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SYNOPSIS 

_________________________________________ 

 

Nuclear energy, since its inception in Chicago Pile experiment in 1942, has 

evolved as one of the alternatives of fossil fuel and leaders of low carbon power 

generation in today’s world. This “clean” and “green” form of energy is extracted in 

safe manner from the controlled chain of nuclear fission reactions inside nuclear 

reactors. The process of reactor design involves finding the best possible configuration 

of nuclear material so as to produce the power safely and economically. This requires 

an accurate calculation of multiplication factor, power distribution, worth of reactivity 

devices, coefficient of reactivity etc.. A nuclear reactor is a heterogeneous ensemble of 

fuel, moderator, structural material, control absorbers, reflector etc. where each material 

has different interaction property with the neutron. Moreover, the interaction probability 

of neutrons with a single material is not a smooth function of neutron energy. Therefore, 

different approximate techniques are used to model a reactor, which lead to uncertainty 

in the design calculations. With better understanding of neutronic behavior and 

advanced computational resources available today, more exact modeling is being 

attempted to enhance the accuracy of the calculations. 

In principle, the neutron transport equation, which is the analogue of Boltzmann 

equation of kinetic theory of gases, should be solved directly for the heterogeneous 

reactor core to calculate the parameters of interest. The traditional deterministic reactor 

physics calculations, however, follow a two-step process, mainly because of limitations 

of computational resources. The first step is the lattice calculation, in which two 

dimensional neutron transport equation is solved in multigroup framework (69 or 172 
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neutron energy groups) within a small and representative region of the reactor, referred 

to as the “lattice cell” (typically a fuel assembly), taking into account of all the details 

of the heterogeneous geometry. This provides fine mesh and fine energy group neutron 

flux distribution in the lattice cell, which is used to calculate few energy group cross 

sections of a homogeneous material, which replaces all the materials of the lattice cell. 

In the second step, these homogenized cross sections are used to solve the three 

dimensional, few energy group neutron diffusion equation for the full reactor core. Due 

to the phenomenal advancement of computing power in recent times, it has now become 

possible to obtain the solution of the transport equation directly for the entire core. 

Several such developments, both in 2D and 3D, have already been reported in literature 

[11][35]. 3D whole core transport calculation requires enormous computation effort. 

Hence, fusion methods [15] are being attempted, taking into account of the reactor core 

configuration, which is, in general, less heterogeneous in the axial direction than in the 

radial direction. It is the Method of Characteristics or MOC [17], which is common in 

all these references of full core transport work. MOC considers finite number of discrete 

directions similar to discrete ordinate or DSn method. However, both the methods 

calculate mesh average flux in different way. In DSn method, starting from a given 

mesh, fluxes are calculated in neighbouring meshes using principle of directional 

evaluation and imposing neutron balance over each mesh. This task is difficult for mesh 

of arbitrary shape. In MOC, a set of parallel characteristic lines or rays are traced over 

the problem domain (lattice or core) for each discrete direction and the intercepts of 

rays in different meshes are calculated. The neutron transport equation is solved 

analytically along these rays to obtain the mesh averaged ray angular flux and outgoing 

mesh edge ray angular flux. These mesh averaged ray angular fluxes are then summed 
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for all those rays passing through a mesh in a particular direction to calculate the average 

angular flux of the mesh for the direction. This formalism does not depend on the mesh 

geometry. Hence, MOC is able to treat complex geometries commonly encountered in 

the reactor core, which brings its applicability at par with the Monte Carlo method. 

Other advantages of MOC include (i) detailed flux and power distribution calculation 

over the region of interest, (ii) treatment of anisotropic scattering and (iii) ability to 

obtain solutions in neutronically large sized domains. Commonly used methods like 

collision probability or Monte Carlo method does not offer one or more of the 

abovementioned advantages. For these reasons the MOC is gaining popularity for not 

only lattice calculations but also for the whole core calculations without 

homogenization. Computer codes like DeCART [35], CRX [18], CASMO-4 [19], 

DRAGON [21], MOCUM [22], OpenMOC [23] etc. have so far been developed based 

on MOC. However, in MOC, solution of neutron transport equation is obtained by 

sweeping all the rays repetitively, which is time consuming and defeats the advantages 

of MOC. In order to circumvent the issue, it is required to adopt efficient solution 

technique, which will offer better convergence of MOC solution. 

In the present thesis, we have tried to explore various efficient solution 

techniques of neutron transport equation within the framework of MOC.  

1. We describe the development and verification of a 2D MOC based neutron 

transport code, which uses a mesh division technique based on Delaunay 

triangulation in conjunction with Bowyer-Watson algorithm and concepts of 

coordinate geometry for ray tracing. (reference a.[1]) 

2. Unlike most of the MOC codes, flat representation of neutron source within a 

mesh is extended to linear representation, which allows the method to use larger 
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triangular mesh for solving the transport equation. In this connection, we have 

developed a method to correct the distortion in representing cylindrical geometry 

by the large triangular meshes. Finally, we have shown results of some benchmark 

problems to bring out the advantage of the linear source expansion method. 

(reference a.[2]) 

3. In MOC, the neutron transport equation is solved by repetitive sweeping of all the 

rays traced through the problem domain, which is time consuming. Therefore, 

MOC solution is accelerated using an advanced approach of Krylov subspace 

iteration method wherein explicit construction of matrix for the matrix-vector 

multiplication is not required. Advantage of this acceleration technique is 

demonstrated by solving several benchmark problems. (reference a.[3])  

In the thesis, the work is presented in six chapters as elaborated below. 

1. Introduction 

The neutron transport equation, which forms the basis for the presented thesis work, 

is briefly introduced in Chapter 1, explaining its importance in the study of reactor core. 

Being the topic of our current research, there is special mention about MOC citing its 

advantages over the existing solution techniques of neutron transport equation. Many 

researchers have contributed to this field of MOC, which is acknowledged and the way 

the presented thesis work gives a value addition to this field, is clearly brought out. The 

work presented in the thesis is outlined at the end of the chapter. 

2. Neutron Transport Equation and its solution 

In order to understand the behavior of nuclear reactor, it is very essential to know 

the distribution of neutrons as a function of space, angle, energy and time. This can be 

found by solving the neutron transport equation. Chapter 2 discusses the assumptions 
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of neutron transport theory made in the context of nuclear reactor, derivation of integro-

differential and integral forms of the neutron transport equation and the conditions 

(initial and boundary) required to solve the equation. It is impossible to obtain the exact 

solution of neutron transport equation unless we consider very simple cases such as 

isotropic scattering in a uniform, infinite medium containing plane or point source etc.. 

For all other cases, approximate solution techniques are used to solve the transport 

equation. In Chapter 2, few such approximate techniques, viz. Discrete ordinate, PN, 

Multigroup, Collision probability and MOC are discussed. Numerous computer codes 

have been developed based on these approximate techniques to solve the transport 

equation in quick and efficient manner. Correctness of these codes have been 

established by solving a number of benchmark problems whose results are already 

known either by experiments or by theoretical calculations performed by some other 

benchmarked codes. Chapter 2 lists a number of such problems for various geometry 

and boundary conditions. 

3. Solution of Neutron Transport Equation by Method of Characteristics 

In Chapter 3, we describe the development of a 2D computer code based on MOC 

to solve the neutron transport equation for mainly assembly level lattice calculation with 

reflective and periodic boundary conditions and to some extent core level calculation 

with vacuum boundary condition. A prerequisite for solving the transport equation by 

the MOC is the division of the problem domain into small meshes. The traditional way 

of mesh division is to divide the assembly into square or hexagonal meshes conforming 

to the lattice structure and further divide these meshes into radial and azimuthal zones. 

While it gives the user the freedom to choose the manner of division, it makes the 

preparation of the input more cumbersome. In this respect, triangular meshes are found 
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to be useful and their applications are well appreciated for complicated unstructured 

geometry. Another prerequisite of MOC solution is ray tracing, where sufficiently large 

number of characteristic lines or rays, along which the transport equation is solved, are 

constructed in various discrete directions and their intersection with the meshes are 

found out. Usually the reflective boundary is discretized into small segments and the 

angular fluxes along a segment are either assumed to be uniform or calculated using 

linear interpolation scheme.  

In the MOC code, which we have developed, the division of the geometry into 

meshes is incorporated through an automatic triangulation procedure based on the 

Delaunay triangulation technique along with the Bowyer-Watson algorithm, which is 

unique in a sense that the technique is applicable for any geometry and not many 

researchers have reported such application in the field of neutron transport theory. 

Presently, the solution domain can be any geometry consisting of a combination of 

circles, rectangles and hexagons subject to the outer boundary being square or 

hexagonal like CANDU, PWR, BWR etc.. Coordinate geometry based approach is 

adopted for ray tracing. A number of benchmark problems, described in Chapter 2, are 

analyzed to demonstrate the capability and validity of the code. 

4. Linear Representation of Source in Method of Characteristics 

In most of the MOC based transport codes, flat neutron flux or neutron source 

assumption is considered [18][21][22][23]. Under this assumption, the meshes must be 

small enough to achieve acceptable accuracy in results. Mesh size depends on mean 

free path of neutron in the respective material. This leads to the use of large number of 

meshes and consequently large computation time. A better and efficient way of 

calculation is to expand the neutron flux or source within a mesh in terms of polynomial 
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basis functions of spatial variables. This permits the use of larger mesh size so that 

fewer meshes are required. Inclusion of higher order basis functions in the expansion 

of flux enhances the allowable mesh size at the cost of evaluating additional expansion 

coefficients. Hence, the polynomial expansion is generally restricted up to linear terms, 

which, according to the literature [37], provides a balanced optimization between speed 

and memory requirement as compared to higher order expansions.  

In Chapter 4, we propose a formalism in which the source within a triangular mesh 

is expanded up to linear terms. The expansion coefficients are determined by setting up 

equations for the average source and its moments in a mesh. A major problem with this 

approach is the inaccurate representation of circular geometries with coarse triangular 

meshes. Hence, a method is developed to modify the shape of the mesh for making the 

representation conformal. A number of benchmark problems are analyzed to emphasize 

the advantage of the source expansion method and the need to correct the shape of the 

coarse meshes used in the triangulation of the circular geometry. 

5. Krylov Acceleration Technique in Method of Characteristics 

In Chapter 5, we propose, to the best of our knowledge, the first ever matrix free 

approach in Krylov accelerated MOC wherein explicit construction of matrix for the 

matrix-vector multiplication is not required. In MOC, neutron transport equation is 

solved by sweeping all the rays repetitively, which is time consuming and defeats the 

advantages of MOC. Therefore, acceleration techniques have been developed for MOC. 

Krylov subspace methods [53] are useful in accelerating the solution of neutron 

transport equation. However, these methods, being matrix based, pose another difficulty 

in obtaining the solution quickly. For real problems, size of the matrix is huge, which 

motivates us to find out the effect of matrix “A” on vector “ψ”, instead of forming the 
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matrix explicitly. First, we have attempted the matrix based approach to understand how 

the matrix “A” operates on the vector “ψ”. It has been found that the matrix is huge in 

size and difficult to handle even for simple problems. Using the angular flux continuity 

condition, the number of unknowns as well as the matrix size is reduced and the 

conventional MOC solution is converted into a practically solvable matrix equation 

Aψ=q to conform to the framework of Krylov subspace methods. After obtaining the 

matrix equation, we work out the recipe to induce the similar effect of matrix equation 

without forming the matrix explicitly. This matrix free approach is used in combination 

with flat as well as linear source assumption to solve a number of benchmark problems. 

Results show significant improvement in terms of faster convergence of solution over 

the conventional iteration without compromising the accuracy.  

6. Conclusion and Future Scope of Work 

At present, the MOC based neutron transport code, developed during the course of 

this thesis work, can be used for mainly assembly level lattice calculation and to some 

extent core level calculation. Two types of flux representation, viz. flat and linear within 

a mesh are available with the code. The code is equipped with Krylov based matrix-free 

advanced acceleration technique, which offers faster convergence of solution. With this 

present status of our work, outline of the future work is presented in Chapter 6. Our next 

plan is to couple the developed MOC code to a fine-group cross section library and to 

include treatment of anisotropic scattering and burn-up to convert it into a complete 

lattice code. It has also been planned to apply acceleration technique for outer iteration 

to reduce the computation time. Further reduction in computation time is possible by 

simulating half or quarter core and permitting different boundary conditions at various 

surfaces instead of simulating the whole core and applying the same boundary condition 
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at each of the surfaces. Though efforts were made in this direction for one or two 

problems, there are scopes to implement this capability in a more general way. It is 

possible to solve neutron transport equation for full core calculation without doing any 

homogenization. For doing so, we would like to extend our transport code from lattice 

level to full core level using parallel computers, which will help us obtaining the 

solution in reasonable time for whole core. 
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CHAPTER 1 : Introduction 

    

Introduction 

_________________________________________ 

In today’s world, nuclear energy is being considered as one of the alternatives 

of fossil fuel for meeting our energy needs in a better and cleaner way. Nuclear energy 

is extracted in safe manner from the controlled chain of nuclear fission reactions inside 

nuclear reactors. A nuclear reactor is a heterogeneous ensemble of fuel, moderator, 

structural material, control absorbers, reflector etc. in a sense that every material has 

different interaction property with the neutron. In principle, neutron transport equation, 

which is the analogue of Boltzmann equation of kinetic theory of gases, should be 

solved for such a heterogeneous system to calculate the parameters of interest like 

multiplication factor, neutron flux, power distribution etc.. However, traditional 

deterministic reactor physics calculations follow a two-step process, mainly because of 

limitations of computational resources. The first step is the lattice calculation, in which 

one or two dimensional neutron transport equation is solved in multigroup framework 

(69 or 172 neutron energy groups in WIMS) within a small and representative region 

of the reactor. This region is known as “lattice cell” (typically a fuel assembly), which 

contains all the details of the heterogeneous geometry. This provides fine mesh and fine 

energy group neutron flux distribution in the lattice cell, which is used to calculate few 

energy group cross sections of a homogeneous material, which replaces all the materials 

of the lattice cell. In the second step, these homogenized cross sections are used to solve 

the three dimensional, few energy group neutron diffusion equation for the entire core.  
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In earlier days, the representative region used to be a ‘pin cell’ consisting of a 

single fuel rod and associated moderator with reflective boundary condition. The outer 

boundary was often converted from square or hexagonal to circular by Wigner-Seitz 

approximation to further simplify the geometry to that of a one dimensional problem. 

Due to the presence of heterogeneities such as control rods, water gaps or water rods, 

the lattice is not exactly periodic. Various corrections such as the use of a “white 

boundary” instead of reflective one and the use of a “supercell”, which includes a 

homogenized mixture of fuel and moderator to represent the spectrum external to the 

lattice, had to be included to get satisfactory results. An intermediate assembly 

calculation based on diffusion theory, using the homogenized and group condensed 

cross sections, was performed to obtain the homogenized cross sections for the fuel 

assembly. Examples of the use of such methods are MURLI [1][2], EXCEL [3] and the 

LEOPARD-PDQ combination [4]. Since seventies and early eighties, computer codes 

were developed for performing lattice calculations at the fuel assembly level directly. 

The integral transport theory, using either the collision probability, the interface current 

or a combination of these methods [5][6][7][8][9], was popular for treating the complex 

geometries involved. The method has the added advantage that it can be formulated in 

terms of only the scalar flux, since the scattering anisotropy plays only a minor role and 

can be corrected by the use of transport cross sections.   

Due to the phenomenal advancement of computing power in recent time, we can 

now think of obtaining the direct solution of the transport equation for full reactor core 

i.e. without the need for a separate lattice calculation for the homogenized cross sections. 

Several such developments, both in 2D and 3D, have already been reported in literature 

[10][11][12][13][14]. It is easy to understand that 3D whole core transport calculation 
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requires enormous computation effort. Hence, fusion methods [15][16] are attempted, 

taking into the account of the reactor core design which is, in general, less 

heterogeneous in axial direction than in radial direction. It is the Method of 

Characteristics or MOC [17], which is common in all these references of full core 

transport work. MOC considers finite number of discrete directions similar to discrete 

ordinate or DSn method. However, both the methods calculate mesh average flux in 

different ways. In DSn method, starting from a given mesh, fluxes are calculated in 

neighbouring meshes using principle of directional evaluation and imposing neutron 

balance over each mesh. This task is difficult for mesh of arbitrary shape. In MOC, a 

set of parallel characteristic lines or rays are traced over the problem domain (lattice or 

core) for each discrete direction and the intercepts of rays in different meshes are 

calculated. Neutron transport equation is solved analytically along these rays to obtain 

mesh average ray angular flux and outgoing mesh edge ray angular flux. These mesh 

average ray angular fluxes are then summed for all the rays passing through a mesh in 

a discrete direction to calculate average angular flux of the mesh. This formalism does 

not depend on the mesh geometry. Hence, MOC is able to treat complex geometries 

commonly encountered in reactor core, which brings its applicability at par with Monte 

Carlo method. Other advantages of MOC include (i) detailed flux and power 

distribution calculation over the region of interest, (ii) treatment of anisotropic 

scattering and (iii) ability to obtain solution in neutronically large sized domains. 

Commonly used methods like collision probability or Monte Carlo method does not 

offer one or more of the abovementioned advantages. For these reasons the MOC is 

gaining popularity for not only lattice calculations but also for whole core calculations 

without homogenization. Computer codes like CRX [18], CASMO-4 [19], AutoMOC 



Chapter 1: Introduction 

_____________________________________________________________________ 

 

22 | P a g e  

 

[20], DRAGON [21], MOCUM [22], OpenMOC [23], BOXER [24] etc. have so far 

been developed based on MOC.  

A prerequisite for solving the neutron transport equation by the MOC is the 

division of the problem domain into small meshes. The traditional way of mesh division 

is to divide the assembly into square [25][26][27] or hexagonal meshes [28][29] 

conforming to the lattice structure. Further sub division of these meshes into radial and 

azimuthal zones is also attempted [9][24]. While it gives the user the freedom to choose 

the manner of division, it makes the preparation of the input more cumbersome. 

Triangular meshes are found useful for complicated unstructured geometry, likely to be 

encountered in advanced reactors, and therefore, used in MOC codes like TPTRI [30], 

MOCUM etc.. With an aim to simulate complex geometry, AEGIS [31] and 

ANEMONA [32] have been developed based on R-function solid modeler, which has 

high flexibility and the power of the combinatorial geometry method. The powerful 

graphics capability of AutoCAD, a well-known computer aided design software 

package, is exploited by AutoMOC for efficient handling of unstructured geometry. 

Another prerequisite of MOC solution is ray tracing, where sufficiently large number 

of characteristic lines or rays are constructed in various discrete directions. Usually ray 

tracing algorithm requires each ray, after multiple reflection, should end at its starting 

point on reflective boundary [33]. However, this constraint restricts the distribution of 

rays and shape of external boundary. In order to remove the constraint, the reflective 

boundary is discretized into small segments and the angular fluxes along a segment are 

either assumed to be uniform [18][32] or calculated using linear interpolation scheme 

[34]. In AutoMOC, the VBA (Visual Basic for Applications) language is used to 

customize AutoCAD for carrying out the ray tracing procedure irrespective of 
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geometric shape. ANEMONA offers R-function based general geometry ray tracing. 

For whole core calculation, enormous computational effort is required to store all the 

ray segments intercepted by the mesh boundary. Therefore, DeCART [35] and 

CHAPLET [10] use cell based modular ray tracing where ray segments are generated 

only for few types of cells and each ray segment of a cell is linked to a corresponding 

ray segment of the neighboring cell by adjusting ray spacing and azimuthal angle. In 

the MOC code we have developed and reported [36], the division of the geometry into 

meshes is through an automatic triangulation procedure based on the Delaunay 

triangulation technique along with the Bowyer-Watson algorithm, which is unique in a 

sense that the technique is applicable for any geometry and not many researchers [22] 

have reported such application in the field of neutron transport theory. Presently the 

solution domain can be any geometry consisting of a combination of circles, rectangles 

and hexagons subject to the outer boundary being square or hexagonal like CANDU, 

PWR, BWR etc.. A very basic approach, based on elementary coordinate geometry, is 

adopted for ray tracing. 

Many MOC based transport codes consider flat neutron flux or neutron source 

(i.e. fission and scattering source). Under this assumption, the meshes must be kept 

small enough to achieve acceptable accuracy in results. Extent of smallness depends on 

the mean free path of neutron in the respective material. This leads to use of large 

number of meshes and consequently large computation time. A better and efficient way 

is to employ a higher order representation of the flux or source within a mesh. In other 

words, the neutron flux or source within a mesh is expanded in terms of polynomial 

basis functions of spatial variables, multiplied by suitable expansion coefficients. This 

permits the use of larger mesh size. Inclusion of higher order basis functions in the 
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expansion of flux increases the allowable mesh size at the cost of evaluating additional 

expansion coefficients. Hence, the polynomial expansion is generally restricted up to 

linear terms, which, according to literature [37][38], provides a balanced optimization 

between speed and memory requirement as compared to higher order expansions. With 

an aim to perform core calculation in reasonable time with our MOC based transport 

code, we propose a formalism in which the source in a triangular mesh is expanded in 

terms of polynomials, retaining up to the linear terms [39]. The expansion coefficients 

are determined by setting up equations for the average source and its moments in a mesh. 

A major problem with this approach, for geometries involving curved surfaces (e.g. 

cylindrical rods), is that a coarse mesh division by triangulation does not represent the 

circular boundary correctly. To overcome this, a method has been developed to use the 

coarse meshes in circular geometry by modifying the shape of the meshes so that the 

geometry representation is exact.    

In MOC, the neutron transport equation is solved along a set of parallel 

characteristic lines or rays in a number of discrete directions. Sweeping on all these rays 

again and again has to be carried out in order to obtain results with acceptable accuracy. 

This may be time consuming and may defeat the advantages of MOC. Thus, for larger 

practical problems, acceleration techniques need to be incorporated for MOC 

simulations. A common method, the Coarse Mesh Finite Difference (CMFD), used by 

many transport codes [40][41][42], converts the fine mesh heterogeneous problem into 

a coarse mesh homogeneous one, which is easier to solve with few energy groups, 

diffusion like finite difference scheme and the solution provides much faster 

convergence of fission and scattering source distribution to MOC kernel. This method 

has also been extended for general geometry in Generalized Coarse Mesh Rebalancing 
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(GCMR) [43] and Generalized Coarse Mesh Finite Difference (GCMFD) [44]. 

CACTUS, the cyclic characteristics solver of WIMS, implements energy group 

rebalancing algorithm, which homogenizes the original problem using conventional 

flux and volume weighting method and uses the homogeneous solution, obtained at the 

end of each iteration, to rescale the characteristics flux [45]. In DRAGON, Track 

Merging Technique (TMT) and Self Collision Rebalancing (SCR) techniques are 

prescribed for accelerating the characteristic solution in large domain [46]. Transport 

Synthetic Acceleration (TSA) scheme has been used by Zika and Adams [47] in their 

MOC solver to accelerate the high order approximated problem by solving a lower order 

approximated problem. Sanchez and Chetaine introduced an Asymptotic Synthetic 

Acceleration (ASA) scheme in their MOC code with unstructured meshes [48], which 

was generalized later by incorporating a general DPN angular approximation [49]. 

Angular Dependent Rebalance (ADR) iteration method has been applied in equilateral 

triangular meshes in the step characteristic based transport code [50].  

Applications of Krylov subspace iteration methods have been found to be useful 

in many fields including neutron transport theory [51][52] since its inception for solving 

linear systems with matrices [53]. In order to take advantage of the methods, it is 

attempted to convert the problem into a matrix equation, which is then solved by 

different variants of Krylov subspace method, namely Generalized Minimal RESidual 

(GMRES) method [54][55][56], Lanczos’ iteration [49] etc.. To apply the method in 

our MOC setup [57], we formulated the problem by constructing a coefficient matrix, 

which is non-symmetric in nature and therefore, solved by a Krylov variant, called 

BiConjugate Gradient STABilized (BiCGSTAB) method. However, the matrix-based 

approaches suffer from speed and storage issues in case of large problem despite 
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utilizing the sparsity of the matrix. In order to circumvent these issues, various remedies 

like partitioning the problem domain into several sub-domains in domain 

decomposition method [55], finding an appropriate preconditioner of GMRES to 

transform the original linear system into an easier one, keeping the solution intact [56] 

etc. are in effect. In this connection, we propose first time, in our knowledge, a matrix 

free approach in Krylov accelerated MOC wherein explicit construction of matrix for 

the matrix-vector multiplication is not needed [57]. 

In the present thesis work, we have tried to explore various efficient solution 

techniques of neutron transport equation within the framework of MOC. The thesis is 

organized as follows: Chapter 2 describes the fundamental neutron transport theory and 

its underlying assumptions, which is the backbone of the present study. This is followed 

by a mention of few existing solution techniques of neutron transport equation. In order 

to test the performance of these solution techniques, benchmark problems are required. 

A list of such problems with details of input parameters like geometry and material 

description, cross section of neutron interaction with the material etc. are given in 

Chapter 2. Chapter 3 describes the development and verification of a MOC based 

neutron transport code, which uses Delaunay triangulation technique in conjunction 

with Bowyer-Watson algorithm for mesh division and concepts of coordinate geometry 

for ray tracing. In Chapter 4, the mathematical formulation of the linear representation 

of the source within a mesh and the geometry correction needed for the expansion in 

the presence of cylindrical bodies are described. This chapter further includes analysis 

of some benchmark problems to emphasize the advantage of the source expansion 

method. In Chapter 5, acceleration of the MOC solution using Krylov subspace based 

iteration method is discussed. Advantage of the acceleration technique using a novel 



Chapter 1: Introduction 

_____________________________________________________________________ 

 

27 | P a g e  

 

matrix-free formalism, proposed in this chapter, is demonstrated by solving few 

benchmark problems. In the final chapter, we present our conclusions and future scope 

of the work. 
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CHAPTER 2 : Neutron Transport Equation and its 

solution..  

Neutron Transport Equation and its solution 

_________________________________________ 

2.1 Introduction 

In order to understand the behavior of a nuclear reactor, it is essential to know 

the distribution of neutrons as a function of space, angle, energy and time. This can be 

found out by solving the linear form of Boltzmann neutron transport equation. The 

sections in the present chapter include the discussion on the assumptions of neutron 

transport theory made in the context of nuclear reactor, derivation of integro-differential 

and integral form of the neutron transport equation and the conditions (initial and 

boundary) required to solve the equation. It is very difficult to obtain the exact solution 

of the neutron transport equation. There are two approaches, viz. deterministic and 

stochastic, to obtain the approximate solution. In present chapter, we restrict to 

deterministic approach in which the independent variables - space, angle, energy and 

time, are discretized to solve the transport equation. Few deterministic methods viz. 

Discrete ordinate, PN, Multigroup, Collision probability and MOC are discussed here. 

