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CHAPTER 8 

 

Summary and Conclusions 

 
The current methods for transient analysis, deterministic and hybrid although fast require numerous 

approximations e.g. homogenization. With few group approximations it is difficult to predict error in 

the final result and their validity for each specific case must be determined separately, which is 

especially difficult for new and unique reactor designs. For transient analysis, which is crucial for 

safety calculations it is desirable to have a higher fidelity method. Therefore Monte Carlo is an 

interesting option to perform reliable and accurate transient analysis. 

MC simulations are quite challenging from the viewpoint of studying time-dependent reactor 

kinetics. One of the major challenges in such simulations is the handling of different particles of 

varied time scales. A related problem is controlling the vast difference in the population of neutrons 

and precursors. Dynamic changing of the material properties and introduction of feedback is also a 

challenging task. To overcome these challenges, several new techniques have been developed. 

These include different weights for neutrons and precursors, population and weight control, 

handling various precursor groups separately, forced decay of precursors without combining them 

together and use of mean number of secondaries per collision. The use of different weights for 

neutrons and precursors and the treatment of the different precursor groups explicitly is a novel 

approach for time dependent MC studies. 

Firstly, the proposed new techniques are applied and tested in simpler models such as the Point 

Kinetics MC Model and the few group diffusion theory MC model as it is easier to test the 

proposed techniques in these simpler models. Moreover, since most space time kinetics benchmarks 

are based on few group diffusion equations solved by the finite difference method, the 

implementation in the diffusion theory MC model facilitates exact comparison with these 

benchmarks. The diffusion Monte Carlo model was developed earlier in the context of reactor noise 

simulation. A number of new developments in the theoretical basis of the diffusion Monte Carlo 



model have also been carried out by us. Finally the techniques have been implemented in a 

transport Monte Carlo model and this has led to the development of a multi-region multi-group 

Monte Carlo kinetics code KINMC. 

In this thesis, a new and unique dynamic Monte Carlo Method is developed which extends the 

possibility of the Monte Carlo Method and which enables the possibility to analyze the transient 

behavior of a nuclear reactor without any approximation to the geometry or any discretisation. This 

method can perform transient analysis on milli seconds to minutes durations and can handle 

changing system properties, feedback effects, delayed neutrons and prompt neutron fluctuations. 

This method is more accurate than the present state-of-the-art methods based on deterministic 

methods. This accuracy makes the method very suitable as a validation tool for other computational 

methods. The methods presented in this thesis are novel. The present research has shown that it is 

feasible to perform dynamic MC analyses on nuclear systems.  

Further work in this direction would be to develop a code capable of continuous energy treatment 

with detailed tracking (as against the delta algorithm) and anisotropic scattering. Introduction of 

parallel processing would make it possible to actually carry out MC space-time kinetics calculations 

for realistic problems and not merely as a benchmarking tool. With these developments, realistic 

space-time kinetics, using the schemes discussed in the thesis, will become feasible.  
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SYNOPSIS 

 
Calculation of reactivity, neutron flux, reaction rates and fission power distribution are 

of pivotal importance in the design of critical and sub-critical reactors. The 

distribution of neutrons in space, energy and direction is the basic function that 

governs the behavior of a nuclear reactor. The mathematical equation that governs this 

neutron distribution is basically a neutron balance equation known as the neutron 

transport equation. The transport equation is too complicated to be solved analytically, 

and exact solutions are obtainable only for simplified physical models. One has to 

take recourse to numerical methods for most cases of practical interest. The numerical 

methods require discretization in all variables; in particular, the energy variable is 

represented by a large number of groups (the multi-group method) with representative 

average cross sections being used in each group. Computer codes based on these 

numerical methods are time consuming and hence, quite often, one uses an 

approximation of the transport equation known as the few-group neutron diffusion 

equation. Since conditions for the validity of the diffusion approximation are not 

always satisfied, a two step procedure is employed. Multi-group transport theory is 

used at the lattice cell (representative unit cell) stage that yields a detailed space and 

energy dependent flux distribution within a lattice cell. This detailed flux distribution 

is used to obtain the few-group homogenized cross sections of the region, for use in 

the diffusion theory based core calculation for obtaining the flux and power 

distribution throughout the reactor. This model usually results in a reasonably good 

approximation to the exact solution of the transport problem. The methods based on 

transport theory and diffusion theory is referred to as ‘deterministic’ and several 
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computer codes based on these methods are in use (Sutton, 1996; Hardie, 1970; 

Lathrop, 1965; Casal et. al., 1991; Engle, 1967; Halsall, 1998). 

The neutron population and its distribution can also vary with time and a study of its 

variation with time forms the subject of Reactor Kinetics. An understanding of the 

time dependent behavior of the neutron population in a nuclear reactor in response to 

either a planned change in the reactor conditions or to unplanned and abnormal 

conditions is of utmost importance for safe and reliable operation of nuclear reactors.  

For the simulation of the dynamic behavior of a nuclear system, a number of 

deterministic codes exist and are in current use (Rineiski, 1997; Jain et. al., 1989; 

Alcouffe et. al., 2008).  These codes invoke all the approximations mentioned above 

for deterministic calculations (discretization, homogenization, diffusion theory). They 

may also invoke additional approximations such as adiabatic or quasi static 

approximations (steady state solutions in combination with point kinetics). Transport 

theory-based models (that do not invoke the diffusion approximation) have also been 

developed, but these are often restricted to two energy groups. 

As opposed to the deterministic methods described above, the Monte Carlo method is 

a stochastic method that has been in use for a long time, but was used rather 

restrictively due to its large computing requirements. The radical increase in the 

availability of computing power in recent times permits the use of Monte Carlo (MC) 

methods more routinely for solving reactor physics problems. These methods have the 

advantage of permitting an exact treatment of the heterogeneous distribution of 

materials in a reactor and the rather complicated variation of cross sections with 

energy. A large amount of research has been carried out over the years in the area of 

MC methods and its use in radiation and neutron transport problems. Several general-
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purpose computer codes have been developed to solve a variety of problems (MCNP, 

1987; Romano et. al., 2013; MCU, 1982).  Most of the well-known MC based codes, 

are limited to treating stationary situations involving criticality or source problems. 

MC methods are expected to greatly improve the accuracy of space-time kinetics 

calculations.  

The thesis describes neutronic studies leading to the development of a time dependent 

MC code, for use in time dependent situations such as pulsed neutron experiments and 

nuclear reactor transient analysis. Several new schemes have been proposed and 

developed to manage variance and computing time issues associated with MC based 

kinetics. These include measures for neutron and precursor population and weight 

control, forced decay of precursors without combining them together and the use of 

mean number of secondaries per collision.  

In this research work, the proposed new techniques are first applied toand tested in 

simpler models such as the Point Kinetics MC Model and the few group diffusion 

theory MC models, as it is easier to test new techniques in these simpler models. 

Moreover, since most space time kinetics benchmarks are based on few group 

diffusion equations solved by the finite difference method, the implementation in the 

diffusion theory MC model facilitates exact comparison with these benchmarks. The 

diffusion MC model was first proposed (Rana et. al., 2013) and studied in the context 

of reactor noise simulation. A number of new developments in the theoretical basis of 

the diffusion MC model have been carried out (Srivastava and Degweker, 2015) . 

Application of Diffusion based MC has been extended for transient analysis 

(Srivastava et. al., 2018) and for the estimation of Higher Eigenmodes (Srivastava et. 

al., 2018). After testing the schemes (for reduction of variance / computing time) in 
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these simpler models, they are implemented in a transport MC model and finally 

extended to the development of a multi-region multi-group MC kinetics code. These 

are the new results presented in this thesis. 

The thesis is organized in eight chapters as elaborated below. 

Chapter I is a brief introduction to the methods used in the Physics design of Nuclear 

reactors. It includes the neutron transport equation and its applications to lattice 

calculations and generation of homogenized cross sections, few group diffusion 

equations for core calculations.  Further, the time dependent diffusion equation for the 

transient analysis is discussed. A brief review of the deterministic methods used for 

transient analysis and its limitations is presented 

Chapter II gives a description of the MC Method for k eigenvalue problems. Here, 

the probability distribution functions for various processes associated sampling 

techniques and some variance reduction techniques are discussed. A survey of the 

literature on MC based methods for space time kinetics (including various hybrid 

approaches) in use for simulating transient problems is presented. Thereafter the 

challenges faced in the simulation of MC based space-time kinetics and the methods 

proposed for overcoming these is explained.  

One of the major challenges in such simulations is the vastly different time scales of 

prompt and delayed neutrons. The average life time of a prompt neutron in a light 

water reactor is around 10-4 s while that of precursors varies roughly from 10-1 s to 102 

s. The short neutron life time causes the neutron chains to decay rapidly leading to 

large time gaps between successive neutron chains. This results in large fluctuations in 

the neutron population and consequently in the estimates of neutron power in a MC 

simulation. A related problem is the vast difference in the neutron and precursor 
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populations. Another challenge is to control the varying populations of neutrons and 

precursors with time. 

To overcome these challenges, several new techniques have been developed. These 

include different weights for neutrons and precursors, population and weight control, 

handling various precursor groups separately, forced decay of precursors without 

combining them together and use of mean number of secondaries per collision. While 

some of the techniques have been proposed earlier (Sjenitzer, 2013), others are new. 

These include different weights for neutrons and precursors, population and weight 

control, handling various precursor groups separately, forced decay of precursors 

without combining them together and use of mean number of secondaries per 

collision. The use of different weights for neutrons and precursors and the treatment of 

the different precursor groups explicitly is a novel approach for time dependent MC 

studies. 

Chapter III gives a description of the application of the proposed new techniques to 

the simplest model viz., the Point Kinetics MC model. A number of benchmark 

problems are studied and the results are compared with deterministic methods. A 

simple feedback model is also studied. It is observed that Point Kinetics based MC 

simulations can be carried out with practically nil variance. 

Chapter IV presents an outline of the diffusion theory MC model and the 

developments carried out by us in this area. The Diffusion theory MC method was 

developed earlier by Rana et al, 2013 for simulating reactor noise experiments. This 

method is further extended to demonstrate its utility in a wider class of problems 

involving cylindrical geometries, non-homogeneous media and some other situations. 
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In particular, mathematical and numerical proofs of the validity of recipes proposed 

for heterogeneous systems have been developed. 

In Chapter V, schemes for modeling the spatial variation of neutrons and precursors 

are proposed and these schemes are applied in the diffusion based MC Model. The 

chapter also describes the space time simulations using Diffusion MC. In this method, 

the finite differenced form of the diffusion equation is used to estimate the probabilities 

of absorption, slowing down or migration to a neighboring mesh. The problem 

geometry is discretised in rectangular meshes and neutron history is followed as per the 

diffusion process across various meshes. Starting from an initial spatial distribution 

across meshes corresponding to a critical state, neutrons are tracked one by one. 

It is observed that the computational time required for Diffusion MC is about ten times 

lesser than that for Transport MC. More pertinently, an exact comparison of the 

proposed MC simulations with several space-time kinetics benchmarks based on few-

group diffusion theory is possible. This is particularly significant because there are 

very few space time benchmarks based on exact transport theory or transport theory 

MC available in literature. 

Chapter VI illustrates application of the Diffusion MC Model for estimation of 

higher modes (eigenvalues and eigenvectors). Higher modes are of interest in flux 

expansion techniques for stationary as well as kinetics problems. A new MC 

algorithm is developed to obtain fundamental and higher eigenvalues and eigenvectors 

for a reactor core using the Fission Matrix Method in the Diffusion MC Model. A 

method for obtaining errors in the estimated eigenvalues using first order perturbation 

theory is also presented. The performance of the algorithm for calculating higher 

eigenvalues and higher eigenvectors was verified through comparison of the estimated 
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eigenvalues by other deterministic codes. Fundamental and higher λ eigenvalues up to 

six modes were compared for a Pressurized Heavy Water Reactor Benchmark. This 

development is of interest as it uses a simple model to understand the rather difficult 

problem of obtaining higher modes of the transport equation by the MC method. This 

can also be viewed as another method for obtaining higher modes of the diffusion 

equation. 

Chapter VII discusses the MC Transport theory based space-time kinetics 

simulations. Having verified the recipes on simpler models i.e. on Point Kinetics and 

Diffusion Theory MC Models, they are finally implemented in Transport theory 

resulting in the Space Time MC Kinetics Code KINMC, developed in the course of 

the research work. KINMC code uses the Delta Neutron Tracking method for neutron 

transport. The code explicitly treats the six groups of precursors and uses population 

and weight control of precursors and neutrons as well as the concept of mean number 

of secondaries in a collision for variance reduction. It has the capability of solving 

multi group space time transients. The efficacy of this code is tested by comparison 

with results of realistic space-time kinetics benchmarks involving multi-region 

reactors and energy dependence. 1D Benchmark (Sjnetizer et. al., 2013)and TWIGL 

2D Benchmark (Hoffman, 2013) in 2 energy groups are analysed by KINMC.  

Chapter VIII gives a brief summary of the work described in the thesis. It also 

presents the main conclusions drawn and scope for future work which may be 

summarized as follows. 

In this thesis a new method for the analysis of power transients in a nuclear reactor is 

discussed. A time-dependent MC code has been developed to solve reactor kinetics 

problems based on this method and is more accurate than the present state-of-the-art 
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methods based on deterministic tools. This accuracy makes the method very suitable 

as a validation tool for other computational techniques. The simulation schemes 

presented in this thesis are novel. Research has shown that it is feasible to perform 

dynamic MC analyses on nuclear systems.  

Further work in this direction would be to develop a code capable of continuous 

energy treatment with detailed tracking and anisotropic scattering. Introduction of 

parallel processing would make it possible to actually carry out MC space-time 

kinetics calculations for realistic problems and not merely as a benchmarking tool. 

With these developments, realistic space-time kinetics, using the schemes discussed in 

the thesis, will become feasible.  



CHAPTER 1 

 

Review of the Computational Methods used in Reactor Physics 

Nuclear reactors are the systems which maintain controlled nuclear fission chain reactions and 

produce energy for the generation of electricity and for other uses. The constituent materials of a 

reactor are generally fuel, coolant, moderator, structural materials, and control material. In general, 

these materials are arranged heterogeneously to constitute a reactor core with due consideration to 

neutronics, thermal-hydraulics, and structural aspects. In addition, the structural arrangement and 

the constituents may change depending on the life-cycle of the fuel or on the mode of operation of 

the reactor or during accident conditions.  

Although the discipline of reactor physics that deals with the design and analysis of such 

reactors encompasses several areas in science and engineering, the subject has matured into a well 

established and unique field. Reactor analysis and methods may be described as a discipline 

concerning determination and prediction of the states of a reactor that sustains chain reaction by 

balancing neutron production by fission and loss by capture and leakage. 

One of the objectives of nuclear reactor physics is to determine the distribution of the 

neutrons in a reactor. For that we have to take into account the motion of the neutrons and their 

interactions with host nuclei of various kinds. Thus, we need a mathematical model or theory to 

describe this particle transport phenomena. 

 

 

 

1.1 Neutron Transport Equation 

The neutron transport equation is a balance equation in phase space, like the Boltzmann equation in 

the kinetic theory of gases. It describes the mean neutron distribution as a function of the space 

coordinates and the neutron velocity in a nuclear reactor. In this equation neutron-neutron collisions 



are neglected and only collisions with atoms of the medium is considered which makes it linear 

unlike the Boltzmann equation.  

The following assumptions are made in the derivation of the neutron transport equation 

(Lewis and Miller, 1984; Bell and Glasstone, 1970 and Weinberg and Wigner, 1958). The neutron 

may be considered as a point particle. The particles travel in straight line between collisions. This is 

true for neutrons and gamma rays since they do not carry charge and have straight trajectories as 

coulomb forces do not affect their paths. Neutrons interact with nuclei through collision. Neutron 

neutron interactions are neglected since the neutron densities in nuclear reactor are small as 

compared with atomic density. 

The behavior of a nuclear reactor is governed by the distribution of the neutrons in the 

system with respect to space, energy and time. The neutron transport equation governing this 

distribution function considers the rates at which neutrons of different energies moving in different 

directions enter and leave a small phase space element dr.dΩ.dE.  

The neutron transport equation is derived by taking into account the terms defining gain and 

loss rates. The loss terms include leakage or streaming out of the volume and loss due to absorption 

and scattering. The gain is a result of fission, scattering and external sources. Defining each of the 

production and loss terms, we can write integro-differential form of the neutron transport equation 

as: 
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where, 

߰ሺݎ, ,ߗ ,ܧ ,ݎ) ሻ = ܸ.Nݐ ,ߗ ,ܧ  (1.2)                                                (ݐ
 

is the angular flux. ߑ௧ሺݎ,  ሻis the total macroscopic cross section of the medium, ܸis the neutronܧ

velocity. The source ܳሺݎ, ,ܧ  ,ሻin the right hand side of eq (1.1), consists of any external source ܳாxtݐ

the scattering source ܳௌand the fission source ܳி, which are given as  

ܳௌ ൌ dEߗ݀ᇱ ,ݎௌሺߑ ᇱܧ → ,ܧ ′ߗ → ,ݎሺߖሻߗ ᇱሻߗ
                             (1.3a)

 



ܳி ൌ ߯ሺܧሻ4ߨ dEᇱ ,ݎሺߑߥ ᇱሻܧ  ᇱߗ݀ ,ݎሺߖ ,ᇱ′ߗ ᇱሻܧ
                             (1.3b)

 

where ߑௌሺݎ, ᇱܧ → ,ܧ ′ߗ → ,ݎሺߑ ሻandߗ  ᇱሻ is the scattering cross section and fission cross section ofܧ

the medium respectively. ߯ሺܧሻ is the fission spectrum and ߥ is the number of neutrons produced per 

fission. In steady state conditions, the neutron density does not change with time and we have the 

equation 

,ݎሺ߰ߘ.ߗ ,ߗ ,ܧ ሻݐ  ,ݎ௧ሺߑ ,ݎሺߖሻܧ ,ߗ ,ܧ ሻݐ ൌ ܳሺݎ, ,ߗ ,ܧ  ሻ                          (1.4)ݐ

If the external source is absent, the steady state equation becomes an eigenvalue equation. Various 

eigenvalue equations are discussed later. 

Since the transport equation is first order in time, an initial condition i.e. ߖሺݎ, ,ܧ ,ߗ ݐ ൌ 0ሻhas to be 

specified. In addition, flux distribution at the surface bounding the concerned domain has to be 

specified. This depends upon the problem being studied and may be obtained from simple physical 

considerations. If we are dealing with the outermost boundary of the reactor and no neutrons can 

enter from outside this boundary we use the vacuum boundary condition viz., ߖሺݎ, ,ܧ ,ߗ  ሻ=0 forݐ

 Often the transport equation is solved at the lattice level and it is assumed that there is an .0 >ߗ.̆݊

infinite lattice of cells (such as fuel assemblies, or pin cells) and the periodic or reflective boundary 

conditions are used. 

 

1.2 Multi group formalism of Neutron Transport Equation 

It is not possible to obtain analytical solutions to the transport equation (except for a very limited 

number of simple problems) and one has to resort to numerical methods. Numerical methods 

involve discretisation of some or all the variables (position, energy, direction). The multi group 

formalism involves discretisation of the energy variable. In this formalism, neutron transport 

equation is made computationally suitable by dividing complete neutron energy range into G 

number of discrete intervals called groups. The group angular fluxes are defined as 

߰ሺݎ,  = ሻߗ dEߖሺݎ, ,ߗ ሻܧ
ாషభ
ா

                          (1.5) 



Now the transport equation (equation 1.1) can be expressed in its multi-group integro differential 

form as follows  

,ݎሺ߰ߘ.ߗ ሻߗ  ,ݎሺߖሻݎtgሺߑ ሻߗ ൌ ܳௌ  ܳி  ܳExt                                          (1.6) 

Where ߰ሺݎ,  tgis the totalߑ .ߗሻis the angular flux in group g at point r and in directionߗ

macroscopic cross section for group g. ߑfg is the fission cross section for group g and ߑsg→ᇱ is the 

scattering cross section for group g scattered to group ݃ᇱ.The scattering source ܳௌ contains two 

parts: Self scattering sourceܳௌೄ and sources coming from other groups ݃ᇱ shown as  ܳௌᇲ. The 

source terms are  

ܳௌ = ߑsg→ ሺݎ, ′ߗ → ,ݎሺߖሻߗ ′ߗሻ݀′ߗ  ∑ sgᇱ→ᇱஷߑ ሺݎ, ′ߗ → ,ݎሺߖሻߗ  (1.7)      ′ߗሻ݀′ߗ

ܳி= 
ఞ
ସ
∑ fgᇲᇱߑ ሺݎሻߖᇱሺݎ,  (1.8)                                                          ߗሻ݀ߗ

Various group cross sections are obtained by a weighted averaging of the corresponding cross 

section over the energy range of each group. The weighting function is the flux spectrum within the 

group. The scattering cross section is generally speaking a function of the scattering angle and 

hence depends upon the scalar productߗ′.  i.e. the cosine of the scattering angle. Hence, the ߗ

scattering cross section is expanded in Legendre polynomial of this quantity up to a certain number 

of terms. The coefficients of this expansion are the scattering matrices denoted by ߑ,ᇱ→. With this 

representation of scattering, there are as many scattering matrices as is the number of terms in the 

Legendre polynomial expansion. Often it is enough to retain one or two terms (isotropic or linearly 

anisotropic scattering) in the expansion. By making use of the addition theorem to write each of the 

Legendre polynomials, the scattering integral on the right hand side can be written as a sum of the 

product of the scattering matrices, moments of the angular flux (integrals of the product of angular 

flux and spherical harmonics overߗ′) and spherical harmonics. Details of this procedure as well as 

the choice of the weighting spectrum and treatment of the scattering matrices may be found in 

Halsall, 1991. Codes like the GROUPR module of NJOY exist for generating multi group cross 

section in this way. 



1.3. Computational Methodology 

Various numerical methods have been devised for obtaining the quantities of interest to the reactor 

physicist by solving the multi group transport equation. The calculations are done by discretising 

some or all of the variables involved. The discretisation of the spatial variables results in what is 

commonly referred as the spatial mesh. The differential scattering cross sections are expressed in 

terms of the orthogonal Legendre polynomials.  

In the spherical harmonics (PN) method, the neutron direction variable is treated by expanding the 

angular flux in a series of spherical harmonics up to order N. Other methods such as the discrete 

ordinates (DSN) methods and the method of characteristics discretize the direction variable also 

(Bell and Glasstone, 1970 and Glasstone and Edlund, 1952). The discrete directions are most often 

defined by a fully symmetric quadrature set where weights are chosen so as to accurately obtain the 

integral over the direction variables. Other methods such as collision probability methods (Sanchez, 

1977) solve the integral form of the transport equation.  

It is very difficult, or extremely time-consuming, to apply transport equation to full core 

calculations. Therefore, the neutronics calculations are usually performed in two stages; lattice 

calculations and full core calculations and the codes used for reactor analysis are broadly classified 

as lattice level codes, and core level codes (Stammler and Abbate, 1983; Cacuci, 2010). Lattice is 

the basic repetitive structure in a reactor core. The lattice cell is usually the fuel assembly consisting 

of several heterogeneities like varying fuel enrichment, burnable poison rod cells, water or control 

cells, inter-assembly water gaps or water slots.  

A typical reactor lattice code takes as input the neutron-nuclide cross sections data from a multi 

group library (for example the 172 energy groups in WIMS-D format) and a description of the 

reactor lattice, and solves the neutron transport equation to calculate neutron flux distribution, 

infinite neutron multiplication factor and homogenized cross sections required for core calculations. 

For practical reasons, the transport equation is applied to small regions of the reactor lattice i.e. 

representative cells to find the detailed flux in space and energy in these cells, and to derive 



homogenized properties such as cross sections, uniform over each lattice cell (spatial 

homogenization), which are collapsed to a very small number of energy groups say 2 or 5 groups 

(energy condensation), for application over full-core models based on diffusion theory. Some 

examples of transport theory based lattice codes are WIMSD (Askew J. R. et al., 1966), DRAGON 

(Marleau, Hebert and Roy, 2011), HELIOS (Villarino et. al., 1992), EXCEL (Jagannathan V. and 

Jain R. P., 2009), CLUB (Krishnani, P. D., 1992), LWR-BOX (Krishnani, P. D., 1987) and BOXER 

(Degweker, 1985). The lattice codes are used to calculate neutron flux distribution, infinite medium 

multiplication factor and homogenized few group cross sections. 

In the second stage, the core level code uses the cell homogenized cross sections generated by the 

lattice code and analyses the overall behavior of the core as a function of burn-up and other reactor 

state variables like boron and temperatures of fuel and coolant. The analysis also includes the 

presence/absence of control absorbers and reflector material in estimating the flux and power 

distribution. An approximate form of the transport equation, viz. the diffusion equation described in 

the next section is used for core calculations. This is the strategy used most frequently, and 

successfully, in the design and analysis of nuclear reactors.  

1.4 Muti group Diffusion Equation 

One generally uses neutron diffusion equation for reactor core calculations. The neutron diffusion 

equation is an equation for the scalar flux (angular flux integrated over direction). The diffusion 

equation is an approximate form of the neutron transport equation, which is more amenable to 

calculation than the transport equation itself. It is quite simple to allow detailed calculations yet 

sufficiently realistic for studying many of the important concepts arising in reactor analysis. The 

time-dependent diffusion equation is written as:  
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where ߮ ሺݎ,  ሻ is the neutron flux in group ‘g’ at distance r at time t, ܸis the neutron velocity inݐ

group ‘g’, ܦ is the diffusion co-efficient of the medium and ߯ is the fission spectrum in group 

‘g’. 

Defining removal cross section asߑrg ൌ ߑ  ∑ sgᇱ→ீߑ
ᇱஷ ൌ ௧ߑ െ  sg→, we get the followingߑ

equation 
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The time dependent diffusion theory is discussed in the next section as a part of the subject of 

reactor kinetics. Quite often we are interested in stationary solutions such as a reactor producing 

steady power. The above equation (1.10) admits stationary solution when the external source does 

not depend upon time and the reactor is subcritical. The other stationary solutions occur in the 

absence of the external source, as a solution of eigenvalue problems. Two commonly studied 

eigenvalue problems correspond to the α eigenvalue and the λ eigenvalue. The former is obtained 

by writing the flux as ߮௦ሺݎሻ݁ఈ௧ and we get 

,ݎsgሺ߮ߘܦ.ߘ ሻݐ െ ,ݎሻ߮sgሺݎrgሺߑ ሻݐ  ∑ ,ݎsgᇱ→ሺߑൣ ,ݎሻ߮sgᇱሺݐ ሻ൧ீݐ
ᇱஷ   
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߮                  (1.11) 

The λ eigenvalue problem is obtained by setting the time derivative equal to zero in equation (1.9) 

and dividing the fission source by λ giving rise to the following eigenvalue equation (1.12). The 

Keff is the largest of the λ eigenvalues. 
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ீ
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                     (1.12) 

The space variable is commonly discretised by writing finite difference forms for the spatial 

derivative terms. Details of the finite differencing of the diffusion equation are given in Cacuci, 

2010; Duderstadt, J.J. and Hamilton, 1976 and Reuss, 2008. Finite differencing leads to a linear 

system of equations for the flux variables defined at the mesh points at each time step. The solution 



of the diffusion equation is usually obtained by the inner-outer procedure (Duderstadt and 

Hamilton, 1976; David L. Hetrick, 1993). Over the years several other schemes for solution of multi 

group neutron diffusion equation have been developed and computer code packages are made based 

on these methods. Notable among these methods are the nodal method (Lawrence, R.D., 1986), the 

finite difference method (Duderstadt and Hamilton, 1976; Lewins and Ngcobo, 1996) and the finite 

element method (Kang and Hansen, 1973). 

 

1.5 Time-dependent Diffusion Equations: Reactor Kinetics 

One important class of problems in nuclear engineering to which computational tools must be 

developed and applied is the various time and space dependent phenomena that can occur within a 

nuclear reactor core. Such problems occur within time scales of a few seconds or less, yet may 

significantly affect overall reactor operations. The normal motion of control rods during reactor 

start-up and shutdown procedures, the abnormal motion of control rods during a rod ejection or rod 

drop accident, or ingress/egress of liquid during a loss-of coolant accident scenario are all situations 

that necessitate the development of computational tools for the analysis of space and time 

dependent reactor phenomena. Since core calculations are traditionally carried out using the few 

group diffusion approximation of the transport equation, reactor kinetics is discussed in this section 

in this approximation. The set of equations that describe time dependence of neutron flux are 
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where ߚ is the delayed neutron fraction, ߯
 is the prompt neutron fission spectrum, ߯ௗ is the 

delayed neutron spectrum, ߣis the decay constant for the ith precursor group and ܥ is the precursor 

concentration for the ith precursor group. The first equation (1.13) is the usual time dependent multi 

group diffusion equation with the difference that the prompt fission neutron source is shown 

separately from the contribution due to decay of delayed neutron precursors in 6 groups. The second 



equation (1.14) shows the evolution of the precursor concentrations as a function of time (Keepin, 

1965). Various methods have been devised to solve the above set of equations. They are discussed 

below.  

 

1.5.1 Point Kinetics  

1.5.1.1 Flux factorization & Point kinetics equation 

In the flux factorization method developed by Yasinsky and Henry, 1965, the flux distribution is 

first factorized into a time dependent factor and a space dependent factor which depends weakly on 

time as follows 

߮ሺݎ, ሻݐ ൌ ݊ሺݐሻ߰ሺݎ,  ሻ                                                 (1.15)ݐ

where n(t) is the amplitude function and describes the rapid variation in power/neutron population 

in the reactor. ߖሺݎ,  ሻ is known as the shape function and it is assumed that it is a slowly varyingݐ

function of time. The shape function ߖሺݎ,  ሻessentially describes the spatial variation of neutronݐ

flux in the reactor. Different ways of treating the function ߖሺݎ,  ሻgive rise to differentݐ

approximations. We can assume thatߖሺݎ,  ሻ is completely independent of time and the flux shapeݐ

continues to be the same as that of the critical reactor. This is the point kinetics approximation. 

This model assumes that the power /flux distribution does not change with time throughout the 

transient period. Moreover, we assume that the form of the flux is the same as that in the critical 

reactor which has been perturbed to make it depart from criticality. More generally the shape 

function must be treated as a slowly varying function of time. Substituting the factorized form of 

the flux in the time dependent equations (1.13) and after some complicated manipulations 

(described in detail in text books such as as Bell and Glasstone, 1970 and Stacy, 2001), the 

following coupled set of equations for n and C are obtained.  
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where ߩ is the reactivity and ߉ is the prompt neutron generation time. It is possible to get analytical 

solution of the point kinetic equations for the step input of the reactivity without any feedback. 

