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Chapter 6 

Conclusion & Future perspective  

 

6.1  Conclusion 

In the present study, we carried out surface micro-structuring of stainless steel 304 (SS 304) and 

tantalum (Ta) samples via irradiation with a focused beam of nanosecond (ns) or femtosecond 

(fs) lasers. Surface micro-structuring of sample surfaces was carried out by varying laser fluence 

and number of laser pulses irradiating the target at a specific location. Surface micro-structured 

samples were characterized in terms of surface morphology, roughness, chemical phase, 

crystallographic phase and field emission behavior. Irradiation of targets with optimized laser 

fluence and number of laser pulses resulted in generation of self-assembled micro-protrusions on 

the surfaces. These micro-structured surfaces have shown improved field emission behavior in 

comparison to the pristine samples. In addition to the experimental work theoretical simulation 

was carried out to predict period of the generated micro-protrusions on SS 304 surface 

corresponding to irradiation with fs laser pulse.  

 Surface micro-structuring experiments on SS 304 targets using nanosecond laser revealed 

that targets irradiated with laser fluence ≥ 4 J/cm2 and 3000 pulses resulted in deep crater 

formation in the target. Self-assembled micro-protrusions were formed in the laser irradiated 

surface when incident laser fluence was ≤ 2 J/cm2. Average height of the generated micro-

protrusions on SS surface corresponding to 2 J/cm2 increased from 17 μm to 30 μm when 

number of incident laser pulses increased from 3000 to 9000. While initial growth of height of 

surface protrusions with incident number of pulses was rapid it slowed after certain number of 

laser pulses. When SS sample was irradiated with 0.7 J/cm2 and 6000 laser pulses surface micro-
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protrusions were formed over the entire laser irradiated spot. SS 304 sample treated with laser 

fluence of 0.7 J/cm2 was characterized for chemical phase. This sample showed that laser treated 

surface consists of iron oxides and iron nitrides. SS 304 sample surface micro-structured with 

laser fluence of 0.7 J/cm2 demonstrated low turn on field (~7.5 V/μm), high macroscopic field 

enhancement factor (~585) and delivered emission current density up to 340 μA/cm2. Formal 

area efficiency of emission for this specimen was estimated to be ~2.7×10-10 which implies that a 

very small fraction of the actual specimen was actually contributing towards emission of 

electrons. Field emission current from the laser micro-structured specimen was fairly stable over 

the test period.  

Similarly, surface micro-protrusions were generated on Ta targets via nanosecond laser 

irradiation with laser fluence of 0.9 J/cm2 and varying number of laser pulses in the range 3000 

to 9000. In the case of Ta too, height of the generated surface micro-protrusions and mean 

roughness of the laser treated surface increased with increasing number of irradiating pulses. 

Raman spectroscopy results revealed that chemical phase of the laser treated region varied with 

position within the laser irradiated region. Central region of the laser irradiated spots where 

incident local laser fuence was higher remained in metallic phase while periphery of the 

irradiated spot consists of Ta2O5. Laser treated Ta samples showed enhanced field emission. Ta 

sample treated with 9000 laser pulses demonstrated lowest Eon (~3.7 V/μm) and delivered 

maximum emission current density (~386 μA/cm2) among all the laser treated Ta samples. 

However, field emission current stability of this sample was poor in comparison to the other laser 

treated Ta samples.  

Dense array of self-assembled micro-protrusions were generated on SS sample surfaces 

using optimized fs laser fluence and number of incident pulses per location. SS sample showed 
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generation of surface micro-protrusions with number density ~5.6 x 105 micro-

protrusions/cm2corresponding to irradiation with laser fluence of 0.5 J/cm2 and number of laser 

pulses per location equal to ~3.1 x 104. When SS sample was irradiated with laser fluence of 0.9 

J/cm2 and number of laser pulses equal to ~2250 (corresponding to target scan speed of 400 

μm/s) surface micro-protrusions were generated with number density ~1.5 x 106 micro-

protrusions/cm2. SS sample micro-structured with ~3.1 x 104 laser pulses per location at laser 

fluence of 0.5 J/cm2 showed superior field emission behavior in comparison to SS sample 

surface modified with 2250 laser pulses per location at laser fluence of 0.9 J/cm2. Measured turn 

on field and estimated macroscopic field enhancement factor corresponding to SS specimen 

treated with laser fluence of 0.5 J/cm2 were ~4.1 V/μm and ~1830, respectively. The observed 

poor field emission behavior of the SS sample treated with 0.9 J/cm2 was explained on the basis 

of field screening effect.   

 Similarly, dense array of self-assembled micro-protrusions were generated on Ta surfaces 

via irradiation with fs laser pulses with optimized laser fluence levels for achieving enhanced 

field emission. Number densities of the generated surface micro-protrusions on Ta samples 

treated with laser fluence levels of 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2 were ~8.8 x 105, ~7.5 x 

105 and ~3.5 x 105 μ-protrusions/cm2, respectively. Fs laser modified Ta surfaces were found to 

predominantly consist of Ta2O5. The fs laser modified Ta samples demonstrated improvement in 

field emission behavior. Ta sample treated with laser fluence of 0.55 J/cm2 has shown lowest 

turn on field (4.0 ± 0.6 V/μm) and highest macroscopic field enhancement factor (4400 ± 500) 

among all the fs laser treated Ta samples. However, its field emission current stability was 

poorer than other laser modified samples.  
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 In addition to experimental investigations on ns and fs laser induced surface modification 

and their characterization we carried out a theoretical simulation study to predict period of the 

generated surface micro-protrusions on SS 304 and titanium surfaces by fs laser. Simulated 

period of the generated surface micro-protrusions on Ti surface as a function of laser fluence was 

compared with reported experimental data on Ti to validate our theoretical model. Simulated 

trend of the variation of micro-protrusions period with laser fluence broadly matched with the 

reported data confirming validity of the model. Thereafter, this model was used to simulate 

period of the generated micro-protrusions on SS 304 sample corresponding to fs laser irradiation.  

6.2  Future perspective of the work  

Future scope of the work described in this thesis includes both experimental and theoretical 

investigations. In future, other materials such as Tungsten (W), Molybdenum (Mo) and Niobium 

(Nb) could be surface micro-structured using both fs, as well as, ns lasers. In order to achieve 

high field emission current density at low applied field along with stable emission current, laser 

parameters would have to be optimized. Also materials having low work function, high thermal 

and electrical conductivity, low vapor pressure, high melting point and high hardness could be 

deposited on surface micro-structured surfaces to achieve enhanced field emission current 

density, stable emission current and long cathode life time. In future, simulation would be further 

improved by incorporating change in material properties as a function of temperature to predict 

number density and height of the cones and range of fluence over which cones are formed. 

Simulation would also be extended to account for multiple laser pulses instead of single pulse 

condition. 
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Summary 

In the present thesis, surface micro-structuring of metallic targets such as Stainless Steel 304 (SS 

304) and Tantalum (Ta) have been carried out via direct irradiation with nanosecond (ns) and 

femtosecond (fs) laser pulses with the aim to generate high density micro (μ)-protrusions for 

achieving field emission enhancement. Surface micro-structuring of sample surfaces was carried 

out by varying laser fluence and number of laser pulses irradiating the target at a specific 

location. The surface μ-structured specimens have been investigated in terms of surface 

morphology, chemical phase, crystallinity and their field emission behavior.  

  Target surfaces irradiated with optimum laser fluence and number of laser pulses has 

shown generation of dense μ-protrusions on their surfaces. Typical areal number density of the 

generated surface μ-protrusions on SS 304 and Ta targets were of the order of ~105 to 106 μ-

protrusions/cm2 corresponding to fs laser based treatment. These μ-protrusions causes 

enhancement of local field on their tips resulting in enhanced field emission compared to the 

pristine surfaces. Laser modified SS 304 and Ta targets have shown high macroscopic field 

enhancement factor in the range of 585−1830 and 270−4500, respectively.  

 Theoretical simulation to predict spatial period of the generated surface μ-protrusions/areal 

number density for SS 304 and Ti targets as a function of laser fluence has been carried out. Our 

numerical model has been validated by comparing simulation results with the reported 

experimental results for Ti. Simulated variation of the period of the generated surfaces micro-

protrusions with incident laser fluence was found to be in good agreement with the reported 

experimental data.  
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Chapter 1 

Introduction and Objectives of the Study  

 

1.1 Introduction  

Surface modification involves tailoring specific surface properties of materials without altering 

their bulk properties. Surface modifications have resulted in significant improvement in 

performance of these materials in a variety of applications. For example, surface micro-

structuring of solar cells has shown enhanced conversion efficiency due to increase in 

absorptivity of the surface [1], generation of surface micro/nano structures on sensing materials 

resulted in increase in surface area and hence improved sensitivity [2-3], surface textured 

implants have demonstrated faster growth of body tissues and improved osseointegration [4, 5], 

surface modification has enhanced resistance of samples against corrosion and wear [6, 7], 

surface micro-structured catalysts have shown superior catalytic activity [8, 9] and surface 

micro/nano structured field emission cathodes have shown high emission current densities at low 

applied voltages [10-13].    

 Field emitting cathode (FEC) is a device which ejects electrons from its surface on 

account of applied high electric fields. FECs are widely used in vacuum micro/nano electronic 

devices and related technologies due to its offered advantages over thermionic emission 

cathodes. These include− low power consumption (no energy is wasted in form of heat as in the 

case of thermionic cathodes), high brightness (~100 to 1000 times higher brightness than 

thermionic cathodes), low energy spread, high speed switching capability (switching 

demonstrated up to few GHz), compactness and longer cathode life [14-16]. FECs can be either 

in the form of single tip field emitter or large area field emitter (LAFE) consisting of an 
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ensemble of several emitters on a surface. Single tip field emitters offer advantage of high 

brightness in comparison to LAFEs but limitation comes from current handling capabilities. On 

the other hand LAFEs can withstand higher emission current in comparison to single tip field 

emitters without damage. There are many applications such as electron beam accelerators, free 

electron lasers, flat panel displays, generation and amplification of microwaves etc., where use of 

LAFEs improves performance of the devices. Therefore, development of FECs delivering high 

emission current density with good stability at low operating electric fields has attracted 

considerable interest of researchers. Performance of a LAFE is governed by properties of the 

cathode material, surface morphology and ambient environment of operation. Hence, 

performance of a LAFE can be improved via either tailoring material properties or surface 

morphology. Field emission cathodes with micro/nano surface features have been reported to 

show improved field emission behavior.  

 Numerous techniques have been employed to generate micro/nano protrusions on cathode 

surfaces such as Spindt technique [17], ion beam etching [18], electrochemical etching [19], 

thermal oxidation [20], hydrothermal method [21] and pulsed laser irradiation [12]. Each of these 

techniques has its own advantages and limitations. Pulsed laser irradiation based surface micro-

structuring technique offers numerous advantages such as simplicity, single step and non-contact 

processing, clean processing as no use of chemicals is involved, high processing speed, high 

degree of reproducibility, good spatial resolution, easy automation, flexibility in terms of control 

over laser parameters and choice of processing environment [12].    

1.2 Objectives of the study 

The main objective of this thesis was to generate dense micro-protrusions on metallic target 

surfaces (Stainless steel 304 and Tantalum) using nanosecond (ns) and femtosecond (fs) pulsed 
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laser irradiation in order to achieve enhanced field emission. Other associated objectives of this 

study were – 

i. Investigation on the effects of laser fluence, number of incident pulses and pulse duration 

on surface morphology, chemical phase, and field emission behavior of laser micro-

structured specimens. 

ii. Theoretical simulation to predict areal number density/period of the generated surface 

micro-protrusions on laser treated surfaces.   

1.3  Fundamentals of pulsed laser based surface micro/nano-structuring  

Lasers have ability to deposit energy in the target at precise location within a localized volume. 

The energy transferred from laser to the target leads to heating of the target and change in 

surface properties depending upon the amount of energy deposited and the volume over which 

energy has been deposited. Laser based surface modification of materials occurs mainly in four 

steps namely– (i) Absorption of laser beam in target (ii) Generation of heat, heating of the target 

and phase change (iii) Flow of melt pool (iii) Energy dissipation and re-solidification. To 

understand different processes/mechanisms in laser surface modification understanding of laser–

matter interaction is important. Since in the present study we have carried out surface micro-

structuring of metals hence mechanism for interaction of laser beam with metals has be 

explained below.   

The first and the most important step in laser based surface processing of materials is 

absorption of incident laser beam by the target. It is this absorbed energy in the target which 

leads to modifications in the material. When a laser beam is incident on metal surface a fraction 

of the total incident laser power is coupled to the target depending upon reflectivity of the target 

(R). Reflectivity of the target depends on target material properties, angle of incidence, 
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polarization, and the wavelength of the laser beam [22]. The fraction of laser energy (1-R) which 

enters the target surface first gets absorbed by free electrons by inverse bremsstrahlung process 

causing these electrons to reach their excited state. These heated electrons collide with other 

electrons present in the target and transfer their energy coming into thermal equilibrium among 

themselves. Excited electrons then transfer energy to lattice via electron phonon scattering 

process. The exchange of energy between electrons and phonons leads to thermalization of 

electronic and lattice subsystems over a time scale of few picoseconds. After occurrence of 

thermalization a single temperature of the target is defined and all the processes occurring 

thenafter are thermal in nature process.  

The energy absorbed from the laser beam thus leads to increase in target temperature. If 

the absorbed energy is sufficiently high it causes melting of the target up to certain depth or even 

vaporization. The target also dissipates energy contained in the absorption volume to the bulk of 

the target through thermal diffusion and to the ambience via radiation loss mechanism. While in 

molten phase, liquid in the melt pool may move and get be transported from one place to another 

place. Based on heat dissipation mechanisms temperature of the target material starts reducing 

and re-solidification of the target takes place at the end of the incident optical pulse resulting in 

formation of new material surface properties. Schematic diagram depicting time scales of 

different processes occurring in laser-matter interaction is shown in Fig. 1.1. 
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hydrophobic surface. This surface has shown significant reduction in bacterial growth on the 

surface. Ref. [27] has reported wettability control of SS 316L by fs laser induced surface 

modification. In ref. [28], authors have micro-structured copper surface using fs laser irradiation 

with continuously scanning the target. Here, authors have reported that by optimizing processing 

parameters and modifying surface chemistry super hydrophobic surface (contact angle up to 

165o) can be generated. In ref. [29], authors have reported generation of superhydrophobic 

silicon surface by femtosecond laser irradiation.  

 Nanosecond and femtosecond laser induced surface modification technique is also 

employed for modifying surface morphology of the bio-implants. Surface textured implants have 

been reported to demonstrate improvement in their performances [4, 5, 30]. In ref. [4], authors 

have carried surface micro-structuring of Ti implants via Nd:YAG laser irradiation and 

compared bonding strength of these implants with mechanically machined Ti implants in rats. 

Here, authors observed that bonding of laser micro-structured Ti implant was superior to 

machined Ti implant. Ref. [5] has reported that laser (355 nm wavelength) based surface micro-

structuring of Ti dental implants showed reduced bio-film formation in comparison to Ti 

surfaces prepared via grit ballast, enamel and machined techniques. In ref. [30], S. Mukherji et 

al. have reported that micro-texturing of Ti6Al4V bio-implant with fiber laser has resulted in 

enhanced biocompatibility.   

Another application in which laser based surface micro-texturing has shown great 

potential is tribology. There are many reports available in literature demonstrating that laser 

micro-structuring of materials results in reduced friction induced wear [31-35].  

Nanosecond and femtosecond laser induced surface micro/nanostructuring of the solar 

cells has been reported to show enhanced efficiency [1, 36, 37]. Ref. [1] has reported that 
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irradiation of solar cell surface by ArF excimer laser leads to formation of array of micro-

protrusions resulting enhancement of absorptivity and hence efficiency of solar cell. In Ref. [36], 

authors have generated nanostructures on Si surface which resulted in increase in responsivity 

and conversion efficiency of the photovoltaic cell. In Ref. [37], B. K. Nayak et al., have reported 

that fs laser induced micro-structuring of thin a-Si:H films results in significant enhancement in 

efficiency of solar cell.  

Apart from the aforementioned applications of the laser surface modification technique 

field emission from large area cathodes have been reported to improve via generation of self-

assembled mciro/nano protrusions on emitter surface [10-13].    

1.5 Basics of field electron emission   

Liberation of electrons from solid surface to vacuum is called electron emission. Electron 

emission from a surface can occur via any of the four basic mechanisms, namely (i) thermionic 

emission (ii) photo-electric emission (iii) secondary emission and (iv) field emission. Thermionic 

emission is the process of electron emission from the cathode surface due to heating which 

provides sufficient thermal energy to electrons to overcome the potential barrier at the surface. In 

photo-electric emission electrons are ejected from the cathode surface via irradiation with 

photons of sufficient energy. Secondary electrons are emitted from the surface by via 

bombardment of the surface with energetic particles. In field electron emission process emission 

of electrons takes places due to application of intense electric field. Since in field emission 

process cathode surface remains at close to room temperature field electron emission is also 

known as cold field emission or in short field emission.      

Field emission from cold metal surfaces was first observed by R. W. Wood in 1897 [38]. 

W. Schottky made first attempt to explain this phenomenon based on classical theory in 1923 
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[39]. However, experimentally observed value of turn on field was 10 to 50 times lower than the 

values predicted by W. Schottky model. In year 1928, R. H. Fowler and L.W. Nordheim gave a 

theory of field emission based on quantum mechanical tunneling of electrons through surface 

potential barrier [40]. This theory is commonly known as F-N theory. F-N theory describes 

relation between field emission current from bulk metal surface and applied electric field. F-N 

theory was experimentally validated by E. Muller by measuring emission current from clean 

tungsten (W) tips [41]. 

