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Summary

Neutrinos are one of the most intriguing particles of the Standard Model. The observation

of oscillation among different neutrino flavors suggest the existence of an extended theory

beyond the Standard Model. These extended theories have several new phenomenologi-

cal features which might be detected in future neutrino experiments. One such possibility

is the existence of neutrino electromagnetic interactions. Despite being electrically neu-

tral, neutrinos acquire their electromagnetic properties through interaction with photons at

quantum loop level. This can generate important new effects such as neutrino spin-flavor

oscillations in the presence of background electromagnetic fields.

In the present Thesis, we study the phenomenology of neutrino flavor and spin-flavor os-

cillations in solar and astrophysical environments. In solar interiors the magnetic fields

may be sufficiently large to cause appreciable neutrino transitions. Thus the solar neu-

trinos detected at Earth may act as a messenger of information about the solar magnetic

fields. Using the current bounds on Helioseismology we construct analytical models for

the magnetic field in all the three regions of the Sun. The 8B neutrinos produced in the

solar interior may undergo transitions νeL → ν̄µR → ν̄e due to combined effect of mag-

netic field and vacuum mixing. We numerically evaluate these transition probabilities and

compare our results with the Borexino experiment to place bounds on the solar magnetic

fields. It is found that whereas the Borexino bounds are too weak to place any upper limit

on the magnetic field in the radiative zone of the Sun, for the solar core magnetic field we
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are able to place an upper bound B0 < 1.1 × 106G, which is an improvement by a fac-

tor of almost one-seventh of the current largest helioseismological bound. We also study

neutrino spin transitions for neutrinos produced in extreme environments such as neutron

stars (NS) using realistic density and magnetic field profiles. We show that while inside

the NS the neutrino propagation is highly adiabatic, as the neutrinos come out of the NS

the non-adiabatic effects start to become more important and at a distance of about 200

times the radius of a NS, the initial flux of left-handed neutrinos produced inside the NS

is depleted to half of its original value.

The study of geometric properties of neutrino flavor and spin-flavor oscillations brings

important new insights about the nature of this phenomenon. In this geometric picture

the neutrino propagation in space can be visualized by studying the trajectory of neutrino

spin-polarization vector in the projective Hilbert space of the system. Such an evolution

is known to give rise to geometric phase due to non-trivial geometry of the projective

Hilbert space. In case of spin precession νL → νR of pure neutrino states, the neutrino

spin-polarization traces out cyclic and noncyclic curves on the Bloch sphere for differ-

ent parameters of the Hamiltonian. We derive analytical expressions for adiabatic, non-

adiabatic and noncyclic geometric phases for different astrophysical environments. We

show that the area enclosed by the trajectory of the curves on the Bloch sphere is related

to the geometric phases acquired by the neutrino state during evolution.

We also discuss the geometric properties of neutrino flavor oscillation using density matrix

formalism. For two flavor oscillations, the geometric phase is shown to be independent of

the Majorana phase. We also show that the geometric phase can be used as a measure of

coherence of the neutrino beam. In addition, our expressions of the mixed state geometric

phase are a generalization of the previously obtained results of the pure state geometric

phase for both two and three flavor neutrino oscillations.
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Chapter 1

Introduction

Modern physics rests firmly on two pillars: quantum mechanics and general theory of

relativity. While quantum mechanics describes the nature of matter at extremely small

subatomic scales, general relativity is required for large scales where the gravitational ef-

fects become important. The quantum mechanics of all the known fundamental particles

and their interactions is formulated by the Standard Model (SM) of particle physics. This

model describes the fundamental building blocks of matter, quarks and leptons, and their

governing forces: the strong, electromagnetic and weak interactions, in a single mathe-

matical framework. The SM, developed in the 1970s, has not only been able to explain

almost all of the experimental results, but it also predicted new particles and phenomena,

which were discovered in subsequent experiments. For example, the existence of charm,

bottom and top quarks, massive W and Z vector bosons, the tau neutrino, scalar Higgs

boson and the neutral current interactions were all successful predictions of the SM.
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1.1 Gauge Theories and the Standard Model

The SM has two main components: local gauge invariance and spontaneous symmetry

breaking. The local gauge invariance determines the interactions of the gauge fields and

the number of gauge bosons in the SM. It also forces the gauge fields and thematter fields to

remain massless. The particles acquire their masses due to spontaneous symmetry break-

ing by the scalar Higgs field [1–7].

To illustrate the principle of local gauge invariance consider the Lagrangian of a free Dirac

field Ψ(x):

L0 = Ψ̄(x)
(
i/∂ −m

)
Ψ(x), (1.1)

where /∂ = γµ∂µ. The gauge principle demands that under the transformation

Ψ(x)→ eiα(x)Ψ(x), (1.2)

where α(x) depends on the space-time coordinate x, the Lagrangian should remain invari-

ant. However, it can be seen that under this transformation ∂µΨ(x) → eiα(x)(∂µΨ(x) +

i∂µα(x)Ψ(x)), thusL0 does not remain invariant. To restore the gauge invariance we need

to introduce a new gauge field Aµ to cancel out the extra term. We thus define covariant

derivative

Dµ = ∂µ + ieAµ(x), (1.3)

such that under the transformation (1.2):

Aµ(x)→ Aµ(x)− 1

e
∂µα(x), (1.4)

which results in DµΨ(x) → eiα(x)DµΨ(x). We can now write a locally gauge invariant

Lagrangian

L = Ψ̄(x)
(
i /D −m

)
Ψ(x) = L0 − eΨ(x)γµΨ(x)Aµ. (1.5)
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Thus the demand for the local gauge invariance results in an interaction term between the

Dirac fermion and the gauge field Aµ(x), which is the familiar electron-photon vertex of

quantum electrodynamics (QED). The QED represents an archetypal gauge theory which

exhibits localU(1) gauge invariance. The full Lagrangian for QED includes a kinetic term

for the propagating photon field Aµ(x):

LQED = −1

4
FµνF

µν + Ψ̄(x)
(
i /D −m

)
Ψ(x), (1.6)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor which remains

invariant under the transformation (1.2).

The idea of local gauge invariance was extended to non-Abelian groups by Yang-Mills [8],

which ultimately led to the formulation of the SM.Of particular interest is the the Lie group

SU(N) having N2 − 1 generators, which obey the commutation relation

[ta, tb] = ifabctc, (1.7)

where fabc are the structure constants of the group. The local gauge transformation for the

spinor field Ψ(x) = (ψ1(x), ψ2(x), .., ψN(x))T can be realized by an SU(N) matrix U(x)

in the following manner:

Ψ(x)→ U(x)Ψ(x) = eiθ
a(x)TaΨ(x), (1.8)

where T a is the matrix representation of the generators ta, θa(x) are space-time dependent

real functions and the index a is summed over from 1 to N2 − 1. As in the Abelian case,

to preserve the gauge invariance one needs to introduce a set of N2 − 1 gauge fields by

defining the covariant derivative:

Dµ =∂µ + igT aAaµ(x), (1.9)

3



such that the gauge fields Aaµ(x) transform as

T aAaµ(x)→ UT aAaµ(x)U−1 +
i

g

(
∂µU

)
U−1. (1.10)

The explicit transformation of the gauge fields can be obtained by considering the infinites-

imal transformation

Ψ(x)→
(
1 + iδθa(x)T a

)
Ψ(x), (1.11)

from which we get

Aaµ(x)→ Aaµ(x)− 1

g
∂µδθ

a − fabcδθbAaµ. (1.12)

The non-Abelian generalization of the kinetic term of the gauge fields can be found by

requiring the field stregth tensor to transform as

F a
µνT

a → UF a
µνT

aU−1, (1.13)

which leads to

FµνT
a =− i

g

[
Dµ, Dν

]
, (1.14)

F a
µν =∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (1.15)

Finally, the full Lagrangian for the non-Abelian SU(N) gauge theory interacting with the

fermion field can be written as

L = −1

4
F a
µνF

aµν + Ψ̄(x)
(
i /D −m

)
Ψ(x). (1.16)

From Eqs. (1.15) and (1.16) it can be easily checked that the Lagrangian contains terms

which are cubic and quartic in Aaµ. These terms gives rise to self-interactions among the

gauge fields, which were absent in the case of QED. All the interaction terms involve the

coupling constant g which is thus universal. Also it can be noticed that there are no mass
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terms for the gauge fields in the Lagrangian (1.16), since a term of the form m2AaµA
aµ

explicitly breaks the gauge invariance of the theory. Thus the gauge fields remainmassless.

1.1.1 SU(2)L × U(1)Y Electroweak theory

The SM is a non-Abelian gauge theory based on the symmetry group SU(3)C×SU(2)L×

U(1)Y , where SU(3)C corresponds to the color symmetry of strong interactions, SU(2)L

corresponds to the weak isospin symmetry and U(1)Y corresponds to the hypercharge

symmetry. The electroweak sector SU(2)L × U(1)Y of the SM describes the weak and

electromagnetic interactions in a unified manner. The weak isospin group SU(2)L act

on the left-handed chiral components of the fermion fields, while the right-handed com-

ponents are SU(2)L singlets. This group has three generators T a, a = 1, 2, 3. In the

fundamental representation the generators are given by the Pauli matrices : T a = σa/2,

which satisfy the commutation relation

[σa
2
,
σb

2

]
= iεabc

σc

2
. (1.17)

The Abelian group U(1)Y is generated by the hypercharge operator which is related to the

weak isospin T 3 and charge operator Q:

Y = Q− T 3. (1.18)

The matter content of the SM consist of quarks and leptons which are organized in three

generations. The left-handed fermions are assigned to be SU(2)L doublets while the right-

handed fermions are represented by SU(2)L singlets:

QL =

uL
dL

 ,

cL
sL

 ,

tL
bL

 ; LL =

νeL
eL

 ,

νµL
µL

 ,

ντL
τL

 (1.19)

UR = uR, cR, tR; DR = dR, sR, bR; ER = eR, µR, τR. (1.20)
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Particle content Isospin
T

Isospin
T 3

Hypercharge
Y

Electric
charge Q

QL =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
1/2

1/2
−1/2

1/6
2/3
−1/3

LL =

(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
1/2

1/2
−1/2

−1/2
0
−1

UR = uR, cR, tR 0 0 2/3 2/3

DR = dR, sR, bR 0 0 −1/3 −1/3

ER = eR, µR, τR 0 0 −1 −1

Φ =

(
φ+

φ0

)
1/2

1/2
−1/2

1/2
1
0

νR = νeR, νeR, ντR 0 0 0 0

Table 1.1: The quantum numbers of the fermion doublet and singlet fields, and the Higgs
field Φ in the SM. Also shown are the quantum numbers for the right-handed neutrino
fields in the extended SM.

Table 1.1 lists the quantum numbers of the particles in the SM.

In order to have local gauge invariance in the theory, we must introduce three gauge fields

W a
µ (a = 1, 2, 3) associated with the generators of the group SU(2)L, and one vector field

Bµ associated with the generator of the group U(1)Y . The gauge invariant Lagrangian for

the matter fields is then given by

Lmatter = Q̄αLi /DQαL+L̄αLi /DLαL+ŪαRi /D
′
UαR+D̄αRi /D

′
DαR+ĒαRi /D

′
EαR, (1.21)

where the index α is summed over the three generations of quarks and leptons. The

covariant derivatives in Eq. (1.21) have the form:

Dµ =∂µ + ig
σa

2
W a
µ + ig′Y Bµ, (1.22)

D′µ =∂µ + ig′Y Bµ, (1.23)
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where g and g′ are the coupling constants for the groups SU(2)L and U(1)Y respectively.

Also, the kinetic term for the gauge fieldsW a
µ and Bµ can be expressed as

Lgauge = −1

4
BµνB

µν − 1

4
W a
µνW

aµν , (1.24)

where field strength tensor is given by

Bµν =∂µBν − ∂νBµ, (1.25)

W a
µν =∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν . (1.26)

As discussed in the last Section, the gauge symmetry forbids a mass term for the gauge

fields in the theory. Now, the mass term for the fermions has the form: mψ̄ψ = m(ψ̄LψR+

h.c.). Since the left-handed and right-handed fermion fields have different transformations

under the gauge group SU(2)L × U(1)Y , this term is not gauge invariant and cannot be

included in the Lagrangian (1.21). Hence in this model we obtain massless gauge and

matter fields.

Now the gauge symmetry SU(2)L × U(1)Y must be spontaneously broken to U(1)Q at

low energies, since only the electric charge Q is conserved in nature. The mechanism

responsible for this symmetry breaking, known as the Higgs mechanism, also generates

mass of the gauge bosons and the fermions.

1.1.2 Spontaneous symmetry breaking and particle spectrum

To break the gauge symmetry spontaneously we introduce the Higgs field Φ which is rep-

resented by an SU(2)L doublet of complex scalar fields

Φ =

φ+

φ0

 , Y = +1/2, (1.27)
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where φ+ charged and φ0 is neutral. The Lagrangian for the Higgs field Φ is given by

LHiggs =
(
DµΦ

)†
DµΦ− µ2Φ†Φ− λ

(
Φ†Φ

)2
, (1.28)

where µ2 is real, λ > 0 to have lower bound on the potential andDµ is given by Eq. (1.22)

with Y = +1/2. In order to find the particle spectrum we must determine the vacuum

state of the theory which corresponds to the ground state of the Higgs potential:

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (1.29)

Minimizing V (Φ) gives us the ground state configuration of the system. If µ2 > 0, the po-

tential minimum is located at the origin 〈Φ〉 = 0. Thus we have a symmetric ground state

which is invariant under the gauge transformations and the gauge symmetry is preserved.

On the other hand if µ2 < 0, the minimum of potential occurs at

〈Φ†Φ〉 =
−µ2

2λ
=
v2

2
, (1.30)

where v =
√
−µ2/λ is called the vacuum expectation value (vev) of the Higgs field. Since

the vacuum must be electrically neutral, the vev is due to φ0. We thus obtain an infinite set

of degenerate ground states from which a particular state can be chosen as the vacuum:

〈Φ〉 =
1√
2

0

v

 . (1.31)

The above vacuum state is not invariant under the symmetry of the Lagrangian (1.28).

Thus the gauge symmetry SU(2)L×U(1)Y is spontaneously broken by the vacuum. How-

ever, the vacuum remains invariant under the transformations of the groupU(1)Q since the

Higgs field has zero U(1)Q charge. This results in the appearance of a massless gauge bo-

son which can be identified with the photon. The spontaneous symmetry breaking also

leads to the mass of the gauge fieldsW a
µ . To see this, we parametrize the Higgs doublet
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in the general form

Φ(x) = eiσ
aξa(x)/2v 1√

2

 0

v + h(x)

 , (1.32)

where ξa(x) = (ξ1(x), ξ2(x), ξ3(x)) and h(x) are the four real scalar fields. The pertur-

bative field h(x) describes the excitations of the Higgs field above vacuum. On the other

hand, the fields ξa(x) can be rotated away by the following transformation:

Φ(x)→ U(ξ)Φ(x) = e−iσ
aξa(x)/2vΦ(x), (1.33)

This transformation defines the unitary gauge and in this gauge the Higgs doublet is given

by

Φ(x) =
1√
2

 0

v + h(x)

 , (1.34)

At the same time the gauge fields W a
µ are subjected to the transformation given by Eq.

(1.10)
σaW a

µ

2
→ U(ξ)

σaW a
µ

2
U−1(ξ) +

i

g

(
∂µU(ξ)

)
U−1(ξ). (1.35)

In this manner the three unphysical Goldstone bosons ξaµ (a = 1, 2, 3) are absorbed into

the gauge transformation i.e. into the longitudinal modes of the gauge bosons to make

them massive. This is known as the Higgs mechanism [9–12]. The particle spectrum of

the theory after spontaneous symmetry breaking has the following components:

(i)A linear combination of the gauge fieldsW a
µ (a = 1, 2, 3) andBµ gives us threemassive

bosons which are identified with theW± and Z bosons, while the fourth linear combina-

tion which remains massless is the photon. Consider the first term in the Higgs Lagrangian
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(1.28):

(
DµΦ

)†
DµΦ =

∣∣∣∣∣(∂µ + ig
σa

2
W a
µ + i

g′

2
Bµ

) 0

v+h(x)√
2

∣∣∣∣∣
2

=
1

2

(
∂µh(x)

)2
+

1

8

(
v + h(x)

)2
(
g2
(
W 1
µW

1µ +W 2
µW

2µ
)
+(

− gW 3
µ + g′Bµ

)2
)
. (1.36)

We define the charged and neutral physical gauge bosons as

W±
µ =

1√
2

(
W 1
µ ± iW 2

µ

)
, (1.37)

Aµ
Zµ

 =

 cos θW sin θW

− sin θW cos θW


Bµ

W 3
µ

 , (1.38)

where the angle θW is called the weak mixing angle or theWeinberg angle, defined by [13]

tan θW =
g′

g
. (1.39)

In terms of the new fields the Lagrangian term (1.36) becomes

(
DµΦ

)†
DµΦ =

1

2

(
∂µh(x)

)2
+
(
v + h(x)

)2
(g2

4
W+
µ W

−µ +
g2 + g′2

4
ZµZ

µ
)
. (1.40)

Thus theW and Z gauge bosons acquire masses proportional to the vev of the Higgs field:

mW =
gv

2
, mZ =

√
g2 + g′2v

2
=

mW

cos θW

, (1.41)

whereas theAµ boson remains massless. The SMmakes precise predictions for the masses

mW and mZ of the gauge boson, the mixing angle θW as well as the Higgs vev v. For

example, consider the muon decay µ− → e−ν̄eνµ. In the limit of low momentum transfer,
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theW propagator can be approximated by a local four-fermion interaction which gives:

g2

8m2
W

=
GF√

2
. (1.42)

The measured muon lifetime provides a precise determination of the constant GF:

GF = 1.16637× 10−5 GeV−2. (1.43)

Thus from Eqs. (1.41), (1.42) and (1.43) we obtain the vev of the Higgs field which char-

acterizes the electroweak symmetry breaking scale:

v =
(√

2GF

)−1/2 ' 246 GeV. (1.44)

(ii) The Higgs Lagrangian (1.28) has introduced a new particle in the SM known as the

Higgs boson. The mass of the Higgs boson arises due to the potential term (1.29) which

can be written in the unitary gauge as:

V (Φ) = λv2h2 + λvh3 +
h4

4
. (1.45)

This equation suggests the mass of the Higgs boson as

mH =
√

2λv2 =
√
−2µ2. (1.46)

Since µ2 is not connected to any other observable quantity, the mass of the Higgs boson

cannot be predicted within the SM and has to be determined experimentally. In 2012,

the ATLAS and CMS collaboration discovered the Higgs boson with mass mH ≈ 125

GeV [14,15].
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(iii) The fermions acquire their mass through Yukawa coupling with the Higgs doublet.

The gauge invariant Lagrangian describing this interaction has the following form:

LYukawa = −Y (u)
αβ Q̄αLΦ̃UβR − Y (d)

αβ Q̄αLΦDβR − Y (l)
αβ L̄αLΦEβR + h.c., (1.47)

where Φ̃ = iσ2Φ∗, α, β are indices summed over the quark and lepton generations, and

Y
(f)
αβ , f = u, d, l denote the Yukawa couplings of quarks and leptons with the Higgs field.

In the unitary gauge the above Lagrangian can be written as

LYukawa = −
(

1 +
h(x)

v

)[
ūαLM

(u)
αβ uβR + d̄αLM

(d)
αβ dβR + l̄αLM

(l)
αβlβR

]
+ h.c., (1.48)

where the quarks and lepton fields are arranged in the following array :

u =


u

c

t

 , d =


d

s

b

 , l =


e

µ

τ

 , (1.49)

and

M
(f)
αβ =

v√
2
Y

(f)
αβ , f = u, d, l, (1.50)

are the complex 3 × 3 mass matrices for up-type quark, down-type quark and charged

leptons respectively. The above mass matrices can be diagonalized by the following bi-

unitary transformation:

V
(f)†
L M (f)V

(f)
R = D(f), f = u, d, l, (1.51)

where VL and VR are the appropriate 3 × 3 unitary matrices and D(f) are the diagonal

matrices:

D(u) = Diag
(
mu,mc,mt

)
, D(d) = Diag

(
md,ms,mb

)
, D(l) = Diag

(
me,mµ,mτ

)
.

(1.52)
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In this manner we obtain the mass terms for the quarks and charged leptons in the SM.

Eq. (1.50) implies that these masses are proportional to the Higgs vev. In addition since

the elements of the Yukawa coupling matrix Y and the transformation matrices VL and

VR are unknown, the quark and lepton masses cannot be predicted. The experimental

measurements of the above nine fundamental parameters of the SM reveals the following

hierarchy: mu � mc � mt, md � ms � mb, me � mµ � mτ , which has no

explanation within the SM. Also notice that there are no mass terms for the neutrinos.

This is due to the fact that the SM contains only left-handed neutrino fields (Eqs. (1.19)

and (1.20)), which excludes the possibility of a Yukawa type coupling of neutrinos with

the Higgs doublet. Thus in the SM the neutrinos remain massless.

The full Lagrangian for the Standard Electroweak Model can be written as

L = Lmatter + Lgauge + LHiggs + LYukawa, (1.53)

where the corresponding terms given by Eqs. (1.21), (1.24), (1.28) and (1.48) respectively.

1.2 Neutrino mass, mixing and oscillations

The existence of neutrino mass is so far the only experimental evidence for the physics

beyond the SM. As discussed in the last Section, the SM is formulated in a manner such

that the neutrinos have zero mass. However, there is no fundamental symmetry in the SM

which forbids neutrino mass. One of the ways to generate neutrino mass is to extend the

SM by adding three right-handed neutrino fields νR = νeR, νµR, ντR. This eliminates the

inherent asymmetry in the SM between the quark and lepton sectors and is called mini-

mally extended Standard Model (MESM). The right-handed neutrino fields are SU(2)L

singlets and have hypercharge Y = 0 (see Table 1.1). Thus they have no interactions with

the gauge bosons and are called sterile.
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In the MESM the presence of right-handed neutrino fields allows us to construct a Dirac

neutrino mass term which arises due to the Yukawa coupling:

LDirac = −Y (ν)
αβ L̄αLΦ̃νβR + h.c., (1.54)

where Y ν
αβ are the coupling constants. After the spontaneous symmetry breaking the neu-

trino mass term can be written as

LDirac = −ν̄LMDνR + h.c., (1.55)

where

MD =
v√
2
Y (ν) (1.56)

is a complex 3×3Dirac mass matrix, and νL and νR are the left- and right-handed neutrino

arrays respectively:

νL =


νeL

νµL

ντL

 ; νR =


νeR

νµR

ντR

 . (1.57)

The matrixMD is, in general, not diagonal. To obtain masses of the physical fields,MD

needs to be diagonalized by the following bi-unitary transformation

U †MDV = Mν = diag
{
m1,m2,m3

}
. (1.58)

The resulting Dirac mass term is given by

LDirac = −ν̄ ′LMνν
′
R + h.c. =

3∑
i=1

miν̄iνi, (1.59)
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where ν ′L and ν ′R are the chiral projections of the physical Dirac neutrino fields νi with

definite massmi :

ν ′L = U †νL =


ν1L

ν2L

ν3L

 , ν ′R = V †νR =


ν1R

ν2R

ν3R

 , (1.60)

ν ′ =ν ′L + ν ′R =


ν1

ν2

ν3,

 , (1.61)

such that PLν ′ = ν ′L and PRν ′ = ν ′R.

We have shown that in the MESM the Dirac neutrino can be generated through the usual

Higgs mechanism. According to Eq. (1.56), the neutrino masses obtained in this way

are proportional to Higgs vev, just like the masses of other fermions in the SM. This is

expected since this model treats the neutrino fields on the same footing as the fields of

the other fermions. However, the current experimental bounds on the neutrino mass (for

example [16]) suggest that the neutrinos are at least five orders of magnitude lighter than

the lightest fermion, the electron. Thus it is unlikely that the standard Higgs mechanism

alone is responsible for the generation of neutrino mass.

The simplest way to generate small neutrino masses is provided by the seesaw mechanism.

In this model one writes a Majorana mass term for the right-handed neutrinos which arises

due to some fundamental interactions at higher energy scale. The diagonalization of the

combined Dirac-Majorana Lagrangian then gives us two neutrino mass scales for the left-

handed and right-handed neutrinos respectively: mνL ' MT
DM

−1
R MD and mνR ' MR,

whereMD andMR correspond to Dirac andMajorana mass matrices respectively. Now as

we saw above, the Dirac mass term is generated by Higgs mechanism. Thus the order of

magnitude of elements ofMD is probably of the order of other fermion masses. However

the Majorana mass termMR, being an SM singlet, corresponds to some large mass scale
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Λ beyond the SM i.e. Λ � v. If we take Λ to be the typical grand unification scale

(∼ 1014−1016 GeV) then the light neutrino masses, which are given by the eigenvalues of

mνL, are suppressed relative toMD by a ratio v/Λ ∼ 10−14 − 10−12. In this manner one

can generate small neutrino masses over several orders of magnitude by choosing different

values for the elements ofMD andMR.

1.2.1 Neutrino mixing

Regardless of how the small neutrino mass arises, their existence have major consequences

in the low energy phenomenology. For example, the Lagrangian for the charged-current

interactions of leptons with theW bosons is given by:

LCC = − g√
2
ν̄Lγ

µlLW
−
µ + h.c. (1.62)

We can choose a basis in which the charged lepton mass term is diagonal i.e. the mass

eigenstates of charged leptons coincide with their flavor eigenstates. In this basis, using the

transformation (1.60), we can write the above Lagrangian in terms of the neutrino mass

eigenstates ν ′:

LCC =− g√
2
ν̄ ′LU

†γµlLW
−
µ + h.c.

=− g√
2

(
ν̄1L ν̄2L ν̄3L

)
U †γµ


eL

µL

τL

W−
µ + h.c.

=− g√
2

∑
α=e,µ,τ

3∑
k=1

U∗αkν̄kLγ
µlαLW

−
µ + h.c. (1.63)

The unitary matrix U is called neutrino mixing matrix or the PMNS (Pontecorvo-Maki-

Nakagawa-Sakata) matrix [17,18]. An immediate consequence of neutrino mixing is that

it leads to lepton flavor violation, unless the mixing matrix is unity. For Dirac neutrinos the
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total lepton number is conserved which arise as a global symmetry of the Dirac Lagrangian

under the U(1) phase transformations of the lepton fields. However, the Majorana mass

term is not invariant under these transformations which leads to lepton number violation

in the case of massive Majorana neutrinos.

The 3× 3 unitary matrix U can be parameterized using three angles and six phases. How-

ever, three of these phases are unphysical since they can be absorbed into the phases of

charged lepton fields in Eq. (1.63). For the case of Dirac neutrinos two additional phases

can be eliminated by rephasing the massive neutrino fields νkL. Thus Dirac neutrino mix-

ing matrix is characterized, apart from the three mixing angles, by one physical phase

which give rise to CP violation. For Majorana neutrinos the mass term is not invariant

under rephasing of νkL which results in three physical phases in the mixing matrix. In

general, the mixing matrix U can be written as [4]:

U = UDDM, (1.64)

where UD is the Dirac-like mixing matrix with one Dirac phase and DM is a diagonal

matrix with two Majorana phases. Clearly for the Dirac neutrinos: U = UD. The standard

parametrization of matrix UD is given by

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.65)

where cab ≡ cos θab and sab ≡ sin θab. θ12, θ13, and θ23 are the three mixing angles such

that 0 ≤ θab ≤ π/2 and δ is the Dirac CP violating phase, 0 ≤ δ ≤ 2π. The diagonal

matrix DM can be written as:

DM = Diag
{

1, eiρ, eiσ
}
, (1.66)
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where ρ and σ are the two Majorana phases.