However, in general analytical solutions are difficult to obtain but numerical solution is possible 

and number of codes like SASIA (J. C. Carter, 1970), ADEP ( Denning R. S., 1971), MRIF 

(Balaraman and Trasi., 1981), GEAR (Podar et. al., 1989), PATH (Dwivedi et. al., 2014), PEARL 

(Singh A. and Gupta H. P., 2013) have been developed for this purpose. Point kinetics works fairly 

well for small reactors or when the departure from criticality is small. It is also interesting because 

simple analytical solutions are obtainable in some cases that enable the understanding of reactor 

kinetics behavior  

 

1.5.1.2 Point kinetics: Step reactivity 

In the case when the reactivity is changed suddenly, from one value to another, the point kinetic 

equations reduce to equations with constant coefficients and are easily solvable. We consider this 

situation in this section. A case of special interest is when the reactor is critical (ߩ ൌ 0) and has 

been operating at a constant power for a long time and suddenly through some control action, a 

reactivity is introduced which may be positive or negative.  

The equations are easily solvable and the solution can be written as sum of exponentials as follows: 

݊ሺݐሻ ൌ ∑ ݊ expሺݓݐሻ              (1.18) 

where ݓ߱ are the roots of the in hour equation  
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For positive ρ, the above equation has six negative roots and one positive root. Thus, in the absence 

of a source, after all the negative exponentials have died out, the reactor power increases with a 

time period given by the positive root. For negative ρ, on the other hand, all roots are negative and 

the reactor power goes to zero. The main results (without temperature feedback) that can be 

obtained from solutions of this model are: small positive step reactivity input introduced, (ρ < β) 

called a sub prompt critical system, there is a rapid (limited) rise in power called the prompt jump 



followed by a slower power rise which after some time grows as a single exponential with time. For 

a positive step reactivity input (ρ > β) called super prompt critical state, there is a rapid unlimited 

rise in power which is difficult to control. For a negative step reactivity input, there is a rapid fall in 

power called the prompt drop, followed by slower fall in power which ultimately is a single 

exponential. 

 

1.5.1.3 Point kinetics: One group model 

A particular case is when there is a single group of delayed neutrons. This can be obtained by 

clubbing all the delayed neutron groups together into a single group. The equation for the single 

group of precursors can be obtained by summing the equations for the individual precursors. 
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For systems close to critical we see that the rate of decay of the ith precursor is approximately 

proportional to the precursor yield of that precursor. Making this approximation we can obtain the 

average delayed neutron precursor decay constant as 
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            (1.21a) 

The equation for the neutrons becomes 
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The one group model is interesting primarily because of its simplicity and it captures (in a 

qualitative manner) most of the physics associated with reactor transients. The simplicity permits 

solution of the equations even when the reactivity is time dependent. 

For the case of step reactivity discussed earlier we get a simple expression for the flux (neutron 

population) variation with time given below 
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where ℓis the prompt neutron life time. 



 

1.5.1.4 Point kinetics: prompt jump approximation 

In most reactors (except heavy water reactors) the prompt lifetimes are indeed very short compared 

to reactivity insertion rates, delayed precursors, actuation of feedback and control mechanisms. 

Since the prompt neutron lifetime is much shorter than the delayed precursor decay times, we can 

assume that the neutron population is always in equilibrium with the precursor concentration. In 

other words, we set 
ௗ

ௗ௧
ൌ 0 in the first equation and solve for ݊ and introduce the same in the 

precursor equation. We thus obtain 
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which gives 
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The equation is fairly tractable and the following solution is easily written down as 
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We have used this equation to explain the (apparently anomalous) observed behavior of the flux in 

Chapter 3. With this approximation it is possible to write down fairly simple solutions for linear, 

step and sinusoidal reactivity insertions. 

 

1.5.1.5 Numerical Methods for solution of point kinetics equations 

The set of point kinetics equation describes a “stiff” problem meaning that the various time 

constants involved (delayed neutron precursor lifetimes, neutron lifetime, etc), are very different 

sometimes by several orders of magnitude. Thus, what is a short time step relative to one may not 

be relative to another.  

Point kinetic equations are coupled ordinary differential equations. Various numerical schemes like 

Euler implicit schemes, Euler explicit schemes, higher order schemes and backward difference 

schemes are used (Weaver, 1963). The explicit schemes are stable for small time step sizes but not 



for the large ones i.e. they are conditionally stable. The various explicit schemes require time steps 

comparable to the shortest time constant involved for their stability. The implicit schemes have 

more stability regions than the comparable explicit methods and are the preferred choice. The 

backward difference schemes are unconditionally stable for any positive step size and therefore 

score over the forward (explicit) schemes. MRIF-Fuel (Jain V. K. and Yadav R.D.S., 1989), NARD 

(Trasi et.al., 1976), PATH (Dwivedi et. al., 2014) are based on implicit Euler’s method. GEAR’s 

method (Poddar et.al., 1989) of solving a system of ODE such as the equations of point kinetics is 

based on higher order backward difference schemes.  

 

1.5.2 Space Time Kinetics 

Point kinetics method is suitable for small tightly coupled reactors where spatial flux distribution is 

insensitive to local changes in material properties. But, for large, neutronically loosely coupled 

reactors, the study of the neutronic transient behavior under accidental conditions requires accurate 

methods of solution of systems of coupled three dimensional multi group time dependent neutron 

diffusion equations. We will discuss various numerical methods that are used to solve space time 

kinetic equations to varying degrees of approximations (Ott, 1985). 

The solution techniques for Space time kinetics equations are broadly categorized as: direct 

methods and space-time factorization methods. In direct methods, neutron diffusion equations are 

converted to a set of first-order differential equations in each volume element and that can be solved 

by the finite difference method over small time interval for all volume elements and energy groups. 

During each of the time steps certain parameters are kept constant enabling the time dependent 

diffusion equation to be transformed into steady state equation. (Sutton and Aviles, 1996, Stacey, 

2001) Indirect methods involve a factorization of the flux into space and time parts. They are 

described in the subsequent sub sections. 

 
1.5.2.1 Indirect Numerical Methods using Factorization Approach: Adiabatic and Quasi static 

methods 



These methods are based on the flux factorization described in Section 1.5.1.1. In Adiabatic 

approximation, the flux shape changes as various sources of reactivity are introduced but it is 

assumed that the flux shape at different instants of time is given by the (stationary) k eigenvalue 

solution at that time. In the quasi static method we divide the time of interest into relatively long 

time steps and the flux distribution is recalculated at the end of each of these time steps using Eq. 

(1.15) as a source problem (with the derivative of the shape function set to zero). This shape 

function is used to obtain the kinetics parameters that go as input into the point kinetic equations 

(1.16 and 1.17) for the length of the next long time step. A further improvement is to replace the 

time derivative of the shape function by a finite difference expression. 

 

1.5.2.2 Direct Numerical methods 

1.5.2.2.1 Implicit Method 

Fully implicit (backward differencing) method is used for solving the time derivative of space time 

kinetics equation. The first order backward differencing for the time derivative in the time 

dependent equation is given by 

 (1.26) 

The left hand side can be interpreted as a time derivative at the time nth time step or the (n+1)th time 

step. In the former case the flux on the RHS would be the flux at the nth time step and would 

correspond to the usual forward differencing and lead to an explicit solution for the flux at the 

(n+1)th time step. In the latter case, as is written in Eq. (1.26), the flux on the RHS is at the (n+1) 

time step corresponding to backward differencing and leads to an implicit equation for the flux at 

the (n+1)th time step. The RHS of Eq. (1.26) contains spatial derivatives that are treated by the finite 

difference method outlined in an earlier section. 



While the implicit method has the advantage of guaranteed stability and permits the use of long 

time steps when the flux evolution is slow, the iterative solution of the implicit equations gets more 

and more time consuming as the flux evolution gets slower. Two alternative methods to the fully 

implicit method have been reported (Weaver, 1963) with success. These are outlined below. 

 
1.5.2.2.2 Alternating Direction Implicit and explicit method 

In the Alternating Direction Implicit method (Weaver, 1963; Ash M., 1965) the derivative is treated 

as being implicit over a single direction. The advantage is that in one dimension, the solution 

involves a tri diagonal matrix which can be solved by the forward elimination and backward 

substitution in two sweeps. The solution is carried out by alternating each of the three directions to 

be implicit in successive time steps.  

The Alternating Direction Explicit Method (Weaver, 1963; Ash M., 1965) uses the fact that in any 

iteration scheme, while calculating the flux in any mesh, the flux of three of the neighbors is already 

known. Thus, by reversing the direction of iterations in alternate steps it may be possible to ensure 

stability. 

 

1.6 Existing Point Kinetics and Space Time Kinetics Code 

Some of the existing Point Kinetics and Space Time Kinetics Code that are used at present for 

transient analysis are  

NARD : Point Kinetics code NARD ( Trasi M.S. et. al, 1976) solves the point reactor kinetics 

equations with temperature feedback by Cohen’s modified Runge Kutta method. 

 

MRIF: Point Kinetics code MRIF (Balaraman and Trasi M S., 1981) solves point kinetics code 

based on Method of Real Integrating Factors. 

 



MRIF-FUEL: MRIF-FUEL (Jain V. K. and Yadav R. D. S., 1989) is the modified MRIF Code 

which includes one-dimensional (radial) heat conduction equations to treat temperature variation in 

fuel, sheath and coolant.  

 

GEAR: GEAR (Poddar et. al., 1989) solves point kinetics code based on backward difference 

schemes.  

 
PATH: PATH (Dwivedi et. al., 2014) solves the point kinetics equation with forth order Runge 

Kutta as well as Implicit Euler method. This code has been augmented as point kinetics code which 

uses lumped parameters for coupled point kinetics and thermal-hydraulics with fuel and coolant 

temperature reactivity feedback. 

 
ADEP: Two-dimensional space time kinetics code, ADEP (Denning R.S., 1971) is based on 

alternating direction explicit method with fuel and coolant temperature feedback. 

 
3D-FAST: A multidimensional code 3D-Fast (Jain V. K. and Gupta H. P., 1986) based on IQS or 

adiabatic approach. The spatial part uses centre-mesh finite difference scheme. Various acceleration 

schemes have also been incorporated to accelerate the convergence. Provision is there to get space 

dependent average fuel temperature and core average coolant temperature. 

 
ARCH: ARCH code (Analysis of Reactor Transients in Cartesian and Hexagonal Geometries) 

(Gupta A., 2012) solves the neutron diffusion equation in 3D Cartesian and triangular geometry. 

The solution is performed in few neutron energy groups using Finite Difference Method (FDM). 

The discretised diffusion equation results in a large linear system of equations in the form of AX = 

B, which is solved by conventional as well as advanced Krylov Subspace algorithm based schemes. 

It is based on IQS approach  

 
KINFIN: KINFIN (Singh K. P., 2013)is finite difference based reactor kinetics code written in 

FORTRAN. It is based on direct integration method. The code can be used for analyzing transients 



in PHWRs, LWR and sub-critical reactors. It can take variable meshes in X-Y-Z direction and also 

can simulate prompt and delayed neutrons in any group. One, two and three dimensional core 

models can be easily represented by using appropriate boundary conditions. Few group nuclear data 

generally computed by transport theory code WIMS, reactor core dimensional description mostly in 

the form of mesh width in X-Y-Z direction are major input data of the software.  

TRIKIN : TRIKIN (Triangular meshes based kinetics code with thermal hydraulic feedback) is a 

Space Time Kinetics Code.  It employs methodologies of the existing kinetics code NEUT and 

core physics code TRIHEXFA. TRIKIN model includes multichannel thermal hydraulics module 

to address reactivity feedback and determine the thermal safety parameters. 

 

1.7 Limitations of the existing methods for transient analysis 

Till recent times the neutronic part of the reactor transient is treated using deterministic methods. 

Currently many state of the art deterministic methods are based on the improved quasi static method 

(Ikeda et. al., 2001; Zachary et. al., 2016) but this method relies on the factorization of the neutron 

flux in a shape and an amplitude function. Factorization is not always a good approximation 

especially when a positive or negative reactivity is larger than a dollar and when the flux profile 

changes.  

Also direct methods are used for transient analysis but they depend on simplified transport models 

e.g. diffusion theory (Boer et. al., 2010) and SN methods (Alcouffe et.al., 2008). More advanced 

methods model the neutron transport itself. These methods need to discretise the angular 

dependence of the neutron flux. The neutrons will be transported along discrete angles, defined by 

spherical harmonics (PN theory) or discrete ordinates (SN theory). Also the MOC which solves the 

integral transport equation uses discrete angles. These methods describe the anisotropic behavior of 

the neutron transport better than diffusion theory, but it becomes difficult to use enough angles to 

describe neutron transport. If too few angles are used, ray effects can occur (Cho Chang, 2009). 

Stability and accuracy demands finer time steps. The main limitations of these direct deterministic 



methods are the required discretisation. To deal with larger number of unknowns is computationally 

difficult. Therefore stochastic methods can be an more accurate option for the transient analysis. 

Since the neutron balance can be treated in a probabilistic manner, the corresponding time 

dependent behavior also can be tracked through these processes. The challenging part is the 

treatment of the neutron from the delayed neutron precursors. 

 



CHAPTER 2 

 
Monte Carlo Methods for Reactor Analysis 

Monte Carlo is a mathematical method of solving deterministic problem in stochastic way by the 

use of random number. Monte Carlo (MC) methods have been used for centuries, but only in the 

past several decades the technique has gained the status of a full fledged numerical method capable 

of addressing the most complex applications.  

MC simulations are widely used in reactor physics problems, for their exact treatment of the 

heterogeneous distribution of materials in a nuclear reactor and the rather complicated variation of 

cross-sections with energy. MC Methods are very different from deterministic transport methods. 

Deterministic methods solve the transport equation for the average particle behavior. By contrast, 

MC does not solve an explicit equation but simulates a larger number of individual particle histories 

by treating process of production, collision, scattering, fission in form of probability distributions 

and recording some aspects (tallies) of their average behavior. The average behavior of particles in 

the physical system is then inferred from the average behavior of the simulated particles. 

Deterministic methods typically give fairly complete information (for example flux) throughout the 

phase space of the problem. MC supplies information only about tallies requested by the user. The 

MC method poses no limitations with regard to treatment of geometrical and nuclear cross section 

complexity in all its exactitude (Pal, 1958; Stephen Dupree et.al., 2001). The only uncertainties are 

those associated with statistics and errors in nuclear data. With growing computing power, the 

method is increasingly being used for day to day reactor calculations. The major component of a 

MC Algorithm is explained in the subsequent sections. 

 

2.1 Probability density functions  

The physical (or mathematical) system must be described by a set of probability distribution 

function (pdfs) (Sobol, 1994). Each stochastic process related to a random variable x is 



characterized by a probability distribution f(x), which is defined in such a way that the probability 

of the event occurring between x and x + dx is given by: 

dP = f(x) dx       (2.1) 

The distribution function f(x) is also called probability density function, or PDF. Consequently, the 

probability of the event occurring in an interval [a, b] of the variable is  

P (a < x < b) = dP=  ݂ሺݔሻdx

     (2.2) 

A natural requirement for the PDF is that the integration yields non negative and finite values. 

Assuming that the behavior of physical system can be described by probability density functions, 

then the MC simulation can proceed by sampling from these probability density functions. 

Sampling from a desired distribution is carried out by first drawing random numbers from a 

uniform distribution between 0 and 1 and then transforming to the desired distribution as explained 

in subsequent sections. Thus there is a requirement of a fast and effective way to generate random 

numbers uniformly distributed on the interval [0, 1]. 

 

 

2.2 Random number generator 

The success of a computation utilizing MC methods depends, mainly upon the quality of random 

numbers used. MC methods make extensive use of random numbers to control the decision making 

when a physical event has a number of possible results (Sobol, 1994; Stephen Dupree et. al., 2001; 

Anderson, 1990, Murthy K. P.N., 2000). The random number generator (RNG) is always one of the 

most crucial subroutines in any MC based simulation code. RNG are based upon specific 

mathematical algorithms, which are repeatable. As such, the numbers are not truly random and are 

referred to as pseudo random numbers. Reproducibility, generation of uncorrelated sequences, long 

period or cycle length, uniformity, and speed are some of the desirable properties of any RNG. 

A larger number of generators are readily available. The most widely used technique of generating 

uniformly distributed random numbers on computers is by use of some recurrence relation where 



each successive number Un+1 is found by using the preceding number Un since it may satisfy some 

of the various statistical criteria of randomness. The most commonly used generator is the linear 

Congruential RNG (LCRNG). The LCRNG has the form 

Un+1=a(Un+C) mod(m)           (2.3) 

Where m is the modulus and is the largest number available on the computer, a is the multiplier and 

c is the additive constant or addend. These parameters of the RNG must be chosen carefully to meet 

the requirements mentioned above. A typical MC simulation uses from 107 to 1012 random numbers 

and hence the period must be longer than this. Several combinations of these numbers have been 

tried and tested (Marsagalia, 1985). Pseudo Random numbers Rn (0, 1) can be generated by 

defining, 

Rn = Un / m. Pseudo Random numbers (E. D., Everett C. J., 1959) can be obtained by setting 

m=231-1, a=65539 and seed=3115 

Since non uniformity and correlations between these numbers could lead to significant errors, a 

number of tests have been devised for this purpose. We mention some of the simple tests that may 

be used. Uniformity may be tested by the chi square test (Murthy K. P. N., 2000; Stephen Dupree 

et. al, 2001). On the other hand, randomness may be tested by calculating correlation coefficients 

between successive numbers or numbers separated by two, three, four or more numbers. Other tests 

include the n tuple test in which successive pairs of numbers are plotted in two dimensional space to 

check if the entire space in the unit rectangle is filled or whether patterns are seen (Stephen Dupree, 

2001). 

 

2.3 Random Sampling Techniques  

The random sampling techniques help us to convert a sequence of random numbers (Ri), uniformly 

distributed in the interval (0, 1) to a sequence (xi) having the desired density, say f(x).There are 

several techniques that do this conversion. Two important techniques namely direct inversion and 

rejection method are described below to illustrate how a desired probability density function f(x) 



can be simulated by use of random numbers (Hammersley and Handscomb. C., 1967; Lux et. al, 

1991).  

 

2.3.1 Inversion Technique 

The simplest technique is based on the direct inversion of the cumulative density function of the 

random variable X. Consider the sampling of the exponential distribution. The distance to the next 

collision of the particle in a uniform infinite medium follows exponential distribution and is given 

by 

ሻdxݔሺ ൌ  ௫dx           (2.4)ఀି݁ߑ

This probability distribution is positive for all x and its integral is unity. Let ߦbe the random 

numbers produced by the random number generator. ߦ is uniformly distributed in the interval (0-1). 

The distribution can be written as  

ܲሺߦሻ݀ߦ ൌ  (2.5)              ߦ݀.1

Suppose a transformation x=f(ߦ) takes  the number ߦ to x and ߦ+dߦ to x + dx. Then 

ሻdxݔሺ ൌ ܲሺߦሻ݀(2.6)              ߦ 

Integrating the above equation we obtain 

െ݁ିఀ௫ ൌ ߦ  ܿ           (2.7) 

On inverting (solving for x ) the equation (2.7), we get 

ݔ ൌ െ ଵ

ఀ
lnሺ1 െ  ሻ          (2.8)ߦ

Since 1-ߦ has the same distribution as ߦ  

ݔ ൌ െ ଵ

ఀ
lnሺߦሻ                    (2.9) 

The inversion technique is also usable for discrete distributions that frequently occur in neutron 

transport. 

 

2.3.2 Rejection Technique 



M

P
(
X
) 

Rejection Techniques are frequently used to improve the efficiency of the Monte Carlo computation 

in cases where the pdf cannot be easily integrated or inversion (solution) of the equation is difficult 

and time consuming. This method is fast and no approximation is involved. Define Random 

Number R as 

R =  ݂ሺݔሻdx
௫
        (2.10) 

With  ݂ሺݔሻdx

  = 1 

Let f(x) be the probability density function defined in the interval a and b from which the sampling 

is needed and let M be the upper limit of f(x) (Fig. 1.1) 

The steps for sampling x from f(x) are 

1. Select two independent random numbers R1 and R2. 

2. Compute x=a+(b-a) R1 which is uniformly distributed over [a,b]. 

3. Accept this value as the sampled value of x 

If R2 ≤ [f(x)/M], where x= a+(b-a)R1 ; and M is the maximum value of the pdf 

Otherwise x is rejected and one selects two fresh random numbers and repeats steps 2 and 3. The 

above procedure results in generating a uniformly distributed point (a+(b-a)R1, MR2) in a rectangle 

of area M(b-a). The third step accepts the selected value of x if it falls within the area under the 

curve otherwise the point is rejected. The probability of obtaining a satisfactory value of x in the 

first trial, which is also the efficiency (E) of the techniques, is given by  

 

ܧ ൌ ଵ

ெሺିሻ
 ݂ሺݔሻdx

  = 

ଵ

ெሺିሻ
    (2.11) 

Where  ݂ሺݔሻdx ൌ 1

  

 

 

 

 

 



 

 

 

 

 

 

Fig. 1.1  Illustration of the Rejection Technique 

A number of other methods have been devised for generating specific distributions that occur in the 

simulation of neutron transport such as energy distributions of elastically or inelastically scattered 

neutrons, fission neutrons, isotropic and anisotropic distributions and so on (Stephen Dupree et. al., 

2001; Williams, 1974).   

 

2.4 Scoring (or tallying)  

Unlike deterministic methods MC method does not give the solution of neutron transport equation 

(e.g. flux and K for Eigenmode simulation of transport equation) on its own. In this method user has 

to specify each and every quantity which has to be tallied. The specific formula used to obtain the 

estimates is called an estimator of the quantity. Estimators should be unbiased i.e. the expectation 

value of the estimator should be equal to the theoretically exact value of the quantity. Estimation 

should be efficient which means how precise the estimate for a given effort at simulation is. In the 

following sub sections we describe some of the commonly used estimators for obtaining the Keff 

and the flux in a given region (MCNP Manual, 2003). 

 

2.4.1  Collision Estimator 

The collision estimate for Keff for any active cycle is  

݇eff
 ൌ ଵ

ே
∑ ܹ ቂ

∑ ೖజೖೖ ఙfk
∑ ೖఙTkೖ

ቃ                                                   (2.12) 

Where i is summed over all collisions in a cycle where fission is possible 



          k is summed over all nuclides of the material involved in the ith collision 

 Tk= total macroscopic cross sectionߪ        

        ߭= average number of prompt or total neutrons produced per fission by the collision nuclide 

at the incident energy 

        ݂= atomic fraction for nuclide k 

         N= nominal source size for cycle 

        ܹ      Weight of particle entering collision 

The flux in a given region of volume V is obtained using  

ଵ

NV
∑ ௐ

ೖఙTk
,              (2.13) 

 

2.4.2 Absorption Estimator 

The absorption estimator for ݇eff for any cycle is made when a neutron interacts with a fissionable 

material. The estimator differs for analog and implicit absorption. For analog absorption, 

݇eff
 ൌ ଵ

ே
∑ ܹ ߭

ఙfk
ఙckାఙfk

                                                          (2.14) 

where i is summed over each analog absorption event in the ݇th nuclide. In analog absorption, the 

weight is the same both before and after collision. Because analog absorption includes fission in 

criticality calculations, the frequency of analog absorption at each collision with nuclide ݇ is 

ckߪ  fkߪ ⁄Tkߪ
.  

 

2.4.3 Track length Estimator 

The track length estimator of ݇effis accumulated every time neutron traverses d in a fissionable 

material cell. It is given by 

݇eff
TL ൌ ଵ

ே
∑ ܹ ݀ߩ ∑ ݂߭  fk      (21.5)ߪ

where   i is summed over all neutron trajectories  

 is the atomic density in the cell ߩ



݀ is the trajectory track length from last event 

The flux in a given region of volume V is obtained using  

 
ଵ

NV
∑ ܹ݀,        (2.16) 

 

 

2.5 Error estimation 

It is important in MC simulations, to estimate the statistical error (variance) as a function of the 

number of trials and other quantities. MC results represent an average of the contributions from 

many sampled histories and the tallied quantities have the statistical error or uncertainty associated 

with the result.  

 

2.5.1 Means, Variances, and Standard Deviations 

MC results are obtained by sampling possible random walks and assigning a score xi (contributed 

by the ith random walk) to each random walk. Random walks typically will produce a range of 

scores depending on the tally selected (Murthy K. P. N., 2000; Stephen Dupree, 2001, Bielgiew, 

1998).  

Assume that x is a quantity to be estimated (tallied) by MC simulation. Let there be N particle 

histories that are simulated. Assign and accumulate the value xi and x2
i for the score associated with 

the ith  history where 1≤ i≤ N. Then the mean value of x is given as 

avgݔ ൌ
ଵ

ே
∑ ݔ
ே
       (2.17) 

The estimated variance associated with the distribution of the xi is given by 

ݔ

ݔ
ଶ

ܵ௫ଶ ൌ
ଵ

ேିଵ
∑ே


 (2.18) 

The estimated variance of xavg is the standard variance of the mean given by  



ܵ௫avg
ଶ ൌ ௌೣమ

ே
                (2. 19) 

The square root of the variance is ߪ , which is called the standard deviation of the population of 

scores. The estimated mean in xavg in equation (21.9) is the estimate for the true mean µ and the 

estimated variance is an estimate of the true variance σx
2

. 

These formulae do not depend on any restriction on the distribution of x or xavg beyond requiring 

that the expectation value of x and σx
2 exist and are finite. The estimated standard deviation of the 

mean xavg is given by ܵ௫avg. It is important to note that ܵ௫avg is inversely proportional to √ܰ which is 

an inherent drawback to the Monte Carlo method. To have ܵ௫avgreduced by half, four times the 

original number of histories must be calculated, making the calculation rather expensive. The 

quantity Sxavg can also be reduced for a specified N by making S smaller. This can be accomplished 

by using variance reduction techniques. 

 

2.6 Variance reduction techniques  

There are methods for reducing the variance in the estimated solution to reduce the computational 

time for MC simulation (Stephen Dupree, 2001). There are several methods to reduce variance in 

the tallied quantities. The type of variance reduction technique to be used depends on specific 

problems studied and the quantities to be estimated. The simplest and commonest approach to 

variance reduction is to introduce a particle weight. The particle histories begin with the statistical 

weight of the particle set to unity. Upon collision the particle always survives with its weight 

multiplied by the non absorption probability. In the event of fission, along with coordinates the 

weight of the particle is also stored. In the next generation, the particle begins its history with the 

stored weight. The multiplication factor is now estimated as the ratio of the total weight of the 

particles of the particular generation to that of the previous generation. For a large number of 

histories simulated, the total weight of the particles generated will be almost equal to the total 

number of particles generated in the analogue simulation. 



However, introducing statistical weight also has certain disadvantages. One might end up 

simulating long histories with small statistical weights, which is not required. Also there is a lot of 

fluctuations in weight which tends to increase the statistical error. To avoid these problems two 

techniques known as Russian Roulette and splitting are introduced.  

 

2.6.1 Russian roulette and Splitting Techniques 

This is most probably the most widely used and safest of the variance reduction schemes. Whenever 

a particle goes from a region of lower importance to a region of higher importance, it is split into a 

number of particles. The average number of particles is usually kept equal to the ratio of the 

importance of the two regions. Suppose a particle goes from a region with importance equal to one 

to a region with importance equal to two. It is then split into two particles with both the split 

particles having the same coordinates as the particle just before splitting. At the same time, their 

weights will be reduced by a factor of two (Stephen Dupree, 2001). 

Russian roulette is a complementary procedure to splitting. This is used whenever a particle crosses 

from a region of higher importance I1 to one of lower importance I2. A random number R is chosen 

and the particle is killed if R is less than 1-I2/I1. If the particle survives, its weight is increased by a 

factor I1/I2 so that, on average, the total weight of the surviving particles is the same as that before 

the procedure was applied. 

The combined use of Russian and splitting ensures that the weight of a single particle in any region 

remains within a limited range. It may be noted here that splitting always reduces the variance, 

whereas Russian roulette increases it.  

 

2.7 Monte Carlo Simulation of Neutron Transport Equation 

For simulation we need (1) a description of the geometrical shapes or boundaries of various regions 

in a space fixed co-ordinate system (2) description of the material composition within each region 

and (3) the cross sections as a function of energy for all materials in the regions. Particle histories 



are simulated from birth to absorption (death) or leakage as follows (Jerome Spanier and Gelbard, 

1969; Williams, 1974). 

The simulation of the particle history begins with random sampling of the neutron position, energy 

and direction from the source distribution S(r, Ω, E). Depending on the position co-ordinate (x, y, z) 

of the source particle, the region is identified and the corresponding cross section at energy E are 

selected. Let the direction cosines of the source particle be (u, v, w) with respect to the (x, y, z) 

directions. The distance to the next collision is sampled from the exponential distribution as 

described above.  

Let the inter collision distance be ‘λ’. Then the new position of the particle is given by(x+uλ, y+vλ, 

z+wλ). One checks whether any boundary crossing has occurred. If no boundary crossing has 

occurred, then the collision co-ordinates lie within the same region. Otherwise the position 

coordinates are updated to the point at which boundary crossing occurs. The new region is 

identified and the corresponding cross sections are selected. The distance traversed in the new 

medium is re-calculated and the new collision coordinates are computed. Again a check is made for 

a region boundary crossing and the procedure is repeated till the collision point is found.  

The neutron can either induce fission, or undergo absorption/scattering reaction on collision with 

the nucleus of the material. The normalized probabilities for these processes can be deduced from 

the interaction cross sections as follows. The probability for absorption for a neutron energy E is the 

ratio of absorption cross section to total cross section at energy E. Similarly, the probability for 

fission for a neutron of energy E is the ratio of fission cross section to a total cross section at energy 

E.  The probability for scattering for a neutron of energy E is the ratio of scattering cross section to 

total cross section at a neutron of energy E. 

If this happens to be an absorption event, the particle history comes to an end. The particle history is 

also terminated when the particle leaks out of the system. In the case of scattering event, the energy 

of the scattered neutron is randomly sampled from the density function for the type of scattering 

(elastic/inelastic) constructed from the double differential scattering cross section data. As regards 



direction, if the scattering is isotropic, ߤ , cosine of the polar angle ߠ is chosen from a uniform 

density function in the range -1 to +1. The azimuthal angle ߮is chosen from a uniform density 

function in the range 0 to 2ߨ. The direction cosines of the scattered particle are easily obtainable 

from these angles. If scattering is anisotropicߤis then the cosine of the angle of scattering and must 

be sampled from the given distribution of scattering angle. The  angle߮is the azimuthal angle in a 

transformed coordinate system whose z axis is aligned with the direction of motion, and is chosen 

from a uniform density function in the range 0 to 2ߨ.Then the direction cosines of the scattered 

particle are obtained after transforming back to the fixed coordinate system and are given by  
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With the new phase space coordinates of the particle, the particle history is continued as described 

earlier.  

