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SUMMARY AND CONCLUSIONS  

 

This chapter summarises the highlights of the results obtained in this thesis and outline the 

ways the present work can be extended in the future.

 

1.1 Summary and Conclusions 

HTRs present unusual challenges concerning the neutronic simulations. It might appear 

that both deterministic and stochastic methods are inapt to deal efficiently with the peculiar 

configuration of HTRs. The major challenge is to device a new efficient method to perform 

neutron transport in random dispersion of fuel lumps. This also includes resonance self-

shielding both in thermal and resonance regions in HTR lattice cell calculations. To provide an 

appreciation of these challenges, we first gave an overview of HTRs in Chapter 1. 

 In Chapter 2, traditional neutronics methods and literature review on specific methods 

used in HTR neutronic calculations were discussed. Two comprehensive objectives of the 

thesis were defined in Section 2.9. The first is that the thesis sought to improve upon the 

existing tools to treat HTRs unusual challenges. The second is to develop new deterministic 

and stochastic methodologies as well as computational tools for HTR analysis. This includes 

the development of new theoretical models, algorithms and computer codes based on the 

models, and analysis of benchmark problems. 

Chapter 3 presented a new method for computing the Dancoff factors using the Monte 

Carlo method for the treatment of resonance self-shielding in the resonance energy region.  We 

have described the development of a new scheme (CLR) method using the Monte Carlo to 

generate the randomly distributed TRISO particles in the fuel zones of the pebble and the 



compact shaped graphite. The principal advantage of the method described in the thesis is that 

it can be used for low as well as high particle densities (~70%). This method is implemented 

in the Monte Carlo program, called MCDanc. The method is very efficient as the 

randomisation scheme is based on nearest neighbours search algorithm to eliminate any 

overlapping of particles. This method can also be used to randomly stack pebbles to form 

pebble-bed in the reactor core for neutronics simulations.   

 The MCDanc program is used to compute the Dancoff factors to conserve the 

resonance self-shielding in pebble-bed HTR lattice cell calculations. A new method to deal 

with self-shielding in the thermal energy region using the Equivalent Spherical Shell model is 

developed in Chapter 4. The results of the equivalent spherical shell model used in BOXER3 

code for the HTR benchmark problems show satisfactory agreement with that of the reference 

results. The BOXER3 code with the equivalent shell method takes about 5sec per HTR lattice 

cell calculation for pre-computed outer shell radius of a given problem that gives acceptable 

results. However, the equivalent shell method is somewhat heuristic in nature and does not give 

a detailed variation of neutron flux in the fuel zone except a single mesh. Another shortcoming 

of this method is that the calculation of the equivalent radius of the spherical shell is not 

straightforward as it depends on fuel cross-section.  

  After this, Chapter 5 discussed the development of a new and rigorous theoretical 

model to solve the neutron transport equation in the random medium of the HTR lattice cell 

using the collision probability method. This includes the derivation of several collision 

probability formulae using two independent methods based on Poisson and coating corrected 

Poisson distribution of fuel particles in the graphite matrix. The lattice code BOXER3 is 

extended to implement the new formulae to solve the neutron transport equation in HTR lattice 

cells. Multigroup neutron transport equation solution using BOXER3 code with new collision 

probabilities is a major theoretical improvement and requires slightly more time (about 7sec 



per HTR lattice cell calculation) as compared to the Equivalent Spherical Shell model. In 

addition, this method allows to compute flux in several radial meshes in random medium of 

HTR pebble. Results show that the new method can efficiently perform HTR analysis for any 

combination of fertile (Th232, U238) and fissile isotopes (U233, U235 and Pu). This method is 

equally suitable with subgroup or ultrafine cross-section data libraries, as it does not require 

any free parameters such as the Bell factor. In fact, the proposed method presents a novel 

solution of the double heterogeneity effect involved in HTR lattice analysis. Hence, the 

equivalent spherical shell method and the one involving solution of transport equation in 

random medium using new collision probabilities are well suited for the scoping studies as the 

computational time is short compared to the MC methods. 

 These formulae laid the foundation of a very efficient new Monte Carlo approach for 

neutron transport in random medium, which was presented in Chapter 6. Further, we discussed 

the theoretical basis of the Monte Carlo algorithm and its implementation in PebMC code for 

the case of a lattice cell with a multigroup library. The proposed method has the statistical 

nature inherent in it and is faster than the methods requiring detailed neutron tracking through 

the millions of fuel particles randomly distributed in HTR. K-inf calculation using the PebMC 

code takes about 39min, 50min and 123min for HTR lattice benchmark problems, Phase1a- 

Uranium fuel, Phase2a- Plutonium fuel and Phase5a-Thorium/uranium fuel, respectively.  The 

explicit modelling of fuel kernels and detailed neutron tracking is almost 4 to 5 times 

computationally more expensive as compared to the formulae-based tracking.  

At the same time, the new method does not have any of the limitations of the delta 

algorithm. These features of the proposed method make it a better alternative to the traditional 

Monte Carlo neutron tracking in HTRs. While all studies in the thesis pertain to lattice cell 

calculations, the MC method described in the thesis is easily extendable to solve core problems 



with continuous energy cross section data and full capability of the present method will be 

utilized with continuous data library and parallel computing.  

1.2 Future Work 

The collision probability method derived in Chapter 5 is applied to the HTR lattice cell 

in conjunction with the equivalence principle based WIMSD multigroup library. It will be very 

interesting to implement this method in the subgroup approach for resonance treatment. We 

have already obtained the expression for the collision probabilities based on the coating 

modified Poisson distributions. Implementation of these formulae to further improve the 

applicability in the higher packing range of TRISO particles is proposed to be carried out in 

future.  

Another important aim for the future is to extend the Monte Carlo development to core 

calculations for HTR. This requires development of a method for stacking pebbles in the core 

under gravity. Another aim is to compare the results of our method with a Monte Carlo 

calculation based on detailed tracking within a fixed (random) configuration of fuel particles. 

The method will also include a study of the effect of explicit modelling of coatings. It is also 

proposed to evaluate the effect of packing density of fuel particles on HTR lattice cell results 

using the collision probability formulae for neutron tracking derived using the Poisson and 

modified Poisson statistics for random fuel particles dispersions. Since Monte Carlo is most 

effective together with continuous energy cross-section data, extension of the work to include 

this capability is envisaged in future. 
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SYNOPSIS 

 

A nuclear fission reactor is a device in which self-sustained fission chain reactions take 

place in a controlled manner. The nuclear reactors can be designed to serve a specific purpose 

such as electricity generation, research application, production of isotopes for medical 

and industrial use, nuclear marine propulsion, and heat generation at high temperature etc. For 

the generation of electricity, several reactor types such as graphite-moderated reactors, light 

water reactors (pressurized water and boiling water reactors), heavy water reactors and sodium-

cooled fast reactors have been designed, built and are under operation all over the world.  

For industrial heat applications, along with co-generation of electricity, high 

temperature reactor (HTR) designs have been currently the subject of research worldwide. The 

HTR exhibits distinct advantages in terms of inherent safety, economic potential, high 

efficiency, and the potential to produce heat at a high temperature in the range of 700°C to 

950°C for hydrogen production and the synthesis of carbon-neutral fuels. These attractive 

features make the HTR design as one of the candidates of the Generation IV nuclear energy 

initiative1. However, the HTRs present unusual challenges with regard to performing physics 

design calculations compared to the traditional nuclear reactors. The primary reason for this is 

the geometry of the fuel elements in the form of spherical pebbles or cylindrical compacts that 

consist of a large number of tiny (~100µm-size) fuel lumps in the form of Tri Structural 

Isotropic (TRISO) particles having fuel kernel in their center surrounded with several coating 

layers and dispersed randomly in a graphite matrix. In the thesis, a number of novel solutions 

are presented for these problems associated with the deterministic as well as the Monte Carlo 

(MC) methods in HTR lattice cell analysis. 

https://en.wikipedia.org/wiki/Isotope
https://en.wikipedia.org/wiki/Nuclear_medicine
https://en.wikipedia.org/wiki/Industrial_radiography
https://en.wikipedia.org/wiki/Carbon-neutral_fuel
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The physical behaviour of nuclear reactors is determined by the distribution of neutrons 

in space, energy and direction variables. Neutrons in the reactor interact with nuclides of the 

host medium and results in nuclear reactions such as scattering, capture and fission. These 

reactions are characterized by nuclide microscopic cross-section, which is measure of the 

probability of occurrence of a particular neutron-nuclide reaction at the specific energy and 

position. Accurate calculation of the neutron population density as a function of space, energy 

and direction variables is the main objective behind neutronics calculations of nuclear reactor. 

The linearized form of Boltzmann neutron transport equation is commonly used to model the 

average behaviour of neutrons in a nuclear reactor. The solution of this equation gives the flux 

distribution that enables us to calculate the neutron density/reaction rates. Since the analytical 

solution of the neutron transport equation is feasible only for a few very simple cases, numerical 

methods (deterministic or stochastic methods), are used to evaluate the neutron flux in reactors.   

In the deterministic scheme of the solution of the transport equation, each of the 

variables of the phase space (r,Ω, E) is discretized (with the possible exception of the direction 

variable which is sometimes represented by expanding in the orthogonal polynomials). Due to 

the complicated distribution of materials in a reactor and the large range of neutron energies 

involved with a complex energy dependence of the cross sections on energy, it becomes 

necessary to introduce approximations in the computational methods. An accurate 

representation of the cross-section of nuclide requires several million data points and is almost 

impractical for routine reactor analysis. Instead of solving the transport equation for the full 

reactor core, deterministic reactor physics commonly uses a multi-level approach, namely the 

lattice level (assuming a periodic arrangement of fuel, moderator and coolant) and the full core 

level 2,3 
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Generally, the lattice cell is modeled by what is called the multigroup transport theory 

with detailed consideration of the heterogeneous distribution of materials. In the multigroup 

approach for energy discretization, the energy range of interest (typically from 10-5eV to about 

10 MeV) is divided into energy groups (about a few hundred at the lattice level). The cross 

section for a particular reaction with a specific nuclide is considered to be constant within the 

group and is obtained by averaging the variation within the group using a weighting function 

that is the expected neutron flux spectrum in that group4,5. The lattice calculation is followed 

by the calculation of homogenized macroscopic cross-sections collapsed to a few energy 

groups using the detailed flux spectrum obtained from the lattice calculation. These 

homogenized few group cross sections are used for the whole core calculation generally 

employing the diffusion equation that is an approximate form the transport equation. 

 The heterogeneity of the distribution of materials in the HTR lattice cell described 

earlier namely, tiny TRISO fuel particles distributed randomly in the graphite matrix, followed 

by graphite and the coolant layers is referred to as the double heterogeneity effect. It might 

appear that such fine-particle dispersions may be treated as homogeneous for entire neutron 

spectrum but that is not the case for all energies. At certain energies, particularly around 

resonances, and to some extent in the thermal region, the neutron mean free path is comparable 

or shorter than the size of the fuel kernel, and the situation necessitates treatment of the 

dispersion as a heterogeneous medium 6–11.  

 The goal of the research described in the thesis is the development of new methodology 

as well as computational tools for HTR analysis. This includes the development of new 

theoretical models, algorithms and computer codes based on the models, and analysis of 

benchmark problems. The first of these is the development of new MC algorithm to realize the 

random distribution of fuel particles in the HTR lattice cell and pebbles in the HTR core and a 
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fast scheme to track neutrons to compute the Dancoff factors needed in the resonance self-

shielding calculations12. This is followed by the development of a rigorous theoretical method 

for solving the transport equation in the random fuel particle dispersion by an exact evaluation 

of the collision probabilities (CPs) in various regions of the HTR lattice cell13. The method is 

incorporated in the CP code BOXER314. The method developed for exact evaluation of CPs is 

applied to the development of an algorithm for providing a solution by the MC method as well. 

To prove the validity of the proposed method, a multi-region, multigroup MC code (PebMC) 

is developed to simulate the spherical lattice cell of a pebble bed HTR15. These new methods 

and results of the computational tools so developed are presented in this thesis.  

 The thesis is organized in following chapters as briefly described below. 

 Chapter I gives a brief introduction to the nuclear energy, type of nuclear reactors in 

common use and more particularly a discussion on the general features of HTRs and an 

overview of the HTR designs available in the literature. It is followed by a general description 

of HTR components relevant to this thesis. A short overview of hydrogen production methods 

is presented as a feasible application of HTR along with electricity generation.  

 Chapter II presents brief introduction to the methods used in the neutronics calculation 

of the nuclear reactors. Use of the transport equation with multigroup library processing is 

discussed for the lattice level calculations. A brief description of the conventional methods for 

preparations of multi-group cross-sections using resonance integral table of multi-group library 

is presented. A brief description of the MC method in neutron transport problems is also 

included.  

 The chapter also presents a survey of the literature on the methods used in the physics 

design of HTRs. This includes algorithms used to generate randomly distributed spheres 

together with a discussion of their limitations such as slowing down or inability to generate 
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random media at high packing fractions. The methods developed by various authors for 

obtaining the Dancoff factor and calculation of the self-shielded resonance group cross sections 

are described for doubly heterogeneous pebble bed HTRs16–19. Methods for solving the double 

heterogeneity problem in lattice calculations in HTRs are also reviewed. Finally, a review of 

the MC approaches used to treat the random medium of HTRs is given.  The chapter also 

describes the objective of this research and an outline of the work carried out. 

 Chapter III describes a new algorithm based on the MC method that has been proposed 

to realize the stochastic distribution of spherical fuel lumps, in the form of TRISO particles in 

a graphite matrix, and to overcome the limitations of the traditional algorithms as discussed in 

Chapter II 19–21. The principal advantage of the method described in this chapter is that it can 

be used for the generation of low as well as high particle density random mediums. Further, it 

also presents the development of a fast scheme to track neutrons to compute the intra-fuel 

element Dancoff factor, which takes into account the heterogeneity at the level of TRISO 

particles and the inter-fuel element Dancoff factor, for taking into account heterogeneity at the 

level of the pebble lattice cell.  These two Dancoff factors along with the Bell correction factor 

are required in the calculation of the self-shielded resonance group cross sections. The lattice 

level results of the analysis of benchmarks using the Dancoff factors so calculated are presented 

in the chapter. 

 Chapter IV presents a new method for treating the double heterogeneity effect in the 

thermal region (which arises due to the heterogeneity of the tiny fuel lumps itself together with 

the heterogeneous distribution of fuel lumps, graphite matrix, and coolant) for performing 

lattice calculations. The thermal region also presents significant heterogeneity on the scale of 

the TRISO particle for all nuclides and most significantly in high content plutonium (Pu) 

fuelled reactors, due to the low-lying resonances of Pu. While the method of resonance self-



18 

 

 

 

shielding in the WIMS formalism takes care of the double heterogeneity in the epithermal 

region, the standard treatment of epithermal resonances is not available for resonances of the 

thermal energy.  

 A new method for self-shielding treatment of thermal resonances in TRISO particles 

having Pu fuel is developed.  The self-shielding procedure is based on a heuristic method, using 

CPs, in which the random medium of TRISO particles and graphite is replaced with an 

equivalent spherical shell within the HTR lattice cell. The method is incorporated in the WIMS 

library–based lattice code BOXER3. An option for handling the spherical geometry of the 

lattice cell of a pebble bed reactor has been added in the code. It also presents the results of the 

analysis of a number of HTR benchmark problems.  

 Chapter V discusses another new CP approach for the solution of the transport 

equation in the random medium of HTR lattice cells. It includes the development of a more 

rigorous theoretical method for solving the transport equation in a random dispersion by an 

exact evaluation of the CPs in various regions of the lattice cell.  This approach is presented 

for thermal neutron transport in the random heterogeneous lattice cells of HTRs, particularly 

those containing high-concentrations of Pu fuel. Exact expressions for CPs in the random 

heterogeneous medium have been obtained by two independent methods under realistic 

assumptions of the statistical distribution of fuel kernels in the graphite matrix. The primary 

assumption in the derivation of CPs is that the distribution of the fuel kernels along the length 

of the intercept follows renewal statistics, more specifically, Poisson statistics. The merit of 

Poisson statistics is that it corresponds fairly close to the actual situation and allows a simple 

analytical treatment. This method does not make use of any free parameters such as the Bell 

factor used in the equivalence principle approach for resonance treatment. This is a major 

advantage, and hence, for calculating resonance absorption in HTR lattice cells, the method 
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could be used in conjunction with the subgroup approach or ultra-fine-group approach. A 

correction to the Poisson statistics due to the small but finite size of the TRISO particle together 

with the coatings is also worked out. The method also suggests a new MC approach to solving 

transport problems in HTRs, which is a subject of the next chapter. 

 In chapter VI, another new approach to MC calculations in HTRs is presented. This 

new method avoids detailed tracking through the millions of TRISO particles distributed 

through the reactor. It also avoids the limitations of the delta algorithm that may be used in 

place of detailed tracking. While the method is based on certain assumptions that introduce 

approximation in the theory, the effects of these has been seen to be very small, being mostly 

of the order of typical statistical errors and is actually less than the errors in many standard MC 

calculations that make some approximations in describing the statistical distribution of TRISO 

particles. These new methods have been successfully implemented in the multigroup code 

PeBMC for the pebble bed reactor lattice cell to demonstrate its utility. Thus, it may be 

expected to serve as an important alternative formulation of MC in HTRs analysis. 

 Chapter VII gives a brief summary of the research work presented in the thesis. It also 

presents the main conclusions drawn and scope for future work, which is summarized as 

follows. 

 This research work had led to the new theoretical models, equally suitable to the two 

alternative methods of reactor physics, the deterministic and MC methods, are developed to 

address the challenges involved in the HTR lattice cell. This effort includes the derivation of 

CPs in random media to solve the integral transport equations for pebble-bed lattice cell. The 

conventional MC methods are not practical for routine analysis, in particular for HTR lattice 

cell, due to the high computational cost. To address this challenge, a new MC methodology 
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based on CP formulas derived for random medium, is developed and benchmarked to 

demonstrate its validity and efficiency.  

Future Work 

 It is planned to extend the present development based on the new approach for MC 

simulations of the HTR reactor core. This requires development of a method for stacking 

pebbles in the core under gravity. It is also planned to compare the results of our method 

presented in the thesis work with a MC calculation based on detailed tracking within a fixed 

(random) configuration of fuel particles. The method will also include a study of the effect of 

explicit modeling of coatings. Further work in this direction would be the extension of the code 

to continuous energy treatment with detailed tracking and anisotropic scattering for full core 

calculation of HTRs. 

 

References  

1. GIF Annual Report. Annual Report 2017. GIF 21, 430 (2017). 

2. Smith, K. S. Assembly homogenization techniques for light water reactor analysis. Prog. 

Nucl. Energy (1986). doi:10.1016/0149-1970(86)90035-1 

3. Sanchez, R. Assembly homogenization techniques for core calculations. Progress in 

Nuclear Energy (2009). doi:10.1016/j.pnucene.2008.01.009 

4. Gibson, N. A. Nathan A. Novel Resonance Self-Shielding Methods for Nuclear Reactor 

Analysis. (2016). 

5. Lim, C., Joo, H. G. & Yang, W. S. Development of a fast reactor multigroup cross section 

generation code EXUS-F capable of direct processing of evaluated nuclear data files. 

Nucl. Eng. Technol. (2018). doi:10.1016/j.net.2018.01.013 

6. Tsuchihashi, K., Ishiguro, Y. & Kaneko, K. Double heterogeneity effect on resonance 



21 

 

 

 

absorption in very high temperature gas-cooled reactor. J. Nucl. Sci. Technol. 22, 16–27 

(1985). 

7. Hébert, A. A Collision Probability Analysis of the Double-Heterogeneity Problem. Nucl. 

Sci. Eng. 115, 177–184 (1993). 

8. Sanchez, R. & Pomraning, G. C. A statistical analysis of the double heterogeneity 

problem. Ann. Nucl. Energy (1991). doi:10.1016/0306-4549(91)90073-7 

9. Sanchez, R. Renormalized treatment of the double heterogeneity with the method of 

characteristics. Proc. PHYSOR 2004 Phys. Fuel Cycles Adv. Nucl. Syst. - Glob. Dev. 

(2004). doi:10.1109/GLOCOM.2017.8253967 

10. Kim, H., Choi, S., Park, M., Lee, D. & Lee, H. C. Extension of double heterogeneity 

treatment method for coated TRISO fuel particles. Ann. Nucl. Energy 99, 124–135 

(2017). 

11. Williams, M. L. Resonance Self-Shielding Methodologies in SCALE 6. Nucl. Technol. 

174, 149–168 (2014). 

12. Singh, I., Degweker, S. B. & Gupta, A. Treatment of Double Heterogeneity in the 

Resonance and Thermal Energy Regions in High-Temperature Reactors. Nucl. Sci. Eng. 

189, 243–258 (2018). 

13. Singh, I., Degweker, S. B. & Gupta, A. A New Collision Probability Approach for 

Solution of the Transport Equation in the Random Medium of High-Plutonium-Content 

HTR Lattice Cells. Nucl. Sci. Eng. 189, 101–119 (2018). 

14. Ray, S., Degweker, S. B., Rai, R. & Singh, K. P. A Collision Probability and MOC-Based 

Lattice and Burnup Code for Analysis of LWR Fuel Assemblies. Nucl. Sci. Eng. (2016). 

doi:10.13182/nse15-127 

15. Singh, I., Degweker, S. B., Mallick, A. K. & Gupta, A. A New Approach to Monte Carlo 



22 

 

 

 

in High Temperature Reactors. Nucl. Sci. Eng. (2019). 

doi:10.1080/00295639.2019.1576453 

16. Bende, E. E. Plutonium Burning in a Pebble-Bed Type High Temperature Nuclear 

Reactor (Ph.D. thesis). Delft Univ. Technol. Netherlands (1999). 

17. Kloosterman, J. L., Ougouag, A. M. & Falls, I. Spatial effects in Dancoff factor 

calculations for pebble-bed HTRs. M&C 2005, Avignon, Fr. Sept. 12-15, 2005, CD-ROM 

(2005). 

18. Ji, W. & Martin, W. R. Application of Chord Length Sampling to VHTR Unit Cell 

Analysis. in PHYSOR 2008 (2008). 

19. Ji, W., Liang, C. & Pusateri, E. N. Analytical Dancoff factor evaluations for reactor 

designs loaded with TRISO particle fuel. Ann. Nucl. Energy 63, 665–673 (2014). 

20. Ji, W. & Martin, W. R. Application of the Chord Method to Obtain Analytical 

Expressions for Dancoff Factors in Stochastic Media. Nucl. Sci. Eng. 169, 19–39 (2015). 

21. Kloosterman, J. L. & Ougouag, A. M. Computation of Dancoff Factors for TRISO-Fueled 

Prismatic HTRs. Office (2009). 

 

 

 

 

 

 

 

 

 



28 

 

 

 

Chapter 1 INTRODUCTION: High Temperature Reactors 

 

This chapter outlines the general context of the problem addressed in the thesis. It gives a brief 

introduction to nuclear energy and the types of reactors presently in operation. It presents a 

description of HTRs and their importance for power and hydrogen production. Reactor physics 

design objectives of nuclear reactors are discussed in general.

 

1.1 Need of Nuclear Energy  

 In both developed and developing countries, energy is an essential factor for economic 

development. Globally, the energy demand is continuously growing not only because of the 

increasing world population but also due to the increase in average energy consumption per 

capita [1].  On the other hand, the current energy generation technologies have badly affected 

the environment by emitting carbon dioxide (CO2) into the atmosphere. This has created two 

major challenges of the century, namely climate change and air pollution [2]. There is an 

immediate need for alternate energy resources that can reduce the concerns about climate 

change and the inevitable exhaustion of fossil fuel.  

 As all the energy sources have their pro and cons, the ideal energy mix for the future is 

not yet clear.  Although the energy sources like wind and solar are CO2 free and produce no 

waste, they need large amounts of land resources and the electricity production is intermittent 

and requires backup power plants. The experience with nuclear reactors in the past has proved 

that nuclear energy can be used in conjunction with such intermittent energy sources to achieve 

air-pollution-free and greenhouse-gas-free energy and to meet the globally growing demands 
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of energy. Nuclear energy produced around 10.3% of the world's electricity using 413 nuclear 

power reactors in 2017 [3]. This results in a significant reduction in fossil fuel usage for power 

generation. To continue with the benefits of nuclear energy, the design and deployment of the 

next generation of nuclear reactors with enhanced safety features is needed to replace the 

retiring power plants as well as to increase the share of nuclear energy in the total energy mix. 

 A nuclear fission reactor is a device in which self-sustained fission chain reactions take 

place in a controlled manner. A nuclear reactor is designed to serve a specific purpose such as 

electricity generation, research application, production of isotopes for medical 

and industrial use, nuclear marine propulsion, heat generation at high temperature etc. For the 

generation of electricity, a number of reactor types such as graphite-moderated reactors, light 

water reactors (LWRs) i.e., pressurized water reactors (PWRs) and boiling water reactors 

(BWRs), heavy water reactors and sodium-cooled fast reactors have been designed, built, and 

are under operation all over the world. The clean and safe energy generation using LWRs has 

increased impressively due to continuous research and development efforts since the beginning 

of the nuclear reactor’s concept.  However, these traditional reactors with a lower outlet 

temperature of the coolant impose a low thermal efficiency cause relatively higher fuel 

consumption and thermal pollution of the environment. For industrial heat applications, along 

with co-generation of electricity, high-temperature reactor (HTR) designs are currently the 

subject of research worldwide (See Section 1.5). The HTR exhibits distinct advantages in terms 

of inherent safety, economic potential, high efficiency, and the potential to produce heat at a 

high temperature in the range of 700°C to 950°C for hydrogen production and the synthesis 

of carbon-neutral fuels.  

 This chapter explains the HTR concept, including a description of its design and main 

components to provide a comprehensive picture of the problems tackled in the thesis.  Section 

https://en.wikipedia.org/wiki/Isotope
https://en.wikipedia.org/wiki/Nuclear_medicine
https://en.wikipedia.org/wiki/Industrial_radiography
https://en.wikipedia.org/wiki/Carbon-neutral_fuel
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1.2 gives a brief introduction to the need for high-temperature reactor technology. Section 1.3 

gives an overview of HTRs built and operated in the world. Section 1.4 gives a summary of 

the conceptual designs being considered worldwide. In Section1.5, various types of HTRs and 

a description of their components are presented. Section1.6 describes some processes for 

hydrogen production using heat from HTRs. The general objectives of the reactor physics 

design are discussed in Section1.7.  The peculiar reactor physics design challenges owing to 

the rather unusual configuration of fuel and moderator in HTRs are addressed in Section 1.8 

along with an outline of the contents of each chapter of the thesis.  

1.2 Why High Temperature Reactors 

 The concept of HTRs aims to avoid the limitations of traditional nuclear reactors by 

using a refractory core composed exclusively of ceramic materials and employing an inert 

coolant to serve as a viable LWR alternative.  It also offers an economical heat source at high 

temperature to the industries for hydrogen production, oil recovery, refineries, and biomass 

conversion [4]. In addition to the production of electricity and various industrial applications 

mentioned above, HTRs possess enhanced passive safety features, operational simplicity, a 

stable waste form and more efficient fuel utilization. The HTR differs from conventional LWRs 

because the fission product containment is assured at the level of the ceramic-coated tiny fuel 

particles, called Tri-Structural Isotropic (TRISO) with a diameter of one millimetre, distributed 

in graphite spheres or cylinders a few centimetres in size. The VHTR nuclear reactors concepts 

are characterised by the use of TRISO as fuel, helium as coolant, graphite as moderator and 

reflector with high outlet temperature in the range of 700 to 1000°C [5]. In response, to today’s 

concerns of nuclear safety, energy security and climate change, the inherent safety 

characteristic of the VHTR make this a unique concept among the next-generation nuclear 
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energy systems. Because of these excellent characteristics, the GEN IV has identified the Very 

High-Temperature Reactor (VHTR) concept as one of the candidates among the next-

generation nuclear energy systems that offer advantages in terms of sustainability, safety and 

reliability, economics, proliferation resistance and physical protection [6]. In addition to the 

gas-cooled HTRs, interest in HTR has resulted in an innovative concept in which liquid fluoride 

salt will be used as a coolant ([7]–[9]). This concept combines the neutronics features of gas-

cooled high-temperature reactors and the heat removal feature of molten salt reactors. 

1.3 Experience with HTRs 

  The present day High-Temperature Gas-cooled Reactors (HTGR) designs were derived 

from the graphite moderated, gas-cooled MAGNOX reactor built and operated with a coolant 

outlet temperature of 415°C, and its successor, the Advanced Gas-cooled Reactor (AGR) with 

a coolant outlet temperature of 675°C [10]. The first prototype high-temperature gas-cooled 

reactor was the experimental DRAGON reactor at Winfrith in the UK, which became critical 

in August 1964 and operated until 1975.  The Dragon project introduced the HTR to the whole 

of Europe and triggered interest in the USA and Japan.  

 The USA developed an experimental helium-cooled and graphite-moderated reactor of 

40MWe power, called the Peach Bottom reactor and operated it from 1966 to 1972. The coated 

particles of mixed ThO2/UO2 and ThC2/UC2 were used as fuel in hexagonal prismatic blocks. 

The experience gained during the operation of the Peach Bottom reactor led to the construction 

of a commercial high-temperature gas-cooled reactor by General Atomics at Fort St. Vrain 

(FSV) in the US. The 330MWe FSV reactor in Colorado was the second HTGR built and 

operated between 1974 and 1989 [11].  



32 

 

 

 

 In Germany at Juelich, the first pebble-bed test reactor was AVR (Arbeitsgemeinschaft 

Versuch Reaktor), which achieved its first criticality in August 1966, and operated until 

December 1988. The AVR core contained about 100,000-fuel pebbles with a maximum power 

per pebble of 2.4 KW [12]–[14]. The total heavy metal of (U, Th) loading varied from 6 to 11 

g per pebble while 235U loading was 1gram per pebble [15]. Initially, the outlet temperature 

was 850°C in the AVR core, but this was subsequently raised to 950°C.  The successful 

demonstration of AVR led to the deployment of its successor Thorium High Temperature 

Reactor (THTR-300) in Germany. It started operation in 1983 and was terminated in 1989. The 

THTR contained 675,000 fuel pebbles in a cylindrical core of 5.6m diameter and 6m in height. 

Each fuel pebble contained 0.96g of 235U and 10.2g of 232Th[16].   In the next section, currently 

operating and conceptual HTRs are described briefly. 

1.4 Currently Operating and Future HTRs 

As listed in previous section 1.3 that there have been five HTGRs built and operated in the past 

[1]. Experience with these reactors makes HTR technology reasonably mature enough to 

support preliminary design and licensing as either test or demonstration reactors within a 

decade [17]. This encourages the construction of two test rectors China’s HTR-10 and Japan’s 

HTTR-30.  HTR-10 is a pebble-bed high-temperature helium-cooled test reactor design and 

built by INET and it achieved its first criticality in December 2000and is running successfully. 

With the success of HTR-10, China is constructing the world’s first prototype HTR-PM (High-

Temperature Reactor Pebble-bed Module) which is scheduled to be synchronised to the grid 

and start electricity generation in the year 2018[6], [18].  

 In Japan, a 30MWth prismatic block design, High-Temperature engineering Test 

Reactor (HTTR), was constructed and attained the first criticality in November 1998, full 

https://www.sciencedirect.com/topics/engineering/pebble-bed-reactors
https://en.wikipedia.org/wiki/High-temperature_engineering_test_reactor
https://en.wikipedia.org/wiki/High-temperature_engineering_test_reactor
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power operation in December 2001, high temperature operation at 950 °C in April 2004, After 

earthquake and tsunami on 11 March 2011, new regulation standard for the test and research 

reactors was issued by Nuclear Regulations Authority (NRA) on 18 December 2013. These 

regulations demand that the plants should be able to respond to a variety of natural phenomena 

and establish new measures to mitigate the effects of severe accidents, such as reactor core 

damage caused by beyond design basis events. JAEA has applied for the permission of changes 

in nuclear installation of the HTTR in 2014. After several review meeting of NRA and JAEA, 

NRA has granted permission on 3rd June 2020 and its safety review has confirmed that no fuel 

damage would occur even in the event of a beyond design basis accident such as multiple losses 

of reactor shutdown functions. Review of Design and construction methods and Operational 

Safety Program changes are going on and need approval [19].  

 Several start-ups, plant vendors and national laboratories in China, the United States, 

Korea, and Japan are currently working on near or medium-term projects of HTR designs such 

as HTR-PM, NGNP, GT-MHR, NHDD, IHTR and GTHTR300. Research activities are in 

progress for the molten salt cooled and TRISO particles fueled HTRs such as MARS, AHTR, 

SmAHTR, PB-FHR, TMSR-SF and IHTR in Russia, US, US, US, China and India, 

respectively [6].  

1.5 HTR Types and Fuel Elements 

 Depending upon the fuel element configuration, HTRs are categorized as the pebble-

bed type and the prismatic block type. Both HTR designs use fuel in the form of TRISO coated 

particles in a graphite matrix having spherical or prismatic block geometry.   



34 

 

 

 

1.5.1 Pebble-bed Type 

  In the pebble bed reactor (PBR) concept, spherical shaped fuel elements, called pebbles, 

are randomly stacked to form a pebble-bed in a graphite-reflected cylindrical core. The pebble-

bed type HTRs offer a continuous refuelling scheme, low excess reactivity, lower control rod 

worth, continuous reactor operation and relatively better fuel utilization. The Once Through 

and Then Out (OTTO) and Multi-pass continuous refuelling schemes allow pebble-bed type 

HTRs to have low excess reactivity. The Multi-pass refuelling also results in higher fuel burn-

up and lower fuel peak temperatures. Coolant flow paths are formed by the interstitial space 

available in the pebble-bed. A high-pressure drop of helium coolant across the core is a 

drawback of this type of reactors due to its relatively thin and long core design. However, cross-

flow design or use of molten salt as coolant may eliminate this issue[20]. Production of dust 

from control rod insertions in pebble-bed, rubbing of fuel pebbles, and drag of fuel pebbles on 

the vessel shroud are some of the problems with this type of HTRs[21]. A schematic of the fuel 

elements used in pebble-bed reactors is shown in Figure 1-1. 

1.5.2 Prismatic Block Type 

 The HTRs with hexagonal block-type fuel elements are known as prismatic reactors 

and have fixed fuel assemblies. In this type of HTR design, the helium-coolant flow paths are 

well defined and relatively controllable because of the fixed coolant channels. The control rod 

locations are in the core because control rod channels can be drilled into the hexagonal graphite 

block. Larger excess reactivity, higher control rod worth and relatively high packing density of 

TRISO are required for attaining the targeted operating cycle length. The prismatic reactor 

must be shut down periodically to perform the refuelling operation just like in LWRs. A 

schematic of the fuel elements used in the prismatic block reactors is shown in Figure 1-2.  
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1.5.3 TRISO 

The fuel in oxide or carbide form is lumped in a tiny spherical shape, called the fuel 

kernel, with a typical diameter of 500 μm, surrounded by a low-density carbon layer (buffer) 

and three containment layers, namely, an Inner Pyrolytic dense Carbon (IPyC) layer, a Silicon 

Carbide (SiC) layer, and an Outermost Pyrolytic dense Carbon OPyC layer. TRISO particles 

are mixed with an approximately 50/50 mixture of graphite powder and binder material to form 

the fuel zone of the pebble fuel element for the pebble-bed design or fuel compacts for the 

prismatic design.   

1.5.4 Fuel Pebble  

A 6-cm-diameter fuel pebble consists of two regions as shown in Figure 1-2: a central 

fuel zone with a 2.5-cm radius and a 0.5-cm-thick protective layer of graphite. This is referred 

to as a standard fuel pebble. The packing fraction of TRISO particles in the pebble and the 

enrichment of fuel are design parameters that are to be decided based on the target burnup 

required. The fuel-free region of the pebble not only protects the fuel zone but also moderates 

the neutrons.  

 

Figure 1-1: Schematic of TRISO and fuel pebbles in pebble-bed design 
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1.5.5 Fuel Compact 

In the prismatic block type of HTRs, TRISO coated fuel particles are randomly 

distributed in graphite matrix of the fuel compact with a packing fraction of about 29%. The 

graphite layer of 1mm thickness coats the surface of fuel compacts to prevent the corrosion by 

exposure to the impurity gases in the primary helium. These fuel compacts are filled into 

hexagonal fuel blocks having coolant holes and fuel compact holes.  

 

Figure 1-2: TRISO and Fuel Compact in the Prismatic HTR designs 

1.6 Nuclear Hydrogen Production  

 Hydrogen is an energy carrier and considered as one of the future transport fuels 

because no greenhouse gas like CO2 is emitted when hydrogen is burnt. Hydrogen exists 

abundantly on the earth in the form of its compounds but not in its free state.  However, it can 

be separated from water, fossil fuels, or biomass using any one of the suitable methods like 

thermal processes, electrolysis or thermochemical cycles. Today’s commercial scale hydrogen 

production is based on the steam reforming process in which hydrogen atoms are separated 

from carbon atoms in methane (CH4). This results in the emission of carbon dioxide.  
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Electrolysis is a CO2 free process (provided the primary energy source is CO2 free as in the 

case of nuclear energy), but its overall efficiency is quite low, about 27% if the electricity 

generation efficiency (~30%) is also accounted for [efficiency of electrolytic process 

being~90%]. Nuclear reactors, HTRs in particular, can play a key role in efficient hydrogen 

production on a commercial scale without contributing any greenhouse gases to the 

environment.  Hydrogen can be produced either by using the process heat alone as in the sulfur-

iodine thermochemical cycle, as shown in Figure 1-3 or by using high-temperature steam 

electrolysis. 