1.2.2 Neutrino oscillations

The observation of neutrino oscillations in several different experiments is a definitive

evidence of neutrino mass and flavor mixing. In a typical experiment the neutrinos are

produced in a charged-current interaction together with a charged antilepton. According

to Eq. (1.63) a neutrino with flavor να, α = e, µ, τ is produced in a superposition of

physical fields νk with different massesmk. Thus we can write:

|να〉 =
∑
k

U∗αk |νk〉 , (1.67)

where |νk〉 are the eigenstates of the neutrino propagation Hamiltonian with energy eigen-

values Ek =
√
p2
k +m2

k and are called mass eigenstates. As the neutrinos propagate, the

eigenstates |νk〉 evolve differently due to different energy eigenvalues Ek. This leads to

transitions among the different flavor eigenstates |να〉 which are termed as neutrino oscil-

lations. If the neutrinos are initially produced in a flavor να then after traveling a distance

L the probability for the transition να → νβ is given by Eq. (A.6) in Appendix A:

Pνα→νβ(L,E) =
∑
j,k

U∗αkUβkUαjU
∗
βj exp

(
− i

∆m2
kjL

2E

)

= δαβ − 2Re
∑
k>j

U∗αkUβkUαjU
∗
βj exp

(
− i

∆m2
kjL

2E

)
, (1.68)

where ∆m2
kj = m2

k−m2
j , andE is the neutrino energy. The unitarity of the mixing matrix

U gives us the relation:

∑
k

UαkU
∗
βk =δαβ (1.69)

⇒
∑
|Uαk|2|Uβk|2 =δαβ − 2

∑
k>j

Re
(
U∗αkUβkUαjU

∗
βj

)
. (1.70)
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Thus we can write the Eq. (1.68) in a useful form:

Pνα→νβ(L,E) =δαβ − 4
∑
k>j

Re
(
U∗αkUβkUαjU

∗
βj

)
sin2

(
∆m2

kjL

4E

)

+ 2
∑
k>j

Im
(
U∗αkUβkUαjU

∗
βj

)
sin

(
∆m2

kjL

2E

)
. (1.71)

For the channel α = β, Eq. (1.71) gives us the survival probability

Pνα→να(L,E) = 1− 4
∑
k>j

Re
(
|Uαk|2|Uβk|2

)
sin2

(
∆m2

kjL

4E

)
. (1.72)

Let us now consider the case of antineutrinos which are produced through the Hermitian

conjugate part of the charged-current interaction (1.63). The antineutrino states are thus

described by the relation

|ν̄α〉 =
∑
k

Uαk |νk〉 . (1.73)

The oscillation probability for the antineutrino transitions ν̄α → ν̄β is obtained by the

replacement U → U∗ in Eq. (1.71):

Pν̄α→ν̄β(L,E) =δαβ − 4
∑
k>j

Re
(
U∗αkUβkUαjU

∗
βj

)
sin2

(
∆m2

kjL

4E

)

− 2
∑
k>j

Im
(
U∗αkUβkUαjU

∗
βj

)
sin

(
∆m2

kjL

2E

)
. (1.74)

The difference in the oscillation probabilities of the neutrinos and antineutrinos indicate

CP violation, which can be expressed by

∆P = Pνα→νβ − Pν̄α→ν̄β = 4
∑
k>j

Im
(
U∗αkUβkUαjU

∗
βj

)
sin

(
∆m2

kjL

2E

)
. (1.75)

Thus CP violation requires imaginary terms in the mixing matrix. If CP is violated then T

is violated by the same amount to keep the CPT conserved. Thus∆P = Pνα→νβ−Pνβ→να .
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Also if α = β, then

∆P = 4
∑
k>j

Im
(
|Uαk|2|Uβk|2

)
sin

(
∆m2

kjL

2E

)
= 0. (1.76)

Thus to observe CP violation one needs to measure transition probability between two

different flavor states.

The special case of two-neutrino mixing provides a useful approximation to study several

important properties of the neutrino oscillation phenomenon [19]. In this case the two

flavor states να and νβ are linear superposition of two mass eigenstates ν1 and ν2. The

2× 2 mixing matrix can be written as

U =

 cos θ sin θ

− sin θ cos θ

 , (1.77)

where θ is the mixing angle. From Eq. (1.72) the survival probability is given by

Pνα→να(L,E) = 1− sin2 2θ sin2

(
∆m2L

4E

)
, (1.78)

where ∆m2 = ∆m2
21. The last term indicates oscillations between the flavor states with a

wavelength

Losc =
4πE

∆m2
. (1.79)

The oscillation wavelength is the scale over which the quantum interference between mas-

sive neutrino states take place. However, there are several ways through which the co-

herence of massive neutrinos is lost and the interference effects are not observed (see

Appendix A). In this case the oscillating term in Eq. (1.78) averages out and we obtain the

incoherent survival probability

〈Pνα→να〉 = 1− 1

2
sin2 2θ. (1.80)
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Parameter NO Best fit ±1σ IO Best fit ±1σ

θ12(°) 33.56+0.77
−0.75 33.56+0.77

−0.75

θ23(°) 41.6+1.5
−1.2 50.0+1.1

−1.4

θ13(°) 8.46+0.15
−0.15 8.49+0.15

−0.15

δCP (°) 261+51
−59 277+40

−46

∆m2
21/10−5 eV2 7.50+0.19

−0.17 7.50+0.19
−0.17

∆m2
3l/10−3 eV2 2.524+0.039

−0.040 −2.514+0.038
−0.041

Table 1.2: Best fit values of the neutrino oscillation parameters for normal ordering (NO)
and inverted ordering (IO) obtained by global analysis of the neutrino oscillation data, as
presented in Ref. [20]. ∆m2

3l ≡ ∆m2
31 > 0 for NO and ∆m2

3l ≡ ∆m2
32 < 0 for IO.

The results from solar, atmospheric, reactor and accelerator neutrino experiments have

convincingly shown that the neutrinos are mixed and massive particles. The parameters

of the three neutrino mixing (1.65) have been obtained by various groups through the

global analysis of the neutrino oscillation data. In Table 1.2 we show the best-fit values of

the neutrino oscillation parameters as reported in Ref. [20].

1.2.3 Neutrino oscillations in matter

It was shown byWolfenstein [21] that the propagation of neutrinos through matter induces

an effective potential due to coherent forward scattering of neutrinos off the background

matter particles. Since the background matter at ordinary temperatures does not con-

tain muons or taus, the electron neutrinos νe encounter both charged-current and neutral-

current interactions while νµ and ντ undergo only neutral-current interactions (Fig. 1.1).

Thus the effective potential is flavor dependent which results in a modification in the neu-

trino mass and mixing in matter. This leads to significant changes in the neutrino oscilla-

tion probability in the medium.
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(a) (b)

Figure 1.1: Tree-level Feynman diagrams of the elastic scattering of neutrinos with the
background matter particles, which generate (a) charged-current potential VCC and (b)
neutral-current potential VNC.

Consider first the elastic νee− scattering through charged-current interaction (Fig. 1.1a).

The effective low energy Hamiltonian for this process is given by

HCC
eff =

GF√
2

[
ē(p1)γλ(1− γ5)νe(p2)

][
ν̄e(p3)γλ(1− γ5)e(p4)

]
=
GF√

2

[
ν̄e(p3)γλ(1− γ5)νe(p2)

][
ē(p1)γλ(1− γ5)e(p4)

]
, (1.81)

where we have used Fierz transformation in the last term. For the elastic forward scattering

of neutrinos off the electrons, the neutrino momentum remains unchanged i.e. p2 = p3 =

p, which results in the effective Hamiltonian

HCC
eff =

√
2GF ν̄eLγλνeL

〈
ēγλ(1− γ5)e

〉
. (1.82)

In normal unpolarized matter at rest, averaging over electron background results in [19]:

〈
ēγλ(1− γ5)e

〉
= δλ0

〈
ēγ0e

〉
= δλ0ne, (1.83)

where ne is the number density of electrons in the medium. Thus (1.82) becomes

HCC
eff =

√
2GFneν̄eLγ0νeL = VCCν̄eLγ0νeL, (1.84)
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where the charged-current potential is given by

VCC =
√

2GFne. (1.85)

In a similar manner one can find out the effective neutral-current potential in matter which

is same for neutrinos of all the flavors [22]:

VNC = −1

2

√
2GFnn, (1.86)

where nn is the number density of neutrons in the medium. Thus the effective potential

for a neutrino of flavor α in an unpolarized medium can be written as

Vα = VCCδαe + VNC =
√

2GF

(
neδαe −

nn
2

)
. (1.87)

Consider now the case of two-neutrino mixing in a medium. The evolution equation for

the propagation of ultrarelativistic neutrinos in matter is given by

i
d

dx

νe
νµ

 = Hm

νe
νµ

 , (1.88)

where Hamiltonian Hm in matter is the sum of vacuum Hamiltonian and the interaction

Hamiltonian. In the flavor basis Hm is given by

Hm =U

−∆m2/4E 0

0 ∆m2/4E

U † +

VCC + VNC 0

0 VNC

 , (1.89)

where U is the mixing matrix (1.77). Neglecting the terms proportional to identity matrix,

we obtain

Hm =
1

4E

−∆m2 cos 2θ + A ∆m2 sin 2θ

∆m2 sin 2θ −∆m2 cos 2θ − A

 , (1.90)
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where A = 2EVCC = 2
√

2GFneE. In a medium with constant density the above Hamil-

tonian can be diagonalized by the following transformation to the mass basis in matter:

U †mHmUm = Diag
(
−∆m2

m/4E, ∆m2
m/4E

)
, (1.91)

where

Um =

 cos θm sin θm

− sin θm cos θm

 , (1.92)

is the unitary mixing matrix in matter. The mixing angle and mass-squared difference in

matter are given by

cos 2θm =
∆m2 cos 2θ − A√

(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2
, (1.93)

∆m2
m =

√
(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2. (1.94)

The oscillation probabilities in matter are thus given by

Pm(νe → νe) = 1− sin2 2θm sin2
(∆m2

mL

4E

)
, (1.95)

which is the same as Eq. (1.78) with modification θ → θm and ∆m2 → ∆m2
m. Thus

the neutrino propagation in matter leads to changes in their oscillation probabilities com-

pared to the vacuum values. However, in this case a new feature arises which can lead

to enhancement in neutrino transitions in a medium. This can be seen from Eq. (1.93)

according to which the mixing angle becomes maximum when

A =∆m2 cos 2θ. (1.96)

This condition is called resonance and corresponds to the electron number density

nRe =
∆m2 cos 2θ

2
√

2GFE
. (1.97)
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At resonance the mixing angle becomes π/4 and there is a possibility of complete conver-

sion of original neutrino beam to a different flavor.

The presence of resonance can have important consequences for neutrino propagation in

a medium with varying density. In such a medium the neutrino mass eigenstates are no

longer the eigenstates of the Hamiltonian (1.90). Thus the Hamiltonian is not diagonal in

the mass basis. In this case the transformation to the mass basisνe
νµ

 = Um

ν1m

ν2m,

 (1.98)

yields the evolution equation

i
d

dx

ν1m

ν2m

 =
(
U †mHmUm − iU †m

dUm
dx

)ν1m

ν2m


=

−∆m2
m/4E −idθm/dx

idθm/dx ∆m2
m/4E


ν1m

ν2m

 (1.99)

Let the density of the medium is a slowly varying function of distance x so that dθm/dx

is small. In particular we assume

∣∣∣dθm
dx

∣∣∣� ∣∣∣∆m2
m

2E

∣∣∣, (1.100)

which corresponds to the case where transitions between ν1m and ν2m are negligible. This

is called adiabatic approximation. Under this approximation Eq. (1.99) can be integrated

to give the νe survival probability [19]

Padia
m (νe → νe) =

1

2

(
1 + cos 2θ cos 2θm

)
. (1.101)

The adiabatic propagation of neutrinos in a medium with varying density can lead to reso-

nant transitions which is known as MSW (Mikheyev-Smirnov-Wolfenstein) effect [23,24].
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The essence of this effect can be seen by considering an electron neutrino produced at the

center of the Sun or in a star where the density is infinitely high. Then Eq. (1.93) implies

mixing angle at this point is θm ≈ π/2, and Eq. (1.98) implies that νe corresponds to the

mass eigenstate ν2m. As the neutrinos move outward to regions of smaller density, it will

pass through resonance region where Eq. (1.97) is satisfied and finally proceed to vacuum

where the angle θm is equal to the vacuum mixing angle. If the propagation is adiabatic

the neutrinos will remain in the mass eigenstate ν2m, which at a point in vacuum is given

by ν2 = νe sin θ + νµ cos θ. Thus the probability of finding νe decreases from one to the

value sin2 θ. This can have dramatic consequences if the angle θ is small, in which case

we obtain large flavor conversion in spite of a small mixing angle.

1.3 Overview of the thesis

In this Chapter we presented some of the well-known features of the Standard Model. We

also discussed the phenomenon of neutrino oscillations which arises due to non-zero neu-

trino mass. Theory and experiments of neutrino oscillations have a rich history [25–27]

and it continues to play an important role in the efforts to discover new physics beyond the

SM. On the experimental front several experiments are in progress and are planned with

different neutrino sources. Some of the important recent measurements include constraints

on the neutrino CP violating phase at T2K [28], measurement of reactor antineutrino spec-

tra at Daya Bay [29] and the measurement of neutrino produced in the CNO cycle in the

Sun at Borexino [30]. On the theoretical side several studies have been carried out to

understand the intricacies and implications of the neutrino oscillation phenomenon.

In this Thesis, we study the phenomenological aspects of neutrino flavor and spin-flavor

oscillations, and point out several new features and observables that can give important

insights about the phenomenon of neutrino oscillations. In Chapter 2 we study the elec-

tromagnetic character of neutrinos. This Chapter contains detailed discussions on neutrino
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dipole moment: its origin, its experimental and theoretical limits and its implications for

neutrino propagation in magnetic fields. This Chapter lays the foundation for the next

two Chapters in which we study the phenomenon of neutrino spin-flavor oscillations in

the astrophysical environments where they may generate novel and hopefully observable

effects. In Chapter 3 we examine the effects of the solar magnetic fields on the electron

neutrinos produced in the Sun. We evaluate neutrino spin-flavor transition probabilities

and use bounds from the Borexino experiment to constrain the solar magnetic fields. In

Chapter 4 we explore the quantum mechanical features of neutrino spin rotation and point

to emergence of geometric phases in this phenomenon. We derive analytical expressions

for adiabatic and non-adiabatic geometric phases for neutrino propagation in different en-

vironments such as the Sun and neutron stars and discuss their phenomenological impli-

cations. In Chapter 5 we study the geometric interpretation of neutrino flavor oscillations

and derive mixed state geometric phase which arises during evolution of a neutrino beam.

We show that our results are generalizations of the earlier results by various authors for

both two and three flavor neutrino oscillations. Finally in Chapter 6 we summarize our

results and present a future outlook.
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Chapter 2

Electromagnetic properties of neutrinos

The study of neutrino electromagnetic properties and interactions not only gives us im-

portant insights into various phenomena beyond the SM, this can also be used as a tool to

distinguish between the Dirac and Majorana nature of neutrinos. In this Chapter we give

a concise review of the neutrino electromagnetic properties such as origin of neutrino

dipole moment (NDM), neutrino interactions with the electromagnetic fields and spin-

flavor transitions in neutral matter and in magnetic fields. Some of the review articles and

books which contain an extensive discussion of neutrino electromagnetic properties and

related phenomenology can be found in Refs. [1, 2, 6, 31, 32].

2.1 Electromagnetic form factors

Neutrinos, being electrically neutral particles, acquire their electromagnetic properties

through interactions with a photon at quantum loop level. The coupling of the neutrino
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Figure 2.1: Effective vertex for neutrino-photon interaction.

field ν(x) with the electromagnetic field Aµ(x) in one-photon approximation can be de-

scribed by an effective interaction Hamiltonian [31]

Hem(x) = jµ(x)Aµ(x) = ν̄(x)Γµν(x)Aµ(x), (2.1)

where jµ is the neutrino electromagnetic current density and Γµ is the vertex function. For

a given Lagrangian the vertex function is obtained by summing over all possible Feynman

diagrams having the form shown in Fig. 2.1. For the diagram in Fig 2.1, the matrix

elements of current jµ(x) are given by

〈ν(p′) | jµ(x) | ν(p)〉 =
〈
ν(p′)

∣∣ eiP·xjµ(0)e−iP·x
∣∣ ν(p)

〉
= e−iq·x 〈ν(p′) | jµ(0) | ν(p)〉 ,

(2.2)

where Pµ is the four-momentum operator, p and p′ are the four momentum of initial and

final neutrino states respectively, and q = p− p′ is the four momentum of the photon. The

evaluation of the matrix element in Eq. (2.2) depends on Dirac or Majorana nature of the

neutrino, which gives rise to different form factor in both cases.
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2.1.1 Dirac neutrinos

First we consider the case in which the neutrinos in Fig. 2.1 are described by free Dirac

fields having the plane wave expansion

ψ(x) =

∫
d3p

(2π)32E

∑
h=±1

[
a(p, h)u(p, h)e−ip·x + b†(p, h)v(p, h)eip·x

]
, (2.3)

where h is helicity, E is neutrino energy, u(p, h) and v(p, h) are positive and negative

energy spinors. The particle and antiparticle annihilation operators a(p, h) and b(p, h)

obey the following anti-commutation relation:

{a(p, h), a†(p′, h′)} = {b(p, h), b†(p′, h′)} = (2π)32Eδ3(~p− ~p′)δhh′ . (2.4)

In this case the matrix element (2.2) is given by

〈ν(p′) | jµ(x) | ν(p)〉 = e−iq·xū(p′)Γµ(p, p′)u(p), (2.5)

where we have suppressed the helicity labels. Since (p + p′)2 = 4m2 − q2, m being the

neutrinomass, all possible terms inΓµ(p, p′) can bewritten in terms of q2, which is the only

independent kinematical quantity. Thus the vertex function Γµ(p, p′) can be decomposed

in terms of Lorentz invariant form factors which depend only on q2. The explicit form of

the vertex function can be constrained by following two requirements:

(i) The conservation of the current jµ(x), required by the gauge invariance of Hem(x) in

Eq. (2.1) under the transformation Aµ → Aµ + ∂µφ(x), implies ∂µjµ(x) = 0. Using Eq.

(2.5) we obtain

qµū(p′)Γµ(q)u(p) = 0. (2.6)
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(ii) The Hermicity of the Hamiltonian in Eq. (2.1) requires that the current jµ must be

Hermitian. Since

〈ν(p′) | jµ(x) | ν(p)〉† = eiq·x
(
ū(p′)Γµ(q)u(p)

)†
= e−iq·xū(p′)γ0Γµ(−q)†γ0u(p), (2.7)

we have

Γµ(q) = γ0Γµ(−q)†γ0. (2.8)

On the basis of above considerations we can write down the vertex function in terms of

four independent form factors [2, 31, 33]:

Γµ(q) = fQ(q2)γµ − ifM(q2)σµνq
ν + fE(q2)σµνq

νγ5 + fA(q2)(q2γµ − qµ/q)γ5, (2.9)

where fQ(q2), fM(q2), fE(q2) and fA(q2) are the charge, magnetic dipole, electric dipole

and anapole form factors respectively.

The physical interpretation of the form factors can be understood by taking the non-relativistic

limit of the Hamiltonian in (2.1). For example, for the second term we obtain [33, 34]

HNR
em (fM) = −fM(0)σ ·B, (2.10)

where B is the magnetic field and σ are Pauli matrices. Thus fM(0) represents the mag-

netic moment µ of the neutrino. Similarly for other terms the non-relativistic limit gives

us following form factors:

fQ(0) = q, fE(0) = ε, fA(0) = a, (2.11)

where q, ε and a are neutrino charge, electric dipole moment and anapole moment respec-

tively.

Let us now study the CP properties of the Hamiltonian (2.1). The term Γµ in Eq. (2.1)
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arises from loop diagram involving weak interactions which maximally violate C and P

individually. However the violation of CP has so far been observed only in the quark sector.

Now the electromagnetic field transforms as Aµ
CP−−→ −Aµ. Thus for Hem to remain CP

invariant we must have

jµ
CP−−→ −jµ ⇒ Γµ(q)

CP−−→ −Γµ(q). (2.12)

Using the expansion (2.9) we obtain [31]:

Γµ(q)
CP−−→ −(fQ(q2)γµ−ifM(q2)σµνq

ν−fE(q2)σµνq
νγ5+fA(q2)(q2γµ−qµ/q)γ5). (2.13)

Thus only the fE(q2) term violates CP. Hence in a CP conserving case this term would

vanish (i.e. fE(q2) = 0). However, in a general scenario including leptonic CP violation

Dirac neutrinos have four finite form factors.

2.1.2 Majorana neutrinos

A massive Dirac neutrino can have four distinct states corresponding to two helicities of

both, particles and antiparticles. For Majorana neutrinos, however, only two distinct states

are possible since in this case the particle and antiparticle states are identical [35]. This

reduction in the degree of freedom of gives rise to special CP and electromagnetic prop-

erties of the Majorana neutrinos. The Majorana field is equal to its charge conjugate field

ψc = γ0Cψ̄∗, where C is the charge conjugation operator, upto a global phase. Thus we

can write

ψ̄Γµψ = ψ̄cΓµψ
c = ψTC−1Γµγ0Cψ̄∗ = −ψ†(C−1Γµγ0C)Tψ = ψ̄CΓTµC−1ψ, (2.14)
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where we have used the identity ψTΓµψ
′ = −ψ′TΓTµψ. We thus arrive at the following

identity for Majorana neutrinos

Γµ = CΓTµC−1. (2.15)

Now using the expansion (2.9) for Γµ and using the following charge conjugation proper-

ties of gamma matrices:

CγTµ C−1 = −γµ, CσTµνC−1 = −σµν , C(σµνγ5)TC−1 = −σµνγ5, C(γµγ5)TC−1 = γµγ5,

(2.16)

we obtain

Γµ = −fQ(q2)γµ + ifM(q2)σµνq
ν − fE(q2)σµνq

νγ5 + fA(q2)(q2γµ − qµ/q)γ5. (2.17)

Comparing Eqs. (2.9) and (2.17) we get

fQ(q2) = fM(q2) = fE(q2) = 0. (2.18)

Thus in comparison to the Dirac case in which we all the form factors are non vanishing,

Majorana neutrino have only nonzero anapole form factor.

So far we have considered only one massive neutrino field. But due to the phenomenon

of neutrino mixing we know that there must exist at least three neutrino mass eigenstates.

Thus the definition (2.5) of the neutrino electromagnetic current must be generalized to

calculate the matrix elements between two different neutrino states in the following man-

ner:

〈νk(p′) | jµ(x) | νj(p)〉 = e−iq·xūk(p
′)Γkjµ (q)uj(p), (2.19)
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where q = p − p′ and the kth neutrino state has mass mk. Just like the earlier case, the

vertex function Γµ can now be decomposed into Lorentz invariant form factors

Γkjµ (q) =
(
f
kj
Q (q2) + f

kj
A (q2)q2γ5

)(
γµ − qµ/q/q2

)
− ifkjM (q2)σµνq

ν + f
kj
E (q2)σµνq

νγ5.

(2.20)

Thus the four form factors now become Hermitian matrices which consists of diago-

nal (k = j) and off-diagonal or transition form factors (k 6= j).

Considering now the CP properties of the vertex function (2.20), we find that for the Dirac

case CP conservation implies that the form factor matrices fQ, fM, fA are real and sym-

metric, while the matrix fE is purely imaginary and anti-symmetric. Thus we have for

Dirac Neutrinos


f
kj
Ω = f

jk
Ω = (fkjΩ )∗ (Ω = Q,M,A)

f
kj
E = −fjkE = −(fkjE )∗.

(2.21)

The evaluation of Eq. (2.19) for Majorana neutrinos leads to an expression for the vertex

function similar to Eq. (2.20) [31]. Now Eqs. (2.14) and (2.15) are defined only if both

the incoming and outgoing neutrinos in Fig. 2.1 are in same mass eigenstate. Thus Eq.

(2.18) holds only for the diagonal case. This implies that the the Majorana neutrinos can

have non-vanishing off-diagonal terms in the form factor matrices fQ, fM and fE, which

leads to the following properties for

Majorana Neutrinos


f
kj
Ω = −fjkΩ = −(fkjΩ )∗ (Ω = Q,M,E)

f
kj
A = f

jk
A = (fkjA )∗.

(2.22)

Now the CP conservation in the case of Majorana neutrinos allows the existence of either a

transition electric form factor or a transition magnetic form factor, but not both simultane-

ously [31]. Since in the following Sections we will be concerned mostly with the magnetic

and electric dipole moments, we conclude this Section with the statement that Dirac neu-

trinos can have both diagonal and transition dipole moments while Majorana neutrinos
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have only transition dipole moments.

2.2 Neutrino dipole moments (NDM)

The possible existence of neutrino electric and magnetic dipole moments gives rise to

a number of new phenomena beyond the SM physics. From theoretical point of view the

neutrino dipolemoments are closely related to theirmasses andCP properties and thus they

may play an important role in distinguishing the Dirac or Majorana nature of neutrinos.

The experimental searches for NDM’s with different neutrino sources have also played

an important role in placing upper limits on several electromagnetic quantities such as

neutrino magnetic moment (NMM), millicharge and charge radius [32]. In this Section

we first give a brief review of the predictions of NDM’s for Dirac and Majorana neutrinos

in beyond SM theories. Then we present some upper limits of the NMM that have been

obtained in several different experiments.

2.2.1 Theoretical predictions in MESM

In the MESM including three right-handed Dirac neutrinos, the electromagnetic vertex

(2.20) is given by the sum of one-loop diagrams shown in Fig. 2.2. The calculation of the

vertex function yields the following values for the magnetic and electric dipole moments

of Dirac neutrinos [1, 2, 36]:

µDkj '
3eGF

16
√

2π2
(mk +mj)

(
δkj −

1

2

∑
α=e,µ,τ

U∗αkUαj

(mα

mW

)2
)
,

iεDkj '
3eGF

16
√

2π2
(mk −mj)

(
δkj −

1

2

∑
α=e,µ,τ

U∗αkUαj

(mα

mW

)2
)
. (2.23)
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Figure 2.2: One loop Feynman diagrams contributing to the Dirac neutrino vertex function
in the MESM in the unitary gauge; α = e, µ, τ and i, j = 1, 2, 3. In the renormalizable
Rξ gauge there are extra diagrams in which internal W lines are replaced by unphysical
Higgs lines [37–39].

For the diagonal case j = k, the electric dipole moments vanish, while the magnetic dipole

moments are given by

µDkk '
3eGFmk

8
√

2π2
≈ 3.2× 10−19

( mk

1eV

)
µB, (2.24)

where µB is the Bohr magneton. The Dirac NMM’s are thus proportional to their cor-

responding mass in the MESM. Given mν ∼ 0.1 eV, this value is about nine orders of

magnitude below the current best experimental bounds (∼ 10−11µB). For the transition

magnetic moments (k 6= j) in Eq. (2.23), we obtain

µDkj '−
3eGF

32
√

2π2
(mk +mj)

∑
α=e,µ,τ

U∗αkUαj

(mα

mW

)2

,

iεDkj '−
3eGF

32
√

2π2
(mk −mj)

∑
α=e,µ,τ

U∗αkUαj

(mα

mW

)2

. (2.25)

Since (mα/mW )2 ∼ 10−4, these terms are further suppressed relative to their diagonal

values. This is called GIM suppression, named after a similar mechanism in hadronic in-

teractions in which the unitary mixing matrix produces an extra suppression in the flavor

changing neutral currents.

In the case of Majorana neutrino, for each diagram in Fig. 2.2 there is an additional di-

agram containing charge conjugate fields. This is due to the non-trivial weak interaction
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of the right-handed antineutrinos, while such contributions are absent for Dirac neutri-

nos since right-handed neutrinos have no weak interaction. The diagonal dipole moments

vanish in this case, while the transition magnetic moments (k 6= j) are given by [1, 2, 36]

µMkj '−
3eGF

16
√

2π2
(mk +mj)

∑
α=e,µ,τ

i Im
(
U∗αkUαj

)(mα

mW

)2

,

εMkj '
3eGF

16
√

2π2
(mk −mj)

∑
α=e,µ,τ

i Re
(
U∗αkUαj

)(mα

mW

)2

. (2.26)

If CP is conserved then the matrix elements U∗αkUαj are either real (when νk and νj have

same CP phase) or purely imaginary (when they have opposite phase), thus only one of εMkj

and µMkj remains nonvanishing respectively [31]. From Eq.(2.26) it can be seen that in this

case also the transition dipole moments are GIM-suppressed and are of the same order of

magnitude as the Dirac neutrinos.

From Eqs. (2.23) and (2.26) it can be seen that the NDM’s are proportional to the neutrino

mass. This can be understood if we note that the tensor and pseudo-tensor bilinears corre-

sponding to the magnetic and electric dipole moment respectively are chirality changing

operators, which connect left-chiral states with the right-chiral ones :

ψ̄σµνψ = ψ̄LσµνψR + h.c., ψ̄σµνγ5ψ = ψ̄Lσµνγ5ψR + h.c. (2.27)

In the MESM, since the right-chiral projections of fermions are SU(2)L singlets, they do

not interact withW±. Thus in Fig. 2.2 it seems that only the left chiral fermions can flow

in the external lines. To obtain chirality changing contributions one must include neutrino

mass insertion at one of the external legs (see Fig. 2.3a). Hence NDM’s are proportional

to the neutrino mass.
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2.2.2 Experimental limits and large magnetic moments

The most sensitive probe of the neutrino magnetic moment (NMM) is provided by direct

measurements of the low energy (anti)neutrino-electron scattering. These experiments

utilize solar, accelerator and reactor neutrinos as sources and furnish model independent

NMM bounds. The scattering cross section for the process ναe → ναe receives an extra

contribution due to finite NMM, in addition to the usual term due to SM weak interaction.