1.6  Fowler-Nordheim (FN) theory for field emission  

F-N theory explains field emission from a bulk metal surface on the basis of quantum 

mechanical tunneling of electrons. Tunneling probability of electrons through a potential barrier 

depends on potential barrier height and thickness. Field emission of electrons takes place at high 

electric fields on the surface (in the range 107−108 V/cm). Applied electric field leads to potential 

barrier narrowing and height reduction both resulting in increasing transmission probability of 

electrons [42]. Field emission from metals can be understood as following- 

In metals free electrons are present in high number density which can move freely within 

the metal. Therefore, these free electrons are considered as free electron gas. However, in 

absence of external source these free electrons in metal cannot escape from the metal surface 

because there exists a potential barrier of infinite width and height equal to work function at 

metal to vacuum interface. When external electric field is applied on the surface, shape of the 

potential barrier is deformed into a triangular shape of finite thickness. Thickness of the potential 

barrier depends on magnitude of the field on the surface (local field). The triangular shape of 

barrier is further modified to rounded shape near to surface due to image force. Image force is 

generated due to interaction between emitted electrons and conducting surface. Therefore, shape 
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The aforementioned reduction in height and width of the potential barrier leads to significant 

increase in transmission probability of electrons through tunneling process provided electric field 

on the surface is high. F-N considered some assumptions and solved Schrodinger equation to 

find a relationship between the emission current density and the applied electric field as− 

J୐ ൌ aφିଵE୐
ଶ expሺെ ୠ஦

య
మ

୉ై
ሻ    ………… (1.3) 

 Here, JL is local emission current density, EL is local electric field on the surface and φ is work 

function of the material. a (=1.5414 34 μA eV V-2) and b (= 6.830890 eV-2 V nm-1) are universal 

constants called first and second FN constants. Assumptions considered by F-N were [45] –  

i. Emitter is a metal with smooth and flat surface and there is a constant field outside. 

ii. Ignored atomic structure of emitter.  

iii. Potential barrier is exact triangular i.e. ignored exchange and correlation effect. 

iv. Assumed Sommerfeld type free electron model. 

v. Emitter temperature is 0 K.  

vi. Several mathematical approximations. 

However, exact triangular potential barrier is physically unrealistic. Later on Nordheim tried to 

calculate transmission probability of electrons for Schottky–Nordheim (SN) type barrier. 

Unfortunately, his calculations significantly under predicted the transmission probability [45].  

 In year 1950, Murphy and Good (MG) made corrections to the existing field emission 

theory, resulting in following revised FN type equations – 

J୐ ൌ t୊
ିଶaφିଵ E୐

ଶexp ቆെν୊
ୠ஦

య
మ

୉ై
ቇ    ………….. (1.4) 
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Where, tF and νF are mathematical functions sometimes called as field emission elliptic functions 

[31]. In FN type equation proposed by MG all other assumptions were same as FN assumptions 

except the barrier form. Further, MG used JWKB (Jeffreys Wentzel Kramers Brillouin) 

approximation that does not generate tunneling pre-factor which should be present. Technically 

complete equation for relating field emission current from large area field emitter with the 

applied macroscopic electric field is given by [45] –  

J୫ ൌ  λ୫ a φିଵβ୫
ଶ E୫

ଶ  exp ሺെ ஝ూୠ஦
య
మ

ஒౣ୉ౣ
ሻ…………… (1.5) 

Here, Jm and Em are macroscopic field emission current density and macroscopic applied electric 

field, respectively. λm is macroscopic pre exponential factor, β୫ is macroscopic field 

enhancement factor and νF is barrier form correction factor.  

1.7  Parameters affecting field emission from an emitter 

Field emission from an emitter depends upon its properties such as morphology, work function, 

electrical and thermal conductivity, hardness, vapor pressure, adsorption on the surface, residual 

gas pressure. Influences of some of these parameters have been summarized below.  

1.7.1  Effect of emitter surface morphology 

Surface morphology of a field emitter plays a vital role on its field emission behavior. If there are 

surface micro/nano features on the cathode surface they lead to increase in local (microscopic) 

electric field on the surface by concentrating electric field lines on their tips. This phenomenon is 

called local field enhancement. Local field enhancement leads to significantly high electric field 

on the cathode surface even at low applied field resulting in enhanced field emission. Schematic 

diagram depicting equipotential lines between tip emitter array and plate anode is shown in Fig. 
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from a cathode surface. Cathode having lower work function delivers higher emission current at 

a given external electric field (Equation 1.5).   

1.7.3  Electrical and thermal conductivity of emitter 

Electrical and thermal conductivities of the emitter surface plays important role in determining 

current handling capacity of the emitter. High electric conductivity ensures supply of electrons at 

surface for emission and low energy dissipation due to Joule heating. At large emission current 

level Joule heating of the emitter surface can lead to damage of surface micro-protrusions which 

are taking part in emission. Similarly, high thermal conductivity of the surface helps in removal 

of generated heat via Joule heating effect and minimizes chances of damage of emitting tips due 

to joule heating effect. Hence, high electrical conductivity and thermal conductivity is desired for 

large emission current handling. However, apart from joule heating Nottingham effect can also 

plays role in heating/cooling of the micro-protrusions during field emission [48].   

 

1.7.4  Hardness of emitter surface  

During the process of field emission residual gas atoms in the vacuum chamber get ionized and 

are accelerated by electric field and collide with emitter surface. This collision of ions with 

emitter surface causes physical sputtering of the surface resulting in reduced service life of the 

emitter. High hardness of the emitter material reduces sputtering yield and increases life time of 

the emitter.   

1.7.5 Emitter material vapor pressure 

Low vapor pressure of the emitter can generate sufficient number of atoms near tip surface 

causing breakdown and arcing effect at the surface. This phenomenon limits the applied electric 

field up to which such an emitter can be used.  
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1.7.6  Residual gas pressure  

Emission current from a field emitter strongly depends on the ambient pressure. Electric field 

required for discharge to occur in a gas medium depends upon pressure and nature of the gas. 

Since the electric field required for field emission of electrons is ~108 V/m whereas breakdown 

of the gas occurs at electric field ~107 V/m [49]. Hence, vacuum is required for field emission. 

Another important pressure dependent effect is ionization of residual gas atoms between 

anode and cathode. These generated ions get accelerated due to applied electric field and collide 

with the surface of the cathode resulting in damage of the surface protrusions. Degradation of 

surface protrusions results in deterioration of the field emission.  

Additionally, high ambient pressure leads to adsorption and desorption of the gas 

molecules on the emitter surface resulting in fluctuation in field emission current. Effect of 

residual gas can be reduced by working in ultra high vacuum.  

1.8 Desired material properties of a good field emitter 

Performance of a field emitter cathode strongly depends on properties of the emitter material. 

Desired material properties of a good field emitter are – 

i. Low work function. 

ii. High electrical conductivity. 

iii. High thermal conductivity. 

iv. High hardness. 

v. Very good chemical inertness. 

vi. Low vapor pressure. 

vii. High melting point.  
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1.9  Reported work on field emission enhancement via surface modification─ Review 

There exist several reports on generation of variety of surface morphologies on the cathode 

surface using different methods and their field emission characterization. These include nano-

rods, urchin nanostructures, nano-fibers, nanobelts, nanoflakes, micro/nano-spikes array, nano-

pyramids on different materials. Field emission cathodes with aforementioned surface 

morphologies have demonstrated improved field emission behavior. Results of some of these 

investigations have been summarized below. 

1.9.1 Field emission from urchin like nanostructures 

There are several reports presenting generation of urchin like nanostructures on different material 

surfaces and their field emission characterization. Cathode surfaces with urchin type 

nanostructures have resulted in improved field emission behavior [50-52]. Ref. [50] has reported 

generation of urchin type nanostructure of Co3O4 by depositing Co3O4 films by pulsed laser 

deposition (PLD) technique and subsequently annealing these films at 600oC for 8hrs in air. 

Co3O4 films with urchin type nanostructures have shown superior field emission in comparison 

to Co3O4 films without urchin structures. Measured turn on electric fields (defined for emission 

current density of 10 μA/cm2) for films with and without urchin nanostructures were ~3 V/μm 

and 5 V/μm, respectively. The term "turn on field" used in this thesis is basically a macroscopic 

electric field unless otherwise clearly stated. Also, maximum delivered emission current density 

for film with surface urchins was 480 μA/cm2 at 6 V/μm while emission current density for 

Co3O4 film without urchin was < 100 μA/cm2 at 6 V/μm.  

In ref. [51], Li-Chieh Hsu et al.have generated 3-dimensional urchin like Fe2O3 structures 

on Fe spheres via thermal oxidation process. Here substrate with Fe spheres was heated for 10 

hrs at 300oC temperature resulted in formation of urchin like structure with tip diameter of the 
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spine in the range 10-20 nm. This surface has demonstrated good field emission with turn on 

field ~ 2.8 V/μm and maximum delivered current density upto ~ 50 μA/cm2 at ~3.5 V/μm.  

In another report [52], authors have generated of ZnO urchin nanostructures using 

hydrothermal route which have demonstrated good field emission performance with turn on field 

(defined for 10μA/cm2) equal to ~3.7 V/μm and delivered emission current density up to ~4 

mA/cm2. 

1.9.2  Field emission from nanowires/nano rods  

Researchers have also grown high density nanowires on various cathode surfaces showing 

improved field emission behavior [53-59]. In ref. [53], authors have reported synthesis of α-

Fe2O3 nanowires via thermal oxidation of iron films and investigation on their field emission 

behavior. In this work, authors have observed that for a given heating temperature (350oC) and 

time (10 h) number density of the grown nanowires increased with increasing thickness of the 

iron films used for thermal oxidation. Also, there is an optimum number density of the nanowires 

for maximum field emission. Specimen with medium number density of nanowires on the 

surface (~7.8 x 108 nanowire/cm2)has shown lowest turn on field (~3.3 V/μm).  

X. Sun et. al. [54] have reported that high density iron nanoneedles are formed on iron 

plate via thermal oxidation process. Surfaces with grown surface nanoneedles have demonstrated 

improved field emission behavior with turn on field of ~ 4.8 V/μm due to local enhancement of 

electric field on surface.  

In other report, fabrication of LaB6 nanowires via catalyst free chemical vapor deposition 

technique and their field emission behavior investigation has been reported [55]. In best case 

LaB6 nanowires array have shown turn on field as low as 1.8 V/μm and delivered emission 

current density upto ~5.6 mA/cm2 at applied electric field of ~2.9 Vμm-1 at room temperature.  
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Field emission behavior from CuO nanowires grown on Cu via thermal oxidation process 

has been reported in ref. [56]. Here, surfaces with CuO nanowires have demonstrated turn on 

fields in the range 3.5 - 4.5 Vμm-1 and delivered maximum current of ~ 0.45 mA at applied field 

of ~7 V/μm. In another work CuO nanowires generated via thermal oxidation has shown turn on 

field equal to ~ 0.7 Vμm-1 and maximum delivered current density ~ 5-6 mA [57].  

Growth of vertically aligned Co nanowires grown via electro-deposition technique and 

their field emission behavior is reported in ref. [58].  

In a work reported in [59], authors have synthesis of ZnO nanowire array on silicon 

substrate via chemical vapor deposition which has shown good field emission behavior. In this 

work authors have also observed that morphology and field emission behavior both can be 

tailored by varying growth time.    

1.9.3  Field emission from nanofibers  

Many researchers have demonstrated that one dimensional nanofibers and nanobelts and two 

dimensional sheet like structures show promising field emission behavior [60-61]. For example, 

Ref. [60] reports generation of α-MoO3 nanofibers on Mo via hydrothermal process and its field 

emission characteristics. The surface with grown MoO3 nanofibers has shown low turn on field 

(~2.5 V/μm) and high field enhancement factor (~ 4347).  

Field emission behavior of dense, sparse and patterned carbon nanofibers have been 

reported in [61]. In this work, carbon nanofibers have been produced via plasma enhanced 

chemical vapor deposition technique. Density of the nanofibers in dense, sparse and array forms 

were 109 nanofibers/cm2, 107 nanofibers/cm2 and 106 nanofibers/cm2, respectively. All these 

specimens showed enhanced field emission. However, performance of array of nano fibers was 

superior among all the samples. The observed higher enhancement in array of nanofibers has 
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been explained on the basis of absence of field screening effect due to lower number density of 

emitters.  

 

1.9.4  Field emission from nanobelts  

Cathodes having nanobelts on their surfaces have demonstrated significant enhancement in field 

emission. Ref [62] reports formation of GaN nanobelts on Si surface and its field emission 

behavior. Generated GaN nanobelts on Si surface have delivered emission current density upto 

~350μA/cm2 at applied electric field of ~13.5 V/μm. Also, emission current from this specimen 

was found to be fairly stable over the test period of ~6 hrs.  

Field emission investigation of the TiS3 nanobelt films generated via surface assisted 

chemical vapor transport is reported in [63]. TiS3 nanobelt films produced in this study have 

shown excellent field emission with turn on field of ~ 1 V/μm and delivered current density up to 

4 mA/cm2.  

1.9.5  Field emission from hybrid nanostructures  

Apart from generation of nanostructures of metal oxides and metal sulfides for field 

enhancement applications field emission from hybrid nanostructures have also been reported [64 

-67]. For example Ref. [64] has reported that Si tip array coated with monolayer of graphene 

shows better field emission behavior. Similarly, references [65] & [66] have reported that ZnO 

and Cu2O coated with GdB6 films demonstrated improved field emission behavior. Ref. [67] has 

reported that coating of Si tips array with LaB6 results in significant improvement in field 

emission behavior.   
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1.9.6  Field emission from laser micro-structured surfaces 

There are many reports on field emission investigation from self-assembled micro-

protrusions/spikes on cathode surfaces which have been generated by irradiation with 

nanosecond and femtosecond pulsed lasers. These laser micro-structured surfaces have shown 

promising field emission behavior. Some of the investigations on field emission behavior of laser 

modified emitters are summarized below.  

Y. Liu et al. [68] have reported fabrication of self-organized conical microstructures of 

cyanoacrylate-carbon nanotube composites by irradiation with excimer laser and their field 

emission behavior characterization. Their investigation has shown that sharp conical features are 

formed corresponding to for laser fluence in the range 1.5 – 2.0 J/cm2 and number of laser pulses 

in the range of several thousands. In this work target surface micro-structured with 8000 laser 

pulses at laser fluence of 1.5 J/cm2 has shown low turn on field (2.0 V/μm) and high emission 

current density (300 μA/cm2) in comparison to untreated sample which showed turn on field 

equal to ~3.5 V/μm and delivered emission current density only up to 5 μA/cm2.   

In another investigation [69], authors have reported generation of dense array of micro-

conical features on Si surface via irradiation with nanosecond (ns) and femtosecond (fs) lasers 

under SF6 environment. In this investigation surface micro-spike are generated on the surface by 

varying incident laser fluence in the range 1 J/cm2to 3.5 J/cm2. Observed separation between the 

grown spikes were in the range ~2.5 μm to 5μm and 20 μm to 25μm corresponding to Si surfaces 

treated with fs and ns lasers. These surface micro-structured specimens have shown low turn on 

field (~2 V/μm) and high emission current density up to 1 mA/cm2 @ 4 V/μm. 

Similarly, ref. [70] has reported micro-structuring of copper surfaces using nanosecond 

pulsed Nd:YAG lasers irradiation and their field emission characterization. Laser micro-
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structured specimens have shown turn on field as low as ~5.5 V/μm and field enhancement 

factor up to ~2730.  

Picosecond laser based generation of micro/nano structures on LaB6 surfaces have been 

reported in ref. [71]. In this work, laser surface modified LaB6 surfaces have demonstrated low 

turn on field (~2.3 V/μm [defined for current density ~10μA/cm2) and delivered emission current 

density up to 530 μA/cm2]). 

In Ref. [72], authors have grown laser induced self-assembled micro-cones on Si and Ni 

surfaces and incorporated carbon nano-tubes (CNTs) in these protrusions for enhanced field 

emission. These micro-structured specimens have shown very good field emission with turn on 

field (defined for ~10 μA/cm2 current density) in the range 1.0 to 3 V/μm and emission current 

density upto ~100 μA/cm2. 

Q. Z. Zhao [73] et al., have reported generation of carbon micro-cones on graphite 

surface by femtosecond laser irradiation and their field emission characteristics. Graphite surface 

with generated micro-cones has shown low turn on field (~2.5 V/μm). However, its maximum 

delivered current was only ~ 1μA/cm2 for applied electric field of 5.5 V/μm.  

E. Spanakis et al. have reported field emission performance of metal coated Si emitter 

surface [74]. In this study surface micro-cones have been generated via femtoscond laser 

irradiation and coated with Au and Cr metals.  

In ref. [75], authors have generated surface micro-protrusions on silicon surface using 

nanosecond, picosecond and femtosecond laser irradiation. In this study it has been reported that 

that Si surface irradiated with nanosecond laser have resulted in cone formation with tallest 

height and lowest number density among all the samples. Nanosecond laser based micro-

structured samples have shown best field emission characteristics.  
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Field emissions from laser micro-structured Tungsten (W) surfaces have been reported in 

ref. [76]. In the work reported in [76], W surfaces have been micro-structured by irradiating with 

ns pulsed Nd:YAG laser with varying laser fluence. These surface micro-structured surfaces 

have been reported to show significant local field enhancement (up to ~3490).   