 

Figure 1-3: Sulphur–Iodine thermo-chemical cycle with HTR nuclear heat source 

The former process of water-splitting is a chemical process that accomplishes the 

decomposition of water into hydrogen and oxygen using only heat. The latter process is known 

as high-temperature electrolysis in which a combination of heat and electrolysis is used for 

hydrogen separation. The efficiency of such processes increases with increasing the 

temperature of the process heat and it is in the range of 40-52% depending on the temperature 

(850oC-950oC)[22].  Recently, the hybrid copper-chloride process and the hybrid Sulphur cycle 
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have also been identified as alternative processes for efficient hydrogen production through the 

application of nuclear heat [6].  

1.7 Reactor Physics Design Objectives  

 Nuclear reactor design is a multidisciplinary subject and requires iterative interaction 

among various nuclear engineering fields including fuel chemistry, reactor physics, thermal 

hydraulics, and material science and structural mechanics. The main objective behind a nuclear 

reactor design is to achieve the highest level of safety with a cost-effective operation of the 

reactor, prevent any accident, curtail the probability of accidents and mitigate the consequences 

of accidents [23]. A discussion of all these disciplines is beyond the scope of the thesis and we 

limit this section to cover only the reactor physics aspect.  

 The behaviour of a reactor is mainly governed by the reactivity that depends on the 

reactor size, relative amounts of fuel, moderator, coolant and structural materials, and their 

properties such as densities and neutron cross-sections. The material properties are affected by 

the temperature, pressure and fuel burn-up. Fission releases energy in the form of the kinetic 

energy of the fission fragments and other particles that ultimately appears in the form of heat. 

The heat produced must be removed efficiently using a coolant so that the temperatures and 

pressures of various components/materials remain within their design limits. Any imbalance in 

heat removal by coolant and production by fission results in changes in density and temperature 

of reactor materials and causes a change in the reactivity. This inter-dependence of reactivity 

on the material’s temperature and pressure introduces a reactivity feedback mechanism in the 

system. It is always desirable that the reactor has an overall negative temperature coefficient 

of reactivity because this makes the reactor a self-regulating system.  
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 The reactor physics design calculations start with some assumed configuration of fuel, 

moderator and coolant materials within the reactor. The physics behaviour of the reactor is then 

studied by evaluating the neutron flux distribution and the effective multiplication factor (keff), 

which is the most fundamental quantity, using the neutron transport equation. The reactor 

physics design includes the calculations for the steady and transient states of the reactor, using 

simple or detailed computational codes based on numerical methods. These codes require 

geometrical details of the reactor and nuclear cross-section data for material distributed in the 

reactor as input parameters to solve the neutron transport equation. The computational methods 

based on the solution of the neutron transport equation are called deterministic methods.  The 

transport equation yields the neutron distribution and various derived parameters such as the 

core reactivity, reactor power, fuel burn-up, control rod worth and reactivity coefficient etc. 

Reactor design calculations are not only performed in steady state conditions, but also for 

various transients (including postulated accidental scenarios) due to reactivity insertions or loss 

of coolant etc.  The studies include effects of burnup of fuel, refuelling, (including an interval 

of refuelling), and the action of control systems to ensure safe operation of the reactor. Safety 

is ensured by maintaining various parameters within their design limits throughout the designed 

life of the reactor.  

 An alternative approach to the deterministic method is known as the Monte Carlo 

method or the stochastic method that is now being increasingly used regularly in reactor 

physics. To determine the reactor behaviour, this method uses probabilistic theory and pseudo-

random numbers to simulate all the possible physical process e.g., next collision distance, 

fission, scattering, capture, leakage and so on in the course of the history of a neutron starting 

from its birth to absorption or leakage. When a sufficiently large number of neutron histories 

are studied, various quantities of interest are obtaining by averaging the corresponding tallies 
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over these histories. The capability to use the point nuclear data with an exact geometrical 

representation of the material distribution in the calculations results in very good accuracy.  

However, the accuracy comes at the cost of higher computation time as compared to the 

deterministic methods. The main source of uncertainty in the Monte Carlo method for a given 

set of nuclear data library is the statistical error that decreases as the inverse of the square root 

of neutron histories used as per the Central Limit theorem [24].   

1.8 Special Problems of HTR Design and Thesis Outline 

 The use of TRISO particles as fuel and ceramic materials such as graphite and helium 

as coolant enables HTGRs to operate at high temperature. This is not possible with traditional 

reactors like LWRs or PHWRs due to the use of metal alloys for the cladding of fuel and  other 

structural components. In TRISO particles, the IPyC layer protects the SiC layer from the hot 

kernel and OpyC layer can withstand the pressure of fission gases up to a very high burnup 

(~100GWd/T). The role of SiC layer is the retention of the non-gaseous fission products in 

extremely severe conditions including  temperatures of 1600oC for hundreds of hours. Work 

of Allelein, H.-J., et al., [25] shows that the failure fraction of modern TRISO particles are 4.7 

x 10-5 during fuel manufacturing,  4.5 x 10-6 irradiation testing below 1200oC, and 3.7 x 10-5 

during the accident testing below 1600oC. In this way, five layers of each coated TRISO 

particle is able to retain nearly complete fission  products during the nominal and accidental 

conditions. Being tiny in size and presenting a large surface area, heat is quickly transferred to 

the surrounding graphite matrix that carries it away to the coolant. This fuel design enables 

HTRs to operate with coolant in the range of 750oC to 950oC temperature. Such high 

temperatures allow HTRs to have higher thermal efficiencies (~50%) for production of 

electricity [26] and for use in industrial processes that require heat at a high temperature.  
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 This thesis deals with the unusual challenges that arise in the neutronics design of HTRs 

due to the peculiar design of fuel elements. The heterogeneous distribution of materials in the 

HTR lattice cell, tiny TRISO fuel particles dispersed randomly in the graphite matrix followed 

by graphite and the coolant layers, is referred to as the double heterogeneity effect. It might 

appear that such fine-particle dispersions may be treated as homogeneous for the entire neutron 

spectrum but that is not the case for all energies. At certain energies, particularly around 

resonances, and to some extent in the thermal region, the neutron mean free path is comparable 

or shorter than the size of the fuel kernel, and the situation necessitates treatment of the 

dispersion as a heterogeneous medium. This makes the treatment challenging using the 

deterministic methods based on the solution of transport equation as well as the stochastic 

methods (Monte Carlo methods).  

 The goal of the research described in the thesis is the development of new and improved 

methodology and computational tools for HTR analysis. This includes the development of new 

theoretical models, algorithms and computer codes based on the models, and the study of 

benchmark problems. The first of these is the development of a new MC algorithm to realize 

the random distribution of fuel particles in the HTR lattice cell and pebbles in the HTR core 

and a fast scheme to track neutrons to compute the Dancoff factor needed in the study of 

resonance self-shielding and its applications to lattice calculations of HTRs. This is discussed 

in Chapter 3. Chapter 4 discusses the development of a somewhat heuristic approach to 

addressing the double heterogeneity problem for the solution of the multigroup transport 

equation in lattice calculations of HTRs. This is followed by the development of a rigorous 

theoretical method for solving the transport equation in the random fuel particle dispersion by 

an exact evaluation of the collision probabilities (CPs) in various regions of the HTR lattice 

cell. The method is incorporated in the CP code BOXER3 and is described in Chapter 5. The 
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method developed for the exact evaluation of CPs is extended to the development of an 

algorithm for providing a solution by the MC method as well. To prove the validity of the 

proposed method, a multi-region, multigroup MC code (PebMC) is developed to simulate the 

spherical lattice cell of a pebble bed HTR. This is described in Chapter 6.  Chapter 7 gives a 

summary and the main conclusions of the research work presented in the thesis. It also presents 

the main conclusions drawn and the scope for future work.  
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Chapter 2 REVIEW OF NEUTRONICS METHODS: 

currently used in traditional reactors and HTRs 

 

This chapter presents a brief introduction to deterministic and stochastic neutronic methods 

currently in use for performing reactor physics calculations. It also highlights the unusual 

challenges posed by HTRs and presents a survey of the existing literature on the methods 

developed for their solution. 

 

2.1 Introduction 

 The discovery of the fission of a nucleus of a heavy isotope (e.g. uranium) and emission 

of secondary neutrons in the fission reaction led to the development of a device in which a 

sustained fission chain reaction can be maintained in a controlled way. Today, these devices 

are known as nuclear reactors, which usually consist of a periodic arrangement of fuel, 

moderator and coolant materials. Nuclear reactor design and analysis is a multi-disciplinary 

subject of science and engineering. In this context, reactor physics or neutronics has emerged 

as a distinct and mature discipline, which deals with the determination of the neutron density 

and reaction rates throughout the nuclear reactor for various states of the reactor.  

 The Chapter is organized as follows. In Section 2.2, a brief overview of the reactor 

physics methodology is given for traditional reactors. Section 2.3 introduces the neutron 

transport equation. The reactor physics calculations using the multi-step approach is explained 

in Section 2.4.  The deterministic methods of reactor calculations are discussed in Section 2.5. 

This section also includes an overview of resonance self-shielding methods for the preparation 
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of multigroup cross-section. Section 2.6  gives a general description of the evolution of nuclear 

fuel composition during reactor operations. The Monte Carlo method for neutron transport in 

the reactor is discussed in Section 2.7.  A survey of the literature on HTR-lattice reactor physics 

methods and Monte Carlo methods are presented in Section 2.8. Finally, Section 2.9 defines 

the objective of the thesis.   

2.2 Neutronics Methodology 

 The physical behaviour of a nuclear reactor depends on the interaction of neutrons with 

the nuclides of the materials distributed inside the reactor. The linear form of the Boltzmann 

transport equation describes the transport of neutral particles (neutrons in this case) in the 

matter. Ludwig Boltzmann originally formulated the transport equation in the context of the 

kinetic theory of gases [22]. The neutron interactions with nuclides are described in terms of 

the microscopic cross-section, which is a measure of the probability of occurrence of a nuclear 

reaction. The reaction cross sections are energy-dependent quantities and often have a very 

complicated variation with energy. A resonant nuclide requires several hundreds of thousands 

of energy data points for an accurate representation of its variation with energy. As an example, 

the variation of U238 cross-section is as shown in Figure 2‑1. Nuclear-reaction theory codes are 

used to interpolate and extrapolate from the measured data to produce a complete set of 

evaluated cross-section data libraries from which it is possible to obtain various reactions cross-

sections of the nuclides of interest at any energy in the energy range of interest (10-5eV - 20 

MeV) [23]. The nuclear theory is needed because the experimental nuclear data of various 

nuclides of interest of Reactor Physics have been measured only at a limited number of points 
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in the energy range of interest and also because the nuclide cross sections depend upon the 

temperature of the material and the chemical binding with other nuclides of the material. 

 

Figure 2-1: Variation of Total microscopic continuous cross-section of U238 

 In principle, the neutron transport equation should be solved to determine the neutron 

distribution to predict the physics behaviour and properties of the reactor. However, solving 

the transport equation for a highly heterogeneous three-dimensional reactor with wildly varying 

reaction cross-sections is so time-consuming as to be practically infeasible, even on the most 

powerful computers at present [27]. This naturally demands simplifications based on various 

approximations.  A brief discussion of various methods applied to solve the neutron transport 

equation is presented in this chapter.  

 An alternative approach to solving neutron transport problems in Reactor Physics is a 

stochastic approach based on the Monte Carlo method. Its primary advantage is that it allows 

an exact treatment of the geometrical and cross-section details without any approximations. 

For this reason, it is becoming increasingly popular. However, its principal disadvantage is that 

it is computationally expensive for obtaining detailed flux/reaction rate distributions. This 

approach is also discussed in this chapter. 
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2.3 Neutron Transport Equation 

 The average behaviour of a large population of free neutrons can be described 

mathematically by the neutron transport equation in an integrodifferential form, characteristics 

form or integral equation form. This equation is based on the principle of particles balance in 

an arbitrary phase space volume element 𝑑3𝑟𝑑Ω𝑑𝐸. The transport equation is solved for the 

angular flux distribution 𝜓(𝒓, 𝐸, 𝜴) that is related to the distribution of the density of particles 

and is a function of seven independent variables (one in time, three in space, one in energy and 

two in angle). The integrodifferential form of the transport equation for the steady-state 

problem is given by Eq. (2.1) [since work in the thesis deals with the time-independent steady-

state condition of the reactor]. 

 

 

 

 

 

 

 

 

Figure 2-2: Neutrons location at 𝑟 in  𝑑3𝑟 volume element and motion in direction cone 𝑑𝜴 

around 𝜴.  

𝜴. 𝛻𝜓(𝒓, 𝐸, 𝜴) + 𝛴𝑡(𝒓, 𝐸)𝜓(𝒓, 𝐸, 𝜴) =  𝑄(𝒓, 𝐸, 𝜴) 2.1 

Where, 𝒓 = (𝒙, 𝒚, 𝒛) and 𝜴 = (𝜴𝒙, 𝜴𝒚, 𝜴𝒛) = (√(1 − 𝜇2 𝑐𝑜𝑠 ∅ ,√(1 − 𝜇2) 𝑠𝑖𝑛 ∅ , 𝜇) 
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The product of the number density of a nuclide with the microscopic cross-section is defined 

as the macroscopic cross-section (𝛴) of that nuclei. The subscripts 𝑠, 𝑓, 𝑎 and t are used to 

represent the total, scattering, fission and absorption cross-sections respectively. The first term 

in neutron transport equation describes the net removal of particles through the volume element 

at the point 𝒓,  with energy E in the direction 𝜴 of the phase space due to streaming (i.e. the 

motion of the particles) while the second term represents the removal due to collisions. Finally, 

the term on the right-hand side is the net number of particles added to the volume element due 

to the neutron source term𝑄(𝒓, 𝐸, 𝜴). This is given in Eq.(2.2) as the sum of the scattering 

source (𝑄𝑠) and the fission source (𝑄𝑓) with the eigenvalue, fission neutron spectrum, and the 

average number of neutrons released per fission at position 𝑟, represented by K, 𝜒(𝐸) and 𝜐 

respectively.   

𝑄(𝒓, 𝐸, 𝜴) = ∫∫ [𝛴𝑠(𝒓, 𝐸
′, 𝜴′ → 𝐸,𝜴)

∞

0
4𝜋

+
𝜒(𝐸)

4𝜋𝐾
𝜐𝛴𝑓(𝒓, 𝐸

′, 𝜴′)]𝜓(𝒓, 𝐸′, 𝜴′)𝑑𝐸′𝑑𝜴′ 

2.2 

 

 The steady state neutron transport Eq. (2.1) can also be written in the characteristic form 

by writing the partial derivatives of the streaming operator in terms of the total derivative with 

respect to the distance (𝜴. 𝛻 = 𝑑/𝑑𝑠) along the trajectory of the neutron motion in space, as 

shown in Figure 2-3. The equivalent total derivative can be obtained by change of variables 𝒓 =

𝒓𝟎 + 𝑠𝜴, where s is the distance measured along the direction 𝜴 , from 𝒓𝟎 which is an arbitrary 

starting point on the characteristic path[28]. 

𝑑

𝑑𝑠
𝜓(𝒓𝟎 + 𝑠𝜴, 𝐸,𝜴) + 𝛴𝑡(𝒓𝟎 + 𝑠𝜴, 𝐸)𝜓(𝒓𝟎 + 𝑠𝜴, 𝐸,𝜴) =  𝑄(𝒓𝟎 + 𝑠𝜴, 𝐸,𝜴) 2.3 
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 The characteristic form of the neutron transport equation is a linear first-order ordinary 

differential equation, which can be integrated along the neutron trajectory to obtain the integral 

form of the transport equation in an infinite medium, as given in Eq. (2.4)  

𝜓(𝒓, 𝐸, 𝜴) =  ∫ 𝑄(𝒓, 𝒓 − 𝑠′𝜴, 𝐸, 𝜴)𝑒−∫ Σ𝑡(𝑟,𝒓−𝑠
′𝜴,𝐸)𝑑𝑠′

𝑠
0

∞

0

𝑑𝑠′ 2.4 

Physically, the angular flux at location 𝒓 is contributed by neutrons having direction 𝜴 and 

energy 𝐸 starting from all other possible locations (behind the point 𝒓)  𝒓 − 𝑠′𝜴, with all 

positive values of 𝑠′, reduced by the attenuation factor 𝑒𝑥𝑝(−∫ 𝛴𝑡(𝒓, 𝒓 − 𝑠
′𝜴, 𝐸)𝑑𝑠′

𝑠

0
). The 

integral in the attenuation factor is defined as optical path 𝜏(𝒓, 𝒓′, 𝐸) = ∫ 𝛴𝑡(𝒓, 𝒓 −
𝑠

0

𝑠′𝜴, 𝐸)𝑑𝑠′ between the source point 𝒓′ and the target point 𝒓.  

 

 

 

 

 

 

Figure 2-3: Spatial coordinate along the direction of trajectory. 

The result of integration of the characteristics form of transport Eq. (2.2) over a finite medium 

is expressed by Eq. (2.5) 

𝜓(𝒓, 𝐸, 𝜴) =  𝜓(𝒓 − 𝑹𝒔𝜴, 𝐸, 𝜴)𝑒
−∫ Σ𝑡(𝑟,𝒓−𝑠

′𝜴,𝐸)𝑑𝑠′
𝑅𝑠
0

+∫ 𝑑𝑠′𝑄(𝒓 − 𝑠′𝜴, 𝐸, 𝜴)𝑒−∫ Σ𝑡(𝑟,𝒓−𝑠
′𝜴,𝐸)𝑑𝑠′

𝑠
0

𝑅𝑠

0

 

2.5 

𝒓′ 

𝑠′ 

Ω 

𝒓𝟎 𝒓 
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The second term on RHS of Eq. (2.5) represents angular flux at point (𝒓, 𝐸, 𝜴) due to the 

neutron source distributed in finite volume (V) surrounded by boundary surface 𝑅𝑠. The first 

term represents the contribution of the incoming angular flux at surface  𝑅𝑠 to the point 

(𝒓, 𝐸, 𝜴) with attenuation factor 𝑒(−∫ 𝛴𝑡(𝒓−𝑠
′𝜴,𝐸)𝑑𝑠′

𝑅𝑠
0 )

. The angular flux at a point (𝒓,𝜴) in the 

multigroup approximation can be written as 

𝜓𝑔(𝒓, 𝜴) =  𝜓𝑔
𝑖𝑛(𝒓𝒔, 𝜴)𝑒

−𝜏(𝑟,𝑟𝑠) +∫ 𝑑𝑠′𝑄𝑔(𝒓
′, 𝜴)𝑒−𝜏𝑔(𝑟,𝑟′)

𝑅𝑠

0

 2.6 

Where, 𝒓𝒔 = 𝒓 − 𝑅𝑠𝜴 is a point on the line passing through the point 𝒓 along the neutron 

direction 𝜴 on the surface S and 𝒓′ = 𝒓 − 𝒔′𝜴. The incoming flux is specified by the boundary 

conditions. Methods based on obtaining numerical solutions of the transport equation for the 

neutron distribution (generally using numerical methods) are known as deterministic methods.  

Section 2.5  presents a brief description of some of the commonly used deterministic methods. 

Simulation of sequences of physical events of numerous neutrons from their birth in fission to 

their loss either by leakage or by absorption using statistical theory is called the stochastic or 

Monte Carlo method and is discussed in Section 2.7.  

2.4 Multi-Step Methodology 

 Most of the deterministic methods, involving the solution of the transport equation, for 

reactor calculations, are based on the multi-step procedure [27]. This methodology is developed 

to get the neutron flux distribution and reaction rates in a reasonable amount of computing time 

for routine reactor analysis. It is based on the principle of the conservation of reaction rates at 

each step. The results at one step serve as inputs to the next step. A schematic of reactor physics 

calculations using the multi-step approach is shown in Figure 2-4. The geometrical details and 

cross-sections of materials in the reactor are the input parameters for the solution of the 
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transport equation with any of the deterministic method discussed above. The computational 

efficiency and the demand for accuracy for the problem play an important role in the selection 

of an appropriate method of solution. However, the computational efficiency comes at the cost 

of accuracy. As previously discussed in Section 2.2 that the solution of the transport equation 

with a point data library is impractical with any of the deterministic method and it becomes 

indispensable to use the multi-group method of transport theory.  

 

 

Figure 2-4: A multi-step reactor physics analysis procedure 
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2.4.1 Multi-group approximation 

The first approximation in deterministic calculations is the generation of multigroup constants 

or cross-sections by processing the cross-sections of each isotope in the ENDF/B file. To 

generate the multigroup constants, the energy range of interest is discretized into G groups 

where the first group represents the highest energy group [upper boundary 20MeV] and the last 

group (𝑔 = 𝐺 )is the lowest energy group [lower energy boundary 10-5ev]. The group cross-

section 𝛴𝑥,𝑔of reaction type 𝑥 is defined in Eqs. (2.7)-(2.9) and it is a constant within the energy 

interval [𝐸𝑔 , 𝐸𝑔−1].  

𝛴𝑥,𝑔(𝑟, 𝜴) =
∫ 𝛴𝑥,𝑔(𝑟, 𝐸)𝜓(𝒓, 𝐸, 𝜴)
𝐸𝑔−1
𝐸𝑔

𝑑𝐸

∫ 𝜓(𝒓, 𝐸, 𝜴)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 
2.7 

𝜓𝑔(𝑟, 𝜴) = ∫ 𝜓(𝒓, 𝐸, 𝜴)
𝐸𝑔−1

𝐸𝑔

𝑑𝐸 2.8 

𝜒𝑔 = ∫ 𝜒(𝐸)
𝐸𝑔−1

𝐸𝑔

𝑑𝐸 2.9 

 

However, Eqs. (2.7)-(2.9) need continuous energy dependent angular flux 𝜓(𝒓, 𝐸, 𝜴), which is 

not known a priori. This also makes the total cross-section angular dependent.  Therefore, it 

becomes necessary to make an approximation for the angular flux by separating the angular 

and energy variables as given in the Eq. (2.10).  

𝜓(𝒓, 𝐸, 𝜴) ≈ 𝜙(𝐸)𝜓(𝒓,𝜴) 2.10 

With this approximation for the angular flux, the multigroup cross sections can be defined in 

terms of the weighting spectrum 𝜙(𝐸), as shown in Eqs. (2.11)-(2.13) [29]–[33].  

𝛴𝑥,𝑔 =
∫ 𝛴𝑥,𝑔(𝐸)𝜙(𝐸)
𝐸𝑔−1

𝐸𝑔
𝑑𝐸

∫ 𝜙(𝐸)𝑑𝐸
𝐸𝑔−1

𝐸𝑔

 2.11 
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𝜙𝑔 = ∫ 𝜙(𝐸)
𝐸𝑔−1

𝐸𝑔

𝑑𝐸 
2.12 

𝜒𝑔 = ∫ 𝜒(𝐸)
𝐸𝑔−1

𝐸𝑔

𝑑𝐸 2.13 

 

The weighting spectrum 𝜙(𝐸) is also not known in advance for the system to be analyzed and 

some approximate forms have to be used.  If the cross-section varies slowly with energy in a 

group, sufficient accuracy can be obtained with the fixed functional form of weighting 

spectrum 𝜙(𝐸). In the WIMS formalism for the light elements, the fixed form is the fission 

spectrum in the fast region, 
1

𝐸
 energy dependence in the resonance region and Maxwellian 

distribution in the thermal region [34]. This assumption is often valid, but cannot be used when 

the flux varies rapidly within a group, as it is the case where the cross-section exhibits 

resonances in the group.  

 For treating resonant isotopes, the neutron-weighting spectrum 𝜙(𝐸) can be obtained 

by solving the slowing down equation, as given in Eq. (2.14), using two approaches. The first 

approach is based on the analytical solutions (obtainable under the three approximations 

discussed below) of the slowing down equation for a homogeneous infinite medium formed by 

a mixture of resonant absorber and background moderator nuclides [35], [36]: 

(𝑁𝑟𝜎𝑡,𝑟(𝐸) +∑𝑁𝑘𝜎𝑝,𝑘
𝑘≠𝑟

)𝜙(𝐸)

=
1

1 − 𝛼𝑟
∫ 𝑁𝑟𝜎𝑠,𝑟(𝐸

′)𝜙(𝐸′)
𝑑𝐸′

𝐸′

𝐸/𝛼𝑟

𝐸

+∑
1

1 − 𝛼𝑘
∫ 𝑁𝑘𝜎𝑝,𝑘𝜙(𝐸

′)
𝑑𝐸′

𝐸′

𝐸/𝛼𝑘

𝐸𝑘≠𝑟

 

2.14 

 

Where 𝑁𝑟 and 𝑁𝑘: is number density of resonant and non-resonant nuclides, respectively 

 1 − αk: is the maximum fractional energy loss per collision with nuclide 𝑘. 
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In Eq. (2.14), the cross-section of moderator nuclides is assumed to be constant with 

zero absorption cross-section (𝜎𝑎,𝑘 = 0) and their total cross-sections (𝜎
𝑡,𝑘
) are equal to the 

potential scattering cross-sections (𝜎𝑝,𝑘). In the resonance region, fission neutrons are ignored, 

and elastic scattering is the dominant mechanism for the slowing down of neutrons. The 

resonance width is assumed to be small as compared to the energy loss per elastic collision i.e. 

slowing down width.   In the narrow resonance approximation (NR) it is assumed that the 

resonance width is small as compared to the energy loss per elastic collision with both the 

resonant nuclide and the background moderator nuclides and the slowing down equation 

becomes 

[Σ𝑡,𝑟(𝐸) +∑ Σ𝑝,𝑘

𝑘≠𝑟

] 𝜙𝑁𝑅(𝐸) =
1

𝐸
[Σ𝑝,𝑟(𝐸) +∑ Σ𝑝,𝑘

𝑘≠𝑟

] 
2.15 

 

𝜙𝑁𝑅(𝐸) =
1

𝐸

𝜎𝑝,𝑟 + 𝜎𝑏

𝜎𝑡,𝑟(𝐸) + 𝜎𝑏
 2.16 

 

Where, 𝜎𝑏 =
∑ 𝑁𝑘𝜎𝑝𝑘𝑘≠𝑟

𝑁𝑟
 is defined as background cross-section or the dilution cross-section 

 𝛴𝑡,𝑟(𝐸) : Total macroscopic cross-section of resonant nuclide 

 𝛴𝑝,𝑟(𝐸) : Potential macroscopic cross-section of resonant nuclide 

𝛴𝑝,𝑘: Potential macroscopic cross-section of nuclide k 

 The background cross-section 𝜎b determines the depression of the neutron flux at 

resonance peak energy and acts like a fictitious microscopic cross-section. For large 𝜎b, flux 

variation with energy approaches to 
1

𝐸
 as if no absorber is present and the scattering of other 

non-resonant moderator nuclides dominates the spectrum. On the other hand, the neutron flux 

is inversely proportional to 𝜎𝑡,𝑟(𝐸) of the resonance nuclide for low background cross-section.  
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 In thermal reactor analysis, the NR approximation is not valid for some of the most 

important low-energy resonances of fertile materials. The slowing down equation can also be 

solved by assuming that the resonant nuclide has infinite mass, which implies that the width of 

the resonance peak is wide compared to the average energy loss due to scattering with the 

resonant nuclide. It means the energy loss due to collisions with absorber atoms is neglected. 

The asymptotic flux variation using this approximation, called wide resonance (WR) 

approximation is given by Eq. (2.17) 

𝜙𝑊𝑅(𝐸) =
1

𝐸

𝜎𝑏
𝜎𝑎,𝑟(𝐸) + 𝜎𝑏

 2.17 

It is obvious from Eqs. (2.16) and (2.17) that the scattering cross-section of a resonant 

nuclide is fully accounted for in the NR approximation, but it is completely ignored in the WR 

approximation.  To deal with condition in which the resonances are neither narrow nor wide, 

an intermediate form of the spectrum can be deduced by considering the partial scattering 

cross-section of the resonant nuclide. The intermediate resonance approximation is obtained 

by defining a factor 𝜆 called the intermediate resonance (IR) or the hydrogen equivalent 

factor[37]. In order to apply the IR factor to all nuclides, the IR factors for resonance nuclide 

𝑟 and the non-resonance nuclide 𝑘 are represented by 𝜆𝑟 and 𝜆𝑘 respectively. For hydrogen 

𝜆𝑘 = 1 and for other nuclides it is less than one i.e., 𝜆𝑘 < 1. The analytical expression of the 

spectrum for the intermediate resonance width is given [27] in Eq. (2.18). 

𝜙𝐼𝑅(𝐸) =
1

𝐸

𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏

𝜎𝑎,𝑟(𝐸) + 𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏
;  where 𝜎𝑏 =

∑ 𝜆𝑘𝑁𝑘𝜎𝑝𝑘𝑘≠𝑟

𝑁𝑟
 2.18 

With weighting flux 𝜙(𝐸) analytically or numerically evaluated, the continuous energy cross-

section can now be collapsed to a few hundred groups [33]. The group constants so generated 

will preserve the reaction rate within each energy group as long as the guess flux 𝜙(𝐸) used in 
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collapsing the continuous cross-section accurately represents the neutrons spectrum for the 

system to be analyzed. According to Eq. (2.18), the weighting function depends upon the 

quantity 𝜎𝑏 that is called the background cross-section. It may therefore be expected that the 

weighted cross-section will depend upon this quantity. Due to the Doppler broadening of 

resonances, the group cross-sections also depend upon the temperature of the fuel. The cross-

sections in the resonance groups are generally represented by the resonance integrals, which 

are tabulated as functions of the "background cross-section and the temperature. The spectrum 

weighted multigroup cross-sections in the resonance groups of the library are generated using 

infinite homogeneous media and thus they are called homogeneous data tables or effective 

multigroup cross-sections e.g. WIMS(69g, 172g) [38] or DRAGLIB(172g, 295g, 

361g)[39][40]. However, such libraries can be used not only for homogeneous problems but 

also for heterogeneous problems by making use of equivalence theory, which will be discussed 

in Section 2.4.2.  

 In the second approach, called the ultra-fine group method, direct numerical solutions 

to the slowing down equation or transport equation for the given problem are obtained using 

very fine energy groups (CE). In this approach, the multigroup cross-section is evaluated with 

a very detailed neutron spectrum distribution. As this method is based on the first principle for 

energy dependence, it generates quite accurate multigroup cross-sections. However, it becomes 

impractical to use this approach even in the regular lattice cell problems due to high 

computational costs [41]–[45].  

2.4.2 Self-Shielding Methods 

 The absorption rate is determined by the product of the macroscopic cross-section and 

neutron flux. Due to the inter-dependency of cross-section and the flux, a resonance peak with 
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high cross-section results in depression in the flux of neutrons around the resonance peak 

energy and result in the absorption rate reduction. This is referred to as energy self-shielding 

and it is treated using a direct numerical solution of slowing down equation or analytical 

approach by NR, WR or IR approximation [46]. Another component of self-shielding, called 

spatial self-shielding appears in heterogeneous geometry of resonant material and moderator 

material distribution. When neutrons around resonance peak flow from moderator to fuel 

lumped in a heterogeneous geometry, the absorption rate in the peripheral region is high and it 

reduces towards the centre of the lump. Thus, the depression in the neutron flux spatial 

distribution would be different for the surface and for the central part of the fuel near the 

resonance peak energy. The accurate estimation of self-shielding on the absorption rate 

becomes very crucial while calculating the group constants for a spatially homogeneous or a 

heterogeneous system. The use of expected flux as a weighting function for the continuous 

energy cross-section collapsing accounts for the self-shielding in the infinite homogeneous 

medium, but it does not account for the self-shielding in the heterogeneous medium. 

2.4.3 Equivalence Principle 

 One of the most popular methods of self-shielding for the heterogeneous medium is the 

equivalence principle which permits the use of the group constants from a homogeneous data 

library to a heterogeneous system e.g., pin cell or fuel assembly. The equivalence principle 

states that a heterogeneous system, where fuel-to-moderator collision probability can be 

expressed in the form of a rational approximation, can be replaced with an equivalent 

homogeneous system in which the potential scattering cross-section is augmented with energy 

independent escape cross-section[34]. The rational approximation proposed by Wigner for the 

Pesc of an isolated fuel lump is given in Eq. (2.19) [47].  
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𝑃𝑓𝑚 = 𝑃𝑒𝑠𝑐 =
Σ𝑒

𝛴𝑡,𝑓(𝐸) + Σ𝑒
 2.19 

Where, Σ𝑒: = 4 ∗
fuel volume

surface area  
 

The equivalence principle allows using a data table, which would be generated for a set of 

homogeneous problems, for solving heterogeneous problems via the table lookup with prior 

knowledge of problem specific 𝛴𝑒. For an isolated fuel element, the macroscopic escape cross-

section (Σ𝑒) is equal to the inverse of the average chord length (𝑙�̅�). The Σ𝑒 only depends on the 

fuel geometry if chord distribution is assumed to have an exponential. It allows us to apply 

homogeneous library data, in which resonance integrals are tabulated for several background 

cross-section and temperatures, directly to a heterogeneous problem provided Σ𝑒 is known. By 

applying the IR and Wigner’s approximation along with the equivalence principle, the neutron 

spectrum in the fuel region of the heterogeneous system can be written in a form that is similar 

to the homogeneous solution 

𝜙𝐼𝑅(𝐸) =
1

𝐸

𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏,𝑓 + Σ𝑒/𝑁𝑟

𝜎𝑎,𝑟(𝐸) + 𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏,𝑓 + Σ𝑒/𝑁𝑟
 2.20 

Where, 𝜎𝑏,𝑓 =
∑ 𝜆𝑘𝑁𝑘𝜎𝑝,𝑘𝑘≠𝑟

𝑁𝑟
 : background cross-section for the resonance nuclide 𝑟 (with the 

summation restricted to nuclides in the fuel region).  

This implies that a heterogeneous system is equivalent to a homogeneous one having 

an effective background cross-section given by 
∑ 𝜆𝑘𝑁𝑘𝜎𝑝,𝑘𝑘≠𝑟

𝑁𝑟
+
𝛴𝑒

𝑁𝑟
. For the intermediate value 

of the fuel cross-section, Wigner’s approximation under predicts the escape probability which 

is improved by using the Bell factor (𝑎𝐵). The rational form of escape probability with the Bell-

Levine factor is referred to as Wigner-Bell’s rational approximation. Fuel elements in a reactor 

are not isolated. Often, they are quite close to one another. The escape probability becomes 
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effectively smaller than that for the isolated fuel element due to the shadowing effect of 

neighboring fuel lumps present in the fuel assembly or lattice system. In this case, the 

equivalence principle for non-isolated fuel lumps can be established by making use of the 

Dancoff correction (𝐶) to the escape cross-section as given below, by Eq. (2.21). [48], [49]  

Σ𝑒(𝑎𝐵, 𝐶) =
𝑎𝐵(1 − 𝐶)

𝑙�̅� [1 + 𝐶(1 − 𝑎𝐵)]
 2.21 

The Dancoff correction takes into account the average probability that resonant neutrons 

escaping a fuel lump hit another fuel lump without any collision with moderator nuclei. The 

neutron spectrum using IR approximation with the Dancoff and Bell corrected escape cross-

section can be written as  

𝜙𝐼𝑅(𝐸) =
1

𝐸

𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏,𝑓 + Σ𝑒(𝑎𝐵, 𝐶)/𝑁𝑟

𝜎𝑎,𝑟(𝐸) + 𝜆𝑟𝜎𝑝,𝑟 + 𝜎𝑏,𝑓 + Σ𝑒(𝑎𝐵, 𝐶)/𝑁𝑟
 2.22 

Where, 𝑁 is the number density and the subscript 𝑟 denotes the resonant isotope. 

The self-shielded cross-sections 𝜎𝑥 for reaction type 𝑥 can be obtained from the resonance 

integral (𝑅𝐼𝑥) as follows 

𝜎𝑥(𝜎𝑏, 𝑇) ≈
𝑅𝐼𝑥(𝜎𝑏, 𝑇)

1 −
𝑅𝐼𝑎(𝜎𝑏 , 𝑇)

𝜎𝑏

 2.23 

where, the subscript 𝑎 denotes absorption. The resonance integrals 𝑅𝐼𝑥 are tabulated in the 

cross-section data library as a function of the effective background cross-section (𝜎𝑏) and fuel 

temperature (T) and may be obtained for the specific values of these parameters by 

interpolation from these tabulations. 

 This background sets the classical resonance treatment in lattice cell calculation using 

the equivalence principle. However, further improvements to the equivalence theory have been 
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proposed by Carlvik [50], Stamm’ler [36] and later by Hebert and Marleau [51] to the rational 

approximation for the escape probability by increasing the number of terms.  

2.4.4 Subgroup Method 

 The basic concept of the subgroup method, also known as the multiband method, is to 

use value of the cross-section, as the independent variable in integration to calculate the group 

constants, rather than the energy[52]–[54]. Such integral variable transformation can be applied 

because the spectrum 𝜙(𝐸) depends on energy only through the energy dependence of the cross-

section. In this approach, the detailed energy-dependent cross-section behaviour in each coarse 

energy group is replaced by its probability density representation [55]. Unlike in equivalence 

principle, the subgroup method allows performing resonance self-shielding calculation on a 

heterogeneous geometry rather than on a homogeneous geometry and thereby permits the 

accurate evaluation of flux variation across the fuel rod in resonance-region.   