Numerous computer codes have been developed based on these approximate techniques 

to solve the transport equation in quick and efficient manner. Correctness of these codes 

have been established by solving a number of benchmark problems whose results are 

already known either by experiments or by theoretical calculations performed by some 

other benchmarked codes. Number of such problems are provided in this chapter for 

various geometry and boundary conditions.  
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2.2 Assumptions of neutron transport theory 

Following assumptions are made before deriving the neutron transport equation 

[58][59]: 

(i) Neutrons are assumed to be point particles. According to the wave-particle duality 

in quantum mechanics, the De Broglie wavelength (λ) is associated with neutron (λ 

~ h/p; h is Planck constant and p is momentum of neutron). The wavelength for 

neutrons in reactors is typically found to be small (~ 0.1 Ao for 0.01 eV neutron) as 

compared to the distance travelled by the neutrons between successive collisions 

(~ few cm). Therefore, position and momentum of the neutrons can be determined 

simultaneously with adequate precision. This classical treatment does not hold for 

neutrons with very low energy. Since, such neutrons are very few in number, this 

violation does not cause any significant alteration in neutron transport theory. 

(ii) Neutron-neutron interactions are ignored. Neutron density in reactors is much 

lower as compared to target nucleus density in the rector materials. For example, if 

thermal neutron flux (Φ) is about ~ 1015 n/cm2/sec in a typical reactor and v is the 

average velocity of thermal neutron ~ 105 cm/sec, then the corresponding neutron 

density Ф/v will be ~ 1010 n/cm3 whereas density of nucleus or atom in fuel, clad 

etc. is ρNA/A (ρ is density of material, A is mass number and NA is Avogadro 

number) which is of the order of 1022/cm3. Hence, neutron-nucleus interaction is 

much more favored than the neutron-neutron interaction. This assumption makes 

the neutron transport equation linear. It is worthy to mention here that in kinetics 

theory of gases, Boltzmann transport equation is non-linear due to the interaction 

between gas molecules.  
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(iii) Neutrons travel in straight lines in between successive collisions. Since, neutron 

does not carry any charge, long range electric or magnetic force does not alter its 

straight line trajectory. Deflection takes place only when short range force acts on 

the neutron during neutron-nucleus interaction. 

(iv) Collisions are regarded instantaneous. Neutrons are emitted immediately (~ 10-14 

s) after every collision except in the case of nuclear fission where a small fraction 

of neutrons, called delayed neutrons, are emitted after their precursors decay (~ 

msec to minute). Hence, the assumption of instantaneous collision will not result 

the correct time dependent behavior of neutron kinetics problem. However, the 

neutron transport equation with no delayed neutrons is found suitable for steady 

state problems either with fixed neutron sources or the reactor criticality 

calculations in which one is interested only in the critical state and flux distribution 

in the reactor and not the details of the time-dependent behavior.  

(v) Only the expected or mean value of the neutron density distribution is considered. 

As a general rule in nuclear reactors, fluctuations about the mean value of neutron 

density is small as compared to the mean value. There are some practical situations 

e.g. reactor startup in which the departure from the average behavior is relatively 

large and cannot be overlooked. For dealing with such behavior, stochastic theories 

of neutron transport and multiplication have been developed in which the 

probabilities of various exceptional events are considered along with more normal 

situations. 

(vi) The material properties are assumed to be isotropic. However, if the energy of 

neutron is very low and hence, its wavelength becomes long, then the diffraction 
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pattern arisen from material having crystal structure preferably aligned along 

certain directions, will be anisotropic.  

(vii) The properties of nuclei and the compositions of materials under consideration are 

assumed to be time-independent. It should be noted that the thermal energy 

produced in nuclear fission rises the temperature of the fuel material and therefore, 

nuclear density of the fuel changes. Moreover, this temperature rise causes Doppler 

broadening of cross section (specially at resonance peak), which changes the 

interaction cross section of nuclei with neutron. Apart from this, new isotopes are 

also formed in fission, (n, γ), (n, α) and various other reactions, which modify the 

neutronic characteristics of material. Since, the time scale for these changes to take 

place is very long as compared to neutron transport time, they are treated by solving 

other equations which take care of these changes in composition. 

2.3 Derivation of Neutron Transport equation  

2.3.1 Definitions of some relevant physical quantities 

(i) Neutron Angular Density 

It is defined as the expected (or average) number of neutrons at position 

r  with direction   and energy E at time t per unit volume per unit solid angle 

per unit energy interval (n/cm3/steradian/MeV). It is represented as  N r, ,E,t . 

If a volume element dV=dxdydz about r  and a direction element 

d sin d d     about   are considered as shown in Fig. 2.1, then the 

expected number of neutrons in the volume element, having directions within 
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d  about   and energies within dE about E at time t, will be 

 N r, ,E,t dVd dE  . 

 

Fig. 2.1: Volume element dV and direction element d  considered in neutron 

transport theory 

  

(ii) Neutron Density 

Integration of the neutron angular density over all the directions is 

defined as the neutron density and represented as  n r,E,t . Mathematically, we 

can write 

   
4

n r,E,t N r, ,E,t d


    

It is the expected number of neutrons at position r  with energy E at time t per 

unit volume per unit energy interval (n/cm3/MeV). 
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(iii)   Angular and scalar flux 

The product of neutron speed v(E) and neutron angular density 

 N r, ,E,t  is called angular flux, which is denoted by  r , ,E,t   

[  vN r, ,E,t  ]. This is a measure of rate of neutrons passing through per unit 

area per unit solid angle per unit energy. Unit of angular flux is 

n/cm2/steradian/Mev/sec. If the angular flux is integrated over all the directions, 

then we will get scalar flux    
4

r ,E,t r , ,E,t d


     .    

(iv)    Cross section 

Cross section, in general, is defined as the probability of interaction of a 

projectile (neutron, gamma etc.) with a single nucleus of a target material. 

Microscopic cross section, denoted by σ, is the effective area presented by the 

target to the neutron. Its unit is given in cm2 or barn (=10-24 cm2). If microscopic 

cross section is multiplied with the nucleus density of target material, then we 

will get Macroscopic cross section or Σ, which characterizes the probability of 

neutron interaction for a volume of material and has the dimension of inverse of 

length (cm-1). 

(v)    Reaction rate 

Product of macroscopic cross section  r , ,E   of any neutron-nucleus 

interaction and corresponding neutron angular flux  r , ,E,t   is defined as 

the reaction rate i.e. the number of interactions taking place per unit volume per 

unit solid angle per unit energy interval. Unit of the reaction rate is given as 

n/cm3/steradian/Mev/sec. 
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(vi)    Neutron source 

The neutron source (strength) or  Q r, ,E,t  is commonly defined as 

the number of neutrons emitted per unit time per unit volume per unit solid angle 

per unit energy interval. This includes any source like fission, scattering, (n, 2n), 

(α, n), (γ, n) or some external neutron source. This has the dimension same as 

that of the reaction rate.  

2.3.2 Integro differential form of transport equation 

 N r, ,E,t dVd dE   is the expected number of neutrons in the volume element 

dV, having directions within the direction element d  about   and energies within 

dE about E at time t, as shown in Fig. 2.1. If v(E) is the speed of the neutron of energy 

E, then the neutron will travel v(E)∆t distance in time ∆t. According to the definition of 

macroscopic cross section (total)  t r,E , the probability that  N r, ,E,t dVd dE   

number of neutrons will undergo interaction is    t r,E v E t  . If we assume that a 

neutron is lost once it undergoes an interaction, then the number of neutrons remains 

after time ∆t will be      1 tN r, ,E,t r ,E v E t dVd dE    
 

. These neutrons have 

now reached a new position coordinate r v t   at time t+∆t. There are neutrons, 

which are moving in some other direction '  with energy E’, may reach r v t   at 

time t+∆t due to scattering. In order to calculate the number of such neutrons, scattering 

reaction rate is integrated over '  and E’ (which results in neutrons of energy E moving 
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in the direction  ), followed by multiplication with the volume element dV, direction 

element d , energy element dE and time interval ∆t. Thus, we get 

   s

E''

r; ',E' ,E r, ',E',t d ' dE' dVd dE t



 
        

  
   

where Σs is scattering cross section. In addition to this, there are neutrons from fission, 

external neutron sources etc., together represented as  Q r, ,E,t , reaching r v t   

at time t+∆t. Hence, we can write 

      

     

1 t

s

E''

N r v t, ,E,t t dVd dE N r, ,E,t r ,E v t dVd dE

r; ',E' ,E r, ',E',t d ' dE' dVd dE t Q r, ,E,t dVd dE t



         

 
             
  
 

      

     

1 t

s

E''

N r v t, ,E,t t N r, ,E,t r ,E v t

r; ',E' ,E r, ',E',t d ' dE' t Q r, ,E,t t



        

 
           
  
 

                    (2.1)  

We can expand the LHS of Eq.2.1 as the following Taylor series, keeping terms up to 

1st order. 

       N r v t, ,E,t t N r, ,E,t N r, ,E,t . v t N r, ,E,t t
t


           


   (2.2) 

Using Eq.2.2, we can modify Eq.2.1 as 

 
       

     

1 t

s

E''

r, ,E,t . r , ,E,t r,E r, ,E,t
v E t

r; ',E' ,E r, ',E',t d ' dE' Q r, ,E,t




      



 
         
  
 

       (2.3) 

This is the integro differential form of neutron transport equation [58][59]. The 

steady state neutron transport equation can be obtained by setting 0
t





. 
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     

     

t

s

E''

. r , ,E r,E r, ,E

r; ',E' ,E r, ',E' d ' dE' Q r, ,E



    

 
         
  
 

                (2.4) 

In 3D geometry,   has components sinθcosφ, sinθsinφ and cosφ along X, Y and Z axes 

respectively where θ is polar angle and φ is azimuthal angle. In plane geometry where 

the medium is finite along X axis and infinite along Y and Z axes,   has the only 

component μ = cosθ along X axis. Hence, time independent neutron transport equation 

in plane geometry can be written as  

 
   

     
1

1

2

t

s

E'

x, ,E
x,E x, ,E

x

x; ',E' ,E x, ',E' d ' dE' Q x, ,E


 

     



 



 
     
 

 

               (2.5) 

where μ is incident direction and μ’ is scattered direction of neutron and 

1 2 1

1 0 1

2

'

d ' d ' d ' d '



   
 

      . 

2.3.3 Integral form of transport equation 

The integral form of neutron transport equation can be derived from the integro 

differential form. To start with, scattering source term on RHS of Eq.2.3 can be included 

in  Q r, ,E,t . Hence, 

 
         1 tr, ,E,t . r, ,E,t r,E r, ,E,t Q r, ,E,t

v E t


        


     (2.6) 

Using the expanded form of gradient operator ( ) in Cartesian coordinate system, first 

two terms on LHS of Eq.2.6 can be written as 
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 
 

 
 1 1

x y z. r , ,E,t r, ,E,t
v E t v E t x y z

       
                     

    (2.7) 

where Ωx, Ωy and Ωz are the direction cosines of the line along which neutron travels at 

position r . Eq.2.7 can alternatively be represented by the following total derivative of 

angular flux with respect to the distance “s” travelled by the neutron along  .  

   d dt dx dy dz
r, ,E,t r, ,E,t

ds ds t ds x ds y ds z

    
        

    
            (2.8) 

Comparing Eq.2.7 and 2.8, we get 

0

1dt s
t t

ds v v
                                                (2.9) 

and 

0

0 0

0

x x

y y

x z

dx
x x s

ds

dy
y y s r r s

ds

dz
z z s

ds


     




       



     


                               (2.10) 

Using the equivalence of Eq.2.7 and 2.8, 
 
1

.
v E t

 
    

 is replaced by the total 

derivative 
d

ds

 
 
 

. Therefore, Eq.2.6 can be rewritten as 

 0 0 0 0 0

td s s
r s,E r s, ,E,t Q r s, ,E,t

ds v v

     
              

     
          (2.11) 

This is a first order linear ordinary differential equation, which has a solution of 

following form. 
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 
 

 

0

0

0

0 0 0 0

0 0

0
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       
 

 
    

 


      (2.12) 

This means the angular flux at r  is contributed by (i) the incoming angular flux, 

attenuated while travelling from 0r  to r  and (ii) neutron sources present between 0r  

and r  on the line along  , attenuated before reaching r  (Fig. 2.2). If the boundary is 

set at vacuum, then  0 0r , ,E,t   will be zero and hence, 

 
 0

0 0

0

s

t

s'

s r s",E ds"
s'

r , ,E,t Q r s', ,E,t e ds'
v

   
      

 
                (2.13) 

This is the integral form of neutron transport equation [58][59]. 

 

Fig. 2.2: Illustration of symbols used in the derivation of integral transport equation 
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2.3.4 Initial and boundary conditions 

The time dependent neutron transport equation (Eq.2.3) is first order in time as 

well as space. So, one initial and one boundary condition is sufficient to solve the 

equation. As initial condition, angular flux  r , ,E,t   at t=0 sec must be known. For 

fixing the boundary condition, let us consider a domain of volume V surrounded by an 

arbitrary surface S within which the transport equation is to be solved. We can set the 

angular flux, incoming to the domain through S, to zero i.e. 

  0      0r, ,E,t .n                                           (2.14) 

where n  is the outward normal to S. This is known as the vacuum boundary condition 

since it implies that a neutron once leaks out from the domain will not return. This 

condition remains valid if the surface is non reentrant in nature (Fig. 2.3). 

 

Fig. 2.3: Illustration of reentrant and non-reentrant surface 

 

For full core calculation, vacuum boundary condition can be used whereas for 

lattice level calculation, we have a choice of following boundary conditions depending 

on the symmetry of the problem. Incoming angular flux in a direction   at boundary S 
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is set equal to the fraction of outgoing angular flux in a direction '  on the same 

boundary i.e. 

            0r, ,E,t E r, ',E,t .n                              (2.15) 

where '  and   are the incident and reflected direction of neutron at boundary S 

respectively and α(E) is the isotropic albedo. This condition is known as albedo 

boundary condition. If the albedo is 1.0 i.e. incoming angular flux is set equal to the 

outgoing angular flux, then we will get reflective boundary condition. 

          0r, ,E,t r , ',E,t .n                                  (2.16) 

This condition is used for those boundaries which are having reflection symmetry. 

 Under Wigner-Seitz approximation, square boundary, keeping the area within 

the boundary conserved, can be converted into circular one in order to simplify the 

geometry to that of a one dimensional problem. However, this approximation gives 

contradictory results in case of lattices having fuel pin surrounded by thin moderator 

region. In order to resolve this problem, we use white boundary condition, which 

assumes that the neutrons passing out of the domain return with an isotropic distribution. 

   
0

1
      0

4
' .n

r, ,E,t r, ',E,t ' .n d ' .n

 

                        (2.17) 

 In case of a periodic lattice as shown in Fig. 2.4, the angular flux distribution on 

one boundary “a” is equal to that in another boundary “b”, known as periodic boundary 

condition.    

          0a br , ,E,t r , ,E,t .n                                  (2.18) 
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Fig. 2.4: Periodic array of fuel (F) and moderator (M) slabs 

2.4 Solution of Neutron Transport Equation 

2.4.1 The Multigroup method 

In multigroup method, neutron energy E, which is a continuous variable within 

the range of interest (Emin < E < Emax), is divided into a finite number (G) of intervals 

separated by energy ΔEg = (Eg – Eg-1), where g =1, 2, 3, …., G (energy increases as g 

decreases), as shown in Fig. 2.5. This division is made, wherever possible, in order to 

keep the variation of cross section reasonably small within an interval. For some cases, 

the intervals are also chosen such that (Eg/Eg+1) is roughly constant i.e. lethargy intervals 

are equal.  

 

Fig. 2.5: Division of continuously varying neutron energy into discrete intervals 
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The angular dependence of the angular flux Ψ, scattering cross section Σs and 

neutron source Q in Eq.2.5 is represented by PN or SN method, which will be discussed 

in the subsequent sections. The integration over E’ in Eq.2.5 is expressed as the sum of 

integrations over all energy group intervals i.e. 

1

1 1

g '

g '

E
G G

g' g'E' E g'

dE' dE' dE'



 

                                         (2.19) 

Finally, Eq.2.5 is integrated over the g-th energy interval (Eg < E < Eg-1) to obtain the 

following group constants. 

   
1g

g

E

g

E

x x,E dE 


                                             (2.20)    

 

   

 

1g

g

E

t

Et

g

g

x,E x,E dE

x
x









 


                                     (2.21) 

 

   

 

1g

g

E

s

E g'

sg' g

g'

x;E' E x,E' dE' dE

x
x









 

 

 
                    (2.22) 

   and    
1g

g

E

g

E

Q x Q x,E dE



                                                           (2.23) 

While deriving the above constants, it is assumed that the angular dependence of Ψ, Σs 

and Q are decoupled from the spatial dependence. The group constants are independent 

of energy within g-th interval. Thus, neutron transport equation is converted into G 

number of coupled ordinary differential equations with abovementioned group 

constants. Values of these group constants depend on the evaluation of ϕ(x, E).      
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2.4.2 PN method 

In neutron transport theory, angular flux (Ψ), scattering cross section (Σs) and 

neutron source (Q) depend on the angular variables θ and φ. In PN method, this angular 

dependence is expressed in terms of Spherical harmonics [Yl
m(θ, φ)] in case of general 

geometry where no azimuthal symmetry exists. For plane geometry, the angular 

dependence is expressed in terms of Legendre polynomial as indicated below.  

     
0

2 1

4
m m

m

m
x, ,E x,E P  







 
   

 
                                      (2.24) 

        
0

2 1

4
s sl l l

l

l
x; ',E' ,E x;E' E P ' P   







 
     

 
                  (2.25) 
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Q x, ,E Q x,E P 







 
  

 
                                     (2.26) 

Putting these expansions into Eq.2.5 and writing the transport equation in multigroup 

form, as discussed in the previous section, we get     
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      (2.27) 

Using recurrence relation and orthogonality property of Legendre polynomial, Eq.2.29 

is converted into a set of equations. 

 
 

 
         1 1

1 2 1 2 1
n n

n n n

d x d x
n n n x x n Q x

dx dx

 
 

              (2.28) 

where n = 0, 1, 2, 3,….. This infinite set of equations is truncated by setting  
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 1
0

Nd x

dx

 
                                                      (2.29) 

This is known as PN approximation, which makes total number of equations limited to 

(N+1). In order to obtain the solution of transport equation, the problem domain is 

divided into a number of meshes within which the PN equations are solved.  

 PN method is based on the integro-differential form of neutron transport equation 

(Eq.2.3). Therefore, this method is suitable for regular geometry.   

2.4.3 Discrete Ordinate method 

The Discrete Ordinate method, also known as the SN method, is used extensively 

in reactor physics calculations to solve the neutron transport equation numerically. The 

basic assumption of this method lies in the treatment of angular variable on which the 

neutron flux depends. Unlike PN method, where the flux is treated as a continuous 

function of the angular variable, a number of discrete directions are chosen in the SN 

method to evaluate the flux. The choice of the set of finite number of directions is an 

important aspect to be looked into. Gauss quadrature set is usually chosen for this 

purpose since it offers accurate result for the integration of a polynomial of order n < 

(2N-1) where N is number of discrete directions considered in the quadrature set. The 

angular variable is discretized as  

   
1

11

N

i i

i

F d w F  


                                            (2.30) 

where F(µ) ~ µn and wi is the weight of µi, which is the i-th discrete value of µ in the 

quadrature set. These weights are always positive and symmetric in nature. 

Starting with the neutron transport equation for the slab geometry as given in 

Eq.2.5 and expanding the scattering cross section in terms of Legendre polynomial, as 

shown in Eq.2.27, we get 
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In multi-group format, above equation can be written as 
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             (2.32) 

In the SN method, discrete values of μ, which are based on some suitable quadrature set, 

are chosen. For a discrete value μi, Eq.2.34 can be written as 
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                         (2.33) 

where      
1

1

2lg' l g'x P ' x, ' d '    


  . Once angular flux in the direction μi is 

obtained using Eq.2.35, the scalar flux is calculated by integrating the angular fluxes 

for all the discrete directions chosen.  

 Though SN method is quite popular in reactor physics community, it has number 

of drawbacks. First, the method is difficult to apply for irregular geometries. Second, 

the iterative solution technique, commonly adopted in SN method, is extremely slow for 

scattering dominant problem and third, the method encounters negative scalar flux due 

to Diamond differencing in case of absorption dominant problem with isolated source. 
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2.4.4 Collison probability method 

  

Fig. 2.6: Illustration of collision probability method 

Let us consider a volume V enclosed by a surface S, as shown in Fig. 2.6. We 

are interested in calculating the angular flux  g r,   at r  ( sr s  ) inside V. The 

angular flux is contributed by (i) those neutrons which are travelling from other points 

r '  ( sr s'  ) inside the volume V to the point of interest r  along   and (ii) those 

neutrons which have reached the surface S from elsewhere and now they are travelling 

towards the point r  along  . At r ' , there is a neutron source  gQ r',  which includes 

both scattering as well as fission source. The neutrons, contributed by this source, 

interact (or collide) with the medium while travelling from r '  to r  and hence they are 

attenuated by a factor 
 

s

t
g s

s'

r s" ds"

e
  

. Contribution of these neutrons to the angular flux 

 g r,   can be written as  
 

0

s

t
g s

s'

s r s" ds"

g sQ r s', e ds'
  

   [similar to Eq.2.13]. If 

the angular flux at surface S along   is  g sr ,  , then angular flux reaching r  from 
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sr  after encountering collision with the medium will be  
 

0

s

t
g sr s' ds'

g sr , e
  

  . 

Therefore, angular flux at r  in the direction   is 
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(2.34) 

where  
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rr' g
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s

s
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g t

rr g
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R dR   . Integrating Eq.2.36 over  , we get the 

scalar flux ϕg(r). 

   

   

   

2 2

0

2 2

gg
rrsrr '

gg
rrsrr '

g g

s

s
g g s

s

in

g g s

s

V S s

r r, d

dA .dA'
Q r', e ds' r , e

| r r' | | r r |

Q r', e J r , e
dV ' dA

| r r' | | r r |











   


    

 

 
 

 



  

 

           (2.35) 

Eq.2.37 leads to forming a nodal balance equation for the k-th node shown in Fig. 2.7.  

n nS S kk k k i i ik

tg g g g in,g g

i n

V Q V P J P                                         (2.36) 

where the collision probabilities are given as 
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Fig. 2.7: Nodalization of a problem domain 
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Since, the collision probability method solves the integral form of neutron 

transport equation (Eq.2.13), it can be applied for any geometry. However, this method 

suffers from the issue of storing huge data (Pik-s’) during computation. For example, if 

there are 100 meshes in X and Y directions each, then there will be 108 number of Pik 

values to be computed for 1 energy group. Multiplying this with total number of energy 

groups, say 100, total number of Pik values to be stored would be 1010, which is quite 

huge.      

2.4.5 Method of characteristics 

In Method of Characteristics or MOC, angular variable is discretized into a 

number of directions (like SN method) and spatial variable is discretized into a number 

of meshes. For each direction, a set of parallel characteristic lines or rays are traced over 

the problem domain, which has already been divided into meshes. The intercepts of rays 

in different meshes are then calculated. Applying MOC, the neutron transport equation, 

which is a partial differential equation, is converted into a set of ordinary differential 

equations, which are solved analytically along the rays to obtain the mesh averaged ray 

angular flux and outgoing mesh edge ray angular flux. These mesh averaged ray angular 

fluxes are then summed for all those rays passing through a mesh in a particular 

direction to calculate the average angular flux of the mesh for the direction. Finally, the 

average angular flux is integrated over all the directions to get the scalar flux. This 

formalism does not depend on the mesh geometry. Hence, it is able to treat complex 

geometries commonly encountered in the reactor core, which brings its applicability at 

par with the Monte Carlo methods. Details of this method is given in Chapter 3. 
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2.5 Benchmark problems with reflective boundary condition 

2.5.1 Analytical benchmark test set 

The reference paper [60] describes a set of benchmark problems with analytical 

solution of neutron transport equation for infinite medium. Purpose of the test set is to 

verify the correctness of algorithm implemented in neutron transport codes. The authors 

of the paper believe that the transport code, before acceptance, must be able to produce 

solution accurate to at least five decimal places of the results reported in the reference. 

The test set includes 18 benchmark problems for infinite medium with one material; 

one, two, three and six energy groups and isotropic scattering. For convenience in 

referring the problems, unique identifier is used. First problem of the test set can be 

identified as Pua-1-0-IN, which means the fissile material is Plutonium-a (Pua), the 

number of energy group is one (1), scattering is isotropic (0) and the problem is for an 

infinite medium (IN). In similar fashion, identifiers are used for rest of the problems. 

Cross sections of materials of all the problems along with fission spectrum are given in 

Table- 2.1, Table- 2.2 and Table- 2.3.  
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.  

Table- 2.1: One group cross sections (cm-1) of analytical benchmark test set 

Benchmark problem: Pua-1-0-IN 

Material g χ Σf Σa νΣf Σt Σsg→1 

Pua 1 1.0 0.0816  0.101184  0.264384  0.3264  0.225216 

Benchmark problem: Pub-1-0-IN 

Pub 1 1.0 0.0816  0.101184  0.231744  0.3264  0.225216 

Benchmark problem: Ua-1-0-IN 

Ua 1 1.0 0.065280  0.078336   0.176256  0.3264  0.248064 

Benchmark problem: Ub-1-0-IN 

Ub 1 1.0 0.065280  0.078336  0.182594753 0.3264  0.248064 

Benchmark problem: Uc-1-0-IN 

Uc 1 1.0 0.065280  0.078336  0.176733066 0.3264  0.248064 

Benchmark problem: Ud-1-0-IN 

Ud 1 1.0 0.065280  0.078336  0.174898045 0.3264  0.248064 

Benchmark problem: UD2O-1-0-IN 

UD2O 1 1.0 0.054628  0.081942  0.0928676  0.54628  0.464338 

Benchmark problem: Ue-1-0-IN 

Ue 1 1.0 0.06922744  0.079365  0.1730686  0.407407 0.328042 
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2.5.2 BWR benchmark problem 

 

Fig. 2.8: BWR benchmark problem. Dimensions are shown in the figure. 

Representation of different materials with different colours is indicated in the legend 

table. 

This problem is taken from [30]. It is a two energy group, isotropic scattering 

problem for lattice of a boiling water reactor (BWR). As shown in Fig. 2.8, the lattice 

consists of two regions; the outer region is a square of size 8.9 cm × 8.9 cm and the 

inner region, which is a square of size 6.4 cm × 6.4 cm, is off centre by 0.25 cm towards 

positive X axis as well as negative Y axis with respect to the centre of the outer region. 

The inner and outer regions are filled with homogenized fuel and light water 

respectively. Reflective boundary condition is applied at the outermost surface of the 

lattice. Cross sections of both the materials along with fission spectrum are given in 

Table- 2.4. 
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Table- 2.4: Cross sections (cm-1) of BWR benchmark problem  

(χ: 1.0, 0.0) 

Material g Σa νΣf Σt Σsg→1 Σsg→2 

Fuel 
1 8.627E-3  6.203E-3 1.96647E-1 1.78E-1 1.002E-2 

2 6.957E-2 1.101E-1 5.96159E-1 1.089E-3 5.255E-1 

Light water 
1 6.84E-4  0.0  2.22064E-1 1.995E-1 2.188E-2 

2 8.016E-3 0.0 8.87874E-1 1.558E-3 8.783E-1 

2.5.3 LWR benchmark problem with burnable poison 

This problem is also taken from [30]. It is a two energy group, isotropic 

scattering problem designed for a LWR lattice. Unlike the earlier problem, the lattice 

contains burnable poison. In the lattice of size 8.9 cm × 9.5 cm, the poison element is 

present only inside a square region of size 1.6 cm × 1.6 cm, which is surrounded by 

another square region of size 6.4 cm × 6.4 cm and filled with uranium. Rest of the lattice 

is filled with light water. Fig. 2.9 shows the lattice. Reflective boundary condition is 

applied at the outermost boundary. Fission spectrum and cross sections of uranium, light 

water and burnable poison are given in Table- 2.5. 

