributions to internal energy and 

Helmholtz free energy, and the atomic temperature factors of any crystal can be calculated as a 

function of temperature from ab initio phonon band structures. 

 

For a lattice, the Helmholtz free energy F in the QHA is, 

 

��V, �� � u��� 	 V �V, ��       (1.54) 

where U is the internal lattice energy, T is the absolute temperature, V is the volume and S is the 

entropy due to the vibrational degrees of freedom. This entropy term is from lattice vibration. 
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Where ωj(q,V) is the frequency of jth phonon band at the point q in the Brillouin zone

 

 

The Gibbs free energy of the system is a function of temperature and pressure. 

 ��V, �� � ¡�PW��V, �� � ��X 
 

Since volume dependencies of energies in electronic and phonon structures are different, 

volume giving the minimum value of the energy function in the square brackets shifts from the 

value calculated only from electronic structure at 0 K. The increase in temperature can change 

the volume dependence of phonon free energy, and then the equilibrium volume. This is 

considered as thermal expansion under QHA. The volume thermal expansion coefficient α(T) 

from V(T) is then obtained using expression: 
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V0 is the equilibrium volume at 0 K. Further, the zero pressure bulk modulus at a given 

temperature is obtained by finding the [V(∂ 
2
F/∂V

2
)] at that temperature. Repeating this process 

for several temperatures yielded the zero pressure bulk modulus B0(T) as a function of 

temperature 

 

 

1.6 Computational codes used 

 

In this thesis different codes such as Quantum Espresso [187], VASP [189,201] and 

WIEN2K [195,202] have been used in the present study. Qunatum Espresso and VASP are plane 

wave codes while WIEN2K which could support all-electron calculation. Both Quantum 

Espresso and VASP use pseudopotentials for calculation. Quantum Espresso is available under 

the GNU General Public License (GPL), often referred to as a “Copyleft”. Under this licensing 

scheme [203], the user receives four freedoms: (i) unlimited use of the package for any purpose; 

(ii) the freedom to study the sources and modify them to match his/her needs; (iii) the freedom to 

copy the package and (iv) freedom to distribute modified versions. The license also protects 

these four freedoms by requiring that they must come with any transmitted copy of the program. 

These intentionally constructed to let everybody benefit from and contribute to the project. Most 

of the calculations reported in this thesis have been performed using Quantum Espresso code 

whose main features are given below: 

 

(i) Quantum Espresso is based on a plane-wave expansion of the electronic wavefunctions, 

with a periodic representation of the system in a box (primitive unit cell) under periodic 

boundary conditions. 

 

(ii) It uses the standard Kohn-Sham self-consistent density functional method in the local 

density (LDA) or generalized gradient (GGA) approximations. 
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(iii) It uses both norm-conserving and Ultra-soft pseudopotentials. 

 

(iv) It calculates the dynamical matrices at any point in the Brillouin zone, by Fourier 

interpolation of the dynamical matrices provided in the data-base, and thus the 

corresponding eigenvectors and eigenvalues, the latter forming the phonon band structure. 

 

(v) It produce thermodynamical properties (such as free energy, heat capacity and entropy), in 

the quasi-harmonic approximation, obtained by the integration of the phonon degrees of 

freedom over the Brillouin zone. 

 

(vi) It computes the forces and stresses, using Hellmann Feynman theorem or the stress theorem 

within DFT in all the cases in which the total energy can be computed, except in the spin-

orbit case. 

 

 

In some of the calculations within this thesis, structure relaxations are performed using DFT 

within PBE functional in the framework of PAW method as implemented in the VASP code. 

And the conjugate-gradient algorithm are mostly used (IBRION = 2) during structure relaxation 

stage. 

 

 

1.7  Crystal structure prediction and evolutionary algorithm 

 

In some cases where it is not possible to solve crystal structure from experimental data, 

theoretical structure prediction becomes crucially important. For example, when experimental 

data are of poor quality for structure refinement (defective or small samples, especially at high 

pressures and temperatures) theory provides the last hope to this. Apart from this theory is the 

only way of investigating matter at extreme conditions which are inaccessible with today’s 

experimental techniques. Under equilibrium conditions, most materials form crystalline states, 

which can possess long range order and symmetry. Understanding the structure of materials is 
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fundamental to being able to understand their physical properties. However, the prediction of 

crystal structure used to be a long-term challenge in physical and chemical science. Back in 

1988, Maddox summarized this problem as it is general impossible to predict the structure of 

even the simplest crystalline solids from knowledge of their chemical composition [204]. After 

some years, programs started developed that attempted to do just this and, in 1994, Gavezzotti 

[205] addressed the fundamental questions about the predictive capability of crystal structure. 

The answer was again safely concluded as "No". This happens because, for each chemical 

composition, there are an infinite number of possible atomic arrangements that can, in principle, 

exist, which correspond to all possible local minima of the free energy surface. Crystal structure 

prediction requires us to find the global minimum on the free-energy landscape for system of a 

given compositions. Each point on this  free energy landscape represents a crystal structure with 

certain atomic positions and lattice vectors. Evolutionary algorithms is one step to this to find 

stable and metastable structures.The name of the approach - evolutionary - indicates that it uses 

mechanisms similar to biological evolution: reproduction, mutation, recombination, and 

selection. One of the features of evolutionary algorithms, which is very helpful for the crystal 

structure prediction problem, is their capability to find metastable states – good local minima on 

the energy landscape that are easily separated from the global minimum. Naturally, the free 

energy would be the relevant fitness function for a crystal structure prediction algorithm.  

 

The basic steps of the evolutionary technique (see Figure 1.5) are as follows: The 

evolutionary approach starts by choosing the adequate representation for the problem: a one-to-

one correspondence between the point in the search space and a set of numbers. Initialization of 

the first generation, that is, a set of points in the search space that satisfy the problem constrains.  
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Fig. 1.5 Illustration of the evolutionary algorithm for crystal structure prediction. 
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1) The distance between any two atoms is smaller than threshold determined by user 

(e.g.,No bonds should not be shorter than 0.5 A˚). One can use different thresholds for different 

pair of atom types separately; for example, the sum of correspondent atom radii. 

 

2) One of the lattice vectors is too small. User can determine the threshold value; for 

example, it can be set to the diameter of the largest atom present in the system. 

 

3) The angle between two lattice vectors is too small or the angle between the lattice 

vector and the diagonal of the parallelogram formed by other two lattice vectors is too small, 

One can always choose the lattice vectors in such a way that the angle between any of them is in 

the (60
◦
, 120

◦
) range. 

 

Selection of the ‘‘best’’ members from the current generation as parents from which the 

algorithm creates new points (offspring) in the search space by applying specially designed 

variation operators to them. Evaluation of the best member (individual) of each population 

(group of individual) and selecting best member for new generation of the population continues 

till some halting criteria (when the same structure repeated many times) is achieved. 

 

1.7.1 Variation Operators  

 

The choice of variation operators plays an important role in the evolutionary process. 

Mutation operators usually randomly distort the numbers from the set that represents the 

solution, while heredity operators combine different parts of these sets from different parent 

solutions into one child solution. There are two different types of mutation operators – lattice 

mutation and atom permutation. Lattice mutation applies strain matrix to the lattice vectors: 

Lattice mutation is shown in Figure 1.6. The position of atoms (their fractional coordinates 

within the lattice) remains unchanged. Lattice mutation operator increases the diversity of the 

lattices in the population. Atom permutation operator swaps chemical identities of atoms in 

randomly selected pairs, see Figure 1.7, while lattice remains unchanged. Heredity operators are 

vital part of any evolutionary algorithm. Heredity operators are responsible for utilizing and 

refining the information about the system that we gather during the execution of the algorithm. 
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Since properties of the crystal are determined by spatial arrangement of atoms in the unit cell, the 

most physically meaningful way to build a heredity operator is to conserve the information from 

parents by using spatially coherent pieces (spatial heredity). To create a child from two parents, 

the algorithm first randomly chooses the lattice vector and a point on that vector. Then the unit 

cells of the parent structures are cut by the plane parallel to other vectors that goes through this 

point. Planar slices are matched, see Figure 1.8, and the number of atoms of each kind is 

adjusted. For big cells, it is possible to use more than two structures as parents and combine 

slices from all of them into a single child structure. Altogether three variation operators 

described above explore the search space .while preserving and refining the good spatial features 

through generations. It can be visualized by comparing the best structures from different 

generations. 

 

 
 

Fig. 1.6 Heredity operator combines spatial slices from different parent structures to form an 

offspring structure.  
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Fig. 1.7 Permutation operator produces from parent structure to permuted structure by swapping 

atom pairs. 

 

 

Fig.1.8 Mutation operator produces from parent structure to muted structure by using strains to 

lattice vectors. 

 

1.8  Summary 
 

In this chapter a brief description of the work to be presented in the subsequent chapters of the 

thesis is provided. This description is followed by an overview of the available experimental techniques 

for carrying out high pressure experiments and various diagnostic techniques used to understand the 

response of the material to high pressures. Also, the basic principle of the modern electronic band 

structure theoretical methods used for analyzing the high pressure behaviour of materials has been 

introduced. 
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Chapter 2 
 

 

Structural Stability Analysis of CdO under High Pressure 

 

 

2.1 Introduction 
 

The Transition metal oxides (TMO) are systems with large variability of structures and 

chemical bonding, which brings about different magnetic electrical and optical properties. The 

high quality electrical and optical properties of these compounds are useful in designing of new 

memories smaller transistors and smart sensors in different semiconductor industries. These 

technological applications have attracted the interest on the high pressure behavior of these 

materials. Cadmium oxide (CdO) is an attractive semiconductor material. It has many industrial 

applications such as in the production of solar cells, liquid-crystal displays, electro-chromic 

devices, light-emitting diodes, etc.[1-5]. So, in order to fully exploit this semiconductor material, 

it is necessary to obtain a good understanding of the thermo physical properties of CdO, and in 

particular, its structural and thermodynamic properties under high pressure [6-13].  

 

At ambient pressure CdO differs from the other IIB–VIA semiconductors and it crystallizes 

in the NaCl-type (B1) phase rather than zinc blende (B3) or wurtzite (B4) type structures. In 

spite of structural differences, the electronic properties such as band structure and optical band 

gaps etc of CdO are closely related to those of the other IIB–VIA semiconductors. With the rapid 

development of high-pressure techniques, extensive experimental work has been done to address 

the high-pressure behaviour of CdO in the past few years [6-12]. In first principles theoretical 

investigations using full potential linearized augmented plane wave (FPLAPW) method as 

implemented in the WIEN97 code, Moreno and Takeuchi [6] have predicted rocksalt type (B1) 

to CsCl (B2) structural phase transition in CdO at ~ 89GPa. This prediction was confirmed by 

Liu et al. [7] in a high pressure x-ray diffraction measurements carried out in a diamond anvil 

cell, where the B1 phase of CdO was observed to transforms to B2 structure at ~90.6GPa. 

Subsequently, in recent past, some other theoretical studies on structural stability analysis of 

CdO under high pressure have also been published. [8–12]. For example, in an ab-initio study 
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carried out using plane wave pseudo potential method implemented in CASTEP code, Penga et 

al. [8] have examined the structural stability and calculated the pressure dependent elastic 

constants of CdO in B1 phase. Their study showed that the B1 phase undergoes transition to B2 

phase at ~83GPa. Durandurdu [9] has performed molecular dynamics (MD) simulations and 

suggested the B1 to B2 structural phase transition in CdO around 100GPa. Subsequently, Feng et 

al. [10] suggested this phase transition to occur around ~86 GPa. Further, these authors, on the 

basis of their electronic band structure calculation suggested that both the B1 and B2 phases are 

metallic in nature, which is in contrast with the experimental observations [11]. Apart from the 

high pressure phase transition studies, the work on the determination of the thermodynamic 

properties, such as bulk modulus, shear elastic moduli, sound speed, and Debye temperature as a 

function of pressure up to 160GPa has also been reported in past [12].  

 

All the above mentioned theoretical studies, except the MD simulations by Durandurdu [9], 

address issues related to structural stability of CdO on the basis of static lattice calculations, 

however, it is well established that the lattice dynamic stability plays a crucial role in stabilizing 

the different structures. Hence it is essential to test the lattice dynamic stability of both the B1 

and B2 phases as a function of pressure. We have performed a detailed ab-intio band structure 

calculation under hydrostatic compressions on these two phases of CdO. The investigations 

included static as well as lattice dynamical calculation. Results of these calculations are 

presented in this chapter.  

 

 

2.2 Methodology Employed for Present Calculations 

 

 

All the calculations have been performed employing plane wave pseudo potential method 

within the framework of Density Functional Theory (DFT) [13] implemented in QUANTUM 

ESPRESSO package [14]. The structural and elastic stability analysis has been carried out from 

static lattice calculations. The ab-initio total energy calculations required for structural stability 

analysis have been performed within both generalized gradient approximation (GGA) [15] and 

local density approximation (LDA) [16] for the exchange correlation potential. Since the 

pressure for B1 to B2 transition from GGA approximation better matches with the experimental 
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transition pressure, all the further calculations are performed within GGA only. The ultrasoft 

pseudo potential having valence configurations of 4d
10

5s
2
 and 2s

2
2p

4
 has been used for Cd and O 

respectively. For generation of pseudo potential, the cut off radius in Cd are taken to be 2.1 Bohr 

for 4d and 5s orbitals, and 2.5 Bohr for 5p orbitals, whereas these in O are taken to be 1.2 Bohr 

for both 2s and 2p orbitals. Also, non-linear core correction to the exchange-correlation energy 

functional for Cd has been added. For GGA, we have used PW91 [15] potential, however, for 

LDA, the Troullier-Martins [16] norm-conserving pseudo potential has been used for both the 

atoms. Electronic wave functions are expanded in a plane wave basis set (PWs) with energy cut 

off of 60 Ry and charge density is represented in PWs with energy cut off of 600 Ry. Energy 

convergence of 10
-6

 Ry has been met by using the 12x12x12 Monkhorst–Pack (MP)[17] grid of 

k-points in the full Brillouin zone (BZ). The dynamic stability of B1 and B2 phase has been 

analyzed from the phonon spectra determined from self consistent density functional 

perturbation theory (DFPT) using linear response method [18]. For phonon dispersion 

calculations a 4×4×4 q mesh in the first BZ has been used.  

 

 

2.2.1 Determination of Isotherm at 300 K and shock Hugoniot 

 

 

To analyze the structural stability under hydrostatic compression, the total energy for B1and 

B2 phases of CdO at 0 K have been computed as a function of volume up to about 150 GPa. The 

total energy at 0 K is used to generate pressure-volume relation for each phase and which finally 

is utilized to determine the enthalpies of these phases at various pressures. In order to derive the 

pressure-volume relation, a polynomial fit of total energy with volume is used and the pressure is 

determined using the negative volume derivative of total energy dependence on unit cell volume. 

The enthalpies have been compared at various pressures and the stable structure is obtained. 

After examining the structural stability at various pressures, the 0K isotherm of the CdO is 

determined. To determine bulk modulus at zero pressure (B0) and the pressure derivative of bulk 

modulus at zero pressure ( '

0B ), the 0K theoretical P-V data are fitted to the third order Birch-

Murnaghan (B-M) equation of state: 
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where, V and V0 are volume at a compressed state and volume at zero pressure, respectively. The 

B0 and '

0B  are derived from the above fit. The bulk modulus B and its pressure derivative B' at 

different pressures are then determined as follows: 
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In order to derive the 300K isotherm and the temperature dependence of volume (V) and bulk 

modulus (B) of B1 phase, the Helmholtz free energy F (V,T ) has been computed using 

quasiharmonic approximation (QHA) [19-20] as follows:  

 

( ) ),(),()0,(),()(, TVTSTVEVETVFVFTVF phononphononcphononstatic −+=+=
  (2.3) 

 

Here Fphonon (V,T), Ephonon(V,T) and Sphonon(V,T), respectively, are the free energy, internal 

energy and entropy contribution from phonons.  Further, Fphonon (V,T) can be expressed as: 
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With ωn(q,V) is the frequency of nth phonon band at the point q in the Brillouin zone. Here the 

entropy contribution from phonons is defined as: 
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The equilibrium volume and bulk modulus at a given temperature T = T1 is determined by 

calculating the F(V,T1) as a function of volume at that temperature and finding the volume 

corresponding to zero pressure i.e. volume at which the - ∂F/∂V = 0. This process has been 

repeated at various temperatures and equilibrium volumes as a function of temperature i.e. V (T), 

has been determined. The volume thermal expansion coefficient α(T) from V (T) is then obtained 

using expression: 
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V0 is the equilibrium volume at 0 K. The bulk modulus at a given temperature T1 is obtained by 

using the expression: 
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To determine the shock Hugoniot and 300K isotherm the thermal lattice contributions and 

thermal electronic excitation contributions to the total energy has also been calculated and added 

to the 0K energy. The total energy E(V,T) and pressure P(V,T) at given temperature T and 

volume V have been expressed as [21-22]: 
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Here F(V,T) is the Helmholtz free energy at temperature T and volume V with Fc, denoting the 

free energy at 0 K, and FT(V,T) and Fe(V,T) are the free energies corresponding to the thermal 

lattice vibrations and thermal electronic excitations contributions, respectively. 

 

The Eqn. (2.9) can equivalently be put in different way as [28-30] 
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where TE is vibrational energy contribution of the ions including zero point vibration energy and 

Ee thermal electronic contribution to the total energy. γ and γe are the thermal and electronic 

Grüneisen parameters, respectively. The ET is calculated from lattice dynamic calculations using 

QHA. At 300 K the electronic excitation energy contributions are very small (of order of 10
-2

 

mRy/atom) hence to determine the 300 K isotherm these terms in Eqn. (2.8) and (2.10) are 

neglected. The thermal Grüneisen parameter is determined using the definition: 
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Finally the 300 K isotherm is evaluated by substituting the value of γ, TE  at 300 K in Eqn. 

(2.10). 
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The shock Hugoniot is determined using Eqn. (2.8) and (2.10) in conjunction with the 

Rankine–Hugoniot relation (the energy conservation equation for a shock-wave travelling 

through a material) [27-28]: 

 

[ ][ ]VVTVPTVPTVETVE HH −+=− 00,000 )(),(
2

1
),(),(    (2.15) 

 

Here TH is the temperature rise along shock Hugoniot and T0 is the room temperature.  

As temperatures generated during shock compressions are high so contribution of electronic 

excitations also becomes significant. The electronic contributions Ee to total energy is evaluated 

using the expression
2

2

1
TEe β= where β is defined as [29, 30]:  

 

3/)(22

fB ENkπβ =         (2.16) 

 

 

Where )( fEN is the density of states at Fermi level, which is determined at various unit cell 

volume from pseudo potential calculations. The γe required for determination of pressure is 

defined as [29, 30]:  

 

V
e

ln

ln

∂
∂

=
β

γ .         (2.17) 

 

 

Finally, using the expression of energy ),( TVE  and the corresponding pressure ),( TVP  

calculated according to Eqn. (2.8) and (2.10), the Hugoniot point for a particular compression is 

evaluated by finding the temperature (TH) for which the Rankine – Hugoniot relation (Eqn. 2.15) 

is satisfied. Putting the value of TH in the expression of P(V,T) the Hugoniot pressure is 

calculated.  
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2.2.2 Determination of elastic constants and phonon dispersion 

 

For the CdO single crystal having cubic structure, there are only three independent elastic 

constants, 11C , 12C  and 44C  or equivalently three independent elastic moduli namely bulk 

modulus (B) and two shear moduli C'= (C11 - C12)/2 and C44. To determine the shear moduli C' 

and C44 at a particular volume, the total energy is calculated as a function of different kinds of 

distortions and the shear elastic moduli are then calculated from the second order derivative of 

the total energy with respect to strain ei (with i= 1to 6) as described below: 

Total energy of the strained lattice is related to the deformation tensor by the following 

relation [31]:  

 

( ) ( ) ∑∑+=
i j

jiijcc eeCVVEVE
2

1
0,,ε       (2.18) 

Where ie  are the components of the deformation tensor ε  represented in matrix notation as 

follows: 

 

 

 

           (2.19)  

 

 

 

The total energy variation of the lattice is calculated using volume conserving deformation 

[30, 32]. The volume conserving deformations used for the calculations of the shear elastic 

moduli C' and C44, respectively are (in matrix notation): 

 

 

                   and        (2.20) 
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When these two deformation matrices (Eqn. 2.20) are used in Eqn. (2.18), the relation 

between the total energies of the strained lattice and the elastic constants becomes: 

 

( ) ( ) )()(0,, 42

1211 eOeCCVVEVEc +−+=ε      (2.21) 

 

( ) ( ) )(20,, 42

44 eOeVCVEVEc ++=ε      (2.22) 

 

At each unit cell volume V, the total energy ( )ε,VEc  
of the strained lattice is computed and 

then Eqn. (2.21) and Eqn. (2.22) are used to determine the moduli C11 - C12 and C44. Again, the 

bulk modulus (B) calculated using equation of state (Eqn. 2.2) is related to the C11 and C12 elastic 

constants by the following relation  

 

)2(
3

1
1211 CCB +=

        (2.23) 

 

The independent elastic constants C11 and C12, and C44 are evaluated by solving Eqn. (2.21) 

through Eqn. (2.23). 