1.10  Motivation of the work 

Metals possess high electrical and thermal conductivity along with work function in intermediate 

range (~4−5 eV). However, metallic surfaces suffer from limitations of high sputtering yield and 

high sensitivity for oxidation. Therefore, they can serve as a good field emitting cathodes under 

ultrahigh vacuum. It has been reported that dense micro/nano protrusions are generated on metal 

surfaces by direct irradiation with nanosecond and femtosecond laser irradiation leading to local 

field enhancement resulting in enhanced field emission at low applied electric fields. There are 

many reports on nanosecond and femtosecond pulsed laser induced generation of self-assembled 

micro-protrusions/spikes on the metal surfaces. However, only few of them have carried out field 

emission characterization of the laser micro-structured metal specimens.  

For example, Yuji Kawakami et al. [77] generated microcones on Tungsten (W) surface 

using irradiation with nanosecond pulsed Nd:YAG laser in air, SF6 and helium ambiences. In this 

authors have reported formation of dense surface micro-cones in air, He and SF6 gas 

environments for laser fluence in the range 5.0 – 10 J/cm2, 3.0 – 10.0 J/cm2 and 3.0 – 12 J/cm2, 

respectively. However, authors have not investigated field emission behavior of the laser 

modified W samples.  

In another work generation of micro-cones array on Tantalum (Ta) and stainless steel 

(SS) surfaces using copper vapor laser irradiation in vacuum and air has been reported [78]. In 
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this work authors have investigated effect of surface micro-cones array on reflectivity of the 

surface.  

Robert Lloyd et al. [79] have reported generation of self-assembled micro-structures on 

stainless steel surface using direct irradiation with Nd:YVO4 and Nd:YAG lasers. Nd:YVO4 and 

Nd: YAG lasers were delivering lasers at wavelength of 532 nm and 1064 nm, respectively. In 

this study also field emission behavior of the micro-structured specimens has not been 

investigated but effect of laser wavelength and number of laser pulses on period and height of 

generated surface micro-structures is presented. 

Generation of self-assembled micro/nano structures on metal surfaces (Titanium, 

Aluminium and Copper) by femtosecond pulsed laser irradiation has been very systematically 

investigated by B. K. Nayak et al. [80]. Authors have reported generation of high density, nearly 

uniform surface micro-cones on metal surfaces. However, in this work field emission from the 

micro-structured surfaces has not been investigated. 

Although, there are numerous reports on nanosecond and femtosecond based surface 

micro-structuring and their field emission behavior only few have reported field emission 

behavior of laser based micro-structured metals surfaces. Hence, in the present study surface 

micro-structuring of metallic surfaces (Ta, and Stainless steel 304) has been carried out using 

nanosecond and femtosecond laser irradiation to investigate effect of processing parameters such 

as pulse duration, laser fluence, number of laser pulses on surface morphology and optimize laser 

parameters to achieved enhanced field emission from laser modified surfaces.  
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Chapter 2 

Description of Experimental Setup & Characterization Techniques 

 

2.1  Introduction 

This chapter deals with experimental part of the study. Here, experimental procedures employed 

for surface micro-structuring and characterization of micro-structured surfaces have been 

explained along with description of various hardware/components. This includes description of 

method of preparation of targets used for surface modification, different components & hardware 

of experimental setup used for surface micro-structuring, techniques used for characterization of 

surface micro-structured specimens such as Scanning Electron Microscopy (SEM), Energy 

Dispersive X-ray Spectroscopy (EDS), Surface Profilometer, Grazing Incidence X-Ray 

Diffraction (GI-XRD), X-ray Photoelectron Spectroscopy (XPS), Kelvin Probe Microscopy and 

Field Emission characterization setup. This chapter is divided in two parts – (i) Description of 

surface micro-structuring procedure (ii) Description of characterization techniques.  

2.2. Description of surface micro-structuring procedure 

In the present study, surface micro-structuring of commercially available type 304 stainless steel 

(SS 304) and high purity (99.9% pure) tantalum (Ta) targets has been carried out using a focused 

beam of nanosecond and femtosecond pulsed lasers. Targets chosen for surface micro-structuring 

were samples having typical surface dimensions ~ 1 cm x 1 cm. These targets were polished with 

emery papers of different grit sizes (grit size 180 and grit size 1/0) and cleaned with 

ethanol/acetone before using as targets. Cleaned sample was mounted on computer controlled 

XY translational stage and irradiated with a focused laser beam in air. Schematic diagram of the 
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experimental setup used for surface micro-structuring process is shown in Fig. 2.1. The main 

components of this setup are nanosecond (ns)/femtosecond (fs) laser system, plane mirror, 

focusing lens and a computer controlled XY translational stage. Description of each of the 

components is provided below. 

 

Figure 2.1 Schematic diagram of experimental setup used for surface micro-structuring. 

2.2.1 Nanosecond laser system  

This is a commercially available Q-switched nanosecond pulsed Nd:YAG laser system (Make: 

EKSPLA, Lithuania, Model number: NL311) which delivers laser pulses of duration 6 ns 

(FWHM). It is a flash lamp pumped laser system consisting of two stages - one oscillator and 

one amplifier stage. Q-switching in this laser system is done via electro-optic technique. This 

laser is basically a high pulse energy and low pulse repetition frequency system which delivers 

pulse energy up to ~1300 mJ at fundamental frequency (λ = 1064 nm) at 10 Hz pulse repetition 

frequency (prf.). This laser generates green beam at λ = 532 nm via second harmonic generation 
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technique using a KDP crystal. Maximum delivered output pulse energy at 532 nm wavelength is 

up to 600 mJ. Diameter of the delivered beam is ~10 mm with divergence < 0.5 mrad. Spatial 

profile of the output beam is nearly top-hat in near field and nearly Gaussian in far field. Pulse 

energy stability of the laser at 1064 nm and 532 nm wavelengths are ~0.5 % and 1.5%, 

respectively. Power drift in 8 hrs of continuous operation is ±2 %. Laser beam has very good 

pointing stability (±50 μrad). In the present surface micro-structuring experiments laser beam at 

532 nm wavelength having vertical polarization has been used. Output power of the laser is 

controlled via a combination of a half waveplate and a polarizer. By rotating angle of the optic 

axis of the half waveplate output power of the laser can be controlled.  

2.2.2 Femtosecond laser system  

Femtosecond laser system employed in the present study is a commercially available laser 

system (Make: Thales, France; Model: Femtocube). This system delivers laser beam at a 

wavelength (λ) of 800 nm with 50 fs (FWHM) pulse duration and 3 kHz prf. Active medium in 

this laser is a Titanium Sapphire (Ti:Sa) crystal. This laser system works on the principle of 

chirped pulsed amplification (CPA) and consists of four main parts which are shown in 

schematic diagram (Fig. 2.2). 

 

 

 

 

 

 

Figure 2.2 Schematic diagram of fs laser based upon chirped pulse amplification (CPA) technique.  
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This laser delivers maximum average power of 2.5 W which corresponds to pulse energy of 833 

μJ. Size of the output fs laser beam is 12 mm in diameter and it has a divergence of ~0.5 mrad. 

Output beam of this laser is a vertically polarized beam.  

2.2.3  Plane mirror 

Plane mirror has been used to direct the beam on target surface. Mirror used in the present study 

is a hard dielectric coated high reflectivity mirror with reflectivity ~99 %.  

2.2.4  Focusing lens 

To focus the incident laser beam on the target surface a biconvex lens made of fused silica has 

been used. Based on laser fluence requirements in some of the experiments 20 cm focal length 

lens has been used while, in some cases 50 cm focal length lens has been used, to carry out 

surface micro-structuring.  

2.2.5 Computer controlled XY translational stage  

To carry out surface modification over large area samples targets have been mounted on a 

translational stage which can be moved in X and Y directions in a controlled manner.For 

movement of the stage along X and Y directions one stepper motor is connected for movement 

along each axis. Speed and range of the movement in both the directions can be controlled via 

software installed in computer. Each axis can be programmed independently. Step size of the 

movement is 0.125μm and speed of the stepper motor can be changed from 1 step/s to 10000 

steps/s. Maximum range of movement along each axis is 25 mm. Also, provision exists such that 

stage can be held static at a particular location for user defined time and then shifted at user 

defined speed by a preselected distance. 
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2.3  Description of characterization techniques  

Surface micro-structured specimens have been characterized in terms of surface morphology, 

roughness, elemental composition, chemical phase, crystal structure and work function using 

Scanning Electron Microscopy (SEM), Surface Profilometer, Energy Dispersive X-ray 

Spectroscopy (EDS), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS), 

Grazing Incidence X-ray Diffraction(GI-XRD), Kelvin Probe Microscopy techniques, 

respectively. The surface micro-structured specimens have also been characterized for their field 

emission behavior. Brief description of these characterization techniques have been provided 

below. 

2.3.1  Scanning electron microscope (SEM) 

A scanning electron microscope (SEM) is a specialized version of the electron microscope. It 

uses a focused beam of energetic electrons to interact with surface of solid specimens producing 

a variety of signals at the surface [81]. Interaction of high energy (accelerated) electrons with 

sample may produce– (a) secondary electrons (SEs) (b) back scattered electrons (BSE) (c) 

characteristic X-rays and light (d) continuous X-ray (e) transmitted electrons. SEs are emitted 

from very close to the sample surface and its intensity strongly depends upon surface 

morphology. SEM based upon detection of SE provides information about surface texture with 

spatial resolution of the order of ~1 nm. Back scattered electrons emerge from deeper location of 

the sample. Hence spatial resolution for backscattered electron detection is poor in comparison to 

SE detection. However, intensity of backscattered electrons depends upon Z number of the 

target. Hence, SEM based on detection of backscattered electrons can proved information about 

elemental distribution inside the target. Image of the sample surface is produced by scanning the 
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stage which focuses the beam to a small size on the target. The electrons illuminating the target 

surface ejects secondary electrons. These electrons are counted using an electron detector. To 

generate surface image electron beam is scanned in a raster manner and SE signal intensity is 

recorded. Scanning of the electron beam is achieved with the help of a pair of scanning coil 

which scans electron beam in x and y direction. Scanning is controlled via scan control circuit. 

Information about the position of electron beam is extracted from the scan control circuit and   

SE signal intensity as a function of position is plotted which generates surface texture of the 

specimen. Specimen to be characterized in SEM has to be conducting in order to provide path for 

incident electrons. If they are not conducting a thin coating of conducting material is done before 

characterizing with SEM.   

2.3.2  Energy dispersive X-ray spectroscopy (EDS)   

EDS technique makes use of the characteristic X-rays which are generated due to interaction 

between energetic electrons and sample atoms to analyze elemental composition of the 

specimen. EDS is normally used as an add-on associated either with SEM or TEM. In this 

technique energy dispersive spectrum of the characteristic X-rays are recorded. This technique 

provides both qualitative and quantitative information about elemental composition of the 

specimen. In principle all the elements from Be (Z = 4) upto U (Z = 92) can be detected with this 

technique tough all the instruments are not equipped with detection of light elements (Z < 10) 

[84]. Qualitative analysis involves identification of elements from photon energy of the 

characteristic X-rays. Quantitative analysis (determination of the concentration of elements 

present in the sample) involves measuring line intensities for each element in the sample and for 

the same elements in the calibration standards of known composition. Element distribution map 

is obtained by scanning the electron beam in raster manner and recording signal (characteristic 
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X-rays) as a function of position. In EDS X-ray intensities are measured by counting photons 

hence obtainable precision is limited by statistical error. Overall accuracy of EDS analysis is 

typically nearer to ± 2%. Using common procedures detection limit of element is ~1000 ppm by 

weight but it can be reduced by using long counting times. Spatial resolution is governed by 

interaction volume of electrons in specimen hence it is a function of density of the specimen. 

Since the electron probe analyses only to a shallow depth, specimen should be polished to 

remove surface roughness. Specimen to be analyzed in EDS should be conducting. If specimen is 

non-conducting a conducting surface coat must be applied to provide a conducting path for 

incident electrons. The usual coating material is carbon (~10 nm thick), which has a minimal 

influence on X-rays intensities on account of its low atomic number [84].     

2.3.3  Surface profilometer 

Surface profilometer is a device which provides information about surface topography (surface 

features, roughness, curvature etc.) of the specimen [85]. Topographical information can be 

taken from a single point, line scan or even area scan. Surface profilometers are of two types – (i) 

contact- stylus based profilometer (ii) non-contact (optical profilometer). Stylus based surface 

profilometer uses a physical probe to measure surface profile. This probe touches the sample 

surface and moves to acquire surface profile. This is done mechanically with feedback loop that 

monitors the force from the sample pushing up against the probe as it scans along the surface. A 

feedback system is used to keep the arm with specific amount of torque on it known as set point. 

The changes in the Z position of the arm holder are used to reconstruct surface. On the other 

hand optical profilometery is a non-contact technique to extract much of same information about 

surface topography as obtained via stylus based profilometer. It uses light instead of a physical 

probe to get surface profile. Various techniques are being currently employed in optical surface 
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profilometers such as laser triangulation, low coherence interference, confocal microscopy and 

digital holography. Advantages of surface profilometers are high speed, reliability, and better 

lateral resolution, with limited chance of damaging specimen surface. Typical lateral resolution 

in optical profilometers ranges from few microns down to submicron [86].      

2.3.4  Raman Spectroscopy  

Raman spectroscopy is a spectroscopic technique which works on the principle of Raman 

scattering and provides information about the molecules present in specimen. Raman scattering 

is the process of inelastic scattering of monochromatic light due to interaction with 

vibrating/rotating molecules. Inelastically scattered photons will be either of reduced frequency 

(Stoke shift) or increased frequency (anti-Stoke shift). Change in frequency of scattered photons 

with respect to frequency of incident photons (Raman shift) depends upon mode of 

rotation/vibration of the molecules. Therefore measurement of Raman shift provides fingerprint 

about the molecules present in the sample. A Raman spectrum which records intensity of Raman 

signal as function of shift in wavenumber provides insight about chemical composition of the 

sample [87, 88]. Schematic diagram of a typical Raman spectrometer is shown in Fig. 2.4. 

 In the present study an unpolarized micro-Raman spectrometer has been employed for 

characterization of laser modified specimens. In this spectrometer frequency doubled diode 

pumped Nd:YAG laser is used as excitation source. This laser delivers laser beam at 532 nm 

wavelength in continuous wave (CW) mode. Average output power of the excitation laser in 100 

mW. Excitation laser beam power level to be sent on sample surface is controlled via neutral 

density (ND) filter. Raman signal is also collected and send to spectrometer using optical fiber.  
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Figure2.4 Schematic diagram of a fiber coupled micro-Raman spectrometer. 

2.3.5  Grazing incidence X-Ray diffraction (GI-XRD)   

X-ray diffractrometry is a technique based on principle of diffraction of monochromatic X-ray 

radiation. Diffraction of the X-ray radiation from crystalline sample is governed by Bragg’s law. 

According to Bragg’s law when X-ray of wavelength (λ) is incident on surface of the sample 

with inter planar spacing d, maxima of the diffracted X-ray beam occurs at certain angles (θ) 

with respect to normal of the plane. Governing equation for diffraction is as following [89]–  

2𝑑𝑠𝑖𝑛ሺ𝜃ሻ ൌ  𝑛𝜆 ---------- (2.1)  

Here, n is an integer called order of diffraction. Intensity of the X-ray beam vs diffraction angle 

is called diffraction pattern which provides information about crystal structure, residual stress, 

defects in specimen. Generally to study crystal structure of bulk materials θ-2θ (Bragg-Brentano) 

type diffractometer is used. In normal XRD, where typically larger angle of incidence of X-ray 

beam (>20o) is used, X-ray beam penetrates deep inside the specimen and X-ray diffraction 
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signal comes from depth of the surface. Therefore, to analyze crystal structure of thin films or 

thin surfaces GI-XRD technique is employed [89]. In GI-XRD, a parallel monochromatic X-ray 

beam is incident at very small incident angle in the range 2o to 5o with respect to sample surface 

and diffraction pattern is recorded. An advantage of GIXRD is that in this case penetration depth 

of the X-rays is limited hence diffraction pattern mainly contains information on thin surface 

layer. However, a disadvantage in this case is the limited in-plane spatial resolution (due to large 

beam footprint [89] 

2.3.6  X-Ray photoelectron spectroscopy (XPS)  

XPS or electron spectroscopy for chemical analysis (ESCA) is a surface analysis technique 

which provides information about elemental composition and chemical state from outer 5 to 10 

nm of the solid surface. It can detect all elements from lithium (Li) to uranium with an accuracy 

of 0.1 to 0.5 atomic percentages [90].  

 In this technique sample is irradiated with an X-ray beam of known photon energy (hν) 

under ultra-high vacuum. These X-ray photons interact with atoms and eject electrons from core 

shell of the atoms via photoelectric effect. Intensity and kinetic energy (K.E.) of the emitted 

electrons are measured to identify element and its concentration. Binding energy of the atom 

with respect to Fermi level is inferred from the measured K.E. of the emitted electrons by 

following equation-  

 Eb= hν - Ek  - φsp     …………..(2.2) 

Where Eb, Ek and φspare binding energy of electron in atom, kinetic energy of the ejected 

electron and work function of the target, respectively. Binding energy of the atom renders 

information about the atomic number of the atom and its chemical environment because binding 
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energy of atom depends upon chemical environment. An XPS spectrum shows ejected electrons 

count vs binding energy which provides information about the concentration of different 

elements and their ionization state.  

2.3.7  Kelvin Probe Microscopy 

Kelvin probe microscopy is a non-contact technique to measure work function of a specimen.  