If the collision results in fission, it is treated as absorption and the history ends (for that cycle) in 

case of the Keff calculations described below. Else new neutrons produced in the fission are tracked 

till their absorption or leakage. Neutrons produced in fission are isotropic and their energy is 

sampled from the fission spectrum distribution. 

The simulation described above is normally called as the analogue simulation. Analog Monte Carlo 

simulates the neutron transport problem by tracing each of the neutron histories as they would occur 

in the actual reactor. In other words all neutrons are tracked using the actual probability 

distributions (i.e. without modifying them in any way) and without using weights etc until they are 

lost by leakage or absorption. 



 

2.8 Keff calculations 

For the estimation of Keff, calculations are carried out in cycles (Jerome Spanier and Gelbard, 1969). 

Neutrons of a given cycle are followed from birth to absorption (including fission) or leakage. The 

locations and number of fission neutrons that may be produced due to these source neutrons is 

recorded and is used in the next cycle. However, neutrons produced as a result of (n,2n) (n,3n) 

reactions are tracked from their production to absorption or leakage. When all neutrons of a cycle 

have been tracked, we reach the end of the cycle. A new cycle begins with the fission neutrons 

produced at the end of the previous cycle being treated as the new source for the new cycle. At the 

end of each cycle one or more estimates of the keff are calculated and is (are) used to divide the 

fission neutron source by the keff. Thus the number of source neutrons is kept approximately 

constant from one cycle to the next. As the cycles proceed, the fission source distribution 

approaches the fundamental mode. Each individual cycle source distribution may depart 

considerably from the fundamental mode but an average of several cycles is close to the 

fundamental mode which depends on the dominance ratio and the number of neutron histories used 

per cycle. Some number of cycles are required for the fission source to converge to the fundamental 

mode (these cycles are called passive cycles). These cycles are continued after this point, and are 

called active cycles. The keff and all other tallies are then averaged over these active cycles. 

 

2.9. Monte Carlo Methods for Transient Analysis 

Most of the well-known MC based codes (X-5 MNCP, 2005; Leppanen et. al , 2015; Paul K. 

Roamno et. al., 2013; Gupta H. C., 1991; MCU Code, 1982), are limited to treating stationary 

situations involving criticality or source problems. MCNP6 (MCNP 6.2 , 2018) code can treat some 

limited time dependent problems including delayed neutrons, but not in a way usable for the kinetic 

problems discussed in the thesis.. Deterministic methods are most often used for the space-time 

analyses that are required for the study of the transients under normal operating or accidental 



conditions. Among the presently available deterministic codes for space-time kinetics problems, 

(Rineski, 1997; Jain et. al., 1986; Alcouuffe et. al., 2008). few-group diffusion theory (preceded by 

lattice homogenization for obtaining few-group cross sections) is almost universally employed. The 

approximations involved in this procedure could result in significant errors in the estimation of the 

reactor power and its variation with time. MC methods are expected to greatly improve the accuracy 

of space-time kinetics calculations. 

In this section, we present a literature survey of the MC based methods for space time kinetics and 

various hybrid approaches in use for simulating transient problems. We also discuss the challenges 

faced in the simulation of MC based space time kinetics and the methods proposed for overcoming 

these. 

 

2.9.1. Different time scale of prompt and delayed neutrons  

One of the major challenges in such simulations is the vastly different time scales of prompt and 

delayed neutrons. The average life time of a neutron in a light water reactor is around 10-4 sec while 

that of precursors varies roughly from 10-1 sec to 102 sec. The short neutron life time causes the 

prompt neutron chains, initiated by decay of a precursor, to die away rapidly leading to large time 

gaps between successive neutron chains. This results in large fluctuations in the neutron population 

and consequently in the estimates of neutron power in a MC simulation (Sjenitzer et. al., 2013). A 

related problem is the large ratio of the number of precursors to the number of neutrons at any 

instant making it difficult to handle the precursors individually.  

 

 

 

2.9.2 Population control  

Another challenge is to control the varying populations of neutrons and precursors with time. For 

the subcritical state, as a function of time, the neutron population decreases with time which leads to 



a large variance in the estimates of power. In case of a super critical state, there will be an increase 

in the neutron population with time which results in large computing time. As stated above, the 

number of precursors and neutrons are vastly different and it is not possible to treat all the 

precursors (due to memory limitations) individually. Instead, it is necessary to reduce the precursor 

population and increase their weights. The problem then reduces to handling the particles of vastly 

different weights in the course of the simulation which is also quite challenging.  

 

2.9.3 Changes in material properties / geometry and feedback effects  

A reactor transient will usually involve changes in material properties such as density of the 

coolant, or geometrical changes due to introduction / removal of a control rod. In addition changes 

in power on account of the transient introduce reactivity changes due to temperature and density 

related feedback effects. For realistic reactor kinetics simulations, therefore, the capability to model 

changes in geometry, material properties and fuel temperature and power dependent feedbacks need 

to be incorporated in the MC simulation code in the course of the transient. 

 

2.10 Review of Existing Transient Monte Carlo methods 

Theoretical models for MC based reactor kinetics were first proposed by Kaplan (Kaplan et. 

al.,1958) wherein he proposed the concept of weight windows for controlling the number of 

particles in the simulation. He also proposed the concept of population control at the time 

boundaries and collision biasing. 

Later the concept of hybrid time-dependent MC simulations was proposed (Wadell et. al.,1993). In 

this method a MC Code is embedded within a quasi-static kinetics framework. The time- dependent 

flux amplitude is computed deterministically by a conventional point kinetics algorithm. The point 

kinetics parameters, reactivity and generation time as well as flux shape which is slowly varying in 

time are computed stochastically by the MC calculation.  



There are also other methods in which the time-dependent neutronic parameters are calculated using 

MC methods and delayed neutrons are treated as a source in the point model (Shayesteh et. al., 

2009). Yun et. al., 2008 proposed to use the fission source shape iteration as a means to solve the 

shape function equation by MC. The point kinetics parameters are obtained during the MC solution 

process and the point kinetic solutions are solved by standard ODE solvers. Continuous energy 

Transient Analysis based on Predictor-Corrector Quasi method is carried out by YuGwan Jo et.al., 

2016. The transport based MC code GEANT-4 (Rusell et. al., 2014) uses the concept of 

instantaneous production of delayed neutrons i.e. average generation time to reflect the presence of 

delayed neutrons for time-dependent simulations.  

In 2011, Sjenitzer and Hoogenboom developed a Dynamic MC Method of modeling neutron and 

precursors in space and time and implemented the same in the code TRIPOLI (Petit O. et.al., 2008).  

 

 

2.11 New Schemes Proposed and Discussed in the thesis for MC Space Time Simulations 

Various simulation schemes are developed to deal with the challenges mentioned above. These 

schemes are described below and discussed in detail in the subsequent chapters of the thesis. While 

some of the techniques have been proposed earlier (Sjenitzer et. al., 2013), others are new. These 

include different weights for neutrons and precursors, population and weight control, handling 

various precursor groups separately, forced decay of precursors without combining them together 

and use of mean number of secondaries per collision. 

 

2.11.1. Modeling of precursors 

In MC simulations there are two different types of particles - neutrons and precursors that on decay 

produce delayed neutrons and act as a source of neutrons. Neutrons have a life time of ~0.0001 sec 

(in LWRs) and the fission chain of  neutrons lasts  for a time (inverse of the prompt neutron decay 

constant α) that is typically about 0.01 sec. Delayed neutrons are produced by the decay of the 



precursors. Precursors are categorized into 6 groups on the basis of their life time which varies from 

~0.18 to 55 sec. 

The starting point for the most of the kinetics simulations is a stationary critical state. In stationary 

critical conditions, the precursors come into equilibrium with the neutron population. This may be 

used to obtain the relation between the number of neutrons and the number of precursors, which 

serves as an initial condition. For a stationary situation, the number Ci0 of precursors of delayed 

group i is given by  

i0ܥ                                                                    ൌ
ఉబ
௸ఒ

                                             (2.20) 

where, ݊ is the stationary number of neutrons, ߚ is the delayed neutron fraction of group i, ߣ are 

the precursor decay constants and ߉ is the neutron generation time. Thus, for a population of 105 

neutrons, there will be 109 precursors. A population of 105 neutrons is probably the minimum that 

would be required to get any statistically meaningful results whereas modeling 109 precursors 

explicitly is virtually impossible on current desktops. Hence, these precursors are lumped into a 

more manageable number say 105 and assign a weight 104 to each.  

In time-dependent MC simulations, the total time span over which the solution is required is 

divided into short time bins. One reason for doing this is that MC methods are developed for 

stationary systems whereas the system is evolving with time. During the course of a time bin, the 

geometry, composition and cross sections are kept constant. These are changed at the end of the 

time bin (which may be due the action of a control rod movement or feedback effects). The binning 

also serves the purpose of obtaining the average power during the time bin. Another purpose served 

is related to the way the precursor decay is treated and is discussed later. The width of the time bin 

will clearly be determined by these factors and is typically of the order of the average life time of 

the prompt neutron chain i.e. 0.01 sec in case of light water reactor systems. Thus, there will be 

certain time bins in the simulations, in which the chains due to neutrons at the beginning of a time 

bin have ended and the delayed neutrons produced by the decay of the precursors within a time bin 

are very few (about 10, each of weight 104) since the life time of the precursors has the decay time 



of ~0.18 to 55 sec. Thus, very few source particles are sampled in the time bin and this will lead to 

fluctuations in the tallied quantities like neutron power and neutron flux. To overcome this problem 

in the time-dependent simulations, the decay of precursors is modified such that each of the 105 

precursors is forced to decay within each time bin. The weight must be adjusted so as to have the 

correct average delayed neutron source strength in the bin. The time distribution of the delayed 

neutron appearances within a bin is chosen to be uniform which may be an approximation but is 

acceptable considering the small size of the bin compared to the decay lifetime of the precursors. 

Thus, at every time step, enough delayed neutrons are produced in each time step of the simulation. 

Precursors produced as a result of neutron induced fissions within a time bin are introduced in the 

system at the end of the the bin. It is a simplification and represents an approximation of the same 

order as that of causing decay of precursors uniformly distributed within a time bin. These 

approximations have negligible effect on the results since the time bin is much smaller than any 

precursor decay time. They help to simplify the algorithm but are not strictly necessary.  

The concept of forced decay was also used by Sjenitzer and Hoogenboom, 2013. They have used 

the concept of combined precursor decay in which all the precursor families are combined into one 

MC particle and then a weight adjustment is carried out to correct the precursor decay since the 

combined precursor no longer has an exponential decay. In this simulation, each precursor group is 

explicitly treated and each group has its exponential decay. This is done since there is no unique 

way in which to assign weights to the different groups of precursors. Two extreme cases have been 

suggested by Hoogenboom viz the respective delayed neutron fractions or the equilibrium precursor 

concentrations. In kinetics simulations, it is obvious that both these represent approximations that 

could introduce an unknown and undesirable uncertainty in the simulations. 

2.11.2 Variance reduction schemes: Mean Secondary Neutrons 

In order to minimize variance in any MC simulation, wherever possible (i.e. where no bias results) 

one should use average numbers instead of statistically distributed numbers that are obtained by 

sampling. This may appear odd considering that MC is about using probability distributions for 



sampling various events that form a neutron history. There is no way avoiding the use of sampling 

for determining points of collision, and the energy and angular distributions of neutron. However, in 

a collision with any given material one may choose to find the reaction that occurred and sample the 

number of neutrons produced in that reaction. Alternatively, the average number of neutrons may be 

obtained that would be produced if each of the reactions were to occur with a probability 

proportional to the macroscopic reaction cross section.  

The number of neutrons that will be produced by ݒ secondary neutrons generated at a point in the 

ith reaction having probability ߙ of occurrence and energy angle distributions ሺܧ,   ሻ  isߗ

                                         ܶ ൌ ∑ ݒ ,ܧሺߙ ,ܧሺܫሻߗ  (2.21)                                ߗሻdEdߗ

The weight is changed to ܹᇱ ൌ cW , where  ܹ is the weight of the ingoing particle and c is the 

mean number of secondaries, given by 

                                                               ܿ ൌ ∑ ݒ                                                 (2.22)ߙ

Hence  T can be rewritten as follows 

                                                    ܶ ൌ ܿ ,ܧሺܲ ,ܧሺܫሻߗ  (2.23)                             ߗሻdEdߗ

where, 

                                                             ܲሺܧ, ሻߗ ൌ ఔఈ

,ܧሺ  ሻ                          (2.24)ߗ

In view of the above, the energy angle distribution is sampled from that of any one of the energy 

angle distributions with a probability proportional to the product of the number of secondaries in 

that reaction and the reaction probability (the latter being proportional to the macroscopic reaction 

cross section). This is equivalent to using a combined energy angle distribution given by the above 

equation. 

In the time-dependent simulation of sub prompt critical systems, the number of neutrons produced 

in a chain initiated by a delayed neutron can have a very large variance. So, to reduce variance, 

average number of neutrons that would be produced at each collision point is estimated. Average 

number of neutrons produced is proportional to the macroscopic reaction cross section of the 



system. The total weight of the delayed neutrons thus produced is adjusted by the deterministic 

value. 

 

2.11.3 Population control  

In a time-dependent simulation of a super critical system, the neutron population increases with 

time. As time passes, more neutrons need to be sampled per bin which results in more computation 

time. To reduce the computation time, the neutron population is normalized to its initial value and 

the weight of each neutron is altered in the ratio of current to initial neutron population. 

Simulation of sub critical (or sub prompt critical transients) for a few seconds or even tens of 

seconds does not cause substantial change in precursor population and precursor population control 

may not be necessary. For longer simulations, the precursor population is also substantially altered 

and it would be necessary to implement precursor population control as well. 

 

2.11.4 Weight control 

Use of the average number of particles per collision for the particle weight can lead to increased 

variance if the particle weight may become too small or too large causing large weight related 

fluctuations. For example in case the weight becomes too large, leakage of a large weight particle 

causes a sudden decrease in the total weight and is undesirable. Following the particles having a 

very small weight also increases computation time. To keep the weights comparable in magnitude, 

the particle weight is maintained within a narrow window. If the particle weight is beyond the upper 

limit of the weight window, the particle is split in two equal weights and if the particle weight is 

below the lower limit of the weight window, particle is killed by Russian roulette criteria.  

 

2.12 Plan of the remaining Chapters of the thesis 

The remaining chapters describe neutronic studies leading to the development of a time dependent 

MC code, for use in time dependent situations such as pulsed neutron experiments, reactor noise 



simulation and nuclear reactor transient analysis. The studies also include MC methods for 

computation of higher modes that are of interest in flux expansion methods in statics as well as 

kinetics problems. The schemes outlined above to manage variance and computing time issues in 

MC based kinetics are applied to simpler models before applying them in transport MC kinetics, as 

it is easier to test new techniques in these simpler models. 

In Chapter 3 the proposed new techniques are first applied to and tested in the simplest model viz. 

the Point Kinetics MC Model.  

For space dependent problems, the diffusion Monte Carlo model is explored. The diffusion MC 

model was first proposed (Rana and Degweker, 2013) and studied in the context of reactor noise 

simulation that requires analog Monte Carlo and is therefore time consuming. The simpler diffusion 

Monte Carlo helps in reducing computing time in such simulations and is sufficiently realistic for 

such studies. A number of new developments in the theoretical basis of the diffusion MC model 

have been carried out (Srivastava and Degweker, 2015) and these are described in Chapter 4.  

Another reason for studying the Diffusion Monte Carlo model is that there are very few transport 

theory or transport theory equivalent Monte Carlo benchmarks and most space time kinetics 

benchmarks are based on few group diffusion equations solved by the finite difference method. 

Thus, the implementation of the MC schemes in the diffusion theory MC model facilitates exact 

comparison with these benchmarks. This is discussed in Chapter 5. 

In recent years there has been interest in developing methods for obtaining higher modes using 

Monte Carlo. Here again a simple model like the diffusion Monte Carlo model can help in gaining 

insight into various problems associated with various methods developed for this purpose. One of 

the specific problems of developing a method for obtaining error estimates in the higher eigenvalues 

is addressed. This is discussed in Chapter 6. 

After testing the schemes (for reduction of variance / computing time) in these simpler models, they 

are implemented in a transport MC model and finally extended to the development of a multi-region 

multi-group MC kinetics code KINMC. This is discussed in Chapter 7. 



Chapter 8 presents conclusions and scope for further work. 

 



CHAPTER 3 

 

Implementation of the Simulation Schemes: Point Kinetics Model 

 

Some of the proposed new simulation techniques discussed in Chapter 2 are applied to Point 

Kinetics MC. The point kinetics equation is characterized by stiff ordinary differential equations 

which pose severe problems of stability. To overcome these, either very short time steps are 

required or special techniques such as backward differencing schemes that have guaranteed stability 

(Podar et. al., 1989) properties must be used. This problem is not found in time dependent MC 

simulations since in MC methods, there is no discretisation of time as the time of event is directly 

sampled. In this chapter, time dependent MC studies based on point kinetics model is presented. 

The study includes the sampling of prompt and delayed neutrons, modeling of six groups of 

precursors, neutron population control using weights and modeling of power dependent feedbacks. 

 

3.1 Point Kinetics Model 

The multi group delayed neutrons point kinetics equations without the effect of extraneous source 

are given by 
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dt
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Where n(t) is the neutron density, ߩሺݐሻis the reactivity, ߣis the decay constant of k-group of 

delayed neutron precursors, Ci(t) is the density of i-group of delayed neutron precursors, ߚis the 

fraction of delayed neutrons for i-group, ߚis the total fraction of delayed neutrons, ߉is the prompt 

neutron generation time, and t is the time. 

In the criticality calculation the delayed neutron precursors donot play a role. Hence, from the total 

number of N particles resutling from criticality calculation the number of prompt neutrons and 



delayed neutron precursors must be determined to start the time dependent simulation.  For a 

stationary situation the number Ci0 of precursors of delayed group i is given by  

ܥ ൌ
ఉబ
௸ఒ

             (3.2) 

With ݊the stationary number of prompt neutrons, ߚ is the delayed neutron fraction of group i, ߣ is 

the decay constants and ߉is the neutron generation time. 

 

3.2 Method of Simulation 

For applying these simulation schemes on point kinetics model, an infinite homogeneous medium 

in one energy group is considered. The medium has an absorption cross section ߑand a fission 

cross sectionߑ. The time domain is divided into discrete time bins. These time steps are created 

for simulation control and for possible geometry changes, feedback effects etc. In the simulations, 

kinetics of a reactor is modeled initially in a critical state with equilibrium condition between 

neutrons and delayed neutrons precursors. Two simulation schemes for the point kinetic modeling 

are developed. 

3.2.1 Simulation Scheme -1 

Schematic representation of the algorithm for the simulation sceheme 1 is shown in Fig. 3.1. Each 

neutron is tracked one by one and assigned weight 1.0. The capture cross section of the medium is 

subsequently adjusted to introduce the required reactivity ( or ܭஶ, infinite multiplication factor) the 

medium as given by  

ஶܭ ൌ
జఀ
ఀೌ

                          (3.3) 

To start with, the time of event of the neutron is estimated as given by  

ݐ ൌ െ ଵ

ሺ௩ఀೌሻ
ln(3.4)                                                 ߦ 

Where, ݒ is the velocity of the neutron, ߑ is the absorption cross section of the medium and ߦ is a 

random number. If the time of event lies outside the time bin, neutron is stored in an array to be 

simulated for next time bin and all such neutrons will be tracked with their initial time being the 



next time boundary. If the neutron event lies in that time bin, it is checked for the probability for 

fission or capture. If the capture occurs then the neutron chain dies out. If fission occurs then the 

number of neutrons produced in the fission is estimated and their time of production is also noted. 

Likwise all neutrons are tracked and their daughter neutrons are stored with their respective 

production time. Next, all the daughter neutrons produced are tracked in the same time bin. This 

process is continued until the neutron dies out due to capture or if the time of event lies outside the 

time bin such that there are no neutrons left in the subsequent generation. Also the precusors formed 

in each  fission event are also recorded.  

As discussed in Chapter 2, section 2.11.1, for a MC calculation it is important to have enough 

statistics per tally bin, and therefore, it is required that there should be enough delayed neutrons in 

each time bin. This can be achieved by allowing the natural decay of the precursors in each time 

bin. The probability that the precursors decay in the time bin of time width Δt is given by 

െݐ߂ߣ
ܲሺݐሻ ൌ ݈݈݊݃݅ܽ݁ߣ

                                (3.5) 

Where ߣis an isotope specific decay constant. At t = 0.0 s, there are neutrons (n0) and delayed 

neutron precursors (C0) corresponding to the equilibrium condition. A fixed fraction f (=݁ିఒ௱௧) of 

the precursor population is allowed to deterministically decay in the time bin of sizeݐ߂. The balance 

1 െ ݂
 is carried over to the next time bin, where ߣ is the group specific decay constant. So, C0 f 

delayed neutrons are produced in the bin in addition to the neutrons at t = 0.0 s.  

Delayed neutrons are then tracked in the simialr way as prompt neutrons. At the end of the time bin, 

total number of neutrons and precursors formed are added to the undecayed precursors.  

The neutron population is maintained to its initial value with weights reduced in the ratio of current 

to initial as per the following equation  

pܹi ൌ pܹiିଵ

బ

    (3.6) 

Where, pܹi is the current weight of the neutron, pܹiିଵis the previous weight of the neutron, ݊ is 

the current neutron population and ݊0 is the initial neutron population. If the weights of the prompt 



neutrons become less than the delayed neutron weights, renormalisation is not done. The precursors 

formed due to the fission of prompt neutrons carry the same weights. 

Neutron weights given by equation (3.6) contributes to the neutron power as a function of time for a 

given reactivity. Flow chart  of the calculation is shown in Fig. 3.2.  

 

3.2.1.1 Numerical Results: 

Firstly the simulation results of only with prompt neutrons are discussed. 104 neutrons are 

considered for simulation. Fig. 3.3 shows the variation of weight factor (given by equation (3.6)) 

with time in a medium with negative reactivity of 10 mk. It is observed that  prompt neutron decay 

time constant, ߙestimated by the exponential fitting, is109 sec-1 . It implies that prompt neutron 

population falls to its 1/e values in 10-2 sec and the neutron chain dies out in 10-1s which is quite 

small as compared to to the decay time of precursors. Also with rapid fall in neutron population 

lesser prompt neutrons are available for the simulation in the subsequent steps and it leads to large 

relative variance. This is controlled by the renormalising the prompt neutron population to 104 at 

each time step and reducing its weight in the same ratio as given by equation (3.6). Simulation is 

carried out for two different time widths, 3 msec and 4 msec. The value of ߙis same for the two 

time widhts and agrees well with its analytical value of 109 sec-1. Similarily, in Fig. 3.4 it is 

observed that for 3+ =ߩ mk neutron decay time constant is 16 sec-1 which means that neutron chain 

will rise to its 1/e value in 0.06 sec which implies that with time number of prompt neutrons to be 

simulated increases which will increase the computational time. This is reduced by renormalizing 

the neutron population at the end of each time bin to its value of 104 and reducing the weight of the 

neutrons by the expression given in equation 3.6. 

Next simulation was carried out with 106 prompt neutrons and equillibrium concentration of 

precusors. Six group of precursors were considered and the corresponding kinetics parameters used 

are given in Table 3.1. Prompt neutron life time ,ℓ= 1.8x10-4 sec. Fig. 3.5 ans 3.6 shows the 

variation of neutron power with time for different values of reactivity for the time step of 1 msec. 



Equilibrium concentrations of presursors are considered and all the six group of precursors are 

allowed a natural decay in each time bin. It is observed for the step negative reactivity addition, 

there is prompt drop, slope of which is dictated by the prompt neutron decay time. Even though the 

prompt neutron chain dies out in 0.1sec as in case of 10- =ߩ mk, but due the constant decay of the 

precursor in each time bin, there are enough delayed neutrons present in each time bin to maintain 

the neutron population. It is seen that after the decay time of the prompt neutron chain, neutron 

population within a time bin reduces to a very low value which leads to large relative variance of 

the order of 0.01. To overcome this, it is assumed that each precursor is splitted into 500 precursors 

and produces on decay delayed neutrons with reduced weight of 0.002. The precursors formed due 

to the fission of delayed neutrons will have same weight of 0.002. It is observed that with the 

precursor splitting, relative variance in the estimated power is reduced to ~ 0.001 as shown in Figs. 

3.7 & 3.8.   

 

3.2.2 Simulation Scheme -2 

It is observed that in simulation scheme 1, by precursors splitting within a time bin, computational 

time is increased. To overcome this, the concept of mean sceondary neutrons, as discussed in 

chapter 2, was introduced in the simulation.Schematic representation of the algorithm for simulation 

scheme 2 is shown in Fig. 3.9.  

Each neutron is tracked as follows. Initially (i.e. at t=0) a neutron carries a weight, w = 1.0. The 

time of the absorption event (t) of the neutron is given by the equation (3.4) 

If the neutron event lies within the time bin, its weight is multiplied by the mean number of 

neutrons produced in the event which is given by, 

ൌwషభݓ νΣ ⁄ߑ              (3.7) 

Where, ݓషభ  is the weight of the neutron entering the collision (in this case the absorption event) 

and ݓ  is the weight of the emerging neutron from the collision event. In the general case this is the 

mean number of secondaries per collision including prompt fission neutrons. In the point model, 



this is simply the prompt Keff and is selected with a probability proportional to (1-β). With a 

probability β the neutron history is terminated and with a probability βk/β a kth group precursor is 

created at that time (and place) of the event with weight given by   

ckൌwషభݓ νΣ ⁄ߑ             (3.8) 

In case a precursor is not formed, the neutron history is continued further till the time of the 

absorption event falls outside the time bin. Once the time goes beyond the bin limit, the history is 

terminated and the weight of the neutron is stored in an array to be simulated for next time bin. The 

initial time of this resumed history is the time boundary of the next time bin.  

The precursor modeling is similar to simulation scheme 1. The instantaneous neutron power at the 

time boundaries of each time step can be estimated using the estimator 

  
ܲሺݐሻ ൌ ߝ ∑ ݓ ܸߑfi    

(3.9)
 

where ߝ is the energy per fission,  ݓ is the neutron weight of the ith neutron, Vi  is velocity  of 

neutrons and ߑfiis the fission cross section. and ߑfiis the fission cross section. The summation is 

over all neutrons at that instant. While this estimator has the advantage of giving the instantaneous 

power, the statistics depends upon the total neutron number and will be poor. Alternatively, the 

power by averaging it over a time bin by the usual collision or track length estimators may be 

obtained. While averaging the power over time bins may have advantage in terms of statistics, the 

bins must be small compared to the instantaneous period and correlations in temporal fluctuations 

might give estimates of errors lower than they actually are. 

Binning serves the twin purposes of obtaining (average) power tally during the time period of a bin 

and that of  making changes in the system (geometry, cross sections) at the end of a time bin. 

Clearly the bin size will be determined by two considerations (i) the rate of rise of power (ii) the 

rate at which the system itself changes. Ideally the aim would be to obtain results that have an 

accuracy that is independent of the bin size and free from bias. Practically speaking this may not be 

possible in all situations. 



For sub prompt critical transients, the power is governed primarily by the delayed neutron source 

that changes slowly with time. The device of forced decay of precursors injects the same number of 

delayed neutrons in each bin and hence the variance is expected to be practically independent of the 

bin size. 

For super prompt critical transients, the precursors play very little role and hence the neutron 

population at the beginning of a bin (which is fixed) will primarily determine the number of 

particles available for producing tracks during the time bin. The number of tracks actually produced 

will depend upon the size of the time bin and will be larger for longer time bins. Even though the 

tracks produced by the progeny of a given starting particle are not independent of one another, the 

variance will be lower for more tracks than for fewer tracks. This is expected to be true for total 

power, and most certainly so for the power distributions. Thus, in this situation, one would expect 

the statistics to deteriorate with decreasing size of the time bins. Collision estimators would be fare 

worse. The instantaneous estimator described in Eq. (3.9) is the limit of the track length estimator 

for short time bins. 

At the end of each time bin, the number of neutrons that have crossed the time boundary are 

summed up. Neutron population at the next time boundary can be more or less than the initial 

neutron population depending upon the reactivity inserted in the system. At this instant, the scheme 

proposed for population control is applied. The neutron population at the time boundary is 

maintained as its initial value and the weight of each neutron is altered as per equation (3.6). The 

precursors formed due to the fission of neutrons carry the same weights as the neutron that 

produced them. 

 

3.2.2.1  Numerical Results 

A number of problems were studied in this category. These are (i) a neutron pulse introduced in a 

sub critical reactor; (ii) introduction of a positive step reactivity (< beta) in a critical reactor; (iii) 

validation with analytical benchmark; (iv) positive ramp reactivity in an initially critical reactor; (v) 



positive step reactivity with feedback; (vi) transient analysis of Compact High Temperature Reactor 

(CHTR) (vii) transport equivalent simulations. A comparison of results obtained by MC scheme 

with those based on analytical solutions or a point kinetics code is described. 

 

 

(i) Sub critical reactor transients 

Two problems are studied in this category. In the first of these, only neutrons are present initially (at 

t=0) in a subcritical system (reactivity -10 mk) and the decay of the neutron population together 

with the build up and decay of precursors is simulated. In the second simulation, the transient is 

produced by introducing a step reactivity of -10 mk in a critical reactor in which neutrons and 

delayed neutron precursors have reached equilibrium. The prompt neutron lifetime is taken to be 1.7 

x 10-4 sec. The macroscopic cross sections, neutron lifetime and six group delayed neutron 

precursor yields and decay constants used in these simulations are given in Table 3.1. 

The calculation procedure follows the scheme described in Section 3.2.2. A fixed fraction of 

precursors is allowed to decay in each time bin. The neutron power at the end of each time bin is 

calculated using the instantaneous power estimator. The neutron population and the time bin width 

are chosen to be 105 and 1 msec respectively. Variation of the weight factor (corresponding to the 

neutron power and given in equation (3.6)) with time for the two simulations are plotted in Fig. 