In the ultrarelativistic limit, the NMM term changes the helicity of the final neutrino state

while the SM term conserves helicity. Thus these two terms add incoherently and final

cross section can be written as [40]

dσ

dTe
=

(
dσ

dTe

)
SM

+

(
dσ

dTe

)
NMM

, (2.28)

where Te is the kinetic energy of the recoil electron. The NMM contribution is explicitly

given by [41] (
dσ

dTe

)
NMM

=
πα2

m2
e

(
1

Te
− 1

E

)(
µνα
µB

)2

, (2.29)

where µνα is the effective NMM,me is the electron mass,E is the neutrino energy and α is

the electromagnetic coupling constant. The effective NMM takes into account the neutrino

mixing and oscillations during the propagation between the source and the detector and is

given by [42] (
µνα(L,E)

)2
=
∑
j

∣∣∣∑
k

U∗αke
−iEkLµjk

∣∣∣2, (2.30)

where L is the distance between source and detector and µjk is the magnetic moment ma-

trix, which in general contains both electric and magnetic dipole terms. For antineutrinos

this term differs only by a phase factor. Thus the observable µνα is an effective parameter

and its exact implications depends on the experimental baseline.

The two terms in Eq. (2.28) exhibit different dependence on the electron recoil energy

Te. In particular, from Eq. (2.29) it can be seen that
(
dσ/dTe

)
NMM

increases as we go
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towards smaller Te. Thus one can probe smaller values of µνα by lowering the threshold

value of Te. In fact, for Te � E the magnitude of
(
dσ/dTe

)
NMM

exceeds the SM value(
dσ/dTe

)
SM

if [31]

Te .
π2α2

G2
Fm

3
e

(µνα
µB

)2

≈ 3× 1022
(µνα
µB

)2

keV. (2.31)

In a typical scattering experiment the observables which are measured are kinetic energy

and scattering angle of the recoil electron. The observed agreement between the measured

and expected recoil energy spectrum, assuming weak interaction alone, is then used to

place upper bounds on µνα . So far the most stringent bounds have been obtained in the

following reactor experiments:

µν̄e <


9× 10−11µB MUNU [43],

7.4× 10−11µB TEXONO [44],

2.9× 10−11µB GEMMA [45].

(2.32)

Several accelerator experiments have also been performed to search for NMM.The LAMPF

and LSND experiments [46, 47] measured the νee− → νee
− scattering using neutrinos

from muon decay at rest to obtain bounds on µνe . They also obtained bounds on µνµ using

νµ and ν̄µ fluxes from π+ and µ+ decay. Finally, the DONUT experiment [48] identified

the ντ component in the neutrino beam and investigated the ντ − e− scattering events to

place bounds on ντ . These results can be summarized as:

µνe <


10.8× 10−10µB LAMPF [46],

1.1× 10−9µB LSND [46],

µνµ <


7.4× 10−10µB LAMPF [46],

6.8× 10−10µB LSND [47],

µντ < 3.9× 10−7µB DONUT [48]. (2.33)
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In addition, the search for NMM has also been performed at two major solar neutrino ex-

periments viz. Super-Kamiokande [49] and Borexino [50]. Just like the experiments with

reactor antineutrinos, these experiments also look for distortions in the energy spectrum

of recoil electrons arising due to nonzero NMM of solar neutrino. They have obtained the

following upper limits:

µsolar <


1.1× 10−10µB Super−Kamiokande [49],

2.8× 10−11µB Borexino [50].
(2.34)

In addition to the above measurements the XENON1T experiment has recently observed

excess electron recoil events in low energy range of a few keV [51]. These excess events

can be explained by the electromagnetic interaction of solar neutrinos, having Majorana

transition magnetic moments in the range (1 − 3) × 10−11µB, with the electrons in the

detector [52, 53].

From the above bounds it is clear that the sensitivity of the present experiments is many

orders away from theMESM predictions. To bridge this gap many theoretical models have

been postulated which predict large NMM in the range (10−10 − 10−16)µB for Dirac and

Majorana neutrinos. For example the left-right symmetric model predict enhanced NMM

by averting the proportionality between NMM and neutrino mass [1, 2, 36, 54, 55]. This

model is based on gauge group SU(2)L × SU(2)R × U(1)B−L, so that at high energies

parity invariance is restored and coupling constants satisfy gL = gR = g. Thus in addition

to the SMWL boson there is a heavier gauge bosonWRwhich arises due to theSU(2)R part

of the group and mediates right-handed charged-current weak interactions. The mixing

between theWL andWR allows us to obtain Feynman diagram of the type shown in Fig.

2.3b, in which the mass insertion can take place in the internal fermion line and thus

avoiding the proportionality between NMM and neutrino mass. In this model, for Dirac
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(a) (b)

Figure 2.3: Typical Feynman diagrams contributing to the NMM vertex function at one-
loop level. The cross in (a) and (b) represents mass insertion at external and internal
fermion line respectively. In (b) the black dot showsWL −WR mixing.

neutrinos one obtains [1]:

µkj '
eGF

4
√

2π2
sin 2ξ

∑
α=e,µ,τ

mα

(
eiψU∗αkVαj + e−iψU∗αkVαj

)
, (2.35)

where U and V are the mixing matrices of left-handed and right-handed neutrinos re-

spectively, ξ is the mixing angle between WL and WR bosons and ψ is the CP violating

phase. Thus in this case the NMM’s are proportional to the charged lepton masses. How-

ever, there are strong experimental and theoretical constraints on the mixing angle ξ which

limit sin ξ < 10−7 [55], which implies that µkj ' 10−16µB. To obtain larger magnetic mo-

ments, charged scalar particles are added to MESMwith right-handed neutrinos [1,56,57]

or to the left-right symmetric model [58]. The charged scalar contributions can give rise

to magnetic moments in the range µν ∼ (10−11 − 10−10)µB. However, the above models

suffer from large radiative corrections to the neutrino mass which is in conflict with the

current experimental bounds. To obtain small neutrino mass a counter term must be in-

troduced in the Lagrangian to cancel the divergent mass terms. Thus these models require

some fine-tuning to keep neutrino mass consistent with the experimental bounds [1, 2].

In the models which generate new physics beyond the SM, there is a generic relation be-

tween neutrino mass and magnetic moment [1, 2, 31]. Let the NMM is generated by new

physics at scale Λ � v described by loop diagrams of the type Fig. 2.1, where the blob
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contains new physics effects. The NMM can be estimated as

µν ∼
eG

Λ
, (2.36)

where G is some combination of coupling constants and other loop factors. The same

diagram with photon line removed gives radiative correction to the neutrino mass which

is of the order

δmν ∼ GΛ. (2.37)

From Eqs. (2.36) and (2.37) we obtain the relation

δmν ∼
Λ2

2me

µν
µB

=
µν

10−18µB

(
Λ

TeV

)2

eV. (2.38)

Thus assuming Λ ∼ 1 TeV, NMM of µν ∼ 10−11µB will simultaneously generate large

radiative corrections to the neutrino mass and a particular fine-tuning is required to keep

neutrino masses within experimental bounds.

To avoid fine-tuning we require δmν . mν [59]. For mν ∼ 0.1 eV and Λ ∼ 1 TeV, we

obtain a naive naturalness bound from Eq. (2.38)

µν . 10−19µB. (2.39)

An effective field theory calculation of NMM for Dirac and Majorana neutrinos generated

via new physics above the electroweak scale has been carried out in Refs. [60–62]. It was

found that for new physics scale of Λ ∼ 1 TeV and neutrino mass of mν ∼ 0.2 eV the

naturalness condition δmν . mν yields a model-independent bound of µν . 10−15µB

for Dirac neutrinos. However for Majorana neutrinos due to anti-symmetry of the NMM

operator the naturalness bound is much weaker (. 10−9µB). Thus an experimental obser-

vation of NMM & 10−14µB could be a plausible signature of a Majorana neutrinos [31].

From Eq. (2.38) it can be seen that to generate large NMM in a consistent manner one
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has to find some mechanism which suppresses neutrino mass correction. In the following

we briefly discuss two models which generate naturally large NMM without adding unac-

ceptably large corrections to the neutrino mass.

(i) Voloshin’s symmetry. One of the first attempts to solve the above problem was made

by Voloshin [63], who proposed to suppress the ratiomν/µν using the symmetry proper-

ties of the NMM and mass operators. Under νL ↔ νcL the Dirac mass and NMM terms

transform as [64]:

ν̄LC
−1νcL → ν̄cLC

−1νL,

ν̄LC
−1σµνν

c
LF

µν → − ν̄cLC−1σµννLF
µν . (2.40)

Consider an SU(2)ν symmetry under which νL and νcL transform as doublet. Then the

mass term being symmetric under exchange of νL and νcL would transform as a triplet,

while the NMM term would be a singlet. So a model in which SU(2)ν is an exact sym-

metry, the mass term is forbidden while the NMM term is allowed. Thus one can get large

µν with mν = 0. However, implementation of Voloshin’s SU(2)ν symmetry is problem-

atic since it does not commute with the gauge symmetry of SU(2)L and so it is broken in

realistic models [64]. Also some fine-tuning of parameters is again required to generate

µν ∼ 10−12µB [59, 65].

To avoid these problems with SU(2)ν it was suggested in Ref. [66] to implement the

Voloshin’smechanism usingSU(2)H horizontal symmetrywhich commuteswithSU(2)L.

In this model, the SU(2)H symmetry acts on the electron and muon generation and gives

rise to large transition magnetic moment µνeνµ for Majorana neutrino. In the limit of ex-

act SU(2)H symmetry me = mµ and neutrino remain massless with nonzero magnetic

moment. The symmetry must be thus broken to getme 6= mµ which generates small neu-

trino masses which can be controlled by imposing certain naturalness conditions. Subse-

quently a number of variants of Voloshin’s symmetry mechanism and horizontal SU(2)H
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symmetry have been considered in which it is possible to generate transition magnetic

moments in the range ∼ (10−12 − 10−10µB) while keeping the neutrino mass naturally

small [52, 66–71].

(ii) Zee’s model and spin suppression. The spin suppression is anothermechanism through

which one can generate large NMMwith small neutrino mass [72]. This mechanism is re-

alized in Zee’s model [73] which is based on the SM gauge group SU(2)L × U(1)Y and

contains two Higgs doublet and one charged scalar h+ which is an SU(2)L singlet. In this

model the NMM contribution is obtained through the coupling γh+W at two loop level.

The corresponding mass contribution is obtained by removing the photon line. However,

this would involve transition from spin 0 to spin 1 which is not possible with transversely

polarized W boson. Thus due to spin conservation only the longitudinal component of

W boson contributes in the mass diagram which leads to a suppression factor ofm2
l /m

2
W ,

where ml is generic fermion mass [65]. A recent analysis of this model yields neutrino

transition magnetic moments in the range (2− 4)× 10−12µB [52].

2.3 Neutrino interaction with electromagnetic fields

The nontrivial electromagnetic properties of neutrinos can generate important new effects

when neutrinos propagate in a medium with classical electromagnetic fields. Such situa-

tions are usually encountered in astrophysical environments where neutrino propagate over

large distances through magnetic fields in vacuum and in matter. The effect of the neutrino

interaction with these electromagnetic fields must be taken into account while studying the

evolution of neutrino flavor and spin components. Such an interaction is analogous to the

coherent forward elastic scattering of neutrinos with matter and is given by an effective

potential [31]:

Vh→h′ = lim
q→0

〈
ν(p′, h′)

∣∣ ∫ d3xHem(x)
∣∣ ν(p, h)

〉
〈ν(p, h | ν(p, h))〉

, (2.41)
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where q = p − p′, and h denote neutrino helicity. Eq. (2.41) implies the possibility of

helicity transitions (h′ 6= h) in presence of electromagnetic fields. The neutrino states are

normalized as

〈ν(p, h′) | ν(p, h)〉 = 2EV δhh′, (2.42)

whereE = E ′ is the neutrino energy in limit q → 0 and V is the total volume. Substituting

the normalization condition (2.42) in Eq. (2.41) we obtain

Vh→h′ =
1

2EV
lim
q→0

〈
ν(p′, h′)

∣∣∣∣ ∫ d3x jµ(x)Aµ(x)

∣∣∣∣ ν(p, h)

〉
. (2.43)

Using Eqs. (2.2) and (2.5) we can write

Vh→h′ =
1

2EV
lim
q→0

∫
d3xe−iq·x 〈ν(p′, h′) | jµ(0) | ν(p, h)〉Aµ(x)

=
1

2EV T
lim
q→0

ū(p′, h′)Γµ(p, p′)u(p, h)Ãµ(x), (2.44)

where T is the normalization time and

Ãµ(x) =

∫
d4xe−iq·xAµ(x) (2.45)

is the Fourier transform of Aµ(x). Substituting the expression (2.9) of the vertex function

in Eq. (2.44)

Vh→h′ =
1

2EV T
lim
q→0

ū(p′, h′)
(
fQ(q2)γµ − ifM(q2)σµνq

ν + fE(q2)σµνq
νγ5+

fA(q2)(q2γµ − qµ/q)γ5

)
u(p, h)Ãµ(x). (2.46)

Now using the following identities in Eq. (2.46):

ū(p′, h′)γαu(p, h) = ū(p′, h′)

(
(p′ + p)α

2m
+
iσαβ(p′ − p)β

2m

)
u(p, h), (2.47)

σαβ(p′ − p)βAα = σαβq
βAα = − i

2
σαβF

αβ, (2.48)
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where Fαβ = ∂αAβ − ∂βAα is the electromagnetic field strength tensor, we obtain after

neglecting the anapole term:

Vhi→hf =
1

V T
lim
q→0

∫
d4x

{
fQ(q2)ū(p′, h′)

(p′ + p)µ
4mE

u(p, h)Aµ(x)

+
1

4E
ū(p′, h′)σµνF

µν
(fQ(q2)

2m
− fM(q2)− ifE(q2)γ5

)
u(p, h)

}
e−iq·x. (2.49)

Considering electromagnetic fields which are approximately constant over the dimensions

of the neutrino wave packet, we can consider the integrand in Eq. (2.50) to be a constant.

Finally we take the limit q → 0, and use the normalization

ū(p, h′)u(p, h) = 2mδh′h (2.50)

to obtain

Vh→h′ = q
pµ
E
Aµ(x)δh′h +

1

4E
ū(p, h′)σµνF

µν
( q

2m
− µ− iεγ5

)
u(p, h). (2.51)

Consider the first term in Eq. (2.21) in an electrostatic field Aµ = (A0, 0, 0, 0): Vh→h′ =

qA0δh′h. This term corresponds to the familiar expression of electrostatic energy of a

charged particle in a potential. The first term in the second bracket corresponds to the

charge magnetic moment of the particle. Since for neutrinos we take q = 0, only last two

terms remain. As shown in Section 2.1 these two terms correspond to the "anomalous

dipole moments" which are generated due to quantum loop effects.

To cast Eq. (2.51) in a familiar form, we fist consider the case of helicity conserving

potential which we can write as [31]:

Vh→h = − 1

4E
Tr
[
ū(p, h)σµνF

µν
(
µ+ iεγ5

)
u(p, h)

]
. (2.52)
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The spinors obey the identity [4]:

ū(p, h)u(p, h)

2m
= Λ+Ph,

where Λ+ =
/p+m

2m
,

and Ph =
1 + hγ5/s

2
. (2.53)

Substituting Eq. (2.53) in Eq. (2.52) and using the following trace properties of gamma

matrices

Tr[γαγβγµγν ] = 4(gαβgµν − gαµgβν + gανgβµ),

Tr[γαγβγµγνγ5] = − 4iεαβµν , (2.54)

we obtain

Vh→h = − h

2E

(
µεαβµνp

αsβF µν − 2εF µνsµpν

)
. (2.55)

Expanding this term and using the respective expressions of the electric and magnetic

fields

E i = F 0i, Bi = −1

2
εijkF jk, (2.56)

where the i, j, k 6= 0, we get

Vh→h = −m
E

(~µ · ~B + ~ε · ~E), (2.57)

where

~µ = hµ
~p

|p|
, ~ε = hε

~p

|p|
. (2.58)

Thus the helicity conserving potential comes out to be proportional to the longitudinal

component of the electric and magnetic fields. In the non relativistic limit E ≈ m, Eq.

(2.57) reduce to the usual classical expression for spin precession. However, in the case of
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ultra relativistic neutrinos the factorm/E leads to suppression of the longitudinal compo-

nents of the electromagnetic fields in the Hamiltonian.

To calculate the helicity changing potential V−h→h we define the matrix

M = ~τ · ~γ γ5, (2.59)

where ~τ is a unit vector orthogonal to ~p. It can be shown that [31]

u(p,−h)ū(p, h)

2m
= MΛ+(p)Ph = P−hΛ+(p)M. (2.60)

Substituting Eq. (2.60) in Eq. (2.52) and using the trace properties Eq. (2.54), we obtain

V−h→h = − τ
k

2E

[
µ
(
εkαµνpαFµν + 2imhF kαsα

)
+ ε
(
2F kαpα − imhεkαµνsαFµν

)]
,

(2.61)

Expanding in terms of electric and magnetic fields (2.56), we have

V−h→h =µ
(
− ~τ · ~B − ih~τ · ~p×

~B
|~p|

+ ~τ · ~p×
~E

E
− ih |~p|

E
~τ · ~E

)
+

ε
(
− ~τ · ~E − ih~τ · ~p×

~E
|~p|

− ~τ · ~p×
~B

E
+ ih
|~p|
E
~τ · ~B

)
. (2.62)

Since the vector ~τ is orthogonal to ~p, we can choose

~p = (0, 0, |~p|), ~τ = (−1, 0, 0). (2.63)

Then we have

V−h→h = µ
(
B1− ihB2 +

|~p|
E
E2 + ih

|~p|
E
E1
)

+ ε
(
E1− ihE2− |~p|

E
B2 + ih

|~p|
E
B1
)
, (2.64)
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where ~E = (E1, E2, E3) and ~B = (B1,B2,B3). If there is only a pure magnetic field we

obtain

V−h→h =
(
µ− ih |~p|

E
ε
)
B⊥, (2.65)

where B⊥ = B1 ± iB2 is the transverse component of the magnetic field. It can be seen

that for the case of non-relativistic neutrinos (|~p| � E) this expression correspond to the

classical torque

V−h→h ' µB⊥ = |~µ× ~B|. (2.66)

The above expressions for the neutrino effective potential in electromagnetic fields can be

generalized using vertex function Eq. (2.20) which connects different massive neutrinos

states, so that Eq. (2.41) modifies to

Vνj(h)→νk(h′) = lim
q→0

〈
νk(p

′, h′)
∣∣ ∫ d3xHem(x)

∣∣ νj(p, h)
〉

〈ν(p, h | ν(p, h))〉
. (2.67)

In this case the potential is generated by transition dipole moments which is of special in-

terest forMajorana neutrinos. The helicity flipping potential (2.65) can thus be generalized

to

Vνj(h)→νk(h′) =
(
µkj − ih

|~p|
E
εkj

)
B⊥. (2.68)

The expressions derived in this Section can be used to study the evolution of neutrino spin

and spin-flavor in a medium in presence of electromagnetic fields.

2.3.1 Neutrino spin and spin-flavor precession

Consider a Dirac neutrino with diagonal magnetic moment µ propagating in a magnetic

field ~B. If the neutrino is initially in a definite helicity state hi, then after a time t, the

neutrino state is described by a superposition of the two helicity states

|ν(t)〉 =
∑
h=±1

ψh(t) |ν(p, h)〉 . (2.69)
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whereψh represents the amplitude for helicity state h. The time evolution of |ν(t)〉 is given

by

i
d

dt
|ν(t)〉 = Hem(t) |ν(t)〉 , (2.70)

where Hem =
∫
d3xHem is the interaction Hamiltonian. From Eqs.(2.41), (2.69) and

(2.70), we obtain

i
dψh(t)

dt
=
∑
h′=±1

ψh′(t)

〈
ν(p, h)

∣∣Hem(t)
∣∣ν(p, h′)

〉
〈ν(p, h) | ν(p, h)〉

=
∑
h′=±1

ψh′(t)Vh′→h(t) , (2.71)

with ψh(0) = δhhi . Since the helicity conserving potential (2.57) is strongly suppressed

for ultrarelativistic neutrinos, we examine only the effect of the helicity flipping potential

(2.65) which depends only on the transverse magnetic field. Considering only the contri-

bution due to magnetic moment, we can write

Vh′→h = µB⊥δ−hh′ . (2.72)

The matrix representation of Eq. (2.71) in the basis |ν〉 = (νL νR)T is then given by

i
d

dx

ψL(x)

ψR(x)

 =

 0 µB⊥(x)

µB⊥(x) 0


ψL(x)

ψR(x)

 , (2.73)

where we approximated the distance x along the neutrino trajectory with time t for ultra-

relativistic neutrinos [31]. Let us now consider the transition νeL → νeR which may be

of importance in astrophysical objects such as the Sun [74]. In this case the matter effects

due to coherent forward scattering of neutrinos with the background particles become im-

portant and Eq. (2.73) becomes

i
d

dx

ψL(x)

ψR(x)

 =

 V (x) µB⊥(x)

µB⊥(x) 0


ψL(x)

ψR(x)

 , (2.74)
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where the matter potential V acts only on the left-handed Dirac neutrinos. The Eq. (2.74)

can also be derived using the quasiclassical Bargmann-Michel-Telegdi (BMT) equation

for the evolution of neutrino spin in presence of magnetic field [75].

Since in a more general case a neutrino state is a superposition of different massive neu-

trinos with both helicities, Eq. (2.69) must be generalized to

|ν(t)〉 =
∑
k

∑
h=±1

ψkh(t) |νk(p, h)〉 . (2.75)

The time evolution of the state |ν(t)〉 is governed by the Schrödinger equation

i
d

dt
|ν(t)〉 = H(t) |ν(t)〉 , (2.76)

where the HamiltonianH is the sum of vacuum HamiltonianH0, weak interaction Hamil-

tonian Hwk and the electromagnetic Hamiltonian Hem:

H = H0 +Hwk +Hem. (2.77)

From Eqs. (2.75) and (2.76) the evolution equation for the helicity amplitudes can be

easily obtained

i
dψkh(t)

dt
=
∑
j

∑
h′=±1

〈νk(p, h) |H(t) | ν(p, h′)〉
〈ν(p, h) | ν(p, h)〉

ψjh′(t). (2.78)

For ultrarelativistic neutrinos we have

〈νk(p, h) |H0 | νj(p, h′)〉
〈ν(p, h) | ν(p, h)〉

=
(
Ek +

m2
k

2Ek

)
δkjδhh′ ≈

(
E +

m2
k

2E

)
δkjδhh′ , (2.79)
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wheremk and EK denotes the mass and energy of the kth eigenstate. Now let us consider

the mixing between neutrino eigenstates. For the left-handed neutrinos we have

|νk(p,−)〉 =
∑
l

Uαk |να(p,−)〉 , (2.80)

where U is the unitary mixing matrix. In the case of right-handed neutrinos the difference

between Dirac and Majorana neutrinos shows up. In the case of right-handed Dirac neu-

trinos the mixing is arbitrary since they are sterile to weak interactions while right-handed

Majorana neutrinos interact as Dirac antineutrinos.

∣∣νMk (p,+)
〉

=
∑
l

U∗αk |να(p,+)〉 . (2.81)

Thus we can define the generalized mixing relation

|νk(p, h)〉 =
∑
α

U
(h)
αk |να(p, h)〉 , (2.82)

where U (−) = U and for Dirac neutrinos we choose: U (+) = U , while for Majorana

neutrinos: U (+) = U∗. The matrix elements of the weak interaction HamiltonianHwk can

now be written as

〈νk(p, h) |Hwk(t) | νj(p, h′)〉
〈ν(p, h) | ν(p, h)〉

=
∑
l

U
(h)∗
αk V (h)

α (t)U
(h)
αk δhh′ , (2.83)

where the matter potential for neutrino in flavor state α is given by V (−)
α = Vα, V

(+)
α = 0

(Dirac neutrinos) and V (+)
α = −Vα (Majorana neutrinos). Now let us finally consider the

electromagnetic part of the Hamiltonian for which we have

〈νk(p, h) |Hem | νj(p, h′)〉
〈ν(p, h) | ν(p, h)〉

= µkjB⊥(t)δ−hh′ . (2.84)
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Substituting Eqs. (2.79), (2.83) and (2.84) in the equation (2.78), we obtain the equation

for neutrino spin-flavor evolution with distance x along the neutrino trajectory:

i
dψkh(x)

dx
=
∑
j

∑
h′=±1

[(
m2
k

2E
δkj+

∑
α

U
(h)∗
αk V (h)

α (x)U
(h)
αj

)
δhh′+µkjB⊥(x)δ−hh′

]
ψjh′(x).

(2.85)

Eq. (2.85) gives the evolution in mass eigenbasis. To convert it in flavor basis we rewrite

the Eq. (2.75) in terms of flavor states as

|ν(t)〉 =
∑
α

∑
h=±1

ψαh(t) |να(p, h)〉 . (2.86)

Using the unitary transformation

|νk〉 =
∑
α

Uαk |να〉 , (2.87)

we get the relation

ψαh(x) =
∑
k

U
(h)
αk ψkh(x). (2.88)

From Eqs. (2.85) and (2.88) we obtain the evolution equation for the flavor amplitudes

i
dψαh(x)

dx
=
∑
β

∑
h′=±1

[(∑
k

U
(h)
αk

m2
k

2E
U

(h)∗
βk +V (h)

α (x)δαβ

)
δhh′+µ

(hh′)
αβ B⊥(x)δ−hh′

]
ψβh′(x),

(2.89)

where the magnetic moment in the flavor basis is given by

µ
(hh′)
αβ =

∑
k,j

U
(h)
αj µkjU

(h′)∗
βj . (2.90)

It is interesting to compare the magnetic moment (2.90) in the flavor basis for Dirac and

Majorana neutrinos, for which we obtained distinct form factors in Section 2.1. First let
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us consider Dirac neutrinos for which we have

µ
(−+)
αβ =

∑
k,j

U
(+)
αk µkjU

(−)∗
βj =

∑
k,j

UαkµkjU
∗
βj = µ

(+−)
αβ ≡ µαβ. (2.91)

Since for Dirac neutrinos the form factors in the mass eigenbasis obey Eq. (2.21), thus we

have

µjk = µ∗kj ⇒ µβα = µ∗αβ. (2.92)

For the case of Majorana neutrinos, we have

µ
(−+)
αβ =

∑
k,j

Uαk µkjUβj , µ
(+−)
αβ =

∑
k,j

U∗αk µkjU
∗
βj. (2.93)

From Eq. (2.22), we can see that the transition form factors for Majorana neutrinos are

anti-symmetric in mass eigenbasis

µjk = −µkj = µ∗kj. (2.94)

This anti-symmetry of magnetic moments is preserved in the flavor basis:

µ
(−+)
αβ = −µ(−+)

βα , µ
(+−)
αβ = −µ(+−)

αβ , (2.95)

which leads to vanishing diagonal magnetic moments in the flavor basis. In addition we

have

µ
(−+)
αβ = −µ(+−)∗

αβ . (2.96)

Using the above properties of the magnetic moment matrices, the spin-flavor evolution

equation (2.89) can be used to construct appropriate Hamiltonians for Dirac and Majorana

neutrinos.
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2.3.2 Two flavor Dirac and Majorana Hamiltonian

The phenomenon of neutrino oscillations inmany of the cases, for example solar and atmo-

spheric neutrinos, can be effectively described using two neutrino mixing approximation.

Considering the case of solar 1− 2 sector and neglecting the small effects due to θ12, the

mixing between the two flavor neutrinos is given by

ψeh
ψµh

 =

 cos θ12 sin θ12

− sin θ12 cos θ12


ψ1h

ψ2h

 , (2.97)

where θ12 is the mixing angle. First we consider Dirac neutrinos for which generalization

of Eq. (2.73), with two neutrino mixing (2.97) is given by

i
d

dx



ψeL

ψµL

ψeR

ψµR


= HD



ψeL

ψµL

ψeR

ψµR


, (2.98)

where the Dirac Hamiltonian is obtained from Eqs. (2.89):

HD =



−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 µeeB⊥ µeµB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ µµeB⊥ µµµB⊥

µeeB⊥ µµeB⊥ −∆m2

4E
cos 2θ12

∆m2

4E
sin 2θ12

µeµB⊥ µµµB⊥ ∆m2

4E
sin 2θ12

∆m2

4E
cos 2θ12


,

(2.99)

where Ve = VCC + VNC and Vµ = VNC are matter potentials for left-handed electron and

muon neutrinos respectively and ∆m2 ≡ ∆m2
21 is the neutrino mass-squared difference.