This technique works on the principle of contact potential difference (CPD) measurement 

between a specimen and a standard probe (normally gold). When two materials with different 

work functions come closer to form a capacitor equal and opposite charges are generated on the 

two surfaces due to work function difference a potential is developed between the two surfaces. 

This potential is known as CPD. If the specimen and the standard probe have work functions has 

φ1 and φ2, respectively then CPD between sample and standard probe will be the two materials is 

given by [91] – 

CPD = (φ1- φ2) /e       ………… (2.3) 

Here, e is electronic charge. Since work function of the standard probe is known, work function 

of the specimen can be estimated by measuring CPD between sample and the standard probe. 

Basic principle of the CPD measurement in Kelvin probe is to apply external potential between 

to two surfaces until potential between then disappears completely.  

2.3.8  Field emission characterization setup  

In field emission characterization total emission current as a function of applied electric field 

between electrodes was measured. Field emission characterization of the specimens has been 

carried out under ultra-high vacuum. In the present study typical vacuum during FE 

characterization were in the range 1x10-7 to 1x10-8 mbar. Electrodes were used in plane-plane 
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to main chamber. After transferring sample to main chamber secondary chamber is again isolated 

from the main chamber. Ultra high vacuum in the chamber is achieved using a combination of 

rotary pump, turbomolecular pump, sputter-ion pump and pouring liquid nitrogen. A negative 

DC high voltage on the cathode surface is applied using Spellman high voltage power supply 

with the help of feed-through. Anode in this experimental facility was made of a transparent 

conducting material of diameter (40 mm). Separation between anode and cathode is varied by 

moving cathode surface with the help of micrometer based linear drive arrangement. Applied 

voltage on cathode surface was varied by varying output voltage of the power supply and 

corresponding field emission current was extracted from the measured voltage drop (VR) across a 

100 kΩ resistance (R) connected in series between anode and ground. To check stability of field 

emission current voltage drop across the 100 kΩ resistance was measured as a function of time 

and recorded at every 10 s interval with the help of a data logger. The recorded voltages were 

converted in to current.  
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Chapter 3 

Nanosecond Laser Based Micro-structuring of Stainless Steel 304 and 

Tantalum Surfaces for Enhanced Field Emission  

 

3.1 Introduction 

Surface morphology plays a vital role in field emission performance of a field emitting cathode 

(FEC). Therefore, extensive research has been carried out in recent past for generation of 

different surface morphologies on FECs and characterization of their field emission properties 

(as listed in Section 1.8). Key objectives of these studies are to achieve− high field emission 

current along with high current density at low operating electric field, stable field emission 

current under relatively poor vacuum conditions, long lifetime, low emittance of the emitted 

electron beam etc. Reported works listed in section 1.8 have shown that cathodes with surface 

micro/nano structures demonstrate improved field emission behavior. The observed enhancement 

of field emission current from FECs occurs on account of local electric field enhancement on 

cathode surface. Enhancement of the applied electric field on cathode surface depends on shape, 

size and number density of the surface micro-structures.  

Nanosecond and femtosecond laser based surface micro-structuring of materials has 

demonstrated improved performance of materials in variety of applications (as listed in Section 

1.3). Nanosecond laser systems are low cost and robust system in comparison to the femtosecond 

lasers.  

Stainless steel 304 (SS 304) and tantalum (Ta) targets have been surface micro-structured 

using nanosecond (ns) laser owing to its offered advantages. Objective of these surface micro-
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structuring experiments were to investigate effect of processing parameters on surface 

morphology and enhanced field emission behavior.  

This chapter presents our results on ns laser based surface micro-structuring of SS 304 

and Ta surfaces and their characterization. Surface micro-structuring of targets has been carried 

out by irradiating them in air using a focused beam of a ns pulsed Nd:YAG laser. Laser micro-

structured specimens have been characterized in terms of surface micro-morphology, roughness, 

changes in chemical phase on laser treatment and field emission characteristics. Parameters 

characterizing surface micro-structured specimens as field emitter have been derived from the 

experimental data.  

3.2  Surface micro-structuring of stainless steel 304 targets 

3.2.1  Experimental details  

Surface micro-structuring of SS 304 targets have been carried out by direct irradiation in 

atmospheric air. Experimental setup employed for surface modification is described in Section 

2.1 of Chapter 2. SS 304 targets used for these experiments were small samples of commercially 

available SS 304 sheet of typical dimensions− Length: ~1 cm, Width: ~1 cm, Thickness: ~0.05 

cm. To investigate effect of laser fluence and cumulative number of irradiating laser pulses on 

the formed surface microstructure, laser fluence and number of pulses were varied in the range 

0.7 J/cm2 to 10 J/cm2 and 3000 to 9000, respectively. Laser fluence levels mentioned in our 

experiments are space averaged values which are defined as the ratio of incident pulse energy to 

laser spot area. In the first set of experiments laser fluence was varied in the range 2 J/cm2 to 10 

J/cm2 and samples were irradiated at different spots with varying number of pulses in the range 

3000 to 9000. These specimens were characterized in terms of surface micro-structure using 

scanning electron microscopy (SEM) technique. SEM images were taken by mounting surface 
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modified specimens at inclination of ~30o−40o. SEM images of the regions where micro-

protrusions are formed were further analyzed using Leica Qwin3 software attached with an 

optical microscope (Make: Leica, Model: DM ILM inverted optical microscope) to estimate 

average height of the generated protrusions. Based upon observations from the first set of 

experiments on surface micro-structuring of SS 304 subsequent experiment was planned to carry 

out SS 304 surface modification at lower laser fluence. Based on these runs optimized laser 

parameters were selected.  

SS 304 specimen was finally micro-structured with 6000 laser pulses at laser fluence of 

0.7 J/cm2 and characterized in terms of surface micro-structure, elemental composition, 

roughness and field emission behavior. During the field emission characterization vacuum in the 

chamber was maintained at ~1 x 10-8 mbar and separation between anode and cathode (SS 304 

specimen) was kept at 0.5 mm. Some of the important parameters characterizing a large area 

field emitter have been extracted using the experiment data on variation of macroscopic emission 

current density versus applied macroscopic electric field.  

3.2.2  Characterization results on SS 304 samples  

3.2.2.1  Surface morphology characterization  

SEM images showing surface morphology of the spots irradiated with 3000 laser pulses and 

varying laser fluence in the range 2 J/cm2 to 10 J/cm2 are shown in Figs. 3.1 (a−d). These SEM 

images show that surface micro-protrusions are formed in laser irradiated region preferably near 

periphery of the spot. In the case of target irradiation with 2 J/cm2 micro protrusions are also 

formed towards central part of the region where local laser fluence is low. SEM images also 

show that prominent crater is formed within the spots treated at laser fluence levels ≥ 4 J/cm2. 

Hence, to avoid deep crater formation within laser irradiated spots laser fluence used for surface 
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Fig. 3.5 (a) revealed that no crater was formed within the laser treated region and surface micro-

protrusions have been generated within the entire treated region. Different sections of the laser 

treated spot contain micro-structure of varying height and diameter. High density of surface 

micro-protrusions shown in Figs. 3.5 (c) and (d) refer to the regions marked by a square within 

the laser treated spot shown ion Figs. 3.5 (a) and 3.5 (c), respectively. Average density of micro-

protrusions estimate within the rectangular region in Fig. 3.5 (c) was ~4.5x107 micro-

protrusions/cm2. As no crater was formed in the specimen treated at laser fluence of 0.7 J/cm2 

this micro-structured specimen was further characterized for surface roughness, change in 

chemical composition, crystallographic phase and field emission behavior.  

Mean roughness and peak height of the generated surface micro-features in the region 

treated with 6000 laser pulses at laser fluence of 0.7 J/cm2 were estimated by 3-dimensional (3D) 

surface profiling technique. A typical surface profile of the laser irradiated spot is shown in Fig. 

3.6.  

 

Figure 3.6 3D Surface profile of the SS sample treated with 6000 laser pulses at fluence of 0.7 
J/cm2[96]. 
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It is evident from the Fig. 3.6 that micro-structures formed on laser treatment are projected 

outward with respect to the target surface. Also, surface roughness of the untreated region of the 

sample is negligible in comparison to laser treated surface. Estimated maximum height of the 

generated micro-protrusions above the mean plane of the specimen was ~30 μm. 

Formation of surface μ-protrusions upon laser irradiation can be explained on the basis of 

laser induced melting and vaporization of surface and associated melt pool surface instability 

[97]. Laser irradiation of the target surface causes melting and evaporation of the target material 

up to certain depth. Due to rapid and localized melting of the target surface strong temperature 

gradients exists along lateral as well as depth directions in the melt-pool leading to flow of liquid 

driven by thermo-capillary forces. Thermo-capillary driven flow of liquid along with the recoil 

pressure exerted by evaporating atoms on melt surface causes melt surface instability resulting in 

formation of surface undulations. These formed surface undulations remain on the surface 

provided re-solidification time of the molten layer is shorter than the time required for surface to 

reach in equilibrium (capillary wave period). The initial surface undulation is composed of many 

spatial frequency components out of which a particular frequency component having highest 

growth rate dominates for next incoming laser pulses depending upon melt-pool geometry, laser 

fluence and material thermo-physical properties. Therefore, when target surface is irradiated by a 

large number of laser pulses surface μ-protrusions with periodicity corresponding to highest 

growth rate is formed on the laser irradiated surface.  

3.2.2.2  Energy dispersive X-ray spectroscopy (EDS) characterization  

Elemental composition of untreated sample and the sample treated with laser fluence of 0.7 

J/cm2 were characterized using EDS technique. Obtained composition for the two samples is 

summarized in Table 3.1.   
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Table 3.1 Elemental composition of untreated and laser modified SS samples obtained from EDS. 

Element Untreated steel sample Laser treated steel sample Change in atomic 

concentration upon laser 

treatment (at.%) 

Normalized atomic 

concentration (at.%) 

Normalized 

atomic concentration (at.%) 

C 8.51 6.18 - 2.33 

N - 7.11 +7.11 

O 1.65 25.92 +24.27 

Al - 0.11 +0.11 

Si 0.54 0.05 -0.04 

Cr 18.27 11.08 -7.19 

Fe 64.16 44.24 -19.92 

Ni 6.87 5.31 -1.56 

Total 100 100 - 

 

EDS results revealed that laser modification of SS 304 specimen leads to an increase in the 

concentration of oxygen (O) and Nitrogen (N) and reduction in the concentration of iron (Fe), 

chromium (Cr), nickel (Ni) and carbon (C) in the surface layer. The observed higher C 

concentration in untreated SS 304 sample in comparison to its typical concentration in SS 304 

could be an artifact due to background count. As in the present experiments laser irradiation was 

carried out in atmospheric air increase in O and N concentration is expected on account of iron 

oxide and nitride formation due to laser induced heating of sample surface in air. Although, 

concentration of different elements in target presented in Table 3.1 is not truly quantitative 

because of limitations of EDS technique it broadly indicates trend and relative concentration of 
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Fe3N (pdf # 830879). Diffraction peak at 63o could be due to iron oxide/nitride or mixture of the 

two (Fe2N (pdf # 732102)). These observations indicate formation of iron oxides and nitrides in 

the laser treated region confirming observation obtained from the EDS technique.   

3.2.2.4  Field emission characterization results 

Macroscopic field emission current density (Jm) as a function of macroscopic applied field (Em) 

corresponding to SS 304 specimen surface micro-structured with laser fluence of 0.7 J/cm2 is 

shown in Fig. 3.8. FE characterization of untreated SS specimen showed that untreated sample 

delivered only few nA/cm2 of emission current density even when Em was increased up to 11.4 

V/μm. The observed emission current density (Jm) from the untreated specimen was negligible in 

comparison to delivered Jm from laser modified specimen. Hence, Jm versus Em characteristics 

for untreated sample has not been plotted. Here, Em and Jm have been defined as the ratio of the 

applied voltage (V) to the separation between the electrodes (d) and total emission current 

divided by the total laser treated surface area of the sample, respectively. In estimation of Jm only 

surface micro-structured area has been taken in to account due to the fact that untreated SS 

specimen did not deliver significant emission current for the entire range of electric field used for 

FE characterization. Turn on field (Eon) which is defined as the Em required for generating Jm 

equal to 10 μA/cm2 is found to be 7.5 V/μm for laser micro-structured SS surface [96]. This 

magnitude of Eon is significantly lower than the corresponding values for untreated SS sample. 

Emission current density delivered by laser treated specimen in the present study is significantly 

higher than the emission current density reported from a SS specimen with surface roughness ~1 

μm delivering Jm equal to ~0.3 μA/cm2 at applied Em equal to 15 V/μm [99]. Observed enhanced 

field emission for the laser micro-structured SS surface is due to enhancement of local electric 

field on the tip of generated surface. This locally enhanced electric field is sufficient to cause 
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estimated from Jm versus Em characteristics of the specimen using Fowler-Nordheim (F-N) 

theory.  

According to technically complete F-N theory macroscopic field emission current density 

(Jm) from a LAFE surface can be expressed as [45] ─ 

Jm= λmaφ-1 (βmEm) 2 exp (-νF bφ3/2/(βmEm))         ……………(3.1) 

Here, λm, a (=1.541434 µAeVV-2), b (= 6.830890 eV-3/2Vnm-1), φ and νF are macroscopic pre-

exponential correction factor, first F-N constant, second F-N constant, work function of the 

emitter surface and barrier form correction factor, respectively. Here, νF is the correction 

introduced due the actual form of the potential barrier which is deviated from triangular shape. 

   Plot showing variation of ln (Jm/Em
2) as a function of 1/Em is known as F-N plot. 

Macroscopic field emission enhancement factor (βm) on the laser treated samples can be 

estimated using slope of ln(Jm/Fm
2) vs 1/Fm type F-N plot by following equation [45]─ 

β୫ ൌ െχ୫bϕଷ ଶ⁄ /S          …………. (3.2) 

Here, χ୫ and S are generalized slope correction factor, and slope of the F-N plot of type 

ln(Jm/Fm
2) vs 1/Fm, respectively. When emission current density is purely due to field emission 

process from cathode surface and no leakage current and field effects are present then χ୫is equal 

to Schottky-Nordheim (SN) barrier form function. F-N plot of the experimental data on Jm−Em 

characteristics for laser modified sample and its linear fit are shown in Fig. 3.9.It is observed 

from Fig. 3.9 that F-N plot is nearly linear with some variation of data points around the straight 

line. Slope of the F-N plot shown in Fig 3.9 is -1.05×108 Np.Vm-1. 
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Figure 3.9 F-N plot of the experimental data on Jm vs Em characteristics and its linear fit [96].  

To estimate field enhancement factor and other parameters for the laser micro-structured 

stainless steel surface approach suggested in ref. [45] has been employed which is as below─  

i. Experimental data on Jm−Em was plotted as F-N plot. Slope (S) of FN plot was estimated by 

linearly fitting the experiment data.  

ii. Generalized slope correction factor (χm) was estimated suing the following equation [45] – 

χ୫ ൌ 1 ሺ1 ൅ fେ୵
ଵ 6⁄ ሻ⁄ ………. (3.3) 

fେ୵
ଵ ൌ ሺെ9.836238ሻሺeV/ϕሻଵ/ଶE୫୵/S   ………. (3.4) 

Where, φ is work function, Emw is known as working field and S is slope of the FN plot. Emw 

is normally chosen as electric field value in middle of the working electric field range.  

iii. Macroscopic field enhancement factor (βm) is estimated using the equation (3.2). 

iv. Macroscopic pre-exponential correction factor (λm) which is also a provisional estimate of 

the formal area efficiency of emission was estimated using the equation below –  

λ୫ ൌ J୫୵ Jୡ
ୈୈ⁄        …………. (3.5) 
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Where Jmw is macroscopic field emission current density corresponding to Emw and Jୡ
ୈୈ is 

estimated using the equation [45] –  

Jୡ
ୈୈ ൌ θୗ୒fୡ୵

ଶ exp ሺെ ஗౏ొ୴ሺ୤ౙ౭ሻ

୤ౙ౭
ሻ                           …….. (3.6) 

Here, θୗ୒, ηୗ୒, fୡ୵ and v(fୡ୵ሻ are estimated by following equations – 

θୗ୒ ൌ ሺ7.433980 x 10ଵଵAmିଶሻሺ ம

ୣ୚
ሻଷ               ……… (3.7) 

ηୗ୒ ൌ 9.836238 ሺୣ୚

஦
ሻଵ/ଶ                                    ……… (3.8)  

fୡ୵ ൌ fୡ୵
ଵ /ሺ1 ൅ ୤ౙ౭

భ

଺
ሻ                                           ………. (3.9) 

ቀ୴ሺ୤ౙ౭ሻ

୤ౙ౭
ቁ ൌ ଵ

୤ౙ౭
െ 1 ൅ logሺfୡ୵ሻ /6                      ………. (3.10) 

Here, for estimation of field emitter characterizing parameters work function of stainless steel (φ 

= 4.5 eV) has been taken in to account and the value of working field (Emw) was take as 8.4 

V/μm which lies nearly in the middle of the Em range used for field emission characterization.  

Estimated parameters have been summarized in Table 3.2. This table shows that 

macroscopic field enhancement factor (βmሻ for the laser micro-structured SS surface is ~585 

indicating that average value of the field on tip of the generated micro-protrusions is 585 times 

higher than the applied field. The macroscopic pre-exponential correction factor (λm) which 

provides provisional estimate of formal area efficiency of emission (αm) is ~2.7 x 10-10 for this 

sample. Therefore, it implies that only a small fraction of the total sample surface is largely 

contributing towards field emission of electrons. High values of βm and λm are envisaged for 

good LAFE to achieve large Jm at low applied electric field. 