 

 

Besides static lattice calculations, the lattice dynamic calculations have also been performed 

using plane wave pseudopotential method as implemented in the Quantum ESPRESSO software 

package [33] and phonon spectra at various pressures have been determined. The lattice 

dynamical calculations have been carried out within the framework of self consistent 

perturbation theory with 4×4×4 q points and 8×8×8 k-mesh used for integration over the 

Brillouin zone do determine phonon dispersion curve. The calculations are carried out within 

GGA and the electronic wave functions are expanded in a plane wave (PW) basis set with energy 

cut off of 60 Ry and charge density is represented in PWs with energy cut off of 600 Ry. 
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2.3 Results and Discussions 

 

 

2.3.1 Structural stability, equation of state and shock Hugoniot 

 

 

In order to determine equation of state, the knowledge of structural stability as a function of 

pressure is necessary. Therefore analysis of structural stability of CdO under hydrostatic 

compression has been carried out as a first step. For this purpose the total energy at 0 K has been 

calculated at various unit cell volumes for the B1, B2 structures. The enthalpy of both the 

structures has been determined from the energy volume data. Also, Gibbs free energy of both B1 

and B2 phases has been determined using the quasiharmonic approximation. Fig.2.1 shows the 

enthalpy (H) of the B2 phase relative to that of the B1 phase as a function of hydrostatic 

pressure. The inset of Fig. 2.1, compares the Gibbs free energy (∆G) of B2 phase relative to B1 

phase at 300 K. As is depicted in the figure, the calculations performed within GGA suggest that 

at 0 K, the B1→ B2 phase transition will occur at a pressure of ~ 87 GPa, however, at 300 K it 

will occur at ~86 GPa as compared to experimental value of ~ 90.6 GPa of Liu et al. [7]. This 

transition within LDA, at 0 K, is found to occur at ~74 GPa, indicating  that the pressure for 

B1→B2 transition determined within GGA agrees better with experiment [7] as well as other 

theoretical studies [6, 8, 10, 12] than that obtained from LDA. So, further calculations have been 

restricted within GGA only. The calculated 300 K isotherm is plotted in Fig. 2.2 along with the 

experimental data [7, 34]. The volume discontinuity of 7% at the transition pressure shows the 

first order nature of this phase transition. Additionally, employing the theoretically determined 

thermal equation of state in conjunction with Rankine Hugoniot relation, the Hugoniot of B1 

phase of CdO has been derived. For this purpose the prescription of Luo et al [39] has been used. 

At each volume, the temperature has been adjusted until the obtained pressure and energy 

satisfied Rankine Hugoniot equation. This yielded Hugoniot in pressure - volume and pressure - 

temperature plane. The Hugoniot curve so obtained is plotted in Fig. 2.3. The shock velocity (D) 

and particle velocity (u) at various volumes could be obtained from the pressure –volume  

Hugoniot curve in conjunction with the mass and momentum conservation equations as 

mentioned in chapter 1. As depicted in Fig 2.3 c the D and u exhibit a linear relationship:  
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suCD b +=         (2.24) 

 

where, the constant Cb. represents the bulk sound velocity. The constant Cb is approximately 

related to the bulk modulus and the s parameter to pressure derivative of the bulk modulus 

through following expressions:  

 

0

0

ρ
B

Cb =          (2.25) 

 

14'

0 −= sB          (2.26) 

The value of Cb and slope (s) determined from linear D – u relation is 3.65 km/s and 1.62, 

respectively.  
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Fig. 2.1 Enthalpy of B2 phase relative to that of B1 phase for CdO at various pressures. The inset 

displays the Gibbs free energy of B2 phase relative to B1 phase at 300 K. 
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In Table 2.1, compares various physical quantities for B1 phase derived from present 

calculations with the experimental data and theoretical values available from other sources [6-10, 

12, 34, 35]. The calculated zero pressure volume, bulk modulus and its pressure derivative at 

zero pressure obtained from GGA calculations agree within 7%, 14% and 5%, respectively with 

experimental values [7, 34, 35]. Further, as depicted in the Table 2.1, for B2 phase the zero 

pressure volume, bulk modulus and its pressure derivative at zero pressure derived from present 

calculations agree with experimental values within 1.7%, 4.6% and 0.2% [35]. The Gruneisen 

parameter (γ) of B1 phase at 300 K is estimated to be ~ 1.79. The value of α,  BT  and CV used 

for this purpose are 4.445×10
-5

/K, 111 GPa and 7.564×10
-23

 J/K/formula unit, respectively, taken 

from present calculations. In Table 2.2 these quantities have been compared with the available 

theoretical and experimental data [36-37].   
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Fig. 2.2 Comparison of theoretical isotherm at 300K of CdO with experimental data of Liu et al. 

and Zhang et al.   



76 

 

0

20

40

60

80

1 00

0 .7 0 .7 5 0 .8 0 .85 0.9 0 .95 1

P
r
e

s
s
u

r
e

 
(
G

P
a

)

V /V
0

0

500

1 000

1 500

2 000

2 500

0 20 40 60 80 100

T
e

m
p

e
r
a

tu
r
e

(
K

)

P res s ur e(G P a)

0

2

4

6

8

0 0 .5 1 1 .5 2

D
(k

m
/s

)

u (km /s)

D = 3.65  +  1 .6 2u

 

Fig. 2.3 Theoretically determined Hugoniot of CdO in B1 phase.  
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Table 2.1: Comparison of theoretical and experimental values of equation of state parameters of 

B1 and B2 phases of CdO at zero pressure. 

 

Properties 

at 

Equilibrium 

Volume 

Present 

Theoretical 

Work 

Theoretical (Other sources) Experimental 

B1 Phase:    

V0 

(Å
3
/formula 

unit) 

26.90, 

27.59(300K) 

27.15[6], 27.28[8], 

27.20[9], 26.96[10] 

27.59[12] 

25.88[7] 

25.89[34] 

26.05[35] 

B0 (GPa) 129, 

111(300K) 

130[6], 125[8], 118[9], 

133.8[10], 125.5[12] 

147[7] 

148[34] 

129[35]  

B0′ 4.59, 4.94(300K) 4.13[6], 4.91[8], 5.23[9], 

4.79[10], 4.90[12] 

4.2[7], 4[34] 

4.71[35] 

B2 Phase:    

V0 

(Å
3
/atom) 

24.87 25.41[6], 25.65[8], 

24.82[9], 25.10[10], 

25.65[12] 

25.3[35] 

B0 (GPa) 134 114[6], 128[8], 141[9], 

134.2[10], 128.1[12] 

169[7] 

128[35]  

B0′ 4.67 4.66[6], 4.92[8], 5.16[9] , 

4.93 [10], 4.97 [12] 

4.66[7] 

4.98[35] 

 

Table 2.2: Thermodynamic properties of CdO for B1 phase at zero pressure.  

 

 

Properties at 

Equilibrium 

Volume 

Present 

Theoretical 

Work   

Theoretical  

(Other sources) 
Experimental 

α(10
-5

/K) 4.445 -- 4.2[36], 3.99[37] 

Cv 

(10
-23

J/K/f. unit) 

7.564 7.987[38] 7.195[36],
 
 

γ  1.79 -- -- 
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Table 2.3: Elastic Constants of CdO for B1 and B2 phases at zero pressure.  
 
Properties at 
Equilibrium 
Volume 

Present 
Theoretical 
Work   

Theoretical  
(Other sources) Experimental 

B1 Phase:    
C11(GPa) 190.3 183.99 [8], 190.9[10]  

184.48[12] 
-- 

C12(GPa) 98.33 96.01[8], 101.94[10] , 
96.05[12] 

-- 

C44 (GPa) 46.13 45.78[8] , 48.06[10]  
45.77[12] 

-- 

θD (K) 273 336[8] , 341[10]  
413[12] , 260[38] 

255±6[40]  

B2 Phase:    

C11(GPa) 303.09 290.21[8] , 285.12[12] -- 

C12(GPa) 48.85 47.53[8], 49.64[12] -- 

C44 (GPa) -25.99 -25.03[8] ,-25.01[12] -- 

 
 
2.3.2 Elastic Properties and activation barrier 
 
 

Table 2.3 compares elastic constants determined theoretically in present work for B1 and 

B2 phases at zero pressure with those reported in other theoretical studies [8, 10, 12]. The C′ = 

(C11-C12)/2 and C44 modulus at zero pressure calculated in the present work are almost equal 

suggesting that CdO in B1 phase is elastically isotropic [A= 2C44/(C11-C12)] at zero pressure. The 

Debye temperature (θD) calculated for B1 phase from elastic constants turns out to be 273 K as 

compared to the experimental value of 255±6 K [40] and theoretical value of 260 K [38] derived 

from calculation using CASTEP code. The value of Debye temperature calculated in present 

work is more close to the experimental value as compared to those reported by other theoretical 

studies [8, 10, 12]. Further, the elastic stability of B1 phase was analyzed by calculating the 

elastic moduli as a function of hydrostatic compression and examining the stability conditions 
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throughout the compression path. Fig.2.4 shows the three independent elastic moduli of CdO in 

B1 phase at various pressures.  No comparison with experiments could be done due to 

unavailability of experimental data. As can be seen from the figure, the bulk modulus and the 

tetragonal shear modulus C′ increase monotonically with increasing pressure, however, the shear 

modulus C44 displays opposite behavior i.e. it decreases monotonically with increasing pressure 

and vanishes at ~126 GPa, in close agreement with theoretical findings of Peng et al.[8] and 

Feng et al.[10]. It may be noted that though C44 in B1 phase decreases monotonically with 

compression, it does not soften completely at the B1 to B2 transition pressure. Also, the 

monotonic increase of C′ and decrease of C44 with increasing pressure indicates that the initially 

elastically isotropic CdO becomes anisotropic under pressure and this anisotropy continues to 

increases with increasing compression. Fig.2.5, displays these quantities for B2 phase of CdO. 

The figure clearly shows that the C44 modulus which is negative (-25.99 GPa) agrees with other 

theoretical values [8, 12] at zero pressure, increases monotonically with increasing pressure and 

acquires positive values beyond 38 GPa. This suggests that the B2 phase will become elastically 

stable above 38 GPa i.e. much before the B1 → B2 transition pressure.  

 

Additionally, the activation barrier between the B1 and B2 structures has been determined at 

various compressions. For this purpose, the total energy calculations at a given compression have 

been carried out on a rhombohedral cell as a function of rhombohedral angel (α). It may be noted 

that the B1 and B2 structures are special cases of rhombohedral cell i.e. for α = 60° the 

rhombohedral cell reduces to B1 structure and for α = 90° it corresponds to B2 structure. Fig. 2.6 

shows the total energy of rhombohedral cell as a function of angle α relative to that for the α = 

60. The figure correctly depicts that at ambient pressure (V/V0 =1.0) the B1 phase is stable 

structure, whereas, the B2 structure is unstable. Upon compression at V/V0 ~ 0.79 the B2 

emerges as a metastable phase and appears as a stable structure at V/V0 ~ 0.71 with 

corresponding pressure 87 GPa. At this pressure both B1 and B2 have same energy and are 

separated by a barrier of height ~ 2 mRy/formula unit. Above this pressure, the B2 phase 

displays the global minima and B1 phase becomes unstable. 
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Fig. 2.4 Theoretically calculated elastic moduli of CdO single crystal in B1 phase as a function 

of pressure. Here B is bulk modulus, C′ =(C11-C12)/2 and C44 are shear moduli. 
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Fig. 2.5 Pressure dependent elastic moduli of CdO in B2 phase. 
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Fig. 2.6 Total energy of rhombohedral cell relative to that of B1 phase as a function of α at 

various compressions. 

 

 

2.3.3 Dynamic stability analysis 

 

The phonon spectrum of a solid is useful to get insight into lattice dynamical stability of the 

material which in turn is related to structural stability of the material.  Additionally, it is useful 

for evaluating various thermodynamic quantities such as specific heat, thermal expansion 

coefficients etc. So the calculations have been extended to examine the dynamic stability of B1 

and B2 phases. For this purpose the phonon dispersion relations and vibrational density of states 

for B1 and B2 phases at various pressures have been calculated. Fig. 2.7 displays phonon 

spectrum and corresponding phonon density of states for B1 phase at zero pressure, 87 GPa 

(transition pressure), 118 GPa and 140 GPa. As expected, the projected phonon density of states 

plotted along with the total density of states in this figure, show that the high frequency 

vibrations are dominated by the O atom due to its relatively lower atomic mass whereas the low 

frequency vibrations are    dominated by    Cd atom    due to its    higher   mass. Additionally, the  
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Fig. 2.7 Theoretically calculated phonon spectra and phonon density of states of CdO in B1 

phase at transition pressure. 
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theoretical transverse optic (TO) phonon frequency of 7.76 THz at zone centre (Γ point) shows 

an excellent agreement with the experimental values of 7.85 THz and 7.95 THz measured in two 

separate Raman experiments.[41,42] However, that for longitudinal optic (LO) mode is 

calculated to be 12.6 THz as compared to the experimental values of 15.83 THz and 14.1 THz 

[29, 30]. The reason for this underestimation in theory might be due to the insufficient splitting 

of TO and LO at zone center resulted by the overestimation of the equilibrium lattice constant. 

As shown in Fig.2.7, the TO, LO and LA phonon branches along Γ- X and L - X- W directions 

become stiffer with increasing compression, however, the TA phonon branches along the same 

directions soften monotonically with increasing pressure, indicating a negative mode Grüneisen 

parameter γj(q)= - ∂lnυj(q) /∂lnV for a particular mode j (here q is wave vector, υ is frequency, 

and V is volume). The continuous softening of TA branch with increasing pressure results in the 

imaginary phonon frequencies along Γ-X and L-X-W directions at pressure around 118 GPa, 

making the B1 phase dynamically unstable near this pressure. This also suggests that the B1 

phase remains dynamically stable even at B1 to B2 transition pressure. In order to find the exact 

pressure at which the B1 phase becomes dynamically unstable, the square of frequency of 

transverse acoustic phonon at X point with pressure has been plotted in Fig. 2.8. Also, plotted is 

the C44 modulus in the same figure. It is clear from the figure that the onset of dynamic 

instability in B1 phase occurs at ~ 116 GPa, however, the pressure at which this phase becomes 

elastically unstable due to complete softening of C44 is 126 GPa. Though the dynamic instability 

is close in pressure with elastic instability (the difference between the pressures for the two 

instabilities is ~ 10 GPa), the phonon instability occurring at points away from the center of the 

BZ and before the elastic instability is indicative of phonon driven B1 → B2 phase transition 

under pressure. The situation is somewhat similar to that found in CaO by Zhang and Kuo [43], 

where authors report the B1 to B2 transition to occur at ~ 67 GPa and TA phonon at X point 

soften completely around 158 GPa as compared to the C44 modulus which vanishes around 180 

GPa. Based on these results the authors conclude that the transition is driven by phonon 

instability.  Further, a near perfect linear relation between υ
2
 and P (Fig. 2.8) further supports this 

argument, consistent with the Landau theory of pressure-induced soft mode phase transitions 

[44].  
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Fig.2.8 The square of the acoustic phonon frequency at X point in the Brilouin zone of B1 phase 

as function of pressure. Also, plotted is the pressure dependent shear elastic modulus C44 

 

The phonon spectra and corresponding density of phonon states at zero pressure and 

transition pressure (87 GPa) for B2 structure is displayed in Fig.2.9. Unlike that for B1 phase, in 

B2 phase at zero pressure itself, the acoustic phonon frequencies in several directions of 

Brillouin zone are imaginary, indicating dynamic instability of this phase at ambient conditions. 

Upon compression these phonon frequencies shift towards positive direction and become real at 

transition point confirming the existence of B2 phase at high pressure which is consistent with 

the experimental results [7]. To determine the exact pressure for onset of dynamical stability of 

B2 phase, we have plotted the frequency of TA phonon at M point in Fig. 2.10. It is clear from 

the figure that the B2 phase emerges as dynamically stable structure at a pressure of ~ 55 GPa 

i.e. much before it gets stabilized energetically. 
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Fig.2.9 Theoretically calculated phonon spectra and phonon density of states of CdO in B2 phase 

at zero pressure and B1 → B2 transition pressure. 

 

 

Fig. 2.10 Pressure dependence of phonon frequency of lowest acoustic branch of CdO at M point 

in B2 phase. The inset displays the square of this frequency as a function of pressure. 
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2.4 Summary  

 

Ab-initio total energy calculations have been performed on the phases B1 and  B2 of CdO as 

a function of hydrostatic compression to examine the structural stability. Apart from this, the 

calculations have been carried out to determine the equation of state and pressure dependent 

elastic constants and lattice dynamic stability of CdO. Various thermophysical parameters have 

been determined from theoretical equation of state and elastic constants.  The structural stability 

analysis suggests that B1 phase of CdO will transform to B2 phase at a pressure of ~ 87 GPa at 

0K, which reduces to 86 GPa at 300 K.  The 300K isotherm determined theoretically after adding 

the thermal lattice energies to the cold energies agrees closely with experimental P-V data. The 

equation of state derived from calculations within GGA agrees better with experimental data 

than that obtained from the LDA approximations. The calculated equilibrium lattice parameter, 

bulk modulus and pressure derivative of bulk modulus at zero pressure derived from theoretical 

equation of state are in good agreement with the experimental findings. Various physical 

quantities such as elastic moduli at ambient pressure, the Debye temperature, the Grüneisen 

parameter, bulk sound speed, the Hugoniot parameter ‘s’ compare well with the available 

experimental data.  

 

The ambient pressure elastic constants C11, C12 and C44 of 168.29 GPa, 76.02 GPa and 46.13 

GPa for the B1 phase of CdO determined in the present work are in reasonable agreement with 

theoretical values reported in different works [8, 10, 12]. With increasing pressure, the C11 and 

C12 increase monotonically, whereas, the C44 decreases and becomes negative around ~126 GPa. 

The elastic anisotropy parameter (A=2C44/(C11-C12)) at zero pressure is found to be ~ 1.00. 

Further, this parameter has been found to increase monotonically with increasing pressure. From 

the lattice dynamic calculation it is confirmed that B1 structure is dynamically stable and its zone 

center phonon frequency agrees with experimental findings, whereas for B2 phase it shows 

imaginary frequency in all directions of reciprocal space. Under compressions TA phonon modes 

at the X point for B1 show softening and seize to zero around ~ 116 GPa. For B2 phase however, 

the phonon frequency  at  the M point accuires positive around ~55GPa. From the above analysis 

of elastic and dynamic stability suggests that pressure induced B1 →B2 transition could be 

driven by phonon softening.   
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Chapter 3 

 

High Pressure Phase Transition in Transition Metal 

Carbides ScC, YC and TaC 

 

 

3.1 Introduction 
 
The extreme hardness, good strength even at elevated temperatures and high melting point 

exhibited by the carbides of transition metals make these materials important scientifically as 

well as technologically [1-6]. For instance, the melting temperature (about 4200 
0
C) of TaC is 

the highest among known materials. Besides this, transition metal carbides are chemically very 

stable and have high corrosion resistance. Due to these characteristics, they find wide 

applications in various industrial applications such as cutting tools, in information storage 

technology for coating of magnetic sheets, high power energy industry and optoelectronics. The 

academic interest on these materials comes due to the existence of mixed bonding (both metallic 

and covalent) which is believed to be responsible for high hardness and high melting points of 

these materials [7-9].The carbides of group IIIB elements (Sc, Y and La) and group VB are 

among some of the transition metal carbides which have been of current interest [10-12]. In 

present chapter the high pressure theoretical investigations carried out in three transition metal 

carbides ScC, YC and TaC will be presented. 

