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2. ”Modeling Advection and Anisotropic Dispersion of Radionuclides through Geological Media Us-

ing Diffusion Velocity Lattice Boltzmann Scheme”, D. Datta, T.K. Pal, SciFed Journal of Nuclear

Science, 2018, 2(1), 1-9.

3. ”A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate”, D. Datta, T.K.

Pal, International Journal of Mathematics and Systems Science, 2018, 1(4), 1-4

4. ”Parametric uncertainty analysis of solute transport process using fuzzy lattice Boltzmann scheme”,

T. K. Pal, D. Datta, Life Cycle Reliability and Safety Engineering, 2017, 6, 239-249.

5. ”Development of Fuzzy Differential Quadrature Numerical Method and its Application for Un-

certainty Quantification of Solute Transport Model”, D. Datta, T. K. Pal, International Journal of

Energy, Information and Communications, 2017, 8, 1-12.

6. ”Development of Differential Quadrature based Computational Scheme in Cylindrical Geometry

and Its application to Simulate Radionuclide Leaching from Radioactive Waste Form”, T. K. Pal,

D. Datta, R. K. Bajpai, SRESA’s International Journal of Life Cycle Reliability and Safety Engi-

neering, 2016, 5, 1-7.

7. ”Address of Geo-hydrological Problem using Lattice Boltzmann and Differential Quadrature Meth-

ods”, D. Datta, T. K. Pal, SRESA’s International Journal of Life Cycle Reliability and Safety En-

gineering, 2016, 5, 16-20

8. ”Numerical Simulation of Reaction-Diffusion Process in Geological Media using Lattice Boltz-

mann Based Diffusion Model Coupled with Geochemical Reaction Solver”, T.K. Pal, D. Datta,

Global Journal of Pure and Applied Mathematics, 2016, 12, 429-433.

9. ”Numerical Solution of Solute Transport Model Using Cellular Automata”, D. Datta, T. K. Pal,

Global Journal of Pure and Applied Mathematics, 2016, 12, 131-135.

Chapter in books and lectures notes

1. ”Lattice Boltzmann Simulation for Science and Engineering Problems”, T. K. Pal, D. Datta, INS

Workshop on Advanced Engineering Mathematics, August 21-25, 2017.



2. ”Theory of Random Walk and Continuous Time Random Walk and its Applications in Diffusion

Process”, T. K. Pal, D. Datta, INS Workshop on Advanced Engineering Mathematics, August

21-25, 2017.

Conferences

1. ”Numerical Solution of Model for Migration of Radionuclides in Geological Sorbing Media Using

Lattice Boltzmann Method”, T. K. Pal, D. Datta, R. K. Bajpai, International Conference on Ad-

vancing Frontiers in Operational Research: Towards a Sustainable World (AFOR2017), Kolkata,

December 21-23, 2017.

2. ”Risk Management via Uncertainty Modeling of Reaction Diffusion Process in Geological Media

using Fuzzy Lattice Boltzmann Scheme”, D. Datta, T. K. Pal, International Conference on Ad-

vancing Frontiers in Operational Research: Towards a Sustainable World (AFOR2017), Kolkata,

December 21-23, 2017.

3. ”Uncertainty Analysis of Retardation Factor Using Monte Carlo, Fuzzy Set and Hybrid Approach”,

T. K. Pal, V. Arumugam, D. Datta, Springer Proceedings in Mathematics Statistics, 2015, 125,

153-163.

Others

1. ”Multi-Scale Contaminant Transport Modeling in Geological Media - Case Study”, T. K. Pal, D.

Datta, V. Arumugam, R.S. Soni, BARC Internal Report, 2015, BARC/2015/I/022.

2. ”Lattice Boltzmann Simulation to Study Reaction-Diffusion Processes in Geological Media”, T.

K. Pal, R.S. Soni, D. Datta, BARC Newsletter, 2015, No. 343, 6-13.



Dedicated To
My loving MOTHER and SIBLINGS

In memory of
My beloved FATHER



Acknowledgments

It wouldn’t have been possible to complete the thesis without help of people around me. So, I

would like to acknowledge people who have in direct or indirect way helped me in completing

the work.

First and foremost, with reverence I would like to express my deep sense of gratitude to my

research guide, Prof. D. Datta for his continuous motivation and guidance throughout my dis-

sertation work. His inspiring discussions, continuous support, great patience, and the freedom

he gave to me in the research have helped me to shape this thesis. Because of the knowledge

in advanced mathematics and computation that he shared with me during this research work, I

have been able to adopt new numerical techniques, which were not part of my academic studies

in college and university. His continuous encouragement and support to write my own com-

puter programs to simulate various processes has increased my confidence in writing computer

program. I consider myself fortunate in having the privilege of being guided by him.

Beside my supervisor, I would like to thank all the members of my doctoral committee [Prof.

T.C. Kaushik (Chairman), Prof. B.N. Jagatap (Ex-Chairman), Prof. Anurag Gupta (member),

Prof. Indranil Mukhopadhyay (member), Prof. R.K. Bajpai (technical guide)] for their time,

critical discussions and constructive suggestions during this course of Ph.D. The thesis has taken

this present structure due to their outstanding guidance. I would also like to thank present Dean

Academic, Prof. B.K. Nayak for his help in administrative works related to this Ph.D.

This thesis work was a part of a collaborative doctoral work between BARC, India and AN-

DRA, France. Special thanks to Dr. Benoit Cochepin, ANDRA, France for his constant support

during the research work. He provided various benchmark problems on multi-component reac-

tive transport, which have been used for validation and verification of the computer programs

written in this doctoral work. Their critical review comments on progress reports have helped

me to improve the quality of this research work.

Special thanks go to computer division people who helped me in developing parallel program

in Anupam supercomputing facility. I also acknowledge the help on parallel processing that I

received from Shri D. Parulekar, TDD during this research work.

I would like to sincerely thank Dr. V. Arumugam, Ex-Head, RES, TDD for being as a mentor

before as well as during my research work. He has taught me various aspects of geochemistry

and groundwater hydrology. It was due to his faith and confidence on me I got the chance to

pursue this research work. He is the one for whom I got the opportunity to work under the su-



pervision of Prof. D. Datta. I can recall how dedicatedly he spent his important time to search

for a suitable guide for this research work. Thank you, Sir, for being so supportive.

I would like to take this opportunity to thank my present division head and AD, NRG, Shri K.

Agarwal and former division heads, directors/associate directors of NRG for their kind support

and encouragements. Specially, I am thankful to Shri P.K Wattal, Ex. Director, NRG for nomi-

nating my name in this cooperative doctoral work. I thank Shri R.S. Soni, Ex. Head, TDD for

his support and encouragements during the period when he was heading TDD. I thank Dr. R.K.

Bajpai, Head, RES, TDD for his valuable guidance and support during this research work. My

thanks go to Shri A. Acharya, TDD for teaching me various aspects of deep geological repos-

itory. I would also like to thank present and former senior colleagues of NRG, Dr. J. G. Saha,

Head, PSDD, Dr. D.N. Yadav, Dr, R.R. Rakesh, Shri M.R. Joshi (Ex.), Dr. G. Sugilal, Shri R.S.

Bhatia, Shri Sunil Joshi, Shri P.D. Maniyar for their help, encouragement and support during

the course of the research work. I thank all colleagues of RES, Shri Prattek Srivastava, Shri

Shiva Kumar, Shri S.P. Singh, in particular Shri Yuvraj Dhamapurkar for their help and support

in this Ph.D. study. I would like to thank Shri S.B. Patil, TDD who is my senior colleague

as well as landlord for providing me a specious apartment at reasonable rent during the entire

period of this research work.

I would also like to thank all my childhood, school, college, university and BARC Training

School friends with whom I shared memorable times and learned many things that have direct

or indirect influences on my Ph.D. work.

I owe much to my mother for her unconditional love and support. Although I lost my father

before enrolling myself in this PhD. work, his ideologies and advices still motivate me for pur-

suing higher studies. I am also grateful to my sister (Kajal) and brother (Mrinal) and their

families for their unconditional love, support and taking care of me. I thank my cousin (Biswa-

jit) and brother like friends (Shiba and Deba) who take care of my lonely mother, making me

feel secure during my stay in Mumbai. Thanks are due to my nephews (Somu and Asesh) for

their love which gave me strength to pursue this study. I would also like to thank my little niece

(Rishona) with whom I spent my time whenever I visited my brothers home and she in her own

way geared me up to reach the goal.

Lastly, I would like to thank all others who have contributed directly or indirectly to the suc-

cessful realization of this thesis.



Contents

SUMMARY i

List of Figures iii

List of Tables vi

List of Abbreviations viii

1 Introduction 1

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Energy resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Practices of radioactive waste management . . . . . . . . . . . . . . . . . . . 7

1.4 Deep geological repository program in India . . . . . . . . . . . . . . . . . . . 10

1.5 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Multi-component and long term reactive transport . . . . . . . . . . . . 12

1.5.2 Traditional numerical methods for reactive transport . . . . . . . . . . 15

1.5.3 Lattice Boltzmann method for solute and reactive transport . . . . . . . 17

1.5.4 Differential quadrature method for solute and reactive transport . . . . 20

1.5.5 Modeling uncertainty analysis in solute transport and reactive transport

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Origin of lattice Boltzmann method . . . . . . . . . . . . . . . . . . . 24

1.6.2 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.3 Implementation of lattice Boltzmann method . . . . . . . . . . . . . . 31



1.7 Differential quadrature method . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7.1 Differential quadrature equation . . . . . . . . . . . . . . . . . . . . . 32

1.7.2 Determination of weight coefficients for differential quadrature method 33

1.7.3 Selection of grid points . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7.4 Numerical values of weight coefficients . . . . . . . . . . . . . . . . . 36

1.8 Research gap areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.11 Research Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.12 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Solute Transport Simulation using Lattice Boltzmann method and Differential Quadra-

ture Method 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Solute Transport Model Equation . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Lattice Boltzmann Method for Solute Transport . . . . . . . . . . . . . . . . . 46

2.3.1 Derivation of lattice Boltzmann equation from Boltzmann equation . . 46

2.3.2 Equilibrium Distribution Function . . . . . . . . . . . . . . . . . . . . 50

2.3.3 Lattice structure for Lattice Boltzmann Method . . . . . . . . . . . . . 52

2.3.4 Recovery of Solute Transport Equation from Lattice Boltzmann Equation 61

2.3.5 Conversion between lattice units and physical units . . . . . . . . . . . 65

2.3.6 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . 66

2.4 Numerical Problems Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.1 One-dimensional transport of solute in a finite width domain . . . . . . 68

2.4.2 One-dimensional transport of solute in an infinite domain . . . . . . . . 72

2.4.3 Two-dimensional transport of solute . . . . . . . . . . . . . . . . . . . 76

2.5 Limitation of Lattice Boltzmann Method for High Peclet Number Flow . . . . 82

2.6 Differential Quadrature Method for Solute Transport . . . . . . . . . . . . . . 84

2.7 Numerical Problems Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7.1 Diffusion of solute in soil column . . . . . . . . . . . . . . . . . . . . 86

2.7.2 Leaching of radionuclide from radioactive waste form . . . . . . . . . 89



2.8 Comparative Study of LBM, DQM, and FDM . . . . . . . . . . . . . . . . . . 96

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Multi-component Reactive Transport Simulation using Lattice Boltzmann Method100

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Reactive Transport Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.1 Sorption Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.2 Geochemical reaction based model . . . . . . . . . . . . . . . . . . . 105

3.3 Lattice Boltzmann Method for Single Component Reactive Transport . . . . . 108

3.4 Lattice Boltzmann Method for Multi-Component Reactive Transport . . . . . . 110

3.4.1 Interfacing with Commercial Geochemical Solver . . . . . . . . . . . . 113

3.5 Numerical Problems Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5.1 Diffusion and Kinetically Controlled Dissolution/Precipitation Reaction 114

3.5.2 Diffusion of Alkaline Water in a Sand Column using Lattice Boltzmann

Interfaced with Geochemical Solver . . . . . . . . . . . . . . . . . . . 121

3.5.3 Migration of Radionuclide Chain . . . . . . . . . . . . . . . . . . . . 125

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4 Modeling Uncertainty Analysis in Solute Transport with Imprecise Model Param-

eters 132

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2 Basics of Fuzzy Set Theory and Fuzzy Logic . . . . . . . . . . . . . . . . . . 133

4.2.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.2 Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2.3 α-cut of a Fuzzy Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 Development of Fuzzy Solute Transport Model . . . . . . . . . . . . . . . . . 137

4.4 Development of Fuzzy Lattice Boltzmann Scheme . . . . . . . . . . . . . . . 137

4.5 Development of Fuzzy Differential Quadrature Scheme . . . . . . . . . . . . . 144

4.6 Numerical Problem Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6.1 One-Dimensional solute transport with constant source using Fuzzy LBM145

4.6.2 One-Dimensional Solute Transport with instantaneous point source us-

ing Fuzzy LBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



4.6.3 Two dimension solute transport using Fuzzy DQ Method . . . . . . . . 160

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5 Summary and Conclusions 166

5.1 Summary of this thesis work . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Conclusions of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3 Outline of future work proposal . . . . . . . . . . . . . . . . . . . . . . . . . 172

Appendix I 174

Appendix II 176

Bibliography 177



SUMMARY

Reprocessing of spent nuclear fuels generates high level radioactive waste (HLW) (activity>

3.7 × 1011 Bq/l) containing long lived (T1/2 ∼ 106 yrs.) fission products and actinides. In

order to protect human and environment from the toxicity of radioactive materials, stringent

criteria implemented by regulatory bodies are need to be followed before their final disposal.

The vitrified HLW canisters are planned to be disposed of in deep geological repository (DGR)

at a depth of about 500 m below Earth’s surface. Radiological safety evaluation and risk anal-

ysis of DGR require modeling transport of leached out radionuclides through the geological

media and uncertainty analysis of model output. Transport of dissolved radionuclides (RNs)

in pore water is governed by a set of processes, such as advection, diffusion, dispersion, geo-

chemical reactions, radioactive decay etc. Migration of these radionuclides is mathematically

modeled as advection-dispersion-reaction equation (ADRE) also termed as reactive transport

equation. Since the dissolved RNs can stay in the form of various species, the governing ADRE

is multi-component reactive transport equation.

Multi-component and long term reactive transport simulation demands for huge computational

resources in terms of storage and computing speed. Communication overload between proces-

sors in a supercomputing platform reduces the efficiency of traditional numerical techniques,

e.g., finite element method (FEM), finite difference method (FDM) etc. Lattice Boltzmann

method (LBM) and differential quadrature method (DQM) are two relatively new and advanced

numerical techniques. Parallelization of LBM based code is straightforward because collision

process of LBM is localized. Also, simple bounce back boundary condition of LBM is ideal

for porous media (complex geometry). Notable feature of DQM is that very small number of

grid points (in the present study only 21 grid points were sufficient to achieve the results with

95% confident level of accuracy) are required for the numerical simulation while maintaining

stability and providing very accurate results. Consequently, it requires much less computational

effort and memory for storage.

The present thesis focuses on following three aspects (i) study of LBM and DQM for develop-

ment of solute transport and reactive transport codes, (ii) development of an in-house computer

code to interface the developed solute transport modules with commercial geochemical software

(PHREEQC, a freeware developed by USGS), and (iii) Development of LBM and DQM based

i



numerical schemes for uncertainty modeling. Detailed analysis of single relaxation time (SRT)

LBM and DQM is carried out for development of computer codes for advection-dispersion

equation (ADE). The in-house developed computer codes are verified and validated by solving

5 benchmark problems (1D and 2D). A comparative study between LBM, DQM and FDM is

carried out by calculating L2 errors of the solutions of a particular benchmark problem. This

study shows that DQM based solutions are more accurate than the LBM and FDM based so-

lutions and at the same time it takes smaller computing time. On the other hand, accuracy of

LBM and FDM are same for same time step value, but LBM takes much smaller time than

FDM. This study therefore justifies development of LBM/DQM codes for multi-component

and long term reactive transport problems. The LBM based solute transport code is parallelized

using OpenMP directives in a shared memory platform with Intel G1 quad-core processor. In

order to increase computational load we reduced the grid size and achieved 2 times reduction in

computing time. The in-house developed solute transport solver using LBM is further utilized

for multi-component reactive transport. In order to increase the scope of incorporating complex

geochemical reactions, such as ion exchange, dissolution/precipitation, surface complexation,

into the multi-component reactive transport framework, LBM based solute transport code is in-

terfaced with commercial geochemical software PHREEQC using operator splitting approach.

This interfaced scheme is verified and validated by solving 3 benchmark problems.

This thesis proposes two innovative methodologies for solving ADE describing tracer trans-

port through geological media in presence of imprecise measurement of model parameters such

as tracer dispersion coefficient and groundwater velocity. Measurement around most likely

value provides a spread causing an imprecision of the model parameters. Here imprecision

is addressed as a fuzzy variable and the membership function of each such fuzzy variable is

expressed in the form of triangular fuzzy number. The governing fuzzy ADE is numerically

solved using LBM and DQM at various α-cut levels. Basically, LBM and DQM methods are

amalgamated with fuzzy vertex theory of incorporating fuzziness of the fuzzy parameters in the

model of interest for uncertainty analysis. Uncertainty quantification of the solute concentra-

tion as solution of the fuzzy differential equation is carried out. Advantage of LBM and DQM

for obtaining numerical solution of fuzzy partial differential equation is shown. A supporting

graphical user interface (GUI) computer code using Python programming language is developed

during this research work to carry out the reported simulation studies.

ii
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Chapter 1

Introduction

1.1 Research background

Multi-component and long term reactive transport has now become an active area of research in

geosciences [Steefel et al., 2005; Xiao et al., 2018], particularly in the field of high level radioac-

tive waste disposal in deep geological repository (DGR) [Grindrod et al., 1996; Steefel et al.,

1998a,b; Spycher et al., 2003; Glynn, 2003; MacQuarrie et al., 2005]. Modeling groundwater

flow and contaminants transport through geological media play a critical role in nuclear industry

pertaining to geological disposal of hazardous nuclear waste generated at various stages of nu-

clear fuel cycle. Geological disposal of high level and long lived fission products and actinides

generated inside nuclear reactors is considered to be one of the best solutions for long term

containment and isolation of the radionuclides by preventing the ingress of water and provid-

ing retardation to their transport. In order to ensure the long term isolation, a multiple-barrier

design of DGR, which includes metal canister containing high level vitrified waste glass or the

spent fuel itself, bentonite barrier surrounding the canister and the host rock surrounding the

repository, is adopted worldwide [Chapmann et al., 2012]. It is expected that the metal canister

will start corroding over time in the repository environment [King, 2017]. Corrosion of canister
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CHAPTER 1. INTRODUCTION

ultimately leads to its failure and the radionuclides present inside the glass start leaching out

due to diffusion and dissolution processes [Ledieu, et al.; Thorat et al., 2008]. It is worth men-

tioning here that canisters may also fail due to some accidental causes, such as seismic loads

from earthquake, thermal load due to decay heat etc [Helnrik et al., 2009; Hernelind, 2010].

Multi-component reactive transport

Prediction of spatio-temporal spreading of leached out radionuclides is a prerequisite task for

safety evaluation and risk assessment of a DGR system. In fact, this task demands for a through

understanding of complex physico-chemical processes which can either retard or facilitate the

migration of radionuclides from the disposal area. The leached out radionuclides in the pore

water are subjected to a set of processes, such as advection, diffusion, dispersion, biogeochem-

ical reaction etc. Due to speciation, radionuclides can stay in the solution in different chemical

forms called species. Dissolved species can interact with other species present in the solution

as well as with minerals of the solid phase during their transport due to advection, diffusion

and dispersion. Considering the solution is dilute, transport due to charge imbalance and chem-

ical potential are not considered in this work. The governing equations of migration of these

species are therefore mass transport equations coupled with reaction terms representing vari-

ous geochemical interactions. Mass transport equation is called advection dispersion equation

(ADE), which is a second order partial differential equation (PDE) and geochemical reactions

are represented by a set of nonlinear algebraic equations. In fact, transport of solutes and their

geochemical interactions are not independent of each other, rather they are coupled processes.

For example, geo-chemical reactions can modify the petrophysical properties, such as porosity,

permeability, of the engineering clay barrier and natural host rock. These parameters are having

overall control over fluid flow and solute transport processes. Therefore, small change in these

petrophysical parameters alters the value of flow velocity and dispersion coefficient, which are

the parameters of solute transport process. Similarly, change in water velocity has impact on
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residual time, which is an important parameter for reaction kinetics in an open system. There-

fore, solute transport and geochemical reactions at the fluid-solid interface are coupled with

each other. This coupled process of transport and geochemical reactions is called reactive trans-

port and the equation modeling reactive transport is generally known as advection-dispersion-

reaction equation (ADRE).

Uncertainty analysis

In order to have appropriate safety evaluation and risk analysis of radioactive waste disposal

facilities, analysis of model uncertainty of various processes involved with the disposal system

is required [Helton, 1994; Zio, 1996]. Simulation of these processes are carried out by formu-

lating appropriate models, which are basically mathematical equations derived using physical

principles, such as various conservation laws. Mathematical models can be considered having

three components: inputs, operator, and output. Here operator is a closed form analytical solu-

tion of the model equation or some numerical solver. The outputs of such models are generally

subjected to uncertainty because of the following three reasons: uncertainty in model parame-

ters, uncertainty in model itself, and uncertainty in scenario. Here in this study we are interested

in modeling uncertainty in solute transport/reactive transport model output due to uncertainty

in model parameters, such as groundwater velocity, dispersion coefficient. The uncertainty as-

sociated with these parameters is due to the complexity of the DGR system and the large spatial

and temporal scales involved. This type of uncertainty in model output is called parametric

uncertainty. Estimation of parametric uncertainty in model output requires representation and

aggregation of models inputs. The models parameters can be random in nature or they may

be imprecise. Based on the nature of the parameters, parametric uncertainty are classified into

two categories: one is called aleatory uncertainty which deals with random parameters and the

other one is called epistemic uncertainty which deals with imprecise parameter [Hoffman et

al., 1994; Helton, 1994; Ayyub et al., 2006]. Aleatory uncertainty is due to random variability
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of the model parameters which cannot be reduced or eliminated and can only be quantified,

whereas epistemic uncertainty is due to insufficiency or vagueness of the model parameters and

can be reduced with more information [Hoffman et al., 1994; Ferson et al., 1996; Hora, 1996;

Helton, 1994]. Probabilistic uncertainty is quantified using Monte Carlo simulation in which

sample values of the input parameters are taken from their probability distribution functions

and uncertainty in the model output is expressed in terms of the 5th and 95th percentiles of

the cumulative distribution of the probabilistic output of the model [Kushwaha, 2009; Datta,

2014]. On the other hand epistemic uncertainty is quantified using fuzzy logic [Datta, 2011].

Measurement around most likely value provides a spread, causing an imprecision of the model

parameters. In geological media, the model parameters of ADRE are imprecise due to lack

of experimental data (few measurements). Imprecise parameters are generally represented as

fuzzy and therefore, the imprecision or fuzziness of the parameters of solute transport model

results an uncertainty (epistemic) in the solute concentration. In this study imprecise parameters

are represented as fuzzy variables and the membership function of each such fuzzy variables

is expressed in the form of a triangular fuzzy number (TFN), because TFN encodes only most

likely value (mean value) and the spread (standard deviation). Aggregation of all the fuzzy

numbers in the estimation of uncertainty is carried out by using fuzzy vertex method (FVM)

which is based on α-cut concept of fuzzy set and interval analysis [Dong et al., 1987]

Requirement for fast and parallel algorithm

The long term prediction of alteration of various components of DGR and modeling uncertainty

associated with reactive transport with uncertain model parameters are challenging in the sense

that the system is multi-species, time period required for the simulation is very large, and various

complicated homogeneous and heterogeneous reactions are involved with the model equation.

Hence, multi-component and long term reactive transport simulation demands huge compu-

tational resources in terms of storage and computational speed. Though both the demands
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of storage and computational speed can be achieved by availing present day supercomputing

facility with clusters of CPUs, there has always been an active research to develop efficient nu-

merical methods than can better utilize such facilities. Traditional numerical methods, such as

finite difference method (FDM), finite element method (FEM), finite volume method (FVM),

have been successfully deployed to solve multi-component and long term reactive transport in

parallel platform, but huge communication overheads reduce their performance efficiency. Lat-

tice Boltzmann method (LBM), which is relatively new in the field of numerical methods, is

one such technique that has negligible communication overheads because of inherent localized

property of its algorithm. Other desirable features of LB that has attracted many researchers for

implementing this technique for solving partial differential equations (PDE) representing vari-

ous science and engineering problems are its simple algorithm and easy bounce back algorithm

for boundary conditions that has made it ideal for complex geometry (porous media). Another

numerical method called differential quadrature method (DQM) [Bellman et al., 1971; Datta et

al., 2016a], which approximates partial derivative of a piecewise continuous function at a grid

point as weighted sum of functional values of the solution at all grid points along a grid line,

has some suitable features like use of very few grid points in calculation while maintaining the

stability without any condition and providing very accurate result [Datta et al., 2016a]. Because

of this unique feature, DQ requires less storage and increases computational speed[Bellman et

al., 1972].

On the onset of this chapter we will touch upon the background of this study by emphasiz-

ing the requirement of nuclear energy and how the nuclear industry is coping with radioactive

wastes generated during reactors operation. Then special emphasis is given on literature survey

on multi-component and long term reactive transport and traditional numerical techniques used

for reactive transport simulation. Later on we will cover theoretical background and general

implementation of two numerical simulation methods: LBM and DQM. The chapter will also
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highlights the relevant gap areas, objective and scope of the thesis. Finally the chapter presents

the research strategy and outline of this thesis.

1.2 Energy resources

The level of development of a society is the indicator of the quality of life in that society. Elec-

tricity is the basic and important input for the overall development process. The per capita

electricity consumption is generally used as measure of the standard of living. At present, there

is a large discrepancy in the amount of annual per capita electricity consumption., from> 12000

MW-h in developed countries, such as, Canada, USA, to < 100 kW-h in some developing or

under developed countries in Asia and Africa. In India, the present annual per capita electricity

consumption is about 957 kW-h, which is very small compared to that of developed countries.

Therefore, like other developing countries India too has a growing appetite for electricity. En-

ergy resources are categorized as fossil fuel, nuclear fuel and renewable resources. Fossil fuels

such as coal, natural gas and oil based thermal electricity provided most of the energy being

produced in India. Natural resources of these fossil fuel are being depleted gradually and at the

same time thermal power plant fueled with fossil fuels emitting huge amount of green house

gas, which is causing global warning. This ever increasing demand of electricity and continuous

depletion of fossil fuel based energy resources (coal, oil, gas etc.) together with requirement for

low carbon emission based energy to mitigate global warming has given tremendous impetus to

search for renewable and clean energy resources. Although Nuclear energy is not a renewable

energy resource, it is treated as a clean energy source because of negligible carbon emission

to the environment by nuclear reactors. Because of the vast thorium resources and indigenous

reactor technologies available in India, nuclear energy is envisaged to provide energy security in

the coming decades. At present, India has a total of 6.78 GWe installed nuclear power capacity

[Banerjee et al., 2017], which is about 3% of the total electricity and has conceived of to achieve
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10% by early 2030s.

1.3 Practices of radioactive waste management

Nuclear power plants, that harness nuclear energy from fissile materials (e.g. 235U, 233U, 239Pu

etc.), produce actinides and fission products during their operation. Figure 1.1 shows how ac-

tinides are produced in reactors due to (n, γ) reactions and β decay process. These actinides

and fission products as radioactive waste are associated with high level of activity and and heat

output, and therefore, require stringent criterion for their handling, transportation, and disposal.

In fact, radioactive wastes are generated at various stages of nuclear fuel cycle which includes

mining and milling of uranium ore, fuel fabrication, irradiation of fuel in nuclear power plant,

storage of spent fuels and their reprocessing. Small amount of RWs are also produced as a

result of ever increasing use of radio-isotopes in health care, industry and research laboratory.

Since India has adopted closed fuel cycle most of the RWs (95% of total activity produced in a

full nuclear power cycle) are produced during the reprocessing of the spent fuel [Wattal, 2017].

Various stages of management of radioactive waste, such as waste characterization, treatment,

Figure 1.1: Actinide transmutation chain in 235U fueled reactor (Salvatores et al., 2011)

conditioning, storage, disposal, surveillance/monitoring etc., are adopted in India’s radioactive

waste management practices [Raj et al., 2006].Characterization of RW, which included clas-
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sification and segregation, is an important step before their treatment and disposal. RWs are

categorized based on their physical state, activity etc. Based on physical state, RWs are catego-

rized as gaseous, liquid and solid waste. Based on activity level, liquid wastes are categorized

in four categories: exempt waste, low-level waste (LLW), intermediate-level waste (ILW) and

high-level waste (HLW). Table 1.1 shows the activity level of each of the categories of liquid

waste. Solid wastes are also categorized in four categories, based on surface radiation dose:

LLW, ILW, HLW and long-lived waste. Surface dose of each of the categories are shown in

Table 1.2. Key radionuclides present in the various categories of the waste are given in Table

1.1. Considering the fact that safe management of RWs is vital for the successful deployment

of nuclear programme for electricity production, various physico-chemical treatment on the

radioactive waste is carried out in order to reduce its volume and stabilize in some suitable ma-

trix [Raj et al., 2006]. The underlying objective behind these practices is to concentrate and

contain the radioactivity associated with RWs as much as possible, and also to dilute and dis-

perse the very low-level activity to the environment through aquatic root. The dischargeable

activity limit is decided by regulatory bodies (in India Atomic Energy Regulatory Board is the

authorized regulator).

Table 1.1: Categorization of liquid waste
Category Activity (Bq/l)

Exempt waste < 37
Low-level waste 37− 3.7× 106

Intermediate-level waste 3.7× 106 − 3.7× 1011

High-level waste > 3.7× 1011

Table 1.2: Categorization of solid waste
Category Surface dose/activity

Low-level waste < 2mGy/h
Intermediate-level waste 2− 20mGy/h

High-level waste > 20mGy/h
Long-lived waste > 4000Bq/g of α emitter and

other long-lived β emitter
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In India, LLW and ILW wastes are treated by chemical processes, ion exchange process, mem-

brane process, thermal/solar evaporation process etc. and immobilized in cement/polymer. De-

tails of treatment and vitrification processes adopted in India for LLW and ILW are given in

[Raj et al., 2006]. Vitrified products of LLW and ILW are disposed of in Near Surface Disposal

Facilities (NSDFs), which are co-located with nuclear power installations. There are four types

of disposal modules in NSDFs, namely earth trench (ET), stone-lined earth trench (SLT), re-

inforced concrete trenches (RCT) and tile holes (TH). Details of each of the modules can be

found elsewhere in literature [Raj et al., 2006].