Using Eq. (2.91) and mixing matrix given in Eq. (2.97), the effective magnetic moments
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for Dirac neutrinos in flavor basis can be written as,

µee =µ11 cos2 θ12 + µ22 sin2 θ12 + µ12 sin 2θ12,

µeµ =
1

2

(
µ22 − µ11

)
sin 2θ12 + µ12 cos 2θ12,

µµµ =µ11 sin2 θ12 + µ22 cos2 θ12 − µ12 sin 2θ12, (2.100)

where we have considered the magnetic moments µkj in the mass eigenbasis to be real.

The Hamiltonian (2.99) implies existence of two resonances which are generated by the

matter potential, in addition to the usual MSW resonance which occurs in the channel

νeL ↔ νµL.

(i) In the channel νeL ↔ νµR, the resonance occurs for

Ve = VCC + VNC =
∆m2

2E
cos 2θ12. (2.101)

This density at which this resonance occurs is different from that of MSW resonance (see

Section 3.2 for example).

(ii) In the channel νµL ↔ νeR, the resonance occurs for

Vµ = VNC = −∆m2

2E
cos 2θ12. (2.102)

Since cos 2θ12 > 0, and VNC is negative this resonance can occur in normal matter. When

these resonance conditions are satisfied, there is an enhancement in the respective transi-

tion probabilities, which is termed as resonance spin-flavor precession (RSFP) [76, 77].
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Let us now consider Majorana neutrinos for which the basis vector (2.98) is given by

(νeL, νµL, ν̄e, ν̄µ)T . In this basis the evolution equation Eq. (2.89) gives the Hamiltonian

HM =



−∆m2

4E cos 2θ12 + Ve
∆m2

4E sin 2θ12 0 µeµB⊥
∆m2

4E sin 2θ12
∆m2

4E cos θ12 + Vµ −µµeB⊥ 0

0 −µµeB⊥ −∆m2

4E cos 2θ12 − Ve ∆m2

4E sin 2θ12

µeµB⊥ 0 ∆m2

4E sin 2θ12
∆m2

4E cos 2θ12 − Vµ


,

(2.103)

where the magnetic moment is now given by µeµ ≡ µ
(−+)
eµ = µ12. It can be seen that due

to the anti-symmetry condition (2.95), the diagonal magnetic moments do not appear in

the Hamiltonian matrix. Also the Majorana off diagonal magnetic moment are in general

different from the Dirac neutrino case (2.100). In this case also there are two possible

resonances besides the MSW resonance:

(i) In the channel νeL ↔ ν̄µ, the resonance occurs for

Ve + Vµ = VCC + 2VNC =
∆m2

2E
cos 2θ12. (2.104)

(ii) In the channel νµL ↔ ν̄eR, the resonance occurs for

Ve + Vµ = VCC + 2VNC = −∆m2

2E
cos 2θ12. (2.105)

Now, VCC + 2VNC =
√

2GF (ne − nn) and since cos 2θ12 > 0, in a typical astrophysical

objects such as the Sun where nn < ne, only the first resonance can occur. The realization

of the second resonance requires large number density of neutrons such as those in neutron

stars.
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Chapter 3

Neutrino spin-flavor oscillations in solar environment

In this chapter we study the phenomenon of neutrino spin-flavor oscillations due to so-

lar magnetic fields. This allows us to examine how significantly the electron neutrinos

produced in the solar interior undergo a resonant spin-flavor conversion. We construct

analytical models for the solar magnetic field in all the three regions of the Sun. Neu-

trino spin-flavor oscillations in these magnetic fields are examined by studying the level

crossing phenomenon and comparing the two cases of zero and non-zero vacuum mixing

respectively. Results from the Borexino experiment are used to place an upper limit on

the magnetic field in the solar core. Related phenomena such as effects of matter on neu-

trino spin transitions and differences between Dirac and Majorana transitions in the solar

magnetic fields are also discussed.

This chapter is mainly based on the Ref. [78].

3.1 Introduction

The study of solar neutrinos and their oscillation phenomenology has revealed many facets

of the physics of neutrinos. The Ray Davis experiment, which started in the 1960’s in
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Homestake mine, was the first to detect solar neutrinos reaching the Earth. After sev-

eral years of operation, the experiment reported that there is about a two-third deficit in

the observed solar neutrino flux compared to the standard solar model calculation [79].

The deficit was further confirmed by other solar neutrino experiments, notably SAGE,

GALLEX and Super-Kamiokande (SK) [80–83]. This discrepancy between the observed

rate of neutrino flux and its theoretical prediction is called the solar neutrino problem. One

of the ways to resolve the problem was suggested by Pontecorvo on the basis of mixing be-

tween different neutrino flavors. He showed that if neutrinos have a non-zero mass then the

neutrino flavor mixing will give rise to oscillations among different neutrino flavors [84].

Thus electron neutrinos produced in the Sun may convert to some other flavor of neutrinos

on their way to Earth and become undetectable. The problemwas finally resolved when the

Sudbury Neutrino Observatory(SNO) detected neutrinos from all three flavors in the solar

neutrino flux, which proved that there must be transitions among the three active neutrino

flavors [85]. However, if vacuum neutrino oscillation alone were responsible for these fla-

vor transitions, one would also be able to detect seasonal variation in the neutrino flux rate

due to eccentricity of Earth’s orbit. The 8B neutrino spectrum in the SK experiment ex-

hibited no such variation [86]. The mechanism of flavor transitions that is most favored by

data is the adiabatic resonant conversion due to neutrino-matter interactions, also known

as the Mikheev-Smirnov-Wolfenstein (MSW) effect. Wolfenstein showed that the coher-

ent forward scattering of neutrinos with electrons, protons and neutrons will induce an

additional potential which will modify the effective mass and mixing of neutrinos in the

medium [21]. In a medium with variable density, such as the Sun, these matter effects

can lead to enhanced transitions between νe and νµ/ντ , even for small solar mixing angle

(MSW-SMA) [23, 24]. However, most of the solar neutrino data, including data from the

KamLAND experiment and recent data from the Borexino experiment, have established

the large mixing angle (MSW-LMA) solution to the solar neutrino problem [87–91].
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Figure 3.1: Schematic diagram of the solar pp fusion chain. The neutrinos emitted in
different reactions are marked in red. (Figure taken from Ref. [91]).

3.1.1 Solar neutrino production and flavor transitions

The neutrinos in the Sun are predominantly produced via the pp-chain (shown in Fig. 3.1)

which can be summarized by the overall reaction

4p→ 4He+ 2e+ + 2νe + 26.7 MeV. (3.1)

In this reaction two electron neutrinos are emitted for each 4He nucleus produced in the

Sun. These neutrinos, having small interaction cross section, stream freely through the

solar plasma and reach Earth in about eight minutes, thus bringing important information

about the solar core. From the solar luminosity the resulting solar neutrino flux at the

Earth surface can be estimated to be about 6.6× 1010 cm−2s−1.

The solar pp chain ( Fig. 3.1) begins with the fusion of two protons to a deuteron via two

parallel pathways called pp and pep reactions. The deuteron thus produced quickly fuses

with proton to form 3He. From here onward three possible reaction channels open up.

Most probable is fusion of two 3He nuclei to form 4He (pp-I branch). The other two lesser

probable channels are fusion of 3He and 4He to form 7Be and capture of a proton by 3He

leading to 4He. The 7Be produced is finally converted to 4He via production of either 7Li

(pp-II branch) or 8B (pp-III branch) . The majority of the neutrinos (about 90%) are pro-

duced in the primary pp reaction, with energyE ≤ 420 keV. Of the remaining 10% a large

fraction of neutrinos are emitted in the electron capture reaction on 7Be in the pp-II branch

(mono-energetic neutrinos with E = 0.862 keV or E = 384 keV). Smaller contributions
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to the neutrino flux come from the pep fusion reaction (mono-energetic with E = 1.44

MeV) and from the 8B decay in the pp-III branch (E ≤ 14.6 MeV). A minuscule fraction

of neutrinos with highest energy are also expected to be emitted by proton capture of 3He

(hep neutrinos), but due to negligible branching ratio of this reaction these neutrinos are

beyond current detection sensitivity [88]. The energy spectrum of different components

of the solar neutrinos is shown in Fig. 3.2.

Solar neutrino are produced in the central region (Fig. 3.3), which almost coincides with

the energy production region of the Sun [92]. Apart from the hep neutrinos, the region of

production of pp neutrinos is largest and extends upto r ∼= 0.25R�. The 8B neutrinos are

produced in a comparatively smaller region with r . 0.1R�, which plays an important

role in their resonant conversion.

It has been conclusively shown by several experiments that neutrinos undergo flavor con-

version as they propagate outwards from the solar interiors. This flavor conversion can

be characterized by a single function, the survival probability of electron neutrinos [93].

Figure 3.2: Energy spectrum of the solar neutrinos produced in different reactions in the
pp chain. (Figure taken from Ref. [88] ).
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Figure 3.3: Production of different components of the solar neutrinos as a function of
distance from the center of the Sun (expressed in units of solar radius R�). (Figure taken
from Ref. [91]).

This probability Pee is related to the effective two flavor neutrino oscillations by the rela-

tion [4, 94]:

Pee = cos4 θ13P
2ν
ee + sin4 θ13 (3.2)

The effective Hamiltonian for two neutrino propagation in matter can be written as [19,93]

H =

∆m2 cos 2θ12
4E

−
√

2GF cos2 θ13ne
2

∆m2 sin 2θ12
4E

∆m2 sin 2θ12
4E

−∆m2 cos 2θ12
4E

+
√

2GF cos2 θ13ne
2

 , (3.3)

where ne is the number density of electrons and ∆m2 = ∆m2
21. The relative importance

of the matter potential term and the vacuum oscillation term in the Hamiltonian can be

parametrized by the following term

β =
2
√

2GF cos2 θ13neE

∆m2
, (3.4)

which represents the ratio of the neutrino oscillation length in vacuum to the oscillation
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Figure 3.4: The solar νe survival probability as a function of energy (pink curve) with
oscillation parameters obtained in Ref. [20]. The data points with error bars show the
Borexino measurements reported in Ref. [88].

length in matter. As the neutrinos travel through the varying density of the Sun, they

may go through the MSW resonance condition and then proceed out to the vacuum. If

the density variation is sufficiently slow so that the propagation is adiabatic, the neutrino

will remain in the same mass eigenstate. In the MSW-LMA scenario the solar νe daytime

survival probability at Earth in the adiabatic limit can be approximated as [19, 93]

Pee =
1

2
cos4 θ13(1 + cos 2θm cos 2θ12), (3.5)

where the mixing angle in matter is

cos 2θm =
cos 2θ12 − β√

(cos 2θ12 − β)2 + sin2 2θ12

. (3.6)

In Fig. 3.4 we plot the energy dependence of the survival probabilityPee for the oscillation

parameters ∆m2
21 = 7.5×10−5 eV2 and θ12 = 33°, which correspond to the LMA solution

of the solar neutrino problem. For the low energy neutrinos having β < cos θ12 ≈ 0.4, the

survival probability (3.5) has an approximate value

Pee ≈ cos4 θ13(1− 1

2
sin2 2θ12) ≈ 0.55, (3.7)
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which corresponds to vacuum averaged oscillations. On the other hand, for the high energy

neutrinos with β > 1, Eq. (3.5) becomes

Pee ≈ cos4 θ13 sin2 θ12 ≈ 0.3. (3.8)

Thus in this energy region the enhanced conversion due to matter effects leads to about two

third deficit in the solar νe flux, which resolves the solar neutrino problem. As shown in Fig

3.4, for neutrinos with energy 1 MeV, vacuum oscillations are dominant mechanism, while

for energies above 5 MeV matter effects are more prominent and the vacuum oscillations

are suppressed. In the transition region the survival probability exhibits a strong energy

dependence.

3.1.2 Spin-flavor precession of solar neutrinos

Another idea that was a popular candidate for the solution of the solar neutrino problem

was spin precession of neutrinos in the magnetic field of the Sun. It was shown that if neu-

trinos have sufficiently large magnetic moment then the solar magnetic field can give rise

to spin precession νeL −→ νeR, which will cause a deficit in the solar νe flux [74,95]. This

solution was partly supported by data from the Homestake experiment which observed an-

ticorrelation between the neutrino flux and sunspot activity [96]. However, measurements

from other experiments observed no such correlation [83]. Subsequently, the KamLAND

experiment ruled out the spin-precession solution by placing a strong constraint on the flux

of antineutrinos coming from the Sun [97]. A related effect due to neutrinos having non-

zero transition magnetic moments is called resonant spin-flavor precession (RSFP) which

results in both spin-flip and flavor change of neutrinos [76, 98]. This effect arises due to

the combination of matter and magnetic field on neutrino propagation and is similar to the

MSW resonance, and can take place in transverse [98]) as well as longitudinal magnetic

fields [77]. Also, the neutrino spin and spin-flavor transitions can give rise to other interest-

ing quantum mechanical effects such as non-vanishing geometric phases [99,100], which
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demonstrate the intimate connection between the geometry of neutrino spin trajectory in

the projective Hilbert space and neutrino spin transition probabilities.

Having determined the basic oscillation parameters for solar neutrinos, the present effort is

to search for sub-leading effects in the solar neutrino transitions which may give important

clues for phenomena beyond the standard model. Various studies have been done to look

for effects of non-standard interactions (NSI) [101], dark matter imprints on the neutrino

spectrum [102], non-radiative neutrino decay [103] and the combined effect of NSI and

spin-flavor precession (SFP) [104]. In this Chapter, we study the possible sub-leading

effects caused by spin-flavor transitions due to neutrino propagation in the solar magnetic

field.

The neutrino electromagnetic coupling is given by the HamiltonianHEM = 1
2
ν̄µσµννF

µν

+ h.c., where µ is the neutrino magnetic moment matrix. For the case of Dirac neutri-

nos, the hermicity of the Hamiltonian requires µ† = µ. On the other hand, for Majorana

neutrinos, CPT symmetry requires the magnetic moment matrix to be anti-symmetric,

which results in vanishing diagonal magnetic moments [105]. This difference in the mag-

netic moment matrix gives rise to different spin-flavor transition probabilities for Dirac

and Majorana neutrinos. The diagonal magnetic moment for a Dirac neutrino in the min-

imally extended standard model (MESM) including massive neutrinos is µν ≈ 3.2 ×

10−19(mν/1eV)µB, where mν is the neutrino mass [54, 106]. The off-diagonal magnetic

moments for both Dirac and Majorana neutrinos are further suppressed due to GIMmech-

anism [37]. However, the current best experimental bounds on the neutrino magnetic mo-

ment are in the range µν ≤ (2 − 10) × 10−11µB [31, 32, 50]. Thus, the sensitivity of

the present experiments is many orders away from the MESM predictions. To bridge this

gap, many theoretical models have been postulated which avoid the GIM suppression and

predict neutrino magnetic moment in the range (10−10 − 10−14)µB (see Section 2.2.2 for

details).

In the present work, we examine the effects of magnetic moments∼ 10−11µB on the solar
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neutrino transition probabilities for both the cases of Dirac and Majorana neutrinos. In

particular, we first perform calculations for the approximate case of vanishing vacuum

mixing and show that the spin-flavor evolution equations can be reduced to a form which

admit an exact solution. We then study the actual case of non-zero mixing angle and the

effects of the level crossing phenomenon on neutrino transition probabilities and use the

results to place bounds on the solar magnetic fields. In the previous work along these

lines by various authors [107–114], several bounds have been obtained for both Dirac and

Majorana spin-flavor transitions for different magnetic field configurations.

The magnitude of the spin-flavor transitions depend mainly on the strength of the magnetic

field at the location of the SFP resonance. This in turn depends on the detailed magnetic

field profile of the Sun, which is not very well known, especially in the interior regions of

the Sun. In Section 3.2, we discuss current bounds on the solar magnetic field in various

regions of the Sun and its effect on neutrino spin polarization. We also discuss the ef-

fective two-flavor model for neutrino spin-flavor precession. In Section 3.3, we show that

in the approximate case of vanishing mixing angle the resulting set of equations possess

analytically exact solutions. We also derive bounds on the solar magnetic fields using the

existing experimental results. We then examine the effect of non-zero vacuum mixing on

neutrino transition probabilities in Section 3.4 and constrain our theoretical results with

the bounds from Borexino experiment in Section 3.5 . Finally we discuss the results in the

Section 3.6.

3.2 Magnetic field in the Sun

Themagnetic field in different regions of the Sun exhibits different characteristic behaviors

[113]. In the solar convective zone (CZ) the magnetic fields are believed to be generated

from a dynamomechanism active at its base. The current data from helioseismology points
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to a thin shear layer at the bottom of the CZ, known as a tachocline, which generates a large-

scale toroidal magnetic field. The strength of the magnetic field is predicted to be in the

range 10-100 kG [115]. On the other hand, the radiative zone (RZ) magnetic field may

have its origin in the formation of the Sun. Once formed, this primordial field might have

been frozen in the RZ and the solar core without protruding much into the CZ [116]. The

bound on the large-scale toroidal magnetic field in the RZ ranges from 5-7 MG [117] to

30 MG [118]. For the solar core, magnetic field bounds vary widely from 30 G [119] to 7

MG [120].

Based on the above bounds, we choose two profiles to simulate the magnetic field in the

Sun. In the first model we implement the field profile given by [121] and add an RZ

magnetic field

B⊥RZ(r) = B0 sech[34.75(r/R� − 0.25)]. (3.9)

The profile is chosen such that BRZ in the CZ is negligible compared to the CZ magnetic

field and also becomes very small near the solar core. For the second model, we select a

field profile which peaks in the solar core and is expressed as

B⊥(r) = B0 sech
(
5r/R�

)
. (3.10)

First we consider the neutrino spin precession as it propagates in the solar magnetic field

neglecting the effect of matter and flavor mixing. The change in neutrino spin polarization

in this case is described by the equation

dS

dr
= 2µνS ×B⊥(r), (3.11)

where for B⊥ we apply the two magnetic field profiles in Eqs. (3.9), (3.10) and µν ≈

10−11µB. As can be seen in Fig. 3.5, the change in neutrino spin polarization can be

sufficient even with peak fields∼ 104 G. The change in helicity of solar neutrinos can also

affect the ν − e scattering [122].
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Figure 3.5: The longitudinal neutrino spin polarization S‖ as it propagates in the mag-
netic field of the Sun. The solid curve is the magnetic field obtained by solving solar
MHD equations in [121]. The dashed curve is given by Eq. (3.9) and the dot-dashed
curve by Eq. (3.10). The peak magnetic field for both models is taken to be ≈ 104 G.

Now if we include the matter potential term V which affects left and right helicity states

differently, then the neutrino propagation can be described by a Schrödinger-like equation

(Eq. (2.74))

i
d

dr

νL
νR

 =

V (x) µνB⊥

µνB⊥ 0


νL
νR

 . (3.12)

For the case of constant V and B⊥, the change in neutrino helicity is expressed as [31]

PνL→νR(x) =
(2µνB⊥)2

V 2 + (2µνB⊥)2
sin2

(
1

2

√
V 2 + (2µνB⊥)2x

)
. (3.13)

Thus, matter potential is expected to further suppress the change in neutrino helicity in

solar magnetic fields.
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Now considering two neutrino flavors, we finally include the effects of neutrino masses

and mixing angle θ12. In this case, the effective Hamiltonian becomes a 4× 4 matrix. For

the case of Dirac neutrinos, the effective Hamiltonian in the (νeL, νµL, νeR, νµR)T basis is

given by Eq. (2.99):

HD =



−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 µeeB⊥ µeµB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ µµeB⊥ µµµB⊥

µeeB⊥ µµeB⊥ −∆m2

4E
cos 2θ12

∆m2

4E
sin 2θ12

µeµB⊥ µµµB⊥
∆m2

4E
sin 2θ12

∆m2

4E
cos 2θ12


,

(3.14)

where Ve =
√

2GF (ne − nn/2) and Vµ = −GFnn/
√

2 are matter potentials for left

handed electron and muon neutrinos respectively, ne and nn denote the number densities

of electrons and neutrons respectively and ∆m2 = ∆m2
21 is the neutrino mass-squared

difference. For the Majorana case the vanishing diagonal terms µee and µµµ result in the

following Hamiltonian in the (νeL, νµL, ν̄e, ν̄µ)T basis (Eq. (2.103)):

HM =



−∆m2

4E cos 2θ12 + Ve
∆m2

4E sin 2θ12 0 µeµB⊥

∆m2

4E sin 2θ12
∆m2

4E cos θ12 + Vµ −µµeB⊥ 0

0 −µµeB⊥ −∆m2

4E cos 2θ12 − Ve ∆m2

4E sin 2θ12

µeµB⊥ 0 ∆m2

4E sin 2θ12
∆m2

4E cos 2θ12 − Vµ


.

(3.15)

Suppression due to the potential term in the two component case in Eq. (3.13) can now be

lifted due to resonant transitions. The electron neutrinos produced in the Sun can undergo

multiple resonances in the presence of a magnetic field. The usual MSW resonance νeL ↔

νµL takes place at the location xMSW

ρ(x)Ye
mn

∣∣∣∣∣
x=xMSW

=
∆m2 cos 2θ12

2
√

2GFE
. (3.16)
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In addition, there is spin-flavor resonance νeL ↔ νµR which always occurs before the

MSW resonance. The location of the spin-flavor resonance is given by

ρ(x)Y eff
e

mn

∣∣∣∣∣
x=xSFP

=
∆m2 cos 2θ12

2
√

2GFE
, (3.17)

where ρ(x) is matter density inside the Sun, mn is the neutron mass, Ye is the electron

fraction and

Y eff
e =


(3Ye − 1)/2 for νeL ↔ νµR ,

(2Ye − 1) for νeL ↔ ν̄µ.

(3.18)

E (MeV) νeL ↔ νµR νeL ↔ ν̄µ
2.5 0.057 0.027
5.0 0.156 0.142
10.0 0.230 0.218
15.0 0.268 0.257

Table 3.1: The location of SFP resonance in the Sun (in units r/R�) for different neutrino
energies.

The location of resonance for different neutrino energies are provided in Table 3.1 using the

electron density profile from the solar model BS2005 of Bahcall, Serenelli and Basu [123].

We have used ∆m2 = 7.4 × 10−5 eV2 and θ12 = 33.8° throughout the Chapter. For

neutrinos with energy below 2 MeV, the resonant density required is too high to occur

in the Sun. Thus only the high energy 8B neutrinos are expected to be affected by these

effects.

The solutions of the neutrino evolution equation with spin-flavor Hamiltonian (3.14) and

(3.15) are difficult to solve for arbitrary varying density and magnetic fields. However,

analytical [124] and semi-analytic [125] solutions exist for different cases. In the next sec-

tion, we will study the case of zero vacuummixing which gives rise to equations admitting

exact analytical solutions.
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3.3 An analytical model for zero vacuum mixing

For the case of θ12 = 0, only the SFP resonance can contribute to the neutrino transitions.

In this case the effective Hamiltonian becomes a 2×2matrix in the channel νeL ↔ νµR/ν̄µ:

H =

−∆m2

4E
+ δV

2
µeµB

µeµB
∆m2

4E
− δV

2

 , (3.19)

where δV =
√

2GFρY
eff
e /mN , with Y eff

e defined by Eq. (3.18). As can be seen from

Eq. (3.19), the main input required to study spin-flavor transitions is the profile of number

density of electrons and neutrons, and the magnetic field along the neutrino trajectory. The

electron number density in the solar model BS(2005) is shown in Fig. 3.6. However, for

obtaining numerical solutions various approximations, are applied [65]. Here we use the

approximation

ne(r) = 100[1− tanh(5r/R�)]NA cm−3, (3.20)

where NA is the Avogadro’s number, which gives a reasonably good approximation apart

from the region near the surface of the Sun.

BS2005

245 Exp(-10.54r/R�)

100 (1-tanh(5r/R�))

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

r/R�

lo
g
1
0
(n
e
/N
A
)

Figure 3.6: Electron number density variation vs. radial distance in the Sun. The solid
line represents the solar model BS(2005) and the dashed curves are analytical approxi-
mations.
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Now the equation for the neutrino flavor νeL with Hamiltonian (3.19) becomes a second

order ordinary differential equation given by

d2νeL
dt2

−

(
µḂ

µB
+ iξ

)
dνeL
dt

+

(
φ2 + i

dφ

dt
+ (µB)2 − iφµḂ

µB
+ φξ

)
νeL = 0, (3.21)

where we have defined

φ =− ∆m2

4E
+

1√
2
GFne, (3.22)

ξ =


− 1√

2
GFnn for νeL → νµR ,

−
√

2GFnn for νeL → ν̄µ.

(3.23)

In general, it is possible to solve this equation numerically to obtain the survival probability

of electron neutrinos. However for the case when magnetic field is given by Eq. (3.10)

and density is expressed by Eq. (3.20), the set of equations reduces to the well-known

Demkov-Kunike model, which has exact solutions [126, 127]. The analytical solution is

provided by Eq. (B.15) and can be used to calculate the neutrino transition probability

P (νeL → ν̄µR;R�). The resulting solution plotted in Fig. 3.7 depicts the difference for

the two cases of Dirac and Majorana neutrinos. For sufficiently low magnetic fields, the

difference in the transition probability of the two cases is not significant. However, for large

magnetic field there can be a detectable difference in the Dirac and Majorana neutrinos.

If we assume that inside the Sun the transitions are driven dominantly by SFP resonance,

and that outside the Sun the transitions are mainly due to the large vacuum mixing angle,

then the probability for the electron neutrinos produced inside the Sun to reach the Earth’s

surface as electron antineutrinos is given by [108]

P (νe → ν̄e) =P (νeL → ν̄µR;R�)P (ν̄µR → ν̄eR;Res)

=P (νeL → ν̄µR;R�) sin2 2θ12 sin2
(∆m2Res

4E

)
, (3.24)
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Figure 3.7: Transition probability of Dirac and Majorana neutrinos obtained from the
solution of equation (3.21). Here the neutrinos are assumed to be produced at the center
of the Sun with energy E = 10 MeV.

where Res is the average distance between Earth and Sun.

For the abovemodel, the result from the Borexino experiment can be used to obtain bounds

on themaximummagnetic fieldB0 at the center of the Sun. TheBorexino experiment gives

an upper limit on the neutrino transition probability for 8B neutrinos Pνe→ν̄e < 1.3×10−4

at 90% C.L. for Eν̄ > 1.8 MeV [128].

Now the transition probability P (νeL → ν̄µR;R�) in Eq. (3.24) is obtained from Eq.

(B.15) by averaging over the 8B neutrino production region in the Sun [123]. Using this,

we calculate the the mean probability in the energy region (2 < E < 15) MeV with 1

MeV/bin. For Majorana neutrinos we obtain 〈P 〉 = 1.18× 10−4 for B0 = 3× 104 G and

〈P 〉 = 2.1× 10−4 for B0 = 4× 104 G. Whereas for the case of Dirac neutrinos we obtain

〈P 〉 = 1.0× 10−4 for B0 = 3× 104 G and 〈P 〉 = 1.8× 10−4 for B0 = 4× 104 G. Thus

the consistency with the Borexino result requires B0 ≤ 3 × 104 G in both cases. Hence,

this analysis presents us a useful bound on the magnetic field in the solar core. This bound

lies in between the various other bounds discussed in the previous section. However, this

limiting case obtained by substituting θ12 = 0 inside the solar region over estimates the

transition probability by pushing the SFP resonance deeper into the solar interior where the
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strength of the magnetic field is higher. Thus we expect the actual bound on the magnetic

field to be higher in the full treatment with all the flavors taken into consideration.

For the case when magnetic field is given by Eq. (3.9) in the RZ of the Sun, such ana-

lytical solutions of Eq. (3.21) are not possible. In this case, since the magnetic field is

significantly weaker at the SFP location, we do not expect significant transitions. Hence,

the bounds on the RZ magnetic field will be comparatively weaker.