Stability of the field emission current from the laser modified surface has been tested 

over a period of 140 min at a preset current value of ~4 μA. Result of this study is shown in Fig. 
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3.3  Surface micro-structuring of Ta targets and their characterization  

3.3.1  Experimental details 

To carry out surface micro-structuring experiments high purity (99.99 % purity) Tantalum (Ta) 

foil were used as targets. Typical dimensions of the used Ta targets were - 1 cm length, 1 cm 

width and 100 μm thickness. These specimens were first polished using emery polishing paper of 

grit size 180 and then grit size 1/0. Polished Ta targets were cleaned with ethanol before using 

for surface micro-structuring. For laser induced surface modification these polished and cleaned 

targets were mounted on a computer controlled XY translational stage. Schematic of the 

experimental set up employed for surface modification is shown in Fig. 2.1.  

Ta specimens were micro-structured by direct irradiation with focused beam of a 

nanosecond pulsed, frequency doubled Nd:YAG laser. Details of the nanosecond laser system 

used for these experiments have been presented in Section 2.1.1. Laser beam was focused using a 

50 cm focal length convex lens. Target was kept at a distance of 45 cm from the focusing lens. 

Laser beam spot on the target surface was circular having diameter of ~1.5 mm. Laser power 

used for laser treatment was typically 160 mW which corresponds to an average laser fluence of 

0.9 J/cm2. During the process of laser induced surface modification the Ta target surface was 

kept nearly perpendicular to the incident laser beam. Target was kept stationary at one location 

until it received specified number of laser pulses and then it was moved by 1.5 mm along +ve X 

direction. Using above procedure 5 spots were made along X direction. Then target was shifted 

towards +ve Y direction by 1.5 mm. At this Y position of the target another 5 spots were 

generated by moving target along –ve X direction. Using the aforementioned procedure each Ta 

sample was treated at 5 x 4 spots each spot being irradiated with a specified number of laser 

pulses.  
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Surface morphology, roughness and chemical phase of the laser micro-structured 

specimens were characterized using SEM, surface profilometer and unpolarized micro-Raman 

spectroscopy. Excitation source for employed Raman spectrometer was a diode pumped solid 

state laser delivering average power of 100 mW at 532 nm. Excitation laser power was 

attenuated to 25 % using neutral density (ND) filter and 20X objective lens was used to focus 

laser beam on sample for Raman spectroscopic investigations. FE characterization of laser 

modified Ta specimens was carried out under ultra-high vacuum (~1 x 10-7 mbar) using the same 

setup used for characterization of SS 304 samples. Description of the experimental setup is 

provided in Section 2.2.8. Ta specimens were used as cathode, while a semitransparent anode 

was kept at 1 mm distance from the cathode. All other procedures for field emission 

characterization and data analysis were same as the procedure used for FE characterization of SS 

304 samples.  

3.3.2 Characterization results  

3.3.2.1 Surface morphology characterization results 

Figs. 3.11 (a-c) show typical SEM images of the Ta surfaces irradiated with 3000, 6000 and 

9000 laser pulses, respectively. High magnification (1 kX) SEM images of surfaces treated with 

3000, 6000 and 9000 laser pulses are shown in Figs 3.11 (d-f). It is clearly visible from these 

figures that large numbers of surface micro-protrusions are formed in the laser irradiated regions. 

Also, heights of undulations on target surface were found to increase with increasing number of 

incident pulses.  
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3.3.2.3 Field emission characterization results 

Fig. 3.16 shows variation of macroscopic field emission current density (Jm) versus applied 

macroscopic field (Em) of the Ta specimens which were modified via irradiation using 3000, 

6000 and 9000 laser pulses per spot.  

 

Figure 3.16 Jm vs Em characteristics of the laser micro-structured Ta specimens [92]. 

Observed turn on field (Eon) defined as the field required to generate emission current equal to 10 

μA/cm2 for the specimens treated with 3000, 6000 and 9000 pulses per spot were measured to be 

~6.6 V/μm, ~4.8 V/μm and ~3.7 V/μm, respectively. Also, achieved maximum emission current 

densities for these three samples were 200 μA/cm2, 268 μA/cm2 and 386 μA/cm2 at macroscopic 

fields of 13 V/μm, 9.5 V/μm and 6 V/μm, respectively. Threshold macroscopic field (Eth) which 

is defined as the applied field required to generate Jm equal to 100 μA/cm2 for these samples 

were found to be 10.9 V/μm, 8.3 V/μm and 5 V/μm, respectively. The observed decrease in turn 

on field with increasing number of incident laser pulses/spot could be due to an increase in 

aspect ratio and height of the generated micro-protrusions with increasing number of incident 
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laser pulses/spot. Since the region in laser treated spot where protrusions are formed has not 

shown signature of oxide formation work function of Ta has been used to estimate parameters 

characterizing these field emitters.  

Fig. 3.17 shows Fowler-Nordheim (F-N) plot corresponding to FE data on Jmvs Em. 

Estimated field enhancement factor and effective area of emission corresponding to the three 

samples are presented in Table 3.4. 

 

Figure 3.17 F-N plot of the FE experimental data. 

Table 3.4 Estimated parameters characterizing laser micro-structured Ta samples as field emitters 
[92]. 

Sr. No.  Field emitter characterizing parameter Sample # 1  

(3000 pulses) 

Sample # 2 

(6000 pulses)  

Sample # 3 

(9000 pulses) 

1. Turn on field (Eon)  [V/μm] 6.6  4.8  3.7  

2. Threshold field (Eth) [V/μm] 10.9  8.3  5  

3.  Generalized slope correction factor (χm) 0.88  0.85  0.84  

4.  Macroscopic field enhancement factor 

with slope correction (βm)   

978  1660  2543  

5.  Macroscopic pre-exponential factor (λm) 

(formal area efficiency of emission) 

3.87 x 10-14 6.6 x 10-15 8.5x10-15  
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Stability of the emission current drawn from surface μ-structured specimens has also been tested 

here. Variation of field emission current with time corresponding to specimens treated using 

3000, 6000 and 9000 laser pulses per spot are presented in Figs. 3.18 (a-c). It is observed from 

these tests that emission current from the specimen treated with 9000 laser pulses per spot 

dropped suddenly to half of its set value after 50 minutes of continuous operation and then 

continued to gradually decrease with time. In contrast, emission current was fairly stable for 

specimens treated with 3000 and 6000 laser pulses per spot [Fig. 3.18 (a & b)]. The observed 

sudden fall in emission current in case of sample #3 (Fig. 3.18c) could be due to damage of the 

protrusions which served as the predominantly electron emitting sites in this case.  
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Figure 3.18 (a−c) Field emission current versus time for the Ta specimens treated with different 

number of laser pulses per spot (a) 3000 laser pulses (b) 6000 laser pulses (c) 9000 laser pulses [92]. 

3.4  Conclusion 

Our results on surface micro-structuring of SS 304 targets have revealed that targets irradiated 

with laser fluence ≥ 4 J/cm2 and 3000 pulses resulted in formation of deep crater within the laser 

irradiated spot. Micro-protrusions are formed on the laser irradiated surface when incident laser 

fluence is ≤ 2 J/cm2. SS samples treated with 2 J/cm2 and varying number of laser pulses per spot 

have shown increase in mean height of the grown surface micro-protrusions with increasing 

number of incident laser pulses. Initially growth of height of surface protrusions with incident 

number of pulses was rapid and it slow down after certain number of laser pulses. Target 

irradiated with 6000 laser pulses at laser fluence of 0.7 J/cm2has shown generation of surface 

micro-protrusions in the entire region of the irradiated spot. Density and size of the formed 

surface features were varied with position within the spot. Towards periphery of the laser treated 

spot density of the generated surface micro-protrusions was ~4.5x107 protrusions/cm2. SS 

surface micro-structured with 6000 pulses per spot at laser fluence 0.7 J/cm2 has shown 

significant enhancement in field emission with measured Eon equal to ~7.5 V/μm and delivered 
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emission current density upto 340 μA/cm2. Estimated macroscopic field enhancement factor (βm) 

and formal for this specimen were 585 and ~2.7×10-10, respectively. Field emission current from 

the laser micro-structured specimen was fairly stable over the test period.  

Similarly, dense surface micro-protrusions were generated on Ta targets via nanosecond 

laser irradiation with laser fluence of 0.9 J/cm2 and varying number of laser pulses in the range 

3000 to 9000. Peak height of the generated surface micro-protrusions and mean roughness of the 

laser treated surface increased with increasing number of irradiating pulses. Raman spectroscopy 

results revealed that chemical phase of the laser treated region varied with position within the 

laser irradiated region. Central region of the laser irradiated spots where incident local laser 

fuence in high (micro-protrusions are formed) remained in metallic phase while periphery of the 

irradiated spot consists of Ta2O5. Laser treated Ta samples have shown enhanced field emission. 

Ta sample treated with 9000 laser pulses has shown lowest Eon (~3.7 V/μm) and delivered 

maximum emission current density (~386 μA/cm2) among all the laser treated Ta samples. 

However, its field emission current stability was poor in comparison to other laser treated Ta 

samples.  
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Chapter 4 

Femtosecond Laser Based Surface Micro-structuring of Stainless Steel 304 

and Tantalum Targets for Field Emission Enhancement   

 

4.1 Introduction  

Femtosecond (fs) pulsed laser induced surface micro/nano structuring has been extensively 

employed in various applications owing to its offered advantages. Advantages of the fs lasers in 

material surface processing comes from two reasons, namely, high peak power and ultrashort 

duration of pulses [102]. Ultrashort duration of the laser pulse (< electron phonon thermalization 

time and heat diffusion times) causes lesser heat dissipation in bulk of the target resulting in 

reduced heat affected zone (HAZ). High peak power makes processing of optically transparent 

materials possible via multi-photon absorption. Since metals have high thermal conductivity fs 

lasers play a crucial role in precise surface modification of metals. Fs laser based surface micro-

structuring is a highly non-equilibrium process hence formation of metastable phases on the 

target surfaces are possible.  

There are many reports on fs laser induced generation of self-assembled micro-

protrusions on the metals and semiconductors (some of them are listed in Sections 1.4 and 1.9). 

Only a few of them have reported field emission from fs laser micro-structured metals. In these 

reports laser micro-structured surfaces have shown good field emission properties.     

In this chapter our results on fs laser induced surface micro-structuring of Stainless Steel 

304 (SS 304) and Tantalum (Ta) surfaces and their characterization in terms of surface 

morphology, chemical phase and field emission behavior have been discussed.  
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4.2  Surface micro-structuring of SS 304 targets with laser fluence of 0.5 J/cm2 

4.2.1  Experimental details 

To carry out surface micro-structuring and their characterization samples of commercially 

available SS 304 have been taken as targets. Typical dimensions of the used targets were– 

length: 1 cm, width: 1 cm and thickness: 0.05 cm. These targets were polished using emery paper 

of grit sizes 180 and 1/0. These polished samples were cleaned using ethanol before doing 

surface modification experiments. To generate self-assembled micro-protrusions on target 

surfaces these targets were directly irradiated by a focused beam of a femtosecond (fs) laser. 

Experimental setup used for surface micro-structuring has been explained in Chapter 2. Various 

sets of experiments for surface micro-structuring of SS 304 targets have been carried out by 

varying laser fluence and target scan speed in the range 0.3 J/cm2 to 0.9 J/cm2 and 25 μm/s to 

1000 μm/s, respectively. 

4.2.2  Characterization results  

4.2.2.1  Surface morphology characterization results 

In a first set of experiments SS 304 specimens were irradiated with varied number of laser pulses 

in the range 6 x 103 to 4.5 x 104corresponding to fixed laser fluence levels at 0.3J/cm2and 0.5 

J/cm2 under static condition. Fig. 4.1 (a-d) shows scanning electron microscopy (SEM) images of 

the laser irradiated spots corresponding to laser fluence of 0.5 J/cm2 and number of laser pulses 

equal to 6 x 103, 1.5 x 104, 3.0 x 104 and 4.5 x 104, respectively. From these figures it is observed 

that micro-granular structures are formed within the laser irradiated region with dimensions of 

these micro-protrusions varying from centre of the spot to the periphery. Also, size and depth of 

undulations on the surface increased with increasing number of incident laser pulses.      
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in nature there will be a spatial variation in the energy deposited to the target. Gaussian spatial 

profile of the incident laser beam leads to decrease in deposited energy from centre of the spot to 

the periphery resulting in maximum melt depth and lowest temperature gradient at the centre of 

the irradiated spot. Hence, it expected to get large size micro-structures towards centre of the 

laser irradiated spot. Observed increase in depth of modulation of the surface with increasing 

number of irradiating laser pulses could be due to the cumulative effect of growth of features 

with each incident pulse. 

 To generate uniform micro-protrusions over large surface area we need to deposit 

uniform amount of energy over the surface. Therefore, surface micro-structuring of SS 304 

targets was carried out over large area (5 mm x 2.7 mm) by scanning the target in the plane 

perpendicular to the incident laser beam. Fig. 4.2 (a-f) shows SEM images at different 

magnification of the SS target treated with laser fluence of 0.5 J/cm2 and target scan speed of 200 

μm/s. During this experiment separation between two consecutive line scans was fixed at 100 

μm. Laser beam spot diameter on the target was ~450 μm. Therefore, the chosen target scanning 

speed and separation between two consecutive line scans corresponded to effectively ~3.1 x 104 

laser pulses at every position in the irradiated region. It is observed from the images in Fig 4.2 

(a−f) that laser irradiation along with target scanning has resulted in formation of high density 

micro-protrusions on the SS surface. Estimated typical tip diameter and number density of the 

generated micro-protrusions were in the range 2 to 5 μm and ~5.6 x 105 micro-protrusions/cm2, 

respectively. Height of some the micro-protrusions were up to ~50 μm. High magnification 

images of the laser treated area [Figs 4.2(e–f)] have revealed that each of the generated micro-

protrusion is covered with sub-micron size features (typical size ~ 200−300 nm) [12].  
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specimen was polished with emery paper and cleaned before carrying out GI-XRD analysis. 

Diffraction peaks in GI-XRD pattern of the laser micro-structured surface occurs at 2θ values 

30.4o, 35.6o, 38.3o, 43.6o, 44.5o, 50.8o, 57.2o, 62.9o, 64.6o, 74.8o, 77.4o, 81.7o, 90.6o 

corresponding to Fe3O4 (220), α-Fe2O3 (110), Fe3C (021), SS γ-phase (111), SS α-phase (111), 

SS γ-phase (200), α-Fe2O3 (122), α-Fe2O3 (214), α-Fe2O3 (300), SS γ-phase (220), α-Fe2O3 

(036), α-Fe2O3 (711) and SS γ-phase (311), respectively (Fig. 4.3 (b)) [105−107]. This indicates 

formation of iron oxides (Fe2O3/Fe3O4) and iron cementite (Fe3C) phase upon laser treatment. 

Though SS samples were irradiated with laser pulses in atmospheric air, which contains mostly 

nitrogen no signature of iron nitrides was found in the GI-XRD pattern of the laser modified 

surface. Absence of iron nitrides in the laser treated surface can be explained on basis of the fact 

that iron nitrides are thermodynamically unstable compared to Fe and N2 at high temperatures. 

Therefore, iron nitrides decompose into Fe and N2 at high temperature. Formed N2 gas escapes 

from the surface via degassing process [108]. Ref. [108] has reported that at temperatures >973 

K nitride completely disappears from the surface and iron oxides are predominantly formed on 

heated SS surface. During laser surface micro-structuring process surface temperature goes 

beyond melting point of the steel (~1450 oC). Therefore, our observation on absence of iron 

nitride on laser treated surface is in agreement with reported observations. Other observation is 

absence of chromium oxide in the laser treated region even though SS 304 contains ~18 % Cr 

and formation of Cr2O3 is thermodynamically preferred. The observed predominance of iron 

oxides upon laser irradiation can be explained on the basis of oxidation mechanism proposed in 

[106, 109].  According to the proposed mechanism first of all a thin film of Cr2O3 is formed on 

SS surface upon laser irradiation. Formed Cr2O3 film on the surface prevents further oxidation of 

Cr atoms present in the bulk due to poor mobility of Cr3+ ions through Cr2O3 film. Poor mobility 
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of the Cr3+ does not allow Cr3+ ions to reach on surface to react with oxygen atoms. However, 

Fe3+ ion has higher mobility in comparison to other constituents of SS 304 through grown Cr2O3 

film. Therefore Fe3+ ions can easily diffuse from the bulk of the target through the Cr2O3 film 

and reach the surface. On the surface Fe3+ ions react with atmospheric oxygen to form iron 

oxides. Hence, grown oxide layer on SS surface upon laser treatment is predominantly consisting 

of iron oxides. 

 The observed cementite phase (Fe3C) phase in the laser treated surface can be explained 

on the basis of incorporation of excess number of carbon (C) atoms in the melt pool during 

heating of the target [110]. During heating of the target when melt pool temperature is high large  

number of C atoms can diffuse from the bulk of the target towards the melt pool induced by 

irradiation with large number of laser pulses (~3.2 x104 pulses/location) due to increased 

solubility of C in SS at high temperature. Once the concentration of C atoms in the laser heated 

zone reaches beyond a certain level and solubility of C in SS reduces during the cooling process 

Fe3C phase precipitates. In the laser irradiated region Fe3C phase is formed instead of Fe and C 

mixture because Fe3C is more stable than Fe and C mixture at temperature >1000 oC [111]. Also, 

amongst all iron carbide phases Fe3C phase is the most thermodynamically stable phase. 

Therefore, on heating of SS with large number of laser pulses Fe3C phase is predominantly 

formed. 