HLW generated during reprocessing of spent nuclear fuel or the spent fuel itself is the most

dangerous because it contains very high active fission products (FPs) as well as very long lived

actinides and few long lived fission products. Key FPs and actinides present in HLW are given in

Table 1.3. In India, a three stage program is adopted for management of liquid HLW generated

during reprocessing of spent nuclear fuel. The liquid HLW is first immobilized in borosilicate

glass after being properly treated by various radioactive waste treatment practices. Solidification

of the mixture of HLW and glass additives happens inside a SS canister.

Table 1.3: Key FP and actinides and their half-lives
Isotope Half-life (year) Isotope Half-life (year)

Fission 137Cs 30.12 90Sr 28.78
products 135Cs 2.3×106 129I 1.57×107

99Tc 2×105 106Ru 1.02
235U 7.04×108 238U 4.47×109

Actinides 238Pu 87.1 239Pu 2.41×104

240Pu 6.56×103 241Pu 14.29
237Np 2.14×106 241Am 432.6
243Am 7.37×103 244Cm 18.1

These high level canister are stored and cooled in an interim storage facility for about 30-40

years [Sundar Rajan et al., 1980] and after that they are supposed to be disposed of in deep

geological repository (DGR). To ensure long term isolation of the disposed radionuclides from

the surrounding environment a multi-barrier concept is adopted [Chapmann et al., 1987]. In this
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design concept clay buffer materials are placed surrounding the canister in disposal pit in the

host rock media. The clay being a very low water permeable material acts as a barrier for ingress

of water from the surrounding host rock to the canister and thus prevent corrosion of canister

material. The negatively charged clay minerals trap radionuclides which leached out from the

canister by diffusion or dissolution process when canister becomes corroded or failed due to

any accidental reason, such as earth quake. In addition to the above mentioned functionalities

clay buffer also provides swelling pressure which helps to keep the canister in its initial disposal

position. These canister and clay buffer are called engineered barrier and the surrounding host

rock is called natural barrier, which provides additional confinement to the radionuclides when

they come out from the clay buffer region. All the above mentioned activities involved with

radioactive waste management practices in India are provided in a detailed report [Raj et al.,

2006] as shown in Figure 1.3.

1.4 Deep geological repository program in India

Disposal of high level vitrified waste forms into a specially designed DGR is the most feasible

options available for long term isolation of HLW from the environment. In India, work on

DGR in the form of experiments and site selection stated long back in early eighties. The first

attempt towards this approach was to study the impact of heat emitted by radioactive waste

on the properties of in-situ host rock. Researches carried out single and multiple heater test

experiment in a generic underground research laboratory (URL) at a depth of 1000 m at Kolar

gold field [Mathur et al., 1998]. The basic aims of this experiment were to examine thermal,

mechanical, hydrological and chemical behavior of the host rock under simulated conditions

and validation of in-house developed computational tools for simulation of various processes.

Site selection for DGR is an ongoing research activity in Indian since the early 90s [Mathur et

al., 1996]. In Indian context granite rock formation are considered to be suitable rock formation
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for hosting DGR [Mathur et al., 1996]. Details of site characterization criterion adopted in

India can be found in the literature [Arumugam et al., 1994; Bajpai, 2008]. A schematic view

of a disposal pit in Indian DGR is shown in Figure 1.2 [Goel et al., 2003]. Experimental and

numerical studies on heat dissipation, solute transport and thermo-hydro-mechanical process in

DGR are also being carried out actively [Verma et al., 2011, 2015].

Figure 1.2: Schematic of a vertical disposal pit in DGR
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Figure 1.3: Management of radioactive waste in India (Raj et al., 2006)

1.5 Literature survey

1.5.1 Multi-component and long term reactive transport

There are two distinct scales at which multi-component and long term reactive transport are

generally studied, which are (1) pore scale and (2) representative elementary volume (REV)

scale [Bear, 1972; Zhang et al., 2000]. Pore scale studies are useful to understand the actual

physical and chemical processes happening at microscopic level. Since most of the chemical

reactions such as dissolution, precipitation, surface complexation and ion exchange occur at

mineral surface and geological porous media are highly heterogeneous, pore scale study of re-

active transport provide more realistic assessment of the actual process than REV scale study.

For example, the above mentioned reactions at pore scale can modify the properties of the me-

dia, thereby altering the values of hydro-geological parameters (porosity, permeability), which

has direct impact on flow and transport process at REV scale [Hoefner et al., 1998; Molins et al.,

2012]. However, pore scale reactive transport simulation requires actual geometry of the porous
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media, which is generally obtained from tomographic images [Bultreys et al., 2016], and the

domain size is limited to relatively small scale because of huge demand for computational stor-

age and computing speed [Gao et al., 2015]. REV scale study is one type of upscaling of pore

scale study. In this study pore scale heterogeneity of the media is not taken into consideration

directly rather their existences are modeled as parameters of the macroscopic equations that are

obtained via homogenization of pore scale model equations over the REV. In this study we have

adopted REV scale study of multi-component and long term reactive transport.

Pore scale study

Though REV scale models are generally applied for large scale engineering problem, the unre-

solved heterogeneities at pore scale together with use of empirical parameters leads to its failure

for modeling actual scenarios occurring even at laboratory scale experiments [Levy et al., 2003].

Since most of the chemical reactions, such as dissolution, precipitation, surface complexation,

ion exchange, occur at mineral surface and geological porous media are highly heterogeneous,

pore scale study of reactive transport provide more realistic assessment of the actual process

than REV scale study. Pore scale study of flow and reactive transport through porous media are

generally carried out using following three techniques (i) mesoscopic techniques such as LBM,

(ii) smoothed particle hydrodynamics (SPH), and (iii) pore network method.

REV scale study

Transport of radionuclides through aquatic media due to physical processes (e.g., advection,

molecular diffusion and mechanical dispersion) is affected by various chemical reactions, such

as ion exchange, surface complexation, adsorption, desorption, absorption, precipitation, disso-

lution etc. There are generally two distinct modes for handling chemistry that play crucial role

for modeling migration of radionuclides from the radioactive waste disposal area to the envi-

ronment. In one mode of approach, effects of chemical reactions, such as ion exchange, surface

complexation, adsorption, absorption etc., are treated together with the help of some empirical
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models known as sorption isotherms. Various empirical isotherms, such as linear, Freundlich

and Langmuir isotherms, are generally used to model the impact of sorption on radionuclide

migration. This formulation simplifies the mathematical complexity of multi-component reac-

tive transport model as well as reduces the computation time drastically. Most frequently used

isotherm in the study of migration of radionuclides is linear isotherm also known as Kd ap-

proach. The multi-component reactive transport equations with linear sorption coefficient have

been solved by various authors using analytical [Bauer et al., 2001; Higashi et al., 1980; Lunn

et al., 1996; Guerrero et al., 1996; Srinivasan et al., 2008a,b] as well as numerical techniques

[Schwartz, 2009; Silveria et al., 2013]. But it has been reported by researchers that Kd-based

approach provides results that are inconsistent with laboratory and fields observations [Bethke

et al., 2000, and references there in]. The reason behind the inconsistency given by Brady and

Bethke [Brady et al., 2000] and Bethke and Brady [Bethke et al., 2000] is that isotherm based

approaches are not capable of accounting for the effects of variable chemical conditions, such

as pH, presence of other competitive ions, on the sorption reactions.

The other mode for treatment of the above mentioned chemical reactions in a hydro-geological

system (open system) is based on incorporation of model equation of the individual chemical

reaction into the transport equation. This approach is more robust in modeling the actual geo-

chemical condition prevailing at the waste disposal site. This kind of approach was initially for-

mulated with the reference to reaction path model [Helgeson, 1968, 1971; Reed, 1982; Lasaga,

1984], which are applicable to chemical reactions in batch mode (closed system). The math-

ematical formulation of modern continuum multi-component reactive transport, which could

model any kind of biogeochemical reactions in combination with various flow models in ge-

ological media, was developed during the mid-1980s [Lichtner, 1985; Lichtner et al., 1988;

Krikner et al., 1998; Yeh et al., 1989; Lichtner, 1996]. These kind of models have widely

been used in the past to simulate various processes in hydro-geological system [Steefel et al.,
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1994a,b, 1998a,b; MacQuarrie et al., 2005; Tartakovsky et al., 2008]. Important application of

multi-component and long term reactive transport model could be found in the long term alter-

ation study of bentonite barrier in presence of hyper-alkaline solution, generated due to use of

cementitious materials in a DGR [Berner et al., 1992; Savage et al., 2002; Gaucher et al., 2004,

2006; Marty et al., 2014, 2015]

1.5.2 Traditional numerical methods for reactive transport

Reactive transport equation or ADRE is a nonlinear partial differential algebraic equation (PDAE).

There are three approaches to solve REV scale PDAE [Steefel et al., 1996; Molins et al., 2004;

de Simoni et al., 2005], which are (i) sequential non-iterative approach (SNIA) [Walter et al.,

1994; Steefel et al., 1996], (ii) sequential iterative approach (SIA) [Yeh et al., 1991; Carray-

rou et al., 2004] and (iii) direct substitution approach (DSA) [Saaltink et al., 1998, 2001; de

Dieuleveult et al., 2009a,b]. SNIA and SIA are based on operator splitting approach generally

used in multi-physics problems. In these approaches transport part, which is modeled as PDE,

and reaction part, which is modeled as nonlinear algebraic equations, are treated separately for

a given time step. The basic difference between the SNIA and SIA is that there is no iteration

between the two solvers (transport and reaction) for SNIA, whereas in SIA the two solvers con-

tinue exchanging their solution unless until a given convergence criterion is fulfilled. One of the

important drawbacks of SNIA and SIA approaches is that there is a limitation on time step size,

which must be smaller than the reaction time of any reaction that need to be model kinetically.

In DSA, transport and reaction equations are solved simultaneously. This approach has no time

step limitation, but it becomes cumbersome to solve the global matrix for a large number of

species [Guo et al., 2013].

In this study, we have adopted operator splitting approach (SNIA) for solving reactive transport

equations, because this approach will facilitate the coupling of transport solver with commer-
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cial geochemical software. In both SIA and SNIA, the transport equations are generally solved

using traditional numerical methods, such as FDM, FEM, FVM. In FDM, the computational

model geometry is discretized by rectangular/square cells. The numerical values of parameters

of governing equations are same in a single cell and the values of the parameters remain same

over all the cells if the media is homogeneous. The nodes are usually set at the center of gravity

of each cell and they represent the average concentration of the cell. Volumetric chemical re-

actions are carried out at each cell after the transport step. Numerical dispersion and numerical

instabilities of FDM based solutions are avoided by a high-resolution discretization. The high

resolution discretization, however, leads to very long computing times. The Grid-Peclet number

and Courant number are used to select grid size and time interval. These criterion can be written

as

Pe =
|v|∆x
D

≤ 2 (1.1)

Co = |v ∆t

∆x
| ≤ 1 (1.2)

where D is dispersion coefficient, v is water velocity, ∆x and ∆t, are grid size and time interval,

respectively. Stability of implicit FDM, which applies reverse differences in time, is better

than explicit FDM. The time interval of an implicit FDM based solver for reactive transport

is controlled by reaction time. Though FEM is more flexible for discretization of complex

domain geometry, it also suffers from numerical dispersion and oscillation effects. Various

commercial softwares are nowadays available to simulate multi-component reactive transport

using traditional numerical methods. The list of such softwares includes PHREEQC [Parkhurst

et al., 1999, 2013], OpenGeoSys [Kolditz et al., 2012], HYDROGEOCHEM [Yeh et al., 1990],

PFLOTRAN [Hammond et al., 2010], CrunchFlow [Steefel et al., 1994a], TOUGHREACT

[Xu et al., 2006, 2011], HYTEC [Van der Lee et al., 2003], HPx (HP1, HP2, HP3) [Jacques

et al., 2005; Šimr̊nek et al., 2012, 2013], PHT3D [Prommer et al., 2003, 2010], ORCHESTRA
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[Meeussen, 2003], MIN3P [Bea, 2011]. A brief summary of all the above mentioned reactive

transport codes is given by Steefel et al. [Steefel et al., 2015] and Zhang et al. [Zhang et al.,

2012]

1.5.3 Lattice Boltzmann method for solute and reactive transport

Numerical solution of PDAEs, representing reactive transport of a large number of species, be-

comes difficult to obtain when various equilibrium as well as kinetic reactions are involved.

This becomes more challenging when the required simulation time period is very large. In

order to overcome these difficulties researchers have attempted to develop efficient numerical

algorithm for multi-component and long term reactive transport. LBM is a relatively new in

the field of modeling and simulation method for complex system but has proven to be one of

the powerful computational fluid dynamics (CFD) tools [Succi et al., 1991; Chen et al., 1998;

Succi, 2001]. It has originated from Lattice Gas Cellular Automata (LGA) method [Frisch et al.,

1986], which is a subset of cellular automata (CA) model [Chopard et al., 1998], with an urge to

remove initial drawbacks (statistical noise) of the later one [McNamara et al., 1988]. The fun-

damental difference between the traditional numerical techniques and LBM is that traditional

techniques focus on solving algebraic forms of macroscopic equation, whereas LBM solves dis-

crete velocity Boltzmann equation, which models the dynamics of fictitious particles interacting

on a lattice in such a way as to reproduce a desired physical or chemical process [Succi, 2001;

Wolf-Gladrow, 2000]. Since Boltzmann equation governs the evolution of particle distribution

function, which is mesoscopic variable representing particle density, the LBM is a mesoscopic

technique. It has a finer description of the physical quantities than traditional schemes, because

the later ones deal with macroscopic variables (such as density of fluid, solute concentration,

temperature), which are various velocity moments of the distribution function. The inherent

parallel structure of LBM algorithm has provided a fundamental scope of better utilizing mod-

17



CHAPTER 1. INTRODUCTION

ern computer architecture as in graphical processing units. Another major advantage of LBM is

due to its simple bounce-back boundary condition, which can be easily implemented in a com-

plex geometry such as porous media. The explicit nature of LB update scheme has attracted

many researchers for applying LBM in various research domains.

Since its inception as a mesoscopic technique that can simulate fluid flow, particularly Navier-

Stokes equation (NSE), LBM has been successfully applied to solve various kind of fluid dy-

namics problems, such as flow though complex boundary geometries (porous media), two phase

flow, turbulence flow, microfluidics [Zhang, 2011; Guo et al., 2006] etc. In the last two decades,

LBM has emerged as a promising numerical scheme that can solve a set of partial differen-

tial equations representing various other science and engineering problems, such as diffusion-

reaction [Dawson et al., 1993; Qian et al., 1995; Chen et al., 1995], ADE[Flekky, 1993; Van

der Sman et al., 2000; Zhang et al., 2002; Ginzburg, 2005; Stiebler et al., 2008; Zhou, 2009],

electrochemical transport [He et al., 2000a; Wang et al., 2010], reactive transport [Kang et al.,

2006, 2007, 2010b; Hiorth et al., 2013], wave motion [Yan et al., 2000], traffic flow [Yan et al.,

2000], image analysis [Jawerth et al., 1999] etc. In the rest of this section, a comprehensive

review of all popular works done thus far by researchers to simulate multi-component reactive

transport using LBM is presented.

LBM has been applied to solve multi-component reactive transport in geological porous media

at two different scales: pore scale and representative elementary volume (REV) scale [Bear,

1972; Zhang et al., 2000].

Kang et al. developed a LBM based multi-component reactive transport model at pore scale

to study chemical dissolution in porous media [Kang et al., 2002]. They used their model to

simulate dissolution of rock and subsequent formation of wormhole when acidic solution was

injected into the media. They treated the heterogeneous dissolution reaction at solid surface

through proper boundary conditions at solid surface. They further incorporated precipitation re-
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action into their model and studied impact of flow velocity on reaction rate [Kang et al., 2003].

In their recent progress on LBM based multi-component reactive transport, they considered both

homogeneous reactions among aqueous species and heterogeneous reactions with solid surface

[Kang et al., 2006, 2007] and applied the model for CO2 sequestration [Kang et al., 2010a,b],

changes in permeability and porosity of porous media due to dissolution reaction [Kang et al.,

2014; Chen et al., 2014, 2015, 2018a]. Pore scale LB based multi-component reactive trans-

port was further developed and used in CO2 sequestration with experimental validation [Tian

et al., 2014; Yoon et al., 2015; Gao et al., 2017; Tian et al., 2018; Chen et al., 2018b]. More

sophisticated geochemical model, which includes ion exchange and surface complexation in

addition to dissolution and precipitation, was developed by Hiorth [Hiorth et al., 2013]. All the

above formulations modeled the heterogeneous reactions at the solid surface using boundary

flux formulations and application of these type of LB based multi-component reactive transport

was restricted to relatively simple geochemical reactions. In order to simulate more complex

geochemical problems, there was a need to interface LB based solute transport model with com-

mercial geochemical software. In this regard, Patel et al. developed a coupling scheme that was

able to make use of geochemical software, PHREEQC, in the pore scale LB framework [Patel

et al., 2013]. They considered the addition or removal of solute mass from the aqueous phase

due to dissolution and precipitation reactions as source term and this concept facilitated the

coupling with commercial geochemical software. They used the interfaced scheme to simulate

degradation of concrete due to various chemical reactions [Patel et al., 2014, 2018; Fazeli et al.,

2018].

Apart from the above mentioned development of LBM based reactive transport simulation,

there has been another trend in development of reactive transport solver using mixed numerical

techniques, such as LBM interfaced with FDM [Albuquerque et al., 2004; Van Leemput et al.,

2003], LBM interfaced with FEM [Zhang et al., 2014a,b], LBM interfaced with FVM [Chen et
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al., 2012, 2013]. In this study, we have followed the previous development, i.e., LBM based

transport solver interfaced with commercial geochemical software.

1.5.4 Differential quadrature method for solute and reactive transport

Differential quadrature method (DQM) is a numerical technique for solving linear and non-

linear differential equations. Historically it was developed as an analogous to numerical inte-

gration technique called numerical quadrature. In numerical quadrature, definite integral over

a closed domain is approximated by a linear weighted sum of the values of the integrand at a

group of points in the domain of integration, similarly in DQM, partial derivative of a piece-

wise continuous function at any discrete point in the computational domain is approximated as

weighted linear sum of functional values at all other discrete points along the line that passes

through that point, which is parallel with coordinate direction of the derivative. This method

was introduced by Richard Bellman and his associates in the early of 1970s [Bellman et al.,

1971, 1972] while searching for a numerical method that can provide accurate solution of non-

linear PDE with minimum number of grid points. It has further been advanced by the work of

Shu [Shu, 2000] and has been successfully used to solve various linear and non-linear differen-

tial equations appear in science and engineering domain with faster computation and accurate

solution[Jang et al., 1989; Shu, 1991; Sherbourne et al., 1991; Shu et al., 1992; Civan et al.,

1983; Du et al., 1995, 1996; Laura et al., 1994; Bert et al., 1996; Shu, 2000].

The concept of DQM is very simple and it can be implemented straightforwardly. Since DQM

requires very few grid points for solving differential equations with high accuracy, minimum

computational efforts are required to implement it [Bellman et al., 1972; Malik et al., 1995; Bert

et al., 1996]. The formulation of DQM is totally based on two important consideration which are

(1) how the weight coefficients are determined and (2) how the grid points are selected. There

are two approaches to determine the weight coefficients which are (1) solving a system of linear
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equations and (2) using approximation theory. The first approach was proposed by Bellman

[Bellman et al., 1972] and the second one was formulated by Quan [Quan et al., 1989a,b]. In

fact, Bellman proposed two methods which are based on same principle of solving a system

of linear equations but with different options for grid point selections. In one of the Bellman’s

approach grid points can be selected arbitrarily, whereas in the other one grid points are roots

of the shifted Legendre polynomial [Bellman et al., 1972]. Further development towards deter-

mination of weight coefficient was done by Shu [Shu, 1991, 2000]. In approximation theory

based approach the unknown solution of the differential equation is first written in term of basis

function, also called test function, using linear vector space analysis and function approximation

theory. There are three frequently used bases which are polynomial basis, Fourier expansion ba-

sis, and harmonic basis [Shu, 2000]. Accordingly, considering the particular base function used

for calculation of weight coefficient the related DQM is called polynomial differential quadra-

ture method (PDQM), Fourier expansion based differential quadrature method (FDQM), and

harmonic differential quadrature method (HDQM), respectively. Among the aforementioned

DQMs, the most popular one is PDQM, because it is applicable for most of the engineering

problems except those which have periodic and harmonic behaviors. FDQM and HDQM are

generally used for engineering problems having periodic and harmonic behaviors, respectively.

Various polynomial functions, such as Legendre polynomials [Bellman et al., 1972], Lagrange

interpolation polynomials [Quan et al., 1989a,b; Shu et al., 1992], Hermite polynomials [Cheng

et al., 2005], are used as a test function in PDQM. However, the most frequently used PDQM is

based on Lagrange interpolation polynomials.

Since solution of ADE is not having any periodicity or harmonicity, PDQM with Lagrange poly-

nomial as the basis function is used in this thesis for solving solute transport model equation.

Kaya [Kaya, 2010] solved ADE using PDQM with Lagrange polynomial as the basis function

and compared the results with the solutions obtained using explicit and implicit FDM. He con-
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cluded that DQM based results are more accurate than the results obtained using FDM schemes

and same accuracy can be obtained if number of grid points for FDM are increased. His study

also showed that DQM computation is 50-500 times faster than FDM computation. Aswin et al.

solved convection diffusion equation using mixed FDM and DQM [Aswin et al., 2015]. They

demonstrated three different numerical schemes, which includes finite difference in time and

differential quadrature in space (FDTDQS), differential quadrature in time and finite difference

in space (DQTFDS), and differential quadrature in time and differential quadrature in space

(DQTDQS). They concluded that accuracy of results improves if more number of derivatives

are approximated using DQM and therefore, DQTDQS scheme provides more accurate results

than the other two schemes.

1.5.5 Modeling uncertainty analysis in solute transport and reactive transport model

The unresolved heterogeneities at pore scale together with use of empirical model parameters

leads to uncertainty in model output of a REV scale solute transport and reactive transport

model. This kind of uncertainty belongs to the category of model uncertainty. Another im-

portant source of uncertainty in the model output is special heterogeneity of geological media.

Because of this spatial heterogeneity, the REV scale model parameters can not be represented

by a single (crisp) value. In fact, single value of model parameters represent a homogeneous

media, which is not true in general. One way to resolve this heterogeneity is to establish the

relationship between the parameters and the spatial coordinate and use that relation in the nu-

merical model. But, it is almost impractical to experimentally measure the values of the model

parameters at each and every location. Another way of treating this spatial heterogeneity is to

consider the model parameter as uncertain and propagate this parameter uncertainty through the

model so that output of the model can be represented as a crisp value with an error bar. This

kind of uncertainty is referred as parametric uncertainty. The objective of these type of models
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is to cast the processes in heterogeneous geologic media into an equivalent quasi-homogeneous

processes. Now our next task is to represent these uncertain parameters with the help of some

mathematical tool for uncertainty analysis. There are two broad classes of uncertainty anal-

ysis which are (i) aleatory uncertainty or stochastic uncertainty and (ii) epistemic uncertainty

[Ayyub et al., 2006]. Quantification of stochastic uncertainty is done by Monte Carlo method,

whereas epistemic uncertainty is quantified using fuzzy set theory.

Uncertainty analysis of solute transport simulation was carried out by Dou et al [Dou et al.,

1997] using fuzzy set approach. They employed explicit FDM to solve both one- and two-

dimensional ADE with imprecise model parameters such as groundwater velocity and disper-

sivity. Baraldi et al. calculated uncertainty in ground water flow model using both probability

theory and Dempster-Shafer theory and compared the two results [Baraldi et al., 2010].

1.6 Lattice Boltzmann method

Since Lattice Boltzmann method has been adopted in this thesis as a numerical framework for

multi-component and long term reactive transport, it is worth introducing the theoretical back-

ground and general implementation of lattice Boltzmann method (LBM) here, before applying it

in the subsequent chapters. There are basically two distinct approaches to simulate the behavior

of physical system, which are ’top down’ and ’bottom up’ approaches [Wolf-Gladrow, 2000].

The ’top down’ approaches solve discretized forms of partial differential equations (PDEs),

which model the macroscopic phenomena of the system of interest, whereas ’bottom up’ ap-

proaches solve the microscopic equations, which model the dynamics of particles inside the

system. Traditional numerical simulation techniques (FDM, FEM, FVM) fall under the cate-

gory of ’top down’ approaches, whereas Monte Carlo (MC) simulation of molecular dynamics,

LBM falls under the category of ’bottom up’ approach. In fact, the LBM is also described as a

mesoscopic approach, because it solves the dynamics of mesoscopic variable called particle dis-
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tribution function. In LBM discrete particles residing at regular lattice nodes stream towards a

neighboring lattice node in a particular lattice direction and collide with the particle residing on

that neighboring lattice node. The kinetics of these particles is governed by lattice Boltzmann

equation, which is basically a finite difference scheme of the discrete velocity Boltzmann equa-

tion. Implementation of LBM is based on this concept of streaming and collision processes.

This simple kinetic model of LBM is well enough to simulate various processes, such as fluid

flow, mass transport, heat transport, wave motion etc [Chen et al., 1998; Succi, 2001]. In this

section, we will cover a brief overview of the origin of LBM, derivation of lattice Boltzmann

equation (LBE) and its general implementation.

1.6.1 Origin of lattice Boltzmann method

The lattice Boltzmann equation (LBE), which models the evolution of discrete velocity distri-

bution function, can be derived from the continuum Boltzmann equation [He et al., 1997; Shan

et al., 2006]. Historically, however, LBE was derived from discrete particle lattice gas cellular

automata (LGCA) model [Wolf-Gladrow, 2000], which is a subset of cellular automata (CA)

[Chopard et al., 1998]. A brief overview of the historical background of the LBM and its pre-

cursors, the CA and LGCA is presented in the following. For extended information, the reader

may refer to the literatures [Chopard et al., 1998; Wolf-Gladrow, 2000; Succi, 2001].

Cellular automata

A CA model can be defined as a set of N number of cells placed in a regular grid, where each

cell has a state from a finite number of possible discrete states [Wolf-Gladrow, 2000]. The

states of all the cells get updated simultaneously after each discrete time step following some

deterministic rules. This updating rule operates locally i.e. the new state of a cell depends upon

the states of the neighboring cells including its own [Datta et al., 2016b]. As an illustrating ex-

ample, we consider a one-dimensional CA consisting of 100 cells with only two possible states
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(0 or 1) for each cell. The boundary cells are set to 0 and are not updated. The updating rule

for the interior cells depends on the states of its neighbors and the cell itself. Therefore, each

interior cell can be characterized by a local configuration in the form of a triplet si−1, si, si+1,

where si is the state of the cell itself and si−1, si+1 are the state of the left hand side cell and

right hand side cell, respectively. For the two state CA there will be following 8 possible local

configuration of each interior cell.

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)

Therefore, any update rule r can assign any one of the above configuration to a local configu-

ration. Since each state has two independent states (0,1), the total number of possible update

rule for a one-dimensional CA is therefore 28 = 256. The state si of the ith interior state is then

updated to a new state s′i as

s
′

i = r(si−1, si, si+1), i = 2, 3, ..., 99

Lattice gas cellular automata

LGCA are derivative of classical CA. The main difference between the CA and the LGCA lies

in the update rule, which for the LGCA is split into two parts usually called collision and prop-

agation. Furthermore, the LGCA conserve explicitly mass and momentum and because of these

conservation LGCA simplify the construction and application of automata to given physical

processes [Wolf-Gladrow, 2000]. LGCA aims to simulate fluid flows with simple fluid model.

In LGCA, the fluid is treated as a set of simulated particles residing on a regular lattice with cer-

tain symmetry properties, where they collide and stream following some prescribed rules that

satisfy some necessary physical laws. The philosophy behind the LGCA is that fluid behav-
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iors at macro-scale are nothing but statistical collective results of the micro-dynamics of fluid

molecules, and are insensitive to the detailed information of the individual molecules. In other

words, fluids with different micro structure and interactions may have the same macroscopic

phenomena. Therefore, it is possible to simulate macroscopic flows with a fictitious micro fluid

model which has simple micro-dynamic but satisfies some necessary physical laws. In 1973,

LGCA was proposed for the first time by three French scientists, Hardy, de Pazzis and Pomeau

and the model is known as HPP model [Hardy et al., 1973]. They proposed the LGCA as a new

technique for the study of Navier-Stokes equation (NSE) by simulating very simple microscopic

system, where particles are allowed to move in a regular lattice, and a set of local collision rules

are introduced on the nodes which conserve the mass and momentum. Mathematically, the

motion of the particles in HPP model can be described as a set of discrete kinetic equations as

ni(~r + ~ei∆t, t+ ∆t) = ni(~r, t) + Ωi (n (~x, t)) ,with

(n (~x, t)) = (n1 (~x, t) , n2 (~x, t) , ..., nk (~x, t))T
(1.3)

where ni(~x, t) is having two states represented by the binary digits 0 and 1, where state value 0

represents that cell i is not occupied by a particle and state value 1 signifies that cell i is occupied

by a particle which is moving with discrete velocity ~ei at node x and time t, ∆t is the time step,

and Ωi is the collision operator that model the influence of particle collision. The collision

operator is chosen in such a way that it conserve the number of particle and momentum. The

particle evolution equation (1.3) can be decomposed into two sub-process, called collision and

streaming, as

Collision: n
′

i(~r, t) = ni(~r, t) + Ωi (n (~x, t))

Streaming: n (~x+ ~ei∆t, t+ ∆t) = n
′

i(~r, t)

(1.4)
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Macroscopic flow variables such as density, velocity, and temperature are calculated from the

ensemble average of the Boolean variable, fi =< ni > as

ρ =
k∑
i=1

mfi

ρ~u =
k∑
i=1

m~eifi

ρE = ρRT =
k∑
i=1

m

2
(~ei − ~ui)

2 fi

(1.5)

Although HPP model satisfies the conservation of mass and momentum, it fails to represent

the correct form of momentum flux tensor as required by Navier-Stokes equations (NSE). This

failure is due to the square lattice used in the HPP model. This kind of lattice is not able to

produce specific isotropic tensor of rank four which is required to obtain the correct form of

NSE [Wolf-Gladrow, 2000]. In 1986, Frisch, Hasslacher and Pomeau used triangular lattice

in their LGCA model and they were able to overcome the limitation of the HPP model. Their

LGCA model, which was a milestone that motivated further developments of the LGA and their

application in a wide range of real problems, is known as FHP model [Frisch et al., 1986].