3.4 Including effects of θ12

Adding the effects of the vacuummixing leads to the full Hamiltonian (3.14) and (3.15) for

Dirac andMajorana neutrinos respectively. However, since there is no resonant production

of νeR/ν̄e, we set its amplitude to zero which yields the effective 3 × 3 Hamiltonian for

the Majorana neutrinos

HM =


−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 µB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ 0

µB⊥ 0 ∆m2

4E
cos 2θ12 − Vµ

 , (3.25)

and a similar one for the Dirac neutrinos. In this case, we have two resonances described

by Eqs. (3.16) and (3.17). However at the location of both resonances, the Hamiltonian

is dominated by large off-diagonal term ∆m2 sin 2θ12/4E . Thus merely fulfilling the

SFP resonant condition in Eq. (3.17) is not sufficient to drive large transitions due to the

magnetic field. In this case, it is more appropriate to go to mass eigenbasis where such

large vacuum mixing terms are absent [113]. The Hamiltonian in the mass eigenbasis can

be obtained by performing a rotation on the flavor eigenstates

HM → R†12HMR12, (3.26)
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and diagonalizing the resultant matrix, where R12 is the rotation matrix in the (12) plane.

We obtain

HD
M =


∆D 0 µB cos θD

0 −∆D µB sin θD

µB cos θD µB sin θD −κM

 , (3.27)

where

∆D =

√(
− ∆m2

4E
cos 2θ12 +

1√
2
GFne

)2

+

(
∆m2

4E
sin 2θ12

)2

, (3.28)

θD =− 1

2
tan−1

(
∆m2

4E
sin 2θ12

−∆m2

4E
cos 2θ12 + 1√

2
GFne

)
, (3.29)

κM =− ∆m2

4E
cos 2θ12 +

1√
2
GF (ne − 2nn). (3.30)

In Fig. 3.8 we plot the eigenvalues of the Majorana Hamiltonian Eqs. (3.25) and (3.27) in

flavor andmass basis respectively. In the flavor basis. depicted in Fig. 3.8a, one can see the

level crossing at two different points. The lower one corresponds to SFP resonance while

the higher one is the MSW resonance. The electron neutrinos are produced predominantly

in the heavier mass eigenstate (dashed curve in Fig. 3.8a). At the SFP crossing point, the

transition between the neutrino states νe ↔ ν̄µ is driven by the strength of the magnetic

field at the location of the level crossing. Assuming the level crossing to be adiabatic, the

νe eigenstate is now represented by the solid curve in Fig. 3.8a while the dashed curve

corresponds now to ν̄µ. The electron neutrino then goes through another resonance at the

MSW crossing point. After this second level crossing, the νe state now corresponds to the

dot-dashed curve which is the lower mass eigenstate while νµ is the upper mass eigenstate

(solid curve).

However, this notion of resonant flavor conversion is valid only for small mixing an-

gles [129]. For large values of mixing angle, the mass eigenbasis describes the situation

more accurately. Comparing Fig. 3.8a and 3.8b, it is seen that the level crossing which was

present for the case θ12 ≈ 0 is now absent. Again, if the electron neutrinos are produced
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Figure 3.8: Eigenvalues of the Hamiltonian for E = 10 MeV neutrinos: (a) in the flavor
basis, Eq. (3.25) for θ12 ≈ 0. The two level crossing points correspond to SFP and MSW
resonances. (b) in the mass eigenbasis, Eq. (3.27) for θ12 = 33.8°. The dashed/dot-dashed
lines correspond to ν1/ν2 respectively and the solid line represents ν̄µ. Here we have used
B0 = 106 G and the eigenvalues are in dimensionless units.

in the heavier mass eigenstate (dashed curve in Fig. 3.8b), they now will not encounter

any level crossing resonance such as those in Fig. 3.8a. Thus merely fulfilling the res-

onant conditions in Eqs. (3.16) and (3.17) is not sufficient for resonant conversion and

these conditions are valid only for small mixing angle. A general condition for resonant

conversion can also be derived which holds for both small and large mixing angles [113].

An examination of the neutrino transitions as it propagates in the Sun reveals further details

about the neutrino evolution in this general case. Working with Hamiltonian (3.27) we can
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see at the point of neutrino production near the solar core the diagonal terms are ∆D ∼

4 × 10−12 eV for E = 10 MeV, while the magnetic field term µB ∼ 6 × 10−16 eV for

B ∼ 104 G. Thus there is a difference of about four orders of magnitude and the transitions

will be absent. As the neutrino propagates to the lower density regions in the RZ, the

eigenlevels come closer. At r ≈ 0.2R� we have ∆D ∼ 2× 10−12 eV while the magnetic

field now increases to about 106G, thus µB ∼ 6 × 10−14eV. There is still a difference of

about an order of magnitude, however now there can be small νeL ↔ ν̄µ transitions driven

by the magnetic field as can be acertained in Fig. 3.9. These conversions persist as long as

the ratio ∆D/µB ∼ 0.1. However beyond r = 0.4R�, the magnetic field gradually falls

off to values < 105 G (see Fig. 3.5), and the corresponding transitions also die out. Thus

after the partial conversion of the neutrinos νe → ν̄µ in the region r ≈ (0.2 − 0.4)R�,

the neutrino reverts back to being predominantly in the eigenstate ν1. As the neutrinos

propagate towards the CZ, theywill again encounter an increasingmagnetic field. However

due to the strong bounds on the magnetic field in this region having peak field B0 < 105

G, the diagonal splitting terms ∆D � µB and there will be no significant transitions due

to magnetic fields. Thus assuming the neutrinos are produced in the eigenstate ν1 in the

Sun, they will exit the Sun in the same eigenstate and buried magnetic field in the RZ

having strength∼ 106 G is not sufficient to cause any appreciable level crossing. Thus the

transitions are suppressed to a great extent.

We can write the neutrino transition probability

P (νeL → ν̄µR) =
∑
i

P (νeL → νi)P (νi → νµR), (3.31)

where P (νeL → νi) is the probability that the electron neutrino is produced in mass eigen-

state νi and P (νi → νµR) is the probability of transition νi → ν̄µR under the effect of

magnetic field. Since the Hamiltonian in Eq. (3.27) for the Majorana neutrinos can be
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Figure 3.9: The variation of probability P (νeL → ν̄µR) with distance inside the Sun for
maximum RZ magnetic field B0 = 106 G. The neutrinos are assumed to be produced at
the center of the Sun and E = 10 MeV.

effectively decoupled into two 2× 2 blocks, we can write

P (νeL → ν̄µR) = cos2 θD(ri)P (ν1 → ν̄µR) + sin2 θD(ri)P (ν2 → ν̄µR), (3.32)

where θD(ri) is the mixing angle at the neutrino production point ri. The probabilities

P (νi → νµR) can be evaluated numerically to give the total transition probability in Eq.

(3.32).

3.5 Comparison with Borexino results

The most stringent constraints on the anti-neutrino flux are given by the Borexino exper-

iment [128], which reported an upper limit of φν̄e < 760 cm−2 s−1 on the 8B flux. For

an undistorted 8B neutrino spectrum, the solar anti-neutrino flux at the surface of Earth is

given by

φν̄e = φνe(
8B)P (νe → ν̄e), (3.33)

where the value of total 8B neutrino flux is φνe(8B) = 5.88× 106 cm−2 s−1 [128]. Thus

Borexino placed an upper bound of P (νe → ν̄e) < 1.3× 10−4.
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The solar electron neutrino transition probability P (νe → ν̄e) at the Earth’s surface can

be calculated using Eq. (3.24), where P (νeL → ν̄µR;R�) is numerically evaluated using

Eq. (3.32) and is averaged over the 8B neutrino production region in the Sun [123]. To

put appropriate bounds on the solar magnetic field, we plot in Fig. 3.10 the probability

P (νe → ν̄e) against the peak magnetic field for the case of Majorana Hamiltonian (3.25).

The two curves in Fig. 3.10 correspond to the two magnetic field profiles shown in Fig.

3.5, one peaking at the center of the Sun and other in the RZ, in accordance with the exist-

ing helioseismological bounds. In Fig. 3.10, we also show that the Borexino limit [128]

intersects the two curves at points corresponding to the maximum allowed peak magnetic

field. For the first case when the magnetic field peaks in the RZ, using the Borexino limit

we obtain the value of peak magnetic field B0 < 2.1 × 108 G. Thus the Borexino data is

unable to constrain the existing bound ofB0 < 30 MG in the solar RZ, which corresponds
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Figure 3.10: The probability of solar electron neutrino (E = 10 MeV) to anti-neutrino
conversion at the Earth’s surface (Eq. (3.24)) and comparison with Borexino results.
The dashed(red) curve and dotdashed(brown) curve show the probability P (νe → ν̄e)
calculated using the two field profiles marked with respective curves in Fig. 3.5. The
dotted(blue) line signifies that the current upper bound P (νe → ν̄e) < 1.3 × 10−4 from
the Borexino experiment corresponds to a bound of 2.1×108 G on the RZ magnetic field
and to a bound of 1.1 × 106 G on the core magnetic field. The solid(black) lines mark
the helioseismological bounds of 30 MG and 7 MG on the RZ and solar core magnetic
fields respectively.
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to the probability P (νe → ν̄e) < 2.9 × 10−6 and hence to an upper limit φν̄e < 17 cm−2

s−1 of the anti-neutrino flux. This requires an improvement by almost two orders of mag-

nitude in the sensitivity of ν̄e detection. However, the same analysis with magnetic field

peaking in the solar core provides very useful bounds which constrain some of the existing

solar models. The Borexino limit in this case yields an upper bound of B0 < 1.1× 106 G,

which is almost a factor of one-seventh of the current largest bound on the core magnetic

field [120]. It is useful to compare this result with that obtained in Section 3.3, where

we obtained much stronger bound of B0 < 8 × 104 G. This demonstrates that the two

component approximation used frequently (e.g. [130] does not give the correct transition

probability and it is more appropriate to take into account all possible channels in which

the initially produced neutrino state may undergo resonant conversion.

Since the Borexino experiment continues to take data, it is natural to assume that future

results will be able to place more stringent limits on the anti-neutrino flux. This in turn

will be useful for placing stricter upper bounds on the solar magnetic field, especially in

the solar core region where current helioseismological bounds vary widely in predictions.

3.6 Conclusions

In this Chapter, we have studied the phenomenon of neutrino spin-flavor oscillations in the

Sun for neutrinos having sufficiently large magnetic moments ∼ 10−11µB. We have con-

structed two models for solar magnetic field based on the current bounds on the magnetic

field in different regions of the Sun. In the first model, one can have large magnetic field

in the solar core and it tapers off with distance from the center. In the second model, we

have a large magnetic field in the RZ which becomes negligible in the core region and in

addition there is a CZ magnetic field, calculated in [121]. It was shown that even a mag-

netic field ∼ 104 G is sufficient to change the neutrino helicity as it comes out of the Sun.

83



We have also obtained a novel parametrization for the electron density profile in the Sun,

which provides a better approximation compared to the usual exponential parametrization.

For the case of zero vacuum mixing and large magnetic field in the solar core, we obtain

analytically exact solutions. This allows us to put strong bounds on the magnetic field in

the solar core using results from the Borexino experiment. Also, the difference between the

Dirac and Majorana neutrinos is significant only for magnetic fields∼ 105 G or more. We

then examined the effects for the realistic case of large vacuum mixing angle and found

that it has an effect in suppressing the νe → ν̄µ transitions. The energy level diagrams

distinctly demonstrate the difference between the two cases. Whereas in the case of small

mixing angle we get enhanced transitions due to adiabatic level crossings. For the latter

case of large vacuum mixing, the eigenstates of the Hamiltonian in the mass eigenbasis do

not exhibit such crossing phenomenon. Thus the dominant terms are the diagonal terms

and small transitions take place only in the RZ where the ratio of the two terms is ∼ 0.1.

Furthermore, the CZ fields do not affect the neutrino transitions. The Borexino results are

then utilized to place appropriate bounds on the two models of solar magnetic field. It

is found that whereas the Borexino bounds are too weak to place any upper limit on the

RZ magnetic field, for the solar core magnetic field we are able to place an upper bound

B0 < 1.1× 106 G. This is significant improvement over the existing bounds coming from

helioseismology results.

Based on the above results it can be seen that while the sub-leading effects on solar neu-

trinos due to spin-flavor transitions are likely to be very small for µν ∼ 10−11µB, with

improved sensitivity, the future experiments will be able to place even stronger constraints

on the neutrino magnetic moment as well as solar magnetic field. Thus the phenomenon

of spin-flavor oscillations gives important information about the solar interior independent

of helioseismological observations.
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Chapter 4

Neutrino propagation in magnetic fields and geometric

phases

In this Chapter, we show that neutrino spin and spin-flavor transitions involve non van-

ishing geometric phases. The geometric character of neutrino spin rotation is explored

by studying the neutrino spin trajectory in the projective Hilbert space representation and

its relation to the geometric phase. Analytical expressions are derived for noncyclic geo-

metric phases. Several calculations are performed for different cases of rotating and non

rotating magnetic fields in the context of solar neutrinos and neutrinos produced inside

neutron stars. Also the effects of adiabaticity, critical magnetic fields and cross boundary

effects in the case of neutrinos emanating out of neutron stars are examined. The variation

of geometric phase with magnetic field parameters is shown and its phenomenological

implications are discussed.

First we give a general introduction of the pure state geometric phase [131]. Then detailed

calculations are done, which show the emergence of geometric phase as the neutrinos

propagate in magnetic fields. This Chapter is based on Refs. [99] and [100].
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4.1 Introduction

The concept of geometric phase emerges from the idea that the phase factor acquired by

the wavefunction of a quantum system undergoing evolution has a part that is dynamical

and a part that is path dependent or geometric in nature. Berry in his seminal paper [132]

showed that for systems undergoing cyclic, adiabatic evolution this path-dependent ge-

ometric phase can have observable consequences. The phenomena of geometric phase

emerges in a wide range of classical and quantum systems and dates back to the work

of Pancharatnam [133] who demonstrated that when a polarized light is passed through

a series of polarizers such that initial polarization is finally restored, the final polarized

state acquires an additional phase. This additional phase is equal to half the solid angle

subtended by the curve representing the polarization states on a Poincaré sphere. The geo-

metric phase since then has been experimentally observed in a wide range of systems such

as molecular physics [134], neutron spin rotation [135], photon propagation in helically

wound optical fiber [136], and is a source of numerous investigations in physics [137]. In

the field of particle physics, in addition to neutrinos, the importance of geometric phase has

been explored in the context of super-symmetric quantum mechanics [138], CPT (Charge

conjugation, Parity and Time reversal) violation inmeson systems [139], and axion-photon

mixing [140].

The geometric phase is an example of the phenomenon called holonomy in which some

variables fail to return to their initial value when other variables or parameters character-

izing the system undergo a cyclic evolution. A simple case of classical holonomy is the

parallel transport of a vector around a closed circuit on a curved surface. The parallel

transport of vector can be accomplished by requiring that it moves in such a way that its

magnitude remains constant and that it does not rotate locally about an axis perpendicular

to the surface. As a result of this parallel transport the vector comes back to its initial po-

sition rotated by an angle which depends only the path traced by the vector and is purely
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geometric quantity. For example, consider the case of vector parallel transport around a

closed curve C on a sphere. In this case the angle holonomy obtained is equal to the solid

angle subtended by C at the center of the sphere (Fig. 4.1).

Figure 4.1: Parallel transport on the surface of a sphere. The vector, initially located at the
north pole, is parallel-transported along the path C. As it returns to initial position, it gets
rotated by an amount γ that depends on the path C traversed by the vector.

The concept of parallel transport and holonomy associated with the curve can be extended

to quantum regime. In quantum mechanics the state of a system is represented by the

vector |ψ(x)〉 ∈ H, where H denotes the Hilbert space and x = (x1, x2, ...) denotes the

set of parameters governing the system. The rule for parallel transport of |ψ(x)〉 along a

curve in the parameter space x is obtained by two conditions: (i) the length of |ψ(x)〉 is

preserved and (ii) |ψ(x)〉 and |ψ(x + dx)〉 have the same phase i.e. 〈ψ(x) |ψ(x + dx)〉 is

real and positive. Expanding 〈ψ(x) |ψ(x + dx)〉 in Taylor series, we get

〈ψ(x) |ψ(x + dx)〉 = 〈ψ(x) |ψ(x)〉+ 〈ψ(x) | ∇x |ψ(x)〉 .dx + O(dx2). (4.1)

Thus the above two conditions imply

= 〈ψ | dψ〉 = 0. (4.2)
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However, if |ψ〉 is parallel-transported along a closed curve C in the parameter space and

comes back with a changed phase i.e.

〈ψinitial |ψfinal〉 = eiγ[C], (4.3)

then this phase change γ[C] arises due to holonomy and is the geometric phase associated

with C. Quantum mechanically, adiabatic change provides the simplest way to parallel

transport the vectors over the parameter space. The resulting geometric phase is acquired

because of the underlying curvature of the parameter space.

4.1.1 Adiabaticity and Berry’s Phase

In quantummechanics the notion of adiabaticity arises whenever the parameters governing

a system change sufficiently slowly with time. For such systems using adiabatic approxi-

mation [141, 142], the solutions of the Schrödinger equation can be approximated by that

of stationary eigenstates of the instantaneous Hamiltonian. For example, if the system is

initially in the nth eigenstate of the slowly changing Hamiltonian Ĥ(t) then the eigenvalue

equation

Ĥ(t) |n(t)〉 = En(t) |n(t)〉 , (4.4)

can be solved at each instant of time to give the eigenstate |n(t)〉 corresponding to energy

eigenvalue En, so that the system remains in the nth eigenstate.

Consider an adiabatically varying Hamiltonian, whose parameters return to their initial

value after time τ so that Ĥ(t + τ) = Ĥ(t). If |ψ(0)〉 is the initial eigenstate of Ĥ then

adiabatic evolution ensures that after time τ system remains in the same eigenstate i.e.

|ψ(τ)〉 = eiα |ψ(0)〉 , (4.5)
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where α is the phase acquired during the evolution. Let us first consider the simple case

of time-independent system (having arbitrary periodicity), for which the eigenstates of the

Hamiltonian are given by

|ψ(τ)〉 =e−iEτ |ψ〉 , (4.6)

where |ψ〉 is the solution of time-independent Schrödinger equation corresponding to en-

ergy eigenvalue E. In this case the phase acquired by the eigenstate is just the dynamical

phase i.e. α = γd, where γd = −Eτ . Thus for the general case of time-dependent Hamil-

tonians one might expect that the phase acquired by the eigenstates for the cyclic evolution

is just the generalization of the dynamical phase i.e.

α = −
∫ τ

0

E(t)dt = γd (4.7)

However, it was shown by Berry [132] that for this case α = γd + γ(C), where γ(C)

is a non-integrable phase factor that depends on the path C traversed by the state |ψ〉 in

the parameter space. While, γd gives the information about the duration of evolution of

the system, γ(C) gives information about the geometry of the circuit C in the parameter

space. In terminology of the last section, γd arises due to local rotation of the state vector,

while γ[C] is the holonomy due to parallel transport of the vector around C.

To this end, we consider the Hamiltonian of a system Ĥ = Ĥ(x(t)) depending on a set of

slowly varying parameters x = (x1, x2, ...). Assuming the energy spectrum ofHamiltonian

to be discreet and non degenerate for all t, we can construct a basis set {|n(t)〉} consisting

of normalized eigenvectors of Ĥ . In the adiabatic approximation, if system is initially

defined by the state |ψ(x(0))〉 = |n(x(0))〉 then at time t it continuously goes over to the

state |n(x(t))〉, apart from phase factors. We make an ansatz

|ψ(x(t))〉 = eiγne−i
∫ t
0 E(t′)dt′ |n(x(t))〉 , (4.8)
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where, the second phase factor is the dynamical phase and γn is some additional phase.

Substitution in Schrödinger equation

i
d

dt
|ψ(x(t))〉 = Ĥ(x(t)) |ψ(x(t))〉 , (4.9)

and using the adiabatic approximation, we get [143]

γn(t) = i

∫ t

0

〈
n(x(t))

∣∣∣∣ ddt
∣∣∣∣n(x(t))

〉
dt. (4.10)

However, since the eigenvectors are defined upto a phase factor, under the transformation

|n(x(t))〉 → eiγn(t) |n(x(t))〉 , (4.11)

we have,
8 〈n |n〉′ = 〈n |n〉+ iγ̇n(t) = 0. (4.12)

Thus we can write

|ψ(x(t))〉 = e−i
∫ t
0 E(t′)dt′ |n(x(0))〉′ , (4.13)

such that γ′n(t) = 0. Thus we can always chose the phase of the eigenvector according to

Eq. (4.12) at all the times such that the factor γ′n = 0. However, Berry showed that this

condition cannot be simultaneously realized over the whole parameter space. In particular

if we consider cyclic evolution in the space of parameters then the phase factor γn becomes

invariant under phase transformations. To see this we write

γn(t) =i

∫ t

0

〈
n(x(t))

∣∣∣∣ ddt
∣∣∣∣n(x(t))

〉
= i

∫ t

0

〈n(x(t)) | ∇x |n(x(t))〉 .dx
dt
dt

=i

∫ xi(t)

xi(0)

〈n(x(t)) | ∇x |n(x(t))〉 .dx. (4.14)
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Under a cyclic evolution in the parameter space C : [0, τ ]→ [xi(0), xi(τ)] we get

γn[C] =

∮
C

An(x) · dx, (4.15)

where An(x) = i 〈n(x(t)) | ∇x | n(x(t))〉. Now if we choose to redefine the phase of the

eigenstate

|n(x(t))〉 → eiζ(x) |ψ(x(t))〉 , (4.16)

then

An(x)→ An(x)− i∇xζ(x). (4.17)

If the parameter space is three-dimensional then we can write

γn[C] =

∫
S

∇x × An(x) · dS, (4.18)

where S is the surface bounded by the closed curve C. Thus the transformation (4.17)

leaves the geometric phase invariant. Thus the geometric phase is non-integrable and

non-local.

If we define vector field Vn(x) = ∇x × An(x), then the geometric phase can be seen as

flux of the field Vn through the surface S

γn[C] =

∫
S

Vn(x) · dS. (4.19)

In higher-dimensional parameter space, the geometric phase γ[C] has an appropriate gen-

eralization in terms of integral of a curvature two-form over a surface bounded by C

[144, 145].
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4.1.2 Example- Spin precession in a magnetic field

A simple illustrative example where non-trivial Berry phase arises is that of spin preces-

sion in a magnetic field. For a spin 1/2 particle in a magnetic field, the Hamiltonian is

given by

H = −µ
2
σ · B. (4.20)

Consider the magnetic field rotating in the x-y plane at an angle θ0 from the z axis

B(t) = B(sin θ0 cosφ(t), sin θ0 sinφ(t), cos θ0). (4.21)

The energy eigenvalues are E± = ±µB/2 and corresponding eigenvectors |±〉 can be

calculated. The geometric phase associated with |+〉 is then given by [143]

γ+[C] = −π(1− cos θ0) = −1

2
Ω[C], (4.22)

where Ω[C] is the solid angle subtended by the curve C at the center of the sphere. The

point B = 0 represents a point of degeneracy where the energy eigenvalues cross and

the adiabatic condition breaks down. So the closed circuit must not include the point of

degeneracy. To see the nature of degeneracy, consider the vector field

Vn = −j B̂
B2

, (4.23)

which represents a magnetic monopole of strength j at the origin in the parameter space.

According to Eq. (4.19) the geometric phase is given by

γn[C] = −jΩ[C]. (4.24)

The resemblance of Eqs. (4.22) and (4.24) shows that the point of degeneracy appears as

a magnetic monopole. The vector field may be thought of as radiating from an effective
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magnetic monopole of strength j at the origin of the parameter space. The effect of the

degeneracy is felt by a closed loop at a distance from the degeneracy and the Berry phase

is the flux associated with this monopole through the surface bounded by this closed loop.

4.1.3 Aharonov- Anandan phase

The notion of geometric phase was extended by Aharonov-Anandan [146] for any general

cyclic motion without regard to adiabaticity. According to their prescription, one can

split the total phase into dynamical and geometric parts by considering the evolution of

eigenvectors in the state space, rather than the parameter space. The geometric phase can

then be defined as the difference between the total and dynamical phase.

Let H denote the Hilbert space consisting a set of possible states of a quantum system

(assumed to be normalized). Since two vectors |ψ〉 , eiφ |ψ〉 ∈ H differing only by the

phase factor correspond to the same physical state, we define a projection map

π : H →P(H),

π(eiα |ψ〉) =π(|ψ〉) ∈ P(H) ∀ α ∈ R and |ψ〉 ∈ H. (4.25)

P(H) is known as projective Hilbert space. If the evolution |ψ(t)〉 traces out a curve C in

H such that

|ψ(τ)〉 = eiφ |ψ(0)〉 , (4.26)

then the corresponding curve C = π(C) in the projective Hilbert space P(H) is closed

(Fig. 4.2).

There can be infinitely many curves inHwhich project to a given closed curveC inP(H).

So we ask a reverse question: given a closed curve C in P , can we select a curve inH for
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Figure 4.2: Cyclic evolution of vector in projective Hilbert state P(H). A closed curve
C = π(C) in P(H) can have infinitely many lifts in H which may or may not be closed.
This is called principal fiber bundle picture of the state space. The bundle spaceH consists
of three parts: the base manifold P(H), the fiber which is the group U(1) attached to each
point of base manifold and the map π : H → P(H). A closed curve in the bundle space
begins and ends on the same fiber.(Figure taken from Ref. [147]).

which dynamical and geometric part can be separated. To achieve this, we define

|ψ(t)〉 = eif(t) |ξ(t)〉 , (4.27)

such that f(τ)− f(0) = φ. From Eq. (4.26) it follows that |ξ(t)〉 is smooth single-valued

function inH with |ξ(τ)〉 = |ξ(0)〉. Under Schrödinger evolution we have

i
d |ψ(t)〉
dt

=H |ψ(t)〉 ,

i
d |ξ(t)〉
dt

=(H + ḟ) |ξ(t)〉 ,

df

dt
=i

〈
ξ

∣∣∣∣ ddt
∣∣∣∣ ξ〉− 〈ξ |H | ξ〉 . (4.28)

Integrating, we get the total phase

φ = φd + φg, (4.29)

96



where

φd = −
∫ τ

0

〈ξ |H | ξ〉 dt =

∫ τ

0

〈ψ |H |ψ〉 dt (4.30)

is the dynamical phase and

φg[C ] = i

∫ τ

0

〈
ξ

∣∣∣∣ ddt
∣∣∣∣ ξ〉 dt =

∮
C

〈ξ | d | ξ〉 (4.31)

is the geometric phase. Now, one can chose the same |ξ(t)〉 for infinitely many curves

C ∈ H, which project to the given curve C = π(C) ∈ P(H), by an appropriate choice

of f(t). Thus this definition of φg depends only on the curve in the projective Hilbert

space P(H) and is independent of the total phase φ and the Hamiltonian producing the

motion. Also, since the state |ψ〉 need not be an eigenstate of H , hence adiabaticity and

cyclic evolution of H(t) are not required. Further, φg is independent of parameter t of C

(reparametrization invariant) and is gauge invariant. To prove the gauge invariance of φg,

we transform |ξ(t)〉 → eiα(t) |ξ(t)〉, then the geometric phase transforms as

φg[C ] = i

∮
C

〈
ξ

∣∣∣∣ ddt
∣∣∣∣ ξ〉 dt− [α(τ)− α(0)]. (4.32)

Since |ξ(t)〉 is single-valued, therefore α(τ) = α(0). Thus geometric phase is invariant

under gauge transformation.

4.1.4 Noncyclic Geometric Phase

The definition of non-adiabatic geometric phase (Eq. 4.31) requires cyclicity in the state

space P(H). However, in a general evolution the state vector may not return to the same

fiber in the bundle space giving rise to an open curve inP(H). Samuel and Bhandari [148]

considered such a case of noncyclic evolution and used Panchratanam’s idea to compare

the phase on two different fibers of the principal fiber bundle. They showed that in this

case the geometric phase is proportional to the surface area enclosed by the curve inP(H)
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which is composed of two parts: the open curve C = {π(|ξ(s)〉) ∈ P(H)|s ∈ [s1, s2] ⊂

R} describing the evolution from the initial point |ξ(s1)〉 to the final point |ξ(s2)〉, and a

geodesic curve in P(H) joining π(|ξ(s2)〉) to π(|ξ(s1)〉).