2.5 Deterministic Methods: Solution of the Transport Equation 

In the deterministic methods, the neutron transport equation is reduced to a solvable 

form by using discretization of independent variables. The energy variable is discretized by the 

use of energy groups (multi-group method discussed in greater detail in Section 2.4.2). The 

neutron transport equation is solved over a discrete spatial mesh rather than for a continuous 

spatial function. The spherical harmonics method (𝑃𝑁), and the discrete ordinates (𝐷𝑆𝑁) 

method are some of the methods commonly used to solve the integrodifferential form of the 

neutron transport equation. The method of characteristics (MOC) uses the characteristics 

equation [Eq. (2.3)] as the starting point for obtaining the angular flux. On the other hand, the 
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method of collision probability (CP) and interface current (IC) or some combination of these 

are used to solve the integral form of the transport equation.   

2.5.1 Spherical Harmonics Method (𝑷𝑵) 

 In the spherical harmonics method, angular flux and scattering cross-section are 

expressed in terms of infinite series of complete orthogonal set e.g. spherical harmonics. The 

expansion coefficients are determined by orthogonality properties of the polynomial set. The 

substitution of the expansions into the neutron transport equation results in an equivalent 

infinite system of ordinary differential equations. In-plane geometry, the spherical harmonics 

reduce to the Legendre polynomials. In order to develop a practical method of solution, a finite 

number of terms (up to order N) of the expansion are retained by setting the expansion 

coefficients of all other terms to 0.  In particular, the 𝑃1 equations with additional assumptions 

can be reformulated into the well-known neutron diffusion equations [56]. The higher-order 

expansion complicates the solution method and this limits the application of this method. 

2.5.2 Discrete Ordinates Method (𝑫𝑺𝑵) 

 The 𝐷𝑆𝑁 method is most easily illustrated in the simple case of one group, one-

dimensional plane geometry problems with isotropic scattering, wherein the transport equation 

takes the form 

𝜇
𝜕Φ(x, 𝜇)

𝜕𝑥
+ Σ𝑡(𝑥)Φ(𝑥, 𝜇) =

1

2
∫ 𝑐(x)Σ𝑡(𝑥)Φ(𝑥, 𝜇)𝑑𝜇

1

−1

 
2.24 

where 𝑐(𝑥) is the mean number of secondaries per collision. In the 𝐷𝑆𝑁 method, the angular 

dependence of neutron flux is represented by its values along a set of discrete directions (𝜇𝑁) 

with associated weights (𝑤𝑁). The integration on the right-hand side can then be written using 

a suitable quadrature formula and the equation becomes. 
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𝜇𝑖
𝜕Φ(x, 𝜇𝑖)

𝜕𝑥
+ Σ𝑡(𝑥)Φ(𝑥, 𝜇𝑖) =

1

2
∑𝑤𝑗  𝑐(𝑥)Σ𝑡(𝑥)Φ(𝑥, 𝜇𝑗)

𝑁

𝑗=1

 2.25 

 Thus, the transport equation is replaced with a set of 𝑁  coupled differential equations. The 

most commonly used quadratures set in 𝐷𝑆𝑁 method in plane geometry is the Gauss quadrature 

and in multidimension geometries, a specially developed quadrature called fully symmetric 

quadrature is used [57]. To solve the above system of equations numerically, the spatial domain 

is divided into meshes such that material properties are uniform within each mesh Integration 

of Eq. (2.25) w.r.t. x over the kth mesh, gives 

𝜇𝑖[Φ(𝑥𝑘+1/2, 𝜇𝑖) − Φ(𝑥𝑘−1/2, 𝜇𝑖)] + Δ𝑥𝑘Σ𝑡(𝑥𝑘)Φ(𝑥𝑘, 𝜇𝑖)

=
Δ𝑥𝑘
2
∑𝑤𝑗𝑐𝑘Σ𝑘Φ(𝑥𝑘, 𝜇𝑗)

𝑁

𝑗=1

 

2.26 

where Φ(𝑥𝑘, 𝜇𝑖) stands for the average flux in the kth mesh whereas Φ(𝑥𝑘+1/2, 𝜇𝑖) and 

Φ(𝑥𝑘−1/2, 𝜇𝑖) stand for the angular fluxes at the right and left boundaries of the mesh 

respectively. Δ𝑥𝑘 stands for the mesh width. The above equation has more variables than the 

number of equations. This is remedied by assuming the following relation between the average 

and boundary fluxes. 

[Φ(𝑥𝑘+1/2, 𝜇𝑖) + Φ(𝑥𝑘−1/2, 𝜇𝑖)] = 2 Φ(𝑥𝑘 , 𝜇𝑗) 2.27 

Eq. (2.27) is called the ‘diamond difference’ relation. Together with the boundary condition 

which specifies the incoming angular flux, there are as many equations as there are unknowns 

for solving the above set of linear algebraic equations. These are solved iteratively. The method 

is easily extendable to multi group and multidimensional problems. This method can treat the 

anisotropic neutron scattering because of the direct angular discretization. This method is 

computationally very efficient and has been implemented to solve the whole core neutron 
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transport equation. Such computer codes are DORT[58], TORT[59] and ATESS[60]. 

However, the complex geometries, especially with curved surfaces at the outer edge of the 

problem domain, are not represented accurately due to the use of finite difference for the spatial 

variable. 

2.5.3 Method of Characteristics (MOC) 

 To deal with more complex geometries, a method called the method of characteristic 

(MOC) is devised to solve the neutron transport equation along the neutron flight path using 

Eq. (2.3). [61], [62]. Thus, the 3D neutron transport variable 𝑟 is replaced with the 1D variable 

along the path of neutron motion. Similar to the 𝐷𝑆𝑁, the method of MOC is also based on 

discrete ordinate approximation to the angular integral. The MOC method requires neutron 

tracking across the spatial domain for several paths along which the characteristics equation is 

solved for each direction of the quadrature set [63]. Like the 𝐷𝑆𝑁 method the MOC can also 

treat anisotropic scattering. For simplicity of the solution method, the constant flux 

approximation within a mesh is used. This requires rather small-sized meshes and hence longer 

computing times for obtaining good accuracy. Higher-order representations such as linear flux 

within a mesh have been successfully used to reduce computing time [64].  

2.5.4 Integral Transport Theory Based Methods   

 The integral transport equation is written entirely in terms of the scalar neutron flux. 

This is its main advantage and introduces simplicity in problems where the anisotropy in the 

scattering cross-section is not important and can be handled with the use of the transport 

correction to the scattering cross-section. This method is suitable for treating the complex 

geometry but is generally limited to small sized problem domains (in terms of mean free paths) 

and where anisotropy through the simple transport correction to the isotropic scattering cross-
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section is adequate. It is particularly suited for lattice cell codes particularly in simple one-

dimensional pin cell problems [65]. A number of codes for two dimensional, lattice calculations 

have also been developed [66], [67]. The method has also been applied for some special three 

dimensional problems as well [61], [67]–[69]. We discuss this method in greater detail partly 

because of its widespread use in lattice calculations but mainly because the work discussed in 

the thesis largely makes use of this method. 

The Collision Probability Method 

The integral form of the neutron transport equation is usually solved using a method 

called the Collision Probability or 𝑃𝑖𝑗 method [50].  The spatial problem domain is discretized 

into small meshes such that the material properties are constant with respect to the spatial 

variable within each mesh. The neutron sources due to fission, scattering or external source are 

assumed to be constant across the mesh. This assumption is called the flat flux approximation. 

However, a difficulty arises in solving the dense non-zero collision probability matrix involved 

due to the coupling of all regions to all other region in large domains. To illustrate the collision 

probability method for solution of the integral form of the transport equation, we assume that 

use transport corrected cross-section adequately represents the anisotropy of the scattering and 

neutron sources. With this approximation, the scalar flux of neutrons at point (𝒓, 𝐸) due to the 

neutrons originating in all points 𝒓′ in space is calculated by integrating the Eq. (2.4) over the 

angular variable 𝜴.  

𝜙(𝒓, 𝐸) = ∫ 𝑑3𝑟′∫𝑑𝐸′ [𝛴𝑠(𝒓, 𝐸
′ → 𝐸)𝜙(𝒓′, 𝐸′) + 𝑄𝑓(𝒓

′, 𝐸)] 𝑇(𝒓′ → 𝑟, 𝐸)  
𝑟

0

 2.28 

Where,   

𝜙(𝒓, 𝐸)is scalar flux of neutrons with energy 𝐸 at point 𝒓  
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𝛴𝑠(𝒓, 𝐸
′ → 𝐸) is scattering cross-section from energy 𝐸′to energy 𝐸 at point 𝒓 

𝑄𝑓(𝒓
′, 𝐸) is neutron source with energy 𝐸 at point 𝒓′ due to fission  

𝑇(𝒓′ → 𝑟, 𝐸) =
𝑒−𝜏(𝑟, 𝑟

′,𝐸)

4𝜋|𝒓−𝒓′|2 
 represents the transport kernel. 

𝑑3𝑟′ = 4𝜋𝑑Ω𝑠2𝑑𝑠 is elemental volume around the point 𝒓′  

 

The integral transport equation [Eq. (2.28)] can be written in multigroup form as follows 

𝜙𝑔(𝑟) = ∫ 𝑑3
𝑟

0

𝑟′ [∑𝛴𝑠0,𝑖,𝑔←ℎ
ℎ

𝜙𝑖,ℎ +
𝜒𝑔

𝐾
∑𝜈𝛴𝑓,ℎ
ℎ

𝜙𝑖,ℎ] 𝑇𝑔(𝑟
′ → 𝑟) 

2.29 

In the collision probability method for solution of the integral transport equation, we discretize 

the spatial domain into small regions (i=1, 2, 3,….. 𝑁). The CP form of the equations is 

obtained by integrating the integral transport equation [Eq. (2.29)] over the volume of the 

region j and multiplying both sides by the total cross section 𝛴𝑗,𝑔 of region j. These are 

𝑉𝑗 𝛴𝑗,𝑔𝜙𝑗,𝑔 =∑𝑄𝑖,𝑔
𝑖

𝑉𝑖 𝑃𝑖,𝑗,𝑔 2.30 

Where,  

𝜙𝑗,𝑔 =
1

𝑉𝑗 
∫ 𝜙𝑔(𝑟)𝑑

3

𝑉𝑗 

𝑟 2.31 

𝑄𝑖,𝑔 =∑Σ𝑠0,𝑖,𝑔←ℎ
ℎ

𝜙𝑖,ℎ +
𝜒𝑔

𝐾
∑𝜈Σ𝑓,ℎ
ℎ

𝜙𝑖,ℎ 2.32 

𝑃𝑖𝑗,𝑔 =
1

4𝜋𝑉𝑖 
∫ 𝑑3

𝑉𝑖 

𝑟′∫ 𝑑3

𝑉𝑗 

𝑟𝛴𝑔(𝑟)
𝑒−𝜏𝑔

|𝒓 − 𝒓′|2
 2.33 

The collision probability 𝑃𝑖𝑗,𝑔 is the probability that a neutron born uniformly and isotropically 

in any of the regions 𝑉𝑖  will have its first collision in region 𝑉𝑗 . Eq. (2.33) is a six-dimensional 

integration that must be carried out numerically. In practice, some of the integrations can be 
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carried out analytically which depends upon the symmetry of the problem. In the general three-

dimensional case, four of the six variables require numerical integration and two can be 

obtained analytically. Calculation of different collision probability to solve neutron balance 

equation is discussed in Section 0.  

The Interface Current Method (𝑱±)  

 Another method based on solution of the integral transport theory is referred to as the 

interface current or 𝐽± method, which couples only adjacent regions through the interface 

currents. In this method, fuel assembly or problem domain is divided into a number of regions 

and equations are written for the flux and out currents of each region in terms of the flux and 

in currents into the region. This requires calculation of only a few collision probabilities 

(volume to volume and surface to volume) per region thereby simplifying the solution of the 

equations and storage requirement of a large number of collision probabilities [61], [70]–[72].  

Often a combination of the collision probability and interface current methods is used 

[70], [73]. The region of interest is divided into a number of macro regions and each macro 

region is further sub divided into finer meshes. Within a macro region, the meshes are coupled 

to one another by the collision probabilities 𝑃𝑖𝑗 whereas the macro regions are coupled to their 

neighbours through interface currents. This improves the accuracy compared to the 𝐽± method 

and at the same time uses less computing resources than the 𝑃𝑖𝑗. The codes CLUB[66], 

LWRBOX, BOXER3[74] use the combined method. 

Suppose a macro region is partitioned into 𝑉𝑖 regions i= 1,2…𝑁v and the boundary 

surface S is divided into 𝑆m surfaces elements 𝑚 = 1,2…𝑁𝑠. The collision probability Eq. 

(2.30) get modified due to an additional term due to the in currents as follows 
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∅𝑖,𝑔Σ𝑖,𝑔𝑉𝑖 =∑𝑄𝑗,𝑔
𝑗

𝑉𝑗 𝑃𝑗𝑖,𝑔 +∑𝑆𝑚𝐽𝑚,𝑔
(𝑖𝑛)
𝑃𝑚𝑖,𝑔

𝑚

 2.34 

where, 

∅𝑖,𝑔 is the flux in region i in group g 

𝐽𝑚,𝑔
(𝑖𝑛)

 is the in current at surface m in group g 

𝐽𝑚,𝑔
(𝑖𝑛)

= ∫ ∫ 𝜓𝑔
𝑖𝑛(𝒓𝒔, 𝜴)(𝜴.𝑵

(𝒊𝒏))
𝑆𝑚

𝒅𝟐𝒓𝒔𝒅𝜴
𝜴.𝑵(𝒊𝒏)>0

 2.35 

𝐽𝑚,𝑔
(𝑜𝑢𝑡)

 is the out current at surface m in group g 

𝐽𝑚,𝑔
(𝑖𝑛)

= ∫ ∫ 𝜓𝑔
𝑜𝑢𝑡(𝒓𝒔, 𝜴)(𝜴.𝑵

(𝒐𝒖𝒕)
𝑆𝑚

𝒅𝟐𝒓𝒔𝒅𝜴
𝜴.𝑵(𝐨𝐮𝐭)>0

 2.36 

𝑃𝑗𝑖,𝑔 is the region-to-region collision probabilities in group g 

𝑃𝑚𝑖,𝑔  is the surface-to-region collision probabilities in group g 

𝑃𝑗𝑚,𝑔 is the region-to-surface collision probabilities in group g 

𝑃𝑚′𝑚,𝑔 is the surface-to-surface (escape) collision probabilities in group g 

𝑆𝑚 is the area of surface m 

𝑆𝑚′ is the area of surface 𝑚′ 

Σ𝑖
𝑔

 is the transport cross-section in region i in group g 

To close the system of equations, another equation is written giving the out currents from the 

macro region  

𝑆𝑚𝐽𝑚,𝑔
(𝑜𝑢𝑡)

=∑𝑄𝑗,𝑔
𝑗

𝑃𝑗𝑚,𝑔 +∑𝑆𝑚′𝐽𝑚′,𝑔
(𝑖𝑛)

𝑃𝑚′𝑚,𝑔
𝑚′

 2.37 

Eqs. (2.34) and (2.37) are the closed system (since 𝐽𝑔
(𝑜𝑢𝑡)

 and 𝐽𝑔
(𝑖𝑛)

 are essentially the same set 

of variables for adjacent macro regions) of neutron balance equations in terms of collision 

probabilities and interface currents. To solve these equations, we require prior knowledge of 
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the incoming angular flux (current) at both sides of the interface of the cells for the computation 

of the surface to region and surface-to-surface collision probabilities. A fairly widely used 

approximation is to assume the angular distribution is constant in the solid angle 2𝜋. This is 

called the cosine current approximation [62].  

More generally, the incoming angular flux can be expanded at each point 𝒓𝒔 of the 

surface of a macro region in terms of a basis set of functions of the direction variable 𝜴 in a 

range of 𝜴 given by 𝜴.𝑵(𝒊𝒏) > 0, (where 𝑵(𝒊𝒏) is a unit inward normal vector) 

𝜓𝑔
𝑖𝑛(𝒓𝒔, 𝜴) =

1

4𝜋
∑𝑎𝑛(𝑖𝑛)

𝑛

(𝒓𝒔)𝜑𝑔
𝑛(𝑖𝑛)

(𝜴,𝑵(𝒊𝒏)) 2.38 

where, 𝑎𝑛(𝑖𝑛) are the expansion coefficients and 𝜑𝑔
𝑛(𝑖𝑛)

(𝜴, 𝑵(𝒊𝒏)) are the linearly independent 

basis functions satisfying the orthonormality relation as given in Eq. (2.39) 

∫ 𝜑𝑔
𝑚(𝑖𝑛)(𝜴,𝑵)𝜑𝑔

𝑛(𝑖𝑛)
(𝜴,𝑵(𝒊𝒏))

𝜴.𝑵>0

(𝜴.𝑵(𝒊𝒏))𝒅𝜴 = 𝜋𝛿𝑚𝑛 2.39 

The expansion coefficients become additional variables and accordingly the set of Eqs. 

(2.34) and (2.37) get modified. There are as many equations for the outgoing values of 𝑎𝑛(𝑜𝑢𝑡) 

of the form (2.37) as are the number of terms in the expansion and each of these equations as 

well as the equation for the flux (2.34) has extra terms corresponding to the coefficients 𝑎𝑛(𝑖𝑛). 

The equations form a closed system since, as noted earlier, 𝑎𝑛(𝑜𝑢𝑡) and 𝑎𝑛(𝑖𝑛) are essentially 

the same set of variables for adjacent macro regions. The expansion coefficients are commonly 

assumed to have uniform distribution on along each side of the cell[27]. This assumption 

reduces the accuracy in comparison to the 𝑃𝑖𝑗 method.  

Calculation of Collision Probabilities  

 For one-dimensional slab geometry (plate type fuels) no numerical integration is 

necessary and the collision probabilities can be written in terms of the E3 (exponential integral 
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functions[39]. For example, the calculation of various probabilities for slab geometry can be 

done by the following analytical expressions[75]  

𝑃𝑖𝑖 = {1 −

1
2 − 𝐸3

[−𝜏𝑖]

𝜏𝑖
} 

2.40 

𝑃𝑖𝑗 =
1

2𝜏𝑖
{𝐸3[−𝜏𝑖𝑗] − 𝐸3[−(𝜏𝑖𝑗 + 𝜏𝑖)] − 𝐸3 [−(𝜏𝑖𝑗 + 𝜏𝑗)] + 𝐸3 [−(𝜏𝑖𝑗 + 𝜏𝑖+𝜏𝑗)]} 2.41 

𝑃𝑖𝑆 =
1

2𝜏𝑖
{𝐸3[−𝜏𝑖𝑗] − 𝐸3[−(𝜏𝑖𝑗 + 𝜏𝑖)]} 2.42 

𝑃𝑆𝑖 = 2{𝐸3[−𝜏𝑖𝑗] − 𝐸3[−(𝜏𝑖𝑗 + 𝜏𝑖)]} 2.43 

𝑃𝑆1𝑆2 = 2𝐸3[−𝜏𝑆1𝑆2] 2.44 

 

Most reactors have fuel in the form of long rods. Lattice calculations are therefore carried out 

in two-dimensional geometries (in which it is assumed that the reactor composition and flux 

etc. are uniform along a direction parallel to the length of rods fuel rods). For the general two-

dimensional geometry that has uniformity in the z direction (along the fuel rod length), 

integration over the polar angle (or z variable) can be carried out analytically and two-

dimensional integrals have to be solved numerically. The expressions for collision probabilities 

[Eqs. (2.45)- (2.49)] can be obtained by numerical integration over one or two variables with 

the integrands being written in terms of (Ki3) Bickley functions 

𝐾𝑖3(𝑥) = ∫ sin2 𝜃 exp (−𝑥/ sin 𝜃)𝑑𝜃

𝜋/2

0

 

𝑃𝑖𝑖 =
1

2𝜋Σ𝑖𝑉𝑖
∫𝑑𝑦𝑑𝜃 {𝜏𝑖 − 𝐾𝑖3(0) + 𝐾𝑖3(−𝜏𝑖)} 2.45 
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𝑃𝑖𝑗 =
1

2𝜋Σ𝑖𝑉𝑖
∫𝑑𝑦𝑑𝜃 {𝐾𝑖3[−𝜏𝑖𝑗] − 𝐾𝑖3[−(𝜏𝑖𝑗 + 𝜏𝑖)] − 𝐾𝑖3 [−(𝜏𝑖𝑗 + 𝜏𝑗)]

+ 𝐾𝑖3 [−(𝜏𝑖𝑗 + 𝜏𝑖+𝜏𝑗)]} 

2.46 

𝑃𝑖𝑆 =
1

2𝜋Σ𝑖𝑉𝑖
∫𝑑𝑦𝑑𝜃 {𝐾𝑖3[−𝜏𝑖𝑆] − 𝐾𝑖3[−(𝜏𝑖𝑆 + 𝜏𝑖)]} 2.47 

𝑃𝑆𝑖 =
1

𝜋𝑆
∫𝑑𝑦𝑑𝜃 {𝐾𝑖3[−𝜏𝑖𝑆] − 𝐾𝑖3[−(𝜏𝑖𝑆 + 𝜏𝑖)]} 2.48 

𝑃𝑆1𝑆2 =
1

𝜋𝑆1
∫𝑑𝑦𝑑𝜃 𝐾𝑖3[−𝜏𝑆1𝑆2] 

2.49 

 

The lattice calculations are generally performed in one- or two-dimensional lattice cells with 

full heterogeneity of material distribution at a specific elevation of a reactor assembly. Some 

examples of two-dimensional codes based on the collision probability method are CLUP77[76] 

and THERMOGENE[77] while CLUB and LWRBOX are based on a combined collision 

probability and interface current method. 

For the general three-dimensional problem, four types of collision probabilities are 

required to solve the neutron balance Eqs. (2.34) and (2.37)  and they take the following 

form[61]  

𝑃𝑖𝑖 =
1

4𝜋Σ𝑖𝑉𝑖
∫𝑑𝐴𝑑𝛀 {𝜏𝑖 − 1 + exp [−𝜏𝑖]} 2.50 

𝑃𝑖𝑗 =
1

4𝜋Σ𝑖𝑉𝑖
∫𝑑𝐴𝑑𝛀 {exp[−𝜏𝑖𝑗] − exp[−(𝜏𝑖𝑗 + 𝜏𝑖)] − exp [−(𝜏𝑖𝑗 + 𝜏𝑗)]

+ exp [−(𝜏𝑖𝑗 + 𝜏𝑖+𝜏𝑗)]} 

2.51 

𝑃𝑖𝑆 =
1

4𝜋Σ𝑖𝑉𝑖
∫𝑑𝐴𝑑𝛀 {exp[−𝜏𝑖𝑆] − exp[−(𝜏𝑖𝑆 + 𝜏𝑖)]} 2.52 
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𝑃𝑆𝑖 =
1

𝜋𝑆
∫𝑑𝐴𝑑𝛀 {exp[−𝜏𝑖𝑆] − exp[−(𝜏𝑖𝑆 + 𝜏𝑖)]} 2.53 

𝑃𝑆1𝑆2 =
1

𝜋𝑆1
∫𝑑𝐴𝑑𝛀exp[−𝜏𝑆1𝑆2] 

2.54 

where  𝜏𝑖𝑗 , 𝜏𝑖 and 𝜏𝑗 are the optical path lengths between 𝑖 and j, in 𝑖 and in j respectively,  𝜏𝑖𝑆 

is the optical path length between 𝑖 and S and  𝜏𝑆1𝑆2 is the optical path length between the 

surfaces S1 and S2. A set of discrete directions and associated weights are chosen (quadrature 

set) for integration over the angle variables. For each direction corresponding to the angular 

quadrature, the integration over the area is obtained by constructing a rectangular area grid in 

a plane perpendicular to the direction and starting a ray from the centre of each such grid 

element. The area of the grid element (distance in two dimensions) is associated with each ray 

for the integration over area. The rays are traced across the problem geometry. Intercepts of 

each of the rays in the meshes, encountered by them, are obtained, which are used to compute 

the optical path lengths that go into computation of the integrand. The integration is performed 

by multiplying each of the integrands by the area associated with the ray and the angular 

quadrature weight and summing over all rays. The integrals are obtained by choosing an 

angular quadrature set such as the fully symmetric quadrature used in the 𝐷𝑆𝑁 method. For two 

dimensions, there is a single angle and equally spaced or Gaussian quadrature may be used. 

 Properties of Collision Probabilities 

 To satisfy the neutron balance equation, calculated region-to-region, region-to-surface, 

surface-to-region and surface-to-surface collision probabilities must follow the conservation 

theorem given by [Eq. (2.55)-(2.56)] 

∑𝑃𝑖𝑗 +∑𝑃𝑖𝑆𝑚
𝑚

= 1

𝑗

    for all 𝑖 2.55 
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∑𝑃𝑆𝑚𝑗
𝑗

+∑𝑃𝑆𝑚𝑆𝑛 = 1

𝑛

    for all 𝑚 2.56 

In addition, the collision probabilities follow the reciprocity relation due to symmetry in optical 

path i.e. 𝜏(𝑟, 𝑟′) = 𝜏(𝑟′, 𝑟).  

Σ𝑖𝑉𝑖𝑃𝑖𝑗 = Σ𝑗𝑉𝑗𝑃𝑗𝑖  2.57 

4Σ𝑖𝑉𝑖𝑃𝑚𝑖 = 𝑆𝑚𝑃𝑖𝑚 2.58 

𝑆𝑚𝑃𝑛𝑚 = 𝑆𝑛𝑃𝑚𝑛 2.59 

2.5.5 Solution of Collision Probability Equations 

 The solution of multigroup integral transport equation for a lattice cell reduces to 

evaluation of collision probabilities by numerical integrations, which in turn requires neutron 

tracking through the system geometry for calculation of neutron track lengths within each of 

the regions. Next, the problem-specific neutron distribution i.e. multigroup flux and partial 

currents across the surfaces and fluxes in each region are obtained by solving the set of the 

algebraic Eqs. (2.34) and (2.37) using the inner-outer power iteration technique [78]. The above 

procedure yields the flux distribution and eigenvalue. The energy and space dependent flux 

obtained in the lattice calculations is used as a weighting function to collapse the multi-group 

cross-sections into a fewer (2-10) energy groups averaged (homogenized cross sections) over 

the entire lattice cell. 
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2.6 Fuel Burn-up  

The final step of the lattice calculation is to determine the change in fuel composition 

with time. This is calculated by using the burnup equations, which can be derived by 

considering the following phenomena during the fuel depletion in a reactor. 

1. Depletion of Fissile Nuclides 

2. Conversion from Fertile Nuclide to Fissile Nuclide 

3. Production of Fission Products 

4. Decay 

5. Transmutation due to neutron capture  

Based on the formation and the destruction processes of the nuclei as given above, the 

rate of change of concentration of nuclei is given by the following equation  [27].  

𝑑𝑁𝑖

𝑑𝑡
= ∑ 𝛾𝑗𝑖𝑗 𝜎𝑓,𝑗𝑁𝑗𝜙 + 𝜎𝑐,𝑖−1𝑁𝑖−1𝜙 +∑ 𝜆𝑘𝑖𝑁𝑘𝑘 − 𝜎𝑎,𝑖𝑁𝑖𝜙 − 𝑁𝑖𝜆𝑖    2.60 

While the decay constants are inherent properties of the corresponding nuclide, the 

reaction cross-sections are obtained by averaging them over energy and space using the flux 

distribution obtained in the lattice calculation. Eq. (2.60) forms a set of the first order 

differential called decay and transmutation equations or depletion equations. The large and stiff 

system of coupled depletion equations can be solved using numerical solution methods based 

on assumption of time independent flux and spectrum distribution throughout the burn-up step 

and (consequently) constant reaction cross-sections. The burnup time step must be such that 

this assumption holds good. The one-group cross-sections for different reactions are evaluated 

by a steady-state neutron transport calculation at the beginning of each step. In literature, there 

exits several numerical methods to solve the depletion equation e.g. the Euler Method[79], the 
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Runge–Kutta Method, the Matrix Exponential Method[80], [81], the Matrix Decomposition 

Method and Bateman Method[82]. The method used in BOXER3 is based on Gear’s 

method[83]. When the first burnup step is completed, a new set of average cross-sections is 

computed for the changed flux distribution corresponding to the altered material composition 

by solving the steady state transport equation (lattice calculation) and this process is repeated 

for the upcoming burn-up step.  

2.7 Monte Carlo Methods for Neutron Transport  

 Unlike the deterministic methods as discussed in previous Section 2.5, the Monte Carlo 

methods are able to model the exact three-dimensional geometry and use almost no 

approximations to the actual physics of the system. The only uncertainties are those associated 

with statistics and errors in user controlled nuclear data input itself. The Monte Carlo methods 

are numerical ways to solve a deterministic problem by a stochastic approach using random 

numbers. Therefore, In contrast to the deterministic method for neutron transport, the Monte 

Carlo methods do not directly deal with any governing physical equation of a macroscopic 

system rather they infer the results through simulation of all the microscopic interactions in the 

system [84].  The continuously growing computing power has not only allowed applying the 

Monte Carlo method to simple problems but also to actual 3D nuclear systems.  

 In this section, a background detail of different Monte Carlo techniques within the 

scope of this thesis is discussed. It includes the sampling methods, random number generator, 

probability density functions, standard deviations, Russian roulette and splitting techniques.  
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2.7.1 Pseudo Random Numbers and Generators 

 Random numbers or more precisely pseudo random numbers are real numbers between 

zero and one representing samples generated independently from a uniform probability 

distribution function, which is defined below. 

𝑈(𝜉) = {
1,      if 0 ≤ 𝜉 ≤ 1;
0,      otherwise.   

 2.61 

The random numbers based on computer algorithms are reproducible sequences of finite size. 

Therefore, these numbers are not truly random and are referred to as pseudo random numbers. 

Nevertheless, numbers generated by good generators should appear to be statistically 

independent, that is not correlated with one another; the sequence of generated numbers should 

be fast to generate and be indistinguishable from a real random sequence, and should have long 

period of repetition [85]. The most commonly used random number generators are the linear 

congruential generators (LCRNG). The LCRNG employs a large integer, M called the 

modulus, to generate a sequence of integers 𝑋𝑛 by recursion relation  

𝑋𝑛+1 = 𝑚𝑜𝑑(𝑎𝑋𝑛 + 𝑐,𝑀) 2.62 

In this equation 𝑎 is a “magic” multiplier and 𝑐 is an odd number. This sequence of random 

numbers is normalised to generate the sequence 𝜉𝑛 between [0, 1] as follows 

𝜉𝑛 = 𝑋𝑛/𝑀 2.63 

To start the sequence, the quantity X0 is required to be set by the user. The maximum cycle 

length of the LCRNG depends on the computer word length. For example, the largest period 

for a 32-bit machine in single precision is 232 − 1 = 2147483647.  The actual cycle length 

depends upon the choice of the parameters and could be much smaller and hence the parameters 
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need to be chosen carefully.   The choice of a = 27 = 16801 and c = 0  for a 32- bit machine 

is recommended by Park and Miller [85].   

2.7.2 Sampling Methods 

 The challenging task in the Monte Carlo calculations is to generate realizations of 

random variables 𝑋𝑗  that are distributed according to a given probability density function 𝑓(𝑥). 

For a probability distribution function 𝑓(𝑥) defined on the interval 𝑎 ≤ 𝑥 < 𝑏, the Eq. (2.64), 

given below, determines 𝑥 uniquely as a function of  𝜉, which is uniformly distributed on 0 <

𝜉 < 1.  

𝜉 = 𝐹(𝑥) = ∫ 𝑓(𝑥′)𝑑𝑥
𝑥

0
′ 2.64 

It is then easy to show that the random variable 𝑥, takes a value in between 𝑥 and 𝑥 + 𝑑𝑥 with 

probability 𝑓(𝑥)𝑑𝑥[86]. Thus, all that is needed to obtain a random variable that is distributed 

with a probability distribution function 𝑓(𝑥) is to draw a random number 𝜉 from the uniform 

distribution between 0 and 1 and to solve Eq. (2.64) for 𝑥. The basic principles of CDF 

inversion are described using simple examples relevant to the particle transport. The distance 

to the next collision of a particle in a homogeneous medium having total macroscopic cross-

section 𝛴𝑡 is governed by the well-known exponential distribution function. The probability 

that a particle makes its first collision between 𝑥 and 𝑥 + 𝑑𝑥 along the direction of flight is 

written as  

𝑓(𝑥)𝑑𝑥 = 𝛴𝑡𝑒−𝑥𝛴𝑡𝑑𝑥 2.65 

The PDF is given by  

𝑓(𝑥) = 𝛴𝑡𝑒
−𝑥𝛴𝑡 2.66 

The corresponding CDF of 𝑓(𝑥) is given by  
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𝐹(𝑥) = ∫ 𝛴𝑡𝑒
−𝑥′𝛴𝑡𝑑𝑥′

𝑥

0
= (1− 𝑒−𝑥𝛴𝑡) 2.67 

The particle distance to the next collision point can be sampled by equating a random number 

𝜉 to the CDF given in Eq. (2.67) and solving for 𝑥 i.e. 

𝑥 =
−𝑙𝑛 (1 − 𝜉)

𝛴𝑡
=
−𝑙𝑛 (𝜉)

𝛴𝑡
 2.68 

The identity result in Eq. (2.68) is because both (1 − 𝜉) and  𝜉 have uniform distribution over 

[0, 1]. This is how exactly the inversion method of sampling for a given PDF works to compute 

the samples. There exist alternative methods of sampling, such as the rejection technique and 

numerical evaluation, beneficial particularly in the cases where direct inversion of F(x) is 

difficult to obtain by integration or PDF is given in form of numerical data [57].  

 In second example, let us sample the direction of particles emitted isotropically from 

the point of emission. This is best represented in the spherical geometry and the probability 

distribution function is given as  

𝑓(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑑𝛺

4𝜋
 2.69 

𝑓(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑠𝑖𝑛 𝜃 𝑑𝜃𝑑𝜙

4𝜋
=
𝑠𝑖𝑛 𝜃 𝑑𝜃 ∗ 𝑑𝜙

2 ∗ 2𝜋
= 𝑓1(𝜃)𝑑𝜃 ∗ 𝑓2(𝜙)𝑑𝜙 2.70 

Where, 𝜃 is the polar angle and 𝜑 is the azimuthal angle   

Here, the independent variables θ and ϕ can be sampled independently using CDF of respective 

distributions functions  𝑓1(𝜃) and 𝑓2(𝜙) as follows.  

𝑓1(𝜃)𝑑𝜃 =
𝑠𝑖𝑛 𝜃 𝑑𝜃

2
 2.71 

Thus, CDF of 𝑓1(𝜃) to sample 𝜃 is  

𝜉1 = ∫ 𝑓1(𝜃)𝑑𝜃
𝜃

0

= ∫
𝑠𝑖𝑛 𝜃

2

𝜃

0

𝑑𝜃 =
(𝑐𝑜𝑠𝜃 + 1)

2
 2.72 
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𝜃 = cos−1( 2𝜉1 − 1)           or       𝜇 = 2𝜉1 − 1 2.73 

Similarly, the CDF of 𝑓2(ϕ) to sample ϕ is  

𝜙 = 2𝜋𝜉2 2.74 

The direction cosines of particles can easily be obtained using simple relations as follows-

where, [ 𝜇 = cos(𝜃)] 

𝑢 =
𝑥

𝑟
=
𝑟𝑠𝑖𝑛𝜃 cos𝜙

𝑟
= √1 − 𝜇2 cos𝜙 2.75 

𝑣 =
𝑦

𝑟
=
𝑟𝑠𝑖𝑛𝜃 sin𝜙

𝑟
= √1 − 𝜇2 sin 𝜙 2.76 

𝑤 =
𝑧

𝑟
=
𝑟𝑐𝑜𝑠𝜃

𝑟
= √1 − 𝜇2 2.77 

2.7.3 Neutron Tracking in Finite Geometry 

 In Monte Carlo calculations, neutrons are followed from points of birth to death either 

by way of absorption or escape out of system. This is termed as a neutron history. 

All possible physical processes need to be precisely modeled throughout the neutron’s life.  In 

fact, a neutron life begins with its emission from the source. Thus, Monte Carlo simulation 

starts with random sampling of position co-ordinates (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜), direction cosines (𝑢, 𝑣, 𝑤) and 

energy (E) of particles emitted from the source. In case of fission source, we prepare and store 

a cumulative distribution of the fission spectrum. For 𝑐𝑔−1 < 𝜉 < 𝑐𝑔, the sampled energy group 

is g. The next step is to calculate the distance to the next collision in the direction of its flight 

using Eq. (2.). This is compared with the distance to the surface of the region to determine 

whether the neutron collides in the region or crosses the surface. Two possibilities arise. In the 

first case, if the collision site is in the same region as the starting point, the particle position is 
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moved to the point of collision. Suppose, if 𝜆 is the distance to the point of collision, then co-

ordinates of the collision point are obtained using Eqs. (2.78)-(2.80) given below 

𝑥 = 𝑥𝑜 + 𝜆u 2.78 

𝑦 = 𝑦𝑜 + 𝜆v 2.79 

𝑧 = 𝑧𝑜 + 𝜆w 2.80 

The second case is that the particle crosses the boundary of starting region. The particle position 

is moved to the crossing point at the boundary surface. The macroscopic cross-section of the 

new region is selected to sample the distance to the next collision and the procedure is repeated 

until the particle collides somewhere within the bounding surface of the system or leaks out 

from the system.  If the neutron leaks from the system, neutron history is simply terminated.  

 At the point of collision, the physics of interaction between the particle and constituent 

nuclide of the material are processed to identify the nuclear reaction type. The total cross-

section is simply a sum of fission, capture and scattering cross-sections.  