 

The crystal structure adopted by these three carbides at ambient conditions is NaCl type (B1) 

structure. The lattice dynamic simulations of Isaev et al. [11] show that at ambient conditions the 

B1 phase in ScC and YC is dynamically stable. Further, through the static lattice calculations 

employing full potential linearized augmented plane wave (FP-LAPW) method, Soni et al  [12] 

have found that at ambient conditions, this phase is stable elastically also. These theoretical 

findings in ScC and YC are in line with the experimentally observed B1 phase at ambient 

conditions. Recently, Soni et al. [12] through electronic band structure calculations on ScC and 

YC have predicted that the B1 phase of these carbides will transform to CsCl type (B2 phase) 

structure at hydrostatic pressure of ~ 127 GPa and 80 GPa, respectively. But these predictions 
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were lacking the support of lattice dynamic stability test as these authors have not performed 

lattice dynamic calculations. 

 

In TaC, various experimental as well as theoretical investigations pertaining to determination 

of elastic properties, understanding the lattice dynamics and the equation of state of this material 

have been reported in past [13-19]. For instance, Jun and Shaffer [13] using sonic resonance 

technique have measured the elastic constants of TaC in B1 phase as a function of temperature 

up to 1500K. Subsequent to this, Dodd et al. [14] have performed the measurements of electrical 

resistivity and elastic properties as a function of temperature up to 1300 K using four point probe 

dc technique and ultrasonic technique, respectively. Additionally, these authors have measured 

the pressure dependence of longitudinal and shear stiffness up to maximum pressure of ~ 20GPa 

and reported that this material exhibits strong atomic bonding and offers high resistance to shear 

deformations. In yet another experimental study, Torre et al. [15] have determined the elastic 

constants of TaC by performing ultrasonic measurements on a (100) cut single crystal. Further, 

these authors have calculated the elastic constants through the model calculations also and 

reported that the theoretical values agree with the experimental data within ~ 8%. Apart from 

studies related to elastic properties, the phonon spectra measurements at room temperature and at 

the low temperature of ~ 4.2 K have also been reported in past [16, 17]. Smith and Glaser, 

employing inelastic neutron scattering, have measured the phonon dispersion curves of TaC 

along [001] and [110] directions of Brillouin zone in B1 phase. Subsequent to this Smith [14] has 

experimentally demonstrated the anomaly in transverse acoustic (TA) branch in the [110] 

direction, supporting the prediction by Weber et al. [18]. Apart from these elastic and lattice 

dynamic studies at room pressure, the experimental work to understand high pressure behavior 

and determine the equation of state of TaC has also been reported by Liermann et al. [19]. In this 

work authors have performed high pressure angle dispersive x-ray diffraction measurements on 

TaC sample compressed statically in diamond anvil cell (DAC) and shown that the B1 phase 

remains stable up to ~ 76 GPa (the maximum pressure achieved in the experiment). 

 

In theoretical front most of the studies are on the elastic and lattice dynamic stabilities of B1 

phase of TaC at ambient pressure [20-23]. In first principle plane wave pseudopotential method 

based calculations Peng et al. [24] have reported the equation of state and elastic properties of 
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B1 phase of TaC up to ~ 60 GPa.  Additionally, these authors have investigated pressure –

temperature behavior of bulk modulus and thermal expansion up to 60 GPa and ~ 1500K. In 

recent past, Srivastava et al. [25] on the basis of first principles static lattice calculations 

performed using pseudopotential method have predicted the B1 to B2 structural phase transition 

in TaC at a pressure of ~ 640 GPa. Again in this material too, the lattice dynamic stability under 

pressure remained to be investigated. 

 

This chapter of the thesis presents a detailed theoretical investigation carried out on ScC, YC 

and TaC under high pressure. The high pressure work includes the examination of structural 

satiability, elastic stability and dynamic stability of ScC, YC and TaC under pressure. For this 

purpose the enthalpies of plausible structures has been calculated as a function of pressure and 

compared. The plausible structures for ScC and YC have been chosen to be B1, Pmmn and B2 

phases. For TaC however, the B1, B2, zincblende type (B3), wurtzite type (B4) and NiAs type 

(B8) structures have been considered as candidate structures. In TaC, the Pmmn structure 

reduces to B1 phase at lower pressures and to B2 phase at pressures  ≥ the B1 to B2 transition 

pressure. The 0 K isotherms have been determined from the theoretically calculated total 

energies and converted to 300 K isotherm after adding finite temperature contributions. The 

elastic stability has been examined by evaluating the single crystal elastic constants as a function 

of pressure using energy strain method. The lattice dynamic stability has been analyzed by 

calculating the phonon spectra at different pressures.  

 

3.2 Methodology Employed for Present Calculations 

 

 

3.2.1 Calculation details for structural and lattice dynamic stability analysis  

 

To analyze the structural stability of ScC and YC, theoretical investigations have been 

performed on three phases namely B1, Pmmn and B2, whereas for TaC the B1, B2, B3, B4 and 

B8 structures have been examined. The detailed analysis of structural stability included both the 

static lattice calculations and lattice dynamic calculations. All the calculations have been 

performed employing plane wave pseudopotential method within the framework of Density 

Functional Theory (DFT) [26] implemented in Quantum ESPRESSO package [27]. The total 
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energy of B1, Pmmn and B2 phases has been calculated as a function of hydrostatic compression 

within the generalized gradient approximation (GGA) [28] for the exchange correlation potential. 

The ultrasoft pseudopotential having valence configurations of 3s
2
3p

6
4s

2
3d

1
 for Sc, 4s

2
4p

6
4d

1
5s

2
 

for Y, 5s
2
5p

6
5d

3
6s

2
 for Ta and 2s

2
2p

2
 for C has been used. In Sc, the cut off radius chosen for 

generating the pseudopotential is 1.8 Bohr for 3s and 4s, 2.2 Bohr for 3p and 2.4 for 3d orbitals, 

whereas that in Y is taken as 1.8 Bohr for 4s and 5s, 2.0 Bohr for 4p, and 2.2 for 4d orbitals. In 

Ta, the cut off radius chosen for generating the pseudopotential is 2.4 Bohr for 5p and, 2.2 Bohr 

for 5s ,6s and 5d orbitals.  For C the cut off radius is taken to be 1.1 Bohr for both 2s and 2p 

orbitals. For Sc, Y and Ta the non-linear core correction to the exchange-correlation energy 

functional has also been added. For GGA, the PW91 (ref 28) potential has been used for both the 

atoms. Electronic wave functions have been expanded in a plane wave basis set (PWs) with 

energy cut off of 60 Ry and charge density is represented in PWs with energy cut off of 600 Ry. 

In ScC and Y, the energy convergence of 10
-6

 Ry has been met by using the 12x12x12, 9x6x9 

and 16x16x16 Monkhorst–Pack (MP)[29] grid of k-points in the full Brillouin zone (BZ) of B1, 

Pmmn and B2 structures. Whereas in TaC this criteria is met by using the 12x12x12, 16x16x16, 

11x11x11, 9x9x6 and 11x11x9 Monkhorst–Pack (MP) [29] grid of k-points in the full Brillouin 

zone (BZ) for B1,B2,B3,B4 and B8 structures,  respectively. 

 

The dynamic stability of different phases in ScC, YC and TaC has been analyzed from the 

phonon spectra determined using self consistent density functional perturbation theory within 

linear response approximation [30].
 
For phonon dispersion calculations a 4×4×4, 3×2×3 and 

4×4×4 q mesh in the first BZ of B1, Pmmn and B2 structure has been used for ScC and YC. 

Similarly, for TaC, the 4×4×4 q mesh have been used for both the B1 and B2 structures. In TaC, 

only B1 and B2 structures have been analyzed for lattice dynamic stability as static lattice 

calculations predicted only B1 to B2 transition under pressure. 

 

3.2.2 Details of structures used for analysis  

 

In ScC and YC, to analyze the structural stability under hydrostatic compression, the total 

energy for B1, Pmmn and B2 phases at 0 K have been computed as a function of volume. In the 

Pmmn structure which is a primitive orthorhombic cell, the atomic species Sc or Y is located at 



93 

 

2a (0 0 z1, ½ ½ -z1) and C is located at 2b (0 ½ z2, ½ 0 –z2) (international table of 

Crystallography, Vol. 2). It may be noted that the Pmmn structure is as a distorted B1 phase 

(Fig.3.1) which for b/a =√2, c/a =1 and z1=z2=1/4 becomes identical to B1 phase. In other words, 

the B1 and Pmmn structure are related by group-subgroup relation. Further, if axial ratios and 

internal parameters of Pmmn cell are changed such that b/a =1, z2=0.0, it represents a primitive 

tetragonal structure with space group P4/nmm and if b/a =√2, c/a =1, z1=0.5, z2=0 Pmmn 

structure reduces to B2 structure. In the calculations, both the axial ratios (c/a and b/a) and 

internal parameters z1 and z2 of Pmmn structure have been optimized at all volumes. The 

optimum c/a, b/a, z1 and z2 at a given volume is the one for which the total energy is minimum.  

Pmmn
A:   Sc or Y

B:   C

a

b

c

B1 B2

at

ct

bt

a

b

c

ac

 

 

Fig. 3.1 The relation between the Pmmn and B1 structure has been displayed. The Pmmn 

structure (1×1×2 supercell shown in left figure) has Sc(Y) atom located at 2a (0 0 z1, ½ ½ -z1) 

and C atom located at 2b (0 ½ z2, ½ 0 –z2). The big and small filled circles correspond to Sc (Y) 

and C atom, respectively. The atoms labeled as 1, 2 and 3 represent the atoms lying on front, 

middle and back planes normal to b axis of Pmmn cell. The arrows display the directions of 

atomic movement required to convert the Pmmn cell into B1 structure. The right side figure 

shows the B1 structure (the cell bounded by thick lines) represented as bct cell with the b/a and 

c/a ratio is √2 and 1, and z1 = z2 = ¼. 
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For TaC the calculations have been done in five structures where B1, B2 and B3 cubic 

phases and B4, B8 are hexagonal phases.  

 

Using the total energy calculated at various volumes, the 0 K isotherms has been derived and 

enthalpies have been calculated for each phase. The structural stability as a function of 

hydrostatic compression has then been then analyzed by comparing the total enthalpies (H) of 

different phases as a function of pressure. The 0 K isotherms have been finally converted to 300 

K isotherm by adding the thermal corrections. Further the zero pressure bulk modulus (B0) and 

its pressure derivative at zero pressure (B0′) are obtained by fitting the isotherm so obtained to 

the third order Birch-Murnaghan equation of state as described in section 2.2.1 of chapter 2.  

 

Further, the elastic constants of different phases phase in ScC, YC and TaC have been 

determined as a function of hydrostatic compression following the procedure described in the 

chapter 2 in section 2.1. 

 

3.3 Results and Discussions  

 

3.3.1 Structural stability and equation of state of ScC and YC 

 

In order to analyze the structural stability of ScC and YC the enthalpies of B1, Pmmn and B2 

structures have been calculated and compared as a function of pressure. In case of Pmmn phase, 

at each compression, optimization of both the axial ratios (c/a and b/a) and the z1, z2 have been 

performed and total energy of the optimized Pmmn phase as a function of volume is determined. 

This energy is then used to generate P-V data for Pmmn phase, which finally is utilized to 

determine the enthalpy of this phase at various pressures.  

 

In Fig.3.2, the optimized axial ratios and z1 and z2 parameters of Pmmn structure of ScC 

and YC is plotted as a function of pressure. As is obvious from the figure, the optimum value of 

c/a and b/a ratio at zero pressure are 1.0 and √2, respectively and remain unchanged up to 75 

GPa for ScC and up to ≤ 25 GPa for YC. Upon further compression, these ratios first decrease 

rapidly and achieve a value of ~ 0.67 and ~ 0.99, respectively at ~ 100 GPa for ScC and ~ 0.73 
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and ~ 0.98, respectively for YC at ~ 70 GPa. Thereafter, for both the materials these ratios show 

very slow variation with pressure and tend towards the values corresponding to that of primitive 

tetragonal (P4/nmm) structure. The optimized values of z1 and z2 are found to be identical and 

fixed at ¼ up to the pressure of 75 GPa for ScC and up to 25 GPa for YC. At still higher 

pressures, for both the material, these parameters start differing from each other and display 

opposite trend with increasing pressures i.e. z1 increases whereas z2 decreases with increasing 

pressure. Again up to ~ 100 GPa in ScC and up to ~ 70 GPa in YC, the z1 and z2 vary rapidly 

with increasing pressure and acquire the values of ~ 0.37 and ~ 0.01 for ScC and ~ 0.38 and ~ 

0.005 for YC, at these pressures. Beyond these pressures, the values of z1 and z2 vary slowly with 

increasing pressure and tend towards those corresponding to that of P4/nmm structure. These 

findings suggest that (i) up to  75 GPa in ScC and up to  25 GPa in YC the B1 phase remains 

energetically lower than the Pmmn phase, (ii) above 75 GPa in ScC and above 25 GPa in YC the 

Pmmn structure becomes favourable over B1 phase and (iii) beyond 100 GPa in ScC and beyond 

70 GPa in YC the optimized parameters of Pmmn structure vary slowly with increasing pressure 

and tend to approach values corresponding to that of a primitive tetragonal structure having 

space group symmetry P4/nmm with location of Sc (Y) and C atoms to be 2c (0 ½ z, ½ 0 –z) and 

2a (0 0 0, ½ ½ 0), respectively.  

 

 

Further, in Fig.3.3, comparison of the enthalpies of Pmmn and B2 structures relative to B1 

phase for ScC and YC have been done. As shown in figure, for ScC, the Pmmn structure 

emerges as a stable structure for pressures ≥ 80 GPa. In YC, however, B1 phase transforms to the 

Pmmn structure at ≥ 30 GPa. These values of transition pressures are little off from 75 GPa and 

25 GPa (as shown in Fig.3.2 and discussed above) obtained for ScC and YC, respectively, from 

structural parameter optimization based on minimization of total energy. Results of our static 

lattice calculations rule out the direct B1 to B2 transition under pressure predicted by Soni et al. 

[25] in these compounds.  

 

The Fig. 3.4 displays the theoretical isotherm for ScC and YC. No comparison could be made 

with experiments due to non availability of experimental data. It is clear from the figure that the 

transition is of first order in nature with volume discontinuity at the transition point   determined  
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Fig. 3.2 The axial ratios and z1 and z2 parameters of Pmmn phase of ScC and YC as a function of 

pressure. 

 

to be ~3.6% in ScC and ~1.6% in YC.  Table 3.1, shows various physical properties of ScC and 

YC at ambient condition derived from our calculations for B1 phase. In ScC, the calculated zero 

pressure volume (V0) agrees with experimental data [31] within ~ 2.0% whereas that for YC 

agrees is within ~0.35% [32]. The zero pressure bulk modulus (B0) and its pressure derivative 

(B0′) for both the materials could not be compared with experiments due to non availability of 

the data, however, our theoretical values compare reasonably well with the other theoretical 

results [11, 12]. Additionally, in the same Table the elastic constants and Debye temperature (θD) 

determined for B1 phase at zero pressure in the present work have been compared with the 

theoretical   values   reported   in other source [12].   
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Fig. 3.3  Enthalpy of B1, Pmmn and B2 phases relative to that of B1 phase for ScC and YC at 

various pressures. For pressures ≤ 80 GPa in ScC and ≤ 30 GPa, the optimum value of b/a and 

c/a ratio is √2 and 1, and z1 = z2 = ¼, indicating that the Pmmn phase is identical to B1 structure 

up to these pressures.  
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In ScC,  the C11  and  C12  displays  good  with theoretical value of ref. (12), however, C44 is 

underestimated by ~ 25.5% as compared to those reported in ref. (12). For YC, the C11 and C44 

are underestimated by ~ 5% and ~ 4%, respectively and C12 is over estimated by ~ 10% as 

compared to those reported in ref. (12). The Debye temperature determined in present theoretical 

work agrees with that of Soni et al. [12] within ~3% and ~1% in ScC and YC, respectively. 
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   Fig. 3.4 The equation of state of ScC and YC . 
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Table 3.1 Comparison of various physical and elastic properties of ScC and YC in B1 phase at 

zero pressure calculated in present work with those available in literature  

Properties at 

Equilibrium  

Volume 

Present 

Theoretical 

Work   

Theoretical  

(Other sources) 
Experimental 

V0 (Å
3
/formula 

unit) 

 

ScC 
 

YC 

 

 

 

25.43 
 

33.23 

 

 

25.69[1],25.62[11], 

25.65 [12] 
 

32.77 [11], 32.89[12] 

 

 

24.92[31] 
 

 

33.35[32] 

B0 (GPa) 

 

ScC 
 

YC 

 

 

 

150 
 

125.2 

 

 

148[1],153[11],154.8[12]
 

 

128[11],
 
124.2[12] 

 

 

 

B0′′′′ 
 

ScC 
 

YC 

 

 

 

3.76 
 

3.37 

 

 

4.18[12]  
 

4.14[12] 

 

C11 (GPa) 
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3.3.2 Elastic stability and dynamical stability of ScC and YC under pressure 
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Figure 3.5 The pressure dependent elastic constants of ScC and YC in B1 phase  
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The elastic stability of B1 phase was analyzed by calculating the elastic moduli as a function 

of hydrostatic compression and examining the stability conditions throughout the compression 

path. Fig.3.5 shows the three independent elastic constants of ScC and YC in B1 phase. As is 

clear from the figure, for both the materials, the elastic constants C11 and C12 increase 

monotonically with increasing pressure, however, the shear elastic constant C44 displays opposite 

trend i.e. it decreases monotonically with increasing pressure, but remains positive through entire 

range of pressure up to 160 GPa in ScC and up to 100 GPa in YC. This suggests that the B1 

phase remains elastically stable up to highest pressure of investigation in the present work. 
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Fig. 3.6 Phonon dispersion relations for ScC and YC in B1 phase at various  pressures . 
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Fig. 3.7 The Square of the transverse acoustic phonon frequency at X point in the Brillouin zone 

of B1 phase as a function of pressure for ScC and YC. Also plotted is the variation of C44 

modulus with pressure. 
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In order to further confirm theoretically obtained B1 → Pmmn phase transition in ScC and 

YC, lattice dynamic calculations have been performed on B1, Pmmn and B2 structures. The 

phonon dispersion relations calculated at different pressures for B1 phase are plotted in Fig.3.6. 

For both ScC and YC, at zero pressure, as expected, the phonon frequencies in all directions are 

real, demonstrating that the B1 phase is dynamically stable at ambient condition. Further, this 

phase remains dynamically stable at higher pressures also e.g. in ScC it remains stable at 60 GPa 

but becomes unstable at 120 GPa. Similarly, for YC, B1 is stable at 15 GPa but destabilizes at 50 

GPa. In order to find the exact pressures at which the B1 phase becomes unstable dynamically, in 

Fig.3.7 the square of the frequency of transverse acoustic (TA) phonon at X point has been 

plotted with pressure. Additionally, the shear elastic modulus C44 is also plotted in this figure. As 

is clear from the figure, for ScC, the phonon frequency ceases to zero at ~ 116 GPa whereas the 

elastic modulus vanishes at still higher pressure of ~ 207 GPa, indicating that B1 phase becomes 

dynamically unstable much before it fails elastically. In YC, the B1 phase fails dynamically at ~ 

26 GPa which is very close to the ~ 30 GPa, the B1 to Pmmn transition pressure, however, 

elastically it remains stable even up to ~ 197 GPa. Further, it may be noted that the dynamic 

instability occurs at points away from the center of the Brillouin zone and much before the 

elastic instability (the difference between the pressures for the two instabilities is ~ 91 GPa in 

ScC and ~171 GPa in YC), indicating that the B1 to Pmmn structural phase transition in these 

carbides is phonon driven.  

 

 

Table 3.2, lists the phonon frequencies (ω), their pressure derivative coefficients and 

Gruneisen parameter (γ) of several modes at high symmetry points Γ, X and L of Brillouin zone 

of B1 phase in ScC and YC. The negative TA Gruneisen parameter at X point for both the 

materials indicates that the frequency at this point decreases with increasing pressure. 