Even though the geodesic closure approach gives an elegant and robust definition of geo-

metric phase, the calculations of geodesic can be tedious and in some cases may lead to

inconsistent results [149]. An equivalent approach to calculate the geometric phase for

any general nonadiabatic, noncyclic evolution has been developed by Mukunda and Si-

mon [150]. Their treatment is based entirely on kinematics, and the geometric phase is

defined as a property of curves in the Hilbert space. If C is any one-parameter smooth

curve of unit vectors |ψ(s)〉 ∈ H, where s ∈ [s1, s2] ⊂ R, then the geometric phase

associated with the corresponding curve C ∈ P(H) is defined by the functional

φg[C ] = arg 〈ψ(s1)|ψ(s2)〉 − =
∫ s2

s1

ds 〈ψ(s)|ψ̇(s)〉 , (4.33)

where
∣∣∣ψ̇(s)

〉
denotes the derivative with respect to s. The two terms on the right-hand

side of Eq. (4.33) are, respectively the total and dynamical phase associated with the curve

C, and the difference between the two gives the geometric phase along C . The geometric

phase defined this way is both gauge and reparametrization invariant. To check the gauge

invariance of φg, consider a local gauge transformation |ψ(s)〉 → eiα(s) |ψ(s)〉, then

φg[C ]→(α(s2))− α(s1)) + arg 〈ψ(s1) |ψ(s2)〉 − =
∫ s2

s1

ds
(〈

ψ(s)
∣∣∣ ψ̇(s)

〉
+ iα̇(s)

)
= arg 〈ψ(s1) |ψ(s2)〉 − =

∫ s2

s1

ds
〈
ψ(s)

∣∣∣ ψ̇(s)
〉
. (4.34)

The geometric phase in φg[C ] is only defined modulo 2π, because of the form of total

phase in Eq. (4.33). Also, in case the vectors |ψ(s1)〉 and |ψ(s2)〉 are orthogonal both the

total phase and hence φg[C ] are undefined.
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4.2 Neutrino propagation in magnetic fields

The emergence of geometric phase in the context of neutrino oscillations has been ex-

plored by many authors in various settings [151–165]. In the present work we analyze the

noncyclic geometric phases that arise due to neutrino oscillations in magnetic fields and

matter. In particular, we first perform explicit calculations for the geometric phases that

arise due to spin and spin-flavor precession of neutrinos propagating in a medium with

constant density and uniformly twisting magnetic fields. We then study the case of geo-

metric phase acquired by neutrinos produced inside and emanating out of a neutron star,

with realistic density and magnetic field profiles. We also study the condition of adiabatic-

ity, the effects of magnetic field rotation and cross boundary effects on geometric phases

and neutrino helicity transitions.

In the quasiclassical approach, neutrino spin evolution in an electromagnetic field is de-

scribed by the generalized Bargmann-Michel-Telegdi equation [166]. For the system |ν〉 =

(νR, νL)T with two helicity components of neutrinos propagating in the presence of mag-

netic field ~B in matter, the effective Hamiltonian is given by [75] (see also Eq. (2.74))

H = (~σ.~n)
(∆m2A

4E
− ∆V

2

)
− µ~σ.

[
~B −

(
1 +

1

γ

)
( ~B.~n)~n

]
, (4.35)

where ~n is the direction of propagation of the neutrino, ~σ are Pauli spin matrices, ∆V =

VL − VR (VL, VR being potentials due to coherent forward scattering of the neutrinos off

matter particles [21] for left- and right-handed neutrinos respectively), ∆m2 = m2
R−m2

L,

A is a function of neutrino mixing angle θ, and E is the neutrino energy. In Eq. (4.35) the

terms proportional to identity matrix are omitted.
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Assuming the neutrinos to be propagating along the z-direction, the evolution of the state

|ν〉 can be described by the Schrödinger-like equation [74]

i
∂ |ν(t)〉
∂t

= H(t) |ν(t)〉 . (4.36)

Since the longitudinal component of the magnetic field in Eq. (4.36) is suppressed by

a factor of 1/γ, for relativistic neutrinos this term can be neglected. Also, we consider

the magnetic field rotating clockwise about the neutrino direction in the transverse plane

B⊥ = Beiφ. The evolution equation (4.36) can now be rewritten as

i
∂

∂z

νR
νL

 = −

 V (z)/2 µB(z)e−iφ(z)

µB(z)eiφ(z) −V (z)/2


νR
νL

 , (4.37)

where

V = ∆V − ∆m2A

2E
, (4.38)

and the distance z along the neutrino trajectory is approximated with time t.

Transforming to the rotating frame of the field, and using

|ν〉 = U |ψ〉 = exp(−iσ3φ/2) |ψ〉 , (4.39)

we get an evolution equation in the rotating frame,

i
∂ |ψ〉
∂z

=(U−1HU − iU−1dU

dz
) |ψ〉

=− 1

2

[
(V + φ̇)σ3 + (2µB)σ1

]
|ψ〉 , (4.40)

where φ̇ = dφ/dz. For the case of neutrino propagation in matter with constant density

and in a magnetic field of constant strength and uniform twist, i.e., constant V , B, and φ̇,
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Eq. (4.40) can be integrated analytically and we obtain

ψR(z)

ψL(z)

 = exp

[
i

2

(
(V + φ̇)σ3 + 2µBσ1

)
z

]ψR(0)

ψL(0)

 . (4.41)

Using properties of Pauli matrices this can be written as

ψR(z)

ψL(z)

 =

[
cos

(
δEmz

2

)
+

i

δEm

(
(V + φ̇)σ3 + 2µBσ1

)
sin

(
δEmz

2

)]ψR(0)

ψL(0)

 ,

(4.42)

where

δEm =

√
(V + φ̇)2 + (2µB)2 (4.43)

gives the energy splitting of the eigenstates. If a neutrino is initially created in the left-

helicity state, i.e., |ν(0)〉 = (0 1)T , then after traveling a distance z in the magnetic field,

the neutrino eigenstate will be an admixture of left- and right-handed components:

|ν(z)〉 =


ie−iφ(z)/2 sin 2θm sin

(
δEmz

2

)

eiφ(z)/2
(

cos
(
δEmz

2

)
− i cos 2θm sin

(
δEmz

2

) )
 . (4.44)

Here, we have taken the reference direction as φ(0) = 0 and θm denotes the mixing angle

between ψR and ψL,

tan 2θm =
2µB

V + φ̇
. (4.45)

If a beam of left-handed neutrinos starts at z = 0, the transition probability at a distance z

is given by

P (νL → νR; z) = |νR(z)|2 = sin2 2θm sin2

(
δEmz

2

)
. (4.46)

Thus neutrino propagation in magnetic fields results in an oscillation in the νL − νR basis

with a length scale of 2π/δEm. For θm = π/4 the mixing is maximal and the amplitude

of the transition probability becomes unity. Eq. (4.45) gives the condition for resonant
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νR ↔ νL conversion

V + φ̇ = 0,

or ∆V − ∆m2

2E
A+ φ̇ = 0. (4.47)

The effects of the variation of the twisting field on the transition probability has been

explored in detail in [167].

4.3 Bloch sphere representation of neutrino spin rotation

and noncyclic geometric phases

The dynamics of the neutrino spin rotation in a magnetic field can be described by spin-

polarization vector n = 〈ν |σ | ν〉. In the two component formalism the equation describ-

ing the dynamics of n is equivalent to a Schrödinger-like equation (4.37), and is given

by [168]
dn
dz

= n× Beff, (4.48)

where Beff =
√
V 2 + (2µB)2(sinχ cosφ, sinχ sinφ, cosχ); χ = tan−1(2µB/V ). The

path of the effective magnetic fieldBeff describes a circle around the z axis in the parameter

space, which is the unit two-sphere S2. For the case of a mediumwith a uniformly twisting

magnetic field and constant density as discussed in the previous section, Eq. (4.48) can

be solved analytically, and the resulting solution n(z) can be plotted in the Bloch sphere

representation. In this representation, a given neutrino state |ν〉 corresponds to a point on

S2 and is determined by the unit vector n. The orthogonal states |νL〉 and |νR〉 correspond

to two antipodal points on S2.
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To solve Eq. (4.48), we define a vector nR = n · R, where R is the rotation matrix

R =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (4.49)

Substituting this in Eq. (4.48) we obtain a time-independent differential equation for nR,

which can be integrated to give the solution for Eq. (4.48) as the superposition of two

rotations,

n(z) = RT · R1 · n(0), (4.50)

where R1 is given by

R1 =


sin2 2θm + cos2 2θm cosφp cos 2θm sinφp

1
2

sin 2θm(1− cosφp)

− cos 2θm sinφp cosφp sin 2θm sinφp

1
2

sin 2θm(1− cosφp) − sin 2θm sinφp cos2 2θm + sin2 2θm cosφp

 ,

(4.51)

where we have defined the precession phase as φp = δEmz, such that φp varies from 0 to

2π during one oscillation length.

The matrix R1 represents a precession about the direction of Beff at an angle 2θm and at a

rate φ̇p while R represents a precession about the direction of propagation of the neutrino

at a rate, φ̇. These two precessions combine to give the evolution of the spin-polarization

vector n, which may be plotted on the Bloch sphere. The curve traced by the vector n on

the Bloch sphere, as the magnetic field rotates by 2π, is noncyclic in general. However, for

the special case when the two precession rates φ̇p and φ̇ are commensurable i.e. φ̇p = kφ̇

for some k ∈ Q, the evolution becomes cyclic. Different cases for cyclic and noncyclic

evolution are shown in Fig. 4.3 for the case of spin precession νeL → νeR of left-handed

electron neutrinos produced in the Sun and propagating outwards under the influence of

matter and magnetic fields. As a first order calculation we assume a constant density and

magnetic field profile for the Sun and parametrize the rotation frequency of the magnetic
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(a) φ̇p = 5φ̇ (b) V = −φ̇

(c) φ̇ = 100 (d) φ̇ = −200

Figure 4.3: Bloch sphere representation of neutrino spin rotation. Initially the neutrinos
are produced in the left helicity state which corresponds to a point on the pole of the sphere.
Under the effect of matter and magnetic field, neutrinos undergo spin-precession νeL →
νeR and neutrino spin-vector n traces out cyclic [(a) and (b)] and noncyclic curves [(c) and
(d)] on the Bloch sphere depending on the relative values of φ̇p and the parameters of Beff.
The circular curve describes the path of Beff. The rotation frequency is in units of π/R, and
the positive and negative signs of φ̇ correspond to clockwise and anticlockwise rotation
of the magnetic field about the neutrino direction respectively. We used the following
parameters: electron number density ne = 1024g/cm3, neutron number density nn =
ne/6, matter potential V =

√
2GF (ne − nn/2), and magnetic field strength B = 106 G.
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field as φ̇ = π/fR, where R is the radius of the Sun.

0 π 2π
-π /2

0

π /2

π

Δϕ

ϕ
gL

(a) Cyclic geometric phase: Solid curve
corresponds to the cyclic case φ̇p = 5φ̇ and the
dotted curve corresponds to the resonant
condition V = −φ̇

0 π 2π
0

π /2

π

Δϕ

ϕ
gL

(b) Noncyclic geometric phase for the cases
φ̇ = 100 (solid curve) and φ̇ = −200 (dotted
curve)

Figure 4.4: Geometric phases associated with the curves in the Bloch sphere for neutrino
spin-precession νeL → νeR.

The area enclosed by the trajectory traced out by neutrino spin rotation in projectiveHilbert

space, which in this case is Bloch sphere S2, is related to the geometric phases acquired

by the neutrino state during the evolution. If a neutrino is initially created in the left-

helicity state, i.e., |ν(0)〉 = (0 1)T , then after traveling a distance z in the magnetic field

the neutrino eigenstate will be a mixture of left- and right-handed components |ν(z)〉 =

(νR(z) νL(z))T . The geometric phase associated with the curve C traced by the state

|ν(z)〉 on the Bloch sphere is then given by

φLg [C] = arg 〈ν(0)|ν(z)〉 − =
∫ z

0

〈ν(z′)| d
dz′
|ν(z′)〉 dz′. (4.52)

Using Eq. (4.44), we get the following expressions for the geometric phase:

φLg [C] =− arctan
(

cos 2θm tan
φp
2

)
+
φp
2

cos 2θm +
∆φ

2
sin2 2θm

(
1− sinφp

φp

)
,

(4.53)

where ∆φ = φ(z)−φ(0). Similarly if a neutrino is produced initially in the right-helicity

state, the geometric phase acquired is

φRg =− φLg . (4.54)
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Hence the spin and spin-flavor evolution of neutrino helicity states involve nonzero geo-

metric phases. These expressions for geometric phases are valid regardless of whether the

neutrino propagation is adiabatic or not, unlike the case of the Berry phase which requires

the propagation to be adiabatic.

Two particular cases clearly bring out the relation between the geometric phase and area

enclosed by neutrino spin trajectory on the Bloch sphere. In the cyclic limit, as the neutrino

spin-vector n returns to its initial position i.e. φp = 2π, the geometric phase for each cycle

is given by Eq. (4.53) as

φLg [C]
∣∣∣
cyc

= −π(1− cos 2θm) +
∆φ

2
sin2 2θm. (4.55)

This result is particularly easy to visualize in the rotating frame of the magnetic field where

∆φ = 0. In this frame the geometric phase reduces to the famous value−π(1− cos 2θm),

which is equal to −1
2
of the solid angle subtended, by the neutrino spin rotation trajec-

tory on the Bloch sphere, at the center of the sphere. Another interesting case is that of

resonance condition (4.47), for which Eq. (4.55) gives the geometric phase:

φLg [C]
∣∣∣
res

= 0. (4.56)

This is expected since the resonance condition corresponds to the case when the neutrino

trajectory traces out a great circle in the x − z plane in the rotating frame. This is akin

to parallel transport of a vector along a geodesic, which does not give rise to holonomy.

The corresponding curve in Fig. 4.3b encloses no net oriented area, and thus has zero

geometric phase.

For the case of noncyclic evolutions the geometric phase can be interpreted in terms of a

solid angle subtended by the neutrino spin rotation curve obtained by geodesic closure on

the Bloch sphere. In Fig. 4.4, we plot the variation of the geometric phase with the relative

phase shift of the magnetic field for the case of neutrino spin precession νeL → νeR.
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Next we will study the neutrino spin and spin-flavor evolution in the case of a neutron

star with realistic density and magnetic field profiles. We will examine various cases both

inside and outside the neutron star and analyze the quantitative difference in geometric

phases in different scenarios.

4.4 Neutrino Propagation in Neutron Stars

When stars run out of nuclear fuel at the end of their lives, the core of the star collapses

under its own gravity resulting in a supernova explosion. Neutron stars (NSs) are the com-

pact objects that are formed as final remnants of the core collapse supernova of stars with

a mass of about 8− 20 times the mass of the Sun. NSs contain some of the most extreme

astrophysical environments where the interior densities can be∼ 5− 10 times the nuclear

saturation density (≈ 2.8×1014 g/cm3) and where magnetic fields from the surface to the

interiors can vary from 1015 to 1018 G [169, 170]. Although NSs are primarily composed

of neutrons, there is also a small fraction of protons, electrons, and other nuclei. In the in-

terior where density exceeds nuclear saturation density, exotic particles such as deconfined

quarks, stable hyperon matter, and superfluid pion condensate may appear [171, 172].

Neutrinos play an important role in the formation and subsequent cooling of NSs. During

the first few seconds of the supernova collapse a large number of neutrinos diffuse through

the resulting proto-NS, which leads to a rapid drop in temperature by a factor of ∼ 100.

After about a minute, the NS becomes transparent to neutrinos resulting in a further drop in

temperatures. The main process by which the neutrinos are produced in the NS cores is so-

called direct Urca process n→ p+e−+ν̄e, p+e− → n+νe [172,173]. However, the direct

Urca process requires a certain energy threshold belowwhich the neutrino emission occurs

via modifiedUrca process n+(n, p)→ p+(n, p)+e−+ν̄e, p+(n, p)→ n+(n, p)+e++νe

[174]. There are several other mechanisms by which neutrinos are produced in the NSs

and help in the NS cooling (see [175] for a detailed review).
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Figure 4.5: (a) Density and (b) magnetic field profiles of the neutron star. Magnetic field
is plotted in log scale.

In the following we study the spin-flavor evolution of the neutrinos produced in the core

region of the NS. For definiteness we consider only the left-handed electron neutrinos

produced below the resonance region and calculate the acquired geometric phase as they

propagate in the interior regions of the NS and finally come out of it. We also study

the effect of magnetic field rotation on the geometric phases and the probabilities of the

spin and spin-flavor conversion. These calculations require the knowledge of the density

and magnetic field profiles in the interior and outer regions of the NS. The knowledge of

the exact density profile of NS depends strongly on the equation of state for which many

models have been proposed (see [176] for a recent review). However, without going into

details of the models, we assume a simplistic density profile where the density decreases

quadratically from the center

ρY eff
e =


ρ0 + ρ1r

2, for r ≤ R

0 for r > R

, (4.57)

where R is the radius and ρ0 is the central density of the NS. The values of radius and

central density are taken as R = 10 km and ρ0 = 1015 g/cm3. The typical surface density

of the NS is ∼ 109 g/cm3 which determines the value of ρ1.The magnetic field profile in
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the interior [177] and outer [178] regions of the NS are taken as

B(r) =


Bs +Bc

(
1− exp

(
− β(ρ/ρs)

γ
))

for r ≤ R

Bs(R/r)
3 for r > R

, (4.58)

where β = 0.005, γ = 2, Bc = 1018 G, Bs = 1014 G, and ρs is the nuclear saturation

density. The density and magnetic field profiles for the NS are plotted in Fig. 4.5.

4.4.1 Adiabaticity and Geometric phases

The Hamiltonian for the neutrino spin-flavor evolution equation (4.37) can be written as

H = −1

2
σ · Beff(z), (4.59)

where

Beff =|Beff |(sinχ(z) cosφ(z), sinχ(z) sinφ(z), cosχ(z)), (4.60)

|Beff | =
√
V (z)2 + (2µB(z))2, (4.61)

χ(z) = tan−1

(
2µB(z)

V (z)

)
, (4.62)

V =

√
2GFρY

eff
e

mN

− ∆m2

2E
cos 2θ. (4.63)

Formally, the solution of Eq. (4.36) with Hamiltonian (4.59) is given by the evolution

matrix

S(z, z0) = P exp

(
− i

2

∫ z

z0

(V (z′)σ3 + 2µB(z′)σ1)dz′
)
, (4.64)

where P is the path ordering operator. However, in the limit of adiabatic approximation

the state of the system is given by one of the instantaneous eigenstates of the Hamilto-

nian (4.59). The eigenstates, representing the spin polarization along and opposite to the
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direction of Beff are given by

|ψ+〉 =

 cosχ(z)/2

eiφ(z) sinχ(z)/2

 , (4.65)

|ψ−〉 =

e−iφ(z) sinχ(z)/2

− cosχ(z)/2

 , (4.66)

corresponding to the eigenvalues ∓|Beff |/2. If the initial spin polarization of the neutrino

is along the direction of magnetic field then the state of the system is represented by |ψ+〉,

and the adiabatic condition is given by

∣∣∣ 〈ψ+|ψ̇−〉
E+ − E−

∣∣∣� 1, (4.67)

which is equivalent to
√
χ̇2 + (φ̇ sinχ)2/2� |Beff |. We define the adiabaticity parameter

γ =
|Beff |√

χ̇2 + (φ̇ sinχ)2

, (4.68)

so the adiabaticity condition (4.67) is equivalent to γ � 1. We now calculate γ for regions

both inside and outside the NS. We find that, while in the inside region the adiabaticity

holds for practically all values of φ̇, in the outside region of NS the range over which the

adiabatic solution is valid is restricted and depends on the values of φ̇. The larger the value

of φ̇, the smaller is the region over which the adiabatic approximation is valid. For typical

values of φ̇, the range over which adiabaticity holds is roughly 20− 30 times the radius of

the NS as shown in Fig. 4.6.

In this case the magnetic field (4.60) traces out an open curve CR in the parameter space

R3. Under adiabatic evolution the noncyclic geometric phase associated with the curve

CR, for the case of neutrino with initial spin polarization along the direction of magnetic
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Figure 4.6: log γ(z) as a function of distance (a) inside and (b) outside the NS. The adi-
abaticity condition γ � 1 is satisfied for all values of φ̇ while for the outside regions
adiabaticity holds only in a limited region.

field, is given by the generalization of Berry’s phase [149]

φg[CR] =arg 〈ψ+(0) |ψ+(z)〉 − =
∫ z

0

dR · 〈ψ+(R) | ∇R |ψ+(R)〉 , (4.69)

whereR represents the magnetic field (4.60). Using Eq. (4.65) we calculate the geometric

phase as

φ+
g [CR] = tan−1

(
sin ∆φ(z) tan

(
χ(z)/2

)
tan
(
χ(0)/2

)
1 + cos ∆φ(z) tan

(
χ(z)/2

)
tan
(
χ(0)/2

))− ∆φ(z)

2
(1− cosχ(z)).

(4.70)

While for the other eigenstate the geometric phase is φ−g [CR] = −φ+
g [CR].

Since the definition (4.69) assumes adiabaticity, the expression (4.70) is valid only when

the adiabatic condition (4.67) is satisfied. When the nonadiabatic effects arise, one has

to resort to more general methods such as that of geodesic closure to calculate geometric

phases. However, we are only interested in the qualitative features of the geometric phases

that arise due to neutrino spin and spin-flavor oscillations in the NS environment. Since in

the inside region of the NS, the matter effects strongly dominate over the magnetic field,

the area of the curve traced by Beff is negligible, and hence the associated geometric phase

is vanishingly small. As the neutrinos come out of the NS, matter effects vanish and now

neutrino eigenstates develop a significant geometric phase as shown in Fig. 4.7.
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Figure 4.7: Geometric phases neutrino propagation in NS. In (a) the flat portion of the
curve corresponds to neutrino propagation inside the NS, where the geometric phase is
almost zero. In (b) φ̇res corresponds to the resonant condition V = −φ̇.

4.4.2 Transition probabilities and cross boundary effect

In this section we calculate the spin and spin-flavor transition probabilities as the neutrinos

propagate in NS’s under adiabatic conditions. Considering the case of left-handed electron

neutrinos produced near the center of the NS, the adiabatic survival probability is given

by [4, 178]

P (νL → νL)(z) =
1

2

(
1 + cos θeff(z0) cos θeff(z) + sin θeff(z0) sin θeff(z) cos ζ(z)

)
,

(4.71)

where

θeff(z) = tan−1
( 2µB

V + φ̇

)
, (4.72)

ζ(z) =

∫ z

z0

dz′
√

(V + φ̇)2 + (2µB)2. (4.73)

For the neutrino propagation inside the NS, for the given density and magnetic field profile

V � 2µB, and hence θeff ≈ 0, so according to Eq. (4.71): P (νL → νL) ≈ 1. Thus there

are almost no spin or spin-flavor transitions inside the NS. However, for the outside case

the situation is more interesting and there are appreciable transitions as shown in Fig. 4.8.

After about 200R half of the left-handed neutrinos produced inside the NS are converted

into the right-handed neutrinos.
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For the case of neutrino propagation in a medium of constant density and uniformly twist-

ing magnetic fields, one can define a critical magnetic field, which is the magnetic field

required for the oscillation amplitudes νL → νR to be close to unity and is given by [178]

Bcr[G] =43

(
µB
µ

)∣∣∣∣(∆m2

1eV 2

)(
MeV

E

)
cos 2θ − 2.5× 10−31

(
neff

cm−3

)
+ 0.4

(
φ̇

m

)∣∣∣∣.
(4.74)

By calculating Bcr for different situations, we can get rough estimates of the magnetic

field required for appreciable neutrino transitions. In the interior regions of the neutron

star, ρ ≈ 1015 g/cm3 gives neff ≈ 6× 1038 cm−3, hence for neutrinos with energy E = 1

MeV, Eq. (4.74) gives Bcr ≈ 6 × 1020 G. Since Bcr � B in the interior of the neutron

star, the transitions are negligible, as also shown by the probability argument above. Even

in the outermost crust of the star, neff ≈ 1033 cm−3, and Bcr ≈ 1015G, which is greater

than the magnetic fields prevailing in those regions. So we expect very weak neutrino

transitions inside the neutron stars in the case of neutrinos produced below the resonance

regions. For the regions just outside the neutron star density suddenly drops to zero, so

there is a sharp decrease in the critical magnetic field required for the helicity transitions.

For 1 MeV neutrinos, Eq. (4.74) gives Bcr = 108 G. Since the magnetic field just outside

the neutron star is ∼ 1014G(� Bcr), as the neutrinos cross the surface of the NS, there

are rapid helicity transitions that are termed as cross boundary effects [178].

Since the magnetic field outside the NS falls off as 1/r3, the range over which the magnetic

field exceeds critical magnetic field is given by rcr = R(B/Bcr)
1/3 ≈ 100R. As can be

seen in Fig.4.8, the oscillation amplitude reduces as we go away from the NS and almost

vanishes for r > 200R in the case for nonrotating fields. If we consider the effect of

field rotation then according to Eq. (4.74) the critical magnetic field required to sustain

oscillations increases. For φ̇ = 10, the Bcr ≈ 6 × 108 G. Thus the range over which

oscillation amplitudes are finite decreases to ≈ 50R.
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Figure 4.8: Neutrino survival probability of spin and spin-flavor precession for various
values of the rotation frequency. Nonzero values of φ̇ lead to suppression of transitions
and the probability converges to one-half at a faster rate compared to the case when φ̇ = 0.
For the case of spin transitions in nonrotating magnetic fields the probability does not
converge to 0.5 but instead approaches 1 in the limit z � R. This is because for this case
cos θeff = 0 and the oscillatory term in Eq. (4.71) converges to 1 in the limit z � R.

4.5 Possible methods of geometric phase detection

The usual method of geometric phase detection employs experiments wherein a beam

is split into two parts, both parts undergo evolution along different paths in parameter

space, and then they are made to interfere. The resulting interference pattern bears the

signature of the geometric phase. However, these types of experiments are not feasible in

case of neutrinos due to their small interaction cross section that renders them practically

impossible to maneuver.

Another approach, which has become popular in recent years, is that of quantum simula-

tion. In this approach quantum systems that cannot be accessed experimentally are simu-

lated using a controllable physical system underlying the same mathematical model [179].

The possibility of studying neutrino systems by quantum simulation has been explored

in [162, 180]. In [162] it was proposed to detect the neutrino geometric phases using the

nuclear magnetic resonance (NMR) setup with a controllable range of parameters. Here

we propose an analogous NMR experiment where parameters can be varied to simulate the
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environment of neutrino oscillations in magnetic fields. The Hamiltonian for a standard

NMR experiment is given by [181]

H = −ω0

2

[
cos θσz + sin θ(σx cosωt+ σy sinωt)

]
, (4.75)

where ω0 is the Larmor precession frequency of the spins, 2θ is the angle between the

magnetic field direction and the quantization axis, and ω is the frequency of the circularly

polarized magnetic field. Comparing Eq. (4.75) with the Hamiltonian (4.37) for neutrinos

we get the following values for the NMR parameters:

ω0 =
√
V 2 + (2µB)2, (4.76)

θ = tan−1
( 2µB√

V 2 + (2µB)2

)
, (4.77)

ω =φ̇. (4.78)

For example, the neutrino oscillation environment outside the NS can be simulated us-

ing the following range of parameters: ω0/2π ∈ (106 − 103) MHz, θ ≈ π/5, and

ω/2π ∈ (1.5 − 150) kHz. In this way, the geometric phases that arise in neutrino sys-

tems can be inferred from those obtained in NMR experiments with a suitably chosen

range of parameters.

4.6 Conclusions

In this work, we have studied the noncyclic geometric phases associated with neutrino

spin and spin-flavor transitions. The dynamics of neutrino spin rotation was examined

in the Bloch sphere representation, which clearly brings out the geometric nature of this

phenomena. The geometric phase acquired by a neutrino state was shown to be related

to the area enclosed by the curve traced by a neutrino spin vector. For the case of cyclic

evolution, it was shown that the expressions reduce to the usual Aharonov-Anandan phase
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for spin precession in a magnetic field. As a particular case, we analyzed the geometric

phases acquired by the solar neutrinos as they propagate outwards under the effect ofmatter

and magnetic fields of the Sun.

Further, we analyzed the situation of neutrinos produced in the NS, propagating outwards

under the effect of matter and magnetic fields. We have obtained analytical expressions of

the noncyclic geometric phases in the adiabatic approximation and studied their behavior

both inside and outside the NS for various cases. We have also studied the transition

probability and the cross boundary effects and showed that at a distance of about 200

times the radius of a NS, the initial flux of left-handed neutrinos produced inside the NS is

depleted to half of its original value. Wewould like to point out that we considered only the

case of neutrinos produced below resonance regions. However, there might arise situations

where there may be significant resonant effects due to both matter and magnetic fields, and

it would be interesting to explore these effects in the context of geometric phases.

