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                                                             CHAPTER I 

                                              Introduction 

1.1 Preamble 

It has always been a point of interest for us to probe the microscopic properties of matter. 

Many experimental tools have been developed with time for this purpose like diffraction of 

X-ray by the crystal (XRD), technique of scanning the surface by focussed beam of electrons 

(SEM), energy dispersive X-ray spectroscopy (EDXS) and many more. Thermoluminescence 

(TL) emission, which opens a window to look into defect generated trap centres for the 

charge carriers (electrons and holes), is also one of the techniques to probe microscopic 

properties of condensed matter. 

TL is emitted by thermally exciting pre-irradiated sample. Activation of trap centres depends 

on the temperature range used to stimulate the sample. The characteristic of sample is 

investigated through analysing the glow curve which is superposition of TL emission from 

many stimulated trap centres inside the material. The TL emission from each type of trap 

centres has information regarding the characteristic parameters (termed as trap parameters) of 

the particular defect type.  Hence, it is necessary to deconvolve the glow curve for 

investigating the trap parameters of a particular defect centre.  

Numerical value of trap parameters of defect centres, found by any experimental or 

theoretical methodology, is always reported in literature with associated uncertainty. These 

trap parameters are model parameters of various models proposed for TL phenomenon. 

Hence, uncertainty in model parameters will propagate to final assessment end point of these 

models, i.e. TL emission. Hence, it is of interest to carry out the parametric uncertainty 

analysis of various models (like Randall Wilkins model, Garlick Gibson model and May 
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Partridge model) proposed for TL phenomenon. Propagation of error through theoretical 

models of TL phenomena due to variability of trap parameters will reveal insight on TL 

emission and associated glow curve.  

In this research work, various aspects of deconvolution of TL glow curve, error propagation 

methodologies through theoretical models on TL emission phenomenon are explored. 

1.2 Introduction 

Thermoluminescence is the release of light from a pre irradiated sample due to thermal 

stimulation. In case of TL the source of energy is the excitation by an ionising radiation. This 

energy stored can be released whenever the material gets a stimulus. In the case of TL, the 

stimulus is heat. Hence, a more appropriately coined term can be thermally stimulated 

luminescence (TSL), more precisely. Heat is just an stimulating agent and not the source of 

energy released in form of luminescence. Hence, TL is radiation induced thermally 

stimulated emission of optical energy.  

Further, it is necessary to distinguish between TL and incandescence emitted from material 

when heated.  Incandescence emissivity has maxima where absortivity of the material under 

investigation is maximum. Whereas, mostly TL luminescence is in a temperature range where 

material is non absorbing. Though there are exceptions. 

It is also important to differentiate between fluorescence and TL. This differentiation is made 

on the basis of characteristic life time (τ*) between absorption of ionising radiation and 

emission of luminescence. If τ* < 10-8 seconds, the phenomenon is known as fluorescence. 

Otherwise it is called phosphorescence. More importantly, the temperature dependence of 

phosphorescence is the fact that is practically used to differentiate between the two closely 

related phenomenon. If temperature is not fixed at a particular point, rather changes with any 
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time dependent profile, the phenomenon is called TL. Normally used temperature profile is 

linear, where temperature increases linearly with time. This temperature profile is normally 

used as linear temperature profile stimulates various traps present in the material one by one, 

depending on their trap depths. So investigation of the material becomes easier. But other 

profiles are also in practice, like hyperbolic profile, which have their own benefits.  

The phenomenon of TL is well documented by various authors [Nambi, 1977; Chen and 

Mckeever, 1997; Mckeever, 1983; Horowitz, 2000]. Handbook on TL [Furetta, 2003] 

provides compilation of terms in an alphabetical order. Hence, it is very useful for fluid 

consultation. Numerical approach towards various aspects of TL is given by Pagonis and co-

authors [Pagonis et al, 2006]. There are exhaustive review articles by various authors on TL 

specific to materials like Calcium sulphate doped with rare earth materials (CaSO4: RE) 

[Laxmanan, 1999]. There are review articles on deconvolution domain of TL [Horowitz and 

Yossian, 1995]. There is a recent review article by Kitis et al [Kitis et al, 2019] explaining 

stimulated phenomenon using Master equation. Recent article by Peng et al [Peng et al, 2021] 

is also worth mentioning. In addition to this there is a plethora of research articles on 

different domains of TL like phosphor synthesis, application of TL in various domains and 

many more. This list is growing at a very fast rate. References of research articles are not 

being given because it is next to impossible to give an exhaustive list because of very large 

number. 

1.3 Basic Terminology used in TL phenomenon 

In order to understand the applications of TL a basic knowledge of terminology used in 

explaining properties of TL phenomenon is required. Hence, brief note on it is given. Some 

of the terminologies used in discussing properties of TL materials are listed briefly under 

their respective headings.  
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Dose response 

Ideally speaking there should be straight line graph between thermoluminescence output and 

dose. This behaviour is the ideal condition for quantifying the dose (dosimetry). Dosimeter 

can be calibrated at a given dose and the unknown dose can be found by comparing the TL 

responses at the calibration dose and unknown dose. However linearity is mostly exhibited by 

most of TL material at low doses. At high doses most of TL material show non linear effects 

in graph of TL output and dose imparted.  

Though non linearity, in general, is not a very serious constrain to dosimetry. It is possible to 

have a calibration curve and dosimetry can be done with non linear response function as well. 

Mathematical representation of response of TL material to imparted dose, response function 

or supralinearity index {𝜒 (𝑑)}, is done in following way [Chen and Mckeever, 1994]. 

                                    𝜒 (𝑑) =
(𝜁൫𝑑൯− 𝜁0)/𝑑

(𝜁൫𝑑𝑙൯− 𝜁0)/𝑑𝑙
                                                       (1.1) 

𝜁(𝑑)= TL intensity value at dose 𝑑. 

𝜁(𝑑௟)= TL intensity value at dose 𝑑௟. 

𝑑= Dose at which investigation is being done. 

𝑑௟= Dose at which linearity exist. 

𝜁଴= Intercept on TL axis, actually it is the response of dosimeter at zero dose. 

The concept of linearity, sublinearity or supralinearity is defined by 𝜒 (𝑑). 

If 𝜒 (𝑑)= 1 then linearity persists at dose 𝑑 

If 𝜒 (𝑑) < 1 then dosimeter has Sublinear response at dose 𝑑. 



CHAPTER 1: INTRODUCTION 
 

5 
 

If 𝜒 (𝑑) > 1 then dosimeter has Supralinear response at dose 𝑑. 

The main problem with dose response function is that it is not a function of dose only, rather 

it is a functional, i.e. the actual value of 𝜒 (𝑑) not only depends on dose but also on thermal 

history, type and energy of radiation, heating methodology for exciting the sample, linear 

energy transfer (LET) of ionising field etc. 

Hence a careful calibration process (considering radiation type, LET, energy response etc.) 

and proper annealing procedure is required to use TL material in dosimetric applications.  

It is worth to mention at this point that dose response curve should be independent of dose 

rate effect. Though, the dose rate effect is not a serious problem for most of the phosphors. 

In addition to sublinearity, supralinearity and linearity observed in TL vs. dose profile, 

dosimeters also exhibit a phenomenon of saturation. Saturation is a serious problem in high 

dose applications. 

Sensitivity 

Another important term is sensitivity. Sensitivity is thermoluminescence emission per unit 

absorbed dose. For dosimetry, sensitivity of the TL material should be sufficiently high 

(especially for low dose applications like personnel monitoring) so that TL emission can be 

detected properly and is not masked by background effects like instrumental noise etc. 