Additionally the frequencies of various modes calculated in the present work have been 

compared with other published data [24]. For ScC the frequencies of all the modes determined in 

the present work exhibits a good agreement with those reported by Isaev et al. [11]. However, for 

YC the values obtained in the present work differ from those of Isaev et al. [24] by maximum of 

~ 7%. This deviation could be due to the mismatch of the equilibrium volume by ~ 1.4% in YC. 
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Table 3.2: Phonon frequencies, pressure coefficients and Gruneisen parameters of various 

modes for B1 structure of ScCand YC at certain high symmetry points of the Brillouin zone. The 

zero pressure bulk modulus of ScC and YC used for the calculation of Gruneisen parameters is 

150 GPa and 125.2 GPa, respectively. Also, compared are the phonon frequencies reported by 

Isaev et al (ref 24) 

 

Materials 

Brillouin 

zone points 

Modes 

ω(cm
-1

) 
)/( 1

GPacm
P

−

∂
∂ω

 

γ 

ScC      

 Γ LTO 420.9,409[11] 4.63 1.65 

 X TA 

LA 

TO 

LO 

 

218.3,222[11] 

328.4,327[11] 

412.9,397[11] 

473.6,463[11] 

-0.10 

2.46 

5.27 

4.57 

-0.07 

1.12 

1.91 

1.45 

 L TA 

LA 

TO 

LO 

225.8,225[11] 

279.4,279[11] 

366.4,353[11] 

494.4,487[11] 

2.93 

3.33 

4.40 

3.47 

1.95 

1.79 

1.81 

1.06 

YC      

 Γ LTO 324.8,350[11] 4.33 1.67 

 X TA 

LA 

TO 

LO 

 

134.8,130[11] 

224.3,240[11] 

308.3,333[11] 

390.7,407[11] 

-10.07 

3.03 

4.10 

2.70 

-9.28 

1.54 

1.67 

0.87 

 L TA 

LA 

TO 

LO 

150.2,163[11] 

200.7,223[11] 

308.9,327[11] 

444.2,466[11] 

2.50 

3.03 

4.20 

3.77 

2.09 

1.90 

1.71 

1.06 
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Figure 3.8 Phonon dispersion relations for Pmmn and B2 phases at ~ 100 GPa in ScC and ~ 50 

GPa in YC. 

 

 

The phonon dispersion curve have also been calculated for Pmmn and B2 structures at ~ 100 

GPa in ScC and at ~ 50 GPa for YC. As shown in Fig.3.8, the Pmmn structure is dynamically 

stable whereas the B2 phase still remains as dynamically unstable structure at these pressures in 

these carbides. Further, it has been found that the dynamical instability of B2 structure persists 

up to ~200 GPa in both the materials. The results from lattice dynamic calculations substantiate 

the B1 to Pmmn phase transition predicted from the static lattice calculations in ScC and YC. 

The results of present static lattice calculations and lattice dynamic calculations predict that 

under hydrostatic compression B1 phase will transform to Pmmn structure, ruling out the direct 

B1 to B2 transition predicted by Soni et al. [12]. 
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Figure 3.9 Electronic density of states of ScC and YC for B1 and Pmmn phase.  

 

 

Additionally, the electronic density of states for both the carbides have also been calculated 

and analyzed. Fig.3.9, displays the theoretically calculated electronic density of states (DOS) of 

ScC and YC in B1 phase at 0 GPa and in Pmmn structure at transition pressure. For ScC, the 

major contribution to total density of states around Fermi level comes from the 3d of Sc and 2p 

of C whereas for YC the same comes from 4d of Y and 2p of C. The density of states at Fermi 

level for ScC in B1 phase at 0 GPa is found to be ~1.01 states/ev whereas the same for YC has 

been determined to be 1.45 states/ev. The higher value of DOS at Fermi level for YC as 

compared to the ScC is in accordance with the higher electron-phonon coupling constant 

calculated for YC by Isaev et al. [11] theoretically. Further, the DOS at Fermi level decreases 

with increasing pressure and assumes a value of 0.73 states/ev for ScC and 1.30 states/ev for YC 
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in Pmmn phase. The sufficiently high density of states at Fermi level indicates that both the 

carbides are metallic in nature at ambient condition. Moreover, the comparatively low density of 

states at Fermi level for the high pressure Pmmn structure suggests that these carbides in Pmmn 

phase will exhibit less metallicity.  

 

  3.3.3 Structural stability and equation of state of TaC  
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Figure 3.10 Enthalpy difference of B2 , B3 , B4 and  B8 with respect to B1 structure .   

 

 

To examine structural stability of TaC the total energy calculations have been carried out at 

several unit cell volumes for B1, B2, B3, B4 and B8 structures. The P-V data have been 

generated from this volume dependent total energy, which then is utilized to calculate the 

enthalpies of B1, B2, B3, B4 and B8 phases at various pressures. The comparison of enthalpies 

of these phases as a function of pressure is displayed in Fig. 3.10. As is obvious from the figure, 
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the B1 phase transforms to B2 phase at ~ 472 GPa as compared to 660 GPa that predicted by 

Srivastva et al. [25] from pseudopotential calculations carried out within GGA using SIESTA 

code. The equation of state of TaC have been plotted in Fig.3.11 along with experimental data 

[19]. The theoretical isotherm agrees well with the experimental data. Further, the volume 

discontinuity determined at the transition pressure is ~ 5.4%. In Table 3.3 listed are the various 

physical quantities for B1 phase at ambient conditions derived from equation of state. The zero 

pressure equilibrium volume (V0) agrees within ~ 1.3%, with experimental data [13]. The zero 

pressure theoretical bulk modulus (B0) is more close to the experimental values reported in ref. 

(13 and19) than to that reported in ref. 14. The pressure derivative (B0′) agrees within 2% with 

experimental value [19]. It may be noted that in view of the Pmmn phase found to be stable 

phase at high pressure in ScC and YC, the stability of the same has been tested in TaC also but 

did not find it to be stable.  
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Fig. 3.11 Equation of state of TaC with experimental data of Liermann et al. 
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Table 3.3: Various physical quantities at zero pressure for TaC 

 

Properties at 

Equilibrium  

Volume 

Present 

Theoretical 

Work   

Theoretical  

(Other sources) 
Experimental 

    

V0 (Å
3
/formula unit) 22.4 23.1[15],22.3[11] 22.4[1], 

21.7[21] 21.6[22],23.7[24] 

23.3[25] 

 22.1[13] 

B0 (GPa) 342 318[12], 324[11] 321[1] 

370[22] 356[23], 311[24] 

391[25] 

344[13], 332[14], 

345[19] 

B0′ 3.93 4.58[22], 3.03[25] 4.0[19] 

C11 (GPa) 723 621[12], 740[23] 641[24] 595[15] ,631[13] 

C12 (GPa) 151 155[12], 165[23] 146[24] 155[12], 165[23] 

146[24] 

C44(GPa) 178 167[12], 176[23] 156[24] 193[15] 

Y(GPa) 534 550[24] 537[13] 567[14] 

G(GPa)   215 188[24] 216[13] 234[14] 

α (K
-1

) 1.8×10
-5

 1.6×10
-5

[21] 2.1×10
-5

[24]  1.6×10
-5

[33] 

θD (K) 516 538[24] 556[13] 593[14] 

 

 
3.3.4 Elastic stability and dynamical stability of TaC under pressure  

 

Further, to understand the B1 to B2 phase transition in terms of elastic instability, the elastic 

moduli of B1 and B2 phase as a function of pressure have been determined. As expected, the 

elastic constants C11, C12 and C44 of B1 phase at zero pressure (Table 3.3) are positive and agree 
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with experimental data within ~ 21%, 10% and 7.7%, respectively. Additionally, the zero 

pressure elastic constants have been utilized to determine the Debye temperature (θD), 

polycrystalline Young’s modulus (Y) and shear modulus (G) at ambient condition. As listed in 

Table 3.3, the θD determined in the present work agrees with experimental data within ~ 13%. 

The values of Y and G calculated in the present work agree better with the experimental data of 

Jun and Shaffer [13].  
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Fig. 3.12 Pressure dependent elastic constants of B1 phase  

 

For B1 phase, as shown in Fig. 3.12, the C11 and C12 increase monotonically with increasing 

pressure whereas the C44 modulus displays different behavior. Initially, it increases with 

increasing pressure and reaches to a maximum value of ~ 308 GPa around the B1 to B2 

transition pressure. Thereafter though it starts softening, it still remains positive even at 600 GPa.  
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Figure 3.13 Pressure dependent elastic constants of B2 phase 

 

The elastic constants as a function of pressure have also been calculated for B2 phase. As 

shown in Fig. 3.13, for B2 phase the C11 and C12 elastic constants are positive but C44 is negative 

(-55 GPa) at zero pressure. With increasing pressure all the elastic constants increase 

monotonically and the C44 modulus acquires a positive value for pressures ≥ 40 GPa, suggesting 

that this phase will be stable elastically only beyond this pressure.  

 

In addition to the static lattice calculations, the lattice dynamics of the two phases has also 

been studied. In Fig. 3.14, the phonon spectra and density of states of B1 phase is displayed at 

zero pressure, 200 GPa and 500 GPa, respectively. The same for B2 phase is depicted in Fig. 

3.15. As can be seen from the figures the phonon spectra of the B1 phase display positive 

frequencies in all the directions of Brillouin zone not only at ambient pressure but also beyond 

the B1 to B2 transition pressure indicating that this phase is stable lattice dynamically even at 

pressures  higher than  the  transition   pressure. The elastic and lattice dynamic  stability  of  B1   
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Fig.3.14: The Phonon spectra and density of states of B1 phase 

 

phase  even  beyond  the  transition pressure suggests that this structure remains as metastable 

phase even after B1 to B2 structural transition.  Further, the  theoretical  dispersion  relations  at  

zero  pressure compare well with the experimental values [16]. As far as B2 phase is concerned it 

is clear from the figure 3.15 that this structure is unstable lattice dynamically at zero pressure but 

becomes stable at 200 GPa as well as 500 GPa. To get the exact value of pressure at which the 

onset of lattice dynamical stability occurs, the frequency of longitudinal acoustic (LA) and TA 

phonons at M point of the Brillouin zone of B2 phase have been calculated and plotted in Fig. 
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3.16. It is clear from the figure that for pressures of ≥ 83 GPa the frequency of TA phonons at M 

point becomes real, indicating lattice dynamic stability of B2 phase beyond this pressure. 
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Fig. 3.15 The Phonon spectra and density of states of B1 phase 
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Fig. 3.16 Frequency of LA and TA phonons as a function of pressure at M point of Brillouin of 

B2 phase. 

 

 

3.3.5 Effect of temperature on Thermo physical properties of TaC  

 

The calculations have been further extended to determine the temperature effect on volume 

and bulk modulus of B1 phase of TaC. For this purpose the Helmholtz free energy (F) has been 

calculated as a function volume at a fixed temperature and the minimum in free energy is 

determined. This along with F(V) is then used to determine the volume V and bulk modulus B 

corresponding to the minimum free energy at that temperature. This process has been repeated at 

various temperatures, and volume and bulk modulus as a function of temperature has been 

determined. In fig. 3.17, the free energy as a function of volume at various temperatures ranging 

from 0K to 3000K has been displayed. As obvious from the figure, the free energy decreases 

with increasing temperature and this effect is more pronounced at higher temperatures as the 

increase in TS term becomes larger and larger due to increase in both the T and S.  
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Fig.3.17 Helmholtz free energy of B1 phase of TaC  as function volume for various temperatures 
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Fig. 3.18 The volume/f.unit and volume thermal expansion coefficient of B1 phase of TaC as a 

function of temperature with thermal expansion data of [32].  
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The temperature dependence of zero pressure volume of TaC in B1 phase determined from 

the free energies calculated as a function of volume at different temperature is displayed in Fig. 

3.18. Also plotted is the volume thermal expansion coefficient derived from this along with the 

experimental data [33]. The zero pressure volume/formula unit increases from 22.4 (A
0
)
3
 at 0K 

to 22.5 (A
0
)
3
 at 300 K. As the zero pressure volume was already overestimated by ~ 1.3% at 0K, 

the overestimation further increases to ~ 1.8% at 300K. Further, for temperatures << 500K i.e. 

(T/θ) << 1, the thermal expansion coefficient falls rapidly with decreasing temperature. At higher 

temperatures it displays a softer dependence upon temperature. As shown in figure, the 

theoretically determined thermal expansion coefficient for TaC deviates from experimental data 

[33] significantly at temperatures above 400K and the deviation increases with increasing 

temperature. The reason for this could be the large anharmonic effects (especially due to the 

intrinsic anharmonicity e.g. significant phonon-phonon interactions) in reality as compared to 

that calculated by theory within QHA. The temperature dependence of the bulk modulus is 

plotted in Fig.3.19. As expected, the bulk modulus decreases monotonically with increasing 

temperature. The value of bulk modulus at 300K is obtained to be ~ 341 GPa as compared to its 

0K value of 342 GPa i.e. a decrease of ~ 0.3 % and deviation from experimental value is within 

2.7%.  
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Fig. 3.19 The bulk modulus of B1 phase of TaC as a function of pressure 
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3.4 Summary  

 

 

The structural stability analysis has been carried out on ScC and YC. The comparison of 

enthalpies of B1, Pmmn and B2 phase determined as a function of pressure from static lattice 

calculations predict the B1 to Pmmn structural phase transition in these carbides, ruling out the 

possibility of direct B1 to B2 phase transition under hydrostatic compression. The pressures for 

B1 to Pmmn phase transition have been determined to be ~ 80 GPa in ScC and ~ 30 GPa in YC. 

The theoretically predicted pressure induced B1 → Pmmn phase transition from static lattice 

calculations in the present work is also supported by present lattice dynamic calculations 

performed on these phases. The current theoretical work emphasizes that the phonons play 

dominant role in deciding the structural stability of these carbides.  

 

In TaC, the present calculations predicted the B1 to B2 structural transition at a pressure of ~ 

472 GPa. This structural phase transition has been substantiated further by examining the elastic 

and lattice dynamic stability of B1 and B2 structures as a function of pressure up to ~ 600 GPa. 

Apart from high pressure investigations, the temperature effect on volume and bulk modulus has 

been also determined. Various thermo physical quantities derived from present theoretical 

calculations agree reasonably with the available experimental data. 
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Chapter 4 

 

 

 

Structural Stability Analysis of CeN under High Pressure 

 

 

4.1 Introduction 
 

The physical properties of f-block elements (4f-lanthanides, 5f-actinides) and their 

compounds are mainly governed by the f electrons. The main difference between the two f 

electron series can be ascribed to the degree of hybridization of the f orbitals with the conduction 

electron orbitals. The f electrons in the lanthanides are believed to displays localized nature, 

whereas, in actinides the f electrons are itinerant and the degree of the itinerancy increases upon 

traversing from Th to Pu in the light actinide series. Further, the increasing distortion in ambient 

structure from fcc for Th to monoclinic for Pu is associated to this successively increasing 

delocalization.  Various binary compounds are formed by combination of the lanthanides with 

simple elements such as C, O, N and S.   Among them the mono-nitrides of lanthanides have 

received much attention due to their unique electronic and magnetic properties, and their use in 

the potential applications in spintronics [1-17].  The CeN is one of the interesting nitrides among 

them, which has been classified to be a mixed valence compound in previous studies [1-17]. The 

common situation found in most of the lanthanides is that the occupied 4f states are well 

localized and contain integer number of electrons. When such localized 4f states lie very close to 

or even degenerate with the Fermi level then mixed valance picture comes into existence as these 

states may start to hybridize with the conduction band states and acquire a width in the meV 

range. In such conditions also the 4f states may be treated as localized and hybridization can be 

treated as a perturbation. The CeN, the mononitride of the first member of the lanthanide 

elements, which crystallizes in the rock salt (B1) crystal structure at ambient conditions, is 

different in several aspects in the series of rare earth nitrides. For example, the mixed valence 

picture which is believed to exist in CeN suggests that the state of the Ce ion in CeN fluctuates 

between the trivalent 4f
1
[5d6s6p]

3
 configuration and tetravalent 4f

0
[5d6s6p]

4 
configuration. The 

lattice constant of CeN is significantly smaller than that for the other rare earth mono-nitrides. 
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Additionally the thermal expansion shows an unusual increase in lattice constants at higher 

temperatures as compared to that for other rare earth mononitrides. Furthermore, the magnetic 

susceptibility also displays an unusual dip at higher temperature [12]. Though various above 

unusual physical properties could be interpreted satisfactorily using the mixed valence model the 

large difference between the trivalent and tetravalent configurations does not support this model. 

Therefore the other picture, i.e. itinerant 4f picture, is more widely accepted in this compound in 

which 4f states can be described within band theory as ordinary Bloch states 

 

 

As far as high pressure behavior of CeN is concerned Rukmangad et al. [11] from their 

theoretical calculations based on two body inter ionic potential model predicted B1 to B2 (CsCl 

type) structural phase transition at ~ 88 GPa. The recent energy dispersive x-ray diffraction 

(EDXRD) measurements [18] carried out on CeN sample compressed statically in diamond anvil 

cell report B1 to B2 structural phase transition at ~ 65 GPa with relative volume change of ~ 

10.9% at this pressure. This structural transition has been further supported by ab-initio 

calculations carried out using full potential linear muffin-tin orbital method by the same authors 

[18]. The B1 to B2 transition pressure reported by this theoretical study is ~ 68 GPa with volume 

discontinuity of ~ 10.8% at the transition pressure. This high pressure B1 to B2 structural phase 

transition seen in CeN is in contrast to that observed in mononitrides of its left and right nearest 

neighbors in periodic Table i.e. LaN and PrN which have been reported undergo B1 to a 

primitive tetragonal structural phase transition at ~ 22.8 GPa and ~ 40 GPa, respectively [15, 12]. 

This tetragonal structure (B10) having space group symmetry of P4/nmm can be viewed as a 

distortion of CsCl structure with action in the 2c(0, 1/2, z) and anion at 2a(0, 0, 0) positions. The 

value of z for LaN is reported to be 0.345 whereas that for PrN is obtained to be 0.3546.  

 

This chapter of the thesis presents theoretical investigation on structural satiability, elastic 

stability and dynamic stability of B1 phase of CeN under hydrostatic compression. The structural 

stability has been examined by calculating and comparing the total energy as a function of 

hydrostatic compression at 0 K for B1, B10 and B2 structures. The transition pressure has been 

determined by comparing the enthalpies of all the structures. The 0 K isotherm has been 

determined from the theoretically calculated total energy as a function of volume, and finally 
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converted to 300 K isotherm after adding finite temperature contributions. The mechanical 

properties have been determined from the theoretically derived single crystal elastic constants. 

The lattice dynamic stability of B1 and B10 and B2 phases has also been analyzed as a function 

of pressure.  