𝛴𝑡 = 𝛴𝑐 + 𝛴𝑓 + 𝛴𝑠 2.81 

The probability of reaction types 𝑖 is the ratio of cross-section of reaction 𝑖 to total cross-section 

i.e. 𝑃𝑖 =
𝛴𝑖

𝛴𝑡
.  Discrete sampling procedure is adopted to know the reaction type in a collision by 

comparing a random number 𝜉 with 𝑃𝑖. For example, if  
𝛴𝑐

𝛴𝑡
> 𝜉, then collision results in capture 

else if  
Σf+𝛴𝑐

Σt
> 𝜉 >

𝛴𝑐

𝛴𝑡
  then it results in fission else it results in scattering reaction. Neutron 

capture or fission simply leads to the termination of the neutron history in case of analog Monte 

Carlo approach. The direction and energy after scattering reaction are sampled using the 

appropriate scattering law. In case of fission, the co-ordinates of the fission site and number of 
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neutrons produced in fission are recorded and are used as starting points for the source neutrons 

to be tracked in the next generation. 

 In non-analog Monte Carlo approach, a statistical weight is assigned to each neutron. 

If the assigned statistical weight of a neutron is greater than unity, then this neutron represents 

the contribution of several particles.  At a collision site for the scattering reaction, the weight 

of a particle is reduced to 𝑊′ = 𝑊(1 −
𝛴𝑎

𝛴𝑡
) and treated as having been scattered with this 

reduced weight. Here 𝑊 and 𝑊′ represents the neutron weights before and after the collision. If 

the weight 𝑊′ of the particle is below a preset value 𝑊𝑙, the particle is killed (Russian Roulette) 

with probability 1 −𝑊′/𝑊𝑢 or continued with a higher weight 𝑊𝑢 with probability 𝑊′/𝑊𝑢, 

where 𝑊𝑢 is a preset higher weight. Typically, 𝑊𝑢 = 0.5, and 𝑊𝑙 = 0.25. On scattering, the 

particle may go to another group. The probability to which group it goes depends upon its 

scattering cross-section into that group. 𝑃𝑔→𝑔′ = Σ𝑔→𝑔′/∑ 𝛴𝑔′g′ . Like in the case of the fission 

spectrum, the group to which the particle goes is sample by creating a cumulative distribution. 

The direction of the scattered particle is sampled as per the scattering law. The history is 

terminated if the particle leaves the system volume (in case of lattice cell calculations this is 

not possible) or by Russian roulette. 

2.7.4 Statistical Estimators 

The parameter of interest has to be recorded during the neuron history to calculate the 

results for a physical event. The process of scoring for a parameter of interest is referred to as 

tallying or scoring. The tallies can be combined in different ways to form statistical estimates 

of the physical quantities, generally called an estimator. For example, the collision, the 

absorption and the track length estimators are commonly used to estimate the reactor 

multiplication factor ( 𝑘𝑒𝑓𝑓).  The power iteration procedure is adopted in all Monte Carlo 
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codes for criticality calculations. To apply power iteration method, the successive neutron 

generations are simulated, where each generation (also called cycle) contains a certain number 

of neutrons (𝑁) and this is called a batch.  To obtain the collision estimator 𝑘𝑒𝑓𝑓
(𝑐)

, during the 

course of a cycle, at each collision in a fuel, we tally this quantity using Eq. (2.82). This results 

in the  𝑘𝑒𝑓𝑓 of a single cycle.  

𝑘𝑒𝑓𝑓
(𝑐) = 𝑘𝑒𝑓𝑓

(𝑐) +
𝑊𝜈Σ𝑓

𝑁Σ𝑡
 2.82 

The number of active neutron generations (i.e. those for which tallying is carried out) becomes 

equal to the number of batches 𝑀. Thus, the final  𝑘𝑒𝑓𝑓 is calculated by taking mean of  𝑘𝑒𝑓𝑓 

obtained in each cycle. The absorption estimate can be obtained by tallying as follows 

𝑘𝑒𝑓𝑓
(𝑎) = 𝑘𝑒𝑓𝑓

(𝑎) +
(𝑊 −𝑊′)𝜈𝛴𝑓𝑔

𝑁𝛴𝑎𝑔
 2.83 

To obtain the track estimator 𝑘𝑒𝑓𝑓
(𝑡)

, during the course of a cycle, for each track length (𝐿) 

between consecutive collisions in the fuel, we tally the quantity 

𝑘𝑒𝑓𝑓
(𝑇𝐿) = 𝑘𝑒𝑓𝑓

(𝑇𝐿) +
𝑊𝐿𝜈Σ𝑓𝑔

𝑁
 2.84 

 

The quantities of interest, like 𝑘𝑒𝑓𝑓, neutron flux, reaction rates, etc., must be tallied with a 

converged fission source. Fission source can be converged by performing Monte Carlo 

simulations over few inactive cycles before starting the active cycles.  

2.7.5 Statistical Error 

 The results in MC are obtained by averaging the scored values of physical quantity of 

interest for many particle histories. Therefore, it becomes important to study the variation of 

statistical error, associated with estimated expectation value of random variable corresponding 

to a physical event, as function of neutron histories. Suppose 𝑋 is a random variable and the 

true mean value 𝜇 = 𝐸[𝑋] is approximated with mean (using Eq. (2.85)) of 𝑁 
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samples 𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑁 obtained independently and randomly from identical probability 

distribution function during the course neutron history.  

 

�̃� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 
2.85 

Where 𝑥𝑖 is the value of 𝑋 selected from f(x) representing the contribution of the 𝑖th history 

and 𝑁 is the number of histories used. Thus, in the Monte Carlo calculation, the contribution 

𝑥𝑖 to the physical quantity, e.g. number of collisions or track length for flux, is scored due to 

each history in order to calculate the estimated or sample mean �̂� at the end of each calculation 

[57]. The law of large numbers suggests that as number of histories 𝑁 tends to infinity, then 

the sample mean approaches the true mean in probabilistic sense. To measure the spread of 𝑥 

about its mean 𝜇, expectation value of the second moment of 𝑥 is introduced and it is called 

variance 𝜎 of 𝑥.  The population variance associated with the distribution of the 𝑥𝑖 is 

approximated by the sample estimate as given by Eq. (2.86)[87]. 

𝜎2 =
1

(𝑁 − 1)
∑(𝑥𝑖 −

𝑁

𝑖=1

�̃�)2 =
𝑁

(𝑁 − 1)
(
1

𝑁
∑𝑥𝑖

2 −

𝑁

𝑖=1

�̃�2) 
2.86 

The variance of the sample mean is then estimated by Eq. (2.87) 

𝜎�̃�
2 =

𝜎2

𝑁
 2.87 

The square root of the variance 𝜎�̃� is called the standard deviation of the population of scores. 

The mean value of some random variable is referred to as the result of the simulation and the 

standard deviation is a measure of statistical accuracy, or precision.  
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2.8 Review of Existing Methods Used in HTRs Calculations 

 The unusual design of fuel elements poses additional challenges with regard to studying 

neutron transport in HTRs compared to that in traditional reactors. The primary reason for this 

is the nature of the fuel in HTRs, which consists of a large number of tiny fuel particles 

dispersed randomly in a graphite matrix. It might appear that such a dispersion of fine particles 

may be treated as homogeneous, but that is not the case for all energies. For most of the neutron 

energies where cross-section is not very high, the neutron mean free path is much longer than 

the particle size. In this case, the random TRISO dispersion in graphite may be treated as a 

homogeneous medium. However, at the resonances of the major nuclides, namely, 238U or 

232Th, the neutron mean free path is comparable to the size of the fuel kernel. This necessitates 

treatment of the dispersion as a heterogeneous medium around the resonance energies.  

 In addition to the treatment of resonances for obtaining group cross-sections in the 

resonance groups, the double-heterogeneity problem can occur in the subsequent multigroup 

calculations, particularly in the thermal region under certain situations. When the fuel is a few 

percent enriched uranium or Th mixed with some low enriched uranium or 233U, the thermal 

macroscopic cross-section of the fuel is not large and hence the mean free path is long 

compared to the fuel kernel size and the dispersion may be considered to be a homogeneous 

medium. However, in reactors designed to burn Pu, the fuel contains only PuO2. Such a fuel 

has a large macroscopic cross-section in the thermal groups, particularly around the 1.0 and 0.3 

eV resonances of Pu, and hence the mean free path in thermal groups around the low-lying 

resonances is shorter than or comparable to the size of the fuel kernel. For such fuels, 

homogenization of the fuel zone is not permissible. It is necessary to solve the multigroup 
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transport equation for lattice calculations in a doubly heterogeneous random medium in such 

situations.  

 There have been many attempts made to resolve these two issues in the doubly 

heterogeneous (micro and macro levels in this case) HTR medium, namely, that of calculating 

the Dancoff factor for obtaining resonance group cross-sections and for subsequent solution of 

the multigroup transport equation. In the following paragraphs, we briefly review these efforts. 

2.8.1 Calculation of Dancoff Factors in HTR 

 One of the earliest attempts at obtaining the analytical expression for the Dancoff factor 

in HTRs is due to Lane et al. [88],  Bende et al.[89] and Kloosterman and Ougouag [90]. They 

used simple arguments to calculate the Dancoff factor based on analytical expressions for the 

first flight escape probability from spheres. Another approach to the problem is through an 

estimation of the chord length distribution based on analytical or numerical considerations[91]. 

A third approach involves a detailed Monte Carlo simulation of a random dispersion of fuel 

particles in the graphite matrix followed by tracking neutron trajectories beginning at the 

surface of a fuel kernel up to the point of its entry in another kernel[92]. The Monte Carlo 

method based computer codes Dancoff-MC[93], PEBDAN and INTRAPEB[94] can simulate 

the random distribution of TRISO particles in the fuel zone of a pebble to calculate average 

Dancoff factors.  The Monte Carlo approaches are important as they help in validating the 

simpler analytical models based on escape probabilities or chord length distributions.  

2.8.2 Deterministic Approach to HTRs 

 With regard to the solution of the multigroup transport equation for lattice calculations 

in the doubly heterogeneous medium, one of the earliest approaches is based upon calculating 

equivalent cross-sections for the stochastic medium formed by distribution of the fuel lumps in 
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the graphite matrix. This method computes the spatial self-shielding factor using conservation 

of collision probabilities[95]–[97]. Hebert developed another type of method by obtaining the 

expressions of the collision probabilities at lattice cell level using the collision probabilities 

defined at micro- and macro-level geometries[98], [99]. These collision probabilities are based 

on the assumption that the neutron angular flux entering or escaping the fuel lump is uniform 

and isotropic. Sanchez and Pomraning developed the method of renewal theory for solution of 

the transport equation in a random medium [100], [101]. These two models are successfully 

implemented in the lattice codes DRAGON[102], APOLLO-1 and APOLLO-2[98]. The code 

SCALE [103] follows a different method for double-heterogeneity treatment and resembles the 

pin cell and assembly-level calculations used in earlier days for LWRs [41]. The calculation is 

first performed at the micro (TRISO particle surrounded by graphite layer) level followed by 

another calculation at the macro level (pebble cell). In the micro-level calculation, resonance 

shielding calculation is performed based upon an externally calculated Dancoff factor, and it is 

followed by a solution of the transport equation for obtaining flux disadvantage factors using 

a white boundary condition. These fluxes are then used to compute the flux-weighted cross-

sections, i.e., shielded cross-sections. These weighted cross-sections are passed on to the 

CENTRM transport solution for the macro-level geometry formed by fuel zone (having 

weighted cross- sections), graphite layer, and coolant. Similar to the SCALE code, WIMS9 

also generates homogenized total cross-sections that have the same escape probability as the 

heterogeneous particle by solving the collision probabilities for the micro region (TRISO 

particle surrounded by graphite layer) [104], [105]. Subsequently, collision probabilities are 

derived for the various macro regions of the pebble using the homogenized cross-sections in 

the fuel zone. Then the micro and macro-region collision probabilities are combined to form a 
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full set of collision probabilities for the complete pebble to obtain lattice cell fluxes and reaction 

rates.  

2.8.3 Monte Carlo Approach to HTRs 

 Monte Carlo based computer codes, with general geometry modelling capability, can 

handle very complex geometries that may arise in a reactor. MCNP[106], TRIPOLI[107] and 

MONK[108] are examples of such computer codes developed over many decades to perform 

the neutronics simulations of various reactor types including HTRs. These codes use the 

repeated lattice features to approximate the stochastic media formed by random distribution of 

pebble bed in core and TRISO in pebble. Use of repeated lattice results in clipping of kernels 

at fuel zone and graphite layer interface and this is a source of error as fuel mass and number 

of TRISO may not be preserved in this model [109]. However, these codes are continuously 

being improved to include geometries that are more complex. For example, latter versions of 

MCNP allow jiggling of the TRISO particles within the cubical cell of the lattice structure to 

replicate the randomness.  Another approach is to employ explicit packing of randomly 

distributed TRISO particles. Examples of recently developed codes having such a feature are 

SERPENT[110], RMC[111] and OpenMC[112]. However, treatment of heterogeneous system 

with randomly distributed TRISO particles using the direct Monte Carlo method poses 

difficulties both in modeling billions of TRISO particles and in the resulting computing cost.  

In addition, this method uses a single realization of a random distribution of spheres in a region. 

This approach is computationally very costly exercise due to calculation of distance to next 

region interface in stochastic mixture containing a large number of surfaces of TRISO particles. 

The computational efficiency can be improved by adopting Monte Carlo method based on 

stochastic sampling of fuel particles locations using a spatial probability distribution. 
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Analytical distribution or packing simulation code generated distribution can be used to sample 

the random positions[113], [114].  Another class of Monte Carlo approaches rely on defining 

equivalent homogenized medium obtained during a random walk process for the heterogeneous 

random media[95], [115].  

2.9 Thesis Objective 

 The goal of the research described in the thesis is the development of a new 

methodology as well as computational tools for HTR analysis. This includes the development 

of new theoretical models, algorithms and computer codes based on the models, and analysis 

of benchmark problems.  

 The first of these is the development of a new MC algorithm to realize the random 

distribution of fuel particles in the HTR lattice cell and pebbles in the HTR core and a fast 

scheme to track neutrons to compute the Dancoff factors needed in the resonance self-shielding 

calculations. This part of the work is discussed in Chapter 3.  

Application of the Dancoff factors, generated by the method developed in Chapter 3, to 

the HTR lattice cell calculations is discussed in Chapter 4. The results suggest that a more 

detailed treatment of the double heterogeneity in the solution of the transport equation during 

the lattice calculations, particularly in the thermal region of high Pu content fuels, is also 

necessary. A simple heuristic procedure for this is developed in Chapter 4.   

 This is followed by the development of a rigorous theoretical method for solving the 

neutron transport equation in the random fuel particle dispersion by an exact evaluation of the 

collision probabilities (CPs) in various regions of the HTR lattice cell. The method is 

incorporated in the CP code BOXER3. This is discussed in Chapter 5. 
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 The method developed for exact evaluation of CPs is applied to the development of an 

algorithm for providing a solution by the MC method as well. To prove the validity of the 

proposed method, a multi-region, multigroup MC code (PebMC) is developed to simulate the 

spherical lattice cell of a pebble bed HTR. This is discussed in Chapter 6.  

In Chapter 7, we present our conclusions and scope for further work.  
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Chapter 3 STOCHASTIC LOADING IN THE HTR FUEL 

ELEMENTS: Dancoff factor calculation in the fuel 

pebble and compact 

 

In this chapter, a new method for generating a random distribution of TRISO particles 

in the fuel zone of a pebble or fuel compact is discussed. Dancoff factor calculations, in the 

random dispersion so generated, are carried out using the Monte Carlo method. The results of 

these calculations are compared with reference values.  

 

3.1 Introduction 

For the self-shielded resonance group cross-section calculations, the WIMS formalism 

uses the equivalence principle approach as discussed in Chapter 2. The equivalence principle 

is deducible whenever the escape probability can be approximated in the form of a rational 

expression. For isolated lumps, Wigner's rational approximation or one of the improved 

approximations for Pesc proposed by Bell et al.[116], Kelber et.al [117], or Levine [118] may 

be used. For non-isolated fuel lumps such as fuel rod clusters, closely spaced fuel rods arranged 

in a lattice, or TRISO particle dispersions used in high temperature reactors (HTRs), the 

rational approximation needs to be corrected by applying the Dancoff factor[119]. In the 

context of HTRs, the Dancoff factor is defined as the probability that a neutron escaping a fuel 

kernel will enter another fuel kernel, without any collision in the moderator. An accurate 

estimation of the Dancoff factor is an important part of any lattice calculation. 
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The spacing between different units of the fuel (i.e. pebbles and compacts) is also such 

that neutrons from one unit easily travel to another unit. Hence, the Dancoff factor in HTRs is 

usually split into two factors. One factor, called the intra-pebble or intra-compact Dancoff 

factor, accounts for the probability that a neutron leaving a fuel kernel enters another kernel in 

same fuel element (pebble or compact), without having any collision in the moderator. The 

second factor, called the inter-pebble or inter-compact Dancoff factor, accounts for the 

probability that a neutron emerging from a fuel kernel enters a fuel kernel located in another 

fuel element (pebble or compact), without any collision in the moderator [89], [90], [120], 

[121]. These two factors together account for the double heterogeneity and constitute a 

significant correction to the escape probability 𝑃𝑒𝑠𝑐 from a fuel kernel [122].  

There have been many attempts made to resolve the issue of the doubly heterogeneous 

(micro and macro levels in this case) HTR medium viz. that of calculating the Dancoff factor 

for obtaining resonance group cross-sections and for subsequent solution of the multigroup 

transport equation. In the following paragraphs we briefly review these efforts.  

 One of the earliest attempt at obtaining the analytical expressions for the Dancoff factor 

in HTRs is due to due to Lane et al. [88], Bende et al [89] and Kloosterman and Ougouag[90].  

They used simple arguments to calculate the Dancoff factor based on analytical expressions 

for the first flight escape probability from spheres. Another approach to the problem is through 

an estimation of the chord length distribution, based on analytical or numerical considerations 

[91], [120]. A third approach involves a detailed Monte Carlo simulation of a random 

dispersion of fuel particles in the graphite matrix [92] followed by tracking neutron trajectories 

beginning at the surface of a fuel kernel up to the point of entry in another kernel. The Monte 

Carlo approaches are important as they help in validating the simpler analytical models based 

on escape probabilities or chord length distributions. However, the Monte Carlo method 
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requires realization of random distribution of the fuel kernels in the fuel zone followed by 

neutron tracking to compute the Dancoff factors. 

A number of different algorithms have been used to generate randomly distributed 

spheres. These may be classified as geometry based models [123] (also called synthetic 

techniques) or dynamics-based models [124]–[126]. In the geometry-based models, spheres 

are randomly distributed in a region with the condition that there is no overlap between two 

spheres. The Random Sequential Addition (RSA) [127], modified Fast RSA method [128], 

Monte Carlo rejection method [94] and method of removing overlaps [129] are examples of 

geometry based methods. Since the RSA method is based on a sequential addition and rejection 

technique, the maximum volume packing fraction that can be produced with this algorithm is 

only 38% [130]. On the other hand, the dynamics-based models move the spheres around in 

the medium under realistic contact forces. This motion causes relocation of the spheres and 

removes any overlap between two spheres that may have been initially present. The recently 

developed quasi-dynamics method (QDM) [124], [126] is an example of dynamics-based 

models and these methods are mostly not used to pack the TRISO in pebbles.   

 In this chapter, a new method, called the cyclic randomization method (CLR), for 

generating a random distribution of TRISO particles in the fuel zone of a pebble or fuel compact 

is discussed.   Dancoff factor calculations in the random dispersion so generated are carried out 

using the Monte Carlo method. The results of these calculations are compared with reference 

values. The chapter is organized as follows: In Section 3.2, we discuss methods to generate the 

randomly distributed particles in different geometries. It includes development of the fast RSA 

and the CLR methods.  Section 3.3 presents a Monte Carlo method to calculate Dancoff factors 

in the random media realised by the fast RSA or CLR methods. In Section 3.4, the Dancoff 

factors, so computed, are compared with reference results at several packing fraction of TRISO 
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in finite and infinite geometries. Section 3.5 summarizes the chapter and presents the main 

conclusions.  

3.2 Stochastic Loading Schemes 

In this section, we briefly describe the CLR algorithm, developed in the present work, 

for simulating a random distribution of TRISO fuel particles in graphite. The CLR method is 

found to be computationally efficient for higher volume packing fractions of TRISO particles 

than the fast RSA method. The latter is based on a sequential addition and rejection process 

and becomes very slow above 35% packing which therefore also is the practical limit on the 

maximum packing fraction that can be achieved using this algorithm.  

3.2.1 The RSA and modified (fast) RSA methods and its limitations 

  The original Random Sequential Addition (RSA) method [127] consists of adding 

spheres randomly in the region of interest and checking whether the added sphere overlaps any 

of the other spheres. This has two problems. The first is that as the number of spheres added 

increases, the number of checks that are required to be performed also increases and hence the 

program becomes rather slow. The second is that since spheres are added at random, a large 

amount of vacant space is left in between that cannot accommodate new spheres and hence 

beyond a packing fraction of about 38%, further addition of spheres is not possible.  

 The first problem was resolved with the development of a faster algorithm by 

Brown[128].  This algorithm checks for overlap with neighboring spheres, since only such 

spheres are likely to overlap. This is done by introducing a rectangular mesh and recording the 

three mesh indices in which the coordinates of the centre of the added sphere fall. The 

neighboring meshes are easily located and the only checks that are required are: (a) whether 
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any sphere is present in the neighboring meshes and (b) whether it overlaps the newly 

introduced sphere. This cuts the computing time from being ℴ(𝑁2) to ℴ(𝑁). 

 The second problem is however inherent to the method and constitutes a major 

limitation. This is easily seen in one dimension. As the spheres are added, some of them may 

be spaced from their neighbors by less than a sphere diameter. This precludes the possibility 

of another sphere coming in between. In one dimension, the maximum random packing fraction 

is about 74%. The situation is worse in two and three dimensions as the amount of space, in 

the form of gaps that cannot be occupied by newly added spheres, becomes larger and the 

packing fraction falls to 54% and 38% respectively. This problem is avoided in the CLR 

method described in the following Section 3.2.2. 

3.2.2 The Cyclic Lattice Randomization Method 

To overcome the limitations of the RSA and fast RSA method, a new geometrical 

packing method based on Monte Carlo is developed which is named as cyclic lattice 

randomization method. In this method, a number (𝑁) of spherical TRISO particles are first 

arranged in a lattice structure, (like Body Centered Cubic and Face Centered Cubic etc.), 

covering the region of interest.  The lattice arrangement is then randomized by the following 

procedure.  

All the particles placed in the region of interest are labeled in some serial order by 

means of a positive integer 𝑖 (𝑖 = 1, 𝑁). The randomization operation is carried out on each of 

the spheres according to this serial ordering i.e. the spheres are selected one by one in this order 

and the randomization operation carried out on each one of them. Each randomization trial 

involves the following two steps.  
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(𝑖) In the first step, the coordinates (x, y, z) of the centre of the selected sphere are 

updated using Eq. (3.1) 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝑑(2𝜁1 − 1) 

𝑦𝑛𝑒𝑤 = 𝑦 + 𝑑(2𝜁2 − 1)                                                                                                     

𝑧𝑛𝑒𝑤 = 𝑧 + 𝑑(2𝜁3 − 1) 

3.1 

Where, 

𝑑 = 𝐷𝑡 [
1

√2
(√

16𝜋

3𝑝𝑓

3

) − 2] 3.2 

 

is the nearest neighbor separation between spheres in the lattice and is chosen as the maximum 

distance by which a sphere may be moved in one operation, and 𝐷𝑡 is the diameter of a TRISO 

particle. 𝑝𝑓 is the (targeted) volumetric packing fraction, and 𝜁1, 𝜁2, 𝜁3 are three independent 

random numbers.  

 (𝑖𝑖) In the second step, a check is performed on the sphere so moved, with its centre 

now located at (xnew, ynew, znew), for any overlap with its neighboring spheres. If there is an 

overlap, the new coordinates are rejected and the particle continues to remain at the old position 

(x, y, z). Else (if it does not overlap), the new co-ordinates of the centre (xnew, ynew, znew) are 

accepted and the old co-ordinates of the centre (x, y, z) are replaced by the new ones.  

 We refer to the above two steps as a trial. Once these two steps have been repeated for 

all the spheres in the region of interest, we say that one cycle of randomization is completed. 

Several such cycles may have to be carried out to generate the required stochastic distribution 

of TRISO particles in the region of interest. The Face Centered Cubic (FCC) lattice structure 

of TRISO particles is shown in Figure 3-1(a) and corresponding randomized distribution 
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obtained by using the CLR method is shown in Figure 3-1(b). It may be mentioned that the 

method is very similar to the Metropolis algorithm [131] used in equilibrium statistical 

mechanics for generating the Gibbs ensemble. Since overlap is not permitted the method is 

equivalent to treating a hard sphere gas. 

 

 

 

 

 

  

 

 

 

Figure 3-1 TRISO particles arranged in a FCC lattice (a) and (b) after randomisation of the 

lattice structure using the CLR method. 

The maximum packing density that can be achieved using the CLR method is only limited by 

the theoretical packing density of the initial lattice structure considered (for subsequent 

randomization). Therefore, if the FCC lattice structure is considered for randomisation, the 

CLR method would be able to generate the stochastic medium with packing density up to 74% 

of the space filled with spheres.   

                

(a)                                                                                          (b) 
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3.3 Dancoff Factor Calculation 

The Dancoff factor C that represents the probability of neutrons leaving the surface of 

a fuel particle reaching successfully another fuel kernel without colliding in the moderator 

contributes to intra-pebble or compact Dancoff factor and it is calculated by using Eq. (3.3).   

𝐶 =
∑ 𝑒𝑥𝑝 (−𝛴𝑀𝑑)𝑁𝐶

𝑁
 3.3 

Where,   

𝑑 − Track length of the neutron from emission to entering another kernel 

Σ𝑀 − Total macroscopic cross-section of the moderator  

𝑁 −    Total number of neutrons tracked 

𝑁𝐶 −  Total number of neutrons that successfully reach another fuel kernel without colliding 

with the moderator nuclei  

If the neutron path does not intersect any other kernel within the same finite stochastic region, 

but intersects with a kernel of a neighboring finite stochastic region, then it contributes to the 

inter-pebble or inter compact Dancoff factor. 

3.3.1 Monte Carlo Tracking  

To compute the distance between the point of origin and the first point of intersection 

of the neutron path with another fuel kernel (𝑑), the neutron is tracked using the Monte Carlo 

sampling methods. The point of emission (𝑥, 𝑦, 𝑧) is uniformly sampled on the surface of 

randomly selected fuel kernel of radius r and its co-ordinates are obtained using Eq. (3.4) 

𝑥 = 𝑥0 + 𝑟sin𝜃cos𝜑 

𝑦 = 𝑦0 + 𝑟sin𝜃sin𝜑 

3.4 
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𝑧 = 𝑧0 + 𝑟cos𝜃 

where, (𝑥0, 𝑦0, 𝑧0) is the centre of the selected sphere and 𝜑 = 2𝜋𝜁1 and 𝜃 = cos−1(2𝜁2 − 1) 

are the azimuthal and polar angles respectively, and  𝜁1 and 𝜁2are random numbers uniformly 

distributed over interval [0, 1].  

After the point of emission of the neutron on the surface of a fuel kernel has been 

selected, the direction is determined by sampling for outgoing directions from a cosine current 

distribution[91], [94], [120]. C is determined by obtaining the average of the quantity exp (−𝜏) 

where 𝜏 is the optical path length of the track in the moderator. A sufficiently large number of 

neutron histories are considered to obtain an accurate estimate of the Dancoff factor (with small 

standard deviation). The tracking is rather time consuming as it requires checking for the 

intersection of each neutron trajectory with a very large number of spherical surfaces 

corresponding to each of the fuel kernels. A nearest neighbor search procedure has been 

devised to determine the next possible fuel particle likely to be intersected that reduces the 

computing effort by a large factor [92]. This is achieved by introducing a rectangular mesh of 

cells and advancing the neutron position from one cell to the neighboring cell and checking for 

intersection with spheres lying within a close neighborhood of the cell.  

For calculating the infinite medium Dancoff factor, one must consider a finite region 

such as a cube and impose boundary conditions like periodic or reflective. For a finite medium, 

such as a pebble or compact, the tracking is discontinued once the track leaves the region of 

interest. For a distribution of pebbles or compacts as in a reactor, in case the neutron path does 

not intersect any other kernel within the same pebble or compact, but intersects with a kernel 

of a neighboring pebble or compact, it contributes to the inter-pebble (or inter-compact) 

Dancoff factor.  
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3.4 Comparison with Reference Results 

In this section, results of Dancoff factor calculations for infinite and finite media made 

up of a stochastic distribution of TRISO particles, as realized by the CLR and RSA methods, 

are discussed. We also present comparisons of our results with the reference Monte Carlo 

results [91], [120].  For the benchmarking purpose, the TRISO particle geometry used here is 

identical to that of NGNP Point Design[131] and the macroscopic cross-section of graphite is 

taken to be the same as the one used by Liang et. al[92], (obtained from the BNL website, 

http://www.nndc.bnl.gov/exfor/endf.htm). The fuel kernel radius is 0.0175cm and the coating 

thickness is 0.039cm. The total macroscopic cross-section of graphite is 0.4137cm-1. This 

choice of values of the parameters is decided by the fact that the reference Monte Carlo results, 

against which our results are compared, are available for this set of parameters.  

3.4.1 Infinite Medium Dancoff Factor 

To mimic an infinite medium, a finite cubical region is used together with periodic 

boundary conditions. A comparison of our results with the reference Monte Carlo values can 

be seen in Figure 3-2 . The average relative deviations of the CLR and RSA from the reference 

values are 0.17% and 0.34% respectively. 

http://www.nndc.bnl.gov/exfor/endf.htm
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Figure 3-2 Variation of the infinite-medium Dancoff Factor with packing fraction: 

comparison between various methods 

To compute the intra-compact Dancoff factor, for an infinite cylindrical pin of radius 

𝑅𝑐 0.6225cm we have taken the height to diameter ratio H/D equal to 200. The results of 

Dancoff factors obtained by the CLR and RSA methods for an infinite cylinder are compared 

with the reference Monte Carlo results in Figure 3-2. The average relative deviations of the 

CLR and RSA from the reference values for infinite cylinder are 0.38%, 0.51% respectively. 
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Figure 3-3 Variation of the intra-infinite compact Dancoff Factor with packing fraction: 

comparison between various methods 

3.4.2 Finite Medium Dancoff Factor 

In the finite medium Dancoff factor calculations, the actual geometry has been 

considered. For example, in the case of a pebble bed reactor, the intra-pebble Dancoff factors 

are tallied in the actual geometry of the fuel pebble consisting of two concentric spheres. The 

inner sphere of radius 2.5 cm, called fuel zone which embodies a stochastic distribution of 

TRISO fuel particles. The outer spherical shell of radius 3.0 cm forms the TRISO free 

moderator layer. The modelled geometry of the pebble with fuel kernel distribution is shown 

in Figure 3-4a.  In case of prismatic type HTRs, the intra-compact Dancoff factors are estimated 

for a cylindrical pin of radius 𝑅𝑐 0.6225cm and its height to diameter (H/D) ratio is varied from 

2 to 100. The modelled geometry of the compact with fuel kernel distribution is shown in 
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Figure 3-4b. The spatial distribution of the starting points is assumed to be uniform within the 

finite region. 

(a)                                                                                              (b) 

Figure 3-4: Random packing of TRISO in the fuel pebble (a) and fuel compact (b) for finite 

medium Dancoff factor calculation.  

Intra-Pebble Dancoff factor 

 In the intra pebble Dancoff factor calculation, neutrons are emitted from the surface of 

uniformly sampled fuel kernels inside the fuel zone of a pebble and tracked until they collide 

with any other fuel kernel or escape from the fuel zone. The stochastic medium in the fuel zone 

of the pebble has been generated with the CLR and RSA methods with all possible ranges of 

packing fractions that can be realized by the respective methods and the average Dancoff 

factors are computed at each packing fraction. A comparison of the intra pebble Dancoff factor 

by our method and the reference Monte Carlo values is shown in Figure 3-5. The average 

relative deviations of CLR and RSA from the reference values are found to be about 0.21% 
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and 0.32% respectively. 

 

 

Figure 3-5: Variation of the intra-pebble Dancoff factor with packing fraction: comparison 

between various methods. 

Intra-compact Dancoff factor 

 The intra-finite compact Dancoff factors are evaluated by tracking neutrons emitted 

from the surface of uniformly sampled fuel kernels in the fuel zone of the compact. The 

compact H/D ratio is varied from 2 to 100 and the Dancoff factor is computed for the stochastic 

finite compact fuel zone generated by the CLR and RSA methods, with all possible range of 

packing fractions that can be realized by the respective methods. At each H/D ratio, the Dancoff 

factors are compared with reference Monte Carlo values in (Figure 3-6) - (Figure 3-11).  
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Figure 3-6: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 2 

 

Figure 3-7: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 5. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

In
tr

a 
fi

n
it

em
ed

iu
m

 D
an

co
ff

 F
ac

to
r

Volume Packing Fraction

H/D=2

CLR

RSA

Reference

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

In
tr

a-
C

o
m

p
ac

t 
D

an
co

ff
 F

ac
to

r

Volume Packing Fraction 

H/D=5

CLR

RSA

Reference



103 

 

 

 

 

Figure 3-8: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 10. 

 

Figure 3-9: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 20. 
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Figure 3-10: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 50. 

 

Figure 3-11: Intra-finite compact Dancoff factor with volume packing fraction of TRISO 

particles at H/D ratio equal to 100. 
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In this study, an important observation is found that the Dancoff factors computed for various 

geometries with entirely different packing schemes result in accurate values having average 

relative deviation less than 0.7% as given in Table 3-1. 

Table 3-1 Average relative deviations for CLR and RSA schemes from the reference results 

H/D ratio 2 5 10 20 50 100 

CLR (%) 0.65 0.52 0.49 0.59 0.38 0.58 

RSA (%) 0.58 0.51 0.43 0.15 0.38 0.31 

3.5 Conclusions 

In this chapter, we have described the development of a new scheme (CLR) to generate 

the randomly distributed TRISO particles in the fuel zones of the pebble and the compact. This 

scheme is based on the Monte Carlo methods. The principal advantage of the method described 

here is that it can be used for low as well as high particle densities. Other methods tend to slow 

down at high particle densities and some of the methods (RSA) are unusable above a certain 

packing fraction. Thereafter, development of a fast neutron tracking algorithm to compute the 

Dancoff factors for randomly distributed fuel particles in finite and infinite media is described. 

Our results compare well with reference values.  The Dancoff factors are required to estimate 

the accurate background cross-section that is in turn used in the calculation of the self-shielded 

cross-sections in the resonance region. The generation of self-shielded cross-sections and 

solution of the multi-group transport equation for the HTR lattice cells using these self-shielded 

cross-sections is the subject of the next chapter.  
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Chapter 4 BOXER3 MODEL OF HTR LATTICE CELL: 

treatment of double heterogeneity in the resonance 

and thermal energy regions 

 

Here we discuss the development of a new methodology to solve the double heterogeneity 

problem at the stage of the multigroup transport theory solution. These features have been 

incorporated in the WIMS library-based lattice code BOXER3. Results of analysis of several 

HTR-lattice cell benchmark problems are presented. 

 

4.1 Introduction 

High temperature reactors present unusual challenges with regard to the neutron 

transport compared to traditional reactors. The primary reason for this is the geometry of the 

fuel elements in the form of spherical pebbles or cylindrical compacts which consist of a large 

number of tiny (~ 100 µm sized) fuel lumps in the form of TRISO particles, having a fuel 

kernel in the center surrounded with several coating layers, dispersed randomly in a graphite 

matrix. It might appear that such fine particle dispersions may be treated as homogeneous but 

that is not the case for all energies. For much of the neutron energy range the dispersion may 

be treated as a homogeneous medium. However, at certain energies, particularly around 

resonances, the neutron mean free path is comparable or shorter than the size of the fuel kernel 

and the situation necessitates treatment of the dispersion as a heterogeneous medium. The 

heterogeneity of the fuel region together with the heterogeneous distribution of the fuel region, 

graphite moderator, and the coolant is referred to as the double heterogeneity of HTRs. As 
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discussed in Chapter 2, the resonance treatment in heterogeneous systems in the WIMS library 

is carried out through the equivalence principle. The calculation of the Dancoff factor in HTRs 

that is required for this purpose was discussed in the previous chapter. In this Chapter we study 

a number of HTR lattice benchmark problems using the lattice code BOXER3. The self-

shielded multigroup cross-sections (in the epithermal resonance groups) required for this 

purpose are obtained using the Dancoff factors obtained by the methods described in Chapter 

2. 

HTRs containing only plutonium as fuel (as may be the case in reactors designed for 

burning plutonium) have high concentrations of the isotopes 239Pu and 240Pu in the kernels. 

This fact together with their rather large resonance cross- section in the thermal groups results 

in a very short neutron mean free path in the fuel that is comparable to the kernel dimensions. 

In such cases, the fuel zone must be treated as a heterogeneous medium in the thermal energy 

region as well. However, the resonance treatment method in libraries such as the WIMS library 

does not cover the two large resonances of plutonium lying in the thermal region. Instead, a 

large number of groups are provided to cover the details of cross-section variation in this 

region. For this reason, it becomes necessary to develop a method for solving the multigroup 

transport equation for HTR lattice cells (with the doubly heterogeneity). This problem is also 

discussed in the present chapter. 