There are difficulties in defining absolute sensitivity as TL output is affected by readout 

system, filters used and method of measurement (glow curve area between two temperatures / 

height of particular TL peak). Hence, a term is coined “relative sensitivity”. Relative 

sensitivity {RS (𝑑)} is defined by equation (1.2) 

                                                         RS (𝑑) =
[𝜁൫𝑑൯]𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
[𝜁൫𝑑൯]𝑇𝐿𝐷−100

                                             (1.2) 
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where  

[𝜁(𝑑)]௠௔௧௘௥௜௔௟= TL intensity value at dose 𝑑 for the material. 

[𝜁(𝑑)]்௅஽ିଵ଴଴= TL intensity value at dose 𝑑 for TLD-100. 

Since 𝜁(𝑑) of material under investigation and TLD-100 will have different non linearity, 

𝑅𝑆 (𝑑) will be dose dependent. TL dose response function is a functional of various 

parameters like LET of ionizing radiation, heating rate etc., as explained previously. 

Obviously, relative sensitivity will also be affected by all those factors. 

Literature survey further reveals that there exists a term known as Minimum measurable dose 

(MMD) which is closely related to sensitivity. Hence, it is pertinent at this point to explain 

the difference between the two. MMD is defined for not only the material but for whole TL 

system, including material, sample shape, sample size, construction of badge, readout 

instrumentation, filters, algorithm and analysis routine. 

Energy Response 

Energy Response is defined as variation of TL intensity output with energy of incident 

radiation, for a given value of dose.  

Energy response {ER(E)} for photons is defined as 

                                                  ER(E) =
         [

µ(ಶ)

ഐ
]೘ೌ೟೐ೝ೔ೌ೗

[
µ(ಶ)

ഐ
]ೌ೔ೝ

                                           (1.3) 

where 

 
µ(ா)

ఘ
 = mass energy absorption coefficient  
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We should also define Relative energy response {RER (E)} of material. With respect to 1.25 

MeV gamma radiation from 60Co source it is defined by equation (1.4). 

                                                RER(E) =  
ாோ (ா)

ாோ (ଵ.ଶହ ெ௘௩ ) ஼௢ି଺଴ 
                                  (1.4) 

If  RER(E) of TLD material coincides with RER(E) of human tissue, this is termed as tissue 

equivalence. It is important in applications like personnel monitoring and dosimetry in 

medical field. Since we are interested in dose delivered to human tissue and we assess it 

based on response of TLD material, if energy response of TLD material and human tissue  

are different the dose calculated from TLD material will not be correct estimation of dose 

delivered to human tissue. Hence tissue equivalent energy response of TLD material is 

important in such applications. 

In this context an important term is effective atomic number 𝑍௘௙௙.  It affects the energy 

absorbed by a material provided radiation is incident on the material. 𝑍௘௙௙ of human tissue is 

7.4.  

For a higher value of 𝑍௘௙௙ and lower energy of incident radiation, higher is the response of 

TLD material. This happens because energy loss in a material takes place by three 

mechanism, namely, photoelectric effect, Compton scattering and pair production.  In 

general, they have following dependencies on 𝑍௘௙௙. 

Photoelectric Effect: 𝑍௘௙௙
ଷ 

Compton Scattering:  𝑍௘௙௙/𝑀,     M is molar mass of material 

Pair Production: 𝑍௘௙௙
ଶ 



CHAPTER 1: INTRODUCTION 
 

8 
 

Generally photo electric effect is dominant at low values of energy and pair production is 

dominant for energy greater than 1.02 MeV. Compton Scattering is dominant between these 

two. 

Fading 

 Fading is loss of signal during storage. The stability of signal in the environment where it is 

stored and operated is an important parameter for the performance of dosimeter. The loss of 

signal may happen due to light (optical fading), environmental temperature (thermally 

assisted fading/ thermal fading) or due to pure tunnelling (anomalous fading). This topic has 

been dealt with in further section (section 1.7) and will be further discussed in chapter two 

and three. 

1.4 Few applications of thermoluminescence  

TL has very wide range of applications. Few will be discussed in brief. It is worth mentioning 

that the list is in no way exhaustive. 

It was observed long back that few materials have high sensitivity, i.e. they have property of 

emitting TL signal on giving thermal stimulus if a small dose is previously given to the 

sample. For the range of applied dose relevant to applications like personnel monitoring etc., 

the TL signal is proportional to applied dose. As a result if a calibration curve is generated 

(between imparted dose and TL output), unknown doses can be estimated by measuring the 

TL signal and using the calibration curve. This property gave these materials due importance 

in dosimetry.  The pioneers of the field are Watanabe [Watanabe, 1951], Daniels and 

colleagues [Daniels et al, 1953] and later Cameron and colleagues [Cameron and Kenney, 

1963]. First book was published on the topic in 1968 [Cameron et al, 1968].  
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Personnel Monitoring 

An important application based on TL phenomenon is Personnel Monitoring Service (PMS). 

International bodies like ICRP, IAEA and Indian regulatory body AERB give their 

recommendations based on their studies for maximum dose that can be given to a radiation 

worker due to his/her occupational exposure. Personnel monitoring is the task of 

continuously monitoring the radiation worker during his/her service period for the dose 

delivered to him/her due to his/her work. People working in hospitals (in radiation therapy/ 

diagnostics) like X ray technicians etc., radiation based research institutions like BARC, 

naval person on nuclear power vessel etc. constitute the work force of “radiation workers”. 

Two important properties a TLD material should have for being used as personnel monitoring 

dosimeter are: tissue equivalence (for correct estimation of dose to human body) and high 

sensitivity (as doses involved are very small in personnel monitoring most of the time). 

Environmental Dosimetry 

Other than cosmic rays (which may be important for air crew and astronauts) environmental 

dosimetry mainly concerns estimating dose due to radioactive material release to 

environment due to human intervention like nuclear power plants (NPPs) [eg. Brinck et al., 

1977; Oatley, 1981]. An environmental dosimeter is placed in air to detect dose due to 

environmental radioactivity. The doses to be measured in environmental dosimetry are very 

small; hence the dosimeter has to have high sensitivity, least fading (thermal and optical), and 

robustness to environment (moisture and chemicals). High sensitivity is due to small doses. 

Least fading (optical and thermal) so that signal is not lost during the exposure time itself. 

This is important because dosimeters are exposed for a long periods of time to get measurable 

dose. Robustness to environmental factors like moisture is again important because of long 

exposure periods. Suspending dosimeters ~1m above ground level is a normal practise. Piesh 
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suggests calibration and measurement procedures for environmental dose assessment using 

TLD [Piesh (1981)].  

Space Dosimetry 

With progress in space expeditions, space dosimetry is becoming an important application of 

TLD material. Space dosimetry has many aspects like monitoring of astronauts during their 

expeditions and stay in space, assessment of background radioactivity in space and exposure 

of electronic components to discrete radiation events. Single event upset i.e. interaction of 

single particle with electronic circuits is becoming a serious concern because main 

component of galactic radiation are high energy protons and Heavy Charge Particles (HCP). 

TLDs are used in space expeditions for some of these purposes [Vana et al., 1996]. 

Medical Dosimetry 

TL has important application in medical field as well. It is possible only with 

thermoluminescence dosimeters to be inserted in human body, adjacent to the point of 

application of radiation, before exposure of patient to radiation during any course of 

diagnosis or therapy. These thermoluminescence dosimeters are further analysed to assess 

dose to internal organs. Further medical treatments are planned based on these results. 

Properties of TLD material important for these applications are tissue equivalence, high 

sensitivity, small size and non toxicity.  

High Dose applications 

High dose applications of radiation include irradiation of food stuff for better shelf life, 

sterilization of medical gadgets like syringes etc. TLD has also found applications in 

dosimetry of this domain. Since the doses involved are very high, there are various 

limitations like supralinearity and saturation of TLD material. Due to the same reason of very 
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high doses, some researchers have suggested use of reduction in sensitivity (radiation 

damage) as the parameter for measurement of dose rather than TL output.  