 

4.2 Methodology Employed for Present Calculations  

 

To analyze the structural stability of CeN the theoretical investigations have been performed 

on three phases namely B1, B10 and B2. The detailed analysis of structural stability included 

both the static lattice calculations and lattice dynamic calculations. All the calculations have been 

performed employing plane wave pseudopotential method within the framework of Density 

Functional Theory (DFT) [19]
 
 implemented in Quantum ESPRESSO package[20].The first step 

towards the structural stability analysis was to calculate the total energy of B1, B10 and B2 

phases as a function of hydrostatic compression. The total energy calculations have been 

performed within generalized gradient approximation (GGA)[21] for the exchange correlation 

potential. The ultrasoft pseudopotential having valence configurations of 4f
1
5s

2
5p

6
5d

1
6s

2
 and 

2s
2
2p

3
 has been used for Ce and N respectively. For generation of pseudopotential, the cut off 

radius in Ce are taken to be 1.8 Bohr for 4f, 5p and 5d, and 1.6 Bohr for 5s and 6s orbitals 

whereas these in N are taken to be 1.1 Bohr for both 2s and 2p orbitals. Also, non-linear core 

correction to the exchange-correlation energy functional for Ce has been added. For GGA, we 

have used PW91 [21] potential for both the atoms. Electronic wave functions are expanded in a 

plane wave basis set (PWs) with energy cut off of 90 Ry and charge density is represented in 

PWs with energy cut off of 1000 Ry. Energy convergence of 10
-6

 Ry has been met by using the 

12x12x12, 6x6x9, 16x16x16 Monkhorst–Pack (MP) [22] grid of k-points in the full Brillouin 

zone (BZ) of B1, B10 and B2 structures. The dynamic stability of B1, B10 and B2 phase has 

been analyzed from the phonon spectra determined from self consistent density functional 

perturbation theory using linear response method [23]. For phonon dispersion calculations a 

4×4×4, 3×3×5 and 4×4×4 q mesh in the first BZ of B1, B10 and B2 structure has been used. The 

elastic moduli of B1 phase at a given volume are determined using the total energy computed as 

a function of appropriate strain [24-26]. The elastic moduli are finally extracted by expressing 

the energy of the strained lattice as described in chapter 2 in section 2.1. 
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4.2.1  Structural stability analysis and determination of equation of state 

 

To analyze the structural stability under hydrostatic compression, the total energy for B1, 

B2 and B10 phases of CeN at 0 K have been computed as a function of volume up to about 250 

GPa. The B10 structure is a primitive tetragonal cell with space group P4/nmm. As shown in the 

Fig. 4.1, the atomic species Ce and N of the two units of CeN contained in the cell are located at 

2c (0 ½ z, ½ 0 -z) and 2a (0 0 0, ½ ½ 0) sites (international table of Crystallography, Vol. 2).  It 

may be noted that the B10 structure becomes identical to B2 phase for c/a =1/√2 and z = ½ (Fig. 

4.1).  In present calculations both the c/a ratio and the z in B10 structure have been optimized for 

all volumes. For this purpose, at each volume, several c/a ratios ranging from ~ 0.81 to 0.69 

(which include the c/a corresponding to B2 structure also) have been chosen and optimized the 

value of z for each c/a. The optimum c/a and z at a given volume is the one for which the total 

energy is minimum. This procedure was repeated at various volumes and optimum c/a and z as a 

function of volume has been obtained. Using the total energy calculated at various volumes the 0 

K isotherms has been derived and enthalpies have been calculated for each phase. The structural 

stability as a function of hydrostatic compression has then been analyzed by comparing the total 

enthalpies (H) of B1, B10 and B2 phases as a function of pressure. 

 

The 0 K isotherms for B1, B10 and B2 phases of CeN determined from calculated total 

energy as a function of volume. The 300 K isotherm is derived by adding the thermal 

contributions to the 0 K isotherm. The zero pressure bulk modulus (B0) and its pressure 

derivative at zero pressure (B0′) were obtained by fitting the isotherm so obtained to the third 

order Birch-Murnaghan equation of state as described in the chapter 2 in section 2.1. 
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Fig. 4.1 A relationship between B10 (tetragonal with space group P4/nmm) and B2 structure in 

CeN.  The atomic shuffle needed for B10 structure to transform to B2 structure. In the B10 

structure, the nitrogen atoms occupy the 2a (0 0 0, ½  ½  0) site and cerium atoms occupy the 2c 

(0  ½  z,  ½  0  -z) location (for B10 structure, z is a free internal parameter). The B10 structure 

becomes identical to the B2 phase for z = 0.5 and c/a = 1/√2. The cell formed by dotted lines in 

the right hand side figure is the B2 unit cell formed from the B10 structure 

 

4.3  Results and Discussions 

 

4.3.1 Structural Phase Transition Sequence and the EOS 

 

In order to analyze the structural stability of CeN the enthalpies of B1, B10 and B2 structures 

have been calculated as a function of pressure. The B10 phase is distorted B2 structure and 

becomes identical to B2 phase for c/a =1/√2 and z = ½. At each compression, we have optimized 

both the c/a ratio and the z for B10 structure and total energy of the optimized B10 phase is 

utilized to determine the enthalpy of B10 phase at various pressures. In Fig.4.2, the equilibrium 
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c/a and z parameter of B10 phase has been plotted as a function of pressure. As can be seen from 

the figure the c/a decreases monotonically with increasing pressure and adopts a value of 0.746 

at 53 GPa i.e. at B1 to B10 transition pressure; it further decreases to a value of ~ 1/√2 (the value 

corresponding to B2 structure) at the pressure of ~ 200 GPa and saturates at this value upon 

further compression. The trend shown by z with increasing pressure is opposite to that of c/a. It 

increases with increasing pressure and achieves a value of 0.415 at 53 GPa. Upon further 

compression it reaches to a value of 0.5 (the value corresponding to B2 structure) at ~ 200 GPa 

and remains fixed at this value for still higher compressions. These results suggest that for 

pressures ≥ 200 GPa the B10 phase reduces to B2 structure. Further, Fig. 4.3, displays the 

enthalpy of the B1 and B10 phase relative to that of the B2 phase as a function of hydrostatic 

pressure. As shown in the figure, the B10 phase emerges as a structure of lowest enthalpy phase 

at a pressure of ~ 53 GPa and remains lowest till ~ 200 GPa. For pressures of ≥ 200 GPa, as 

already discussed, the B10 structure reduces to B2 structure. This structural sequence of B1 → 

B10 → B2 predicted from the present theoretical calculations is different than direct B1 → B2 

transition reported in the static compression experiment by Olsen et al [18]. 
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Fig. 4.2 The c/a ratio and z-parameter of B10 phase of CeN as a function of pressure. The 

vertical line indicates that for pressures ≥ 200 GPa the optimum value of c/a ratio and the z 

parameter of B10 phase become 1/√2 and 0.5, respectively. 
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Fig. 4.3 Enthalpy of B1 and B10 phases relative to that of B2 phase for CeN at various pressures. 

For pressures ≥ 200 GPa, the optimum value of axial ratio and z parameter of B10 phase become 

1/√2 and 0.5, respectively, indicating that the B10 phase reduces to B2 structure. 
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Fig. 4.4: Theoretically determined isotherm of CeN. Also shown are experimental data for 

comparison. 
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Table 4.1: Comparison of theoretical and experimental values of equation of state parameters of 

B1, B10 and B2 phases of CeN at zero pressure.  

 

Properties at 

Equilibrium  

Volume 

Present 

Theoretical 

Work   

Theoretical  

(Other sources) 
Experimental 

B1 Phase:    

V0 (Å
3
/formula unit) 31.85 31.62[9], 32.23[13] 

31.70[18] 28.87[27]  

 

31.71[28], 31.64[18]  

31.38 [29] 

B0 (GPa) 168.2 158.1[9], 140.02[11]
 

158.1[18] ,
 
159[27] 

 
  

156 [18] 

B0′ 4.02 3.3[9] , 3.3[18] 

 

4.0 [18] 

B10 Phase:    

V0 (Å
3
/formula unit) 30.55   

B0 (GPa) 99.1   

B0′ 4.90   

B2 Phase:    

V0 (Å
3
/atom) 28.39   

B0 (GPa) 159.3    

B0′ 4.47   

 

 

The Fig. 4.4 compares the theoretical isotherms with the experimental data [18]. The 

theoretical isotherm at 300 K agrees with the experimental data within ~ 13%.  Further as is clear 

from the figure, the B1 to B10 transition is first order in nature with volume discontinuity of ~ 

11% at the transition pressure. Whereas, as obvious from enthalpy plot and the isotherm, the B10 

to B2 transition in CeN is second order in nature. Additionally, in Table 4.1, various physical 
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properties derived from total energy calculations are listed for B1, B10 and B2 phases at zero 

pressure and compared with available experimental data [18, 28, 29] and other theoretical values 

[9, 11, 13, 18, 27]. The calculated zero pressure volume of B1 phase agrees with experimental 

data within ~ 1.5%. The bulk modulus and its pressure derivative at this volume for B1 phase are 

overestimated by ~ 7.8% and ~ 5%, respectively as compared to the experimental values [18]. 

These quantities for B10 and B2 phases could not be compared with literature due to 

unavailability of data.   

 

 

 

 

4.3.2   Elastic and dynamic stability under pressure. 

 

 

 

Table 4.2, compares the elastic constants for B1 phase at zero pressure derived theoretically 

in the present work with the theoretical values reported in other sources [9, 11]. Due to non 

availability of the experimental data, no comparison of these theoretically determined elastic 

constants of CeN could be done with the experiments.  The present theoretical value of elastic 

constant C11 is more close to that of ref. 11 whereas C12 and C44 agree better with ref. 9. The 

Debye temperature (θD) calculated for B1 phase from elastic constants turns out to be 337 K as 

compared to the theoretical value of 437 K determined by Kanchana et al.[9] using FP-LMTO 

method. Further, the elastic stability of B1 phase was analyzed by calculating the elastic moduli 

as a function of hydrostatic compression and examining the stability conditions throughout the 

compression path. Fig. 4.5 shows the three independent elastic constants of CeN in B1 phase. As 

is clear from the figure, the elastic constants C11 and C12 increase monotonically with increasing 

pressure, however, the shear elastic constant C44 displays opposite trend i.e. it decreases 

monotonically with increasing pressure and vanishes at ~ 110 GPa. It may be noted that though 

C44 in B1 phase decreases monotonically with increasing compression, it does not soften 

completely at the B1 to B10 transition pressure.  
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Fig. 4.5 Theoretically calculated elastic constants of CeN single crystal in B1 phase as a function 

of pressure. 

 

Table 4.2: Elastic Constants of CeN for B1 phase at zero pressure.  

 

 

 

Properties at 

Equilibrium 

Volume 

Present 

Theoretical 

Work   

Theoretical  

(Other sources) 
Experimental 

C11(GPa) 296.6 310[9] , 299[11] -- 

C12(GPa) 104 83.2[9], 60.8[11]  -- 

C44 (GPa) 74.9 72.6[9] , 63[11] -- 

 (θD)(K) 337 437[9]  -- 

 

 

In order to confirm the theoretically obtained B1 → B10 → B2 structural sequence in CeN 

under pressure, further examination of the dynamic stability of B1, B10 and B2 phases has been 
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carried out. The phonon dispersion relations and vibrational density of states calculated at 

ambient condition for B1 phase are plotted in Fig. 4.6. As expected, the phonon frequencies in all 

directions are real, demonstrating that the B1 phase is dynamically stable at ambient condition. 

Just above the theoretically predicted B1 to B10 transition pressure (at 60 GPa); the phonon 

spectra for the B1 phase (Fig. 4.7) shows that some of the transverse acoustic (TA) phonon 

frequencies midway of the Γ-X direction become imaginary, thereby making this phase 

dynamically unstable. However, the B10 phase emerges as dynamically stable structure at this 

pressure. The B2 phase having imaginary phonon frequencies around M point remains 

dynamically unstable at 60 GPa. In order to test the dynamic stability of B2 phase at still higher 

pressures, the phonon spectra have been calculated at higher pressures also. One such spectrum 

calculated at ~ 225 GPa is plotted in Fig.4.8. As is clear from the figure, the phonon frequencies 

of B2 phase are positive in all directions suggesting that this phase is dynamically stable at this 

pressure. The outcomes of lattice dynamic stability analysis further support the high pressure 

structural sequence of B1 → B10 → B2 suggested by the present static lattice calculations.  

 

 

Figure 4.6 Theoretically determined phonon spectra of CeN in B1 phase at zero pressure. The 

projected phonon density of states is also plotted in the right side. 
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Fig. 4.7 Theoretically calculated phonon spectra and projected phonon density of states of CeN 

in B1, B10 and B2 phases at ~ 60 GPa i.e. around the theoretical B1 → B10 transition pressure. 

 

As expected, irrespective of crystal structure, the projected phonon density of states, plotted 

in the Fig. 4.6, 4.7 and 4.8 show that the high frequency vibrations are dominated by the N atom 

due to its relatively lower atomic mass whereas the low frequency vibrations are dominated by 

Ce atom due to its higher mass.  

 

In order to find the exact pressure at which the B1 phase becomes dynamically unstable, the 

frequency of transverse acoustic (TA) phonons at X point and at  (½, 0, ½ ) point and 



132 

 

longitudinal acoustic (LA) phonons at X point has been plotted as a function of pressure in Fig. 

4.9. As can be seen the TA phonon frequency at (½, 0, ½ ) decreases to zero around ~ 60 GPa. 

Further, in the same figure, the TA phonon frequency at M point for B2 phase has also been 

plotted. Figure clearly shows that the B2 structure emerges as a dynamically stable phase at ~ 

200 GPa.  

 

Fig. 4.8  Theoretically calculated phonon spectra and projected phonon density of states of CeN 

in B2 phase at ~ 225 GPa i.e. just above the theoretical B10 → B2 transition pressure 

 

 

Additionally to substantiate our theoretically predicted high pressure structural sequence, we 

have calculated the angle dispersive x-ray diffraction (ADXRD) pattern of B1, B10 and B2 

structures at 75 GPa i.e. around the experimentally reported B1 to B2 phase transition pressure 

using powder cell 1.0 software. As displayed in Fig. 4.10, except few weak peaks e.g. (211), 

(301), most of the diffraction peaks of B10 structure in the calculated pattern coincide either with 

B1 or with B2 phase.  In the experimental EDXRD pattern [18] recorded at ~ 77 GPa, many 

peaks e.g. (222) and (400) of B1 phase and (210) of B2, which display a good strength in our 

calculated pattern, are hardly visible. This suggests that in order to unambiguously identify 

whether the high pressure phase is B2 or B10, it is essential to conduct the experiments at still 

higher pressures so that the weak peaks, if present, are developed significantly to be visible 

clearly.  
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Fig. 4.9 The square of the acoustic phonon frequency at X and (1/2 0 1/2) point in the Brilouin 

zone of B1 phase and at M point in the Brillouin zone of B2 phase as function of pressure. 
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Fig. 4.10 The calculated angle dispersive x-ray diffraction of B1, B2 and B10 Phases of CeN at ~ 

75 GPa. 
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4.3.3 Reproduction of phase transition in LaN 

 

Finally to test whether the calculations carried out using present theoretical method can 

reproduce the experimental observations of Schneider et al [15] on statically compressed LaN, 

the total energy calculations on B1, B10 and B2 structures of this materials has also been carried 

out. The theoretically determined enthalpy is compared for these three phases at various 

pressures in LaN (Fig. 4.11). As is clear from the figure in case of LaN also present calculations 

suggest that the B1 transforms to B10 structure at ~ 20 GPa, which is close to the experimental 

value of 22.8 GPa [15]. Additionally, this work predicted that upon further compression the B10 

phase will transform to B2 structure at ~ 165 GPa. Finally, in Fig. 4.12, the theoretically 

optimized values of c/a ratio and internal parameter z along have been plotted along with the 

experimental data [15] for LaN. Present theoretical c/a ratio and z parameter agree with 

experimental data within ~ 8% and ~ 2.8%, respectively demonstrating that the theoretical 

calculations correctly reproduce the experimental data of LaN[15], thereby supporting findings 

of present work on CeN.  
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Fig. 4.11 Enthalpy of B1 and B10 phases relative to that of B2 phase for LaN at various 

pressures. 
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Fig. 4.12 Optimized c/a ratio and z parameter of B10 Phase in LaN. Also plotted the 

experimental data [15] 

 

4.4 Summary 

 

The structural stability analysis carried out on CeN suggests that B1 phase will transform to 

B10 structure at ~ 53 GPa which upon further compression will transform to B2 phase at ~ 200 

GPa. This theoretical finding does not agree with experimentally reported direct B1 to B2 phase 

transition at ~ 65 GPa [18]. The present theoretically predicted high pressure structural sequence 

of B1 → B10 → B2 is also supported by lattice dynamic calculations performed on these phases. 

The current theoretical work emphasizes that the phonon play dominant role in deciding the 

structural stability of CeN. Additionally, the theoretically calculated x-ray diffraction pattern of 

B1, B10 and B2 structures at ~ 75 GPa suggest that more experiments at still high pressures are 

needed to be conducted to confirm whether the high pressure phase is B2 or B10.  Finally, the 

outcomes of the present work on CeN have been substantiated by reproducing the experimentally 

reported B1 to B10 transition in LaN.  
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Chapter 5 

 

Structural Stability Analysis of ThC and UC under High 

Pressure 

 

5.1 Introduction 

The knowledge of various aspects of the electronic structures, mechanical and dynamical 

properties of actinide carbides is of importance not only due to their applications in the nuclear 

industry but also from the basic science point of view. The binary compounds of actinide metals, 

having rocksalt structure (B1 phase), formed by combining with light elements like C, N and O 

have attracted the attention of both the theoretician and experimentalists since long [1-12]. The 

5f electrons of the actinide metal behaving intermittent to highly localized 4f electrons in 

lanthanides and itinerant d electrons in transition metals are believed to be responsible for 

varying physical and chemical properties of these compounds [1, 4, 5, 9, 11]. Among these 

materials, the good conductivity, high melting point, high metal density combined with the high 

burn up of the carbides and nitrides as compared to that of the oxides makes them preferable 

candidates for fuel in generation IV advanced reactors [12]. Among the carbides of thorium and 

uranium several soichiometries such as the thorium monocarbide (ThC), thorium dicarbide 

(ThC2) [3], uranium monocarbide (UC), uranium dicarbide (UC2) and diuranium tricarbide 

(U2C3) [6-8] are stable compounds at ambient condition. Among the actinide carbides, the 

thorium monocarbide (ThC) is one of the suitable candidates as an alternative fertile material in 

advanced fast reactors [5] whereas, the uranium monocarbide (UC) has great potential for 

applications in nuclear powered rockets for a better power density and in future nuclear reactors 

[12]. Further, the thorium carbide mixed with uranium-plutonium carbides are potential 

candidates for use as fuel in generation IV reactors [6, 7]. For such applications the 

understanding of structural and elastic stability under high pressure and knowledge of various 
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thermophysical properties such as its thermal expansion behavior, heat capacity, bulk modulus 

etc as a function of temperature is important.  

In ThC, Gerward et al.[4] carried out the first static high pressure x-ray diffraction 

measurements using diamond anvil cell and reported that this material remains stable in the 

rocksalt type structure up to 36 GPa, the maximum pressure achieved in the experiment [4]. The 

experiment has been repeated further by the same authors [13] up to still higher pressure of ~ 50 

GPa and no structural transition has been observed. It may be noted that the samples used in 

these experimental studies are substoichiometric with carbon deficiency of ~20%.  

 

After this experimental work, a few theoretical investigations have also been reported in this 

material. For example, in a theoretical study performed by Lim and Scuseria [14] on B1 phase of 

ThC, authors have reported that unlike that for actinide oxides, the screened hybrid functional 

produces the structural parameters and band structure as accurate as that calculated by local 

density approximation (LDA) or generalized gradient approximation (GGA). In a subsequent 

theoretical work on B1 phase of this compound using the full-potential linearized augmented–

plane wave (FP-LPW) method within GGA, Shein and Ivanovskii [15] have reported that the 

spin orbit coupling (SOC) has negligible effect on the structural parameters and hence can be 

ignored while modeling the structural properties of ThC. Apart from these theoretical studies 

carried out to understand the ground state properties, a few investigations to examine the high 

pressure behaviour of ThC  have also been reported. Aydin et al.[16] have calculated the 

thermodynamic properties and  pressure and temperature dependence of elastic constants of B1 

phase using CASTEP code within three different exchange correlation approximations i.e. LDA, 

GGA and LDA+U. The study shows that various physical properties e.g. zero pressure 

equilibrium volume, zero pressure bulk modulus and its pressure derivative, derived from GGA 

calculations display better agreement with the experiments. Recently, Daroca et al. [17] have 

also reported the theoretical investigation on the phonon spectrum and, mechanical and 

thermophysical properties of ThC in B1 phase. 
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For UC, several experimental and theoretical studies have been reported [6, 18-22] in the 

past. For example, Jackman et al. [18] have measured the phonon spectra of UC at ambient 

conditions employing the inelastic thermal neutron scattering and utilized these to determine the 

U-C and U-U force constants. Graham et al. [19] have determined the adiabatic elastic constants 

of single crystals of this material using acoustic wave velocities measured along various 

crystallographic directions employing ultrasonic technique. Similar experimental study has been 

reported by Routbort also [20].  

