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3-component broad-band station contain sufficient information required for 

categorizing a tsunamigenic earthquakes and hence azimuthal coverage of 

stations may not be necessary. The direct mapping of rms amplitudes of 

seismic phases to earthquake category using ANN proves to be extremely 

useful for the regions that are not adequately instrumented for azimuthal 

coverage. This chapter ends by bringing out the future scope. 
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and of 100% of the events with absolute error less than 0.35.  Subsequently an 

ANN based non-linear mapping of rms amplitudes of seismic phases to 

earthquake category has been developed. This mapping algorithm promptly 

identifies shallow focus (depth < 70 km) tsunamigenic earthquakes using the 

seismograms recorded by a single 3-component station located at regional 

distance. Besides location and magnitude, the root mean square amplitudes of 

seismic phases (i.e. P, S and LR) recorded by a single 3-component station 

have been considered as inputs and earthquake category as desired output to 

ANN. The trained ANN (say ANN I) has been found to categorize 100% of 

the new earthquakes successfully as tsunamigenic or non-tsunamigenic. The 

proposed method has been corroborated by an alternate mapping technique of 

earthquake category estimation. The second method involves computation of 

focal parameters (using say ANN-II), estimation of water volume displaced at 

the source and eventually deciding category of the earthquake. The method has 

been found to identify 95% of the new earthquakes successfully. The 

performance of direct mapping of rms amplitudes of seismic phases to 

earthquake category using ANN-I has been checked with the competitive 

mapping method namely SVM. The SVM have been found to categorize  91% 

of the new earthquakes successfully as tsunamigenic and non-tsunamigenic. 

The fair agreement between the two methodologies again ensures that the 

direct mapping of rms amplitudes of seismic phases to earthquake category 

using ANN is a reliable technique. The method would prove to be extremely 

useful for the regions that are not adequately instrumented for azimuthal 

coverage. 

Finally, Chapter 5 lists out major achievements of the research work 

emphasizing the role of machine learning techniques in identifying the 

tsunamigenic earthquakes. It has been observed that seismic records of a single 
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 Chapter 4 presents an application of the proposed method. For 

detection of seismic event, short period array (GBA) of India has been 

considered and for estimating moment magnitude as well as identifying the 

earthquake category, a single 3-component broad band station (PALK) of Sri 

Lanka has been chosen. The seismic event is detected by analyzing the change 

in spectral characteristics of noise and event using STFT and ANN. The 

smoothened amplitude spectra computed using STFT at noise and event 

window of width 3 sec in the frequency range 0.2 Hz to 20 Hz at an interval of 

0.4 Hz have been fed to an ANN which has been trained with past recorded 

events. The trained ANN has been found to have detection capability of 99% 

with an average error of ± 0.036 sec in onset pick up. The method has been 

tested with dataset of 148 events and the results have been compared with the 

conventional method of detection (STA/LTA) which has been found to detect 

84% of the new events with an average error of ±1.73sec in onset pick up. 

Once the event is detected online, its epicentral location is estimated by using 

conventional method. In this method, from the coherent signals recorded by 

GBA the time lags along the two arms are measured. Apparent phase velocity 

and back-azimuth are then estimated from these time lags using standard 

relations. From the knowledge of apparent velocity the epicentral distance is 

computed using a polynomial fit to the theoretical distance - velocity data. 

Knowing distance and back-azimuth the source location can be computed. For 

estimating moment magnitude ( wM ) the amplitude spectrum computed in the 

frequency range from 0.0098 Hz to 10 Hz from the vertical component of 

seismograms recorded by a single 3 component station have been used to train 

an ANN with wM  as desired output. The trained ANN has been found to 

estimate wM of about 73% of the new events with absolute error less than 0.1 
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Computing the P wave displacement amplitude spectra from the same 

seismogram, an ANN may be used to map these spectral amplitudes with the 

moment magnitude of the event. Confirming the magnitude of the event 

greater than 6.0 its category (i.e., tsunamgenic/non-tsunamigenic (T or NT )) 

could be estimated. Since the amplitudes of the seismic waves recorded at a 3-

component station at regional distance from a given geographical area differ 

from tsunamigenic (slow rupture earthquake) to non-tsunamigenic earthquakes 

originating from that area even if other conditions remain same the earthquake 

could be classified as tsunamigenic/non-tsunamigenic based on this change in 

amplitudes. For this task, an ANN could be trained with rms phase amplitudes 

along with location and magnitude as inputs and the as desired output for a 

large number of both tsunamigenic and non-tsunmaigenic earthquakes. 

Subsequently the trained ANN could be used to identify new tsunamigenic 

earthquake originating from the same geographical region based on the 

recordings from the given station. Again for a given source-station path, the 

seismic phase amplitudes are function of source strength (magnitude) and 

focal parameters. Therefore, another may be used for inverse mapping of this 

function to obtain the focal parameters. Knowing magnitude and focal 

parameters the volume of water displaced at the source could be estimated. 

Comparing the water volumes with the given earthquake category a tsunami-

volume scale may be established which could be used to find the category of 

new earthquake. This method of estimation of earthquake category will 

theoretically justify the direct mapping method of estimating earthquake 

category. This mapping could also be verified using the other non-linear 

mapping technique such as SVM. The proposed method has been developed 

for poorly instrumented region of the world where multi-station data may not 

be available.  
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computed using spectral technique such as STFT (Short-Time Fourier 

Transform). The window length could be selected such that it accommodates 

the onset times at two farthest channels along each of the arms of L shaped 

array corresponding to maximum lag. To map the spectral amplitudes with 

event or noise category, a machine learning algorithm such as ANN (Artificial 

Neural Network) may be used. For this, an ANN has to be trained with 

spectral amplitudes as inputs and event/noise (i.e. binary decision) as desired 

output for large number of events. After training, the trained ANN could be 

used to find the onset of new event online. For this, smoothened spectral 

amplitudes will be computed in a predefined time window for all the channels 

of the seismic array. These spectral amplitudes would then be fed to the 

trained ANN to obtain decisions corresponding to all the channels. If certain 

number say, K out of all the decisions show event for the given window it 

would be considered as a seismic event, otherwise it would be classified as 

noise. Once an event is declared, the starting time of the window, called the 

preliminary onset is noted and the procedure for fine detection will be started 

over a data block starting from preliminary onset minus one second to 

preliminary onset plus 3 sec. Within this data block corresponding to each 

channel, amplitude spectra will be computed for the same time window which 

will slide in steps of one sample to find the sample number at which the ANN 

shows decision as event. If the decisions are found to match K number of 

channels, the occurrence of an event will be declared. From the time lags of 

the seismic event recorded by various sensors of a seismic array the epicenter 

of the event could be estimated through the computation of apparent velocity 

and back azimuth (conventional method). Once the epicenter is known the idea 

about shallow focus depth of event could be obtained from the presence of LR 

phase on the seismogram recorded by a 3-component broad band station. 
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these limitations by the proposed method, which depends not only on 

magnitude but also source mechanism, has also been addressed in this chapter. 

This chapter ends by drawing an outline of the thesis.  

Chapter 2 provides detailed literature review. The cause and physical 

characteristics of tsunami have been discussed. Past records indicate that 75% 

of tsunamis are generated by shallow (depth < 70 km) undersea earthquakes. 

The tsunami generation by these earthquakes and tsunami propagation as well 

as inundation have been described. The methods involved in tsunami warning 

such as event detection, location, magnitude estimation, use of tsunami models 

and sea level gauges have been reviewed along with their limitations. The 

chapter ends by reviewing spectral analysis of seismic phases relevant to 

tsunami warning.  

 Chapter 3 describes the proposed method of identifying tsunamigenic 

earthquakes using broad band data of a single 3-componenet station located at 

a regional distance from the source. This method consists of four steps, namely, 

detection, location, magnitude estimation and identification of tsunamigenic 

earthquakes. Since detection and location of seismic events using seismic 

arrays are generally superior to that using single 3-component stations the 

proposed method introduces seismic array (preferably L shaped and short 

period) based detection and location of seismic events. The methods of 

magnitude estimation and tsunamigenic earthquake identification are based on 

single 3-component broad band records.  For detection a circular geographical 

region with center at seismic array and radius much more than regional 

distance may be considered. The data recorded on the array could be collected 

corresponding to a large number of seismic events which occurred in this 

region with varying magnitudes. Identifying the event onsets in a good channel, 

the smoothened amplitude spectra at event and noise windows could be 
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at regional distance from the recording station the epicenter, depth and 

magnitude could be estimated within 8 minutes of occurrence. This much 

delay is same as that taken by present tsunami warning systems. Confirming 

6wM and occurrence of a shallow focus (depth < 70 km) event from the 

presence of LR wave in the seismogram, root mean square (rms) amplitudes of 

seismic phases P, S and LR may be computed. These amplitudes together with 

location and magnitude can be used as inputs to train an ANN with earthquake 

category (i.e., Tsunamigenic (T)/ Non-tsunamigenic (NT)) as desired output. 

The trained ANN thereafter can be used to predict the tsunami potential of an 

earthquake [4]. This whole prediction procedure could be completed within 15 

minutes of occurrence of an earthquake. This prediction method has been 

validated via 1) computation of water volume by estimating focal parameters 

using another ANN and 2) mapping between rms amplitudes of seismic phases 

(along with location and magnitude) and earthquake category using Support 

Vector Machine (SVM) [5]. The single station based proposed tsunamigenic 

earthquake identification technique eliminates the requirement of the multi-

station data and complements the pre-computed database approach or tsunami 

forecast model based approach. The proposition is validated with seismic data 

recorded at short period array GBA (India) and 3-component broad band 

station PALK (Sri Lanka) for the earthquakes originated from the tsunami 

prone region, namely, Sumatra and is expected to be both faster and economic. 

  

4. Organization of the thesis 

 The thesis comprises five chapters. 

Chapter 1 introduces the research work. It states the objective and 

motivation of the work undertaken under the PhD program. The limitations of 

existing tsunami warning systems have been discussed. The elimination of 



iv 
 

 
3. Brief description of the research work 

 To circumvent the above difficulties faced by the existing tsunami 

warning systems a novel method of tsunami identification has been proposed 

using seismic data of a single 3-component broad band station. This will 

involve four tasks, namely, detection, location, magnitude estimation and 

identification of tsunamigenic earthquakes in near real time. Since the 

accuracy of detection and location of an earthquake obtained by a single 3-

component station is not very good, the first stage i.e., the detection and 

location of seismic event is carried out using the short period data recorded by 

a seismic array. The technique involved in detection is that the features 

extracted in the time-frequency domain using a suitable technique such as 

Short-Time Fourier Transform (STFT) for both signal and noise windows are 

compared with the pre-computed features using a popular pattern matching 

tool, Artificial Neural Network (ANN) to obtain onset of the event at 

recording station [2]. From the time lags of the seismic event recorded by 

various sensors of a seismic array, the epicenter of the event could be 

estimated through the computation of apparent velocity and back azimuth 

(conventional method). However, estimation of depth and true size (i.e., 

moment magnitude, wM ) of an earthquake is quite difficult or not possible 

using short period data. Therefore, the depth information (i.e. shallow focus 

depth) of an earthquake could be inferred from presence of LR wave (surface 

wave) in the seismogram recorded by a single 3-component station. The true 

size could be estimated shortly after the arrival of P wave in the same 

seismogram by computing the displacement spectral amplitude at P onset in a 

suitable window.  An ANN may then be used to map the computed 

displacement spectra and moment magnitude [3]. For an earthquake occurring 
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analysis will be initiated. The more accurate source parameters from this 

analysis will be available about 25 minutes after the origin time. Third step is 

to drive a run of tsunami forecast model based on these source parameters. The 

forecast coastal amplitudes become available about 35 minutes after the origin 

time. Lastly, the predicted costal amplitudes will be cross verified with the 

actual data available from the sea level gauges and the tsunami warning will 

be upgraded or downgraded accordingly. The whole procedure requires the 

involvement of multi-station data which may not be accessible by the poorly 

instrumented regions of the world. The computation delay of about 35 minutes 

may be prohibitively long for issuing alert at nearby coastal regions. Moreover, 

coastal gauges and deep-ocean gauges which are used to monitor sea level data 

to measure tsunami amplitudes have their own limitations. For example, tide 

gauges which are generally installed near the coast and are used as 

confirmation of tsunami could detect the tsunami only after the wave reaches 

near the coast and no time is left for warning. Alteration of local seafloor 

bathymetry and harbor shapes could also affect the tide gauge performance. 

The open sea buoys which are being used to detect the passage of tsunamis 

through deep seas are too expensive and difficult to maintain. Furthermore, a 

tsunami wave in deep-ocean has very small wave amplitude and a long 

wavelength making its detection difficult. 

 Because of these limitations, most of the initial tsunami warnings tend 

to generate false alarms that cause panic and questions about warning methods. 

Hence, alternative means of identifying tsunamigenic earthquake  is necessary 

and desirable. 
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determination of actual fault rupture characteristics is a time consuming 

process and often requires data from multiple stations distributed azimuthally 

around the source. Availability of such data within a short span of time after 

the earthquake is often difficult. To circumvent this difficulty, the present 

thesis aims to utilize the seismic data from a single 3-component station and 

develop a robust method of tsunami warning which is faster, more accurate 

(free from false alarms) and reliable. The central idea behind this method is 

that seismic signal is essentially the end result of the earthquake magnitude, 

fault rupture characteristics at the source, the propagation path effects and 

instrument response at the recording site. Thus, even if the source-station 

geometry remains fixed, the seismic phase amplitudes in the seismograms of 

two nearby earthquakes of comparable magnitude may differ due to the source 

rupture characteristics. The facts that the seismic wave travels faster than 

tsunami wave and the tsunamigenic potential of an earthquake could be 

determined from seismic data with reasonable accuracy motivates the present 

study to design a robust rapid identifier of tsunamigenic earthquake which will 

reduce the number of false tsunami alarms so that an effective and accurate 

early tsunami warning could be issued to reduce the hazards. 

2. Identification of the research problem 

 Currently, there are a few world-wide tsunami warning systems like 

PTWC and couple of regional warning centers like JMA, IOTWS etc. A 

typical tsunami warning procedure (as followed by PTWC) is as follows. First 

is the computation of epicenter, depth and magnitude of the earthquake with 

the seismic data available within 8 minutes of occurrence of earthquake.  

Secondly, if these parameters indicate the presence of a shallow focus (depth< 

100 km) undersea earthquake with magnitude greater than 6.5, a preliminary 

threat message will be issued and W-phase Centroid Moment Tensor (WCMT) 
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SYNOPSIS 

 
 
 

1. Introduction and Motivation 
 
Tsunami is one of the most destructive forces in nature and it can cause 

colossal loss of life and damage to property. Majority of tsunamis are 

generated by earthquake events which occur under the sea. Prompt 

identification of the earthquake that may generate tsunami, using a minimum 

of one 3-component station, is the main focus of this thesis. This is important 

because only a few earthquakes, located under the sea, produce severe 

tsunamis in a land mass located at a regional distance (~2000 km) from the 

source. For example the December 2004 Indian Ocean earthquake caused 

large scale devastation at Indian coast while the April 2012 Indian Ocean 

earthquake generated only minor tsunami waves. Thus, the knowledge, 

whether an earthquake will generate significant tsunami is critical for issuing 

an early tsunami alert. The mechanism that builds up the tsunami is very 

complex and most of the current methods based on magnitude and epicenter 

location alone are prone to large false alarm rate. This is evident from the fact 

that more than 50% warnings issued by Pacific Tsunami Warning Center 

(PTWC) are later found to be false [1]. 

The main reason for large number of false alarms in the existing 

methods is that they are essentially based on epicentral location and magnitude 

alone. It has been perceived that the tsunami generation not only depends on 

magnitude and epicenter location but also affected by other factors such as 

fault rupture characteristics (i.e. the amount of slip on the fault plane and focal 

mechanism), focal depth, water depth at the source, etc. However the 
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Motivation for choice of various techniques and tools, sensitivity of results to the 

choice of analyzing parameters have also been discussed. 

 
 Chapter 4 describes the application of the proposed method to a specific 

region. The results obtained by various techniques involved in the method are 

presented considering Sumatra region as tsunami source and GBA and PALK as 

recording stations. The fair accuracy of the method confirms that a prompt alert 

system could be developed based on proposed method. 

 Important conclusions and findings drawn from this research study are 

summarized in Chapter 5 along with the possible direction for future work. 
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extremely important for the possible devastation in coastal regions of India. The 

detection and location using seismic array such as GBA (Gauribidanur Array, India) 

proved to be very accurate. The use of seismic records of a single 3-component station, 

namely, PALK (Pallekele, Sri Lanka) makes the proposed method an effective mean 

of identifying tsunamigenic earthquakes. It may be noted here that the proposed 

method for identification of tsuanmigenic earthquakes which seems to be very 

effective for the chosen source-station pair in the present work, namely, GBA/PALK-

Sumatra, would be equally applicable for other regional source-station pairs in the 

world with ANNs trained specifically for those pairs. It may also be mentioned here 

that in case the training is done with the recordings of more than one station located in 

close vicinity, the classification results will hold and should further improve 

robustness of the prediction. 