In order to solve the multigroup transport equation for HTR lattices with double 

heterogeneity, one of the earliest approaches is based upon calculating equivalent cross-

sections for the stochastic medium formed by the distribution of the fuel lumps in the graphite 

matrix. In this approach, the spatial self-shielding factor is computed based on conservation of 

collision probabilities [95]–[97]. Another class of method is based on obtaining the collision 

probabilities at the lattice cell level using the collision probabilities defined at micro- and 
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macro-level geometries [98], [99]. These collision probabilities are based on the assumption 

that the neutron angular flux entering or escaping the fuel lump is uniform and isotropic. A 

renewal theory based solution method of the transport equation in the random medium was 

developed by Sanchez and Pomraning [100], [101]. The lattice code DRAGON and APPOLO 

uses these two double heterogeneity treatment models in the HTR lattice cells analysis. The 

code SCALE follows a different method for double-heterogeneity treatment and resembles the 

pin cell and assembly-level calculations adopted in early days for LWRs [41]. The procedure 

used by the SCALE system for HTR lattice cell is a two-steps calculation: In the first step, the 

micro level calculation is performed for the TRISO particle surrounded by a graphite layer of 

appropriate thickness depending on the packing fraction. The macro level calculation is used 

in the second step for the pebble cell. In the micro-level calculation, resonance shielding 

calculation is performed based upon an externally calculated Dancoff factor, and it is followed 

by a solution of the transport equation for obtaining flux disadvantage factors using a white 

boundary condition. These fluxes are then used to compute the flux-weighted cross-sections, 

i.e., shielded cross-sections. These weighted cross-sections are passed on to the CENTRM 

transport solution for the macro-level geometry formed by fuel zone (having weighted cross-

sections), graphite layer, and coolant. Similar to the SCALE code, WIMS9 also generates 

homogenized total cross-sections that have the same escape probability as the heterogeneous 

medium by solving the collision probabilities for the micro region (TRISO particle surrounded 

by graphite layer)[104], [105]. Subsequently, collision probabilities are derived for the various 

macro regions of the pebble using the homogenized cross-section in the fuel zone. Then the 

micro and macro region collision probabilities are combined to form a full set of collision 

probabilities for the complete pebble system and used in the solution for obtaining the system 

fluxes.  
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4.2 The Problem of High Pu Content Fuel 

 The WIMS-D library has a thermal cut off at 4.0 eV and the variation of cross-section 

around the resonances at 0.3 eV and 1.0 eV of Pu is represented using a large number of groups. 

The maximum cross-section of the Pu240 resonance is ~ 115Kilo barns which gives a mean free 

path much shorter than the radius of a fuel kernel. It is clear that spatial self-shielding of this 

resonance lying in the thermal energy region cannot be ignored and a simple volume 

homogenization is not permissible. The standard treatment of epithermal resonances, based on 

tables of resonance integral together with the use of equivalence theory as discussed in section 

2.4.3, is not available for resonances of the thermal energy.  Instead, the detailed cross-section 

variation due to resonances of the Pu isotopes in the thermal region is represented by having a 

large number of groups. Hence self-shielding due to these resonances must be accounted for at 

the stage of solution of the multigroup transport equation for the lattice calculation.  We discuss 

a simple heuristic approach to this problem here. A more rigorous solution is developed in 

Chapter 5.   

4.3 Self-Shielding by Equivalent Spherical Shell: Theory 

In Section 2.4.3, we discussed methods of obtaining the escape cross-section from the 

fuel which goes as input in the computation (interpolation) of the resonance integral and for 

obtaining cross-sections in the (epithermal) resonance groups. There are no resonance tables 

as a function of background cross-section and temperature for the resonances in the thermal 

region (in the WIMS-D library) and the self-shielding in this region is treated explicitly with 

several groups representing the cross-section variation in the resonances. The task of self-

shielding is therefore transferred to the multigroup transport equation solution. As explained in 
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greater detail in Section 4.4, BOXER3 solves the transport equation by the collision probability 

method in which the collision probabilities are obtained by tracing rays through the geometry 

consisting of piecewise homogeneous regions. For the one-dimensional geometry of a macro 

cell of a pebble, we have a division into homogeneous spherical annuli. To ensure that self-

shielding is correctly accounted for as well as to confirm to this geometrical description, we 

use the following device. We create a fuel region which has the required spherical symmetry 

and also has the same escape cross-section as the one computed by the methods of Section 

2.4.3 (i.e. for the epi-thermal resonances). The uniformly distributed fuel kernels (Figure 4-1, 

left) are replaced by a thin spherical shell, as shown on the right in Figure 4-1, with the same 

volume as the total kernel volume and the same escape probability as the randomly dispersed 

kernels. Thus, from the point of self-shielding, the two problems are identical and the geometry 

is the same one dimensional spherical which the code can handle. In the following paragraphs 

we show how this is accomplished. 

 

Figure 4-1:  Double heterogeneous fuel pebble and equivalent spherical shell model. 

The escape probability from a thin spherical shell is almost the same as that from a slab [132] 

viz. Eq. (4.1) 



111 

 

 

 

𝑃𝑒𝑠𝑐 =

1
2 − 𝐸3(−𝜏𝑓)

𝜏𝑓
 4.1 

Where, 𝐸3 is the exponential-integral function[133] of third order. 

Half of these neutrons escape into the interior of the shell, and after crossing the inner 

graphite, are incident once again on the shell. If we assume that the neutrons escaping from the 

inner surface of the shell are distributed isotropically on the surface, the probability of neutrons 

crossing the inner moderator region and re-entering the shell can be expressed by 

𝑃𝑖𝑛 =
2𝜋

𝜋
∫ exp (−Σm𝐷𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜋/2

0

𝑑𝜃 = 2∫exp (−Σm𝐷𝜇)𝜇

1

0

𝑑𝜇

=
2

Σm𝐷
[
1 − exp (−Σm𝐷)

Σm𝐷
− exp (−Σm𝐷)] 

4.2 

 

Where, D is the diameter of the shell. The fuel-to-fuel collision probability now consists of two 

contributions: one due to those neutrons that did not escape the fuel and the other due to those 

that escaped from the inner surface and reentered the shell. Thus, we write  

𝑃0 = (1 − 𝑃𝑒𝑠𝑐) +
1

2
𝑃𝑒𝑠𝑐𝑃𝑖𝑛𝑃𝑆𝑓𝑐 4.3 

Where, 𝑃𝑆𝑓𝑐, the probability of a neutron incident on the surface of the fuel colliding with it, 

may be written (using reciprocity relations) [116]as 𝑃𝑆𝑓𝑐 =
4ΣfVf𝑃𝑒𝑠𝑐

𝑆𝑓
.   

Now we consider those neutrons that escaped from the outer surface of the shell. This again 

consists of two parts. One is the half neutrons that escape from the outer surface of the shell. 

The other consists of those that escape collision in the fuel after escaping from the inner 

surface of the shell, crossing the graphite and reentering the fuel shell. This can be written as 
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𝑓0 =
1

2
𝑃𝑒𝑠𝑐 (1 + 𝑃𝑖𝑛(1 − 𝑃𝑆𝑓𝑐)) 4.4 

Assuming an isotropic angular distribution for both these components, the probability that 

they reach the cell boundary is 

𝑃𝑜𝑢𝑡 =
2𝜋

𝜋
∫ exp (−Σm√𝑅2 − 𝑟2𝑠𝑖𝑛2𝜃 − 𝑟𝑐𝑜𝑠𝜃) 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜋/2

0

𝑑𝜃 4.5 

Where R is the radius of the outer graphite portion of the cell [for He coolant, attenuation in 

the coolant portion can be ignored] and r=D/2 is the radius of the shell. Assuming that they are 

reflected isotropically from the cell boundary, the probability of return to the fuel surface 

is(𝑆𝑓/𝑆𝑐)𝑃𝑜𝑢𝑡, where 𝑆𝑓 and 𝑆𝑐 are the surface areas of the fuel layer and the cell outer 

boundary respectively. Of these, a fraction {𝑃𝑆𝑓𝑐 + (1 − 𝑃𝑆𝑓𝑐)𝑃𝑖𝑛𝑃𝑆𝑓𝑐} will collide in the fuel 

and {(1 − 𝑃𝑆𝑓𝑐)𝑃𝑖𝑛(1 − 𝑃𝑆𝑓𝑐)} will once again leave the outer side of the fuel. Thus, the 

fraction of neutrons leaving the outer boundary that on a second pass collide in the fuel is given 

by Eq. (4.6) 

𝑓1 =
𝑆𝑓

𝑆𝑐
(𝑃𝑜𝑢𝑡)

2 [𝑃𝑆𝑓𝑐 + (1 − 𝑃𝑆𝑓𝑐)𝑃𝑖𝑛𝑃𝑆𝑓𝑐] 4.6 

Moreover, the fraction that leaves the outer surface of the fuel once again is given by Eq. 

(4.7)  

𝑓2 =
𝑆𝑓

𝑆𝑐
(𝑃𝑜𝑢𝑡)

2 [𝑃𝑆𝑓𝑐 + (1 − 𝑃𝑆𝑓𝑐)
2𝑃𝑖𝑛] 4.7 

Summing over all passes through the cell we obtain 

𝑃𝑓𝑓 = 𝑃0 + 𝑓0𝑓1 + 𝑓0𝑓2𝑓1 + 𝑓0𝑓2
2𝑓1 + 𝑓0𝑓2

3𝑓1 +⋯ = 𝑃0 +
𝑓0𝑓1
1 − 𝑓2

 4.8 

In addition, the overall escape probability from the fuel (or the fuel to moderator collision 

probability) is 1 − 𝑃𝑓𝑓. 
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1 − 𝑃𝑓𝑓 = 1 − 𝑃0 −
𝑓0𝑓1
1 − 𝑓2

 4.9 

 

This is compared with the Dancoff corrected escape probability from the fuel kernel. The 

escape probability from a single kernel is given by[35] 

𝑃𝑒𝑠𝑐 =
3

8(𝑎Σ)3
[2(𝑎Σ)2 − 1 + (1 + 2𝑎Σ)exp (−2𝑎Σ)] 4.10 

 In addition, the Dancoff corrected escape probability[35] is given by Eq. (4.11). 

𝑃𝑓𝑚 = 𝑃𝑒𝑠𝑐
1 − 𝐶

1 − 𝐶(1 − 𝑙𝑓𝑘̅̅̅̅ Σf𝑃𝑒𝑠𝑐)
 4.11 

 

By equating the fuel to moderator collision probabilities for the spherical shell [Eq. (4.9)] and 

the distributed fuel kernels [Eq. (4.11)] we can obtain the radius of the fuel shell. The shell 

thickness is obtained by conservation of the fuel volume. The shell radius has a dependence on 

the fuel cross-sections which is group dependent. This may appear to be a problem. However, 

this variation is not very large. We choose an average thermal value of the fuel cross-section 

obtained by averaging over the spectrum in the thermal region so that the shell radius is the 

same for all groups. We note in passing that this is the equivalent of the dependence of the Bell 

factor on the fuel cross-section. 

4.4 The Lattice Code BOXER3 and Its Modification for HTR Cells 

The code BOXER3 is a three-dimensional code for treating PHWR supercells, that 

was recently modified for light water reactor assembly level lattice and burnup calculations. 

The code has been discussed in detail in Refs. [74], [75]. Here we restrict ourselves to the 

description necessary for understanding its extension to HTR cell calculations. 
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4.4.1 Geometry and Cross-Section Data 

 The program has the capability of treating three dimensional problems, two 

dimensional problems such as fuel assemblies and one-dimensional cylindrical pin-cell and 

slab geometries (as in plate type fuels). It is capable of treating the complex geometrical 

arrangements of fuel, clad, coolant and moderator commonly occurring in reactor lattices. The 

geometry that can be represented consists of cylinders imbedded in a rectangular mesh. For 

large domain problems in two- or three-dimensional systems, a mixed method involving a 

detailed collision probability treatment within smaller sub domains and coupling these sub 

domains using interface currents is used. However, one dimensional and smaller sized two 

problems can be handled using the exact 𝑃𝑖𝑗 method.  

Treatment of spherical surfaces required in the lattice cell calculations of pebble bed 

HTRs, was not available in the code. This option has been added as described below. The lattice 

cell (as modeled in BOXER3) of a pebble bed reactor is illustrated in Figure 4-2.  

               

(a)                                                                                  (b) 

Figure 4-2: Schematic of fuel pebble (a) as it exists; (b) as modeled in BOXER3 code. 
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Multigroup cross-sections are obtained from the WIMS-D library. Self-shielded cross-

sections in resonance groups are obtained from the resonance tables of the library using the 

Dancoff factor calculated in the manner described in Section 2.4.3. The group cross-sections 

of the fuel (including the self-shielded group cross-sections for the resonance groups) are not 

so large that the mean free path in the tiny fuel kernel will be shorter than its dimensions. 

Hence, we may homogenize the fuel and the coating and matrix materials into a homogeneous 

fuel zone and we make this assumption in the present sub section.  However, in exceptional 

situations mentioned in the introduction, with large concentrations of plutonium in plutonium 

burning reactors, the thermal group cross-section of the fuel (particularly around the 

resonances) becomes so large that the mean free path is smaller than the kernel dimensions and 

homogenization is not permissible. This problem was discussed in Section 2.8 where the 

randomly dispersed fuel is replaced by a spherical shell as shown in Figure 4-1.  

Either way, we have a simple one-dimensional spherical geometry problem for the 

lattice cell calculations of HTRs. Since the resulting projected figure in this plane is the same 

as the corresponding projected figure in cylindrical geometry, the tracing routine for cylindrical 

geometry projection can be used. However, for calculating the collision probability integrals, 

it is necessary to carry out a modification in the area element, as described in Section 2.5.4 An 

additional optically thick heavy scatterer is included in the space between the outer boundary 

of the spherical cell and the cubical cell used in BOXER3. This artifice changes the reflective 

boundary condition at the spherical outer surface of the cell to white. It also allows the use of 

a cubical outer boundary instead of the spherical cell boundary. 

  

  



116 

 

 

 

The lattice cell of a pebble bed reactor is illustrated in Figure 4-2. For the lattice cell 

calculations of HTRs we have a simple one-dimensional spherical geometry problem. Since 

the number of meshes is not large, we make use of the pure 𝑃𝑖𝑗 option. The integration over the 

angular variable in Eqns. (2.50)-(2.54) is not necessary due to the symmetry of the problem. 

The integration over the perpendicular area reduces to a single integral as described below. The 

integrals are obtained by constructing rays of the kind shown in Figure 4-2, in any plane passing 

through the center. The area element associated with each ray in spherical geometry is given 

by Δ𝐴 = 2𝜋𝑦Δ𝑦. Where, 𝑦 is the distance from the center and Δ𝑦 is the distance between the 

rays as shown in Figure 4-2.  

4.5 Analysis of HTR Benchmarks  

The BOXER3 code, described above in Section 4.4, was used for testing the validity 

of the methods discussed in this chapter for treating double heterogeneity of HTRs. The testing 

has been carried out by studying the benchmarks provided by the Organization for Economic 

Cooperation and Development, Nuclear Energy Agency (OECD NEA), Nuclear Science 

Committee, Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles 

[105]. The computational benchmark has five phases that are concerned with high-temperature 

reactors (HTRs) and is defined for UO2, PuO2
 
and ThO2-

233UO2 fuel types. The specifications 

of fuel pebbles and coated particles of these benchmarks used in the present study are 

reproduced in APPENDIX-A.  The benchmarks defined in phases 1a, 2a and 3a with pebble 

cell having spherical outer boundary are used to calculate the infinite multiplication factor 

(𝑘∞)using BOXER3. Based on the evaluated nuclear data files recommended by WLUP 

participants, 69-group WIMS-D formatted library IAEA is used in the calculations [38]. The 



117 

 

 

 

𝑘∞ for the infinite array problems are reported for cold condition and compared with results 

reported in the Ref. [105]. 

4.5.1 Results with Self-Shielding Treatment in Epithermal Groups  

For each benchmark problem, the escape cross-section, as mentioned in Section 2.4.3, is 

calculated using Dancoff factor with a suitable Bell correction factor and supplied to the 

BOXER3 code to treat the double heterogeneity effect under the rational approximation. 

Dancoff factors corresponding to the benchmark problems are computed using the CLR 

method and listed in Table 4-1. The Dancoff factors in the two columns are the intra pebble 

and inter pebble Dancoff factors. The total Dancoff factor is obtained by adding these two.  

Table 4-1Finite medium Dancoff using CLR method and Bell Factors for Benchmark 

Problems [40], [65] 

Fuel Type 

TRISO Packing 

Fraction 

C-intra C-inter Bell Factor 

UO2- fuelled pebbles 9.043E-02 0.3574 0.0433 1.73 

233UO2/ThO2 or 

PuO2 fuelled pebbles 

3.45E-02 0.1082 0.0210 1.75 

 

Table 4-2 Comparison of BOXER Results with the Reference Values [40], [65] 

Benchmark 

phase 

Definition 

𝑘∞ at T=293.6K 

BOXER 

MCNP4B SCALE WIMS9 APPOLO 

Hom. Hete. 
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1a 

Infinite array of 

UO2 fuelled 

pebbles 

1.4282 1.5129 

1.5108 

± 0.001 

1.50748 1.51759 1.52232 

2a 

Infinite array of 

PuO2 fuelled 

pebbles 

1.2323 1.2332 

1.4573 

± 0.001 

1.47656 1.46154 1.46369 

5a 

Infinite array of 

ThO2-UO2 

fuelled pebbles 

1.4605 1.4664 

1.46841 

± 0.0005 

1.4645 1.46068 1.46269 

 

The Bell factors were obtained by comparing the exact escape probability from a sphere with 

the Bell corrected rational approximation. The factor obtained by us is fairly close to that 

reported in Ref. [48]. In Table 4-2, we have compared the BOXER3 results with other codes 

including the MCNP4B results. We have also included the BOXER3 results based on the 

assumption of a homogenized fuel zone without including the intra pebble heterogeneity. The 

results show that this has a very large effect for uranium fuel whereas for Th the effect, though 

smaller, is not altogether insignificant.  After including the intra pebble heterogeneity, we find 

fairly good agreement for UO2 and ThO2-UO2 fueled pebbles. The BOXER3 result for uranium 

is somewhat on the lower side but only about as much as is the dispersion between various 

results of the benchmark exercise. More pertinently, it is small compared to the change seen 

from the homogenized result. For Th fuel, all codes predict very close to one another and so 

does BOXER3. However, for Pu fuel the BOXER3 prediction is rather poor. In fact, the results 

obtained using BOXER3 together with WIMS-D library shows that there is practically no effect 
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of the double heterogeneity correction, i.e. Dancoff and Bell corrections, on 𝑘∞ for Pu fueled 

pebble. This problem is addressed in the next Section 4.5.2. 

4.5.2 Results with the Equivalent Spherical Shell Model 

The method of the equivalent spherical shell is used to revisit the 2a phase benchmark 

plutonium fuel problem. The epithermal (resonance) group cross-sections were prepared as in 

the previous section. Using the equivalent shell model as described in Section 4.3, the outer 

shell radius of the shell was estimated to be 1.424 cm. The following procedure is employed 

for this purpose. First the lattice cell is modeled with an arbitrarily chosen shell radius, to 

estimate the flux weighted one group fuel total cross-section. Using this cross-section, the 

escape probability from the shell is equated to the Dancoff corrected escape probability from a 

fuel kernel and the resulting equation is solved to obtain a new shell radius. Iteration may be 

carried out if the difference between the assumed shell radius and the new shell radius is large. 

The spherical shell with this radius represents the ‘equivalent spherical shell’ model of the 

problem, which conserves the self-shielding of the resonances of plutonium below 4ev. The 

equivalent spherical shell model for PuO2 benchmark gives a 𝒌∞ of 1.4528 which is in 

reasonably good agreement with the reference results of Table 4-2.  

4.5.3 Results of the Equivalent Spherical Shell Model for the Bende’s HTR problems 

To study the uncertainty involved, we took up Bende’s 1st HTR problem of 2gram Pu 

loading in a pebble with 51659 fuel particles of 0.01cm radius[134]. We started with an 

arbitrarily chosen outer shell radius 1.5cm. We get spectrum averaged 1 group cross-section of 

the fuel shell (see the first row of Table 4-3) 12.67664cm-1. In the first iteration of calculation, 

the outer radius of shell is determined using 1 group fuel cross section and used in BOXER3D 

code to calculate spectrum and K-inf. Table 4-3 shows that K-inf achieves its accuracy of 1pcm 
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within 3 iterations. This K-inf from spherical shell model shows very good agreement with the 

reference results obtained from MCNP, SCALE and WIMS7b within 0.072%, 0.15% and 

0.23%, respectively.  

Table 4-3 Iteration scheme used for Equivalent spherical model to study Bende’s PuO2 fueled 

pebble with 0.01cm kernel radius[134] 

Number 

of 

Iteration 

BOXER3D 

K-inf 

Rout of Shell Rin of Shell 

Spectrum 

avg. Σ𝑓 

Rel. error 

in Escape 

Probability 

Rel. 

error 

in K-inf 

Guess 1.304603 1.5 1.492307432 12.67664   

1 1.231012 1.7942797 1.78890014 12.67664 -2.33E-07 0.1612 

2 1.232115 1.7893417 1.78393240 13.22499 -5.86E-07 0.0727 

3 1.232113 1.78931534 1.78390588 13.22797 -1.17E-07 0.0712 

4 1.232114 1.78931764 1.78390819 13.22771 -2.35E-07 0.0719 

5 1.232114 1.7892703 1.78386060 13.22774 0.00E+00 0.07185 

 

Similarly, we took up Bende’s 2nd benchmark problem of 2gram Pu loading in a pebble with 

38812 fuel particles of 0.011cm radius.  

Table 4-4 Iteration scheme used for Equivalent spherical model to study Bende’s PuO2  fueled 

pebble with 0.011cm kernel radius[134] 

Number 

of 

Iteration 

BOXER3D 

K-inf 

Rout of Shell Rin of Shell 

Spectrum 

avg. Σ𝑓 

%Rel. error 

in Escape 

Probability 

%Rel. 

error  

in K-inf 
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Guess  1.30229 1.5 1.492307466 12.60695   

1 1.240718 1.7410221 1.7353082 12.60695 -1.17E-05 0.5038 

2 1.241662 1.7370172 1.7312768 13.05583 -1.18E-05 0.4281 

3 1.241675 1.7370844 1.7313445 13.04901 0.00E+00 0.4270 

4 1.241677 1.7370881 1.7313482 13.04859 0.00E+00 0.4269 

5 1.241678 1.73708814 1.73134827 13.04858 -2.36E-07 0.4268 

 

Again, the spherical shell model needs 3 iterations to result in K-inf with uncertainty no more 

than 1pcm. It can be seen from the Table 4-4 that K-inf for this problem also shows very good 

agreement with the reference results obtained from MCNP, SCALE and WIMS7b within 

0.43%, 0.51% and 0.51%, respectively. It should be noted that the MCNP reference K-inf has 

±0.002 standard deviation. While the agreement appears satisfactory, the replacement of the 

large number of fuel particles by a shell is drastic approximation, and hence we have developed 

the more exact analysis in the next Chapter 5. 

4.6 Conclusions 

 We have described the development of methods for lattice cell calculations in high 

temperature reactors of the pebble bed type. The other development is an ‘equivalent shell 

method’ for treating self-shielding in the thermal groups of the doubly heterogeneous cell. This 

is particularly important in Pu fueled reactors as the low-lying resonances of Pu which fall in 

the thermal region are not treated by the shielding methods used in the WIMS-D library. At the 

same time, the cross-section of Pu is so high that a homogeneous treatment in the thermal 

region is not permissible. 
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 These developments have been incorporated in the computer code BOXER3 for 

performing lattice calculations in both spherical and cylindrical cells based on the WIMS-D 

library formalism and the collision probability method for solving the transport equation. 

Results of analysis of benchmarks clearly bring about the need for treating the micro-level as 

well as macro-level heterogeneity prevalent in HTRs. While our results for Th and U fuels 

show good agreement with benchmark values, after including double heterogeneity effects in 

the epithermal resonance groups, fuels containing high concentrations of Pu (as are expected 

to be used in Pu burning strategies) give poor results. However, this problem is resolved once 

the thermal double heterogeneity is also accounted for. 

 The ‘equivalent shell method’ described in this chapter is a simple heuristic approach 

for accounting for self-shielding in the thermal resonances of Pu by solving the multigroup 

transport equation in the doubly heterogeneous medium. Several approximations are involved 

at various stages such as the ‘cosine current approximation’ both at the stage of obtaining 

escape probabilities from the fuel kernel as well as from the shell. Moreover, it involves the 

replacement of the statistically distributed fuel kernels by a shell. While the method gives fairly 

good results for the Pu problem, it is important that a more rigorous treatment of transport in a 

random medium be carried out. We have developed such a rigorous method in the exact 

collision probability formalism and it is subject matter of Chapter 5. 
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Chapter 5 NEUTRON TRANSPORT IN STOCHASTIC 

MEDIA: collision probability method for pebble 

with random fuel distribution 

 

In this chapter, we describe the evaluation of the exact collision probabilities (CPs) to solve 

the transport equation in the random medium of an HTR lattice cell. This chapter also presents 

the implementation of the new method of calculating CPs in the code BOXER3 and results of 

analyses of HTR benchmarks problems. 

 

5.1 Introduction 

 We saw in the previous chapter that when the fuel is a few percent enriched uranium or 

Thorium mixed with some LEU or 233U, the thermal macroscopic cross-sections of the fuel and 

for that matter the epithermal group cross-sections obtained after accounting for the resonance 

self-shielding, are not so large that the mean free path is comparable to or shorter than the fuel 

kernel radius. However, in reactors designed to burn Pu, the fuel contains only PuO2. Such fuel 

has a large cross-section in the thermal groups around the 1 eV and 0.3 eV resonances of Pu 

and hence, for such fuels, homogenization of the fuel zone is not permissible. Since the 

resonance treatment method in the WIMS library, described above, is neither available nor 

applicable for thermal energies, a different method is clearly necessary as also described in 

Chapter 4.  
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 HTR lattice codes such as DRAGON [67] and WIMS [104] use some variants of the 

following collision probability method, discussed by Herbert [98] (and also by Bende [89] in 

a context of Dancoff factor calculations) for treating this problem. In this method, collision 

probabilities are calculated between the fuel and coating layers as well as the graphite matrix 

associated with a single TRISO particle, which we refer to as a micro cell. By assuming a 

cosine current on the boundary of this micro cell, collision probabilities of neutrons escaping 

the micro cell into neighboring cells and transmission probability across these cells are 

obtained. These are then used to obtain the total collision probabilities between the different 

material regions (fuel, coatings, graphite matrix) of the fuel zone. These probabilities go as 

input into the multi-group transport calculations within the HTR lattice cell. 

 In Chapter 4, we had described a different (though somewhat heuristic) approach for 

solving this problem [135]. In this chapter, we present a more systematic approach involving 

solution of the neutron transport in a heterogeneous random medium for the lattice calculation. 

While the solution is based on the calculation of collision probabilities between different 

material regions of the fuel zone, the method of calculation of these probabilities is radically 

different from the above approaches. The method is based on exact expressions of collision 

probabilities along an integration ray and is therefore a more accurate approach. 

 There have been several studies on neutron transport in random media particularly for 

binary mixtures[100], [136]–[141]. Most of these attempt [136], [137] to obtain an equivalent 

transport equation for the average flux and are exact only for non-scattering media. In the 

context of HTRs, Sanchez and Pomraning [100] Sanchez and Masiello [141] and Sanchez [101] 

have made similar attempts at solving this problem by an approximate collision probability 

method and by the MOC. In this, chapter we described a new method developed for treating 
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the thermal neutron transport in a random heterogeneous medium (which in the WIMS-D 

formalism contains the two large resonances of Pu that are not part of the resonance treatment 

method of this library). The method attempts to obtain exact expressions for the collision 

probabilities from one macroscopic mesh to another taking into account the random 

heterogeneous distribution of TRISO particles. Other than the statistical assumptions used to 

describe the medium (which fairly accurately describe the situations at hand), the method is 

exact. The necessary modifications in the expressions for the integrands in the collision 

probability integrals taking into account the random heterogeneous structure of this medium 

are discussed in Sections 5.3 and 5.4. We present two independent derivations of the basic 

formulae of collision probabilities to solve the integral form of the neutron transport equation 

in random media. These are discussed in Sections 5.5 and 5.6. Both the methods give identical 

expressions for the collision probabilities, which gives us confidence in the formulae so 

derived. The method has been incorporated in the collision probability code BOXER3 [61], 

[74], [135] which was extended for application to HTRs [135]. Comparison with benchmarks 

of Pu based HTR fuels have been described in Section 5.8 and this show very good agreement 

thus validating the new approach. Lastly, Section 5.9 presents the main conclusions drawn 

from the work described in this chapter.  

5.2 Application of BOXER3 Code to the HTR Lattice Cell 

Details of the collision probability method and the BOXER3 code along with the 

extension to treat spherical geometry required in pebble-bed reactor cell have already been 

discussed in Sections 2.5.4 and 4.4. The discussion includes computation of the Dancoff factor 

for the doubly heterogeneous random medium of HTRs and the escape cross-section that goes 

into the computation of self-shielded cross-sections in the resonance groups. For the pebble 
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bed reactor, the cell has a spherical geometry that is divided into (homogeneous) spherical 

annuli. The collision probabilities are evaluated as described in Section 4.4. The primary 

difference in the method described in the present chapter is that the spherical annuli are no 

longer considered as being homogeneous but are treated as heterogeneous random fuel graphite 

mixtures in the evaluation of collision probabilities. 

  

 

Figure 5-1: Schematic of fuel pebble used in BOXER3 code. 

The lattice cell of a pebble bed reactor is illustrated in Figure 5-1.  [Each mesh is not 

homogeneous in its composition and we will see shortly the necessary modifications to take 

this fact into account.] The aim is to obtain the detailed multi-group flux distribution across the 

cell (including separately for the fuel component and the graphite component in the fuel 

meshes). The spherical geometry permits a number of simplifications in the calculation of the 

probabilities. A single direction is enough due to spherical symmetry. Moreover, it is necessary 

to trace rays in any plane passing through the centre. Since the resulting projected figure in this 

plane is the same as the corresponding projected figure in cylindrical geometry, the tracing 
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routine for cylindrical geometry projection can be used. However, it is necessary to carry out a 

modification in the area element. Each area element is now given by  

Δ𝐴 = 2𝜋𝑦Δ𝑦 

Where, Δ𝑦 is the spacing between rays and 𝑦 is the distance of the ray from the centre of the 

sphere, as shown in Figure 5-1.  Thus, the integrals in Eqs. (2.50) - (2.54) reduce to one-

dimensional quadratures.  

5.3 Modification for Calculation of Various Probabilities for a 

 Heterogeneous Fuel Zone 

 The expressions for the integrands in Eqs. (2.50) - (2.54) are applicable for 

homogeneous meshes such as the coolant, the outer graphite coating of a pebble and the heavy 

scatterer.  However, for our problem, the expressions for the integrands need to be modified 

for taking into account the random heterogeneous structure of this medium. We rewrite Eq. 

(2.50) for collision probability between two distinct meshes in a slightly modified form as 

follows 

𝑃𝑖𝑗 =
1

4𝜋𝑉𝑖
∫𝑙𝑖𝑑𝐴𝑑𝛀{

1 − exp[−(𝜏𝑖)]

Σ𝑖𝑙𝑖
} exp[−𝜏𝑖𝑗] {1 − exp [−(𝜏𝑗)]}

=
1

4𝜋𝑉𝑖
∫𝑑𝐴𝑑𝛀𝑃𝑖𝐵2𝑖𝑃𝐵2𝑖𝐵1𝑗𝑃𝐵1𝑗𝑗  

5.1 

 

Where, 𝑃𝑖𝐵2𝑖 , 𝑃𝐵2𝑖𝐵1𝑗 , 𝑃𝐵1𝑗𝑗 stand for the probability that a neutron in mesh 𝑖 along the ray 

reaches the (second) boundary, the probability that having reached the boundary this neutron 

further reaches the first boundary of mesh 𝑗 and finally that having reached the boundary of 

mesh 𝑗 it collides in mesh 𝑗 respectively. The probability  𝑃𝐵2𝑖𝐵1𝑗 can be written as the product 
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of the probabilities ∏ 𝑃𝐵𝑘1𝐵𝑘2𝑘  of the various meshes k that lie between 𝑖 and 𝑗. For 

homogeneous meshes, the expressions contained in Eq. (5.1) are directly usable for these 

probabilities. For heterogeneous meshes we derive the necessary expressions for 𝑃𝑖𝑖, 𝑃𝐵𝑘1𝐵𝑘2 , 

𝑃𝑖𝐵𝑖2, and 𝑃𝐵𝑗1𝑗 in the following sections. Instead of these four quantities we need 9 quantities 

since each mesh has a fuel and a moderator region.  

Note that we have divided the first factor in the integrand by the chord length 𝑙𝑖 and 

included Σ𝑖 in its denominator so that we can interpret as a probability of escape of the neutron 

born in region 𝑖 along the ray (the factor is then dimensionless). Of course, we have to multiply 

the integrand by 𝑙𝑖 for maintaining consistency.  

5.4 Collision Probability Integrands for Heterogeneous Random Fuel 

 Graphite Mixture 

We assume that the various layers of coatings around a TRISO particle have been 

homogenized with the graphite matrix in which these particles are embedded. The assumption 

has no material impact on the results as the various layers are small in size (< 1mm) compared 

to the mean free path in the medium (~25mm) and the coating is made of Carbon and Silicon. 

With this assumption, each mesh of the fuel zone contains two parts the fuel kernel and the 

moderator. With the assumption of a flat average flux in the mesh, we can say that a mesh has 

the same flux in all the fuel kernels of the mesh while the graphite matrix of the mesh has a 

different flux. Thus, each mesh is split into two sub regions viz. fuel and matrix. The problem 

is to obtain collision probabilities between these two types of regions within a mesh and across 

different meshes.  
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In Section 5.2, we have seen that rays are drawn across the problem geometry and the 

program calculates the intercepts in each of the (macro) meshes. We are interested in 

calculating the contributions of a ray to collision probabilities of interest viz., 𝑃𝑓𝑖→𝑓𝑗, 𝑃𝑓𝑖→𝑚𝑗 , 

𝑃𝑚𝑖→𝑓𝑗, 𝑃𝑚𝑖→𝑚𝑗. As discussed in a previous section it is clear that it is enough if we obtain 

these quantities within the same mesh i.e.  𝑃𝑓𝑖→𝑓𝑖, 𝑃𝑓𝑖→𝑚𝑖, 𝑃𝑚𝑖→𝑓𝑖, 𝑃𝑚𝑖→𝑚𝑖 and the auxilary 

quantities 𝑃𝑓𝑖→𝐵𝑖, 𝑃𝐵𝑖→𝑓𝑖, 𝑃𝑚𝑖→𝐵𝑖, 𝑃𝐵𝑖→𝑚𝑖, 𝑃𝐵𝑖→𝐵𝑖. Note that we have used the letter B for the 

boundary without specifying whether it is first or second. This is acceptable because within a 

given mesh these quantities are symmetrical with respect to a reversal in the direction of the 

ray.  

The contribution of the ray to the mesh-to-mesh collision probabilities (for 

example 𝑃𝑓𝑖→𝑓𝑗) can be obtained from these using the product as in an earlier section 

𝑃𝑓𝑖→𝑓𝑗 = 𝑃𝑓𝑖→𝐵𝑖𝑃𝐵𝑖→𝐵𝑖+1…𝑃𝐵𝑗→𝑓𝑗 5.2 

 

Of the nine quantities listed above, we need to calculate only three since they obey 

three reciprocity relations given by Eqs. (5.3) – (5.5) 

Σ𝑓𝑖𝜆𝐿〈𝑙〉̅𝑃𝑓𝑖→𝑚𝑖 = Σ𝑚𝑖𝐿𝑃𝑚𝑖→𝑓𝑖 5.3 

Σ𝑓𝑖𝜆𝐿〈𝑙〉̅𝑃𝑓𝑖→𝑆𝑖 = 𝑃𝑆𝑖→𝑓𝑖 5.4 

Σ𝑚𝑖𝐿𝑃𝑚𝑖→𝑆𝑖 = 𝑃𝑆𝑖→𝑚𝑖 5.5 

and three sum rules are given by Eqs. (5.6) – (5.8) 

𝑃𝑓𝑖→𝑓𝑖 + 𝑃𝑓𝑖→𝑚𝑖 + 𝑃𝑓𝑖→𝐵𝑖 = 1 5.6 

𝑃𝑚𝑖→𝑓𝑖 + 𝑃𝑚𝑖→𝑚𝑖 + 𝑃𝑚𝑖→𝐵𝑖 = 1 5.7 
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𝑃𝐵𝑖→𝑓𝑖 + 𝑃𝐵𝑖→𝑚𝑖 + 𝑃𝐵𝑖→𝐵𝑖 = 1 5.8 

In view of this reduction in the number of quantities required, we obtain explicit 

expressions for the following three contributions 𝑃𝑓𝑖→𝑓𝑖, 𝑃𝑓𝑖→𝐵𝑖, and 𝑃𝐵𝑖→𝐵𝑖 in the following 

Sections 5.5 and 5.6. 