 

In theoretical front, various studies pertaining to ground state structural and elastic stability 

of UC have been published [6, 21, 22]. In ab-initio study using full-potential linear muffin-tin-

orbital (FP-LMTO) technique within local spin density approximation (LSDA), Trygg et al. [6] 

have calculated electronic structure and elastic constants of ground state structure i.e. B1 phase 

of UC. Their calculated elastic constants at ambient conditions agree well with the experiments 

[19, 20], however, the zero pressure equilibrium volume of 27.15 (A
0
)
3
/formula unit is 

underestimated by ~ 11% as compared to the experimental value of 30.5(A
0
)
3
/formula unit [23]. 

From first principles electronic band structure calculations within generalized gradient 

approximation (GGA) implemented in the VASP code, Freyss [21] has determined bulk 

properties of UC and found a good agreement with the experimental data. Based on this, it is 

suggested that GGA can satisfactorily describe this class of compounds [21]. Apart from these 

studies at ambient condition, a high pressure energy dispersive x-ray diffraction study has also 

been reported in this material by Olsen et al. [23]. According to this experimental study, the B1 

phase of UC transforms to an orthorhombic phase at ~ 27 GPa. This high pressure phase has 

been reported to be slightly different from the body centre orthorhombic (bco) structure and 

named as pseudo body centered orthorhombic phase by the authors [23]. The deviation of the 

high pressure phase from bco structure could not be quantified in the experiment. 

 

With the aim to explore the possible high pressure phase transitions, two monocarbide 

systems ThC and UC have been investigated by us in detail employing ab-initio theoretical 

methods. The studies include (i) the prediction of structural phase transitions in ThC and 

reproduction of experimentally observed phase transition in UC under hydrostatic pressure; (ii) 
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the calculation and analysis of phonon dispersion relations to further support the results of our 

static lattice calculations. In ThC, for prediction of high pressure phase transition the 

evolutionary structure search method has been used. This method has the capability to predict the 

stable as well as metastable structures at any pressure without using any priori information, For 

this purpose USPEX code [24-26] has been used. Apart from the high pressure study, the effect 

of temperature on thermal expansivity and bulk modulus of ThC has also been examined within 

quasiharmonic approximations (QHA). All these theoretical investigations have been discussed 

in this chapter. 

 

5.2 Methodology Employed for Present Calculations 

 

5.2.1 Thorium carbide 

As a first step towards the analysis of the structural stability of the ThC, the search for lowest 

enthalpy structure has been carried out at pressures of 0 GPa, 25 GPa, 60 GPa and 225 GPa using 

evolutionary structure search method implemented in the USPEX code [24-26]. The calculations 

required for structure relaxations for this purpose are carried out employing density functional 

theory based projector augmented wave (PAW) method [27, 28] implemented in the Vienna Ab-

Initio Simulation Package (VASP) [29-32]. The exchange and correlation part of the total energy 

has been calculated using GGA [33]. The structure search at each pressure is carried out using 

three simulation cells of 4, 8 and 12 atoms, respectively. The PAW (PBE) pseudopotential 

having valence configurations of 6s
2
6p

6
6d

1
5f

1
7s

2
 for Th and 2s

2
2p

2
 for C has been used.  In Th, 

the cut off radius of the PAW is chosen to be 2.8 Bohr for 7s, 6s, 6d and 5f orbitals and 2.5 Bohr 

for 6p orbitals. The cut off radius is taken to be 1.2 Bohr for 2s and 1.5 Bohr for 2p orbitals of C. 

The energy cutoff of 600 eV is used in plane wave expansion of electronic wave functions. The 

evolutionary structure search method suggested that the B1 phase is the lowest enthalpy structure 

at 0 GPa, however, at 25 GPa the primitive orthorhombic structure has been found to be of 

lowest enthalpy. This structure has space group Pnma with four atoms of Th and four atoms of C 

occupying the 4c Wyckoff positions (International Table of Crystallography, Vol. 2) i.e. (x,1/4,z) 

(-x+1/2,3/4,z+1/2) (-x,3/4,-z) and (x+1/2,1/4,-z+1/2). At still higher pressure of 60 GPa, another 
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orthorhombic structure of eight formula units per cell with space group symmetry of Cmcm has 

been found to exhibit lowest enthalpy. In this structure, the eight atoms of Th occupy two 

crystallographically inequivalent 4c sites, i.e. (0,y1,1/4) (0,-y1,3/4) (1/2,1/2+y1,1/4), (1/2,1/2-

y1,3/4) and (0,y2,1/4) (0,-y2,3/4) (1/2,1/2+y2,1/4), (1/2,1/2-y2,3/4), respectively. The eight atoms 

of C have been located at the 8f sites i.e. (0,y,z) (0,-y,z+1/2) (0,y,-z+1/2) (0,-y,-z) (1/2,1/2+y,z) 

(1/2,1/2-y,z+1/2) (1/2,1/2+y,-z+1/2) and (1/2,1/2-y,-z), respectively. The two orthorhombic 

structures are displayed in Fig.5.1. Further, at 225 GPa, it has been found that the B2 structure 

has lowest enthalpy. 

    

Fig. 5.1 The unit cell of Pnma structure (top) and Cmcm structure (bottom) of ThC. The large 

spheres represent the thorium atoms and small spheres show the carbon atoms. 
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After identifying the lowest enthalpy structures at few pressures, the calculations of total 

energy have been carried out on these structures, i.e. on B1, Pnma, Cmcm and B2 structures, at 

several hydrostatic compressions. The aim of these refined calculations was to determine the 

exact transition pressures. At each compression, we have optimized the axial ratios and free 

internal parameters for both the orthorhombic structure. The Monkhorst–Pack (MP) [34] grid of 

12x12x12 k-points and 16x16x16 k points in the full Brillouin zone (BZ) have been chosen for 

B1 and B2 phase, respectively, to achieve the energy convergence of criteria of 10
-6

 Ry. The k 

point grids used in full BZ of Pnma and Cmcm structures is 8x12x8 and 9x5x6, respectively. 

 

Further, the elastic constants of ThC in B1 phase have been determined as a function of 

pressure. As the B1 phase is a cubic structure, it has only three independent elastic moduli 

namely bulk modulus B = (C11+2C12)/3 and two shear moduli C′= (C11-C12)/2 and C44. To 

determine all these moduli, the stress-strain approach has been used as implemented in the VASP 

code. In this approach these elastic moduli can be expressed as [35, 36]: 
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In order to analyze the dynamic stability of B1, Pnma, Cmcm and B2 phase at a given 

volume the phonon dispersion relations have been determined using lattice dynamical 

calculations carried out employing the small displacement method within the supercell approach 

implemented in Phonopy code [37]. The diagonalization of the dynamical matrix constructed 

from the force constant matrix yielded the phonon frequencies.  To determine the displacement 

pattern and to solve the dynamical matrix, a 3 × 3 × 3 supercell has been used. Forces induced by 

small atomic displacements were calculated using the VASP program using 4 × 4 × 4 

Monkhorst–Pack mesh [34]  for BZ integrations. 
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5.2.2 Uranium carbide 

 

The analysis of structural stability and determination of equation of state of UC has been 

carried out from total energy calculations within static lattice approximation. These calculations 

have been performed using two ab-initio methods namely plane wave pseudopotential method 

implemented in Quantum Espresso package [38] and full potential linearized augmented plane 

wave (FP-LAPW) method implemented in WIEN2K [39, 40] software.  For the calculations 

using plane wave pseudopotential method the electronic wave functions and charge density have 

been expanded in a plane wave basis set with energy cut off of 150 Ry and 600 Ry, respectively. 

Energy convergence of 10
-6

 Ry has been met by using 8×8×8 Monkhorst–Pack (MP) [34] grid of 

k-points for sampling of the full Brillouin zone (BZ). The exchange correlation interaction is 

treated within generalized gradient approximation (GGA) generated using atomic code by Dal 

Corso. Troullier-Martins [41] norm conserving pseudopotential having valence configurations of 

6s
2
6p

6
5f

3
6d

1
 and 2s

2
2p

2
 has been used for U and C, respectively. For generation of 

pseudopotential, the cut off radius in U are taken to be 1.52 Bohr for 6p, 1.26 Bohr for 6s, 1.26 

Bohr for 5f and 2.2 Bohr for 6d orbitals. For C atom the cut off radius of 1.5 Bohr has been used 

for both the 2s and 2p orbitals. Also, non-linear core correction to the exchange-correlation 

energy functional for U has been added. Elastic constants and dynamical stability have 

determined as described in the chapter 2 of the thesis. 

 

For the calculations based on FP-LAPW method the unit cell has been divided into two 

regions, the one, non overlapping atomic spheres centered at the atomic sites and the other an 

interstitial region. The muffin tin radius used for atomic sphere of uranium was 2.2 a.u. while the 

same for carbon was kept at 1.4 a.u. The parameter RMTKMAX that determines the number of basis 

functions (size of matrices) is chosen to be 7. Here RMT is muffin tin radius and KMAX is the 

magnitude of the largest K vector (reciprocal lattice vector) used in plane wave expansion. The 

dimension of K
2
max is that of energy i.e. Rydberg. The magnitude of the largest vector (Gmax) 

used in charge density Fourier expansion was set to be 14. A grid of 3000 k points was used for 
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sampling of the Brillouin zone. The exchange correlation interaction was treated within 

generalized gradient approximation (GGA) [33] for all the calculations. 

 

5.3 Results and Discussions  

 

5.3.1 Structural stability, equation of state and electronic density of states  of 

ThC 
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Fig. 5.2  Enthalpies of Pnma, Cmcm, and B2 phase with respect to that of B1 phase as a function 

of pressure (left figure) for ThC. The enthalpy of B2 structure relative to that of Cmcm phase at 

various pressures (right figure).  

 

In order to analyze the structural stability of ThC under pressure, first, the search for lowest 

enthalpy structure at pressures of 0 GPa, 25 GPa, 60 GPa and 225 GPa has been carried out using 

evolutionary structure search method implemented in the USPEX code [24-26]. Based on this 

search it has been found that at 0 GPa the B1 phase has lowest enthalpy, whereas at 25 GPa a 

lower symmetry primitive orthorhombic phase with space group Pnma appears as a lowest 

enthalpy phase.  At 60 GPa, it is the Cmcm structure which has lowest enthalpy and at still higher 
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pressure of 225 GPa the B2 phase exhibits the lowest enthalpy. Having identified the lowest 

enthalpy structures at different pressures, refined total energy calculations have been carried out 

as a function of volume on B1, Pnma, Cmcm and B2 structures only and derived the enthalpies 

as a function of pressure. In Fig 5.2, the enthalpies of these phases are compared as a function of 

pressure. The comparison suggests that the ambient condition stable phase B1 transforms to an 

orthorhombic phase (space group symmetry Pnma) at ~ 19 GPa, which further undergoes a 

transition to another orthorhombic phase (space group symmetry Cmcm) at ~ 36 GPa. Upon 

further compression, the Cmcm phase transforms to B2 structure at ~200 GPa. While performing 

calculations on the lower symmetry Pnma and Cmcm structures, the axial ratios as well as 

internal parameter have been optimized at each volume. In Table 5.1, these have been listed at 

zero pressure and at transition pressure for Pnma and Cmcm phases. As is clear from the Table 

5.1, for the Pnma structure, at zero pressure, the optimum value of b/a and c/a ratio is 0.580 and 

1.005, respectively, with the value of free parameter x and z for the Th atom calculated to be 

0.250 and 0.916 and for C atom as 0.998 and 0.247, respectively. Further, as depicted in Fig.5.3, 

both the axial ratios and internal parameters remain more or less constant with increasing 

pressure.  

 

 

 

For Cmcm structure, however, as listed in the Table 5.1 and displayed in Fig5.3, the value of 

b/a at zero pressure is 4.403, which decreases monotonically with increasing pressure and 

approaches a value of ~ 3.662 at ~ 36 GPa, thereafter, it shows a gradually increasing trend with 

pressure and acquires a value of ~ 3.843 at ~ 200 GPa. Additionally, the c/a ratio with zero 

pressure value of 1.609 initially shows a small dip with increasing pressure up to ~ 7 GPa, 

thereafter it increases gradually with increasing pressure and reaches a value of 1.631 at ~ 36 

GPa (Table 5.1) and further increases to ~1.684 at ~ 200 GPa. The value of the internal free 

parameters y1 and y2 for Th atoms at two inequivalent 4c sites are 0.446 and 0.693, respectively, 

at zero pressure and increases slightly to ~ 0.458 and ~ 0.742 at ~ 36 GPa. Thereafter it remains 

almost fixed for the entire range of pressure up to ~200 GPa. The free parameters y and z for C 

atoms have been calculated to be 0.924 and 0.876, respectively, at zero pressure. As shown in 

Fig. 5.3, the y parameter increase with increasing pressure whereas the z parameter displays 
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opposite trend. At a pressure of ~ 36 GPa these parameters acquire a saturated value of ~ 0.895 

and 0.891, respectively (Table 5.1) Thereafter, they remain almost fixed at these values upon 

further compression. 

 

Table 5.1 Transition pressures and optimized axial ratios and internal parameters of Pnma and 

Cmcm phase at zero pressure and at transition pressures. 

 

Parameters Pnma phase Cmcm phase 

 At P= 0 GPa At P= 0 GPa 

a(Å) 6.342 3.506 

b(Å) 3.680 15.439 

c(Å) 6.373 5.644 

b/a 0.580 4.403 

c/a 1.005 1.609 

Internal 

parameters 

Th: x=0.250, z= 0.916 

C: x=0.998, z=0.247 

Th: y1= 0.446, y2= 0.693 

C: y = 0.924, z = 0.876 

 At P = 19 GPa At P= 36 GPa 

a(Å) 6.131 3.307 

b(Å) 3.512 12.114 

c(Å) 6.083 5.395 

b/a 0.573 3.662 

c/a 0.992 1.631 

Internal 

parameters 

Th: x=0.250, z= 0.916 

C: x=0.998, z=0.247 

Th: y1= 0.458, y2= 0.742 

C: y = 0.895, z = 0.891 
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Fig. 5.3 Optimized axial ratios and free internal parameters for Pnma structure and Cmcm phase 

of ThC as a function of pressure.  

 

The structural transitions of B1 → Pnma → Cmcm → B2 with corresponding transition 

pressures of ~ 19 GPa, 36 GPa and 200 GPa, predicted for ThC in the present theoretical work 

differs from the results of static high pressure experimental works [4, 13], where ThC is reported 

to remain stable in B1 phase up to 50 GPa, the maximum pressure of the experiments. However, 

it may be noted that the samples used in these experiments were not stoichiometric and there was 

a carbon deficit of ~20%. It has been further reported by these authors [4, 13] that the effect of 



149 

 

reducing the carbon content is to reduce the unit cell volume or equivalently the interatomic 

spacing. This reduction in interatomic spacing due to removal of carbon from lattice sites may 

have influence on the stability of ThC under pressure. For example, the complete removal of 

carbon makes the thorium metal to remain stable in fcc phase up to the pressures of ~ 70 GPa 

(Ref. 42). In light of the discrepancy between the theory and experiment, it will be interesting to 

perform the high pressure experimental studies for other substoichiometric cases also as it will 

give more insight on the effect of carbon content on the structural stability of ThC under high 

pressure.  

 

In Fig.5.4, the theoretically derived isotherm of ThC has been plotted along with the 

experimental data of Gerward et al. [4, 13]. Up to the pressure range of ~ 20 GPa, the two 

experimentally measured isotherms, i.e. those reported by Gerward et al. [4, 13] in two separate 

studies, display fairly good agreement with theoretical isotherm of B1 phase. At higher 

pressures, the experimental data [4, 13] exhibit a good agreement with the theoretical isotherm of 

ThC in Pnma phase. The volume discontinuities determined at B1 to Pnma transition pressure is 

~ 3.3% and at Pnma to Cmcm transition pressure is ~ 9.5% whereas at Cmcm to B2 transition 

pressure it is ~1.4%. The existence of volume discontinuities at transition pressures suggest that 

these transitions are of first order in nature. 
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 Fig. 5.4 The isotherm of ThC. The solid lines correspond to the theoretical isotherm at 0K. The 

symbols ▲ and ▼ show experimental data from Ref. (4) and Ref. (13).  
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Table 5.2, compares the zero pressure equilibrium volume/formula unit (V0), zero pressure 

bulk modulus (B0) and its pressure derivative (B0′) derived from present theoretical calculations 

at 0K with the experimental data [4, 13] and theoretical values from other sources [5, 14, 16, 17, 

43]. As listed in the Table 5.2, the V0 of 38.24 Å
3
 obtained without adding the zero point energy 

contribution is underestimated by ~ 0.47% from that obtained by including the zero point 

correction calculated within QHA. Further, this theoretical value agrees with the experimental 

values [4, 13] within ~ 1.5%.  Similarly, the B0 value of 137 GPa, obtained from isotherm 

derived from 0K calculations without including zero point energy correction is overestimated by 

~ 2.2% as compared to that obtained after adding zero point energy correction. As far as the 

comparison of B0 with experimental data is concerned, the theoretical values are overestimated 

by maximum of ~ 26% and correspondingly its pressure derivative B0′ is underestimated by 

maximum of ~ 4.8%.  

 

TABLE 5.2. Various physical quantities at zero pressure and 0K 

 

Physical 

quantities 

Present work  Experimental Theory other sources 

V0 (Å
3
/f. unit) 38.24, 38.42[a] 37.68[4]  

37.66[13]  

39.10[5], 38.06[14], 

38.08[16], 37.96[17], 

38.75[43]  

B0(GPa) 137, 134[a],131[b] 109 [4,13] 132[5],132[14] 

134[16],135[17],121[43]  

B0′ 3.09, 2.95[a] 3.1[4] 2.88[14], 3.0[17], 3.31[43]  

C11(GPa) 216  276[16], 222[17], 211[43] 

C12(GPa) 89  99[16] , 86[17], 76[43]  

C44(GPa) 80  87[16], 66[17], 80[43] 

θD(K) 258 262 [45] 458[16], 311[17] 

 

[a] Quantities obtained from 0K isotherm derived after adding the zero point energy calculated 

using QHA. 

[b]Bulk modulus derived from elastic constants. 
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Figure 5.5 Electronic density of states of ThC in B1 phase at 0 GPa and 20GPa, respectively. 

 

As the electronic density of states (DOS) can provide important piece of information related 

to the orbital character of the states and extent of mixing of various orbitals, it is worth to 

calculate and analyze these. In Fig.5.5, the electronic density of states of ThC have been 

displayed for B1 phase at zero as well as 20 GPa i.e. around the B1 to Pnma transition pressure. 

Apart from the total DOS and individual contribution of Th and C atom to the total DOS, the 

partial DOS have been plotted from different orbitals for each atom. As can be seen from the 

figure, at 0 GPa, the lowest valence band with its peak centered at ~-8 eV from the Fermi energy 

is separated from the next one by ~ 2.8 eV causing an opening of a pseudogap in the energy 

range of ~ -6.5 eV to -4.5 eV. Further, there is a significant overlapping between the higher 

valence band and conduction band, causing DOS at Fermi energy to be sufficiently high ~ 0.52 

states/eV/formula unit to make ThC metallic in character at ambient conditions. Further, the total 

DOS at the lowest valence band are mainly comprised of s-states of C with a small contribution 

from the p and d-states of the thorium atom, whereas, the total DOS near the Fermi level at next 

valence band, dominantly consist of p-states of C and d-states of Th with a small contribution 
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from the Th-f and Th-p states. The contribution of the Th-5f states to the total DOS in conduction 

bands becomes increasingly significant as one move away from the Fermi level and at ~ 3.1 eV 

the total DOS of the conduction band is mainly comprised of f-states. These results are in 

agreement with previous studies [14, 16]. As expected, upon compression, at ~ 20 GPa the 

electronic bands of B1 phase of Th get broaden causing the pseudogap between the lowest 

valence band and the next one to decrease to ~ 1.9 eV. The Fermi level now lies at a small but 

sharp hill in total DOS with the DOS at Fermi energy increased to ~ 0.76 states/eV/formula unit. 

This indicates that the DOS plot of B1 phase develops a typical signature of structural instability 

at ~ 20 GPa. 

 

Figure 5.6 Electronic density of states of ThC in Pnma, Cmcm and B2 phase at 20 GPa, 50 GPa 

and 225 GPa, respectively. 