4.2.2.3  Work function measurement  

GI-XRD analysis of the laser micro-structured SS sample reveals formation of iron oxide and 

carbide. This indicated that work function (φ) of the laser modified surface will be higher than 

stainless steel (~4.5 eV) because φ of Fe2O3, Fe3O4 and Fe3C are 5.7-5.4 eV [112], 5.2 eV [113] 

and 5.83 eV [114], respectively. Therefore, work function distribution over a surface area of 2 
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Variation of macroscopic field emission current density (Jm) with applied electric field (Em) i.e. 

Jm-Em characteristic is shown in Fig. 4.5. Here, Em is defined as the applied voltage divided by 

distance between cathode and anode surfaces and Jm is defined as the emission current divided 

by total area of surface micro-structured region of the sample. To estimate emission current 

density only laser micro-structured area has been taken in to account because untreated SS 

sample did not deliver measurable emission current for applied electric field equal to 11.4 V/μm. 

Jm-Em characteristics shows that turn on field (Eon) (defined as the Em to produce Jm equal to 10 

μA/cm2) is ~4.1 V/μm. Also, this specimen delivered high Jm up to 2.5 mA/cm2at Em equal to 7.6 

V/μm. Enhanced field emission of the fs laser micro-structured SS sample could be due to local 

field enhancement on tips of the generated micro-protrusions. 

 

Figure 4.5 Jm vs Em characteristics of SS specimen micro-structured with laser fluence of 0.5 J/cm2 

and target scan speed of 200μm/s [12]. 

The observed Eon for this specimen is significantly lower and maximum delivered Jm is multifold 

higher in comparison to the respective values for SS 304 sample treated with nanosecond laser 

(reported in Chapter 3). This could be due to higher number density and larger height of the 
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Some of the important parameters for laser modified SS sample characterizing its behavior as a 

large area field emitter (LAFE) have been estimated using the same methodology as used in 

Chapter 3. Estimated Field emitter characterizing parameters for fs laser micro-structured SS 

sample are summarized in Table 4.1. Estimated slope of the FN plot (S) was found to be -3.9 x 

10-7 Np.mV-1. Macroscopic field enhancement factor (βm) modified with slope correction factor 

was estimated to be ~1830 with value of slope correction factor (χm) equal to 0.9. This value of 

βm is much higher than the field enhancement factor values (~40) reported for a stainless steel 

surface with 0.1 μm average surface roughness [99] and βm= 585 measured for SS sample 

modified with nanosecond pulsed laser reported in chapter 3 and ref. [118]. The value of pre-

exponential factor (λm) which is also a provisional estimate for formal area efficiency of 

emission was estimated to be ~2.1 x 10-12. This implies that very small fraction of the total 

surface area (~2.1 x 10-12) is actually emitting electrons for this sample. Some of the reported 

field emission results on field emission from Fe2O3 with different surface morphologies are 

presented in Table 4.2.  

Table 4.1 List of estimated parameters characterizing of laser treated SS 304 as field emitter [12]. 

Sr. No. Parameters Value 

1. Turn on field (defined for 10 µA/cm2 current density ) 4.1 V/µm 

2. Threshold field (Fth) (defined for 100 µA/cm2 current density ) 4.8 V/µm 

3. Slope of the F-N plot (S) -3.9×107 Np.mV-1

4. Macroscopic field enhancement factor (βm) 1830 

5. Generalized slope correction factor  (χm) 0.9 

6. Macroscopic pre exponential correction factor (λm) 2.1×10-12 
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Table 4.2Some of the reported values of Eon and βm for different nanostructures of Fe2O3. 

Micro/nano 

Structure 

Preparation Method Eon 

(V/µm) 

βm Reference 

Nanowire Thermal oxidation 3.3-4.7  1023 -

1754 

Nanoscale Res. Lett. (2008) 

3:330-337 [119] 

Nanoneedles Themal oxidation 4.8 - J. of Alloys & Compounds 478 

(2009) 38-40. [120] 

Nanoflakes  Thermal oxidation  7.6-5.2 - Appl. Surf. Sci., 292 2014, 454-

461. [121] 

3D Urchin  Thermal oxidation 2.8 4313 ACS Appl. Mater. Interfaces, 

2011, 3, 3084-3090 [122] 

Quasi aligned 

1 D 

nanoneedles 

Thermal oxidation 1.7 
- 

J. Phys. Chem. C 2011, 115, 

8816-8824. [123] 

Micro-

protrusions 

Nanosecond pulsed 

laser irradiation  

7.5 585 [118] 

Hierarchical 

micro/nano 

protrusions  

fs pulsed laser 

irradiation  

4.1 1830 Present work 

Experimentally observed turn on field and field enhancement factor in this study compares well 

with the turn on fields and field enhancement factors for the reported morphologies indicating 

that laser treated surfaces can serve as good large area field emitters.  
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μm/s and 1000 μm/s are shown in Fig. 4.10 (a−e). Here again formation of surface micro-

protrusions upon laser treatment can be explained on the basis of hydrodynamic instability of the 

laser generated melt pool as explained in the pervious chapter. Processing of the SEM image 

using Leica Qwin3 software revealed that number density of the generated micro-protrusions is 

~106 micro-protusions/cm2 in this case. Also, number density and mean height of these micro-

protrusions showed an increasing and decreasing trends, respectively with increasing target scan 

speed.Variation of number density and mean height of the generated surface micro-protrusions 

with sample scan speed are shown in Fig. 4.11 and Fig. 4.12, respectively.  

 It is observed from SEM images in Fig. 4.10 (a−e) that in the region irradiated with fs 

laser pulses corresponding to target scan speed of ~400 μm/s surface grown μ-protrusions are of 

reasonable height and no debris is formed at the edges of the line scan. Hence, to generate 

uniform surface micro-protrusions over a large area for field emission study we selected a target 

scan speed of  400 μm/s and an area of 1 cm x 1 cm was treated at a typical laser fluence of 0.9 

J/cm2. During this experiment laser beam spot diameter on the target was ~300μm and separation 

between cosecutive line scans was fixed at 220 μm. 

A typical SEM image of the SS sample surface micro-structured over an area of 1 cm2 

using laser fluence of 0.9 J/cm2at target scan speed of 400 μm/s is shown in Fig. 4.13. This figure 

shows that high density uniform μ-protrusions are formed in the laser treated area except some 

lines where shallow crater has formed due to overlap of two consecutive line scans. Crater 

formation in the overlap region is due to irradiation of this region with more number of laser 

pulses (two times the number of pulses in comparison to other region) causing more removal of 

material resulting in crater formation. Since overlapped region is near the periphery of the laser 

beam where laser intensity is lower than central region fromed portion crater is shallow.  
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4.3.3 Field emission characterization results 

Jm−Em characteristics of the SS 304 surface micro-structured over an area of 1 cm2 with laser 

fluence of 0.9 J/cm2 and target scan speed of 400 μm/s is shown in Fig. 4.14. Jm−Em 

characteristics of this sample shows poor field emission performance with delivering only 0.7 

μA/cm2 emission current density at applied electric field of 6.1 V/μm. The observed poor field 

emission current for this sample may due to field screening effect caused by high density of 

micro-protrusions.   

 

Figure 4.14 Jm-Em characteristics of the SS sample treated with laser fluence of 0.9 J/cm2 at target 

scan speed of 400 μm/s. 

4.4  Surface micro-structuring of Tantalum targets  

4.4.1  Experimental details 
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ethanol. Experimental setup used for surface modification of Ta samples was same as setup used 

for surface treatment of SS 304 targets. However, laser power, laser beam spot size on the target 

and target scanning speed were different from SS 304 surface modification experiments. In these 

experiments laser power incident on target surface was ~1.3 W which was focused on target 

using a convex lens of focal length 20 cm. During the experiments different Ta samples were 

micro-structured by varying space averaged laser fluence in the range 0.35 J/cm2 to 0.55 J/cm2. 

Laser fluence on the target surface was varied by changing distance between the focusing lens 

and the target surface using a translational stage with a linear drive. To prepare large area surface 

micro-structured samples for field emission characterization laser fluence was fixed at a 

particular value and target was irradiated and simultaneously scanned in XY plane (plane 

perpendicular to incident laser beam). Scanning speed during these experiments was kept 

constant at 25 μm/s and separation between two consecutive line scans was fixed at 75 μm. Total 

surface micro-structured area for each of the sample used for FE characterization was ~0.4 cm2.    

4.4.2  Characterization results  

4.4.2.1  Surface morphology characterization results 

Typical morphology of the Ta samples treated with laser fluence of 0.35 J/cm2, 0.45 J/cm2 and 

0.55 J/cm2 are shown in Figs. 4.15a, b and c, respectively. These figures show formation of high 

density surface micro-protrusions in the laser treated region. Further, high magnification SEM 

images of the samples treated with laser fluence levels 0.35 J/cm2 and 0.45 J/cm2 revealed that 

grown micro-protrusions were covered with submicron size features [Fig. 4.16 (a, b)]. Number 

densities of the generated micro-protrusions on different laser treated surfaces were estimated by 

analyzing corresponding SEM images using Leica Qwin3 software. Estimated number density of 

the generated micro-protrusions on Ta surfaces corresponding to irradiation with laser fluence of 
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Figs. 4.19 (b−d) show expanded view of the peaks corresponding to Ta, C and O while Fig. 4.19 

(e) shows expanded view of the spectrum where N (1S) is expected (~395 eV). XPS analysis has 

also confirmed absence of nitrogen on the surface supporting conclusion drawn by GI-XRD 

analysis that tantalum nitride is not formed on the laser treated surface. The observed XPS peak 

corresponding to C (1S) could be due to adsorption of organic compounds from the atmosphere 

as no peak corresponding to TaC is observed in GI-XRD pattern. 

4.4.2.4 Field emission characterization results 

Field emission characterizations of each of the samples treated with laser fluence of 0.35 J/cm2 

and 0.45 J/cm2 were repeated twice while the specimen treated with 0.55 J/cm2 was characterized 

thrice under same experimental conditions. Fig. 4.20 shows typical Jm vs Em characteristics of the 

Ta samples treated with laser fluence of 0.35 J/cm2 (Sample 1), 0.45 J/cm2 (Sample 2) and 0.55 

J/cm2 (Sample 3) corresponding to one of the set of FE characterization. Here, also macroscopic 

field emission current density (Jm) and macroscopic applied field (Em) have been defined same as 

they have been defined previously in the thesis. Turn on fields (Eon) of the Ta samples treated 

with laser fluence of 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2were found to be 18.4 ± 0.3, 12.8 ± 

0.8 and 4.0 ± 0.6 V/μm, respectively. FE characterization revealed that Eon corresponding to Ta 

surface micro-structured with laser fluence of 0.55 J/cm2 is much lower than its value for 

samples treated with laser fluence of 0.35 J/cm2 and 0.45 J/cm2. The observed lower value of Eon 

corresponding to sample 3 in comparison to Eon values for sample 1 and sample 2could be due to 

larger size and lower number density of the generated micro-protrusions in sample 3 in 

comparison to sample 1 and sample 2. Larger size of the generated micro-protrusions leads to 

higher local field enhancement and lower number density leads to reduced effect of field 
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screening hence resulting in enhanced field emission. FN plots of the Jm vs Em characterization 

data and their linear fits are shown in Fig. 4.21.  

 

Figure 4.20 Jm vs Em characteristics of the laser micro-structured Ta samples treated with laser 

fluence of 0.35 J/cm2 (Sample #1), 0.45 J/cm2 (Sample # 2) and 0.55 J/cm2 (Sample # 3) [126]. 

 

 

Figure 4.21 FN plots of the experimental data and their linear fit for laser micro-structured 

samples 1, 2 and 3 [126].   
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Parameters which characterize laser micro-structured surfaces as large area field emitter have 

been estimated using same approach which has been adopted for the case of SS 304 samples. 

Since our GI-XRD and XPS analysis confirmed formation of mainly Ta2O5 on the laser treated 

surfaces work function of Ta2O5 (φ=4.45 eV) [130] has been used instead of work function of Ta 

(φ = 4.1−4.3eV) [131, 132] to estimate large area field emitter parameters. Estimated field 

emitter parameters corresponding to experimental data shown in Fig. 4.20 have been summarized 

in Table 4.3. Field enhancement factors for Ta specimens surface modified with laser fluence 

levels of 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2 were found to be 270 ± 30, 400 ± 80 and 4500 ± 

500. Here, first number written in each case is the mean value of field enhancement factor and 

number written after ± sign is variation in the field enhancement factor value for different set of 

experiments. It is also observed from Table 4.3 that value of βm increased and λm decreased on 

the sample as the incident laser fluence increased from 0.35 J/cm2 to 0.55 J/cm2 indicating that as 

field enhancement factor increases formal area efficiency of emission decreases. Reported data 

on field emission from different morphologies of Ta2O5 is presented in Table 4.4.  

Table 4.3 Estimated field emitter parameters for fs laser micro-structured Ta (obtained from FE 

characterization data presented in Fig. 4.20). 

Sr. 

No.  

Field emitter characterizing parameter Sample # 1 Sample # 2 Sample # 3 

1. Turn on field (Eon)    [V/μm] 18.5 13.7 4.4 

2. Threshold field (Eth) [V/μm] 20.9  16.2 6.7 

3. Generalized slope correction factor (χm) 0.94 0.93 0.73 

4. Macroscopic field enhancement factor (βm)  238 364 3947 

5. Macroscopic pre-exponential factor (λm) 2.6x10-10 4.0x10-11 6.4x10-16 
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Table 4.4 Literature reported values of turn on field for different type of Tantalum oxide micro-

structures. 

Sr. 

No. 

Surface morphology Sample preparation 

method  

Eon 

(V/μm) 

βm Ref. 

1.  Ta2O5 coated single wall 

carbon nano-tubes 

(SWCNTs) on Si substrate 

HF-CVD and  12 - [133] 

2. Ta2O5 aligned nanorods Thermal deposition 8.5 764 [134] 

3. Nano-structures  He plasma 

treatment  

9-10 300-1455 [135] 

4. Hierarchical Micro-

protrusions 

Fs pulsed laser 

irradiation  

4.4-18.5 238-3947 Present 

study 

Fig. 4.22 (a-c) show stability of the emission currents from Ta surface micro-structured with 

laser fluence of 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2. It is observed from these figures that 

emission currents corresponding to surfaces treated with 0.35 J/cm2 and 0.45 J/cm2 have shown 

good stability. However, Ta sample micro-structured with 0.55 J/cm2 has shown sudden drop in 

emission current by ~60 % after 40 minutes of continuous operation and became stable 

thereafter. This might be due to damage of sites/protrusions which were predominantly 

contributing towards field emission. Post field emission current stability test of the sample 

treated with 0.55 J/cm2 this sample was again investigated for Jm vs Em characteristics. Obtained 

Jm−Em characteristics for this sample is shown in Fig. 4.23 which shows that emission current 

densities were significantly lower in comparison to the emission current densities in previous test 

i.e. prior to the field emission current stability run. 
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Figure 4.22 Variation of field emission current with time for Ta samples laser treated with laser 

fluence of (a) 0.35 J/cm2 (b) 0.45 J/cm2 (c) 0.55 J/cm2 [126]. 
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 Ta samples treated with fs laser at fluence levels 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2 

have shown generation of μ-protrusions with number densities equal to ~8.8x105 μ-

protrusions/cm2, ~7.5 x 105 μ-protrusions/cm2 and ~3.5 x 105 μ-protrusions/cm2, respectively. Fs 

laser modified Ta surface was found to predominantly consist of Ta2O5. Laser modified Ta 

samples have shown improvement in field emission behavior. Ta sample treated with laser 

fluence of 0.55 J/cm2 has shown lowest turn on field (4.0 ± 0.6 V/μm) and highest macroscopic 

field enhancement factor (4400 ± 500) among all the fs laser treated Ta samples.  
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Chapter 5 
 

Theoretical Simulation of Period of the Generated Micro-protrusions on SS 

304 Surface upon Femtosecond Laser Irradiation 

 

5.1 Introduction 

Femtosecond (fs) laser generated self–assembled micro–protrusions on metal surfaces has shown 

improved performance in a variety of applications (summarized in Section 1.3 of Chapter 1). 

Reports indicate that number density of the generated micro-protrusions varies with incident 

laser fluence and target scanning speed. In our investigation too it was observed that number 

density/period of the grown micro-protrusions varied with incident laser fluence. Number density 

and height of the grown surface micro–protrusions play significant roles in field emission 

behavior of the laser micro-structured samples was also observed by us.   

In addition to our experimental investigation theoretical model based simulation was 

undertaken to determine dependence of period/areal number density generated surface micro-

protrusions as a function of incident laser fluence. This theoretical simulation is expected to help 

us in appropriately choosing the laser parameters to carry out surface micro-structuring of 

cathodes for field emission enhancement.  

In this chapter our results on theoretical simulation to predict areal number density/period 

of the generated micro-protrusions on SS 304 and titanium (Ti) surfaces upon irradiation with fs 

laser are being presented. In this work we have theoretically simulated period of the generated 

surface micro-protrusions on Ti surface as a function of laser fluence and compared simulated 

period with the reported experimental data on micro-protrusions period [80] on Ti to validate the 
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theoretical model. Validated model has been then used to simulate period / number density of the 

surface micro-protrusions on stainless steel 304 surface.  