5.5 First Method for Calculating Integrands in the CP Calculations 

5.5.1 Contribution to Fuel Kernel to Kernel Probability 𝑷𝑭𝑭(𝑳) 

 Let us assume that a length 𝐿𝑖 of a ray is intercepted by some mesh 𝑖 as shown in Figure 

5-1. The quantity 𝐿𝑖 of course is different for different rays traced for carrying out the 

integration over the cell, but the number of fuel kernels intercepted by a given ray of length 𝐿𝑖 

is statistically distributed owing to the random character of the medium. For a given realization 

of this distribution let us assume that 𝑛𝑖 fuel kernels lie along the ray in mesh 𝑖. We assume 

that the distribution of the fuel kernels along the length of the intercept follows renewal 

statistics. More specifically, we may assume Poisson statistics. The merit of Poisson statistics 

is that it corresponds fairly closely to the actual situation and allows us analytical treatment. 

The coating layers do not permit the centres of two kernels to be within a diameter of the 

TRISO particle (typically 1-2 mm) and this causes some deviation from Poisson statistics. 

While at low packing fractions, the deviation from Poisson is very slight and may be ignored, 

at intermediate packing fractions, this has the effect that instead of an exponential chord length 

distribution corresponding to Poisson statistics, we have a distribution that is zero up to a 

particle diameter and an exponential beyond this distance.  From a practical point of view, since 

most HTR fuels have packing densities in the low and intermediate range, these two cases are 

the most interesting. The Poisson case (corresponding to low packing fraction) is discussed in 
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the present sub section and Section 5.6, and the non-Poisson case is discussed in some detail 

in Section 5.7 and represents a small correction to the theory developed in Sections 5.5 and 5.6 

at intermediate packing fractions. At very high packing densities (close to the theoretical limit) 

of the TRISO particles, their arrangement is more like a lattice and this produces spikes at 

distances of a diameter of the TRISO particle and integral multiples thereof up to a few 

diameters before becoming a continuous exponential density.  This case is difficult to treat 

analytically and is also not very interesting from a practical point of view and we do not 

consider it further. Having said this, we also note that the Poisson distribution is a fair 

approximation for all these situations as the mean chord length (several cms) and the mean free 

path in graphite (~ 2.5 cm) are long and hence the undulations on the scale of a TRISO particle 

diameter (<1 mm) have little impact on the results. 

 We make a number of other simplifying assumptions; the sum of the segments 

intercepted by the kernels in a mesh is small compared to the total length of the ray in that 

mesh. This follows from the fact that the volume fraction of kernels is typically 1% or less. 

The medium at the beginning and end of a segment is the graphite matrix and whole kernels 

lie in between with no partial kernels. This also follows from the small volume fraction of the 

fuel due to which the probability that any point is in a fuel kernel is expected to be 1 % or less. 

For this particular realization of the number of intercepts, we must write down all terms that 

contribute to the fuel-to-fuel collision probability. We then average over the distribution of the 

fuel kernels in the medium, finally over the number of kernels intercepted, and add the 

contributions from all these terms. There are basically two types of terms. The first are those 

in which the kernel in which the neutron undergoes collision is different from the one in which 

the neutron is born (𝑃𝐹𝐹1(𝐿)). The second are those in which the kernel in which the neutron 

undergoes collision is the same as the one in which the neutron is born (𝑃𝐹𝐹2(𝐿)).  While there 
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will be a distinct contribution from each of the former types, all contributions from the latter 

type are essentially the same. We first consider a term of the former type in which there are 𝑘 

kernels (𝑘 = 0,1, … 𝑛𝑖 − 2) between the birth kernel and the collision kernel.  We then write 

down the following expression for such a term denoted by 𝑃𝐹𝐹1(𝑛𝑖, 𝑘, 𝐿) of the fuel-to-fuel 

collision probability 𝑃𝑓𝑖→𝑓𝑖 (within mesh i) [written simply as 𝑃𝐹𝐹1(𝐿)  on dropping the mesh 

index]. 

𝑃𝐹𝐹1(𝑛𝑖, 𝑘, 𝐿)

= ∫𝑑𝑥1 ∫ 𝑑𝑥2 ∫ 𝑑𝑥3… ∫ 𝑑𝑥𝑛𝑖

𝐿−𝑥1−𝑥2−⋯𝑥𝑛𝑖−1

0

𝐿−𝑥1−𝑥2

0

𝐿−𝑥1

0

𝐿

0

𝑃𝑚(𝑥1)…𝑃𝑚(𝑥𝑛𝑖)𝐶(𝐿 − 𝑥1

− 𝑥2 −⋯− 𝑥𝑛𝑖) 〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴
𝑘
∏ 𝑒𝑥𝑝 (−𝛴𝑚𝑥𝑙)

𝑖+𝑘+1

𝑙=𝑖+1

[1

− 〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴] 〈(
1 − 𝑒𝑥𝑝 (−𝜏𝑓)

𝜏𝑓
)〉𝑉  

5.9 

 

where, the averaging symbol 〈𝑓 (𝜏𝑓)〉 [of an arbitrary function 𝑓 (𝜏𝑓)] used in Eq. (5.9) is 

defined by Eqs. (5.10) and (5.11)  

〈𝑓 (𝜏𝑓)〉𝑉 =
1

(
4
3𝜋𝑅

3)
∫ 𝑓 (𝜏𝑓)2𝜋𝑟𝑙𝑑𝑟

𝑅

0

 5.10 

〈𝑓 (𝜏𝑓)〉𝐴 =
1

𝜋𝑅2
∫𝑓 (𝜏𝑓)2𝜋𝑟𝑑𝑟

𝑅

0

 5.11 

where, 𝑙 = 2√𝑅2 − 𝑟2  is the chord length intercepted at a distance 𝑟 from the centre of the 

fuel kernel of radius 𝑅, 𝜏𝑓 = 𝛴𝑓𝑙 is the optical path intercepted and 𝑙 ̅is the mean chord length 

in a sphere. The symbols 𝐴 and 𝑉 refer to averaging over an area perpendicular to the ray and 
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the volume of the fuel kernel respectively. In view of Eqs. (5.10) and (5.11), it is possible to 

rewrite the last factor in Eq. (5.9) in the alternative form of an area average as follows 

〈(
1 − 𝑒𝑥𝑝 (−𝜏𝑓)

𝜏𝑓
)〉𝑉 =

(1 − 〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴)

𝑙�̅�𝑓
 5.12 

   Assuming an exponential distribution of the intervals, permits us to write  

𝑃𝑚(𝑥)𝑑𝑥 = exp (−𝜆𝑥)𝜆𝑑𝑥 5.13 

𝐶(𝑥) = exp (−𝜆𝑥) 5.14 

The integrals over the moderator are in the form of convolutions and are best evaluated in the 

Laplace domain.  The Laplace transform of the above expression in Eq. (5.9) (as a function 

of 𝐿) is easily evaluated and we get 

𝑃𝐹𝐹1̃(𝑛𝑖, 𝑘, 𝑠) = ∫ 𝑃𝐹𝐹1(𝑛𝑖, 𝑘, 𝐿) exp(−𝑠𝐿)𝑑𝐿
∞

0
= 

= [1 − 〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴] (
1 − 〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴

𝑙�̅�𝑓
)

 𝜆𝑛𝑖〈𝑒𝑥𝑝 (−𝜏𝑓)〉𝐴
𝑘

(𝑠 + 𝛴𝑚 + 𝜆)𝑘+1(𝑠 + 𝜆)𝑛𝑖−𝑘
 

5.15 

There will be several such terms contributing to the fuel-to-fuel collision probability and we 

have to sum over all of them. For the above case, there are 𝑛𝑖 − 𝑘 − 1 such terms and 𝑘 can 

vary from 0  to 𝑛𝑖 − 2 terms. Finally, we sum over 𝑛𝑖 and 𝑘. Carrying out these operations, we 

obtain 

𝑃𝐹𝐹1̃(𝑠) =
(1 − 〈𝑒𝑥𝑝 (−𝜏𝑓〉𝐴)

2

〈𝜏𝑓〉
∑ 𝜆𝑛𝑖 ∑

(𝑛𝑖 − 𝑘 − 1)〈𝑒𝑥𝑝 (−𝜏𝑓〉𝐴
𝑘

(𝑠 + 𝛴𝑚 + 𝜆)𝑘+1(𝑠 + 𝜆)𝑛𝑖−𝑘

𝑛𝑖−2

𝑘=0

∞

𝑛𝑖=2

 5.16 

The summation of Eq. (5.16) is easy and we finally obtain 

𝑃𝐹𝐹1 =
𝜆2(1 − 𝑎)2

〈𝜏𝑓〉(𝑠)2(𝑠 + 𝜆− 𝑎𝜆 + 𝛴𝑚)
 5.17 

Where, 
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𝑎 = 〈e−𝜏𝑓〉𝐴 =
1

𝜋𝑅2
∫2𝜋𝑟𝑑𝑟exp(−2𝛴𝑓√𝑅2 − 𝑟2

𝑅

0

) =
1 − e−2𝑅𝛴𝑓(1 + 2𝑅𝛴𝑓)

2𝑅2𝛴𝑓
2  5.18 

and, 

〈𝜏𝑓〉 = 𝛴𝑓𝑙 ̅ =
𝛴𝑓

𝜋𝑅2
∫2𝜋𝑟𝑙𝑑𝑟

𝑅

0

=
4𝑅𝛴𝑓

3
 5.19 

The mean optical chord length 〈𝜏𝑓〉 in a sphere is defined in the Eq. (5.19). On inverting, the 

Laplace transform of Eq. (5.17) and dividing by the quantity 𝜆𝐿, as there are 𝜆𝐿 kernels on an 

average that are intersected by the line; we get fuel-to-fuel collision probability. 

𝑃𝐹𝐹1(𝐿) =
𝜆2(1 − 𝑎)2[{𝜆(1 − 𝑎) + 𝛴𝑚}𝐿 − 1 + 𝑒

−[𝜆(1−𝑎)+𝛴𝑚]𝐿]

(𝜆𝐿)〈𝜏𝑓〉[𝜆(1 − 𝑎) + 𝛴𝑚]2
 5.20 

Another contribution comes from collision probability from the second type of terms (collision 

within the same fuel kernel in which the neutron is born) and is the same for each kernel viz., 

𝑃𝐹𝐹2(𝐿) =
(〈𝜏𝑓〉 − (1 − 𝑎))

〈𝜏𝑓〉
 5.21 

If there are 𝑛𝑖 kernels, there will be 𝑛𝑖 equal contributions. Averaging over the Poisson 

statistics for the distribution of the number of kernels clearly does not change this quantity. 

Hence, the total contribution of the two terms to the fuel-to-fuel collision probability is given 

by Eq. (5.22)  

𝑃𝐹𝐹(𝐿) =
𝜆𝐿[〈𝜏𝑓〉 − (1 − 𝑎)]

(𝜆𝐿)〈𝜏𝑓〉

+
𝜆2(1 − 𝑎)2[{𝜆(1 − 𝑎) + Σ𝑚}𝐿 − 1 + 𝑒

−[𝜆(1−𝑎)+Σ𝑚]𝐿]

(𝜆𝐿)〈𝜏𝑓〉[𝜆(1 − 𝑎) + Σ𝑚]2
 

5.22 
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5.5.2 Contribution to Fuel Kernel to Mesh Surface Probability 𝑷𝑭𝑩(𝑳) 

A similar method gives the other probabilities. For example, with 𝑛𝑖 fuel kernels lying 

along the ray of length 𝐿𝑖 in mesh 𝑖 the expression for the probability of a neutron starting from 

the 𝑘𝑡ℎ fuel kernel to reach the mesh surface is given by Eq. (5.23)  

∫𝑑𝑥1 ∫ 𝑑𝑥2 ∫ 𝑑𝑥3… ∫ 𝑑𝑥𝑛𝑖

𝐿−𝑥1−𝑥2−⋯𝑥𝑛𝑖−1

0

𝐿−𝑥1−𝑥2

0

𝐿−𝑥1

0

𝐿

0

𝑃𝑚(𝑥1)…𝑃𝑚(𝑥𝑛𝑖)𝐶(𝐿 − 𝑥1 − 𝑥2

−⋯

− 𝑥𝑛𝑖)x〈exp (−𝜏𝑓〉𝐴
𝑛𝑖−𝑘 exp (−Σm(𝐿 − 𝑥1 − 𝑥2 −⋯

− 𝑥𝑘) 〈(
1 − 𝑒𝑥𝑝 (−𝜏𝑓)

𝜏𝑓
)〉𝑉 

5.23 

 

The total probability is given by summing over 𝑘 and 𝑛𝑖. The Laplace transform of 

the above expression is easily written down using the convolution theorem, we get 

𝑃𝐹�̃�(𝑛𝑖, 𝑘, 𝑠) = ∫ 𝑃𝐹𝐵(𝑛𝑖, 𝑘, 𝐿) exp(−𝑠𝐿) 𝑑𝐿

∞

0

= (
1 − 〈exp (−𝜏𝑓)〉𝐴

𝑙Σ̅𝑓
)

𝜆𝑛𝑖〈exp (−𝜏𝑓)〉𝐴
𝑛𝑖−𝑘

(𝑠 + 𝜆+Σm)𝑛𝑖−𝑘+1(𝑠 + 𝜆)𝑘
 

5.24 

After summing over, 𝑘 and 𝑛𝑖 we get 

𝑃𝐹𝐵 = (
1 − 〈exp (−𝜏𝑓)〉𝐴

𝑙Σ̅𝑓
) ∑ ∑

𝜆𝑛𝑖〈exp (−𝜏𝑓)〉𝐴
𝑛𝑖−𝑘

(𝑠 + 𝜆+Σm)𝑛𝑖−𝑘+1(𝑠 + 𝜆)𝑘

𝑛𝑖

𝑘=1

∞

𝑛𝑖=1

 5.25 

The summations are easily carried out and we obtain 

𝑃𝐹𝐵 =
(1 − 𝑎)𝜆

〈𝜏𝑓〉(𝑠 + 𝜆 − 𝑎𝜆 + 𝛴𝑚)(𝑠)
 5.26 
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On inverting the Laplace transform of Eq. (5.26) and dividing by the average number of kernels 

intercepted by the ray of length L i. e. (𝜆𝐿), we get final expression of fuel to surface probability 

𝑃𝐹𝐵(𝐿) =
𝜆(1 − 𝑎)[1 − e−𝐿[(𝜆(1−𝑎)+𝛴𝑚)]]

(𝜆𝐿)〈𝜏𝑓〉[(𝜆(1 − 𝑎) + 𝛴𝑚)]
 5.27 

5.5.3 Contribution to Mesh Surface to Surface Probability 𝑷𝑩𝑩(𝑳) 

The surface-to-surface probability is the simplest. There is no moderator integral since 

moderator length (L) and hence the attenuation is fixed viz. exp (−Σ𝐿). The attenuation in the 

fuel depends on the number of fuel kernels encountered. Averaging this over the Poisson 

distribution for the number of kernels intercepted, we have for the surface-to-surface 

probability 

𝑃𝐵𝐵(𝐿) = exp(−Σ𝐿) exp(−𝜆𝐿) ∑
(𝜆𝐿)𝑛𝑖

𝑛𝑖!
〈exp (−𝜏𝑓〉

𝑛𝑖

∞

𝑛𝑖=0

 

= exp [𝜆𝐿〈e−𝜏𝑓〉 − (𝛴𝑚 + 𝜆)𝐿] 

𝑃𝐵𝐵(𝐿) = exp(−(𝜆(1 − 𝑎) + 𝛴𝑚)𝐿) 

5.28 

 

Note that the above expressions in Eqs. (5.22), (5.27) and (5.28) refer to the collision 

probabilities associated with the segment of a particular ray drawn across the cell falling in one 

particular mesh. By using Eq. (5.2) (which again refers to that particular ray and hence does 

not require the cosine current assumption) and integrating over all such rays (as is done for 

obtaining exact collision probabilities and is illustrated in Figure 5-1), we obtain (within mesh 

and across meshes) collision probabilities between fuel kernels and the graphite. Note that we 

do not assume the cosine current approximation of neutrons entering or exiting the kernels, as 

is done in other solutions to this problem [67], [142] and in this sense the calculation of the 
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collision probabilities is exact. Further we do not attempt to obtain an equivalent transport 

equation which has been the attempt in several approaches to transport in a random 

medium[99], [100], [140], [141]. Hence, we do not invoke assumptions such as no scattering 

etc. The various assumptions are only about the statistical properties of the medium, which we 

have seen are quite accurate at least for the case at hand. The method can easily be generalized 

to other chord length distributions. 

5.6 Alternative Method for Obtaining Integrands in the CP Calculations  

 This method uses simple arguments for writing down an integral equation for the mesh 

boundary to region (and mesh boundary to mesh boundary probability). The equation is solved 

by converting it to a differential equation. Finally, the region-to-region collision probabilities 

are obtained as integrals over the mesh boundary to region probabilities. Some of the arguments 

are somewhat heuristic but the simplicity of the method justifies the presentation. Throughout 

this section, we use the notation 𝑎 = 〈exp (−𝜏𝑓)〉𝐴 (See Eqs. 5.11 and 5.18). 

5.6.1 Integrand for the Mesh Surface-to-Surface Probability 𝑷𝑩𝑩(𝑳) 

A neutron path may cross the medium without encountering a fuel kernel at all or after 

crossing one or more kernels. The probability of the former event is exp (−𝜆𝐿) and the 

probability of crossing without collision in this case is exp (−Σ𝑚𝐿). Thus, the probability of 

reaching the mesh boundary is exp( −(𝜆 + Σ𝑚)𝐿). In the latter of the two possibilities, let us 

assume that the first kernel is encountered at a distance between 𝑥 and 𝑥 + 𝑑𝑥 for which the 

probability is exp (−𝜆𝑥)𝜆𝑑𝑥. To this we multiply the probabilities of crossing the moderator 

length 𝑥 and the kernel without collision viz. exp (−Σ𝑚𝑥) and 𝑎 = 〈exp (−𝜏𝑓)〉𝐴  and since the 
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neutron is now at a distance 𝐿 − 𝑥  from the outgoing boundary, we further multiply it by 

𝑃𝐵𝐵(𝐿 − 𝑥) and integrate over 𝑥. We thus have 

𝑃𝐵𝐵(𝐿) =  exp(−(𝜆 + Σ𝑚)𝐿) + 𝑎∫exp(−(𝜆 + Σ𝑚)𝑥)

L

0

𝑃𝐵𝐵(𝐿 − 𝑥)𝜆𝑑𝑥 

= exp(−(𝜆 + Σ𝑚)𝐿) [1 + 𝑎∫exp((𝜆 + Σ𝑚)𝑥)

L

0

𝑃𝐵𝐵(𝑥)𝜆𝑑𝑥] 

5.29 

On differentiating Eq. (5.29) w.r.t. 𝐿 we can write down the following differential equation  

𝑑𝑃𝐵𝐵(𝐿)

𝑑𝐿
= −[𝜆(1 − 𝑎) + Σ𝑚]𝑃𝐵𝐵(𝐿) 5.30 

Since for zero length the crossing probability is unity, we use this initial condition to obtain the 

solution 

𝑃𝐵𝐵(𝐿) = exp[−{𝜆(1 − 𝑎) + Σ𝑚}𝐿] 5.31 

 

5.6.2 Integrands for the Collision Probabilities 𝑷𝑩𝑭(𝑳) and 𝑷𝑩𝑴(𝑳) 

Using arguments similar to those of the previous section, we can write down the 

following equation for 𝑃𝐵𝐹(𝐿) 

𝑃𝐵𝐹(𝐿) =  ∫exp(−(𝜆 + Σ𝑚)𝑥)

L

0

[(1 − 𝑎) + 𝑎𝑃𝐵𝐹(𝐿 − 𝑥)]𝜆𝑑𝑥

=
λ(1 − 𝑎)(1 − e−(𝜆+Σ𝑚)𝐿)

𝜆 + Σ𝑚

+ λ𝑎e−(𝜆+Σ𝑚)𝐿∫exp((𝜆 + Σ𝑚)𝑥)

L

0

𝑃𝐵𝐹(𝑥)𝜆𝑑𝑥 

5.32 

On differentiating Eq. (5.32) w.r.t. 𝐿 we obtain the following differential equation 
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𝑑𝑃𝐵𝐹(𝐿)

𝑑𝐿
= 𝜆(1 − 𝑎) − [𝜆(1 − 𝑎) + Σ𝑚]𝑃𝐵𝐹(𝐿) 5.33 

𝑃𝐵𝐹(𝐿) clearly tends to zero as 𝐿 tends to zero and hence the solution is 

𝑃𝐵𝐹(𝐿) =
λ(1 − 𝑎)(1 − e−(𝜆(1−𝑎)+Σ𝑚)𝐿)

𝜆(1 − 𝑎) + Σ𝑚
 5.34 

Using the sum rule on probabilities we can now write  

𝑃𝐵𝑀(𝐿) =
Σ𝑚(1 − e

−(𝜆(1−𝑎)+Σ𝑚)𝐿)

𝜆(1 − 𝑎) + Σ𝑚
 5.35 

5.6.3 Integrands for the Collision Probabilities 𝑷𝑭𝑭(𝑳) and 𝑷𝑭𝑴(𝑳) 

A fuel kernel can be anywhere in the interval 0 to L with equal probability i.e. 
𝑑𝑥

𝐿
. 

The fuel-to-fuel probability consists of two parts. The self-collision probability is given by 

(〈𝜏𝑓〉 − 1 + 𝑎)/〈𝜏𝑓〉 (where 〈𝜏𝑓〉 = Σ𝑓𝑙�̅� =
4Σ𝑓𝑅

3
) and the probability of escaping this kernel 

and colliding in another kernel. The former is simply (1 − 𝑎)/〈𝜏𝑓〉 while the latter is 𝑃𝐵𝐹(𝐿 −

𝑥). Multiplying various factors and integrating over 𝑥 we get 

𝑃𝐹𝐹(𝐿) = ∫
𝑑𝑥

𝐿

𝐿

0

[
〈𝜏𝑓〉 − 1 + 𝑎

〈𝜏𝑓〉
+
1 − 𝑎

〈𝜏𝑓〉
𝑃𝐵𝐹(𝐿 − 𝑥)]

=
𝜆𝐿(〈𝜏𝑓〉 − (1 − 𝑎))

(𝜆𝐿)〈𝜏𝑓〉

+
𝜆2(1 − 𝑎)2[{𝜆(1 − 𝑎) + Σ𝑚}𝐿 − 1 + 𝑒

−(𝜆(1−𝑎)+Σ𝑚)𝐿]

(𝜆𝐿)〈𝜏𝑓〉[𝜆(1 − 𝑎) + Σ𝑚]
2

 

5.36 

 

Similar arguments give us the following expressions for 𝑃𝐹𝑀(𝐿) and 𝑃𝐹𝐵(𝐿) 

𝑃𝐹𝑀(𝐿) =
𝜆(1 − 𝑎)Σ𝑚[{𝜆(1 − 𝑎) + Σ𝑚}𝐿 − 1 + 𝑒

−(𝜆(1−𝑎)+Σ𝑚)𝐿]

(𝜆𝐿)〈𝜏𝑓〉[𝜆(1 − 𝑎) + Σ𝑚]2
 5.37 
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𝑃𝐹𝐵(𝐿) =
𝜆(1 − 𝑎)[1 − 𝑒−(𝜆(1−𝑎)+Σ𝑚)𝐿]

(𝜆𝐿)〈𝜏𝑓〉[𝜆(1 − 𝑎) + Σ𝑚]
 5.38 

 

5.6.4 Integrands for the Collision Probabilities 𝑷𝑴𝑭(𝑳) 𝑷𝑴𝑩(𝑳) and 𝑷𝑴𝑴(𝑳) 

Finally, we write down these probabilities using reciprocity and sum rules. They can 

also of course be obtained using the arguments of Section 5.6.3. 

𝑃𝑀𝐹(𝐿) =
𝜆(1 − 𝑎)[{𝜆(1 − 𝑎) + Σ𝑚}𝐿 − 1 + 𝑒

−(𝜆(1−𝑎)+Σ𝑚)𝐿]

𝐿[𝜆(1 − 𝑎) + Σ𝑚]2
 5.39 

 

𝑃𝑀𝐵(𝐿) =
(1 − e−(𝜆(1−𝑎)+Σ𝑚)𝐿)

L[𝜆(1 − 𝑎) + Σ𝑚]
 5.40 

𝑃𝑀𝑀(𝐿) =
Σ𝑚[{𝜆(1 − 𝑎) + Σ𝑚}𝐿 − 1 + 𝑒

−(𝜆(1−𝑎)+Σ𝑚)𝐿]

𝐿[𝜆(1 − 𝑎) + Σ𝑚]2
 5.41 

 

 The first thing we note is that the expressions for the various probabilities derived in 

this section agree with those obtained in Section 5.5. This gives us confidence in the method 

used for deriving these expressions. The other thing to be noted is that the above expressions 

represent probabilities for a given ray of length 𝐿 in the mesh. Hence, they may not be used as 

such for the integrands in the calculation of collision probabilities by the routine.  At the end 

of the routine, each of the (integrated) probabilities is divided by the product of volume and 

cross-section of the region of birth of the neutron. Since the integration is over the area 

perpendicular to the direction of flight, and the volume of a tube of a region is proportional to 

the chord length in that region, all integrands corresponding to region 𝑖 to another region j or a 
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mesh boundary must be multiplied by the total macroscopic cross-section and chord length of 

region 𝑖. In the case of fuel this is (𝜆𝐿)〈𝜏𝑓〉 while in the case of the moderator this is Σ𝑚𝐿. 

5.7 Corrections to the Distribution of Fuel Kernels due to the Coatings 

 In Sections 5.5 and 5.6, we assumed that the kernels are randomly distributed and hence 

the distribution of the kernels along any line is a Poisson point process. For the problem 

discussed in this thesis (
1

𝜆
≅ 100mm is large as compared to a TRISO particle diameter that is 

0.92mm or 0.66mm), the results obtained are perfectly adequate as we shall see in the next 

section. However, for sake of completeness of results and for applicability to larger sized 

kernels or higher packing densities, we sketch a method to obtain corrections to the Poisson 

distribution results.  

The presence of coatings introduces a minimum gap equal to twice the total coating thickness 

(approximately the same as diameter of a TRISO particle). Hence, we replace the interval 

distribution[91] between two fuel kernels by  

𝑅𝐹(𝑥) = 0 for x <  𝐷 5.42 

𝑅𝐹(𝑥) = λ exp(−𝜆(𝑥 − 𝐷))  for x > 𝐷 5.43 

The above expression is justified as the kernels are small compared to the TRISO particle and 

hence rays passing through fuel kernels are almost diametrical through the TRISO particles. 

We will also need an interval distribution for the next interception starting from a point chosen 

at random (the random interval distribution). This is obtained by integrating the above 

expression and multiplying by the average number of kernels per unit length 𝜇 = 𝜆/(1 + 𝜆𝐷)  

𝑅𝑅(𝑥) = 𝜇 for x <  𝐷 5.44 
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𝑅𝑅(𝑥) = 𝜇 exp(−𝜆(𝑥 − 𝐷))  for x > 𝐷 5.45 

It may be recalled that the situation is similar to that of the statistical distribution of counts 

along the time axis in the presence of a non-extending dead time. Mueller[143] has given exact 

expressions for the distribution of the number of counts (kernels in our context) in a randomly 

chosen interval of length 𝐿. Using this distribution, it is possible to evaluate the surface-to-

surface collision probability as in Eq. (5.28). With the probability 𝑃𝐵𝐵(𝐿), obtained as above, 

we can derive other probabilities required. However, the evaluation is tedious and would lead 

to rather complicated expressions for this probability.  

Hence, we look for a simpler alternative that would be easy to use in practice. Instead, 

we start from Eq. (5.29) and rewrite it for the present case. We paraphrase the argument used 

to obtain Eq. (5.29) for the present case. A neutron path may cross the medium without 

encountering a fuel kernel at all or after crossing one or more kernels. Since the starting point 

is randomly chosen, the probability of the former event is ∫ 𝑅𝑅(𝑥)𝑑𝑥
∞

𝐿
 and the probability of 

crossing without collision in this case is exp (−Σ𝑚𝐿). Thus, the probability of reaching the 

mesh boundary is exp( −Σ𝑚𝐿) ∫ 𝑅𝑅(𝑥)𝑑𝑥
∞

𝐿
. In the latter of the two possibilities, let us assume 

that the first kernel is encountered at a distance between 𝑥 and 𝑥 + 𝑑𝑥 for which the probability 

is 𝑅𝑅(𝑥)𝑑𝑥. To this we multiply the probabilities of crossing the moderator length 𝑥 and the 

kernel without collision viz. exp (−Σ𝑚𝑥) and 𝑎 = 〈exp (−𝜏𝑓)〉  and since the neutron is now at 

a distance 𝐿 − 𝑥  from the outgoing boundary, but since we are starting from a kernel point and 

not a random point, we must now multiply it by 𝑃𝐵𝐹(𝐿 − 𝑥) and integrate over 𝑥. Here 𝑃𝐵𝐹(𝐿) 

is the equivalent of 𝑃𝐵𝐵(𝐿) with the starting point being at the surface of a fuel kernel rather 

than located randomly in the moderator. We thus have 
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𝑃𝐵𝐵(𝐿) = exp( −Σ𝑚𝐿)∫ 𝑅𝑅(𝑥)𝑑𝑥

∞

𝐿

+ 𝑎∫exp (−Σ𝑚𝑥) 𝑅𝑅(𝑥)𝑃𝐵𝐹(𝐿 − 𝑥)𝑑𝑥

𝐿

0

 5.46 

If instead of starting from a randomly chosen point in the moderator, we started from a point 

at the surface of the fuel kernel, we get on using an identical argument, the following equation 

for 𝑃𝐵𝐹(𝐿) 

𝑃𝐵𝐹(𝐿) = exp( −Σ𝑚𝐿)∫ 𝑅𝐹(𝑥)𝑑𝑥

∞

𝐿

+ 𝑎∫exp (−Σ𝑚𝑥) 𝑅𝐹(𝑥)𝑃𝐵𝐹(𝐿 − 𝑥)𝑑𝑥

𝐿

0

 5.47 

We first note that the attenuation in the moderator is unaffected and hence we can try out the 

following factorization for 𝑃𝐵𝐵(𝐿) and 𝑃𝐵𝐹(𝐿)   

𝑃𝐵𝐵(𝐿) = exp(−Σ𝑚𝐿) 𝑄𝑅(𝐿) 5.48 

𝑃𝐵𝐹(𝐿) = exp(−Σ𝑚𝐿)𝑄𝐹(𝐿) 5.49 

Where, the subscript R indicates starting from a random point and F indicates a point on the 

fuel surface. On substituting the forms (5.48) and (5.49) in (5.476) and (5.47) we can write 

down the following two equations for the functions 𝑄𝑅(𝐿) and 𝑄𝐹(𝐿). 

𝑄𝑅(𝐿) = ∫ 𝑅𝑅(𝑥)𝑑𝑥

∞

𝐿

+ 𝑎∫𝑅𝑅(𝑥)𝑄𝐹(𝐿 − 𝑥)𝑑𝑥

𝐿

0

 5.50 

𝑄𝐹(𝐿) = ∫ 𝑅𝐹(𝑥)𝑑𝑥

∞

𝐿

+ 𝑎∫𝑅𝐹(𝑥)𝑄𝐹(𝐿 − 𝑥)𝑑𝑥

𝐿

0

 5.51 

Our task essentially amounts to solving the second of this pair of equations [Eq. (5.49)] and 

using the first to evaluate 𝑄𝑅(𝐿) [Eq. (5.50)]. For 𝐿 < 𝐷, 𝑄𝐹(𝐿) = 1, since another kernel 

cannot lie within one diameter of an earlier one. On introducing, the form of Eq. (5.45) 

for 𝑅𝐹(𝑥), Eq. (5.51) becomes 
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𝑄𝐹(𝐿) = exp(−𝜆(𝐿 − 𝐷)) [1 + 𝑎{exp(𝜆𝐷) − 1}]

+ 𝑎𝜆 exp(−𝜆(𝐿 − 𝐷)) ∫ exp(𝜆𝑥)𝑄𝐹(𝑥)𝑑𝑥

𝐿−𝐷

𝐷

 
5.52 

for 𝐿 > 2𝐷, and  

𝑄𝐹(𝐿) = exp(−𝜆(𝐿 − 𝐷)) + 𝑎{1 − exp(−𝜆(𝐿 − 𝐷))} 5.53 

for 𝐷 < 𝐿 < 2𝐷 

It is clear from Eq. (5.53) that it is possible to obtain a recursive solution for Eq. (5.52) in 

successive intervals 2𝐷 < 𝐿 < 3𝐷, 3𝐷 < 𝐿 < 4𝐷 and so on by substituting previously 

obtained solutions. For example, for 2𝐷 < 𝐿 < 3𝐷 we obtain  

𝑄𝐹(𝐿) = exp(−𝜆(𝐿 − 𝐷)) + 𝑎{exp(−𝜆(𝐿 − 2𝐷)) − exp(−𝜆(𝐿 − 𝐷))}

+ 𝑎2{1 − exp(−𝜆(𝐿 − 2𝐷)) − 𝜆(𝐿 − 2𝐷)exp(−𝜆(𝐿 − 2𝐷))} 
5.54 

However, it is clear that the expressions will get more and more complicated as we proceed. 

However, we observe from Eqs. (5.53) and (5.54) that the function 𝑄𝐹(𝐿)has discontinuities in 

various derivatives at 𝐷, 2𝐷, 3𝐷, etc. Thus while 𝑄𝐹(𝐿) is itself continuous at 𝐿 = 𝐷, its fist 

derivative is discontinuous. At 𝐿 = 2𝐷, the function and its first derivative are continuous but 

the second derivative is discontinuous and so on. On differentiating Eq. (5.52) with respect to 

𝐿 we obtain 

𝑄′𝐹(𝐿) = −𝜆𝑄𝐹(𝐿) + 𝑎𝜆𝑄𝐹(𝐿 − 𝐷) 5.55 

Since 𝑄′𝐹(𝐿) exist and is continuous for all 𝐿 > 𝐷, at least for to 𝐿 > 2𝐷, we can write  

𝑄′𝐹(𝐿) = −𝜆(1 − 𝑎)𝑄𝐹(𝐿) − 𝑎𝜆𝐷𝑄′𝐹(𝐿) 5.56 

The solution is  
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𝑄𝐹(𝐿) = 𝐶exp(
−𝜆(1 − 𝑎)𝐿

1 + 𝑎𝜆𝐷
) 5.57 

The constant can be written by using the initial condition at 𝐿 = 2𝐷 from Eq. (5.53). However, 

on doing this it is seen that to the first order in 𝜆𝐷 the solution is not different from what is 

obtained by using the initial condition at 𝐿 = 𝐷 viz. 𝑄𝐹(𝐿) = 1. Hence, we obtain finally 

for 𝐿 > 𝐷,  

𝑄𝐹(𝐿) = exp (
−𝜆(1 − 𝑎)(𝐿 − 𝐷)

1 + 𝑎𝜆𝐷
) ≡ exp(−𝛼(𝐿 − 𝐷)) 5.58 

Moreover, we have already seen that for 𝐿 < 𝐷, 

𝑄𝐹(𝐿) = 1 5.59 

 

Figure 5-2: Variation of 𝑄𝐹(𝐿) with distance (L): Comparison between Eq. (5.58) and Monte 

Carlo for smaller kernel radius (0.012cm) and lower kernel density (15000 Kernels). The result 

based on the assumption of Poisson statistics is also included. 
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The variation of the function 𝑄𝐹(𝐿) with L as obtained by Eqs. (5.58) and by Monte Carlo 

calculations is shown in Figure 5-2 at low packing fraction (~0.022) of the TRISO particles 

and for the smaller kernel radius (0.12mm). The mean distance between any two kernels (
1

𝜆
 ≅

96mm) for this configuration and it is very large as compared to the TRISO diameter 0.66mm. 

It can be seen from Figure 5-2 that at low packing of TRISO and for small kernels the Poisson 

statistics shows very good agreement with that of the Eq. (5.58) and with the Monte Carlo 

results as well.  In Figure 5-3, we show a variation of the function 𝑄𝐹(𝐿) with L as obtained 

by Eqs. (5.58) and by Monte Carlo calculations for 
1

𝜆
≅ 11mm and a TRISO particle diameter 

that is 1.0mm corresponding to a large value of the kernel radius (0.25 mm) and a high value 

of packing fraction (0.24).  

 

 

Figure 5-3: Variation of 𝑄𝐹(𝐿) with distance (L): Comparison between Eq. (5.58) and Monte 

Carlo for larger kernel radius (0.025cm) and higher kernel density (30000 Kernels). The 

result based on the assumption of Poisson statistics is also included. 
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 For the sake of comparison, we also show the function obtained assuming Poisson 

statistics. It is clear that while Poisson statistics gives a fair approximation to the Monte Carlo 

results, Eq. (5.58) shows excellent agreement. Now, we can obtain the probability for the 

random interval case and 𝑃𝐵𝐵(𝐿) by substituting the expression for 𝑄𝐹(𝐿) Eq. (5.58) in Eq. 

(5.46)-(5.47) and using Eqs. (5.44) and (5.45). For the three cases, viz. 𝐿 < 𝐷,𝐷 < 𝐿 < 2𝐷 

and 𝐿 > 2𝐷 we respectively obtain. 