 

For further understanding, the electronic DOS have been calculated for the predicted high 

pressure phases at the transition pressures. The calculated total DOS and various component 
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DOS are plotted in the Fig. 5.6. At 20 GPa, the major difference between DOS plots of ThC in 

Pnma phase and in B1 phase is that for Pnma structure apart from the main peak a small 

shoulder has also been developed in the lowest valence band and the peaks of higher energy 

bands have become more distinct. Additionally, the gap between the valance bands is reduced to 

~ 1.6 eV as compared to 1.9 eV that for the B1 phase. Further, though, the Fermi level for Pnma 

phase also lies at a small peak in DOS plot, the top of the peak is flat as compared to that for the 

B1 phase, causing relatively a small variation in the DOS at Fermi energy upon shifting the 

Fermi level. This enhances the possibility of the Pnma structure to be stable relative to the B1 

phase at this pressure. As far as metalicity is concerned the nature of DOS suggests that the 

conductivity of this phase is as good as that of the B1 phase.  

 

For the Cmcm structure, DOS have been plotted at ~ 50 GPa i.e. in the regime of the stability 

of the Cmcm phase. As can be seen from the figure, for the Cmcm phase, the lowest valence band 

displaying a shoulder at 20 GPa in Pnma phase has clearly split into two separate bands with one 

centered at ~ -8 eV and other centered around -12.1 eV. Further, the total DOS in the former still 

consists of the s-states of C and d-states of Th, whereas, the p-states of Th have shifted to lower 

energy, constituting the lower band. To some extent, this splitting of the band may have effect of 

lowering the energy of the structure as p-states of Th have been pushed down in energy. Further, 

the higher energy edge of the conduction band has been reduced to ~ 2.7 eV as compared to ~ 

3.1 eV that in Pnma phase at 20 GPa. This could have further caused shifting of various states to 

lower energy. The metallic character of ThC is still preserved in this phase also.  

 

Finally, as displayed in Fig.5.6, the density of state plot for B2 structure at 225 GPa shows 

that Fermi level now lies close to a valley with DOS at Fermi energy ~ 0.6 states/eV/f. unit. The 

extent of the broadening of bands is so large that all the pseudogaps have been closed. 

 

5.3.2 Elastic stability and dynamical stability of ThC 

The calculations have also been carried out to determine the elastic constants of the B1 phase 

of ThC. Table 5.2 compares present theoretical values at zero pressure with those available from 
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other sources [16, 17, 43]. No comparison with the experiments could be done due to non 

availability of experimental data. Further, these elastic constants have been utilized to determine 

the zero pressure Debye temperature (θD) following the procedure described in the Ref (44). As 

listed in the Table, the θD value of 258 K determined in the present work displays better 

agreement with the experimental value of 262 K (ref. 45) than those reported in other theoretical 

studies [16, 17].The calculations of elastic constants are further extended to high pressures. Fig 

5.7 displays elastic constants of B1 phase as a function pressure. Further, for comparison, these 

quantities calculated using energy-strain approach in FP-LAPW calculations in previous work 

[43] have also been plotted. The C11 and C44 display good agreement with the data [43], whereas 

the C12 constant in the present calculations is somewhat overestimated as compared to that 

reported in previous study [43]. 
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Fig. 5.7 Elastic constants of B1 phase of ThC as a function of pressure. The filled symbols and 

solid lines represent the values determined in the present work. The open symbol display the 

elastic constants calculated from FP-LAPW calculations (Ref. 43). 
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The phonon dispersion relations have also been determined for ThC as a function of pressure 

to substantiate the outcomes of our static lattice calculations. For this purpose, the lattice 

dynamic calculations have been performed on B1, Pnma, Cmcm and B2 phases of ThC at 

different pressures. Fig.5.8 shows the phonon dispersion relation for B1 phase of ThC at 0 GPa, 

25 GPa (just above the B1 to Pnma transition pressure) and 35 GPa. As expected, at zero 

pressure, all the phonon branches along all the Brillouin zone (BZ) directions have positive 

frequencies. Further, at 25 GPa also, the phonon spectrum suggests that the B1 phase is 

dynamically stable. Upon further compression, at ~ 35 GPa, some transverse acoustic (TA) 

phonon frequencies at X-point become imaginary causing the lattice dynamical instability in the 

B1 phase. The close examination of the phonon spectrum of B1 phase shows that at all pressures 

the longitudinal optical (LO) branch displays larger dispersion as compared to the transverse 

optic (TO) branch. Further, as is clear from the figure, there is almost no gap between the optical 

and acoustic branch at ambient pressure but a gap of ~ 2THz opens up at ~ 25 GPa. The reason 

for opening of this gap is associated to the increased stiffening of the optical branch at this 

pressure. It may be noted that the acoustic branch at this pressure remains more or less similar to 

that at zero pressure. Upon further compression, to ~ 35 GPa, this gap reduces to ~ 1THz due to 

the softening of one of the TO branch along KX direction caused by a significantly large splitting 

in this direction.  

 

 

In order to pin point the pressure corresponding to the failure of TA(X) phonon, this phonon 

frequency has been plotted as a function of pressure in Fig. 5.9. The exact pressure 

corresponding to the TA(X) phonon failure obtained from this figure is ~34 GPa.  
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Fig. 5.8 Theoretically determined phonon spectra of ThC in B1 phase at 0, 25 and 35 GPa, 

respectively. 
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Fig. 5.9 TA (X) phonon frequency as a function of pressure for B1 phase of ThC. 

 

Fig. 5.10 Theoretically determined phonon spectra of ThC for Pnma phase at 25 GPa, for Cmcm 

phase at 45 GPa, and for B2 phase at 125 GPa and 225 GPa, respectively. 
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In Fig. 5.10, the phonon dispersion relations have been shown for Pnma structure at ~ 25 

GPa, for Cmcm phase at ~ 45 GPa and for B2 phase at ~ 125 GPa and 225 GPa. The phonon 

spectrum for Pnma phase at 25 GPa and that for Cmcm phase at ~ 45 GPa in this figure display 

that the phonon frequencies for all modes in all the BZ directions have real values, indicating the 

lattice dynamic stability of Pnma and Cmcm phases around 25 GPa and 45 GPa, respectively. 

Unlike that for Pnma structure, for the Cmcm phase the phonon spectrum forms three sets of well 

separated bands. The first set consists of overlapping optical as well as three acoustic branches, 

whereas reaming two sets are formed of optical branches. Finally, at 125 GPa and 225 GPa, for 

B2 structure, the phonon frequencies corresponding to different modes are real along all the BZ 

directions. 

 

 

5.3.2 Zero pressure thermophysical properties of ThC at high temperature 
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Fig. 5.11 Theoretically calculated zero pressure equilibrium volume and volume thermal 

expansion coefficient of B1 phase of ThC as a function of temperature. 
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The lattice dynamic calculations have also been utilized to derive various physical quantities 

such as equilibrium volume, thermal expansion coefficient, bulk modulus and Helmholtz free 

energy as a function of temperature at zero pressure for B1 phase of ThC. Fig. 5.11 displays the 

variation of zero pressure equilibrium volume and corresponding volume thermal expansion 

coefficient as a function of temperature. As expected, the zero pressure equilibrium volume 

increases monotonically with increasing temperature and acquires a value of 38.57 Å
3
 at 300K 

(Table 5.3), which is higher by ~ 0.4% from its 0K value of 38.42 Å
3
. This increase in zero 

pressure equilibrium volume further enhances the overestimation to ~ 2.4% from the 

experimental value [13]. Here it is worth to mention that the lower value of experimentally 

measured volume as compared to the theoretical one could be associated to the substoichiometry 

of the samples used in the experiments [13]. The volume thermal expansion coefficient of 

1.7×10
-5

/K (Table 5.3) calculated at 300 K in the present work, shows better agreement with 

experimental data [46, 47] as compared to those reported in other theoretical works[16, 17]. 

Further, as displayed in the figure, there are various features in the plot of thermal expansion 

coefficient as a function of temperature. For example, at lower temperatures (T/θD << 1) it shows 

a strong dependence upon temperature (rapid increase with increasing temperature) whereas, a 

weaker dependence upon temperature at higher temperatures e.g. from ~ 200K to 430K. At still 

higher temperatures, the behavior again changes with exhibiting a rapid increase with increasing 

temperature. This strong temperature dependence at very high temperatures shown by theoretical 

thermal expansion coefficient may be due to the negligence of the higher order anharmonic 

effects such as phonon-phonon interaction in QHA. As it is well known that the phonon-phonon 

interaction becomes significant at high temperatures and increases with increasing temperature, 

the neglect of this effect at high temperatures might be the cause for the overestimation of the 

thermal expansion coefficient in ThC.  
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TABLE 5.3. Various physical quantities at zero pressure and 300K 

 

Physical 

quantities 

Present work  Experimental Theory other sources 

V0 (Å
3
/f. unit) 38.57 37.68[4],37.66[13]  38.30[16],38.25[17] 

B0(GPa) 128 109[4,13] 132[16]  

α(×10
-5

K
-1

) 1.7 1.95[46],1.38[47] 2.5[16], 2.72[17]  

Cv (J/K/mol) 44.98  46.29[16],45.11[17] 

γ 1.132  1.562[16]  

CP (J/K/mol) 45.24 45.1[45]  45.69 [17] 

Svibration(J/K/mol) 60.89 58.3[45]  
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Fig. 5.12 Theoretically calculated zero pressure bulk modulus of B1 phase of ThC as a function 

of temperature 
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Fig. 5.12 shows the temperature dependence of the zero pressure bulk modulus of ThC in B1 

phase. As observed in general, the bulk modulus decreases monotonically with increasing 

temperature and reaches a value of  ~ 128 GPa (Table 5.3) at 300K which is lower by ~ 4.4% 

from its 0K value of 134 GPa. This shifts the theoretical value more close to the experimental 

data [4, 13]. 

 

Further, the zero pressure constant volume heat capacity CV as a function of temperature has 

also been calculated. The value of CV calculated at 300K is compared with the other theoretical 

values [16, 17] in Table 5.3. The agreement is quite good. Now, as one measures the constant 

pressure specific heat (CP) in experiments instead of CV, so to have a comparison with 

experimental data, CP has been determined employing the theoretically derived CV in the 

following expression: 

 

])()(1[)( TTTCTC vp γα+=  

Where, the Gruneisen parameter (γ) as a function of temperature is evaluated using the 

expression: 

vCTVTBTT /)()()()( 00αγ =
 

In Table 5.3, the value of γ so obtained at 300 K is compared with the available theoretical 

value from other source [16]. Finally, in Fig. 5.13, the presently calculated CV and CP have been 

plotted as a function of temperature, also, plotted are the experimental data [45] and other 

theoretical values [17, 45] for comparison. As expected, the CV starts approaching the Dulong-

Petit limit asymptotically at the temperature T ~ θD. As far as comparison with experimental data 

is concerned, the present theoretical values display an excellent matching with experiment. The 

present theoretical CV and CP agree with the theoretical values of Daroca et al. [17] at least up to 

675 K, thereafter, these quantities, especially, the CP deviates systematically. The 300 K value of 

CP determined in the present work (Table 5.2) agrees with the experimental data[45] within ~ 

0.3%. 
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Fig. 5.13 Theoretically calculated zero pressure heat capacity of ThC in B1 phase as a function 

of temperature. 

 

 

 

Finally, Fig. 5.14 shows the temperature dependence of the vibrational free energy Fvibration, 

along with its components Evibration and TSvibration for B1 phase at zero pressure. Also, plotted are 

the experimentally measured data [46] for comparison. As is obvious from the figure, although 

both the term TSvibration and Evibration increase monotonically with increasing temperature, the 

increase in former is more rapid as compared to that in latter, causing Fvibration to decrease the 

with increasing temperature. The theoretically determined variation of TSvibration with temperature 

shows excellent agreement with the experimental data [45]. Further, Table 5.3, compares the 

present theoretical vibrational entropy Svibration at 300 K with the experimental data [45]. The 

agreement with experiment is within ~ 4.4%. 



163 

 

-100

-50

0

50

100

150

0 200 400 600 800 1000

E
n

e
rg

y
 (

k
J
/m

o
l)

Temperature (K)

TS
vibration

E
vibration

F
vibration

 

Fig. 5.14 Theoretically calculated zero pressure Helmholtz free energy of ThC in B1 phase as a 

function of temperature. Also plotted are various components of the free energy. The solid 

curves represent the theoretical values and symbols correspond to the experimental data (Ref. 

45).  

 

5.3.4 Structural stability and equation of state of UC 

As a first step towards the analysis of structural stability of UC, the relative stability of non 

magnetic and antiferromagnetic orderings in B1 phase of UC has been examined. For this 

purpose the total energy of B1 phase at various volumes has been calculated for non magnetic as 

well as antiferromagnetic case using FP-LAPW method. For the antiferromagnetic case the B1 

structure has been represented as tetragonal cell having c/a = √2 with U atoms located at (0,0,0) 

and (1/2,1/2,1/2), and C atoms situated at (0,0,1/2) and (0,1/2,1/2). At all volumes the non 

magnetic structure was found to be lower in energy by ~ 0.1 mRy/formula unit than the 

antiferromagnetic one as shown in Fig. 5.15. Though this value of energy difference between 

antiferromagnetic and non magnetic structure is within the error limit of the present theoretical 

method, it suggests that there is no significant difference in total energy for the two 
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configurations.  Further, the equation state derived for both the ordering in B1 phase is displays 

in Fig. 5.16. As is clear from the figure the isotherm derived from the calculations for non 

magnetic case shows better agreement with the experimental data than that for the 

antiferromagnetic case. Therefore, further calculations to understand the structural, elastic and 

dynamical stability of UC under pressure have been performed for non magnetic case within 

GGA only.  
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Fig. 5.15 Comparison of energy of B1 phase of UC calculated for non magnetic and 

antiferromagnetic case using FP-LAPW method. 

 

To analyze the structural stability under hydrostatic compression, the total energy for B1, 

Pmmn and Immm phases at 0 K have been computed as a function of volume up to about 50 

GPa. In the Pmmn structure, which has a primitive orthorhombic cell, the atomic species U is 



165 

 

located at 2a (0 0 z1, ½ ½ -z1) and C is located at 2b (0 ½ z2, ½ 0 –z2) (international table of 

Crystallography, Vol. 2). It may be noted that the Pmmn structure is a distorted B1 phase 

(Fig.5.17) which for b/a =√2, c/a =1 and z1=z2=1/4 becomes identical to B1 phase. In other 

words, the B1 and Pmmn structure are related by group-subgroup relation. Further, if the internal 

parameters of Pmmn cell are changed such that z1=z2=1/4 the Pmmn Structure reduces to Immm 

structure. In present calculations, the optimization of both the axial ratios (c/a and b/a) and the 

z1, z2 of Pmmn structure has been carried out at all pressures. The optimum c/a, b/a, z1 and z2 at 

a given volume is the one for which the total energy is minimum. In order to analyze the 

structural stability of UC the enthalpies of B1, Pmmn and Immm structures have been calculated 

and compared as a function of pressure. In case of Pmmn phase, at each compression, 

optimization of both the axial ratios (c/a and b/a) and the z1, z2 have been performed and total 

energy of the optimized Pmmn phase as a function of pressure is determined. This energy is then 

used to generate P-V data for Pmmn phase, which finally is utilized to determine the enthalpy of 

this phase at various pressures. 
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Fig. 5.16  Comparison of equation of state of B1 phase of UC calculated for non magnetic and 

antiferromagnetic case using FP-LAPW method also plotted are experimental data [10] 
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Fig. 5.17 The relation between the Pmmn,B1 and Immm structure. The Pmmn structure (1×1×2 

supercell shown in left figure) has U atom located at 2a (0 0 z1, ½ ½ -z1) and C atom located at 

2b (0 ½ z2, ½ 0 –z2). The big and small filled circles correspond to U and C atom, respectively.  

 

 

In Fig. 5.18 the optimized axial ratios parameters of Pmmn structure of UC is plotted as a 

function of pressure. As is obvious from the figure, the optimum value of c/a and b/a ratio at 

zero pressure are 1.0 and √2, respectively and remain unchanged up to the pressure 20 GPa. 

Upon further compression, these ratios start increasing with pressure and almost saturate at a 

value of ~ 1.19 and ~ 1.45, at ~25 GPa. The optimized values of z1 and z2 are found to be 

identical and fixed at ¼ up to the pressure of ≤ 20 GPa as shown in Fig.5.19. At still higher 

pressures, these parameters start differing from each other and display opposite trend with 

increasing pressures i.e. z1 increases whereas z2 decreases with increasing pressure. This change 

in z1 and z2 continues with increasing pressure and acquire the values of ~ 0.31 and ~ 0.19 at 

25GPa which remain more or less fixed at these values at still higher pressures. This behavior of 



167 

 

axial ratios and the internal free parameters with pressure indicates that the B1 to Pmmn phase 

change occurs at ~ 20 GPa.  

Further, in Fig.5.20, a comparison of the enthalpies of Pmmn and Immm structures relative to 

B1 phase for UC has been presented. As shown in Fig.5.20, the onset of B1 to Pmmn transition 

takes place at ~ 20 GPa as compared to the experimental value of 27 GPa [10]. Further, it is clear 

from the Fig.5.20 that around the B1 to Pmmn transition pressure the enthalpy of Immm phase is 

very close to that of Pmmn phase.  
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Fig. 5.18 The axial ratios of Pmmn phase of UC as a function of pressure with experimental data 

[10] 
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Fig. 5.19 The internal parameters  ( z1 and z2 ) of Pmmn phase of UC as a function of pressure. 

-25

-20

-15

-10

-5

0

5

10

15

0 10 20 30 40 50

Pmmn

B1

Immm

[H
-H

B
1
] 
(m

R
y
/f
o

rm
u

la
 u

n
it
)

Pressure (GPa)

 

Fig. 5.20 Enthalpies of Pmmn and Immm phase with respect to that of B1 phase as a function of 

UC. 
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In Fig. 5.21, the equation of state determined from these calculations along with the 

experimental data [23] has been displayed. At a given pressure, the maximum deviation of 

theoretical volume from the experimental one is within ~ 5% and the transition is of first order 

having volume discontinuity ~2.5% at 20 GPa. Table 5.4 compares the zero pressure equilibrium 

volume, bulk modulus and its derivative derived from present theoretical calculations to the 

available experimental data [23] and theoretical values from other sources [9, 22]. The zero 

pressure equilibrium volume and bulk modulus derived from FP-LAPW calculations show a 

good agreement with experimental values [10], however, the pressure derivative of bulk modulus 

is overestimated by ~ 37%. The pesudopotential calculations underestimate the V0 by ~ 2.4% 

and overestimate the B0 by ~ 16%, whereas the B0′ compares well with the experiment [23]. It 

may be noted that the orthorhombic phase reported to occur at high pressure in the experimental 

study differs slightly from the body centered orthorhombic (bco) structure as two small intensity 

Bragg peaks present in the EDXRD pattern at pressure > 27 GPa could not be indexed as 

reflections from bco and the new structure is termed as the pseudo body centred orthorhombic 

structure [23]. Further, as shown in Fig. 5.21, the XRD pattern of Pmmn and Immm(bco) phases 

have also been calculated at ~30 GPa. It is clear from the figure that most of the intense peaks of 

Pmmn structure except few match with that of Immm structure. 
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Fig. 5.21 Comparison of equation of state of B1 and Pmmn phase of UC with experimental data 

[10]. 
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TABLE  5.4.  Various physical quantities at zero pressure and 0K for UC 

 

Physical 

quantities 

Present work  Experimental Theory other sources 

V0 (Å
3
/f. unit) 29.7, 30.56[a] 30.5[9]  

 

29.9 [6], 27.1[9] 

B0(GPa) 185.2, 158.3[a] 160[23], 

159[20],164[19] 

185[6], 168[9] 

204[22] 

B0′ 3.59, 4.94 [a] 3.6[23]  

C11(GPa) 273 318[20], 320[19] 350[9], 264[22] 

C12(GPa) 141 79[20], 86[19] 79 [9], 175[22] 

C44(GPa) 37 67 [20], 65[19] 65[9], 80[22] 

θD(K) 

γ 

206 

1.6 

366 [48]  
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Fig. 5.22 The calculated angle dispersive x-ray diffraction of Pmmn and Immm(bco) Phases of 

UC at ~ 30 GPa. Arrows in XRD plot are the peaks which are not present in Immm (bco) phase  
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5.3.5 Elastic stability and Dynamical stability of UC in B1 phase  
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Fig. 5.23 Elastic constants as a function of pressure for B1 phase of UC determined from static 

lattice calculations.  