Table- 2.5: Cross sections (cm-1) of LWR benchmark problem with burnable poison 

 (χ: 1.0, 0.0) 

Material g Σa νΣf Σt Σsg→1 Σsg→2 

Fuel 
1 9.0E-3 6.2E-3 1.99E-1 1.8E-1 1.00E-2 

2 7.0E-2 1.1E-1 6.01E-1 1.0E-3 5.3E-1 

Light 

water 

1 7.0E-4 0.0 2.227E-1 2.0E-1 2.2E-2 

2 8.0E-3 0.0 8.9E-1 2.0E-3 8.8E-1 

Burnable 

poison 

1 9.0E-3 6.2E-3 1.99E-1 1.8E-1 1.00E-2 

2 3.0 1.1E-1 3.531 1.0E-3 5.3E-1 
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Fig. 2.9: LWR benchmark problem with burnable poison. Dimensions are shown in the 

figure. Representation of different materials with different colours is indicated in the 

legend table. 

 

2.5.4 BWR benchmark problem with Gd pins 

 This two energy group, isotropic scattering benchmark problem is designed for 

a 4 × 4 BWR lattice which contains 14 fuel pins and 2 Gadolinium pins [18]. The fuel 

pins of radius 0.5 cm are made of 3 wt% UO2 while the Gadolinium pins of size same 

with fuel are made of 3 wt% UO2 and 3 wt% Gd2O3. All the pins are cladded with 0.1 

cm thick Zircaloy-2. Light water is used as moderator. The lattice is shown in Fig. 2.10. 

Reflective boundary condition is applied on all four sides of the lattice. Fission spectrum 

and cross sections of UO2, UO2+Gd2O3, Zircaloy-2 and light water are given in Table- 

2.6. 

. 
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Fig. 2.10: BWR benchmark problem with Gd pins. Dimensions are shown in the figure. 

Representation of different materials with different colours is indicated in the legend 

table. 

 

 

 

 

Table- 2.6: Cross sections (cm-1) of BWR benchmark problem with Gd pins  

(χ: 1.0, 0.0) 

Material g Σf νΣf Σt Σsg→1 Σsg→2 

Fuel pin 
1 7.22964E-3 1.86278E-2 3.62022E-1 3.33748E-1 6.64881E-4 

2 1.41126E-1 3.44137E-1 5.72155E-1 0.0 3.80898E-1 

Zircaloy-

2 

1 0.0 0.0 2.74144E-1 2.72377E-1 1.90838E-4 

2 0.0 0.0 2.80890E-1 0.0 2.77230E-1 

Gd pin 
1 6.97904E-3 1.79336E-2 3.71785E-1 3.38096E-1 6.92807E-4 

2 6.47524E-2 1.57929E-1 1.75 0.0 3.83204E-1 

Light 

water 

1 0.0 0.0 6.40711E-1 6.07382E-1 3.31316E-2 

2 0.0 0.0 1.69131 0.0 1.68428 
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Fig. 2.11: Hexagonal cell problem with central breeding pin. Dimensions are shown in 

the figure. Representation of different materials with different colours is indicated in 

the legend table. 

 

2.5.5 Hexagonal cell problem with central breeding pin 

This problem is derived from a fixed source problem for a hexagonal cell with 

central breeding pin [61] by deleting the source term. Inside the hexagonal cell of pitch 

4.4 cm filled with light water, there is a central natural uranium pin of radius 0.5 cm 

which is surrounded by 12 enriched fuel pins each having radius of 0.3 cm. These 12 

enriched pins are placed symmetrically on a circle of radius 1.5 cm. The hexagonal cell 

is shown in Fig. 2.11. The scattering is isotropic and the cell boundary is reflective. Two 

group material cross sections and fission spectrum are given in Table- 2.7. 
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Table- 2.7: Cross sections (cm-1) of Hexagonal cell problem with central breeding pin 

(χ: 1.0, 0.0) 

Material g Σa νΣf Σt Σsg→1 Σsg→2 

Natural 

Uranium 

1 8.627E-3 6.203E-3 1.96647E-1 1.78E-1 1.002E-2 

2 6.957E-2 1.101E-1 5.96159E-1 1.089E-3 5.255E-1 

Enriched 

fuel 

1 8.627E-3 6.203E-3 1.96647E-1 1.78E-1 1.002E-2 

2 6.957E-2 1.101E-1 5.96159E-1 1.089E-3 5.255E-1 

Light 

water 

1 6.84E-4 0.0 2.22064E-1 1.995E-1 2.188E-2 

2 8.016E-3 0.0 8.87874E-1 1.558E-3 8.783E-1 

2.5.6 CANDU-6 annular cell benchmark problem 

 
Fig. 2.12: CANDU-6 annular cell benchmark problem. Dimensions are shown in the 

figure. Representation of different materials with different colours is indicated in the 

legend table. 

This benchmark problem is taken from the user manual of DRAGON 3.06 [21]. 

It is listed in the manual as “TCWU06” which describes a three dimensional supercell 

of a CANDU type reactor containing a horizontal fuel channel as well as a vertical 

stainless steel adjuster rod. Alternatively, the cell can be represented as a square lattice 

of side length 28.575 cm having 37 fuel pins arranged in three concentric rings with one 
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central pin. The radii of these UO2 based fuel pins are 0.6122 cm which are clad with 

0.0418 cm thick Zr-3. Fuel pins are cooled by D2O. Apart from the central pin, the 

remaining pins are arranged in three rings of radii 1.4855 cm, 2.8755 cm and 4.3305 

cm consist of 6, 12 and 18 pins respectively. All 37 pins along with the coolant are 

contained in a pressure tube made from Zr-1 and having an inner radius of 5.1689 cm 

and an outer radius of 5.6032 cm. This tube is surrounded by a Zr-2 calandria tube 

having an inner radius of 6.4478 cm and an outer radius of 6.5875 cm. For the purpose 

of insulation, the space between these two tubes is filled with helium. D2O also acts as 

moderator and fills rest of the cell outside the calandria tube. The CANDU-6 cell is 

shown in Fig. 2.12. The scattering is isotropic and the boundary is reflective. Two 

energy group cross sections of all the above mentioned materials and the fission 

spectrum are given in Table- 2.8.  

Table- 2.8: Cross sections (cm-1) of CANDU-6 annular cell benchmark problem 

(χ: 1.0, 0.0) 

Material g Σa νΣf Σt Σsg→1 Σsg→2 

Fuel (UO2) 
1 3.73334E-01 9.45470E-03 3.73334E-01 3.55414E-01 5.65522E-04 

2 5.05007E-01 1.36271E-01 5.05007E-01 0.00000E+00 4.00902E-01 

Clad (Zr-3) 
1 2.83817E-01 0.00000E+00 2.83817E-01 2.82283E-01 1.58650E-04 

2 2.80823E-01 0.00000E+00 2.80823E-01 0.00000E+00 2.75008E-01 

Coolant 

(D2O) 

1 2.36057E-01 0.00000E+00 2.36057E-01 2.32571E-01 3.47825E-03 

2 3.46547E-01 0.00000E+00 3.46547E-01 0.00000E+00 3.46449E-01 

Pressure 

tube (Zr-1) 

1 3.02340E-01 0.00000E+00 3.02340E-01 2.99881E-01 2.33735E-04 

2 2.85758E-01 0.00000E+00 2.85758E-01 0.00000E+00 2.79187E-01 

He 
1 3.05524E-04 0.00000E+00 3.05524E-04 3.02747E-04 2.77636E-06 

2 1.71235E-04 0.00000E+00 1.71235E-04 0.00000E+00 1.71235E-04 

Calandria 

tube (Zr-2) 

1 3.04423E-01 0.00000E+00 3.04423E-01 3.02281E-01 2.62590E-04 

2 2.81233E-01 0.00000E+00 2.81233E-01 0.00000E+00 2.74710E-01 

Moderator 

(D2O) 

1 3.33045E-01 0.00000E+00 3.33045E-01 3.20134E-01 1.29081E-02 

2 4.55438E-01 0.00000E+00 4.55438E-01 0.00000E+00 4.55395E-01 
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2.5.7 HTTR benchmark problem 

 

Fig. 2.13: HTTR benchmark problem. The dimensions are as shown in the figure. 

Representation of various materials with different colors is as indicated in the legend 

table. 

In order to test the accuracy of transport method based codes in the calculation 

of Gen-IV reactors, number of heterogeneous prismatic benchmark problems, which 

are based on an experimental High Temperature Engineering Test Reactor (HTTR) built 

in Japan, were created by Zhang et al. [62]. This is mainly a six energy group whole 

core problem available in two and three dimension for various control rod position. 

Apart from this, a two dimensional benchmark problem, based on a single fuel block, 

is also available. The fuel block is a hexagon with 36 cm flat (edge)-to-flat (edge) 
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distance. It consists of 33 identical fuel pins and 3 burnable poison (BP) rods. Rest of 

the block is made of graphite. Diametre of each fuel pin is 4.1 cm and that of each BP 

rod is 1.5 cm. All the pins are arranged in a triangular lattice of pitch 5.15 cm. The 

geometry of the problem is shown in Fig. 2.13. There are 7 different fuel enrichments 

available though, for a single fuel block, the enrichment is same for all 33 pins. Case of 

3.4 wt% enriched fuel is selected for the verification of MOC code since both 

multiplication factor and pin fission density distributions are available for the case. 

Scattering is isotropic and reflective boundary condition is applied at the outer boundary 

of the fuel block. The cross sections of the fuel, burnable poison, graphite and the fission 

spectrum are given in Table- 2.9 and Table- 2.10. 

Table- 2.9: Fission, absorption and total cross sections (cm-1) of HTTR benchmark 

problem 

(χ: 0.969128, 0.0308724, 0.0, 0.0, 0.0, 0.0) 

Material g Σf Σa νΣf Σt 

Fuel 

1 1.45771E-04 2.15911E-04 3.99224E-04 1.40025E-01 

2 7.39241E-05 5.66989E-04 1.79819E-04 2.39531E-01 

3 6.41822E-04 7.52341E-03 1.56207E-03 2.55101E-01 

4 9.40389E-04 1.54287E-03 2.28872E-03 2.44455E-01 

5 3.76654E-03 5.17541E-03 9.16700E-03 2.51443E-01 

6 8.20805E-03 1.09730E-02 1.99765E-02 2.73904E-01 

Burnable 

poison 

1 0.00000E+00 6.47461E-05 0.00000E+00 7.08728E-02 

2 0.00000E+00 7.06662E-04 0.00000E+00 1.21259E-01 

3 0.00000E+00 1.19547E-02 0.00000E+00 1.36067E-01 

4 0.00000E+00 5.86182E-02 0.00000E+00 1.82689E-01 

5 0.00000E+00 1.31071E-01 0.00000E+00 2.56451E-01 

6 0.00000E+00 2.65951E-01 0.00000E+00 3.98509E-01 

Graphite 

1 0.00000E+00 4.61652E-07 0.00000E+00 2.24774E-01 

2 0.00000E+00 5.57902E-07 0.00000E+00 3.85038E-01 

3 0.00000E+00 9.84346E-06 0.00000E+00 3.97037E-01 

4 0.00000E+00 4.86718E-05 0.00000E+00 3.97831E-01 

5 0.00000E+00 1.09377E-04 0.00000E+00 4.03642E-01 

6 0.00000E+00 2.27789E-04 0.00000E+00 4.32667E-01 
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Table- 2.10: Scattering cross sections (cm-1) of HTTR benchmark problem 

(χ: 0.969128, 0.0308724, 0.0, 0.0, 0.0, 0.0) 

Material G Σsg→1 Σsg→2 Σsg→3 Σsg→4 Σsg→5 Σsg→6 

Fuel 

1 1.30001E-01 9.80803E-03 6.76860E-09 0.00000E+00 0.00000E+00 0.00000E+00 

2 0.00000E+00 2.31833E-01 7.13067E-03 0.00000E+00 0.00000E+00 0.00000E+00 

3 0.00000E+00 0.00000E+00 2.42203E-01 5.37504E-03 0.00000E+00 0.00000E+00 

4 0.00000E+00 0.00000E+00 1.10955E-04 2.04442E-01 3.83572E-02 2.37433E-06 

5 0.00000E+00 0.00000E+00 0.00000E+00 2.39272E-03 2.15746E-01 2.81294E-02 

6 0.00000E+00 0.00000E+00 0.00000E+00 5.19254E-07 6.60101E-02 1.96920E-01 

Burnable 

poison 

1 6.51728E-02 5.63527E-03 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 

2 0.00000E+00 1.16700E-01 3.85260E-03 0.00000E+00 0.00000E+00 0.00000E+00 

3 0.00000E+00 0.00000E+00 1.21376E-01 2.73639E-03 0.00000E+00 0.00000E+00 

4 0.00000E+00 0.00000E+00 3.48357E-05 1.05613E-01 1.84226E-02 6.94932E-07 

5 0.00000E+00 0.00000E+00 0.00000E+00 1.43604E-03 1.10302E-01 1.36420E-02 

6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.41636E-02 9.83944E-02 

Graphite 

1 2.07502E-01 1.72713E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 

2 0.00000E+00 3.72960E-01 1.20777E-02 0.00000E+00 0.00000E+00 0.00000E+00 

3 0.00000E+00 0.00000E+00 3.88199E-01 8.82826E-03 0.00000E+00 0.00000E+00 

4 0.00000E+00 0.00000E+00 8.61626E-05 3.37082E-01 6.06121E-02 2.27262E-06 

5 0.00000E+00 0.00000E+00 0.00000E+00 4.40537E-03 3.53948E-01 4.51795E-02 

6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.07248E-01 3.25191E-01 

2.6 Benchmark problems with vacuum boundary condition 

2.6.1 One energy group eigen-value problem 

This is a one group, isotropic scattering problem given in [63]. Its outer 

boundary is a square of size 20 cm × 20 cm, inside of which five rectangles each having 

size of 1 cm × 18 cm are placed symmetrically with respect to the centre of the square 

as shown in Fig. 2.14. All five rectangular regions are filled with a material “F” and the 

remaining region of the square is filled with another material “M”. The cross sections 

of materials “F” and “M” are given in Table- 2.11. Vacuum boundary condition is 

applied at the outermost boundary.  

Table- 2.11: Cross sections (cm-1) of Mono energy group eigen-value problem 

(χ: 1.0) 

 

Material Σf νΣf Σt Σs1→1 

M 0.1  0.24  1.5  1.35 

F 0.0  0.0  1.0  0.93 
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Fig. 2.14: Mono energy group eigen-value problem. Dimensions are shown in the figure. 

Representation of different materials with different colors is indicated in the legend 

table. 

2.6.2 IAEA benchmark problem 

The outer boundary of this problem is a rectangle of size 96 cm× 86 cm whose 

central region is occupied by 4 rectangular regions each having size of 30 cm × 25 cm. 

4 materials are put into these 4 central rectangles and the region outside these rectangles 

is filled with another material. It is a one energy group, isotropic scattering, five-region 

problem of a swimming pool type reactor, defined by Stepanek et al. [25] for IAEA 

research program on transport theory and advanced reactor calculations. The geometry 

of the problem is shown in Fig. 2.15. The cross sections of five materials are given in 

Table- 2.12. Vacuum boundary condition is applied at the outer boundary. 

 

 

 



Chapter 2: Neutron Transport Equation and its solution 

_____________________________________________________________________ 

65 | P a g e  

 

 
Fig. 2.15: IAEA benchmark problem. Dimensions are shown in the figure. 

Representation of different materials with different colors is indicated in the legend 

table. 

Table- 2.12: Cross sections (cm-1) of IAEA benchmark problem 

(χ: 1.0) 

Material Σa νΣf Σt Σs1→1 

MAT1  0.07  0.079  0.60  0.53 

MAT2 0.28  0.0  0.48  0.20 

MAT3 0.04  0.043 0.70  0.66 

MAT4 0.15  0.0 0.65  0.50 

MAT5 0.01  0.0 0.90  0.89 

2.6.3 Hexagonal assembly problem 

It is a one energy group, isotropic scattering problem in hexagonal geometry 

[18]. Light water, fuel and control rod are three materials used in the problem. Fuel is 

present in a homogeneous hexagonal cell of side 3.2 cm excluding a central hexagon of 

side 0.4 cm where control rod is present and both the hexagons are placed concentrically 

in another hexagon of side 3.6 cm which is filled with light water as represented in Fig. 
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2.16. Cross sections of all three materials are given in Table- 2.13. Vacuum boundary 

condition is applied at the outer boundary.  

 

Fig. 2.16: Hexagonal assembly problem. Dimensions are shown in the figure. 

Representation of different materials with different colors is indicated in the legend 

table. 

Table- 2.13: Cross sections (cm-1) of Hexagonal assembly problem 

(χ: 1.0) 

Material νΣf Σt Σs1→1 

Fuel 0.17970  0.93480 0.83220 

Control rod 0.0  1.2498  0.4658 

Light water 0.0 1.32956 1.02093 
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2.6.4 MZA fast reactor benchmark problem 

 

Fig. 2.17: Material distribution along the vertical axis of (a) unit fuel lattice and (b) unit 

voided fuel lattice in the MZA fast reactor benchmark problem. 

This benchmark problem is based on a simplified description of the MZA fast 

reactor core [64][65]. The central region of the core is filled with fuel. It is surrounded 

by a blanket region and there is a reflector in the outermost region. The problem is 

defined in both two and three dimensions. Except for the boundaries of the respective 

regions, the problem description is identical in both cases. Four different core 

configurations are considered here. The first is the reference configuration (i.e. fuel-

blanket-reflector, as described above) while the other configurations deal with void 

formation in the sodium coolant near the core centre and near the boundaries between 

the fuel and blanket regions. The unit cell of the fuel lattice [of size 5.4 cm × 5.4 cm] is 
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made up of six sodium plates, four uranium-dioxide plates, two plutonium plates and 

two carbon and steel plates, which are piled up axially up to a height of 7.5 cm (Fig. 

2.17(a)). For representing the voided fuel lattice, sodium plates of unit fuel lattice are 

replaced by voided sodium plates, as shown in Fig. 2.17(b). Unlike the fuel region, the 

blanket and reflector lattices are treated homogeneously. It is only possible for three 

dimensional transport codes to simulate this core configuration exactly. For two 

dimensional transport codes, the homogenized cross sections of axially heterogeneous 

fuel unit cell (voided and without void) are used. The reference core consists of three 

concentric squares of size 90 cm × 90 cm (fuel), 165 cm × 165 cm (reflector) and 240 

cm × 240 cm (blanket). In another core configuration, void formation takes place in a 

central region of size 60 cm × 60 cm. The other two cases are related with the cores 

where void is formed within an area of size 15 cm × 90 cm located at the horizontal and 

vertical boundaries between the fuel and blanket regions. Core configurations in all 

these four cases are shown in Fig. 2.18(a)-(d). Four energy group cross section data of 

fuel, voided fuel, blanket and reflector materials along with the fission spectrum is given 

in Table- 2.14. Anisotropic scattering is taken into account by the transport 

approximation.  
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Table- 2.14: Cross sections (cm-1) of MZA fast reactor benchmark problem 

(χ: 0.88529, 0.11329 0.00142 0.0) 

Material g Σa νΣf Σt  

Fuel 

1 5.03700E-03 1.27400E-02 1.31000E-01  

2 4.02600E-03 6.61700E-03 2.21000E-01  

3 1.10700E-02 1.09600E-02 3.44300E-01  

4 3.77400E-02 4.24200E-02 4.00700E-01  

Blanket 

1 2.70700E-03 4.37200E-03 1.51300E-01  

2 2.70300E-03 2.92500E-04 2.69000E-01  

3 8.85400E-03 9.35000E-04 3.94500E-01  

4 2.09000E-02 3.98400E-03 4.23100E-01  

Reflector 

1 4.06000E-04 0.00000E+00 1.02000E-01  

2 4.02000E-04 0.00000E+00 1.00000E-01  

3 1.03100E-03 0.00000E+00 1.37800E-01  

4 5.74700E-03 0.00000E+00 7.80700E-01  

Voided 

fuel 

1 4.98600E-03 1.26100E-02 1.06400E-01  

2 4.02300E-03 6.62400E-03 1.85100E-01  

3 1.10300E-02 1.10000E-02 2.82900E-01  

4 3.80000E-02 4.28500E-02 3.66900E-01  

Material g Σsg→1 Σsg→2 Σsg→3 Σsg→4 

Fuel 

1 1.09459E-01 1.64000E-02 1.04000E-04 0 

2 0.00000E+00 2.13668E-01 3.30600E-03 0 

3 0.00000E+00 0.00000E+00 3.32457E-01 7.73E-04 

4 0.00000E+00 0.00000E+00 0.00000E+00 3.63E-01 

Blanket 

1 1.23467E-01 2.49900E-02 1.36000E-04 0 

2 0.00000E+00 2.57705E-01 8.59200E-03 0 

3 0.00000E+00 0.00000E+00 3.81671E-01 3.98E-03 

4 0.00000E+00 0.00000E+00 0.00000E+00 4.02E-01 

Reflector 

1 8.82680E-02 1.31000E-02 2.26000E-04 0 

2 0.00000E+00 9.70540E-02 2.54400E-03 0 

3 0.00000E+00 0.00000E+00 1.33814E-01 2.96E-03 

4 0.00000E+00 0.00000E+00 0.00000E+00 7.75E-01 

Voided 

fuel 

1 8.76810E-02 1.36300E-02 1.03000E-04 0 

2 0.00000E+00 1.78424E-01 2.65300E-03 0 

3 0.00000E+00 0.00000E+00 2.71238E-01 6.32E-04 

4 0.00000E+00 0.00000E+00 0.00000E+00 3.29E-01 
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Fig. 2.18: MZA fast reactor benchmark problem in four cases: (a) Reference case; (b) 

void is formed at the centre of fuel region; (c) void is formed at the horizontal 

boundaries between the fuel and blanket regions, (d) void is formed at the vertical 

boundaries between the fuel and blanket regions. The dimensions are as shown in the 

figure. Representation of various materials with different colors is as indicated in the 

legend table. 

2.6.5 KNK-II benchmark problem with non-reentrant boundary 

The reactor core of this benchmark problem is that of a small Fast Breeder 

Reactor (FBR) with a hexagonal lattice which is a model of the KNK-II core [66]. It is 

originally a three dimensional problem. The core is composed of 169 homogeneous 

assemblies arranged in eight concentric hexagonal rings in such a way that each ring 

contains only one material. The length of each side of the hexagon is 7.5 cm. In order 
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to validate two dimensional transport codes, the problem was later redefined in two 

dimensions by taking a horizontal cross section of the core at the mid plane [22][67]. 

Vacuum boundary condition is applied at the outermost boundary which is “re-entrant” 

in nature (Fig. 2.19). Such type of surface allows the escaped neutrons to re-enter into 

the core. Transport codes like TWOHEX [68] and SPANDOM [67] include some 

portion of vacuum region in the problem domain to make the surface “non-reentrant”. 

For codes like DIAMANT2 [69] etc., which are not developed to solve the transport 

equation in the presence of reentrant surface, the two dimensional problem is further 

modified by taking seven materials in seven concentric hexagons with parallel edges. 

As shown in Fig. 2.20, the perpendicular distance between the centre and the edge is 

19.5 cm for the central hexagon and is 13 cm between the parallel edges of two adjacent 

hexagons. Four energy group cross sections of the materials and the fission spectrum 

are given in Table- 2.15 and Table- 2.16. The scattering is isotropic and vacuum 

boundary condition is applied at the outermost “non-reentrant” boundary. 

 

Fig. 2.19: Reentrant boundary of original KNK-II benchmark problem which allows 

leaked out neutrons to reenter the core. 
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Fig. 2.20: KNK-II benchmark problem with a non-reentrant boundary. The dimensions 

are as shown in the figure. Representation of various materials with different colors is 

as indicated in the legend table. 
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Table- 2.15: Fission, absorption and total cross sections (cm-1) of KNK-II benchmark 

problem with non-reentrant boundary 

(χ: 0.908564, 0.087307, 0.004129, 0.0) 

Material g Σa νΣf Σt 

Test zone 

1 7.14117E-03 1.79043E-02 1.24526E-01 

2 8.00576E-03 1.59961E-02 2.01025E-01 

3 1.45876E-02 2.40856E-02 2.86599E-01 

4 4.98120E-02 7.33104E-02 3.68772E-01 

Driver 

without 

moderator 

1 7.09892E-03 1.59878E-02 1.40226E-01 

2 9.02877E-03 1.64446E-02 2.28245E-01 

3 1.72478E-02 2.71451E-02 3.25806E-01 

4 5.74211E-02 8.45807E-02 4.18327E-01 

Driver with 

moderator 

1 4.67223E-03 1.01663E-02 1.41428E-01 

2 5.57965E-03 9.46359E-03 2.45394E-01 

3 1.32590E-02 1.87325E-02 3.98255E-01 

4 6.51184E-02 8.25335E-02 4.35990E-01 

Reflector 

without 

moderator 

1 4.64814E-04 0 1.59346E-01 

2 4.76496E-04 0 2.16355E-01 

3 1.23810E-03 0 3.48692E-01 

4 4.94323E-03 0 6.24243E-01 

Reflector 

with 

moderator  

1 3.97516E-04 0 1.39164E-01 

2 3.02674E-04 0 2.46993E-01 

3 1.22034E-03 0 4.52425E-01 

4 2.41527E-02 0 5.36256E-01 

KNK-I reflec 

Tor 

1 4.58692E-04 0 1.51644E-01 

2 4.59443E-04 0 1.42382E-01 

3 1.07883E-03 0 1.65132E-01 

4 5.91325E-03 0 8.04845E-01 

Na /Steel 

zone 

1 2.25039E-04 0 9.65097E-02 

2 2.33696E-04 0 9.87095E-02 

3 5.39303E-04 0 1.34200E-01 

4 3.03759E-03 0 4.12670E-01 
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Table- 2.16: Scattering cross sections (cm-1) of KNK-II benchmark problem with 

non-reentrant boundary 

(χ: 0.908564, 0.087307, 0.004129, 0.0) 

Material g Σsg→1 Σsg→2 Σsg→3 Σsg→4 

Test zone 

1 1.05964E-01 1.12738E-02 1.46192E-04 9.62178E-07 

2 0 1.89370E-01 3.64847E-03 1.06888E-06 

3 0 0 2.70207E-01 1.80479E-03 

4 0 0 0 3.18960E-01 

Driver 

without 

moderator 

1 1.19887E-01 1.30790E-02 1.59938E-04 1.07166E-06 

2 0 2.15213E-01 4.00117E-03 1.82716E-06 

3 0 0 3.06885E-01 1.67341E-03 

4 0 0 0 3.60906E-01 

Driver with 

moderator  

1 1.14337E-01 2.09664E-02 1.39132E-03 6.10281E-05 

2 0 2.12006E-01 2.67269E-02 1.08186E-03 

3 0 0 3.52093E-01 3.29030E-02 

4 0 0 0 3.70872E-01 

Reflector 

without 

moderator 

1 1.47969E-01 1.06607E-02 2.49956E-04 1.82565E-06 

2 0 2.10410E-01 5.46711E-03 1.00157E-06 

3 0 0 3.42085E-01 5.36879E-03 

4 0 0 0 6.19306E-01 

Reflector 

with 

moderator  

1 1.05911E-01 2.96485E-02 3.06502E-03 1.41697E-04 

2 0 1.84820E-01 5.91780E-02 2.69229E-03 

3 0 0 3.73072E-01 7.81326E-02 

4 0 0 0 5.12103E-01 

KNK-I reflec 

Tor 

1 1.38427E-01 1.23901E-02 3.66930E-04 1.69036E-06 

2 0 1.37502E-01 4.41927E-03 1.63280E-06 

3 0 0 1.60722E-01 3.33075E-03 

4 0 0 0 7.98932E-01 

Na /Steel 

zone 

1 8.83550E-02 7.73409E-03 1.94719E-04 8.89615E-07 

2 0 9.52493E-02 3.22568E-03 7.98494E-07 

3 0 0 1.30756E-01 2.90481E-03 

4 0 0 0 4.09632E-01 
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CHAPTER 3 : Solution of Neutron Transport 

Equation by Method of Characteristics 

Solution of Neutron Transport Equation by Method 

of Characteristics 

_________________________________________ 

3.1 Introduction 

Traditional reactor physics calculation follows two step process (lattice → core) 

for estimating the reactor core parameters. However, due to the phenomenal increase 

in computing power in recent time, there have been developments in computational 

methods for solving the transport equation directly in full reactor core. The Method of 

Characteristics or MOC seems to be promising in this respect due to its ability to (i) 

treat complex geometries commonly encountered in reactor cores, (ii) produce detailed 

flux and power distribution over the region of solution, (iii) handle anisotropic 

scattering. MOC is not only popular for lattice calculations but also for whole core 

calculations without homogenization.  