In order to simulate period of the generated surface micro-protrusions first of all melting 

of the targets (Ti and SS 304) corresponding to irradiation with a single fs laser pulse has been 

simulated using a two temperature model (TTM) [136]. Simulated maximum melt depth (hmax) of 

the target, surface temperature and temperature gradient at surface corresponding to occurrence 

of maximum melt depth have been used to estimate expected number density/period of the 

generated surface micro-protrusions using a linear Hydrodynamic Kuramoto Sivashinsky Model 

(HDKS Model) [97]. A decrease in the simulated number density (increase in period) of micro-

protrusions with increasing incident laser fluence was observed which is in agreement with both, 

reported [80] and our own experimental [Section 4.3 of Chapter 4] observations.  

5.2 Theoretical model (Formulation of the problem) 

Physical model used to predict the number density/period of the generated micro-protrusions for 

fs pulsed laser irradiation is summarized as below.    

i. Generation of surface micro-protrusions on fs laser irradiated surface has been explained on 

the basis of hydrodynamic instability of the surface of the melt layer [97]. When a laser pulse 

is incident on the target surface a fraction of energy is reflected from the surface (R) and 

remaining energy is absorbed inside the target material. This absorbed energy causes heating 

of the target leading to melting and vaporization of the target material upto certain depth 

depending upon the incident laser fluence. If strong temperature gradient is present in the 

molten pool this can lead to instability of the melt layer surface. Temperature gradient 

induced instability leads to undulations in melt surface starting from plane surface. If re-

solidification of the undulated surface occurs before it reaches an equilibrium state these 
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generated surface undulations on the molten layer surface results in generating an initial 

roughness of the surface. The created rough surface on the target causes non-uniform 

deposition of energy for next incident laser pulses, in the valley region energy deposited 

being more in comparison to inclined surface or hill region of the rough surface. Non-

uniformly deposited energy density leads to a spatial temperature distribution and hence 

spatial variation of the surface tension. Also, due to absorption of laser beam there is 

attenuation of deposited energy along the depth of the target leading to a strong temperature 

gradient along depth direction too. Existing surface tension gradient in the melt pool causes 

liquid flow from low surface tension region towards high tension region. If temperature 

coefficient of surface tension is negative liquid flows from valley towards hills for each laser 

pulse incident on the target and surface undulation grows [136].      

ii. To simulate period of surface micro-protrusions the linear Hydrodynamic Kuramoto–

Sivashinsky (HDKS) model has been employed. According to this model hydrodynamic 

instability of the surface leads to formation of surface undulations of different periodicity 

each having different growth rate provided melt duration (tm) is less the than time period of 

capillary oscillations (tcap) i.e. [97] ─ 

 

 t୫ ൏ tୡୟ୮ ൌ
ଶπ

ሺ଼πయγ౩ ୲ୟ୬୦ቀ
మπ౞ౣ

Λౣ
ቁ/ρΛౣሻ

భ/మ   ………. (5.1)  

Here, γs, ρ, hm and Λm are surface tension of the melt pool at surface, density, melt depth and 

period of undulation, respectively. After irradiation with sufficiently large number of laser 

pulses surface micro-protrusions with spatial period corresponding to maximum growth rate 
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are formed. According to the HDKS model, period of the surface micro-protrusions (Λm) on 

the surface corresponding to maximum growth rate is given by [97] ─  

Λ୫ ൌ
ସπ

ଷ
h୫ ൤

γ౩

หγ౐ห|ப୘ ப୸⁄ |౰సబ୦ౣ
൨

ଵ/ଶ

              …………… (5.2) 

Here,|𝛾்| and |𝜕𝑇 𝜕𝑧⁄ |௭ୀ଴ are absolute value of temperature coefficient of surface tension 

and temperature gradient along depth direction at molten layer surface, respectively. In the 

present study z = 0 is surface of the target and z increases along depth direction in the target.   

iii. Theoretical simulation has been carried out to estimated required parameters in equation 

(5.2) to estimate period of the generated surface micro-protrusions on target surface. When 

target is irradiated by a femtosecond laser pulse energy coupled to the target is first absorbed 

instantaneously (time scale ~ 10-15 s) by free electrons present in the target. The electrons 

which absorb energy go to excited state and again come to thermal equilibrium with other 

electrons via electron-electron scattering process within time scale of few tens of 

femtosecond. Energy from the electronic subsystem to lattice subsystem is transferred via 

electron–phonon scattering process. Thermalization between electronic and lattice 

subsystems occur at a time scale of the order of ~ ps. Hence, electronic and lattice 

subsystems remain at two different temperatures before the thermalization between these two 

subsystems occur. Therefore, simulation of the femtosecond laser pulse induced heating and 

melting of the target has been carried out using a two temperature model (TTM) upto the 

time of thermalization of electron and lattice subsystems. According to TTM heating of 

electrons and lattice subsystems can be written as [136] –  

CୣሺTୣ ሻ ப୘౛ሺ୸,୲ሻ

ப୲
ൌ ப

ப୸
ሾkୣሺTୣ , T୪ሻ

ப୘౛ሺ୸,୲ሻ

ப୸
െ GሺTୣ ሻሾTୣ ሺz, tሻ െ T୪ሺz, tሻሿ ൅ Sሺz, tሻ     …….. (5.3) 



[100] 
 

C୪ሺT୪ሻ
ப୘ౢሺ୸,୲ሻ

ப୲
ൌ ப

ப୸
ቂk୪ሺTୣ , T୪ሻ

ப୘ౢሺ୸,୲ሻ

ப୸
ቃ ൅ C୪ሺT୪ሻvୟ

ப୘ౢ

ப୸
൅ GሺTୣ ሻሾTୣ ሺz, tሻ െ T୪ሺz, tሻሿ……. (5.4) 

Here, Te (z, t) and Tl (z, t) are the temperatures of electrons and lattice subsystems at depth z 

from the surface at time equal to t, respectively. Ce and ke are volumetric heat capacity and 

thermal conductivity of the electronic subsystem, respectively. Cl and kl are volumetric heat 

capacity and thermal conductivity of the lattice subsystem, respectively. G is electron-lattice 

coupling constant, va is recession velocity of the surface due to ablation and S (z, t) is laser 

source term at depth z from the target at time t. Thermal conductivities of electrons and 

lattice subsystems in metals have been considered to vary as following relations  [137] ─ 

ke = keq (Te /Tl)                              …………..   (5.5) 

kl = 0.01keq                                                    …………..   (5.6) 

Here, keq is thermal conductivity of the target material when electron and lattice subsystems 

are in thermal equilibrium. Equation (5.5) is valid only for Tl, Te<< Tc (thermodynamic 

critical temperature). Thermodynamic critical temperature (Tc) for titanium is ~1x 104 K 

[138] and Tc for main constituents of SS 304 (Fe, Cr, Ni) is also ~1x 104 [139]. However, due 

to lack of functional relation for ke variation in Ti at Te and Tl values in the range near to Tc 

and beyond we have assumed in the present case that variation of ke follows equation (5.5) 

for all the values of Te and Tl. In the case of metals contribution of lattice in thermal 

conductivity is normally assumed to be ~1% of the total thermal conductivity and remaining 

is due to free electrons present in the metal. Therefore, variation of kl has been considered as 

equation (5.6) in the entire temperature range in simulation. Laser source term [S (z, t)] as a 

function of position and time is given by the following equation [136] ─  
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Sሺz, tሻ ൌ ୊

ට
π

రౢ౤ሺమሻ

ଵ

τ౦
ሺ1 െ Rሻα exp ቆെαz െ ሺ4 lnሺ2ሻ ൬

୲ିτ౦

τ౦
൰

ଶ

ቇ   ………. (5.7) 

Where, F, R, τp and α, are incident average laser fluence, surface reflectivity of the target, 

laser pulse duration (FWHM) and absorption coefficient of the target, respectively.  

 For time beyond occurrence of thermalization between electronic and lattice 

subsystems a single temperature (T) of the target has been defined. Evolution of target 

temperature (T) as function of time (t) and position (along depth direction from target 

surface) after reaching thermal equilibrium between electrons and lattice has been estimated 

using the following equation–  

C୮
ப୘ሺ୸,୲ሻ

ப୲
ൌ ப

ப୸
ቂkሺz, tሻ ப୘

ப୸
ቃ ൅ C୮vୟ

ப୘

ப୸
     …………… (5.8) 

Here, T (z, t) and k (z, t) are temperature and thermal conductivity of the target at depth z 

from the surface at time equal to t, respectively. Cp is volumetric heat capacity of the target 

and va is recession velocity of the ablation front. va is given by the following equation− 

vୟ ൌ 0.82 ቀ ୫

ଶπ୩ౘ୘౩
ቁ

భ
మ ୔౩

ρ
                      ……….. (5.9)    

Here, m is atomic mass of the target, kb is Boltzmann constant, ρ is density of the target and 

Ps is saturated vapor pressure corresponding to surface temperature Ts. Ps has been calculated 

using the Clausius─Clapeyron equation as below− 

Pୱ ൌ P଴ exp ቆ୫ΔΗ౬

୩ౘ
ቀ ଵ

୘ౘ
െ ଵ

୘౩
ቁቇ        ………… (5.10) 
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Where, P0 is ambient pressure (in the present study P0 = 1.013 x 105 Pa). ∆Hv is latent heat of 

vaporization and Tb is boiling point of the target.  

iv. Maximum melt depth, surface temperature and temperature gradient at the melt layer surface 

corresponding to maximum melt depth were estimated by solving equations (5.3), (5.4) and 

(5.8) for a given laser fluence level. Using surface temperature (Ts) value surface tension of 

the liquid at surface layer was estimated. These theoretically simulated parameters were used 

in equation (5.2) to estimate period of the generated surface micro-protrusions.     

5.3  Numerical solution  

All the heat equations have been solved using explicit finite difference method. Equations (5.3) 

and (5.4) have been solved for a time duration of ~3 ps (time scale of the order of electron-lattice 

thermalization in chosen materials) by taking into account time step (∆t) of 0.1 fs and grid size 

along depth direction (∆z) equal to 1 nm. Thereafter, equation (5.8) has been solved using time 

step (∆t) of 0.1 ps and grid size along depth (∆z) = 2 nm upto 7 ns. Time step (∆t) and grid size 

(∆z) have been chosen to satisfy following stability criteria− 

rୣ ൌ ୩౛

େ౛

∆୲

∆୸మ ൏ 0.5               ……….  (5.11) 

r୪ ൌ ୩ౢ

େౢ

∆୲

∆୸మ ൏ 0.5              ………… (5.12) 

Where, re and rl are constants. In addition to satisfying the stability criteria, smaller values of ∆t 

and ∆z results in better accuracy of the numerical solution but increases demands on number of 

calculations. Hence, ∆t and ∆z are chosen judiciously get reasonable accuracy and number of 

calculations.   
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5.3.1  Solving heat equations before  thermalization of electron and lattice  

Evolution of Te and Tl with time and depth from the target surface have been determined by 

solving equations (5.3) and (5.4). These equations have been solved together using following 

initial and boundary conditions –  

Initial condition:   

At t = 0:      Tl (z, t) = Te (z, t) = 300 K (Room temperature)                   ………. (5.13) 

Boundary conditions:  

At front surface (z = 0) ─ 

െkୣ
ப୘

ப୸
ൌ 0                                                               ..…….. (5.14)              

െk୪
ப୘

ப୸
ൌ െJ୴ െ Jୡ െ J୰                                              ……… (5.15) 

Where Jv, Jc and Jr are heat flux going out of target surface due to vaporization, surface 

conductance and radiation loss mechanisms, respectively. Jv, Jc and Jr are given by following 

equations− 

J୴ ൌ ρvୟሺ∆H୴ ൅ ∆H୫ሻ                                           ……….  (5.16) 

Jୡ ൌ ℎ௧ሺTୱ െ Tୟ୫ୠሻ                                                  ....……. (5.17) 

J୰ ൌ σεሺTୱ
ସ െ Tୟ୫ୠ

ସ ሻ                                                 ………. (5.18)       

Where, ∆H୫, ℎ௧, Tamb, σ and ε are latent heat of fusion, heat transfer coefficient of surface in air, 

ambient temperature, Stephan-Boltzman constant, total emissivity of the target, respectively.  

At lower boundary (z = 200 nm) ─  

Tl (z, t) = Te (z, t) = 300 K = Tamb……….. (5.19)                        
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To solve equations (5.3) and (5.4) lower boundary of the problem was chosen at ~200 nm 

because of the fact that skin depth (depth in the target by which laser intensity reduces to 1/e 

times its value on the target surface) for Titanium and SS 304 are 15.9 nm and 14.2 nm, 

respectively. Therefore, at the depth of 200 nm laser beam intensity will reduce by ~(1/e)13 times 

its value at surface i.e. laser source term at 200 nm will be negligibly small. Also, since these 

equations have been solved over a time scale of ~3 ps thermal heat diffusion length within this 

time duration will be negligible (Estimated thermal diffusion length in Ti and SS 304 within 3 ps 

time duration is ~0.5 nm). 

 Phase change of the material during heating and cooling cycles is modeled by apparent 

heat capacity method. In this method it is assumed that phase change of the material takes place 

over certain temperature range (∆T) instead of a single temperature. Effect of latent heat during 

of phase change (melting and vaporization) is incorporated by increasing heat capacity of the 

material over range in which phase change takes place. Model used for heat capacity at the time 

of melting is given as below [136]-   

C୮ ൌ ቐ

Cୱ ൏   ሺT୫ െ ∆Tሻ
େ౩ାେై

ଶ
൅  ∆ୌౣ஡

ଶ∆୘
ሺT୫ െ ∆Tሻ ൑ T

C୐ ൐  ሺT୫ ൅ ∆Tሻ

൑ ሺT୫ ൅ ∆Tሻ     ……….. (5.20) 

Here, Cs and CL are heat capacities of solid and liquid phase of the target and Tm is melting point 

of the target. In the present case we have chosen ∆T equal to 25 K for SS 304 sample because for 

SS 304 melting occurs in temperature range of ~50 K instead of single point. While in the case 

of Ti, ∆T has been chosen equal to 10 K. As ∆Tis reduced simulation results move towards 

accurate value. However, if rate of increase in temperature is high there is a chance to skip the 

phase transition phenomenon in the simulation. Therefore, ∆T is chosen in such a way that phase 
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change phenomenon is captured during the temporal evolution in simulation. Similarly, at time 

of liquid to vapor phase change heat capacity has been modeled as− 

C୮ ൌ ቐ

C୐ ൏   ሺTୠ െ ∆Tଵሻ

C୐ ൅  ∆ୌ౬஡

ଶ∆୘
ሺTୠ െ ∆Tଵሻ ൑ T

C୐ ൐  ሺTୠ ൅ ∆Tଵሻ

൑ ሺTୠ ൅ ∆Tଵሻ               ………… (5.21) 

Here, ∆T1 has been chosen to be equal to 10 K for SS 304 and Ti both the samples. 

5.2.2.2  Evolution of target temperature after electron lattice thermalization  

In the present study thermalization temperature for Ti and SS 304 were found to be less than 3 ps 

hence to evolution of temperature inside target after 3 ps has been simulated by solving equation 

(5.8). Following initial and boundary conditions have been used to solve equation (5.8)− 

Initial condition-  

Initial time for solving equation (5.8) is chosen as t = 3ps and lattice temperature profile in the 

target obtained from solving equations (5.3) and (5.4) is used as initial temperature distribution 

i.e.   

T (z, t = 3 ps) = Tl (z, t = 3 ps)                      …………. (5.22) 

Boundary conditions for solving equation (5.8):   

At z = 0 (front boundary)-  

െk ப୘

ப୸
ൌ െJ୴ െ Jୡ െ J୰………….. (5.23) 

Here, Jv, Jc and Jr are same as defined in equations (5.16) ─ (5.18).  

At z = 900 nm (back boundary) 

T = 300 K                                                        ………….. (5.24) 
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5.4 Thermo-physical properties of the materials (Ti & SS 304) used for theoretical 

simulation  

Thermo-physical and optical properties of titanium and stainless steel 304 which have been used 

for theoretical simulation study are provided in Table 5.1 and Table 5.2, respectively. Some of 

the properties provided in Tables 5.1 and 5.2 have been directly taken from the reported values 

while some of them have been derived from the reported values. For example, surface 

reflectivity and absorption coefficient for SS 304 and Ti has been estimated from the reported 

values of the real and imaginary parts of the refractive index. Surface reflectivity (R) and 

absorption coefficient (α) were calculated using following equations − 

R ൌ
ሺ୬ିଵሻమିசమ

ሺ୬ାଵሻమାசమ                            …………… (5.25) 

𝛼 ൌ ସగ఑మ

ఒ
                                    …………… (5.26)  

Where, n and κ are real and imaginary parts of refractive index. λ is wavelength of the laser light. 

Similarly, values of electron specific heat (Ce) and electron phonon coupling factor (G) as a 

function of electron temperature (Te) provided in Table 5.1 and Table 5.2 have been estimated by 

fitting the reported data taken from literature.  
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Table 5.1 Thermo-physical and optical properties of Titanium used in theoretical simulation.  

Sr. 
No.  

Property  Value Ref. 