 

Further, to understand this phase transition from mechanical instability point of view, the 

elastic constants of B1 phase have been calculated as a function of pressure using both 

pseudopotential method (quantum espresso) and all electron method (wien2K). In Table 5.4, 

elastic constant of B1 phase have been compared at zero pressure calculated in the present work 

with the available experimental values [19, 20] and those reported by other theoretical works [4, 

9]. The values of elastic constants deviate significantly from the experiment. The pseudopotential 

calculations underestimate the C11 and C44 by ~ 14% and ~ 43%, respectively, however, 

overestimate the C12 by ~ 64%. It may be noted that the deviation of C12 and C44 from 

experimental values is much large as compared to that of C11. As it is well known that the C12 

and C44 depend largely on long range forces, however, the C11 depends more on nearest 

neighbour interactions [49, 50], it appears that GGA is not able describe the long range 
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interactions properly in this compound. Also, listed in the Table 1 are the zero pressure Debye 

temperature (θD) determined from theoretical elastic constants using the procedure followed in 

the ref. (48, 51, 52) and Gruneisen parameter (γ) obtained by applying the Slater’s [53] 

definition. The theoretical value of θ obtained as 206 K from pseudopotential calculation is 

significantly lower than the experimental value of 366 K [54]. The lower value of θ obtained in 

the present theoretical calculations is due to the underestimation of shear elastic moduli C′ = 

(C11-C12)/2 and C44. Fig.5.23 displays the behaviour of theoretically determined elastic constants 

as a function of hydrostatic pressure. As can be seen from the figure the C44 modulus determined 

from pseudopotential calculations vanishes ~ 22 GPa which is just above the ~ 20 GPa, the 

transition pressure calculated for the onset of B1 to Pmmn transition. This is expected as the 

calculation of elastic constants involves total energy and not the enthalpy. The vanishing of the 

C44 modulus near the B1 → Pmmn transition point indicates that this structural transition is 

driven by elastic failure. 

 

Finally, the lattice dynamic calculations have been carried out to understand the dynamical 

stability of B1 phase under hydrostatic compression. The phonon spectra and corresponding 

phonon density of states of B1 phase determined at zero pressure and around the transition 

pressure are displayed in Fig. 5.24 along with the available experimental data [33]. The 

calculated phonon spectra at ambient conditions agree well with the experimental data [33]. As 

expected, the projected phonon density of states plotted in this figure, show that the high 

frequency vibrations are dominated by the C atom due to its lower atomic mass whereas the low 

frequency vibrations are dominated by U atom due to its higher mass. Further, it is clear from the 

Fig. 5.24, at ambient conditions the phonon frequencies of B1 phase in all the directions of 

Brillouin zone are real, supporting the experimentally observed dynamical stability at ambient 

conditions. However, around the transition point the transverse acoustic phonon branch along Γ-

X direction becomes imaginary causing dynamic instability in B1 phase. Additionally, the 

phonon instability around transition pressure is of long wavelength nature as it occurs near the 

Brillouin zone centre. This long wavelength phonon instability near the transition point further 
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confirms that the B1 → Pmmn transition is driven by elastic failure (the vanishing of C44 

modulus).  

 

12

8

4

0

ΓΓΓΓ X                 ΓΓΓΓ L        X    W      L

16 

12

8

4

0

F
re

q
u

e
n

cy
 (

T
h

z)

26 GPa

0 GPa

U dos

C dos

U dos

C dos

DOS
 

 

Fig. 5.24: Phonon spectra and phonon density of states of UC at ambient pressure and above 

transition pressure for B1 phase. Also plotted are the experimental data at zero pressure. The 

circles and diamonds correspond to the experimentally measured longitudinal and transverse 

phonons, respectively. 
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5.4 Summary 

 

To summarize, detailed first principles electronic band structure calculations have been 

carried out in ThC and UC as a function of hydrostatic compression. For ThC, the evolutionary 

structure search method has been used as a first step to search for the stable structures at few 

pressures. The method suggested the B1 phase to be of lowest enthalpy at 0 GPa. At ~25 GPa, 

however, the Pnma structure was found to have lowest enthalpy. At still higher pressure of ~ 60 

GPa the Cmcm phase showed to have lowest enthalpy and at a very high pressure of ~ 225 GPa, 

the B2 structure displayed the lowest enthalpy. After identifying the possible stable structures at 

different pressures, detailed total energy calculations have been performed on these structures as 

a function of hydrostatic compression and the enthalpies have been derived at various pressures. 

The comparison of enthalpies derived from these static lattice calculations suggested that ThC 

will transform from B1 phase to Pnma structure at ~ 19 GPa, which upon further compression 

will transform to another orthorhombic phase with space group symmetry Cmcm at ~ 36 GPa. 

The Cmcm structure will remain stable up to ~ 200 GPa and will transform to B2 phase upon 

further compression. This high pressure structural sequence predicted in the present work differs 

significantly from the experimental works [4, 13], which report that the ThC remains stable in 

B1 phase up to 50 GPa (the maximum pressure of the experiment). It has been speculated that 

the substoichiomerty of the samples which had the effect of reducing the interatomic spacing 

could be the reason for enhanced stability of B1 phase in experiments [4, 13]. It will be 

interesting to investigate this material experimentally for other various substoichiometries also, 

as it will add a new understanding on the effect of changing the carbon content on the structural 

stability of B1 phase under hydrostatic pressure. 

 

Further, to substantiate the findings of static lattice calculations, the lattice dynamic 

calculations have also been performed on these structures. It has been found that the B1 structure 

remains dynamically stable for pressures < 34 GPa and fails at this pressure as TA(X) phonon 

frequency ceases to zero. For Pnma structure, the phonon spectrum has been calculated just 

above the transition pressure (~ 25 GPa) and it was found that the structure is stable dynamically 
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also. Similar calculations on Cmcm phase around 45 GPa, demonstrated that this phase is 

dynamically stable at this pressure. The B2 structure, however, stabilized dynamically at ~ 125 

GPa i.e. much before the Cmcm to B2 transition pressure. These results of the lattice dynamic 

calculations further support predictions of the static lattice calculations. Finally, various 

thermophysical properties of B1 phase have been derived at ambient pressure and compared with 

the available experimental as well as theoretical data. The temperature dependence of zero 

pressure heat capacity and entropy displays good agreement with the experimental data [45]. 

In UC the first principles electronic band structure calculations have been performed using 

plane wave pseudo potential method and FP-LAPW method. The structural and elastic stability 

of UC has been examined under hydrostatic compression. The FP-LAPW calculations 

demonstrated that the lattice parameters and equation of state for non-magnetic ordering in B1 

phase displays good agreement with the experimental data indicating that it is sufficient to 

perform the calculations for non-magnetic case. The plane wave pseudo potential calculations 

suggested that B1 phase to Pmmn phase transition occurs at ~ 20 GPa as compared to the 

experimental value of 27 GPa [23]. Present calculations suggest that the high pressure phase of 

UC is a primitive orthorhombic (also named as pseudo bco in the experimental study [23]). The 

examination of elastic moduli of B1 phase along the hydrostatic compression path shows that the 

C44 shear modulus vanishes near the B1 to Pmmn transition point, indicating that this transition 

is driven by elastic instability. This argument is further supported by the lattice dynamical 

calculations performed on B1 phase of UC, which shows that the long wavelength TA phonon 

frequencies become imaginary around the transition point. Various physical quantities such as 

zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, 

Gruneisen parameter and elastic constants determined from the present calculations have been 

compared with the available data from experiments and other theoretical sources.  
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Chapter 6 

 

Summary and Future Scope 

 

The atomistic computational technologies (computational quantum mechanics and 

molecular dynamic simulations) have played an important role in the field of condensed 

matter. The advent of these theoretical tools has bridged the gap between fundamental 

materials science and materials engineering. Looking to this aspect, the present thesis 

attempts to understand the theoretical investigations of physical properties of several binary 

compounds using pseudopotentials and density functional theory (DFT) under extreme 

conditions of high pressure. Particularly, this final and concluding chapter of the thesis 

summarizes the entire work of the present thesis along with the important general conclusions 

from each chapter. Also the important discussions regarding the applicability and advantage 

of the present version of density functional theory has been highlighted.  

The first chapter has provided a brief description of the basic concepts and scopes of the 

high pressure research, and outlines the research work to be presented in the successive 

chapters of the thesis. Besides this, it also describes the different methods used to generate 

high pressure in materials and various characterization techniques utilized to understand the 

behavior of materials under high pressure. A brief description of modern DFT based ab-initio 

electronic band structure methods employed for understanding the material response under 

high pressures is presented in the first chapter of the thesis. Apart from this, a brief account of 

the algorithm used for the prediction of pressure induced phase transformations on various 

materials has also been provided in the thesis. An outline of the methodology used for 

examination of elastic stability and lattice dynamic stability has been provided in the same 

chapter.   

 

The second chapter has dealt with the theoretical calculations carried out on CdO. In 

CdO, the first principle ab-initio calculations at 0 K have been performed to analyze 

structural stability under pressure. The structural stability analysis carried out on NaCl type 
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(B1) and CsCl type (B2) structures suggests that the B1 phase will transforms to B2 phase at 

~87 GPa in good agreement with experimental value of 90.6 GPa [1]. Additionally, 

employing the theoretically determined thermal equation of state in conjunction with Rankine 

Hugoniot relation, the Hugoniot of B1 phase of this material has been derived. The pressure 

dependent elastic constants have been determined for both B1 and B2 phases. The 

examination of behavior of elastic moduli as a function of pressure demonstrates that the C44 

shear modulus of CdO in B1 phase fails at ~126GPa, suggesting the development of elastic 

instability in B1 phase around this pressure. In contrast the B2 phase remains elastically 

unstable up to a pressure of ~ 38GPa and emerges as an elastically stable structure beyond 

this pressure. To test the dynamical stability of B1 and B2 phase, the lattice dynamical 

calculations have been performed for both the phases at ambient conditions  as well as at high 

pressures. The phonon dispersion for B1 phase shows imaginary frequencies around ~116 

GPa. For the B2 phase the imaginary frequencies persist up to 56 GPa and thereafter all the 

frequencies became positive making the structure dynamically stable beyond this pressure. 

The analysis of elastic and dynamic stability as a function of hydrostatic compression 

suggests that the pressure induced B1 to B2 transition in CdO is driven by soft transverse 

acoustic phonon mode at the Brillouin zone boundary. 

 

The third chapter of the thesis has reported the detailed theoretical investigations carried 

out in transition metal carbides ScC, YC and TaC. The comparison of enthalpies of  B1 , 

Pmmn and B2 phases in ScC and YC determined as a function of pressure from static lattice 

calculations has predicted the B1 to Pmmn structural phase transition in these carbides, ruling 

out the possibility of direct B1 to B2 phase transition under hydrostatic compression. The 

pressures for B1 to Pmmn phase transition has been determined to be ~ 80 GPa in ScC and ~ 

30 GPa in YC. Present theoretically predicted B1 → Pmmn phase transition under high 

pressure has been further substantiated by present lattice dynamic calculations performed on 

these phases. The current theoretical work emphasizes that the phonons play dominant role in 

deciding the structural stability of these carbides, and rules out the previously proposed high 

pressure B2 phase by Soni et al [2]. The electronic band structure calculations performed on 

various plausible structures of TaC as a function of hydrostatic compression suggest that the 

B1 phase of this material will transform to B2 structure at a pressure of ~ 472 GPa. This 

structural phase transition has been substantiated further by examining the elastic and lattice 
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dynamic stability of B1 and B2 structures as a function of pressure up to ~ 600 GPa. Apart 

from high pressure investigations, the high temperature behavior of this material in B1 phase 

has also been examined and the temperature effect on various physical quantities such as 

volume and bulk modulus has been determined. The present theoretical calculations have 

been further utilized to derive various thermophysical quantities. 

 

The fourth chapter has presented the theoretical high pressure investigations on CeN. The 

structural stability analysis carried out on rare earth nitride CeN has suggested that B1 phase 

will transform to B10 structure at ~ 53 GPa, which upon further compression will transform 

to B2 phase at ~200 GPa. This theoretical finding does not agree with experimentally 

reported direct B1 to B2 phase transition at ~ 65 GPa [3]. Further, the high pressure structural 

sequence of B1 → B10 → B2 predicted from present static lattice calculations has been 

supported by present lattice dynamic calculations. Additionally, the analysis of the 

theoretically calculated x-ray diffraction pattern of B1, B10 and B2 structures at ~ 75 GPa 

suggests that more experiments at still high pressures are needed to be conducted to confirm 

whether the high pressure phase is B2 or B10. Finally, these theoretical predictions in CeN 

have been further substantiated by the outcomes of our theoretical calculations on LaN, in 

which we are able to reproduce the experimentally observed B1 → B10 transition [4].  

 

The theoretical investigation on carbides has been extended to monocarbides of light 

actinides i.e. UC and ThC and presented in the fifth chapter of the thesis. The detailed first 

principles electronic band structure calculations carried out in ThC as a function of 

hydrostatic compression in conjugation with evolutionary structure search method 

implemented in the USPEX code [7] suggests that the B1 phase has lowest enthalpy at 0 GPa. 

At ~25 GPa, however, the Pnma structure emerges as lowest enthalpy phase. At still higher 

pressure of ~ 60 GPa the Cmcm phase shows to have lowest enthalpy and at a very high 

pressure of ~ 225 GPa, the B2 structure shows the lowest enthalpy. After identifying the 

possible stable structures at few pressures, detailed total energy calculations have been 

performed on these structures at several hydrostatic compressions and the enthalpies as a 

function of pressure have been derived. The comparison of enthalpies derived from these 

static lattice calculations suggests that ThC transforms from B1 phase to Pnma structure at 

~19 GPa, which upon further compression transforms to another orthorhombic phase with 
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space group symmetry Cmcm at ~ 36 GPa. The Cmcm structure remains stable up to ~ 200 

GPa and transforms to B2 phase upon further compression. This high pressure structural 

sequence predicted in the present work is in sharp contrast with the experimental work [5], 

which reports that the ThC remains stable in B1 phase up to 50 GPa, the maximum pressure 

of the experiment. Further, to substantiate these theoretical findings of static lattice 

calculations, the lattice dynamic calculations have been performed on these structures. It has 

been found that the B1 structure remain dynamically stable for pressures < 33.8 GPa and fails 

at this pressure as TA(X) phonon frequency ceases to zero. For Pnma structure, the phonon 

spectrum calculated just above the transition pressure (~ 25 GPa) demonstrates the dynamic 

stability of this structure at this pressure. Similar calculations on Cmcm phase around 45 GPa, 

demonstrates that this phase is dynamically stable at this pressure. The B2 structure, however, 

has been stabilized dynamically at ~ 125 GPa i.e. much before the Cmcm to B2 transition 

pressure. These results of present lattice dynamic calculations are in favour of the present 

predictions of static lattice calculations. In the present scenario it is essential to re-examine 

the structural stability of ThC under high pressure experimentally to either reconcile with the 

theory or rule out the existence of these high pressure phases. 

 

The calculations on UC suggest that the onset of B1 to Pmmn phase transition occur at ~ 

20 GPa as compared to the experimental value of 27 GPa. In the present work the fractional 

coordinates of the U and C atoms in the high pressure phase could be quantified which 

otherwise in the experiment could not be determined. The examination of elastic moduli of 

B1 phase along the hydrostatic compression path shows that the C44 shear modulus vanishes 

near the B1 to Pmmn transition pressure, indicating that this transition is driven by elastic 

instability. This argument is further supported by the lattice dynamical calculations 

performed on B1 phase of UC, which shows that the long wavelength TA phonon frequencies 

become imaginary around the transition point. Various physical quantities such as zero 

pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, 

Gruneisen parameter and elastic constants determined from the present calculations have 

been compared with the available data from experiments and other theoretical sources.  

 

As far as prediction of crystal structure at high pressures in these binary solids is 

concerned only three structures B1, B2 and Pmmn have been examined in ScC, and YC, and 
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only five phases B1, B2, B3, B4 and B8 have been investigated in TaC.  The possibility of 

any other high pressure structures may require testing of still more phases, specially for ScC 

,YC and TaC, as there are no high pressure experiments on these materials up to the predicted 

B1 to Pmmn or B2 transition pressures. It is quite challenging to guess and perform total 

energy calculations for all the plausible structures to predict the high pressure phases of 

materials theoretically. For a new material, in order to find the stable structure, one has to 

carry out the total energy calculations as a function of compression for all the possible 

candidate structures which may be the structures of analogous system or new structures 

guessed from chemical intuition. The plot of total energy versus volume for all the structures 

is then used to find the energetically stable structures at different compressions or 

equivalently at different pressures among the tested ones. But problem arises when some 

unexpected structure or hitherto unknown structure gets stabilized at high pressure; as is the 

case for the high pressure B10 phase in LaN system. So, here, reliable structure prediction 

capabilities of computer simulation are necessary which will work without any prior 

knowledge, assumption or intuition of the system [6]. Simulated annealing [8-10], minima 

hopping [11], metadynamics [12-14], evolutionary algorithm USPEX (Universal Structure 

Predictor: Evolutionary Xtallography) [15-17] etc. are some of the methods which have been 

applied in recent past to explore the stable crystal structures in many materials by relaxing the 

randomly produced structures. These methods are implemented in the sophisticated 

simulation computer codes such as USPEX [18], CALYPSO [19], XtalOpt [20], to predict 

crystal structure.  

 

Further, all these theoretical calculations are based on the DFT. Despite the improvements 

in various approximations in DFT, it has its own limitations. There are difficulties in using 

DFT to properly describe intermolecular interactions, charge transfer excitations; transition 

states, global potential energy surfaces, some other strongly correlated systems and in 

calculations of the band gap of some semiconductors. The exchange-correlation potentials 

which are used in DFT calculations such as GGA and LDA are not exact. This produces 

some inherent error in these calculations. For example, the transition metals, lanthanides and 

actinides have partially filled inner orbitals with narrow energy bands which pose difficulty 

in simulating these materials and sometime the results are away from the experimental 

observations. For example, the simple material NiO has a partially filled 3d-band and 
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therefore would be expected to be a good conductor. However, strong coulomb repulsion (a 

correlation effect) between d-electrons makes NiO a wide-band gap insulator. Thus, strongly 

correlated materials have electronic structures that are neither simply free-electron-like nor 

completely ionic, but a mixture of both. Hence in  many cases one has to go beyond GGA 

and LDA approximations. The development of better approximations for the coulomb 

correlation and exchange correlation terms in such systems is still an area of active research.  

 

In DFT the use of pseudopotentials gives benefits in terms of computational speed and 

memory requirement for computations but still it has its drawbacks. In principle, the shape of 

the pseudopotential should not affect the chemical behaviour of a system, this happens only 

when the cut off radius of pseudopotential is very small. Often in DFT larger cut off radius 

are chosen to use lower plane wave cut off energy. The shape of the potential is then chosen 

so as to give results in a reasonably good agreement with experiments. The “transferability” 

of the pseudopotential i.e. how it will behave under different chemical environments, plays an 

important role when one generates a pseudopotential and it can only be improved by reducing 

its cut‐off radius. It should also be noted that ultrasoft pseudopotentials tend to be more 

transferable than the norm‐conserving ones. There are other issues related to 

pseudopotentials, which may or may not be of importance depending on the system under 

study and the properties one wishes to calculate. For example, deciding which electrons to be 

treated as 'core' and which to be treated as ‘valence’ or whether or not relativistic effects 

should be included is fully dependent on the kind of atoms involved in making the system 

under consideration. So the results of pseudopotential calculation have to be checked with all 

electron calculations. Developing better pseudopotentials is still an area of active research. 

 

The high pressure phase transitions investigated in the present thesis encourage us to 

study the multi component system under high pressure and high temperature as a future work. 

The molecular dynamics simulations of metals and binary systems could be the promising 

future scope of our research. The band structure of metallic complexes having large number 

of atoms in the unit cell is also an interesting problem to deal with in future. The work will 

also be extended for semiconducting materials in solid and liquid phase. Finally, the future 

experimental studies on the systems theoretical investigated in the present work will be of 
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great importance as these will either confirm or rule out the existence of theoretically 

predicted phase transitions.  
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