In the present chapter, we describe the development of a computer code based 

on MOC to solve the neutron transport equation for mainly assembly level lattice 

calculation with reflective and periodic boundary conditions and to some extent core 

level calculation with vacuum boundary condition. The code is able to simulate square, 

circular, and hexagonal geometries and their combinations. Delaunay triangulation 

together with the Bower-Watson algorithm is used to divide the problem geometry into 

triangular meshes. Ray tracing technique is developed to draw characteristics lines 

along different directions over the geometry and the transport equation is solved over 
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these lines to obtain the neutron flux distribution and multiplication factor for the 

geometry. A number of benchmark problems available in literature are analyzed to 

demonstrate the capability and validity of the code.  

3.2 Solution of Neutron Transport Equation by MOC 

The neutron transport equation is an integro-differential equation which 

describes the distribution of neutron angular flux (Ψ) as a function of space (r), angle 

(Ω), energy (E) and time (t) in reactor core. Since our interest is in steady state (mostly 

“k” eigenvalue) problems, for the present purpose, the steady state neutron transport 

equation is written below. 

       t

g g g g. r , r r , Q r,                                 (3.1) 

g is energy group corresponding to energy E, Σg
t is g-th group total (absorption and 

scattering) macroscopic cross section and Qg is g-th group total neutron source 

including fission source, scattering source and external source, if any. The source is 

related to the angular flux by the relations 

          
1 4

G
ext

g g g fg' sg' g g'

g'

Q r, Q r, r r, ' . r, ' d '


  



                (3.2) 

for the problem with an external source Qg
ext and  

 
 

   
1 4

G
g fg'

g sg' g g'

g'

r
Q r, r, ' . r , ' d '

k


 




 
        
 
 

          (3.3) 

for the k eigenvalue problem. Σsg’→g is macroscopic scattering cross section from group 

g’ to group g, χg is g-th group fission spectrum, ν is average number of neutrons released 

per fission and Σfg is g-th group macroscopic fission cross section. Applying the MOC, 

Eq.3.1 is converted into a linear ordinary differential equation [See section 2.3.3]. 
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       0 0 0 0

t

g g g g

d
r s , r s r s , Q r s ,

ds
                     (3.4) 

 

The characteristics in this case are straight lines - essentially the collision free flight 

paths of the neutrons - whose equations are given by 0r r s    where s is distance 

measured along   direction from 0r  which is an arbitrary starting point on the 

characteristic line. By varying the coordinates of 0r  a set of lines parallel to the direction 

vector   (in 3-dimensional space) is obtained. Changing   gives another set of 

parallel lines with a different orientation. Eq.3.4 can be solved along any of these lines, 

provided an initial value of the angular flux and the source distribution are known. The 

problem domain is divided into meshes having uniform material composition within 

each mesh. If we further assume that the flux variation within a mesh is small, we can 

take the source to be uniformly distributed (flat) within a mesh. It is then easy to write 

the following solution of Eq.3.4 for a mesh i and direction j  

   1
t t
i ,g i ,gs si ,gin

i , j ,g i , j ,g t

i ,g

Q
s e e

 
    


                                 (3.5) 

where Qi,g is the flat source in mesh i and group g. This gives us the following equation 

for the outgoing angular flux i.e. the flux at the end of a segment intercepted by the 

mesh boundary. 

 1
t t
i ,g i , j i ,g i , jt ti ,gout in

i , j ,g i , j ,g t

i ,g

Q
e e
   

    


                                (3.6) 

Δti,j is length of the segment along direction j, in mesh i as shown in Fig. 3.1. The 

average angular flux for the given characteristic in mesh i for the direction j is  
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Fig. 3.1: A set of parallel lines are drawn on a triangulated rectangular slab. In zoomed 

view of a portion of the slab, it is seen that i th mesh is intersected by a straight line 

along j-th direction and Δti,j is length of a segment of the line intercepted by the mesh 

boundary. 

 

To calculate the source Qi,g as well as the reaction rates, the scalar flux and (in case of 

anisotropic scattering) other moments of the angular flux are required. This is obtained 

by first averaging the expression in Eq.3.7 over all characteristics parallel to the 

direction   and passing through the mesh i. This is the average angular flux for 
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direction j and mesh i. This must be then integrated over all directions to get the scalar 

flux.    

In practice, we can obtain numerical values of the average angular flux only over 

a finite number of suitably chosen directions and over a finite number of characteristic 

lines in a given direction. The choice may be dictated by several considerations. For 

example, one may choose the directions from the well-known fully symmetric 

quadrature set used in the Sn method. Since our geometry is two dimensional, being 

uniform and infinite in the z direction, we choose a plane perpendicular to the z direction 

on which the lines are drawn. These lines are projections of the actual (3-D) 

characteristics. The orientation (θj, φj) of the characteristics is defined by a finite set of 

polar angles θj and azimuthal angles φj which is closed under reflection. Variation of 

the angular flux with the polar angle is smooth. So, θj-s’ are chosen such that μj = cosθj 

are points of a Gaussian quadrature set. However, variation of angular flux with 

azimuthal angle is not as smooth as with polar angle [70]. Hence, φj-s’ are distributed 

uniformly in the interval [0, 2π]. For a given φj, (all the projections corresponding to 

different θj are common) we use a set of equally spaced lines which form the projections 

of the characteristics. The intercepts are calculated for these projected lines on the plane. 

Then they are converted into actual intercepts of the characteristics by dividing by sinθj.  

If n is index number of the parallel lines passing through i-th mesh along 

direction j, then an angular flux, averaged over all those lines with a weighting factor 

equals to the product of chord lengths (Δti,j) and separation between two consecutive 

parallel lines (Δwj), can be defined as below.       
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The scalar flux is obtained by multiplying angular flux in Eq.3.8 by its angular weight 

for both θj and φj and then summing over all the directions. 

, ,, i j gi g j

j

w                                                   (3.9) 

where wj is the product of weights of the direction having polar angle θj (wθj, obtained 

from Gauss quadrature set) and azimuthal angle φj (wφj). If there are total “m” number 

of φj directions considered, then wφj=(2π/m). The average value of the scattering source 

and the fission source can be obtained from the average scalar flux obtained above, 

assuming the scattering to be isotropic in nature. 
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Thus the set of equations becomes closed. 

From solution given in Eq.3.6 and average angular flux in Eq.3.7, multiplication 

factor (k) for a system and the flux distribution are calculated by carrying out a number 

of outer and inner iterations, which is described in brief in the following text. Before 

starting the iterations, some guess values are assumed for “k”, incoming angular flux 

(Ψin) of all energy groups at boundary meshes and scalar flux (ϕ) of all energy groups 

in all meshes of the system.  

The outer iteration starts by calculating fission sources, as defined in Eq.3.11, 

in all meshes and for all energy groups. It proceeds with the highest energy group for 

calculation of the flux in the group (by way of inner iterations) and moves down to the 
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next energy group and then the next till we reach the last group. Before the iteration 

moves to the next energy group we need the in-scatter source for the group. Using the 

sum of the fission and in-scatter sources, we then obtain the updated flux distribution 

for that group by the inner iterations. This is repeated for all the groups till the last group. 

Using the updated flux distribution in all the groups, the updated fission source is 

computed and thereafter a better estimate of k is obtained as follows 

, ,
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, ,
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fi g i g i
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i g
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k k
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


                                           (3.12) 

Vi is volume of i-th mesh. This brings us to the end of the outer iteration. The outer 

iterations are halted when this k-value converges within a specified limit. 

The inner iteration for a particular energy group g, involves calculating the 

angular flux in all meshes along different directions and scalar flux in all meshes. Inner 

iteration starts from a boundary mesh along a straight line nj of direction j. Using Eq.3.6 

with latest value of incoming angular flux at boundary mesh and scattering source, as 

defined in Eq.3.10 and added to fission source in Eq.3.11 to obtain total source for the 

mesh, outgoing angular flux of the mesh is calculated. The way angular flux is updated 

during inner iteration is similar to Gauss-Seidel method.   

This outgoing angular flux is nothing but the incoming angular flux for next 

mesh along the same straight line. In a similar way, outgoing angular flux for the next 

mesh is also calculated and this calculation continues for all other meshes (i = 1 to I(nj)) 

falling on the line until the line reaches boundary. Same recipe is followed for rest of 

the lines parallel to this line (nj = 1 to N(j)) and subsequently for all other directions (j 

= 1 to J). Using Eq.3.7, average angular fluxes in all meshes are calculated for straight 

lines intersecting those meshes. Eq.3.8 is used to obtain the average angular flux in 
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mesh i along direction j. Finally, in mesh i, collecting such average values of angular 

fluxes along all directions and weighting them with proper weighting factor, the scalar 

flux (ϕ) is calculated using Eq.3.9. This way scalar fluxes in all other meshes are 

calculated. The inner iterations are terminated when the scalar flux converges within a 

specified error limit or the number of inner iterations per outer iteration reaches a 

specified upper limit (whichever is earlier). Such criterion is adopted for termination of 

inner iteration as there is no point to converge flux fully (i.e. up to the extent specified 

by flux convergence criterion) in initial rounds of iterations when the k value calculated 

is not accurate. Thus we set an upper limit on the number of inner iterations per outer 

iteration. Applying the limit, it is found that the flux converges partially for the initial 

outer iterations and as the “k” approaches towards its asymptotic value, the flux starts 

converging even before the number of inner iterations reach the specified upper limit. 

This strategy saves computation time which would be consumed otherwise to enforce 

full flux convergence in initial rounds of iteration. While it is known from experience 

that this strategy works well and speeds up the convergence, and is also supported by 

theoretical work valid for some specific situations [71], it might be difficult to provide 

a general proof. 

During inner iteration, fission source, as calculated by Eq.3.11, is kept constant 

and is only updated once converged scalar flux value is obtained after the termination 

of inner iterations in all the groups, i.e. at the end of the outer iteration. A flowchart of 

solution technique of transport equation is given in Fig. 3.2.  
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Fig. 3.2: Flowchart of MOC solution technique of neutron transport equation. 
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Reflective, periodic or vacuum 

boundary conditions may be used, depending 

upon the type of problem (Fig. 3.3). In 

principle, reflective boundary condition means 

outgoing angular flux [in a direction (θ, φi)] at 

a point r on the boundary being equal to 

incoming angular flux at the same point in a 

direction (θ, φr) where φr is the direction along 

which the incident line, after falling on the 

planar boundary, is reflected. Hence, the 

reflective boundary condition requires that (i) 

the set of directions chosen must be closed 

under reflection and (ii) the starting points of 

the characteristics in the incoming (reflected) 

direction should exactly coincide with the end 

points of the characteristics in the outgoing direction. While the former constraint can 

easily be satisfied by proper choice of angular directions, the latter is neither easily 

possible nor desirable for certain choices of directions which may be closed under 

reflection, however, may not cover the full space. Therefore, exact mirror like reflection 

of each characteristic line is not carried out to implement the reflective boundary 

condition. Rather the average value of outgoing angular flux for all those characteristics 

in the outgoing direction terminating at the side of a triangle at boundary is equated with 

the incoming angular flux for all the characteristics in the incoming direction starting 

from the same side of the triangle. For periodic boundary condition, the average value 

Fig. 3.3: Implementation of various 

boundary conditions in the MOC 

code: (a) Reflective, (b) Periodic and 

(c) Vacuum. 
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of outgoing angular flux for all those characteristics in the outgoing direction 

terminating at the side of a triangle at boundary is made equal to the average value of 

incoming angular flux for all those characteristics drawn in the same direction but 

starting from an equivalent side, as projected by a dotted line on the opposite side 

boundary in the figure. Vacuum boundary condition is treated by equating boundary 

values of all incoming angular fluxes to zero throughout the calculation.  

3.3 Method of implementation of MOC in a computer code  

The geometry of a reactor core or a fuel assembly is divided into a number of 

triangular meshes in such a manner that the material properties are uniform within each 

mesh. Further, each of the meshes must be small enough so that the assumption of a 

constant or flat source distribution made for solving the transport equation along a 

characteristic line over its intercept in the mesh, is valid. This is then followed by a 

selection of the characteristic lines along which the equation is to be solved and their 

construction by a ray tracing procedure. Finally, the transport equation is solved along 

the characteristics in an iterative fashion to obtain the flux distribution and the 

eigenvalue as described in the previous section. We describe the details of the 

procedures adopted by us for choosing the mesh and constructing the projections of the 

characteristics in this section.  
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Fig. 3.4: (a) Delaunay triangulation criterion is not satisfied as point D resides within 

the circumcircle of triangle formed by three points A, B and C at its vertices. (b) 

Delaunay triangulation criterion is satisfied as point D is not within the circumcircle of 

triangle formed by three points A, B and C at its vertices. 

3.3.1 Mesh generation 

Since the geometry is uniform along the z direction, we consider only the two 

dimensional figure formed in a plane perpendicular to the z axis. In the MOC based 

computer code, mesh generation is done by a triangulation technique, introduced by S. 

Rebay [72]. This technique is generic in nature and applicable even for an irregular 

shaped geometry. It has the advantage that a fairly faithful representation of the 

geometry is possible without an excessively large number of meshes. Generally, the 

problem domain is divided into various homogeneous regions such as fuel, clad, 

moderator etc. which are triangulated one by one by this technique. As a first step of 

triangulation, a number of points are identified on the boundary of each of these regions. 

These points are then joined together to form triangles by Delaunay triangulation 

technique, as shown in Fig. 3.4, which guarantees that there exists no such triangle, 

formed by three points at its vertices, which contains another point within its 

circumcircle. After doing this initial triangulation step, further sub division into 

triangles is carried out as follows. Depending on the problem as well as the region to be 
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triangulated, different mesh sizes may be required. Here we will talk about mesh size 

in terms of the radius of the circumcircle of each triangular mesh. Let us define a 

function f(x, y) which gives the desired circumcircle radius at any point (x, y) in each 

region of the problem domain. In addition to that, a parameter is introduced which is 

defined at any point (x, y) as the ratio of circumcircle radius of a triangle, whose centroid 

is at (x, y), to the desired circumcircle radius at (x, y). Now, values of this parameter for 

triangles formed in initial triangulation are calculated and then the triangles are listed 

based on descending order of their parameter values. If the parameter of the triangle at 

top of the list is less than 1, then the triangulation will not be disturbed any more as 

desired mesh structure has already been reached. Otherwise, we continue further 

triangulation of the region by adding a new point at the circumcentre of the triangle at 

top of the list. The addition of this new point to the triangulated region violates the 

Delaunay triangulation criterion as the addition of a new point at the circumcentre of a 

triangle makes the point contained in circumcircle of the triangle and possibly in 

neighboring triangles also. Hence, this portion of the existing triangulation is 

reconstructed by Bowyer-Watson algorithm according to which, the triangles which fail 

to satisfy Delaunay triangulation criterion after insertion of the new point, are to be 

deleted and re-triangulation is to be done by connecting each vertex of convex hull, 

formed by this deletion, with the newly added point as shown in Fig. 3.5. After each re-

triangulation, the list of triangles, already mentioned above, is updated since some 

triangles are deleted and some new triangles are formed by this time and again a point 

is added at the circumcentre of the triangle sitting at top of the updated list. This re-

triangulation process is terminated when the parameter, as defined above, for all 

triangles comes within unity. Mesh size can be made variable by choosing suitable 
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functional form of f(x, y) across a region. The process is repeated for each of the regions. 

For a region lying on the opposite side of a boundary already triangulated, the same set 

of initial boundary points must be selected so that triangulation of one region is 

consistent with that of an adjoining region. The triangulation technique, discussed above, 

is unique in a sense that it is applicable for any geometry and not many researchers have 

reported such application in the field of neutron transport theory.    

3.3.2 Ray tracing technique 

In order to solve neutron transport equation by MOC, projections of the 

characteristic lines along different directions are to be constructed over the triangulated 

geometry. For a particular direction, there are number of parallel lines each having 

identical slope “m”, but variable intercepts “c”. “m” is different for different directions. 

Fig. 3.5: Illustration of Bower-Watson algorithm: (a) Triangulation of a 

square. (b) Insertion of a new point at the circumcentre of a triangle 

(shaded). (c) Insertion of the point violates Delaunay criterion for three 

adjacent triangles (shaded). (d) Deletion of the three triangles forms a 

convex hull at their places. (e) Vertices of the convex hull are connected 

to the newly inserted point to form finer triangles. Applying the algorithm, 

the triangulation in (a) is converted to triangulation in (e). 
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The equation of each of these characteristic can be written as y = mx + c. Each triangular 

mesh in the geometry is characterized by coordinates of its three vertices, namely P (x1, 

y1), Q (x2, y2) and R (x3, y3). Using the coordinates of P and Q, equation of PQ side of 

the triangle can be constructed as y = y1 + {(x-x1)(y2-y1)}/(x2-x1). Equations of other 

two sides, QR and PR, can be written in a similar way. The characteristics, while passing 

through the geometry, may or may not intersect the sides of a triangle depending on the 

equations of characteristics and the sides of the triangle. If both the characteristic and 

the side of a triangle have same slope, then they will not intersect each other while for 

different slope, there must be some point of intersection which can be found by solving 

the equations of both straight lines. However, a check is made whether the point of 

intersection lies on the segment forming the side of the triangle or not. Coordinates of 

all these points of intersection are arranged in increasing or decreasing order of their 

abscissa values according to the direction of characteristics. In addition to coordinates 

of points, triangle identification number, the length of the segment of the projection of 

the characteristic line intercepted by the triangle (Δs) and the material filled in the 

triangle are stored for subsequent flux calculations by the inner-outer iteration technique. 

The length of the intercept along the characteristic, used in Eq.3.6 or 3.7, is given by Δt 

= Δs/sinθ where θ is the polar angle made by the characteristic line and positive z axis. 

3.3.3 Description of the code 

The MOC based computer code, written in FORTRAN90 language, is divided 

into six modules, namely GEOMCIRCLE, GEOMHEXAGON, GEOMSQUARE, 

INTERSECT, PLOT and TRANSPORT. In the first three modules, the mesh generation 

program is written for circular, hexagonal and square geometries respectively. 

INTERSECT module deals with ray tracing technique in the said geometries. DISLIN, 



Chapter 3: Solution of Neutron Transport Equation by Method of Characteristics 

_____________________________________________________________________ 

90 | P a g e  

 

a high level plotting library [73], is used in the PLOT module to display the geometries 

using different colours for different materials. These five modules are called in module 

TRANSPORT to calculate k for a given system with the help of MOC. There are two 

input files for the program. “INPUT.txt” contains geometry specification, the θ and φ 

values of directions considered and their corresponding weights, number of parallel 

lines in a particular direction, number of energy groups, upper limit of number of inner 

iterations per outer iteration, boundary condition and convergence criterion for scalar 

flux and k value. Relevant cross sections of materials are supplied in another file called 

“CROSS_SECTION.txt”. The program output i.e. coordinates of vertices of all 

triangular meshes, material inside each of these meshes, chord lengths, sequence of 

triangles falling on each line, sides of triangles making the boundary, sides at starting 

and end point for each line are stored in “OUTPUT.txt” file. If repetitive program run 

is required (for carrying out burn up calculation at a later stage of the present work), 

then triangulation will be done only once and subsequently will be read from 

“OUTPUT.txt” file to reduce computation time. Gauss-Legendre quadrature set is used 

for θ values and their corresponding weights while φ values are chosen to comply with 

the imposed boundary condition and weights are chosen to be uniform for all φ values. 

3.4 Verification and benchmarking of the Code 

In order to verify the capability of the MOC based computer code to handle 

various geometries and to validate its k calculation, a number of benchmark problems 

in square as well as hexagonal geometries have been analyzed. Description and the input 

parameter required to analyze the benchmark problems are available in Chapter 2. 

Results obtained using the MOC code are given below. 
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Table- 3.1: Comparison between reference k∞ values and the values calculated by the 

MOC based code for eighteen benchmark problems 

No. of 

energy 

groups 

Benchmark 

problem 

Ref. k∞ 

(k1) 

Calculated k∞ 

(k2) 

Relative % 

difference 

(|k1-k2|/ k1)×100 

 

 

 

1 

Pua-1-0-IN 2.612903 2.612903 0 

Pub-1-0-IN 2.290323 2.290322 4×10-5 

Ua-1-0-IN 2.250000 2.250000 0 

Ub-1-0-IN 2.330917 2.330917 0 

Uc-1-0-IN 2.256083 2.256090 3×10-4 

Ud-1-0-IN 2.232667 2.232665 9×10-5 

UD2O-1-0-IN 1.133333 1.133333 0 

Ue-1-0-IN 2.1806667 2.1806665 9×10-6 

 

 

 

 

2 

Pu-2-0-IN 2.683767 2.683767 0 

U-2-0-IN 2.216349 2.216349 0 

UAL-2-0-IN 2.662437 2.662436 4×10-5 

URRa-2-0-IN 1.631452 1.631450 1×10-4 

URRb-2-0-IN 1.365821 1.365818 2×10-4 

URRc-2-0-IN 1.633380 1.633378 1×10-4 

URRd-2-0-IN 1.034970 1.034972 2×10-4 

UD2O-2-0-IN 1.000221 1.000220 1×10-4 

3 URR-3-0-IN 1.600000 1.600000 0 

6 URR-6-0-IN 1.600000 1.600000 0 

3.4.1 Analytical benchmark test set  

Infinite multiplication factor (k∞) is calculated for 18 benchmark problems given 

in section 2.5.1. In the first problem, the fissile material is Plutonium-a (Pua), the 

number of energy group is one (1), scattering is isotropic (0) and the problem is for an 

infinite medium (IN) (abreviated as Pua-1-0-IN). The meaning of abbreviations for 

other problems is in line with this. The cross sections of materials of all problems are 

given in Table- 2.3. In the MOC calculation, 6 point Gauss-Legendre quadrature set 

with weights 0.17, 0.36 and 0.47 corresponding to angles ± 21.180, ± 48.610 and ± 

76.190 respectively is used for θ integration since this is adequate to approximate 

Bickley functions (resulting from θ integration in the collision probability method). 12 

angles viz. 00, 300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000 and 3300, with 
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equal weights are used for φ integration. 200 parallel lines are considered for each (θ, 

φ) pair. Convergence criterion for neutron flux and k∞-value are 10-5 and 10-7 

respectively. Since the medium is infinite, any geometry of arbitrary dimension with 

reflective or periodic boundary condition can be used for the calculation. A square of 3 

cm × 3 cm size with reflective boundary condition is used in the simulation. The k∞ 

values calculated by MOC code are summarized in Table- 3.1 along with the reference 

values. The excellent agreement demonstrates that the overall conservation is satisfied. 

3.4.2 One energy group eigen-value problem 

We use this problem to demonstrate the effect of changing mesh size, number 

of characteristic lines per direction and number of azimuthal directions on the 

computation time and the accuracy of the computed keff value. In the present 

methodology, flat flux approximation is made which means we assume a constant flux 

within each of the triangles of the triangulated domain. For the approximation to be 

valid, size of the triangles should be sufficiently small. If we choose the triangle size 

bigger than the required value, then the assumption of constancy of flux will be violated 

since flux, in actual case, varies with distance. 
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Fig. 3.6: Triangulated geometry of Mono energy group eigen-value problem, as 

generated by MOC code. Dimensions are shown in the figure. Representation of 

different materials with different colors is indicated in the legend table. 

 

In this connection, Table- 3.2 demonstrates how the number of triangles, which 

is inversely proportional to the size of the triangles, affects the accuracy of keff value. 

As number of triangles increases, triangle size decreases and flat flux approximation 

becomes more and more appropriate which in turn improves the keff value. With number 

of triangles, though the computation time increases, number of outer iterations required 

for getting the converged keff value remains approximately same. Finally, we arrive at 

7,060 number of triangles which is the required number for the present problem (Fig. 

3.6). More number of triangles could have been used to improve the keff but at the cost 

of computation time (hence not shown in the table). In this calculation, other two 

parameters i.e. number of characteristic lines per direction and number of azimuthal 
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directions are kept 200 and 12, respectively. For generating the keff values of Table- 3.3, 

number of lines drawn in each direction is increased from 100 to 1000 taking 7,060 

number of meshes and 12 azimuthal directions. While 100 lines per direction takes very 

less time to compute, the accuracy deteriorates and more number of iterations is 

required to get the converged estimate of keff. Beyond 200 lines per direction, there is 

not any appreciable change in both keff and number of iterations. However, the 

computation time increases four fold.  Table- 3.4 shows the variation in the computed 

keff with the number of azimuthal angles chosen while the number of meshes and 

characteristic lines per direction are kept 7,060 and 200, respectively. As evident from 

the table, 12 azimuthal angles are sufficient for the present problem as there would not 

be much incentive in terms of the accuracy in keff and the number of iterations though 

the computation time increases with number of azimuthal directions. Therefore, it is 

concluded that the accuracy of results and computation time are more sensitive to the 

number of meshes, lines per direction and azimuthal directions than the number of 

iterations or the convergence of the iterative calculation. In this entire optimization 

study, 6 point Gauss-Legendre quadrature set is used for θ directions and their 

corresponding weights. Convergence criterion for neutron flux and keff-value are 10-5 

and 10-7 respectively.  