1.5 Outline of the thesis  
 

This thesis is on the identification of tsunamigenic earthquakes from the 

analysis of the seismic signals of the earthquakes. The thesis comprises five chapters. 

Chapter 1 introduces the objective and motivation of thesis work. The existing 

tsunami warning systems and their limitations have been discussed. The limitations 

overcome by the proposed method have also been discussed. An outline of the thesis 

work is given at the end of the chapter.  

Chapter 2 provides details on literature review. The cause and physical 

characteristics of tsunami wave have been discussed. The concept of tsunami 

generation, propagation and inundation has been stated. The chapter ends with a 

detailed discussions on existing tsunami warning methods. 

Chapter 3 presents the proposed method of tsunami warning in detail. 
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ANN with earthquake category (i.e., Tsunamigenic (T)/ Non-tsunamigenic (NT)) as 

desired output. The trained ANN thereafter can be used to predict the tsunami 

potential of an earthquake [4]. This whole prediction procedure could be completed 

within 15 minutes of occurrence of an earthquake. This prediction method has been 

validated via 1) computation of water volume by estimating focal parameters using 

another ANN and 2) mapping between rms amplitudes of seismic phases (along with 

location and magnitude) and earthquake category using Support Vector Machine 

(SVM) [5]. The single station based proposed tsunami identification technique 

eliminates the requirement of the multi-station data and complements the pre-

computed database approach or tsunami forecast model based approach. The 

proposition is expected to be both faster and economic. 

 At a station, located at regional distance from the seismic source, a number of 

seismic phases are recorded. The onsets and amplitudes of these phases will be 

different. In the chosen problem domain, three phases, namely, P, S and LR have clear 

onsets. Out of these, P is the fastest phase whereas LR is the slowest one. As far as 

severity is concerned LR is the most damaging phase because of its largest amplitude. 

Therefore, LR is the phase which carries more information about tsunami. As far as 

rapid estimation of tsunamigenic potential is concerned, P phase appears as a first 

choice due its higher speed of travel through earth and earlier arrival at the detector 

compared to other phases. However, the present method utilizes all three waves (i.e., P, 

S and LR) for efficient mapping between seismic phase amplitudes and earthquake 

category. 

 The proposed method has been applied to one of the known sources of worst 

tsunamis, namely, Sumatra region. The tsunamis originating in this region are 
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location of an earthquake obtained by a single 3-component station is not very good, 

the first stage i.e., the detection and location of seismic event has been carried out 

using the short period data recorded by a seismic array. The technique involved in 

detection are  the features extracted in the time-frequency domain using a suitable 

technique such as Short-Time Fourier Transform (STFT) for both signal and noise 

windows. These are compared with the pre-computed features using a popular pattern 

matching tool, Artificial Neural Network (ANN),  to obtain onset of the event at 

recording station [2]. From the time lags of the seismic event recorded by various 

sensors of a seismic array the epicenter of the event could be estimated through 

computation of apparent velocity and back azimuth (conventional method). However, 

estimation of depth and true size (i.e., moment magnitude, wM ) of an earthquake is 

quite difficult or often is not possible using short period data. Therefore, the depth 

information (i.e. shallow focus depth) of an earthquake could be inferred from 

presence of LR wave (surface wave) in the seismogram recorded by a single 3-

component station. The true size could be estimated shortly after the arrival of P wave 

in the same seismogram by computing the displacement spectral amplitude at P onset 

in a suitable window. An ANN may then be used to map the computed displacement 

spectra and moment magnitude [3]. For an earthquake occurring at regional distance 

from the recording station, the epicenter, depth and magnitude could be estimated 

within 8 minutes of occurrence. This delay is nearly the same as that taken by present 

tsunami warning systems. Confirming 6wM and occurrence of a shallow focus 

(depth < 70 km) event from the presence of LR wave in the seismogram, root mean 

square (rms) amplitudes of seismic phases P, S and LR may be computed. These 

amplitudes together with location and magnitude can be used as inputs to train an 
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number of stations are required it inherently involves computational delay. Besides, 

there is also delay involved in the computation of the forecast of coastal amplitudes by 

running a tsunami forecast model using the accurate parameters obtained from 

moment tensor inversion and comparing those amplitudes with the actual sea level 

data monitored by the sea level gauges.  

1.4Proposed method of identification of tsunamigenic earthquakes 

 To overcome the limitations of the existing tsunami warning methods a novel 

method of tsunami warning is proposed in this thesis. As far as seismic means of 

evaluation of tsunami potential of an earthquake is concerned, there are four 

challenges, viz., reliable detection, accurate location estimation, magnitude estimation 

and identification, in case the earthquake is tsunamigenic. Proper onset detection is an 

important task because the accuracy of location estimation heavily depends on 

accurate estimation of P phase arrival. This estimation of the seismic source location, 

in turn, indicates the coastal regions to be affected by the impending tsunami. Being a 

crucial parameter, the moment magnitude also demands accuracy in its estimation for 

evaluation of tsunami potential of a shallow focus, under-sea earthquake. The real 

challenge is to categorize an earthquake to be tsunamigenic or not, based on data 

recorded by a single station or more than one station located in a narrow band of 

azimuthal angle. It takes some time to lay hands on the data records from all azimuthal 

angles. Further, in a poorly instrumented region, it is desirable to categorize a regional 

earthquake promptly, based on a single station data as the arrival time of tsunami may 

be too short to wait for the full azimuthal data. 

 In the proposed method tsunamigenic earthquakes are identified using seismic 

data of a single 3-component broad band station. Since the accuracy of detection and 
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From Fig. 1.1  it is seen that the preliminary tsunami threat message which is 

generated typically 8 minutes after the occurrence of earthquake can be verified either 

by the measurement of sea level data or performing W-phase Centroid Moment 

Tensor (WCMT) analysis and subsequently by driving a run of tsunami forecast 

model. However, these verifications take about 35 minutes from the origin of 

earthquake and may be prohibitively long for issuing alert at nearby coastal regions. 

Even though the 

and focal parameters using WCMT analysis complements the preliminary estimation 

of tsunami threats, it requires the involvement of multiple stations which may not be 

accessible by the poorly instrumented regions of the world. 

 Moreover, coastal gauges and deep-ocean gauges which are used to monitor 

sea level data to measure tsunami amplitudes have their own limitations. For example, 

tide gauges which are generally installed near the coast and are used as confirmation 

of tsunami could detect the tsunami only after the wave reaches near the coast and no 

time is left for warning. Alteration of local seafloor bathymetry and harbor shapes 

could also affect the tide gauge performance. The open sea buoys which are being 

used to detect the passage of tsunamis through deep seas are too expensive and 

difficult to maintain. Furthermore, a tsunami wave in deep-ocean has very small wave 

amplitude and a long wavelength making its detection difficult.  

 The large computation delay involved in the existing tsunami warning method 

is mainly due to the computation of accurate source parameters (e.g., location, 

magnitude, focal and parameters) using moment tensor inversion technique. It 

basically generates synthetic seismogram and compares it with the observed one for a 

large number of stations using least-squares inversion method. Since data from a large 
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accurate early tsunami warning could be issued to reduce the hazards. The motivation 

behind using single 3-component seismic data is to develop a fairly accurate tsunami 

warning method which uses minimum resources. This will assist the poorly 

instrumented regions of the world to assess tsunami potential. 

1.3Limitations of the existing tsunami warning systems  
  
 Currently, there are a few world-wide tsunami warning systems like PTWC 

and couple of regional warning centers like JMA, IOTWS etc. A typical tsunami 

warning procedure (with timeline) as followed by PTWC is shown in Fig.1.1.  

Fig. 1.1: A typical tsunami warning procedure with timeline. 
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( wM 9.0~9.3) Indian Ocean earthquake caused one of the deadliest tsunamis in the 

recorded history. The mechanism that builds up the tsunami is very complex and most 

of the current methods based on magnitude and epicenter location alone are prone to 

large false alarm rate. This is evident from the fact that more than 50% warnings 

issued by Pacific Tsunami Warning Center (PTWC) are later found to be false [1]. 

It has been perceived that the tsunami generation not only depends on 

magnitude and epicenter location but also affected by other factors such as fault 

rupture characteristics (i.e. the amount of slip on the fault plane and focal mechanism), 

focal depth, water depth at the source, etc. However the determination of actual fault 

rupture characteristics is a time consuming process and often requires data from 

multiple stations distributed azimuthally around the source. Availability of such data 

within a short span of time after the earthquake is often difficult. To circumvent this 

difficulty, the present thesis aims to utilize the seismic data from a single 3-component 

station and develop a robust method of tsunami warning which is faster, more accurate 

(free from false alarms) and reliable. The central idea behind this method is that 

seismic signal is essentially the end result of the earthquake magnitude, fault rupture 

characteristics at the source, the propagation path effects and instrument response at 

the recording site. Thus, even if the source-station geometry remains fixed, the 

seismic phase amplitudes in the seismograms of two nearby earthquakes of 

comparable magnitude may differ due to the source rupture characteristics. The facts 

that the seismic wave travels faster than tsunami wave and the tsunamigenic potential 

of an earthquake could be determined from seismic data with reasonable accuracy 

motivates the present study to design a robust rapid identifier of tsunamigenic 

earthquake which will reduce the number of false tsunami alarms so that an effective, 
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Chapter-1 
 

Introduction 
 

 
1.1Objective  

 Tsunami is one of the most destructive events in nature triggered primarily by 

undersea earthquakes. It has caused catastrophic devastations all over the globe, 

several times in the history of mankind. Since tsunami occurs suddenly, without any 

prior warning, lives of the coastal communities are put to extreme danger. The main 

objective of this thesis is to present a purely seismological method by which a 

tsunamigenic earthquake can be identified promptly using seismic data of at least one 

3-component station located at a regional distance (~2000 km) as well as an effective 

and accurate warning could be issued early enough to reduce the hazards. This method 

would prove to be extremely useful for the regions that are not adequately 

instrumented for azimuthal coverage. 

1.2 Motivation 
 

About 75% of the tsunamis are caused by subduction zone earthquakes in the 

ocean (United States Geological Survey (USGS)). Not all undersea earthquakes, even 

with sufficiently large magnitudes cause tsunamis. Located within a close proximity 

and with comparable magnitudes, some earthquakes produce very severe tsunamis 

than others in a regional land mass. For example, the April 2012 ( wM 8.6) Indian 

Ocean earthquake did not generate any significant tsunami, while the December 2004 



28 
 

frequency energy compared to non-tsunamigenic earthquakes using wavelet transform 

of all phases in the seismogram. Chamoli et al. [61], using the wavelet transform of 

first few minutes of the seismogram, have established that tsunamigenic earthquakes 

do not show any significant amplitude for frequencies higher than 0.33 Hz. Ewing et. 

al. [62] first proposed T waves as an analyzing tool for predicting an earthquake as 

tsunamigenic or non-tsunamigenic. Hiyoshi et al. [63] showed that tsunamigenic 

earthquakes have larger T-phase spectral strength and 0M  than non-tsunamigenic 

earthquake. However, Okal et al. [64] showed that tsunamigenic earthquakes have 

smaller 0M  and T-phase spectral strength compared to the non-tsunamigenic 

earthquakes. They attributed this deficiency in T-waves in tsunamigenic earthquakes 

as a direct result of the slow rupture velocities. Therefore, the research on the T-waves 

with regard to prediction of an earthquake as tsunamigenic is not conclusive and even 

contradictory. Furthermore, the data for T-waves is limited by the availability of 

hydrophones. 

To circumvent the difficulties faced by the existing tsunami warning system, 

the present thesis aims to develop an alternative method to reach a decision in the 

quickest possible time for a more accurate, fast and reliable tsunami warning that has 

been described in the next chapter. 

 

  



27 
 

 
2.3.5 Review on sea level gauges 

 To verify the existence of a tsunami and to calibrate models the continuous sea 

level data from coastal tide gauges and where available, data from Deep Ocean 

 Four types 

of tide gauges namely, 1) stilling well and float, 2) pressure systems, 3) acoustic 

systems and 4) radar systems are used to measure sea level variations. Tide gauges 

that initially detect tsunami waves provide little advance warning at the actual location 

of the gauge. Open ocean buoy systems equipped with bottom pressure sensors are 

now a reliable technology that can provide advance warning to coastal areas that will 

be first impacted by an ocean-wide tsunami, before the waves reach them and nearby 

tide gauges. Open ocean buoys often provide a better forecast of the tsunami strength 

than tide gauges at distant locations. However, open sea buoys are too expensive and 

difficult to maintain. 

2.3.6. Review on spectral analysis of seismic phases 

 Researchers have also tried to estimate the tsunamigenic potential of an 

earthquake analyzing the spectral contents of either a particular seismic phase or all 

phases in the seismogram. For example, W-phase, which is interpreted as 

superposition of overtones of long-period Rayleigh waves or superposition of 

multiple-reflected phases like PP, PPP, etc. is used as an indicator of tsunami 

potential. Lockwood and Kanamori [59] reported that tsunamigenic earthquake 

generates a W-phase of significantly greater amplitude compared to the non-

tsunamigenic earthquake. However, the W-phase is registered only at very far stations 

and thus put a constrain for early warning. Chew and Kuenza [60] have shown that 

the tsunamigenic earthquakes are depleted in high-frequency energy but rich in low 
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2.3.4 Review on tsunami models 

It is well known that the tsunami generation depends not only on magnitude 

and location but also on other factors such as the amount of slip on the fault plane and 

focal mechanism, etc. To complement the tsunami warning method based mainly on 

location and magnitude, pre-computed database approach has evolved. For example, 

Indian Tsunami Early Warning System (ITEWS) operated by Indian National Center 

for Ocean Information Services (INCOIS) uses a numerical modeling technique based 

on finite difference code of TUNAMI-N2 [19] to determine the potential run-ups and 

inundation for local or distant tsunami. The TUNAMI-N2 model takes the seismic 

deformation as input to predict the run-up heights and inundation levels at coastal 

region for a given tsunamigenic earthquake. At the time of earthquake, only location 

and magnitude are available immediately. These are subsequently used to search the 

pre-computed data base developed on the basis of worst case scenario for given 

regions to issue a first alert of an impending tsunami. However, pre-computed 

database models are confined to specific ocean basins and cannot be used to forecast 

ocean-wide tsunamis, such as the 2004 Indian tsunami [58]. Therefore it would not be 

possible with database approach to forecast tsunamis in real-time for earthquake in 

any location with any focal mechanism using rapidly derived earthquake parameters. 

To complement the pre-computed database approach PTWC has developed Real-time 

Inundation Forecast of Tsunamis (RIFT) model which include 40 pre-defined ocean 

basins and major marginal seas [58]. This model can account for both local and global 

domains and can handle multiple events in different or in the same ocean basins. 

Nevertheless this forecast which is typically available in about 35 minutes after the 

occurrence of earthquake is sensitive to the model inputs such as earthquake 

magnitude and focal mechanism. 
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relationship: 

10 0log 13mM M  (2.7) 
 
 
where 0M  is in Nm. The mM  (a variable period magnitude) is potentially available 

within about 20-50 min after origin time of the event at 30- mM

can be used only for distant tsunami warning. 

P -wave Duration-amplitude magnitude ( wpdM )  

 
 Lomax et al. [52] developed a duration-amplitude procedure to obtain 

earthquake moment magnitude, wpdM from P wave recordings. This procedure 

determines apparent source durations (i.e. rupture duration), 0T  from high frequency 

P wave records and then estimates moments through integration of broad-band 

displacement waveforms over the interval pt to 0pt T , where pt is the P-arrival time. 

wpdM which is obtained from moment through scaling relation can be estimated  

within 20 min or less after the earthquake origin time. This magnitude does not face 

the problem of saturation. Nevertheless the tsunamigenic potential obtained from 

wpdM is not confirmatory. 

 Presently the accurate estimation of location and magnitude are carried out 

through moment tensor analysis using multi-station data. However, the computational 

delay which is of the order of 25 minutes from the occurrence of earthquake may put 

constrain for early warning. 
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1 1 2( , )oM C Max p p p  (2.4) 

 
where 1p and 2p are the first peak and the second peak values in the integrated 

displacement seismogram. Then P-wave moment magnitude, wpM , is computed at 

each station with no correction for the radiation pattern using the standard moment 

formula: 

0

2
log 6.07

3wpM M  
(2.5) 

 
 

Where 0M  is in Nm. wpM is calculated at three or more stations and an average 

value is obtained. Finally corrected wpM  is obtained by adding 0.2 to the averaged 

wpM  where 0.2 accounts for the double couple radiation pattern, 
s

p . However, 

wpM  underestimates wM  for very large earthquakes and saturates at about wM  

8.3. This indicates that estimation of tsunamigenic potential using wpM  is not 

satisfactory for large earthquakes.  

 Mantle wave magnitude ( mM ) 

 
The mantle magnitude ( mM ) is computed from the mantle wave, which is a 

very long-period surface wave (Rayleigh) with corresponding wavelength of several 

hundred to about 1000 kilometers. Mantle waves are generated by the large 

earthquakes. The mM  [55-57] is computed from Fourier spectral amplitude ( )X  of 

mantle Rayleigh waves at variable long periods (>50 s) from teleseismic stations. 