The emergence of geometric phases in neutrino spin and spin-flavor evolution highlights

an important geometric aspect of this phenomena. Even though at present there seems to

be nomethod to detect such phases directly in the current experiments, alternative methods

such as quantum simulation have been proposed to detect such phases. The present calcu-

lations bring out an essentially geometric character manifest in the neutrino spin rotation

and is well worth exploring further.
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Chapter 5

Mixed state geometric phase for neutrino oscillations

The geometric picture of neutrino oscillations offers a unique way to study the quantum

mechanics of this phenomenon. In this picture, the propagation of a neutrino beam is

described by a density matrix evolving in a state space with non-trivial geometry. We

derive explicit expressions of the mixed state geometric phase which arise during such an

evolution for both two and three flavor neutrino oscillations. We show that, in the case of

two flavor neutrino oscillations, the geometric phase is independent of the Majorana phase

and it can be used as a measure of coherence of the neutrino beam.

This chapter is based on Ref. [182].

5.1 Introduction

The success of the theory of neutrino oscillations has led to many studies exploring the

intricacies associated with this phenomenon. In the standard plane wave treatment, the

neutrino flavor oscillations arise due to mixing and interference between massive neutrino

states. A pictorial way to represent neutrino oscillations is in terms of precession of spin-

polarization vector in presence of an effective magnetic field [183, 184]. In particular,
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for the case of two-flavor oscillations, the polarization vector becomes three-dimensional

and its precession can be easily visualized in both constant and time varying magnetic

fields, themagnitude and direction of themagnetic field being specified by theHamiltonian

governing neutrino propagation.

Quantum mechanically, such a precession can be understood in terms of evolution of the

state vector in the system’s Hilbert space. Such an evolution in the state space with non-

trivial geometry gives rise to geometric phase. Let H denote the Hilbert space and N

denote the set of normalized states in H. The two vectors |ψ1〉 , |ψ2〉 ∈ N represent the

same physical state if |ψ2〉 = eiφ |ψ1〉where φ is real. The set of physical states is called the

projective Hilbert space and is the ray space: P = N /U(1). IfH has complex dimension

n, then P is a complex projective space of dimension n− 1, P = CP n−1. The projection

map π : N → P maps each vector inN to its corresponding ray. The above construction

defines the principle fibre bundle picture of the state space [144]. The bundle space N

consists of three parts: the basemanifoldP , the fibre which is groupU(1) element attached

to each point of the base manifold, and the map π : N → P . Now consider the evolution

of a normalized state |ψ(t)〉 : t ∈ [0, τ ] . Let the evolution is governed by Schrödinger

equation, so that the unitary evolution |ψ(0)〉 → |ψ(t)〉 = U(t) |ψ(0)〉 traces a curve C in

N . The projection π : |ψ(t)〉 → |ψ(t)〉 〈ψ(t)| gives the corresponding curve π(C) = C in

P . The evolution is cyclic if the curve C in closed i.e. |ψ(τ)〉 〈ψ(τ)| = |ψ(0)〉 〈ψ(0)|. In

this case the corresponding curve C in the bundle space begins and ends on the same fibre

such that |ψ(τ)〉 = eiφT |ψ(0)〉, where φT is the total phase acquired by the state during

cyclic evolution. Now, there can be infinitely many curves in N which project to a given

closed curve C in P . It was shown in [146] that given a curve C in P , we can define a

functional of C called geometric phase which is independent of φT and the curve C in the

bundle space. The geometric phase is simply obtained by subtracting the dynamical phase

from the total phase:

φG = arg{〈ψ(0)|U(τ)|ψ(0〉}+ i

∫ τ

0

dt 〈ψ(0)|U †(t)U̇(t)|ψ(0)〉 . (5.1)
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It can be shown that φG defined above is (i) gauge invariant i.e. invariant under local phase

transformations of |ψ〉 and (ii) reparametrization invariant i.e. independent of parameter

t of C. Thus φG is independent of the dynamics of |ψ(t)〉 and is a geometric property

of the curve C in P . Also since |ψ(t)〉 need not be an eigenstate of the Hamiltonian

H(t), hence the condition of adiabaticity and cyclicity of H(t) are not required. Thus

Eq. (5.1) generalizes the adiabatic Berry phase [132] to non-adiabatic situations. The

definition of geometric phase has further been generalized to include non-cyclic and non-

unitary evolution [148, 150, 185, 186], which has found numerous applications in physics

[134, 187].

Returning to two flavor neutrino oscillations, the Hilbert space in this case is the two di-

mensional complex space H = C2. The space of normalized states is the unit sphere

N = S3. Thus the projective Hilbert space is the complex projective lineCP 1 = S3/U(1)

which is the Bloch Sphere S2. The pure neutrino states correspond to points on the surface

of the Bloch sphere. For the case of neutrino oscillations in vacuum or in a medium with

constant density, the cyclic evolution of neutrino eigenstates produces a closed curve on

S2. The resulting geometric phase is equal to the standard expression of one half the solid

angle subtended by the closed curve at the centre of the sphere [100].

In the context of neutrinos various authors have derived explicit expressions of geometric

phase in different settings, for example, neutrino oscillations in vacuum [156, 157, 159,

160], neutrino oscillations in medium with or without dissipation [154,155,158,161–163,

165], neutrino spin-flavor oscillations [99, 100, 152, 153] and neutrino self-interactions

[164]. In all of the above cases the neutrino eigenstate undergoing evolution is considered

as a pure state which can be expressed as a coherent superposition of different neutrino

states. However, it has been shown that a neutrino produced in a charged-current interac-

tion cannot be described by a pure state [188]. The neutrinos produced in such a process

are described by an incoherent superposition which is essentially a mixed state.

In this present work we calculate the mixed state geometric phase for the case of neutrino
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oscillations in vacuum using the gauge invariant formulation [189]. We show that our

expression of the mixed-state geometric phase generalizes the previously obtained expres-

sions by various authors for both two and three flavor neutrino oscillations. In Section

2, we describe the mixed state geometric phase for unitary evolution. In Section 3, we

consider the two flavor case and derive explicit expression of mixed state geometric phase.

We also compare the obtained expression of geometric phase with that of quantum co-

herence. In Section 4, we extend our calculation to three flavor neutrino oscillations and

finally conclude in Section 5.

5.2 Mixed state geometric phase

The mixed states are mathematically represented by density matrices which are convex

sum of pure states projection operators. The notion of geometric phase for mixed state

was first proposed by Uhlmann [190] using a procedure known as purification, in which

the mixed state density matrix of the system is written as partial trace of a pure state density

matrix of an extended system consisting of the given system and an ancilla. An alternative

definition of the mixed state geometric phase is given by Sjöqvist et. al. [191] which is a

direct generalization of the pure state geometric phase. While Ulhmann’s formulation of

geometric phase is based on purely mathematical ground, the definition by Sjöqvist et. al.

has a physical interpretation in the context of quantum interferometry [147,191–193]. For

a given unitary evolution, the above two approaches in general yield different results for

the mixed state geometric phase. However, both of them reduce to the same expression for

the case of pure states [194, 195]. In this chapter we follow the approach formulated by

Sjöqvist et. al. and its subsequent gauge invariant generalization [189], since its physical

implications are more transparent in the context of neutrino oscillations.

Consider a mixed state density matrix undergoing a unitary evolution ρ(0) → ρ(t) =

U(t)ρ(0)U †(t) which produces a curve Γ : t ∈ [0, τ ] in the space of density operators. Let
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initial density matrix has the diagonal form

ρ(0) =
N∑
k=1

wk |k〉 〈k| , (5.2)

where N is the dimension of the Hilbert space. Then unitarily evolved density matrix can

be expressed as

ρ(t) =
N∑
k=1

wk |k(t)〉 〈k(t)| , (5.3)

where |k(t)〉 = U(t) |k〉. The phase shift acquired by ρ(t) relative to ρ(0) is given by [191]

γT = arg

{
Tr
[
U(τ)ρ(0)

]}
= arg

{ N∑
k=1

wk 〈k|k(τ)〉
}
. (5.4)

The above formula can be verified by analyzing the interference pattern in aMach-Zehnder

interferometer where the input beam is the mixed state (5.2). After splitting the beam, one

arm of the interferometer is exposed to a variable U(1) phase shift eiχ and the other arm

to the unitary operator U(t). On recombining the two beams, the output intensity shows

the following interference profile [191]:

I = 2
(
1 + |Tr

[
U(t)ρ(0)

]
| cos

(
χ− argTr

[
U(t)ρ(0)

]))
. (5.5)

The above interference pattern clearly shows that Eq. (5.4) correctly describes the relative

phase shifts between ρ(0) and ρ(t). In addition, several experimental tests have confirmed

the validity of Eq. (5.4) (see [193] for references).

The dynamical phase for the mixed state can be defined as the time integral of the average

of Hamiltonian H(t)

γD =−
∫ τ

0

dtTr
[
ρ(t)H(t)

]
=− i

∫ τ

0

dtTr
[
ρ(0)U(t)†U̇(t)

]
, (5.6)
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where τ is the total time period. The geometric phase in this case, however, cannot be

simply obtained by subtracting accumulated phase (5.6) from the total relative phase (5.4)

due to the weight factors appearing in the two terms. To circumvent the issue, one defines

the notion of parallel transport in which the dynamical phase (5.6) vanishes identically and

thus the phase acquired by the mixed state during evolution is purely geometric. This can

be done by requiring ρ(t) and ρ(t+ dt) to be in phase, which leads to the condition [191]

Tr
[
ρ(t)U̇(t)U(t)†

]
= 0. (5.7)

However, the condition (5.7) is not sufficient and a stronger condition is required, in which

each eigenstate of the density matrix is parallel transported [191]:

〈k|U(t)†U̇(t)|k〉 = 0, k = 1, 2, ..., N. (5.8)

It has been shown that one can incorporate the above conditions in a gauge invariant func-

tional which depends only on the curve Γ and has the following form [189]:

γG = arg

{∑
k

wk 〈k|k(τ)〉 exp

(
−
∫ τ

0

dt 〈k(t)|k̇(t)〉
)}

. (5.9)

It can be seen that imposing the parallel transport conditions (5.8), the above expression

reduces to the total phase (5.4). Also, for the case of pure states undergoing cyclic evo-

lution, Eq. (5.9) reduces to the geometric phase (5.1). Thus Eq. (5.9) provides a gauge

invariant expression for the mixed state geometric phase.

5.3 Two flavor neutrino oscillations

The case of two flavor neutrino oscillations gives us a useful toy model to study the im-

portant quantum mechanical features of the phenomenon. In this case the space of mixed
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states is the unit ball in R3, also called as Bloch ball. Pure neutrino states lie on the ex-

tremal points of the Bloch ball, which correspond to the Bloch sphere S2. Thus a general

mixed state can be represented as a point in the interior of the Bloch sphere. As the neu-

trinos undergo flavor oscillations, the unitary evolution of the mixed state traces a curve

on a spherical shell with radius equal to length of the initial polarization vector. Due to

non-trivial geometry of the underlying state space the above curve gives rise to geometric

phase which can be calculated using Eq. (5.9).

To this end, we consider a beam of neutrinos characterized by the following density matrix

in the flavor basis

ρ̂ =
∑
α=e,µ

wα |να〉 〈να| , (5.10)

where wα is the initial statistical weight of the flavor state |να〉, such that
∑

αwα = 1. The

density matrix (5.10) describes an incoherent mixture of different neutrino flavors, which

are generated in a single or multiple weak interaction processes [4,188]. The flavor states

are related to mass eigenstates via unitary transformation

|να〉 =
∑
i=1,2

U∗αi |νi〉 , (5.11)

where U is called mixing matrix. For vacuum oscillations, |νi〉 are the eigenstates of

the propagation Hamiltonian with energy eigenvalue Ei =
√
p2
i +m2

i , where pi and mi

represent the momentum and mass of the ith mass eigenstate. The mixing matrix, for the

case of two flavor oscillations in vacuum, can be expressed as

U =

 cos θ eiφ sin θ

−e−iφ sin θ cos θ

 , (5.12)
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where θ is the vacuum mixing angle and φ is the Majorana phase. In the standard plane

wave approximation, the Schrödinger evolution of the mass eigenstates is given by

|νi(x, t)〉 = e−iEit+ipix |νi〉 , (5.13)

where the space-time interval (x, t) is the separation between the propagation and produc-

tion point, andwe havewritten |νi(0, 0)〉 as |νi〉 for brevity. For the case of ultra-relativistic

neutrinos, one can employ the approximation x ≈ t, under which Eq. (5.13) becomes

|νi(t)〉 = e−im
2
i t/2E |νi〉 , (5.14)

where E represents the neutrino energy obtained after neglecting the mass contributions.

Thus the time evolution of the flavor states (5.11) can be written as

|να(t)〉 =
∑
i

U∗αie
−im2

i t/2E |νi〉 . (5.15)

The amplitude of να → νβ transition can now be obtained using Eq. (5.11) and Eq. (5.15)

ψαβ(t) = 〈νβ|να(t)〉 =
∑
i

U∗αiUβie
−im2

i t/2E. (5.16)

The initial state of the neutrino beam is described by the density matrix

ρ(0) =

we 0

0 wµ

 . (5.17)

As the beampropagates in space, the state undergoes a unitary evolution ρ(t) = U(t)ρ(0)U(t)†,

where U(t) is the unitary evolution operator given by

U(t) =

ψee(t) ψµe(t)

ψeµ(t) ψµµ(t)

 . (5.18)
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The density matrix at time t can be written using Eq. (5.17) and Eq. (5.18)

ρ(t) =

we|ψee(t)|2 + wµ|ψµe(t)|2 (we − wµ)ψee(t)ψ
∗
eµ(t)

(we − wµ)ψ∗ee(t)ψeµ(t) we|ψeµ(t)|2 + wµ|ψµµ(t)|2

 , (5.19)

where we have used the unitarity relation

ψeeψ
∗
eµ = −ψµeψ∗µµ. (5.20)

The explicit form of the transition amplitudes can be obtained using Eq. (5.12) and Eq.

(5.16) :

ψee(t) =eiωpt/2 cos2 θ + e−iωpt/2 sin2 θ,

ψeµ(t) =− e−iφ(eiωpt/2 − e−iωpt/2) sin θ cos θ,

ψµe(t) =− eiφ(eiωpt/2 − e−iωpt/2) sin θ cos θ,

ψµµ(t) =eiωpt/2 sin2 θ + e−iωpt/2 cos2 θ, (5.21)

where ωp = ∆m2/2E, ∆m2 = m2
2 − m2

1 being the mass-squared difference. ωp can

be physically interpreted as a precession frequency. To see this, consider the neutrino

Hamiltonian in the flavor basis

Hf =
∆m2

4E

 − cos 2θ eiφ sin 2θ

e−iφ sin 2θ cos 2θ

 =
ωp
2
B · σ, (5.22)

where B = (sin 2θ cosφ,− sin θ sinφ,− cos 2θ) and σ are the Pauli matrices. An equiv-

alent way to express Eq. (5.21) is in the following form [196]:

ρ(t) =
1

2

(
1 + P(t) · σ

)
, (5.23)
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where P = (Px, Py, Pz) is called polarization vector. The evolution of density matrix is

given by von Neumann equation:

i
dρ

dt
=
[
Hf , ρ

]
. (5.24)

For the given Hamiltonian (5.22) and density matrix (5.23), we obtain

dP

dt
= ωp

(
B×P

)
. (5.25)

The geometric interpretation of neutrino oscillations can now be clearly seen from Eq.

(5.22) and Eq. (5.25). Specifically, Eq. (5.25) represents the precession of polarization

vector P around a magnetic field B, with precession frequency ωp. The initial value of

polarization vector can be obtained by comparing Eq. (5.17) and Eq. (5.23), P(0) =

(0, 0, we−wµ). For the case of pure neutrino stateswe = 1(0) andwµ = 0(1). In this case

we have Pz = ±1. Thus the neutrino states correspond to points on the unit sphere S2,

|νe〉 and |νµ〉 being the antipodal points. In addition, Eq. (5.25) shows that for constant

B, the length of the polarization vector remains unchanged. Thus the precession of the

polarization vector will trace a curve on the Bloch sphere. The geometric phase associated

with this curve has been calculated for both cyclic [156] and non-cyclic [157] cases.

Now, the general incoherent mixture of neutrino flavor states is described by polarization

vector with length less than unity. However, Eq. (5.25) still remains applicable, which

implies that during precession the initial length, given by Pz(0) = we − wµ, remains

unchanged. The precession of the component Pz(t), which is related to the transition

probabilities, can be obtained by comparing Eq. (5.19) and Eq. (5.23)

Pz(t) =
(
we − wµ

)(
− 1 + 2|ψee(t)|2

)
. (5.26)

The precession equations for Px(t) and Py(t) can be obtained in a similar manner. Geo-

metrically, the precession can be visualized as being described by a cone of length Pz(0)
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with axis along B and opening angle 2θ. Thus such a precession will trace a curve Γ on

a spherical shell with radius Pz(0). To evaluate geometric phase in this case, we first note

that the initial density matrix (5.17) is diagonal, so its eigenvectors are simply given by :

|e1〉 =

1

0

 , |e2〉 =

0

1

 . (5.27)

The eigenvectors of densitymatrix (5.19) can now be obtained using |ei(t)〉 = U(t) |ei〉 ; i =

1, 2, which gives

|e1(t)〉 =

ψee(t)
ψeµ(t)

 , |e2(t)〉 =

ψµe(t)
ψµµ(t)

 . (5.28)

Now using expression (5.9), we obtain the following form for the geometric phase:

γG = arg
{
weψee(τ) exp

(
−
∫ τ

0

dt
(
ψ∗ee(t)ψ̇ee(t) + ψ∗eµ(t)ψ̇eµ(t)

))
+ wµψµµ(τ) exp

(
−
∫ τ

0

dt
(
ψ∗µe(t)ψ̇µe(t) + ψ∗µµ(t)ψ̇µµ(t)

))}
. (5.29)

Substituting the explicit values of probability amplitudes from Eq. (5.21), we obtain

γG = arg
{
we
(
eiωpτ/2 cos2 θ + e−iωpτ/2 sin2 θ

)
e−iωpτ cos 2θ/2

+wµ
(
eiωpτ/2 sin2 θ + e−iωpτ/2 cos2 θ

)
eiωpτ cos 2θ/2)

}
. (5.30)

Finally after rearranging the terms, we can write this equation as

γG = tan−1

(
(we − wµ)

(
− tan

(
ωpτ cos 2θ/2

)
+ cos 2θ tan

(
ωpτ/2

))
1 + cos 2θ tan

(
ωpτ/2

)
tan
(
ωpτ cos 2θ/2

) )
. (5.31)

The above expression constitutes the central result of the chapter. An important point to

observe in Eq. (5.31) is that it is independent of the Majorana phase φ. Thus the mixed

state geometric phase for two flavor neutrino oscillations does not distinguish between

Dirac and Majorana neutrinos. Since the geometric phase depends only on the curve Γ,
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during the evolution both Dirac and Majorana neutrino flavor states trace the same curve

in the space of density operators, despite having different evolutions in the Hilbert space.

It can be shown that for pure neutrino states the geometric phase (5.31) reduces to earlier

obtained results by various authors.

(i) Noncyclic geometric phase. Consider the evolution of state |νe〉, for which we = 1 and

wµ = 0. Substituting these weight factors in (5.31), we obtain

γPG = −ωpτ
2

cos 2θ + tan−1
(

cos 2θ tan
ωpτ

2

)
. (5.32)

This is the noncyclic geometric phase for the pure flavor state |νe〉 as obtained in Ref. [157].

(ii) Aharonov-Anandan phase. Let us now consider the cyclic evolution of the mixed state

which corresponds to τ = 2π/ωp. In this case (5.31) becomes

γAAG = tan−1
((
we − wµ

)
tan
(
Ω/2

))
, (5.33)

where Ω = 2π(1 − cos θ) is the solid angle subtended by the curve Γ at the centre of the

sphere. For the pure neutrino states, we obtain the expression

γAAG = ±π(1− cos θ), (5.34)

where positive and negative signs correspond to |νe〉 and |νµ〉 respectively. The expression

(5.34) is the Aharonov-Anandan phase obtained in Ref. [156].

(iii) Neutrino propagation in non-dissipative matter. In presence of a medium, the neu-

trino oscillation parameters are modified due to coherent forward scattering of the neutri-

nos with the background particles. If the medium has constant density, the modification

is of the form : θ → θm and ∆m2 → ∆m2
m, where θm and ∆m2

m are mixing angle and

mass-squared difference in the medium. The cyclic geometric phase (5.34) in this case
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becomes

γAAG = ±π
(
1− cos θm

)
= ±π

[
1− cos θ − V√

1− 2V cos θ + V 2

]
, (5.35)

where V = 2EVcc/∆m
2, Vcc being the charged-current potential. Thus we obtain the

result derived in Ref. [161] for neutrino geometric phase in dissipation-less matter.

5.3.1 Geometric phase versus quantum coherence

The study of coherence properties of neutrino beams can offer useful insights about the

neutrino propagation in a medium [197, 198]. The form of Eq. (5.31) shows explicit de-

pendence of geometric phase on the quantity we − wµ, which is the relative amount of νe

and νµ neutrinos present in the beam. For amaximally incoherent beam in whichwe = wµ,

the geometric phase (5.31) vanishes. Thus the expression (5.31) carries the information

about the coherence content of the neutrino beam. Recently, quantum coherence in neu-

trino oscillations has been studied using tools from quantum information theory [199],

wherein coherence is quantified using the l1−norm:

C(ρ) =
1

d− 1

∑
k,j
k 6=j

|ρk,j|, (5.36)

where ρ̂ is d × d representation of the density matrix of the system in a given basis. In

our case, using the expression (5.19) for the density matrix, we have

C(ρ) =2|(we − wµ)||ψeeψeµ|

=2|(we − wµ)|| sin 2θ sin(ωpt/2)|

|(1− sin2 2θ sin2(ωpt/2))1/2|. (5.37)

Comparing Eq. (5.37) with the expression of geometric phase (5.19), we see that both

the quantities are sensitive to the factor we − wµ, which defines the coherence content of

the neutrino beam. In Figure 5.1 we plot the two quantities as a function of we − wµ for
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Figure 5.1: Comparison of mixed state geometric phase (5.31) and quantum coherence
(5.37) with respect to coherence parameter we −wµ. The neutrino oscillation parameters
are taken as: ∆m2 = 2.5× 10−3 eV2, θ = 48.6°, L/E = 520 (km/GeV).

typical oscillation parameters. It can be clearly seen that as the neutrino beam becomes

more coherent, both geometric phase (5.31) and quantum coherence (5.37) reach their

respective maximum values. Also, for completely incoherent beam they both vanish. Thus

both quantities contain information about the quantumness of the neutrino beam and can

be considered as a measure of coherence for two-flavor neutrino oscillations.

5.4 Three flavor oscillations

Let us now consider the case of three flavor neutrino oscillations. In this case the geo-

metric picture of neutrino oscillations involves precession of an eight dimensional polar-

ization vector around a magnetic field [6]. The space of density operators corresponds to

SU(3)/(U(1) × U(1)), when the density matrix has non-degenerate eigenvalues [200].

Even though pictorial representation is too complicated to visualize for three flavor os-

cillations, most of the mathematical expressions admit a straightforward generalization of

the results in the preceding section.
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The neutrino beam is described by initial density matrix

ρ(0) = Diag(we, wµ, wτ ). (5.38)

The evolution of neutrino flavor states is governed by the unitary operator

U(t) =


ψee(t) ψµe(t) ψτe(t)

ψeµ(t) ψµµ(t) ψτµ(t)

ψeτ (t) ψµτ (t) ψττ (t)

 , (5.39)

where the transition amplitudes are given by

ψαβ(t) =
∑
i

U∗αiUβie
−iEit, (5.40)

where Ei = m2
i /2E; i = 1, 2, 3. For the mixing matrix U , we assume the standard Dirac

parametrization with three mixing angles θ12, θ13, θ23 and a CP (charge-conjugation and

parity)-violating phase δ (Eq.(1.65)). The time evolved densitymatrix ρ(t) = U(t)ρ(0)U †(t)

can now be written as

ρ(t) =
∑

α=e,µ,τ

wα


ψαe(t)

ψαµ(t)

ψατ (t)


(
ψ∗αe(t) ψ∗αµ(t) ψ∗ατ (t)

)
, (5.41)

where |eα〉 =
(
ψαe ψαµ ψατ

)T
, α = e, µ, τ are the eigenvectors of ρ. The geometric phase

can now be obtained from Eq. (5.9):

γG = arg

{ ∑
α=e,µ,τ

wαψαα(τ) exp
(
−
∫ τ

0

dt
∑

β=e,µ,τ

ψ∗αβ(t)ψ̇αβ(t)
)}

, (5.42)

which is a simple generalization of Eq. (5.29). However it is too complicated to write Eq.

(5.42) in a form analogous to Eq. (5.31). A relatively simpler expression can be obtained

for pure states. Let us consider the geometric phase for |νe〉, for which Eq. (5.42) reduce
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to

γPG = arg

{
ψee(τ) exp

(
−
∫ τ

0

dt
∑

β=e,µ,τ

ψ∗eβ(t)ψ̇eβ(t)
)}

. (5.43)

Substituting ψαβ from Eq. (5.40), we obtain the following expression:

γPG = tan−1 cos 2θ12 cos2 θ13 sin ξτ − sin2 θ13 sin
(
(2q − 1)ξτ

)
cos2 θ13 cos ξτ + sin2 θ13 cos

(
(2q − 1)ξτ

)
+
(
2 sin2 θ12 cos2 θ13 + 2q sin2 θ13 − 1

)
ξτ, (5.44)

where ξ = (E2 − E1)/2 = ∆m2
21/4E and q = (E3 − E1)/(E2 − E1) = ∆m2

31/∆m
2
21.

The above expression matches the pure state geometric phase for |νe〉 derived in Ref. [157].

Note that Eq. (5.44) is independent of the CP-violating phase δ. However, it can be shown

that the pure state geometric phases for |νµ〉 and |ντ 〉 include non-trivial dependence on δ.

5.5 Conclusions

Neutrino oscillations represent a phenomenon in which quantum mechanical effects are

observed at long distance scales. This provides us the opportunity to study the quantum

mechanical features of this system such as geometric phase and quantum coherence in a

unique manner. In particular, the appearance of geometric phases in neutrino oscillations

have been pointed out in several previous studies. However, all of them consider the case

of pure neutrino states, which cannot be realized in a typical scenario.

In this work, we consider the more general case of an incoherent beam of neutrinos, and

derive the expressions for geometric phase in both two flavor and three flavor models. We

discussed the geometry of the state space of neutrino oscillations and its connection with

the appearance of a geometric phase. For two flavor oscillations, the geometric phase is

shown to be independent of the Majorana phase, however for three flavor oscillations the

geometric phase shows non-trivial dependence on the Dirac CP-violating phase. We also
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show that our results generalize the previously obtained expressions of the pure state geo-

metric phase for neutrino oscillations in vacuum and in non-dissipative matter. In addition,

the comparison between geometric phase and information-theoretic quantum coherence is

also highlighted.
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Chapter 6

Summary and Outlook

Over the past several years the phenomenon of neutrino oscillations has been firmly estab-

lished on experimental grounds. The basic parameters of neutrino oscillations have been

determined to a satisfactory precision. However, several challenges still remain which can

only be settled by further experiments. Some of these include determination of neutrino

mass hierarchy, precise measurement of Dirac CP violating phase, more stringent bounds

on the neutrino magnetic moments and the absolute neutrino masses, and the determina-

tion of Dirac or Majorana nature of neutrino. The present theoretical effort is to compli-

ment the experimentation by pointing out new features of the theory and their possible

implications in the phenomenon of neutrino oscillations.

In this Thesis, we studied some of these features in the context of neutrino flavor and spin-

flavor oscillations. In Chapter 2 we studied the electromagnetic properties of the neutri-

nos. We showed that the Dirac and Majorana neutrinos exhibit differences with respect to

their electromagnetic character. It was shown that existence of finite neutrino mass imply

the presence of non-zero magnetic moment. We also discussed the present experimen-

tal bounds in the neutrino magnetic moments and the viability of the theoretical models

for generating large magnetic moments ∼ 10−11µB. We then studied the interaction of

137



neutrino magnetic moments with classical background electromagnetic fields and derived

the Hamiltonian for Dirac and Majorana neutrinos in case of two-neutrino mixing. In this

case it is possible for neutrinos to undergo spin-flavor oscillations in which both the spin-

flip and flavor change of neutrinos occur simultaneously. It was shown that the neutrino

spin-flavor oscillations gives rise to the possibility of resonance in two new channels, in

addition to the usual MSW resonance, which is termed as SFP (spin-flavor precession)

resonance.