3.10. It is observed that, in the first simulation with only neutrons at t=0, the neutron decay time, 

 estimated by the exponential fitting, is 59 sec-1 It implies that neutron population (ℓ /(k-1) =ߙ)ߙ

falls to its 1/e values in 10-2 sec and the neutron chain dies out in 10-1sec which is quite small as 

compared to to the decay time of precursors to form delayed neutrons. It implies the there are very 

few neutrons that are sampled at a given time and this will lead to fluctuations in the tallied 

quantities like neutron power and neutron flux. 

In the simulation start with neutrons together with the equilibrium concentration of precursors (as 

given by eq. (3.2)). There is a prompt drop, the slope of which is dictated by the neutron decay 



constant α, followed by a slower decay of power. Even though the initial neutron population dies 

out rapidly (in about 0.1 sec), the constant source due to decay of the precursors in each time bin 

maintains the neutron population to a sufficiently high level. Additionally, the use of the mean 

number of secondary neutrons produced in each neutron (absorption) event, keeps the relative 

variance in the simulation extremely low. The simulation is in excellent agreement with results 

obtained using the GEAR (Podar et. al, 1989). The simulations confirm the proposed precursor 

modeling in which a fixed fraction of precursors is allowed to decay within each time bin. This 

helps to maintain a fairly constant neutron population within a bin and thereby reduces population 

fluctuations and hence the relative variance.  

 

(ii) Positive step reactivity in a critical reactor 

In another simulation, the neutron power is estimated till 6 reactor periods after insertion of positive 

step reactivity of +3 mk as shown in Fig. 3.11. Prompt neutron life time, ℓ= 1.8 x 10-4 sec. Other 

kinetic parameters used are the same as in the previous simulation and are given in Table 3.1. The 

estimated relative variance and computational time obtained for this simulation for the simulation 

scheme 1 and 2 are compared in Table 3.2. It is seen the relative variance estimated in the 

simulation with concept of mean secondary is lesser and also it is faster than the simulation scheme 

1. The simulated neutron power by simulation scheme 2 is compared with that obtained by the 

GEAR code. This demonstrates the validity of the method for the longer times. For the same 

simulation, the growth of the precursor concentration for each group as a function of time is plotted 

in Fig. 3.12 and is compared with the corresponding point kinetics code values. They are found to 

have similar trend. 

 

(iii)Validation with Analytical Benchmarks 

This method is also validated against reactor kinetics benchmarks. Kinetic parameters given in 

Table 3.3 are used and neutron life time, ℓ=2 x 10-5 sec. Table 3.4 and 3.5 gives the values of 



neutron power with time obtained by the GEAR code and available analytical solutions (Yamoah et. 

al., 2013) and are compared with the MC simulations for step reactivity of +3 mk and -7 mk. 

Results obtained by MC simulation are found to compare within the standard deviation with that 

estimated by point kinetics code GEAR and reported by analytical solution.  

 

(iv) Positive ramp reactivity in a critical reactor 

The insertion of ramp reactivity is also tested by MC simulation method. Fig. 3.13 shows the 

variation of neutron power with time for a ramp reactivity of 0.1 mk /sec. 105 neutrons and 109 

precursors are considered at t=0. Kinetic parameters given in Table 3.1 are used. The figure also 

shows a comparison with results obtained using the GEAR code. It is seen that the agreement 

between the two is excellent.  

 

(v) Positive step reactivity (with feedback) in a critical reactor 

Power reactors generally have a reactivity feedback due to temperature changes of fuel, moderator, 

coolant etc as a result of power changes. Negative feedback helps to stabilize the reactor operation 

and also limits the power rise in case of an accidental increase in reactivity. The fastest response is 

due to temperature change of the fuel which is prompt and this is most important in stable operation 

of reactor. The negative temperature coefficients also limit the power rise in supercritical transients. 

The reactivity feedback coefficients are of three or four types. The most important of these is the 

fuel temperature coefficient and arises primarily due to the Doppler broadening of resonances. A 

smaller contribution is due to expansion of the fuel elements / reactor core and is particularly 

important in fast reactors. The fuel temperature feedback is the fastest acting and is also called the 

prompt temperature coefficient and must be negative. Slower acting effects are due to temperature 

changes of the coolant / moderator and due to changes in the density due to boiling (called voiding) 

of the coolant. A simple model in this case is the lumped parameter model. Simple equations are 

written down for the average fuel temperature, coolant temperature and density as follows: 
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݀ ܶ
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ൌ ݄൫ ܶ െ ܶ൯  ܾሺ ܶ െ ܶ ሻ 

ܶis the fuel temperature 

ܶ is the average coolant temperature 

hൌ ܲ

fܶo െ ܶ

 

The last of the problems studied introduces a simple reactivity feedback based on the fuel 

temperature reactivity coefficient. The rise of neutron power with time with and without fuel 

temperature feedback was estimated for a step reactivity insertion of +3 mk.  The fuel temperature 

at each point on the time grid is calculated using the equation  

fܶnାଵ ൌ ቂ
ሺఊሺ௧ሻାௗሻ௱௧

ଵା11௱௧
ቃ  fܶn         (3.10) 

that is a discretised version of the following equation representing nuclear heating and Newtonian 

cooling by a coolant at a fixed temperature.  

ܥܯ
ௗ்
dt
ൌPሺݐሻ െ ݄൫ ܶ െ ܶ൯            (3.11) 

Where, 

 is the mass of the fuelܯ

  is the specific heat capacity of the fuelܥ

ܶis the fuel temperature 

ܶ is the average coolant temperature 
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The feedback reactivity is calculated using the equation  

߂feedൌραߩ ܶ 
 

                                   (3.12) 

where, 

 feed is the feedback reactivityߩ

  is the external reactivityߩ

ߙ ൌfuel temperature co-efficient = -1 x 10-7 °ܥ 

Other input data used in the calculation are given in Table 3.6. 

Fig. 3.14 shows the variation of the feedback reactivity with time. Feedback reactivity is estimated 

using the equation (3.12). Initially at t = 0.0 s, feedback is zero so the positive reactivity added to 

the system is +3 mk but, at the next time step, feedback reactivity is estimated by equation (3.12). 

Negative feedback reactivity increases with time and accordingly the weight factor also decreases 

with time for simulation with negative feedback as shown in Fig. 3.14. The variation of power with 

time is plotted in Fig. 3.15. It is seen from Fig. 3.15 that without fuel temperature feedback, the 

weight factor, which is measure of neutron power rises to 1000 times its initial value, but with 

feedback it is restricted to less than 10 times the initial value.  

The power reaches a maximum at 23.2 seconds and starts falling thereafter well before the 

reactivity becomes negative (at about 39.1 seconds). This is due to the fact that in sub prompt 

critical transients, the power is essentially determined by the neutron source due to decay of the 

precursor population and the prompt reactivity. Since the precursor population changes slowly over 

time scales of the order of the precursor decay constant, a rapid fall of reactivity can cause the 

power to fall even though the reactivity is positive. A solution of the one delayed-neutron-group 

kinetics equations in the prompt jump approximation discussed in section 1.5.1.4 gives the 

following expression for the variation of the neutron population with time 

݊ሺݐሻ ൌ ݊ ቀ
ఉ

ఉିఘሺ௧ሻ
ቁ exp ቀ

λρ൫௧ᇲ൯

ఉିఘሺ௧ᇲሻ
dtᇱ

௧
 ቁ    (3.13) 



On differentiating w.r.t.  t ,the following condition for the derivative of  ݊ሺݐሻ to be negative is 

obtained 
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In the present case the power starts falling when the rate of relative reactivity decrease exceeds 

0.07, which is fairly close to the average precursor decay constant value of 0.078. Fig. 3.15 also 

shows a comparison with the results obtained using the deterministic point kinetics code and the 

agreement is seen to be very good. Sjenitzer et. al, 2011 has reported that the results of non linear 

kinetics in case of thermal hydraulics feedback produces a bias in the mean if the number of 

particles per batch is very small. In the above involving feedback the results do not show any bias 

(at least the comparison with the deterministic results shows good agreement). However, in this 

case batch size was quite large (104) and hence the bias observed in the above work is not observed. 

 

(vi) Transient analysis of Compact High Temperature Reactor (CHTR) with temperature 

feedback reactivity 

A reactivity transient analysis of CHTR core was simulated with the feedback modeling. Kinetic 

parameters used are mentioned in Table 3.7. In the study of transient, the rising power (neutron 

density) in CHTR core due to positive reactivity insertion has been arrested with negative feedback 

from fuel temperature rise (1000 ºC to 1300 ºC) only. For comparison, a case has been studied when 

+2 mk reactivity inserted in the core in 5.0 sec and variation of relative power (neutron density) and 

feedback reactivity has been followed up to 10 min. Fuel temperature coefficient ߙ ൌ- 0.0001   ܥ°

and prompt neutron life time ,ℓ in the analysis is taken to be 0.0015 sec . Simulated power was 

compared with ARCH Code (Dwivedi et. al., 2014) as shown in Fig. 3.16. It is seen that the 

agreement between the two is good and is within the standard deviation of ± 0.001.  

 

3.3 Conclusions 



Time dependent MC method to solve point kinetics equations has been developed. The method 

includes the sampling of prompt and delayed neutrons, modeling of six groups of precursors, 

neutron population control using weights. Two simulation schemes were studied. It was found that 

with the use of mean secondary concept in simulation scheme 2, relative variance is reduced and 

computational speed is faster. Variations of neutron power for different reactor states are compared 

with the analytical solution and with other point kinetics code. Results are also validated against the 

benchmark problems and are found to be in good agreement. Fuel temperature feedback model was 

also implemented and was tested for transient analysis. It is observed that Point Kinetics based MC 

simulations can be carried out with minimum variance. Actual time dependent transport MC would 

however show much larger variance.  

  



 

Fig. 3.1 Schematic representation of the MC Algorithm based on Simulation Scheme-1 



 

Fig. 3.2 Flow of the program for the Simulation Scheme -1  



 

Fig. 3.3 Variation of prompt neutron weight factor with time for step negative reactivity of -10 

mk added at t=0.  

 

 

Fig. 3.4 Variation of prompt neutron weight factor with time for step positive reactivity of +3 
mk added at t=0. 

 



 

Fig. 3.5 Variation of neutron power with time for step reactivity of -20 mk, -10 mk and -3 mk  

  

Fig .3.6 Variation of neutron power with time of +3 mk step reactivity.  
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 Fig. 3.7 Variation of neutron power with time for step reactivity of -20 mk, -10 mk and -3 mk 

with precursor splitting model 

 

 

Fig .3.8 Variation of neutron power with time of +3 mk step reactivity with precursor splitting 

model 
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Fig. 3.9 Schematic Representation of the Simulation Scheme 2  

 



 

Fig .3.10 Variation of the neutron population (neutron weight factor) with time, for ρ= -10 

mk The solid curve shows the results obtained using the Point Kinetics code GEAR. 

             

Fig 3.11 Variation of the neutron power estimated by the MC method (with six groups of 

delayed neutron precursors) for a step increase in reactivity by +3 mk in a critical reactor.  



 

 Fig 3.12 Change in the precursor concentrations with time in the MC simulation of the 

problem involving a step reactivity insertion of +3 mk in a critical reactor 

 

Fig 3.13 A comparison of the variation of the neutron power with time as estimated by a 

point model MC simulation with GEAR for a ramp reactivity insertion rate of 0.1 mk/sec.  



 

Fig. 3.14 Variation of neutron power with time with and without fuel temperature feedback 

modeling for a step reactivity insertion of +3 mk.  

 

 

Fig. 3.15 The fuel temperature feedback reactivity as a function of time 



 

Fig. 3.16 Variation in relative power for CHTR core for step reactivity insertion of +2 mk in 5 

sec. 

 

 

Table 3.1 Kinetics parameters for 6 groups of delayed neutron precursors 

ଵሻ 0.0127ିݏௗሺߣ 0.0317 0.115 0.311 1.40 3.87 

ௗ 0.000266 0.001491 0.001316ߚ 0.002849 0.000896 0.000182 

ߣ

ൌ 0.0784secିଵ 

effߚ  

ൌ 0.00685 

   

 
 

 

Table 3.2 Comparative study of the computational time and variance estimated by simulation 
schemes 1 and 2 for step reactivity insertion on + 3 mk 

 
Model Computational 

Time 

Standard Deviation 

Simulation Scheme -
1 

~ 30 sec ± 0.03 

Simulation Scheme -
2 

~ 3 sec ± 0.004 

MC 
ARCH



Table 3.3 Delayed neutron and cross section data used as input in the point model 

benchmarks (Yamoah et. al. 2013) 

 eff 0.038 0.213 0.188 0.407 0.128 0.026ߚ/݅ߚ

 ( s-1) 0.0127 0.0317 0.1156 0.311 1.4 3.87ߣ

 eff 0.007ߚ

  avg( s-1) 0.0784ߣ

 3.24 ߥ

 (cm-1) 0.007530ߑ

 (cm-1) 0.02681ߑ

ℓ(s) 1.7 x 10-4 

V(cm/s) 220000 

 

Table 3.4 Comparison of the neutron power (= N(t)/N(0) by point model MC for a -7 mk 

negative step reactivity insertion in a thermal reactor with analytical solutions and GEAR  

Code. 

Time (s) Analytical  
Solution 

GEAR Code Monte Carlo 

 

0.0 

 

1.0000 

 

1.0000 

 

1.0000 

0.2 1.8513 1.8513 1.8473 ± 0.0035 

0.4 1.9476 1.9476 1.9408 ± 0.0041 

0.6 2.0379 2.0379 2.0372 ± 0.0048 

0.8 2.1248 2.1248 2.1194 ± 0.0090 

1.0 2.2098 2.2098 2.1938 ± 0.0066 

 

 

Table 3.5 Comparison of the neutron power (= N(t)/N(0) by point model MC for a -7 mk 

negative step reactivity insertion in a thermal reactor with analytical solutions (Yamoah et. al, 

2011) and GEAR  Code. 

Time (s) Analytical GEAR Code Monte Carlo 



 Solution   
 

0.0 

 

1.0000 

 

1.0000 

 

1.0000 

0.2 0.4807 0.4810 0.4812 ± 0.0044 

0.4 0.4653 0.4653 0.4623 ± 0.0022  

0.6 0.4519 0.4520 0.45153 ± 0.0043 

0.8 0.4402 0.4403 0.4346 ± 0.0046 

1.0 0.4297 0.4298 0.4301 ± 0.0028 

 

 

Table 3.6 Feedback parameters for modeling the problem of a +3 mk step reactivity insertion 

with fuel temperature feedback 

Parameter                                                               Value
 

Power P0 

 

90 MW 

  2680 kgܯ

fܶo 390 °C 

ܶ 253.335 °C 

  7.4 x 10-2 cal/gm °Cܥ

 x 10-6 °C/cal 5.0423 ߛ

݀ 200.885 °C/s 

ܽ11 -0.7929636 / s 

݄ 0.658545 MW/°C 

 

 
 
 

Table 3.7 Kinetics parameters for 6 groups of delayed neutron precursors for ARCH 
Transient Analysis 

 
  ଵሻ 0.00031  0.00087  0.00063  0.00127  0.00051  0.00094ିݏௗሺߣ

  ௗ 0.01527  0.03862  0.13614  0.34111  0.92435  2.76407ߚ



  eff 0.00454ߚ

 



CHAPTER 4 

 
Diffusion Theory Monte Carlo: Model Description and Extension 

 
In the previous Chapter the application of some of the ideas regarding Monte Carlo Kinetics to the 

simplest model viz. the point kinetics model is discussed. In this chapter another model for studying 

Monte Carlo space time kinetics viz. the Diffusion theory Monte Carlo Model is introduced. 

Monte Carlo Methods for solving problems in Diffusion Theory have been studied by Booth, 1981; 

Sadiku, 2006. Rana and Degweker, 2013 developed the analytical Green’s function approach as 

well as the finite difference based numerical approach for diffusion theory Monte Carlo. The 

present chapter is based on and is an an extension of their work..  

For full Space-Time Space Time Monte Carlo Simulations, both spatial as well as temporal 

variation of the neutron and precursor concentrations has to be modeled. The model discussed in 

this chapter allows to apply the schemes for modeling the spatial variation of neutrons and 

precursors. Besides providing a simple model for testing these ideas regarding Monte Carlo space 

time Kinetics, the diffusion theory MC model permits an exact comparison of the results of MC 

simulation with the large number of kinetics benchmarks that have been solved using deterministic 

diffusion theory methods. This is particularly important since there are very few ‘exact’ benchmarks 

that are based on transport theory MC 

There is another reason for interest in the study of this model. MC calculations are mostly 

performed by the non analog technique for the purpose of computational efficiency. However, for 

simulation of noise experiments for measurement of reactor kinetics parameters such as reactivity, 

the analog MC is more appropriate. There has been a lot of theoretical and experimental interest 

(Pazsit et. al., 2005; Degweker et. al., 2003; Munoz Cobo et. al. 2001) in recent times in the noise 

methods for sub criticality measurement of accelerator driven systems. This also includes noise 

simulation using standard MC codes after removing all non analog features (Yamamoto et. al., 

2011). While there have been suggestions (Szeiberth et. al., 2010)- that non analog methods can be 



used for this purpose, they will have limitations such as being applicable for the specific stochastic 

descriptor for which the tallies have been corrected and would certainly not be suitable for 

estimating errors due to statistics or dead time effects. Since analog MC is highly computational 

time consuming, the concept of the diffusion theory based analog MC technique to reduce the 

computing time was proposed by Rana and Degweker, 2013.This is based on the observation that in 

a variety of situations, diffusion theory, an approximate form of transport theory is very successful 

in giving quick results which may be fairly close to transport theory. It was shown that the methods 

of Diffusion MC developed are quite successful in simulating noise experiments.  

Two approaches - viz., the analytical Green’s function method and the finite difference method - 

were developed by Rana and Degweker, 2013. In analytical Green’s function method they use 

analytical solutions of diffusion equation to construct probability distribution function for neutron 

absorption in a medium. The analytical Greens function approach has several advantages such as 

speed and exactitude, but was applicable to a rather restricted class of problems, such as the bare 

homogeneous reactor. A number of developments in this approach have been carried out and these 

form the subject of the present chapter. 

With the developments discussed in this chapter the Analytical Greens Function MC becomes a 

useful tool of stochastic space time kinetics primarily for simulating noise experiments. On the 

other hand the finite difference diffusion MC is useful for exact comparison with diffusion theory 

benchmarks and forms the subject for the next chapter.  

It was mentioned in earlier works (Rana and Degweker, 2013) that analytical Greens function 

method can be used for (a) infinite homogeneous medium and (b) bare homogeneous reactor of the 

rectangular geometry. Some recipes were proposed (without proof) for treating other situations like 

cylindrical geometry and non homogenous media. 

The analytical Greens function (AGF) approach is further developed, to demonstrate its utility in a 

wider class of problems including homogeneous cylinders and heterogeneous reactors. In this 

Chapter, mathematical and numerical proofs of the validity of these recipes which were proposed 



for such systems is provided. Other limitations of Diffusion MC Methods and means to overcome 

these are also discussed. It is well known that diffusion theory is not valid (a) close to localized 

sources (b) close to vacuum boundary (c) inside and close to strong absorbers (d) highly anisotropic 

scattering. In all such cases, the flux gradients are very sharp and the angular distribution of the flux 

is highly anisotropic causing the diffusion approximation to break down. Corrections to diffusion 

MC methods to overcome these limitations is applied. 

With these developments, the Analytical Greens Function MC becomes a useful tool of stochastic 

space time kinetics primarily for simulating noise experiments. On the other hand, the finite 

difference diffusion MC is useful for exact comparison with diffusion theory benchmarks and forms 

the subject for the next chapter. 

 
4.1 Earlier Work 
 
4.1.1 Probability Distribution Function for Infinite Homogenous Medium 
 
The probability distribution function (pdf) for simulating infinite homogeneous medium with 

Diffusion MC was derived by solving the one group time dependent diffusion equation using 

Fourier and Laplace transforms (Rana et. al., 2013).  

It was shown (Rana et. al., 2013) that for a single source neutron initially (at t=0) located at the 

origin in an infinite homogeneous medium, the flux is given by 

Dvtߨ4 ଷ ଶ⁄

߮ሺݎԦ, ሻݐ ൌ ௩

(4.1) 

where v is the velocity of the neutron and  D is the diffusion coefficient. The neutron life-time in an 

infinite medium is given by l=1/vƩr. The probability that a neutron will be removed in the small 

space time interval  is obtained by multiplying the flux with the macroscopic removal 

cross section Ʃr to give 



Dvtߨ4 ଷ ଶ⁄

ܲሺݔ, ,ݕ ,ݖ ሻݐ ൌ ଵ


expሺെ ݐ ݈⁄ ሻ ଵ

(4.2) 

The marginal distribution for the removal time is obtained by integrating equation (4.2) over the 

space variables and  is obtained. The conditional distribution for the space variables 

for a given value of time is obtained by dividing equation (4.2) by the marginal distribution. The 

conditional distribution is given by 

Dvtߨ4 ଷ ଶ⁄

ଵ

(4.3) 

The conditional distribution can be written as a product of the three Gaussians for the three 

coordinates, each having zero mean and  as variance.  Therefore the position and time of 

absorption of a neutron in an infinite medium with Diffusion MC using pdf given in equation (4.2) 

with the following scheme can be sampled. First the time as an exponential distribution (with mean 

as ) is sampled. Then the position coordinates as three independent Gaussians, each with zero mean 

and  as the variance (for the sampled value of time) is sampled. In what follows, variants of 

the above sampling scheme for finite and multi-region medium (with same or different diffusion 

coefficients and absorption cross-sections) is employed.  

 
4.1.2 Bare Homogenous Reactor: Method of Images 
 
For a point source in an infinite medium, pdf described in the previous section can be used. To use 

these pdfs for bare homogeneous reactor of rectangular and cylindrical geometry, the method of 

images was developed (Rana et. al., 2013) to reproduce zero flux boundary condition.  

 

Rectangular Parallelepiped 

Rana et. al. (2013) also showed that the zero flux boundary condition for a bare homogeneous 

reactor can be simulated by locating suitably placed image sources outside the reactor, for one, two 



and three dimensional rectangular geometries. Unlike the case of electrostatics where an infinite 

number of images are required, one, three or seven images (depending upon whether the source is 

near a face, edge or corner) placed outside the reactor volume suffice to reproduce the zero flux 

boundary condition (Jackson, 1958). This makes the problem fairly tractable. 

 

4.2 Further development & Extension of the method of images 

4.2.1 Right Circular Cylinder 

It is difficult to reproduce the zero flux boundary condition on the curved surface exactly using the 

method of images. Since the problem is not exactly solvable in terms of simple function, a 

simplifying argument is used. The crux of this argument is that the use of the image point at an 

equal distance is equivalent to using the tangent plane as the boundary. Hence, the material between 

the tangent plane and the curved cylindrical surface can scatter neutrons back into the cylinder (i.e. 

act as a reflector) and this is incorrect. To correct this we try to estimate this effect in the form of 

the reflector savings of this material and subtract this from the extrapolation distance (that is used 

for a vacuum boundary). Since the reflector material in this situation has a thickness that varies 

from point to point along the curved surface, (being larger for points away from the line joining the 

source and the image and smaller otherwise), it is not immediately clear what thickness (and 

corresponding reflector saving value) should be used. We proceed as follows. We obtain the 

reflector thickness from the geometry of the situation in the plane P’ and use it to estimate the 

reflector saving. We use the expression for the flux in this plane due to a point source(in an infinite 

medium) as a weighting function to find the average reflector saving. 

We place an image source in a transverse plane containing the source along the diameter joining the 

centre (axis) and the source point and at an equal distance outside the cylinder as shown in Fig. 4.1 

and applying a small correction to the extrapolation distance. In what follows, an analytical 

expression for this correction is obtained. 



The image causes the flux to be zero at the tangent plane rather than at the circular boundary. A 

reflector causes the flux to go to zero at a distance beyond the usual extrapolated boundary. To 

compensate for this the usual extrapolated length (0.71 λtr) by an amount which will give the correct 

buckling or Keff is reduced. This was done numerically in works of Rana et.  al, 2013. In this section 

an approximate analytical formula for this reduction in extrapolation distance is attempted. 

Since the problem is not exactly solvable in terms of simple function, a simplifying argument is 

used. The crux of this argument is that the reflector thickness varies from point to point along the 

curved surface, being larger for points away from the line joining the source and the image and 

smaller otherwise. If it is assumed that the radius is large compared to a diffusion length, the extra 

reflector thickness can be shown to be small. This effect can be compensated by reducing the 

extrapolation distance by a suitable amount obtained, in a heuristic manner, below. 

As shown in Fig. 4.1, an image source is placed in a transverse plane containing the source along 

the diameter joining the center axis and the source point and at an equal distance outside the 

cylinder represented by axial plane P. A vertical plane P' parallel to the axial plane P (which 

contains the source point) is drawn and at a distance  away from it. The total flux at the plane P' 

due to the source is easily calculated to be  

(4.4) 
where L is the diffusion length. It is not merely a coincidence that this turns out to be the same as 

the flux due to a plane source. In fact this would be expected on the basis of the reciprocity as well. 

The flux at any point Q on P' is same as the flux at the source point due to source at Q. Integrating 

over all points in the plane P', the flux due to source in plane P' at the original source point is 

obtained. 

Neutrons in this plane see an extra reflector thickness (between the tangent plane T and the circle) 

given by . The approximation is justified since neutrons travel a distance 



typically to a distance of a few diffusion lengths and since R is assumed to be small compared to L, 

it is clear that x is also small compared to R. For a thin reflector, this extra thickness can be treated 

as the added extrapolation distance (reflector saving) for neutrons at the plane P'. Using the number 

of neutrons (removed) absorbed at the plane P' as a weighting function, the average value of the 

additional extrapolation due to the extra reflector is calculated as  

݀ex ൌ 
௫మ

ଶRL
expሺെݔ ⁄ܮ ሻdx ൌ మ

ோ
(4.5)  

For systems with smaller radii, the assumption of a thin reflector is not correct and the expression 

 for the extrapolation distance (Glasstone and Edlund, 1953) must be used. With this, 

݀ex ൌ  tanh
ஶ
 ቀ ௫

మ

ଶRL
ቁ expሺെݔ ⁄ܮ ሻdx                      (4.6)  

The integration is not easy and so it is substituted with approximationtanhሺݔሻ ൌ 1 െ expሺെaxሻ. 

The following result is obtained as  

(4.7)  
 

In Table 4.1 a comparison is shown for dexobtained using the expressions in Eq. (4.5), (4.7) and by 

exact numerical integration of (4.6) with the value required to get the correct keff with diffusion MC 

based on infinite medium kernel and a single image. It is seen that with, a=1.2practically 

indistinguishable result is obtained from the MC calculation down to radii about 5 times the 

diffusion length. Exact numerical evaluation of the integral gives similar results. Even the simple 

formula in equation (4.5) is in error by about 2 mm in a reactor of radius 30 cm. The corresponding 

error in the estimated geometrical buckling amounts to less than 2%. 

This shows that, for cylindrical geometries, the approximate boundary condition described in this 

section can be used together with a reduction in the extrapolation distance by an amount . The 

latter is small enough (few mm up to about 1 cm) to be treated as a correction and may be obtained 

using the simple expressions derived above.  



 
4.3 Extension of AGF Method to Heterogeneous Media 

It might appear that the diffusion theory kernel derived for an infinite homogeneous medium could 

be extended to situations involving interfaces between two media through the use of the familiar 

interface conditions of continuity of flux and current. While the general three dimensional problems 

are clearly unsolvable, even the time dependent problem involving a single planar interface between 

two media presents insurmountable difficulties. It was suggested (Rana et. al., 2013)that the 

probabilities derived for the infinite homogeneous medium can be applied not only to bare 

homogeneous reactors but also to multi-region reactors including reflected reactors. A number of 

recipes were described earlier without any mathematical or numerical proof. One by one these 

recipes are examined and the necessary mathematical and numerical justification is provided in this 

section. 

 

4.3.1 Heterogeneous media with uniform diffusion coefficient 

Two different cases of heterogeneous media with uniform diffusion coefficient is considered. First 

case is a single region medium with actual absorption cross section and a fictitious absorption cross 

section. In the second case, two regions medium with different absorption cross sections but with 

same diffusion coefficient is considered. In the following section the recipes to simulate these cases 

with Diffusion MC Methods and provide mathematical and numerical proofs for the recipes is 

described. 

 

4.3.1.1 Single Region Medium with Fictitious Absorption  

Consider a single region with actual absorption cross section. Introduce a fictitious absorption in the 

medium, fictitious absorption being larger than the actual one. The time of removal neutron using 

the usual probability distribution function of the infinite homogeneous medium [as given eq. (4.2)] 

is sampled but with a ‘fictitious’ removal cross section (lifetime) which is the highest (shortest) 

among the two. Then the position using the Gaussian corresponding to this time is sampled and 



accept the point with a probability equal to the ratio of the actual absorption cross section of the 

region in which the selected point lies and the maximum absorption cross section. Else the point is 

rejected. In the latter case another point is selected starting from the rejected point. The process is 

repeated till a point is accepted.  

Mathematical proof of the recipe goes as follows. The demonstration given below shows that if 

there is a single medium having some absorption cross section and sampling from infinite medium 

kernels is chosen but with a fictitious absorption cross section which is larger than the actual 

absorption cross section, the above recipe gives the same results as that with the actual cross 

section.  

Start with a neutron at the origin at time t=0. Let ܲሺݎԦ,  ሻ be the probability of real absorption atݐ

point ݎԦ and time t. Then ܲሺݎԦ,  ሻ in terms of infinite medium diffusion kernel as given by (4.2), isݐ

given by  

Dvtߨ4 ଵ ଶ⁄

݈
ܲሺݎԦ, ሻݐ ൌ ଵ

(4.8) 

Where, 

D- Diffusion coefficient of the medium 

݈- Neutron lifetime 

t- Time of absorption 

Consider a fictitious absorption in the medium. Let ߑarbe the absorption cross section of the 

medium, called the real absorption cross section, such that݈ ൌ 1 ⁄arߑݒ . Letߑaf (>ߑar) denote a 

fictitious absorption cross section and define a corresponding fictitious neutron lifetime݈ ൌ

1 ⁄afߑݒ .Then, the probability (p) of non absorption event following (or after) one fictitious 

absorption and the probability (1-p) of real absorption event following one fictitious absorption, are 

given by  



1 െ  ൌ ఀar
ఀaf
ൌ బ



 ൌ 1 െ ఀar
ఀaf
ൌ 1 െ బ



(4.9) 

If ܲሺݎԦ,  Ԧ and timeݎ ሻ, is written for the probability corresponding to the fictitious absorption at pointݐ

t, i.e.  

