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SYNOPSIS 

Use of low and medium energy photons in radiology, medical, industrial and R&D 

applications has increased many folds(1) in the recent past. This has led to an increased 

demand in monitoring of such areas for assessing the radiation dose; the radiation worker 

may receive while working in such areas. It also plays an important role from regulatory 

point of view. Various kind of active (Ionization chambers, Geiger Muller tubes, Diodes, 

MOSFETs, Quartz fiber dosimeters, Scintillators) and passive (TLDs, OSLDs, radio-

chromic films) radiation detectors are used for radiation monitoring applications. Nearly all 

these radiation detectors show a low to very high energy dependent response(2) for photon 

energies below 200 keV.  

The protection quantities (effective dose and equivalent dose) are used as "limiting 

quantities" to specify exposure limits to ensure that the occurrence of stochastic health 

effects is kept below acceptable levels and that tissue reaction are avoided. In external 

radiation dosimetry, the protection quantities are not directly measureable and cannot be 

used for radiation protection purpose. Therefore operational quantities are defined by ICRU(3) 

which are used to correlate the dosimeter responses. The operational quantities provide a 

conservative estimate of the protection quantities related to exposure. For area monitoring, 

the operational quantity, ambient dose equivalent [H*(10)] is used for monitoring of whole 

body dose due to strongly penetrating radiation(4) while directional dose equivalent  [H (d)] 

is used for estimation of dose to skin and eye lens. Similarly for monitoring of dose to 

individual, the operational quantity personal dose equivalent, Hp(10), is used. 

Majority of the radiation monitors still record dose in old units: for example, exposure in 

any protection or operational quantity at lower energies. Therefore, a need is felt for 

designing special radiation detector having better sensitivity and characterizing it for 
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measuring or monitoring operational quantities at these lower energies.  Therefore, the 

current study aims to develop an ionization chamber having energy independent response 

over a wide range of energies so that it can be used for the dosimetry of low and medium 

energy photon radiation (above 15 keV). The study also involves establishing a passive 

dosimeter for monitoring the operational quantity, personal dose equivalent [Hp(10)]. 

A dosimetric grade X-ray machine is used to generate various ISO 4037-1 (1996) specified 

narrow series (N-15, N-40, N-60, N-80, N-100, N-120, N-150, N-200 and N-250), 

fluorescence (F-Mo, F-Cd, and F-Sn) and other customized reference X-ray beam qualities 

with average energy ranging from 12  210 keV. The output of X-ray machine, in the form 

of these characterised beam qualities, are then standardized in terms of air kerma (Kair) / rate, 

using a free air ionization chamber (FAIC)(5) in conjunction with a reference class

electrometer. The FAIC is a parallel plate ionization chamber and is termed as an absolute 

standard for the measurement of air kerma. The above beam qualities are collimated and 

standardized in the laboratory at a height of 100 cm above the ground level and at a distance 

of 200 cm from the centre of the focal spot of X-ray machine. The X-ray beams were 

collimated using a lead collimator which provides a field size of 40 cm x 30 cm at distance 

of 200 cm. A laser-based alignment system was used to align the centre of the aperture of the 

FAIC with the focal spot of the X-ray machine. The measured air kerma rate ( ) for ISO

4037-1(6) specified beam qualities are then converted to dose equivalent rate (personal dose

equivalent for whole body dose in personal monitoring, ambient dose equivalent for whole 

body dose in area monitoring and directional dose equivalent for skin and eye lens dose in 

area monitoring) using air kerma to dose equivalent conversion coefficient [hK(d;H)]. This 

measured air kerma rate of all the beam qualities and evaluated dose equivalent rate of ISO 

4037-1 beam qualities serves as standard photon source/beam output during the 

measurements.  

TK
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Ionization chamber is the simplest of all the gas-filled radiation detectors(7) and is widely

used for the detection and measurement of X-rays, gamma rays and beta particles. It is less 

affected by incident photon energy as compared to other detectors. Studies using spherical 

and cylindrical wall ionization chambers show that the chamber sensitivity at lower energies 

strongly depends on the thickness and the curvature of the wall. It is also observed that a thin 

and plane walled ionization chamber is best suited(8) for the air kerma based radiation

monitoring for low and medium energy X-ray fields. Therefore, ionization chamber was 

selected and studies were carried out to optimize its wall thickness so that a uniform energy 

response can be achieved in the measurement of ambient and directional dose equivalent 

rates. This thesis presents the development and characterization of a thin and plane wall 

ionization chamber, having 900 cc volume, to study its energy response with air kerma (Kair)

rate and dose equivalent rate at low and medium photon energies using various build up caps. 

Five PMMA build up caps of thickness 1 mm, 2 mm, 3 mm, 4 mm and 10 mm were used to 

study the effect of wall thickness at various low and medium energy photon fields and arrive 

at an optimized wall thickness where a uniform or flat energy response could be achieved. 