Lattice Boltzmann method from lattice gas cellular automata

Although FHP model of LGCA is able to simulate correct hydrodynamic equations (NSE), there

are few drawbacks in LGCA which are: large statistical noise in the computed macroscopic

parameters (1.5) due to the use of Boolean variable in LGCA, non-Galilean invariance, number

of physical parameters that can be derived from LGCA are limited to few, and requirement of

high computational effort to obtain reasonable macroscopic quantities by averaging procedure

[Wolf-Gladrow, 2000; Succi, 2001]. To circumvent these drawbacks, McNamara and Zanetti

replaced the binary populations of LGCA by average value having interval [0, 1]. These average

values represent particle distribution functions and by this consideration they were able to avoid

the averaging process required in LGCA. This remarkable consideration came to the scientific
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community in 1988 [McNamara et al., 1988] and their work is considered as the origin of LBM.

At the same time Higuera and Jimenez also proposed the formulation [Higuera et al., 1989a]. In

the original LBM, calculation of equilibrium distribution function (EDF) and relaxation matrix

were carried out using the underlying LGCA models. Higuera et al. further suggested that LBE

can be derived independently of underlying LGCA [Higuera et al., 1989a]. Further development

of LBE was done by Qian et al. who suggested that the collision term of LBE can be replaced

by a linear term with a single relaxation parameter [Qian et al., 1992] similar to one proposed

by Bhatnagar et al. [Bhatnagar et al., 1954]. This model of LBM is known as Bhatnagar-

Gross-Krook (BGK) LBM, which is the most popular LB scheme till date due to its algorithmic

simplicity. In this BGK LBM, the governing equation for LGCA (1.3) is changed into the LBE

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) +
∆t

τ
(fi (~x, t)− f eqi (~x, t)) (1.6)

with lattice vector ~ei and equilibrium distribution function (EDF), f eqi (~x, t), which can be de-

rived from Maxwell-Boltzmann velocity distribution function (discussed in second chapter).

The macroscopic quantities are the velocity moments of the distribution function

ρ =
k∑
i=1

fi

ρ~u =
k∑
i=1

~eifi

ρE = ρRT =
k∑
i=1

1

2
(~ei − ~ui)

2 fi

(1.7)
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Since after collision particle distribution function relaxes towards EDF, the required mass and

momentum conservation are achieved by enforcing following conditions

Mass conservation:
k∑
i=1

fi (~x, t) =
k∑
i=1

f eqi (~x, t)

Momentum conservation:
k∑
i=1

fi (~x, t) ~ei =
k∑
i=1

f eqi (~x, t) ~ei

(1.8)

This BGK LBM scheme is also known as single relaxation time (SRT) LBM. This scheme

of LBM has some limitations in terms of stability of numerical solution. Stability of SRT

LBM scheme is a function of its relaxation parameter and for stable solution the value of this

parameter should be in the interval [0.5, 2]. Also this scheme of LBM is not able to simulate

anisotropic processes. Further research to overcome these limitation has developed following

two schemes: two relaxation time (TRT) LBM and multi relaxation time (MRT) LBM.

1.6.2 Boltzmann equation

In the previous section we have discussed about the historical origin of LBM from LGCA. After

the work by He et al. [He et al., 1997], LBM is treated as a special finite difference scheme of

Boltzmann equation. Therefore, it is worth having discussions on Boltzmann equation before

using the same for the derivation of LBE. Boltzmann equation also known as Boltzmann trans-

port equation, formulated by Austrian physicist Ludwig Boltzmann, is the governing equation

for the evolution of particle distribution function with time.

The Boltzmann equation also known as the Boltzmann transport equation, devised by Ludwig

Boltzmann, describes the statistical distribution of particles in a fluid. It is an equation for the

time evolution of f(~x, ~p, t),the particle distribution function in the phase space. Phase space

here can be viewed as a space in which coordinates are given by the position and momentum

vectors at the time. The distribution function, f = f(~x, ~p, t), gives the probability of finding a
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particular molecule with a given position and momentum.

In this section, derivation of Boltzmann equation using the principle of conservation of particle

in collision is given. The particle distribution function f is a function of space, time and particle

velocity and therefore written as f = f(~x,~e, t). The number of particle within a phase space

volume ∆~x∆~e at phase space location (~x,~e) at time t is denoted as f(~x,~e, t)∆~x∆~e. These

particles move according to the equation of motion of the system and after a time interval of ∆t

reach to the location (~x+~e∆t, ~e+
~F
m

∆t), where m is the mass of a single particle, ~F is external

force, such as gravity, acting on the particles. Collisions between the particles are the cause of

lose of particles during this period of time (∆t). Therefore, using the principle of conservation

of particle we can write

f
(
~x+ ~e∆t, ~e+ (~F/m)∆t, t+ ∆t

)
− f (~x,~e, t) = Ω (1.9)

where Ω is called collision operator. Now using Taylor series expansion we get

∂f (~x,~e, t)

∂t
+ ~e.~∇~xf (~x,~e, t) +

~F

m
.~∇~ef (~x,~e, t) = Ω (1.10)

where repeated indices follow Einstein summation convention. In absence of external force

(~F = 0), we can simplify the above equation as

∂f (~x,~e, t)

∂t
+ ~e.~∇~xf (~x,~e, t) = Ω (1.11)

The above two equations (1.10 and 1.11) are the famous Boltzmann equations in presence of

external force and in absence of external force, respectively [Chapman et al., 1991].
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1.6.3 Implementation of lattice Boltzmann method

In this section, we have discussed the lattice Boltzmann algorithm and its implementation. We

first rewrite the LBE (1.6)

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) +
∆t

τ
(fi (~x, t)− f eqi (~x, t)) (1.12)

If we decompose the time step involved with the above equation into two (one for collision

process and another for streaming ) then Eq. (1.13) can be solved in two steps. One step

represents collision process and other one represent streaming process. The two steps can be

written in mathematical form as

Collision

The collision process update the equilibrium distribution function locally as

f ?i (~x, t) = fi (~x, t) +
∆t

τ
(fi (~x, t)− f eqi (~x, t)) (1.13)

where f ?i (~x, t) is the post collision distribution function.

Streaming

In the streaming process post collision distribution function reach to its nearest neighbor through

a given velocity direction as

fi (~x+ ~ei∆t, t+ ∆t) = f ?i (~x, t) (1.14)

It can be observed from the above two equations (1.13 and 1.14) that out of the two processes

only collision process involves algebraic calculations, whereas streaming process is just swipe

in memory. Both the collision and streaming process are executed in a single operation, known

as ”collide-and-stream” operation. This consideration is very advantageous for the implemen-
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tation as it allows better performance and a optimization in memory requirement [Wellein et al.,

2006; Mattila et al., 2007, 2008]

1.7 Differential quadrature method

In this section, we have briefly reviewed the mathematical formulations of PDQM. More de-

tailed formulations are given in standard text books on DQM [Shu, 2000; Zong et al., 2009;

Wang et al., 2015]. Since weight coefficients and grid point selections are the two most impor-

tant steps for formulation of DQM, it is worth reviewing these aspects.

1.7.1 Differential quadrature equation

The DQ approximation of the kth order derivative of a continuous function, f(x), at ith node

point is given by weighted linear sum of the function values at all discrete node points along the

direction of x as

fkx (xi) =
∂kf

∂xk
|x=xi=

N∑
j=1

A
(k)
ij f (xj) , i, j = 1, 2, 3, ..., N (1.15)

where xj are the discrete nodes in the domain at which function values are known, f(xj) are

the function values at these nodes, N is the total number of such nodes, and A(k)
ij are the weight

coefficients for the kth order derivative of the function, therefore for a N point DQM, A(k)
ij are

the elements of a N × N matrix. DQ equation of a PDE is formulated by substituting the

derivatives of the PDE with these approximate values. Using the above formula (1.15) first

order and second order derivatives of f(x) with respect to x can be written as

f 1
x (xi) =

∂f

∂x
|x=xi=

N∑
j=1

A
(1)
ij f (xj) , i = 1, 2, 3, ..., N

f 2
x (xi) =

∂2f

∂x2
|x=xi=

N∑
j=1

A
(2)
ij f (xj) , i = 1, 2, 3, ..., N

(1.16)
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where A(1)
ij and A(2)

ij are the weight coefficients for the first and second order derivatives of the

function, f(x), with respect to x, respectively.

1.7.2 Determination of weight coefficients for differential quadrature method

Here we have derived the weight coefficients, A(k)
ij , using approximation theory which works

on how well a function can be approximated with simpler functions. In this procedure the func-

tion, which need to be approximated, is first written in terms of basis functions of a linear vector

space. For a PDQM, this linear vector space is a polynomial vector space and various polynomi-

als, such as Lagrange polynomials, Legendre polynomials, Hermite polynomials, are the basis

functions. We take here Lagrange polynomials as the basis functions. Lagrange polynomials

are used for interpolating discrete data set of a function, e.g., if x1, x2, x3, ..., xn−1, xn are n

discrete nodes at which the functional values are known then the interpolating polynomial, p, is

written using Lagrange interpolation formula as

p(x) =
n∑
k=1

λk(x)f(xk) (1.17)

where f(xk) is the value of the unknown function, f , at xk node point and λk is called Lagrange

basis polynomials, which is defined as

λk(x) =
n∏

j=1,j 6=k

x− xj
xk − xj

=
Mk(x)

Mk(xk)

Mk(x) =
n∏

j=1,j 6=k

(x− xj)
(1.18)

If we consider the initial values of the solution of a PDE, which are provided by the given

initial condition of the problem being solved, as the known values of our unknown solution

of the PDE, then the above formulas can be utilized to approximate the solution of the PDE.
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Therefore, the solution of the PDE can be approximately written as

f(x) ≈
n∑
k=1

λk(x)f(xk) (1.19)

Now, first and second order derivatives of the above solution (1.19) can written as

∂f(x)

∂x
≈

n∑
k=1

∂λk(x)

∂x
f(xk) =

n∑
k=1

Ak(x)f(xk)

∂2f(x)

∂x2
≈

n∑
k=1

∂2λk(x)

∂x2
f(xk) =

n∑
k=1

Bk(x)f(xk)

(1.20)

We can calculate the first order derivative of the Lagrange basis polynomials using Eq. (1.18)

as [Shu, 2000; Zong et al., 2009]

ak(x) =
∂λk(x)

∂x
=

1

Mk(xk)

∂Mk(x)

∂x

=
1

x− xk

n∑
l=1,l 6=k

Ml(xl)

Mk(xk)
, if x 6= xk k = 1, 2, ..., n

=
n∑

l=1,l 6=k

al(x)
Ml(xl)

Mk(xk)
, if x = xk k = 1, 2, ..., n

(1.21)

From the above Eq. (1.21), the coefficient of second order derivative can be calculated as [Shu,

2000; Zong et al., 2009]

bk(x) =
∂2λk(x)

∂x2
=
∂Ak(x)

∂x

=
n∑

l=1,l 6=k

al(x)
Ml(xl)

Mk(xk)
− Ak(x)

x− xk
, if x 6= xk k = 1, 2, ..., n

=
1

2

n∑
l=1,l 6=k

bl(x)
Ml(xl)

Mk(xk)
, if x = xk k = 1, 2, ..., n

(1.22)
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We can write the explicit formulas for the weight coefficients of first and second order deriva-

tives using the above two Eqs. (1.21 and 1.22) as [Shu, 2000; Zong et al., 2009]

A
(1)
ij =

M (1) (xi)

(xi − xj)M (1) (xj)
, for i, j = 1, ..., N and i 6= j (1.23)

A
(1)
ii = −

N∑
j=1 i 6=j

A
(1)
ij (1.24)

M (1) (xj) =
N∏

k=1, k 6=j

(xj − xk) (1.25)

A
(2)
ij = 2A

(1)
ij

(
A

(1)
ii −

1

xi − xj

)
for i, j = 1, ..., N and i 6= j (1.26)

A
(2)
ii = −

N∑
j=1 i 6=j

A
(2)
ij (1.27)

A
(m)
ij = m

(
A

(m−1)
ii A

(1)
ij −

A
(m−1)
ij

xi − xj

)
for i, j = 1, ..., N and i 6= j (1.28)

A
(m)
ii = −

N∑
j=1 i 6=j

A
(m)
ij (1.29)

1.7.3 Selection of grid points

The locations of grid points can be taken at uniform intervals or non uniform intervals. Previ-

ous studies reveal that non-uniform mesh generated from the roots of orthogonal polynomials

of functions can greatly enhance the accuracy of the quadrature solution in comparison to uni-

form mesh [Shu, 2000; Zong et al., 2009]. Most frequently used non-uniform grid points are

Chebyshev-Gauss-Lobatto (CGL) grid points which can be written as

ri =
a+ b

2
+
a− b

2
cos

i− 1

N − 1
π i = 1, 2, ..., N (1.30)

For a closed interval [a, b]. The uniform grid points in the same interval can be written as

ri = a+ (i− 1)× b− a
N − 1

i = 1, 2, ..., N (1.31)
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1.7.4 Numerical values of weight coefficients

In this section, numerical values of weight coefficients are calculated for N = 5 nos of grid

points and closed inter [0,1] using both uniform and non-uniform grid points. The uniform

grid points calculated using Eq. (1.31) are [0, 0.25, 0.5, 0.75, 1.0] and non-uniform grid points

calculated using Eq. (1.30) are [0, 0.14644661, 0.5, 0.85355339, 1.0]. The corresponding

weight matrices calculated using Eqs. (1.23-1.29) are given in the following.

Uniform grid points

A
(1)
ij =



-19.0 27.3137 -12.0 4.6863 -1.0

-1.7071 -1.4142 4.2426 -1.4142 0.2929

0.3333 -1.8856 0 1.8856 -0.3333

-0.2929 1.4142 -4.2426 1.4142 1.7071

1.0 -4.6863 12.0 -27.3137 19.0



A
(2)
ij =



388.0 -664.9016 408.0 -167.0984 36.0

28.1421 -40.0 12.0 0 -0.1421

-1.3333 10.6667 -18.6667 10.6667 -1.3333

-0.1421 0 12.0 -40.0 28.1421

36.0 -167.0984 408.0 -664.9016 388.0


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Non-uniform grid points

A
(1)
ij =



-11.0 13.6569 -4.0 2.3431 -1.0

-3.4142 1.4142 2.8284 -1.4142 0.5858

1.0 -2.8284 0 2.8284 -1.0

-0.5858 1.4142 -2.8284 -1.4142 3.4142

1.0 -2.3431 4.0 -13.6569 11.0



A
(2)
ij =



68.0 -113.9411 72.0 -46.0589 20.0

36.9706 -56.0 24.0 -8.0 3.0294

-4.0 16.0 -24.0 16.0 -4.0

3.0294 -8.0 24.0 -56.0 36.9706

20.0 -46.0589 72.0 -113.9411 68.0



1.8 Research gap areas

Multi-component and long term reactive transport simulation and uncertainty analysis of the

corresponding model output when the parameters of the governing equations are imprecise de-

mand for huge computational resources in terms of computational storage and computing speed.

Though traditional numerical techniques (FEM, FDM, FVM) have been successfully applied to

solve such problems in the present day parallel platform, but huge communication overheads

reduce their performance efficiency. LBM being a parallel algorithm has negligible commu-

nication overheads. Though LBM has been successfully applied to solve various flows, mass

transport, and reactive transport problems, the chemical model in LBM is limited to simple

chemical reactions. To get rid of this limitation researches have interfaced LB based solute
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transport model with geochemical software PHREEQC, but there is no commercial software

available on this interfaced technique. Literature study also reveals that though uncertainty

modeling of solute transport equation is an important part of safety analysis of waste disposal

site, there are very few studies that have attempted to estimate uncertainty of solute transport

model using numerical technique. It is also observed that no attempts have been made to numer-

ically solve solute transport equation with imprecise parameters using LBM and DQM. There-

fore, objective of this study is to develop an in-house computer code using LBM interfaced with

geochemical software PHREEQQC which can simulate multi-component reactive transport in

parallel context. The study also focuses on the development of numerical schemes to model

uncertainty of solute transport equation with imprecise input parameters such as groundwater

velocity, dispersion coefficient using LBM and DQM.

1.9 Research objectives

The specific objectives of this thesis are

1. Study of fast numerical algorithms such as lattice Boltzmann method (LBM) and differ-

ential quadrature method (DQM) to develop solute transport code that will be interfaced

with geochemical software PHREEQC to simulate multi-component and long term reac-

tive transport.

2. To develop a numerical scheme that can interface in-house developed LBM based solute

transport module with PHREEQC for reactive transport simulation.

3. To develop LBM and DQM based numerical schemes for uncertainty modeling of solute

transport and reactive transport when the parameters of the governing equations, such as

groundwater velocity, dispersion coefficient etc., are imprecise.
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1.10 Scope of the thesis

Though the developed computer codes for solute transport and reactive transport are validated

by solving benchmark problems having closed form solution, provisions are there to simulate

reactive transport processes having more practical applicability in the field of radioactive waste

disposal in geological repository. The developed fuzzy lattice Boltzmann scheme and fuzzy

differential schemes are applied to model uncertainty involved with solute transport process.

These schemes can further be utilized to model uncertainty involved with reactive transport

process with imprecise model parameters.

1.11 Research Strategy

Multi-component and long term reactive transport simulation are generally carried out at two

different scales, which are (i) pore scale and (ii) REV scale. There exist a variety of numerical

schemes, such as mesoscopic technique (LBM), SPH, pore network model, to simulate pore

scale reactive transport. Since most of the chemical reactions, such as surface complexation,

ion-exchange, dissolution, precipitation, occur at the mineral surface, pore scale study of reac-

tive transport provide more realistic assessment of actual processes than REV scale study of the

same. But, the requirement of actual porous geometry and huge demand for computational re-

sources in terms of computational storage and speed of computation has limited the application

of pore scale study to small domain. REV scale study of reactive transport does not incorporate

pore scale heterogeneity to the model directly, rather their effects are incorporated through em-

pirical parameters of the macroscopic equations. In this study REV scale model of the reactive

transport are considered.

REV scale reactive transport equations are generally solved using traditional numerical schemes,

such as FDM, FEM, FVM. These numerical schemes have been successfully applied to solve
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multi-component and long term reactive transport in both serial and parallel platforms. But,

communication overload of their parallel schemes is one of the serious bottlenecks for per-

formance improvement. Since LBM is a parallel algorithm, it better utilizes the modern day

parallel computational resources. Another numerical scheme called DQM requires very few

grid point, therefore DQM based solvers takes less time and less storage to solve PDE. Con-

sidering these useful properties of LBM and DQM these two method have been used in this

thesis as numerical framework. Though TRT and MRT schemes of LBM are more stable than

SRT scheme, the SRT scheme is simpler and computationally more attractive than the other two

schemes. In this work SRT scheme of LBM has been adopted.

As discussed earlier, multi-component reactive transport equation is a non-linear PDAE and

there are three approaches (SIA, SNIA, DSA) to solve PDAE. Here in this thesis we have

taken SNIA, therefore our approach to solve the multi-component reactive transport is based

on treatment of the transport and reaction processes separately. The transport process is math-

ematically governed by ADE, which is a second order PDE, while the reaction processes are

mathematically modeled as non-linear algebraic equations. This operator splitting approach is

very useful to harness the capabilities of commercial geochemical software to model various

complex geochemical reactions in batch mode by utilizing them as reaction engines in the nu-

merical framework. Two different versions of the geochemical software, PHREEQC, namely

IPhreeqc and PhreeqcRM are utilized as reaction engines in this thesis. These two versions of

the PHREEQC software were developed in order to simplify the coupling of them with other

transport solvers. In this thesis, we have first developed LBM and DQM based transport solvers

and validated the schemes by solving various benchmark problems. The LBM based transport

solver is then interfaced with both IPhreeqc and PhreeqcRM. The interfaced scheme is also val-

idated by solving benchmark problems.

Since uncertainty modeling of solute transport and reactive transport model output is an inte-
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gral part of safety assessment work for DGR, our next approach has been towards solving solute

transport/reactive transport in presence of uncertain model parameters. Two important param-

eters namely groundwater velocity and dispersion coefficient involved with these processes are

taken as uncertain parameters. Since experimental data of these parameters are very few and

sparse, they are generally classified as imprecise parameters. These imprecise parameters are

represented by triangular fuzzy numbers and Zadeh’s extension principle is utilized to propa-

gate these parameter uncertainty through the models. Analytical solution of the resulting fuzzy

ADE is generally used for uncertainty estimation. We have solved these fuzzy ADE using both

LBM and DQM and uncertainty in model output is presented as interval of lower and upper

bounds.

1.12 Outline of the thesis

The thesis is composed of five chapters. Outline of the thesis excluding the present chapter is

as follows:

Chapter 2 provides the basis of the two numerical schemes, LBM and DQM , which are used

in this thesis as numerical framework. For the shake of completeness of this thesis we briefly

reviewed the important aspects of LBM, which are derivation of lattice Boltzmann equation

(LBE) from continuous velocity Boltzmann equation, construction of equilibrium distribution

function, lattice structure for LBM. Recovery of macroscopic ADE from LBE is given in de-

tails. DQM based numerical scheme for solute transport is designed. LBM and DQM based

solute transport schemes are then validated by solving various benchmark problems.

In chapter 3, mathematical formulation of multi-component reactive transport with sorption

isotherm and geochemical reaction model is provided. The LBM based solver for solute trans-

port, which was developed in Chapter 2, is then interfaced with commercial geochemical soft-

ware, PHREEQC. The coupling scheme is then tested by solving benchmark problems.
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Chapter 4 presents LBM and DQM based numerical schemes for solute transport with imprecise

model parameters. Basics of fuzzy set theory is first introduced. Then, developed solute trans-

port model in presence of imprecise model parameters. The formulated fuzzy solute transport

is derived from the proposed LBM based numerical scheme. DQM based numerical scheme

for uncertainty modeling is provided. Finally, both the schemes are verified and validated by

solving standard one-dimensional and two-dimensional benchmark problems.

Chapter 5 brings out summary and conclusions of this study. Outline of future work proposal is

also included in this chapter.
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Chapter 2

Solute Transport Simulation using Lattice

Boltzmann method and Differential

Quadrature Method

2.1 Introduction

In this chapter transport of solute through geological media due to advection-dispersion pro-

cesses is comprehensively treated with two relatively new and promising numerical techniques,

LB and DQ. The purpose of this study is to develop the mesoscopic scale based an efficient

solver for solute transport that can be utilized for the development of multi-component reactive

transport solver as described in subsequent chapter. In section 2.2 mathematical formulation

of solute transport is first discussed. Though two-relaxation-time (TRT) and multi-relaxation-

time (MRT) schemes of LBM are more stable than single-relaxation-time (SRT) scheme, user

friendly and most popular scheme is SRT. Considering this, SRT-LB scheme is used in this

thesis. Details of the SRT-LB scheme, including derivation of LB equation, discussion on equi-

librium distribution function for the advection dispersion (AD), various lattices used for LBM,
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and recovery of AD equation from LB equation, are given in section 2.3. The LB scheme devel-

oped is verified and validated by solving benchmark problems as presented in section 2.4. Since

DQ solver requires very few grid points for calculation compared to other numerical techniques,

it requires less memory for storage which in fact make the computation fast. This property of

DQ is one of the important characteristics of a fast algorithm. In order to a have a compara-

tive study of performance of various numerical techniques, solute transport equation is solved

using DQ method also. In section 2.5 numerical framework of DQ method with respect to so-

lute transport is provided. The developed DQ based solver for AD equation is benchmarked in

section 2.6. Finally summary of this study is presented in section 2.7.

2.2 Solute Transport Model Equation

A set of physico-chemical processes, including advection, molecular diffusion, mechanical dis-

persion, bio-geochemical reactions, and decay of radionuclide simultaneously operate on so-

lutes dissolved in groundwater. As a consequence of these operations, solutes start transporting

through the geological media. The mathematical model of this transport is known as reactive

transport equation also called advection-dispersion-reaction equation (ADRE), which is a sec-

ond order non-linear partial differential equation (PDE). The non linear terms are due to various

bio-geochemical reactions occurring in the hydro-geological system through which the solutes

are being transported . For non-reactive and non-radioactive solutes, reactive transport equation

is second order linear PDE, which is known as advection-dispersion equation (ADE). Advec-

tion, diffusion and mechanical dispersion are the individual processes involved with ADE. In

the advection process, solute dissolved in groundwater moves with the velocity of groundwater.

Diffusion process takes place due to thermal agitation of molecules, whereas mechanical dis-

persion process is due to porous structure and inherent heterogeneity of the geological media.

These two processes are generally lumped together into a single process called dispersion.
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Considering all the above mentioned processes, the general form of an ADE for solute transport

in geological media can be written as

∂ (C)

∂t
=

∂

∂xj

(
Dj

∂C

∂xj

)
− ∂ (ujC)

∂xj
(2.1)

where xj = x, y, and z for Cartesian coordinate system, repeated index j is the Einstein summa-

tion convention, meaning a summation over the space co-ordinates, C represents solute concen-

tration in groundwater, Dj signifies dispersion coefficient in jth direction, uj is ground water

flow velocity along jth direction. Equation (2.1) can be simplified if the parameters of the

equation e.g., D, and u are independent of spatial and temporal co-ordinates. The following

assumptions are valid only for a homogeneous formation of rock mass and for a time frame

which is considerably shorter than geological time scale, which is of the order of million years.

Based on these assumptions Eq. (2.1) can be written in simplified form as

∂C

∂t
= Dj

∂2C

∂x2
j

− uj
∂C

∂xj
(2.2)

There are three types of domain boundary conditions: Dirichlet, Neumann, and Cauchy bound-

ary condition. The general form of the domain boundary condition can be written as

A1C + A2n̂~∇C = A3 (2.3)

where A1, A2 and A3 are constants. Special form of boundary condition is derived based on

the values of A1, A2 and A3. For A1 = 1 and A2 = 0 we have Dirichlet boundary condition,

for A1 = 0, A2 = 1 Neumann and for A1 = ~ub, A2 = −D0 we have the value of A3 = Cb ~ub

and this type of boundary condition is called Cauchy boundary condition. Here Cb and ~ub are

solute concentration and pore water velocity at boundary of the geometry of problem under
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consideration.

2.3 Lattice Boltzmann Method for Solute Transport

Lattice Boltzmann (LB) method [Succi, 2001; Wolf-Gladrow, 2000; Krger et al., 2017] is based

on kinetic model of discrete particles motion. It basically solves discrete velocity Boltzmann

transport equation over a regular grid of spatial and temporal discretization. The LB method

was first introduced in 1988 by McNamara and Zanettii [McNamara et al., 1988] in order to

eliminate the numerical noises of its ancestor called lattice gas cellular automata (LGCA), pro-

posed by Frish et al. [Frisch et al., 1986]. Initially LB was developed to solve Navier Stokes

equation (NSE) in hydrodynamics [Qian et al., 1992; Chen et al., 1992, 1998]. Since its incep-

tion as a mesoscopic technique that can simulate fluid flow, particularly Navier-Stokes equation

(NSE), LBM has been successfully applied to solve various kind of fluid dynamics problems,

such as flow though complex boundary geometries (porous media), two phase flow, turbulence

flow etc. In the last two decades, LBM has emerged as a promising numerical scheme that

can be applied to solve a set of partial differential equations representing various other science

and engineering problems, such as diffusion-reaction, reactive transport, wave motion, traffic

flow, image analysis etc. In this section details of lattice Boltzmann (LB) techniques for solving

solute transport equation (2.1) are presented.

2.3.1 Derivation of lattice Boltzmann equation from Boltzmann equation

In the previous chapter, we have discussed about the historical origin of LBM from LGCA. This

derivation of LBM from LGCA was required to eliminate the drawbacks of the later one. Later

on, He et al. showed that LBE can be derived from continuous velocity Boltzmann equation [He

et al., 1997]. Detailed derivation of the LBE from the continuous velocity Boltzmann equation

are given in this following. The Boltzmann transport equation, which is the governing equation
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for the evolution of single particle distribution function, is written as

∂f

∂t
+ ~e.~∇~xf +

~F

m
.~∇~ef = Ω (2.4)

where f is single particle distribution function, ~e is the velocity of the particle, ~F is external

force acting on the particle, m represents the mass of the particle, and Ω is collision operator.