Table- 3.2: Effect of increasing the number of triangles for Mono energy group 

eigenvalue problem 

No. of 

triangles 
keff 

Computation 

time (sec) 

No. of outer 

iteration 

882 0.7875718 11 52 

1350 0.7911381 13 49 

2948 0.7985724 20 50 

3874 0.7988869 25 52 

4348 0.8023327 32 51 

5184 0.8019810 32 53 

7060 0.8064641 39 56 
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Table- 3.3: Effect of increasing the number of lines per direction for Mono energy 

group eigenvalue problem 

 

No. of 

lines/direction 
keff 

Computation 

time (sec) 

No. of outer 

iteration 

100 0.6382050 39 95 

200 0.8064641 39 56 

400 0.8025243 75 51 

600 0.8039558 116 52 

800 0.8024756 123 51 

1000 0.8034197 162 52 

 

Table- 3.4: Effect of increasing the number of φ values for Mono energy group 

eigenvalue problem 

No. of φ 

values 
keff 

Computation 

time (sec) 

No. of outer 

iteration 

4 0.8594938 20 78 

8 0.8118086 29 61 

12 0.8064641 39 56 

16 0.8042727 50 53 

24 0.8027967 74 53 

3.4.3 IAEA benchmark problem 

The entire problem domain is divided into 23,478 triangular meshes (Fig. 3.7). 

6 point Gauss-Legendre quadrature set is used for θ directions and their corresponding 

weights and 12 angles are used for φ directions with equal weighting factor. 500 parallel 

lines are considered for each direction. Convergence criterion for neutron flux and keff-

value are 10-5 and 10-7 respectively. 
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Fig. 3.7: Triangulated geometry of IAEA benchmark problem, as generated by MOC 

code. Dimensions are shown in the figure. Representation of different materials with 

different colors is indicated in the legend table.  

3.4.4 BWR benchmark problem 

The whole lattice is triangulated into 2,600 meshes (Fig. 3.8). 6 point Gauss-

Legendre quadrature set for θ directions and their corresponding weights and 12 angles 

for φ directions with equal weighting factor are used for the calculation. Along each 

direction 200 parallel lines are drawn. Convergence criterion for neutron flux and k∞-

value are 10-5 and 10-7 respectively.  
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Fig. 3.8: Triangulated geometry of BWR benchmark problem, as generated by MOC 

code. Dimensions are shown in the figure. Representation of different materials with 

different colors is indicated in the legend table.  

 

3.4.5 LWR benchmark problem with burnable poison 

The entire lattice is triangulated into 8,160 meshes (Fig. 3.9). 6 point Gauss-

Legendre quadrature set is used for θ directions and their corresponding weights while 

12 angles are used for φ directions with equal weighting factor. 800 parallel lines are 

considered for each direction. Convergence criterion for neutron flux and k∞-value are 

10-5 and 10-7 respectively.  

3.4.6 BWR benchmark problem with Gd pins 

 The entire lattice is divided into 7,260 triangles (Fig. 3.10). 6 point Gauss-

Legendre quadrature set is used for θ directions and their corresponding weights, but 
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unlike previous cases 24 angles viz. 00, 150, 300, 450, 600, 750, 900, 1050, 1200, 1350, 

1500, 1650, 1800, 1950, 2100, 2250, 2400, 2550, 2700, 2850, 3000, 3150, 3300 and 3450 are 

used for φ directions with equal weighting factor as equal number of azimuthal angles 

are used for the solution obtained by DRAGON [21]. There are 500 parallel lines for 

each direction. Convergence criterion for neutron flux and k∞-value are set at 10-5 and 

10-7 respectively.  

 

Fig. 3.9: Triangulated geometry of LWR benchmark problem with burnable poison, as 

generated by MOC code. Dimensions are shown in the figure. Representation of 

different materials with different colors is indicated in the legend table. 

3.4.7 Hexagonal assembly problem 

The hexagon is divided into 2,088 triangles (Fig. 3.11). 6 point Gauss-Legendre 

quadrature set is used for θ directions and their corresponding weights and 12 angles 

are used for φ directions with equal weighting factor. Transport equation is integrated 
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over 200 parallel lines in each direction. Convergence criterion for neutron flux and keff-

value are set at 10-5 and 10-7 respectively. 

3.4.8 Hexagonal cell problem with central breeding pin 

The cell is divided into 4,148 triangles (Fig. 3.12). 6 point Gauss-Legendre 

quadrature set is used for θ directions and their corresponding weights and 12 angles 

are used for φ directions with equal weighting factor. A set of 200 parallel lines are 

considered for each direction. Convergence criterion for neutron flux and k∞-value are 

10-5 and 10-7 respectively.  

 

Fig. 3.10: Triangulated geometry of BWR benchmark problem with gadolinium pins, 

as generated by MOC code. Dimensions are shown in the figure. Representation of 

different materials with different colors is indicated in the legend table.  
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Fig. 3.11: Triangulated geometry of Hexagonal assembly problem, as generated by 

MOC code. Dimensions are shown in the figure. Representation of different materials 

with different colors is indicated in the legend table.  

 

Fig. 3.12: Triangulated geometry of Hexagonal cell problem with central breeding pin, 

as generated by MOC code. Dimensions are shown in the figure. Representation of 

different materials with different colors is indicated in the legend table. 
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3.5 Results and discussion 

The benchmark problems, discussed above, are solved using the MOC based 

code, described in section 3.3.3 and the results are compared in Table- 3.5 with the 

results of other codes available in literature. In one energy group eigen-value problem, 

keff-value calculated by MOC code agrees well with the simplified P3 approximation by 

[63], a transmission probability method based code TPTRI [30] and a spherical 

harmonic method based code TEPFEM [74]. A good agreement is observed between 

keff-value of IAEA benchmark problem calculated by MOC code and other codes 

available in literature e.g. a neutron integral transport calculation code SURCU [25], a 

finite element code FELICIT [61], TEPFEM and TPTRI. The calculated k∞ value of 

BWR benchmark problem is also in line with the results of SURCU, TEPFEM and 

TPTRI. In LWR benchmark problem with burnable poison, k∞-value calculated by 

MOC code agrees with the results of TPTRI and SURCU. In another BWR benchmark 

problem (with Gd pins), result of MOC code is well comparable with the results of 

DRAGON and MOCUM [22]. For hexagonal assembly problem, keff value as obtained 

from MOC code exactly matches with the value obtained from CRX [18] code while it 

differs only by few mk from TWOHEX [68] code. In another hexagonal cell problem 

(with central breeding pin), k∞ value calculated by MOC code is closer to Monte Carlo 

method based code MG-MCNP3B [75] in comparison with TPTRI and TEPFEM.  

The table also shows the relative difference between the results obtained from 

the MOC code and one of the reference results for which the difference is maximum. It 

is seen that the MOC code agrees with the reference results generally within a fraction 

of a percent. However, the various reference results themselves have differences of 

about the same magnitude. Unlike the much simpler problems presented in Table- 3.1 
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where the errors were extremely low, the present problems involve complex geometry 

and hence the relatively larger differences. The much larger differences might also be 

due to the inadequacy of the spatial mesh or the number of characteristics used. 

 

Table- 3.5: Comparison between k values calculated by other codes and the values 

calculated by the MOC based code for few benchmark problems 

No. of 

energy 

groups 

Benchmark 

problem 

k value (k1) calculated  

by other codes  

(Name of code) 

k value (k2) 

calculated by 

MOC code  

Relative % 

difference 

(|k1-k2|/ 

k1)×100* 

1 Mono group eigen-

value problem  

0.798617 (SP3) 

0.803068 (TEPFEM) 

0.806123 (TPTRI) 

0.806464 1.0 

1 IAEA  1.0069 (SURCU) 

1.0069 (FELICIT) 

1.0079 (TEPFEM) 

1.0070 (TPTRI) 

1.0044 0.3 

2 BWR  1.2127 (SURCU) 

1.2136 (TEPFEM) 

1.2128 (TPTRI) 

1.2119 0.1 

2 LWR problem with 

burnable poison 

0.8805 (SURCU) 

0.8828 (TPTRI) 

0.8790 0.4 

2 BWR problem with 

gadolinium pins  

0.986561 (DRAGON) 

0.987785 (MOCUM) 

0.9896832 0.3 

1 Hexagonal 

assembly problem  

0.7124 (TWOHEX) 

0.7100 (CRX) 

0.7100 0.3 

2 Hexagonal cell 

problem with 

central breeding pin 

1.090803 (MG-MCNP3B) 

1.086598 (TEPFEM) 

1.085775 (TPTRI) 

1.088701 0.3 

 

 

 

                                                 
* Since, there are more than one k1 value available for each problem, so maximum 

relative % difference is only quoted. 
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CHAPTER 4 : Linear Representation of Source in 

Method of Characteristics 

Linear Representation of Source in Method of 

Characteristics 

_________________________________________ 

4.1 Introduction 

A common assumption in the solution of the neutron transport equation by the 

Method of Characteristics or MOC is that the source (or flux) is constant within a mesh. 

This assumption is adequate provided the meshes are small enough so that the spatial 

variation of flux within a mesh may be ignored. Whether a mesh is small enough or not 

depends upon the flux gradient across a mesh, which in turn depends on factors like the 

presence of strong absorbers, localized sources or vacuum boundaries. The flat flux 

assumption often requires a very large number of meshes for solving the neutron 

transport equation with acceptable accuracy as was observed in earlier chapter. A 

significant reduction in the required number meshes is possible by using a higher order 

representation of the flux within a mesh.  

In this chapter, we describe our work in which the source within a mesh is 

expanded up to first order (i.e. linear) terms. Thus, we permit the larger sized (and 

therefore fewer) meshes, which reduces the computation time without compromising 

the accuracy of calculation. Since the division of the geometry into meshes is through 

an automatic triangulation procedure using the Bowyer-Watson algorithm, 

representation of circular objects (e.g. cylindrical fuel rods) with coarse meshes is 

poorer and causes geometry related errors. A numerical recipe is presented to make a 
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correction to the automatic triangulation process and thereby eliminate this source of 

error. A number of benchmark problems are analyzed to emphasize the advantage of 

the source expansion method and the need to correct the triangular representation of the 

geometry.  

4.2 Representation of source within coarse mesh in MOC 

In the previous chapter, we have shown how the steady state neutron transport 

equation, which describes the distribution of neutron angular flux (Ψ) as a function of 

space (r), direction (Ω) and energy group (g) in reactor core, is converted into a linear 

ordinary differential equation (ODE), applying the MOC (Eq.3.4). This ODE governs 

the variation of the angular flux along a straight line characteristic, 0r r s   , where 

s is the distance to the point ( r ) measured from an arbitrary starting point ( 0r ) on the 

characteristic line. For obtaining the numerical solution of the equation, we divide the 

problem domain into a number of meshes such that each mesh has a uniform material 

composition. If we make the additional assumption of a flat source within a mesh, then 

it is straightforward to write down the following solution of the ODE for a mesh i and 

direction j  

 1
t t
i ,g i , j i ,g i , jt ti ,gout in

i , j ,g i , j ,g t

i ,g

Q
e e
   

    


                              (4.1) 

where Qi,g is the flat source in mesh i and group g and ∆ti,j is the “chord length” in mesh 

i, i.e. the length of the segment along direction j, in mesh i as shown in Fig. 3.1. The 

above equation gives us the outgoing angular flux i.e. the flux at the end of a segment 

intercepted by the mesh boundary.  
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However, if we divide the domain into coarser (large sized) meshes in order to 

reduce the computation time, then the flat source assumption will no more be valid as 

the variation of source within a mesh will be too large. Hence the solution cannot be 

given by Eq.4.1.  For better representation of the spatial variation of the source within 

a mesh, we expand it in terms of some suitable basis functions. The polynomial 

functions are the simplest ones to choose in this regard. As a minimal improvement over 

the flat source assumption, we carry out an expansion up to the linear terms and write 

  0 1 2i , j ,gQ x, y a a x a y                                              (4.2) 

where a0, a1 and a2 are the expansion coefficients. In mesh i, a local coordinate system, 

whose origin is set at the centroid (Xc, Yc) of the mesh, is considered and x, y are the 

coordinates measured with respect to this local coordinate system. So, x = X - Xc and y 

= Y - Yc where (X, Y) and (Xc, Yc) are the coordinates measured with respect to a global 

coordinate system. In this chapter, lower case letters will be used for local coordinates 

and upper case letters for global coordinates.  
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Fig. 4.1: Illustration of the polar angle θ and azimuthal angle φ made by the actual 3D 

characteristic 

 

As the solution of the transport equation, given in Eq.4.1, is valid along a straight 

line characteristic in the direction j, we can replace X and Y with (X0+Ωxs) and (Y0+Ωys) 

respectively in this equation. Here (X0, Y0) is the point at which the straight line enters 

the mesh, s is the chord length measured along the line between the points (X0, Y0) and 

(X, Y) and Ωx, Ωy are direction cosines mathematically expressed as Ωx = sinθcosφ and 

Ωy = sinθsinφ where θ and φ are the spherical polar angles in the X, Y, Z coordinate 

system (Fig. 4.1). After making these substitutions, the source can be written as follows  

  0 1i , j ,gQ s b b s                                              (4.3) 

where b0 = a0+a1(X0-Xc)+a2(Y0-Yc) and b1 = a1Ωx+a2Ωy. b0 and b1 are the new expansion 

coefficients for the above expression. Integrating Eq.3.4, with the source in the form 

given in Eq.4.3, we obtain the following solution. 
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0 1 2

1 1
t t
i ,g i , j i ,g i , j

t
i ,g i , j

t t
t i , jout in

i , j ,g i , j ,g t t t

i ,g i ,g i ,g

te e
e b b  

   
 

   
       

      

             (4.4) 

This solution is consistent with the one obtained under the flat source assumption as 

Eq.4.4 reduces to Eq.3.6 on setting b0 = Qi,g and b1 = 0. The coefficients b0 and b1 have 

already been expressed in terms of a0, a1 and a2 that will be obtained from the average 

source and its moments. 

Integrating Eq.4.3 over “s” from 0 to ∆ti,j and then dividing by ∆ti,j, we get the 

average source over one chord in direction j and passing through mesh i  

 
0

0 1 0 2 0

1

2 2

i , jt

i , j ,gi , j ,g

i , j

i , j i , j

c x c y

Q Q x, y ds
t

t t
a a X X a Y Y






    
         

   


             (4.5) 

There could be many such chords parallel to one another and passing through the mesh 

in the direction j. Averaging further over all those chords in direction j that pass through 

the mesh i, gives  

i , j ,n j ,ni , j ,n ,g

n
i , j ,g

i , j ,n j ,n

n

Q t w

Q
t w

 


 




                                        (4.6) 

A new index n has been introduced to indicate the parallel chords that pass through the 

mesh i. To carry out the averaging of the source over all chords passing through mesh i 

in direction j [in Eq.4.6], the contribution from each chord [as given in Eq.4.5], is 

weighted by the product of chord lengths (∆ti,j,n) and the separation between two 

consecutive parallel chords (Δwj,n) (i.e. the volume associated with each chord in mesh 

i). Substituting the expression given by the RHS of Eq.4.5 in Eq.4.6, we obtain 
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0 1 2i ,g x yi , j ,g
q Q a a q a q                                             (4.7) 

where qx and qy are given by  

0
2

i , j ,n

c x i , j ,n j ,n

n

x

i , j ,n j ,n

n

t
X X t w

q
t w

 
    

 
 




                                   (4.8) 

and 

0
2

i , j ,n

c y i , j ,n j ,n

n

y

i , j ,n j ,n

n

t
Y Y t w

q
t w

 
    

 
 




                                       (4.9) 

In a similar fashion, the 1st moment of the source (with respect to x) over one 

chord in the direction j and passing through the mesh i is obtained by multiplying Eq.4.3 

with “x”, integrating over “s” from 0 to ∆ti,j, and dividing by ∆ti,j.  

 

   

       

1

0

2
2 2

0 0 1 0 0

2

2 0 0 0 0

1

2 3

2 3

i , jt
x

i , j ,gi , j ,g

i , j

i , j i , j

c x c c x i , j x

i , j i , j

c c c x c y x y

Q xQ x, y ds
t

t t
a X X a X X X X t

t t
a X X Y Y Y Y X X






   
           

    

  
           

  



        (4.10) 

As in Eq.4.6, we carry out averaging over various chords passing through the mesh i in 

direction j to obtain the average moment of the source (with respect to x) for the mesh 

i in direction j. 

1

1

x

i , j ,n j ,ni , j ,n ,gx
n

i , j ,g

i , j ,n j ,n

n

Q t w

Q
t w

 


 




                                           (4.11) 

Substituting the expression given by the RHS of Eq.4.10 in Eq.4.11, we obtain 
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,

1
1

0 1 2, ,i g

x
x

x xx xyi j g
q Q a q a q a q                                     (4.12) 

where qxx and qxy are given by 

   
2

2 2

0 0
3

i , j ,n

c c x i , j ,n x i , j ,n j ,n

n

xx

i , j ,n j ,n

n

t
X X X X t t w

q
t w

 
         

 
 




            (4.13) 

  

    

0 0

2

0 0
2 3

c c

i , j ,n j ,n
i , j ,n i , j ,n

n
c x c y x y

xy

i , j ,n j ,n

n

X X Y Y

t wt t
Y Y X X

q
t w

  
 

   
        
 


 




    (4.14) 

and qx is already defined in Eq.4.8.  

Another source moment (over one chord in direction j and passing through the 

mesh i) can be obtained by multiplying Eq.4.3 with “y” followed by integration over “s” 

from 0 to ∆ti,j and dividing by ∆ti,j.  

 

  

    

   

1

0

0 0

0 0 1 0 0

2

2
2 2

2 0 0

1

2 2

3

3

i , j

i , j ,g

t
y

i , j ,g

i , j

c c

i , j i , j

c y c x c y

i , j

x y

i , j

c c y i , j y

Q yQ x, y ds
t

X X Y Y

t t
a Y Y a Y Y X X

t

t
a Y Y Y Y t






 
  
 

    
            

   
 

   

 
       

  



      (4.15) 

Averaging over all the chords passing through the mesh i in direction j, we obtain 

1

1

y

i , j ,n j ,ni , j ,n ,gy
n

i , j ,g

i , j ,n j ,n

n

Q t w

Q
t w

 


 




                                        (4.16) 

Substituting the expression given by the RHS of Eq.4.15 in Eq.4.16, we obtain 
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,

1
1

0 1 2, ,i g

y
y

y xy yyi j g
q Q a q a q a q                                   (4.17) 

where qy, qxy are defined in Eq.4.9 and Eq.4.14 respectively and 

   
2

2 2

0 0
3

i , j ,n

c c y i , j ,n y i , j ,n j ,n

n

yy

i , j ,n j ,n

n

t
Y Y Y Y t t w

q
t w

 
         

 
 




               (4.18) 

If we define (Xc, Yc), the centroid of the mesh, in the following way 

0
2

i , j ,n

x i , j ,n j ,n

n

c

i , j ,n j ,n

n

t
X t w

X
t w

 
   

 
 




                                         (4.19) 

   

0
2

i , j ,n

y i , j ,n j ,n

n

c

i , j ,n j ,n

n

t
Y t w

Y
t w

 
   

 
 




                                       (4.20) 

then both qx and qy will vanish. Solving Eq.4.7, Eq.4.12 and Eq.4.17, we get the 

following expressions for a0, a1 and a2. 

, ,

, ,

0 ,

1 1

1 2

1 1

2 2

=

i g i g

i g i g

i g

x y

yy xy

xx yy xy

y x

xx xy

xx yy xy

a q

q q q q
a

q q q

q q q q
a

q q q






 
 

 




 

                                                  (4.21) 

In order to calculate the average source qi,g and its moments qi,g
x1 and qi,g

y1 in the above 

equations, we need the scalar flux and its moments. First, we determine the average flux 

and its moments along one chord in direction j and passing through mesh i. On 

integrating Eq.3.4 over “s” from 0 to ∆ti,j and dividing by ∆ti,j, we obtain the average 

angular flux over one chord in direction j and passing through the mesh i. 



Chapter 4: Linear Representation of Source in Method of Characteristics 

_____________________________________________________________________ 

111 | P a g e  

 

 
0

1
i , jt in out

i , j ,g i , j ,g i , j ,g
i , j ,g i , j ,g t t

i , j i ,g i , j i ,g

Q
s ds

t t


 

    
                            (4.22) 

Similarly, on multiplying Eq.3.4 by “x” [or “y”], integrating over “s” from 0 to ∆ti,j, and 

dividing by ∆ti,j, we obtain the first moment of flux (with respect to x [or y]) over one 

chord in direction j and passing through the mesh i. 
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Eq.4.23 and Eq.4.24 contain the first moment of angular flux with respect to s, 
1

i , j ,g
 , 

which needs to be calculated. After multiplying Eq.3.4 with “s” and then integrating the 

equation over “s” from 0 to ∆ti,j and finally dividing by ∆ti,j, we get  

 
1 1

0

1 1
i , j

i , j ,g
i , j ,g

t

out
i , j ,gi , j ,g i , j ,gt

i , j i ,g

s s ds Q
t



      
                    (4.25) 

Putting Eq.4.25 in Eq.4.23 and Eq.4.24, we get 
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Further averaging Eq.4.22, Eq.4.26 and Eq.4.27 over all the chords in direction j and 

passing through the mesh i yields  
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Finally, integrating Eqs.4.28-4.30 over all the directions, we get the scalar flux and its 

moments which are used to calculate the average source and its moments in Eq.4.21.  
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where wθj and wφj are the weights corresponding to the cosine of the polar angle θj 

(obtained from a Gauss quadrature set) and the azimuthal angle φj respectively, 

associated with the direction j. The weights wθj s’ and wφj s’ are normalized to 2 and 2 

π respectively. 

The average source and its moments can now be related to the scalar flux and 

its moments using the definition of the source in the presence of isotropic scattering. 
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i , j ,g
Q and 

1

i , j ,g
Q in Eq.4.22, Eq.4.26 and Eq.4.27 are determined using Eq.4.3. 
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Thus the set of equations [Eq.4.4, 4.13, 4.14, 4.18, 4.21, 4.22, 4.26, 4.27, 4.28-4.36, 

4.37, 4.38] becomes closed. 

The solution of the transport equation for obtaining the multiplication factor (k) 

and the flux distribution for a system (lattice or full core) is obtained using the usual 

inner-outer iteration method, as described in previous chapter. A flowchart of the 

solution method is given in Fig. 4.2.  
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Fig. 4.2: Flowchart of the inner outer iteration technique for solution of the neutron 

transport equation by the MOC of with a linear representation of the source. 
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4.3 Correction in the representation of curved surfaces with coarse 

triangular meshes 

 

Fig. 4.3: (a) Triangulation of a geometry with fine meshes; In the zoomed view, the 

circular boundary of the central pin coincides with the straight edges of the fine triangles. 

(b) Triangulation of a geometry with coarse meshes; In the zoomed view, the circular 

boundary of the central pin does not coincide with the straight edges of the coarse 

triangles. 
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In the earlier version of MOC code, discussed in the previous chapter, the 

geometry of the problem (lattice or full core) was divided into a number of triangular 

meshes by Delaunay triangulation technique along with Bowyer-Watson algorithm in 

such a manner that the material properties are uniform within each mesh. Care was taken 

in choosing the mesh size small enough so that the assumption of a constant or flat 

source distribution made for solving the transport equation along a characteristic line 

over its intercept in the mesh remains valid. In the present chapter, we have already 

worked out the modification in the solution of transport equation by MOC if we choose 

to consider coarse mesh in order to reduce the computation time. The main difference 

between the earlier and the present formulations is the representation of the source 

within a mesh. In the earlier case, it was a constant while in present case, the source is 

expanded up to linear terms. In case of problems with planar material boundaries, the 

triangular mesh boundaries coincide exactly with the material boundaries. In such 

situations the geometrical representation using triangulations is exact whether the mesh 

is coarse or fine and results for such a geometry divided into a few coarse meshes are 

found to be in good agreement with that for the same geometry divided into large 

number of fine meshes. However, this is not true for problems involving cylindrical 

bodies (e.g. boundaries of fuel pin, clad, coolant channel etc.) whose circular projections 

cannot be represented exactly with the straight edges of the triangular meshes. With this 

approximate representation, shown in Fig. 4.3, it was possible to get accurate results 

since the error introduced due to the geometrical representation was negligible for a fine 

mesh. However, with a coarse mesh, the geometrical representation error becomes large 

and the results deviate appreciably from the fine mesh values as will be clear from the 
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results shown in the next section. Therefore, use of coarse triangular mesh in such 

geometries is inadequate even with the polynomial expansion. To get good results we 

need to change the shape of those meshes that fall on the circular boundary. One of the 

straight edges of triangular meshes on either side of a circular boundary needs to be 

corrected to an arc so that the meshes can exactly represent a circle. This is exactly what 

we have implemented in MOC code (Fig. 4.4). After triangulating a problem domain 

by Delaunay triangulation in conjunction with the Bowyer-Watson algorithm, the edges 

of the triangular meshes, which approximate the circular boundary of the domain, are 

identified and then replaced with arcs. DISLIN is used in MOC code to plot rectangular, 

circular and hexagonal geometries with different colours for different materials. For 

Fig. 4.4: Triangulation of a geometry with coarse meshes; One of the straight edges of 

a coarse triangle, which falls on the circular boundary, is modified as an arc of the circle. 

Hence, as seen in the zoomed view, the circular boundary of the central pin coincides 

with the arcs of the coarse triangle. 
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plotting purposes, a side (say AB) of a triangular mesh (ΔABC) is defined only by the 

coordinates of two end points of the side [A=(x1, y1) and B=(x2, y2)]. On the other hand, 

an arc AB is defined by five parameters, namely centre of curvature (x0, y0), radius of 

curvature (r0) and angles θi and θf made by the radius vector r0 [connecting (x0, y0) and 

(x1, y1) for θi and connecting (x0, y0) and (x2, y2) for θf] with a reference line as shown 

in Fig. 4.5. This is followed by ray tracing in which intersection between triangular 

meshes and characteristic lines (called “rays”) drawn in different directions (as a set of 

parallel lines in a particular direction) are determined and the information about the 

tracks of the rays passing through the problem domain are stored for the next level of 

the calculation. The equation of each of these rays can be written as y = mx + c. For a 

particular direction, there are a number of parallel lines each having identical slope “m”, 

but variable intercepts “c”. “m” is different for different directions. Each triangular 

Fig. 4.5: Illustration of the parameters required to draw an arc AB. 
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mesh in the geometry is characterized by coordinates of its three vertices, namely A (x1, 

y1), B (x2, y2) and C (x3, y3). In our previous work, it has been shown how to determine 

the point of intersection between side AB and the characteristic line. In circular 

geometry, if vertices A and B fall on the circumference of a circle having its centre at 

(x0, y0) and radius r0, then the equation of the arc AB of the triangle can be constructed 

using (x0, y0) as the centre of curvature and r0 as the radius of curvature of the arc. The 

equation of the arc can be written in the form  
22

0 0 0y y r x x    . It may be noted 

that, at the most, one side of a triangle can be replaced by an arc. Hence, the mesh 

division is carried out in such a manner that only one of the sides of the triangle needs 

to be replaced by an arc. The characteristic line, while passing through the geometry, 

may or may not intersect the arc. If the perpendicular distance d to the characteristic 

line from (x0, y0) is greater than r0, then they will not intersect each other. But, if the 

distance is less than r0, then, generally speaking, there will be two points of intersection 

D (x*, y*) which can be found by solving the equations of the arc and the characteristic 

line. A check is always made whether D lies within the arc or not using the following 

prescription. If d1, d2 and d3 are distances between D and A, D and B, A and B 

respectively, then max(d1, d2) < d3 guarantees that D lies on the arc AB (Fig. 4.6). 