For the monitoring of dose to whole body i.e. measurement of ambient dose equivalent rate, 

the experimentally evaluated optimized wall thickness is 10 mm PMMA. Similarly, the 

experimentally evaluated optimum wall thickness for monitoring of dose to skin and eye lens 

is found to be ~ 6 µm (minimum wall thickness available in this laboratory) and 4 mm 

PMMA respectively. The plane wall ionization chamber having wall thickness of 10 mm 

shows a prominent angular response at lower energies. Therefore, a cylindrical ionization 

chamber having 10 mm PMMA wall thickness was developed and characterized at the same 

ISO 4037-1 X-ray beam qualities for the monitoring of ambient dose equivalent rate. 

The use of X-ray based whole body human scanners (WBHS) are being explored by various 

homeland security agencies to detect plastic explosives, drugs or illegal transport of 
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dangerous items concealed under cloth or body 

person being screened posses a radiation risk and thus may needs monitoring. ANSI/HPS 

N43.17(9) recommended a dose limit of 0.25 µSv (~ 25 µR) per scan from general purpose

X-ray based WBHS. In order to check the compliance of such a low dose limit, a very high

sensitivity, large volume ionization chamber (volume: 135 liters) was developed and 

characterized for its dose linearity, collection efficiency and energy response using various 

customized X-ray beam qualities. This ionization chamber was used to measure dose per 

scan from WBHSs. 

Studies were carried out for developing a two-element passive optically stimulated 

luminescence (OSL) dosimeter badge for monitoring of whole-body dose due to low and 

medium energy photons beams. The four element plastic OSLD card consisting of a highly 

-Al2O3:C
(10) OSL dosimeter discs, was used to study the energy response

-Al2O3:C OSL discs under various cupper filter thicknesses. A dose computation 

algorithm is developed to estimate dose from highly penetration ionizing radiation up to ~ 

200 keV (photons). 

In summary, the thesis presents the experimental work and analysis on development of 

ionization chamber based active dosimeter and optically stimulated luminescence based 

passive dosimeter for the monitoring of operation quantities ambient dose equivalent, 

directional dose equivalent and personal dose equivalent for low photon energies, below 200 

keV.  The thesis is organized in six chapters as given below: 

Chapter 1: General Introduction to External Radiation Dosimetry. 

This chapter describes the basic concepts related to external radiation dosimetry for low 

energy photons. It covers interaction of photons with matter, various types of radiation 

sources and radiation detectors.  The chapter also discusses the energy dependent angular 

emission of photo electrons or Compton recoil electrons and its impact on dosimetry of low 
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energy photons. The chapter briefly discusses the working principle of ionization chamber 

and related parameters influencing low energy photon dosimetry. This chapter also covers 

the principle of a TL/OSL dosimeter (passive dosimeter) and their dosimetric parameters. 

Energy response of various radiation monitors available in the laboratory is presented and 

the need of energy independent radiation monitors highlighting their importance in low 

energy photon dosimetry has been brought out. The chapter also covers extensive literature 

survey in this area. 

Chapter 2: Standardization of radiation (X-ray) fields. 

This chapter briefly describes the generation of various direct (unfiltered) and filtered X-ray 

beam qualities (Bremsstrahlung and characteristics) using dosimetric grade X-ray machine, 

as per recommendations of ISO 4037-1. These filtered and direct X-ray beams are further 

characterized by experimentally measuring their first half value layer (HVL) and second 

HVL (air kerma based). The validity of ISO 4037-1 beam qualities were also established by 

experimentally measuring the spectral resolution of all beam qualities.  The dosimetric 

measurements are carried out using free air ionization chamber which is energy independent 

and absolute air kerma measurement standard for X-rays. This chapter also describes the 

experimental measurement setups, secondary standards ionization chamber and role of other 

equipments used during standardization of X-ray beams.  The output of the X-ray beams are 

standardized in the form of air kerma and is further converted to ambient dose equivalent, 

directional dose equivalent and personal dose equivalent by using appropriate air kerma to 

dose equivalent conversion coefficient. The chapter also covers the numbers of X-ray beam 

qualities along with their average energies available in the laboratory for their use in energy 

response characterization of various detectors. 