In the absence of external force Boltzmann equation takes the form

∂f

∂t
+ ~e.~∇~xf = Ω (2.5)

In the equilibrium state of the system of particles, the collision term vanishes and the solution

of the above equation is the well known Maxwellian distribution.

f eq (~x,~e, t) =
ρ

(2πRT )3/2
exp

(
−(~e− ~u)2

2RT

)
(2.6)

where R = kB/m is the universal gas constant with kB the Boltzmann constant and m is the

molecular mass, ~u is the macroscopic velocity of the particles. It is to be mentioned here that

collision operator, Ω, conserve mass and momentum. These conservation principles can be

mathematically expressed as

ρ =

∫
~e

f (~x,~e, t) d3e =

∫
~e

f eq (~x,~e, t) d3e (2.7)

ρu =

∫
~e

~ef (~x,~e, t) d3e =

∫
~e

~ef eq (~x,~e, t) d3e (2.8)

where ρ is particle density. The non-equilibrium solution of the Boltzmann equation (2.5) is

difficult to obtain because of the presence of complicated collision term, which is a double

integral over velocity space. In order to simplify the above equation, various simplified form
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of the collision operator are generally used. One of these types of collision operator, known as

BGK collision operator, which is used in the LBM is due to Bhatnagar, Gross and Krook. In

the BGK collision operator non-equilibrium particle distribution function relaxes towards the

equilibrium distribution function (EDF) at a rate which is defined by a time constant, known as

relaxation time. The BGK collision operator can be written as [Bhatnagar et al., 1954]

ΩBGK = −1

τ
(f − f eq) (2.9)

where τ is the relaxation time. Using the BGK collision operator Boltzmann equation (2.5) can

be written as

∂f

∂t
+ ~e.~∇~xf = −1

τ
(f − f eq) (2.10)

Our next task is to discretize the continuous velocity into a set of discrete velocities in such a

way that the mass and momentum conservation equations (2.7 and 2.8) are preserved. For this

purpose we first expand the equilibrium distribution function (2.6) in Taylor series as

f eq (~x,~e, t) =
ρ

(2πRT )3/2
exp

(
−(~e− ~u)2

2RT

)

=
ρ

(2πRT )3/2
exp

(
− ~e2

2RT
+
~e.~u

RT
− ~u2

2RT

)
=

ρ

(2πRT )3/2
exp

(
− ~e2

2RT

)
× exp

(
~e.~u

RT
− ~u2

2RT

)
=

ρ

(2πRT )3/2
exp

(
− ~e2

2RT

)(
1 +

~e.~u

RT
+

1

2

(
~e.~u

RT

)2

− ~u2

2RT
+ Θ

(
|u|/
√
RT
)3
)

≈ ρ

(2πRT )3/2
exp

(
− ~e2

2RT

)(
1 +

~e.~u

RT
+

1

2

(
~e.~u

RT

)2

− ~u2

2RT

)

(2.11)
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Here it is considered that the Mach number (Ma), |u|/
√
RT , is a small parameter and hence the

series is truncated at reasonable order O(Ma2). The truncated above equation can be written as

f eq (~x,~e, t) = ψ (~e)

(
1 +

~e.~u

RT
+

(~e.~u)2

2 (RT )2 −
~u2

2RT

)
(2.12)

where ψ(~e) = ρ

(2πRT )3/2 exp
(
− ~e2

2RT

)
can be treated as a continuous weight function and the

EDF, f eq (~x,~e, t), is a polynomial in ~e, multiplied by a weight function, ψ(~e). Therefore, Gaus-

sian quadrature can be used to evaluate the following integral

∫
~e

f eq (~x,~e, t) d3e =

∫
~e

ψ(~e)

(
1 +

~e.~u

RT
+

(~e.~u)2

2 (RT )2 −
~u2

2RT

)
d3e

=
∑
i

wi

(
1 +

~ei.~u

RT
+

(~ei.~u)2

2 (RT )2 −
~u2

2RT

)

=
∑
i

f eqi (~x, ~ei, t)

(2.13)

where wi and ~ei are the the weights and points of the numerical quadrature rule and f eqi (~x, ~ei, t)

is the discrete EDF, which can be written as

f eqi (~x, ~ei, t) = wi

(
1 +

~ei.~u

RT
+

(~ei.~u)2

2 (RT )2 −
~u2

2RT

)
(2.14)

The above points, ~ei, of the numerical quadrature are the discrete velocities of LBM. Since

velocity discretization is done, we can define the discrete distribution function, fi(~x, t) =

wif (~x, ~ei, t), which satisfies the following equation

∂fi
∂t

+ ~ei.~∇~xfi = −1

τ
(fi − f eqi ) (2.15)

The above equation is called discrete velocity Boltzmann equation. Here it is assumed that

relaxation time is independent of direction of velocity, which is the basic ingredient of SRT-LB
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scheme. The general form of the above equation can be written as

∂fi
∂t

+ ~ei.~∇~xfi = −Ωij

(
fj − f eqj

)
(2.16)

where Ωij is the collision matrix of the relaxation time. Further discretization of Eq. (2.15) with

respect to space and time results

fi (~x, t+ ∆t)− fi (~x, t)
∆t

+
∆~x

∆t

fi (~x+ ~ei∆t, t+ ∆t)− fi (~x, t+ ∆t)

∆x

= −1

τ

(
fj − f eqj

) (2.17)

where ∆x and ∆t are spatial and time step, respectively. Since at each time step particle move to

the next lattice point, particle velocity, ~ei, is written as ∆~x/∆t. Simplifying the above equation

we get

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) +
∆t

τ
(fi (~x, t)− f eqi (~x, t)) (2.18)

This is the working equation for LBM.

2.3.2 Equilibrium Distribution Function

Though the governing LBE (2.18) is same for different macroscopic equation, the particular

equation being solved is decided by the EDF. The EDF for ADE is derived from Maxwell-

Boltzmann distribution. The Linear part of Maxwell-Boltzmann distribution function with re-

spect to velocity is generally used for ADE and quadratic part of EDF is used for Navier-Stokes

equation. The discrete velocity EDF (2.14) with linear velocity terms can be written as

f eqi (~x, t) = wi

(
1 +

~ei.~u

e2
s

)
(2.19)
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where es =
√
RT is called ’pseudo speed of sound’ [Chen et al., 1998]. Similarly, EDF with

second order velocity term is

f eqi (~x, t) = wi

(
1 +

~ei.~u

e2
s

+
(~ei.~u)2

2e4
s

− ~u.~u

2e2
s

)
(2.20)

For ADE conservation of mass is required during the collision process. Therefore, the particle

distribution function and EDF must follow the following condition

∑
i

fi =
∑
i

f eqi = C (2.21)

where C is the solute concentration. Substituting the value of the EDF (2.19) in the above

equation (2.21) we get ∑
i

f eqi =
∑
i

wi

(
1 +

~ei.~u

e2
s

)
= C (2.22)

Since the lattices used in LBM are rotationally symmetric, the second term, ~ei.~u
e2s

, inside the

bracket of the above equation vanishes when summation is taken over all the lattice direction.

Therefore, performing the summation we get

∑
i

wi = C (2.23)

From the above equation we can write wi = ωiC, where ωi is the weight factor corresponding

to velocity ~ei, which satisfies the following condition

∑
i

ωi = 1 (2.24)
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Therefore, we can write EDF for ADE as

f eqi (~x, t) = ωiC (~x, t)

(
1 +

~ei.~u

e2
s

)
(2.25)

2.3.3 Lattice structure for Lattice Boltzmann Method

Lattice Boltzmann method has three main components: LB equation, EDF and lattice. LB

equation and EDF are explained in the previous sections. In this section a brief idea about

various lattices used in LB method are given. The choice of EDF and type of lattice depends

on the type of equation (physics) being solved. Particles in LB method are connected to its

neighboring particles via lattice connectivity. Qian et al. introduced the name ”DnQm lattice”

for a lattice structure with m lattice directions in n dimension [Qian et al., 1992]. The order

of isotropy of a lattice, which is defined as the order of velocity moment and the symmetry of

a lattice are the two important properties that need to be considered before selection of lattice

for LB solution of a given equation. For mass conservation lattices should be at least second

order isotropic and for mass and momentum conservation lattices with at least fourth order

isotropy are required. Since ADE requires only mass conservation to be satisfied, the lattices

for ADE should be at least second order isotropic. A second order isotropic lattice has following

properties ∑
i

ωi = 1,
∑
i

ωieiα = 0,
∑
i

ωieiαeiβ = e2
sδαβ (2.26)

Calculation of weight factors

Weight factor corresponding to various velocity vectors can be calculated using the above men-

tioned (2.26) isotropic properties of lattices. In the following calculation of weight factor for

commonly used lattices are given

(i) D1Q2

52



CHAPTER 2. SOLUTE TRANSPORT SIMULATION USING LATTICE BOLTZMANN METHOD AND DIFFERENTIAL QUADRATURE METHOD

The velocity vectors of D1Q2 lattice are

Figure 2.1: D1Q2 lattice

~e1= e

~e2= -e

The sound speed for D1Q2 lattice is

es = e/
√

2

Using the first two isotropic properties we can write

ω1 + ω2 = 1

eω1 − eω2 = 0

Solving the above two equations we get w1 = ω2 = 1/2

(ii) D1Q3

The velocity vectors of D1Q3 lattice are

Figure 2.2: D1Q3 lattice

~e0 = 0

~e1 = e

~e2 = −e

The sound speed for D1Q3 lattice is

es = e/
√

3

Using the first two isotropic properties we can write

ω0 + ω1 + ω2 = 1

ω1e− ω2e = 0
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Using the third property

ω1e
2 + ω2e

2 = e2
s = e2/3

Solving the last two equations we get w1 = ω2 = 1/6

Therefore, ω0 = 1− 2/6 = 4/6

(iii) D2Q4

The velocity vectors of D2Q4 lattice are

~e1 = (e, 0) ~e2 = (0, e)

~e3 = (−e, 0) ~e4 = (0,−e)

The sound speed for D2Q4 lattice is es = e/
√

2

Using the first two isotropic properties we can write

Figure 2.3: D2Q4 lattice

ω1 + ω2 + ω3 + ω4 = 1

ω1e− ω3e = 0

ω2e− ω4e = 0
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From the last two equations we get

ω1 = ω3

ω2 = ω4

(2.27)

Using the third isotropic property we obtain

ω1e
2 + ω3e

2 = e2
s =

e2

2

ω2e
2 + ω4e

2 = e2
s =

e2

2

Simplifying the above two equations

ω1 + ω3 = 1/2

ω2 + ω4 = 1/2

(2.28)

Solving Eqs. (2.27) and (2.28) we get ωs = 1/4, s = 1,2,3,4

(iv) D2Q5

The velocity vectors of D2Q5 lattice are

~e0 = (0, 0)

~e1 = (e, 0) ~e2 = (0, e)

~e3 = (−e, 0) ~e4 = (0,−e)

The sound speed for D2Q5 lattice is es = e/
√

3

Using the first two isotropic properties we can write

ω0 + ω1 + ω2 + ω3 + ω4 = 1

ω1e− ω3e = 0

ω2e− ω4e = 0
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Figure 2.4: D2Q5 lattice

From the last two equations we get

ω1 = ω3

ω2 = ω4

(2.29)

Using the third isotropic property we get

ω1e
2 + ω3e

2 = e2
s =

e2

3

ω2e
2 + ω4e

2 = e2
s =

e2

3

Simplifying the above two equations

ω1 + ω3 = 1/3

ω2 + ω4 = 1/3

(2.30)

Solving Eqs. (2.29) and (2.30) we get ωs = 1/6, s = 1,2,3,4

Therefore, ω0 = 1− 4/6 = 2/6

(v) D2Q9
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The velocity vectors of D2Q9 lattice are

~e0 = (0, 0)

~e1 = (e, 0) ~e2 = (0, e) ~e3 = (−e, 0) ~e4 = (0,−e)

~e5 = (e, e) ~e6 = (−e, e) ~e7 = (−e,−e) ~e8 = (e,−e)

The sound speed for D2Q9 lattice is es = e/
√

3

Figure 2.5: D2Q9 lattice

To simplify the calculation we make use of its 900 rotational symmetry property, i.e. weight

of the horizontal and vertical velocities (ωa) are same and weight of the diagonal velocities

are same (ωb). The weight of the stationary velocity is ω0. Therefore, using the first isotropic

property we get

ω0 + 4ωa + 4ωb = 1 (2.31)

Using the third isotropic property we can write

2ωae
2 + 4ωbe

2 = e2
s = e2/3

⇒ 2ωa + 4ωb = 1/3

(2.32)

57



CHAPTER 2. SOLUTE TRANSPORT SIMULATION USING LATTICE BOLTZMANN METHOD AND DIFFERENTIAL QUADRATURE METHOD

For calculation of weight factors for D2Q9 lattice we require another isotropic property of the

lattice, which is fourth order velocity moments and can be written as

∑
i

ωieiαeiβeiηeiγ = e4
s (δαβδηγ + δαηδβγ + δαγδβη) (2.33)

For the case α = β 6= η = γ we get the value of the left hand side of Eq. (2.33) as

∑
i

ωieiαeiβeiηeiγ = ωa

4∑
i=1

eiαeiαeiηiη + ωb

8∑
i=5

eiαeiαeiηeiη

= 4ωbe
4 = e4

s = e4/9

⇒ ωb = 1/36

(2.34)

Now, using Eq. (2.32) we get ωa = 1/9. Using Eq. (2.31) we obtain ω0 = 1-4/9-4/39=4/9.

Therefore, weight coefficients for D2Q9 lattice are w0 = 4/9, ωs = 1/9, s = 1,2,3,4

andωl = 1/36, l = 5, 6, 7, 8, 9

(vi) D3Q7

The velocity vectors of D3Q7 lattice are

~e0 = (0, 0, 0)

~e1 = (e, 0, 0) ~e2 = (0, e, 0) ~e3 = (0, 0, e)

~e4 = (−e, 0, 0) ~e5 = (0,−e, 0) ~e6 = (0, 0,−e)

The sound speed for D3Q7 lattice is

es = e/
√

3.5

To simplify the calculation we make use of its 900 rotational symmetry property, i.e. weight of

the horizontal and vertical velocities (ωa) are same. The weight of the stationary velocity is ω0.

Therefore, using the first isotropic property we get

ω0 + 6ωa = 1 (2.35)
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Figure 2.6: D3Q7 lattice

Using the second isotropic property we can write

2ωae
2 = e2

s = e2/7

⇒ ωa = 1/7

From Eq. (2.35) ω0 = 1 − 6/7 = 1/7. Therefore, weight coefficient of all the velocities are

same for D3Q7 lattice and it is equal to 1/7, i.e. ωs = 1/7, s = 0,1,2,3,4,5,6

(vii) D3Q15

The velocity vectors of D3Q15 lattice are

~e0 = (0, 0, 0)

~e1 = (e, 0, 0) ~e2 = (0, e, 0) ~e3 = (0, 0, e)

~e4 = (−e, 0, 0) ~e5 = (0,−e, 0) ~e6 = (0, 0,−e)

~e7 = (−e,−e,−e) ~e8 = (−e,−e, e) ~e9 = (−e, e,−e)

~e10 = (−e, e, e) ~e11 = (e, e, e) ~e12 = (e, e,−e)

~e13 = (e,−e, e) ~e14 = (e,−e,−e)
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Figure 2.7: D3Q15 lattice

The sound speed for D3Q15 lattice is

es = e/
√

3

Similar to the previous derivation of weight coefficients, if we use the 900 rotational symmetry

property then weight of the horizontal and vertical velocities (ωa) are same and weight of the

diagonal velocities are equal (ωb). The weight of the stationary velocity is ω0. Therefore, using

the first isotropic property we get

ω0 + 6ωa + 8ωb = 1 (2.36)

Using the second isotropic property we can write

2ωae
2 + 8ωbe

2 = e2
s = e2/3

⇒ 2ωa + 8ωb = 1/3

(2.37)
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Similar to the calculation for D2Q9 lattice we require fourth order velocity moments and can

be written as ∑
i

ωieiαeiβeiηeiγ = e4
s (δαβδηγ + δαηδβγ + δαγδβη) (2.38)

For the case α = β 6= η = γ we get the value of the left hand side of Eq. (2.38) as

∑
i

ωieiαeiβeiηeiγ = ωa

4∑
i=1

eiαeiαeiηiη + ωb

8∑
i=5

eiαeiαeiηeiη

= 8ωbe
4 = e4

s = e4/9

⇒ ωb = 1/72

(2.39)

Now, using Eq. (2.37) we get 2ωa = 1/3 − 8/72 = 2/9 or ωa = 1/9. Using Eq. (2.36)

we obtain ω0 = 1 − 4/9 − 8/72 = 2/9. Therefore, weight coefficients for D3Q15 lattice are

w0 = 2/9, ωs = 1/9 s = 1,2,3,4,5,6 and ωl = 1/72, l = 7, 8, 9, 10, 11, 12, 13, 14

2.3.4 Recovery of Solute Transport Equation from Lattice Boltzmann Equation

In this section macroscopic ADE (2.1) is recovered from microscopic LBE (2.18) using multi-

scale Chapman-Enskog expansion technique. We rewrite the LB equation derived in the previ-

ous section

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) +
1

τ
[f eqi (~x, t)− fi (~x, t)] (2.40)

Assuming ∆t is a small parameter and equal to ε

∆t = ε (2.41)

Substituting this value of ∆t into Eq. (2.40) leads to

fi (~x+ ~eiε, t+ ε) = fi (~x, t) +
1

τ
[f eqi (~x, t)− fi (~x, t)] (2.42)
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Now performing Taylor series expansion of the left side of the Eq. (2.42) with respect to time

and space around point (~x, t) we get

∞∑
n=1

εn

n!

(
∂

∂t
+ eij

∂

∂xj

)n
fi (~x, t) =

1

τ
[f eqi (~x, t)− fi (~x, t)] (2.43)

Using Chapman-Enskog expansion technique, particle distribution function can be expanded as

fi = f
(0)
i +

∞∑
n=1

εnf
(n)
i = f

(0)
i + εf

(1)
i + ε2f

(2)
i + ϑ

(
ε3
)

(2.44)

Neglecting the higher order terms of ε and substituting the truncated value of fi into Eq. (2.43)

we get

∞∑
n=1

εn

n!

(
∂

∂t
+ eij

∂

∂xj

)n (
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
=

1

τ

[
f eqi −

(
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)] (2.45)

Grouping terms of the same order in ε yields the following successive approximations

ϑ
(
ε0
)

: f eqi = f
(0)
i (2.46)

ϑ
(
ε1
)

:

(
∂

∂t
+ eij

∂

∂xj

)
f

(0)
i = −1

τ
f

(1)
i (2.47)

ϑ
(
ε2
)

:

(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
i +

1

2

(
∂

∂t
+ eij

∂

∂xj

)2

f
(0)
i = −1

τ
f

(2)
i (2.48)

Substituting Eq. (2.47) into Eq. (2.48) we get

(
1− 1

2τ

)(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
i = −1

τ
f

(2)
i (2.49)
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Eq. (2.47) + ε× Eq. (2.49) leads to

(
∂

∂t
+ eij

∂

∂xj

)
f

(0)
i + ε

(
1− 1

2τ

)(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
i

= −1

τ

(
f

(1)
i + εf

(2)
i

) (2.50)

Summing over i, Eq. (2.50) can be written as

∂

∂t

∑
i

f
(0)
i +

∂

∂xj

∑
i

eijf
(0)
i + ε

(
1− 1

2τ

)
∂

∂t

∑
i

f
(1)
i

+ ε

(
1− 1

2τ

)
∂

∂xj

∑
i

eijf
(1)
i = −1

τ

∑
i

f
(1)
i −

ε

τ

∑
i

f
(2)
i

(2.51)

Equilibrium distribution function (EDF) for ADE defined in the previous section has following

properties ∑
i

f eqi (~x, t) = C (~x, t) (2.52)

∑
i

eif
eq
i (~x, t) = uiC (~x, t) (2.53)

∑
i

eixeiyf
eq
i (~x, t) = e2

sC (~x, t) δx,y (2.54)

where δx,y is the Dirac delta function, which is equal to 1 when x = y and equal to 0 when

x 6= y. Macroscopic particle density is the zero order velocity moment of the distribution

function

C (~x, t) =
∑
i

fi (~x, t) (2.55)

Using the above mentioned property of distribution function (2.55) and EDF (2.46 and 2.52 )

we can impose the following constraints on the fluctuating parts of the distribution function

∑
i

f
(k)
i (~x, t) = 0, k = 1, 2, 3, ... (2.56)
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∂

∂t

∑
i

f
(k)
i (~x, t) = 0, k = 1, 2, 3, ... (2.57)

Considering the above properties of the fluctuating parts of the distribution function we can

simplify the Eq. (2.51) as

∂

∂t

∑
i

f
(0)
i +

∂

∂xj

∑
i

eijf
(0)
i + ε

(
1− 1

2τ

)
∂

∂xj

∑
i

eijf
(1)
i = 0 (2.58)

Substituting the value of f (1)
i from Eq. (2.47) into the above equation we get

∂

∂t

∑
i

f
(0)
i +

∂

∂xj

∑
i

eijf
(0)
i − τε

(
1− 1

2τ

)
∂

∂xj

∑
i

eij
∂

∂t
f

(0)
i

− τε
(

1− 1

2τ

)
∂

∂xj

∑
i

eijeik
∂

∂xk
f

(0)
i = 0

(2.59)

The term containing time derivative of EDF is smaller compared to the other three terms and

hence, it can be omitted and can be treated as error term. Using the properties of EDF as given

in Eq. (2.52), (2.53), and (2.54), Eq. (2.59) can be written as

∂C

∂t
+
∂ (ujC)

∂xj
− ε

(
τ − 1

2

)
∂

∂xj

(
e2
s

∂C

∂xj

)
= 0 (2.60)

The above equation can be rearranged as

∂C

∂t
=

∂

∂xj

(
D
∂C

∂xj

)
− ∂ (ujC)

∂xj
(2.61)

where

D = e2
sε

(
τ − 1

2

)
(2.62)

Since ε = ∆t (2.41), Equation (2.62) can be written as

D = e2
s∆t

(
τ − 1

2

)
(2.63)
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Equation (2.61) is the governing ADE for solute transport. Equation (2.63) correlates macro-

scopic parameter dispersion coefficient with microscopic parameter relaxation coefficient.

2.3.5 Conversion between lattice units and physical units

Lattice Boltzmann simulations are generally carried out in lattice units because in these units

solution of LBE becomes more stable and accurate. Therefore, conversion between lattice units

and physical units is required for solving practical problems. The lattice length unit is denoted

as lu, whereas lattice time unit is denoted as ltu. In order to obtain various quantities, such

as length, time, mass, amount of substance, in physical unit, the conversion factors obtained

during the conversation are simply multiplied with the corresponding quantities in lattice units.

This conversion process between the units is straightforward. Let us consider that ∆xlbm and

∆tlbm are the lattice length and time step in lattice units, respectively and ∆x and ∆t are the

corresponding lattice length and time step in physical units. The length conversion factor (Lc)

is the ratio between these two lattice lengths, i.e. Lc = ∆x/∆lbm. In this thesis simulations are

carried out using ∆xlbm = 1 lu and ∆tlbm = 1 ltu. Therefore, Lc is equal to the lattice spacing

in physical units, i.e. Lc = ∆x. Therefore, if L is the length of the physical domain and N is the

total number of lattice points considered in the simulation then Lc = ∆x = L/(N − 1). The

corresponding time step in physical unit can be calculated in the following way

(2.63). If we take D1Q3, D2Q5 type of lattices for which the value of sound speed as already

discussed in this chapter is es = e/
√

3 = 1/
√

3(e = ∆xlbm/∆tlbm = 1) then substituting the

values of es, ∆tlbm and τ (the value of τ is taken equal to 1 in this thesis), in Eq. (2.63) we

get 1/6 as the value of diffusion coefficient in lattice units. Now, conversion factor for diffusion

coefficient, Dc, can be calculated as

Dc =
Dx

Dlbm

=
∆x2

∆t

∆tlbm
∆x2

lbm

=
L2
c

Tc
(2.64)
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where Tc is the conversion factor for time. Using Eq. (2.64) we can write diffusion coefficient

in physical units in terms of diffusion coefficient in lattice units as Dx = Dc × Dlbm. Since

Dlbm is 1/6 we get

Dx =
L2
c

6Tc
(2.65)

Since we have ∆tlbm = 1ltu, the time step in physical units is equal to the time conversion

factor, Tc. Therefore, using the above Eq. (2.65) we can write the time step in physical unit as

∆t = Tc =
L2
c

6Dx

(2.66)

Similar time step in physical unit for D1Q2, D2Q4 type of lattices for which the value of sound

speed is es = e/
√

2 = 1/
√

2 (e=1 in this case) would be

∆t = Tc =
L2
c

4Dx

(2.67)

2.3.6 Initial and boundary conditions

In this section procedures for implementation of initial and boundary conditions for solute trans-

port equation are presented. Bounce back scheme of LBM is the most popular one among the

various scheme available for the implementation of boundary conditions in LB framework [Zei-

gler, 1993]

Initial conditions

The initial conditions are usually provided in terms of macroscopic variables i.e. C and ~u. The

primary variables involved with lattice Boltzmann method are particle distribution functions,

which can be initialized as EDF in beginning of simulation.

Zero flux boundary

The zero flux boundary condition can be implemented in LBM using bounce back condition.
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The bounce back condition essentially implies that the unknown incoming f ,is are set to the

outgoing f ,is in opposite lattice direction i.e.

fi = f−1 (2.68)

Periodic boundary conditions

Periodic boundary condition can be used in the case where solution pattern is repeating itself.

i
i
i

ii
i
i
i

ii
f4

f0

f2

f3

f1

f4

f0

f2

f3

f1

(0, 0) (lx, 0)

(0, ly)

Left boundary Right boundary

Figure 2.8: Sketch of the typical 2D domain with D2Q5 lattice. lx and ly are the length of the domain in
x and y direction.

The periodic boundary condition can be imposed by assigning the outgoing distribution function

to the incoming distribution function at other end. The typical two dimensional domain is shown

in Fig. 2.8. The unknown distribution in the left boundary as shown in Fig. 2.8 is f1. The

unknown distribution in the right boundary as shown in Fig. 2.8 is f3. Therefore the periodic

boundary condition at left boundary can be written as

f1(0, y, t+ ∆t) = f1(lx, y, t) (2.69)

and correspondingly at the right boundary the periodic boundary is imposed as

f3(lx, y, t+ ∆t) = f3(0, y, t) (2.70)
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2.4 Numerical Problems Solved

In this section standard one-dimensional and two-dimensional test problems are solved using

the developed lattice Boltzmann scheme for solute transport and the results are compared with

analytical/exact solution to demonstrate the stability and accuracy of the LBM based numerical

scheme.

2.4.1 One-dimensional transport of solute in a finite width domain

Problem formulation

This test problem represents laboratory based column test where conservative solutes are in-

Figure 2.9: Solute transport in horizontal column

troduced in a saturated soil column under steady flow with constant source at the inlet and zero

flux at the outlet. The schematic of the model geometry is as shown in Figure 2.9. The transport

of solutes through the column is modeled as one dimensional ADE which can be written from

the general three dimensional ADE (2.1) as

∂C

∂t
=

∂

∂x

(
Dx

∂C

∂x

)
− ∂ (uxC)

∂x
(2.71)

where C is concentration of solutes,Dx is dispersion coefficient along x direction, ux represents

velocity of the flow in the x direction, x is downstream distance and t is time of observation.

The constant solute concentration at the inlet can be modeled as a Dirichlet boundary condition

and zero flux at the outlet can be represented by Neumann boundary condition. As already
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discussed in this chapter, these boundary conditions can be written in mathematical forms as

C(x = 0, t) = C0

∂C(x = L, t)

∂x
= 0

(2.72)

where C0 is the source concentration at the inlet and L is the column length. At t=0 concen-

tration of solutes is zero everywhere except at x = 0. This initial condition can be written in

mathematical form as

C(x, t = 0) = C0δ(x) (2.73)

where δ(x) is the Dirac delta function. δ(x) = 1 when x=0 and δ(x) = 0 when x 6= 0.

Numerical framework using LBM

LBM based simulation of the problem is carried out in lattice units and using D1Q3 lattice

(Figure 2.2). The lattice length and time step in lattice units are ∆xlbm = 1 lu land ∆tlbm = 1

ltu. The relaxation parameter, τ , is fixed at 1. A total of 101 lattice points are considered in the

simulation.

Values of input parameters used

Numerical values of the model parameters (ux and Dx) are taken from [Zhang et al., 2002;

Zhou, 2009] as benchmark problem. The domain length (L) is fixed at 0.3048 m. Since a

total of 101 lattice points (nx) are considered in LBM model, physical lattice length (∆x) is

∆x = L/100 = 0.3048/100 m = 0.003048 m. The value of time step in physical units is

calculated using Eq. (2.66) and its value is 14.4 s. The values of these physical and numerical

parameters are provided in tabular form in Table 2.1.

Results and discussions

The lattice Boltzmann simulation is run at four different simulation times, e.g. 2.5 hours, 5

hours, 10 hours and 15 hours and corresponding spatial profiles of solute concentration are
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Table 2.1: Values of input parameters used in the simulation of 1D test for solute transport in a finite
domain

Parameter Value
ux(m/s) 4.23×10−6

Dx(m2/s) 1.075×10−7

C0(Kg/m) 0.001
L (m) 0.3048
nx 101
∆xlbm (lu) 1
∆tlbm (ltu) 1
τ 1
∆x (m) 0.003048
∆t (s) 14.4

shown in Figure 2.10.

Figure 2.10: Spatial profile of solute concentration after t = 2.5 hours, 5 hours, 10 hours, and 15 hours
using LBM
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Figure 2.11: Spatial profile of solute concentration after t = 2.5 hours, 5 hours, 10 hours, and 15 hours
using analytical solution

Verification and validation

The lattice Boltzmann scheme is verified and validated by comparing the numerical results

with analytical solutions. The one-dimensional ADE (2.71) with the given boundary conditions

(2.72) and initial condition (2.73) has closed form analytical solution of the form [Wexler, 1992]

C (x, t) = C0

1− 2exp

(
xux
2Dx

− u2
xt

4Dx

) ∞∑
i=1

βisin
(
βix
L

)
exp

(
−β2

iDxt

L2

)
β2
i +

(
uxL
2Dx

)2

+ uxL
2Dx

 (2.74)

where βi are the roots of the equation

βcotβ +
uxL

2Dx

= 0 (2.75)

The analytical solutions for the same simulation times are shown in Figure 2.11. The analysis

of the Figures 2.10 and 2.11 shows that there is good matching between the numerical and

analytical solutions.
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2.4.2 One-dimensional transport of solute in an infinite domain

Problem formulation

This test problem represents transport of a point source in a very long aquifer having finite

Figure 2.12: Solute transport in infinite domain

width and vertical depth. The solute source is instantaneously discharged into the aquifer and

the duration of spreading along transverse and vertical directions are also instant. Therefore,

the source term can be treated as an instantaneous point source which can travel only along

longitudinal direction. This type of problems are generally solved in environmental hydraulics

for measurement of groundwater velocity, solute dispersion coefficient etc. The solute source is

discharged at a downstream distance of x0 m. The model geometry of problem is graphically

shown in Figure 2.12. The transport of the discharged point is governed by 1D ADE, which is

similar to that of the earlier problem and can be written as

∂C

∂t
=

∂

∂x

(
Dx

∂C

∂x

)
− ∂ (uxC)

∂x
(2.76)

Initially the value of solute concentration is zero everywhere except at the point of discharge,

therefore initial condition of the problem can be stated as

C(x, t = 0) = C0δ(x) (2.77)

where δ is the Kronecker delta function, C0 is concentration of point source. Since the do-

main length is taken as very large, it is reasonable to consider following Dirichlet boundary
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Table 2.2: Values of input parameters used in the simulation of 1D test for solute transport in an infinite
domain

Parameter Value
ux(m/s) 0.01
Dx(m2/s) 0.01
C0(Kg/m) 1
L (m) 400
W (m) 10
x0(m) 10
nx 101
ny 101
∆xlbm (lu) 1
∆tlbm (ltu) 1
τ 1
Physical lattice length along x-direction, ∆x (m) 1.0
Physical lattice length along y-direction, ∆y (m) 1.0
∆t (s) 16.67

conditions.