Coordinates of all the points of intersection are arranged in increasing or decreasing 

order of their abscissa values according to the direction of characteristics. In addition to 

coordinates of points, mesh identification number (i.e. some sort of index number which 

is given to each triangle during mesh generation so that the triangles can be identified 

later) of each triangle intercepted by the ray, length of the segment of the projection of 
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the characteristic line in direction j and intercepted by the triangle i (si,j) and the material 

filled in the triangle are stored for subsequent flux calculations by the inner-outer 

iteration technique. Volumes of all the triangular meshes are required for multiplication 

factor calculation (Eq.3.12). If the mesh is a perfect triangle with its three vertices at 

(x1, y1), (x2, y2) and (x3, y3), then its volume per unit length along z axis will be  

     1 2 3 2 3 1 3 1 2

1

2
V x y y x y y x y y                                (4.39) 

 If one of the three edges of a triangular mesh is an arc, as shown by AB in Fig. 4.5, 

then its volume per unit length along z axis will be  

Fig. 4.6: (a) A characteristic line will not intersect the arc AB if d > r0; (b) Even if d<r0, 

the characteristic line may not intersect arc AB if the point of intersection D is lying 

outside of AB. (c) d<r0 and the characteristic line intersects arc AB as the point of 

intersection D is lying within AB. 
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Here the triangular mesh is divided into two segments – one which forms a perfect 

triangle (joining points A and B, shown in Fig. 4.5, by a straight line) and another is a 

circular segment formed by enclosing the region between the straight line AB and the 

arc. VΔ is the volume of the perfect triangle, as defined in Eq.4.39, and Vcs is the volume 

of the circular segment. In order to obtain the exact volume of the whole mesh, Vcs is 

either added with or subtracted from VΔ depending on the curvature of arc (convex or 

concave). R is the radius of curvature of the arc and θ is the central angle defined as (θi 

– θf) [θi and θf are shown in Fig. 4.5] and measured in degree. The length of the intercept 

along the characteristic, used in the calculation, is calculated by dividing the length of 

the projected segment si,j with sinθj where θj is the polar angle made by the characteristic 

line and the z axis (Fig. 4.1). 

4.4 Verification and benchmarking of the Code 

In order to validate the calculation of multiplication factor (k) with the improved 

source expansion scheme within a mesh, a number of benchmark problems in square as 

well as hexagonal geometries have been analyzed. Description and the input parameter 

required to analyze the benchmark problems are available in Chapter 2. Results obtained 

using the MOC code are given below. Apart from verification of the code, an attempt 

has been made to bring out the advantage of the source expansion within a coarse mesh 

and the necessity of introducing the “geometry correction” whenever the problem 

includes cylindrical bodies (circular regions in the projection) and the domain is divided 

into coarse triangular meshes.  
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4.4.1 IAEA benchmark problem 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 500 parallel lines are considered per direction. Convergence 

criteria for the neutron flux and the keff are chosen to be 10-5 and 10-7 respectively. With 

the flat and linear source assumption, keff is calculated using 1,850, 11,238 and 23,478 

triangular meshes. The results are displayed in Table- 4.1. The mesh size decreases with 

increasing number of meshes and the flat source assumption becomes progressively 

better. Therefore, the keff calculated by MOC code for 23,478 meshes, is quite close 

(relative percentage error ~ 0.2% - 0.3%) to the values calculated by SURCU [25], 

TEPFEM [74] and TPTRI [30]. With a reduction in number of meshes, the results 

deteriorate (relative percentage error increases from 0.3% to 3.7%). However, such a 

discrepancy does not appear when a linear source representation is used. The result does 

not vary much with the number of meshes. It is clear from the table that the keff, in the 

linear source case, changes only at the fourth decimal places (relative percentage error 

~ 0.1 - 0.2%) if we change the number of meshes and results of all three mesh sizes 

agree well with the reference values obtained by the codes mentioned above. It is 

interesting to see the effect of mesh size variation on the neutron scalar flux in both flat 

and linear source assumption. Accordingly, region averaged scalar flux is calculated for 

all five regions of the problem. The one group fluxes are scaled to satisfy 

1

1.0
N

i i

f

i

 


                                                     (4.41) 

where N is total number of meshes in fuel region. 
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Table- 4.1: keff values obtained by MOC code using various number of meshes with 

flat and linear source assumption for the IAEA benchmark problem and their 

comparison with reference results 

 

 

Type of 

assumption 

 

No. of 

meshes 

 

keff 

calculated by 

MOC code 

Relative % error  

with respect to reference codes 

SURCU 

(keff =1.0069) 

TEPFEM 

(keff =1.0079) 

TPTRI 

(keff =1.0070) 

 

Flat 

23,478 1.0044123 0.247 0.346 0.257 

11,238 1.0005144 0.634 0.733 0.644 

1,850 0.9701908 3.646 3.741 3.655 

 

Linear 

23,478 1.0087264 0.181 0.082 0.171 

11,238 1.0087122 0.180 0.081 0.170 

1,850 1.0084268 0.152 0.052 0.142 

 

Table- 4.2: Region averaged neutron flux values obtained by MOC code using various 

number of meshes with flat source assumption for the IAEA benchmark problem and 

its comparison with reference results 

Region 

Avg. flux 

calculated by 

No of 

meshes 
Avg. flux  

Relative % error 

with respect to 

reference codes 

TEPFEM TPTRI   TEPFEM TPTRI 

Zone 1 0.016860 0.016850 

1,850 0.016847 0.08 0.02 

11,238 0.016855 0.03 0.03 

23,478 0.016856 0.02 0.04 

Zone 2 0.000125 0.000130 

1,850 0.000170 36.00 30.77 

11,238 0.000134 7.20 3.08 

23,478 0.000129 3.20 0.77 

Zone 3 0.000035 0.000026 

1,850 0.000058 65.71 123.08 

11,238 0.000042 20.00 61.54 

23,478 0.000040 14.29 53.85 

Zone 4 0.000297 0.000282 

1,850 0.000406 36.57 43.83 

11,238 0.000317 6.73 12.41 

23,478 0.000304 2.36 7.80 

Zone 5 0.000786 0.000766 

1,850 0.000963 22.52 25.72 

11,238 0.000831 5.73 8.49 

23,478 0.000810 3.05 5.74 
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Table- 4.3: Region averaged neutron flux values obtained by MOC code using various 

number of meshes with linear source assumption for the IAEA benchmark problem and 

its comparison with reference results 

Region 

Avg. flux 

calculated by 

No of 

meshes 
Avg. flux  

Relative % error with 

respect to reference 

codes 

TEPFEM TPTRI   TEPFEM TPTRI 

Zone 1 0.016860 0.016850 

1,850 0.016857 0.02 0.04 

11,238 0.016857 0.02 0.04 

23,478 0.016857 0.02 0.04 

Zone 2 0.000125 0.000130 

1,850 0.000125 0.00 3.85 

11,238 0.000124 0.80 4.62 

23,478 0.000124 0.80 4.62 

Zone 3 0.000035 0.000026 

1,850 0.000037 5.71 42.31 

11,238 0.000038 8.57 46.15 

23,478 0.000038 8.57 46.15 

Zone 4 0.000297 0.000282 

1,850 0.000295 0.67 4.61 

11,238 0.000294 1.01 4.26 

23,478 0.000294 1.01 4.26 

Zone 5 0.000786 0.000766 

1,850 0.000791 0.64 3.26 

11,238 0.000789 0.38 3.00 

23,478 0.000789 0.38 3.00 

 

In Table- 4.2 and Table- 4.3, the scaled flux values are compared with the values 

calculated by TEPFEM and TPTRI. It is clear from the table that the error in scalar flux 

for flat source assumption is, in general, higher than the error for linear source 

assumption. Reduction in mesh size improves the accuracy of flat source assumption. 

But, even then, the accuracy of the flat source assumption is found to be lesser than the 

accuracy of the linear source assumption. 

4.4.2 MZA fast reactor benchmark problem 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 600 parallel lines are considered per direction. Convergence 
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criteria for the neutron flux and the keff are chosen to be 10-5 and 10-7 respectively. 

Assuming flat as well as linear source, keff of the reference core is calculated for 224, 

754 and 3,952 triangular meshes. The results are displayed in Table- 4.4. The linear 

source assumption predicts keff very close (relative percentage error < 0.1%) to the 

values calculated by GMVP [76] and MOCUM [22] and is seen to be insensitive to 

number of meshes (the keff changes only by 20-30 pcm and relative percentage error 

remains below 0.1% when mesh number is reduced by a factor of 18). In case of the flat 

source representation, the keff is 800 pcm (relative percentage error ~ 0.9%) less than 

the reference values calculated by the codes mentioned above, even with 3,952 meshes. 

The same trend is seen in the other three cases as is clear from Table- 4.4. Instead of 

full core, simulation of 1/4th core with reflective boundary condition at the inner 

surfaces and vacuum boundary condition at the outer surfaces (Fig. 4.7) helps in 

reducing the computation time by a factor of 2. In order to make the reflective boundary 

condition compatible with the linear source assumption, a linear interpolation between 

the outgoing angular flux values at the end points of the adjacent parallel characteristics 

in the outgoing direction is used to calculate the incoming angular flux for the nearby 

characteristic in the incoming direction unlike the case of flat source assumption, as 

discussed in section 3.2.   

4.4.3 KNK-II benchmark problem with non-reentrant boundary 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 1000 parallel lines are considered for each direction. The 

convergence criteria for the neutron flux and the keff are chosen to be 10-5 and 10-7 

respectively. With flat and linear source representations, the keff is calculated using 468, 
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1,882 and 11,628 triangular meshes (Fig. 4.8). The results are displayed in Table- 4.5. 

As the number of meshes increases, the keff calculated by MOC code with flat source 

assumption improves and comes closer to the values calculated by TWOHEX [68], 

SPANDOM-TA [67] and DIAMANT2 [69].  

 

 

Fig. 4.7: Triangulated geometry of the MZA fast reactor benchmark problem, as 

generated by MOC code, in four cases: (a) Reference case; (b) void is formed at the 

centre of fuel region; (c) void is formed at the horizontal boundaries between the fuel 

and blanket regions, (d) void is formed at the vertical boundaries between the fuel and 

blanket regions. The dimensions are as shown in the figure. Representation of various 

materials with different colors is as indicated in the legend table.  

 

For 468 meshes, there is a large difference of about 6800 pcm (relative 

percentage error ~ 9.2%) between results of MOC code and the codes mentioned above 

whereas for 11,628 meshes, this difference comes down to 400 pcm (relative percentage 

error ~ 0.5%). However, with a linear representation of the source, the results are not at 
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all sensitive to the number of meshes. It is seen from the table, that the keff, in this case, 

changes only at fourth or fifth decimal place if we change the number of meshes and 

the result also agrees well (~ 20-40 pcm difference in reactivity and relative percentage 

error < 0.1%) with the reference values obtained by the codes mentioned above.  

Table- 4.4: keff values obtained by MOC code using various number of meshes with 

flat and linear source assumption for the MZA fast reactor benchmark problem and their 

comparison with reference results 
 

 

Core 

configuration 

 

Type of 

assumption 

 

No. of 

meshes 

 

keff 

calculated by 

MOC code 

Relative % error 

with respect to reference codes 

GMVP 

(keff =1.18649) 

MOCUM 

(keff =1.18654) 

 

 

Case-I 

(Reference 

core) 

 

 

Flat 

3,952 1.1755393 0.923 0.927 

754 1.1404651 3.879 3.883 

224 1.0782063 9.126 9.130 

 

Linear 

3,952 1.1860379 0.038 0.042 

754 1.1861337 0.030 0.034 

224 1.1857052 0.066 0.070 

 GMVP 

(keff =1.19489) 

MOCUM 

(keff =1.19502) 

 

 

Case-II  

(Void at 

centre) 

 

 

Flat 

3,986 1.1844367 0.875 0.886 

772 1.1521010 3.581 3.591 

218 1.0678615 10.631 10.641 

 

Linear 

3,986 1.1943943 0.041 0.052 

772 1.1944741 0.035 0.046 

218 1.1938117 0.090 0.101 

 GMVP 

(keff =1.17990) 

MOCUM 

(keff =1.17995) 

 

Case-III  

(Void at 

horizontal 

boundaries) 

 

Flat 

3,972 1.1697185 0.863 0.867 

770 1.1380998 3.543 3.547 

220 1.0662592 9.631 9.635 

 

Linear 

3,972 1.1794480 0.038 0.043 

770 1.1795412 0.030 0.035 

220 1.1788164 0.092 0.096 

 GMVP 

(keff =1.17988) 

MOCUM 

(keff =1.17995) 

 

Case-IV  

(Void at 

vertical 

boundaries) 

 

Flat 

3,960 1.1696637 0.866 0.872 

770 1.1375036 3.592 3.597 

222 1.0741929 8.957 8.963 

 

Linear 

3,960 1.1794401 0.037 0.043 

770 1.1795299 0.030 0.036 

222 1.1787885 0.093 0.098 
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Fig. 4.8: Triangulated geometry of the KNK-II benchmark problem with a non-

reentrant boundary, as generated by MOC code. The dimensions are as shown in the 

figure. Representation of various materials with different colors is as indicated in the 

legend table.  

 

Table- 4.5: keff values obtained by MOC code using various number of meshes with 

flat and linear source assumption for the KNK-II benchmark problem (with non-

reentrant boundary) and their comparison with reference results 

 

Type of 

assumption 

 

No. of 

meshes 

 

keff 

calculated by 

MOC code 

Relative % error 

with respect to reference codes 

TWOHEX 

(keff =1.49208) 

SPANDOM-TA 

(keff =1.49132) 

DIAMANT2 

(keff =1.49205) 

 

Flat 

11628 1.4836363 0.566 0.515 0.564 

1882 1.4461575 3.078 3.028 3.076 

468 1.3539351 9.259 9.212 9.257 

 

Linear 

11628 1.4916295 0.030 0.021 0.028 

1882 1.4916604 0.028 0.023 0.026 

468 1.4911083 0.065 0.014 0.063 
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4.4.4 Hexagonal cell problem with central breeding pin 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 200 parallel lines are considered for each direction. 

Convergence criteria for the neutron flux and the k∞ are chosen to be 10-5 and 10-7 

respectively. With flat as well as linear source assumptions, the k∞ is calculated for 606, 

2,298 and 4,266 triangular meshes and the results are displayed in Table- 4.6. Unlike 

previous benchmark problems, the linear source expansion method does not provide 

any improvement over the flat source method. As the number of meshes increases, the 

k∞ calculated by MOC code using both methods improves and comes closer to the 

values calculated by MG-MCNP3B [75], TEPFEM and TPTRI. The necessity of 

circular geometry correction, especially when coarse meshes are considered, was 

explained in section 4.3. The effect of the correction on the k∞ calculation can be gauged 

from Table- 4.6. Before correcting the geometry, the difference between the results of 

MOC code [using linear source representation and a small number (606) of meshes] and 

the results of the reference codes mentioned above was about 1500-2000 pcm (relative 

percentage error ~ 2.0%). After introducing the correction, the k∞ calculated by MOC 

code agrees well with the values obtained using the reference codes. It may be noted 

that our results are closer to the ones by the Monte Carlo method based code MG-

MCNP3B. 
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Table- 4.6: k∞ values obtained by MOC code using various number of meshes with flat 

and linear source assumption for the Hexagonal cell problem with central breeding pin 

and their comparison with reference results 

 

 

Case 

 

Type of 

assump

-tion 

 

No. of 

meshes 

 

k∞ 

calculated 

by MOC 

code 

Relative % error 

with respect to reference codes 

MCNP3B 

(k∞ 

=1.090803) 

TEPFEM 

(k∞ 

=1.086598) 

TRTRI 

(k∞ 

=1.085775) 

 

 

Before 

geometry 

correction  

 

Flat 

4266 1.0887730 0.186 0.200 0.276 

2298 1.0846146 0.567 0.183 0.107 

606 1.0669462 2.187 1.809 1.734 

 

Linear 

4266 1.0887318 0.190 0.196 0.272 

2298 1.0845718 0.571 0.186 0.111 

606 1.0668671 2.194 1.816 1.741 

 

 

After 

geometry 

correction  

 

Flat 

4266 1.0901448 0.060 0.326 0.402 

2298 1.0901898 0.056 0.331 0.407 

606 1.0902084 0.055 0.332 0.408 

 

Linear 

4266 1.0901043 0.064 0.323 0.399 

2298 1.0901443 0.060 0.326 0.402 

606 1.0901212 0.063 0.324 0.400 

4.4.5 CANDU-6 annular cell benchmark problem 

 

Fig. 4.9: Triangulated geometry of CANDU-6 annular cell benchmark problem, as 

generated by MOC code. The dimensions are as shown in the figure. Representation of 

various materials with different colors is as indicated in the legend table. 
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Table- 4.7: k∞ values obtained by MOC code using various number of meshes with flat 

and linear source assumption for the CANDU-6 annular cell benchmark problem and 

their comparison with reference results 

 

 

Case 

 

Type of 

assumption 

 

No. of 

meshes 

 

k∞ calculated 

by MOC 

code 

Relative % error 

with respect to reference codes 

DRAGON 

(k∞ =1.112837) 

MOCUM 

(k∞ =1.111358) 

 

 

Before 

geometry 

correction  

 

Flat 

7,270 1.1124649 0.033 0.100 

3,004 1.1213775 0.767 0.902 

2,144 1.1227134 0.887 1.022 

 

Linear 

7,270 1.1122050 0.057 0.076 

3,004 1.1206843 0.705 0.839 

2,144 1.1213791 0.768 0.902 

 

 

After 

geometry 

correction  

 

Flat 

7,270 1.1113616 0.133 3.2×10-4 

3,004 1.1153494 0.226 0.359 

2,144 1.1159864 0.283 0.416 

 

Linear 

7,270 1.1110956 0.156 0.024 

3,004 1.1146314 0.161 0.295 

2,144 1.1146761 0.165 0.299 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 1500 parallel lines are considered for each direction. The 

convergence criteria for the neutron flux and the k∞ are chosen as 10-5 and 10-7 

respectively. With flat as well as linear source assumptions, the k∞ is calculated using 

2,144, 3,004 and 7,270 triangular meshes (Fig. 4.9). Within the same square cell, the 

rather thin clad (~0.4 mm) region is present along with a large D2O moderator region 

which is 7.7 cm thick. Hence, it is very difficult to triangulate the domain with very few 

meshes unless we choose to permit some ill-shaped triangles which may introduce error 

in the calculation. The results are displayed in Table- 4.7. It appears that the linear 

source expansion method does not provide any improvement in the k∞ over the flat 

source method. As the number of meshes increases, the k∞, calculated by MOC code 

using both methods, improves and tends to the values calculated by DRAGON and 

MOCUM. However, applying the correction described in section 4.3 on account of the 
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circular geometry has a significant impact on the results. Before correcting for the 

geometry, there was a difference of about 600-900 pcm between the results of MOC 

code for 2,144 meshes and the codes mentioned above whereas after introducing the 

correction, the k∞ value agrees pretty well with the results of the reference codes, 

mentioned above, irrespective of the number of meshes.  

Table- 4.8: k∞ values obtained by MOC code using various number of meshes with flat 

and linear source assumption for the LWR benchmark problem with burnable poison 

and their comparison with reference results 

 

Type of 

assumption 

 

No. of 

meshes 

 

k∞ calculated 

by MOC 

code 

Relative % error 

with respect to reference codes 

SURCU 

(k∞ = 0.8805) 

TPTRI 

(k∞ = 0.8828) 

 

Flat 

 

8,160 0.8789742 0.173 0.433 

2,360 0.8786269 0.213 0.473 

978 0.8781078 0.272 0.532 

304 0.8751662 0.606 0.865 

 

Linear 

8,160 0.8790279 0.167 0.427 

2,360 0.8789652 0.174 0.434 

978 0.8789674 0.174 0.434 

304 0.8786380 0.211 0.471 

4.4.6 LWR benchmark problem with burnable poison 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 800 parallel lines are considered per direction. Convergence 

criteria for the neutron flux and the k∞ are chosen to be 10-5 and 10-7 respectively. For 

both flat and linear source representations, the k∞ is calculated for 8,160, 2,360, 978 and 

304 meshes. The results are displayed in Table- 4.8. With a large number of meshes, 

the k∞ values for both assumptions are close to the values calculated by SURCU and 

TPTRI. However, the results for the flat source assumption deviate significantly with a 

reduction in the number of meshes whereas for the linear source, the deviation is 
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minimal. It is encouraging to observe that the k∞ obtained using 2,360 meshes with the 

flat source assumption is equal to the k∞ value obtained with only 304 meshes with the 

linear source assumption. This proves the fact that for coarse meshes the linear source 

assumption is much better than the flat source assumption.  

4.4.7 HTTR benchmark problem 

 

Fig. 4.10: Triangulated geometry of HTTR benchmark problem, as generated by MOC 

code. The dimensions are as shown in the figure. Representation of various materials 

with different colors is as indicated in the legend table. 
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Table- 4.9: k∞ values obtained by MOC code using various number of meshes with flat 

and linear source assumption for the HTTR benchmark problem and their comparison 

with reference results 

 

 

Case 

 

Type of 

assumption 

 

No. of 

meshes 

 

k∞ calculated 

by our code 

Relative percentage error  

with respect to reference codes 

MCNP5 

(k∞ = 1.04119) 

MOCUM 

(k∞ = 1.04084) 

 

 

Before 

geometry 

correction  

 

Flat 

5027 1.0435405 0.226 0.259 

4010 1.0532733 1.161 1.195 

1764 1.0535779 1.190 1.224 

 

Linear 

5027 1.0443165 0.300 0.334 

4010 1.0548177 1.309 1.343 

1764 1.0556274 1.387 1.421 

 

 

After 

geometry 

correction  

 

Flat 

5027 1.0402014 0.095 0.061 

4010 1.0389201 0.218 0.184 

1764 1.0381983 0.287 0.254 

 

Linear 

5027 1.0409793 0.020 0.013 

4010 1.0405503 0.061 0.028 

1764 1.0403652 0.079 0.046 

 

Integration over the angular variable θ is carried out using the 6 point Gauss-

Legendre quadrature set whereas 12 uniformly spaced angles with equal weights are 

used for integration over φ. 500 parallel lines are considered per direction. Convergence 

criteria for the neutron flux and the k∞ are chosen to be 10-5 and 10-7 respectively. With 

the flat and linear source assumption, k∞ is calculated using 1,764, 4,010 and 5,027 

triangular meshes (Fig. 4.10). The results are shown in Table- 4.9. From the first part 

of the table (Case under the heading ‘Before geometry correction’), it appears that the 

linear source assumption does not provide any improvement in the k∞ over the flat 

source assumption. As the number of meshes increases, the k∞, calculated by MOC code 

with flat as well as linear source assumptions, improves and tends to the values 

calculated by MCNP5 [62] and MOCUM. However, applying the correction described 

in section 4.3 on account of the circular geometry has a significant impact on the results. 

Before correcting for the geometry, there was a relative percentage error of about 1.2-
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1.4% between the results of MOC code for 1,764 meshes and the codes mentioned 

above whereas after introducing the correction, the k∞ value agrees pretty well (relative 

percentage error < 0.3%) with the results of the reference codes, mentioned above, 

irrespective of the number of meshes. It is to be noted that the error in k∞ for flat source 

assumption, even after the geometry correction, increases from 0.1% to 0.3% as the 

meshes become coarser (i.e. number of meshes decreases) while the error, though 

increases slightly with the reduction in number of meshes, remains well below 0.1% for 

linear source assumption. Another quantity, called fission density, is calculated for all 

the fuel pins in the fuel block. Fission density fk of k-th fuel pin is defined as 

 1 1

1 1

33       1,2,.......,33

kIG
i

fg g i

g i

k G I
i

fg g i

g i

V

f k

V





 

 



 






                           (4.42) 

where Ik and I are the total number of meshes in k-th fuel pin all 33 fuel pins, 

respectively. Numerator, in the above definition, represents total fission reaction rate in 

a single fuel pin and denominator represents total fission reaction rate in all 33 fuel pins. 