Neutrino spin-flavor oscillations may play an important role in the solar interiors where

magnetic fields may be sufficiently large to cause appreciable neutrino transitions. Thus

neutrinos may act as messenger of information about the solar magnetic fields. We ex-

plored this idea in sufficient detail in Chapter 3. For this purpose we constructed analytical

models for the solar magnetic field in all the three regions of the Sun, based on the current

bounds from helioseismology. These bounds vary widely in magnitude especially in the

solar core where they range from 30 G to 7 MG. We thus constructed two models: in the

first model the magnetic field peaks in the core and then tapers off with distance, and in the

second model the magnetic field is negligible in the core and peaks in the radiative zone

(RZ) of the Sun. We also obtained a novel parametrization for the electron density pro-

file in the Sun, which provides a better approximation compared to the usual exponential

parametrization. We considered the case of Majorana neutrinos and evaluated the flux of

electron antineutrinos reaching the surface of Earth due to the transitions νeL → ν̄µR → ν̄e

for both the models of solar magnetic fields. These results are obtained by numerically

evaluating the coupled neutrino spin-flavor equations and averaging over the 8B neutrino

production region in the Sun. The results from the Borexino experiment are then utilized

to place bounds on the two models of solar magnetic field. It is found that whereas the

Borexino bounds are too weak to place any upper limit on the RZ magnetic field, for the

solar core magnetic field we are able to place an upper bound B0 < 1.1× 106G, which is

an improvement by a factor of almost one-seventh of the current largest helioseismological

bound.
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The study of quantum mechanical aspects of neutrino flavor and spin-flavor oscillations

brings important new insights about the nature of this phenomenon. For example, the neu-

trino propagation in a magnetic field and matter can be understood by studying the trajec-

tory of the neutrino spin-polarization vector in the projective Hilbert space of the system.

This is the theme we study in Chapter 4. The evolution of the neutrino state consisting of

two helicity components (νL, νR)T in the presence of an effective magnetic field can be

studied in the Bloch sphere representation. In this representation, any neutrino state |ν〉

corresponds to a point on the Bloch sphereS2 and the orthogonal states |νL〉 and |νR〉 corre-

spond to two antipodal points onS2. We first studied the case of spin precession νeL → νeR

of the left-handed electron neutrinos produced in the Sun and propagating outwards un-

der the influence of matter and magnetic fields. In this case the neutrino spin-polarization

traces out cyclic and noncyclic curves on the Bloch sphere for different parameters of the

Hamiltonian. Such an evolution in quantum mechanics is known to give rise to geometric

phase due to non-trivial geometry of the system’s projective Hilbert space. We derive an-

alytical expressions for the non-adiabatic and non-cyclic geometric phases and show that

the area enclosed by the trajectory traced out by the spin-polarization vector is related to

the geometric phases acquired by the neutrino state during the evolution. We also show

that for resonant transition νeL ↔ νeR the geometric phase vanishes, since in this case

the spin-polarization vector traces out a great circle on S2. We then studied the neutrino

spin transitions for neutrinos produced in the extreme environments such as neutron stars

(NS). For these calculations we used realistic density and magnetic field profiles both in

the interior and outer regions of the NS. We showed that while inside the NS the neutrino

propagation is highly adiabatic, as the neutrinos come out of the NS the non-adiabatic

effects start to become more important as the distance from the surface increases. In the

interior region of the NS, the matter effects strongly dominate over the magnetic field,

thus the area of the curve traced by spin-polarization vector is negligible, and hence the

associated geometric phase is vanishingly small. As the neutrinos come out of the NS,

matter effects vanish and neutrino eigenstates develop a significant adiabatic geometric
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phase. In addition, we also studied the transition probability and the cross boundary ef-

fects and showed that at a distance of about 200 times the radius of a NS, the initial flux

of left-handed neutrinos produced inside the NS is depleted to half of its original value.

In Chapter 5 we return to the usual case of neutrino flavor oscillations. The geometric

picture of neutrino oscillations offers a unique way to study the quantum mechanics of

this phenomenon. In this picture, the propagation of a neutrino beam is described by a

density matrix evolving in a state space with non-trivial geometry. Such an evolution is

known to give rise to geometric phases in neutrino oscillations, which have been pointed

out in several previous studies. However, all of them consider the case of pure neutrino

states, which cannot be realized during neutrino production in a charged-current reaction.

In this Chapter, we consider the more general case of an incoherent beam of neutrinos,

and derive the expressions for geometric phase in both two flavor and three flavor models.

We also discuss the geometry of the state space of neutrino oscillations and its connection

with the appearance of a geometric phase. For two flavor oscillations, the geometric phase

is shown to be independent of the Majorana phase, however for three flavor oscillations

the geometric phase shows non-trivial dependence on the Dirac CP-violating phase. In

addition, for the case of two flavor neutrino oscillations the geometric phase can be used

as a measure of coherence of the neutrino beam. We also show that our results are a

generalization of previously obtained expressions of the pure state geometric phase for

neutrino oscillations in vacuum and in non-dissipative matter.

In this Thesis we put forward some new ideas and consolidated some of the existing re-

sults. The study of neutrino electromagnetic properties can reveal important aspects of

neutrinos such as their CP properties and their Dirac or Majorana nature. On the other

hand, the study of geometric aspects has divulged important new features of the theory of

neutrino oscillations. In this Thesis, we studied a combination these two ideas. Some of

the ideas we pursued in this thesis can be expanded in various directions. For example,

the geometric nature of neutrino spin-flavor oscillations can be studied in the presence of
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random magnetic fields and in dissipative environments, the significance of the CP vio-

lating phase on the three flavor neutrino spin-flavor oscillations can be explored in greater

detail, the effects of the state space geometry on the neutrino wave-packets and resulting

decoherence can also be examined.
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Appendix A

Neutrino oscillations, wave packets and decoherence

Introduction

The phenomena of neutrino mixing and oscillations has been firmly established on exper-

imental grounds [201, 202]. The oscillation probability between three different neutrino

flavors is characterized by mixing angles and mass squared differences which have been

measured in various neutrino experiments [203]. In the standard plane wave treatment of

neutrino oscillations, the analytic expression for flavor oscillation probability is derived

using certain assumptions. In this appendix we explain these assumptions in detail and

show that some of the assumptions cannot be justified. Then we show that in a more

general approach involving wave packets, these assumptions are no longer required. In

addition, the wave packet approach gives additional insights such as effects of kinematic

decoherence and neutrino localization uncertainty on the oscillation probability etc.

The wave packet treatment of neutrinos was first carried out by Nussinov [204] in the

context of solar neutrinos. Subsequently detailed analysis of neutrino oscillation have

been carried out using plane wave, wave packet and various quantum field theory based

formalism [4, 205–208] and an experimental determination of the neutrino wave packet
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size has been reported in [209].

This appendix is based on Ref. [210].

Plane wave treatment of neutrino oscillations

The typical neutrino production and detection processes have the following form:

W+ → l̄α + να

νβ →W+ + lβ

Neutrinos in flavor state |να〉 are produced in charged current interactions, involving a

W boson, along with charged antilepton l̄α. The propagation of neutrinos produced in

the flavor state |να〉 is described by the eigenstates of the propagation Hamiltonian called

mass eigenstates. The flavor and mass eigenstates are related by the following unitary

transformation

|να〉 =
∑
j

U∗αj |νj〉 . (A.1)

Now as the neutrinos propagate from their production point to the detector, they may un-

dergo flavor transformation να → νβ and be detected in the flavor state |νβ〉. This phe-

nomenon of neutrino flavor transformation during propagation is called neutrino oscilla-

tion.

If the neutrino mass eigenstates evolve as plane waves, then in the Schrödinger picture we

can write:

|νj(x, t)〉 = e−iEjt+ipj ·x |νj(0)〉 , (A.2)
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where Ej and pj represent the energy and momentum of the jth mass eigenstate. Using

Eq.(A.1) we get neutrino propagation in flavor basis

|να(x, t)〉 =
∑
j

U∗αje
−iEjt+ipj ·x |νj(0)〉 (A.3)

For neutrinos produced in the state |να〉 at (x = 0, t = 0), the amplitude of flavor transition

to state |νβ〉 at (x, t) is given by

Aνα→νβ(x, t) = 〈νβ | να(x, t)〉

=
∑
j,k

〈
νk(0)

∣∣U∗αje−iEjt+ipj ·xUβk ∣∣ νj(0)
〉

=
∑
j

U∗αjUβje
−iEjt+ipj ·x, (A.4)

where we have used the normalization of mass eigenstates: 〈νj | νk〉 = δjk. The flavor

transition probability is then given by

Pνα→νβ(x, t) =|Aνα→νβ(x, t)|2

=
∑
j,k

U∗αjUβjUαkU
∗
βke
−i(φj−φk), (A.5)

where φj = Ejt− pj · x .

Now, let the distance between the source and detector is L. For macroscopic values of

L, we can assume that the momenta of the neutrino mass eigenstates are aligned along x.

In this one dimensional approximation, the standard expression of transition probability,

which matches well with the experiments, is given by [4]

Pνα→νβ(L,E) =
∑
j,k

U∗αjUβjUαkU
∗
βk exp

(
− i

∆m2
jkL

2E

)

=
∑
j,k

U∗αjUβjUαkU
∗
βk exp

(
− 2πi

L

Ljkosc

)
, (A.6)

145



where Ljkosc = 4πE/∆m2
jk is called the vacuum oscillation length, ∆m2

jk = m2
j −m2

k and

E is the neutrino energy.

There are twoways bywhich one can derive the oscillation phase of (A.6) fromEq. A.5. In

the first method, we make the following two assumptions: (a) The transition probability

expression (A.6) involve only the distance of propagation L and does not involve time.

Since neutrinos travel almost at the speed of light, wemake approximation that the neutrino

propagation time t = L, thus

φj = (Ej − pj)L =
(E2

j − p2
j)L

Ej + pj
≈

m2
j

2Ej
L, (A.7)

(b) The mass eigenstates have equal energy Ej = Ek = E, so that

φj − φk ≈
m2
j −m2

k

2E
L =

∆m2
jk

2E
L. (A.8)

Using the above two assumptions in Eq. (A.5) gives us the desired result (A.6). However,

even though we obtain the correct expression, it is difficult to justify these assumptions.

Firstly, the assumption (a) implies a point like behavior of the particles, which is contrary

to the plane wave treatment used in the derivation. Also, the assumption (b) is unrealistic

since it ignores the neutrino mass contributions and hence cannot be justified.

There is an other set of assumptions through which one can obtain the standard oscillation

probability expression from Eq. (A.5). The oscillation phase is φj =
√
p2
j +m2

j tj − pjx.
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Expanding φj around an average momentum p and an average massm, we get

φj =
√

(p+ δpj)2 + (m2 + δmj)2tj − (p+ δpj)L

≈
√
p2 +m2 + 2pδpj + δm2

j tj − (p+ δpj)L

≈E

(
1 +

2pδpj + δm2
j

E2

)1/2

tj − (p+ δpj)L

≈Etj +
1

2E
(2pδpj + δm2

j)tj − (p+ δpj)L

=(Et− pL) +
δm2

j

2E
t+ (vt− L)δpj + eδtj, (A.9)

where propagation time of each mass eigenstate is expanded around an average value tj =

t + δtj , and E =
√
p2 +m2 and v = p/E are average energy and velocity respectively.

If we now make the following assumptions: (a) Equal time prescription: δtj = 0 i.e.

interference only takes place for equal times for different mass eigenstates and (b) classical

propagation condition: vt− L = 0. Then the phase difference becomes

φj − φk =
δm2

jkL

2Ev
=
δm2

jkL

2p
. (A.10)

Again, since the plane waves are delocalized in space-time, these assumptions cannot be

justified and a more realistic treatment involving wave packets is required.

Intermediate wave packet model

It is clear from above discussion that the plane wave description contains many ad-hoc

assumptions and does not provide the complete understanding of neutrino oscillations.

In addition, the plane wave treatment seems unreasonable since both neutrino production

and detection are localized processes which also involve the uncertainty in the energy-

momentum of neutrinos. Many of these issues can be resolved using intermediate wave
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packet model, in which each propagating neutrino mass eigenstate is modeled as a wave

packet.

For definiteness, we assume that the mass eigenstate wave packets in momentum space

have the following Gaussian form

ψj(p,pj, σpP ) =
1

(
√

2πσpP )3/2
exp

(
−

(p− 〈pj〉)2

4σ2
pP

)
, (A.11)

where σpP is the momentum width of each mass eigenstate in the production process and

is same along all three directions and 〈pj〉 is the average momentum of the jth mass eigen-

state. In coordinate space representation, the wave packets are given by

ψj(x, t) =

∫
dp

(2π)3/2
ψj(p,pj, σpP )eip·x−iEj(p)t. (A.12)

We assume that the Gaussian wave packets are sharply peaked around the average momen-

tum 〈pj〉, so we can Taylor expand Ej(p) as

Ej(p) ≈ Ej(〈pj〉) +
∂Ej
∂p

∣∣∣∣∣
p=〈pj〉

(p− 〈pj〉). (A.13)

We write

Ej(〈pj〉) =
√
〈pj〉2 +m2

j = 〈Ej〉, (A.14)

∂Ej
∂p

∣∣∣∣∣
p=〈pj〉

=
〈pj〉
〈Ej〉

= vj, (A.15)
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where vj is the group velocity of each wave packet. The coordinate space wave packet

then becomes

ψj(x, t) =

∫
dp

(2π)3/2

1

(
√

2πσpP )3/2
exp

[
−

(p− 〈pj〉)2

4σ2
pP

]
×

exp
[
ip · x− i

(
〈Ej〉t+ vj · (p− 〈pj〉)2

)]
=

1

(
√

2πσxP )3/2
exp

[
i
(
〈pj〉 · x− 〈Ej〉t

)
− (x− vjt)2

4σ2
xP

]
, (A.16)

where σxP = 1/2σpP is the width of wave packet in the coordinate space. The neutrino

flavor state in coordinate space representation is given by

|να(x, t)〉 =
∑
j

U∗αjψj(x, t) |νj(0)〉 . (A.17)

Comparing this with Eq. (A.3) elucidates the difference between the plane wave and wave

packet formalism. Now consider the detection process in which a neutrino is detected in

flavor state |νβ〉 at a distance L and after time t from the point of production. The detected

neutrino is described by the wave packet [211]

|νβ〉 =
∑
j

U∗βj

∫
dpψj(p,pj, σpD) |νj(p)〉 . (A.18)

Here σpD represents the momentum width of wave packets in detection process. The av-

erage momenta pj of the mass eigenstates of detected neutrinos is assumed to be same as

that of incoming wave packets in Eq. (A.11). Also the state |νβ〉 does not evolve in time

as it does not represent propagating neutrinos. If the neutrinos are detected at distance

L from the production point, the coordinate space wave function of detected neutrino is

given by

|νβ(x− L)〉 =
1

(
√

2πσxD)3/2
exp

[
i〈pj〉 · (x− L)− (x− L)2

4σ2
xD

]
, (A.19)
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where σxD = 1/σpD. The transition amplitude is then given by

Aνα→νβ(L, t) =

∫
dx 〈νβ(x− L) | να(x, t)〉

=

√
2σxPσxD

σ2
x

∑
j

U∗αjUβj exp
[
i
(
〈pj〉) · L− 〈Ej〉t

)
− (L− vjt)2

4σ2
x

]
,

(A.20)

where σ2
x = σ2

xP + σ2
xD is the effective width which depends on both production and

detection processes. In a typical neutrino experiment, the distance L between the source

and detector is fixed whereas time t is not measured. The quantity that is measured in

experiments is the transition probability at a fixed distance, obtained by averaging over

time

Pνα→νβ(L) =

∫ ∞
0

∣∣∣Aνα→νβ(L, t)
∣∣∣2dt. (A.21)

After integrating and imposing the normalization condition
∑

β P(να → νβ) = 1, we

obtain

Pνα→νβ(L) =
∑
j,k

U∗αjUβjUαkU
∗
βk exp

[
− i
((
〈Ej〉 − 〈Ek〉

)vj + vk
v2
j + v2

k

−
(
〈pj〉 − 〈pk〉

))
· L

]

exp

[
−
(
(vj − vk) · L

)2

4σ2
x(v

2
j + v2

k)
−
(
〈Ej〉 − 〈Ek〉

)2

4σ2
p(v

2
j + v2

k)

]
.

(A.22)

In this expression the first exponential is the interference term which generates oscilla-

tions between different neutrino flavors whereas the second exponential contains damping

terms which sets conditions for oscillations to be observed. To simplify and compare this

expression with the standard plane wave transition probability (A.6), we make following

approximations. We first Taylor expand the average momenta 〈pi〉 aroundmi = 0

〈pi〉 = p +
∂〈pi〉
∂m2

i

∣∣∣∣∣
mi=0

m2
i = p− ξm

2
i

2E
, (A.23)
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where p and E are the average momentum and energy of the massless neutrino, |p| = E

and
ξ

2E
= −∂〈pi〉

∂m2
i

∣∣∣∣∣
mi=0

. (A.24)

Similarly for average energy and velocity we obtain

〈Ei〉 =
√
〈pi〉2 +m2

i ≈ |〈pi〉|+
m2
i

2|〈pi〉|

≈E +

(
1− p · ξ

E

)
m2
i

2E
, (A.25)

and

vi =
〈pi〉
〈Ei〉

≈ p
E
−

[
p
E

(
1− p · ξ

E

)
+ ξ

]
m2
i

2E2
. (A.26)

The absolute value of velocity is

vi ≈ 1− m2
i

2E2
. (A.27)

For N neutrino mass eigenstates the average of the mean momentum 〈pi〉 is

p̄ =
1

N

N∑
i=1

〈pi〉 = p− ξ m̄
2

2E
, (A.28)

where m̄2 =
∑N

i=1m
2
i /N . Eq. (A.28) implies that momenta of different massive eigen-

states are not collinear. To find the deviation from collinearity of p̄ and L, we estimate

p̄
|p̄|

=
L
L

+ εL. (A.29)

Since the magnitudes of both sides of this equation must be unity, we have

L · εL = −1

2
|εL|2L. (A.30)
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From Eqs. (A.28) and (A.26), to zero order in neutrino mass we have

p ≈ E
(L
L

+ εL

)
, vi ≈

L
L

+ εL. (A.31)

Now we use above approximations to analyze the probability expression obtained in Eq.

(A.22). Let us first consider the interference term in (A.22). We have to first order in |εL|

(
〈pj〉 − 〈pk〉

)
· L ≈−

∆m2
jk

2E
ξ · L, (A.32)

〈Ej〉 − 〈Ek〉 ≈
(

1− p · ξ
E

)∆m2
jk

2E
=
(

1− ξ · L
L
− ξ · εL

)∆m2
jk

2E
, (A.33)

(vj + vk)
v2
j + v2

k

· L ≈
(L
L

+ εL

)
· L = L. (A.34)

Thus the interference term is

exp

[
− i
((
〈Ej〉−〈Ek〉

)vj + vk
v2
j + v2

k

−
(
〈pj〉−〈pk〉

))
·L

]
≈ exp

[
− i

∆m2
jkL

2E

(
1−ξ ·εL

)]
.

(A.35)

In the collinear limit ξ·εL → 0, we recover the standard oscillation phase exp(−i∆m2
jkL/2E).

Now consider the first term in second exponential in Eq. (A.22) given by

exp

[
−
(
(vj − vk) · L

)2

4σ2
x(v

2
j + v2

k)

]
, (A.36)

This term shows that different massive neutrino wave packets travel with different group

velocities, so for sufficiently large distances the wave packets may separate and will not be

detected coherently. In this case, only one of the massive neutrino contributes to the de-

tection. Thus interference effects due to coherence of wave packets is lost and oscillations

will not be observed. This phenomenon is called decoherence in neutrino oscillation. The

distance beyond which decoherence effects start to become important is called coherence

length, which we can easily derive using the above approximations. We have from Eqs.
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(A.26) and (A.27)

(vj − vk) · L ≈−
∆m2

jk

2E2

[
p
E

(
1− p · ξ

E

)
+ ξ

]
· L

=−
∆m2

jkL

2E2

[
1− (ξ · εL)L+

(
1− L · ξ

L

)εL · L
L

]
,

and
√
v2
j + v2

k ≈
√

2.

(A.37)

Thus to first order in |εL|, we get

exp

[
−
(
(vj − vk) · L

)2

4σ2
x(v

2
j + v2

k)

]
≈ exp

[
−

(
∆m2

jkL

4
√

2E2σx

(
1− (ξ · εL)L

))2]
. (A.38)

In the collinear limit ξ · εL → 0, we get the decoherence term exp(−(L/Ljkcoh)2), where

the coherence length is

Ljkcoh =
4
√

2E2σx
|∆m2

jk|
. (A.39)

The final term in Eq. (A.22) does not depend on distance L and is called localization term.

It can be approximated as following

(
〈Ej〉 − 〈Ek〉

)2

4σ2
p(v

2
j + v2

k)
≈

[
∆m2

jk

4
√

2Eσp

(
1− ξ · εL −

ξ · L
L

)]2

≈2π2

(
1− ξ · L

L

)2(
σx

Ljkosc

)2

, (A.40)

where we have used Eq. (A.35) to derive the oscillation length to first order in |εl|:

Ljkosc = (1− ξ · εL)−1 4πE

∆m2
jk

ξ·εL→0
=

4πE

∆m2
jk

(A.41)

Ljkosc = 4πE(1− ξ · εL)−1/∆m2
jk. This term implies that to observe the oscillations σx �

Ljkosc i.e. the production and detection processes must be localized in regions much smaller

than the oscillation length. Using the above approximations the transition probability in
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Eq. (A.22) becomes:

Pνα→νβ(L) =
∑
j,k

U∗αjUβjUαkU
∗
βkUβk exp

[
− 2πi

L

Ljkosc

−

(
L

Ljkcoh

)2

− 2π2

(
1− ξ · L

L

)2(
σx

Ljkosc

)2]
. (A.42)

It can be clearly seen that for L � Ljkcoh and σx � Ljkosc, the wave packet effects are neg-

ligible and we get back the standard plane wave result (A.6). However the wave packet

formalism provides us additional insights about the role of neutrino production and detec-

tion processes in oscillation experiments. From Eq. (A.39), we see that coherence length

Ljkcoh is proportional to σx =
√
σ2
xP + σ2

xD. It means that a precise measurement of the

neutrino momentum (or energy) during detection, which implies a small σpP and hence a

large σxD, will lead to a large coherence length given byLjkcoh ' 4
√

2σxDE
2/|∆m2

jk|. Thus

because of precise measurements even those wave packets which have negligible overlap

may interfere coherently during detection and give rise to oscillation pattern. However, Eq.

(A.42) also implies that with increasing measurement precision of neutrino momentum (or

energy), which will lead to increase in σx, the localization term starts to become more im-

portant and for σx > Ljkosc the interference between νj and νk wave packets is suppressed

resulting in washout of oscillation pattern. Thus the measurement of neutrino momen-

tum or energy cannot carried out with infinite precision without affecting the oscillation

pattern.

Size of wave packets and coherence length

In usual neutrino experiments the condition σx � Ljkosc is satisfied and thus the effect of

finite neutrino localization during production and detection can be neglected. Neglecting
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the localization term in Eq. (A.42) we obtain the transition probability

Pνα→νβ(L) =
∑
j,k

UαjU
∗
αkU

∗
βjUβk exp

[
− 2πi

L

Ljkosc

−

(
L

Ljkcoh

)2]
. (A.43)

Now the coherence length (A.39) can be written as

Ljkcoh(km) =
4
√

2E2(GeV)σx(cm)

|∆m2
jk(eV

2)|
× 1013 (A.44)

To determine whether decoherence effects are important or not one needs to know the

width of neutrino wave packets, which depends on production and detection processes,

and energy spectrum of neutrinos. Next we examine two cases, one where decoherence

effects are negligible and one where they are significant.

Pion decay

In accelerator neutrino experiments proton are bombarded on a target which produces

pions and kaons. These particles further decay to produce neutrino beams. Consider the

decay of 1 GeV pion : π+ → µ+ + νµ. If τx (here τπ ≈ 2.8× 10−8 s) is the lifetime of the

decaying particles in the rest frame then the width of the neutrino wave packet σx ∼ τx.

However since particles decay in flight the wave packet size is dilated by Lorentz factor:

σx ∼ γτx, where γ = Ex/mx, Ex and mx being energy and rest mass of the decaying

particle. For 1 GeV pions decaying in flight γ ∼ 7. Then Eq. (A.44) gives the coherence

length for the muon neutrinos produced in the accelerator experiment

Ljkcoh ∼ 1.7× 1020km (A.45)

In typical accelerator experiments the detector is located at distances∼ 1−103 km from the

point of neutrino production. Thus Ljkcoh � L and decoherence effects can be neglected.
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Solar neutrinos

For neutrinos produced inside the Sun effects of scattering of particles with neighboring

nuclei are important. These effects are called collision broadening and limit the size of

the neutrino wave packets. Taking these effects into account Nussinov [204] estimated the

size of wavepacket for solar neutrinos: σx ∼ 10−6 cm. Thus for E ≈ 100 keV neutrinos

the coherence length is

Ljkcoh ∼ 103km. (A.46)

Now the distance that solar neutrinos travel before being detected at Earth ∼ 1015 km.

Thus for the case of solar neutrinos decoherence effects take over and the oscillations due

to interference among the wave packets is not observed. The effects that is more prominent

for the case of solar neutrinos is called resonant adiabatic transitions that take place inside

the Sun due to its varying density. These transitions convert electron type neutrinos to

muon and tau neutrinos during their propagation from interior regions to the surface of

the Sun producing in a net deficit of electron neutrinos.
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Appendix B

Neutrino evolution equations and Demkov-Kunike model

For the case when magnetic field and density of the Sun are given by Eqs. (3.10) and

(3.20) the Hamiltonian (3.19) can be written as

H =

−∆m2

4E
+ V0

2
(1− tanh(5r/R�)) µB0 sech(5r/R�)

µB0 sech(5r/R�) ∆m2

4E
− V0

2
(1− tanh(5r/R�))

 , (B.1)

where V0 =
√

2GFY
eff
e ρ0/mN with ρ0 being the density at the solar center. We define

a =− ∆m2

4E
+
V0

2
, (B.2)

b =− V0

2
, (B.3)

c =µB0. (B.4)

For ultra-relativistic neutrinos propagating along the radial direction in the Sun, the flavor

equation (3.21) can now be written as

d2νeL
dr2

+
5

R�
tanh(5r/R�)

dνeL
dr

+
(
c2 sech2(5r/R�) + (a+ b tanh(5r/R�))2

+
5i

R�
(a tanh(5r/R�) + b)

)
νeL = 0. (B.5)
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Now substituting z = (1 + tanh(5r/R�))/2, Eq. (B.5) becomes

z(1− z)
d2νeL
dz2

+
1

2
(1− 2z)

dνeL
dz

+ c2
(R�

5

)2

q(z)νeL = 0, (B.6)

where

q(z) =1 +
1

4c2z(1− z)

((
a+ b(2z − 1)

)2
+

5i

R�
(a(2z − 1) + b)

)
. (B.7)

Finally the substitution νeL = zµ(1− z)νu(z), where

µ =− i(a− b)R�/10, (B.8)

ν =i(a+ b)R�/10, (B.9)

converts Eq. (B.6) to a Gauss hypergeometric equation

z(1− z)
d2u

dz2
+ (γ − (α + β + 1)z)

du

dz
− αβu(z) = 0, (B.10)

where

α =
R�
10

(
ib+
√
−b2 + 4c2

)
, (B.11)

β =
R�
10

(
ib−
√
−b2 + 4c2

)
, (B.12)

γ =
1

2
− i(a− b)R�

5
. (B.13)

Eq. (B.10) has two linearly independent solutions which can be taken as [212]

νeL± = z±µ(1− z)νu±(z), (B.14)
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where u±(z) = u(z)|µ→±µ If the neutrinos are produced at the location r0 inside the Sun,

then the evolution of the state νeL is given by

νeL(r) = cos2 θme
iωr0zµ(1− z)ν 2F1(α, β, γ; z)

+ sin2 θme
−iωr0z−µ(1− z)ν 2F1(α, β, γ; z)|µ→−µ, (B.15)

where θm = tan−1(c/a)/2, ω =
√

(a)2 + (c)2 and 2F1(α, β, γ; z) is the Gauss hyperge-

ometric function. Since b2 >> 4c2, we can use α ≈ µ + ν, β ≈ 0 and γ = (1/2) + 2µ

for evaluating the survival probability given by Pee(r0, r) = |νeL(r)|2. The transition

probability 1 − Pee(r0, r) is then averaged over the 8B neutrino production region to put

appropriate bounds on the magnetic field.
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