TL dating 

TL dating is another application of TL phenomenon. Aitken [Aitken, 1985] is the father of 

the technique. This technique is estimation of age of archaeological and geological samples 

using TL. While the sample is buried in the soil it is irradiated by natural radioactive 

materials like Potassium, Thorium and Uranium which are present everywhere in at least ppm 

level. Since the flux of these is almost constant, the age of the sample can be calculated from 

the time since it was set on fire by the ancient man. Setting on fire sets the TL clock to zero. 

In this technique the sample under investigation is heated and TL is estimated. In second 

heating the signal consists of only IR. The extra TL output during first readout is induced due 

to radioactivity. Sample used for investigation using TL dating should have linear 

dependence on dose, low fading (thermal and optical), no effect of dose rate and sensitization 

effects should be negligible. If these qualities are not there they have to be somehow 

compensated for. If these effects are compensated in some way then we may have a formula 

for TL dating.   

                                          Age =  
்௛௘௥௠௢௟௨௠௜௡௘௦௖௘௡௖௘ ௢௨௧௣௨௧

೅ಽ

೏೚ೞ೐
   ௑ ௔௡௡௨௔௟ ௦௨௥௥௢௨௡ௗ௜௡௚ ௗ௢௦௘ 

                       (1.5) 

Other applications 

There is long list of applications of TL phenomenon. TL has application in Biology and 

biochemisty [Tatake V. G., 1975; Altekar W. et al., 1975]. It has applications in forensic 

science [Chandrasekharan, 1975; Ingham and Lawson, 1973]. Geology is the earliest 

discipline where TL technique is being used in a variety of applications like identification of 



CHAPTER 1: INTRODUCTION 
 

12 
 

minerals, radioactive trace estimation in rocks and many more [McDougall, 1968]. In 

principle TL based methods can be employed in quality control in many glass, ceramic and 

semi conductor products. TL can also be used in study of defect characterisation, as it gives 

the value of trap parameters (D and 𝑓) and TL output can be directly correlated to defect 

centres. TL has applications in retrospective dosimetry as well.  

1.5 Phosphor important for PMS in India: CaSO4: Dy 

There is a long list of phosphors that are of practical importance in different dosimetry 

applications. Few of them are Lithium Flouride based phosphors, Calcium Fluoride doped 

with Mn, Dy or Tm, Aluminium oxide based (Al2O3: Mg, Y and Al2O3: C) and Calcium 

sulphate doped with Dy or Tm.  

With calcium sulphate as host there are mainly many variants of TLD material namely 

CaSO4: Dy, CaSO4: Tm etc. Since CaSO4: Dy is used in Indian personnel monitoring 

program, focus will be on it. 

CaSO4: Dy 

Calcium sulphate has numerous crystallographic locations at which defect centres may be 

located. As an example oxygen interstitial may be located in many configurations with slight 

difference in its local environment. As a result quasi continuous trap distributions may be 

found. ESR and optical absorption have suggested rich variety of radicals 

(𝑆𝑂ସ
ି , 𝑆𝑂ଶ

ି, 𝑆𝑂ଷ
ି, 𝑂ଷ

ି and 𝑂ି). This makes the material complex from perspective of TL 

phenomenon. But still CaSO4: Dy is accepted as TLD material for personnel monitoring 

program of India because of following reasons. 

1. Low cost. 

2. TL sensitivity is 40-50 times higher that TLD-100. 



CHAPTER 1: INTRODUCTION 
 

13 
 

3. Inertness to heat treatment below 700oC, unlike TLD-100.  

4. Very small fading after stabilization, i.e. after fading of low temperature peak. 

5. Robustness to environmental conditions like moisture. 

There is extensive literature existing on various aspects of CaSO4: RE. These include studies 

on dose response [Nambi et al., 1974; Lakshmanan et al., 1978; Srivastava and Supe, 1979], 

kinetics [Fiorella et al., 1976], specific ionisation density [Shinde and Shastry, 1979; 

Srivastava and Supe, 1980; Lakshmanan et al., 1981; Srivastava et al., 1991], activator and its 

concentration [Ayyangar et al., 1974; Chandra and Bhatt, 1979], grain size [Lakshmanan et 

al., 1988; Shinde et al., 1988], irradiation and thermal history [Lakshmanan, 1982; Bhatt et 

al.,1988], codopents [Bhatt et al., 1996; Lakshmanan et al., 1986; Srivastava et al., 1992; 

Atone et al., 1993; Chandra et al., 1987], energy transfer process [Draaai and Blasse, 1974; 

Lapraz et al., 1996], emission spectra, OA and ESR [Tomita and Tsutsumi, 1978; Morgan 

and Stoebe, 1989; Nambi and Bapat, 1980; Mathews and Stoebe, 1982; Danby et al., 1982; 

Gundu et al, 1993], TSC/TSEE [Murthy 1982]. 

Mechanism 

First mechanism of TL in CaSO4: Dy was suggested by Nambi [Nambi et al., 1974]. In this 

mechanism during irradiation an electron is detached from F- or SO4
2- leaving a hole presence 

in them. This electron is trapped at RE3+ ion site and converts it to RE2+. When heated these 

trapped electrons get detached from their sites and convert RE2+ to RE3+, leaving them in 

excited state. The excited ion emits radiation to come to ground state. This emission is the TL 

emission. This idea can be expressed in following reactions. 
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During irradiation 

 

RE3+ + ------ + F- + ------                                             RE2+ + --------+ Fo 

RE3+ + ------ + 2F- + ------                                           RE2+ + --------+ F2
- 

etc. 

 

During heating 

 

RE2+ + --------+ Fo+-------                                         [RE3+]* + ------ + F- + ------ 

                                                                                      TL 

                                                                              RE3+    

RE2+ + --------+ F2
- +-------                                      [RE3+]* + ------ +2F- + ------ 

                                                                                     TL 

                                                                             RE3+    

etc. 

But this mechanism has been criticized on various aspects [Stoebe and Morgan, 1984]. 

Another mechanism was suggested by Huzimura et al. [Huzimura et al., 1980]. Another 

mechanism was also suggested by Stoebe [Stoebe and Morgan, 1984].  
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Glow Curve 

The CaSO4: Dy glow curve structure is affected by the time after which glow curve is 

recorded since exposure, as the low temperature peaks fade. But after some time (say a week) 

glow curve becomes stable. Another factor is the dose at which glow curve is recorded, as on 

high temperature side new peaks evolve at high doses [Souza et. al., 1993]. 

Figure 1.1 represents the glow curve of CaSO4: Dy at a delivered dose of 3.00 Gray and 

heating rate 1°Kelvin/second. A typical CaSO4: Dy glow curve has a main dosimetric peak 

with small satellite peaks on both sides of main dosemetric peak. The main dosimetic peak is 

at 220°C in case of powder of CaSO4: Dy and at 230°C in case of TLD discs are made out of 

phosphor by mixing them with Teflon binder in ratio of 1:3. 

 

  

               Figure 1.1 CaSO4: Dy glow curve [Souza et. al., 1993] 
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Brief literature survey on Trap Parameters  

Different authors have arrived at different set of model parameters for CaSO4: Dy. 

In one model [Fiorella et. al., 1976] it is proposed that results of experiments could be 

associated with an explanation by associating  the main glow peak with more than one 

Gaussian distribution of trap depths with the mean values (𝐷௝) and full width at half maxima 

(𝜎௝) as in Table 1.1.  

 

                         Table1.1 Trap parameters of CaSO4: Dy [Oliveri, 1978]  

    No. of Gaussian         Mean energy value                       σj  
           1            1.28 eV                0.033 eV 

           2            1.38 eV                 0.043 eV 

           3            1.50 eV                 0.025 eV 

           4            1.62 eV                 0.021 eV 

Attempt to escape frequency 3 X 1012 sec-1. 