Dvtߨ4 ଵ ଶ⁄

݈

ܲሺݎԦ, ሻݐ ൌ
ଵ

   (4.10) 

Then as per the above recipe, the actual probability ܲሺݎԦ,  Ԧ and at time tݎ ሻ for absorption at pointݐ

can be expressed as, 

ܲሺݎԦ,tሻ ൌ ൫1‐p൯ ܲሺݎԦ,tሻ  pP ሺݎԦ, ሻሺ1ݐ െ ሻ ܲሺݎԦ െ ,ଵሬሬሬԦݎ ݐ െ ଵሬሬሬԦdtݎଵሻ݀ݐ  ሺ1 െ ଶሻ ܲሺݎଵሬሬሬԦ, ଵሻݐ ܲሺݎଶሬሬሬԦ െ ,ଵሬሬሬԦݎ ଶݐ െ ଵሻݐ

(4.11) 

Where, the 1st term indicates that in the first collision itself, the neutron undergoes a real absorption, 

2nd term indicates that neutron suffers in the first collision a fictitious absorption at r-r1 and time t-t1 

and real absorption at r and time t in the 2nd collision. 3rd term is for the real absorption after 3 

collisions and so on. It can be seen that each of the terms is a convolution. Hence if a Fourier 

transform of the equation (4.11) is performed in the position variables ‘ݎԦ’ and a Laplace Transform 

in time ‘t’ then, 

~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ ~ܲ൫ሬ݇Ԧ, ൯ሺ1ݏ െ ሻ  ,൫ሬ݇Ԧܲ~ ൯ሺ1ݏ െ ,ሻ~ܲ൫ሬ݇Ԧ ൯ݏ  ,൫ሬ݇Ԧܲ~ ൯ሺ1ݏ െ ,ሻ~ܲ൫ሬ݇Ԧ ,൫ሬ݇Ԧܲ~൯ݏ ൯ݏ 

...(4.12) 

Equation (4.12) is an infinite geometric series. The sum of the series is easily written as  

~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ
ሺଵିሻ~బ൫ሬԦ,௦൯

ଵି~బ൫ሬԦ ,௦൯
 (4.13) 

The expression (4.13) is the (transformed) probability for real absorption as per the recipe. To 

proceed further, take the Fourier-Laplace transform of the expression for the probability of fictitious 

absorption viz. that of equation (4.10) and then  

 ܲሺݎԦ, ԦݎԦ൯݀ݎ.ሬ݇Ԧߨሻexp൫െ݅2ݐ
ାஶ
ିஶ 	ൌ ଵ

బ
exp ቀെ ௧

బ
ቁ exp ൬െ

గమమሬሬሬሬሬԦ


൰(4.14) 



Laplace Transformation of equation (4.14) over the time variable gives 

ܲ
~

൫ሬ݇Ԧ, 		൯ൌݏ  ܲ൫ሬ݇Ԧ, ൯expሺെstሻdtݐ
ஶ
 ൌ ଵ

ଵାሺସగమమDvା௦ሻబ
(4.15)  

Substituting equation (4.15) in (4.13)  

ሺ1 െ ሻ
݈⁄

1  ሺ4ߨଶ݇ଶDv  ሻݏ
~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ ଵ

(4.16) 

Since the functional forms of ܲ
~
൫ሬ݇Ԧ, ൯ andܲݏ

~
൫ሬ݇Ԧ, ,Ԧݎ൯, are the same it follows that ܲሺݏ  ሻshould alsoݐ

have the same form as ܲሺݎԦ, ሻ but with the increased neutron lifetimeݐ
ሺ1 െ ሻ
݈⁄

, which is the same as 

the actual lifetime of the medium݈as given by equation (4.9). This proves the correctness of 

proposed recipe. 

 

Numerical Validation 

Numerical simulation of the recipe was carried out using a fictitious absorption cross section twice 

as large as the real absorption. Another simulation was carried out using only the real absorption 

cross section. For both the simulation pdfs [given in eq. (4.2)] derived for infinite homogeneous 

medium for Diffusion MC Method was used. A point source placed at the origin in single region 

medium with real absorption cross section ߑar ൌ0.005 cm-1 and a fictitous absorption section 

afߑ ൌ0.01 cm-1 is considered. 107 neutrons are considered for simulation. Fig. 4.2 shows a 

comparison of the time integrated neutron flux for the two cases. Maximum deviation of the 

absorption rate estimated for the case with fictitous absorption w.r.t. case with only real absorption 

is about 0.5%. Associated statistical error is about ±0.03 %.  

Fig. 4.3 gives comparison of time dependent neutron absorption rate at different times. It is seen 

that the absorption rate decreases with the distance away from the source and this rate of decrease 

becomes less effective with longer collision time. Maximum deviation of 1% is observed in 

absorption rate for time bin of 0-0.1 msec for the case with fictitous absorption w.r.t. that with only 



real absorption with statistical error of ± 0. 2 %. Thus, in all cases the two sets of results are found 

to be in good agreement confirming the correctness of the recipe for a single region.  

 

4.3.1.2 Two Region Medium with different absorption but same Diffusion  

Coefficient 

Here the probabilities derived in section 4.1.1 to the two-region medium with different absorption 

cross sections (ߑଵ,  .ଶ) in the two regions are applied, but having a uniform diffusion coefficientߑ

The two region medium assumed here is akin to regions having different enrichments or burn ups in 

different assemblies which give rise to a varying absorption cross sections but almost same 

diffusion coefficient throughout the core.  

If a neutron is produced in a region close to the interface of the regions, it may be absorbed in one 

of the two regions. Assuming the larger value of the cross-sections let say in region 1 and using 

equations (4.1) and (4.2) to evaluate probability of absorption in an infinite medium, the probability 

of absorption in either of the two regions is calculated. If this event occurs in the region 2, accept it 

with 
ఀೝభିఀೝమ
ఀೝభ

probability. In the region 1, the probability of the neutron absorption is always one. ߑଵ 

is called the fictitious absorption cross section as used in section 4.3.1.1 

Mathematical proof of the above recipe goes as follows. Let us consider two region medium with 

(x<a being region I and x>a being region II) different absorption cross-sections (ߑଵ, ଵߑଶ withߑ 

 ଶ) and a constant diffusion coefficient D.  The diffusion equation can be written asߑ

߮ߘܦ.ߘ െ ߮ߑ  ሻݐሺߜሻݎሺߜ ൌ ଵ

௩

డఝ

డ௧
(4.17) 

where 

ߑ ൌ ଵߑ  ሺߑ െ ݔሺܪሻߑ െ ܽሻand the diffusion co-effcient D is a constant, Hence forth referred to 

as D1. ܪሺݔ െ ܽሻ is the Heavyside function. By substituting the above forms for the removal cross 

section and diffusion coefficient, rewrite the diffusion equation in the form 

ଵ

௩

డఝ

డ௧
െ ଶ߮ߘଵܦ  భ߮ߑ ൌ ሻݐሺߜሻݎሺߜ െ ሺߑ െ ݔሺܪሻߑ െ ܽሻ߮            (4.18) 



consider the equation  

ଵ

௩

డఝ

డ௧
െ ଶ߮ߘଵܦ  ଵ߮ߑ ൌ ݎሺߜ െ ݐሺߜሻ′ݎ െ  ሻ(4.19)′ݐ

and denote its solution (the Green's function) by G(r,t,r`,t'). Then the solution of (4.18) can be 

written formally as 

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ  නܩሺݎ െ ݐ,'ݎ െ ሻ′ݐ ܵሺݐ,'ݎ′ሻdr′dt′ 

where the source ܵሺݐ,'ݎ′ሻ ൌ ሺߑ െ ݔሺܪሻߑ െ ܽሻ߮. Inserting this expression for the source we get 

ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ݔሺܪሻߑ െ ܽሻ߮ሿdr′dt′
߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ   ,ݎሺܩ ሻݐ   ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ሻሿdr′dt′ଶ′ݎሻ߮ሺߑ

(4.20) 

Expanding in a Von Neumann series we get, 

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ   ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ሻሿdr′dt′ଶ′ݐ,'ݎሻ߮ሺߑ

,ݎሺܩ ሻݐ  ሺߑ െ ሻߑ  ݎሺܩ െ ݐ,'ݎ െ ሻdr′dt′ଶ′ݐ,'ݎሺܩሻ′ݐ

ߑ െ ߑ ଶ   ݎሺܩ െ ݐ,'ݎ െ ′ݎሺܩሻ′ݐ െ ′ݐ,''ݎ െ ሻdr''dt''dr′dt′ଶ''ݐ,''ݎሺܩሻ''ݐ  ....ଶ


(4.21) 

Rewrite the above equation in terms of the probability of absorption instead of flux. Using the same 

notation as before write ܲሺݎԦ, ሻݐ ൌ ,Ԧݎ߮ሺߑ ሻ and ܲݐ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ ቁ′ݐ ൌ ܩଵߑ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ  ቁ Then the′ݐ

above equation becomes 

ܲሺݎ, ሻݐ ൌ ఀ

ఀ ܲሺݎ, ሻݐ 
ఀ

ఀ
ቀ1 െ ఀ

ఀ
ቁ  ܲሺݎ െ ݐ,'ݎ െ ሻ′ݐ ܲሺݐ,'ݎ′ሻdr′dt′ଶ

ାఀ

ఀ
ቀ1 െ ఀ

ఀ
ቁ
ଶ
  ܲሺݎ െ ݐ,'ݎ െ ሻ′ݐ ܲሺݎ′ െ ′ݐ,''ݎ െ ሻ''ݐ ܲሺݐ,''ݎ''ሻdr''dt''dr′dt′ଶଶ  ....

(4.22) 

The Von Neumann series on the RHS of the above equation can be interpreted as being equivalent 

to the MC recipe described above.  

 

Numerical Validation 

A Diffusion MC simulation based on the above recipe was carried out using the pdf of the infinite 

medium [as given in eq. (4.2)]. Consider a two region infinite medium with the inter region 

boundary 2 cm away from the origin at x=2, and a source placed at the origin.The total cross 

sections and diffusion coefficient in the two regions are 2.2 cm-1 and 0.1515. Absorption cross 



sections are ߑal ൌ0.005 cm-1 to the left of x=2 and ߑar ൌ0.01 cm-1 to the right of the plane x=2. 107 

neutrons are used in the simulation.  

Transport MC was also carried out for the same problem for the purpose of comparison with 

Diffusion MC. In Transport MC method each particle is tracked collision by collision through the 

problem geometry. The flight of the particle is along + X axis and a first collision point is sampled 

using the equation, λ= -1/ Σt ln(ξ) (where ξ is a random number and λ is the mean free path). 

Direction of flight of the particle is sampled using the random number. The random point is found 

by first calculating a random cosine for the polar angle over the range (0, 1) assuming forward 

scattering, after which a random azimuthal angle ߮ is selected over the range (0, 2π). Following this 

collision direction for the second flight path is obtained by selecting fresh random number. The 

length of this second flight is obtained and by equation, x=x0+ λ Ω, (λ is sampled with new random 

number for every collision) the second collision point is determined.  

Each collision is scored by testing the distance of the collision point from the source, finding the 

spatial bin (with bin width of 0.1 cm) that contains this point and incrementing a counter for that bin. 

Flux of the particle for each bin is obtained by dividing by the total cross sections. First collision of 

the particle is not tallied to remove the transient due to source. 

The neutron flux distribution obtainedby the Diffusion MC is compared with exact transport MC. 

Fig. 4.4 shows a comparison of the time integrated flux by the two methods. Flux distribution 

obtained by Diffusion MC agrees with that obtained by Transport MC within statistical error of 

±2%. Fig. 4.5 shows a comparison of the flux distributions at different times. Maximum deviation 

of 1% is observed in absorption rate for time bin of 0-0.1 msec which is within the statistical error. 

First collision was neglected in Transport MC to mitigate the effect of transients. Deviation of 1% 

shows that transients are not fully eliminated in the 0-0.1 msec interval. It was found that to 

simulate 107 particles with Transport MC, CPU time is ~6 min while for the same simulation, 

Diffusion MC takes only ~6 sec.  

 



4.3.1.3 Two Region Medium with different Diffusion Coefficient 

Consider a two region medium as before but with significantly different diffusion coefficients 

ଵܦ ് ଵߑ ଶand removal cross sectionsܦ ്  ଶߑ

In this case, the diffusion co-effcient D and the absorption cross sections  can be written in terms of 

Heavy side function as follows 

ߑ ൌ ଵߑ  ሺߑ െ ݔሺܪሻߑ െ ܽሻ 

ܦ ൌ ଵܦ  ሺܦ െ ݔሺܪሻܦ െ ܽሻ 

The diffusion equation 

߮ߘܦ.ߘ െ ߮ߑ  ሻݐሺߜሻݎሺߜ െ ଵ

௩

డఝ

డ௧
ൌ 0(4.23) 

can be written as  

ଵ

௩

డఝ

డ௧
െ ଶ߮ߘଵܦ  ଵ߮ߑ ൌ ሻ߮ߘܦሺ.ߘ െ ଶ߮ߘଵܦ  ሺߑଵ െ ሻ߮ߑ  ሻݐሺߜሻݎሺߜ

߮ߘ.ܦߘ  ሺܦ െ ଶ߮ߘଵሻܦ  ሺߑଵ െ ሻ߮ߑ  ሻݐሺߜሻݎሺߜ
(4.24) 

and the equation for the Green's Function is  

1
ݒ
ܩ߲
ݐ߲

െ ܩଶߘଵܦ  ܩଵߑ ൌ ݎሺߜ െ ݐሺߜሻ′ݎ െ  ሻ′ݐ

By the method of Green’s function, solution of the above equation is  

ݎሺܩ െ ݐ,'ݎ െ ሻ′ݐ,'ݎሺ߮ߘ.ܦߘሻሾ′ݐ  ሺܦ െ ሻ′ݐ,'ݎଶ߮ሺߘଵሻܦ  ሺߑଵ െ ′ሻሿdr′dt′ݐ,'ݎሻ߮ሺߑ

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ   ,ݎሺܩ ሻݐ  ݎሺܩ െ ݐ,'ݎ െ ሻ′ݐ,'ݎሺ߮ߘ.ܦߘሻሾ′ݐ  ሺܦଶ െ ሻ′ݐ,'ݎଶ߮ሺߘଵሻܦ  ሺߑଵ െ ′ݐ,'ݎଶሻ߮ሺߑ

(4.25) 

Since , ߮ߘܦ.ߘ ൌ ଶ߮ߘܦ   so equation (4.25) becomes ,ܩߘ.ܦߘ

ሺܦଶ െ ଵሻܦ
ሾ ݎሺܩଶߘ| െ ݐ,'ݎ െ ሻ′ݐ െ ݎሺܩߘ.ܦߘ െ ݐ,'ݎ െ ሻ′ݐ  ሺߑଵ െ ′ሻdr′dt′ݐ,'ݎଶሻሿ߮ሺߑ

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ  
(4.26)                   

By explicitly evaluating the gradD.gradG term, equation (4.25) is further simplified as 



ݎ െ ′ݎ ଶ

ሺߑଵ െ ଶሻߑ

݄݃݅ݎ

ሺమିభሻ

ఙమ

(4.27)                   

Rewrite the above equation so that the contributions of the delta function and the distributed sources 

are seen distintictly. 

ݎ െ ′ݎ ଶ

ሺߪଶ െ 3| ሻ  ሺߑଵ െ ଶሻߑ

ݎሺܩ െ ݐ,'ݎ െ ሻ′ݐ,'ݎሻ߮ሺ′ݐ

ାሺ௫ି௫ᇱሻ

ఙ
ݎሺܩ െ ݐ,'ݎ െ ′ݔሻσδሺ′ݐ െ ܽሻ߮ሺݐ,'ݎ′ሻ

݄݃݅ݎ

ሺమିభሻ

ఙమ

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ 

(4.28) 

where ߪଶ ൌ ଵ

ଶభ௩ሺ௧ି௧ᇱሻ
 

Like before rewrite the equation in terms of the probability of absorption ܲሺݎԦ, ሻݐ ൌ ,Ԧݎ߮ሺߑ  ሻ andݐ

ܲ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ ቁ′ݐ ൌ ܩଵߑ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ  ቁ, rather than the fluxes, to get′ݐ



ݎ െ ′ݎ ଶ

ሺߪଶ െ 3| ሻ  ሺߑଵ െ ଶሻߑ

ܲሺݎ െ ݐ,'ݎ െ ሻ′ݐ,'ݎሻܲ′ሺ′ݐ

ାሺమିభሻ

ఙమఀೝ

ሺ௫ି௫ᇱሻ

ఙ ܲሺݎ െ ݐ,'ݎ െ ′ݔሻσδሺ′ݐ െ ܽሻܲሺݐ,'ݎ′ሻ

݄݃݅ݎ

ሺమିభሻ

ఙమఀೝ

ܲሺݎ, ሻݐ ൌ ఀೝ
ఀೝభ

ܲሺݎ, ሻݐ 

(4.29) 

Finally the solution of the integral equation in a Neuman series is developed to obtain 



ܲሺݎ, ሻݐ ൌ ఀೝሺሻ

ఀೝభ
ܲሺݎ, ሻݐ
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where again clubbed the delta function and distributed source contributions for compactness is 

clubbed.  

Numerical modeling of the above case is more complicated, since several distributions are involved. 

Moreover some negative terms are present and also there is a delta function in one of the 

distributions. The sampling scheme would therefore have to admit negative particle weights which 

means analog MC is not possible. Assuming if this requirement is given up, let us see what kind of 

MC scheme is required.  



The first thing to do is to factorise the kernel into a "transport part" and a "collision part". The 

transport part gives the probability that the particle starting at a point r' at time t' will have its next 

significant event ("collision") at point r at time t. This must be normalised to unity. The collision 

part then gives the weight of the re-emited particle which will be then either transported or if the 

weight is below the Russian Roulette threshold may be killed or transported with an enhanced 

weight. The natural choice (but by no means the only one) for the "transport part" is the Green's 

function defined above (infinite medium kernel with the shorter lifetime (larger absorption cross 

section) and diffusion co-effcient D1). In the above discussion it is assumed that this region is to the 

left of the interface. The multiplying factors such as for example 

ݎ െ ′ݎ ଶ

ଷሺమିభሻ

ఙమఀೝభ

 are then part of the 

"collision kernel" and can be used to adjust the particle weight. As regards tallying, tally the entire 

weight if the particle "collides" on the left but on the right, tally the weight fraction
ఀೝమ
ఀೝభ

.  

Negative and positive weight particles will have to be transported separately. A point to be noted is 

that the terms arising due to different diffusion coefficients in the two regions have positive and 

negative contributions which add up to zero. On the other hand the one due to different absorption 

in the two regions causes a net positive weight to be emitted from sites in the second medium which 

is exactly equal to the difference between the weight entering the collsion and the weight absorbed 

at the collision site. Thus the difference in the diffusion coefficients causes only the weights to be 

re-distributed in space and time. 

The first "collision" point is sampled from the distribution ܲሺݎԦ,  ሻfor the variables y, z and t. Withݐ

probability

ߨ2 ଵ ଶ⁄

1  ଵ
‐1

 ൌ

 sample x using the same Gaussian ( ܲሺݎԦ,  .ሻ) and set its weight equal to 1/pݐ

With probability 1 െ  set x=a and set its weight equal to (1-p)/p. This is done to take care of the 



delta function. In the former case transportation is done according to the usual transport kernel and 

a weight 

ݎ െ ′ݎ ଶ

ሺ3ߪଶ െ 1| ሻ  ൬1 െ
ߑ
ଵߑ

൰

3ሺܦଶ െ ଵሻܦ

ଵߑଶߪ

 

is assigned. In the latter case transport the particle using the distribution ܲሺݎԦ െ ݐ,'Ԧݎ െ  ሻ with x'=a′ݐ

and assign a weight equal to 
ଷሺమିభሻ

ఙమఀೝభ

ሺ௫ିሻ

ఙ
. In either case the particle may be absorbed fully at the 

new location or it may be re transported according to the same procedure. On an average the 

weights (positive or negative) keep reducing in magnitude. As mentioned above, a Russian Roulette 

has to be played to terminate the process once the weight falls below a certain magnitude.  

 

Alternative approach for analog games 

The approach described above is not suitable for analog MC. However, it is possible to model this 

problem with transport theory type MC methods (Rana et. al, 2013). It is noted that the diffusion 

kernels are Gaussians, and that diffusion theory is the limiting situation of transport theory when the 

neutron undergoes a very large number of collisions before absorption and the mean free paths are 

short compared to other lengths. This is another statement of the Central limit theorem. In practice, 

however, a few random numbers when added together show a distribution closely resembling a 

Gaussian. So the only thing that is necessary is to preserve the parameters.  

The total distance traveled by a particle is vt(ݐis the removal time of neutron) while the average 

distance traveled in each collision is (in medium I) 3ܦଵ, the mean free path. The number of 

collisions is thus vt 3⁄  ଵ . This could be very large (let us say 100). If this is to be scaled down toܦ

let us say 4, all is needed to do is to scale up the mean free path (diffusion coefficient) in medium I 

byඥሺvt 3⁄ ଵሻܦ 4⁄ . Likewise, while traveling in medium II, scale up the mean free path in medium II 



byඥሺvt 3⁄ ଶሻܦ 4⁄ . This prescription will correctly give the (RMS) distance traveled by the neutron 

from its starting point before removal and also the (approximately) correct spatial distribution for 

the sampled value ofݐ. Finally whether the removal point is to be accepted or not is decided by the 

rejection technique described in 4.3.1.1. 

 

Numerical Validation 

Consider a two region infinite medium with a boundary at 2 cm away from the origin. The source is 

located at the origin. Medium 1 has absorption cross section of ߑଵ ൌ 0.01 cm-1 and mean free path 

of 0.04545 cm. Medium 2 has absorption cross section of ߑଶ ൌ 0.005and mean free path of 0.99 

cm. Here, Transport MC method based on Coleman’s Method or pseudo collision method (Cloeman 

W. A., 1968) is used for estimating the absorption rate in the two mediums. Accept the point with a 

probability equal to the ratio of the actual removal cross section of the region in which the selected 

point lies and the maximum removal cross section. Else the point is rejected. In the latter case 

particle is displaced to a new point in the same direction with distance equals to the mean free path 

of the particle assuming it has suffered a pseudo collision. The process is repeated till a point is 

accepted. Other details are same as described in section 4.3.1.1 

A plot of the time integrated absorption rate for the recipe suggested above is given in Fig 4.6. 107 

particles are simulated. Fitted values of absorption rate  obtained by increased mean free path 

differs by about a maximum of 8% with that of original mean free path while the associated 

statistical error is ±1 % and ±3% respectively. It is seen that near the source, deviations are larger 

due to the presence of residual transients but at distance away from the source, deviations are within 

statistical error. In Fig. 4.7 a comparison of the absorption at different time in the two media is 

shown. Maximum deviation of 10% is observed in absorption rate for time bin of 0-0.1 msec.  

 

 

 



4.4 Transport Corrections to Diffusion MC  

It was mentioned earlier that diffusion theory is not valid (a) close to localized sources (b) close to 

vacuum boundary (c) inside and close to strong absorbers (d) highly anisotropic scattering. In this 

section each of these conditions is examined one by one and will develop methods to extend the 

applications of Diffusion Theory MC to such regimes. 

The solution of the transport equation for a point source in an infinite homogeneous medium can be 

obtained by the Fourier Laplace transforms similar to that of the diffusion equation. The flux splits 

into a sum of a transient flux which dominates close to the source and an asymptotic flux which has 

a form similar to the diffusion flux and is important far away from the source. These facts are used 

in this section to show that it is possible to extend the diffusion theory MC method to situations 

where diffusion theory is not valid, viz., close to localized sources, strong absorbers, boundaries and 

anisotropic scattering. 

 

4.4.1 Transient Flux Close to a Localized Source 

Expression for the flux for a point source placed at the origin in the infinite medium is given by 

(Bell and Glasstone, 1970), 

߮ሺݎሻ ൌ ߮Asሺݎሻ  ߮transientሺݎሻ(4.31) 

where, 

߮Asሺݎሻ ൌ
ܵைߚ
Drߨ4

expሺെݎߢሻ 

߮transientሺݎሻ ൎ ሺܵ 4⁄ ଶሻexpݎߨ െ ሺߑᇱݎሻ 

With ߢ ൌ ඥߑ ⁄ܦ ߚ ,  ൌ 1 െ ߑ ⁄ᇱߑ and ߑᇱ ൌ ߑ5 4⁄  

The flux near a localized source is not well described by diffusion theory even in a diffusive 

medium i.e. one in which scattering is large compared to removal. This is due to the presence of a 

transient flux. Since it is also known that most of the transient flux is simply the un-collided flux 

while the asymptotic flux is due to neutrons that have undergone collisions. The difference between 



diffusing and non diffusing (absorbing) media is simply the relative contribution of the transient and 

asymptotic components. 

A recipe for transport correction to Diffusion MC is proposed using the approximations available 

for the transient flux given in equation (4.31). Sample the absorption event using the expression for 

the transient flux with a probability proportional to the transient component while rest of the times it 

will be sampled using the asymptotic flux expression. A more accurate expression for the transient 

flux is available (A. M. Weinberg, 1958) but sampling the relevant distribution is not easy.  

 

Numerical Validation 

Numerical Simulations were carried out using the usual transport MC method as described in 

section 4.4.1. Transport Corrected Diffusion MC simulation was carried out using equation (4.31). 

Total cross section of the medium is 2.2 cm-1, while the absorption and scattering cross sections are 

0.01 cm-1 and 2.19 cm-1 respectively. Fig. 4.8 shows the time averaged neutron flux due to a source 

in a mildly absorbing medium with a point source located at the origin, obtained by the above 

method. Also the flux distribution by infinite diffusion kernel is plotted. The latter represents the 

asymptotic flux which obeys the diffusion equation. The relaxation length estimated by fitting the 

asymptotic flux agrees well with the theoretical value. It can be seen from the plot that Diffusion 

MC flux near the source is lower than the Transport MC flux since diffusion theory fails in this 

region, but the transport corrected Diffusion MC flux estimates same flux as obtained by transport 

theory. Flux estimated by Transport corrected Diffusion MC differs from that estimated by 

Transport MC by about a maximum of 2%. The corresponding time dependent fluxes at different 

times are compared in Fig. 4.9. It is seen that the flux decreases with the distance away from the 

source and this rate of decrease becomes less effective with longer collision time. Maximum 

deviation of 3% is observed in absorption rate for time bin of 0-0.1 msec.  

 

4.4.2 Transport in a strongly absorbing medium 



This case is related to the one discussed in the previous section. In a weakly absorbing medium, a 

neutron undergoes a large number of collisions before absorption and therefore the asymptotic flux 

is the dominant term except very close to the source. In case of a strong absorber there are few 

collisions before absorption and hence the transient flux is dominant near the source but there are 

not many collisions and hence the asymptotic component is small.  

 

Numerical Validation 

The results of calculations by the transport MC and transport corrected diffusion MC are shown in 

Fig. 4.10. The total cross Section of the medium is 2.2 cm-1, the absorption cross section is 1.2 cm-1 

and the scattering cross section is 1.0 cm-1. It can be seen near the source, there is large difference 

of 40% in the asymptotic flux and the flux estimated by the Transport MC .With transport 

correction applied to the asymptotic flux, this difference is considerably reduced to 10%. The 

agreement is quite good showing that the recipe is valid even for strongly absorbing media. The 

only difference is that savings in computer time are small as the neutron history is anyway not too 

long. On the other hand the savings in case of a weak absorber are much larger. 

 
4.4.3 Transients Close to a Vacuum Boundary 

Transients close to a vacuum boundary are due the negative source of the neutrons directed 

outwards.  

 

Numerical Validation 

Fig. 4.11 shows the flux distribution due to a source in a finite isotropic medium with boundary at 

4.5 cm from the point source placed at the origin. Transport flux is obtained using a MC algorithm 

using the last event absorption estimator described in section 4.4.2. In case the particle leaks out, the 

event is stopped and goes for the next neutron history. It is seen from Fig. 4.11 that asymptotic flux 

obtained by Diffusion MC Method compares well with the analytical expression for the flux 

distribution for symmetric boundary given below.  



(4.32) 

where, L, D , S and X are the neutron diffusion length, diffusion coefficient, source strength and 

extrapolation distance respectively. 

It is also seen that the flux estimated by transport and diffusion MC are nearly the same at the 

boundary which implies that the transient flux near the boundary is small  compared to that near the 

source. This is probably due to the fact that by Placzek's Lemma, the transients at a boundary are 

caused by a negative source of neutrons directed outwards, which produces smaller transients inside 

the region of interest. Flux estimated by Diffusion MC differs from that estimated by Transport MC 

by about a maximum of 0.5%. 

 

4.4.4 Transport Effects with Anisotropic Scattering 

In all the examples given above, it is assumed that the scattering is isotropic in the laboratory 

system. The general case involving anisotropic scattering requires a transformation of coordinate 

system from the one in which the scattering law is given, to the fixed coordinate system in which 

the particle is tracked (Stephen Dupree et. al., 2001; MCNP Guide 1987; Paul et. al., 2013).  While 

the transformation is elementary, but for clarity and better understanding a detailed derivation of the 

transformation and a description of the algorithm is presented in Appendix A. 

 

Numerical Validation 

Using the above algorithm calculations for a hydrogenous medium in which the scattering is 

strongly anisotropic in the laboratory system is carried out. Fig. 4.12 gives the flux distribution 

obtained using transport MC and the transport corrected diffusion MC for a mildly absorbing 

medium. Transport cross section was used for estimating the diffusion coefficient to account for 

anisotropic scattering. Flux estimated by Transport corrected Diffusion MC differs from that 

estimated by Transport MC within statistical error. The good agreement shows that the above recipe 

is valid in a medium with anisotropic scattering. 
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4.5 Conclusions 

Analytical Green’s function based Diffusion MC methods have been applied earlier for by Rana et. 

al. for simulation of reactor noise experiments in experimental reactors for measuring the degree of 

sub-criticality in accelerator driven systems. Although this approach has several advantages such as 

speed, elegance and exactitude, but it was applicable to a rather restricted class of problems, such as 

the bare rectangular parallel piped homogeneous reactor. Here, the analytical Greens function based 

Diffusion MC methods is developed further, to demonstrate its utility in a wider class of problems 

such as in finite homogeneous and heterogeneous media. Mathematical and numerical proofs of the 

recipes proposed for applying diffusion kernel of infinite homogeneous medium to heterogeneous 

medium with same or different diffusion coefficient developed. 