10log ( ( )) 3.9m d sM X C C  (2.6) 

 
Where dC  is distance correction and sC  is source correction (both these constants are 

period dependent). Then the seismic moment ( 0M ) is calculated using a very simple 
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from a network. Arrays provide estimates of the station-to-event azimuth and the 

apparent velocity of seismic signals (generally using frequency-wavenumber (f-k) 

analysis). These estimates are used to locate event.  However, array processing 

techniques require high signal coherency across the array. 

2.3.3.Review on magnitude estimation 

 To improve the accuracy of tsunami forecasts, the magnitude estimation 

methods based on seismic information such as the P-wave moment magnitude, wpM

[48-49], mantle magnitude, Mm [50-51], P-wave duration-amplitude magnitude wpdM

[52] are used. These are reviewed here. 

Moment magnitude ( wpM )  

 
Tsuboi et al. [48, 53] developed wpM  method to determine magnitude rapidly 

from teleseismic P-waves (in the period range 10 to 60 s). This method was developed 

for shallow earthquakes (<70 km) for which the seismic waves experience less 

attenuation. It estimates P-wave seismic moment, oM using a broadband vertical 

displacement (BHZ channel) seismogram, as given below: 
 

0

0

34
( ( , ) ) ;
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t

o z p
t

r
M C Max u x t dt C  

(2.3) 

 

where 0t  is the P wave arrival time, r is fault rupture duration and ( , )zu x t  is the 

attenuation-corrected vertical displacement. C is a constant that depends on density 

( ) of rocks at the source, P-wave velocity ( ), double-couple radiation pattern for 

P-wave (
s

p ) and epicentral distance ( r ). The radiation pattern depends on the take-off 

angle ( ) and fault strike angle ( s ).
s

p is 0.63 [54]. By integrating, the above 

equation reduces to: 
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2.3.2. Review on event location 

 It is possible to get an approximate location of an earthquake manually. If the 

seismic network is dense and the earthquake is originated inside the network, the 

station with the earliest arrival can be approximated as the epicenter. This is called 

earliest station method, and it gives an estimate with a probable error of the same 

order as the station spacing. A pretty good approximation of the epicenter can be 

made by arc method or circle method with three or more S-P times. 

 It is, however, possible to use a single seismic station to obtain a crude 

estimate of earthquake location [45].  Single-station method requires three-component 

recordings of ground motion.  Since P waves are vertically and radially polarized, the 

vector P-wave motion and the amplitude ratio on two horizontal components (AE/AN) 

can be used to infer the back azimuth (against North) from station to the source.  If the 

vertical motion of the P-wave is upward, its radial component is directed away from 

the epicenter.  If the vertical component of the P-wave is downward, the radial 

component is directed toward the epicenter.   

 When several stations are available, the earthquake location problem is 

resolved mathematically by least squares method which gives a precise hypocenter 

location of the earthquake. Most of the location algorithms in common use are based 

[46]. Genetic algorithms which work on minimizing some misfit 

criteria of the data also find application in estimating hypocenter of earthquake [47]. 

 Event location using an array is superior to those using single 3-component 

stations. A seismic array differs from a local network of seismic stations mainly by the 

techniques used for data analysis. In principle, a network of seismic stations can be 

used as an array and on the other hand data from an array can be analyzed as data 
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irrelevant ones (noise) decay quickly at larger scale indices. As a further development 

many other methods such as hybrid techniques [38-39], the cross correlation [39] and 

the higher-order statistics [40-43]) have also been emerged as onset pickers. The 

hybrid techniques combine the results of three methods namely 1) energy analysis, 2) 

instantaneous frequency, and 3) autoregressive representation of the trace to pick 

onset time of arrivals that have different dependences on noise and signal content. The 

cross correlation works on the quantification of the existing similarity between a 

reference event signals, considered as a template, and the successive incoming data in 

a time window. The algorithm based on higher-order statistics, involves computation 

of the characteristic functions (CF) which are derived by kurtosis over several 

frequency bandwidths, window sizes, and smoothing parameters. The algorithm 

determines the onset type (P or S) using polarization parameters, removes bad picks 

using a clustering procedure and assigns a pick quality index based on the signal to 

noise ratio (SNR). However all these methods share a common disadvantage that they 

require one or more of the following information (a) detection interval, (b) threshold 

settings, (c) an approximate knowledge of the move out character for an event, and (d) 

tuning of picking parameters specific to intensity and/or frequency content of the 

signal a priori [44]. Despite the vast amount of research in this field, the signal 

processing algorithms for the detection of seismic events have not yet fully come of 

age. 
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[20]. Typically these warning systems follow a common procedure - detection, 

location, magnitude estimation, computation of tsunami amplitudes and travel times 

using either pre-computed database approach or real-time tsunami forecast model and 

finally comparison with the actual data of sea level gauges. A brief review on these 

stages is stated below. 

2.3.1. Review on event detection 

 Accurate identification of onset of an event in seismic data is extremely 

important so far as source parameter estimation is concerned. An onset picking task 

has two steps: detecting a phase and reading its arrival time. A number of detecting 

methods using either the recordings of single 3-component stations or multi-station or 

seismic array have been proposed in the past. These methods are broadly classified 

into four categories: time domain, frequency domain, particle motion processing, and 

pattern matching [21]. The most widely used method of onset picking is the time-

domain short-term average to long-term average (STA/LTA) algorithm and its 

variants [22-28]. The method uses the ratio STA/LTA to detect phases. This technique 

is well suited for detecting amplitude changes. However, its accuracy heavily depends 

on the detection interval and threshold settings. It is prone to pick up pulse-like noises, 

especially those contained in micro tremors, unrelated to the earthquake signal [29]. In 

recent years, Artificial Neural Network (ANN) [30-34] has found potential application 

in the design of onset picking tools. ANN works on positive correlation with patterns 

of some known earthquakes and noise signals. Furthermore Wavelet Transform (WT) 

[35-37] has also been used for picking onset. WT decomposes the signal at different 

scales and adaptively characterizes its components at different resolutions. The 

primary features in the signal (phase arrivals) are retained over several scales and 
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viz. seismic moment, 0M  and tsunami amplitude decay, Q which accounts for 

geometrical spreading and frequency dispersion at coastline. Actually 0M  determines 

the initial tsunami wave height profile at the earthquake source and Q  determines the 

tsunami strength at the distant coastal areas. The Q factor depends on seafloor 

bathymetry and presence or absence of barriers (like islands) that could reflect and 

refract the water waves. Due to geometrical spreading tsunami wave amplitude drop 

with distance ( r ) approximately as 0.5r whereas  due to frequency dispersion near the 

shoreline tsunami wave amplitude drop as r , where the decay factor is in the 

range 1/8 to 1/2 depending on the frequency content of the tsunami wave [7]. Larger 

magnitude earthquakes produce greater tsunami at the same epicenter distance and 

generate longer period waves that are less affected by dispersion, so waves from them 

decay more slowly with distance. 

In the context of tsunami early warning systems, tsunami simulations can be 

used to provide information about expected arrival time, maximum wave height and 

inundation at the risked coastlines. In the next section, tsunami warning systems are 

reviewed. 

2.3 Review on existing tsunami warning systems 
 

A tsunami warning system has existed in the Pacific Ocean since the late 

1940s. Current tsunami warning systems can be grouped into a Pacific-wide system 

and regional (or local) systems. The Pacific Tsunami Warning Center (PTWC), 

located in Hawaii, monitors seismic and tsunami waves and issues tsunami warnings. 

The French Polynesia Tsunami Warning Center developed and adopted TREMORS 

(Tsunami Risk Evaluation through seismic Moment in a Real-time System) in 1987 
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But the most popular model for tsunami generation modeling is the Okada [14] model 

for finite rectangular source. 

 
 

However all these models are based on the assumption that seafloor 

displacement is smooth and the rupture is instantaneous. But in reality the actual 

seafloor displacement is complicated and for earthquake of large magnitude 

instantaneous rupture assumption may fail. Although several complex numerical 

models have evolved but they are not yet disseminated in tsunami research circle [15]. 

2.2.2 Tsunami propagation 
 

Tsunami propagation is the second phase of tsunami evolution. From the 

generation point the tsunami wave propagates in both the directions. As a result, one 

side of the fault experiences receding while other side observe sudden rise in water. 

There are 3 prominent computational tsunami propagation models: 

(1) The Method Of Splitting Tsunami (MOST): It was developed originally by 

researchers at the University of Southern California [16], (2) The Cornell Multi-grid 

Coupled Tsunami Model (COMCOT), which was developed by researchers at Cornell 

University [17], and (3) The TUNAMI which was developed at Tohoko University in 

Japan [18-19]. All these models solve the same Nonlinear Shallow Water Equations 

(NSWE) with different finite-difference algorithms. They can simulate tsunami 

propagation over a long distance with a fairly high accuracy, provided that the initial 

wave profile and the sea bottom bathymetry data are accurate. 

 
2.2.3 Tsunami inundation  
 

The inundation of land is the third phase of tsunami evolution. It is difficult to 

predict the largest tsunami wave height expected at a distance r  from an earthquake 

of certain magnitude wM . It can be addressed with the help of two important factors 
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area, respectively. It is known that 

is the tsunami, if all other conditions remain same.  

 
Focal mechanism specifies the orientation of the earthquake fault and the 

direction of slip on the fault plane with faults idealized as rectangular planes. Three 

angles the strike ( s ), the dip ( ) and slip ( ) determine the type of faulting and the 

direction of tsunami propagation. Tsunami occurs mainly due to the thrust (dip-slip) 

faults that cause vertical uplifting of the water column above the plate while the 

strike-slip faults, which involve no vertical displacement, are less likely to produce 

tsunamis. However, Tanioka et al. [9] showed that it is also possible for a strike-slip 

fault to generate tsunamis, where horizontal displacement of a steep slope failure 

leads to a significant displacement of the water column. 

The far-field tsunami depends mainly on the seismic moment [10]. But for 

local tsunamis (for which tsunami can strike the coastline within few to 10 minutes), it 

is difficult to obtain accurate, near real-time 0M information. Usually, the local (or 

near-field) tsunami is too rapid for any meaningful attempt to prediction. 

The tsunami generation process can be modeled numerically. One such model 

is the point source model formulated by Steketee [11]. He explicitly derived the 

expressions of displacement fields at an observation point due to a slip across a fault 

surface by a point source in an isotropic semi-infinite solid medium for 3 different 

fault types (i.e. Strike-slip, Dip-slip and Tensile faults).Based on the point source 

model several theoretical formulations have been developed which describe the 

deformation of an isotropic homogeneous semi-infinite medium. For example, 

Maruyama [12] gave the expressions of surface displacements due to vertical and 

horizontal tensile faults in a semi-infinite Poisson solid and  Davis [13] derived an 

expression of the vertical displacement due to an inclined tensile fault in a half space. 
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potential of accumulating stress resulting in most of the tsunamis generation. The 

basic mechanism of tsunami generation by earthquake is depicted in Fig. 2.6 [8]. 

 

Fig. 2.6: Idealized cross-section through subduction zone showing tsunami generation 
from earthquake. Relationship of subducting plate (left) to overriding plate (right). 
Sudden release of strains accumulated over centuries result in a large seafloor uplift 
causing tsunami. 
 
The Fig.2.6 shows that the interplate contact exhibiting stick-slip friction that drags 

the overriding plate down with it and at the same time deforming it. Eventually the 

stress building up on this interplate contact exceeds the strength of the rocks, and the 

plate simply pops back up into position. When it does that, a mass of water is pushed 

vertically upward, and that is what causes a tsunami. 

Tsunami generation is affected by the seismic moment, focal mechanism, focal 

depth and other factors. The earthquake size is expressed in terms of seismic moment, 

0M DA , where , D and A  are rigidity of rocks, average slip and fault surface 
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2.4). Depending on the type of boundary, two lithospheric plates can separate from 

each other, slip along each other or override each other (Fig. 2.5) 

 

Fig. 2.4: The three principal types of tectonic plate margins and various associated 
features. 

 

 

Fig.2.5: Activity at lithospheric plate boundary. 
 

The subduction type of convergent plate boundary is known to have the largest 
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onshore above sea level, called a run-up height, of about 30 meters. A notable 

exception is the landslide generated by tsunami in Lituya Bay, Alaska in 1958 which 

produced a 60 meter high wave. 

2.2 Review on tsunami generation and propagation and inundation 
 

Tsunamis evolve through three quite distinct physical processes: (1) generation 

by a force (earthquake, volcano, submarine landslide etc.) that disturbs the water 

column, (2) propagation from deeper water near source to shallower coastal areas, and 

(3) inundation of dry land. Of these three phases, propagation is best understood, 

whereas generation and inundation are more complex and difficult to model with 

computer simulations. This thesis focuses mainly on the first process that is the initial 

tsunami generation by earthquake and its identification. However, the later processes 

are also briefly discussed here for complete understanding of the tsunami problem. 

2.2.1 Tsunami generation by earthquake 
 
 Past records indicate that 75% of tsunamis are generated by shallow undersea 

earthquakes as shown in Fig.2.3.  

 

Fig. 2.3: Tsunami sources highlighting earthquakes as the dominating source. 
 

Tsunamis are generally generated at the lithospheric plate boundaries. These plate 

boundaries are of three types: divergent, strike-slip or transform and convergent (Fig. 
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reduction in kinetic energy from the retarding propagation of the wave is transferred 

to potential energy which causes an increase in the amplitude of the wave leading to 

significant inundation of coastlines (Fig. 2.2).This phenomenon, called shoaling 

effect, causes a tsunami, imperceptible at sea, to grow several meters or more in 

height near the coast. If the trough of the tsunami wave reaches the coast first, this 

causes a phenomenon called drawdown, where it appears that the sea level has 

dropped 

 

Fig. 2.2:Tsunami waves drag on sea bottom near coastline, becoming shorter in 
reaking at the shore. Here 

h1>h2and  . 
 

considerably.  When the crest of the wave hits, sea level rises (called run-up).  Run-up 

is usually expressed in meters above normal high tide.  Run-ups from the same 

tsunami can be variable because of the influence of the shapes of coastlines. The 

flooding of an area can extend inland up to 300 m or more, covering large areas of 

land with water and debris. Flooding tsunami waves tend to carry loose objects and 

people out to sea when they retreat. Tsunami may reach a maximum vertical height 
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quantities vary both as a function of water depth and wave period. However, at T>100 

sec both phase and group wave velocities approach gh . This happens in the open 

ocean, where the wavelength of a tsunami is usually of the order of 100 km, wave 

amplitude ( ) is less than 1 m, and the average water depth (h) is few kilometers (e.g. 

4 km for Indian Ocean). Thus, the relative depth ( h ) and wave steepness (  ) are 

much smaller than unity. The ratio 1
h indicates non-dispersive nature of wave 

while 1 gives linearity of the tsunami wave. Therefore, under these two 

conditions (which is satisfied in open ocean), linear non-dispersive wave theory is 

valid and can be used to model tsunami wave propagation. Non-dispersive wave 

motion refers to the motion of wave in which the wave disturbance does not change 

shape as it propagates. For this to occur, all components of the wave must travel with 

the same speed. The rate at which a wave loses its energy is inversely related to its 

wavelength. Since a tsunami has a very large wavelength, it loses little energy as it 

propagates. Hence, in very deep water, a tsunami will travel at high speeds across  

great transoceanic distances with limited energy loss.  

 
However, as the tsunami waves move into the shallow waters at the coastlines, 

dispersion and non-linearity set in. In the shallower water at the coastlines, the wave 

speed ( pc gh ) decreases and its period (
p

T
c

) remains more or less the same as 

that in deep waters. Consequently, its wavelength decreases. As wavelength decreases 

and becomes comparable to water depth (i.e. 1
h

), dispersion sets in and non-

linearity also needs to be considered as the waves move into the shallow water. The 
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uniform depth ( h ) are given by [7]: 

 

 tanh[ ( ) ]
( )

( )p

gh k h
c gh

k h
 

(2.1) 

 
1 ( )

( ) ( )
2 sinh[2 ( ) ]g p

k h
c c

k h
 

(2.2) 

 
where g  is acceleration due to gravity and ( )k  is the wavenumber associated with 

an ocean wave of frequency . Wavenumber connects to wavelength ( ) as

2
( )

( )
k . Fig. 2.1 shows tsunami wave phase velocity ( pc ), wave group velocity  

 

Fig.2.1: Characteristics of tsunami wave: (a) Phase velocity, pc  (solid lines) and 

group velocity, gc  (dashed lines) of tsunami wave on a flat earth with ocean depths of 

1, 2, 4 and 6 km and (b) Wavelength decreases with wave period. 
 

( gc ) and wavelength ( ) against wave period (T ) for different ocean depths ( h ).These 



10 
 

Chapter-2 
 

Literature Review 

This chapter reviews the literature and research work related to identification 

of tsunamigenic earthquakes. Section 2.1 reviews the physical characteristics of a 

tsunami wave. Section 2.2 reviews the tsunami generation, propagation and 

inundation. Reviews on existing tsunami warning systems are presented in section 2.3. 