                       

Souza’s model associates with glow curve of CaSO4: Dy ten traps of trap depth and pre 

exponential factors as tabulated in Table 1.2.   

                       Table 1.2 Trap parameters for CaSO4: Dy [Souza et al., 1993] 

Peak No. Tmax (°C) D (eV) 𝑓 (sec-1) 
1 128 1.15 2.3 X 1013 

2 143 1.25 1.2 X 1014 

3 170 1.16 1.2 X 1012 

4 198 1.09 2.6 X 1010 
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5 222 1.10 8.3 X 109 

6 248 1.22 3.6 X 1010 

7 274 0.98 4 X 107 

8 306 1.19 9.2 X 108 

9 360 1.70 1.7 X 1012 

10 387 1.47 7 X 109 

                      

Srivastava and Supe’s model associates a quasi continous distribution of trap depths with a 

range of activation energy from 1.15 eV to 2.39 eV for a temperature range 340-740 °K with 

the glow curve of CaSO4: Dy [Srivastava and Supe, 1983]. 

Dose response 

The dose response of CaSO4: Dy has straight line behaviour up to 30 Gy [Lakshmanan, 1999] 

1.6 Computerized glow curve deconvolution 

 Deconvolution of TL glow curve using computational techniques is called computerized 

glow curve deconvolution (CGCD). For various reasons it becomes mandatory to 

deconvolute the signal into individual glow peaks. Few benefits are discussed below. 

1.6.1 Need of deconvolution 

Increment in precision and reducing MMD 

 Pla and Podgorsak followed by Moscovitch et al. and Horowitch et al. demonstrated 

deconvolution based dosimetry as an application of CGCD for TLD-100 [Pla and Podgorsak,  

1983, Moscovitch et al., 1984; and Horowitch et al., 1986]. In this application, full blown 

deconvolution after subtracting the background signal is to be done and the dosemetric 
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standards based on single peak (or a part of glow curve) are to be developed. This 

significantly reduces MMD and increases precision. This effect has also been examined by 

various authors on other TLD material like α Al2O3: C [Moscovitch et al., 1993] and CaF2: 

Tm [Ben Shachar and Horowitz, 1988]. CGCD has also been applied to glow curve obtained 

from hot gas readers which have non linear heating profile [Van Dijk and Julius, 1993; 

Gomez Ros et al., 1993]. Gomez Ros et al. explored the possibility of applying CGCD to hot 

gas readers for improvement of precision and lowering of MMD [Gomez Ros et al., 1993]. 

Encouraging results were found. Recent work in domain of TL from hot gas reader has been 

done by Kitis et al [Kitis et al, 2006a6; Kitis et al, 2006b].  

Dose re-estimation 

CGCD has importance in dose re-estimation as well. Dose re estimation is of administrative 

importance; hence it has been extensively studied for TLD-100. PTTL technique of dose re-

estimation is based on the fact that during normal readout the high temperature peaks are not 

fully depleted. When exposed to proper wavelength either at room temperature or at elevated 

temperature, transfer of charge takes place from high temperature peaks to dosimetrically 

important peaks. These peaks can be deconvolved using CGCD and dose re-estimation can be 

done using second readout of the dosimeter.  Charles illustrated the use of 250nm radiation 

for this purpose in TLD-100 [Charles, 1983]. Many other authors have also studied the 

subject in detail [McKinlay et al., 1980; Budd et al., 1979]. Delgado et al. studied the subject 

with focus on application of CGCD and UV induced background [Delgado et al., 1992].  

Estimation of elapsed time since irradiation 

Time passed since an accidental exposure is important in planning medical treatment of a 

patient [ICRP, 1978]. It has also been claimed that estimation of time that has passed since 

exposure has importance in space experiments [Sidran, 1969]. Since different peaks have 



CHAPTER 1: INTRODUCTION 
 

19 
 

different fading rates, different peaks fade to different extent as a function of time. Hence, 

relative intensities of different peaks can be measured to estimate the time since exposure. 

Though it has complications, like 

 Temperature profile of the place where TLD was stored after exposure should be 

known. 

 Fading properties are dependent on dose. 

 If the constant background exposure is over and above the accidental exposure, there 

would be further complications. This has been dealt with by Furetta [Furetta, 1988]. 

 Glow curve shape and estimated time may be affected by energy of irradiating 

radiation and presence of neutron. 

Various authors have studied the topic in context of CaSO4: Dy [Bacci et al., 1983; Wang et 

al., 1987], CaF2: Tm and CaF2: Dy [Furetta, 1988], TLD-100 [Moscovitch, 1986]. 

High Dose dosimetry 

CGCD has importance in high dose dosimetry as well. Still the technology of high dose 

dosimetry is not saturated. Measuring doses of the range 102-106 Gray are needed in high 

dose applications like food processing, radiation sterilization and many others. Though few 

techniques have been developed to some extent [Holm and Berry, 1970; IAEA, 1973; 

Matthews, 1982]. But the techniques are costly and difficult. Barthe  et al.  have investigated 

several TLD material (Al2O3, CaSO4: Dy, SiO2: Ce, and YPO4: C2) using various readers in 

this context [Barthe et al., 1993]. The supralinear dose response and complexity of high 

temperature peaks have made TLD-100 a low contender for high dose dosimetry. The biggest 

disadvantage on the side of TLD based techniques in context of high dose applications is 

radiation damage that occurs at high dose levels in TLD material.  
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Fading and sensitivity correction 

Fading and sensitivity correction is an important application of CGCD, as many TLD 

materials like CaSO4: Dy (used in personnel monitoring program of India) have low 

temperature peaks that fade rapidly. Fading is usually referred to leakage of charge from traps 

during the period of use or storage. This can have many reasons to it; like, interaction 

between occupied and unoccupied traps which may lead to sensitivity change. A separate 

problem is fading due to ambient temperature (thermally assisted fading/thermal fading). The 

problem and its various aspects is summarized in editorial [Horowitz, 1990]. Application of 

CGCD to this domain is an upcoming field, lot of work is being done and much more is 

required to be done. 

Mixed field dosimetry 

In most of the practised cases mixed field dosimetry is carried out without the use of CGCD. 

Ben Shachar and Horowitz studied the importance of CGCD to mixed field dosimetry [Ben 

Shachar and Horowitz, 1988]. Inaccurate separation of neutron sensitive peaks and gamma 

sensitive glow peaks is major source of error in mixed field dosimetry [Horowitz and 

Yossian, 1995]. 

Understanding mechanism of TL in TLD material 

CGCD is necessary for understanding mechanism of TL in TLD material. Each TL peak has 

different origin in terms of defect centres from which they originate. Hence, obviously they 

will have different mechanisms. Unless we deconvolve the composite glow curve of TL 

material it is not possible to say anything about the origin and mechanism of TL in the 

material. So use of CGCD is vital in this context. 
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Other applications 

There are other applications also like, optimizing annealing procedures and in quality control. 

They are not being discussed in detail, not because they are less important but because of 

time and space constrain. But they are discussed in detail in review article by Horowitz and 

Yossian [Horowitz and Yossian, 1995]. 

Because of above mentioned applications it is of interest to look into techniques of 

deconvolution which is elaborated further. 

1.6.2 The basics of deconvolution (Mathematical background) 

Glow curve is a function of trap parameters, trap depth (D), frequency factor (𝑓) and initial 

concentration of charge carriers (Ct0). Alternatively it can be derived as a function of peak 

temperature (Tmax), peak intensity (Imax) and width of peak (FWHM) or some other shape 

parameter. 

Chi-square method  

If the composite glow curve has 𝑟 number of glow peaks then the   number of unknown 

parameters will be 3𝑟. Since mostly, background is fitted by 𝑙 exp(
்

௠
) +  𝑛, hence the number 

of known parameters become 3𝑟 + 3.  A chi-squared minimization, by defining a chi-squared 

merit function, can provide best fit values of parameters. 