For a heterogeneous medium consisting of two regions having different diffusion coefficients, the 

mathematical proof goes through but the resulting sampling functions are more complicated and 

hence the method may be difficult particularly for analog MC but would be usable with non analog 

MC. However, a different recipe suggested for this situation in Rana et. al., 2013 which is more 

appropriate for analog MC has been demonstrated to work successfully. It has been also shown that  

by a transport correction based on incorporating the transient flux kernel in addition to the diffusion 

kernel, the method can be applied to the situations where diffusion theory is otherwise inapplicable.  

Computational time for Diffusion MC is about 10 times less than that by Transport MC. In addition 

to its use as a fast analog method for simulating noise by MC, the present work could find 

application in devising mesh less methods in time dependent diffusion theory, particularly in 

situations involving moving media where meshes tend to get distorted. Another application could be 

to study various aspects of MC such as variance reduction techniques, and speeding up convergence 

to the fundamental mode of criticality calculations. In this context, it may be mentioned that besides 



the advantage of speed, the diffusion MC has the advantage that analytical results are available in 

diffusion theory for the purpose of making comparisons. 

 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 Diagrammatic representation of the source and image point locations and the 

coordinates used in the estimation of the reduction in extrapolation distance for a bare 

homogeneous cylindrical reactor by method of images 

 
 
 

 
 
 
 
 
 
 
 
 



 
 

Fig. 4.2 Variation of the time integrated neutron absorption rate with distance from a point 

source placed at the origin in single region medium. The blue dots  indicate the absorption 

rate obtained using the real absorption cross section ߑar ൌ0.005 cm-1 while the red cross  

indicate the absorption rate calculated with a fictitious absorption ߑaf ൌ0.01 cm-1 followed by 

a rejection with a 50% probability. 
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Fig. 4.3 Variation of the time dependent neutron absorption rate with distance from a point 

source placed at the origin in single region medium. The various markers indicate the 

absorption rate obtained using the real absorption cross section ߑar ൌ0.005 cm-1 while the solid 

lines indicate the absorption rate calculated with a fictitous absorption ߑaf ൌ0.01 cm-1 followed 

by a rejection with a 50% probability. 

  

0 1 2 3 4 5
Distance from the point source (cm)

0E+0

1E+5

2E+5

3E+5

4E+5

A
b

so
rp

ti
o

n
 R

at
e

0-0.1  msec

0.1-0.2 msec

0.2-0.3 msec

0.3-0.4 msec



 

 
 

Fig. 4.4 Variation of the time integrated neutron flux with distance from a point source placed 

at the origin in a two region medium with same diffusion coefficients but different absorption 

cross sections viz. ߑar ൌ0.005 cm-1  to the left of x=2 and ߑar ൌ0.01 cm-1  to the right of the 

plane x=2. The red crosses indicate the exact results by Transport MC while the blue stands 

for diffusion MC. 
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Fig. 4.5 Variation of the time dependent neutron flux with distance from a point source placed 

at the origin in a two region medium with same diffusion coefficients but different absorption 

cross sections viz. ߑal ൌ0.005 cm-1  to the left of x=2 and ߑar ൌ0.01 cm-1  to the right of the 

plane x=2. The various markers indicate the flux obtained using the Diffusion MCwhile the 

corresponding black markers indicate the flux calculated with Transport MC using the 

rejection technique. 
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Fig.4.6 Variation of time averaged neutron absorption rate with distance from the point 

source placed at the origin in two region medium with boundary at x=2. ߑଵ ൌ 0.01 cm-1 and 

D1=0.1515 to the left of the boundary while ߑଶ ൌ 0.005 cm-1 and D2=0.33 to the right. The 

figure shows a comparison of the absorption rate obtained with actual mean free path (mfp) 

and that with 4 times higher mfp. Solid curve corresponds to analytically computed neutron 

absorption rate. 
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Fig. 4.7 Variation of time dependent neutron absorption rate with distance from the point 

source placed at the origin in two region medium with boundary at x=2. ߑଵ ൌ 0.01 cm-1 and 

D1=0.1515 to the left of the boundary while ߑଶ ൌ 0.005 cm-1 and D2=0.33 to the right. The 

figure shows a comparison of the absorption rate obtained with actual mean free path (mfp) 

and that with 4 times higher mfp. 
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Fig. 4.8 Variation of the time averaged neutron flux with distance from a point source located 

at the origin in a mildly absorbing medium. The figure compares the results using transport 

MC and transport corrected diffusion MC.  
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Fig. 4.9 Variation of the time dependent neutron flux with distance from a point source 

located at the origin in a mildly absorbing medium. The figure compares the results using 

transport MC and transport corrected diffusion MC. 
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Fig. 4.10 Variation of the time averaged neutron  flux with distance from a point source 

located at the origin in a strongly absorbing medium. The figure compares the results using 

transport MC and transport corrected diffusion MC.  
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Fig. 4.11 Variation of the neutron flux (time averaged) with distance from the point source in 

a semi infinite homogeneous medium. The point source is placed at the origin and the 

medium-vacuum boundary is located at x=4.5 cm from the source. The figure shows a 

comparison of results based on transport and  diffusion MC and the analytical fit.  
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Fig. 4.12 Neutron Flux due to a source in an infinite homogeneous medium with mild 

absorption and anisotropic scattering - comparison of results obtained using transport MC 

and transport corrected diffusion MC.  
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Table 4.1 Reduction in extrapolation distance dex as function of radius of the cylinder 

(Diffusion Length, L= 6 cm) 

 
Radius R 

(cm) 
dex required 

to give 
correct keff 

using a single 
image 

dex =L2/R as 
given by eq. 

(4) 

dex ,as given 
by eq. (6) 

with a=1.2 

dex, as given 
by eq. (5) 

30 0.94 1.20 0.92 0.91 
40 0.88 0.90 0.75 0.73 
50 0.64 0.72 0.63 0.61 
60 0.52 0.60 0.55 0.53 

 



CHAPTER 4 

 
Diffusion Theory Monte Carlo: Model Description and Extension 

 
In the previous Chapter the application of some of the ideas regarding Monte Carlo Kinetics to the 

simplest model viz. the point kinetics model is discussed. In this chapter another model for studying 

Monte Carlo space time kinetics viz. the Diffusion theory Monte Carlo Model is introduced. 

Monte Carlo Methods for solving problems in Diffusion Theory have been studied by Booth, 1981; 

Sadiku, 2006. Rana and Degweker, 2013 developed the analytical Green’s function approach as 

well as the finite difference based numerical approach for diffusion theory Monte Carlo. The 

present chapter is based on and is an an extension of their work..  

For full Space-Time Space Time Monte Carlo Simulations, both spatial as well as temporal 

variation of the neutron and precursor concentrations has to be modeled. The model discussed in 

this chapter allows to apply the schemes for modeling the spatial variation of neutrons and 

precursors. Besides providing a simple model for testing these ideas regarding Monte Carlo space 

time Kinetics, the diffusion theory MC model permits an exact comparison of the results of MC 

simulation with the large number of kinetics benchmarks that have been solved using deterministic 

diffusion theory methods. This is particularly important since there are very few ‘exact’ benchmarks 

that are based on transport theory MC 

There is another reason for interest in the study of this model. MC calculations are mostly 

performed by the non analog technique for the purpose of computational efficiency. However, for 

simulation of noise experiments for measurement of reactor kinetics parameters such as reactivity, 

the analog MC is more appropriate. There has been a lot of theoretical and experimental interest 

(Pazsit et. al., 2005; Degweker et. al., 2003; Munoz Cobo et. al. 2001) in recent times in the noise 

methods for sub criticality measurement of accelerator driven systems. This also includes noise 

simulation using standard MC codes after removing all non analog features (Yamamoto et. al., 

2011). While there have been suggestions (Szeiberth et. al., 2010)- that non analog methods can be 



used for this purpose, they will have limitations such as being applicable for the specific stochastic 

descriptor for which the tallies have been corrected and would certainly not be suitable for 

estimating errors due to statistics or dead time effects. Since analog MC is highly computational 

time consuming, the concept of the diffusion theory based analog MC technique to reduce the 

computing time was proposed by Rana and Degweker, 2013.This is based on the observation that in 

a variety of situations, diffusion theory, an approximate form of transport theory is very successful 

in giving quick results which may be fairly close to transport theory. It was shown that the methods 

of Diffusion MC developed are quite successful in simulating noise experiments.  

Two approaches - viz., the analytical Green’s function method and the finite difference method - 

were developed by Rana and Degweker, 2013. In analytical Green’s function method they use 

analytical solutions of diffusion equation to construct probability distribution function for neutron 

absorption in a medium. The analytical Greens function approach has several advantages such as 

speed and exactitude, but was applicable to a rather restricted class of problems, such as the bare 

homogeneous reactor. A number of developments in this approach have been carried out and these 

form the subject of the present chapter. 

With the developments discussed in this chapter the Analytical Greens Function MC becomes a 

useful tool of stochastic space time kinetics primarily for simulating noise experiments. On the 

other hand the finite difference diffusion MC is useful for exact comparison with diffusion theory 

benchmarks and forms the subject for the next chapter.  

It was mentioned in earlier works (Rana and Degweker, 2013) that analytical Greens function 

method can be used for (a) infinite homogeneous medium and (b) bare homogeneous reactor of the 

rectangular geometry. Some recipes were proposed (without proof) for treating other situations like 

cylindrical geometry and non homogenous media. 

The analytical Greens function (AGF) approach is further developed, to demonstrate its utility in a 

wider class of problems including homogeneous cylinders and heterogeneous reactors. In this 

Chapter, mathematical and numerical proofs of the validity of these recipes which were proposed 



for such systems is provided. Other limitations of Diffusion MC Methods and means to overcome 

these are also discussed. It is well known that diffusion theory is not valid (a) close to localized 

sources (b) close to vacuum boundary (c) inside and close to strong absorbers (d) highly anisotropic 

scattering. In all such cases, the flux gradients are very sharp and the angular distribution of the flux 

is highly anisotropic causing the diffusion approximation to break down. Corrections to diffusion 

MC methods to overcome these limitations is applied. 

With these developments, the Analytical Greens Function MC becomes a useful tool of stochastic 

space time kinetics primarily for simulating noise experiments. On the other hand, the finite 

difference diffusion MC is useful for exact comparison with diffusion theory benchmarks and forms 

the subject for the next chapter. 

 
4.1 Earlier Work 
 
4.1.1 Probability Distribution Function for Infinite Homogenous Medium 
 
The probability distribution function (pdf) for simulating infinite homogeneous medium with 

Diffusion MC was derived by solving the one group time dependent diffusion equation using 

Fourier and Laplace transforms (Rana et. al., 2013).  

It was shown (Rana et. al., 2013) that for a single source neutron initially (at t=0) located at the 

origin in an infinite homogeneous medium, the flux is given by 

Dvtߨ4 ଷ ଶ⁄

߮ሺݎԦ, ሻݐ ൌ ௩

(4.1) 

where v is the velocity of the neutron and  D is the diffusion coefficient. The neutron life-time in an 

infinite medium is given by l=1/vƩr. The probability that a neutron will be removed in the small 

space time interval  is obtained by multiplying the flux with the macroscopic removal 

cross section Ʃr to give 



Dvtߨ4 ଷ ଶ⁄

ܲሺݔ, ,ݕ ,ݖ ሻݐ ൌ ଵ


expሺെ ݐ ݈⁄ ሻ ଵ

(4.2) 

The marginal distribution for the removal time is obtained by integrating equation (4.2) over the 

space variables and  is obtained. The conditional distribution for the space variables 

for a given value of time is obtained by dividing equation (4.2) by the marginal distribution. The 

conditional distribution is given by 

Dvtߨ4 ଷ ଶ⁄

ଵ

(4.3) 

The conditional distribution can be written as a product of the three Gaussians for the three 

coordinates, each having zero mean and  as variance.  Therefore the position and time of 

absorption of a neutron in an infinite medium with Diffusion MC using pdf given in equation (4.2) 

with the following scheme can be sampled. First the time as an exponential distribution (with mean 

as ) is sampled. Then the position coordinates as three independent Gaussians, each with zero mean 

and  as the variance (for the sampled value of time) is sampled. In what follows, variants of 

the above sampling scheme for finite and multi-region medium (with same or different diffusion 

coefficients and absorption cross-sections) is employed.  

 
4.1.2 Bare Homogenous Reactor: Method of Images 
 
For a point source in an infinite medium, pdf described in the previous section can be used. To use 

these pdfs for bare homogeneous reactor of rectangular and cylindrical geometry, the method of 

images was developed (Rana et. al., 2013) to reproduce zero flux boundary condition.  

 

Rectangular Parallelepiped 

Rana et. al. (2013) also showed that the zero flux boundary condition for a bare homogeneous 

reactor can be simulated by locating suitably placed image sources outside the reactor, for one, two 



and three dimensional rectangular geometries. Unlike the case of electrostatics where an infinite 

number of images are required, one, three or seven images (depending upon whether the source is 

near a face, edge or corner) placed outside the reactor volume suffice to reproduce the zero flux 

boundary condition (Jackson, 1958). This makes the problem fairly tractable. 

 

4.2 Further development & Extension of the method of images 

4.2.1 Right Circular Cylinder 

It is difficult to reproduce the zero flux boundary condition on the curved surface exactly using the 

method of images. Since the problem is not exactly solvable in terms of simple function, a 

simplifying argument is used. The crux of this argument is that the use of the image point at an 

equal distance is equivalent to using the tangent plane as the boundary. Hence, the material between 

the tangent plane and the curved cylindrical surface can scatter neutrons back into the cylinder (i.e. 

act as a reflector) and this is incorrect. To correct this we try to estimate this effect in the form of 

the reflector savings of this material and subtract this from the extrapolation distance (that is used 

for a vacuum boundary). Since the reflector material in this situation has a thickness that varies 

from point to point along the curved surface, (being larger for points away from the line joining the 

source and the image and smaller otherwise), it is not immediately clear what thickness (and 

corresponding reflector saving value) should be used. We proceed as follows. We obtain the 

reflector thickness from the geometry of the situation in the plane P’ and use it to estimate the 

reflector saving. We use the expression for the flux in this plane due to a point source(in an infinite 

medium) as a weighting function to find the average reflector saving. 

We place an image source in a transverse plane containing the source along the diameter joining the 

centre (axis) and the source point and at an equal distance outside the cylinder as shown in Fig. 4.1 

and applying a small correction to the extrapolation distance. In what follows, an analytical 

expression for this correction is obtained. 



The image causes the flux to be zero at the tangent plane rather than at the circular boundary. A 

reflector causes the flux to go to zero at a distance beyond the usual extrapolated boundary. To 

compensate for this the usual extrapolated length (0.71 λtr) by an amount which will give the correct 

buckling or Keff is reduced. This was done numerically in works of Rana et.  al, 2013. In this section 

an approximate analytical formula for this reduction in extrapolation distance is attempted. 

Since the problem is not exactly solvable in terms of simple function, a simplifying argument is 

used. The crux of this argument is that the reflector thickness varies from point to point along the 

curved surface, being larger for points away from the line joining the source and the image and 

smaller otherwise. If it is assumed that the radius is large compared to a diffusion length, the extra 

reflector thickness can be shown to be small. This effect can be compensated by reducing the 

extrapolation distance by a suitable amount obtained, in a heuristic manner, below. 

As shown in Fig. 4.1, an image source is placed in a transverse plane containing the source along 

the diameter joining the center axis and the source point and at an equal distance outside the 

cylinder represented by axial plane P. A vertical plane P' parallel to the axial plane P (which 

contains the source point) is drawn and at a distance  away from it. The total flux at the plane P' 

due to the source is easily calculated to be  

(4.4) 
where L is the diffusion length. It is not merely a coincidence that this turns out to be the same as 

the flux due to a plane source. In fact this would be expected on the basis of the reciprocity as well. 

The flux at any point Q on P' is same as the flux at the source point due to source at Q. Integrating 

over all points in the plane P', the flux due to source in plane P' at the original source point is 

obtained. 

Neutrons in this plane see an extra reflector thickness (between the tangent plane T and the circle) 

given by . The approximation is justified since neutrons travel a distance 



typically to a distance of a few diffusion lengths and since R is assumed to be small compared to L, 

it is clear that x is also small compared to R. For a thin reflector, this extra thickness can be treated 

as the added extrapolation distance (reflector saving) for neutrons at the plane P'. Using the number 

of neutrons (removed) absorbed at the plane P' as a weighting function, the average value of the 

additional extrapolation due to the extra reflector is calculated as  

݀ex ൌ 
௫మ

ଶRL
expሺെݔ ⁄ܮ ሻdx ൌ మ

ோ
(4.5)  

For systems with smaller radii, the assumption of a thin reflector is not correct and the expression 

 for the extrapolation distance (Glasstone and Edlund, 1953) must be used. With this, 

݀ex ൌ  tanh
ஶ
 ቀ ௫

మ

ଶRL
ቁ expሺെݔ ⁄ܮ ሻdx                      (4.6)  

The integration is not easy and so it is substituted with approximationtanhሺݔሻ ൌ 1 െ expሺെaxሻ. 

The following result is obtained as  

(4.7)  
 

In Table 4.1 a comparison is shown for dexobtained using the expressions in Eq. (4.5), (4.7) and by 

exact numerical integration of (4.6) with the value required to get the correct keff with diffusion MC 

based on infinite medium kernel and a single image. It is seen that with, a=1.2practically 

indistinguishable result is obtained from the MC calculation down to radii about 5 times the 

diffusion length. Exact numerical evaluation of the integral gives similar results. Even the simple 

formula in equation (4.5) is in error by about 2 mm in a reactor of radius 30 cm. The corresponding 

error in the estimated geometrical buckling amounts to less than 2%. 

This shows that, for cylindrical geometries, the approximate boundary condition described in this 

section can be used together with a reduction in the extrapolation distance by an amount . The 

latter is small enough (few mm up to about 1 cm) to be treated as a correction and may be obtained 

using the simple expressions derived above.  



 
4.3 Extension of AGF Method to Heterogeneous Media 

It might appear that the diffusion theory kernel derived for an infinite homogeneous medium could 

be extended to situations involving interfaces between two media through the use of the familiar 

interface conditions of continuity of flux and current. While the general three dimensional problems 

are clearly unsolvable, even the time dependent problem involving a single planar interface between 

two media presents insurmountable difficulties. It was suggested (Rana et. al., 2013)that the 

probabilities derived for the infinite homogeneous medium can be applied not only to bare 

homogeneous reactors but also to multi-region reactors including reflected reactors. A number of 

recipes were described earlier without any mathematical or numerical proof. One by one these 

recipes are examined and the necessary mathematical and numerical justification is provided in this 

section. 

 

4.3.1 Heterogeneous media with uniform diffusion coefficient 

Two different cases of heterogeneous media with uniform diffusion coefficient is considered. First 

case is a single region medium with actual absorption cross section and a fictitious absorption cross 

section. In the second case, two regions medium with different absorption cross sections but with 

same diffusion coefficient is considered. In the following section the recipes to simulate these cases 

with Diffusion MC Methods and provide mathematical and numerical proofs for the recipes is 

described. 

 

4.3.1.1 Single Region Medium with Fictitious Absorption  

Consider a single region with actual absorption cross section. Introduce a fictitious absorption in the 

medium, fictitious absorption being larger than the actual one. The time of removal neutron using 

the usual probability distribution function of the infinite homogeneous medium [as given eq. (4.2)] 

is sampled but with a ‘fictitious’ removal cross section (lifetime) which is the highest (shortest) 

among the two. Then the position using the Gaussian corresponding to this time is sampled and 



accept the point with a probability equal to the ratio of the actual absorption cross section of the 

region in which the selected point lies and the maximum absorption cross section. Else the point is 

rejected. In the latter case another point is selected starting from the rejected point. The process is 

repeated till a point is accepted.  

Mathematical proof of the recipe goes as follows. The demonstration given below shows that if 

there is a single medium having some absorption cross section and sampling from infinite medium 

kernels is chosen but with a fictitious absorption cross section which is larger than the actual 

absorption cross section, the above recipe gives the same results as that with the actual cross 

section.  

Start with a neutron at the origin at time t=0. Let ܲሺݎԦ,  ሻ be the probability of real absorption atݐ

point ݎԦ and time t. Then ܲሺݎԦ,  ሻ in terms of infinite medium diffusion kernel as given by (4.2), isݐ

given by  

Dvtߨ4 ଵ ଶ⁄

݈
ܲሺݎԦ, ሻݐ ൌ ଵ

(4.8) 

Where, 

D- Diffusion coefficient of the medium 

݈- Neutron lifetime 

t- Time of absorption 

Consider a fictitious absorption in the medium. Let ߑarbe the absorption cross section of the 

medium, called the real absorption cross section, such that݈ ൌ 1 ⁄arߑݒ . Letߑaf (>ߑar) denote a 

fictitious absorption cross section and define a corresponding fictitious neutron lifetime݈ ൌ

1 ⁄afߑݒ .Then, the probability (p) of non absorption event following (or after) one fictitious 

absorption and the probability (1-p) of real absorption event following one fictitious absorption, are 

given by  



1 െ  ൌ ఀar
ఀaf
ൌ బ



 ൌ 1 െ ఀar
ఀaf
ൌ 1 െ బ



(4.9) 

If ܲሺݎԦ,  Ԧ and timeݎ ሻ, is written for the probability corresponding to the fictitious absorption at pointݐ

t, i.e.  

Dvtߨ4 ଵ ଶ⁄

݈

ܲሺݎԦ, ሻݐ ൌ
ଵ

   (4.10) 

Then as per the above recipe, the actual probability ܲሺݎԦ,  Ԧ and at time tݎ ሻ for absorption at pointݐ

can be expressed as, 

ܲሺݎԦ,tሻ ൌ ൫1‐p൯ ܲሺݎԦ,tሻ  pP ሺݎԦ, ሻሺ1ݐ െ ሻ ܲሺݎԦ െ ,ଵሬሬሬԦݎ ݐ െ ଵሬሬሬԦdtݎଵሻ݀ݐ  ሺ1 െ ଶሻ ܲሺݎଵሬሬሬԦ, ଵሻݐ ܲሺݎଶሬሬሬԦ െ ,ଵሬሬሬԦݎ ଶݐ െ ଵሻݐ

(4.11) 

Where, the 1st term indicates that in the first collision itself, the neutron undergoes a real absorption, 

2nd term indicates that neutron suffers in the first collision a fictitious absorption at r-r1 and time t-t1 

and real absorption at r and time t in the 2nd collision. 3rd term is for the real absorption after 3 

collisions and so on. It can be seen that each of the terms is a convolution. Hence if a Fourier 

transform of the equation (4.11) is performed in the position variables ‘ݎԦ’ and a Laplace Transform 

in time ‘t’ then, 

~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ ~ܲ൫ሬ݇Ԧ, ൯ሺ1ݏ െ ሻ  ,൫ሬ݇Ԧܲ~ ൯ሺ1ݏ െ ,ሻ~ܲ൫ሬ݇Ԧ ൯ݏ  ,൫ሬ݇Ԧܲ~ ൯ሺ1ݏ െ ,ሻ~ܲ൫ሬ݇Ԧ ,൫ሬ݇Ԧܲ~൯ݏ ൯ݏ 

...(4.12) 

Equation (4.12) is an infinite geometric series. The sum of the series is easily written as  

~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ
ሺଵିሻ~బ൫ሬԦ,௦൯

ଵି~బ൫ሬԦ ,௦൯
 (4.13) 

The expression (4.13) is the (transformed) probability for real absorption as per the recipe. To 

proceed further, take the Fourier-Laplace transform of the expression for the probability of fictitious 

absorption viz. that of equation (4.10) and then  

 ܲሺݎԦ, ԦݎԦ൯݀ݎ.ሬ݇Ԧߨሻexp൫െ݅2ݐ
ାஶ
ିஶ 	ൌ ଵ

బ
exp ቀെ ௧

బ
ቁ exp ൬െ

గమమሬሬሬሬሬԦ


൰(4.14) 



Laplace Transformation of equation (4.14) over the time variable gives 

ܲ
~

൫ሬ݇Ԧ, 		൯ൌݏ  ܲ൫ሬ݇Ԧ, ൯expሺെstሻdtݐ
ஶ
 ൌ ଵ

ଵାሺସగమమDvା௦ሻబ
(4.15)  

Substituting equation (4.15) in (4.13)  

ሺ1 െ ሻ
݈⁄

1  ሺ4ߨଶ݇ଶDv  ሻݏ
~ܲ൫ሬ݇Ԧ, ൯ݏ ൌ ଵ

(4.16) 

Since the functional forms of ܲ
~
൫ሬ݇Ԧ, ൯ andܲݏ

~
൫ሬ݇Ԧ, ,Ԧݎ൯, are the same it follows that ܲሺݏ  ሻshould alsoݐ

have the same form as ܲሺݎԦ, ሻ but with the increased neutron lifetimeݐ
ሺ1 െ ሻ
݈⁄

, which is the same as 

the actual lifetime of the medium݈as given by equation (4.9). This proves the correctness of 

proposed recipe. 

 

Numerical Validation 

Numerical simulation of the recipe was carried out using a fictitious absorption cross section twice 

as large as the real absorption. Another simulation was carried out using only the real absorption 

cross section. For both the simulation pdfs [given in eq. (4.2)] derived for infinite homogeneous 

medium for Diffusion MC Method was used. A point source placed at the origin in single region 

medium with real absorption cross section ߑar ൌ0.005 cm-1 and a fictitous absorption section 

afߑ ൌ0.01 cm-1 is considered. 107 neutrons are considered for simulation. Fig. 4.2 shows a 

comparison of the time integrated neutron flux for the two cases. Maximum deviation of the 

absorption rate estimated for the case with fictitous absorption w.r.t. case with only real absorption 

is about 0.5%. Associated statistical error is about ±0.03 %.  

Fig. 4.3 gives comparison of time dependent neutron absorption rate at different times. It is seen 

that the absorption rate decreases with the distance away from the source and this rate of decrease 

becomes less effective with longer collision time. Maximum deviation of 1% is observed in 

absorption rate for time bin of 0-0.1 msec for the case with fictitous absorption w.r.t. that with only 



real absorption with statistical error of ± 0. 2 %. Thus, in all cases the two sets of results are found 

to be in good agreement confirming the correctness of the recipe for a single region.  

 

4.3.1.2 Two Region Medium with different absorption but same Diffusion  

Coefficient 

Here the probabilities derived in section 4.1.1 to the two-region medium with different absorption 

cross sections (ߑଵ,  .ଶ) in the two regions are applied, but having a uniform diffusion coefficientߑ

The two region medium assumed here is akin to regions having different enrichments or burn ups in 

different assemblies which give rise to a varying absorption cross sections but almost same 

diffusion coefficient throughout the core.  

If a neutron is produced in a region close to the interface of the regions, it may be absorbed in one 

of the two regions. Assuming the larger value of the cross-sections let say in region 1 and using 

equations (4.1) and (4.2) to evaluate probability of absorption in an infinite medium, the probability 

of absorption in either of the two regions is calculated. If this event occurs in the region 2, accept it 

with 
ఀೝభିఀೝమ
ఀೝభ

probability. In the region 1, the probability of the neutron absorption is always one. ߑଵ 

is called the fictitious absorption cross section as used in section 4.3.1.1 

Mathematical proof of the above recipe goes as follows. Let us consider two region medium with 

(x<a being region I and x>a being region II) different absorption cross-sections (ߑଵ, ଵߑଶ withߑ 

 ଶ) and a constant diffusion coefficient D.  The diffusion equation can be written asߑ

߮ߘܦ.ߘ െ ߮ߑ  ሻݐሺߜሻݎሺߜ ൌ ଵ

௩

డఝ

డ௧
(4.17) 

where 

ߑ ൌ ଵߑ  ሺߑ െ ݔሺܪሻߑ െ ܽሻand the diffusion co-effcient D is a constant, Hence forth referred to 

as D1. ܪሺݔ െ ܽሻ is the Heavyside function. By substituting the above forms for the removal cross 

section and diffusion coefficient, rewrite the diffusion equation in the form 

ଵ

௩

డఝ

డ௧
െ ଶ߮ߘଵܦ  భ߮ߑ ൌ ሻݐሺߜሻݎሺߜ െ ሺߑ െ ݔሺܪሻߑ െ ܽሻ߮            (4.18) 



consider the equation  

ଵ

௩

డఝ

డ௧
െ ଶ߮ߘଵܦ  ଵ߮ߑ ൌ ݎሺߜ െ ݐሺߜሻ′ݎ െ  ሻ(4.19)′ݐ

and denote its solution (the Green's function) by G(r,t,r`,t'). Then the solution of (4.18) can be 

written formally as 

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ  නܩሺݎ െ ݐ,'ݎ െ ሻ′ݐ ܵሺݐ,'ݎ′ሻdr′dt′ 

where the source ܵሺݐ,'ݎ′ሻ ൌ ሺߑ െ ݔሺܪሻߑ െ ܽሻ߮. Inserting this expression for the source we get 

ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ݔሺܪሻߑ െ ܽሻ߮ሿdr′dt′
߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ   ,ݎሺܩ ሻݐ   ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ሻሿdr′dt′ଶ′ݎሻ߮ሺߑ

(4.20) 

Expanding in a Von Neumann series we get, 

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ   ݎሺܩ െ ݐ,'ݎ െ ߑሻሾሺ′ݐ െ ሻሿdr′dt′ଶ′ݐ,'ݎሻ߮ሺߑ

,ݎሺܩ ሻݐ  ሺߑ െ ሻߑ  ݎሺܩ െ ݐ,'ݎ െ ሻdr′dt′ଶ′ݐ,'ݎሺܩሻ′ݐ

ߑ െ ߑ ଶ   ݎሺܩ െ ݐ,'ݎ െ ′ݎሺܩሻ′ݐ െ ′ݐ,''ݎ െ ሻdr''dt''dr′dt′ଶ''ݐ,''ݎሺܩሻ''ݐ  ....ଶ


(4.21) 

Rewrite the above equation in terms of the probability of absorption instead of flux. Using the same 

notation as before write ܲሺݎԦ, ሻݐ ൌ ,Ԧݎ߮ሺߑ ሻ and ܲݐ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ ቁ′ݐ ൌ ܩଵߑ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ  ቁ Then the′ݐ

above equation becomes 

ܲሺݎ, ሻݐ ൌ ఀ

ఀ ܲሺݎ, ሻݐ 
ఀ

ఀ
ቀ1 െ ఀ

ఀ
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ఀ
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ఀ
ቁ
ଶ
  ܲሺݎ െ ݐ,'ݎ െ ሻ′ݐ ܲሺݎ′ െ ′ݐ,''ݎ െ ሻ''ݐ ܲሺݐ,''ݎ''ሻdr''dt''dr′dt′ଶଶ  ....