2.1Physical characteristics of tsunami wave 
 

A tsunami is a wave train, or series of waves, generated in a body of water by 

an impulsive disturbance that vertically displaces the water column. Normal ocean 

waves are caused by the wind, weather, tides, and currents, whereas tsunamis are 

powered by a geological force. Tsunami waves are surface gravity waves that are 

formed as the displaced water mass moves under the influence of gravity and radiate 

across the ocean. Regular wind-driven beach waves involve motion of the uppermost 

layer of the water only, but tsunami waves move the entire water column from surface 

to seafloor. Tsunami waves travel with wave speeds of 0.1 to 0.24 km/s with wave 

periods of 100 to 2000 s and wavelengths of 10 to 500 km in water depths of1 to 6 km 

[6] whereas the wind driven beach waves travel at speed of about 10 m/s and have 

wavelength around 100 m and period near 10 s. Tsunami wave height may not be 

great in the open sea (e.g. < 1 m), but it turns into a giant, rising as high as 30 m at the 

shore. The regular wind generated beach waves have height of about 3m. 

 
The tsunami phase velocity ( )pc (i.e. the velocity of a monochromatic wave) 

and group velocity ( )gc (i.e. the velocity of entire group of wave) on a flat ocean of 
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, ( ) ( ) 0K x z g x g z dxdz  (3.39) 

 

for any square integrable function ( )g x . 

 The same inputs (as mentioned in section 3.5.2 and 3.5.3) could be used to 

train SVM with target as binary decision (i.e., T/NT). The trained SVM would then be 

used to get the category of new earthquake from the study region and results may be 

compared with the previous methods to check the consistency of the results obtain by 

direct mapping using ANN-I. 
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3.4.3 Identification of tsunamigenic earthquake using Support Vector Method 

(SVM) 

 This section briefly introduces functioning of SVM in the context of non-linear 

function mapping. The basic SVM deals with two-class problems in which the data 

are separated by a hyperplane defined by a number of support vectors [91]. Support 

vectors are a subset of training data used to define the boundary between the two 

classes. In situations where SVM cannot separate two classes, it solves the problem by 

mapping input data into high-dimensional feature spaces using a  function. In 

high-dimensional space it is possible to create a hyperplane that allows linear 

separation which corresponds to a curved surface in lower-dimensional input space. 

Accordingly, the  function plays an important role in SVM. In practice, 

various kernel functions can be used, such as linear, polynomial or Gaussian. 

 
In SVM, classification of a new data sample is performed according to the sign of 

discriminant function or separating function  

 

( ) ,k k k
k SV

y x y K x x b  (3.37) 

 

where SV denotes set of support vectors, k  are the Lagrange multipliers, b  is the 

bias and K is kernel function. The kx denotes support vectors (training data points 

with 0k ) and 1, 1ky denotes class labels [92]. If ( ) 0y x , then x is 

classified as a member of the first class, otherwise it is classified as a member of the 

second class. The kernel function is defined by 

, ( ) ( )T
k kK x x x x  (3.38) 
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 Assuming ( , , ),  1,2,...i
nl sf i n in Eq.(3.34) are unique invertible 

functions, it should be possible to estimate fault parameter ( , , )s from the phase 

amplitudes recorded by a single three component station. To obtain the inverse map, 

an ANN, namely ANN-II (Fig. 4.1) could be trained with seismic phase amplitudes 

along with other parameters such as location and moment magnitude as inputs and the 

focal parameters as desired targets. The trained ANN-II could then be used to estimate 

the focal parameters of a new shallow focus earthquake.  

Mapping of absolute water volume and earthquake category  

 Given the parameters ( , , , )w sM of shallow focus earthquakes, the absolute 

volume ( TV ) of displaced water at the tsunami source can be approximately computed 

by using the relation given by [89] 

(  10.7)/0.67
0

7

sin( )sin( ) 10

10

wM

T

M P
V  

(3.36) 

Where TV  is in 3m and the value of , the rigidity of the earth at the source, is about 

10 27 10 Nm  for interplate earthquakes [90]and P is the product of sin( ) andsin( ) . 

Computing and comparing the water volumes with the corresponding categories of the 

past recorded earthquakes from the study region a tsunami-volume scale may be 

established.  

  When new earthquake originates from the same region, first its magnitude and 

focal parameters would be estimated and then the volume of water displaced at the 

source could be computed using Eq. (3.36). Finally the earthquake could be 

categorized by comparing this water volume with tsunami-volume scale. 
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classification algorithm such as ANN-I may be used. ANN-I could be trained with rms 

phase amplitudes along with location and magnitude as inputs and the category (i.e., 

0/1 corresponding to tsunamgenic/non-tsunamigenic (T or NT )) as desired output for 

a large number of both tsunamigenic and non-tsunmaigenic earthquakes. Subsequently 

the trained ANN-I could be used to identify new tsunamigenic earthquake originating 

from the same geographical region based on the recordings from the given station. 

3.4.2 Identification of tsunamigenic earthquake using ANN-II 

 This method accounts for the theoretical basis behind the direct mapping 

between seismic phase and earthquake category. 

The force system causing an earthquake is modeled as a double couple point 

source which gives the radiation pattern of P waves as a compressional and a 

dilatational lobe in alternate quadrants [82]. The polarity of S waves alternates in a 

similar way. However, S waves have highest amplitude along the nodal planes 

orthogonal to those of P waves. For a given fault geometry, apart from P and S waves, 

there could be other phases present in the recorded signal. Each of these phases is 

generated by interaction of P and S waves taking off from the source at unique angles. 

For a given - , as the fault geometry changes, take-off angles of P 

and S waves change, thereby generating a seismogram at the receiver with a distinctly 

different set of phase amplitudes. Conversely a given set of phase amplitudes at the 

receiver at a fixed azimuthal location with respect to a fault will correspond to unique 

fault geometry and it would be possible to estimate source parameters from them, 

provided a large number of phases are included in the set. An ANN could be trained 

using seismic phase amplitudes corresponding to a large number of undersea 

earthquakes from a given region, to estimate focal parameters. 
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displaced at the source and eventually deciding category of the earthquake. In addition, 

a Support Vector Machine (SVM) has also been trained to estimate the earthquake 

category. Idea behind this was to check the performance of a competitive mapping 

method vis-à-vis that of an ANN. The details about these techniques are discussed 

below. 

 

 
Fig. 3.9: Method of estimating earthquake category (CAT ). 

3.4.1 Identification of tsunamigenic earthquake using ANN-I 

 The amplitudes of the seismic waves recorded at a 3-component station at 

regional distance from a given geographical area are different for a tsunamigenic 

(slow rupture earthquake)  and a non-tsunamigenic earthquake originating from that 

area, even if other conditions remain same. To classify the earthquakes 

(i.e.,tsunamigenic/non-tsunamigenic) based on this change in amplitudes, a supervised 



52 
 

3 3 1( , ) ( , , ),  1,2,... ,  i i
w nl st K M i n K Ku x  (3.33) 

 

The rms velocity amplitude can then be expressed as  

3( , ) ( , , ),  1,2,... ,  i i
w nl st KM f i n K Kv x  (3.34) 

 

Eq.(3.34) states that there exists a set of unique non-linear maps between four 

parameters strike, dip, slip, magnitude and seismic phase amplitudes. In the expanded 

form Eq.(3.34)  can be written as 

 

1 1

2 2

3 3

( , ) ( , , )

( , ) ( , , )
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     .           .             .

     .           .             .

     .           .             .
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w nl s

n n
w nl s
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t KM f

v x

v x

v x

v x

 

(3.35) 

Eq. (3.35) essentially indicates that for a given - , the seismic 

phase amplitudes are function of source strength (magnitude) and focal parameters. 

Hence a hypothesis may be formally stated as below. 

Hypothesis I: Seismic record of a single 3-component broad-band station contains 

sufficient information required for categorizing a potentially tsunamigenic earthquake 

and hence azimuthal coverage of stations may not be necessary. 

 The proposed hypothesis could be verified through formalization as depicted 

in Fig. 3.9. The direct mapping (the main method) of root mean square (rms) 

amplitudes (along with the moment magnitude ( wM ), location parameters) with 

earthquake category has been performed using an ANN (say ANN-I). The direct 

mapping has been corroborated by an alternating mapping technique. This technique 

involves computation of focal parameters (using ANN-II), estimation of water volume 
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Where ibw stands for body waves i.e., P, SV and  SH waves (for i =1, 2, and 3 

respectively).Incase the seismic waves are recorded by long period sensor, one can 

write wave amplitudes as  

 

1 0( , ) ( , , )i ibw bw
st K M fu x  (3.29) 

 

Where 1K  is a constant for fixed source to sensor geometry. Similarly amplitude of 

surface wave displacement is given by [86] 

 

1
( , ) ( )

2
i isw sw i tt e du x  

(3.30) 

 

     

Where ( )isw  is the Fourier spectrum of ( , )isw tu x and isw  stands for Love and 

Rayleigh waves (for i= 1 and 2 respectively). Now ( )isw can be expressed as [88] 

 

0( ) ( , , )i isw sw
sM f  (3.31) 

 

From Eqs. (3.29, 3.30and 3.31)it is seen that seismic far field displacement amplitude 

for body/surface wave may in general  takes the form 

 

2 0( , ) ( , , ),  1,2,...i i
nl st K M i nu x  (3.32) 

 

where 2K  is a constant for a sensing station monitoring a specific region, n is the 

number of seismic phases (body or surface waves) and (.)i
nl  is the radiation pattern 

function of thi seismic phase. Subscript nl  indicates that the function (.)i
nl  is a non-

linear function of s ,  and . Using the relation between 0M and wM ,  Eq. (3.32) 

can be rewritten as  
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amplitude of the source signal is half of that of the plateau. In a double logarithmic 

plot, the corner frequency appears roughly at the intersection of two asymptotes: one 

for the plateau and the other for the high-frequency region of the spectrum. For an 

earthquake of large magnitude, the corner frequency shifts toward lower frequency in 

the displacement spectrum. Traditionally magnitude spectrum is used to compute 

moment magnitude. The Fourier transform is defined over 1( )L space for integrable 

and continuous functions [87] which is the case here. Extension of Fourier transform 

to the 2 ( )L space is adopted for addressing the functions which are continuous but 

not square integrable. 

 Estimating the wM  by the proposed technique and  confirming that it is greater 

than or equal to 6.0,  the tsunamigenic capability of the earthquake could be predicted 

using broad band records of a single 3-component station as described in the next 

section. 

3.4 Method of identification of tsunamigenic earthquake 

  
 For a double-coupled point source  homogeneous elastic medium, 

the far-  wave displacement at receiver position x and time t can be written 

(using Eq. 3.22) as 

0
3

( , )= 
4

PM

r

R
tPu x  

(3.27) 

 

Although exact relation for radiation patterns ( SVR and SHR ) of vertical and horizontal 

components of shear wave are different, the general nature of the relationship for 

seismic body waves coming from a known region ( with identical 
i

 and ) may  be 

written as  

 

( , , )i ibw bw
sR f  (3.28) 
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Fig. 3.8: Plot of logarithm of displacement amplitude spectrum (A) vs. logarithm of 
frequency (f) for a typical earthquake signal at P onset. 0 is the low frequency 

saturation value of the amplitude spectrum. 
 
The above constraints may be eliminated, if the complete P wave amplitude spectrum 

which is essentially a combined effect of all the above mentioned factors, be mapped 

directly to wM using an ANN. The direct mapping between amplitude spectrum and 

wM by ANN may be achieved by training it using seismograms recorded in a station at 

regional distance for large number of seismic events that occurred in the past. This 

technique is likely to give a better estimate of wM because magnitude of an earthquake 

not only affects amplitude but also the frequency content of the recorded signal. 

 The displacement spectrum (i.e. magnitude/amplitude spectrum), obtained by 

computing the Fourier transform of P wave displacement waveform [84-86]. It 

essentially contains a flat low frequency level and a high frequency region in which 

the spectral amplitude decays rapidly with increasing frequency. The transition 

region is commonly known as the corner frequency ( cf ) at which the spectral 
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Since the Fourier transform of a boxcar function is a sinc function, the far-field P 

wave displacement source spectrum can be modeled as 

0
3

sin( ) sin( )
( ) ( ( , ))

4

P
D R

D R

M R fT fT
A f F t

r fT fT
Pu x  

(3.23) 

 

Where the symbol F represents Fourier transform. The moment magnitude wM  is 

related to 0M  as [83] 

0

2
log 10.7

3wM M  
(3.24) 

 

Where 0M  is in dyne-cm. At very low frequency Eq. 3.22 can be approximated as  

0
0 3

( 0)
4

PM R
A f

r
 

(3.25) 

 
from which we can write  

3
0

0

4
P

r
M

R
 

(3.26) 

 

Where 0  is the value of P wave amplitude at very low frequency (Fig. 3.8). 0 can be 

measured directly from the amplitude (displacement) spectrum or can be estimated by 

fitting a source model spectrum to amplitude spectrum. Eqs. (3.24 and 3.26) show that 

wM can be estimated from the knowledge of P wave velocity, source-receiver 

distance, P wave radiation pattern, and amplitude spectrum. However, the above 

methods may not provide good estimation of wM due to the uncertainties involved in 

approximating radiation pattern, velocity and rock density. Further, wM estimation by 

above mentioned methods needs to have a prior knowledge of location of the event as 

well as recordings of multi-station data. 
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wave displacement (Eq. 3.17) due to finite source of length x  and width w can be 

written using Eq.(3.19) as  

.
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Let us consider the displacement history of a particle as a ramp function, given below 
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(3.21) 

 

Where DT is rise time and u is the final displacement. Using Eq. (3.21), Eq. (3.20) can 

be rewritten as 

3
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Fig. 3.6: Rupture geometry showing relative orientation of the fault plane parameters. 
 

 
Fig. 3.7: Geometry of one-dimensional fault of width w and length L. 

 

with a constant velocity Rv . The fault is long and narrow and can be treated as a series 

of small segments that individually approximate point sources. Therefore far-field P 
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(3.18) 

 

The strike ( s ), dip ( ), slip ( ), take-off angle ( i ) and azimuth ( ) are shown in 

Fig. 3.6. The time-dependent seismic moment 0 ( )M t can be expressed in terms of slip 

vector u  (i.e. particle displacement at the source, averaged over fault area A  ) as 

0( ) ( ) ( )M t u t A t  (3.19) 

 

Where is rigidity of the Earth. In order to take into account the finiteness of the 

fault, let us consider the geometry (Fig. 3.7) of a one-dimensional fault of width w  

and length L . The individual segments of the fault are of length dx . The fault ruptures  
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formation using the sign of r and b . All the angles are in degrees. The value of  is 
090 . 

 
 
 Knowing  and Z , the source location ( ,slat slon ) can be computed with 

respect to the station coordinates ( ,stnlat stnlon ) using the relations as shown in 

Eq.(3.16).  

1

1

sin [sin( )cos( / ) cos( )sin( / )cos( )]

tan [ / ]

sin( )sin( / )cos( )

cos( / ) sin( )sin( )

slat stnlat R stnlat R Z

slon stnlon a b

a Z R stnlat

b R stnlat slat

 

(3.16) 

 
where , , , ,slat slon stnlat stnlon Z are in radian, is in km. R is radius of the earth 

( 6378.1km).

Estimating the location of an event its magnitude could be computed using broad band 

data recorded by a single 3-component station as described in the next section. 

 
3.3Method of estimation of moment magnitude 
 

 The far-  wave displacement from a double-coupled point source with a 

moment 0 ( )M t  i  homogeneous elastic medium at receiver position x and 

time t  is given by [82] 

03

1
( , ) ( - )

4

P
P R r

t M t
r

u x  
(3.17) 

 

Where  is the density of the earth at the source,  is the P wave velocity, r  is the 

hypocentral distance and PR is the P wave radiation pattern which is expressed as 
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In actual practice, lag along an arm can be computed by observing the onsets 

(T ) at thi and ( 1)thi  detector traces and calculating the time differences (= 1i iT T ). 

A lag is taken to positive if is positive. From the knowledge of r  and b  the 

apparent velocity (V ) could be obtained using Eq.(3.14). Thus velocity being known, 

the epicentral distance ( ) can be calculated using the polynomial fit of distance

velocity relations. With the knowledge of lags r  and b  back-azimuth ( Z ) could be 

estimated using Eq.(3.15) as shown in Fig.3.5. 

 

 

Fig. 3.5: Estimation of Back-azimuth ( Z ) from ray inclination angle ( ) by quadrant 
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arm are cosd  and sind respectively, with d as spacing between two consecutive 

sensor elements. Now r  and b can be computed as follows: 

cos

sin

r

b

d

V
d

V

 

(3.13) 

 

 

Fig. 3.4: Ray diagram to compute time delays along red and blue arms. 

Squaring and adding (3.13) we get 

2 2
r b

d
V  

(3.14) 

 

Dividing one by the other in (3.13) we get 

1tan b

r

 
(3.15) 
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stationary seismic noise (with less irregular fluctuations) allows lower STA/LTA 

trigger threshold level, whereas completely irregular behavior of seismic noise 

demands higher values.  

 The STA/LTA de-trigger threshold level determines the termination of a 

recording. It determines how well the coda waves of recorded earthquakes will be 

captured in data records. To include as much coda waves as possible, low value of 

threshold is required. On the other hand, a high value of STA/LTA de-trigger is 

preferred if coda waves are not wanted. 

 Once an event is detected by the proposed technique it could be located using 

the time lags between sensors in the seismic array as described in the section. 