Let us assume M number of experimental data {𝑥௜, 𝑦௜}   𝑖 = 1, 2 … , 𝑀 in a glow curve having 

𝑟 number of parameters.  

Mathematically we have, 

                                       𝑦 = 𝑔 (𝑥, 𝑎ଵ, 𝑎ଶ, … , 𝑎௥) =  𝑔 (𝑥, 𝒂)                                   (1.6) 
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As per ordinary least square method , merit of system is addressed by the Chi-square merit 

function is defined by equation (1.7) 

                                      𝑄 (𝒂) =  ∑ [ 𝑦௜ − 𝑔 (𝑥௜, 𝒂)]ଶெ
௜ୀଵ                                           (1.7) 

In order to estimate the parameter set 𝒂, the function (𝑄 (𝒂)) can be differentiated with 

respect to 𝑎௜  𝑖 = 1, 2, … , 𝑀 to obtain set of 𝑟 differential equations. 

𝛹௝  (𝒂) =  ∑ [𝑦௜ − 𝑔 (𝑥௜, 𝒂)] 
డ௚ (௫೔,𝒂)

డ௔ೕ
= 0          𝑗 = 1,2, … , 𝑟 ெ

௜ୀଵ                                     (1.8) 

Close to minima the condition given by equation (1.9) is obtained [Chen and Mckeever, 

1997] 

𝜕𝑎௞ = [
డఅೕ(𝒂)

డ௔ೖ
]ିଵ𝛹௝  (𝑎) =  𝐻௝௞

ିଵ 𝛹௝  (𝒂)         𝑗 = 1,2, … , 𝑟                                            (1.9) 

NRM & SGM 

By differentiating 𝑄 (𝒂) with respect to 𝑎௝  𝑗 = 1, 2, … , 𝑟 we arrive at a set of 𝑟 non linear 

equations. This set of 𝑟 non linear equations can be solved to get the correct value of 

parameter set 𝒂. It is known that NRM for solving set of differential equations is suitable 

only if initial guess is close to optimal value. 

On the other hand Chi-squared ‘steepest decent method’ known as SGM is preferred if initial 

guesses are far off. But it is limited by very slow convergence.  

The merging of the two techniques is LMM. It gives excellent results. 

LMM 

The Marquardt method [Marquardt, 1963] is based on earlier suggestion from Levenberg 

[Levenberg, 1944] 
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A new parameter is defined  

                                                𝐻௝௞
ᇱ = 𝐻௝௞     𝑗 ≠ 𝑘                                                              (1.10) 

                                               𝐻௝௞
ᇱ = 𝐻௝௞(1 + ƛ)     𝑗 = 𝑘                                                   (1.11) 

Steps of algorithm of LMM is presented as follows 

 Calculate 𝑄 (𝒂)  

 Initial guess =.001 

 Calculate 𝜕a and 𝑄 (𝒂 +  ∂𝐚) 

 If 𝑄 (𝒂 +  ∂𝐚) > 𝑄 (𝒂)   » ௡௘௪ = 10௢௟ௗ  and repeat with step 3 

 If 𝑄 (𝒂 +  ∂𝐚) < 𝑄 (𝒂)   » ௡௘௪ =
೚೗೏

ଵ଴
  and replace 𝒂 by 𝒂 +  ∂𝐚 

But the difficulty is that this method guarantees only convergence to local minima. Other 

methods like simulated annealing [ van Laarhoven and Aarts, 1987] tabusearch [Glover, 

1994] and genetic algorithm [Koza, 1992] are being tried in search of global minima. 

In GLOCANIN [Bos et al., 1993] program in which a total of 13 CGCD codes were 

compared, LMM was the highest scorer. 

FOM (Figure Of merit) 

Finally it is required to define goodness of fit. FOM [Misra and Eddy, 1979] is a very good 

criteria. 

                                    FOM=∑
ଵ଴଴ (|௚ (௫೔,௔∗)ି ௬೔|)

⌂

௜ಷ೔೙ೌ೗
௜಺೙೔೟೔ೌ೗

                                         (1.12) 

Where 

⌂= Area under the curve. 
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𝑎∗= Fitted set of parameters. 

𝑦௜= Experimental data points  

𝑔= Function to which data points are to be fitted. 

It is pertinent to mention at this point that for fitting purpose one has to generate the glow 

curve with desired set of parameters, in which differential equation is to be solved. For this 

purpose variety of numerical methods exists like Runge Kutta Method (RKM), Predictor 

Corrector Method (PCM) and Richardson extrapolation leading to Bolirsch Stoer Method 

(BSM) [Horowitz and Yossian, 1995]. 

1.6.3 Conclusions 

Since last five decades non linear least square fitting methods for deconvolution are in use 

[Horowitz et al., 1986; Shenker and Chen, 1971; Mohan and Chen, (1970)] and is still in use, 

though solution of set of non linear equations is optimized to use of Marquardt Levenberg 

algorithm [Peng et al., 2016]. 

One important milestone in the domain of deconvolution is; Kitis [ Kitis et al.,1998] 

converted equation of glow curve, which a function of trap parameters to a function of 

experimentally known parameters peak temperature (Tm), peak intensity (Im) and one more 

(shape) parameters. Many other such examples exist. A plethora of literature on glow curve 

deconvolution exists in literature [Furetta et al., 2000; Kitis, 2012; Gorkum, 1980; Pagonis et 

al., 2001; Harvey, 2011; Degado and Gomez Ros, 2001; Llamas and Tapia, 2013]. It is 

pertinent to mention at this point that above list is not exhaustive as amount of literature is 

very huge.   
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At one point of time there was an international inter comparison of various codes developed 

by different countries also took place [Bos et al, 1993; Bos et al, 1994]. There are detailed 

review articles on the topic [Horowitz and Yossian, 1995; Horowitz and Moscovitch, 2013]. 

But if we analyse all the literature in detail, attempts have been mainly in following 

directions. 

 Developing new expressions for TL kinetics and fitting them with experimental glow 

curve like Sadek et al. [Sadek et al., 2015]. 

 Converting the parameters to experimentally known parameters like Kitis et al. [Kitis 

et al., 1998]. 

 Using rate equations for fitting an attempting reducing number of parameters like 

Sakurai [Sakurai, 1995]. 

 Increasing ease of execution and availability to community like Afouxenidis 

[Afouxenidis, 2012]. 

 New directions like use of genetic algorithm [ Adamiec, 2006] 

 Attempts in search of global minima; like simulated annealing [van Laarhoven and 

Aarts, 1987] and tabusearch [Glover, 1994] 

It is worth mentioning at this point that the references given in above points are only for 

example and not exhaustive.   

1.6.4 Chronological Development of Computational techniques in deconvolution 

The chronological order of published or cited programs for TL glow curve deconvolution is provided 
by Peng et al [Peng et al, 2021]. 