C(x = ±∞, t) = 0 (2.78)

Numerical framework using LBM

LBM based simulation of the problem is carried out in lattice units and using D2Q5 lattice

(Figure 2.4). The lattice length and time step in lattice units are ∆xlbm = 1 lu land ∆tlbm = 1

ltu. The relaxation parameter, τ , is fixed at 1. A total of 401 lattice points along x-direction

(nx) and 11 lattice points along y-direction (ny) are considered in the simulation.

Values of input parameters used

Numerical values of the parameters involved with the above equations are taken from [Zhang

et al., 2002; Zhou, 2009] as benchmark. In the simulation, the length (L) and width (W ) of the

model geometry are 400 m and 10 m, respectively. Therefore, the physical lattice lengths are

1.0 m along both the directions. The value of time step in physical units is calculated using Eq.

(2.66) and its value is 16.67 s. Various physical and grid parameters used in the simulation are

given in Table 2.2.

Results and discussions
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The LBM based numerical simulation is carried out for two different simulation times via 10000

s and 30000 s. Results of the simulations in the form of spatial profiles of solute concentration

are shown in Figure 2.13. It can be observed from the Figure 2.13 that the peak of solute

concentration travel with the velocity of groundwater flow and due to diffusion and dispersion

its peak height gets reduced with time. This spread of solute concentration is experimentally

measured to calculate the value of dispersion coefficient.

Validation and verification

The lattice Boltzmann scheme is verified and validated by comparing the numerical results with

analytical solutions. The analytical solution of the one-dimensional ADE (2.76) with the given

initial condition (2.77) and boundary conditions (2.78) can be written as [Zhang et al., 2002]

C (x, t) =
C0√

4πDxt
exp

[
−(x− uxt)2

4Dxt

]
(2.79)

Spatial profiles of solute concentration at simulation time t = 10000 s and 30000 s based on the

analytical solution (2.79) are shown in Figure 2.14. From the interpretation of the two Figures

2.13 and 2.14 we can infer that LBM based simulation results are very close to that of analytical

solutions.
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Figure 2.13: Spatial profile of solute concentration after 10000 s and 30000 s using LBM

Figure 2.14: Spatial profile of solute concentration after 10000 s and 30000 s using analytical solution
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2.4.3 Two-dimensional transport of solute

Problem statement

This standard test problem models migration of chloride ion in a landfill leachate through a

Figure 2.15: Two dimensional solute transport

narrow, relatively thin, valley-fill aquifer. Since the aquifer is thin, dispersion along vertical

direction can be neglected and problem can be mathematically model as a two dimensional

anisotropic ADE. The schematic of the model geometry is shown in Figure (2.15). Here we

have considered that flow through the aquifer takes place along x-direction only. Therefore, the

model equation (2D anisotropic ADE) can be written as

∂C

∂t
=

∂

∂x

(
Dx

∂C

∂x

)
+

∂

∂y

(
Dy

∂C

∂y

)
− ∂ (uxC)

∂x
(2.80)

where Dx and Dy are the dispersion coefficients along x-direction and y-direction, respectively.

Since the problem is anisotropic in nature, Dx 6= Dy. ux is flow velocity along x-direction. The

finite with constant source is defined by the following Dirichlet boundary condition (2.81)

C (x = 0, y, t) =


C0 Y1 < y < Y2

0 y < Y1 or y > Y2

(2.81)

where Y1 and Y2 are source position coordinate along y direction and source width is Y2 − Y1.

The zero flux boundary conditions at all boundary locations except the inlet one (x=0 plane) are
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Table 2.3: values of input data used in the simulation of 2D solute transport
Parameter Value
ux(m/s) 3.527777×10−6

Dx(m2/s) 2.150533×10−4

Dy(m
2/s) 6.4516×10−5

Length of the aquifer (L in m) 1500
Width of the aquifer (W in m) 900
Y coordinate of the source (Y1 = 121.92 m, Y2 = 609.9 m)
Initial concentration kg/m2 1

defined by Neumann boundary condition as

∂C(x, y, t)

∂x
|x=L = 0, 0 < y < W

∂C(x, y, t)

∂y
|y=0 = 0, 0 < x < L

∂C(x, y, t)

∂y
|y=W = 0, 0 < x < L

(2.82)

where L is the length of the aquifer, W is the width of the aquifer. The initial solute concen-

tration is considered to be equal to zero everywhere in the domain except at source positions.

therefore, initial condition for the problem can be defined as

C (x, y, t = 0) = 0, 0 < x < L, and 0 < y < W (2.83)

Lattice Boltzmann simulation

Since the problem is anisotropic in nature, the standard SRT LBM scheme with square lattice

is unable to simulate this process. In this regard, Zhang et al. considered rectangular lattice

and directional dependent relaxation parameters (τ ) to simulate anisotropic ADE [Zhang et al.,

2002]. Later on Zhou developed a SRT LBM scheme with rectangular lattice and modified the

standard EDF in order to embed the feature of a rectangular lattice [Zhou, 2009]. Both this

formulations are complicated due to consideration of directional dependent relaxation param-

eters in the first one and due to difficulties involved in estimation of proper EDF. In this study
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we propose a new formulation that is capable of simulating such anisotropic ADE in a square

lattice [Datta et al., 2018a,b]. This formulation is based on diffusion velocity lattice Boltzmann

scheme developed by Perko et al. [Perko et al., 2014]. They used their formulation to sim-

ulate ADE in heterogeneous media having spatial dependency in dispersion coefficient. The

basic steps involved with diffusion velocity lattice Boltzmann formulation is to write the total

physical dispersion coefficient as a combination of two parts as

D = Dref +Dfluc (2.84)

where D is the total physical dispersion coefficient, Dref is called reference dispersion coeffi-

cient and Dfluc is called fluctuating part of the dispersion coefficient. Perko et al. converted

the diffusion flux due to Dfluc into an equivalent velocity flux and calculated the corresponding

velocity term as [Perko et al., 2014]

ud = −
Dfluc

∂C
∂x

C
(2.85)

where ud is called diffusion velocity. They added this velocity term with the advective velocity

term and then followed the same procedures as used in SRT LBM scheme. Using this concept

we can write the longitudinal dispersion coefficient as a sum of transverse dispersion coefficient

and fluctuating term as

Dx = Dy +Dfluc (2.86)

Substituting this value in Eq. (2.84) and rearranging we get

∂C

∂t
=

∂

∂x

(
Dy

∂C

∂x

)
+

∂

∂y

(
Dy

∂C

∂y

)
− ∂ (utC)

∂x
(2.87)

78



CHAPTER 2. SOLUTE TRANSPORT SIMULATION USING LATTICE BOLTZMANN METHOD AND DIFFERENTIAL QUADRATURE METHOD

where ut = ux + ud is the total velocity. The above Eq. (2.87) is an isotropic ADE which can

easily be solved using the standard the LBM scheme already used for solving one-dimensional

solute transport problems. In the lattice Boltzmann simulation we have taken D2Q5 square

lattice (Figure 2.4). The lattice length and time step in lattice units are ∆xlbm = 1 lu land

∆tlbm = 1 ltu. The relaxation parameter, τ , is fixed at 1. The physical lattice length used in

this simulation is 25 m. The domain length and width of the aquifer are 1500 m and 900 m,

respectively. Therefore, a total of 61× 41 lattice points are used in the simulation. The value of

time step in physical units is calculated using Eq. (2.66) with Dy as the value of the dispersion

coefficient.

Values of input parameters used

The values of the physical parameters are taken from the literature [Zhou, 2009]. The numerical

values of these parameters and grid parameters used in the simulation are given in Table 2.3.

Results and discussions

Spatial profiles of solute concentration are calculated using the developed LBM scheme after

1500 days and 1500 days. Results of the simulations in the form of spatial profiles of solute

concentration are shown in Figures 2.16 and 2.18, respectively.

Validation and verification

The analytical solution of the model equation (2.80) using the given initial and boundary con-

ditions (2.82, 2.83) can be written as [Wexler, 1992]

C (x, y, t) =C0

∞∑
n=0

LnPncos (ηy)

{
exp

[
x (ux − β)

2Dx

]
erfc

[
x− βt
2
√
Dxt

]
+exp

[
x (ux + β)

2Dx

] [
x− βt
2
√
Dxt

]} (2.88)
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where

Ln =


1
2
, n = 0

1, n > 0

(2.89)

Pn =


y2−y1

W
, n = 0

[sin(ηy2)−sin(ηy1)]
nπ

, n > 0

(2.90)

η =
nπ

W
, n = 0, 1, 2, 3, ... (2.91)

β =
√
u2
x + 4η2DxDy (2.92)

Analytical solutions after 1500 days and 3000 days are shown graphically in Figures 2.17 and

2.19, respectively. The similarities of the LBM and corresponding analytical solutions confirms

the accuracy of the proposed model.

Figure 2.16: Solute concentration contours after 1500 days for 2D ADE: Numerical Solution
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Figure 2.17: Solute concentration contours after 1500 days for 2D ADE: Analytical Solution

Figure 2.18: Solute concentration contours after 3000 days for 2D ADE: Numerical Solution
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Figure 2.19: Solute concentration contours after 3000 days for 2D ADE: Analytical Solution

2.5 Limitation of Lattice Boltzmann Method for High Peclet Number Flow

Since LBM is an explicit scheme, it suffers from numerical instability at high Peclet number

flow. In order to create sharp (step) jump in dependent variable in the domain, the benchmark

problem in Section 2.4.1 One-dimensional transport of solute in a finite width domain is solved

at higher velocity. The velocity is increased 100 times to that of the previous value listed in

Table 2.1. The grid Peclet (Pe) number, which is the ration between diffusive time step and

advective time step, is defined as

Pe =
ux∆x

Dx

(2.93)

For the same lattice length (x = 0.003048 m) as used in Section 2.4.1, the value of Peclet num-

ber is 12 and LBM based solution is unstable. Figure 2.20 shows the results of the simulation.

Since the value of the Peclet number reduces with decrease in lattice length, further simulations

with smaller lattice lengths are carried out. It has been observed that LBM based results are

stable only when Pe < 2.4. The spatial profiles of solute concentration at Pe = 6, 4, 3, and 2.4
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are shown in Figs. 2.21, 2.22, 2.23.

Figure 2.20: Unstable solution with Pe=12 after 0.1 hour

Figure 2.21: Unstable solution with Pe=6 after 0.1 hour
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Figure 2.22: Unstable solution with Pe=4 after 0.1 hour

Figure 2.23: Solution is approaching towards stability Pe=3 and 2.4 after 0.1 hour

2.6 Differential Quadrature Method for Solute Transport

In this section an alternate numerical technique called differential quadrature method (DQM)

[Bert et al., 1996; Shu, 2000; Zong et al., 2009] is utilized to solve solute transport equations.
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The concept of DQM is simple and it can be implemented straightforwardly. Since DQM

requires very few grid points for solving differential equations with high accuracy, minimum

computational efforts are required to implement it [Bellman et al., 1972; Malik et al., 1995; Bert

et al., 1996]. Historically DQ method was developed as an analogous to numerical integration

technique called numerical quadrature. In numerical quadrature, definite integral over a closed

domain is approximated by a linear weighted sum of integrand values at a group of points in

the domain of integration, similarly in DQ method, partial derivative of a piecewise continuous

function at a grid point is approximated as weighted sum of functional values of the solution

at all grid points along a grid line [Bellman et al., 1972]. The DQ method was introduced by

Richard Bellman and his associates in the early of 1970s [Bellman et al., 1971, 1972]. Currently,

the DQ method has been extensively applied in various engineering domains for the rapid and

accurate solution of various linear and non linear differential equations [Zong et al., 2009].

As discussed in chapter 1, the DQ approximation of nth order derivative of a continuous function

at a given node with respect to x is written as

fkx (xi) =
∂kf

∂xk
|x=xi=

N∑
j=1

A
(k)
ij f (xj) , i = 1, 2, 3, ..., N, j = 1, 2, ..., N − 1 (2.94)

where xj are the discrete nodes in the domain at which function values are known, f(xj are the

function values at these nodes, N is the total number of such nodes, and Akij are the weighting

coefficients for the kth order derivative of the function, therefore for a N point DQM, Akij are

the elements of a N × N matrix. The value of weighting coefficients of DQM is not influ-

enced by the type of problem being solved rather it depends upon the type of base function

or the approximate solution of the differential equation. Three frequently used bases are poly-

nomial basis, Fourier expansion basis, and harmonic basis. For polynomial basis the DQM is

called polynomial differential quadrature (PDQ), for Fourier expansion basis DQM is named as
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Fourier Expansion based Differential Quadrature (FDQ), and it is called Harmonic Differential

Quadrature (HQM) when harmonic based are used [Zong et al., 2009]. In this study PDQ is

used because the polynomial approximation is suitable for most of the engineering problems

except those which have periodic and harmonic behaviors. In a PDQ, the solution of a partial

differential equation is approximated as an N-th degree polynomial.

2.7 Numerical Problems Solved

In this section test problems are solved using DQ method and numerical results are compared

with analytical solution to demonstrate the capability and efficiency of DQ method for solution

of solute transport equation.

2.7.1 Diffusion of solute in soil column

Problem formulation

This test problem simulates the diffusion of chloride ion in a 0.4 m long column composed

of grains of soil samples. In the configuration, the chloride ion does not interact with the

composition of soil and water and only diffuses into the column. The diffusion of chloride ion

will follow the following 1-D diffusion equation

∂C (x, t)

∂t
= D

∂2C (x, t)

∂x2
(2.95)

where D is the diffusion coefficient of chloride ion in the soil column, C is concentration of

chloride ion in solution, x is the distance from the inlet of the column, t represent observation

time. The simulation time is kept lower than the diffusive time in order to avoid the effect of
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outlet boundary condition. Initial and boundary conditions at the inlet are

C (x, t = 0) = 0 (2.96)

C (x = 0, t) = C0 (2.97)

In order to keep the analytical solution simple following outlet boundary condition is taken into

consideration

∂C (x, t)

∂x
|x=∞= 0 (2.98)

Formulation of DQ scheme

To solve the Eq. (2.95) using DQ method, the spatial derivative at the grid points is replaced by

the DQ discretization method and temporal derivative is replaced by explicit finite difference

scheme. The discretized equation can be written as

Ck+1
i − Ck

i

∆t
= D

N∑
j=1

A
(2)
ij C

k
j i = 1, 2, ..., N (2.99)

Rearranging the above equation, we get

Ck+1
i = Ck

i +D∆t
N∑
j=1

A
(2)
ij C

k
j i = 1, 2, ..., N (2.100)

Values of input parameters used

The numerical values of dispersion coefficient and initial solute concentration are taken from

literature. The values of these parameters and other parameters considered in the simulation are

given in Table

Results and discussions

Numerical values of chloride ion concentration at various locations of the soil column are cal-
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Table 2.4: Values of input parameters used in the simulation of diffusion of solutes in a soil column
Parameter Value
D (m2/s) 3×10−10

C0(mmol/l) 1
Number of grid points (nx) 21

culated by solving the DQ Eq. (2.100) with 21 non-uniform grid points. The locations of the

grid points are calculated using Eq. (1.30). The spatial profiles of chloride ion concentration

are drawn for at t = 10, 30 and 100 days.

Verification and validation

The analytical solution of the model Eq. (2.95) using the given initial and boundary conditions

can be written as

C (x, t) = C0

[
erfc

(
x√
4Dt

)]
(2.101)

where erfc(α) is the complementary error function. The mathematical forms of error function

and complementary error function are given in the following Eq. (2.102)

erf(α) =
2√
π

∫ α

0

e−t
2

dt

erfc(α) = 1− erf(α)

(2.102)

The DQ based solutions of the problem are compared with the closed form solution (2.101) and

a good agreement between the two results is established. The spatial plots of chloride ions are

shown in Figure 2.24.
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Figure 2.24: Time dependent spatial plots of chloride concentration in the soil column: comparison with
analytical solution (No. of grid points = 21)

2.7.2 Leaching of radionuclide from radioactive waste form

Problem formulation

This test problem simulates leaching of radionuclides from a vitrified cementitious waste form.

The geometry of the waste form is cylindrical. The leaching of radionuclides from the waste

form take place due to diffusion and dissolution processes. Considering dissolution rate of

the material is very slow, the process is mathematically modeled as an axisymmetric diffusion

equation. The rate of change of concentration of radionuclides inside the cylindrical waste form

due to diffusion process can be written as [Pal, et al.]

∂C (r, t)

∂t
=
Dr

Rd

∂2C (r, t)

∂r2
+
Dr

Rd

1

r

∂C (r, t)

∂r
− λC (r, t) (2.103)

where C(r, t) is concentration of radionuclides in waste form (Bq/ml), Dr is radial diffusion

coefficient in waste form (cm2/s), r is radial coordinate inside waste form (cm), λ represents

radioactive decay constant (s−1), t is time (s) of observation, Rd is retardation factor defined
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as Rd = (1 + ρ
θ
Kd), ρ = bulk density of matrix used (gm/ml), θ = total porosity of the waste

form, Kd = distribution coefficient of radionuclide for the matrix used (ml/gm). Eq. (2.103) is

an axisymmetric diffusion equation with decay term. The diffusion leaching from the top and

bottom surfaces is neglected considering thick barriers above and below the waste-form. The

initial and boundary conditions for the problem can be written as

C (r, t = 0) = C0

C (x = R, t) = 0

∂C (r, t)

∂r
|r=0 = 0

(2.104)

where C0 is initial concentration of radionuclides in the waste-form (Bq/ml), R is radius of the

cylindrical waste-form, Boundary conditions described by Eq. (2.104) means that mass transfer

external to the cylinder is so rapid relative to the internal transfer in the cylinder that the surface

concentration is maintained at zero for any time greater than zero. The leach rate (1/cm2/s) of

radioactivity can be evaluated using the relation

Lr (r, t) = −Dr
∂C (r, t)

∂r
|r=R (2.105)

Formulation of DQ scheme

The DQ equation of the leaching process defined mathematically in Eq. (2.103) with forward

difference approximation of the time derivative and the spatial derivatives using PDQM can be

written as

C (ri, t+ ∆t)− C (ri, t)

∆t
= D∗r

(
N∑
j=1

A
(2)
ij C (rj, t) +

1

ri

N∑
j=1

A
(1)
ij C (rj, t)

)

−λC (ri, t) i = 1, 2, ..., N

(2.106)
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Rearranging the above equation we get

C (ri, t+ ∆t) = (1− λ∆t)C (ri, t) +D∗r∆t

(
N∑
j=1

A
(2)
ij C (rj, t)

+
1

ri

N∑
j=1

A
(1)
ij C (rj, t)

)
i = 1, 2, ..., N

(2.107)

where ∆t is discrete time step, N is the number of sampling grid points along radial direction.

A1, A2 are the weighting coefficient matrices. In matrix form, Eq. (2.107) can be written as

C (r, t+ ∆t) = (1− λ∆t)C (r, t) +D∗r∆t
[
A(2)C (r, t) +RA(1)C (r, t)

]
(2.108)

where

C (r, t+ ∆t) =



C(r1, t+ ∆t)

C(r2, t+ ∆t)

.

.

.

C(rN , t+ ∆t)



, C (r, t+ t) =



C(r1, t)

C(r2, t)

.

.

.

C(rN , t)


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A(2) =



A(2)
11 A(2)

12 . . . A(2)
1N

A(2)
21 A(2)

22 . . . A(2)
2N

. . . . . .

. . . . . .

. . . . . .

A(2)
N1 A(2)

N2 . . . A(2)
NN



, A(1) =



A(1)
11 A(1)

12 . . . A(1)
1N

A(1)
21 A(1)

22 . . . A(1)
2N

. . . . . .

. . . . . .

. . . . . .

A(1)
N1 A(1)

N2 . . . A(1)
NN



R =



1/r1 0 . . . 0

0 1/r2 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 1/rN



where r1, r2, . . ., rN are the radial co-ordinates of the discrete nodes. In the DQM computa-

tional algorithm, initial condition given in Eq. (2.104) is implemented explicitly by initializing
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the problem with an array of concentration as shown below



C(r1, 0)

C(r2, 0)

.

.

.

C(rN , 0)



=



C0

C0

.

.

.

C0



Since there are boundary conditions at the center and at the surface of the cylinder, we need

to exclude these two grid points from DQM equation derived in Eq. (2.107). The modified

equation can be written as

C (ri, t+ ∆t) = (1− λ∆t)C (ri, t) +D∗r∆t

(
N−1∑
j=2

A
(2)
ij C (rj, t)

+
1

ri

N−1∑
j=2

A
(1)
ij C (rj, t)

)
i = 2, ..., N − 1

(2.109)

The Neumann boundary condition at the center of the cylinder given in Eq. (2.104) can also be

written in the form of DQ equation as

N∑
j=1

A
(1)
ij C (rj, t) = 0

The above equation can be rearranged as

C (r1, t) = −
N∑
j=2

A
(1)
ij C (rj, t) (2.110)
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Table 2.5: Input data for leach rate calculation
Parameter Value
C0Bq/ml 1.0
Half life (y) 30.1
D(cm2/s) 1.8×10−6

ρ(gm/ml) 1.3
θ 0.15
Kd(ml/gm) 30.0
R (cm) 100.0

The Eqs. (2.109) and (2.110) are the working equations for simulation of the leach process.

Leach rate is estimated after calculating concentration profile in the waste form. DQM solution

of leach rate as given in Eq. (2.105) can be written as

Lr (R, t) = −Dr

N∑
j=1

A
(1)
NjC (rj, t) (2.111)

where C(rj, t) are the solutions of Eq. (2.109) and (2.110).

Values of input parameters used

The 137Cs radionuclide which is supposed to be present with major percentage in cementitious

nuclear waste form is taken as the studied radionuclide. The parameters used in the simulation

are given in the table 2.5.

Results and discussion

The DQ solutions in terms of concentration of 137Cs are calculated by solving the Eq. (2.109)

with 30 nonuniform grid points. The locations of the grid points are calculated using Eq. (1.30).

The radial concentration profiles of 137Cs are drawn for total simulation times of 10, 30 and 100

years. From the radial concentration, calculation of leach rate is carried out using Eq. 2.111

and 11 nonuniform grid points.

Verification and validation
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Analytical solution of the problem can be written as

C (r, t) =
∞∑
n=1

2C0

αnJ1 (αn)
J0

(αnr
R

)
× exp

[
−
(
λ+

α2
nDr

RdR2

)
t

]
(2.112)

where J0, J1 are first kind of Bessel functions of order 0 and 1, respectively, αn = roots of

J0(α) = 0. Eq. (2.112) gives concentration of radionuclide at various radial distances and at

various times. Analytical form of leach rate at the surface of the cylinder can be formulated by

substituting the value C(r, t) from Eq. (2.112) into the Eq. (2.105) as

LR (r, t) =
∞∑
n=1

2C0Dr

R
× exp

[
−
(
λ+

α2
nDr

RdR2

)
t

]
(2.113)

The DQ and analytical solutions of radial profile of concentration are shown in Figure 2.26. The

comparison between calculated time dependent leach rate using DQM and analytical methods,

are shown in Figure 2.26. The results are also given in tabular form in Table 2.6. The result

shows that DQM based leach rate exactly matches with analytical results. The result also im-

plies that leach rate gradually decreases with time and becomes almost zero after 300 years,

i.e., after 10 half lives of 137Cs..

Table 2.6: Leach rate calculated using DQ method and Analytical solution
Sr. No. Time (year) Leach Rate

(
cm−2s−1

)
DQM Analytical

1 1 2.0388×10−06 2.0953×10−06

2 2 1.4570×10−06 1.3839×10−06

3 5 8.5991×10−07 8.6108×10−07

4 10 5.3982×10−07 5.4106×10−07

5 20 3.0153×10−07 3.0143×10−07

6 30 1.9473×10−07 1.9469×10−07

7 60 6.8342×10−08 6.8338×10−08

8 100 2.0869×10−08 2.0867×10−08

9 300 1.1659×10−10 1.1656×10−10

10 1000 5.9582×10−18 5.9536×10−18
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Figure 2.25: Radial Profile of Concentration of 137Cs inside the waste form: Comparisons between
DQM and Analytical Solution

Figure 2.26: Time dependent leach rate: comparison with analytical solution (No. of grid points = 21)

2.8 Comparative Study of LBM, DQM, and FDM

In this section, a comparative study is carried out to assess selection of DQM and LBM as faster

algorithms than FDM. The benchmark problem given in Section 2.4.1 ”One dimensional trans-
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port of solute in a finite width domain is solved using LBM, DQM and FDM. The simulations

are carried out for two different lattice lengths and at three different simulation times. The re-

sults of the study are given in tabular forms in the Table 2.7 and 2.8. Accuracy of the techniques

is assessed by comparing the results with analytical solution and calculating L2 error. It can

be observed from the tables that DQM based solutions are more accurate than the LBM and

FDM based solutions and at the same time it takes smaller computing time. On the other hand,

accuracy of LBM and FDM are same for same time step value, but LBM takes much smaller

time than FDM. One interesting fact that has been observed from this study is that computing

time does not change substantially with increase in simulation time for DQM simulation. This

fact is due to the fact that DQM based simulation requires very small number of grid points (11

no in this study).

Parallelization of LB code is done using OpenMP directives in a shared memory platform with

Intel G1 quad-core processor. Since the problem is relatively simple, computing time required

to solve it is small of the order of few minutes. Because of this, much efficiency in computing

time using the parallel versions of the serial code has not been observed. As a test case, we

increased the computational load by reducing the grid size and achieved up to 2 times reduction

in computing time. Computing time required to solve the problem with different lattice lengths

using serial and parallel LBM codes are shown in Table 2.9. From Table 2.9 and corresponding

plot of computing time Vs computing load in Figure 2.27 it can be observed that efficiency of

parallel LBM code increases with increase in computing load. Since computing load is huge for

long term simulation of radioactive waste migration, this study therefore justifies development

of LBM/DQM codes for such kind of problems.
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Table 2.7: Relative performance of DQM, LBM and FDM (x = 0.003048 cm, lattice points = 101)
Sr. No. Simulation time (h) L2 error Computing time (s)

DQM LBM FDM DQM LBM FDM
1 10.0 0.000354 0.000489 0.000489 0.2793 0.3417 1.5254
2 15.0 0.000361 0.001215 0.001215 0.294 0.4969 2.2965
3 20.0 0.00064 0.001105 0.001105 0.2993 0.6728 3.0586

Table 2.8: Relative performance of DQM, LBM and FDM (x = 0.0006096 cm, lattice points = 501)
Sr. No. Simulation time (h) L2 error Computing time (s)

DQM LBM FDM DQM LBM FDM
1 10.0 0.000173 0.000237 0.000237 0.541 2.3172 12.2549
2 15.0 0.000039 0.000229 0.000229 2.6476 49.3152 290.4106
3 20.0 0.000035 0.000215 0.000215 5.2607 65.7328 386.0044

Table 2.9: Relative performance of serial and parallel LB algorithm
Sr. No. Simulation time (h) ∆x(µm) Computing time (s)

Serial LBM Parallel LBM
1 10 15.24 0.2500 0.1846
2 10 7.62 1.125 0.9676
3 10 6.096 2.250 1.8075
4 10 3.801 9.625 5.8067
5 10 3.048 18.625 11.0877
6 10 1.524 148.25 74.9053
7 10 1.016 503.00 254.3118

Figure 2.27: computing load Vs computing time for serial and parallel LB program
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2.9 Summary

In this chapter, numerical simulation of ADE, which models the transport of solute through

geological media by advection-dispersion process, is carried out using two relatively new and

robust numerical techniques called LBM and DQM.

On the onset of the formulation of numerical scheme using LBM, we have derived LBE from

continuous velocity Boltzmann equation then discussed about various lattice structures and

shown how to calculate weight factor for different lattices. Derivation of macroscopic solute

transport equation from microscopic LBE using Chapman-Enskog multi-scale expansion tech-

nique is shown in details. Discussion on conversion from lattice Boltzmann units to physical

units is provided. The developed LBM based solute transport solver, which is being used in the

following chapters for simulation of multi-component and long term reactive transport as well

as for modeling uncertainty analysis of solute transport and reactive transport, is validated and

verified by solving standard one-dimensional and two-dimensional solute transport problems.

The accuracy of lattice Boltzmann based solutions of the problems is checked by comparing

these solutions with closed form analytical solutions. The concept of diffusion velocity lattice

Boltzmann scheme, which was developed by Perko et al. to simulate ADE in a specially hetero-

geneous media [Perko et al., 2014], has been applied to simulate two-dimensional anisotropic

ADE. All the simulations are carried out in lattice units with ∆xlbm = 1 lu and ∆tlbu = 1 ltu,

and therefore the developed schemes are unconditionally stable.

We have also derived DQM based numerical scheme for solute transport equation. The devel-

oped scheme is validated and verified by solving two standard one-dimensional problems. The

solutions of DQM show that very accurate results can be obtained using very few non-uniform

grid points, thereby reduces the simulation time.
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Chapter 3

Multi-component Reactive Transport

Simulation using Lattice Boltzmann

Method

3.1 Introduction

In the previous chapter, LBM and DQM were applied to develop an efficient solver for ADE de-

scribing transport of solute due to physical processes such as advection, molecular diffusion and

hydrodynamic dispersion. In the formulation of solute transport model, it is assumed that so-

lutes that are being transported through groundwater do not interact with the rock forming min-

erals. This assumption is rarely valid for practical problems. In fact, most of the radionuclides

present in the vitrified radioactive waste product interact with the composition of groundwater

as well as with the minerals present in the clay buffer and host rock media. These chemical

reactions can modify the petrophysical properties, such as porosity, permeability, of the engi-

neering clay barrier and natural host rock. Porosity and permeability are the key parameters

that control the fluid flow and solute transport. In fact, changes in water velocity has impact on
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residual time which is an important parameter for reaction kinetics in an open system. There-

fore, solute transport and geochemical reactions at the fluid solid interface are coupled with

each other. This coupled process of solute transport and geochemical reactions is known as

reactive transport process [Steefel et al., 2005; MacQuarrie et al., 2005]. Therefore, when geo-

chemical interactions between solute and rock forming minerals take place special care needs

to be taken to incorporate these geochemical interactions into the solute transport model equa-

tions. The equation that governs the transport of reactive solute is known as reactive transport

equation, which is mathematically termed as advection-dispersion-reaction equation (ADRE)

when electrochemical effects are negligible. In this chapter, in-house developed solvers for

solute transport developed in the previous chapter are interfaced with a geochemical solver,

PHREEQC, to simulate multi-component reactive transport. The coupling scheme is based on

operator splitting approach, where transport and reaction operation are treated separately. Since

the coupling of geochemical code PHREEQC with solute transport solver is based on operator

splitting approach, the coupling scheme is insensitive of type numerical scheme used for the

solute transport. Simulation of reactive transport in a chemically heterogeneous porous media

requires large number of grid points in order to capture spatial heterogeneity of the media. Since

DQM requires very few grid points for numerical simulation, we dont have much flexibility in

placing of grid points in the chemically heterogeneous media. Therefore, it is obvious that this

technique will not be able to take care of chemical heterogeneity of the domain. The developed

DQM based solute transport solver can be used to solve inactive solute transport problems or re-

active transport in a chemically homogeneous media. Since deep geological repository (DGR)

will be having composition of different type of materials, such as clay barrier, host rock and

geological media are themselves chemically heterogeneous, we have used LBM for reactive

transport simulations.