 
3.2 Method of location of seismic event 
 

When a seismic ray traverses an array of sensors it reaches different sensors at 

different instants, the velocity and direction of arrival being fixed by the source with 

respect to the array. Consequently a phase difference in signal waveform is introduced 

from sensor to sensor. On the actual record a relative shift in P arrivals is noticed in 

time domain all along the array channels. These significant time delays along two 

arms of L shaped array, called the blue and red arms, may be conveniently called as 

the blue lag or b  and red lag or r respectively. Consider a seismic wave traversing 

the array with an apparent velocity V (Fig. 3.4). 

Suppose the direction of velocity makes an angle  to the red arm. As seen in 

the diagram the signal approaches R2 first and R1 later. Similarly, it reaches B2 first 

and B1 later. The path differences between two consecutive elements on red and blue 
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(3.12) 

When the ratio exceeds a predetermined threshold, detection is declared. The trigger is 

active until the ratio falls below trigger-off threshold. The most important STA/LTA 

trigger algorithm parameters are thus the STA and LTA window lengths and the 

detection threshold [72].  

 STA window measures average amplitude of a seismic signal. Generally, STA 

duration must be longer than a few periods of typically expected seismic signal. If the 

STA window is too short, averaging of the seismic signal will not function properly. 

local earthquakes compared to long lasting distant earthquakes giving rise to lower 

frequency. The longer the STA duration selected, the less sensitive it is for local 

earthquakes. The STA duration is also important from the aspect of false triggers.  

 The LTA window measures average amplitude seismic noise. It should last 

longer than a few periods of typically irregular seismic noise fluctuations. A short 

LTA duration allows that the LTA value to more or less adjust to the slowly 

increasing amplitude of emergent seismic waves whereas a long LTA window 

duration increases trigger sensitivity to emergent earthquakes because the LTA value 

is not so rapidly influenced by the emergent seismic signal.   

 The STA/LTA trigger threshold level has the largest contribution that 

determines which events will be recorded. The higher the value is set, the more 

number of earthquakes will be missed, but the fewer false-triggers will result. The 

lower the STA/LTA trigger threshold level is selected, more events will be recorded 

with a penalty of more frequent false triggers. Optimal STA/LTA trigger threshold 

level depends mostly on amplitude and type of seismic noise at the site. Statistically 
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computational difficulty becomes prominent ifT  is less than W  i.e., for a problem 

dealing with limited number of training examples as in the case of present study. 

 To embed learning from past history in the network, it is important to choose 

an appropriate training algorithm. Resilient propagation [81] algorithm may be chosen 

for training the ANN. The weights could be adapted based on local gradient 

information. The trained ANN could be used to detect new seismic events. The 

detection accuracy of STFT and ANN method could be compared by using the 

popular detection algorithm STA/LTA (Short Term Average/Long Term Average) 

which has been described briefly in the following section. 

3.1.3 Detection using STA/LTA method 

 The definition of short term average ( s ) of a seismic data channel V is 

1

1
( ) ( )

SN

s
jS

i V i j
N

 
(3.10) 

where i  is sample number and sN  is the product of sampling rate(samples/sec)  and 

STA window length (sec). The definition of long term average ( l ) of the seismic 

data channel V is 

1

1
( ) ( )

LN

l
jL

i V i j
N

 
(3.11) 

where LN  is the product of sampling rate and LTA window length. Here overlapping 

STA and LTA windows have been considered. The short term average represents the 

average of the shortest period over which an event of interest could occur and the long 

term average represents the average of the longest period to assess the background 

noise. The ratio between them is defined as  
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layers, results in under-fitting, indicating inadequacy of the network to detect the 

pattern in a complicated dataset. On the other hand, using too many neurons in the 

hidden layers may cause over-fitting indicating that the neural network has so much 

information processing capacity that the limited amount of information contained in 

the training set is not enough to train all of the neurons in the hidden layers. Further, 

even when the training data is sufficient, an inordinately large number of neurons in 

the hidden layers can increase the training time to the point that it becomes impossible 

to adequately train the neural network. Obviously, some trade-off must be reached 

between too many and too few neurons in the hidden layers. Although there are many 

rule-of-thumb methods for determining the correct number of neurons to use in the 

hidden layers, ultimately the selection of an architecture of the neural network for a 

particular problem comes down to trial and error. 

 The computational difficulty may arise either from sample complexity or 

training time. Sample complexity is the number of training examples (T ) required to 

learn the class and the training time is the computation time required to learn the class. 

For a three layer neural network, the number of interconnecting weights (W ) is given 

by 

( )W N Q H  (3.9) 
 

For a good generalization of performance the number of training examples should 

grow at least linearly with the number of adjustable parameters (i.e., W ) in the 

network. The time complexity can be expressed by the term nTW  where n is the 

number of epochs. More specifically, the computational complexity for training can 

be expressed as 2N C , where C  is the number of classifiers. This suggests that the 

computational complexity is highly sensitive to the number of input features. Thus the 
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Thus for an input vector X ( 0X X ), the network estimated output vector mY  can be 

determined as 

1 1

1 1 1
( ; ) ( ) ( )l l l l

m l ll L l L l L
Y f X W X G A G W X  (3.7) 

 

Where lG  is a vector function which applies a non-linear activation function (.)lg  to 

each component of its vector argument lA .Eq. (3.7) in the parametric model, takes the 

form 

1 2 ;
1 1

( , ,..., ) , 1,2,...,
H N

k N jk j ij i
j i

f x x x W w g w x k Q  
(3.8) 

 

WhereN is the number of nodes in input layer, H  in the hidden layer and Q in the 

output layer of a three layer network. The weights ijw connect thi neuron in the input 

layer to thj neuron in the hidden layer, the weights jkw connect thj  neuron in the 

hidden layer to the thk  neuron in the output layer. '(.)jg s are the activation functions 

in the hidden layer. The activation functions for the output nodes are considered as 

linear. Essentially (3.8)states that arbitrary non-linear functions could be 

approximated by a linear combination non-linear activation functions. 

 The choice of number of hidden layers and the number of neurons in these 

layers depends on the nature of the problem. It is well known that an ANN with one 

or more hidden layers can approximate an arbitrary function that contains a dense 

mapping from one finite space to another. Deciding the number of neurons in the 

hidden layers is an important part of designing the overall neural network architecture. 

Though these layers do not directly interact with the external environment, they have 

tremendous influence on the final outcome. Using too few neurons in the hidden 



36 
 

The smoothened spectra extracted using STFT need to be mapped with event or noise 

category for detection of an event as mentioned earlier. However this mapping 

function is not linear in nature. This non-linear mapping could be achieved using an 

ANN as stated below. 

3.1.2 Non-linear function mapping using ANN 

 Multilayer feedforward neural networks have been proposed as a tool for non-

linear function approximation from a given set of input-output pairs [77-79].It has also 

been proven that a three layer network can approximate any Borel measurable 

function provided sufficiently many hidden layer units are used [77]. In fact, 

multilayer networks could be referred to as universal approximators. 

 Let us assume that an unknown function f has to be approximated from a 

training set of input-output pairs, say, ( , ); 0,1,... }m mS X Y m M with input vector 

1( ,..., )Tm m mNX x x and output vector 1( ,..., )Tm m mQY y y  such that ( )m m mY f X e .  

Here M is the total number of input-output pairs in the training set and me  is random 

error. The job of ANN is to estimate (.)f  of (.)f obtained by minimization of 

approximation error. 

 Multilayer networks are highly non-linear models for function approximations 

[80]. In general a L -layer feed forward network with fixed non-linear activation 

functions can be parameterized by a set of 1L weight matrices, 

, 0,1,..., 2lW W l L . The weight matrix lW  relates the thl layer output vector 

lX  to ( 1)thl  layer activation vector ( 1)lA  by  

( 1) ,0 1l l lA W X l L  (3.6) 
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(3.4) 

Filtering with M point moving average filter in frequency domain leads to pre-

multiplying the signal with a modified Tukey window ( )w t  which is defined by 

1 2

( ) ( ) ( );

where  ( ) [ ( )] ( ) j ft

w t w t H t

H t F H f H f e df
 

(3.5) 

Thus it can be stated that the smoothening of STFT based amplitude spectra is 

equivalent to computing amplitude spectra using STFT with a modified Tukey 

window ( )w t  (Fig.3.3). 

 
Fig.3.3: (a) Frequency responses of a 31 point moving average filter. (b) Inverse 
Fourier Transform (IFT) of the response of moving average filter. (c) Time domain 
plot of Tukey window defined by Eq. (3.2). (d) Time domain product of Fig. (b) and 
(c), called as modified Tukey window ( )w t . 



34 
 

sliding window of  3 sec centered at times (i.e., 2 sec,3 sec, etc.). Through 

consecutive movement of window and performance of Fourier transform, the Fourier 

transform of entire signal can be performed. The signal segment within the window 

function is assumed to be approximately stationary. This way, decomposing the time 

domain signal into time-frequency representation, STFT reveals the variations of the 

frequency content of the signal within the window function. The window ( )w t may be 

considered as cosine-tapered (Tukey) window which is defined by [71] 

1.0,0
2

( )
20.5 1.0 cos ,

2 22(1 )
2

S
t

Sw t t S S
t

S

 

(3.2) 

where  is percentage of cosine taper and S  is window length. This taper basically 

suppresses the side-lobe spectral leakage and reduces the bias of spectral estimates 

[72-73]. To remove the short term variations to reveal the important underlying 

features of the signal [74] (as shown in Fig 3.2) the STFT based spectra of the signal 

need smoothening which could be performed using a moving average filter. The M 

point moving average filter output (say,Y ) for equally spaced spectral data (Y) is 

defined as [75] 

1
( ) ( )

2 1

M

f M

Y f Y f
M

 
(3.3) 

 

 
This smoothening is equivalent to low pass filtering whose frequency response can be 

expressed as [76] 



33 
 

view of these characteristics, STFT has been adopted to characterize and distinguish 

seismic event and noise. Mathematically STFT can be expressed by [65] 

2( , ) ( ) ( ) j ftY f y t w t e dt  (3.1) 

which can be viewed as measure of similarity between the signal ( )y t and the time-

shifted and frequency-modulated window function ( )w t .The feature extraction using 

STFT has been shown  in Fig. 3.2.  As shown in the figure, the STFT employs a  

 
Fig. 3.2: Extraction of spectral features using STFT: (a) Plot of a typical signal. (b) 
FFT of the signal for window length of 3 sec at three different instants with an overlap 
of 2 sec. (c) Corresponding smoothened amplitude spectra. 
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where n  is number of event onsets,  and  are mean and standard deviation of X 

and p  is a constant to be chosen judiciously. The actual onset time is then found by 

removing the outliers and averaging the remaining onsets. For online detection of the 

event the above procedure could be repeated by moving the window in steps of 1 sec. 

Motivations for the choice of STFT to extract feature (i.e., amplitude spectra) and 

ANN to map these features with category (i.e., event/ noise) are explained in the 

following sections. 

3.1.1 Feature extraction using STFT  

 Seismic signal is non-stationary in nature. Analysis of seismic signal only in 

time or in frequency domain is not an appropriate approach. Analysis in both domains 

simultaneously provides deeper insight to a non-stationary signal. Some typical 

examples of this kind of analysis are the Gabor transform or STFT [65-66], the S-

Transform [67], bilinear transforms like the Wigner-Ville [68] or wavelet transforms 

[69-70]. The main difference among these methods concerns their dual time

frequency resolution capability. Having a fixed window, STFT provides uniform time 

and frequency resolutions in the entire time-frequency domain whereas in wavelet 

analysis by shifting and reshaping (dilating or contracting) wavelets at different scales 

multi-resolution analysis of the signal is achieved. This has inspired the wide use of 

the wavelet transforms recently. However, wavelet transform is computationally 

intensive and it also needs proper choice of wavelets for a specific application. In 

contrast, fixed resolution STFT provides the information about the spectral content of 

the signal over smaller time windows, capturing local variations. It is actually a 

compromise between exposition of information and computational complexity. In 
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the ANN shows decision as event. If the decisions are found to match K number of 

channels, the occurrence of an event will be declared. In order to obtain the onset time, 

the event onsets (i.e., sample numbers/sampling rate) will be stored in an array. From 

the stored array (say, X) the outliers will be found by satisfying the inequality 

( ) ( ) ( ),1X n X p X n K  (3.1) 

  

Fig. 3.1: A flow chart for online detection of seismic event using ANN. 
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collected corresponding to a large number of seismic events which occurred in this 

region with varying magnitudes. Identifying the event onsets (i.e, onset of P phase) in 

a good channel, the smoothened amplitude spectra at event and noise windows could 

be computed using spectral technique such as STFT (Short-Time Fourier Transform). 

The width of the window for spectral analysis plays an important role. It actually 

reveals the spectral content of the analysed window. It is determined by the dominant 

period of the phases being analysed. Here, the window length needs to be selected, 

such that it accommodates the onset times at two farthest channels along each of the 

arms of L shaped array corresponding to maximum lag. To map the spectral 

amplitudes with event or noise category, a machine learning algorithm such as ANN 

(Artificial Neural Network) may be used. For this, an ANN has to be trained with 

spectral amplitudes as inputs and event/noise (i.e. binary decision) as desired output 

for large number of events. After training, the trained ANN could be used to find the 

onset of new event online in a manner as shown as shown in Fig. 3.1. Getting the data 

file, smoothened spectral amplitudes will be computed in a predefined time window 

for all the channels of the seismic array. These spectral amplitudes would then be fed 

to the trained ANN to obtain decisions corresponding to all the channels. If certain 

number say, K out of all the decisions show event for the given window it would be 

considered as a seismic event, otherwise it would be classified as noise. Once an event 

is declared, the starting time of the window, called the preliminary onset is noted and 

the procedure for fine detection is started over a data block starting from preliminary 

onset minus one second to preliminary onset plus 3 sec. Within this data block 

corresponding to each channel, amplitude spectra will be computed for the same time 

window which will slide in steps of one sample to find the sample number at which 
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Chapter-3 
 

Proposed Method of Identification 
of Tsunamigenic Earthquakes 

 
It is proposed that the tsunamigenic earthquakes could be identified reliably 

using broad band data of a single 3-component station located at a regional distance 

from the source. This process involves four steps, namely, detection, location, 

magnitude estimation and identification of tsunamigenic earthquakes. The proposed 

method has been developed for poorly instrumented region of the world where multi-

station data may not be available. Since detection and location of seismic events using 

seismic arrays are generally superior to that using single 3-component stations the 

proposed method introduces seismic array (preferably L shaped and short period) 

based detection and location methods in sections 3.1 and 3.2 respectively. The 

methods of magnitude estimation and tsunamigenic earthquake identification which 

are based on single 3-component broad band records are presented in sections 3.3 and 

3.4 respectively. 

3.1Method of detection of seismic event  
   
 Seismic signal has a specific signature on the seismogram recorded at a given 

station depending upon its geographical origin and wave propagation path. This 

signature is different from noise to event. By analyzing the change in signal 

characteristics of noise and event, the occurrence of seismic event may be detected.  

 Let us consider a circular geographical region with center at seismic array and 

radius much more than regional distance [2]. The data recorded on the array could be 
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station at a regional distance from the earthquake source. Comparison of the above 

results shows that the results obtained by ANN-I are marginally better than those 

obtained using ANN-II and SVM. The close agreement among the three mapping 

methods indicates that mapping between rms seismic phase amplitudes (along with 

other parameters such as location and magnitude) and binary decision by ANN-I is 

reliable based on which a single station based tsunami alert system could be achieved 

reasonably. It may be noted that input vector is available for use immediately after the 

arrival of LR phase. Nominal computational load of ANN enables quick analysis of 

the event. Promptness (within 5 min after the arrival of LR phase) of the proposed 

technique makes it a very useful choice as an initial tsunami estimator for full-fledged 

tsunami alert systems. The methodology has been tested with the seismograms 

recorded at IRIS station, PALK, for categorizing earthquakes originating from 

Sumatra region with epicentral distance from 10.620 to 37.630. This method would 

prove to be extremely useful for the regions that are not adequately instrumented for 

azimuthal coverage.  
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linearly separable using kernel function. However, ANN employs multi-layer 

connection and various activation functions to deal with non-linear problems. In fact, 

single layer ANN can only generate linear boundaries, and the 2nd layer can combine 

the linear boundaries together; while at least three layers are required to produce 

boundary of arbitrary shapes. Using  the  gradient  descent  learning  algorithm,  ANN  

tends  to converge  to local  minima.  As a result, it suffers from the over-fitting 

problem. On the other hand, SVM tends to find a global solution during the training as 

the model complexity has been taken into consideration as a structural risk in SVM 

training. In other words, ANN minimizes only the empirical risk learnt from the 

training samples, but SVM considers both empirical risk and the structural risk. 

Consequently, the training results from SVM have better generalization capability 

than those from ANN. However ANN outperforms SVM when there is learning from   

imbalanced datasets with more data samples from one class than other. The present 

study comes under that learning where the ratio of data samples corresponding to non-

tsunamigenic and tsunamigenic categories is of about  8:1. 