(4.22) 

The Von Neumann series on the RHS of the above equation can be interpreted as being equivalent 

to the MC recipe described above.  

 

Numerical Validation 

A Diffusion MC simulation based on the above recipe was carried out using the pdf of the infinite 

medium [as given in eq. (4.2)]. Consider a two region infinite medium with the inter region 

boundary 2 cm away from the origin at x=2, and a source placed at the origin.The total cross 

sections and diffusion coefficient in the two regions are 2.2 cm-1 and 0.1515. Absorption cross 



sections are ߑal ൌ0.005 cm-1 to the left of x=2 and ߑar ൌ0.01 cm-1 to the right of the plane x=2. 107 

neutrons are used in the simulation.  

Transport MC was also carried out for the same problem for the purpose of comparison with 

Diffusion MC. In Transport MC method each particle is tracked collision by collision through the 

problem geometry. The flight of the particle is along + X axis and a first collision point is sampled 

using the equation, λ= -1/ Σt ln(ξ) (where ξ is a random number and λ is the mean free path). 

Direction of flight of the particle is sampled using the random number. The random point is found 

by first calculating a random cosine for the polar angle over the range (0, 1) assuming forward 

scattering, after which a random azimuthal angle ߮ is selected over the range (0, 2π). Following this 

collision direction for the second flight path is obtained by selecting fresh random number. The 

length of this second flight is obtained and by equation, x=x0+ λ Ω, (λ is sampled with new random 

number for every collision) the second collision point is determined.  

Each collision is scored by testing the distance of the collision point from the source, finding the 

spatial bin (with bin width of 0.1 cm) that contains this point and incrementing a counter for that bin. 

Flux of the particle for each bin is obtained by dividing by the total cross sections. First collision of 

the particle is not tallied to remove the transient due to source. 

The neutron flux distribution obtainedby the Diffusion MC is compared with exact transport MC. 

Fig. 4.4 shows a comparison of the time integrated flux by the two methods. Flux distribution 

obtained by Diffusion MC agrees with that obtained by Transport MC within statistical error of 

±2%. Fig. 4.5 shows a comparison of the flux distributions at different times. Maximum deviation 

of 1% is observed in absorption rate for time bin of 0-0.1 msec which is within the statistical error. 

First collision was neglected in Transport MC to mitigate the effect of transients. Deviation of 1% 

shows that transients are not fully eliminated in the 0-0.1 msec interval. It was found that to 

simulate 107 particles with Transport MC, CPU time is ~6 min while for the same simulation, 

Diffusion MC takes only ~6 sec.  

 



4.3.1.3 Two Region Medium with different Diffusion Coefficient 

Consider a two region medium as before but with significantly different diffusion coefficients 

ଵܦ ് ଵߑ ଶand removal cross sectionsܦ ്  ଶߑ

In this case, the diffusion co-effcient D and the absorption cross sections  can be written in terms of 

Heavy side function as follows 

ߑ ൌ ଵߑ  ሺߑ െ ݔሺܪሻߑ െ ܽሻ 

ܦ ൌ ଵܦ  ሺܦ െ ݔሺܪሻܦ െ ܽሻ 

The diffusion equation 

߮ߘܦ.ߘ െ ߮ߑ  ሻݐሺߜሻݎሺߜ െ ଵ

௩

డఝ

డ௧
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can be written as  
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(4.24) 

and the equation for the Green's Function is  
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െ ܩଶߘଵܦ  ܩଵߑ ൌ ݎሺߜ െ ݐሺߜሻ′ݎ െ  ሻ′ݐ

By the method of Green’s function, solution of the above equation is  
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(4.25) 

Since , ߮ߘܦ.ߘ ൌ ଶ߮ߘܦ   so equation (4.25) becomes ,ܩߘ.ܦߘ

ሺܦଶ െ ଵሻܦ
ሾ ݎሺܩଶߘ| െ ݐ,'ݎ െ ሻ′ݐ െ ݎሺܩߘ.ܦߘ െ ݐ,'ݎ െ ሻ′ݐ  ሺߑଵ െ ′ሻdr′dt′ݐ,'ݎଶሻሿ߮ሺߑ

߮ሺݎ, ሻݐ ൌ ,ݎሺܩ ሻݐ  
(4.26)                   

By explicitly evaluating the gradD.gradG term, equation (4.25) is further simplified as 
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(4.27)                   

Rewrite the above equation so that the contributions of the delta function and the distributed sources 

are seen distintictly. 
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where ߪଶ ൌ ଵ

ଶభ௩ሺ௧ି௧ᇱሻ
 

Like before rewrite the equation in terms of the probability of absorption ܲሺݎԦ, ሻݐ ൌ ,Ԧݎ߮ሺߑ  ሻ andݐ

ܲ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ ቁ′ݐ ൌ ܩଵߑ ቀݎԦ െ ,ሬሬԦ′ݎ ݐ െ  ቁ, rather than the fluxes, to get′ݐ
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(4.29) 

Finally the solution of the integral equation in a Neuman series is developed to obtain 
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(4.30) 

where again clubbed the delta function and distributed source contributions for compactness is 

clubbed.  

Numerical modeling of the above case is more complicated, since several distributions are involved. 

Moreover some negative terms are present and also there is a delta function in one of the 

distributions. The sampling scheme would therefore have to admit negative particle weights which 

means analog MC is not possible. Assuming if this requirement is given up, let us see what kind of 

MC scheme is required.  



The first thing to do is to factorise the kernel into a "transport part" and a "collision part". The 

transport part gives the probability that the particle starting at a point r' at time t' will have its next 

significant event ("collision") at point r at time t. This must be normalised to unity. The collision 

part then gives the weight of the re-emited particle which will be then either transported or if the 

weight is below the Russian Roulette threshold may be killed or transported with an enhanced 

weight. The natural choice (but by no means the only one) for the "transport part" is the Green's 

function defined above (infinite medium kernel with the shorter lifetime (larger absorption cross 

section) and diffusion co-effcient D1). In the above discussion it is assumed that this region is to the 

left of the interface. The multiplying factors such as for example 

ݎ െ ′ݎ ଶ

ଷሺమିభሻ

ఙమఀೝభ

 are then part of the 

"collision kernel" and can be used to adjust the particle weight. As regards tallying, tally the entire 

weight if the particle "collides" on the left but on the right, tally the weight fraction
ఀೝమ
ఀೝభ

.  

Negative and positive weight particles will have to be transported separately. A point to be noted is 

that the terms arising due to different diffusion coefficients in the two regions have positive and 

negative contributions which add up to zero. On the other hand the one due to different absorption 

in the two regions causes a net positive weight to be emitted from sites in the second medium which 

is exactly equal to the difference between the weight entering the collsion and the weight absorbed 

at the collision site. Thus the difference in the diffusion coefficients causes only the weights to be 

re-distributed in space and time. 

The first "collision" point is sampled from the distribution ܲሺݎԦ,  ሻfor the variables y, z and t. Withݐ

probability

ߨ2 ଵ ଶ⁄

1  ଵ
‐1

 ൌ

 sample x using the same Gaussian ( ܲሺݎԦ,  .ሻ) and set its weight equal to 1/pݐ

With probability 1 െ  set x=a and set its weight equal to (1-p)/p. This is done to take care of the 



delta function. In the former case transportation is done according to the usual transport kernel and 

a weight 
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is assigned. In the latter case transport the particle using the distribution ܲሺݎԦ െ ݐ,'Ԧݎ െ  ሻ with x'=a′ݐ

and assign a weight equal to 
ଷሺమିభሻ

ఙమఀೝభ

ሺ௫ିሻ

ఙ
. In either case the particle may be absorbed fully at the 

new location or it may be re transported according to the same procedure. On an average the 

weights (positive or negative) keep reducing in magnitude. As mentioned above, a Russian Roulette 

has to be played to terminate the process once the weight falls below a certain magnitude.  

 

Alternative approach for analog games 

The approach described above is not suitable for analog MC. However, it is possible to model this 

problem with transport theory type MC methods (Rana et. al, 2013). It is noted that the diffusion 

kernels are Gaussians, and that diffusion theory is the limiting situation of transport theory when the 

neutron undergoes a very large number of collisions before absorption and the mean free paths are 

short compared to other lengths. This is another statement of the Central limit theorem. In practice, 

however, a few random numbers when added together show a distribution closely resembling a 

Gaussian. So the only thing that is necessary is to preserve the parameters.  

The total distance traveled by a particle is vt(ݐis the removal time of neutron) while the average 

distance traveled in each collision is (in medium I) 3ܦଵ, the mean free path. The number of 

collisions is thus vt 3⁄  ଵ . This could be very large (let us say 100). If this is to be scaled down toܦ

let us say 4, all is needed to do is to scale up the mean free path (diffusion coefficient) in medium I 

byඥሺvt 3⁄ ଵሻܦ 4⁄ . Likewise, while traveling in medium II, scale up the mean free path in medium II 



byඥሺvt 3⁄ ଶሻܦ 4⁄ . This prescription will correctly give the (RMS) distance traveled by the neutron 

from its starting point before removal and also the (approximately) correct spatial distribution for 

the sampled value ofݐ. Finally whether the removal point is to be accepted or not is decided by the 

rejection technique described in 4.3.1.1. 

 

Numerical Validation 

Consider a two region infinite medium with a boundary at 2 cm away from the origin. The source is 

located at the origin. Medium 1 has absorption cross section of ߑଵ ൌ 0.01 cm-1 and mean free path 

of 0.04545 cm. Medium 2 has absorption cross section of ߑଶ ൌ 0.005and mean free path of 0.99 

cm. Here, Transport MC method based on Coleman’s Method or pseudo collision method (Cloeman 

W. A., 1968) is used for estimating the absorption rate in the two mediums. Accept the point with a 

probability equal to the ratio of the actual removal cross section of the region in which the selected 

point lies and the maximum removal cross section. Else the point is rejected. In the latter case 

particle is displaced to a new point in the same direction with distance equals to the mean free path 

of the particle assuming it has suffered a pseudo collision. The process is repeated till a point is 

accepted. Other details are same as described in section 4.3.1.1 

A plot of the time integrated absorption rate for the recipe suggested above is given in Fig 4.6. 107 

particles are simulated. Fitted values of absorption rate  obtained by increased mean free path 

differs by about a maximum of 8% with that of original mean free path while the associated 

statistical error is ±1 % and ±3% respectively. It is seen that near the source, deviations are larger 

due to the presence of residual transients but at distance away from the source, deviations are within 

statistical error. In Fig. 4.7 a comparison of the absorption at different time in the two media is 

shown. Maximum deviation of 10% is observed in absorption rate for time bin of 0-0.1 msec.  

 

 

 



4.4 Transport Corrections to Diffusion MC  

It was mentioned earlier that diffusion theory is not valid (a) close to localized sources (b) close to 

vacuum boundary (c) inside and close to strong absorbers (d) highly anisotropic scattering. In this 

section each of these conditions is examined one by one and will develop methods to extend the 

applications of Diffusion Theory MC to such regimes. 

The solution of the transport equation for a point source in an infinite homogeneous medium can be 

obtained by the Fourier Laplace transforms similar to that of the diffusion equation. The flux splits 

into a sum of a transient flux which dominates close to the source and an asymptotic flux which has 

a form similar to the diffusion flux and is important far away from the source. These facts are used 

in this section to show that it is possible to extend the diffusion theory MC method to situations 

where diffusion theory is not valid, viz., close to localized sources, strong absorbers, boundaries and 

anisotropic scattering. 

 

4.4.1 Transient Flux Close to a Localized Source 

Expression for the flux for a point source placed at the origin in the infinite medium is given by 

(Bell and Glasstone, 1970), 

߮ሺݎሻ ൌ ߮Asሺݎሻ  ߮transientሺݎሻ(4.31) 

where, 

߮Asሺݎሻ ൌ
ܵைߚ
Drߨ4

expሺെݎߢሻ 

߮transientሺݎሻ ൎ ሺܵ 4⁄ ଶሻexpݎߨ െ ሺߑᇱݎሻ 

With ߢ ൌ ඥߑ ⁄ܦ ߚ ,  ൌ 1 െ ߑ ⁄ᇱߑ and ߑᇱ ൌ ߑ5 4⁄  

The flux near a localized source is not well described by diffusion theory even in a diffusive 

medium i.e. one in which scattering is large compared to removal. This is due to the presence of a 

transient flux. Since it is also known that most of the transient flux is simply the un-collided flux 

while the asymptotic flux is due to neutrons that have undergone collisions. The difference between 



diffusing and non diffusing (absorbing) media is simply the relative contribution of the transient and 

asymptotic components. 

A recipe for transport correction to Diffusion MC is proposed using the approximations available 

for the transient flux given in equation (4.31). Sample the absorption event using the expression for 

the transient flux with a probability proportional to the transient component while rest of the times it 

will be sampled using the asymptotic flux expression. A more accurate expression for the transient 

flux is available (A. M. Weinberg, 1958) but sampling the relevant distribution is not easy.  

 

Numerical Validation 

Numerical Simulations were carried out using the usual transport MC method as described in 

section 4.4.1. Transport Corrected Diffusion MC simulation was carried out using equation (4.31). 

Total cross section of the medium is 2.2 cm-1, while the absorption and scattering cross sections are 

0.01 cm-1 and 2.19 cm-1 respectively. Fig. 4.8 shows the time averaged neutron flux due to a source 

in a mildly absorbing medium with a point source located at the origin, obtained by the above 

method. Also the flux distribution by infinite diffusion kernel is plotted. The latter represents the 

asymptotic flux which obeys the diffusion equation. The relaxation length estimated by fitting the 

asymptotic flux agrees well with the theoretical value. It can be seen from the plot that Diffusion 

MC flux near the source is lower than the Transport MC flux since diffusion theory fails in this 

region, but the transport corrected Diffusion MC flux estimates same flux as obtained by transport 

theory. Flux estimated by Transport corrected Diffusion MC differs from that estimated by 

Transport MC by about a maximum of 2%. The corresponding time dependent fluxes at different 

times are compared in Fig. 4.9. It is seen that the flux decreases with the distance away from the 

source and this rate of decrease becomes less effective with longer collision time. Maximum 

deviation of 3% is observed in absorption rate for time bin of 0-0.1 msec.  

 

4.4.2 Transport in a strongly absorbing medium 



This case is related to the one discussed in the previous section. In a weakly absorbing medium, a 

neutron undergoes a large number of collisions before absorption and therefore the asymptotic flux 

is the dominant term except very close to the source. In case of a strong absorber there are few 

collisions before absorption and hence the transient flux is dominant near the source but there are 

not many collisions and hence the asymptotic component is small.  

 

Numerical Validation 

The results of calculations by the transport MC and transport corrected diffusion MC are shown in 

Fig. 4.10. The total cross Section of the medium is 2.2 cm-1, the absorption cross section is 1.2 cm-1 

and the scattering cross section is 1.0 cm-1. It can be seen near the source, there is large difference 

of 40% in the asymptotic flux and the flux estimated by the Transport MC .With transport 

correction applied to the asymptotic flux, this difference is considerably reduced to 10%. The 

agreement is quite good showing that the recipe is valid even for strongly absorbing media. The 

only difference is that savings in computer time are small as the neutron history is anyway not too 

long. On the other hand the savings in case of a weak absorber are much larger. 

 
4.4.3 Transients Close to a Vacuum Boundary 

Transients close to a vacuum boundary are due the negative source of the neutrons directed 

outwards.  

 

Numerical Validation 

Fig. 4.11 shows the flux distribution due to a source in a finite isotropic medium with boundary at 

4.5 cm from the point source placed at the origin. Transport flux is obtained using a MC algorithm 

using the last event absorption estimator described in section 4.4.2. In case the particle leaks out, the 

event is stopped and goes for the next neutron history. It is seen from Fig. 4.11 that asymptotic flux 

obtained by Diffusion MC Method compares well with the analytical expression for the flux 

distribution for symmetric boundary given below.  



(4.32) 

where, L, D , S and X are the neutron diffusion length, diffusion coefficient, source strength and 

extrapolation distance respectively. 

It is also seen that the flux estimated by transport and diffusion MC are nearly the same at the 

boundary which implies that the transient flux near the boundary is small  compared to that near the 

source. This is probably due to the fact that by Placzek's Lemma, the transients at a boundary are 

caused by a negative source of neutrons directed outwards, which produces smaller transients inside 

the region of interest. Flux estimated by Diffusion MC differs from that estimated by Transport MC 

by about a maximum of 0.5%. 

 

4.4.4 Transport Effects with Anisotropic Scattering 

In all the examples given above, it is assumed that the scattering is isotropic in the laboratory 

system. The general case involving anisotropic scattering requires a transformation of coordinate 

system from the one in which the scattering law is given, to the fixed coordinate system in which 

the particle is tracked (Stephen Dupree et. al., 2001; MCNP Guide 1987; Paul et. al., 2013).  While 

the transformation is elementary, but for clarity and better understanding a detailed derivation of the 

transformation and a description of the algorithm is presented in Appendix A. 

 

Numerical Validation 

Using the above algorithm calculations for a hydrogenous medium in which the scattering is 

strongly anisotropic in the laboratory system is carried out. Fig. 4.12 gives the flux distribution 

obtained using transport MC and the transport corrected diffusion MC for a mildly absorbing 

medium. Transport cross section was used for estimating the diffusion coefficient to account for 

anisotropic scattering. Flux estimated by Transport corrected Diffusion MC differs from that 

estimated by Transport MC within statistical error. The good agreement shows that the above recipe 

is valid in a medium with anisotropic scattering. 
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4.5 Conclusions 

Analytical Green’s function based Diffusion MC methods have been applied earlier for by Rana et. 

al. for simulation of reactor noise experiments in experimental reactors for measuring the degree of 

sub-criticality in accelerator driven systems. Although this approach has several advantages such as 

speed, elegance and exactitude, but it was applicable to a rather restricted class of problems, such as 

the bare rectangular parallel piped homogeneous reactor. Here, the analytical Greens function based 

Diffusion MC methods is developed further, to demonstrate its utility in a wider class of problems 

such as in finite homogeneous and heterogeneous media. Mathematical and numerical proofs of the 

recipes proposed for applying diffusion kernel of infinite homogeneous medium to heterogeneous 

medium with same or different diffusion coefficient developed. 

For a heterogeneous medium consisting of two regions having different diffusion coefficients, the 

mathematical proof goes through but the resulting sampling functions are more complicated and 

hence the method may be difficult particularly for analog MC but would be usable with non analog 

MC. However, a different recipe suggested for this situation in Rana et. al., 2013 which is more 

appropriate for analog MC has been demonstrated to work successfully. It has been also shown that  

by a transport correction based on incorporating the transient flux kernel in addition to the diffusion 

kernel, the method can be applied to the situations where diffusion theory is otherwise inapplicable.  

Computational time for Diffusion MC is about 10 times less than that by Transport MC. In addition 

to its use as a fast analog method for simulating noise by MC, the present work could find 

application in devising mesh less methods in time dependent diffusion theory, particularly in 

situations involving moving media where meshes tend to get distorted. Another application could be 

to study various aspects of MC such as variance reduction techniques, and speeding up convergence 

to the fundamental mode of criticality calculations. In this context, it may be mentioned that besides 



the advantage of speed, the diffusion MC has the advantage that analytical results are available in 

diffusion theory for the purpose of making comparisons. 

 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 Diagrammatic representation of the source and image point locations and the 

coordinates used in the estimation of the reduction in extrapolation distance for a bare 

homogeneous cylindrical reactor by method of images 

 
 
 

 
 
 
 
 
 
 
 
 



 
 

Fig. 4.2 Variation of the time integrated neutron absorption rate with distance from a point 

source placed at the origin in single region medium. The blue dots  indicate the absorption 

rate obtained using the real absorption cross section ߑar ൌ0.005 cm-1 while the red cross  

indicate the absorption rate calculated with a fictitious absorption ߑaf ൌ0.01 cm-1 followed by 

a rejection with a 50% probability. 

  

0 1 2 3 4 5
Distance from the point source (cm)

2E+5

4E+5

6E+5

8E+5

1E+6

A
b

so
rp

ti
o

n
 R

at
e

Real Absoprtion

Fictitous Absorption



 
 

Fig. 4.3 Variation of the time dependent neutron absorption rate with distance from a point 

source placed at the origin in single region medium. The various markers indicate the 

absorption rate obtained using the real absorption cross section ߑar ൌ0.005 cm-1 while the solid 

lines indicate the absorption rate calculated with a fictitous absorption ߑaf ൌ0.01 cm-1 followed 

by a rejection with a 50% probability. 
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Fig. 4.4 Variation of the time integrated neutron flux with distance from a point source placed 

at the origin in a two region medium with same diffusion coefficients but different absorption 

cross sections viz. ߑar ൌ0.005 cm-1  to the left of x=2 and ߑar ൌ0.01 cm-1  to the right of the 

plane x=2. The red crosses indicate the exact results by Transport MC while the blue stands 

for diffusion MC. 
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Fig. 4.5 Variation of the time dependent neutron flux with distance from a point source placed 

at the origin in a two region medium with same diffusion coefficients but different absorption 

cross sections viz. ߑal ൌ0.005 cm-1  to the left of x=2 and ߑar ൌ0.01 cm-1  to the right of the 

plane x=2. The various markers indicate the flux obtained using the Diffusion MCwhile the 

corresponding black markers indicate the flux calculated with Transport MC using the 

rejection technique. 
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Fig.4.6 Variation of time averaged neutron absorption rate with distance from the point 

source placed at the origin in two region medium with boundary at x=2. ߑଵ ൌ 0.01 cm-1 and 

D1=0.1515 to the left of the boundary while ߑଶ ൌ 0.005 cm-1 and D2=0.33 to the right. The 

figure shows a comparison of the absorption rate obtained with actual mean free path (mfp) 

and that with 4 times higher mfp. Solid curve corresponds to analytically computed neutron 

absorption rate. 
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Fig. 4.7 Variation of time dependent neutron absorption rate with distance from the point 

source placed at the origin in two region medium with boundary at x=2. ߑଵ ൌ 0.01 cm-1 and 

D1=0.1515 to the left of the boundary while ߑଶ ൌ 0.005 cm-1 and D2=0.33 to the right. The 

figure shows a comparison of the absorption rate obtained with actual mean free path (mfp) 

and that with 4 times higher mfp. 
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Fig. 4.8 Variation of the time averaged neutron flux with distance from a point source located 

at the origin in a mildly absorbing medium. The figure compares the results using transport 

MC and transport corrected diffusion MC.  
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Fig. 4.9 Variation of the time dependent neutron flux with distance from a point source 

located at the origin in a mildly absorbing medium. The figure compares the results using 

transport MC and transport corrected diffusion MC. 
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Fig. 4.10 Variation of the time averaged neutron  flux with distance from a point source 

located at the origin in a strongly absorbing medium. The figure compares the results using 

transport MC and transport corrected diffusion MC.  
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Fig. 4.11 Variation of the neutron flux (time averaged) with distance from the point source in 

a semi infinite homogeneous medium. The point source is placed at the origin and the 

medium-vacuum boundary is located at x=4.5 cm from the source. The figure shows a 

comparison of results based on transport and  diffusion MC and the analytical fit.  
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Fig. 4.12 Neutron Flux due to a source in an infinite homogeneous medium with mild 

absorption and anisotropic scattering - comparison of results obtained using transport MC 

and transport corrected diffusion MC.  
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Table 4.1 Reduction in extrapolation distance dex as function of radius of the cylinder 

(Diffusion Length, L= 6 cm) 

 
Radius R 

(cm) 
dex required 

to give 
correct keff 

using a single 
image 

dex =L2/R as 
given by eq. 

(4) 

dex ,as given 
by eq. (6) 

with a=1.2 

dex, as given 
by eq. (5) 

30 0.94 1.20 0.92 0.91 
40 0.88 0.90 0.75 0.73 
50 0.64 0.72 0.63 0.61 
60 0.52 0.60 0.55 0.53 

 



CHAPTER 6 

 

A Diffusion Monte Carlo Based Algorithm for Estimation of  
Higher Modes of a Reactor  

 

In the Chapter 2 some schemes for developing Monte Carlo kinetics capability is discussed. 

Application of these schemes to simple point kinetics and diffusion based space time kinetics were 

discussed in subsequent chapters. Another important problem that is of interest in both statics and 

kinetics relates to the calculation of higher modes. While most often this problem has been solved 

using deterministic diffusion theory, in recent years there has been interest in obtaining higher 

modes using Monte Carlo methods. The present chapter discusses the problem of obtaining higher 

modes using Monte Carlo. 

The K and alpha or time eigenvalue problems are basic to the subject of nuclear reactor physics. 

While the fundamental modes are most often computed as they decide the multiplication factor and 

power distribution of a critical reactor, some of the dominant higher modes of these problems are 

often useful as basis functions for expanding the flux (Singh et. al., 2009; Pfeiffer, 1971, 1972). The 

eigenvalue problem is usually solved by deterministic neutron transport theory and most often using 

the diffusion theory approximation. In recent years the use of the MC method has expanded in 

scope to solve an increasingly larger variety of Reactor Physics problems due to its exactitude. In 

this spirit, there have been efforts at solving the problem of obtaining higher modes using the MC 

Method.  

Estimation of higher modes of the neutron transport equation by MC methods has been developed 

earlier (Booth et. al., 2003; 2006; 2009; Modak et. al. 2007; Lathouwers, 2003; Kophazi et. al., 

2012). The Modified Power Iteration method suggested by Booth et. al., 2003is used to reduce the 

error associated with higher eigenfunctions. Another technique to obtain the higher order 

eigenfunctions in MC criticality calculations was proposed by (Yamamoto et. al., 2003; Yamamoto 

et. al., 2011). Yamamoto estimated the higher order alpha mode eigenvalues by the MC Power 



Iteration. Estimation of higher order eigenvalues for deep sub criticality is difficult due to large 

negative weights. Yamamoto introduced a pseudo absorption term to reduce negative weights. 

Korneich et. al., 2005 used Greens function method to calculate higher time eigenvalues in multi 

region Cartesian geometry.Dufek and Gudowski et.al., 2009, Wenner and Haghighat et. al., 2011 

have also tried the Fission Matrix approach for eigenvalue calculations. Carney et. al., 2012 and 

Carney et. al., 2013 and Urbatsch, 1995has included the fission matrix method in a modified 

version of the MCNP Code. Sub space iteration techniques have also been tried for efficient MC 

solutions of K eigenvalue problem (Gupta et. al., 2013).  

Estimation of higher eigenvalues of the neutron transport equation by various MC methods presents 

a number of challenges that continue to be the subject of research. Thus, for example, Arnoldi’s 

method requires orthogonalization and normalization of the fission source which inevitably leads to 

negative fission source in some regions. Some recipes are required to tackle sampling from such a 

fission source. Similarly, the modified power method also introduces negative weights and hence 

needs recipes for cancellation of positive and negative weights.  

The main issue with the fission matrix is the uncertainty on its elements. This is related to the size 

of the zones (which must be judiciously chosen) for obtaining the fission matrix. The zone size 

must be kept small, so that there is little variation in the fission source distribution within a zone. 

However, if the zones are made very small, not only does the fission matrix increase (due to 

increase in number of zones) but the elements of fission matrix contain larger statistical errors, since 

the number of starting neutrons per zone decrease with a decrease in the zone size. Another problem 

of fission matrix methods (transition rate matrix methods for alpha eigenvalues) is that of estimating 

the statistical uncertainty of the eigenvalues obtained by these methods (Betzlerand Kiedrowski et. 

al., 2018; Betzler and Martin et. al., 2014; Betzler and Kiedrowski et. al., 2015) 

The suitability and adequacy of various recipes used in these methods for computing higher 

eigenmode cannot be decided only from theoretical principles, and therefore require intense 

numerical studies for their validation. The study of simpler models may be expected to provide 



better insights into some of these problems. The issues involved in sampling fission matrix and 

effect of these recipes can be studied more easily using simpler and faster MC scheme based on 

diffusion theory. 

In this Chapter, a simple model based on Diffusion theory MC to estimate the higher K eigenvalues 

of the neutron transport equation is studied. The Diffusion MC method (Rana et. al., 2013)was 

developed for quick simulation of ADS noise experiments that must be done using analog MC and 

therefore requires rather long computational time by the usual transport MC route. The method was 

expanded in scope (Srivastava and Degweker., 2015)and subsequently used to study space time 

kinetics by the Monte Carlo (Srivastava et. al., 2018) approach as discussed in Chapters 4 and 5 

respectively. 

This Chapter is focused on the calculation of the higher λ modes based on Diffusion MC. A MC 

Algorithm is developed for estimating higher eigenvalues and eigenvector using Fission Matrix. 

Numerical testing of the algorithm so developed is carried out by considering a PHWR benchmark 

in super critical and deep sub critical conditions. A first order perturbation approach is developed to 

estimate the variance in higher eigenvalues from the deviations of the matrix elements [in 

successive iteration cycle] from the mean.  

 

6.1 Methodology 

6.1.1 Computation of the Fission Matrix 

In the algorithm developed, eigenvalues of the system by the Fission Matrix Method is estimated. 

The Fission Matrix (FM) of a system contains information about the number of neutrons produced 

in one region of the core from one neutron born in another region. The order of the FM is simply 

the number of spatial regions the core is divided into. The eigenpairs of the fission matrix are 

estimates of the k-eigenvalues and eigenvectors of the core that are limited by the resolution of the 

discretised phase space. An estimate of the FM matrix is obtained using the neutron histories data. 

At first, the region containing fuel (the core) is divided into a number of meshes. These meshes are 



superimposed on the geometry description used for neutron tracking. Starting from an initial spatial 

distribution of fission neutrons across the meshes, these neutrons are tracked one by one till they are 

absorbed (capture or fission) or leak out. The neutrons produced as a result of fission caused by 

these initial neutrons are assigned to the mesh in which they are produced and form the starting 

neutrons for the next cycle. The number of neutrons in each cycle are maintained the same as in the 

algorithm for keff estimation.  

Tallying of the fission matrix is carried out using the following procedure after a user decided 

number of cycles have been discarded, so that the distribution of fission neutrons becomes 

stationary in the statistical sense. After making a check to find out the mesh (j) from which the 

particle is starting, the tally (Nj) of the number of neutrons starting from mesh j is updated by 

adding one to it. The neutron is then tracked for its movement from the mesh into its neighboring 

meshes or for slowing down to lower energy groups or absorption using the relative probabilities of 

these events described in detail as discussed in Chapter 5. The tracking is continued till it is 

absorbed (capture or fission) or it escapes from the system. If it terminates in fission, the mesh 

number (i) in which fission occurred and the number of fission neutrons emitted (ν) are recorded. 