Table 1.3 Chronological Development of Computational techniques in deconvolution 

S. No.        Model/Expression         Platform                      Reference 
    1.           First Order             --- Horowitz and Mosowitch (1986) 
    2.           First Order             --- Delgado and Gomez-Ros (1990, 
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2001) 
    3. First Order / General Order             --- Bos et al (1993, 1994) 
    4. First Order Window Sprunck et  al. (1996) 
    5. First order/Second 

order/General order 
MINUIT Kities et al.(1998) 

    6. First order    ---- Gomez –Ros et al.(1999) 
    7. Mixed order MINUIT Kitis and Gomez –Ros (2000) 
    8. First order/Second 

order/General order 
Peak-Fit Pagonis and kitis (2002) 

    9. First order/Second 
order/general order/mixed 
order/general 
approximation/Full iteration 

Window XP/C# Chung et.al (2005) 

   10. First order Window/C++ Puchalska and Bilski (2006) 
   11. General Order Window/Micrpsoft 

Excel 
Van Dijk (2006) 

   12. First  Order Window/Microsoft 
Excel 

Chaseet.al. (2008) 

   13. General Order/Mixed Order Window/Microsoft 
Excel 

Afouxenidis et.al (2012) 

    14. First order/Second 
order/general order/mixed 
order/general 
approximation 

Mathcad Kiisk (2013) 

   15. General Order Peakfit Singh et al.(2011) 
   16. First Order MATLAB El-Hafezet.al. (2011) 
    17. First Order MATLAB Harvey et.al. (2011) 
    18. One Trap-one 

Recombination 
Windows/visual Basic  Singh and Gartia (2014) 

     19. General Order/ One Trap-
one Recombination 

Fortran, R Peng et al.(2016) 

   20. First order/Second 
order/general order 

Fortran Sature et.al. (2017) 

   21. First order Window/Microsoft 
Excel 

Stadtmann and Wilding (2017) 

    22. First Order/ General Order Window/Microsoft 
Excel 

Duran-Munozet.al. (2018) 

    23. First Order/ General Order Windows/Fortran,Visual 
Studio 

Benavente et.al. (2019) 

    24. One Trap-one 
Recombination 

 MATLAB El-Kinaway et. al. (2019) 

   25. General Order/Mixed Order Window/Microsoft 
Excel 

Kazakis (2019) 

Few recent works are revolutionary in the domain so specific attention is being given to them 

in subsequent paragraph. 
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1.6.5 Few recent contributions 

Using Lambert –W function 

Section (2.2.1.1) may be referred to for detail discussion on analytical solution of OTOR 

model using Lambert –W function. Here the final transformed equations relevant for 

deconvolution is being documented. 

Case I 

𝐵 =  
஻೟

஻೟ೝ
< 1  

 Sadek et al. [2015] has done this transformation for first master equation from 

𝐿 (𝐶௧଴, 𝐷, 𝑓, 𝐵, 𝑇)  to 𝐿 (𝐿௠, 𝐷, 𝑇௠, 𝐵, 𝑇) using the general procedure (as explained by Kitis et 

al. [2019]) 

The final expression is  

𝐿 = 𝐿௠ exp( 
 ஽ (்ି ೘்)

௄ ் ೘்
)  [ 

ௐ ൣ௘೥భ೘൧ାௐ [௘೥భ೘]మ 

ௐ [௘೥భ]ା ௐ [௘೥భ]మ
                                                                      (1.13) 

Where 

𝑧1 =
ଵ

௖
− ln(𝑐) + 

஽ ୣ୶୮(
ವ

಼೅೘
)

௄ ೘்
మ   

ி (்,஽)

ଵିଵ.଴ହ ஻భ.మల
                                                                           (1.14) 

Where 𝑧1𝑚 = 𝑧1 at 𝑇 = 𝑇௠ and 𝐹 (𝑇, 𝐷) =  ∫ exp(−
஽

௄்
)

்

்଴
 

Case II 

𝐵 =  
஻೟

஻೟ೝ
> 1. 

It can be presented in a transformed form by using the procedure explained by Kitis et al. 

[2019]. The final result as developed by Sadek et al. [2015] is 
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𝐿 = 𝐿௠ exp( 
 ஽ (்ି ೘்)

௄ ் ೘்
)  [ 

ௐ ൣିଵ,ି௘ష೥మ೘൧ାௐ [ିଵ,ି௘ష೥మ೘]మ 

ௐ [ିଵ,ି௘ష೥మ]ା ௐ [ିଵ,ି௘ష೥మ]మ
                                                   (1.15) 

Where 

𝑧2 =
ଵ

|௖|
− ln(|𝑐|) + 

஽ ୣ୶୮(
ವ

಼೅೘
)

௄ ೘்
మ   

ி (்,஽)

ଶ.ଽ଺ଷିଷ.ଶସ ஻షబ.ళర
                                                             (1.16) 

Where 𝑧2𝑚 = 𝑧2 at 𝑇 = 𝑇௠ and 𝐹 (𝑇, 𝐷) =  ∫ exp(−
஽

௄்
)

்

்଴
 

The TL expression, equation (1.13) and equation (1.15) can be used for deconvolution of 

glow curve with linear heating profile. Fitting process can be performed using “Trust Region” 

algorithm of MATLAB package. The frequency factor may be obtained using the maxima 

condition [Kitis and Vlachos, 2013].  

ఉ஽

௄ ೘்
మ = ቀ

ଵ

ଵି஻
 
ଵାଶௐ[ୣ୶୮(௭೘)]

ଵାௐ[ୣ୶୮(௭೘)]మ
ቁ 𝑓𝑒𝑥𝑝(−

஽

௄ ೘்
)                                                                         (1.17) 

The benefits of using these expressions for deconvolution are as follows. 

1. The model has physical basis where as general order kinetics expressions are totally 

empirical. 

2. The expression can fit any glow curve even if sample dose is in saturation range. 

Contribution of Lovedy Singh et al (Hybrid Algorithm) 

Lovedy Singh et al [Singh et al, 2014] has made a vital contribution to the domain of 

deconvolution by making use of hybrid genetic algorithm. 

Set of coupled differential equation was proposed by Halperin and Braner [1960] for 

modeling of TL phenomenon. These are very difficult to solve and attempt to solve them is 

rather impractical. Due to this reason Lovedy Singh et al. introduced simplified version of 
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General One Trap (GOT) equation for glow curve derived from OTOR model. The 

expression covers first order kinetics for α=0.0001 and general order kinetics for α=0.99999. 

The hybrid algorithm is a combination of genetic algorithm and simulated annealing. It is 

quite suitable for TL glow curve fitting as it is efficient and fast. In order to understand 

benefits of algorithm, short note on advantages and limitations of genetic algorithm and 

simulated annealing is given below. 

Genetic algorithm has many advantages e.g. 

1. It requires only evaluation of function values and not the derivatives of it. 

2. It has higher probability of finding global minima. 

3. It allows mix of continuous and discrete variables.  

4. It provides a set of optimal solutions instead of single solution. 

But it has a disadvantage that it slows down once the region of optimal solution is arrived. 

Simulated annealing [Kirkpatrick, 1983] based on analogy between statistical mechanics and 

combinatorial optimization. It is simply a technique of iterative improvement in which initial 

solution is repeatedly improved  by making small local perturbation until no further 

improvement is found.  

However it has some limitations, algorithm is almost a local optimizer and get and get 

trapped in the basin of attraction in which it begin if annealing temperature is reduced too 

quickly. If temperature is not lowered quickly enough computations become too time 

consuming. 
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Few other important contributions 

Pagonis made use of Weibull distribution and Logistic distribution function for 1st and 2nd 

order kinetics respectively [Pagonis et al, 2001; Pagonis and Kitis, 2001]. He also explored 

possibilities of using commercial software packages for thermoluminescence glow curve 

analysis [Pagonis and Kitis, 2002]. His work on semi localized transition model is also worth 

mentioning [Pagonis, 2005]. 

R Package for deconvolution 

A self consistent code of thermoluminescence glow curve deconvolution in R, namely “tgcd” 

package is developed [Peng et al, 2016; Peng et al. 2021]. This is an open source package in 

accordance with various transformed analytical equation of first, second and general order 

kinetics [Kitis, 1998], mixed order kinetics [Kitis and Gomez-Ros, 2000; Gomez-Ros and 

Kitis, 2002] as well semi analytic expression based on OTOR model utilizing Lambert –W 

function or Wright Omega function  [Sadek et al, 2014; Sadek et al, 2015; Singh and Gartia, 

2015] 

The code is comprehensive, flexible, convenient and openly assessable. 