There are basically two kind of approaches to model the geochemical interaction happening in
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groundwater system when solutes dissolved in groundwater moves through the rock formation.

In the first method, called isotherm based model, effects of various geochemical interactions,

such as ion exchange, adsorption, absorption, surface complexation etc., on the movement of

the dissolved solute are treated together and an empirical relation between amount of solute

present in the solid matrix and amount of solute present in the liquid phase is established. In the

second method, called geochemical reaction based model, individual geo-chemical reactions

are treated separately and reaction rate of all these reactions are directly used in the ADRE.

Mathematical formulation of these reaction models and reactive transport models are presented

in Section 3.2. LB scheme for single species and multi-species reactive transport simulation are

discussed in Section 3.3 and Section 3.4, respectively. The interfaced model, consisting of LB

based solute transport solver interfaced with geochemical software PHREEQC, is elaborated in

Section 3.4.1. Finally the developed multi-component reactive transport solver is verified and

validated by solving standard benchmark problems in Section 3.5.

3.2 Reactive Transport Model

There are generally two approaches to model reactive transport in geological media. In the first

one, which is routinely used in environmental radionuclide migration, is based on empirical

sorption isotherms. In the second one, which is more robust and demands more computational

resources in terms of storage and speed of computation, individual geochemical interactions,

such as dissolution/precipitation, ion exchange, surface complexation etc., are treated sepa-

rately. Mathematical formulation of both the approaches are given in the following

3.2.1 Sorption Isotherms

While solutes are being transported in groundwater, their transport rate is generally slower than

that of the groundwater. This is likely to be due to various sorption phenomena. In order to
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avoid the complexity and heterogeneity of geological formations, individual phenomena are not

interpreted separately rather an empirical model of sorption of an element from the solution

to a solid particles is used. This kind of model is based on the fact that solute concentration

of an element C (mol/L) can be compared with the concentration of this element retained

on solid particles S(mol/kg). The relation S = f(C) is known as sorption isotherm. The

isotherms based models reduces the mathematical complexity of a multi-component system in

a chemically complex environment. The general form of a multi-component ADRE is

∂ (θCj)

∂t
=

∂

∂xi

(
θDi

∂Cj

∂xi

)
− ∂

∂xi

(
θuiC

j
)

+Rj j = 1, 2, 3, ..., Nt (3.1)

where Cj represents the concentrations of jth component in solution (mol/L3), θ is porosity,

t and x denote time (T ) and space (L), respectively, ui stands for average linear ground water

velocity along i direction (L/T ) and Di is the ith component of dispersion tensor (L2/T ). Rj

(mol/m3rock/s) is the reaction rate of the jth component in solution, and Nt is total number

of component present in the aqueous system. The reaction term in the ADRE (3.1) is written as

Rj = −ρ∂S
j

∂t
(3.2)

where Sj represents amount of jth component absorbed onto unit mass of the rock and ρ is the

bulk density of the rock mass (Kg/m3). These are three different isotherms that are most widely

used by researches: (i) Linear isotherm, (ii) Langmuir isotherm and (iii) Freundlich isotherm.

Linear isotherm

In the linear isotherm model it is assumed that adsorbed solute concentration (Sj) is related to

the solution concentration (Cj) by linear and reversible isotherm of the form

Sj = Kj
dC

j (3.3)
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where Kj
d is the empirical distribution coefficients (m3/Kg) of jth component.

Langmuir isotherm

This is an equilibrium adsorption model taking into consideration of maximum adsorption ca-

pacity of the sorbing material. Mathematically Langmuir isotherm model is written as

Sj =
b.Cj.Q0

1 + b.Cj
(3.4)

where Q0 is the maximum adsorption capacity of a forming single layer, b is a constant (L/mg).

Freundlich isotherm

Freundlich isotherm is empirical and is defined as

Sj = Kf (C
j)1/n (3.5)

where Kf is Freundlich adsorption constant and n is Freundlich exponent. If n = 1, the Fre-

undlich isotherm reduces to the linear isotherm.

The schematic representation of the three isotherms are shown in Figure 3.1. In this study we

have used linear isotherm model which is often practiced in contaminant transport modeling.

Using the above formulations, the ADRE (3.1) with linear sorption isotherm can be written as

∂ (θCj)

∂t
=

∂

∂xi

(
θDi

∂Cj

∂xi

)
− ∂

∂xi

(
θuiC

j
)
− ρ∂C

j

∂t
Kj
d (3.6)

Further simplification of Eq. (3.6) can be done if we consider that the rock mass is homogeneous

and isotropic in nature and the hydrogeological parameters (porosity, permeability etc.) of the

rock mass are time independent. Based on these assumptions, Eq. (3.6) can be simplified as

∂Cj

∂t
=
Di

Rj
d

∂2Cj

∂x2
i

− ui

Rj
d

∂Cj

∂xi
(3.7)
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where Rj
d is called retardation factor which has the form

Rj
d = 1 +

ρ

θ
Kj
d (3.8)

It can be observed here that the resulting ADRE (3.7) is similar to an ADE and therefore, LB and

DQ based transport solvers developed in the previous chapter can be used to solve the equation

numerically.
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Figure 3.1: Various sorption isotherm models

3.2.2 Geochemical reaction based model

Geochemical reaction can be broadly classified into two categories: homogeneous reactions

occurring in the fluid phase and heterogeneous reactions occurring at the interface of fluid and

solid phases [Lasaga, 1984; Bethke, 1996]. Homogeneous reactions include both equilibrium

reactions, such as aqueous complexation reactions and kinetically controlled reactions such as

microbially mediated sulfate reduction, radioactive decay etc. Heterogeneous reactions are also

can be equilibrium reactions, such as surface complexation, ion exchange and kinetic reactions,

such as mineral dissolution/precipitation. Reactive transport of chemical species at continuum

scale in absence of electro kinetic effect is mathematically governed by ADRE, which can be
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described as a set of partial differential equations on time and space scale in the form

∂ (θCj)

∂t
=

∂

∂xi

(
θDi

∂Cj

∂xi

)
− ∂

∂xi

(
θuiC

j
)

+Rj j = 1, 2, 3, ..., Nt (3.9)

where Cj represents the concentrations of jth species in solution (mol/L3), θ is porosity, t

and x denote time (T ) and space (L), respectively, ui stands for average linear ground water

velocity along i direction (L/T ) and Di is the ith component of dispersion tensor (L2/T ). Rj

(mol/m3 rock/s) is the net reaction rate of the species j in solution, and Nt is the total number

of aqueous species. The above equation is a multi-species ADRE. In the above formulation

it is assumed that dispersion coefficient is species independent [Lichtner, 1996]. In most of

the practical problems total number of aqueous species is a very large number and therefore,

computational time required to solve the above equation will be very large. However, if we

consider that the various aqueous species are in equilibrium then it is possible to define a set

of independent species which can be used to define the concentration of the remaining species

known as secondary species [Krikner et al., 1998; Lichtner, 1985; Reed, 1982]. The equilibrium

chemical reactions between primary and secondary species is written as

Ak ⇀↽

Np∑
j=1

νkjAj k = 1, 2, 3, ..., Ns (3.10)

where Aj and Ak are the chemical formulas of primary and secondary species, respectively. νkj

is stoichiometric reaction coefficient, Np and Ns are number of primary and secondary species

in the system. Total number of species is therefore, Nt = Np + Ns. Now, concentration of

secondary species can be written in terms concentration of primary species using the law of

mass action

Ck = K−1
k γ−1

k

Np∏
j=1

(γjCj)
νkj k = 1, 2, 3, ..., Ns (3.11)
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where γj and γk are the activity coefficient for the primary and secondary species, respec-

tively, and Kk is the equilibrium constant for the reaction. Now, total aqueous component

concentration, which remain constant during reactive transport simulation, can be defined as

[Lichtner1985, Steefel1994a]

Tj = Cj +
Ns∑
k=1

νkjCk j = 1, 2, 3, ..., Np (3.12)

In term of total component concentration Eq. (3.9) can be written as

∂ (θT j)

∂t
=

∂

∂xi

(
θDi

∂T j

∂xi

)
− ∂

∂xi

(
θuiT

j
)

+Rj,het j = 1, 2, 3, ..., Np (3.13)

whereRj,het is the net heterogeneous reaction rate of jth component per unit volume of the rock

mass (mol/m3 rock/s). Here it is to be highlighted that the above formulation is valid only

for equilibrium reactions in liquid phase and if heterogeneous reactions in liquid phase need

to incorporate into the model equation then it is required to solve the original equation (3.9)

for all the solution species [Krikner et al., 1998; Lichtner, 1985; Steefel et al., 1994a]. In this

work kinetically controlled homogeneous reactions are not considered. Therefore, Eq. (3.13)

is our governing equation for multi-component reactive transport. Now our task is to define the

explicit form of the net heterogeneous reaction rate, Rj,het, which can be written as a sum of all

the individual heterogeneous reaction that affect the concentration of jth component [Lasaga,

1984; Reed, 1982].

Rj,het = −
Nm∑
m=1

νjmrm j = 1, 2, 3, ..., Np (3.14)

where rm is rate ofmth heterogeneous reaction per unit volume of rock., νjm is the stoichiomet-

ric coefficient of the mth reaction and Nm is the number of heterogeneous reactions occurring

in the system. Substituting the above reaction rate in Eq. (3.13) we get following equation for
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multi-component reactive transport

∂ (θT j)

∂t
=

∂

∂xi

(
θDi

∂T j

∂xi

)
− ∂

∂xi

(
θuiT

j
)
−

Nm∑
m=1

νjmrm j = 1, 2, 3, ..., Np (3.15)

Mathematical form of the reaction rates appearing in the above equation can be derived from

transition state theory as [Lasaga et al., 1994; Lasaga, 1984]

rm = ks

(
1− Qs

Km

)
(3.16)

where ks is the reaction rate for heterogeneous reactions and Km are the equilibrium constants

and Qs is the ion activity products (IAP ). The reaction rate ks is function of reaction rate

constant (k), mineral reactive surface area (S), concentration of reactant (Cs) on the mineral

reactive surface, and reaction order (n). General form of kinetic rate (ks) is written as

ks = kS
∏
j

Cnj
sj (3.17)

Here, j stands for different species of ions.

3.3 Lattice Boltzmann Method for Single Component Reactive Transport

In this section single component reactive transport equation for both sorption isotherm and

geochemical reaction based model is solved using LB scheme

Sorption isotherm based model

The single component reactive transport equation with isotherm based model for reaction term

can be written following the Eq. (3.7) as

∂C

∂t
=
Di

Rd

∂2C

∂x2
i

− ui
Rd

∂C

∂xi
(3.18)
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The above equation can be written as

∂C

∂t
= D∗i

∂2C

∂x2
i

− u∗i
∂C

∂xi
(3.19)

where D∗i = Di/Rd and u∗i = ui/Rd are called effective dispersion coefficient and effective

velocity, respectively along i-direction. The above equation (3.19) is an ADE and therefore the

procedure of solving this equation using LB method is same as that explained in Chapter 2.

Geochemical reaction based model

The generalized equation for multi-component reactive transport (3.15) can be written for single

component reactive transport equation with first order reaction term as

∂ (θC)

∂t
=

∂

∂xi

(
θDi

∂C

∂xi

)
− ∂

∂xi
(θuiC) + ks (C − Ceq) (3.20)

Here heterogeneous reaction is considered as first order kinetics with reaction rate ks. Ceq is

equilibrium concentration in the liquid phase. Here it can be observed that the Eq. (3.20) is an

ADE with additional source/sink term arising from geochemical reactions. LB method models

the the source/sink term as additional operator called reaction operator [Dawson et al., 1993].

The Eq. (3.20) can be solved using standard LB scheme for ADE with an additional collision

term which takes care of the reaction term. The LB equation with additional reaction collision

operator is described as

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) + ∆tΩi (~x, t) + ∆tΩreaction
i (~x, t) (3.21)

where Ωi (~x, t) is the same as given in Eq. (2.9) in Chapter 2 and Ωreaction
i (~x, t) is called

reaction collision operator and has the form Ωi (~x, t) = wiR, where R = ks (C − Ceq). In
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terms of equilibrium distribution function Eq. (3.21) can be written as

fi (~x+ ~ei∆t, t+ ∆t) = fi (~x, t) +
∆t

τ
(fi (~x, t)− f eqi (~x, t))

+ wiks

(
m∑
j=1

fj − Ceq

) (3.22)

3.4 Lattice Boltzmann Method for Multi-Component Reactive Transport

The single component LB scheme presented in the previous section can be extended to simulate

multi-component reactive transport.

Sorption isotherm based model

The multi-component reactive transport equation with isotherm based model for reaction term

can be written using Eq. (3.7) as

∂Cj

∂t
= Dj

i

∂2Cj

∂x2
i

− uji
∂Cj

∂xi
j = 1, 2, 3, ..., Nc (3.23)

where Dj
i = Di/R

j
d and uji = ui/R

j
d are effective dispersion coefficient and effective velocity

of jth component along i-direction. It is shown in previous chapter that numerical time step

is related to macroscopic dispersion coefficient. In order to keep same numerical time step for

all the components of the system it is required to keep the apparent diffusion coefficient, which

is the ratio between diffusion coefficient and retardation factor, same for all the components.

This is achieved using diffusion velocity LB scheme [Perko et al., 2014; Patel et al., 2014]. The

scheme was developed and applied to model solute transport in a heterogeneous media [Perko

et al., 2014]. In this scheme, total physical diffusion coefficients is divided into reference (Dref )

and fluctuating (D̃ ) parts.

Dj
i = Dref

i + D̃j
i (3.24)
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Using Eq. (3.24), reactive transport Eqs. (3.23can be rewritten as

∂Cj

∂t
=
(
Dref
i + D̃j

i

) ∂2Cj

∂x2
i

− uji
∂Cj
∂xi

j = 1, 2, 3, ..., Nc (3.25)

Dref
i is taken as the minimum of the apparent diffusion coefficientsmin(Dj

i j = 1, 2, 3, ..., Nc).

It is seen in chapter 2 that time step value is inversely proportional to diffusion coefficient; there-

fore, consideration of minimum of the apparent diffusion coefficients asDref
i increases the time

step value and consequently reduces the computational time. Diffusion flux corresponding to

the fluctuating part of the diffusion coefficient is converted to corresponding diffusion velocity

(ud,ji ) using the following expression [Perko et al., 2014]

ud,ji = −
D̃j
i
∂Cj

∂xi

Cj
(3.26)

Using Eq. (3.26), the reactive transport equation (3.25) can be written as

∂Cj

∂t
= Dref

i

∂2Cj

∂x2
i

− ut,ji
∂Cj

∂x
j = 1, 2, 3, ..., Nc (3.27)

where ut,ji = uji +u
d,j
i is the total velocity. Equation (3.27) is solved using standard SRT scheme

of LBM. The diffusion velocity as given in Eq. (3.26) is derived using the first order terms in the

Chapman-Enskog expansion in the lattice Boltzmann framework. Details of the derivation are

given by Perko et al [Perko et al., 2014]. Final expression for diffusion velocity can be written

as

ud,jβ,i = −
D̃j

i

τe2s(
1 +

D̃j
i

τe2s

) (∑α f
j
αeα,β
Cj

− ua,jβ,i
)

(3.28)
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The diffusion velocity as given in Eq. 3.28 is incorporated into LBM through equilibrium

distribution function (EDF). The EDF for ADE with diffusion velocity is written as

f eq,jα (−→r , t) = wαC
j (−→r , t)

1 +
eα,β

(
ud,jβ,i + ua,jβ,i

)
e2
s

 (3.29)

The above equation is an ADE and therefore it’s solution can be obtained using standard LB

scheme for ADE. The LB equation for Eq. (3.23) is expressed as

f ji (~x+ ~ei∆t, t+ ∆t) = f ji (~x, t) +
∆t

τ

(
f ji (~x, t)− f eq,ji (~x, t)

)
(3.30)

Geochemical reaction based model

Similar to single component reactive transport model, the LB equation for multi-component

reactive transport equation (3.15) with geochemical reaction based model for reaction term can

be written as

f ji (~x+ ~ei∆t, t+ ∆t) = f ji (~x, t) +
∆t

τ

(
f ji (~x, t)− f eq,ji (~x, t)

)
+ ∆tΩreaction,j

i (~x, t)

(3.31)

Ωreaction,j
i (~x, t) = −wi

Nm∑
m=1

νjmIm

In this work the LB solver for solute transport developed in the previous chapter is interfaced

with a geochemical software, PHREEQC, to compute the geochemical reactions. The coupling

scheme is based on operator splitting approach generally used for multi-physics problems. The

coupling algorithm is elaborated in the following
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3.4.1 Interfacing with Commercial Geochemical Solver

The source/sink term in the LB equation for multi-component reactive transport (3.25) is eval-

uated using commercial geochemical solver Phreeqc [Parkhurst et al., 1999], which has capa-

bilities for simulating a broad range of equilibrium reaction between water and minerals, ion

exchangers, surface complexes, solid solution, and gases. For the interfaces scheme, we have

used the latest version of Phreeqc, called PhreeqcRM [Parkhurst et al., 2015] which was specif-

ically designed for use as a reaction engine in reactive transport simulation using non-iterative

operator splitting approach [Saaltink et al., 2001; Carrayrou et al., 2004]. The basic concept of

operator splitting approach is to solve a multi-physics problem in a sequential way. More sim-

ply it can be said that at each time step LB based solute transport solver will solve the transport

process and after that it will send the solution to an commercial software (PhreeqcRM), where

the various reaction calculation will take place. After the reaction calculation, external reaction

module will transfer the new solution composition to the client module where the solution of

transport module is updated based on component loss or gain occurred due to geochemical in-

teractions. Similar coupling scheme was used for pore scale reactive transport simulation by

Ravi et al [Patel et al., 2014].

PhreeqcRM is basically a class of functionalities of Phreeqc that can be included in other pro-

gramming language (C, C++, Fortran) to utilize the capabilities of Phreeqc in a dynamic way.

The Phreeqc software takes input file, which is a geochemical model of the solution, from the

user. The input file is composed of keyword data blocks. Before the release of PhreeqcRM

in 2015, another version of Phreeqc called IPhreeqc [Charlton et al., 2011] was released. This

IPhreeqc encapsulates all the capabilities of Phreeqc in a C++ class (with wrapper for C and For-

tran) to facilitate integration of Phreeqc into other computer program. However, IPhreeqc relies

primarily on processing strings that define keyword data blocks and arrays of selected-output

to automate the use of Phreeqc. For reactive transport modeling, translating cell solutions to
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strings and processing output arrays item-by-item are tedious programming efforts. The latest

version of Phreeqc, PhreeqcRM, is basically a C++ class that encapsulates IPhreeqc and it can

perform on data array (instead of string) and there no requirement of keyword data blocks. In

the reactive transport program an instance of PhreeqcRM is first created and a mapping opera-

tion is done where each grid cells are mapped into equivalent grid cells inside PhreeqcRM. The

transport simulator provides new concentrations of each cell to PhreeqcRM at each time step

after performing the transport operation and PhreeqcRM performs the geochemical operation

on the new solution and returns the updated solution to transport solver. The structure of the

multi-component reactive transport model is shown in Fig. 3.2.

Parallelization of PhreeqcRM code is done explicitly by providing the number of threads or

processors to be used during run time. If only 1 thread or processor is used then the code will

work in serial mode otherwise it will work in parallel mode. The code can be parallelized in

both shared memory and distributed memory. In this study, parallelization was done in shared

memory platform in Scientific Linux 7 with quad-core processor.

3.5 Numerical Problems Solved

The developed coupling scheme is tested by solving benchmark problems of single component

and multi-component reactive transport in this section.

3.5.1 Diffusion and Kinetically Controlled Dissolution/Precipitation Reaction

Problem formulation

This benchmark problem has been received from ANDRA, France as a part of BARC-ANDRA

co-operative doctoral work [COCHEPIN, 2014]. The aim of this test problem is to simulate the

diffusion transport of an aqueous chemical element which is allowed to precipitate, following
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Figure 3.2: Schematic of the structure of reactive transport model

the reaction

Aaqueous ⇀↽ Asolid (3.32)

The solubility constant of this reaction is Ks = [Aaqueous]equil, where [Aaqueous]equil stands for

the concentration of the element A in solution at equilibrium. We consider only one species

exists in the solution, Aaqueous, and only one mineral, Asolid. The porous medium is only com-

posed of inert material with a porosity θ and an effective diffusion coefficient De. Initially, the

concentrations of A in solution and in the solid phase are

[Aaqueous] = C0 [Asolid] = P0 = 0 (3.33)

We impose Dirichlet type boundary conditions with [Aaqueous] = C1 on the left side of the

domain, where C1 is a constant with bigger value than the one imposed by the solubility limit
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Ks of the solid Asolid, and [Aaqueous] and [Aaqueous] = C2 = C0 on the right side of the domain.

The model domain is shown in Figure 3.3. It is assumed no advection, i.e., the element,Aaqueous,

[Aaqueous] = C1 > Ks [Aaqueous] = C2

[Aaqueous] = C0

[Asolid] = P0 = 0

Precipitation +1D Diffusion

Figure 3.3: Model domain

is only transported by diffusion. This system, even though considerably simplified, can be met

in the storage concept of nuclear waste. The progressive dissolution of vitrified waste leads to

the release of silica in the environment. The dissolved silica may precipitate as quartz which

has a low solubility. Transport equation for the diffusion of Aaqueous can be written as

θ
∂C

∂t
= De

∂2C

∂x2
− ∂P

∂t
(3.34)

The above equation can be simplified as

∂C

∂t
= D

∂2C

∂x2
− 1

θ

∂P

∂t
(3.35)

where C is the concentration of element A in the aqueous phase and P is its concentration in

the solid phase (number of moles per total volume unit, i.e., solution volume + solid volume).

In the case of kinetic reaction with an order of 1, we have

1

θ

∂P

∂t
= kS

(
C

Ks

− 1

)
= β (C −Ks) (3.36)

β =
kS

Ks

In these equations, k and S are respectively the kinetic rate constant for the precipitation of the

minerals (in mol.l−1.m.s−1) and the specific surface (in m−1). Initial and boundary conditions
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are

∀x ∈ [0, L] , C (x, t = 0) = C0 (3.37)

∀t > 0


C (x = 0, t) = C1 > ks

C (x = L, t) = C2

(3.38)

Lattice Boltzmann simulation

The LBM based diffusion model interfaced with PhreeqcRM is used to solve the problem. Since

LBM gives more stable and accurate results when the relaxation parameter, τ , is close to 1, we

have performed our simulation considering τ = 1. It is also advantageous to perform simulation

in LB units considering stability and convergence criterion. Therefore, unit lattice spacing and

unit time step size, i.e., ∆xlbm = 1 lu, ∆tlbm = 1 ltu are considered in this simulation. The

lattice diffusion coefficient, Dlbm, is calculated using Eq. (2.63) and it value is 1/6. Total 101

lattice nodes are considered for LB simulation using D1Q3 lattice.

Values of input parameters used

The various physical and chemical parameters used in the simulation are taken from the litera-

ture [COCHEPIN, 2014]. The values are tabulated in Table 3.1 Results and discussion

Table 3.1: Values of input parameters used in the simulation of diffusion and kinetically controlled
dissolution/precipitation reaction

D Poral diffusion coefficient 10−10 m2/s

θ Porosity of the porous media 0.79
C0 Initial concentration 1.31×10−4 mol.l−1

C1 Concentration imposed on the left of the domain 2.12×10−3 mol.l−1

C2 Concentration imposed on the right of the domain 1.31×10−4 mol.l−1

Ks Solubility constant of the mineral 1.31×10−4 mol.l−1

k Kinetic reaction rate of the mineral 5×10−11 mol.l−1.m.s−1

S Specific surface area 1.6×104 m−1

Using the numerical values given in Table 3.1 we can calculate the value of β as

β =
kS

Ks

= 8× 10−7S−1
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The characteristic time for the chemical phenomenon tchemistry (precipitation / dissolution) is

of the order than 1/β = 1.25 × 106 s, that is to say around 14.5 days. The diffusion length

corresponding to tchemistry is

Ldiff =
√

2Dtchemistry = 1.6× 10−2m

Grid size is chosen smaller than Ldiff to keep the system diffusive. Therefore, physical lattice

size is 0.1 cm and corresponding physical time step size can be calculated from the following

expression

∆t =
(∆x)2

6D
(3.39)

where ∆t is the physical time step size, ∆x is the physical lattice size = 0.1 cm, D is the

physical apparent diffusion coefficient. The domain length (L) is taken as 10 cm, time step

value calculated from the above equation is 1666.67 s. The values of solute concentration are

calculated for each grid points at 3.65 days, 10 days, 100 days and 1 year. The results of the

simulation shows that after 100 days the system remains in equilibrium state i.e. the amount of

solute being precipitated or dissolved inside a given volume is equal to net solute concentration

being entered in that domain due to diffusion process.

Verification and validation

The closed form analytical solution of Eq. (3.36) with the given initial and boundary conditions

can be written as [COCHEPIN, 2014]

C (x, t) = C∞ (x)−
∞∑
n=1

bnsin
(nπ
L
x
)
exp

(
−
(
D
n2π2

L2
+ β

)
t

)
(3.40)
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In this expression, C(x, t, which is the stationary solution of the transport equation, can be

written as

C (x) = AeΩx +Be−Ωx +Ks

Ω =

√
β

D

With the boundary conditions A and B can be written as

∀t > 0


A = (C2−Ks)−(C1−Ks)e−ΩL

2sinh(ΩL)

B = −(C2−Ks)+(C1−Ks)eΩL

2sinh(ΩL)

The bn coefficients are the Fourier coefficients and can be written as

bn = −2
Ks − C0

nπ
[(−1)n − 1− 2nπ

Ω2L2 + n2π2
×

[
A
(
eΩL (−1)n − 1

)
+B

(
e−ΩL (−1)n − 1

)]
The results of simulation in terms of spatial concentration profiles are shown in Figures 3.4 and

3.5. The results of numerical simulation are very close to the analytical solutions. This confirms

the accuracy of the developed interfaced scheme.
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Figure 3.4: Solute concentration after 3.65 days: comparison between LB solution and analytical solution

Figure 3.5: Solute concentration after 3.65, 10, 100 days and 1 year: comparison between LB solution
and analytical solution
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3.5.2 Diffusion of Alkaline Water in a Sand Column using Lattice Boltzmann Interfaced

with Geochemical Solver

Problem formulation

This proposed model is used to simulate diffusion of alkaline water (NaOH) in a 0.4 m long

column composed of grains of pure quartz, leading to acid/base reaction together with mineral

dissolution. The dissolution reaction of quartz in presence of hydroxyl ions can be written as

[Pal et al., 2016a]

quartz +OH−1 +H2O ⇀↽ H3SiO
−1
4 (3.41)

The above reaction can be decomposed in terms of four elementary chemical reactions as

NaOH ⇀↽ Na+ +OH−

H2O ⇀↽ H+ +OH− (Kw)

H4SiO4 ⇀↽ H+ +H3SiO
−
4 (Ka)

(3.42)

quartz + 2H2O ⇀↽ H4SiO4 (Ks) (3.43)

where Kw, Ka and Ks are the equilibrium constant for the respective reactions. Assuming

concentration to be identical to the activity and using elementary mass-action law we can write

Kw =
[
H+
] [
OH−

]
Ka =

[H+]
[
H3SiO

−
4

]
[H4SiO4]

Ks = [H4SiO4]

(3.44)

where bracketed quantity signify activity of species. Equation (3.44) contains four unknown

and three equations therefore, additional equations in the form of charge balance as given in Eq.
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(3.45) is used to calculate pH value

[
OH−

]
+
[
H3SiO

−
4

]
=
[
H+
]

+
[
Na+

]
(3.45)

From Eqs. (3.44) and (3.45), activity of H+ ion can be calculated as

H+ =
1

2

(√
[Na+]2 + 4 (Kw +KaKs)−

[
Na+

])
(3.46)

Therefore pH of the solution can be written as

pH = −log
[
H+
]

= −log
[

1

2

(√
[Na+]2 + 4 (Kw +KaKs)−

[
Na+

])]
(3.47)

Eq. (3.47) implies that concentration of [Na+] ion is the controlling parameter for the pH of the

pore water. In the system, the cationNa+ is not reactive and only diffuses into the sand column.

As a consequence, [Na+] concentration is governed by the following diffusion equation.

∂ [Na+]

∂t
= De

∂2 [Na+]

∂x2
(3.48)

Initial and boundary conditions are

[
Na+

]
(x, t = 0) = 0 (3.49)

∀t > 0


[Na+] (x = 0, t) = [Na+]0

∂[Na+]
∂t

(x =∞, t) = 0

(3.50)

where [Na+]0 is the fixed concentration on the inlet boundary.

Lattice Boltzmann simulation

The developed interfaced scheme is utilized to simulate the problem numerically. The LB
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simulation is carried out using D2Q5 lattice and 101 lattice points.

Values of input parameters used

The physical and grid parameters used in the simulation are taken from literature [Mgler et al.,

2004]. The grid is composed of 100 identical cells (∆x = 4 × 10−3 m), with De = 3 × 10−10

m2.s−1 and [Na+]0 = 20 mmol.l−1.