Chapter 3: Development of a large volume ionization chamber for dosimetric 

evaluation of Whole-body human scanners. 
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This chapter describes the need to develop a highly sensitive, large volume ionization 

chamber for the dosimetric evaluation of whole-body human scanners (WBHS). It also 

describes the dose limit recommendations of ANSI/HPS N43.17-2009 and its requirements 

in measurement of dose from whole body X-ray scanners.  To fulfil the need of measurement 

and ANSI requirement, a thin wall large volume (135 litre) ionization chamber was designed 

and developed. The ionization chamber was calibrated against a secondary standard 600 cc 

Saint-Gobain make ionization chamber which is in turn calibrated against free air ionization 

chamber. For the calibration of 135 litre ionization chamber, various customized direct 

reference X-ray beams (unfiltered) were standardized and used. The calibrated 135 litre 

ionization chamber, along with 600 cc Saint-Gobain make ionization chamber was used to 

characterize and measure dose per scan from X-ray based whole body human scanner. 

Measured data was analysed as per ICRP-74, ISO 4037 and ANSI/HPS N43.17-2009 

guidelines. Measured dose per scan for a transmission type WBHS in its low dose mode was 

found to be acceptable (< 0.25 µSv) as per ANSI/HPS N43.17-2009 recommendations.   

Chapter 4: Development of Ionization chambers for low energy photon dosimetry 

This chapter describes the design and development of ionization chambers for the 

monitoring of operational quantities. It includes the development of 900 cc ionization 

chamber for different wall thickness of PMMA, using build up caps, and its wall thickness 

optimization. Studies were carried out at various photon energies for the estimation of an 

optimized wall thickness for the measurement of radiological quantities air kerma, ambient 

dose equivalent and directional dose equivalent. The chapter also discusses the limitations in 

the use of an optimized plane walled ionization chamber for area monitoring and survey 

instruments. Angular response of this plane wall ionization chamber is measured at low 

energy photon beams, which indicated a poor angular response. Therefore, a 225 cc PMMA 

cylindrical ionization chamber was developed and characterized as a secondary standard for 
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the direct measurement of ambient dose equivalent rate. The angular response of this 

ionization chamber was evaluated at the photon energy 12 keV (lowest ISO narrow series 

beam quality available). The 225 cc ionization chamber is found to comply with the 

requirement of ISO 4037-4 concerning the energy dependent response of a secondary 

standard dosimeter used for protection level radiation dosimetry. 

Chapter 5: L -Al2O3:C passive OSL dosimeter.  

This chapter describes the studies on the development of two element OSLD badge using 

indigenously developed, -Al2O3:C optically stimulated luminescence 

(OSL) phosphor. -Al2O3:C is considered as the reference OSL phosphor world over. Thin 

-Al2O3:C dosimeters sandwiched between two plastic sheets (7 mm diameter, 0.14 mm 

thick) were prepared for this study. The studies were carried out for the monitoring of whole-

body dose and personal dose equivalent, using ISO 4037-1 specified low and medium energy 

photon beam qualities available in the laboratory. Thin -Al2O3:C OSL discs mounted on the 

four element OSLD card was used to study the energy response under various copper filter 

thicknesses. The experimental results on the energy response under various copper filter 

thicknesses was used to develop algorithms for evaluation of whole body dose and personal 

dose equivalent (Hp(10)) and the results are presented. 

Chapter 6: Summary and conclusion  

This chapter gives a summary of the work performed during the course of work and the main 

conclusions drawn from it.  A brief on the scope of the future work is also brought out.   

Main highlights of the work are: 

Developed a large volume (135 litre) high sensitive ionization chamber to measure

dose from X-ray based whole body human scanners.
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 Wall thickness optimization studies carried out using a developed thin plane wall 

ionization chamber (900 cc) along with various thickness build up caps. 

 A cylindrical ionization chamber (225 cc) was developed as a secondary standard for 

monitoring of ambient dose equivalent. 

 Studies for the development of -Al2O3:C based passive dosimeter was carried out. 

The above developments constitute definite progress towards providing solution for 

developing instruments for monitoring of operational quantities.  It is no longer necessary to 

measure air kerma or exposure using the non-operational quantity-based radiation monitors 

and makes judgment-based assumptions in assessing the dose (in terms of protection 

quantities) at lower energies.  Using the optimized wall ionization chamber-based radiation 

monitors; direct monitoring of ambient dose equivalent can be performed.  The sensitivity of 

ionization chamber varies linearly with the mass of the air/gas enclosed in ionization 

chamber thus large sensitivity ionization chambers can also be fabricated by either 

increasing the volume of ionization chamber or by pressurizing the ionization chamber.  

  The thesis makes a serious attempt to improve the quality and accuracy of dose 

equivalent estimation using the developed detector.  The thesis presents experimental results 

to address one of the outstanding issues in the area of external dosimetry for low energy 

photons (the energy response of detector).  The output of this work will lead to production of 

reliable, accurate and quality radiation monitors. 

The methodology used here for establishment of secondary standard detector for ambient 

dose equivalent rate may find applications in other areas such as establishment of secondary 

standard for directional dose equivalent measurement (i.e. for the dosimetry of skin and eye 

lens doses).     
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