 

4.4Summary 

 Two ANN based direct mapping algorithms have been studied for detection of 

seismic event using short period data and rapid estimation of wM of earthquakes using 

broad band data. The study establishes that onset detection and wM  estimation are 

fairly accurate. Knowing the epicentral location (estimated by conventional method 

using short period data) and wM , the tsunamigenic potential of the earthquake has 

been studied using another ANN (i.e. ANN-I) along with two alternative mapping 

techniques (ANN-II and SVM) based on the recordings of a single 3-component 
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empirical Tsunami-Volume scale as stated below may be formulated: 
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Using the estimated P and wM , TV and CAT  have been computed using Eq.(3.36) and 

Tsunami-Volume scale . These are listed in last two columns of Table 4.5. A 

comparison of estimated CAT  (column 10 of Table 4.5) with those reported by USGS 

(column 4 of Table 4.5) shows 95% (19/20) agreement between the estimated and the 

actual CAT  which is noteworthy. 

4.3.3 Estimation of earthquake category using SVM 

 SVM has also been trained with the same 46 earthquakes that were used to 

train ANN-I and ANN-II. The same input parameters viz. rms phase amplitudes, 

epicentral distance, back azimuth and moment magnitude were used to train SVM. 

The desired outputs in this case also were NT or T . The trained SVM has been tested 

with 22 events (marked * and ** in  Table A.2).  The categories obtained by SVM for 

the test dataset are compared with those reported by USGS in Table 4.5. The 

comparison shows that SVM has successfully identified about 91% (20/22) of the new 

events. Though SVMs are often considered superior to ANNs in the context of pattern 

classification over a small data set, the present study shows a marginal deviation from 

the general trend. It may be possible that ANN outperforms SVM particularly for the 

present set of data under consideration. 

 The two different algorithms, SVM and ANN share the same concept of linear 

learning model for pattern recognition. The difference is mainly on how non-linear 

data is classified.  Basically,  SVM  utilizes  non-linear  mapping  to  make  the  data  



89 
 

 Water volumes of 66 earthquakes (both tsunamigenic as well as non-

tsunamigenic) of magnitude 6 and above that occurred in Sumatra region during the 

period 2001  2016 (Table A.2) have been estimated using Eq. (3.36) based on the 

parameters reported by USGS. These volumes were plotted against magnitudes as 

shown in Fig. 4.23. 

 

Fig. 4.23: Plot of water volumes vs. moment magnitude. T corresponds to 
Tsunamigenic (pentagram) and NT  to Non-Tsuanmigenic (circle). Two horizontal 
dark lines indicate region of uncertainty. 
 
 It may be noted that in Fig. 4.23 an earthquake which is reported to have 

generated a tsunami (T ) has been marked as pentagram while those which have not 

generated tsunami ( NT ) are marked as circles. The area between the two horizontal 

bars in the middle of Fig. 4.23 is the area of uncertainty limited by minimum and 

maximum volumes corresponding to which a tsunami is reported and not reported, 

respectively. Thus the values of water volumes lying between these two extremes 

correspond to uncertain category of the earthquake. Fig. 4.23 clearly indicates that 

there exists a relation between the earthquake category ( CAT ) and ( TV ). Hence an 
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back azimuth and moment magnitude were used to train ANN-II. The desired outputs 

in this case were s ,  and which are also listed in Table A.1. ANN-II has been 

tested with the test set containing 20 earthquakes (marked * in Table A.2). The focal 

parameters obtained using ANN are used to compute the product P  (i.e., sin( )

sin( ) ) which are listed in Table 4.5 along with those obtained using focal parameters 

reported by USGS. A histogram of number of events against absolute error between 

USGS reported P and ANN-II estimated P  is plotted in Fig. 4.22. 

 
Fig. 4.22: Plot of number of events vs. absolute error in product term. 

 

The figure shows that the number of events rapidly reduces as the absolute error in P  

increases. This clearly indicates that the estimation of P  which in turn is used to 

estimate water volume is unbiased and reliable.  
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rate is 100% and false negative rate is 0% for both the classes. Overall, 100% of the 

predictions are correct and 0% is wrong. 

The confusion matrix for the test dataset (NT=19 and T=3) is shown in Fig. 4.21. The 

confusion matrix shows that  overall 100% of the predictions are correct.  This result 

is in fair agreement with that obtained by training ANN with resilient propagation 

algorithm. It indicates that the ANN-I based method of identifying tsunamigenic 

earthquake is highly accurate enough. 

 

 
Fig. 4.21: Confusion ` matrix for the test dataset in identifying tsunamigenic 
earthquake. 
 
 

4.3.2 Estimation of earthquake category from water volumes derived using focal 

parameters estimated by ANN-II 

 ANN-II has also been trained with the same 46 earthquakes that were used to 

train ANN-I. The input parameters viz. rms phase amplitudes, epicentral distance, 
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Fig. 4.20: Confusion matrix for the training data set in identifying tsunamigenic 
earthquake. 
 

 
In Fig.4.20, the first two diagonal cells (green) show the number and percentage of 

correct classifications by the trained network. In this case, 41earthquakes are correctly 

classified as non-tsunamigenic. This corresponds to 89.1% of all 46 earthquakes. 

Similarly, 5 cases are correctly classified as tsunamigenic. This corresponds to 10.9% 

of all earthquakes. The off-diagonal cells (pink) correspond to incorrectly classified 

observations. Both the number of observations and the percentage of the total number 

of observations are shown in each cell. In this case, 0 of the tsunamigenic earthquakes 

are incorrectly classified as non-tsunamigenic and this corresponds to no error for all 

46 earthquakes in the data. Similarly, 0 of the non-tsunamigenic earthquakes are 

incorrectly classified as tsunamigenic and this corresponds to 0% of all data. The 

precision rate is 100% and false discovery rate is 0% for both the classes. The recall 
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Fig. 4.19: Linear regression plots during training of ANN in tsunamigenic 
earthquake identification.. 

 

 

The confusion matrix for the training set (Non-tsunamigenic events (NT) = 41 and 

Tsunamigenic events (T) = 5) is shown in Fig. 4.20. Here 0 represents NT and 1 

reprsents T. 
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Fig. 4.18: Configuration of  the pruned network for tsunamigenic 
earthquake identification. 
 
 

The linear  regression plots of output vs target for training data (46 in no.)  which is 

divided into three sets, namely, Training (70%), Validation (15%) and Test (15%),  

are shown in Fig. 4.19.  
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Table 4.5:Comparison among USGS reported  CAT and that estimated using ANN-I, 
ANN-II and SVM 

S.No. Evt. No. Mw CAT CAT CAT P P VT CAT 

    (USGS) (USGS) (ANN-I) (SVM) (USGS) (ANN-II) (ANN-II) (ANN-II) 

                m3   

1 1 6.5 NT NT NT  -- --  --  --  

2 2 6.6 NT NT T --  --  --  --  

3 3 6.1 NT NT NT 0.453 0.441 7.49 x106 NT 

4 5 6.1 NT NT NT 0.28 0.205 3.47 x106 NT 

5 7 6.2 NT NT NT 0.142 0.128 3.05 x106 NT 

6 10 8.6 T T T 0.438 0.606 5.54 x1010 T 

7 13 6.1 NT NT NT 0.407 0.51 8.65 x106 NT 

8 14 6.7 NT NT NT 0.769 0,682 9.10 x107 NT 

9 32 6 NT NT NT 0.444 0.171 2.06 x106 NT 

10 38 7.7 T T NT 0.17 0.234 9.69 x108 NT/T 

11 39 6.8 NT NT NT 0.51 0.23 4.32 x107 NT 

12 42 6.5 NT NT NT 0.253 0.24 1.61 x107 NT 

13 43 6.7 NT NT NT 0.133 0.24 3.19 x107 NT 

14 44 6.1 NT NT NT 0.324 0.333 5.64 x106 NT 

15 45 6.9 NT NT NT 0.126 0.24 6.35 x107 NT 

16 50 6.4 NT NT NT 0.253 0.24 1.14 x107 NT 

17 52 6.4 NT NT NT 0.983 0.244 1.16 x107 NT 

18 53 6.5 NT NT NT 0.729 0.45 3.02 x107 NT 

19 55 6.1 NT NT NT 0.215 0.361 6.12 x106 NT 

20 57 6 NT NT NT 0.234 0.442 5.32 x106 NT 

21 60 6.2 NT NT NT 0.49 0.25 5.99 x106 NT 

22 63 9.1 T T T 0.131 0.234 1.19 x1011 T 

 

 Additionally, ANN-I has also been trained with the same inputs using 

Levenberg-Marquardt algorithm. In this case the tangent hyperbolic activation 

function is used in the hidden layer and linear one is used in the output layer. For this 

task the network has been  pruned for 46 training data with 12 input neurons, 3 hidden 

neurons and one output neuron. The configuration of the pruned network  has been 

shown in Fig. 4.18. Here, insignificant inputs are partially connected with hidden 

neurons, whereas significant inputs are fully connected. 
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regularization. On the other hand SVM for estimating earthquake category has been 

designed to have 12 input data points with polynomial kernel of degree 6. The training 

of SVM involves solving a quadratic optimization problem. The training and testing 

of ANNs and SVM and their outputs are discussed below. 

 4.3.1 Estimation of earthquake category using ANN-I 

ANN-I has been trained with 46 earthquakes. The rms amplitudes of the clearly 

identifiable seismic phases P, S and LR along with epicentral distance, back azimuth 

and moment magnitude were fed as input to ANN-I for training. The desired output is 

binary decision i.e. either 0 (for NT) or 1 (for T). After training, the trained ANN-I has 

been tested with test dataset of 22 events (marked * and ** in  TableA.2). The CAT  

obtained by ANN-I for the test data-set are compared with those reported by USGS in 

Table 4.5. The comparison shows that ANN-I has successfully identified 100% 

(22/22) of the new events. 
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against only those earthquakes which have generated noticeable tsunami at a land 

mass. Remaining events in Table A.2 have been marked by us as NT . Randomly 

chosen 22 events (marked * and **) have been reserved for testing and remaining 46 

events have been used for training both ANN-I and SVM for estimating the 

potentially tsunamigenic earthquake category. It may be noted here that only 20 

events (marked * only) has been used for testing of ANN-II for focal parameter 

estimation because 2 events (marked **) have been included later. Both ANNs and 

SVM have been trained with rms amplitudes of seismic phases P, S and LR along 

with the magnitude and location parameters (represented by distance and back 

azimuth) of events listed in Table A.2.For the source-station pair under consideration, 

these three phases are unambiguously identifiable on the seismograms recorded at 

PALK (see Fig. 4.13). The moment magnitude and location parameters have been 

considered as inputs to take into account the effect of path on the phase amplitudes. 

The window lengths from onsets for the computation of rms amplitudes of P, S and 

LR phases have been taken as 5, 10 and 120 s respectively. These window lengths 

have been chosen to invariably include the maximum peak amplitudes of these 

phases. ANN-I for estimating earthquake category has been designed to have input 

layer with 12 neurons, one hidden layer with 20 neurons and one output layer with 

single neuron while ANN-II for estimating focal parameters and in turn water 

volumes has input layer with 12 neurons, one hidden layer with 30 neurons and output 

layer with three neurons. The transfer function used in the hidden layer is sigmoid and 

that used in the output layer is linear. As mentioned earlier, the training algorithm is 

resilient back-propagation [81]. The learning function is gradient descent with 

momentum weight and bias. The performance function is the mean squared error with 
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Fig. 4.17 indicates that the error in wM estimated by ANN trained with Levenberg-

Marquardt algorithm is in good agreement with that obtained by ANN trained with 

resilient propagation algorithm. This proves that the ANN based mapping between 

spectral amplitude and moment magnitude is highly reliable. 

 

4.3 Identification of tsunamigenic earthquake using PALK data 

 Within the same geographical area (as mentioned in section 4.2) there were a 

total of 119 shallow focus earthquakes as reported by USGS during 16 Jan 2001 to 6 

Dec 2016 with magnitudes 6 and above. Out of these, epicenters of 10 earthquakes 

were found to be on land far from the sea, 4 were with no moment tensor parameters 

mentioned in the database and 37 were not recorded properly at PALK station. That 

leaves us with 68 shallow focus (depth < 70 km) earthquakes that have been 

considered to demonstrate the efficacy of the methodology proposed in this work. Out 

of 68, only 8 events were reported to have generated tsunami. Broad-band 

seismograms recorded at PALK station ( 07.273 N, 080.702 E), corresponding to these 

events have been downloaded from IRIS website ( www.iris.edu) and are listed in 

Table A.2. The location, magnitude and focal parameters of the events, as reported by 

USGS are also listed in Table A.2.  A plot of epicenters of these events on 

geographical map of Sumatra region is shown in Fig. 4.12. It is seen from Table A.2 

that epicentral distances of these events range from 010.62  (~1180 km) to 037.63

(~4184 km) while the station-source azimuths (i.e., back azimuth) range from 097.1  to 

0131.57  with respect to PALK station. The entries in CAT  column in Table A.2 have 

been marked as T (for Tsunamigenic) and NT (for Non-Tsunamigenic) based on the 

reports published by USGS. It may be noted that USGS generally writes Tsunami 
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Table 4.4: Comparison between USGS reported wM  and that estimated by ANN 

trained with Levenberg-Marquardt algorithm. 
 

S.No. Evt.No. Mw(USGS) 
wM  

(ANN) 

Absolute error 
in wM  

1 2 6.6 6.5 0.1 
2 10 6.2 6.3 0.1 
3 15 6.7 6.9 0.2 
4 16 6.1 6.3 0.2 
5 19 6 5.8 0.2 
6 21 7.8 7.5 0.3 
7 22 7.2 7.3 0.1 
8 29 7 7.1 0.1 
9 32 6 6.1 0.1 
10 42 6 6.1 0.1 
11 43 6.1 6.1 0.0 
12 46 6.2 6.1 0.1 
13 49 6.1 6.2 0.1 
14 51 6.3 6.1 0.2 
15 54 6.2 6.1 0.1 
16 56 6.7 6.3 0.4 
17 57 6.1 6.1 0.0 
18 64 6.1 6.2 0.1 
19 66 6.5 6.2 0.3 
20 71 6.3 6.1 0.2 
21 82 6.3 6.1 0.2 
22 84 6.9 6.7 0.2 
 

 
Fig. 4.17: Plot of number of events vs. absolute error in wM estimated by ANN 

trained with Levenberg-Marquardt algorithm. 
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The linear  regression plots of output vs target for training data (62 in no.)  which is 

divided into three sets, namely, Training (70%), Validation (15%) and Test (15%),  

are shown in Fig. 4.16.  

 

 
Fig. 4.16: Linear regression plots during training of ANN in magnitude estimation. 

 
 The wM  obtained by the ANN for the test dataset are compared with those 

reported by USGS in Table 4.4.  A histogram of number of events against absolute 

error between USGS reported wM  and that estimated using the ANN is plotted in Fig. 

4.17.   
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To check the reliability of the proposed method of magnitude estimation, the ANN has 

also been trained the Levenberg-Marquardt algorithm. In this case the tangent 

hyperbolic activation function is used in the hidden layer and linear one is used in the 

output layer. Here, instead of 147 values, only 19 values of amplitude spectrum in the 

frequency range from 0.0098 to 10 Hz have been used as inputs to ANN. For this task 

the network has been  pruned for 62 training data with 19 input neurons, 2 hidden 

neurons and one output neuron. The configuration of the pruned network  has been 

shown in Fig. 4.8. Here, insignificant inputs are partially connected with hidden 

neurons, whereas significant inputs are fully connected. 

 
Fig. 4.15: Configuration of the pruned network for magnitude estimation. 
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Table 4.3: Comparison between USGS reported wM  and that estimated by ANN 

S.No. Evt.No. Mw Mw Absolute error in Mw 
  (USGS) (ANN)  

1 2 6.6 6.7484 0.1484 
2 10 6.2 6.2839 0.0839 
3 15 6.7 6.7345 0.0345 
4 16 6.1 6.3339 0.2339 
5 19 6 6.3275 0.3275 
6 21 7.8 7.7070 0.0930 
7 22 7.2 7.0430 0.1570 
8 29 7 7.0972 0.0972 
9 32 6 6.0992 0.0992 
10 42 6 6.2832 0.2832 
11 43 6.1 6.0074 0.0926 
12 46 6.2 6.1392 0.0608 
13 49 6.1 6.2768 0.1768 
14 51 6.3 6.2474 0.0526 
15 54 6.2 6.1901 0.0099 
16 56 6.7 6.7621 0.0621 
17 57 6.1 6.0178 0.0822 
18 64 6.1 6.0994 0.0006 
19 66 6.5 6.5403 0.0403 
20 71 6.3 6.2269 0.0731 
21 82 6.3 6.3418 0.0418 
22 84 6.9 6.828 0.0720 

 

 

 Fig. 4.14: Plot of number of events vs. absolute error in estimated wM . 
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Fig. 4.13: Plot of typical 3-component (E, N and Z) seismogram with the onset 
markings of P, S and LR (surface wave) phases. 
 

 The training algorithm is resilient back-propagation [81]. The learning 

function is gradient descent with momentum weight and bias. The performance 

function is the mean squared error with regularization. The training, testing and 

validation results of the ANN and its outputs are discussed below. 