Results and discussions

The concentration of [Na+] ion is calculated using the developed interfaced scheme. From

the LBM solution of solute concentration, the value of pH is calculated using Eq. 3.47. The

simulations are run for 10, 30 and 100 days.

Verification and validation

Closed form solution of Eq. (3.48) can be written as

[
Na+

]
(x, t) =

[
Na+

]
0

[
erfc

(
x

2
√
Det

)]
(3.51)

Calculation of spatial profiles of [Na+] ion and corresponding spatial profile of pH is carried

out at 10, 30 and 100 days. Figures 3.6 and 3.7 give spatial profile of [Na+] and pH and

compares the numerical solutions with the analytical solution 3.48.
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Figure 3.6: Spatial profile of concentration of Na+ ion at various times: Comparison between LB
solution and analytical solution

Figure 3.7: Spatial profile of pH at various times: Comparison between LB solution and analytical
solution
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3.5.3 Migration of Radionuclide Chain

Problem formulation

This test problem model the migration of radionuclide chain through groundwater. The model

equations are coupled one dimensional advection dispersion reaction equations with decay term.

A generic inventory of parent nuclide and leach rate are considered for source term. The prob-

lem attempted here involves three species comprising of parent radionuclide 241Pu which suc-

cessively decays to 241Am and 237Np. The governing equations for the migration of the ra-

dionuclide chain through the aquifer media can be written as

∂C1

∂t
=

D

R1

∂2C1

∂x2
− u

R1

∂C1

∂x
− µ1C1 (3.52)

∂C2

∂t
=

D

R2

∂2C2

∂x2
− u

R2

∂C2

∂x
+ µ1C1 − µ2C2 (3.53)

∂C3

∂t
=

D

R3

∂2C3

∂x2
− u

R3

∂C3

∂x
+ µ2C2 − µ3C3 (3.54)

where D is the dispersion coefficient (L2T−1), u is average pore water velocity (LT−1), µi =

λi + γi is general decay coefficient (T−1), λi is radioactive decay constant, and γi is leach rate

(T−1) of the ith species. In the leach rate model it is assumed that amount of radionuclide

leached out from the solidified waste from is proportional to the amount of radionuclide present

in the waste. The retardation factor Ri is given by

Ri = 1 +
ρKi

θ
(3.55)

where ρ is the porous media bulk density (ML−3), θ is volumetric water content which is equal

to the porous media bulk porosity when the the media is fully saturated.
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Figure 3.8: Model geometry for migration of radionuclide chain

Initially the concentrations of radionuclides are assumed to be zero everywhere therefore,

the initial condition for the coupled differential equations (3.52,3.53, 3.54) can be written as

Ci (x, t = 0) = 0, i = 1, 2 (3.56)

Lattice Boltzmann simulation

These coupled equations are solved numerically using diffusion velocity LB scheme developed

in this chapter. Using the concept of diffusion velocity LBM scheme the total physical diffusion

coefficients can be divided into reference (Dref ) and fluctuating (D̃ ) parts as

D = Dref + D̃ (3.57)

ConsideringD/R asDapp, which is called apparent diffusion coefficient and u/R as uapp, which

is called apparent groundwater velocity and utilizing Eq. 3.57, coupled Eqs. (3.52,3.53, 3.54)

can be rewritten as

∂C1

∂t
=
(
Dref + D̃1

) ∂2C1

∂x2
− u1

app

∂C1

∂x
− µ1C1 (3.58)

∂C2

∂t
=
(
Dref + D̃2

) ∂2C2

∂x2
− u2

app

∂C2

∂x
+ µ1C1 − µ2C2 (3.59)
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∂C3

∂t
=
(
Dref + D̃3

) ∂2C3

∂x2
− u3

app

∂C3

∂x
+ µ2C2 − µ3C3 (3.60)

Dref is taken as the minimum of three apparent diffusion coefficients (D1
app, D

2
app, D

3
app). Dif-

fusion flux corresponding to the fluctuating part of the diffusion coefficient is converted to

corresponding diffusion velocity (ud) using the following formula.

ud = −
D̃ ∂C

∂x

C
(3.61)

Using Eq. 3.61, the coupled Eqs. 3.58,3.59, and 3.60 can be written as

∂C1

∂t
= Dref

∂2C1

∂x2
− u1

tot

∂C1

∂x
− µ1C1 (3.62)

∂C2

∂t
= Dref

∂2C2

∂x2
− u2

tot

∂C2

∂x
+ µ1C1 − µ2C2 (3.63)

∂C3

∂t
= Dref

∂2C3

∂x2
− u3

tot

∂C3

∂x
+ µ2C2 − µ3C3 (3.64)

where ut = uapp+ud the total velocity. Equations 3.62,3.63, and 3.64 are solved using standard

SRT scheme of LBM. The diffusion velocity can be written as

uβ,d = −
D̃
τe2s(

1 + D̃
τe2s

) (∑α fαeα,β
C

− uβ,a
)

(3.65)

The diffusion velocity as given in Eq. (3.65) is incorporated into LBM through equilibrium

distribution function (EDF). The EDF for ADE with diffusion velocity can be written as

f eqα (−→r , t) = wαC (−→r , t)
(

1 +
eα,β (uβ,a + uβ,d)

e2
s

)
(3.66)

Values of input parameters used

The three members decay chain considered in this study is 241Pu→241Am→237Np. In this de-
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cay chain 241Pu, which is considered as the parent radionuclide, decays to 241Am via β-decay

process. The daughter element, 241Am, then decays to 237Np vis α-decay process. It is re-

ported that neptunium is the most mobile actinide in the NSDF environment and due to its long

half-life, 237Np possess long term radio-toxicity. Various physico-chemical parameters used in

the simulation are given in Table 3.2. Half-lives and distribution coefficients of the decay-chain

members for typical sandy soil are given in Table 3.3. Aquifer thickness is taken as 6.0 m.

Table 3.2: Physico-chemical parameters
D(m2/s) u (m/s) Density (g/ml) Porosity

5.79×10−5 5.79×10−7 1.35 0.30

Table 3.3: Half-lives and distribution coefficients of the decay-chain members
Nuclide Half-life (yr) Kd(ml/g)

241Pu 14.29 3.4×102

241Am 432.52 3.4×102

237Np 2.144×106 5.0

Results and discussions

In the calculation, it is assumed as a basis that only the first nuclide (241Pu) of 1Bq is present in

the disposal site at the start of the release. The second (241Am) and third radionuclide (237Np)

are formed from 241Pu in both of disposal area and during migration through geological media.

Spatial profiles of the radionuclides after 400 years and 1000 years are shown in Figures 3.9

and 3.10 , respectively. The figures show that neptunium concentration moves faster than of the

other two radionuclides. Temporal plot of concentration of the radionuclides at 500 m distance

from the disposal area are shown in Figure 3.11. The spatial profiles of radionuclide concen-

tration show that the time at which maximum peak of concentration will arrive at a given mon-

itoring point not only depends on the physico-chemical properties of parent radionuclide, but

also depends on physico-chemical properties of its progenies. The time dependent radionuclide
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concentration profile shows that though there is almost no concentration of parent radionuclide

(241Pu) at a distance of 500 m from the location of radionuclide disposal, considerable amount

of daughter radionuclides (237Np) are there. This result has considerable amount of application

particularly, in the case of radiological dose calculation. In the traditional approach for determi-

nation of dose from radionuclides, having radioactive progeny, we first calculate concentration

of parent radionuclide at the monitoring point by solving a single species (parent radionuclide)

ADRE and then solve Bateman equation for calculation of concentration of progenies at the

same location. The results of our study show that traditional method may lead to underestima-

tion of calculated dose.

Figure 3.9: Spatial Profile of Radionuclides in the Decay Chain after 400 yrs
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Figure 3.10: Spatial Profile of Radionuclides in the Decay Chain after 1000 yrs

Figure 3.11: Temporal Profile of Radionuclides in the Decay Chain at 500 m

Verification and validation

The numerical results are compared with analytical solution published elsewhere in [Lester et

al., 1974; Burkholder et al., 1980; Higashi et al., 1980] and good agreement between them is

130



CHAPTER 3. MULTI-COMPONENT REACTIVE TRANSPORT SIMULATION USING LATTICE BOLTZMANN METHOD

established.

3.6 Summary

In this chapter, a interfaced algorithm for multi-component and long term reactive transport

is formulated by interfacing the LBM based solute transport solver developed in the previous

chapter with an commercial geochemical software, PHREEQC.

On the onset of this chapter, we have discussed about two approaches for modeling multi-

component reactive transport at continuum scale, which are (i) based on empirical model of

sorption and (ii) Geochemical reaction based model. A brief overview of various isotherms,

including linear isotherm, Langmuir isotherm, Freundlich are given. Special emphasis is given

on the formulation of geochemical reaction based model, where we have shown how to incorpo-

rate various homogeneous and heterogeneous reactions into the solute transport model equation.

Concept of primary and secondary species and their use to reduce the number of equations to

be solved is discussed.

We have given lattice Boltzmann schemes for following four type of formulations of reactive

transport: (1) sorption isotherm based single component reactive transport, (ii) geochemical re-

action based single component reactive transport, (iii) sorption isotherm based multi-component

reactive transport, (iv) geochemical reaction based multi-component reactive transport. A new

lattice Boltzmann scheme for sorption isotherm based multi-component reactive transport is

proposed using the concept of diffusion velocity lattice Boltzmann. For simulation of geochem-

ical reaction based multi-component reactive transport, we have interfaced our in-house devel-

oped LBM based solute transport solver with commercial geochemical software PHREEQC.

Though, the similar coupling scheme was already developed and used for pore scale reactive

transport, we further enhanced its scope by simulating continuum scale reactive transport. The

developed schemes are validated and verified by solving three standard benchmark problems.
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Chapter 4

Modeling Uncertainty Analysis in Solute

Transport with Imprecise Model

Parameters

4.1 Introduction

This chapter is intended to develop robust numerical schemes for modeling uncertainty asso-

ciated with solute transport model output when the parameters of the governing equation are

imprecise. In chapters 2 and 3, parameters of ADE such as groundwater velocity and disper-

sion coefficient were taken as crisp parameters, i.e., single representative values were assigned

for each variable. But in reality, the measured values of these model parameters are imprecise

either due to lack of measurements (few samples) or low precision measuring instruments used

for experiment. Imprecise parameters are best represented by fuzzy numbers and corresponding

partial differential equation (PDE) is called fuzzy PDE. In this study, groundwater velocity and

dispersion coefficient are taken as fuzzy variables and thus the solute transport equation (ADE)

is a fuzzy ADE. The imprecise parameters are represented by triangular fuzzy numbers (TFNs),
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because TFN encodes only most likely value (mean value) and the spread (standard deviation).

Aggregation of all the fuzzy numbers for the estimation of uncertainty is carried out using fuzzy

vertex method (FVM). LBM and DQM based schemes are developed to solve the fuzzy ADE

numerically and due to this the present numerical approaches are termed as fuzzy lattice Boltz-

mann and fuzzy differential quadrature method, respectively. Uncertainty quantification of the

solute concentration as solution of the governing fuzzy partial differential equation is carried

out and epistemic uncertainty of the solute concentration thus computed is expressed in terms

of lower and upper bounds. The structure of the chapter is as follows. Basics of fuzzy set theory

and fuzzy logic, which are required for quantifying uncertainty involved with the solute trans-

port model, are reviewed in section 4.2. The mathematical model of solute transport in presence

of imprecise parameters is developed in section 4.3. In section 4.4, numerical framework for

solution of the fuzzy solute transport model using LBM is carried out. Similar formulation

with DQM is carried out in section 4.5. Finally the developed techniques are applied to various

engineering problems in section 4.6.

4.2 Basics of Fuzzy Set Theory and Fuzzy Logic

In this section some essential concepts and definitions of fuzzy set theory and fuzzy logic,

which are required for uncertainty analysis of solute transport process with imprecise model

parameters, are provided in brief [Pal et al., 2015].

4.2.1 Fuzzy Sets

The concept of fuzzy set was introduced by Zadeh in 1965 [Zadeh, 1965]. The basic difference

between an ordinary set and a fuzzy set is that members of a fuzzy set have a partial degree of

membership in the range from 0 (no membership) to 1 (full membership) whereas, membership

value of an element of ordinary set is either 0 or 1. A Fuzzy set can be defined mathematically
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by assigning a value, representing its grade of membership in the fuzzy set, to each possible

individual in the universe of discourse, and hence it can be represented as a set of pairs of

numbers as

A = {(x, µ (x)) |, x ∈ R, µ (x) ∈ [0, 1]} (4.1)

where µ(x) represents the membership grades of the crisp value, x, R is the universal set of

real numbers . The fuzzy set A is normal if there exit at least one crisp value (x) for which

µA(x) = 1. A fuzzy set is said to be convex if for every real number a, b, c with a < c < b,

µA(c) ≥ min(µA(a), µA(b)).

4.2.2 Fuzzy Numbers

Fuzzy numbers are special cases of fuzzy sets with a normal, fuzzy convex and continuous

membership functions with bounded support. Generally two types of fuzzy membership func-

tions (triangular and trapezoidal) are used to illustrate uncertainties associated with the model

parameters.

Triangular Fuzzy Number

A triangular fuzzy number is a fuzzy subset A ⊂ R characterized by a membership function

µA : R→ [0, 1] and defined by

µ (x) =



xL−a
b−a , a ≤ xL ≤ b

c−xR
c−b , b ≤ xR ≤ c

0, otherwise

(4.2)

where a,b, and c are real numbers called lower, most probable, and upper bound of the fuzzy

number, xL and xR are the two variables for the left and right sides, respectively. From the

above Eq. (4.2) it can observed that a triangular fuzzy number can be defined if the values of
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a, b, and c are known. Hence, a triangular fuzzy number is denoted as Ã = [a, b, c]. Schematic

view of triangular fuzzy number is shown in Figure 4.1.

Figure 4.1: Fuzzy variable with triangular membership function

Trapezoidal Fuzzy Number

A trapezoidal fuzzy number is a fuzzy subset A ⊂ R characterized by a membership function

µA : R→ [0, 1] and defined by

µ (x) =



x−a
b−a , a ≤ x ≤ b

c−x
d−c , c ≤ x ≤ d

1, b ≤ x ≤ c

0, otherwise

(4.3)

where a,b, c and d are real numbers with a ≤ b ≤ c ≤ d. From the above Eq. (4.3) it can

observed that a trapezoidal fuzzy number can be defined if the values of a, b, c, and d are

known. Hence, a trapezoidal fuzzy number is denoted as Ã = [a, b, c, d]. Schematic view of
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trapezoidal fuzzy number is shown in Figure 4.2

Figure 4.2: Fuzzy variable with trapezoidal membership function

4.2.3 α-cut of a Fuzzy Set

The α-cut of a fuzzy set is the (crisp) set of all elements that have a membership value greater

than or equal to α. The α-cut of a fuzzy set, A = {x, µ(x)}, is written as Aα = {x | µA(x) ≥

α}. It allows us to describe a fuzzy set as a composition of crisp sets. α-cut of a triangular fuzzy

number, Ã = [a, b, c] is written as

Aα = [xαL, x
α
R] = [a+ (b− a)α, c− (c− b)α] (4.4)

α-cut of a trapezoidal fuzzy number, Ã = [a, b, c, d] is written as

Aα = [xαL, x
α
R] = [a+ (b− a)α, d− (d− c)α] (4.5)
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4.3 Development of Fuzzy Solute Transport Model

From the discussion in Chapter 2, we rewrite the simplified form of solute transport equation

(ADE)

∂C

∂t
= Dj

∂2C

∂x2
j

− uj
∂C

∂xj
(4.6)

Measurement values of the model parameters (dispersion coefficient and groundwater veloc-

ity) are expressed around the most likely value and hence the fuzziness of these measures is

expressed in the form of a triangular fuzzy number to maintain the measurement uncertainty.

Considering the parameters of the Eq. (4.6) are imprecise, we can written the above equation as

∂C̃

∂t
= D̃j

∂2C̃

∂x2
j

− ũj
∂C̃

∂xj
(4.7)

where D̃j and ũj are dispersion coefficient and groundwater velocity, respectively. The tilde, ,̃

sign signifies the variable as fuzzy variable and distinguishes them from their classical (crisp)

counterpart. The above equation is called fuzzy advection dispersion equation. In order to solve

the above equation, we need to represent it using α-cut formulation. The α-cut representation

of Eq. (4.7) can be written as

∂Cα
∂t

= Djα
∂2Cα
∂x2

j

− ujα
∂Cα
∂xj

(4.8)

where Djα and ujα are the values of dispersion coefficient and groundwater velocity at mem-

bership value α and Cα is the corresponding solute concentration.

4.4 Development of Fuzzy Lattice Boltzmann Scheme

Details of LBM based schemes for solute and reactive transport have been described in previ-

ous chapters. In this section, LBM based scheme is developed to solve fuzzy solute transport
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equation (4.7) [Pal et al., 2017]. We rewrite SRT LBE

fi (
−→r +−→ei∆t, t+ ∆t) = fi (

−→r , t) + ΩBGK
i (−→r , t) (4.9)

ΩBGK
i (−→r , t) =

1

τ
[f eqi (−→r , t)− fi (−→r , t)] (4.10)

where fi (−→r , t) is particle distribution function at spatio-temporal coordinate (−→r , t) along ith

direction, −→ei represents particle velocity along ith direction, ΩBGK
i (−→r , t) is BGK collision

operator along ith direction at same spatio-temporal coordinate, ∆t is time step, τ is relaxation

coefficient, and f eqi (−→r , t) is particle equilibrium distribution function (EDF) along ith direction.

Since macroscopic particle density is the zero order velocity moment of distribution function,

concentration of solute at a given α-cut can be written in terms of corresponding discrete particle

distribution function as

Cα (−→r , t) =
∑
i

fiα (−→r , t) (4.11)

Therefore, the lattice Boltzmann equation for the evolution of fiα (−→r , t) can be written as

fiα (−→r +−→ei∆t, t+ ∆t) = fiα (−→r , t) + ΩBGK
iα (−→r , t) (4.12)

ΩBGK
iα (−→r , t) =

1

τ
[f eqiα (−→r , t)− fiα (−→r , t)] (4.13)

The above equations can be treated as α-cut representation of the SRT LBE. The EDF plays

important role for solving any physical problem using LBM. Since Eq. (4.8) is an ADE, EDF

for the same (4.8) can be written as

f eqiα (−→r , t) = wiCα (−→r , t)
(

1−
−→ei .−→uα
e2
s

)
(4.14)
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wherewi are the weights for particle’s distribution function along ith direction,−→uα = (ux, uy, uz),

and es is ”pseudo sound speed” [Chen et al., 1998]. The EDF (4.14) and weight factors satisfy

the following properties ∑
i

wi = 1 (4.15)

∑
i

f eqiα (−→r , t) = Cα (−→r , t) (4.16)

∑
i

eixf
eq
iα (−→r , t) = uxαCα (−→r , t) (4.17)

∑
i

eixeiyf
eq
iα (−→r , t) = e2

sCα (−→r , t) δx,y (4.18)

where δx,y is the Dirac delta function, which is equal to 1 when x = y and equal to 0 when

x 6= y. In the following part of this section we will derive the ADE governing solute transport

process (4.8) from LBE (4.12) using multi-scale Chapman-Enskog expansion technique. For

this, we assume that ∆t is a small parameter and equal to ε.

∆t = ε (4.19)

Substitution of the above equation into Eq. (4.12) leads to

fiα (−→r +−→ei ε, t+ ε) = fiα (−→r , t) +
1

τ
[f eqiα (−→r , t)− fiα (−→r , t)] (4.20)

Using Chapman-Enskog expansion technique, particle distribution function can be expanded as

fiα = f
(0)
iα +

∞∑
n=1

εnf
(n)
iα = f

(0)
iα + εf

(1)
iα + ε2f

(2)
iα + ϑ

(
ε3
)

(4.21)
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Taylor series expansion of the left-hand side of the Eq. (4.20) with respect to time and space

around point (−→r , t) can be written as

∞∑
n=1

εn

n!

(
∂

∂t
+ eij

∂

∂xj

)n
fiα (−→r , t) =

1

τ
[f eqiα (−→r , t)− fiα (−→r , t)] (4.22)

Substitution of Eq. (4.21) into Eq. (4.22) leads to

∞∑
n=1

εn

n!

(
∂

∂t
+ eij

∂

∂xj

)n (
f

(0)
iα + εf

(1)
iα + ε2f

(2)
iα

)
=

1

τ

[
f eqiα −

(
f

(0)
iα + εf

(1)
iα + ε2f

(2)
iα

)] (4.23)

Since for ADE we require only up to second order terms of the expanded distribution function

(4.21), higher order terms are neglected. Grouping terms of the same order in ε yields the

following successive approximations

ϑ
(
ε0
)

: f eqiα = f
(0)
iα (4.24)

ϑ
(
ε1
)

:

(
∂

∂t
+ eij

∂

∂xj

)
f

(0)
iα = −1

τ
f

(1)
iα (4.25)

ϑ
(
ε2
)

:

(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
iα +

1

2

(
∂

∂t
+ eij

∂

∂xj

)2

f
(0)
iα = −1

τ
f

(2)
iα (4.26)

Substituting Eq. (4.25) into the above Eq. (4.26), we get

(
1− 1

2τ

)(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
iα = −1

τ
f

(2)
iα (4.27)

Eq. (4.25)+ε× Eq. (4.27) leads to

(
∂

∂t
+ eij

∂

∂xj

)
f

(0)
iα + ε

(
1− 1

2τ

)(
∂

∂t
+ eij

∂

∂xj

)
f

(1)
iα

= −1

τ

(
f

(1)
iα + εf

(2)
iα

) (4.28)
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Using the properties of distribution function as given in Eq. (4.16) and (4.17), we can impose

following constraints on fluctuating parts of the distribution function

∑
i

f
(k)
iα (−→r , t) = 0, k = 1, 2, 3, ... (4.29)

∂

∂t

∑
i

f
(k)
iα (−→r , t) = 0, k = 1, 2, 3, ... (4.30)

Summing over i and using Eq. (4.29) and (4.30), Eq. (4.28) can be written as

∂

∂t

∑
i

f
(0)
iα +

∂

∂xj

∑
i

eijf
(0)
iα + ε

(
1− 1

2τ

)
∂

∂xj

∑
i

eijf
(1)
iα = 0 (4.31)

Substituting the value of f (1)
iα from Eq. (4.25) into the above equation, we get

∂

∂t

∑
i

f
(0)
iα +

∂

∂xj

∑
i

eijf
(0)
iα +−τε

(
1− 1

2τ

)
∂

∂xj

∑
i

eij
∂

∂t
f

(0)
iα

− τε
(

1− 1

2τ

)
∂

∂xj

∑
i

eijeik
∂

∂xk
f

(0)
iα = 0

(4.32)

The term containing time derivative of EDF is smaller compared to the other three terms and

hence, it can be omitted and can be treated as error term. Using the properties of EDF as given

in Eqs. (4.16), (4.17), and (4.18), Eq. (4.32) can be written as

∂Cα
∂t

+
∂ (ujαCα)

∂xj
− ε

(
τ − 1

2

)
∂

∂xj

(
e2
s

∂Cα
∂xj

)
= 0 (4.33)

The above equation can be rearranged as

∂Cα
∂t

=
∂

∂xj

(
Dα

∂Cα
∂xj

)
− ∂ (ujαCα)

∂xj
(4.34)
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where

Dα = e2
sε

(
τ − 1

2

)
(4.35)

From Eq. (4.19) we have, ε = ∆t. Therefore, Eq. (4.35) can be written as

Dα = e2
s∆t

(
τ − 1

2

)
(4.36)

Eq. (4.34) is the α-cut representation of the fuzzy ADE as given in Eq. (4.7). Equation (4.36)

correlates macroscopic parameter dispersion coefficient with microscopic parameter relaxation

coefficient. From Eq. (4.36) it is observed that dispersion coefficient is a function of relaxation

coefficient; therefore, in order to solve LBEs (4.12) for various α-cut values of dispersion co-

efficient, we need to use τα instead of τ , where τα is the relaxation coefficient corresponding

to particular α-cut value of dispersion coefficient. Since LB solutions are more stable in lattice

unit compared to physical unit, we have solved LBE in lattice unit. In lattice unit Eq. (4.36) can

be written as

D∗α = e2
s∆t

∗
(
τ − 1

2

)
(4.37)

where D∗α is the lattice dispersion coefficient. For unit lattice time step ∆t∗ = 1 and unit lattice

spatial step ∆x∗ = 1, lattice velocity e = ∆x∗/∆t∗ = 1, and es = e/
√

3 (valid for D1Q3,

D2Q5, D2Q9, and similar lattices [Sukop et al., 2006; Mohamad, 2011]. Substituting these

values in Eq. (4.37) we obtain the value of lattice dispersion coefficient for D1Q3 lattice as

D∗α =
1

3

(
τ − 1

2

)
(4.38)

The relation between lattice diffusion coefficient and physical diffusion coefficient is (Eq. 2.64)

D∗α =
Dα

(∆x)2

∆t

(4.39)
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Using Eqs. (4.38) and (4.39), we obtain the expression for physical time step as

∆t =
(∆x)2

3Dα

(
τ − 1

2

)
(4.40)

For τ = 1, Eq. (4.40) can be written as

∆t =
(∆x)2

6Dα

(4.41)

Eq. (4.41) shows that corresponding to each α-cut value of diffusion coefficient, we have dif-

ferent time step value (∆t) and therefore, the above equation can be written as

∆tα =
(∆x)2

6Dα

(4.42)

In fuzzy logic, corresponding to each α-cut value (except α-cut = 1), we have four combinations

of input parameters (dispersion coefficient and groundwater velocity), such as, [DLow, uLow]α,

[DLow, uHigh]α, [DHigh, uLow]α,[DHigh, uHigh]α. Our task in Fuzzy LBM is to solve the LBE

(4.12) using each combination of input parameters. Change in velocity alters the equilibrium

distribution function through Eq. (4.14) and therefore, effect of change in velocity is directly

incorporated into the LB equation through change in equilibrium distribution function. The

physical dispersion coefficient is not directly involved with LBE but, its effect can be incorpo-

rated into LB equation in the following way; change in dispersion coefficient alters the physical

time step value through Eq. (4.42) and physical time step value decides the number of iteration

to be performed for a given simulation time.

143



CHAPTER 4. MODELING UNCERTAINTY ANALYSIS IN SOLUTE TRANSPORT WITH IMPRECISE MODEL PARAMETERS

4.5 Development of Fuzzy Differential Quadrature Scheme

Basic working principle of DQM and DQM based numerical scheme for solute transport have

already been described in the first and second chapter, respectively. In this section, DQ scheme

for fuzzy solute transport equation is formulated [Datta et al., 2017]. To begin with we first

rewrite the α-cut representation of the fuzzy ADE, as presented in section 4.3.

∂Cα
∂t

= Djα
∂2Cα
∂x2

j

− ujα
∂Cα
∂xj

(4.43)

Using DQM we can write the first and second order derivatives of Cα with respect to three

Cartesian co-ordinate directions as

∂Cα
∂x
|x=xi,y=yj ,z=zk=

Nx∑
m=1

X
(1)
imCmjkα

∂Cα
∂y
|x=xi,y=yj ,z=zk=

Ny∑
m=1

Y
(1)
jm Cimkα

∂Cα
∂z
|x=xi,y=yj ,z=zk=

Nz∑
m=1

Z
(1)
kmCijmα

∂2Cα
∂x2

|x=xi,y=yj ,z=zk=
Nx∑
m=1

X
(2)
imCmjkα

∂2Cα
∂y2

|x=xi,y=yj ,z=zk=

Ny∑
m=1

Y
(2)
jm Cimkα

∂2Cα
∂z2

|x=xi,y=yj ,z=zk=
Nz∑
m=1

Z
(2)
kmCijmα

where xi, yjandzk are the discrete nodes in the domain at which function values are known, Cijk

are the concentrations values at these nodes at time t, Nx, Ny, Nz are the total number of grid

points along x, y and z directions, respectively. X(2), Y (2) and Z(2) are the weight matrices for

the second order derivatives along x, y and z directions, respectively and X(1), Y (1) and Z(1)

are the weight matrices for the first order derivatives. Now substituting the above formulations
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into Eq. (4.43) and taking finite difference discretization of the temporal derivative we get

Cs+1
ijkα = Cs

ijkα + ∆t

(
Dxα

Nx∑
m=1

X
(2)
imC

s
mjkα +Dyα

Ny∑
m=1

Y
(2)
jm C

s
imkα

+Dzα

Nz∑
m=1

Z
(2)
kmC

s
ijmα − uxα

Nx∑
m=1

X
(1)
imC

s
mjkα

−uyα
Ny∑
m=1

Y
(1)
jm C

s
imkα − uzα

Nz∑
m=1

Z
(1)
kmC

s
ijmα

) (4.44)

Equation (4.44) calculates solute concentration at each node at a particular α-cut value. Mem-

bership function of solute concentration can be calculated by solving the above equation for

various α-cut values.

4.6 Numerical Problem Solved

In this section various solute transport problems with imprecise model parameters are solved

using the developed fuzzy LB and fuzzy DQ methods. The results are presented in terms of

membership function of solute concentration.

4.6.1 One-Dimensional solute transport with constant source using Fuzzy LBM

Problem statement

This problem represent one-dimensional transport of solute in a saturated porous media. The

model computes the concentration of solutes at any spatio-temporal location from the point of

release of the chemicals. The release rate is controlled in such a way that the source concen-

tration at the place of discharge can be taken as constant. Measured parameters associated with

this model are groundwater flow and dispersion coefficient and these are considered as fuzzy

numbers due to insufficiency in their measured values. Both these parameters are represented

here as triangular fuzzy numbers because imprecision result is around the most likely value.
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This solute transport process is modeled as a one-dimensional fuzzy solute transport equation.

The governing equation can be written using Eq. (4.7) as

∂C̃

∂t
= D̃x

∂2C̃

∂x2
− ũx

∂C̃

∂x
(4.45)

where D̃x and ũx are the fuzzy variables and represent x directional dispersion coefficient and

groundwater velocity, respectively. Initial and boundary conditions of the solute transport prob-

lem are

C (x, t = 0) = 0

C (x = 0, t) = C0

C (x =∞, t) = 0

(4.46)

Fuzzy lattice Boltzmann solution

Fuzzy LBM based simulation of the problem is carried out using D1Q3 lattice (Figure 2.2).