𝑃𝐵𝐵(𝐿) = exp (−Σ𝑚𝐿) [𝜇(𝐷 − 𝐿) +
𝜇

𝜆
+ 𝑎𝜇𝐿] 5.60 

𝑃𝐵𝐵(𝐿) = exp (−Σ𝑚𝐿) [
𝜇e−𝜆(𝐿−𝐷)

𝜆
+
𝑎𝜇

𝛼
(1 − e−𝛼(𝐿−𝐷)) +

𝑎𝜇

𝜆
(1 − e−𝜆(𝐿−𝐷)) + 𝑎𝜇(2𝐷

− 𝐿)] 

5.61 

𝑃𝐵𝐵(𝐿) = exp (−Σ𝑚𝐿) [
𝜇e−𝜆(𝐿−𝐷)

𝜆
+
𝑎𝜇

𝛼
(e−𝛼(𝐿−2𝐷) − e−𝛼(𝐿−𝐷))

+
𝑎𝜇

𝜆
(e−𝜆(𝐿−2𝐷) − e−𝜆(𝐿−𝐷)) +

𝑎𝜇

𝜆 − 𝛼
(e−𝜆(𝐿−2𝐷) − e−𝜆(𝐿−𝐷))] 

5.62 

The probability 𝑃𝐵𝑀(𝐿) is obtained by multiplying the above expressions for 𝑃𝐵𝐵(𝐿) by Σ𝑚𝑑𝑥  

and integrating over x from 0 to L. We thus write 

𝑃𝐵𝑀(𝐿) = 𝛴𝑚∫𝑃𝐵𝐵(𝑥)𝑑𝑥

𝐿

0

 
5.63 

We assume that 𝐿 > 2𝐷, as this is practically the only important case of interest. The 

integration is carried out by splitting the range over the intervals [0, 𝐷], [𝐷, 2𝐷] and [2𝐷, 𝐿].  

The moderator-to-moderator probability 𝑃𝑀𝑀(𝐿) can be obtained by averaging 𝑃𝐵𝑀(𝑥) over 

the length L of the interval. This implies a double integration of 𝑃𝐵𝐵(𝑥) as shown below  
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𝑃𝑀𝑀(𝐿) =
1

𝐿
∫𝑃𝐵𝑀(𝑥)𝑑𝑥

𝐿

0

=
𝛴𝑚
𝐿
∫∫𝑃𝐵𝐵(𝑥′)𝑑𝑥′

𝑥

0

𝑑𝑥

𝐿

0

 
5.64 

Where, we have used Eq. (5.63). By changing, the order of integration of the two variables 

𝑃𝑀𝑀(𝐿) can be written as a single integration as follows  

𝑃𝑀𝑀(𝐿) =
𝛴𝑚
𝐿
∫(𝐿 − 𝑥)𝑃𝐵𝐵(𝑥)𝑑𝑥

𝐿

0

= 𝑃𝐵𝑀(𝐿) −
𝛴𝑚
𝐿
∫𝑥𝑃𝐵𝐵(𝑥)𝑑𝑥

𝐿

0

 
5.65 

 

We again assume as before that 𝐿 > 2𝐷 and carry out the integration by splitting the range 

over the intervals [0, 𝐷], [𝐷, 2𝐷] and [2𝐷, 𝐿]. The final expressions for 𝑃𝐵𝑀(𝐿)  and 𝑃𝑀𝑀(𝐿) 

are given in APPENDIX-B. Other probabilities can be obtained using reciprocity and sums 

rule. 

5.8 Results and Discussions 

The treatment of double heterogeneity in the resonance region was incorporated in an 

earlier version of the code as outlined in Sections 4.4 and 5.1. Results of analysis of the OECD 

benchmark[105] (phase 1 and phase 5) were presented in Ref.[135].  In this section, we present 

results of analysis of benchmarks for validation of the methodology described in the previous 

section. The modified expressions for the collision probabilities in the random heterogeneous 

medium (fuel kernels dispersed in a graphite matrix) described in Section 5.5 were incorporated 

in the code BOXER3. This allows us to treat the double heterogeneity for fuels having large 

cross-sections in the thermal region. In particular, it applies to fuels having a high concentration 

of plutonium. We have studied a number of Pu fueled HTR benchmarks using the modified 

code and the results are discussed in the following sub sections. 
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5.8.1 Analysis of an OECD Benchmark 

The details of benchmark definitions are provided by the Organization for Economic 

Cooperation and Development, Nuclear Energy Agency (OECD NEA), Nuclear Science 

Committee, Working Party on the Physics of Plutonium Fuels and Innovative Fuel 

Cycles[105]. The specifications of fuel pebbles and coated particles of these benchmarks used 

in the present study are reproduced in APPENDIX-A.  The benchmark consisting of an infinite 

array of pebble containing plutonium fuels, described in phase 2a,  has been used for validation 

of BOXER3 code using the 69 and 172 group WIMSD-formatted library based on evaluated 

nuclear data files recommended by WLUP participants [38].  

Table 5-1Results of BOXER3 code with new method of self-shielding and comparison with 

other codes 

Pebble Model 

Boxer MCNP WIMS9 APPOLO 

JEF2.2 IAEA ENDF-B/VI JEF2.2 JEF2.2 

172g 172g Point data 172g 172g 

Homogeneous 1.22835 1.20864 

1.4573 

± 0.001 

1.46154 1.46369 

Doubly 

heterogeneous 

(present work with 

2,3,4 meshes in fuel) 

2 1.46876 1.45147 

3 1.46868 1.45159 

4 1.46882 1.45150 

Doubly heterogeneous 

(based on Dancoff) 

1.22849 1.20897 
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Table 5-1shows a comparison of results obtained using BOXER3 and those of other 

contributors using various codes. As was observed in Ref.[135], the equivalence principle / 

Dancoff factor based methodology used for double heterogeneity treatment in the resonance 

region of Pu fueled pebble bed HTRs, showed no significant improvement in the results which 

showed gross under prediction of 𝑘∞. This is clearly seen in Table 5-1. The BOXER3 result 

for the homogeneous pebble model and the heterogeneous model with conventional resonance 

treatment based on the Dancoff and Bell corrections have no significant difference in the 

calculated values of the 𝑘∞. This is mainly due to fact that the standard resonance treatment, 

based on the equivalence principle and resonance tables, using the WIMS-D library doses not 

account for the variation of the cross-section around the resonances at 0.3 eV and 1.0 eV of Pu. 

This problem has been the principal motivation for developing the present method.  

However, with the implementation of the modified expressions for collision 

probabilities in a heterogeneous medium, derived in Section 5.5 or 5.6, we see a substantial 

improvement in the results. In the heterogeneous model the meshes in the heavy scatterer, the 

coolant and the graphite moderator regions are ordinary homogeneous meshes, whereas the 

meshes falling in the fuel zone of the pebble are split into two sub meshes viz. fuel sub mesh 

and matrix sub mesh.  

The BOXER3 results shown in Table 5-1 are computed with two, three and four meshes 

in the fuel zone. The results show that 𝑘∞ is insensitive to the number of meshes in the fuel 

zone for this particular problem. It can also be seen from Table 5-1 that BOXER3 results using 

172 group IAEA (mostly based on ENDF-B/VI data) library show closer agreement with the 

MCNP result based on ENDF-B/VI point data, the difference being about 0.4 % whereas with 

JEF2.2 library the difference is larger about 0.8%. Likewise, the BOXER3 results with the 172 
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group JEF2.2 library agree better with  the APPOLO2, and WIMS9 values (the difference being 

about 0.34%, 0.49% respectively) than with the results with the 172 group JEF2.2 library. This 

is due to the use of the same library (JEF2.2) with these two codes. Certainly, there is a 

tremendous improvement over the results obtained by homogenizing the fuel kernels and 

graphite matrix with and without the heterogeneous resonance treatment.  

 

Figure 5-4: Variation of 𝑘∞  as a function of fuel burn-up for the benchmark defined in the 

phase 2a.  

Burnup of the benchmark cell was studied up to 65000 MWd/ton. The variation of 𝑘∞ is 

shown in Figure 5-4. A comparison of our results for the variation of the concentrations of the 

isotopes of Pu, Am, and Cm with burnup with benchmark (WIMS9) data is shown in Figure 

5-5. The average percentage difference between the 239Pu, 240Pu and 241Pu concentrations 

computed by BOXER code and the reference code WIMS9 is of the order of 0.38%, 0.02% 

and 0.24% respectively.  
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Figure 5-5: Variation of Plutonium isotopes density as a function of fuel burn-up for the 

benchmark defined in the phase 2a. 

 

Figure 5-6: Variation of Americium isotopes density as a function of fuel burn-up for the 

benchmark defined in the phase 2a. 
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Figure 5-7: Variation of Curium isotopes density as a function of fuel burn-up for the 

benchmark defined in the phase 2a. 

Again, the good agreement lends confidence in the new methodology for treating 

double heterogeneity in the thermal region for the case of plutonium fuels.  

5.8.2 Analysis of Other Benchmarks 

Another validation of the proposed method has been carried out for the pebble lattice 

cell problems discussed in the thesis of Bende [134]. We have studied four cases using 

BOXER3. In the first two cases, 1 gram of plutonium is loaded per pebble [by packing 25829 

and 19406 TRISO particles with kernels of radius 0.01cm and 0.011cm respectively]. The other 

two cases have 2-gram plutonium loaded per pebble [by packing 51659 and 38812 TRISO 

particles with kernels of radius 0.01cm and 0.011cm respectively]. The geometrical 

specifications of the pebble and TRISO particles are taken from Ref.[134]. A uniform 

temperature of 600K is taken over the pebble for all the cases. A comparison of BOXER3 
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results with the reference [134] results obtained from the MCNP code for these cases is 

presented in Table 5-2.  

Table 5-2 Comparison of 𝑘∞ of pebble with MCNP results 

Pu mass 1g per pebble 2g per pebble 

Codes Library 

Kernel Radius (cm) Kernel Radius (cm) 

0.01 0.011 0.01 0.011 

BOXER Jef2.2-172group 1.4106 1.4216 1.2426 1.2550 

MCNP Jef2.2 Point Data 1.403 1.418 1.233 1.247 

% difference  0.54 0.25 0.78 0.64 

 

Here the agreement with MCNP results is somewhat similar to that of the previous 

benchmark, the maximum difference is about 0.78%.  The differences must be attributed to the 

different modeling methods used in the codes. The collision probability method used in 

BOXER3 takes into account the fact that fuel kernels are randomly distributed in the graphite 

matrix based on a Poisson distribution.  Whereas in the reference analysis with MCNP, a simple 

cubic lattice cell [with each of the unit cells consisting of a fuel kernel followed by coating 

layers], is used to represent the random distribution of kernels. We have observed in our earlier 

studies, that a difference of a few hundred pcm can be observed between lattice and randomized 

distribution of fuel kernels in HTR lattice cell calculations.  

5.9 Conclusions 

A new method for thermal neutron transport in the random heterogeneous lattice cells 

of HTRs containing high concentration Pu fuel as is the case in Pu burning HTRs has been 
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described in the chapter. The method is based on the collision probability approach. Exact 

expressions for collision probabilities in the random heterogeneous medium have been 

obtained by two independent methods under realistic assumptions of the statistical distribution 

of fuel kernels in the graphite matrix. Results based on the use of these formulae in the lattice 

code BOXER3 show generally good agreement HTR benchmarks involving Pu fuel.  

The method developed in this chapter does not make use of any free parameters such 

as the Bell factor used in the equivalence principle approach for resonance treatment. This is a 

major advantage and hence, for calculating resonance absorption in HTR cells, the method 

could be used in conjunction with the subgroup approach or ultra-fine group approach The 

method also suggests a new Monte Carlo approach to solving transport problems in High 

Temperature Reactors that is a subject of Chapter 6. 
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Chapter 6 A NEW APPROACH TO MONTE CARLO IN 

HTRs: sampling kernel position during a random 

walk process 

 

In this chapter, we use some of the collision probability formulae, derived in Chapter 5, to 

construct a fast Monte Carlo algorithm for high temperature reactors applications. This 

chapter discusses the theoretical basis of the Monte Carlo algorithm, its implementation for 

the case of a lattice cell with a multigroup library and the results obtained. 

 

6.1 Introduction 

Monte Carlo methods are increasingly being used for obtaining solutions to criticality 

and other problems of reactor physics due to their ability to exactly handle complex variation 

of cross-sections with energy and geometrical layout of various materials[106], [144], [145]. 

While this is true in situations where the material distribution is precisely defined, it may not 

always be the case. One such example is when the core has undergone burnup and there is a 

continuous variation of the fuel composition. Clearly some modelling of the variation of fuel 

composition is necessary as the exact variation is neither available nor is it practically feasible 

to model such a variation. A fairly common form of modelling is to divide the fuel into a 

number of burnup zones and use the flux tallies in these zones to obtain the average burnup in 

each zone and subsequently use this average fuel composition in each zone [146], [147]. 

Another example is when the distribution of materials in the reactor is statistical as is the case 
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in high temperature reactors (HTRs), that is the subject of the present thesis.  The core of HTRs 

consists of thousands of fuel elements (pebbles or small slugs called compacts) each of which 

in turn consists of thousands of tiny fuel kernels dispersed randomly in a graphite matrix. Since 

it is not permissible to replace this dispersion of tiny fuel kernels by a homogeneous mixture 

(as it often results in unacceptably large errors), it is necessary to model the variation of 

material composition of such a reactor. 

 Various methods have therefore been used to explicitly model the fuel kernels in HTRs 

by the Monte Carlo method. One of the most common methods is to replace the random 

distribution of fuel kernels by a regular lattice arrangement and use the lattice features of Monte 

Carlo codes[148]. This type of modelling has two problems. The first is that detailed tracking 

through the lattice is time consuming. The other problem is that the calculated Keff is 

significantly different from that of a random distribution. Another approach is to use a lattice 

but to randomly locate the fuel particle within each cell [148], [149], or a more detailed 

approach [150] involving generation of a random medium and carrying out tracking through 

it. These approaches partially or fully mitigate the second problem but not the first. Finally, 

there is the option of using the delta algorithm [151], [152] in place of detailed tracking after 

modelling the fuel arrangement in one of aforementioned ways. However, the delta algorithm 

slows down whenever there is any material with a very large cross-section. Moreover, it does 

not permit calculations of the track length estimator of the flux. 

This chapter describes a new approach to the modelling of this complex arrangement 

of the fuel in the HTR. The method uses a new technique for sampling the next collision point 

that avoids having to prepare a model of the arrangement of fuel particles and tracking in detail 

the neutrons through this medium. The method draws upon various formulae for collision 

probabilities in random media derived in Chapter-5[153]. It may be emphasized that the present 
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method is not an exact representation of the system, but like the methods described above, is a 

way of modelling the spatial distribution of materials in the HTR core. Nevertheless, the new 

method has the statistical element inherent in it and is expected to be faster than the one 

involving detailed tracking methods described above. At the same time, the proposed new 

method does not have any of the limitations of the delta algorithm that is commonly used to 

avoid detailed ray-tracing through the problem geometry required in tracking particles in 

Monte Carlo.  

 The sampling methods used for tracking neutron histories are described in Section 6.2.  

Although the presentation is for pebble bed reactors, it may be used for prismatic type reactor 

lattice and core calculations as well. To demonstrate the method, we describe its 

implementation for solving the criticality problem of a pebble-bed lattice cell using a 

multigroup library in Section 6.4. The method can be easily extended to more general problems 

with continuous energy data and to core calculations in pebble-bed reactors as described in 

Section 6.5. Results and comparisons with other methods are presented in Section 6.6. In 

Section 6.7, we present a summary of the work and the conclusions drawn. 

6.2 Theoretical Basis of the Method: The new algorithm for neutron 

tracking for Poisson statistics of kernels 

6.2.1 The Next Collision of a Neutron Starting at a Point in the Graphite Matrix 

 In Chapter 5, we obtained an expression giving the attenuation (probability of surviving 

up to a distance 𝑥) of neutrons initially at a point chosen randomly within the graphite matrix 

of the fuel zone of a pebble of a pebble bed HTR. The derivation was based on the assumptions 

that the fuel kernels are very small compared to a mean free path in graphite, and are distributed 
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completely randomly inside the graphite matrix (Poisson statistics). It is assumed that the 

distributions of the intervals intercepted by any chord in the medium follows a renewal process, 

i.e., the successive intercept length distributions are independent of one another. It is also 

assumed that the outer coatings of a TRISO particle that surround the fuel kernel have been 

homogenized with the graphite matrix and hence the fuel zone medium consists of tiny fuel 

kernels embedded randomly in the homogenized graphite matrix. We show how some of these 

assumptions can be relaxed in the next Section 6.2.2.  

Accordingly, the probability of a neutron not colliding up to a distance 𝑥 is given by 

𝑃(𝑥) = exp[−{𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅Σ𝑚 }𝑥] 6.1 

Where,  

𝑙 ̅is the mean chord length in a sphere 

𝑎𝑘 is the fuel kernel radius 

𝜆 = 𝑛𝜋𝑎𝑘
2 ; 𝑛 is kernel density 

Σ𝑚 is moderator total cross-section 

𝛴𝑓 is fuel total cross-section  

𝑎 =
1

𝜋𝑎𝑘2
∫ 2𝜋𝑟𝑑𝑟 𝑒−2𝛴𝑓√𝑎𝑘

2−𝑟2

𝑎𝑘

0

=
1 − 𝑒−2𝑎𝑘𝛴𝑓(1 + 2𝑎𝑘𝛴𝑓)

2𝑎𝑘2𝛴𝑓
2  

6.2 

Note that Eq. (6.1) is slightly different from the equation obtained in Ref.[153] in that it 

includes a small correction factor (1 − 𝜆𝑙)̅ to the moderator cross-section to compensate for 

the assumption of an infinitesimally small kernel in the derivation of the equation in Ref. [153].  

The ending point could be anywhere. By considering a distance 𝑥 + 𝑑𝑥  



160 

 

 

 

𝑃(𝑥 + 𝑑𝑥) = exp[−{𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅𝛴𝑚}(𝑥 + 𝑑𝑥)] 6.3 

And subtracting Eq. (6.1) from (6.2) we obtain the collision probability in the distance interval 

𝑥 to 𝑥 + 𝑑𝑥 

𝑃(𝑥)𝑑𝑥 = exp[−{𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅𝛴𝑚}𝑥]{𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅𝛴𝑚}𝑑𝑥 6.4 

We interpret the above equation as follows. Starting from a point in the graphite matrix part of 

the fuel zone, the distance to the next collision will be sampled using the above distribution. 

The probability that the collision takes place in a fuel kernel or in the graphite matrix are then 

respectively given by 

𝜆(1 − 𝑎)

𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅𝛴𝑚
 6.5 

(1 − 𝜆𝑙)̅𝛴𝑚

𝜆(1 − 𝑎) + (1 − 𝜆𝑙)̅𝛴𝑚
 6.6 

 

In Section 6.4.1, we describe details of the implementation of the location of the collision based 

on Eqs. (6.4) - (6.6). We also describe a somewhat different procedure in Section 6.4 that is 

based on the same philosophy but does not explicitly use the above equations. This alternative 

procedure is somewhat more convenient for finding track length estimates. 

6.2.2 The next collision of a neutron starting at a point in the fuel kernel 

Consider a fuel kernel and a coordinate system in which the centre of the kernel is at the origin. 

Let the neutron start at a point 𝐫 = (𝑥, 𝑦, 𝑧) inside the kernel in the direction 𝛀 = (𝛺𝑥, 𝛺𝑥 , 𝛺𝑥). 

If the neutron is an initial source neutron, we determine 𝛀 by sampling from an isotropic 

distribution and 𝒓 by sampling from a uniform distribution within the volume of the kernel. If 
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the neutron is a secondary neutron due to collision of a neutron in the fuel kernel, then 

determination of the collision and direction is done as discussed in Section 6.2.3.  

The point of intersection of the neutron trajectory is given by solving the equations of the 

trajectory and the sphere. 

𝑹2 = 𝑎𝑘
2 6.7 

𝑹 = 𝑟 + 𝑠 𝜴 6.8 

i.e. the positive root of Eq. (6.9) 

𝑠2 + 2𝑟. 𝜴𝑠 − (𝑎𝑘
2 − 𝑟2) = 0 6.9 

given by Eq. (6.10) 

𝑠 = √(𝑟. 𝜴)2 + (𝑎𝑘2 − 𝑟2) − 𝑟. 𝜴 6.10 

𝑠 gives the maximum distance travelled within the fuel kernel. This suggests the following 

sampling scheme. We sample a distance given by 𝐷 = −
1

Σ𝑓
𝑙𝑛𝜉. If 𝐷 < 𝑠, the neutron again 

collides in the fuel kernel and the process can be repeated for the secondaries arising from the 

collision. If 𝐷 > 𝑠, the neutron escapes the kernel and enters the graphite matrix, in which case 

we use the sampling scheme of Section 6.2.1. 

6.2.3 Sampling of the collision point in a fuel kernel 

 Two cases arise. The first in which the starting point is within the same kernel. This is 

dealt with the method described in Section 6.2.2. If the starting point is outside the kernel in 

which next collision occurs, we use the following method.  

We assume that the centre of the kernel in which the collision occurs is distributed with 

a probability proportional to its distance from the trajectory of the colliding neutron up to a 
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distance equal to its radius. This follows from the probability being proportional to the area 

presented perpendicular to the direction of the trajectory. With this assumption, the cylindrical 

coordinates (𝜌, 𝑧) of the point of collision within the sphere are obtained by the following 

sampling scheme.  

Determine 𝜌 = 𝑎𝑘√𝜉1 and accept if 

𝜉2 < (1 − 𝑒𝑥𝑝 (−2𝛴𝑓√𝑎𝑘2 − 𝜌2)/(1 − exp (−2𝛴𝑓𝑎𝑘)) 6.11 

The rejection condition is due to the fact that we are considering neutrons that have collided in 

the kernel whose probability depends upon the track length within the sphere that in turn 

depends upon the distance of the trajectory from the centre. 

Determine 𝑧 by sampling 𝑥 from the distribution  

exp (−Σ𝑓𝑥)Σ𝑓

(1 − exp (−2𝛴𝑓√𝑎𝑘2 − 𝜌2)
 6.12 

and write 

𝑧 = 𝑥 − √𝑎𝑘2 − 𝜌2 6.13 

Transforming to the coordinates 𝑟 = (𝑥, 𝑦, 𝑧) relative to a coordinate system that is 

parallel to a fixed coordinate system and whose origin is located at the centre of the fuel kernel 

under consideration is in general fairly complicated just as is the transformation of the new 

direction after scattering. Fortunately, this is not required. We note from the equation giving 

the distance travelled by the neutron in the kernel that this depends upon 𝑟2 and 𝑟. 𝛺. Without 

loss of generality, we may assume that the centre of the sphere is in the 𝑥𝑧 plane of the frame 

moving with the neutron before the collision. The standard method for sampling the direction 

of the neutron in the case of anisotropic scattering involves sampling the direction vector 

components in this frame and transforming to the fixed frame as follows 
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(

𝜇𝑓
𝜂𝑓
𝜉𝑓
) =

(

  
 

𝑢𝑣

√1 − 𝑤2
−

𝑣

√1 − 𝑤2
𝑢

𝑣𝑤

√1 − 𝑤2

𝑢

√1 − 𝑤2
𝑣

−√1 − 𝑤2 0 𝑤)

  
 
(

𝜇𝑠
𝜂𝑠
𝜉𝑠
) 6.14 

 

where 𝑢, 𝑣, 𝑤 are the components of the initial direction with respect to the fixed frame and the 

vectors with subscripts 𝑓 and 𝑠 referring to the components of the outgoing direction in the 

fixed and moving (sampling) frames respectively. 𝜉𝑠 is sampled as per the scattering law and 

the other components are obtained by sampling the azimuthal angle uniformly between 0 and 

2π and using  

𝜇𝑠 = √1 − 𝜉𝑠2 cos𝜑  6.15 

𝜂𝑠 = √1 − 𝜉𝑠2 sin𝜑  6.16 

Since the components of the collision point relative to the sphere centre are available in the 

moving frame, we can write the scalar product 𝐫. 𝛀 as  

𝐫. 𝛀 = 𝜌𝜇𝑠+𝑧𝜉𝑠 6.17 

and  

𝑟2 = 𝜌2 + 𝑧2 6.18 

For the special case of isotropic scattering, calculation of the components of the 

scattered direction as well as the (maximum) distance that can be traversed in the sphere is 

simple. Since the initial direction is unimportant in isotropic scattering, we can sample the 

components of the scattered direction in any system of coordinates. While the transformation 

will change the components of an individual direction vector, it does not change the distribution 

of directions. Thus, suppose we sample the components of the outgoing direction in the fixed 
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system of coordinates as for an isotropic distribution. Such a distribution has the property that 

the cosine of the angle relative to any direction is distributed uniformly in the interval [-1, 1].  

 

Figure 6-1: The cylindrical coordinates (ρ,z) of the point of collision within the fuel kernel. 

Further the distance (𝑠) to the surface of the fuel kernel depends on the radial distance 

of the collision point from the center (𝑟) and the cosine of the angle (𝜇) that the outgoing 

direction makes with the radial vector of the point of collision [as per Eq. (6.19) and shown in 

Figure 6-1].  Now 𝑟 can be determined using the  (𝜌, 𝑧) coordinates as simply 

𝑟2 = 𝜌2 + 𝑧2 6.19 

Since the isotropic distribution of particles emitted from the collision point necessarily has a 

distribution of 𝜇 that is uniform in the interval [-1, 1], we obtain 𝜇 by sampling it from this 

distribution. The distance  𝑠 is then determined by solving the triangle OPS as follows 

𝑎𝑘
2 = 𝑟2 + 𝑠2 + 2𝑟𝑠𝜇 6.20 

Where, 𝑠 is obtained as the positive root of this equation as 

𝑠 = −𝜇𝑟 + √𝑎𝑘2 − 𝑟2(1 − 𝜇2) 6.21 

 Once the distance to the surface of the kernel has been determined, the distance 

travelled in the fuel kernel medium is determined and if it happens to be larger than the distance 
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to the surface, the particle exits the kernel into the moderator and the next distance is sampled 

using Eqs. (6.4) - (6.6). However, if the collision is within the same kernel, one must determine 

the point of collision which is at a point on the neutron path [at the end of the dotted line]. 

Since the initial distance from the centre (𝑟), the distance travelled by the neutron (𝐷) and the 

cosine of the angle between them are known, the distance of the point of collision from the 

centre (𝑟′), is easily calculated using Figure 6-1and Eq. (6.22). 

𝑟′2 = 𝑟2 + 𝑑2 + 2𝑑𝑟𝜇 6.22 

The other quantities viz., 𝜌′ and 𝑧′ are now easily determined as follows 

𝜌′ = 𝑟√1 − 𝜇2 6.23 

𝑧′ = √𝑟′2 − 𝜌′2 6.24 

An approximate alternative approach that avoids tracking within the kernel 

 Since the kernel is small, it is expected that there would be at the most one or two 

successive collisions in it. If the first collision is in an energy region where the cross-section is 

not very large, but scattering leads to an energy in which the cross-section is large, we may 

have a second collision. Otherwise, the probability of a second collision is rather small. In the 

former case, the neutron will most probably undergo absorption (fission or capture) and hence 

the probability of a scattering leading to an energy where the cross-section is high is extremely 

small. This observation enables us to introduce a simpler alternative procedure that completely 

avoids tracking in the kernel.  

 For the case of isotropic scattering, using Eq. (6.21) and the assumption that the 

direction of emission after collision and the quantity 𝜇 are not correlated, we can write the 

following expression for the probability of escape from the kernel 
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𝑃𝑒𝑠𝑐(𝑟) = ∫exp [−Σ𝑓 (√𝑎𝑘2 − 𝑟2(1 − 𝜇2) − 𝜇𝑟)] 𝑑𝜇

1

−1

 6.25 

The integral is easily evaluated by substituting  

𝑙 = (√𝑎𝑘2 − 𝑟2(1 − 𝜇2) − 𝜇𝑟) 6.26 

Or 

𝜇 =
𝑎𝑘
2 − 𝑟2 − 𝑙2

2𝑟𝑙
  ; 𝑑𝜇 = (−

1

2𝑟
−
𝑎𝑘
2 − 𝑟2

2𝑟𝑙2
)𝑑𝑙 6.27 

Which finally gives 

𝑃𝑒𝑠𝑐(𝑟) =
1

2Σ𝑓𝑟
[exp [−Σ𝑓(𝑎𝑘 − 𝑟) − exp [−Σ𝑓(𝑎𝑘 + 𝑟)] +

𝑎𝑘 + 𝑟

2𝑟
𝐸2[𝛴𝑓(𝑎𝑘 − 𝑟)]

−
𝑎𝑘 − 𝑟

2𝑟
 𝐸2[Σ𝑓(𝑎𝑘 + 𝑟)] 

6.28 

 

Where, E2 (r) is the second order exponential integral. 

This way one computes 𝑃𝑒𝑠𝑐(𝑟) and checks whether the next collision is in the (same) 

kernel or not. In the latter case, no second collision is recorded in the (same) kernel and the 

distance to the next collision etc. are sampled as per Eqs. (6.4) - (6.6). In the former case, a 

second collision is recorded in the same kernel without transporting the particle (i.e. without 

changing the local or global coordinates). The energy and direction of any secondary 

originating from the second collision are computed and its subsequent transport is treated as 

per Eqs. (6.4) - (6.6). 

 A similar method can be used for the case of anisotropic scattering. However, the 

expression for the escape probability involves complicated integrals. Hence, it is best to 

calculate the distance 𝑠 to the boundary using Eqs. (6.10), (6.17) and (6.18) [after having 
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sampled the direction variables (𝜇𝑠, 𝜂𝑠, 𝜉𝑠)] and check whether there is a second collision 

within the fuel kernel [i.e. whether 𝜉 < 𝑒𝑥𝑝 (−Σ𝑓𝑠)] or that there is no second collision  [i.e. 

whether 𝜉 > 𝑒𝑥𝑝 (−Σ𝑓𝑠)]. The method may be used for the case of isotropic scattering as well, 

in case computation of the 𝐸2 function is deemed to be too complicated or expensive. 

6.3 The new algorithm for neutron tracking for coating corrected 

 Poisson statistics of kernels 

In Section 6.2, with regard to the third assumption we showed how to sample collision 

points in the case of Poisson statistics as regards the distribution of kernels. This would be 

exact if the kernel (or rather the entire TRISO particle) is small enough to be treated as a point 

object. We had seen in Ref. [153] that for the typical kernel densities, the assumption is quite 

good. However, a better approximation is to account for the TRISO particle coating that is 

typically 1-2 mm in diameter due to which two kernels cannot lie within one TRISO particle 

diameter. This changes the distribution of kernels along a line in the medium from Poisson to 

a ‘dead time corrected Poisson’. While such a distribution continues to have the character of a 

renewal process, there are two types of interval distributions of encountering a kernel viz., the 

random origin interval and the interval originating at a fuel kernel. Similarly, there are two 

types of probabilities of reaching a distance L without collision starting from a random point 

of origin and a point at a fuel kernel. In this section, we deduce algorithms for sampling the 

distance to the next collision starting from a random point in the moderator and from a point in 

the fuel kernel. 
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6.3.1 The next collision of a neutron starting at a randomly chosen point in the 

 graphite matrix 

We do this calculation in parts. The first part involves determining the distance to the 

first fuel kernel along the neutron flight. In the second part, we check whether the neutron 

collides in the graphite before the kernel or in the first kernel. If yes, the flight is terminated at 

the collision point. Else, the flight continues and the collision point is determined based on the 

distribution  

exp(−Σ𝑚𝐿) 6.29 

for 𝐿 < 𝐷 

exp (−(Σ𝑚 +
𝜆(1 − 𝑎)

1 + 𝑎𝜆𝐷
) (𝐿 − 𝐷))     6.30 

for 𝐿 > 𝐷 

The distance to the first kernel is determined by sampling from the distribution11 

𝑅𝑅(𝑥) = 𝜇𝑘                                                for 𝑥 < 𝐷 6.31 

 

𝑅𝑅(𝑥) = 𝜇𝑘 exp(−𝜆(𝑥 − 𝐷))               for 𝑥 > 𝐷 6.32 

Where, 𝜇𝑘 =
𝜆

1+𝜆𝐷
 

The first kernel is within [0, D] if  𝜉1 < 𝜇𝑘𝐷 and outside otherwise, where 𝜉1, 𝜉2 are 

two uniformly distributed random numbers in [0, 1]. If the kernel is within [0, D], its distance 

from the starting point is 𝑥 = 𝜉2𝐷. Else if the kernel falls beyond D, we obtain the distance 

using the sampling formula for an exponential and 𝑥 = 𝐷 − (
1

𝜆
)log𝑒(𝜉2).  
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If 𝜉3 < exp (−Σ𝑚𝑥) or  exp(−Σ𝑚𝑥) < 𝜉3 < exp(−Σ𝑚𝑥) + 1 − 𝑎, the neutron 

collides in the moderator up to the point x or in the kernel respectively. Else, it crosses the first 

kernel and its collision point is determined using the expression in Eqs. (6.29)-(6.32) as 

exponential distributions for the two cases. The distance to the next collision is determined 

using 

𝑥 = −(
1

Σ𝑚
)log𝑒(𝜉2) 6.33 

If 𝑥 > 𝐷, the distance is recomputed using 

𝑥 = 𝐷 − (
1

𝛽
)[log𝑒(𝜉2) + Σ𝑚𝐷] 6.34 

where,  

𝛽 = 𝛴𝑚 +
𝜆(1 − 𝑎)

1 + 𝑎𝜆𝐷
 6.35 

After a collision, secondary neutrons may emerge in different directions and the collision point 

is treated as being random if it lies in the graphite moderator and if it is within the fuel kernel 

it is treated by the method of Sections 6.2.2 and 6.2.3. The only difference is that after emerging 

from the kernel, since we are at a fuel point, further tracking of its collision point is done using 

the distribution in Eqs. (6.29) - (6.32). 

6.4 Implementation for a pebble-bed HTR lattice cell 

While implementation of the above methodology is planned for the general case with 

continuous energy, here we describe the implementation in the simplest non-trivial case of a 

spherical lattice cell of a pebble bed HTR. Several benchmarks were studied by us recently 

using the code BOXER3 [61], [74] employing the multi-group WIMS library [38].  For PuO2, 

BOXER3 result is readily available [153] while for (Th-233U)O2 and UO2 fuels types, it has 
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been used to calculate the reference results for comparison with results of the proposed Monte 

Carlo method. Hence, the implementation is carried out in a spherical geometry using 

multigroup fuel and moderator and coolant cross-sections from the WIMS library after 

processing the resonance group cross-sections in the usual way. We also use the (transport 

corrected) isotropic scattering option as it considerably simplifies the modelling as discussed 

above.  

The criticality calculation starts with an initial (guess) spatial distribution of source 

neutrons that could simply be unity in the fuel and zero elsewhere with an isotropic angular 

distribution and an energy distribution corresponding to the fission spectrum. Since we do not 

deal with individual fuel kernels, we start with a source distributed uniformly in the fuel zone. 

Each of the neutrons is tracked till it is absorbed or leaks out. At each collision the neutron is 

either absorbed or slows down. The probability of the events is determined by the ratio of the 

respective cross-section and the total cross-section.    

6.4.1 The algorithm used in development of PebMC Code 

 While much of the 𝑘∞calculation algorithm is the same as in standard Monte Carlo 

methods, the specifics associated with tracking in the random medium, the method of obtaining 

track length estimates are different. For the sake of completeness, we have included a 

description the entire algorithm used in our program. 

1. Definitions 

(i) History: The sequence of events from birth to absorption or leakage of a particle 

(ii) Cycle: A set of M histories corresponding to a generation of particles. 

2. Initialization 
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(i) Initial source distribution: uniform in fuel region having isotropic distribution and 

fission spectrum 

(ii) Initial number of particles: N each of weight W=1.0.  

(iii) Initial  𝑘∞ (guess): any reasonable value as close to the expected value 

3. If M particles are generated in a new cycle, make each of their weights equal to N/M 

so     total weight is M (N/M) = N, which is the same as the initial weight. 

4. Following a history: 

(a) Initialising 

(i) Sampling initial positions of (first cycle) source particles 𝐫𝟎 

 For a spherical cell centered at (0, 0, 0) (cell radius =𝑅𝑐, fuel zone radius = 𝑅𝑓), 

If             

(2𝜉1 − 1)
2 + (2𝜉2 − 1)

2 + (2𝜉3 − 1)
2 < 1 6.36 

Then 

𝑥 = 𝑅𝑓(2𝜉1 − 1), 𝑦 = 𝑅𝑓(2𝜉2 − 1), 𝑧 = 𝑅𝑓(2𝜉3 − 1) 6.37 

For subsequent cycles initial positions are generated from fissions sites of previous 

cycle 

(ii) Sampling direction (all cycles): 

𝛺𝑧 = 2𝜉1 − 1,  𝛺𝑥 = √1 − 𝛺𝑧
2𝑐𝑜𝑠𝜑,  𝛺𝑦 = √1 − 𝛺𝑧

2𝑠𝑖𝑛𝜑 6.38 

(iii) Sampling energy group (all cycles): 

Prepare and store a cumulative distribution of the fission spectrum: 

𝑐0 = 0, 𝑐1 = 𝑝1, 𝑐2 = 𝑐1 + 𝑝2, 𝑐3 = 𝑐2 + 𝑝3, ……   6.39 

If 𝑐𝑔−1 < 𝜉 < 𝑐𝑔, then the sampled energy group is g. 
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(b) Collision point using  

𝐫 = 𝐫𝟎 + 𝛀𝑠 6.40 

Where s is distance to next collision and is sampled using 

𝑠 = −
1

𝛴𝑒
log𝑒𝜉1 6.41 

If initial point is in the fuel zone, where the effective cross-section 𝛴𝑒 =

[𝛴𝑚 + 𝜆(1 − 𝑎)] the collision point is in the graphite matrix or fuel depending upon 

whether  𝜉1 < 𝛴𝑚/𝛴𝑒 or 𝜉1 > 𝛴𝑚/𝛴𝑒. 