This fractional quantity is then normalized to 33 i.e. the total number of fuel pins. Trend 

of the improvement of fission density distribution, similar to k∞, can be found from the 

values shown in Table- 4.9, Table- 4.10, Table- 4.11 and Table- 4.12. Fission density 

can be calculated accurately if we incorporate the correction in the simulation of circular 

geometry. After making the geometry correction, linear source assumption becomes 

more promising as compared to flat source assumption since error in the fission density, 

calculated by linear assumption, is relatively less sensitive to the size (or number) of the 

meshes as compared to flat assumption. 
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Table- 4.10: Pin wise fission density distribution obtained by MOC code using various 

number of meshes with flat source assumption for the HTTR benchmark problem and 

its comparison with reference results (Without geometry correction) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Flat source assumption 

1,764 mesh 5,027 mesh 

Pin MCNP5 
Fission 

density 

Relative % 

error 

Fission 

density 

Relative % 

error 

1 0.99862 0.99938 0.08 0.99865 0.00 

2 1.01562 1.01451 0.11 1.01511 0.05 

3 1.03231 1.02977 0.25 1.03143 0.09 

4 0.99872 0.99968 0.10 0.99878 0.01 

5 0.98256 0.98439 0.19 0.98310 0.05 

6 0.99015 0.99055 0.04 0.99024 0.01 

7 0.99967 0.99939 0.03 0.99976 0.01 

8 1.01565 1.01444 0.12 1.01509 0.06 

9 1.01566 1.01461 0.10 1.01522 0.04 

10 0.99020 0.99058 0.04 0.99031 0.01 

11 0.98733 0.98773 0.04 0.98748 0.02 

12 0.98944 0.98966 0.02 0.98964 0.02 

13 0.99013 0.99054 0.04 0.99024 0.01 

14 0.99860 0.99946 0.09 0.99861 0.00 

15 1.03227 1.02987 0.23 1.03151 0.07 

16 0.99969 0.99941 0.03 0.99986 0.02 

17 0.98936 0.98970 0.03 0.98970 0.03 

18 0.98725 0.98773 0.05 0.98750 0.03 

19 0.98252 0.98436 0.19 0.98310 0.06 

20 1.01562 1.01454 0.11 1.01522 0.04 

21 0.99016 0.99055 0.04 0.99034 0.02 

22 0.98723 0.98771 0.05 0.98754 0.03 

23 0.98937 0.98963 0.03 0.98971 0.03 

24 0.99008 0.99052 0.04 0.99032 0.02 

25 0.99856 0.99954 0.10 0.99869 0.01 

26 0.99859 0.99961 0.10 0.99873 0.01 

27 0.98252 0.98433 0.18 0.98318 0.07 

28 0.99021 0.99049 0.03 0.99035 0.01 

29 0.99971 0.99935 0.04 0.99988 0.02 

30 1.01561 1.01446 0.11 1.01522 0.04 

31 0.99862 0.99929 0.07 0.99874 0.01 

32 1.01564 1.01445 0.12 1.01524 0.04 

33 1.03234 1.02976 0.25 1.03154 0.08 
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Table- 4.11: Pin wise fission density distribution obtained by MOC code using various 

number of meshes with linear source assumption for the HTTR benchmark problem and 

their comparison with reference results (Without geometry correction) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Linear source assumption 

1,764 mesh 5,027 mesh 

Pin MCNP5 
Fission 

density 

Relative % 

error 

Fission 

density 

Relative % 

error 

1 0.99862 0.99978 0.12 0.99868 0.01 

2 1.01562 1.01482 0.08 1.01523 0.04 

3 1.03231 1.03053 0.17 1.03163 0.07 

4 0.99872 0.99978 0.11 0.99873 0.00 

5 0.98256 0.98393 0.14 0.98296 0.04 

6 0.99015 0.99027 0.01 0.99014 0.00 

7 0.99967 0.99935 0.03 0.99974 0.01 

8 1.01565 1.01480 0.08 1.01523 0.04 

9 1.01566 1.01485 0.08 1.01530 0.04 

10 0.99020 0.99029 0.01 0.99018 0.00 

11 0.98733 0.98731 0.00 0.98734 0.00 

12 0.98944 0.98933 0.01 0.98953 0.01 

13 0.99013 0.99025 0.01 0.99016 0.00 

14 0.99860 0.99972 0.11 0.99869 0.01 

15 1.03227 1.03056 0.17 1.03173 0.05 

16 0.99969 0.99938 0.03 0.99982 0.01 

17 0.98936 0.98934 0.00 0.98957 0.02 

18 0.98725 0.98729 0.00 0.98736 0.01 

19 0.98252 0.98390 0.14 0.98301 0.05 

20 1.01562 1.01483 0.08 1.01535 0.03 

21 0.99016 0.99027 0.01 0.99025 0.01 

22 0.98723 0.98730 0.01 0.98741 0.02 

23 0.98937 0.98931 0.01 0.98960 0.02 

24 0.99008 0.99024 0.02 0.99023 0.02 

25 0.99856 0.99973 0.12 0.99875 0.02 

26 0.99859 0.99973 0.11 0.99882 0.02 

27 0.98252 0.98390 0.14 0.98309 0.06 

28 0.99021 0.99024 0.00 0.99027 0.01 

29 0.99971 0.99930 0.04 0.99986 0.02 

30 1.01561 1.01475 0.08 1.01535 0.03 

31 0.99862 0.99970 0.11 0.99883 0.02 

32 1.01564 1.01476 0.09 1.01538 0.03 

33 1.03234 1.03046 0.18 1.03178 0.05 
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Table- 4.12: Pin wise fission density distribution obtained by MOC code using various 

number of meshes with flat source assumption for the HTTR benchmark problem and 

their comparison with reference results (With geometry correction) 

  

Flat source assumption 

1,764 mesh 5,027 mesh 

Pin MCNP5 
Fission 

density 

Relative % 

error 

Fission 

density 

Relative % 

error 

1 0.99862 0.99843 0.02 0.99867 0.01 

2 1.01562 1.01511 0.05 1.01534 0.03 

3 1.03231 1.03113 0.11 1.03186 0.04 

4 0.99872 0.99879 0.01 0.99874 0.00 

5 0.98256 0.98331 0.08 0.98292 0.04 

6 0.99015 0.99040 0.03 0.99017 0.00 

7 0.99967 0.99977 0.01 0.99981 0.01 

8 1.01565 1.01504 0.06 1.01533 0.03 

9 1.01566 1.01524 0.04 1.01537 0.03 

10 0.99020 0.99043 0.02 0.99019 0.00 

11 0.98733 0.98769 0.04 0.98735 0.00 

12 0.98944 0.98981 0.04 0.98956 0.01 

13 0.99013 0.99038 0.03 0.99017 0.00 

14 0.99860 0.99854 0.01 0.99864 0.00 

15 1.03227 1.03126 0.10 1.03185 0.04 

16 0.99969 0.99981 0.01 0.99982 0.01 

17 0.98936 0.98985 0.05 0.98956 0.02 

18 0.98725 0.98769 0.04 0.98737 0.01 

19 0.98252 0.98327 0.08 0.98294 0.04 

20 1.01562 1.01518 0.04 1.01534 0.03 

21 0.99016 0.99042 0.03 0.99018 0.00 

22 0.98723 0.98769 0.05 0.98738 0.02 

23 0.98937 0.98979 0.04 0.98959 0.02 

24 0.99008 0.99038 0.03 0.99022 0.01 

25 0.99856 0.99862 0.01 0.99870 0.01 

26 0.99859 0.99873 0.01 0.99862 0.00 

27 0.98252 0.98328 0.08 0.98293 0.04 

28 0.99021 0.99037 0.02 0.99021 0.00 

29 0.99971 0.99977 0.01 0.99986 0.02 

30 1.01561 1.01510 0.05 1.01540 0.02 

31 0.99862 0.99841 0.02 0.99867 0.01 

32 1.01564 1.01511 0.05 1.01538 0.03 

33 1.03234 1.03118 0.11 1.03188 0.04 
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Table- 4.13: Pin wise fission density distribution obtained by MOC code using various 

number of meshes with flat and linear source assumption for the HTTR benchmark 

problem and their comparison with reference results (With geometry correction) 

  

Linear source assumption 

1,764 mesh 5,027 mesh 

Pin MCNP5 
Fission 

density 

Relative % 

error 

Fission 

density 

Relative % 

error 

1 0.99862 0.99885 0.02 0.99869 0.01 

2 1.01562 1.01543 0.02 1.01545 0.02 

3 1.03231 1.03192 0.04 1.03206 0.02 

4 0.99872 0.99889 0.02 0.99870 0.00 

5 0.98256 0.98282 0.03 0.98278 0.02 

6 0.99015 0.99011 0.00 0.99007 0.01 

7 0.99967 0.99973 0.01 0.99979 0.01 

8 1.01565 1.01541 0.02 1.01547 0.02 

9 1.01566 1.01548 0.02 1.01546 0.02 

10 0.99020 0.99013 0.01 0.99007 0.01 

11 0.98733 0.98727 0.01 0.98721 0.01 

12 0.98944 0.98947 0.00 0.98944 0.00 

13 0.99013 0.99009 0.00 0.99009 0.00 

14 0.99860 0.99880 0.02 0.99873 0.01 

15 1.03227 1.03196 0.03 1.03207 0.02 

16 0.99969 0.99977 0.01 0.99979 0.01 

17 0.98936 0.98948 0.01 0.98944 0.01 

18 0.98725 0.98725 0.00 0.98724 0.00 

19 0.98252 0.98278 0.03 0.98284 0.03 

20 1.01562 1.01547 0.01 1.01547 0.01 

21 0.99016 0.99012 0.00 0.99009 0.01 

22 0.98723 0.98726 0.00 0.98724 0.00 

23 0.98937 0.98946 0.01 0.98948 0.01 

24 0.99008 0.99009 0.00 0.99013 0.01 

25 0.99856 0.99883 0.03 0.99876 0.02 

26 0.99859 0.99886 0.03 0.99871 0.01 

27 0.98252 0.98281 0.03 0.98284 0.03 

28 0.99021 0.99011 0.01 0.99013 0.01 

29 0.99971 0.99973 0.00 0.99984 0.01 

30 1.01561 1.01540 0.02 1.01553 0.01 

31 0.99862 0.99884 0.02 0.99876 0.01 

32 1.01564 1.01544 0.02 1.01552 0.01 

33 1.03234 1.03191 0.04 1.03213 0.02 
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4.5 Results and discussion 

The results presented above show that, in general, a considerably smaller 

number of meshes is required with the linear source assumption to match the accuracy 

achieved with the flat source assumption. In order to compare the computation time 

[recorded for only the inner-outer iteration on a 64 bit machine with intel i5 processor 

(clock speed 2.5 GHz and memory (RAM) 12 GB)] required for both the assumptions 

to achieve the same level of accuracy, the KNK-II benchmark problem is taken up as a 

test case. As evident from Table- 4.14, for a fixed number of meshes in the benchmark 

problem, linear source assumption takes about 2-3 times of the computation time taken 

by the flat source assumption due to additional calculation of higher order source 

moments and expansion coefficients. However, the computation time required for the 

flat source assumption (with 11,628 meshes) is increased by a factor of 7 to reach an 

accuracy level close to that achieved by the linear source assumption with only 468 

meshes. From this comparison, it can be concluded that the linear source representation 

reduces the computation time significantly without sacrificing the accuracy. 

Table- 4.14: Comparison of computation time with flat and linear source assumption 

for the KNK-II benchmark problem (with non-reentrant boundary) 

No. of 

meshes 

keff calculated by MOC code 

with 
Computation time (sec) for 

Flat source 

assumption 

Linear source 

assumption 

Flat source 

assumption 

Linear source 

assumption 

11628 1.4836363 1.4916295 1456 3691 

1882 1.4461575 1.4916604 510 1459 

468 1.3539351 1.4911083 209 586 

 

The gradient of the flux across the problem domain is less in problems with 

reflective boundary conditions (in section 4.4.4, 4.4.5, 4.4.6 and 4.4.7). Therefore, for 

such problems, there is not much difference in the results obtained using flat and linear 

representations of the source. Problems with vacuum boundary conditions (in section 
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4.4.1, 4.4.2 and 4.4.3) have much larger flux gradient across the geometry. Hence, the 

advantage of using the linear source representation is more manifest in these cases. 

Apart from the boundary condition, the presence of high neutron absorbing material 

(like B, Gd, Cd etc.) in the geometry influences the neutron flux a lot. This is evident in 

the HTTR benchmark problem. In this problem, in spite of the reflective boundary 

condition we find improvement in the result, using the linear source assumption because 

the burnable poison introduces a relatively larger flux gradient. Result of LWR 

benchmark problem with burnable poison also shows little improvement due to the use 

of the linear source assumption. 

Finally, it is seen that in problems involving cylindrical elements (having 

circular projections as in cases of Hexagonal cell problem with central breeding pin, 

CANDU-6 annular cell problem and HTTR benchmark problem), the use of coarse 

meshes with linear representation of the source must also be accompanied by a 

modification of the triangulation process. This modified procedure brings the meshes 

in conformity with the circular elements of the geometry. As far as computation time is 

concerned, the modification needs to be done once for all and that too before starting 

the iterative calculation. Hence, the little increase in computation would not affect the 

advantage of the linear source representation significantly.     
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CHAPTER 5 : Krylov Acceleration Technique in 

Method of Characteristics 

Krylov Acceleration Technique in Method of 

Characteristics 

_________________________________________ 

5.1 Introduction 

In previous chapters, we have discussed about a computer code based on 

Method of Characteristics (MOC) for solving the neutron transport equation for mainly 

assembly level lattice calculation with reflective and periodic boundary conditions and 

to some extent core level calculation with vacuum boundary condition. Performance of 

the MOC code has also been demonstrated with flat and linear source approximations. 

Since, neutron transport calculation involves extensive computation, an attempt is made 

to develop an efficient numerical recipe, which will expedite the solution of transport 

equation and reduce the computation time. At first, conventional MOC solution of 

neutron transport equation is transformed into a matrix equation to apply Krylov 

subspace iteration method for accelerating the solution. It is found that forming the 

matrix equation explicitly by storing its non-zero elements, even in the most 

sophisticated and compact formats, requires extremely large computer memory. Hence, 

an alternate way to apply the Krylov iteration is demonstrated by incorporating the 

effect of the matrix-based approach into the solution without storing the matrix 

elements. This computationally viable and novel acceleration technique is used in 

combination with the existing formalism of flat as well as linear source approximation 

to solve a number of benchmark problems. The results obtained show significant 



Chapter 5: Krylov Acceleration Technique in Method of Characteristics 

_____________________________________________________________________ 

144 | P a g e  

 

improvement in terms of faster convergence of solution over the conventional iteration 

(Gauss-Seidel like iteration, as discussed in section 3.2) without compromising the 

accuracy.  

The present chapter is organized in the following way. At first, the linear algebra 

based formalism of MOC, which makes use of the Krylov subspace iteration method, 

is discussed for various boundary conditions. Thereafter, limitation of the formalism 

and its solution are described in brief. In order to demonstrate the advantage of Krylov 

iteration over the inner-outer one, few benchmark problems are solved and 

performances of these two iterative methods are compared while the accuracy of results 

are confirmed comparing with that available in literature. Scope of coupling between 

the Krylov iteration and the linear source approximation, though limited, is also 

explored in the results section.  

5.2 Mathematical formulation of Krylov Subspace Iteration in MOC 

In linear algebra, Krylov subspace of order m is the linear subspace spanned by 

the repeated application of a square matrix A of dimension (n × n) on a vector r0 of 

dimension n. Mathematically, this subspace is represented by κm(A, r0) = Span {r0, Ar0, 

A2r0, ……., Am-1r0}, where m is the order of the subspace. In order to solve a matrix 

equation A.x=b in an efficient manner, we form a Krylov subspace in which solution x0 

of the matrix equation lies. This subspace is constructed by m number of mutually 

conjugate vectors which are searched in an iterative manner. Starting from an initial 

guess of the solution, it is required to calculate some metric in each iteration step to 

know about the proximity of the solution. In present case, the metric is rk = (b – A.xk), 

which can be looked into as the residue at k-th iteration step. The conjugate vectors are 

obtained by repeated application of A on this metric rk. Finally, the solution x0 of the 
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matrix equation, being one of the members of the subspace, is expressed as a linear 

combination of the conjugate vectors. Iterative methods, which work in this way, are 

called Krylov subspace iteration methods. These methods are mainly used to solve large 

system of linear equations for which direct methods are found to be computationally 

expensive. Before applying the Krylov subspace iteration to the MOC, it is necessary 

to form a matrix equation similar to A.x=b out of the equations (Eq.3.6-3.11) mentioned 

in Chapter 3. 

In Eq.3.7, 
out

i , j ,g , i.e. outgoing angular flux of mesh i along a characteristic in 

direction j, is replaced with the expression of Eq.3.6. 

, , , ,

,
, , , ,

, , , , ,

1 1
1

t t
i g i j i g i jt t

i gin
i j g i j g t t t

i g i j i g i g i j

Qe e

t t

       
       

       
   

                      (5.1) 

Further, in Eq.3.8, i , j ,n,g , i.e. average angular flux for n-th characteristic along 

direction j in mesh i, is replaced with the above expression. 
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 




          (5.2) 

Putting Eq.5.2 in Eq.3.9, we get the expression of scalar flux. 
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 


             (5.3) 

In the above equation, , , ,

in

i j n g is the incoming angular flux of mesh i along n-th 

characteristic in direction j. From angular flux continuity condition, it can be equated 

with the outgoing angular flux of an adjacent mesh, which is succeeded by mesh i, if 
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we march along the direction of characteristic. As shown in Eq.3.6, outgoing angular 

flux of a mesh depends on the incoming angular flux and the source in the mesh. Thus, 

it is always possible to relate the incoming angular flux of a mesh with that of a mesh 

on the same characteristic line at the external boundary. Let us consider a mesh i lying 

on the n-th characteristic in the direction j. If we march along the direction of the 

characteristic from the external boundary, where the characteristic starts, to the mesh i, 

then we will encounter a number of meshes which can be tagged as bsj,n (or simply bs, 

which indicates the mesh at the boundary), …… i3-, i2- and i1- (where the subscript “1-” 

indicates that the mesh follows i-th mesh on the same characteristic, as shown in Fig. 

5.1). From Eq.3.6, we can write following equation for i1- mesh and relate its outgoing 

angular flux with the incoming angular flux of mesh i. 

 11 1 1 1

1 1

1

1
t t
i ,g i , j ,n i ,g i , j ,nt ti ,gin out in

i , j ,n ,g i , j ,n ,g i , j ,n ,g t

i ,g

Q
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 



   
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
                   (5.4) 

Similarly, for i2- mesh, 

 22 2 2 2

1 2 2

2

1
t t
i ,g i , j ,n i ,g i , j ,nt ti ,gin out in
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   
      


                     (5.5) 

Replacing 
1

in

i , j ,n ,g
 in Eq.5.5 by Eq.5.4, we get 
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               (5.6) 

If we keep on replacing the incoming angular fluxes of meshes i2-, i3-,……. and bs, then 

we will get the following equation, written in a compact form. 
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     
1

1 1 11
t
l ,g l , j ,n

i
tl ,gin in

i , j ,n ,g bs , j ,n ,g j ,n,g j ,n,gt
l bs l ,g

Q
E bs,i e E l ,i


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

    


              (5.7) 

 

Fig. 5.1: Illustration of the mesh indices used in the derivation of Eq.5.7. 

where the function Ej,n,g is defined as  

2

1

1 2

m
t
m ,g m , j ,n

m m

t

j ,n ,gE m ,m e 

  
 if m1 lies behind m2 or 

m1 = m2 and = 1 otherwise. It is to be noted that i, in the above expression, could be any 

mesh lying on the n-th characteristic in the direction j (excluding bs). Replacing , , ,

in

i j n g

in Eq.5.3 by Eq.5.7 and after doing some mathematical rearrangement, we get 
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 (5.8) 

where , , , , , ,

, , , , , , , , ,
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, 1 ,  1
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. 

This is the general form of the scalar flux equation used for Krylov iteration. If 

there are total M number of meshes and G number of energy groups, then there will be 

total M×G (=N1, say) number of such equations. This set of equations is modified 

depending on the boundary condition applied at the external boundary of the problem 

domain.  

5.2.1 Vacuum boundary condition 

In case of vacuum boundary condition, all the incoming angular fluxes at the 

boundary ( , , ,

in

bs j n g ) are zero and Eq.5.8 takes following form. 
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   (5.9) 

This is the only equation required to calculate scalar flux and multiplication factor for 

vacuum boundary condition. 

5.2.2 Reflective boundary condition 

Unlike vacuum boundary condition, , , ,

in

bs j n g  is non zero, which motivates us to 

construct additional equations to close the set of equations (Eq.5.8). For doing so, 

, , ,

in

bs j n g  is related with the outgoing angular flux, which is incident on the same 



Chapter 5: Krylov Acceleration Technique in Method of Characteristics 

_____________________________________________________________________ 

149 | P a g e  

 

boundary, but from a different direction and reflected in the direction of incoming 

angular flux.  

Starting with Eq.5.7, we can write outgoing angular flux of a mesh “be” which 

is at the boundary where the n-th characteristic in direction j ends (Fig. 5.1). 

     11
t
l ,g l , j ,n

be
tl ,gout in

be, j ,n,g bs , j ,n ,g j ,n,g j ,n,gt
l bs l ,g

Q
E bs,be e E l ,be
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



    


          (5.10) 

 

Fig. 5.2: Illustration of the use of reflective boundary condition in Method of 

Characteristic (MOC) based Neutron Transport Code. 

 

Simulation of reflective boundary condition is illustrated in Fig. 5.2, which shows two 

consecutive characteristics in direction j, namely n and n+ (+indicates that it is next or 

previous to n-th characteristic) are incident at A and B points and njr-th characteristic 

(since the index “n” is not necessarily same for the incident and reflected characteristic 

in the respective directions) in the reflected direction jr starts from C point. If AC = x 
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and AB = d, then we can write the following expression of the outgoing angular flux at 

point C using linear interpolation scheme between A and B points. 

 1out out out

C , j ,g be, j ,n ,g be, j ,n ,g                                       (5.11) 

where β = x/d. , ,

out

C j g is related with the incoming angular flux along the njr-th 

characteristic in the direction jr through following boundary condition. 

r jr

in out

bs , j ,n ,g b C , j ,g                                              (5.12) 

where b is the fraction of outgoing angular flux reflected in the direction of incoming 

angular flux. This is 1.0 for reflective boundary condition and <1.0 for albedo boundary 

condition. Using Eq.5.10 and 5.11, Eq.5.12 can be rewritten as 

     

     1 1

1

1

r jr

in in in

bs , j ,n ,g b j ,n ,g bs , j ,n ,g b j ,n ,g bs , j ,n ,g

be be
l , j ,n ,g l , j ,n ,g

b j ,n ,g l ,g b j ,n ,g l ,gt t
l bs l bsl ,g l ,g

E bs,be E bs,be

R R
E l ,be Q E l ,be Q

   

   

 



  

 

           

  
 

 
    (5.13) 

If there are Nθ number of θ directions, Nφ number of φ directions and Nl number of 

parallel characteristics in each (θ, φ) direction, then there will be total Nθ×Nφ×Nl×G 

(=N2, say) number of such equations. Eq.5.8 and 5.13 are combined together to form 

the closed set of equations for reflective boundary condition. 

5.3 Numerical recipe for Krylov subspace iteration 

 It is now possible to club the set of equations, i.e. Eq.5.9 for vacuum boundary; 

Eq.5.8 and 5.13 for reflective boundary, to form following matrix equation. 

     
3 3 3 31 1N N N N

A q
  

                                       (5.14) 
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where N3=N1+N2. For reflective boundary condition, 
1

2

1

1j

i ,g N

in

bs , j ,n ,g
N








    

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, a column 

matrix containing scalar fluxes of all energy groups in all meshes and angular fluxes of 

all energy groups along all characteristics incoming to all boundary meshes. For vacuum 

boundary condition, incoming angular fluxes are zero. So, 
1 1i ,g N

 


    . Before 

forming the above matrix equation, scattering sources on the RHS of respective 

equations are transferred to LHS. Hence, the column matrix “q” contains only the 

fission sources. “A” is a sparse, non-symmetric matrix constituted by the coefficients 

of 
i ,g and 

j

in

bs , j ,n ,g . Its sparsity mainly depends on the interconnection between the 

meshes through the common characteristics they are sharing. 

 

Fig. 5.3: Flowchart of MOC solution technique of neutron transport equation with 

Krylov iteration. 

Biconjugate gradient or BICG is one kind of Krylov subspace iteration method, 

which is used for the numerical solution of non-symmetric linear system like Eq.5.14. 
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However, it suffers from the stability of convergence issue. Hence, Biconjugate 

Gradient stabilized method (BiCGSTAB), a variant of BICG, is selected to solve the 

Eq.5.14 [77]. As shown in Fig. 5.3, there will be nested loops of outer and BICG 

iterations. Before starting the iterations, ψ is initialized to 1.0 or any arbitrary value. 

The outer iteration starts by calculating q based on ψ. Once q is fixed, Eq.5.14 is solved 

by BiCGSTAB in an iterative manner. Each of these iterations is termed here as BICG 

iteration (details are shown in Fig. 5.3), which is terminated when the solution 

converges within a specified error limit or the number of BICG iterations per outer 

iteration reaches a specified upper limit, whichever is earlier. Reason behind the choice 

of such criterion has already been explained in Chapter 3. With the converged flux 

distribution obtained as the solution, multiplication factor or k is estimated. If this k 

value converges within a specified limit, then the outer iteration will be terminated. 

Otherwise, a new outer iteration will be started with a better estimate of q calculated 

based on latest ψ. This iteration technique is computationally faster than the 

conventional iteration. However, explicit formation of the matrix equation (Eq.5.14) 

may not be needed since this requires a lot of memory for a realistic problem even if we 

store the matrix elements in Compressed Sparse Row (CSR) format [53]. This motivates 

us to work on a recipe which will take the effect of matrix A on any vector (like ψ here) 

by employing the mesh-angle sweep, instead of forming the matrix explicitly [52][78]. 

This recipe, to the best of our knowledge, is used for the first time in Krylov accelerated 

MOC. 

In Eq.5.14, N1 number of scalar flux equations and N2 number of angular flux 

equations are combined together. The scalar flux equation i.e. Eq.5.8 is derived from 

the definition given in Eq.3.9. After transferring the scattering sources from RHS to 
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LHS of Eq.5.8, the final matrix equation Aψ=q is constructed. The way scalar flux 

equation is converted into a matrix form suggests that the multiplication of the matrix 

A with the vector ψ is identical to the calculation of following quantity for all the meshes 

and energy groups. 

   
3

1 1

1

, ,

1

N

i j gmn n m jm N m N
n jm N

A A w  
 

 

 
    
 
                   (5.15) 

where “m” value depends on the storage location of ϕi,g in ψ. , ,i j g  is the same quantity 

as defined in Eq.3.8 except the fact that the total source Qi,g, while calculating , , ,i j n g

and out

i , j ,n ,g , does not include the fission source. Hence, 

s in out

i ,g i , j ,n ,g i , j ,n ,g
i , j ,g

t t

i ,g i ,g i , j ,n

q

t

 
  

  
                                       (5.16) 

 1
t t
i ,g i , j ,n i ,g i , j ,n

s

t ti ,gout in

i , j ,n ,g i , j ,n ,g t

i ,g

q
e e
   

    


                        (5.17) 

Using Eq.5.17, out

i , j ,n ,g  is calculated for all the meshes sitting on characteristic. This 

calculation starts from the boundary mesh “bs” (Fig. 5.1), where value of in

i , j ,n ,g  

depends on the boundary condition. For vacuum boundary, it is 0 while for reflective 

boundary, it is ≠ 0. The non-zero value corresponds to in

bs , j ,n ,g  stored at a location “m’” 

in ψ.  
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     
1

1     Reflective
t t
bs ,g bs , j ,n bs ,g bs , j ,n

s

t tbs ,gout

bs , j ,n ,g m' tm' N
bs ,g

q
e e
   


   


         (5.18) 

   1                                       Vacuum
t
bs ,g bs , j ,n

s

tbs ,gout

bs , j ,n ,g t

bs ,g

q
e
 

  


         (5.19) 

The calculation of out

i , j ,n ,g  , mentioned above, ends at another boundary mesh “be” (Fig. 

5.1). For reflective boundary condition, this outgoing angular flux can be related to 

incoming angular flux in some other direction (Eq.5.11 and 5.12). The difference 

between in

bs , j ,n ,g stored in ψ and the calculated one gives the multiplication of the matrix 

A with the vector ψ for m>N1. 

   
3

1 1

1

, , ,

1

N
in

mn n m bs j n gm N m N
n m N

A A  
 

 

 
   
 
                      (5.20) 

where “m” stands for the storage location of in

bs , j ,n ,g . Other than ψ, the matrix A is 

multiplied with vectors p and s, as shown in Fig. 5.3. In those cases, the recipe of matrix 

multiplication will remain same as above (Eq.5.15-5.20). In stabilized BICG iteration, 

residue “r” is calculated as the difference between q and Aψ. Since, calculating q again 

and again is time consuming, it is better to calculate the residue directly by modifying 

the above recipe. Previously, fission sources were not accounted for the calculation of 

, , ,i j n g and out

i , j ,n ,g . In the residue calculation, Aψ is transferred from LHS to RHS. 

Therefore, the total source Qi,g, in present case, includes both fission and scattering 

sources and Eq.5.15 and 5.20 are modified as 
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   
3

1 1

1

, ,

1

N

i j gmn n m jm N m N
n jm N

A A w  
 

 

 
     
 
                     (5.21) 

   
3

1 1

1

, , ,

1

N
in

mn n m bs j n gm N m N
n m N

A A  
 

 

 
    
 
                          (5.22) 

respectively. 

5.4 Verification and benchmarking of the code 

In order to validate the MOC based neutron transport code accelerated by 

Krylov iteration technique for calculating multiplication factor (k) and neutron flux (or 

power), a number of benchmark problems in square as well as hexagonal geometries 

are analyzed. In this section, an attempt is made to establish the efficiency of Krylov 

iteration technique over the conventional iteration technique. We have already 

introduced the concept of linear source, which expands the neutron source within a 

mesh up to linear term. This expansion helps to divide the problem domain into coarse 

meshes and thereby reduces the computation time without compromising the accuracy. 