The fission matrix element tally Fij is updated by adding an amount equal to ν to it. A schematic of 

the process in shown in Fig. 6.1.  

At the end of a cycle, the fission matrix elements are normalized (to obtain the value per particle) 

i.e. the ratio Fij/Nj computed and these are simply the elements of FM. That is to say that (i, j)th 

element of this matrix is the average number of fission neutrons generated in zone i per unit neutron 

starting from mesh j. The above described process to obtain FM is by using tallying whenever 

fission occurs. At each cycle then a FM (we call it the cycle FM) is obtained. At the end of all the 

cycles the individual FMs are combined together to get an average FM.  

 

6.1.2 Eigenvalues and Eigenvectors of the Fission Matrix 



It is clear from the definition of the fission matrix, that the number of fission neutrons generated in 

the mesh in the (n+1)th generation is related to the number produced in j in the nth generation as 

follows 

߶
ሺାଵሻ ൌ ∑ ߶ܨ

ሺሻ
            (6.1) 

For a stationary situation, the distribution does not change from generation to generation, but may 

change in magnitude. This gives rise to the lambda or k eigenvalue problem defined by the 

equation∑ ߶ܨ ൌ  ߶ߣ

Or, 

߶ܨ ൌ  (6.2)              ߶ߣ

Hotel ling’s Deflation method is incorporated along with the Power method to obtain higher 

eigenmodes. The process of obtaining higher eigenmodes is as follows. At first, the largest 

(fundamental) eigenpair is obtained using the power method. The FM is then deflated of its 

fundamental eigenpair. Deflation means removing the eigenmode from the matrix. That is, after 

deflation of fundamental mode, the power method applied on the deflated matrix gives the 2nd 

eigenpairs (of the original matrix), as this is the fundamental mode of the deflated matrix (Mallick 

et. al., 2014). The above process may be repeated by deflating the last deflated matrix for 2nd 

eigenpair to obtain 3rd eigenpairs and so on. The method and algorithm to obtain higher eigenmodes 

is described below briefly. 

Let ߣଵ be the highest eigenvalues and ߶ଵ the corresponding eigenvector of the matrix, ܨ as obtained 

using Power method. The matrix, ܨ is then deflated of the eigenpair (ߣଵ, ߶ଵ) as follows  

ௗଵܨ ൌ ܨ െ ଵ߶ଵ߶ଵߣ
்             (6.3) 

Whereܨௗଵ stands for the fission matrix deflated of the pair (ߣଵ, ߶ଵ) 

Next, the power method is applied to the deflated matrix ܨௗଵ to obtain its largest eigenvalue and the 

corresponding eigenvector. This eigenpair is the 2nd eigenpair of the original matrix . The last 

deflated matrix ܨௗଵis then again deflated of the newly obtained eigenpair, to obtain ܨௗଶ, the matrix 

deflated of the first two eigenpairs 



ௗଶܨ ൌ ௗଵܨ െ ଶ߶ଶ߶ଶߣ
்          (6.4) 

This process is repeated till all the desired eigenpairs are obtained.  

 

6.1.3 Estimation of Error in the Eigenvalues of the Fission Matrix 

MC calculations involve statistical uncertainties in the estimated quantities. Estimation of these 

uncertainties is important to get an idea of the statistical error in the computed quantities. This is 

usually done by calculating the same quantity using several batches and estimating the standard 

error of the mean of all batches from the standard deviation of the batches. This is not easily 

possible in the fission matrix method. In this section it is shown how perturbation theory may be 

used to obtain the error estimate. Let us say that the estimated average fission matrix is ܨ while the 

matrix computed in the nth cycle is ܨ  ݂ሺሻ, where ݂ሺሻis assumed to be small and may be treated 

as a perturbation. 

The matrix ݂ሺሻrepresents the deviation from the mean estimate of the fission matrix and 

leads to a corresponding deviation ߣ߂ఓ
ሺሻ in the estimation of the ߤth eigenvalue in the nth cycle. It is 

well known from perturbation theory that to the first order in ݂ሺሻ,  

, ݂ሺሻ߮ఓ
߮ఓ

, ߮ఓ
߮ఓ

ఓߣ߂
ሺሻ ൌ

(6.5) 

where ߣ߂ఓ
ሺሻ, ߶ఓ and ߶ఓ  respectively stand for the deviation in the estimate of the ߤth eigenvalue 

in the nth cycle, and the ߤth eigenvectors of the forward and adjoint (transpose) estimated mean 

fission matrix ܨ. 

On writing this formula out explicitly in terms of components of the eigenvectors and matrix 

elements, we have 



∑ ߶ఓ
ାథഋ



∑ థഋ
శഝೕഋೕ

ሺሻ

,ೕ

ఓߣ߂
ሺሻ ൌ

          (6.6) 

 

The error in the estimation of the ߤth eigenvalue is obtained as follows: 

1. First the components of the deviation matrix ݂
ሺሻ are estimated. To do this, the fission 

matrix ܨ  ݂ሺሻ that is computed in each cycle is stored for all the cycles. The mean matrix 

ܨ is obtained at the end of all the cycles by averaging ܨ  ݂ሺሻover all the cycles. ݂
ሺሻ are 

obtained by subtracting the ijth components of ܨ  ݂ሺሻ from the corresponding components 

of ܨ.  

2. The mean fission matrix ܨgenerated in step 1 is also used to generate estimates of the 

eigenvalues and the direct (߶ఓ) and adjoint (߶ఓ ) eigenvectors as described in Section 

6.1.2. Thus all quantities required for estimating the deviation in the eigenvalues in the nth 

cycle ߣ߂ఓ
ሺሻ are available. The deviation in the eigenvalues for each of the cycles may 

therefore be obtained by substituting ݂
ሺሻ in step 1 and ߶ఓ and ߶ఓ in step 2 in the above 

equation.  

3. The variance of ߣ߂ఓ
ሺሻ is estimated in the usual way (the mean is expected to be zero since 

the mean of ݂
ሺሻ is zero by definition and ߣ߂ఓ

ሺሻ is linearly related to the ݂
ሺሻ), viz., 

ଶߪ ൌ ଵ

ேିଵ
∑ ቂߣ߂ఓ

ሺሻቃ
ଶ

              (6.7) 

where ܰ is the number of cycles used for averaging. 

4. The result is finally divided by the number of cycles ܰ to get the variance of mean. The 

square root of this gives us the required error in the estimate of the eigenvalue. 

While there is a cycle to cycle correlation in the fission source and this introduces a corresponding 

correlation in the estimates of keff and the error in the keff, this is not the case in the present method. 



The reason is that individual matrix elements ܨ are estimated by tallying the number of fission 

neutrons generated in the ith mesh due to fission neutrons starting from the jth mesh and dividing by 

the total number of fission neutrons starting from the jth mesh. Thus even if there are cycle to cycle 

correlations in the number of neutrons starting from the jth mesh these are not reflected in the fission 

matrix generated. The only effect the iteration method has on the elements is that the most 

important ones are computed with the lowest error which is beneficial. The present process does 

cause correlations among different matrix elements within a cycle. However, since it is not assumed 

that these elements are independent in the above procedure for estimating errors in the eigenvalues, 

this has no consequence. Since tallying commences after the distribution has reached the 

fundamental mode, the deviation in the eigenvalues are not only independent, but also drawn 

(sampled) from the same population. 

Storage of a large number of matrix elements may seem to pose a problem. These however need not 

be stored in the computer memory. It is enough that they are stored on a file. They are required to 

be accessed only once while calculating the deviations (the mean matrix can be computed during 

the cycles and not necessarily at the end of all cycles). If the fission matrix is approximately 

symmetric, the߶ఓand ߶ఓ  eigenvectors are not expected to be very different and it may not be 

necessary to separately calculate߶ఓ . 

 

 

6.2 Test Problem and Results 

6.2.1 A Problem Description 

The λ eigenvalues and eigenfunctions of a 3-D realistic PHWR model given by Judd and Rouben, 

1981 are studied using proposed MC method. This test-problem consists of two radial fuel zones in 

the XY plane surrounded by reflector (Fig. 6.2). In the axial Z direction, the reactor extends up to 

600 cm and has uniform material properties. There is no reflector in axial Z direction. The two-

group cross-sections and other data for two fuel zones and reflector and the spatial discretization 



scheme are exactly as given by Judd and Rouben. The cross sections are listed in Table 6.1. The 

neutron velocities in fast and thermal groups are 107 cm/s and 3 x 105 cm/s, respectively. The two 

group fission spectrum is χ1 is 1 and χ2 is 0. The spatial discretisation is carried out by using a total 

of 3240 meshes in XYZ geometry. Only one type of mesh structure (18 x 18 x 10) has been 

considered. 

 

6.2.2 Results 

6.2.1.1 Standard Benchmark (near-critical case) 

The fundamental eigenvalue estimated by fission matrix is 1.003537±0.000181. To estimate the 

passive cycles for fission source convergence, Shannon entropy is estimated and is shown in Fig. 

6.3. Shannon Entropy is defined as 

ܪ ൌ െ  ܵሺ݅ሻ*logଶ

no.ofzones

ୀଵ

൫ܵሺ݅ሻ൯ 

Where, S(i) denotes the normalized source in the ith zone and is given by the fraction 

of source particles starting from the ith zone for the cycle under consideration.  

 

MC cycles from -100 to 0 refer to passive cycles. It can be seen from the Fig. 6.3 that within 100 

passive cycles, the Shannon entropy estimated by KINMC converges to the asymptotic value of 

entropy estimated by deterministic diffusion based code KINFIN. Shannon Entropy estimated by 

transport MC code PATMOC (Mallick et. al., 2012) agrees well with KINMC. A total of six 

dominant λ eigenvalues were calculated for the above model by the MC Method. All the computed 

lambda eigenvalues are given in Table 6.2. All the six λ values computed in these studies agree with 

those given by KINFIN Code by Singh et al., 2009. The λ eigenvalues computed by the MC method 

are in the agreement with reference values given by Modak and Gupta, 2007 and Verdu, 1994. The 

shapes of thermal flux in first, third and sixth alpha modes in mid XY plane of the PHWR model 

have been plotted and are shown in Figs. 6.4–6.7. The computational time for this simulation with 

I7 processor is about is about 60 minutes. 



 

6.2.2.2 Standard Benchmark (deep sub-critical case) 

A case study for estimation of λ eigenvalues for a highly sub-critical reactor was also performed. 

The PHWR test-case was modified to make it highly sub-critical by reducing the value of fission 

spectrum χ1 from 1.0 to 0.7. The χ2 was kept 0.0 as before. Six dominant λ modes for this highly 

sub-critical reactor are evaluated. The entire computed lambda eigenvalues are given in Table 6.3. 

The fundamental λ eigenvalue computed in these studies agrees with those given by KINFIN code 

by Singh et. al, 2009. The shapes of thermal flux in fundamental modes in mid XY plane of the 

PHWR model have been plotted and are shown in Fig. 6.8. 

 

6.3 Conclusions 

The study of higher modes is of interest in reactor statics as well as reactor kinetics. In recent years 

there have been efforts to obtain higher modes using Monte Carlo methods. The development of a 

MC algorithm, based on the diffusion theory model, for estimation of higher eigenvalues and 

eigenvectors has been discussed in this Chapter. The discussion includes a method based on first 

order perturbation theory to estimate variance in the eigenvalues for the higher modes.The 

algorithm has been implemented in the Space Time Kinetics MC Code KINMC. The algorithm was 

verified by comparing the higher eigenvalues and eigenvectors by MC Method with other 

deterministic methods for a 3D Benchmark. The fundamental and higher order eigenvalues obtained 

by the MC algorithm and that by deterministic codes are in good agreement.  

The objective of this development was to have a simplified MC model to study some of the 

problems associated with calculation of higher modes using MC. One of the developments carried 

out in this regard is a method to estimate errors in the higher eigenvalues using perturbation theory. 

 

  



  

 

  

 

 

  

   

   

 

Fig. 6.1 Schematic representation of the Finite Difference Diffusion MC model for estimation 

of the Fission Matrix 

 

 

 

 

 

Fig. 6.2 XY representation of PHWR test reactor 

  ith  mesh Diffusion of the neutron in the left mesh from jth mesh
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Fig 6.3 Shanon entropy with cycle for 3D PHWR Benchmark 

 

 

Fig. 6.4 Fundamental λ mode for PHWR Core (critical case)  

along X direction 
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Fig. 6.5 Variation of thermal flux in fundamental λ mode obtained by MC 
algorithm for PHWR Core (near critical case) 



 

 

Fig. 6.6 Variation of thermal flux in second λ mode obtained by MC 

algorithm for PHWR Core (near critical case) 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6.7 Variation of thermal flux in sixth λ mode obtained by MC algorithm 

for PHWR Core (near critical case) 

 

 

 

 

 



 

Fig. 6.8 Variation of thermal flux in fundamental λ mode obtained by MC algorithm for 

PHWR Core (deep subcritical case) 

 

Table 6.1 

Two group nuclear data Cross-section for PHWR test-case. 

 Cross Section (cm-1) 

 D1 D2 

ߥ ߥ  

 ௦ଵ→ଶߑ ଶߑ ଵߑ

Region 

No. 

 

1 (Core) 1.264E-

00 
9.3280E-

01 
0.000 4.5620E-

03 
8.1540E-

03 
4.1000E-

03 
7.3680E-

03 

2 (Region) 1.264E-

00 
9.3280E-

01 
0.000 4.7230E-

03 
8.1540E-

03 
4.0140E-

03 
7.3680E-

03 

3(Region) 1.264E-

00 
8.6950E-

01 
0.000 0.0000E-

00 
1.0180E-

02 
2.1170E-

04 
1.0180E-

02 

 

 



 

 

Table 6.2 

Values of λ in different modes for PHWR Core (near critical case) 

 Stochastic Code Deterministic Codes

Mode No. MC KINFIN VERDU MODAK’s 

1 1.0035370 ± 0.00034 1.00355 1.0035 1.0036 

2 0.9899201± 0.00031 0.9901 0.9898 0.9901 

3 0.9900391± 0.00031 0.9901 0.9898 0.9901 

4 0.9733015±0.00038 0.9732 0.9717 0.9732 

5 0.9499810±0.00020 0.9669 0.9657  

6 0.9664798±0.00019 0.9649 0.9636  

 

Table 6.3 

Values of λ in different modes for PHWR Core (deep subcritical case) 

 λ

Mode No. MC KINFIN

1 0.7033128±0.00028 0.702488

2 0.6940681±0.00024  

3 0.6941299±0.00026  

4 0.6821770±0.00028  

5 0.6774225±0.00025  

6 0.6771322±0.00025  

 

 



CHAPTER 7 

 

Transport based Space Time Monte Carlo Code KINMC 

In this Chapter the development of a multi-region multi-group MC Kinetics code is presented. 

Having tested the recipes on simpler models i.e. on Point Kinetics and Diffusion Theory MC 

Models as discussed in Chapters 3, 4 and 5, they are finally implemented  in Transport theory MC 

resulting in the Space Time MC Kinetics Code KINMC, developed in the course of the research 

work.  

KINMC code uses the Delta Neutron Tracking method (Leppanen et. al., 2010; Coleman, 1968) for 

neutron transport. The code explicitly treats the six groups of precursors and uses population and 

weight control of precursors and neutrons. It also employs the concept of mean number of 

secondaries in a collision for variance reduction. It has the capability of solving multi group space 

time transients. The efficacy of this code is tested by comparison with results of realistic space-time 

kinetics benchmarks involving multi-region reactors and energy dependence.  

 

7.1 Methodology 

7.1.1. The delta tracking algorithm 

To begin with, the maximum total macroscopic cross-section of all materials in the geometry at the 

particle energy is found. If this is called as ߑ, then the distance to the next collision (irrespective 

of the cross section of the medium in which the particle is located) is sampled using 

ݏ ൌ െ ଵ

ఀ
ln(7.1)ߦ 

If ߑ௧is the actual cross section at the point of collision, the point is accepted as a collision site with a 

probability ߑ௧/ߑ and rejected with a probability 1-ߑ௧/ߑ. In case of rejection, the neutron flight is 

continued from this point with the same direction and energy. The method requires the program to 

only determine the medium at any given point which is much simpler than ray tracing. The 

geometry modeling is done by using a geometry modeler based on combinatorial geometry logic. 



Combinatorial geometry describes general three-dimensional (3-D) material configurations by 

considering unions, differences, and intersections of simple bodies such as spheres, boxes, 

cylinders, etc. This method allows space to be subdivided into unique zones of arbitrary shape. In 

the algorithm the task of assigning three-dimensional material configuration of the problem is 

accomplished in three distinct steps. First the regular body shapes to be used - rectangular 

parallelepiped, cylinder, sphere, etc. - their dimensions, location and orientation are defined. For a 

rectangular parallelepiped whose six plane surfaces are perpendicular to the co-ordinate axes, the 

minimum and maximum values of x, y and z coordinates of the planes perpendicular to the 

corresponding axis is specified. A sphere is defined by radius and co-ordinates of centre. For a right 

circular cylinder, the radius, the centre and the projection of its height on x, y and z axes are 

specified. After defining the necessary geometrical bodies, entire problem geometry is segmented 

into zones and materials are assigned to these zones. 

 

7.1.2 Flow of the Simulation 

At t=0 sec, for steady state distribution, start with thermal neutrons, fast neutrons and precursors at 

steady state. At the steady state condition, slowing down events and fission events are tallied along 

with that slowing down sites and fission sites are also stored. Total number of thermal neutron at 

the steady state is estimated by dividing the number of fission events with the product of the fission 

cross section and the velocity of the neutron in that group. Similarly, total number of fast neutrons 

at the steady state is estimated by dividing the number of slowing down events with the product of 

the slowing down cross section and the velocity of the neutron in that group. This way we can 

obtain the ratio of thermal to fast neutrons in the system at t=0 sec.  

In the simulation, at t=0 sec, 105 thermal neutrons are considered and fast neutrons are considered 

in the ratio mentioned above. 105 fission sites are randomly selected form the stored fission sites 

which are the sites for the thermal neutrons at t=0 sec. Similarly, the randomly selected slowing 

down sites acts as sites for fast neutrons. In the problem domain having multiple regions denoted by 



x, having different fission cross sections, ߑሺݔሻ, in each region the number of fission sites ݊ଶሺݔሻare 

counted. Then the number of precursors in the steady state is given by,  

ߚ
൫ หߑߥሺݔሻ ܸ ⁄ߣ ൯݊ଶሺݔሻ

௫ܥ ൌ ∑௫

(7.2) 

Where, summation is over total number of regions in the problem domain. ߚis the delayed neutron 

precursor of the ith group, ߥis the number neutrons produced per fission, ߑis the fission cross 

section, ߣis the decay constant of the each precursor group, ݊ଶሺݔሻis the thermal neutrons in the 

region x and V is the neutron velocity. Thus, for a population of 105 neutrons, there will be 109 

precursors. This poses the first challenge population of 105 neutrons is probably the minimum that 

would be required to get any statistically meaningful results whereas modeling more than 109 

precursors explicitly is virtually impossible on current desktops. Hence, we lump these precursors 

into a more manageable number say 105 and assign a weight 

ܹ ൌ ∑ ∑௫ ioxܥ 10ହ⁄ (7.3) 

and the sites of these precursors are randomly selected from the fission sites. Now, all 105 

precursors are allowed to decay in each time bin. Weights of the decayed and undecayed precursor 

are 
1 െ ݁ିλ∆t

ܹ
 and ܹ݁ିλ∆trespectively. Precursors which are produced by fission caused by 

neutrons (both by initial and delayed) are assigned weight of the decayed precursor i.e. ܹ൫1 െ

݁ିλ∆tሻ. The modeling of precursors is similar to what was done for Diffusion MC discussed in 

Chapter 4. 

The neutrons are tracked one by one. In the case of space dependent transport MC simulations the 

next event is a collision event, for which the coordinates of the collision point are also sampled in 

addition to the time and a check is made whether the particle has leaked out of the system, in which 

case the history is terminated. Time of the event of the neutron is estimated by 

ݐ ൌ െݐ 
௦

௩
(7.4) 

ݏ ൌ െ ଵ

ఀ
ln(7.5)                           ߦ 



Where, ݐ is the initial time, s is the distance travelled to the collision, v is the velocity of the 

neutron,  ߑ is the maximum total cross section of all materials of the medium and ߦ is a random 

number. The new (pseudo) collision point is obtained from the direction and the above sampled 

distance. The collision point is accepted as a real collision with a probability ߑ௧/ߑ. Else the point 

is rejected and treated as a pseudo collision. If the neutron lies within the time boundary and if the 

particle has suffered a pseudo collision then it is tracked in the same direction. If the event is 

recorded as a real collision, it is checked if the neutron has suffered scattering/ fission taking it into 

the same group or out of the group. The new weight of the neutron and its group (and direction from 

an isotropic distribution because both fission and scattering are assumed isotropic) are determined 

as per the prescription given in Eqs. (2.21- 2.24) using prompt ߥ for the number of secondaries in 

fission. If the neutron remains in the same group then the particle is tracked in the same group. If 

the neutron goes out of the energy group, then the particle is further tracked with the corresponding 

cross sections of that group. 

New precursors are produced with probability proportional toνβ. Delayed neutrons are then tracked 

in a similar way as the initial neutrons. To reduce the variance in power, the weight fluctuation of 

the neutron is controlled by restricting to lie within a window using splitting or Russian roulette. 

If the neutron crosses the boundary of the time bin, it is stopped midway in its flight and therefore 

its position is moved back from its actual collision point to the position where the time bin 

boundary was crossed. Likewise all the thermal neutrons, fast neutrons and delayed neutrons are 

tracked. At the end of the each of the time boundary, weights of the all the neutrons that crossed the 

time boundary are tallied as follows to give the instantaneous neutron power at that time given by 

ܲሺݐሻ ൌ ߝ ∑ ݓ ܸߑϐi      (7.6) 

whereߝ is the energy per fission, ݓ is the neutron weight of the ith neutron, Vi is velocity  of 

neutrons and ߑϐiis the fission cross section.  



Neutron population control scheme is applied to reduce the variance in power and time for 

computation. At the time boundary thermal neutrons population are normalized to value of 105 and 

the weights of the precursors are readjusted to normalize their numbers to the value of 105 

 

7.2Test Problem and Results 

7.2.1 1D Benchmark 

The standard problem described by Sjenitzer and Hoogenboom, 2013 was analyzed to test the 

transport MC technique discussed in Section 7.1. This is a one velocity neutron transport problem 

within arectangular material region of dimensions 10 x 12 x 24 cm placed in vacuum. The material 

cross sections and delayed neutron data are given in Table 7.1.  

Initially i.e. at t=0,the system is in the critical state with the precursors in equilibrium with the 

neutrons. At t=1 sec, a positive step reactivity of 2.1 mk is introduced by decreasing ߑof the 

system from 0.5882 cm-1 to 0.5870 cm-1. ߑ௧ of the system is kept constant by adjusting ߑ௦. At t=2 

sec, the system is brought back to the critical state. 

The concentration of the precursors,as calculated using equation (7.2) for this system, is about 109. 

The initial neutron and precursor spatial distributions(corresponding to the critical state) is 

generated from a criticality calculation and has an approximately cosine distribution as shown in 

Fig. 7.1. For 105 neutrons and 105 precursors are used for the simulation. Theprecursors are 

distributed in the 6 groups in ratio ofߚ ⁄ߚ , where ߚ is the delayed neutron fraction of the ith group. 

The initial weight of the neutrons is taken to be 1.0, while that of the precursors is 10000. All the 

precursors are forced to decay within each time bin. The bin width considered for the simulation is 

adjusted to keep the weights of the delayed neutrons about the same as that of the initial neutrons 

(i.e. about 1.0) and works out to be ~0.01 sec. The steady state Keff  at t=0 sec estimated by MC is 

0.9999 ± 0.0004. The neutron power at the end of the time bin was estimated using equation (7.6). 

The variation of neutron power with time obtained by simulation using transport MC is compared 

with the results of Hoogenboom et. al., 2013 in Fig. 7.2. The estimated absolute standard deviation 



in the power is about 0.05. The computing time for the simulation with this level of precision is 

about 30 CPU hrs for a single processor. The figure also shows the results obtained using the 

deterministic point kinetics code. The close agreement with the two MC results shows that this 

benchmark is essentially a point kinetics problem and the flux distribution probably changes little or 

not at all with time. To test the capability of the MC method developed by us, it is important to test 

it on space- time problems that involve significant change in the flux shape during the transient. 

This is done in the next sub-section. Fig. 7.3 shows the variation of the weights of each group of the 

precursors with time. It indicates the variation of the precursor concentration with time. 

 

7.2.2 TWIGL Transient Problem  

The TWIGL reactor (Hoffman, 2013) is a 2D seed-and-blanket geometry 1.6 m along each side. It 

is surrounded by a vacuum and typically modeled with one-quarter or one-eighth core symmetry. 

The problem geometry is displayed in Figure 7.4. The problem specifies one delayed neutron group 

and cross sections for two energy groups within three different material regions: Regions 1 and 2 

are seed regions while Region 3 is the blanket region. The transient was driven by varying the 

thermal absorption cross section in Region 1. Table 7.2 gives both the TWIGL reactor macroscopic 

cross sections by region and the kinetics parameters. The arrows in the table indicate the cross 

sections that are linearly-ramped or step-changed in the TWIGL transients. 

TWIGL reactor is modeled with quarter-core symmetry with 100 square “assemblies” that are 32 

cm on each side. These assemblies contained 4×4 cells that were 2 cm long and contained 25 square 

flat-source regions each. The transient evaluated is the TWIGL linear ramp. In this transient, the 

thermal absorption cross section in Region 1 is linearly decreased from 0.15 cm-1 to 0.1465 cm-1 

over a 0.2 sec period. Table 7.3 gives the comparison of the steady state Keff with estimated by 

KINMC with ANL05, 2005 and Reference Solution obtained by Time dependent MOC (Hoffman, 

2013). It is found that the estimated Keff values by KINMC are comparable with the deterministic 

values within the standard deviation. Fig. 7.5 gives the relative power estimated by KINMC. The 



reference solution (Time dependent MOC) is also shown for the purpose of comparison and 

comparison is found to be good. 

 

7.3 Conclusions 

In this Chapter, development of a multi-region multi-group Transport based MC kinetics code 

KINMC is discussed. KINMC is based on Transport MC Method and has the capability of solving 

multi group space time transients. It explicitly treats the six groups of precursors and uses the 

concept of mean number of secondaries in a collision for variance reduction. The efficacy of this 

method is tested by comparison with results of realistic space-time kinetics benchmarks based on 

Transport theory methods involving multi-region reactors and energy dependence,  

Comparison of our results with these benchmarks show satisfactory agreement and thus provides a 

more complete validation of our methods. The capability of KINMC code will be extended to 

perform continuous energy space time simulations based on transport MC methods in future. 

 



Fig. 7.1 Spatial distribution of the fission sites t=0.0 sec obtained for a critical state for 

Transport MC Benchmark. 

 
 

 
Fig. 7.2 A comparison of the neutron power estimated by MC with the Transport Monte 

Benchmark value. A step reactivity of 2.1 mk is added to the initially critical system at t = 10 

sec and subsequently the system is brought back to the critical state at t = 40 sec. 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig. 7.3 Variation of the (6 group) precursor concentrations as a function of time in the 

Transport MC benchmark 

 

KINMC
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Fig. 7.4 Geometry for the south-east quadrant of TWIGL  

 ݅ߚ

Fig.7.5 Comparison of the Relative Power of TWIGL Transient estimated by KINMC with 

Reference Solution (Time Dependent Method of Characteristics) 

 
 
 
 

Table7.1 Kinetics parameters and material cross sections of the Transport MC Benchmark 
 

0.001288 0.001459 0.00026 ݅ߚ 0.002788 0.000877 0.000178
 ( sec-1) 0.0127 0.0317 0.1156 0.311 1.4 3.87ߣ
 eff 0.00685ߚ

  avg( sec-1) 0.0784ߣ
 2.5 ߥ

 ௧(cm-1) 1.0ߑ
 (cm-1) 0.25ߑ
 (cm-1) 0.5882ߑ
 ௦(cm-1) 0.4118ߑ

V(cm/sec) 2.2x104 
 
 
 
 
 
 
 
 
 

Table 7.2 Cross Sections and kinetics parameters for the TWIGL Transients 



 
Region Group, 

 gߑ
 ߑ

cm-1 
 ߑߥ
cm-1

 ௧ߑ
cm-1 

 →ߑ
cm-1 

 →ᇱߑ
cm-1

1 1 
2 

0.01 
0.15     0.1465

0.007
0.2 

0.238095 
0.83333      0.82983

0.218095 
0.68333 

0.01 
0.0 

2 1 
2 

0.01 
0.15 

0.007
0.2 

0.238095 
0.83333 

0.218095 
0.68333 

0.01 
0.0 

3 1 
2 

0.08 
0.05 

0.003
0.06 

0.25641 
0.666667 

0.23841 
0.616667 

0.01 
0.0 

 

 

Table 7.3 Comparison of the steady state K-eff for TWIGL Benchmark 
 

 

 

V1= 107cm/sec, V2= 2x105cm/sec, ߯ଵ=1, ߯ଶ=0, ߚ ൌ ߣ ,0.0075 ൌ 0.08secିଵ 
 

 Reference 
Solution 

(Hoffman, 2013)

ALN05 
(ALN05,2005) 

KINMC 

K-eff 0.916051 0.916074 0.91619±0.00004 
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Highlights 

This thesis describes neutronic studies leading to the development of a time dependent Monte 

Carlo code, for use in time dependent situations such as pulsed neutron experiments and 

nuclear reactor transient analysis. Several new schemes have been proposed and developed to 

manage variance and computing time issues associated with MC based kinetics. These 

include measures for neutron and precursor population and weight control, forced decay of 

precursors without combining them together and the use of mean number of secondaries per 

collision. In this research work, the proposed new techniques are first applied to and tested in 

simpler models such as the Point Kinetics MC Model and the few group diffusion theory MC 

models, as it is easier to test new techniques in these simpler models. Moreover, since most 

space time kinetics benchmarks are based on few group diffusion equations solved by the 

finite difference method, the implementation in the diffusion theory MC model facilitates 

exact comparison with these benchmarks. A number of new developments in the theoretical 

basis of the diffusion MC model have been carried out. Application of Diffusion based MC 

has been extended for transient analysis and for the estimation of Higher Eigen modes. After 

testing the schemes (for reduction of variance / computing time) in these simpler models, 

they are implemented in a transport MC model and finally extended to the development of a 

multi-region multi-group MC kinetics code.  
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