1.7 A brief note on athermal fading 

Till now the phenomenon of TL is presented where recombination of trapped charge carrier 

with respective recombination centre is routed through delocalized bands (conduction band 

and valence bands). In contrast to this tunneling of charge carrier from trapping sites to 

respective recombination centre may also be route of charge transfer. These are called 

tunneling localized model.  

Halperin and Braner [1960] developed a model which is generally referred as localized 

recombination model for recombination via route of tunneling. Many authors [e.g. Land, 
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1969; Chen, 1976; Bull et al, 1989; Sunta et al, 2006; Pagonis 2005 etc.] have referred to this 

work in their respective works, 

The mechanism of localized tunneling model has been employed to more involved models 

[e.g. Mandowski, 2005], where localized transition in a defect complex is combined with 

delocalized transition across complexes. Such models are referred to as semi localized 

models. Both models localized and semi localized transition models have been studied in 

detail by various authors [Chen and Mckeever, 1997; Kumar et al, 2006; Sunta et al, 2006]. 

All the above models consider a fixed tunneling probability. This is true if donor acceptor (d-

a) distance is fixed, which is not always the case. In many cases power law decay is observed. 

Power law decay has been documented in many materials like feldspar [Visocekas et al, 

1994], irradiated glasses [Kieffer et al, 1971], KCl [Delbecq et al, 1974] and several other 

materials.  

Theoretical explanation has come from considering a distribution of donor acceptor distance 

instead of a fixed separation between donor and acceptor. This is theoretically addressed by 

few authors [Tachiya and Mazumdar, 1975; Huntley, 2006]. Their approach could explain 

only partial range of exponent of power law decay [i.e. slope of plot of ln(afterglow) vs. ln 

(st)] given in review article of Jonscher and Polignac [Jonscher and Polignac, 1984].  

Recently Jain et al [2012] developed Halperin and Braner [1960] model further for material 

in which random distribution of defects exist. Nearest neighbor donor acceptor recombination 

and tunneling via the excited state of electron trapping centers are the features of models 

proposed by Jain et al [2012]. 

But none of above models considered the non rectangular shape of potential barrier between 

trap and recombination center. Due to above lacuna no one could explain full range of 
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exponent of power law decay [Jonscher and Polignac, 1984]. This aspect is addressed in our 

publication presented in this dissertation and we could explain full range of exponent of power law 

decay given by Jonscher and Polignac [Jonscher and Polignac, 1984].      

1.8 Research objectives and gap areas 

As detailed before thermoluminescence (TL) is the phenomenon of emission of energy in 

optical form when thermal stimulus is given to a pre exposed sample. Charge carriers are 

generated due to irradiation and while translating in the material they get trapped at defect 

centres. When thermal stimulus is given they get excited to conduction band and further 

recombine with opposite charge carriers at recombination centres [Chen and Mckeever, 

1997]. 

Hence, from the explained mechanism it is obvious that the overall signal obtained on giving 

thermal stimulus will be superposition of thermoluminescence signal emitted from various 

trapping sites. Thus, it is necessary to deconvolve the overall signal (glow curve) to infer any 

information regarding the defect centres.  

Though, topic of deconvolution of TL glow curves has been investigated by a plethora of 

authors [Shenker and Chen, 1971; Mohan and Chen, 1970;  Furetta et al, 2000; Horowitz and 

Moscovitch, 1986; Chung et al, 2012; Chung et al, 2007; Afouxenidis et al, 2012; Sakurai, 

1995 and many more], mostly it boils down to a curve fitting procedure. Some authors have 

tried genetic algorithm as well for finding trap parameters [Adamiec, 2006].  

But literature lacks any formulation which gives explicit algebraic expression for the trapping 

parameters. In present work an explicit expression for the trapping parameters (trap depth and 

frequency factor) is developed, which is to be solved iteratively. 
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Once the glow curve is deconvolved, the TL signal from each trap is obtained separately. 

There exist various model in literature for predicting the TL signal from a trap given its trap 

parameters like Randall Wilkins model [Randall and Wilkins, 1945a; Randall and Wilkins, 

1945b], Garlick Gibson model [Garlick and Gibson 1948], May Partridge model [May and 

Partridge, 1964] and many more. But there also exist various sources (theoretical as well as 

experimental] that lead to deviation from a theoretically predicted glow curve from a set of 

trap parameters. Few of the many reasons may be instrumentation dependent effect (like dark 

current of PMT etc.), dosimeter dependent effects (like Residual TL etc.), and loss of signal 

during the storage i.e. fading. There are also field dependent effects (like angular incidence 

etc.)  Residual TL which is left over TL after 1st readout is another factor. Most of these have 

got sufficient attention in existing literature. But origin of Residual signal was a gray area. 

This domain is investigated in our work [Sahai et al, 2017]. Fading has also got due attention 

experimentally, but its theoretical explanation is an area where addition is expected by 

present work [Sahai et al, 2018; Sahai et al, 2019].  

As mentioned earlier various models have been developed to simulate TL glow curve from 

trap parameters. But parametric uncertainty analysis of these models is an area which is 

totally untouched. Hence, it has been our point of interest in present work with a focus on 

Randall Wilkins model [Randall and Wilkins, 1945a; Randall and Wilkins, 1945b], Garlick 

Gibson model [Garlick and Gibson 1948] and May Partridge model [May and Partridge, 

1964].   

1.9 Organisation of thesis 

This dissertation is organised into six chapters. The brief context of each chapter is discussed 

here. 
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Chapter 1. Introduction 

This chapter is dedicated to introduction and literature survey. It starts with discussing the 

basic phenomenon of TL.   

Further, the applications of TL phenomenon are discussed. Main focus is on PMS, 

environmental monitoring, medical applications, TL dating and high dose applications. 

Subsequently TL material important for personnel monitoring in Indian context namely, 

CaSO4: Dy has been discussed. In this context its mechanism, typical glow curve and typical 

trap parameters are discussed. 

Further the focus is on the deconvolution of the glow curves. In further section the necessity 

of deconvolution, its basics and literature survey on deconvolution is presented. 

Chronological order of development of deconvolution codes is presented, followed by some 

recent contributions.  

One section is added on athermal fading. 

Then the chapter concludes with motivation of study, organisation of thesis and scope of 

thesis. 

Chapter 2. TL Models and estimation of glow curve 

This chapter is divided into two subsections. Firstly, Traditional Approach to TL 

phenomenon and secondly, Master equation approach to stimulated phenomenon with focus 

on TL. 

In first section, rate equations of TL kinetics are discussed and RW, GG and MP models are 

derived from the rate equation with suitable approximations like quasi equilibrium etc. 

Further, extensions of RW, GG and MP models under heading ‘more realistic delocalized 
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models’, are discussed. This chapter also includes mixed order kinetics model and localized 

transition models.  

The later section discusses Five master equation for stimulated phenomenon with focus on 

TL.  

Chapter 3. Deviations in TL intensiy from model estimated glow curve: Sources of 

Uncertainty 

Various models like RW, GG and MP are presented in this chapter. Given the trap parameters 

the glow curve can be simulated using these models. But, there are various reasons due to 

which the experimental glow curves will deviate from the glow curves predicted by these 

models. This chapter is dedicated to this subject. Mainly the theoretical reasons are 

elaborated. This includes discussion on parametric uncertainty, quasi equilibrium 

approximation, non interactive kinetics, temperature dependence of parameters, fading, re-

absorption, thermal and concentration quenching. In this chapter our contribution in the 

domain of afterglow which is important for quantification of fading loss of TL signal is also 

presented. Residual TL is the TL left over in the dosimeter after first readout. It is also a 

contributor to deviation from model predicted TL values. Theoretical explanation of origin of 

Residual TL did not exist in literature. Hence, our contribution to origin of residual TL is 

also made a section of this chapter. Non linear response of dosimeter is also discussed.   