For initial point in any other material with total cross-section Σ, the distance to the next 

collision is sampled using 

𝑠 = −
1

Σ
log𝑒𝜉 6.42 

Note 1. If trajectory crosses the boundary of the material region, distance (from the 

crossing point) is resampled using one of these equations and the corresponding cross-section.  

If trajectory crosses the cell boundary the trajectory is continued inward (from the crossing 

point) as discussed in Section 6.4.2.  

Note 2. Obtaining track length estimate of the  𝑘∞ using this method of locating the 

collision point is a little tricky as discussed in Section 6.4.3. Hence, we also provide an 

alternative method in which the usual track length estimator is used. The alternate method is 

described in Section 6.4.4. 

6.4.2 White Boundary Condition used in PebMC Code 

The problem considered is that of a spherical cell of a pebble bed HTR as shown in 

Figure 6-2. The central fuel zone is a random dispersion of fuel kernels in a graphite matrix 

and tracking within this zone is done by the special method. Tracking from the fuel zone to the 
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moderator and coolant zones or vice versa and reflection from the boundary may be done by 

the usual methods. If a neutron collision point falls outside the outermost boundary, it is 

returned inside with a cosine current distribution. Such reflection of particles is called white 

boundary condition. 

 

Figure 6-2: (a) HTR pebble unit cell (b) Graphite matrix with TRISO particles (c) Different 

coating layers of TRISO particle 

The distribution of white reflected direction of particles is defined as in Eq. (6.43).    

𝑓(𝜇, 𝜑) =   2𝜇𝑑𝜇
dφ

𝜋
  6.43 

Where,   𝜇 = cos(𝜃) , 0 ≤ 𝜇 ≤ 1;  0 ≤ 𝜑 < 2𝜋, 𝜃 is the polar angle and 𝜑 is the azimuthal 

angle with respect to normal to the surface. Here, the cosine of angle (𝜃) with respect to the 

normal and azimuthal angle can be sampled independently since they are mutually 

independent.  Thus, 𝑓(𝜇, 𝜑) can be written as product of distributions 𝑃(𝜇) and 𝑃(𝜑) 

𝑓(𝜇, 𝜑) = 2𝜇𝑑𝜇
dφ

𝜋
= 𝑃(𝜇)𝑃(𝜑) 6.44 

 

Now, we can sample 𝜇 using the distribution 𝑃(𝜇) and 𝜑 using the distribution 𝑃(𝜑) as follows 

𝜇 = √𝜉 and 𝜑 = 2𝜋𝜉 6.45 
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The direction cosines of particles can be determined using relations obtained in Section 

2.7.2. If the direction cosines of the normal to a surface is (Ω𝑥, Ωy, Ω𝑧), then the direction 

cosines of the particle’s new white reflected direction (Ω𝑥
′ , Ω𝑦

′ , Ω𝑧
′ ), ) are given by Eqs. (6.46)- 

(6.48) [86] . 

𝛺𝑥
′ = 𝛺𝑥𝜇 +

𝛺𝑥𝛺𝑧√1 − 𝜇2 𝑐𝑜𝑠(𝜑) − 𝛺𝑦√1 − 𝜇2 𝑠𝑖𝑛(𝜑)

√1 − 𝛺𝑧
2

 
6.46 

𝛺𝑦
′ = 𝛺𝑦𝜇 +

𝛺𝑦𝛺𝑧√1 − 𝜇2 𝑐𝑜𝑠(𝜑) + 𝛺𝑥√1 − 𝜇2 𝑠𝑖𝑛(𝜑)

√1 − 𝛺𝑧
2

 
6.47 

𝛺𝑧
′ = 𝛺𝑧𝜇 − √1 − 𝛺𝑧

2√1 − 𝜇2 𝑐𝑜𝑠(𝜑) 6.48 

6.4.3 Track length estimator used with the first algorithm 

 The track length estimator is found to be little complicated in the case when we use   the 

first algorithm, as discussed in Section 6.2, for tracking neutrons in randomly distributed fuel 

particles. When the neutron travels a distance 𝐿 starting from a random point (including 

boundary of the fuel zone), the expected (mean) track length in the fuel might appear to be 

𝑇𝐿 = 𝜆𝐿𝑙,̅ where 𝑙 ̅is the mean chord length of a fuel kernel, since the mean number of kernels 

intercepted in a length 𝐿 is 𝜆𝐿 and the neutron travels an average distance 𝑙 ̅in each kernels. 

However, this estimator does not agree with the collision estimator but the use of 𝜆𝐿(1 − 𝑎)/Σ𝑓 

gives an estimate that is consistent with the collision estimator. 

To understand this, we first try and obtain the average distance travelled in any kernel 

by a neutron incident on it. We first note that the distribution of chord lengths is given by Eq. 

(6.49) 
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𝑃(𝑙)𝑑𝑙 =
𝑙𝑑𝑙

2𝑅2
 6.49 

A neutron may collide in the kernel or escape. Thus, the average track length �̅�𝐿1 travelled in 

the kernel will be given by Eq. (6.50) 

 

�̅�𝐿1 = ∫
𝑙𝑑𝑙

2𝑅2
[𝑙 exp(−Σ𝑓𝑙) + ∫𝑥 exp(−Σ𝑓𝑥)Σ𝑓𝑑𝑥

𝑙

0

]

2𝑅

0

=
1 − 𝑎

Σ𝑓
 

6.50 

where the subscript 1 in �̅�𝐿1 stands for the track length through one kernel. Now one may easily 

argue that since the average number of kernels in a total track length 𝐿 is 𝜆𝐿, the expected track 

length in the fuel kernels is given by Eq. (6.51) 

𝜆𝐿(1 − 𝑎)

Σ𝑓
 6.51 

 We make the argument more precise as follows. A neutron starts out in the matrix 

region of the fuel zone, that is assumed to be of infinite extent for the present argument. We 

wish to estimate the average total distance �̅�𝐿 that the neutron travels in all the kernels it 

encounters (up to its first collision in the matrix or a kernel). Clearly, the neutron has a 

probability 𝜆/(𝜆 + Σ𝑚) of reaching the first kernel without collision. The neutron either 

collides in the kernel or crosses it. In the process, it travels an average track length �̅�𝐿1 obtained 

above in the kernel and emerges from the kernel (into the matrix) with a probability 𝑎. After 

emerging from the kernel, it may encounter other kernels through which it will again traverse 

the track length �̅�𝐿. The expected track length up to the first collision 𝑇�̅� may then be written 

as  

𝑇�̅� =
𝜆

𝜆 + Σ𝑚
[�̅�𝐿1 + 𝑎𝑇�̅�] =

𝜆

𝜆 + Σ𝑚
[
1 − 𝑎

Σ𝑓
+ 𝑎𝑇�̅�] 

6.52 
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This equation can be easily solved for 𝑇�̅� to give 

𝑇�̅�  =
𝜆(1 − 𝑎)

Σ𝑓[Σ𝑚 + 𝜆(1 − 𝑎)]
=
𝜆𝐿𝑐(1 − 𝑎)

Σ𝑓
 6.53 

Where, 𝐿𝑐 is the average distance travelled by a neutron before collision in the medium (in the 

matrix or a kernel) and is given by the reciprocal of the effective attenuation cross-section in 

the random medium. Both the above arguments show that on starting from a randomly chosen 

point in the matrix of the fuel zone (that also include points of entry into the fuel zone) the 

average track length in the kernel per unit length travelled in the fuel zone is (1 − 𝑎)/Σ𝑓,  

irrespective of whether the track ends without a collision or in a collision in a kernel or the 

matrix. 

However, if the starting point is in the fuel, we must add the additional distance 

travelled in the starting kernel before the neutron exits the kernel. The starting distance (s) is 

computed as per Eq. (6.51). If both starting and ending points are in the same kernel (without 

emergence from the kernel), the quantity to be added to track length is simply the distance 

travelled between these two points. 

𝐾𝑖𝑛𝑓
(𝑇𝐿) = 𝐾𝑖𝑛𝑓

(𝑇𝐿) +
𝑊�̅�𝐿𝜈Σ𝑓𝑔

𝑁
 6.54 

6.4.4 Alternative algorithm for sampling collision point 

For two random numbers 𝜉1 and 𝜉2, calculate the distances to the first kernel (𝑠𝑘) 

intercepted by the path and collision point (𝑠𝑐) by using Eq. (6.55) and Eq. (6.56) 

respectively, 

𝑠𝑘 = −
1

𝜆
ln 𝜉1 6.55 
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𝑠𝑐 = −
1

Σ𝑚
ln 𝜉2 6.56 

If 𝑠𝑐 < 𝑠𝑘, the collision occurs at a point in the matrix before the kernel (i.e. there is no 

intersection with the kernel). Calculate the collision point using 𝐫 = 𝐫𝟎 + 𝛀𝑠𝑐 and check if it is 

within the fuel zone and record this as the collision point. If the point is outside the fuel zone, 

move the particle to the boundary point on the trajectory and sample the distance in the medium 

outside the fuel zone.  

If 𝑠𝑐 > 𝑠𝑘, calculate the kernel position 𝐫 = 𝐫𝟎 + 𝛀𝑠𝑘 and check if it is within the fuel 

zone. If the position is outside the fuel zone, move the particle to the boundary point on the 

trajectory and sample the distance in the medium outside the fuel zone. If it is within the fuel 

zone it means the particle crosses the first kernel. Sample the chord length (𝑙) in the kernel 

from the distribution given by Eq. (6.57) 

𝑃(𝑙)𝑑𝑙 =
𝑙𝑑𝑙

2𝑅2
 6.57 

using the formula in Eq. (6.58) 

𝑙 = 2𝑅√𝜉3 6.58 

Sample the distance to the collision in the kernel fuel medium using Eq. (6.59) 

𝑠 = −
1

Σ𝑓
ln 𝜉4 6.59 

(Where 𝜉3, 𝜉4 are new random numbers, and 𝑅 is the radius of the kernel). 

If 𝑠 < 𝑙, the particle collides at a distance 𝑠 inside the kernel. The values of (𝜌, 𝑧) and global 

coordinates for the collision point are given by Eqs. (6.60) - (6.62) 

𝜌 = √𝑅2 − (
𝑙

2
)
2

 
6.60 
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𝑧 =
𝑙

2
− 𝑠 6.61 

𝐫 = 𝐫𝟎 + 𝛀𝑠𝑘 6.62 

Add the quantity 𝑠 to the track length estimate and follow the trajectory within the fuel 

kernel as in the earlier procedure till it exits the kernel. Add the actual distance travelled within 

the kernel each time to the track length estimate. If 𝑠 > 𝑙, the particle does not collide in the 

kernel and in this case the process is repeated starting from the new point i.e. 𝐫 = 𝐫𝟎 + 𝛀𝑠𝑘. 

Add the quantity 𝑙 to the track length estimate in this case.  

6.5 Extension to pebble bed HTR core calculations 

Extension to core calculations and to continuous energy Monte Carlo does not seem 

to present any special problems. Several authors [129], [154] have proposed methods for 

randomly packing pebbles in the reactor vessel of a pebble bed HTR. Once one such a packing 

arrangement has been made, it is possible to track neutrons from pebble to pebble without any 

difficulty as in normal Monte Carlo calculations. The main difficulty of having to handle 

thousands of spheres per pebble can be taken care of by the method of Section 6.2.1. Thus, 

unlike cell calculations in which we reflect isotropically the neutron from the cell boundary, 

we track it uninterrupted till it collides with a coolant atom or enters another pebble. The rest 

of the procedure is the same. 

6.6 Results  

The methods discussed in Section 6.2 have been implemented in a Monte Carlo code 

(PebMC) and we present the results of calculations performed with this code for demonstrating 

the utility of the method. Since the purpose of this section is to demonstrate the method, a 
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number of simplifications have been made in the implementation. The implementation has been 

done in multigroup form and we restrict ourselves to lattice cell calculations. Moreover, we 

limit ourselves to isotropic scattering. The multigroup cross-sections are based on the IAEA 

WIMS 172 group library [38], with the transport corrected cross-section. The problems studied 

are the same benchmarks that were presented in Ref. [153] using BOXER3 [61], [74] as 

modified for use in HTRs [135]. In addition to presenting comparisons with BOXER3, we also 

study the effect of various approximations and their corrections that were discussed in Section 

6.3.  

6.6.1 Brief description of the benchmarks studied 

The benchmark problems are defined by the OECD Nuclear Energy Agency Nuclear 

Science Committee working party on the Physics of Plutonium Fuels and Innovative Fuel 

Cycles [105]. The following benchmark problems have been studied out of the five phases of 

the OECD NEA benchmark - 

 Phase1a- Uranium fuel: Cell calculation employing a spherical outer boundary.   

 Phase2a- Plutonium fuel: Cell calculation employing a spherical outer boundary.  

 Phase5a-Thorium/uranium fuel: Cell calculation employing a spherical outer boundary. 

The specifications of fuel pebbles and coated particles of these benchmarks used in the present 

study are reproduced in APPENDIX-A. The relative percentage difference of Monte Carlo 

result with respect to the reference code BOXER3 is defined as follows- 

𝑅𝑒𝑙.% 𝐷𝑖𝑓𝑓. = (
𝐾𝑀𝐶 − 𝐾𝐵𝑂𝑋𝐸𝑅3
𝐾𝐵𝑂𝑋𝐸𝑅3

) × 100% 
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6.6.2 Comparison of the  𝒌∞ obtained using Monte Carlo with BOXER3 results 

 In Table 6-1, we show a comparison of our Monte Carlo results with the BOXER3 

results obtained in Ref. [153]. We present results obtained using collision as well as track length 

estimators. The cross-section library and Dancoff corrections used are the same as in Ref. 

[153]. It is seen that for all three-fuel types, the Monte Carlo results agree within the statistical 

error with BOXER3 estimates. This provides confidence in our proposed algorithm and its 

implementation.  

Table 6-1Comparison of  𝑘∞ obtained using Monte Carlo and BOXER3. Numbers in 

brackets show % deviation from the reference result. 

Fuel Types 

Sampling collision point in Random mixture of Kernel and 

Matrix using effective cross-section 𝜮𝒆 BOXER3 

Detailed Tracking in Kernel 

Collision-Estimator Track-Length-Estimator CP method 

UO2 

1.512699 ±0.000193 

(-0.018) 

 1.512811± 0.000367 

(-0.011) 

1.512978 

(Th-233U)O2 

1.456409±0.000142 

(-0.059) 

1.457111±0.000272 

(-0.011) 

1.457271 

PuO2 

1.451957±0.000144 

(0.018) 

1.452447±0.000355 

(0.052) 

1.451691 
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6.6.3 Effect of using reduced track length (𝟏 − 𝝀�̅�) in graphite matrix 

In Table 6-2, we present the effect of using the correction in the track length in graphite 

to overcome the approximation of point kernels. This involves reduction of the track length in 

graphite by the factor (1 − 𝜆𝑙)̅. Practically speaking this is achieved by reducing the graphite 

cross-section by this factor so that the number of collisions in graphite is reduced to their correct 

value. Since the total kernel volume is about 1% of the fuel zone volume, this is equivalent to 

having a lower Vm/Vf ratio by about 1%. In the present instance, the effect on  𝑘∞ is clearly not 

very large. The two results are practically indistinguishable for the smaller sized kernels of Pu 

and Th. For the larger uranium kernels, the difference is larger and the corrected results differ 

by 0.2% from the uncorrected and BOXER3 results. This is because the BOXER3 result is also 

based on the uncorrected formulae. The same correction can be applied in BOXER3 and the 

corrected BOXER3 result shows closer agreement. 

Table 6-2 Effect of using reduced track length (1 − 𝜆𝑙)̅ in graphite matrix. Numbers in 

brackets show % deviation from the reference result. 

Fuel Types 

Sampling collision point in Random mixture 

of Kernel and Matrix using effective cross-

section 𝜮𝒆 

 

BOXER3 results 

Monte Carlo (Collision-Estimator) 

No correction  

With Correction 

 (1 − 𝜆𝑙)̅ 

No 

correction  

With 

correction 

(1 − 𝜆𝑙)̅ 

UO2 1.512699±0.00019 1.510810±0.00020 1.512978 1.510669 
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(-0.018) (0.009) 

(Th-233U)O2 

1.456409±0.00014 

(-0.059) 

1.457309 ± 0.00015 

(-0.022) 

1.457271 1.457630 

PuO2 

1.451957±0.00014 

(0.018) 

1.451999 ± 0.00017 

(0.036) 

1.451691 1.451476 

 

6.6.4 Study of the need for tracking within a kernel 

In this section, we show that tracking in the kernel once collision is detected in it is 

important. The reason is that the probability of collision in the same kernel, though small, is 

not zero. Table 6-3 shows the effect of ignoring tracking in the kernel and basing the algorithm 

on Eqs. (6.1)-(6.5) alone. The results are significantly different in the two cases thereby clearly 

demonstrating the need for tracking within the kernel. However, the method of tracking is not 

particularly important as is seen from Table 6-4. This shows that the radial position dependent 

formula for 𝑃𝑒𝑠𝑐(𝑟) as well as flat source-based formula gives about the same results as the 

detailed tracking in the kernel.  

Table 6-3 Results showing the need for tracking within a kernel. Numbers in brackets show 

% deviation from the reference result. 

Fuel Types 

Sampling collision point in Random mixture of 

Kernel and Matrix using effective cross-section 

𝜮𝒆 
BOXER3 results 

Tracking in Kernel Kernel Tracking ignored 

UO2 1.512699±0.000193 1.516724 ± 0.000199 1.512978 
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(-0.0184) (0.25) 

(Th-233U)O2 

1.456409±0.000142 

(-0.059) 

1.455823±0.000152 

(-0.10) 

1.457271 

PuO2 

1.451957±0.000144 

(0.018) 

1.459163±0.000202 

(0.51) 

1.451691 

 

Table 6-4  Effect of different methods of tracking within a kernel. Numbers in brackets show 

% deviation from the reference result. 

Fuel Types 

Sampling collision point in Random mixture of Kernel 

and Matrix using effective cross-section 𝜮𝒆 BOXER3 

Use of Escape probability to avoid tracking in kernel  

Flat Source based (𝑃𝑒𝑠𝑐) 𝑃𝑒𝑠𝑐(𝑟) CP method 

UO2 

1.512970± 0.000193 

(-0.0005) 

1.51301± 0.00021 

(0.0021) 

1.512978 

(Th-233U)O2 

1.456067±0.000151 

(-0.083) 

1.456183±0.000143 

(-0.075) 

1.457271 

PuO2 

1.451542±0.000208 

(-0.010) 

1.452333 ±0.000149 

(0.044) 

1.451691 

 

6.6.5 Alternative method for sampling the point of collision 

In this section, we describe the results using the alternative method for sampling the 

next collision point starting from a point in the random mixture. As explained there, this method 
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gives track length estimates more directly than the one based on Eqs. (6.3) - (6.5). Table 6-5 

presents the collision and track length estimates of the 𝑘∞for various fuel types based on the 

alternative scheme. We see from Table 6-5 that though the scheme is slightly more involved, 

the results are in good agreement with BOXER3. 

Table 6-5 Results using alternative method for sampling the point of collision. Numbers in 

brackets show % deviation from the reference result. 

Fuel Types 

Alternative scheme of sampling collision point in 

Random mixture of Kernel and Matrix BOXER3 

Tracking in Kernel 

Collision Track-Length CP method 

UO2 

1.513307± 0.000192 

(0.022) 

1.514486 ± 0.000348 

(0.099) 

1.512978 

(Th-233U)O2 

1.458675±0.000169 

(0.096) 

1.458912±0.000313 

(-0.083) 

1.457271 

PuO2 

1.451553±0.000195 

(-0.010) 

1.451418±0.000542 

(-0.010) 

1.451691 

6.6.6 Studies on the effect of the coatings 

In Chapter 5, describing the collision probability approach, we had obtained the 

distribution of kernels taking their coating into account. We saw that instead of the Poisson 

distribution, we obtain a dead time corrected Poisson distribution. In Table 6-6, we show the 

effect of employing this distribution on the 𝑘∞. Table 6-6 shows that at least for the fuel density 

in the current set of benchmarks analysed by us, the effect is indeed very small. This may 
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however increase as the density increases. Table 6-6 also shows a fictitious result 

corresponding to a very thin coating. It is seen that this result is almost the same as the one in 

Table 6-1, that is for a Poisson distribution. 

Table 6-6 The effect of the kernel distribution. Numbers in brackets show % deviation from 

the reference result. 

Fuel Types 

Sampling collision point in Random mixture of Kernel and Matrix with 

coating Modified Poisson distribution (Collision-Estimator) 

BOXER3 

Coating 

Thickness 

(cm) 

𝑘∞ 

Coating 

Thickness 

(cm) 

𝑘∞ 𝑘∞ 

UO2 0.0205 

1.512476±0.000166 

(-0.033) 

0.002 

1.513228 ±0.000171 

(0.0165) 

1.512978 

(Th-233U)O2 0.021 

1.457427±0.000149 

(0.011) 

0.002 

1.456221±0.000169 

(-0.072) 

1.457271 

PuO2 0.021 

1.451329±0.000158 

 (-0.025) 

0.002 

1.452455±0.000147 

(0.053) 

1.451691 

6.6.7 Discussion of the results  

The study of lattice cell benchmarks of a pebble bed reactor involving plutonium, enriched 

uranium and thorium fuel and two different sizes of the fuel kernel with the proposed Monte 

Carlo method shows very good agreement with the reference results obtained using the 

BOXER3 code. A number of points such as the importance of tracking within the kernels (if 

the previous collision has been in it), and the method used to do the tracking, the correction to 
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account for the finite volumes of the kernels and the effect of coatings on the statistical 

distribution of the kernels have been studied. The results of these studies are along more or less 

expected lines. Tracking within the kernels is seen to be important and therefore necessary 

irrespective of the size of the kernel. However, the exact method used is not important and 

simplified models may also be used. The correction due to the finite volume of the kernel is 

obviously more important for the larger sized kernels of uranium fuel and is not significant for 

the other smaller sized kernels. The change in statistical distribution of the kernels due to the 

presence of coatings is found to be small at least for the packing fractions in the benchmarks. 

Finally, we have shown that the alternative tracking method gives the same results.  

6.7 Conclusions 

A new approach to Monte Carlo calculations in high temperature reactors has been 

presented. The proposed new method avoids detailed tracking through the millions of TRISO 

particles distributed throughout the reactor. It also avoids the limitations of the delta algorithm 

that may be used in place of detailed tracking. While the method is based on some assumptions 

that introduce some approximation in the theory, the effects of these has been seen to be very 

small, being mostly of the order of typical statistical errors and is actually less than the errors 

in many standard Monte Carlo calculations that make some approximations in describing the 

statistical distribution of TRISO particles. The results for the case of a pebble-bed reactor lattice 

cell using multigroup cross-section data are encouraging.  
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Chapter 7 SUMMARY AND CONCLUSIONS  

 

This chapter summarises the highlights of the results obtained in this thesis and outline the 

ways the present work can be extended in the future.

 

7.1 Summary and Conclusions 

HTRs present unusual challenges concerning the neutronic simulations. It might appear 

that both deterministic and stochastic methods are inapt to deal efficiently with the peculiar 

configuration of HTRs. The major challenge is to device a new efficient method to perform 

neutron transport in random dispersion of fuel lumps. This also includes resonance self-

shielding both in thermal and resonance regions in HTR lattice cell calculations. To provide an 

appreciation of these challenges, we first gave an overview of HTRs in Chapter 1. 

 In Chapter 2, traditional neutronics methods and literature review on specific methods 

used in HTR neutronic calculations were discussed. Two comprehensive objectives of the 

thesis were defined in Section 2.9. The first is that the thesis sought to improve upon the 

existing tools to treat HTRs unusual challenges. The second is to develop new deterministic 

and stochastic methodologies as well as computational tools for HTR analysis. This includes 

the development of new theoretical models, algorithms and computer codes based on the 

models, and analysis of benchmark problems. 

Chapter 3 presented a new method for computing the Dancoff factors using the Monte 

Carlo method for the treatment of resonance self-shielding in the resonance energy region.  We 

have described the development of a new scheme (CLR) method using the Monte Carlo to 
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generate the randomly distributed TRISO particles in the fuel zones of the pebble and the 

compact shaped graphite. The principal advantage of the method described in the thesis is that 

it can be used for low as well as high particle densities (~70%). This method is implemented 

in the Monte Carlo program, called MCDanc. The method is very efficient as the 

randomisation scheme is based on nearest neighbours search algorithm to eliminate any 

overlapping of particles. This method can also be used to randomly stack pebbles to form 

pebble-bed in the reactor core for neutronics simulations.   

 The MCDanc program is used to compute the Dancoff factors to conserve the 

resonance self-shielding in pebble-bed HTR lattice cell calculations. A new method to deal 

with self-shielding in the thermal energy region using the Equivalent Spherical Shell model is 

developed in Chapter 4. The results of the equivalent spherical shell model used in BOXER3 

code for the HTR benchmark problems show satisfactory agreement with that of the reference 

results. The BOXER3 code with the equivalent shell method takes about 5sec per HTR lattice 

cell calculation for pre-computed outer shell radius of a given problem that gives acceptable 

results. However, the equivalent shell method is somewhat heuristic in nature and does not give 

a detailed variation of neutron flux in the fuel zone except a single mesh. Another shortcoming 

of this method is that the calculation of the equivalent radius of the spherical shell is not 

straightforward as it depends on fuel cross-section.  

  After this, Chapter 5 discussed the development of a new and rigorous theoretical 

model to solve the neutron transport equation in the random medium of the HTR lattice cell 

using the collision probability method. This includes the derivation of several collision 

probability formulae using two independent methods based on Poisson and coating corrected 

Poisson distribution of fuel particles in the graphite matrix. The lattice code BOXER3 is 

extended to implement the new formulae to solve the neutron transport equation in HTR lattice 
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cells. Multigroup neutron transport equation solution using BOXER3 code with new collision 

probabilities is a major theoretical improvement and requires slightly more time (about 7sec 

per HTR lattice cell calculation) as compared to the Equivalent Spherical Shell model. In 

addition, this method allows to compute flux in several radial meshes in random medium of 

HTR pebble. Results show that the new method can efficiently perform HTR analysis for any 

combination of fertile (Th232, U238) and fissile isotopes (U233, U235 and Pu). This method is 

equally suitable with subgroup or ultrafine cross-section data libraries, as it does not require 

any free parameters such as the Bell factor. In fact, the proposed method presents a novel 

solution of the double heterogeneity effect involved in HTR lattice analysis. Hence, the 

equivalent spherical shell method and the one involving solution of transport equation in 

random medium using new collision probabilities are well suited for the scoping studies as the 

computational time is short compared to the MC methods. 

 These formulae laid the foundation of a very efficient new Monte Carlo approach for 

neutron transport in random medium, which was presented in Chapter 6. Further, we discussed 

the theoretical basis of the Monte Carlo algorithm and its implementation in PebMC code for 

the case of a lattice cell with a multigroup library. The proposed method has the statistical 

nature inherent in it and is faster than the methods requiring detailed neutron tracking through 

the millions of fuel particles randomly distributed in HTR. K-inf calculation using the PebMC 

code takes about 39min, 50min and 123min for HTR lattice benchmark problems, Phase1a- 

Uranium fuel, Phase2a- Plutonium fuel and Phase5a-Thorium/uranium fuel, respectively.  The 

explicit modelling of fuel kernels and detailed neutron tracking is almost 4 to 5 times 

computationally more expensive as compared to the formulae-based tracking.  

At the same time, the new method does not have any of the limitations of the delta 

algorithm. These features of the proposed method make it a better alternative to the traditional 
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Monte Carlo neutron tracking in HTRs. While all studies in the thesis pertain to lattice cell 

calculations, the MC method described in the thesis is easily extendable to solve core problems 

with continuous energy cross section data and full capability of the present method will be 

utilized with continuous data library and parallel computing.  

7.2 Future Work 

The collision probability method derived in Chapter 5 is applied to the HTR lattice cell 

in conjunction with the equivalence principle based WIMSD multigroup library. It will be very 

interesting to implement this method in the subgroup approach for resonance treatment. We 

have already obtained the expression for the collision probabilities based on the coating 

modified Poisson distributions. Implementation of these formulae to further improve the 

applicability in the higher packing range of TRISO particles is proposed to be carried out in 

future.  

Another important aim for the future is to extend the Monte Carlo development to core 

calculations for HTR. This requires development of a method for stacking pebbles in the core 

under gravity. Another aim is to compare the results of our method with a Monte Carlo 

calculation based on detailed tracking within a fixed (random) configuration of fuel particles. 

The method will also include a study of the effect of explicit modelling of coatings. It is also 

proposed to evaluate the effect of packing density of fuel particles on HTR lattice cell results 

using the collision probability formulae for neutron tracking derived using the Poisson and 

modified Poisson statistics for random fuel particles dispersions. Since Monte Carlo is most 

effective together with continuous energy cross-section data, extension of the work to include 

this capability is envisaged in future. 
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APPENDIX-A 

TABLE A.1 The specifications of fuel pebble for the phase 2a of the benchmark [105] 

Fuel pebble specification 

Fuel Type UO2 PuO2 (Th-233U)O2 Unit 

mass per pebble 10.210 1.129 1.129 g 

Packing fraction of coated particles 9.043 3.45 3.45 % 

Unit cell coolant outer radius 3.5373 cm 

Pebble diameter 3.0 cm 

Radius of fuel zone 2.5 cm 

Outer carbon coating thickness 0.5 cm 

Outer carbon natural boron 

impurity  

0.5 ppm 

Number of coated particles per 

pebble 

15000 --- 

Graphite matrix density 1.75 g/cm3 

Graphite matrix natural boron 

impurity  

0.5 ppm 

Outer carbon coating density 1.75 g/cm3 

Coated particle specification 

Outer coated particle radius 0.0455 0.033 0.0455 cm 

Fuel kernel radius 0.025 0.012 0.012 cm 

Coating thickness 0.09/0.04/0.035/0.0

4 

0.095/0.04/0.035/0.04 mm 
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Coating density 1.05/1.9/3.18/1.9 g/cm3 

Coating materials C/C/SiC/C  

Fuel natural boron impurity by 

mass 

1 ppm 

Fuel density 10.4 g/cm3 

 

TABLE A.2 OECD/NEA No.6200 HTR benchmark specifications [105] 

Nuclide number density data 

Material Nuclides  Atoms per cm3 

(10–24) 

PuO2 fuel 238Pu 

239Pu 

240Pu 

241Pu 

242Pu 

O 

10B 

11B 

6.01178e-04 

1.24470e-02 

5.44599e-03 

3.00965e-03 

1.54539e-03 

4.60983e-02 

1.14694e-07 

4.64570e-07 

UO2 fuel O 

235U 

238U 

10B 

11B 

4.64272E-02 

1.92585E-03 

2.12877E-02 

1.14694E-07 

4.64570E-07 
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(Th-233U)O2  fuel O 

232Th 

233U 

10B 

11B 

4.74279E-02 

2.19473E-02 

1.76668E-03 

1.14694E-07 

4.64570E-07 

Inner low-density carbon kernel coating C 5.26449e-02 

Pyro carbon kernel coatings (inner and outer) C 9.52621e-02 

Silicon carbide kernel coating C 

Si 

4.77240e-02 

4.77240e-02 

Carbon matrix C 

10B 

11B 

8.77414e-02 

9.64977e-09 

3.90864e-08 

Carbon pebble outer coating C 

10B 

11B 

8.77414e-02 

9.64977e-09 

3.90864e-08 

Helium coolant (at 273.16 K,105 Pa) 3He 

4He 

3.71220e-11 

2.65156e-05 
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APPENDIX-B 

Here we write the final expressions for 𝑃𝐵𝑀(𝐿) after integrating the Eq. (5.63) using Eqs. 

(5.60), (5.61) and (5.62). 

𝑃𝐵𝑀(𝐿) =
𝑒−𝐷𝛴𝑚

𝛴𝑚
[𝛴𝑚(𝑒

𝐷𝛴𝑚 − 1) − (1 − 𝑎)𝜇{𝑒𝐷𝛴𝑚 − (1 + 𝐷𝛴𝑚)}]

+ 𝛴𝑚𝜇 [
𝑎(1 − 𝑒−𝐷𝛼)

𝛼(𝛴𝑚 + 𝛼)
(𝑒−2𝐷𝛴𝑚 + 𝑒−𝐿(𝛼+𝛴𝑚)+𝐷𝛼)

+
1 + 2𝑎𝜆(𝑒𝐷𝜆 − 1) + 𝛼(𝑎 − 1 − 𝑎𝑒𝐷𝜆)

𝜆(𝜆 − 𝛼)(𝛴𝑚 + 𝜆)
(𝑒−(𝜆+2𝛴𝑚)𝐷

− 𝑒−𝐿(𝜆+𝛴𝑚)+𝐷𝜆)]

+ 𝜇𝑒−2𝐷𝛴𝑚 [
𝑎(𝛼𝜆 − 𝛼 − 𝜆)

𝛴𝑚𝛼𝜆
+ 𝛴𝑚𝛼𝜆 (

𝑎𝜆𝑒−𝐷𝛼

(𝛴𝑚 + 𝛼)
−
(1 − 𝑎)𝛼𝑒−𝐷𝜆

(𝛴𝑚 + 𝜆)
)

+ 𝛼𝜆𝑒𝐷𝛴𝑚 {
𝛴𝑚𝛼

𝛴𝑚 + 𝜆

− 𝑎 (
𝛼𝜆

𝛴𝑚
− (𝛼 + 𝜆 + 𝐷𝛼𝜆) +

𝜆𝛴𝑚
(𝛴𝑚 + 𝛼)

+
𝛼𝛴𝑚

(𝛴𝑚 + 𝜆)
)}] 

(B.1) 

 

The final expressions for 𝑃𝑀𝑀(𝐿) after integrating the Eq. (5.48) using expressions 

of 𝑃𝐵𝑀(𝐿)and 𝑃𝐵𝐵(𝐿) is given in Eq. (5.50).                                                  

𝑃𝑀𝑀(𝐿) = 𝑃𝐵𝑀(𝐿) −
𝑒−𝐷𝛴𝑚

𝐿𝛴𝑚
2 [(2𝜇(1 − 𝑎)(1 − 𝑒

𝐷𝛴𝑚) + 𝛴𝑚𝑒
𝐷𝛴𝑚 − (1 + 𝐷𝛴𝑚)𝛴𝑚 +

𝜇𝐷𝛴𝑚(1 − 𝑎)(2 + 𝐷𝛴𝑚)] +
𝜇𝑒−𝐷𝛴𝑚

𝛼𝜆𝐿
[𝑎𝛼𝜆𝐷2(4𝑒−𝐷𝛴𝑚 − 1) +

𝑎(1+2𝐷𝛴𝑚)(−2𝛼𝜆+𝛴𝑚(𝛼+𝜆+2𝐷𝛼𝜆))

𝛴𝑚
2 (1 − 𝑒−𝐷𝛴𝑚) +

𝜆𝑎𝛴𝑚𝑒
−𝐷(𝛼+𝛴𝑚)

(𝛴𝑚+𝛼)2
{(1 + 𝐷𝛴𝑚 +

𝐷𝛼)(1 − 𝑒𝐷(𝛴𝑚+𝛼)) + 𝐷𝛴𝑚 + 𝐷𝛼} +
(𝑎−1)𝛼𝛴𝑚𝑒

−𝐷(𝜆+𝛴𝑚)

(𝛴𝑚+𝜆)2
{(1 + 𝐷𝛴𝑚 + 𝐷𝜆)(1 −

(B.2) 
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High Temperature Reactors (HTR) present unusual challenges concerning the neutronic simulations. 

It might appear that both deterministic and stochastic methods are inapt to deal efficiently with the 

peculiar configuration of HTRs. The major challenge is to device a new efficient method to perform 

neutron transport in random dispersion of fuel lumps in form of Tri-Structural Isotropic (TRISO) 

particles. This also includes resonance self-shielding both in thermal and resonance regions in HTR 

lattice cell calculations. 

This research work had led to the new theoretical models, equally suitable to the two alternative 

methods of reactor physics, the deterministic and Monte Carlo (MC) methods, are developed to 

address the challenges involved in the HTR lattice cell. This effort includes the derivation of Collision 

Probabilities (CPs) in random media to solve the integral transport equations for pebble-bed lattice 

cell. Exact expressions for CPs in the random heterogeneous medium have been obtained by two 

independent methods under realistic assumptions of the statistical distribution of fuel kernels in the 

graphite matrix. The primary assumption in the derivation of CPs is that the distribution of the fuel 

kernels along the length of the intercept follows renewal statistics, more specifically, Poisson statistics. 

The merit of Poisson statistics is that it corresponds fairly close to the actual situation and allows a 

simple analytical treatment. 

 The conventional MC 

methods are not practical for 

routine analysis, in particular for 

HTR lattice cell, due to the high 

computational cost. To address this 

challenge, a new MC methodology 

based on CP formulas derived for 

random medium, is developed and 

benchmarked to demonstrate its 

validity and efficiency. This new 

method avoids detailed tracking 

through the millions of TRISO 

particles distributed through the 

reactor. It also avoids the 

limitations of the delta algorithm 

that may be used in place of 

detailed tracking. These new methods have been successfully implemented in the multigroup code 

PeBMC for the pebble bed reactor lattice cell to demonstrate its utility. Thus, it may be expected to 

serve as an important alternative formulation of MC in HTRs analysis. 

 

Figure 1 Double heterogeneous HTR lattice cell simulation using 

new collision probability formula based Monte Carlo code PebMC 
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