Lattice length and time step values in lattice units are fixed at unit value, i.e., ∆x =1 lbu, and

∆t =1 lbu. Corresponding lattice length in physical unit is taken as, ∆x =1 m and time step,

which depends upon diffusion coefficient, Dx, is calculated for each α-cut using Eq. (4.42).

The concentration of the constant source is taken at 1 mol.m−3. The chemicals are discharged

at x = 0m in the domain having domain length L = 1000m. The fuzzy input parameters used in

the simulation are constructed using experts opinion in terms of mean value and corresponding

error bar. The numerical values of lower bound, most likely and upper bound of dispersion

coefficient and groundwater velocity are given in Table 4.1. The fuzzy LBM simulations are

carried out at 11 different α-cuts ranging from 0 to 1 with an interval of 0.1. Membership values

of the model parameters at these α-cuts are given in tabular from in Table 4.2. Membership

functions of the model parameters are shown in Figures 4.3 and 4.4. Uncertainty in solute
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concentration is expressed in terms of a closed interval bounded by lower and upper value of

solute concentration.

Table 4.1: Input parameters used in fuzzy LBM simulation for constant source
Parameters Lower Bound Most Likely Upper Bound

Dispersion coefficient (m) 1.43×10−5 3.08×10−5 6.58×10−5

Velocity of flow (m/day) 4.23×10−6 6.18×10−6 7.82×10−6

Table 4.2: Membership values of Dx and ux at various α-cut values
α-cut value Dx

(
m2s−1

)
× 10−5 ux

(
ms−1

)
× 10−6

Lower Upper lower Upper
0 1.430 6.580 4.230 7.820

0.1 1.595 6.230 4.425 7.656
0.2 1.760 5.880 4.620 7.492
0.3 1.925 5.530 4.815 7.328
0.4 2.090 5.180 5.010 7.164
0.5 2.255 4.830 5.205 7.000
0.6 2.420 4.480 5.40 6.836
0.7 2.585 4.130 5.595 6.672
0.8 2.750 3.780 5.790 6.508
0.9 2.915 3.430 5.985 6.344
1.0 3.080 3.080 6.180 6.180
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Figure 4.3: Triangular membership function of diffusion coefficient

Figure 4.4: Triangular membership function of groundwater velocity

Validation and verification

Validation and verification of the fuzzy LBM scheme is carried out by comparing the results of

fuzzy LBM with closed form analytical solution. The Eq. (4.45) together with the initial and

boundary conditions (4.46) has a closed form analytical solution which can be written as [Dou
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et al., 1995]

C̃ =
C0

2
×

erfc
x− ũxt

2

√
D̃xt

+ exp

(
ũxx

D̃x

)
erfc

x+ ũxt

2

√
D̃xt

 (4.47)

The numerical calculation of the upper and lower bound of the solute concentration for a specific

time and at each length of the domain results the fuzziness of the solute concentration. LB

solutions for most probable values of input parameters at time t = 365 days, 600 days, and

1000 days are compared with corresponding analytical results. The comparison of numerical

and analytical solutions is shown graphically in Figure 4.5.

Figure 4.5: Spatial concentration profile of solute with most probable value of input parameters: com-
parison of LB and Analytical solution
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Figure 4.6: Membership function of of solute concentration at length 160 m

Results and discussions

The fuzziness of the solute concentration at lengths, x = 160 m, 200 m, and 230 m for specific

time (t=365 days) are represented in terms of the membership function of solute concentration

and the results are shown in Figures 4.6, 4.7, and 4.8. Spatial profiles of solute concentration

using four different combinations of fuzzy input parameters at α-cut of 0.4 and 0.7 for the total

time of simulation (t = 365 days) are computed. Lower and upper concentration of solute at

each spatial point for the same α-cut values and total simulation time are extracted from the

four different spatial profiles. Spatial profiles of lower and upper bound and most probable

value of solute concentration are shown in Figures 4.9 and 4.10, for α-cut value of 0.4 and

0.7, respectively. It can be observed from the Figures 4.9 and 4.10 that transport of solute

results an uncertainty (due to the fuzziness of the model parameters) in solute concentration.

The uncertainty increases with decrease of α-cut value which is an obvious fact because lower

the α-cut value higher is the fuzziness in the input parameters. LB based spatial profiles are

compared with analytical solution and good agreement between the two results is established.
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Figure 4.7: Membership function of of solute concentration at length 200 m

Figure 4.8: Membership function of of solute concentration at length 230 m

Uncertainty of solute concentration at 160 m downstream and after 365 days at any α-cut level,

say, α = 0.2 can be quantified from Figure 4.6 as [0.370, 0.987] mol.m−3 and the same is

represented as an interval bounded within two vertical lines. In a similar way, Figure 4.7 can

be used to quantify the uncertainty bounds of solute concentration at 200 m downstream and at
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365 days for a specific α-cut of 0.2 as [0.060, 0.875] mol.m−3 and Figure 4.8 can be used to

quantify the uncertainty bounds of solute concentration at 230 m downstream and at 365 days

for a specific α-cut of 0.2 as [0.080, 0.600] mol.m−3

Figure 4.9: Lower bound, upper bound, and most probable value of spatial profile of solute concentration
at α-cut=0.4

Figure 4.10: Lower bound, upper bound, and most probable value of spatial profile of solute concentra-
tion at α-cut=0.7
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4.6.2 One-Dimensional Solute Transport with instantaneous point source using Fuzzy

LBM

Problem statement

The deterministic form of this solute transport problem is similar to one of the problems solved

in second chapter. The measured parameters associated with this model are groundwater flow

and dispersion coefficient and these are considered as fuzzy numbers due to insufficiency in

their measured values. Both these parameters are represented here as triangular fuzzy number

because imprecision result is around the most likely value. The mathematical equation govern-

ing the solute transport process can be written in one-dimensional form as (4.8)

∂C̃

∂t
= D̃x

∂2C̃

∂x2
− ũx

∂C̃

∂x
(4.48)

whereDx and ux are x directional dispersion coefficient and groundwater velocity, respectively.

Initial condition of the solute transport problem is

C(x, t = 0) = C0δ(x) (4.49)

where δ is the Kronecker delta function, C0 is concentration of point source. Since the domain

length is very large, it is reasonable to consider following Dirichlet boundary conditions.

C(x = ±∞, t) = 0 (4.50)

Fuzzy lattice Boltzmann solution

Fuzzy LBM based simulation of the problem is carried out using D2Q5 lattice (2.4). Lattice

length and time step values in lattice units are fixed at unit value, i.e., ∆x =1 lbu, and ∆t =1 lbu.

Corresponding spatial step lengths is taken as, ∆x =1 m and time step, which depends upon
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diffusion coefficient, Dx, is calculated for each α-cut using Eq. (4.42). The effluent having

initial concentration of 1kg/m is discharged as a point source at x = 10 m in a channel with

length L = 400 m. The fuzzy input parameters used in the simulation are constructed using

experts opinion in terms of mean value and corresponding error bar. The numerical values of

lower bound, most likely and upper bound of dispersion coefficient and groundwater velocity

are given in Table 4.3. The fuzzy LBM simulations are carried out at 11 different α-cuts ranging

from 0 to 1 with an interval of 0.1. Membership values of the model parameters at these α-

cuts are given in tabular from in Table 4.4 and in graphical form in Figures 4.11 and 4.12.

Uncertainty in solute concentration is expressed in terms of a closed interval bounded by lower

and upper value of solute concentration.

Table 4.3: Input parameters used in fuzzy LBM simulation for instantaneous point source
Parameters Lower

Bound
Most Likely Upper

Bound
Dispersion coefficient (m) 0.010 0.014 0.017
Velocity of flow (m/day) 0.01 0.012 0.014

Table 4.4: Membership values of Dx and ux at various α-cut values
α-cut value Dx

(
m2s−1

)
ux
(
ms−1

)
Lower Upper lower Upper

0 0.0100 0.0170 0.0100 0.0140
0.1 0.0104 0.0167 0.0102 0.0138
0.2 0.0108 0.0164 0.0104 0.0136
0.3 0.0112 0.0161 0.0106 0.0134
0.4 0.0116 0.0158 0.0108 0.0132
0.5 0.0120 0.0155 0.0110 0.0130
0.6 0.0124 0.0152 0.0112 0.0128
0.7 0.0128 0.0149 0.0114 0.0126
0.8 0.0132 0.0146 0.0116 0.0124
0.9 0.0136 0.0143 0.0118 0.0122
1.0 0.0140 0.0140 0.0120 0.0120
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Figure 4.11: Triangular membership function of diffusion coefficient

Figure 4.12: Triangular membership function of groundwater velocity

Results and discussions

Our LBM based scheme has already been verified in Chapter 2 for crisp values of input param-
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eters of the same problem. The fuzziness of the solute concentration at lengths, x = 125 m, 140

m, and 150m for specific time (t=10000 s) are represented in terms of the membership function

of solute concentration and the results are shown in Figures 4.13, 4.14, and 4.15. Spatial profiles

of solute concentration using four different combinations of fuzzy input parameters at α-cut of

0.5 and 0.8 for the total time of simulation (t = 10000 s) are computed and graphically shown

in Figures 4.16 and 4.17, respectively. Lower and upper concentration of solute at each spatial

point for the same α-cut values and total simulation time are extracted from the four different

spatial profiles. Spatial profiles of lower and upper bound of solute concentration are shown in

Figures 4.18 and 4.19, for α-cut value of 0.5 and 0.8, respectively. It can be observed from the

Figures 4.18 and 4.19 that transport of solute results an uncertainty (due to the fuzziness of the

model parameters) in solute concentration. The uncertainty increases with decrease of α-cut

value which is an obvious fact because lower the α-cut value higher is the fuzziness in the input

parameters. Comparison between analytical model and Fuzzy-Lbm model based uncertainty is

shown graphically in Figure 4.20 and a good agreement between the two results is established.

Figure 4.13: Membership function of of solute concentration at length 125 m
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Figure 4.14: Membership function of solute concentration at length 140 m

Figure 4.15: Membership function of of solute concentration at length 150 m
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Figure 4.16: Spatial profile of solute with different combination of inputs at α-cut=0.5

Uncertainty of solute concentration at 160 m downstream and after 365 days at any α cut level,

say, α = 0.2 can be quantified from Figure 4.6 as [0.370, 0.987] mol.m−3 and the same is

represented as an interval bounded within two vertical lines. In a similar way, Figure 4.7 can

be used to quantify the uncertainty bounds of solute concentration at 200 m downstream and at

365 days for a specific α-cut of 0.2 as [0.060, 0.875] mol.m−3 and Figure 4.8 can be used to

quantify the uncertainty bounds of solute concentration at 230 m downstream and at 365 days

for a specific α-cut of 0.2 as [0.080, 0.600] mol.m−3
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Figure 4.17: Spatial profile of solute with different combination of inputs at α-cut=0.8

Figure 4.18: Lower and upper bound of spatial profiles at α-cut=0.5
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Figure 4.19: Lower and upper bound of spatial profiles at α-cut=0.8

Figure 4.20: Comparison between fuzzy LBM and fuzzy analytical based uncertainty at α-cut=0.5

4.6.3 Two dimension solute transport using Fuzzy DQ Method

Problem statement

This problem considers a continuous line source at x = 0 and y = 0 in a uniform flow field for an
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infinite aquifer. The line source releases a nonreactive solute at a rate of C0 (mg.L−2). The two

dimensional model computes the concentration of a dissolved chemical species (contaminant)

in the aquifer at any time and at any specified distance from the point of release of the chemical.

Measured parameters associated with the present model are x-directional groundwater velocity

(ux, longitudinal dispersivity (εL), and transverse dispersivity (εT ) and these parameters are

considered as fuzzy numbers due to the insufficiency (inadequate repetition of experiments) in

their measured values. Similar to the one dimensional problems all the three fuzzy parameters

are represented here as triangular fuzzy number. The governing equation of two-dimension

solute transport in saturated porous media is a two-dimensional ADE, which can written as

∂C̃

∂t
= D̃L

∂2C̃

∂x2
+ D̃T

∂2C̃

∂y2
− ũx

∂C̃

∂x
(4.51)

where DL and DT are longitudinal and transverse dispersion coefficient(m2.day−1), respec-

tively. The longitudinal and transverse dispersion coefficients by definition are given by DL =

εLux and DT = εTux, respectively. The tilde sign, ,̃ signifies that corresponding quantity is a

fuzzy variable. Initial condition of the solute transport problem can be written as

C(x, y, t = 0) = 0, for x ≥ 0 and y ≥ 0 (4.52)

Boundary conditions of the solute transport problem are

C(x = 0, y = 0, t) = C0

C(x =∞, y, t) = 0

C(x, y = ±∞, t) = 0

(4.53)
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Fuzzy differential quadrature solution

To solve the Eq. (4.51), we first write down its α-cut representation as

∂Cα
∂t

= DLα
∂2Cα
∂x2

+DTα
∂2Cα
∂y2

− uxα
∂Cα
∂x

(4.54)

Using DQM we can write the first and second order derivatives of Cα with respect to x and y

coordinates as

∂Cα
∂x
|x=xi=

Nx∑
m=1

X
(1)
imCmjα

∂Cα
∂y
|y=yj=

Ny∑
m=1

Y
(1)
jm Cimα

∂2Cα
∂x2

|x=xi=
Nx∑
m=1

X
(2)
imCmjα

∂2Cα
∂y2

|y=yj=

Ny∑
m=1

Y
(2)
jm Cimα

(4.55)

where xi, and yj are the discrete nodes in the domain at which function values are known, Cij

are the concentrations values at these nodes at time t, Nx and Ny are the total number of grid

points along x and y directions, respectively. X(2) and Y (2) are the weighting matrix for the sec-

ond order derivative along x and y directions, respectively, X(1) and Y (1) are the corresponding

weight matrices for the first order derivatives. Now substituting the above formulations into Eq.

(4.54) and taking finite difference discretization of the temporal derivatives we get

Cs+1
ijα = Cs

ijα + ∆t

(
DLα

Nx∑
m=1

X
(2)
imC

s
mjα +DTα

Ny∑
m=1

Y
(2)
jm C

s
imα − uxα

Nx∑
m=1

X
(1)
imC

s
mjα

)
(4.56)

where ∆t is the time step. Input parameters used in the simulation are longitudinal dispersivity,

transverse dispersivity and groundwater velocity. The input values of all the fuzzy parameters

(imprecise or uncertain) used for uncertainty analysis are quoted from [Dou et al., 1997] as
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Table 4.5: Input Fuzzy parameters for 2D Problem
Parameters Lower

Bound
Most
Likely

Upper
Bound

Longitudinal dispersivity, εL (m) 100 200 300
Transverse dispersivity, εT (m) 20 40 60
Velocity of flow (m/day) 0.3 0.6 1.0

benchmark. List of input fuzzy parameters is as shown in Table 4.5.

From the membership functions of the fuzzy input parameters (ux, εL, and εT ) membership

function of the longitudinal and transverse diffusion coefficients (DL and DT ) are constructed

using fuzzy vertex method ) on the product of longitudinal and transverse dispersivity and ve-

locity of flow. Equal number of spatial grid point along x and y directions are considered.

Spatial domain length along x (1500 m) and y(900 m) direction, number of spatial grid points

(11), total time of simulation (1000 days) and number of temporal grid points (1000) are used

for numerical simulation of fuzzy concentration of the solute. Solute concentration at x = 0 m,

y = 0 m for any time t > 0 is taken as C0 = 1 mg.l−1. Solute concentration plume at time t =

1000 days are calculated at different α-cut level. Upper and lower bound of the solute plume at

α-cut =0.0 are shown in Figures 4.21 and 4.22, respectively. These two contaminant plumes are

of different shapes. The upper bound plume has migrated a much larger extent than the lower

bound plume.

Validation and verification

Validation and verification of the fuzzy DQM scheme is carried out by comparing the results

of fuzzy DQM with closed form analytical solution. The steady state analytical solution of the

model described can be written as [Sayre, 1973]

C(x, y) =
C0

4πt
√
DLDT

× exp
(
ux

2DL

)
K0

[
u√
4DL

√
x2

DL

+
y2

DT

]
(4.57)

where K0 [ ] is the zero order modified Bessel function of the second kind.
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Figure 4.21: Lower bound (α-cut=0.0) of solute plume after 1000 days

Figure 4.22: Upper bound (α-cut=0.0) of solute plume after 1000 days

4.7 Summary

In this chapter, we have enhanced the scope of LBM and DQM by developing two new nu-

merical schemes for solving solute transport equation in presence of imprecise parameters. The

developed schemes have been utilized for modeling uncertainty analysis of solute transport pro-
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cess.

On the onset of this chapter, we have reviewed the basics of fuzzy set theory and fuzzy logic,

which are required for epistemic uncertainty analysis using fuzzy logic. Then we have math-

ematically modeled the solute transport process in presence of imprecise model parameters,

such as groundwater velocity and dispersion coefficient. We have developed two new numeri-

cal schemes, called fuzzy lattice Boltzmann method and fuzzy differential quadrature method

for the fuzzy solute transport model. The developed schemes have been verified and validated

by modeling uncertainty analysis of two standard one-dimensional and one two-dimensional

benchmark problems. Using the developed schemes membership functions of solute concentra-

tions are constructed using fuzzy vertex method.
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Chapter 5

Summary and Conclusions

In this final chapter, the work carried out on the study is summarized and based on the results

obtained conclusions of this study is drawn. This chapter also covers the outline of future work

proposal that can be taken up in continuation of this research work.

5.1 Summary of this thesis work

In this thesis numerical simulation of solute transport and multi-component reactive transport

in presence of both precise and imprecise model parameters have been carried out using two

relatively new and advanced numerical techniques called LBM and DQM. The work carried out

in this thesis is divided into three parts: (i) Development of LBM and DQM based computer

algorithms for solute transport, which is mathematically governed by ADE, (ii) Development

of an interfaced algorithm that can assist to utilize the capabilities of commercial geochemical

software (PHREEQC) in LBM based solute transport solver for multi-component and long term

reactive transport, which is mathematically modeled as ADRE, and (iii) Modeling uncertainty

in solute transport model output when the parameter of ADE are imprecise. The work carried

out in this thesis are summarized in the following paragraph.
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In the first chapter, highlighted the importance of nuclear energy as an indispensable option

for long term energy security in under-developing countries, especially in India. India’s vast

thorium resources and well developed nuclear technology together with requirement for clean

energy sources are supposed to boost up nuclear energy share in the country’s total energy

production. One of the biggest challenge that the nuclear industry facing today is long term

management of long lived fission products and actinides generated in the nuclear fuel cycle.

Among the various options available for isolating these radionuclides from the environment for

a long period of time, scientific community has more consensus on disposal of them in DGR. In

India HLLW are generated during the reprocessing of spent fuels in reprocessing plants. These

HLLW are vitrified into borosilicate glass in SS canisters, which are at present under cooling

and surveillance in interim storage facilities. Research and development works towards setting

up of DGR is an ongoing activity in India. For obtaining licenses from regularity authorities for

the construction of DGR, waste management authorities need to assess the radiological safety

of the DGR and quantify risk associated with this activity on waste disposal. Biggest challenge

of this safety assessment is due to involvement of very long time period and spatial heterogene-

ity of the host rock. This safety assessment work need to predict the time evolution of various

components of the multi-barrier DGR system and spatio-temporal spreading of the leached

out radionuclides. In this aspect multi-component reactive transport models are indispensable

tools. These reactive transport models are capable to simulate the migration of radionuclides

in presence of various physico-chemical processes, such as advection, dispersion, geochemical

interactions. Simulation of these kind of reactive transport demands for huge computational

resources in terms of computer memory and speed of computation because the dissolved ra-

dionuclides stay in the liquid phase in a multi-species form and these species are involved

with various homogeneous and heterogeneous geochemical interactions. Though traditional
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numerical techniques (FDM, FEM, FVM) are successfully used for this purpose, communica-

tion overload in their parallel algorithm has always attracted researchers for development of

new numerical scheme that can harness the modern day parallel computational resources. LBM

being a parallel algorithm has already been used for this purpose. Another numerical technique

called DQM has some important characteristics, such as requirement of very few grid points

to numerically solve a PDE. In this thesis LBM and DQM are used as numerical frameworks.

In brief, we have highlighted the need for fast algorithms for simulation of multi-component

reactive transport in parallel context and provided an exhaustive survey of literatures on the

similar field. Research gap areas and strategy of the present work are also highlighted in the

first chapter.

In the second chapter, numerical framework for solute transport using LBM and DQM are for-

mulated. Though TRT and MRT schemes of LBM provide more stable solution, we have used

SRT scheme of LBM because it’s algorithm is simpler than the other two. For the sake of com-

pleteness of this thesis work, we have first derived LBE from the the continuous Boltzmann

equation, derived equilibrium distribution function for ADE from Maxwell-Boltzmann distri-

bution function, discussed on various lattices generally used in LBM. The ADE is then derived

from LBE using Chapman-Enskog multi-scale analysis technique. By doing this derivation, re-

lation between lattice Boltzmann diffusion coefficient and relaxation parameter is established.

Mathematical preliminaries required for DQM are provided. The developed LBM and DQM

based solvers for ADE are then validated by solving benchmark problems and LBM based

solute transport solver is then further utilized in the third chapter for development of multi-

component reactive transport.

In the third chapter, mathematical formulation of multi-component reactive transport and nu-
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merical schemes based on LBM are formulated. In the mathematical formulation, two type

of approaches such as sorption isotherm based and geochemical reaction based to model the

reaction terms are elaborated. Various isotherms, such as linear, Freundlich and Langmuir, are

discussed and multi-component reactive transport model equations are formulated using linear

isotherm also known as Kd approach. Limitation of these isotherm based models and need for

consideration of geochemical reaction models are highlighted. Since dissolved radionuclides

generally stay in liquid phase in various species form and these species take part in different

geochemical reactions, general equation for reactive transport is formulated considering all the

species. To reduce the number of species for which the reactive transport equation need to be

solved, the multi-species reactive transport equations are then written in terms of total concen-

tration of primary species. The resulting equation is called multi-component reactive transport

equation, which is also known as ADREs when transport due to charge imbalance is neglected.

In order to solve these equations we have adopted SIA. In this approach, transport and reaction

terms are treated separately. We have interfaced the LBM based multi-component transport

solver, developed in the previous chapter, with geochemical software, PHREEQC. Both the two

version of PHREEQC known as IPhreeqc and PhreeqcRM, which were developed in order to

be used as commercial modules for a client program, have been successfully interfaced with our

LBM based solver for multi-component ADE. The coupling algorithm is then tested by solving

benchmark problems.

In the fourth chapter, LBM and DQM based numerical schemes are developed to solve solute

transport equation with imprecise model parameters. Uncertainty analysis of solute transport

model output is important for modeling safety analysis of DGR. In chapter two and three, the

models parameter of ADE were taken as crisp values, which represent a homogeneous media.

But, in nature the rock mass through which migration of radionuclides takes place are highly
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heterogeneous. To deal with spatial heterogeneity stochastic solute transport models are gen-

erally used, where the solute transport model parameters are taken as random parameters. The

randomness of the model parameters are represented by a probability distribution function and

the corresponding solute transport model output is represented by statistical parameter, such as

mean and standard deviation, which is treated as a spread in the model output. This kind of un-

certainty analysis is known as aleatory uncertainty analysis. The success of aleatory uncertainty

analysis totally depends on how accurately we can represent the experimental data with a dis-

tribution function. This task of representing experimental data with some distribution requires

huge data volume, but in practice we generally ends up with very few numbers of data because

experimental cost for generation of data at field is very big. This type of small data set is called

imprecise data set and corresponding uncertainty in the model output is called epistemic uncer-

tainty. Fuzzy set theory is used to quantify epistemic uncertainty. The solute transport model

parameters, dispersion coefficient and groundwater velocity, are experimentally measured at

field and generally possess epistemic behavior. We have represented these imprecise model

parameters by triangular fuzzy numbers because, most likely value (measured mean) of these

parameters are circumvented by the corresponding boundaries (left and right bounds) as mean

± error. Numerical uncertainty analysis is a time consuming task because, the model simulator

need to be run several times. There are very few studies on uncertainty estimation using numeri-

cal techniques. Dou et al. used FDM for solving fuzzy ADE [Dou et al., 1997]. In this study we

have developed LBM and DQM based numerical scheme using fuzzy vertex method to solve

the ADE with triangular input parameters. The predicted solute concentration is presented as

intervals at various α-cuts. The stability of the newly developed methodology of uncertainty

modeling was assessed by comparing the numerical solution with possible analytical solution.
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5.2 Conclusions of this study

The study carried out in this thesis has shown that LBM based numerical solution of solute

transport equation gives accurate results as comparison with analytical solutions. The scheme

is unconditionally stable when the simulation is carried out using lattice units and the conver-

sion between the lattice unit and physical unit is very straightforward. The comparative study

between LBM and explicit FDM shows that LBM based solutions are more accurate than ex-

plicit FDM based results for the same time step value. This result can be interpreted in other

way as for the same accuracy LBM based calculations are more faster than explicit FDM based

calculations. More faster calculation is achieved by utilizing its parallelization capabilities. The

developed parallel LBM solvers for solute transport were run in supercomputing facility with

64 processors. The developed interfaced algorithm is capable of simulating kinetically con-

trolled reactions in a repository environment. The scope of the interfaced numerical scheme

for solving multi-component reactive transport is enhanced by utilizing the modeling capabil-

ities of PHREEQC software within LBM framework. Therefore, it can be utilized to simulate

complicated geochemical reactions that are expected to occur in DGR. DQM based solution

of ADE shows that accurate results can be obtained with very few number of non-linear grid

points (in this study 11 grid points ). The developed LBM and DQM based numerical schemes

for solving fuzzy solute transport model are named as fuzzy lattice Boltzmann method (FLBM)

and fuzzy differential quadrature method (FDQM). In these schemes, LBM and DQM are basi-

cally amalgamated with fuzzy vertex theory of incorporating fuzziness of the fuzzy parameters

in the model of interest for uncertainty analysis. Using the FLBM and FDQM schemes the

membership function of the solute concentration at a particular spatio-temporal coordinate is

constructed. This kind of calculation facilitates the decision makers to specify the uncertainty

band of the solute concentration. The calculated lower and upper bounds of spatial and tempo-

ral profiles of solute concentration at any specific α-cut are compared with the corresponding
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analytical solution of the solute concentration at the same α-cut level and good agreement be-

tween the two results is established. Since FDQM requires very small number of grid points

( in this study 11 grid points) for numerical simulation to be carried out, it requires much less

computational time and memory for storage. This property of DQM makes it computationally

efficient technique. Therefore, DQM can readily be used as numerical tool for computationally

intensive calculations, such as regression analysis, correlation analysis, uncertainty analysis.

Finally, it is worth to mention here that although this development work for fast algorithms

for multi-component and long term reactive transport is a small step towards simulating the

complex processes that are expected to occur in DGR, nonetheless the developed FLBM and

FDQM schemes scoped two new technique of uncertainty analysis of fluid dynamic system.

5.3 Outline of future work proposal

In the following, we draw the outline of future work proposal that can be taken up in continua-

tion to the thesis investigations.

• Update in geometry due to dissolution/precipitation reactions is not considered in this

study. This study will help to simulate dynamic change in hydrogeological parameters,

such as porosity, permeability.

• The developed solute transport and multi-component reactive transport solvers are based

on SRT scheme of LBM. Similar development with TRT and MRT LBM schemes will

have more scope for simulating anisotropic dispersion and will be more stable than the

current scheme. Therefore, future efforts can be attempted towards these developmental

aspects.

• The various schemes developed in this thesis are validated by comparing their solutions
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with closed form analytical solutions, which are generally available for simple problems.

Therefore, efforts need to be given for solving problems with complex geochemical in-

teractions and validation of the results by simulating the same problem with commercial

FEM based softwares.

• DQM has not been used in this thesis for multi-component reactive transport simulation.

Since DQM requires much less computational time and memory for storage, it will be

an efficient solver for multi-component reactive transport if the coupling between DQM

based solute transport and commercial geochemical software is established.

• Uncertainty modeling of multi-component reactive transport with imprecise parameters

involved with the reaction term, such as reactive surface area and Kd values will have

more impact on the design of various component of DGR.

• Finally, setting up of laboratory or field scale based experiments on multi-component

reactive transport and simulation of the same with the developed schemes will have more

weight on validation.
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Appendix I

Development of supporting graphical user interface
tool
All the simulation works carried out in this thesis are done using our in-house developed graph-

ical user interface tool (GUI). The tool is developed during this research period using a mixed

computer programming language language (Python and Fortran). It is well known that com-

putation speed is faster in Fortran language than in Python. The development of F2Py module

in Python has made it easier to develop client program in Python that can easily interact with

server programs developed in other programming language [Peterson, 2009]. The Fortran files

for solute transport modules for different type of problems (solute transport, reactive transport

using LBM and uncertainty modeling using fuzzy LBM ) solved in this research are compiled

using F2Py tool and the generated object files are linked with one Python program that cre-

ate the GUI framework. The screen-shots of the developed GUI after the simulation run for

uncertainty analysis are shown in Figures 5.1 and 5.2. At present the tool can simulate one-

dimensional and two-dimension problems using D1Q2, D1Q3, D2Q4 and D2Q5 lattices. The

python script file is further converted to a portable source file that can run in different platforms

without any Python source file installation.
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Figure 5.1: Screen-shot of the GUI showing fuzzy spatial profile of solute concentration using D1Q3
lattice

Figure 5.2: Screen-shot of the GUI showing fuzzy temporal profile of solute concentration using D1Q3
lattice
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Development of parallel lattice Boltzmann program
The parallelization capability of lattice Boltzmann algorithm method is explored by converting

in-house developed serial programs for solute transport written in Fortran programming lan-

guage into parallel versions using domain decomposition technique [Wang et al., 2005]. Par-

allel programs are run on both shared memory and distributed memory platform. Using Intel

G1 quad-core processor 2 times reduction in computing time for a given benchmark problem

(benchmark problem given in Section 2.4.1 is parallelized in this study) is obtained for OpenMP

based parallel program. The MPI based parallel version of the program is tested in Anupam su-

percomputing facility using 64 processors and up to 10 times reduction in computing time is

achieved. Parallel implementation of the reactive transport code using PhreeqcRM module of

PHREEQC is an ongoing activity.
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