1. Refractive 
index  

Real part (n)  = 3.14  
Imaginary part (κ) = 4.01 

[140]

2. Surface 
reflectivity 
(R) 

0.62 ( Estimated from n and κ values)  

3. Absorption 
coefficient 
(α) 

6.3 x 107  m-1( Estimated from κ value)  

4. Density (ρ)  (i) 4.5x103 kg m-3 (at 300K) & 
(ii) ~ 3.5x103 kg m-3 (at 3500K) 

 
Mean value: ~ 4.0x103 kg m-3 

[141] 
[142]

5. Melting point 
(Tm) 

1941 K [143]

6. Boiling point 
(Tb) 

3560 K [144]

7. Val. Heat 
capacity of 
(Cp)  

(i) Cs = ρ x (626 J kg-1 K-1) (mean value of solid phase)  
(ii) Cl = ρ x (980 J kg-1 K-1) (mean value of liquid phase) 

[144]

8. Vol. heat 
capacity of 
electrons (Ce) 

ቐ
9.3196 x 10ସ ൅ ሺ266.21Tୣ ሻ Te ൏ 0.85 ൈ 10ସK

2.07 x 10ସ ൅ ሺ0.3578 Tୣ ሻ if 0.85 ൈ 10ସ ൑ Tୣ ൑ 3.5 x 10ସK
െ95806 ൅ 61.25 Tୣ if Tୣ ൐ 3.5 𝑥 10ସK

 

       (Jm-3K-1) 

[145]

9. Thermal 
conductivity 
at thermal 
equilibrium 
(keq)  

17 W m-1 K-1 (mean value in solid  phase) 
28 W m-1 K-1 (mean value in liquid phase) 

[143]

10. Electron-
phonon 
coupling 
factor (G)  

൝
1.042E18 ൅ 1.111E15 Tୣ െ 1.0213E11 Tୣ Tୣ ൑ 5.6E3 K

4.701E18 െ 1.206E14 Tୣ ൅ 1.192E9 Tୣ െ 2085.76 Tୣ 5.6E3 ൏ Tୣ ൑ 5E4 K
13.98E17 Tୣ ൐ 5𝐸4  𝐾

 

  (Wm-3K-1) 

[145]

11. Latent heat of 
fusion (∆Hm) 

295 kJ/kg [146]

12. Latent heat of 
vaporization 
(∆Hv) 

8.88 x103 kJ/kg  [146]

13. Surface 
tension (γ) 

1.64 Nm-1 [142]

14. Temperature 
coefficient of 
surface 
tension 
(∂γ/∂T) 

-2.38 x 10-4 Nm-1K-1 [142]

15. Heat transfer 
coeff. (ht) 

5 W/m2/K [147]

16. Emissivity (ε) 0.34@ temperature in the range 1640 K to 2000 K [148]
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Table 5.2 Thermo-physical and optical properties of SS 304 used in theoretical simulation.  

 

 

 

Sr. 
No.  

Property Value Ref. 

1. Refractive 
index  

Real part of refractive index (n)  = 3.5   
Imaginary part of refractive index (κ) = 4.8 

[149] 

2. Surface 
reflectivity (R) 

0.67 ( Estimated from n and κ values)  

3. Absorption 
coefficient (α) 

7.59 x 107 m-1 ( Estimated from κ value)  

4. Density (ρ)  7.1x103 kg.m-3[Mean value of the solid and liquid phase densities] [150] 

5. Melting point 
(Tm)  

1723 K (Solidus temperature: 1698 K & Liquidus temperature: 1748K) [151] 

6. Boiling point 
(Tb) 

2910 K [151] 

7. Vol. heat 
capacity of 
lattice (Cp) 

(i) Cs= ρ x (600 J kg-1 K-1) [Mean of solid phase] 
(ii) CL=  ρ x (800 J kg-1 K-1) [Mean of liquid phase] 

[150] 

8. Vol. heat 
capacity of 
electrons 
 (Ce ) 

ቐ
680 ൈ Tୣ   if Te ൏ 2.5 ൈ 10ଷK
ሺ680 ൈ 2.5 ൈ 10ଷሻ ൅ 173ሺTୣ െ 2.5 ൈ 10ଷሻ if 2.5 ൈ 10ଷ ൑ Tୣ ൑ 10ସK

ሺ680 ൈ 2.5 ൈ 10ଷሻ ൅ 173ሺ10ସ െ 2.5 ൈ 10ଷሻ ൅ 23.33ሺTୣ െ 10ସሻ   if Tୣ ൐ 10ସK
 

(Jm-3K-1) 

[149] 

9. Thermal 
conductivity in 
equilibrium 
(keq) 

kୣ୯ ൌ ቊ
24  W mെ1Kെ1 if T ൏ T୫ ሺMean value of solid phaseሻ

29 W mെ1Kെ1 if T ൐ T୫ ሺMean value of solid phaseሻ
 

[152] 

10. Latent heat of 
fusion (∆Hm) 

300 kJ/kg [153] 

11. Latent heat of 
vaporization 
(∆Hv) 

6.5 x 103  kJ/kg [153] 

12.  Electron-
phonon 
coupling factor 
(G)   

ቐ
53 ൈ 10ଵ଻  if Tୣ ൑ 7 ൈ 10ଷK

ሺ53 ൈ 10ଵ଻ሻ െ 16.67 ൈ 10ଵଷሺTୣ െ 7 ൈ 10ଷሻ if 7 ൈ 10ଷ ൏ Tୣ ൑ 2.3 ൈ 10ସK
28 ൈ 10ଵ଻   if Tୣ ൐ 2.3 ൈ 10ସK

 

(Wm-3K-1) 

[149] 

13. Surface tension 
(γ) 

1.84 Nm-1 @1823K [150] 

14. Temp. coeff. of 
surface tension 
(∂γ/∂T) 

- 0.4 x 10-3 Nm-1K-1 [150] 

15. Heat transfer 
coeff. (ht) 

5 W/m2/K [147] 

16.  Emissivity (ε) 0.22 @ temperature of 1000 K [154] 
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5.5. Simulation results on Titanium 

Femtosecond (fs) laser induced melting, ablation depth, period of the generated micro-

protrusions and number density of the generated surface micro-protrusions on Ti sample have 

been theoretically simulated for single incident laser pulse with varying laser fluence in the range 

0.5 J/cm2 to 1.1 J/cm2.    

 Fig. 5.1 shows a theoretically simulated temporal evolution of temperatures of electron 

and lattice subsystems at titanium sample surface corresponding to irradiation with a single fs 

laser pulse with laser fluence of 0.7 J/cm2. Fig. 5.1 reveals that electron temperature increases at 

much higher rate in comparison to the lattice temperature. The observed faster temperature 

change for electrons in comparison to lattice subsystem is due to lower heat capacity of electrons 

in comparison to the lattice. This figure also indicates that electron and lattice subsystems reach 

in thermal equilibrium within 3 ps and lattice temperature reaches up to ~ 1.0 x 104 K in 3 ps 

after irradiation with a fs laser pulse.  

 

Figure 5.1 Temporal evolutions of temperatures of electron and lattice subsystems at Ti target 

surface corresponding to a laser fluence of 0.7 J/cm2. 
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 Fig. 5.2 shows a typical temporal evolution of melt depth in the Ti target corresponding 

to irradiation with single fs laser pulse with laser fluence of 0.7 J/cm2. This figure clearly shows 

that melt depth in the target first increases up to a certain maximum value (hm=160nm)at a 

particular time then after decreases.  

 

Figure 5.2 Temporal evolution of the melt depth in Ti target corresponding to irradiation with laser 

fluence of 0.7 J/cm2. 

Fig. 5.3 shows a typical simulated temperature distributions along depth direction in Ti 

sample at time t equal to 3 ps and at a time when maximum melt depth occurs in the target (t 

equal to ~ 4 ns) corresponding to irradiation with laser fluence of 0.7 J/cm2. This figure clearly 

shows that at the time of maximum melt depth temperature distribution has become smoother in 

comparison to the temperature distribution at t equal to 3 ps. This would have happened due to 

heat diffusion process in the target because of strong temperature gradient along the depth 

direction.  
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Number density of the generated micro-protrusions on Ti sample surface has been 

estimated from the simulated period of the surface micro-protrusions. Variation of the estimated 

number density of the micro-protrusions as a function of laser fluence is shown in Fig. 5.7. 

Having broadly validated our simulation model against experimental observations 

reported for titanium we next used this model to predict period and number density of the surface 

micro-protrusions on stainless steel 304 by fs laser irradiation.  

5.6  Simulation results on SS 304  

Figure 5.8 shows theoretically estimated temporal evolution of temperature of electron and 

lattice subsystems at surface of the SS target corresponding to a typical laser fluence of 0.7 

J/cm2. Fig. 5.8 shows that electrons and lattice reaches a thermal equilibrium within ~3 ps of 

irradiation with an fs laser pulse. Also, lattice temperature reaches a temperature of ~7500 K 

(much beyond the boiling point of the SS 304) at ~3 ps.  

 

Figure 5.8 Temporal evolution of Te and Tl at SS 304 surface corresponding to laser fluence of 0.7 

J/cm2. 
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compared with experimental number density of the surface micro-protrusions on SS 304 

observed by us corresponding to a laser fluence of 0.9 J/cm2 (Reported in Section 4.3.2). 

Theoretically simulated number density of the generated surface micro-protrusions was ~1 x 106 

protrusions/cm2 while experimentally observed number density of micro-protrusions varies in the 

range 1.1 x 106 to 1.8 x 106 protrusions/cm2 depending upon the target scan speed.  
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Chapter 6 

Conclusion & Future perspective  

 

6.1  Conclusion 

In the present study, we carried out surface micro-structuring of stainless steel 304 (SS 304) and 

tantalum (Ta) samples via irradiation with a focused beam of nanosecond (ns) or femtosecond 

(fs) lasers. Surface micro-structuring of sample surfaces was carried out by varying laser fluence 

and number of laser pulses irradiating the target at a specific location. Surface micro-structured 

samples were characterized in terms of surface morphology, roughness, chemical phase, 

crystallographic phase and field emission behavior. Irradiation of targets with optimized laser 

fluence and number of laser pulses resulted in generation of self-assembled micro-protrusions on 

the surfaces. These micro-structured surfaces have shown improved field emission behavior in 

comparison to the pristine samples. In addition to the experimental work theoretical simulation 

was carried out to predict period of the generated micro-protrusions on SS 304 surface 

corresponding to irradiation with fs laser pulse.  

 Surface micro-structuring experiments on SS 304 targets using nanosecond laser revealed 

that targets irradiated with laser fluence ≥ 4 J/cm2 and 3000 pulses resulted in deep crater 

formation in the target. Self-assembled micro-protrusions were formed in the laser irradiated 

surface when incident laser fluence was ≤ 2 J/cm2. Average height of the generated micro-

protrusions on SS surface corresponding to 2 J/cm2 increased from 17 μm to 30 μm when 

number of incident laser pulses increased from 3000 to 9000. While initial growth of height of 

surface protrusions with incident number of pulses was rapid it slowed after certain number of 

laser pulses. When SS sample was irradiated with 0.7 J/cm2 and 6000 laser pulses surface micro-
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protrusions were formed over the entire laser irradiated spot. SS 304 sample treated with laser 

fluence of 0.7 J/cm2 was characterized for chemical phase. This sample showed that laser treated 

surface consists of iron oxides and iron nitrides. SS 304 sample surface micro-structured with 

laser fluence of 0.7 J/cm2 demonstrated low turn on field (~7.5 V/μm), high macroscopic field 

enhancement factor (~585) and delivered emission current density up to 340 μA/cm2. Formal 

area efficiency of emission for this specimen was estimated to be ~2.7×10-10 which implies that a 

very small fraction of the actual specimen was actually contributing towards emission of 

electrons. Field emission current from the laser micro-structured specimen was fairly stable over 

the test period.  

Similarly, surface micro-protrusions were generated on Ta targets via nanosecond laser 

irradiation with laser fluence of 0.9 J/cm2 and varying number of laser pulses in the range 3000 

to 9000. In the case of Ta too, height of the generated surface micro-protrusions and mean 

roughness of the laser treated surface increased with increasing number of irradiating pulses. 

Raman spectroscopy results revealed that chemical phase of the laser treated region varied with 

position within the laser irradiated region. Central region of the laser irradiated spots where 

incident local laser fuence was higher remained in metallic phase while periphery of the 

irradiated spot consists of Ta2O5. Laser treated Ta samples showed enhanced field emission. Ta 

sample treated with 9000 laser pulses demonstrated lowest Eon (~3.7 V/μm) and delivered 

maximum emission current density (~386 μA/cm2) among all the laser treated Ta samples. 

However, field emission current stability of this sample was poor in comparison to the other laser 

treated Ta samples.  

Dense array of self-assembled micro-protrusions were generated on SS sample surfaces 

using optimized fs laser fluence and number of incident pulses per location. SS sample showed 
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generation of surface micro-protrusions with number density ~5.6 x 105 micro-

protrusions/cm2corresponding to irradiation with laser fluence of 0.5 J/cm2 and number of laser 

pulses per location equal to ~3.1 x 104. When SS sample was irradiated with laser fluence of 0.9 

J/cm2 and number of laser pulses equal to ~2250 (corresponding to target scan speed of 400 

μm/s) surface micro-protrusions were generated with number density ~1.5 x 106 micro-

protrusions/cm2. SS sample micro-structured with ~3.1 x 104 laser pulses per location at laser 

fluence of 0.5 J/cm2 showed superior field emission behavior in comparison to SS sample 

surface modified with 2250 laser pulses per location at laser fluence of 0.9 J/cm2. Measured turn 

on field and estimated macroscopic field enhancement factor corresponding to SS specimen 

treated with laser fluence of 0.5 J/cm2 were ~4.1 V/μm and ~1830, respectively. The observed 

poor field emission behavior of the SS sample treated with 0.9 J/cm2 was explained on the basis 

of field screening effect.   

 Similarly, dense array of self-assembled micro-protrusions were generated on Ta surfaces 

via irradiation with fs laser pulses with optimized laser fluence levels for achieving enhanced 

field emission. Number densities of the generated surface micro-protrusions on Ta samples 

treated with laser fluence levels of 0.35 J/cm2, 0.45 J/cm2 and 0.55 J/cm2 were ~8.8 x 105, ~7.5 x 

105 and ~3.5 x 105 μ-protrusions/cm2, respectively. Fs laser modified Ta surfaces were found to 

predominantly consist of Ta2O5. The fs laser modified Ta samples demonstrated improvement in 

field emission behavior. Ta sample treated with laser fluence of 0.55 J/cm2 has shown lowest 

turn on field (4.0 ± 0.6 V/μm) and highest macroscopic field enhancement factor (4400 ± 500) 

among all the fs laser treated Ta samples. However, its field emission current stability was 

poorer than other laser modified samples.  
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 In addition to experimental investigations on ns and fs laser induced surface modification 

and their characterization we carried out a theoretical simulation study to predict period of the 

generated surface micro-protrusions on SS 304 and titanium surfaces by fs laser. Simulated 

period of the generated surface micro-protrusions on Ti surface as a function of laser fluence was 

compared with reported experimental data on Ti to validate our theoretical model. Simulated 

trend of the variation of micro-protrusions period with laser fluence broadly matched with the 

reported data confirming validity of the model. Thereafter, this model was used to simulate 

period of the generated micro-protrusions on SS 304 sample corresponding to fs laser irradiation.  

6.2  Future perspective of the work  

Future scope of the work described in this thesis includes both experimental and theoretical 

investigations. In future, other materials such as Tungsten (W), Molybdenum (Mo) and Niobium 

(Nb) could be surface micro-structured using both fs, as well as, ns lasers. In order to achieve 

high field emission current density at low applied field along with stable emission current, laser 

parameters would have to be optimized. Also materials having low work function, high thermal 

and electrical conductivity, low vapor pressure, high melting point and high hardness could be 

deposited on surface micro-structured surfaces to achieve enhanced field emission current 

density, stable emission current and long cathode life time. In future, simulation would be further 

improved by incorporating change in material properties as a function of temperature to predict 

number density and height of the cones and range of fluence over which cones are formed. 

Simulation would also be extended to account for multiple laser pulses instead of single pulse 

condition. 
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During the last two decades pulsed laser based 
surface processing has emerged as technique of 
potential importance for a variety of 
applications due its offered advantages over 
conventional surface processing techniques. 
One such application is pulsed laser based 
surface micro-structuring/texturing of the 
targets for improving performances of bio-
implants, solar cells, large area field emission 
cathodes (LAFEC) etc. 
 In this thesis, surface micro (μ)-structuring 
of metallic targets such as Stainless Steel 304 
(SS 304) and Tantalum (Ta) have been carried 
out via direct irradiation with nanosecond (ns) 
and femtosecond (fs) laser pulses with the aim 
to generate μ-protrusions for achieving 
enhanced field emission effect. The surface μ-
structured specimens have been investigated in 
terms of surface morphology, chemical phase 
and their field emission behavior. Target 
surfaces irradiated with optimum laser fluence 
and a number of laser pulses have shown 
generation of high density μ-protrusions on 
their surfaces resulting in enhanced field 
emission in comparison to the pristine surfaces. 
Theoretical simulation has been carried out to 
estimate expected areal number density/spatial 
period of the generated surface micro-
protrusions corresponding to fs laser irradiation 
of SS 304. Our numerical model has been 
validated by comparing simulation and reported 
experimental results for Titanium. 
 Typical SEM images of the laser μ-
structured SS 304 and Ta specimen are shown 
in Figs. 1 & 2, respectively. A typical variation of 
macroscopic field emission current density (Jm) 
versus applied macroscopic electric field (Em) 
corresponding to a laser treated SS 304 
specimen is shown in Fig. 3. Estimated 

macroscopic field enhancement factor for the 
laser μ-structured SS and Ta specimens was 
found to be in the range 585 to 1830 and 270 to 
4500, respectively. 

 
Figure 1: Typical SEM image of a SS 304 specimen 
μ-structured with fs laser irradiation.    

 

Figure 2: Typical SEM image of a Tantalum specimen 
showing surfaces of untreated and fs laser treated 
(@ laser fluence: 0.55 J/cm2) regions. 

 
Figure 3: Jm-Em characteristics of SS specimen micro-
structured with laser fluence of 0.5 J/cm2 and target 
scan speed of 200 μm/s. 
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