  The spectral amplitudes computed at P onset of the events for a window 

length of 3 s have been fed as inputs to ANN for training. The desired outputs are 

corresponding wM . After training, the trained ANN has been tested with test dataset of 

22 events (marked * in Table A.1). The wM  obtained by the ANN for the test dataset 

are compared with those reported by USGS in Table 4.3. A histogram of number of 

events against absolute error between USGS reported wM  and that estimated using the 

ANN is plotted in Fig. 4.14. The figure shows that the number of events rapidly 

decreases with increase of absolute error in wM . The figure also shows that wM  

estimated by the ANN for about 73% of test events deviates from the reference by less 

than 0.1 and that for 100% of the events by less than 0.35. This clearly indicates that 

the estimation of wM  is unambiguous and reliable. These results are very significant 

in the context of tsunami warning. 
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as reported by USGS are also listed in Table A.1. A plot of epicenters (shown in 

pentagram) of these events on geographical map of Sumatra region is shown in Fig. 

4.12. In Table A.1 randomly chosen 22 events (marked *) have been reserved for 

testing while remaining 62 events have been used for training the ANN. A typical 3-

component seismogram as recorded at PALK station is shown in Fig. 4.13. Vertical 

component (Z) has been used for computing the amplitude spectrum of P wave in this 

work. 

As discussed in section 3.4, amplitude (displacement) spectra are mapped to wM

using ANN. The input layer of the ANN has 147 neurons corresponding to 147 values 

of amplitude spectrum in the frequency range from 0.0098 to 10 Hz. The choice of 

number of hidden layers and the number of neurons in hidden layers depend on the 

nature of the problem [95]. For the present study the ANN has been designed to have 

one hidden layer with 20 neurons. The output layer has one neuron. The transfer 

function used in the hidden layer is sigmoid and that used in the output layer is linear. 

 

Fig. 4.12: USGS reported epicenters (shown in pentagram) of earthquakes from the 
study area (Sumatra region) and the location of recording station PALK (black circle). 
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Fig. 4.11: Confusion matrix of the test data set for seismic event detection. 

 

4.2Moment magnitude estimation using PALK data 

 For estimation of moment magnitude, the region that has been considered is 

from 06 N to 010 S, and 090 E to 0115 E. This area is seismically very active and within 

this area there had been 129 earthquakes as reported by USGS during 16 Jan 2001 to 

19 Oct 2016 with magnitudes 6 and above. Out of these, 45 earthquakes were not 

recorded properly at PALK station. That leaves us with 84 earthquakes that have been 

considered to demonstrate the efficiency of the methodology proposed in this work. 

Broad-band seismograms recorded at PALK station ( 07.273 N, 080.702 E), 

corresponding to these events have been downloaded from IRIS website 

(www.iris.edu) and are listed in Table A.1. The location and magnitude of the events, 
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shown in each cell. In this case, 5 of the events are incorrectly classified as noises and 

this corresponds to 1.0% of all 496 signals in the data. Similarly, 4 of the noises are 

incorrectly classified as events and this corresponds to 0.8% of all data. 

 The column metrics on the far right (grey) of the plot are often called the 

precision (or positive predictive value) and false discovery rate, respectively. In this 

case, out of 248 noise predictions, 98.0% are correct and 2.0% are wrong. Out of 246 

event predictions, 98.4% are correct and 1.6% is wrong. Therefore, precisions are 98.0% 

and 98.4% and false discovery rate are 2.0% and 1.6% for both the classes 

respectively. The row metrics at the bottom (grey) of the plot are often called the 

recall (or true positive rate) and false negative rate, respectively. In this case, out of 

247 noises, 98.4% are correctly predicted as noises and 1.6% is predicted as event. 

Out of 247 events, 98.0% are correctly classified as events and 2.0% are classified as 

noises. Therefore the recall rates are 98.4% and 98.0% and false negative rates are 1.6% 

and 2.0% for both the classes respectively. The cell in the bottom right (blue) of the 

plot shows the overall accuracy. In this case, overall, 98.2% of the predictions are 

correct and 1.8% is wrong. 

The confusion matrix for the test set (events=162 and noise=162) is shown in Fig. 

4.11.  Here 0 represents noise and 1 reprsents events.The confusion matrix shows that  

overall 97.2% of the predictions are correct and 2.8% of the predictions are wrong.  

This result is in close agreement with that obtained by training ANN with resilient 

propagation algorithm. It indicates that the ANN based seismic event detection is 

accurate enough for prediction. 
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The confusion matrix for the training set (events=247 and noise=247) is shown in Fig. 

4.10.  Here 0 represents noise and 1reprsents events. 

 

Fig. 4.10: Confusion matrix of the training data set for seismic event detection. 

 

In Fig. 4.10, the first two diagonal cells (green) show the number and percentage of 

correct classifications by the trained network. In this case, 243 signals are correctly 

classified as noises. This corresponds to 49.2% of all 494 signals. Similarly, 242 

signals are correctly classified as events. This corresponds to 49.0% of all signals. The 

off-diagonal cells (pink) correspond to incorrectly classified observations. Both the 

number of observations and the percentage of the total number of observations are 
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The linear regression plots of output vs target for training data (494 in no.) which is 

divided into three sets, namely, Training (70%), Validation (15%) and Test (15%),  

are shown in Fig. 4.9. 

 
Fig. 4.9: Linear regression plots during training of ANN in seismic event detection. 
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activation function is used in the hidden layer and linear one is used in the output layer. 

For this task the network has been  pruned for 494 training data (events=247 and 

noise=247) with 50 input neurons, 2 hidden neurons and one output neuron. The 

configuration of the pruned network  has been shown in Fig. 4.8. Here, insignificant 

inputs are either completely disconnected or partially connected with hidden neurons, 

whereas significant inputs are fully connected. 

 
Fig.4.8: Configuration of  the pruned network for seismic event detection. 
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Fig. 4.7: Histogram plot of number of events truly detected (TD), missed (ME) and 
falsely detected (FD) by (a) ANN and (b) STA/LTA through 7 days continuous 
detection. 
  
Table4.2.Results obtained by ANN and STA/LTA through 7 days continuous 
detection.  

 

Methods TD (%) ME (%) FD (per day) 
ANN 99 1 3 

STA/LTA 79 21 15 
Note: TD refers Truly Detected events, ME represents Missed Events and FD 
indicates False Detection 
 

 Additionally, to check the potential of the proposed method, the seismic event 

detection, using ANN has also been performed choosing another training algorithm, 

namely, Levenberg-Marquardt algorithm. In this case the tangent hyperbolic 
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that picked up by analyst. The error bars have further been scaled by a factor of 10 for 

clear visibility. The average errors in P travel times (and hence the P onsets) using 

ANN is ± 0.036 sec and whereas that using STA/LTA is ± 1.73 sec. This indicates 

the superior detection capability as well as detection accuracy of ANN demanding that 

the proposed technique could be exploited as an online detector.  

 To ensure the feasibility of the proposed method to exploit as a potential 

online detector both ANN and STA/LTA algorithm have been tested online with 7 

days 09/08/2016 to15/08/2016) continuous data. The results obtained by this 

continuous detection are shown in Fig. 4.6. The figure shows the histogram plots of 

number of Truly Detected (TD) events, Missed Events (ME) and Falsely Detected 

(FD) events against the number of days of detection for detection by ANN and that by 

STA/LTA respectively. From Fig. 4.7 it is seen that the detection capability of ANN 

( ~ 99%) is superior to that ( ~ 79%) of STA/LTA as listed in Table 4.2. Table 4.2 

clearly indicates that the proposed STFT and ANN based method could be used as an 

efficient online detector. The detection capability (i.e. 84%) of STA/LTA for database 

of selected events drops to 79% for online test data because P-onsets of large number 

of events were not very prominent. 
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Fig. 4.6: (a) Plot of Normalized P travel times of 147 events detected by ANN with 
error bar indicating the deviation with respect to analytical time. The error bars have 
been computed by taking the difference between normalized travel times obtained by 
ANN and the normalized travel times obtained by analyst. (b) Plot of Normalized P 
travel times of 125 events detected by STA/LTA algorithm with error bar indicating 
the deviation with respect to analytical time. The error bars have been computed by 
taking the difference between normalized travel times obtained by STA/LTA and the 
normalized travel times obtained by analyst. The error bars in both cases have been 
scaled by a factor of 10 for clear visibility. 
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between the time from the model and that picked by the analyst may be attributed to 

the difference in geographical structure adopted in the velocity model. Considering 

148 events picked up by the analyst as true events, ANN based method has detected 

147 events. To detect the same 148 events by STA/LTA method, the setting parameter 

that has been chosen are listed in Table 4.1.  

Table 4.1: Parameters used for the STA/LTA method. 

STA/LTA Parameters Local 

Events 

Regional 

Events 

Teleseismic 

Events 

STA window length (sec) 3 2 2 

LTA window length (sec) 60 60 60 

STA/LTA trigger on threshold 1.8 2.0 3.5 

STA/LTA trigger off threshold 1.0 1.0 1.0 

Minimum event duration (sec) 2 2 2 

 

These parameters have been selected in such a way that they give the best balance 

between the false alarms and missed events. With the best parameter setting (obtained 

by trial and error) STA/LTA has detected only 125 events. Thus the detection 

capability of ANN is ~ 99%  (147/148) and that of STA/LTA is ~ 84%  (125/148). To 

ascertain the accuracy in onset detection, the normalized P travel times computed 

using both ANN and STA/LTA are plotted against epicentral distance in Fig. 4.5. 

Here actual travel times are normalized with respect to maximum for better visibility 

of the error. The error bar in Fig. 4.6 (a) indicates the difference between normalized P 

travel times as obtained by ANN and that picked up by analyst. The error bar in Fig. 

4.6 (b) represents the difference between P travel times obtained by STA/LTA and 
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trained ANN has been used to detect events with value of K (minimum number of 

channels required for showing decision as event) equal to 13. This value has been 

chosen by trial and error to achieve the best balance between the false alarms and 

missed events. The trained ANN has been used to detect seismic events as given 

below. 

 P onsets of 162 test events have been computed theoretically using AK135 

velocity model [94]. Out of 162 test events, analyst (duty scientist) has picked up 148 

events correctly. To know the accuracy in picking up of P onsets by an analyst, the 

analyzed P wave travel times are plotted with those obtained from model against 

epicentral distance for these 148 events as shown in Fig. 4.5.  

 
Fig.4.5: Comparison of P travel times computed using AK135 velocity model and that 
picked up by analyst for 148 events. 
 
 The average of deviations between P travel times obtained from the model and 

that by analyst is 4.26sec. Assuming, the analyzed times as standard, this difference 
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Fig. 4.4: Plot of frequency corresponding to maximum spectral amplitude vs 
epicentral distance for Noise and Local Event (LE), Regional Event (RE) and 
Teleseismic Event (TE). 
 

 To classify the event (i.e., LE or RE or TE) from noise based on spectral 

amplitude a mapping between spectral amplitudes and binary decision (event/noise) is 

required. However this mapping is not linear in nature. Therefore non-linear mapping 

capability of ANN has been used. In order to achieve this, a set of spectral amplitudes 

(typically 50) corresponding to the frequency range 0.2 to 20 Hz at an interval of 0.4 

Hz have been computed using STFT at noise and event windows for all the 247 

seismic events and fed to ANN as inputs. The desired output for the ANN is either 0 

or 1 corresponding to noise or event. For training the ANN resilient propagation [81] 

algorithm has been used. Using trial and error basis the number of neurons in the 

hidden layer is set to 25 which correspond to minimum approximation error. The 
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Fig. 4.3: The plot of normalized amplitudes vs. frequency.The green curve represents 
spectra of a typical earthquake signal for a time window of 3 sec. The red one 
represents averaged spectra of multiple noise samples and the blue curve is the noise 
corrected signal spectra. 

 

 To demonstrate further, in addition, amplitude spectra of 247 events (shown as 

pentagrams in Fig.4.1) and that of noise just preceding the events are computed. From 

these spectra the frequencies at which the spectral amplitude becomes maximum are 

noted and plotted against epicentral distances as shown in Fig. 4.4. It is seen from Fig. 

4.4 that events are not distinguished unambiguously from noise considering the 

frequencies corresponding to maximum amplitude as the only separating parameter 

particularly for regional and teleseismic events (distance 05 ).It is therefore perceived 

that to distinguish an event from noise it is essential to increase dimensionality. For 

example, event classification may consider the complete spectrum instead of a single 

frequency corresponding to maximum amplitude.  
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 Corresponding smoothened (by 31 point moving average filter) amplitude spectra 

(sampling rate is 40 samples/sec) which are computed at the onsets of event and noise 

in a time window of 3 sec using STFT (with 50 percent cosine-tapered Tukey window) 

are shown in Fig.4.2(d), (e) and (f). Window width has been selected to be 3 sec to 

accommodate the onset times at the farthest channels along each of the arms (CH1 and 

CH10 or CH11 and CH20) of events corresponding to maximum lag of 3 sec. From 

Fig. 4.2 it is seen that noise spectra peak at higher amplitude than events. This makes 

detection based on threshold on amplitude unsuccessful.  

For achieving a good estimation of signal spectrum (velocity), the effect of noise 

spectrum (average) is removed from signal spectrum as given by the following 

relation: 

2 2 ( )S( )= ( X( ) - N( ) )  ei ff f f  
(4.1) 

 

where S( )f is the noise corrected signal spectrum, 
2

X( )f  represents the squared 

magnitude  of the signal spectrum, 
2

N( )f  represents the squared magnitudes of 

averaged noise spectra, and ( )f  indicates the phase value of the signal spectrum. 

The phase value of the noise spectra has not been taken into consideration due to its 

randomness. The effect of this operation is shown in the Fig. 4.3.  
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  It has been observed that for events with high SNR, smoothened 

amplitude spectra are clearly distinguishable from the noise spectra. However, 

detection based on amplitude thresholding in frequency domain, is quite difficult in 

case of events with low SNR. To demonstrate this, three typical low SNR events of 

local, regional and teleseismic origin have been considered. Signals of these events are 

shown in Fig. 4.2(a), (b) and (c). 

 

Fig. 4.2: The plot of seismic signals recorded by 20 channels of GBA for (a) local , (b) 
regional  and (c) teleseismic events with low SNR. The corresponding plots of spectral 
amplitudes computed at noise (shown in hollow circle) and at P-onset of events 
(shown in dot) for time window of 3 sec as a function of frequency for a particular 
channel are shown in (d), (e) and (f). Here the spectral amplitudes are scaled by a 
factor of (1/S) where S is window length. 
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during the period Jan 2016 to Nov 2016 have been kept for testing. 

 

Fig. 4.1: Epicenters (shown in pentagram) of 247 events used for training ANN from 
the study area (area inside the dashed circle of radius 0~54 ) and the location of 
recording station GBA. The tested events from the same area are 162 (shown by 
hollow circle). 
 
It may be noted that parameters for events with magnitude greater than 4.5 have been 

taken from USGS reported event lists and those corresponding to lower magnitude 

(local events) have been picked up from GBA event list. This data set of 409 events 

which includes parameters from both USGS and GBA catalogues is considered as 

Truly Detected events (TD) during the above period. The training dataset contains 

events with magnitude 2.8 and above whereas the test dataset contains events with 

magnitude 0.8 and above. The various types of magnitudes have been considered as 

defined by USGS (https://earthquake.usgs.gov/earthquakes/eventpage/terms.php). 
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Chapter-4 
 

Application to Sumatra Region 
 

 
 In the Indian Ocean, Sumatra region is one of the prominent sources of 

tsunamis and it is located at a regional distance from eastern Indian coast, Sri Lanka 

and many other habitable islands. It has been considered as a study area for 

application of the proposed method of identification of tsunamigenic earthquakes. For 

detection of seismic event, short period array (GBA) of India has been considered and 

the results obtained are discussed in section 4.1. Location estimation results which 

have been computed using conventional method (using GBA data) have not been 

included here. For estimating moment magnitude and for identifying the earthquake 

category, a single 3-component broad band station (PALK) of Sri Lanka has been 

chosen. The results obtained are quoted in sections 4.2 and 4.3 respectively. It may be 

noted here that the seismic waves share nearly the same path from Sumatra to PALK 

as that from Sumatra to GBA. The chapter is ended by summarizing in section 4.4. 