However, advantage of linear source is more manifest in case of large flux gradient 

observed in problems with vacuum boundary. Hence, it is tried to combine Krylov 

iteration with linear source assumption and apply the same to reduce the computation 

time to great extent at least for problems with vacuum boundary condition. The 

computation time, reported below, is recorded only for the iterative solution on a 64 bit 

machine with intel i5 processor (clock speed 2.5 GHz and memory (RAM) 12 GB). 

Convergence criteria for the neutron flux and the multiplication factor are chosen to be 

10-5 and 10-7 respectively. 
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5.4.1 MZA fast reactor benchmark problem 

Assuming flat source within a mesh, the reference core is divided into 19,782 

meshes and keff is calculated using both conventional and Krylov based inner-outer 

iteration. As explained in Chapter 3, number of inner iterations per outer iteration 

influences computation time, which is studied for this problem. Computation time is 

nothing but the total number of outer iterations, multiplied by the average time taken by 

single outer iteration. If we consider very few number of inner per outer iteration, then 

the time taken by an outer iteration will be less, but the total number of outer iterations 

to be required to reach the convergence criterion will be more. Again, more number of 

inner per outer iteration makes total number of outer iterations less, but at the expense 

of more computation time for single outer iteration. Hence, in order to minimize the 

total computation time, the number of inner per outer iteration is to be optimized, as 

demonstrated in Table- 5.1. The optimization study shows that the computation time 

decreases with the increase in number of inner per outer iteration from 1 to 20 after 

which the time increases. In the study, similar variation of computation time with 

number of BICG iteration per outer iteration is also found. In case of conventional 

iteration, minimum computation time is obtained for 20 inner per outer iteration and the 

same, in case of Krylov iteration, is obtained for 2 BICG per outer iteration. As far as 

the computation time is concerned, Krylov iteration takes only 370 sec while 

conventional iteration takes 1243 sec to produce almost identical keff. Fig. 5.4 shows the 

convergence of flux (εϕ
2) and multiplication factor (εk

3) with iteration step as well as 

computation time in both the iteration techniques. This computation time is reduced 

                                                 
2

1n n    , n is index for outer iteration 

3
1k n nk k   , n is index for outer iteration 
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further by a factor of 2 (conventional)/3 (Krylov) by assuming the source in a mesh to 

be linear and thereby reducing the number of meshes from 19,782 to 800. In Table- 5.2, 

keff values calculated by MOC code are compared with the values calculated by GMVP 

[76] and MOCUM [22]. The comparison shows that the values calculated for linear 

source assumption are closer (Flat source assumption: ∆ρmax
4 ~ 6.5 mk, Linear source 

assumption: ∆ρmax ~ 0.9 mk) to the values calculated by GMVP and MOCUM. ∆ρmax is 

further reduced to 0.3 mk by increasing the number of meshes from 800 to 3,100 with 

linear source assumption. However, such improvement in accuracy comes at the cost of 

increased computation time. Considering the fact that the same accuracy in flat source 

assumption will be possible if we take number of meshes more than what we have 

considered and therefore, the computation time will be much more, it can be said that 

the performance of linear assumption is encouraging. Similar trend has been found in 

rest three core configurations and all the results are given in Table- 5.2. 

                                                 

4

our other 
code code

1 1
max

eff eff

max

k k


 
             
     
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Fig. 5.4: Convergence of neutron flux (εϕ) and multiplication factor (εk) of MZA fast 

reactor benchmark problem with iteration step and computation time in Krylov iteration 

(at top) and conventional iteration (at bottom). 

 

Table- 5.1: Optimization of iteration scheme for obtaining minimum computation time 

in conventional and Krylov iteration for MZA fast reactor benchmark problem 

Type of 

iteration 
Iteration scheme  

Computation  

time (s) 

No of outer 

iteration 

keff calculated 

by MOC code 

 
Conventional 

 

1 inner/outer 1524 506 1.1774788 

5 inner/outer 1323 101 1.1774779 

15 inner/outer 1247 34 1.1774773 

20 inner/outer 1243 27 1.1774775 

30 inner/outer 1325 20 1.1774780 

Krylov 

1 BICG/outer 436 58 1.1774789 

2 BICG/outer 370 29 1.1774789 

3 BICG/outer 392 23 1.1774789 
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5.4.2 KNK-II benchmark problem with non-reentrant boundary 

 

Fig. 5.5: Convergence of neutron flux (εϕ) and multiplication factor (εk) of KNK-II 

benchmark problem with iteration step and computation time in Krylov iteration (at top) 

and conventional iteration (at bottom). 

With flat and linear source assumption, keff is calculated using both conventional 

and Krylov iteration. For flat source assumption, the entire hexagonal core is divided 

into 11,622 meshes so that the size of mesh becomes small enough for the assumption 

to be hold. In order to achieve same order of accuracy in keff, conventional iteration 

takes 1034 sec with 5 inner per outer iteration scheme while Krylov iteration takes only 

388 sec with 2 BICG per outer iteration scheme. Like previous problem, iteration 

schemes, quoted above, are optimized to get the minimum computation time. Trend of 

flux and multiplication factor convergence with iteration step and computation time in 

both the iteration techniques are shown in Fig. 5.5. Further it is attempted to reduce the 
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time by taking linear source assumption which makes possible to consider only 468 

meshes i.e. lesser than the earlier assumption without compromising the accuracy. With 

this assumption too, Krylov iteration takes lesser time than the conventional iteration to 

arrive at the converged keff values. To be precise, conventional iteration takes 604 sec 

with 5 inner per outer iteration scheme while Krylov iteration takes 168 sec with 2 BICG 

per outer iteration scheme. keff values calculated by MOC code are compared with the 

values calculated by TWOHEX [68], SPANDOM-TA [67] and DIAMANT2 [69]. For 

flat source assumption, Krylov iteration takes 2.7 times lesser computation time than 

the conventional iteration. This computation time is reduced further by a factor of 2.3 

due to Krylov iteration for linear source assumption. It is clear from the comparison that 

the values calculated for linear source assumption are closer (Flat source assumption: 

∆ρmax ~ 3.8 mk, Linear source assumption: ∆ρmax~ 0.4 mk) to the values calculated by 

the above mentioned codes. The values calculated for flat source assumption would 

have been closer to the values calculated by other codes if more number of meshes are 

considered. However, this will increase the computation time further and hence, is not 

shown here. keff values calculated for all the cases are summarized in Table- 5.3. 
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5.4.3 IAEA benchmark problem 

 

Fig. 5.6: Convergence of neutron flux (εϕ) and multiplication factor (εk) of IAEA 

benchmark problem with iteration step and computation time in Krylov iteration (at top) 

and conventional iteration (at bottom) 

The core is divided into 22,294 meshes in order to apply flat source assumption. 

Both conventional and Krylov iteration techniques are used to calculate keff with this 

assumption. After an optimization study, it is found that minimum computation time is 

achieved in case of 1 inner per outer iteration scheme for conventional iteration and 2 

BICG per outer iteration scheme for Krylov iteration. As shown in the profile of flux 

and multiplication factor convergence with iteration step and computation time in Fig. 

5.6, it is evident that conventional iteration takes 471 sec and Krylov iteration takes 389 
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sec to reach the converged keff value. So, there is a reduction in computation time by a 

factor of 1.2. To reduce the computation time further, linear source assumption is 

attempted. In this case, the core is divided into only 1,854 meshes, which is lesser than 

the number of meshes used by flat source assumption. With this assumption, 

conventional iteration takes 299 sec with 1 inner per outer iteration scheme while 

Krylov iteration takes 195 sec with 2 BICG per outer iteration scheme. As compared to 

Krylov iteration in flat source assumption, computation time is now reduced by a factor 

of 2 for Krylov iteration in linear source assumption. In Table- 5.4, keff values calculated 

by MOC code are compared with the values available in literature [SURCU [25], 

TEPFEM [74] and TPTRI [30]]. It is clear from the comparison that the values 

calculated for linear source assumption are closer (Flat source assumption: ∆ρmax ~ 3.4 

mk, Linear source assumption: ∆ρmax ~ 1.5 mk) to the literature values. Error in keff 

value for linear source assumption, though higher than the earlier problems, is 

acceptable since there is a difference of 1 mk amongst the values reported in literature. 

It is necessary to verify whether the reduction in computation time, due to the use of 

Krylov iteration, has an effect on the accuracy of local parameter like neutron flux. 

Therefore, region averaged scalar flux is calculated for all five regions of the problem. 

Normalization criterion, given in Eq.4.41, is used to scale the one group flux. In Table- 

5.5, the scaled flux values are compared with the values calculated by TEPFEM and 

TPTRI. The comparison clearly indicates that Krylov iteration is as accurate as 

conventional iteration in both flat as well as linear source assumption. 
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5.4.4 BWR benchmark problem 

In case of reflective boundary condition, flux variation across the problem 

domain is less as compared to that in vacuum boundary condition. Hence, k∞ of the 

BWR lattice is calculated with flat source assumption only. For the said purpose, the 

lattice is divided into 2,600 meshes. Both conventional and Krylov iteration techniques 

are used to calculate k∞. As shown in Table- 5.6 and Fig. 5.7, conventional iteration 

takes 50 sec with 15 inner per outer iteration scheme while Krylov iteration takes 23 

sec with 6 BICG per outer iteration scheme, which suggests 2.2 times reduction in 

computation time. k∞ values calculated by MOC code are in good agreement with the 

values calculated by three codes SURCU, TEPFEM and TPTRI.  

 

Fig. 5.7: Convergence of neutron flux (εϕ) and multiplication factor (εk) of BWR 

benchmark problem with iteration step and computation time in Krylov iteration (at top) 

and conventional iteration (at bottom) 
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5.4.5 LWR benchmark problem with burnable poison 

 

Fig. 5.8: Convergence of neutron flux (εϕ) and multiplication factor (εk) of LWR 

benchmark problem with iteration step and computation time in Krylov iteration (at top) 

and conventional iteration (at bottom). 

With flat source assumption, k∞ is calculated using both conventional and 

Krylov iteration. In order to apply the flat source assumption, the LWR lattice is divided 

into 8,160 meshes. Almost identical k∞ is obtained in 151 sec for conventional iteration 

with 15 inner per outer iteration scheme and in 76 sec for Krylov iteration with 5 BICG 

per outer iteration scheme. The respective profiles of flux and multiplication factor 

convergence are shown in Fig. 5.8. In Table- 5.7, k∞ values calculated by MOC code 

are compared with the values calculated by SURCU and TPTRI. Linear source 
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assumption does not bring significant reduction in computation time since burnable 

poison, which has potential to perturb the flux profile across the lattice, is present within 

a very small region as compared to the lattice size. 

5.4.6 BWR benchmark problem with gadolinium pins 

 The BWR lattice is divided into 7,296 meshes to calculate k∞ for flat source 

assumption. As shown in Table- 5.8, conventional iteration takes 114 sec with 15 inner 

per outer iteration scheme while Krylov iteration takes 48 sec with 4 BICG per outer 

iteration scheme. Hence, the computation time is reduced by a factor of 2.4. Fig. 5.9 

shows the convergence of flux and multiplication factor values with iteration step and 

computation time in both the iteration techniques. k∞ values calculated by MOC code 

differ only at third decimal place from the values calculated by DRAGON and MOCUM. 

For the present problem, linear source assumption is not attempted since flux variation 

across the lattice is insignificant. 



Chapter 5: Krylov Acceleration Technique in Method of Characteristics 

_____________________________________________________________________ 

171 | P a g e  

 

T
a
b

le
- 

5
.7

: 
k

∞
 v

al
u
es

 o
b
ta

in
ed

 b
y
 M

O
C

 c
o
d
e 

u
si

n
g
 c

o
n
v
en

ti
o
n
al

 a
n
d
 K

ry
lo

v
 i

te
ra

ti
o
n
 s

ch
em

e 
fo

r 
L

W
R

 b
en

ch
m

ar
k

 p
ro

b
le

m
 w

it
h
 

b
u
rn

ab
le

 p
o
is

o
n
 a

n
d
 t

h
ei

r 
co

m
p
ar

is
o
n
 w

it
h
 r

ef
er

en
ce

 r
es

u
lt

s 
 

N
o
. 
o
f 

m
es

h
 

S
o
u
rc

e 

as
su

m
p
-

ti
o
n
 

T
y
p
e 

o
f 

it
er

at
io

n
  

It
er

at
io

n
 

sc
h
em

e 

C
o

m
p
u

-

ta
ti

o
n
 

ti
m

e 
(s

) 

N
o
. 
o
f 

o
u
te

r 

it
er

at
io

n
 

k
∞
 

ca
lc

u
la

te
d
 

b
y
 M

O
C

 

co
d
e 

k
∞
 c

al
cu

la
te

d
 b

y
 

o
th

er
 c

o
d
es

 (
N

am
e 

o
f 

co
d
e)

 

8
,1

6
0
 

F
la

t 
C

o
n
v
en

ti
o
n
al

 
1
5
 i

n
n
er

/o
u
te

r 
1
5
1
 

2
8
 

0
.8

7
8
9
4
6
6
 

0
.8

8
0
5
 (

S
U

R
C

U
),

 

0
.8

8
2
8
 (

T
P

T
R

I)
 

8
,1

6
0
 

F
la

t 
K

ry
lo

v
 

5
 B

IC
G

/o
u
te

r 
7
6
 

8
 

0
.8

7
8
9
4
7
8
 

 T
a
b

le
- 

5
.8

: 
k

∞
 v

al
u
es

 o
b
ta

in
ed

 b
y
 M

O
C

 c
o
d
e 

u
si

n
g

 c
o
n
v
en

ti
o
n
al

 a
n
d
 K

ry
lo

v
 i

te
ra

ti
o
n
 s

ch
em

e 
fo

r 
B

W
R

 b
en

ch
m

ar
k

 p
ro

b
le

m
 w

it
h
 

g
ad

o
li

n
iu

m
 p

in
s 

an
d
 t

h
ei

r 
co

m
p
ar

is
o
n
 w

it
h
 r

ef
er

en
ce

 r
es

u
lt

s 
 

N
o
. 

o
f 

m
es

h
 

S
o
u
rc

e 

as
su

m
p
-

ti
o
n
 

T
y

p
e 

o
f 

it
er

at
io

n
  

It
er

at
io

n
 

sc
h
em

e 

C
o

m
p
u

-

ta
ti

o
n

 

ti
m

e 
(s

) 

N
o
. 
o
f 

o
u

te
r 

it
er

at
io

n
 

k
∞
 

ca
lc

u
la

te
d

 

b
y
 M

O
C

 

co
d
e 

k
∞
 c

al
cu

la
te

d
 b

y
 o

th
er

 

co
d
es

 (
N

am
e 

o
f 

co
d
e)

 

7
,2

9
6
 

F
la

t 
C

o
n
v
en

ti
o
n
al

 
1
5
 i

n
n
er

/o
u
te

r 
1
1
4
 

3
3
 

0
.9

8
8
6
8
0
9
 

0
.9

8
6
5
6
1
 (

D
R

A
G

O
N

),
 

0
.9

8
7
7
8
5
 (

M
O

C
U

M
) 

7
,2

9
6
 

F
la

t 
K

ry
lo

v
 

4
 B

IC
G

/o
u
te

r 
4
8
 

1
0
 

0
.9

8
8
6
8
2
3
 

 



Chapter 5: Krylov Acceleration Technique in Method of Characteristics 

_____________________________________________________________________ 

172 | P a g e  

 

 
Fig. 5.9: Convergence of neutron flux (εϕ) and multiplication factor (εk) of BWR 

benchmark problem (with gadolinium pins) with iteration step and computation time in 

Krylov iteration (at top) and conventional iteration (at bottom). 

5.4.7 Hexagonal cell benchmark problem with central breeding pin 

In order to bring out the advantage of Krylov iteration over the conventional 

iteration, k∞ is calculated for the hexagonal cell using both the iteration techniques. 

Since, the source in a mesh is assumed to be flat, finer meshes are required for the 

calculation. Accordingly, the hexagonal cell is divided into 4,163 meshes. In order to 

obtain almost identical k∞, conventional iteration takes 56 sec with 15 inner per outer 

iteration scheme while Krylov iteration takes only 29 sec with 7 BICG per outer 

iteration scheme. In Fig. 5.10, convergence of flux and multiplication factor values are 

plotted with iteration step and computation time for both the iteration techniques. In 
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Table- 5.9, k∞ values calculated by MOC code are compared with the values calculated 

by MG-MCNP3B [75], TEPFEM and TPTRI. It is to be noted that the results from 

MOC code are closer to the Monte Carlo method based code MG-MCNP3B. 

 

Fig. 5.10: Convergence of neutron flux (εϕ) and multiplication factor (εk) of hexagonal 

cell benchmark problem with iteration step and computation time in Krylov iteration (at 

top) and conventional iteration (at bottom). 
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5.4.8 CANDU-6 annular cell benchmark problem 

 

Fig. 5.11: Convergence of neutron flux (εϕ) and multiplication factor (εk) of CANDU-

6 annular cell benchmark problem with iteration step and computation time in Krylov 

iteration (at top) and conventional iteration (at bottom). 

CANDU lattice is divided into 7,270 meshes to calculate k∞ with flat source 

assumption. Conventional and Krylov iteration techniques are used for the calculation. 

Iteration scheme for each technique is optimized to obtain minimum computation time. 

Conventional iteration takes 603 sec with 15 inner per outer iteration scheme while 

Krylov iteration takes only 306 sec with 2 BICG per outer iteration scheme. In both the 

iteration techniques, the way flux and multiplication factor values reach the targeted 

convergence limit are plotted with iteration step and computation time in Fig. 5.11. In 
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Table- 5.10, k∞ values calculated by MOC code are compared with the values calculated 

by DRAGON and MOCUM. It is clear from the comparison that for flat source 

assumption, Krylov iteration takes nearly half the time the conventional iteration takes.  

5.4.9 HTTR benchmark problem 

 

Fig. 5.12: Convergence of neutron flux (εϕ) and multiplication factor (εk) of HTTR 

benchmark problem with iteration step and computation time in Krylov iteration (at top) 

and conventional iteration (at bottom). 

For flat source assumption, the HTTR fuel block is divided into 5,078 meshes. 

Like all other problems, an optimization study is carried out to find out suitable iteration 

schemes for obtaining minimum computation time. Conventional iteration, with 5 inner 

per outer iteration scheme, takes 1059 sec to get converged k∞ whereas Krylov iteration, 
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with 6 BICG per outer iteration scheme, takes only 199 sec to get the same. So, there is 

almost 1/5-th reduction of computation time, while maintaining the accuracy of solution, 

because of Krylov iteration. It is interesting to see in Fig.23 how the initial guess values 

of flux and multiplication factor progress towards the converged solution with iteration 

step as well as computation time. Table- 5.11 shows good agreement between k∞ values 

calculated by MOC code, MCNP5 [62] and MOCUM. It is imperative to investigate 

whether Krylov iteration technique is accurate in predicting local parameter too like 

fission density, which is calculated for all the fuel pins of the fuel block. Fission density 

fk of k-th fuel pin has already been defined in Eq.4.42. This fractional quantity is 

normalized to 33, which is the total number of fuel pins. Comparison of fission density 

distribution calculated by MOC code and MCNP5 in Table- 5.12 confirms that the 

accuracy of Krylov iteration is at par with conventional iteration. 
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Table- 5.12: Fission density distribution obtained by MOC code using conventional 

and Krylov iteration scheme for HTTR benchmark problem and their comparison with 

reference results  

Pin 
Reference 

value 

Conventional iteration Krylov iteration 

Fission density 

Relative % error 

with respect to ref. 

value 

Fission density 

Relative % error 

with respect to ref. 

value 

1 0.99862 0.99865 0.00 0.99865 0.00 

2 1.01562 1.01534 0.03 1.01534 0.03 

3 1.03231 1.03188 0.04 1.03189 0.04 

4 0.99872 0.99872 0.00 0.99871 0.00 

5 0.98256 0.98291 0.04 0.98291 0.04 

6 0.99015 0.99016 0.00 0.99017 0.00 

7 0.99967 0.99982 0.02 0.99982 0.02 

8 1.01565 1.01533 0.03 1.01533 0.03 

9 1.01566 1.01537 0.03 1.01537 0.03 

10 0.9902 0.99018 0.00 0.99018 0.00 

11 0.98733 0.98736 0.00 0.98736 0.00 

12 0.98944 0.98956 0.01 0.98955 0.01 

13 0.99013 0.99017 0.00 0.99017 0.00 

14 0.9986 0.99861 0.00 0.99861 0.00 

15 1.03227 1.03187 0.04 1.03187 0.04 

16 0.99969 0.99983 0.01 0.99983 0.01 

17 0.98936 0.98956 0.02 0.98956 0.02 

18 0.98725 0.98737 0.01 0.98737 0.01 

19 0.98252 0.98292 0.04 0.98292 0.04 

20 1.01562 1.01535 0.03 1.01535 0.03 

21 0.99016 0.99018 0.00 0.99018 0.00 

22 0.98723 0.98738 0.02 0.98738 0.02 

23 0.98937 0.98959 0.02 0.98959 0.02 

24 0.99008 0.99021 0.01 0.99021 0.01 

25 0.99856 0.99868 0.01 0.99868 0.01 

26 0.99859 0.99862 0.00 0.99862 0.00 

27 0.98252 0.98292 0.04 0.98292 0.04 

28 0.99021 0.99021 0.00 0.99021 0.00 

29 0.99971 0.99987 0.02 0.99987 0.02 

30 1.01561 1.01541 0.02 1.01541 0.02 

31 0.99862 0.99865 0.00 0.99865 0.00 

32 1.01564 1.01539 0.02 1.01539 0.02 

33 1.03234 1.03192 0.04 1.03192 0.04 
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5.5 Results and discussion 

In this chapter, application of Biconjugate Gradient stabilized (BiCGSTAB) 

method, which is one kind of Krylov subspace iteration method, is discussed in the 

context of acceleration of the MOC solution of neutron transport equation. Formulation 

of Krylov method requires the conventional MOC solution to be converted into a matrix 

equation. However, explicit formation of matrix by storing its non-zero elements, even 

in CSR format, requires huge computer memory, which hinders the MOC code to run 

in a personal computer. Therefore, we propose a numerical recipe, which takes the 

effect of the matrix on any vector without storing the matrix elements. This approach 

is first of its kind in the domain of Krylov accelerated MOC.  

 Performance of both Krylov iteration and conventional iteration is studied for 

several benchmark problems involving different geometry and boundary conditions. It 

has been found that number of inner or BICG iterations per outer iteration influences 

the computation time, as shown in Table- 5.1 for the MZA fast reactor benchmark 

problem. Hence, selection of suitable iteration scheme is an important aspect to be 

looked into, while minimizing the computation time. 

All the results show that Krylov iteration takes lesser time than conventional 

iteration to obtain the solution of comparable accuracy. However, the extent up to which 

the computation time is reduced by Krylov iteration mainly depends on scattering of 

neutrons from one group to the other which again depends on number of energy groups 

involved in the problem. Neutron scattering from one group to the other group is 

predominant in 4 energy group problems of MZA, KNK-II and 6 energy group problem 

of HTTR, discussed in previous section. Therefore, the computation time, while solving 

these problems, is reduced by a factor of 3 to 5 or even more. Rest of the benchmark 
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problems involve 1 or 2 energy groups and the computation time is reduced only by a 

factor of 2 or less. However, solving a many energy group problem with simple 

geometry (e.g. a square filled with single homogeneous material) hardly reflects any 

advantage of Krylov iteration over the conventional iteration.  

The concept of linear source expansion is useful in reducing the computation 

time for vacuum boundary problems where large flux gradient exists. With a view to 

gain more advantage than combining with flat source assumption, Krylov iteration is 

applied in the theoretical framework of linear source expansion. This shows further 

reduction in computation time by factor of 2 to 3.  
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CHAPTER 6 : Conclusion and Future Scope of 

Work 

Conclusion and Future Scope of Work 

_________________________________________ 

Present thesis describes the Method of Characteristics (MOC) based formalism 

to solve neutron transport equation for mainly assembly level lattice calculation with 

reflective and periodic boundary conditions and to some extent core level calculation 

with vacuum boundary condition. The mesh generation procedure, used in this code, is 

based on Delaunay triangulation technique and Bower-Watson algorithm, which are 

considered to be quite general and hence, can be applied to triangulate any geometry. 

However, the code is currently capable of modeling any geometry consisting of a 

combination of circles, rectangles and hexagons subject to the outer boundary being 

square or hexagonal. In the first phase of development, flat source (flux) is assumed 

while solving the transport equation by MOC. With this assumption, performance of 

the code is tested by comparing the calculated multiplication factor with other 

international codes for selected benchmark problems. This, in general, shows good 

agreement with the reference values and indicates basic soundness of the method and 

the coding. Later an improved formulation of MOC is introduced aiming to obtain 

accurate results with fewer meshes as compared to earlier. This is achieved by 

representing the variation of the source in a mesh as a linear function of two spatial 

coordinates x and y. This helps in reducing the computation time. The analysis of a 

number of benchmark problems with this linear source representation clearly brings out 

its advantage over the flat source used earlier. However, the advantage is more manifest 
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in case of vacuum boundary condition or high neutron absorbing material being present 

in the system. Apart from this, the use of fewer triangular meshes cannot represent 

geometries with circular elements accurately enough. Hence, we work on the 

triangulation process so that the ‘triangular’ meshes are in conformity with the circular 

elements of the geometry. It is thus ensured that the advantage of using coarse meshes 

is not lost. Benchmark problems having cylindrical bodies (with circular projections) 

are studied to establish both these aspects i.e. the problem and its solution. Finally, an 

attempt is made to develop an efficient numerical recipe based on Krylov subspace 

iteration method, which requires matrix-vector multiplication. For real problems, size 

of the matrix is huge and storing its non-zero elements, even in most sophisticated and 

compact formats, requires extremely large computer memory. Therefore, the effect of 

matrix “A” on vector “ψ”, instead of forming the matrix explicitly, is found out. We 

have attempted the matrix based approach first in order to understand how the matrix 

operates on the vector and then devised a numerical recipe, which, staying within the 

framework of conventional mesh-angle sweep of MOC, mimics the way the matrix is 

multiplied with the vector. This matrix-free approach is used in combination with the 

existing formalism of flat as well as linear source approximation to solve a number of 

benchmark problems. Results show significant improvement in terms of faster 

convergence of solution over the conventional iteration without compromising the 

accuracy. 

In future, we have plan to couple the MOC code to a multi-group library and to 

include treatment of anisotropic scattering and burn up to convert it into a full-fledged 

lattice code. Further reduction in computation time is possible by simulating half or 

quarter core by permitting different boundary conditions at various surfaces instead of 
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the same boundary condition at each of the surfaces. Though efforts were made in this 

direction for one or two problems, there are scopes to implement this capability in a 

more general way. As a topic of future study, bringing the effect of preconditioning into 

the matrix free approach could be explored for getting computational incentive. We can 

also use direct methods like Orthomin etc. to replace the existing conventional iteration 

technique. It is possible to solve the neutron transport equation for full core calculation 

without doing any homogenization. For doing so, we would like to extend our transport 

code from lattice level to full core level using parallel computer, which is very much 

required to obtain the solution in reasonable time. 
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