4.1Detection using GBA data 

 Considering GBA [93] as centre (Fig. 4.1), a total of 409 seismic events within 

a radial distance of 0~ 54  (shown by dashed circle) and azimuthal coverage of 0360

have been collected from the GBA observatory. Out of 409 events, 247 events (shown 

in Pentagram) which occurred during the period 2010 to 2013 has been used for 

training the ANN and 162 events (shown by hollow circle in Fig. 4.1) which occurred 
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the development of Indian tsunami warning system. In this study, the near real-time 

data have been used to demonstrate the identification of tsunamigenic earthquakes 

originating from Sumatra. Despite being proven successful in the research, further 

work towards implementation of the proposed methods for a real tsunami warning 

system is necessary and desirable. 
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methods. For identifying the event as tsunamigenic, seismic data of a single 3-

component broad band station, namely, PALK located at regional distance has been 

used. From the vertical component record, the moment magnitude (an important 

parameter for tsunami warning) is estimated using ANN, as fast as 3 s after the P 

onset. The ANN has been found to estimate wM  of about 73% of the new events with 

absolute error less than 0.1 and of 100% of the events with absolute error less than 

0.35. Using 3- component records rms amplitudes of seismic phases namely P, S and 

LR have been computed. Subsequently an ANN has been used to identify the event as 

tusnamigenic or non-tusnamigenic by mapping these amplitudes along with location 

and magnitude parameters to earthquake category. This identification could be as fast 

as 5 min after the arrival of LR phase. The ANN based mapping method has been 

found to categorize 100% of the new earthquakes successfully as tsunamigenic or 

non-tsunamigenic. This mapping technique has been corroborated by two alternative 

mapping techniques namely 1)computation of water volume by estimating focal 

parameters using ANN and 2) mapping between rms amplitudes of seismic phases 

(along with location and magnitude) and earthquake category using SVM. These 

corroborative techniques have been found to identify 95% and 91% respectively of the 

new earthquakes successfully as tsunamigenic and non-tsunamigenic.  The close 

agreement among the mapping techniques ensure the strength and reliability of the 

proposed algorithm in this thesis work which could be implemented as an additional 

tool to conventional tsunami warning system, used to alert Indian coast against 

tsunamis originating in Sumatra.  

Scope of future study 
   

All the major research findings in the present work can be incorporated into 
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Chapter-5 
 

Conclusion and Future Scope 
 

  
This research work has been carried out with the objective that the 

tsunamigenic earthquakes could be identified promptly using a minimum of one 3-

component seismic station located at a regional distance from the tsunami source. The 

motivation behind this work was that the tsunamigenic potential could be determined 

from the 3-components records of seismic wave which travels faster than tsunami 

wave keeping in mind that seismic signal is the end result  of earthquake magnitude, 

fault rupture characteristics at the source, the propagation path effects and the 

instrumentation effects at the recording site.  The method proposed in this work has 

been validated with seismic data recorded at PALK station, Sri lanka  for earthquakes 

originating from tsunami source region, namely, Sumatra. All the important findings 

from this research are summarized in the following sections. 

Major achievement of this work has been in establishing that rms amplitudes 

of seismic phases like P, S and LR along with location and moment magnitude 

computed from seismograms recorded at a single 3-component station can be mapped 

to earthquake category. This has been achieved by the following process. An ANN 

has been used to detect seismic events by extracting features from short period 

recordings of Gauribidanur Array via STFT. The STFT and ANN based method has 

been found to detect 99% of the new events with an average error of ±0.036sec in 

onset pick up. After detection the events have been located using the conventional 
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28 25/2/2008 21:02:18 99.808 25 21.31 115.84 6.7 320 8 106 NT 

29 25/2/2008 18:06:04 99.891 25 21.42 115.95 6.6 318 6 103 NT 

30 25/2/2008 8:36:33 99.972 25 21.56 116.23 7.2 317 6 102 NT 

31 24/2/2008 14:46:21 99.931 22 21.49 116.08 6.5 322 6 107 NT 

32* 4/1/2008 7:29:18 101.032 35 22.64 115.66 6 323 27 102 NT 

33 22/12/2007 12:26:17 2.087 96.806 23 16.86 107.13 6.1 295 9 65 NT 

34 21/9/2006 18:54:50 110.365 25 33.77 118.44 6 276 24 85 NT 

35 27/7/2006 11:16:40 1.707 97.146 20 17.31 107.98 6.3 336 5 115 NT 

36 19/7/2006 10:57:37 105.389 45 28.23 118.7 6.1 311 35 116 NT 

37 17/7/2006 15:46:00 108.319 21 32.18 120.84 6.1 283 75 NT 

38* 17/7/2006 8:19:27 107.419 20 31.35 121.48 7.7 290 10 102 T 

39* 16/5/2006 15:28:26 0.093 97.05 12 17.81 113.07 6.8 358 82 NT 

40 25/4/2006 18:26:17 1.994 96.995 21 17.07 107.22 6.3 293 7 66 NT 

41 19/4/2006 20:36:46 2.643 93.226 17 13.31 109.74 6.2 19 86 NT 

42* 19/11/2005 14:10:13 2.164 96.786 21 16.82 106.9 6.5 306 15 78 NT 

43* 5/7/2005 1:52:03 1.819 97.082 21 17.21 107.69 6.7 329 8 107 NT 

44* 8/6/2005 6:28:11 2.17 96.724 23.5 16.76 106.94 6.1 308 19 85 NT 

45* 19/5/2005 1:54:53 1.989 97.041 30 17.12 107.19 6.9 290 8 65 NT 

46 18/5/2005 11:37:42 5.439 93.357 2.5 12.71 97.56 6.1 283 85 157 NT 

47 14/5/2005 5:05:18 0.587 98.459 34 18.93 109.9 6.7 326 22 88 NT 

48 10/5/2005 1:09:05 103.139 17 26.14 120.55 6.3 315 33 111 NT 

49 28/4/2005 14:07:34 2.132 96.799 22 16.84 106.99 6.2 301 15 75 NT 

50* 16/4/2005 16:38:04 1.812 97.662 31 17.76 107.09 6.4 344 19 129 NT 

51 11/4/2005 6:11:12 2.169 96.759 24 16.79 106.91 6.1 308 18 81 NT 

52* NT 

53* 10/4/2005 11:14:20 99.779 30 21.05 114.55 6.5 293 49 105 NT 

54 10/4/2005 10:29:11 99.607 19 20.86 114.59 6.7 323 56 91 T 

55* 8/4/2005 5:48:38 97.731 20.9 18.56 113.08 6.1 336 56 165 NT 

56 3/4/2005 3:10:56 2.022 97.942 36 17.96 106.16 6.3 329 24 111 NT 

57* 3/4/2005 0:59:21 0.368 98.319 30 18.88 110.69 6 325 14 105 NT 

58 30/3/2005 16:19:41 2.993 95.414 22 15.26 105.53 6.3 298 14 72 NT 

59 9/2/2005 13:27:25 4.797 95.117 44.5 14.55 98.99 6 310 25 89 NT 

60* 26/1/2005 22:00:43 2.699 94.602 22.2 14.58 107.58 6.2 300 31 72 NT 

61 9/1/2005 22:12:57 4.926 95.108 40 14.51 98.49 6.1 311 22 88 NT 

62 27/12/2004 9:39:07 5.348 94.65 35 14 97.1 6.1 320 21 97 NT 

63* 26/12/2004 0:58:53 3.295 95.982 30 15.72 103.86 9.1 329 8 110 T 

64 16/4/2004 21:57:05 102.718 44.5 25.27 119.01 6 223 11 5 NT 

65 22/2/2004 6:46:27 100.488 42 21.63 113.35 6 224 54 NT 

66 15/1/2002 7:12:58 105.205 10 27.97 118.48 6.1 74 84 NT 

67 13/2/2001 19:28:30 102.562 36 24.87 118.09 7.4 315 16 103 NT 

68 16/1/2001 13:25:10 101.776 28 23.87 117.59 6.9 321 14 111 NT 

Note: 22 events (marked * and **) kept for testing ANN-I and SVM while 20 events 
(marked *) for testing ANN-II. 
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68 08/04/2005 05:48:37.88 -0.215 97.731 20.9 6.1 
69 03/04/2005 03:10:56.47 2.022 97.942 36 6.3 
70 03/04/2005 00:59:21.42 0.368 98.319 30 6 

71* 30/03/2005 16:19:41.10 2.993 95.414 22 6.3 
72 28/03/2005 16:09:36.53 2.085 97.108 30 8.6 
73 09/02/2005 13:27:25.34 4.797 95.117 44.5 6 
74 26/01/2005 22:00:42.57 2.699 94.602 22.2 6.2 
75 09/01/2005 22:12:56.51 4.926 95.108 40 6.1 
76 27/12/2004 09:39:06.80 5.348 94.65 35 6.1 
77 26/12/2004 00:58:53.45 3.295 95.982 30 9.1 
78 25/07/2004 14:35:19.06 -2.427 103.981 582.1 7.3 
79 16/04/2004 21:57:05.41 -5.214 102.718 44.5 6 
80 22/02/2004 06:46:27.04 -1.559 100.488 42 6 
81 15/01/2002 07:12:58.03 -6.314 105.205 10 6.1 

82* 25/05/2001 05:06:10.68 -7.869 110.179 143.1 6.3 
83 13/02/2001 19:28:30.26 -4.68 102.562 36 7.4 

84* 16/01/2001 13:25:09.83 -4.022 101.776 28 6.9 

Note: * indicates events (22 in no.) kept for estimating wM  by ANN 

A.2: List of events from Sumatra which occurred between 16 Jan 2001 and 6 Dec 
2016 with magnitude 6 and above. 

Evt. No. Date 
Or. 

Time Lat Lon Depth Distance Azimuth wM  s CAT
hh: 

mm :ss 

1** 6/12/2016 22:03:33 6.5 NT 

2** 1/6/2016 22:56:00 6.6 NT 

3* 6/4/2016 14:45:30 107.386 29 30.78 119.7 6.1 301 29 111 NT 

4 2/3/2016 12:49:48 94.33 24 18.29 131.57 7.8 96 84 NT 

5* 3/3/2015 10:37:30 98.716 28 19.69 113.41 6.1 323 17 107 NT 

6 5/7/2014 9:39:28 1.934 96.939 20 17.04 107.48 6 296 11 69 NT 

7* 14/9/2012 4:51:47 100.594 19 22.5 117.43 6.2 330 9 115 NT 

8 15/4/2012 5:57:40 2.581 90.269 25 10.62 115.74 6.2 109 78 NT 

9 11/4/2012 10:43:11 0.802 92.463 25.1 13.39 118.37 8.2 109 80 T 

10* 11/4/2012 8:38:37 2.327 93.063 20 13.27 111.27 8.6 289 89 154 T 

11 10/1/2012 18:36:59 2.433 93.21 19 13.37 110.61 7.2 12 78 NT 

12 13/10/2011 3:16:30 114.587 39 37.63 115.71 6.1 291 83 16 NT 

13* 22/08/2011 20:12:21 104.054 29 26.95 119.63 6.1 301 24 89 NT 

14* 3/4/2011 20:06:40 107.693 14 31.87 122.13 6.7 307 54 NT 

15 26/1/2011 15:42:30 2.205 96.829 23 16.85 106.72 6.1 304 19 76 NT 

16 17/1/2011 19:20:57 102.647 36 25.12 118.72 6 310 22 95 NT 

17 25/10/2010 14:42:22 100.082 20.1 22.13 118.46 7.8 316 8 96 T 

18 9/5/2010 5:59:42 3.748 96.018 38 15.64 102.2 7.2 308 15 88 NT 

19 5/5/2010 16:29:03 101.096 27 23.29 118.47 6.5 326 10 111 NT 

20 6/4/2010 22:15:02 2.383 97.048 31 17 105.91 7.8 307 7 88 NT 

21 5/3/2010 16:07:01 100.991 26 23.06 117.95 6.8 324 13 109 NT 

22 2/9/2009 7:55:01 107.297 46 30.49 119.06 7 198 50 65 T 

23 16/8/2009 7:38:22 99.49 20 20.69 114.31 6.7 338 59 89 T 

24 15/4/2009 20:01:35 100.471 22 22.3 117.11 6.3 324 10 109 NT 

25 29/3/2008 17:30:50 2.855 95.296 20 15.19 106.17 6.3 300 10 75 NT 

26 15/3/2008 14:43:26 2.708 94.596 25 14.57 107.56 6 305 33 77 NT 

27 3/3/2008 2:37:27 99.823 25 21.29 115.66 6.2 323 17 114 NT 
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Appendix A 

Data Tables 
 
A.1: USGS reported parameters of events from Sumatra region which occurred 
between 16 Jan 2001 and 19 Oct 2016 with magnitude 6 and above. 

Evt. Date Or. Time Lat Lon Depth Mw 
No.  (hh:mm:ss) (deg) (deg) (km)  

1 19/10/2016 00:26:01.09 -4.8626 108.1627 614 6.6 
2* 01/06/2016 22:56:00.80 -2.0967 100.6654 50 6.6 
3 06/04/2016 14:45:29.62 -8.2036 107.3857 29 6.1 
4 02/03/2016 12:49:48.11 -4.9521 94.3299 24 7.8 
5 03/03/2015 10:37:30.05 -0.7789 98.7161 28 6.1 
6 05/07/2014 09:39:27.79 1.9335 96.9388 20 6 
7 14/09/2012 04:51:47.07 -3.319 100.594 19 6.2 
8 25/07/2012 00:27:45.26 2.707 96.045 22 6.4 
9 23/06/2012 04:34:53.18 3.009 97.896 95 6.1 

10* 15/04/2012 05:57:40.06 2.581 90.269 25 6.2 
11 11/04/2012 10:43:10.85 0.802 92.463 25.1 8.2 
12 11/04/2012 08:38:36.72 2.327 93.063 20 8.6 
13 10/01/2012 18:36:59.08 2.433 93.21 19 7.2 
14 13/10/2011 03:16:30.16 -9.35 114.587 39 6.1 

15* 05/09/2011 17:55:11.22 2.965 97.893 91 6.7 
16* 22/08/2011 20:12:20.95 -6.282 104.054 29 6.1 
17 03/04/2011 20:06:40.39 -9.848 107.693 14 6.7 
18 26/01/2011 15:42:29.59 2.205 96.829 23 6.1 

19* 17/01/2011 19:20:57.21 -5.03 102.647 36 6 
20 25/10/2010 19:37:31.15 -2.958 100.372 26 6.3 

21* 25/10/2010 14:42:22.46 -3.487 100.082 20.1 7.8 
22* 09/05/2010 05:59:41.62 3.748 96.018 38 7.2 
23 05/05/2010 16:29:03.21 -4.054 101.096 27 6.5 
24 06/04/2010 22:15:01.58 2.383 97.048 31 7.8 
25 05/03/2010 16:07:00.68 -3.762 100.991 26 6.8 
26 16/10/2009 09:52:50.83 -6.534 105.223 38 6.1 
27 01/10/2009 01:52:27.32 -2.482 101.524 9 6.6 
28 30/09/2009 10:16:09.25 -0.72 99.867 81 7.6 

29* 02/09/2009 07:55:01.05 -7.782 107.297 46 7 
30 16/08/2009 07:38:21.70 -1.479 99.49 20 6.7 
31 15/04/2009 20:01:34.68 -3.115 100.471 22 6.3 

32* 19/05/2008 14:26:45.02 1.64 99.147 10 6 
33 29/03/2008 17:30:50.15 2.855 95.296 20 6.3 
34 15/03/2008 14:43:26.50 2.708 94.596 25 6 
35 03/03/2008 02:37:27.12 -2.18 99.823 25 6.2 
36 25/02/2008 21:02:18.42 -2.245 99.808 25 6.7 
37 25/02/2008 18:06:03.90 -2.332 99.891 25 6.6 
38 25/02/2008 08:36:33.03 -2.486 99.972 25 7.2 
39 24/02/2008 14:46:21.47 -2.405 99.931 22 6.5 
40 20/02/2008 08:08:30.52 2.768 95.964 26 7.4 
41 22/01/2008 17:14:57.95 1.011 97.442 20 6.2 

42* 04/01/2008 07:29:18.30 -2.782 101.032 35 6 
43* 22/12/2007 12:26:17.47 2.087 96.806 23 6.1 
44 01/12/2006 03:58:21.65 3.39 99.079 204 6.3 
45 21/09/2006 18:54:50.05 -9.05 110.365 25 6 

46* 11/08/2006 20:54:14.37 2.403 96.348 22 6.2 
47 27/07/2006 11:16:40.37 1.707 97.146 20 6.3 
48 19/07/2006 10:57:36.88 -6.535 105.389 45 6.1 

49* 17/07/2006 15:45:59.82 -9.42 108.319 21 6.1 
50 17/07/2006 08:19:26.68 -9.284 107.419 20 7.7 

51* 26/05/2006 22:53:58.92 -7.961 110.446 12.5 6.3 
52 16/05/2006 15:28:25.92 0.093 97.05 12 6.8 
53 25/04/2006 18:26:17.15 1.994 96.995 21 6.3 

54* 19/04/2006 20:36:46.40 2.643 93.226 17 6.2 
55 19/11/2005 14:10:13.03 2.164 96.786 21 6.5 

56* 05/07/2005 01:52:02.95 1.819 97.082 21 6.7 
57* 08/06/2005 06:28:10.92 2.17 96.724 23.5 6.1 
58 19/05/2005 01:54:52.85 1.989 97.041 30 6.9 
59 18/05/2005 11:37:41.74 5.439 93.357 2.5 6.1 
60 14/05/2005 05:05:18.48 0.587 98.459 34 6.7 
61 10/05/2005 01:09:05.10 -6.226 103.139 17 6.3 
62 28/04/2005 14:07:33.70 2.132 96.799 22 6.2 
63 16/04/2005 16:38:03.90 1.812 97.662 31 6.4 

64* 11/04/2005 06:11:11.82 2.169 96.759 24 6.1 
65 10/04/2005 17:24:39.40 -1.591 99.717 30 6.4 

66* 10/04/2005 11:14:19.62 -1.714 99.779 30 6.5 
67 10/04/2005 10:29:11.28 -1.644 99.607 19 6.7 
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