Chapter 4. Parametric Uncertainty analysis of basic Thermoluminescence Models 

This chapter is dedicated to uncertainty in the TL emission intensity predicted by models like 

RW, GG and MP due to uncertainty in trap parameters (trap depth and attempt to escape 

frequency). Attempt to escape frequency is number of times trapped charge carrier attempts 
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to escape from the trap per second. This chapter is divided into three sections based on the 

technique that is adopted for the uncertainty analysis.  

First section is devoted to Monte Carlo technique. In this section assuming the probability 

density functions (PDFs) of input parameters, the PDF of output TL was generated and 

uncertainty (5th and 95th percentile difference) at a given temperature was obtained from the 

cumulative density function (CDF). Repeating this procedure for different temperatures 

within full range of temperature under consideration, the CDF’s and uncertainty at different 

temperatures has been obtained.  

Next section is based on fuzzy set theory. The membership function graph of output TL 

emission intensity is generated assuming the triangular membership function graph for input 

parameters at one temperature. From this membership function of TL intensity uncertainty 

was calculated. Repeating the process for different temperatures effect of temperature on 

uncertainty could be studied. 

Last section is devoted to polynomial chaos technique. Based on this technique PDF (and 

corresponding CDF) of output TL is generated and corresponding visualization representing 

uncertainty is produced. Repetition at different temperatures in experimentally relevant range 

of temperature is done. 

A manuscript has been communicated based on findings of this chapter. 

Chapter 5. Deconvolution of TL glow curve 

In this chapter after discussing the prerequisites like conditional probability, Baye’s theorem, 

Posterior probability, Maximum likelihood estimation (MLE), and Expectation Maximization 

(EM), our algorithm developed for deconvolution is presented. Further we discuss 

mathematical aspects for following three cases. 
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1. Gaussian Glow peaks: In this case each individual TL peak is assumed to be Gaussian 

and corresponding values of the parameters, mean and standard deviation are 

calculated using EM algorithm.  

2. First order peaks:  Assuming each peak (normalised with respect to area) to be of first 

order kinetics, there are two parameters in the expression of TL intensity predicted by 

RW model, trap depth and pre exponential factor. These are related by a formula 

which involves peak temperature and heating rate. Pre exponential factor has been 

eliminated from RW equation using the mentioned formula. Hence, a TL intensity 

equation in only one variable i.e. trap depth is obtained. Its value is obtained by our 

algorithm using a computer program. 

3. General order peaks: Each peak is assumed to be of general order kinetics and the 

parameters of each peak, trap depth, modified pre exponential factor and order of 

kinetics are estimated for each peak. 

Second order peaks case is not discussed as it comes under preview of general order case. 

Further results are validated with simulated glow curves. Following this, a fully fledged 

deconvolution of experimental glow curve of CaSO4: Dy has been done. Comprision with 

simulated glow curve of GLOCANIN project is also there.   

 Chapter 6. Summary and future directions 

The thesis concludes with summary of each chapter and probable future directions. 

1.10 Scope of the thesis 

This dissertation is limited to photon (including high and low energy) irradiation, beta and 

neutron irradiation are kept out of context. Another point which is worth to mention at this 

point is main focus is on RW, GG and MP models of TL kinetics and more realistic 
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delocalised models, which are basically extensions of these models. The discussion on mixed 

order kinetics is very limited. Also, the discussion on localised transition models is only 

limited to the context of fading. 

1.11 Milestones in thesis period   

  Five major achievements during the period of thesis are documented. 

Origin of Residual TL 

The origin of Residual TL, which is one of the sources of deviation from true dose in TL 

based dosimetry, has been investigated. Results of theoretical model and experiments are 

matching to a reasonable extent. 

Theoretical explanation of experimental facts of fading 

Afterglow from thermoluminescent material was mostly investigated experimentally. 

Theoretical explanation of experimental findings has been one of the achievements of this 

dissertation. 

 Non linearity is general nature of afterglow 

It has been established that non linearity is general feature of afterglow. 

Novel technique for deconvolution 

A novel methodology of deconvolution of TL signal based on EM and MLE has been 

developed. It has been validated with simulated glow curve, and deconvolution of 

experimental glow curve of CaSO4: Dy has been carried out. 
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Parametric uncertainty analysis of RW, GG and MP models 

A Monte Carlo, fuzzy set theory and Polynomial chaos expansion based study for parametric 

uncertainty analysis of RW, GG and MP models has been conducted. 

A manuscript is communicated based on findings of this chapter.  

 

 



CHAPTER II: Basic TL models and estimation of glow curve 
 

40 
 

                                                      CHAPTER II 

            Basic TL Models and estimation of Glow Curve 

When the thermoluminescent material (known as phosphor) is exposed to ionising radiation, 

electrons and holes are generated. The electrons translate through the crystal in conduction 

band and holes in valence band. While translating they get trapped in trap centres. The origin 

of these trap centres are defect centres in the material. With these charge carriers trapped in 

defect centres the system (material under investigation) goes to a metastable state. The 

material can stay in this metastable state for fairly a long period (years) unless the charge 

carriers get sufficient energy (thermal stimulus) to get into respective energy bands, where 

they are relatively free.  

The rate of excitation from trap centres is given by Arrhenius law which is based on general 

account of conditions given by Gibbs [Gibbs, 1972]. 

Arrhenius law is given by equation (2.1) 

𝑅 = 𝑓 exp(−
஽

௄்
)                                                                                                                   (2.1) 

Where 

𝑅 is rate of excitation per unit time from trap. 

𝐷 is trap depth 

𝑓 is attempt to escape frequency. Physically it reflects number of attempts charge carrier 

make per unit time to escape from the trap.  

𝑇 is Temperature in degree Kelvin. 
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K is Boltzmann constant 

2.1 Traditional Approach 

In this approach the rate equations are written at during stimulation (section 2.1.1) and are 

further analysed using quasi equilibrium approximation (2.1.2) to arrive at general one trap 

model (GOT) / One trap one recombination centre model (OTOR). The obtained equation is 

further analysed in different approximations and modifications.  

2.1.1 Rate Equations 

The phenomenon of themoluminescence can be modelled using rate equation. Rates equation 

gives the rate of change of charge carriers in various energy levels. These equations can be 

further solved with certain approximations to arrive at various expression of TL. 

 

Figure 2.1 Schematic diagram for rate equations assuming only electron to be freed by the 

thermal stimulus. (A) Excitation from trap (B) Re-trapping (C) Radiative Recombination  

Assuming only electrons to be freed by the thermal stimulus, the rate equations when the 

material is thermally stimulated can be written as 

ௗ஼೎

ௗ௧
=  𝐶௧ 𝑅 −  𝐶௖ ( 𝐶் − 𝐶௧) 𝐵௧ −  𝐶௖ 𝐶௥ 𝐵௧௥                                                                       (2.2) 

Conduction band 

Valence Band 

Electron Trap  
Energy Level 

Recombination Centre Energy level (RC) 

(A) (B) 

(C) 
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ௗ஼ೡ

ௗ௧
= 0                                                                                                                                  (2.3) 

ௗ஼೟

ௗ௧
=  𝐶௖ ( 𝐶் − 𝐶௧) 𝐵௧ − 𝐶௧ 𝑅                                                                                             (2.4) 

ௗ஼ೝ

ௗ௧
=  − 𝐶௖ 𝐶௥ 𝐵௧௥                                                                                                                (2.5) 

It can be seen from equation (2.2) to equation (2.5) that 

ௗ஼೎

ௗ௧
=   

ௗ஼ೝ

ௗ௧
 −

ௗ஼೟

ௗ௧
                                                                                                                  (2.6) 

Applying charge neutrality we have 

𝐶௖ +  𝐶௧ = 𝐶௥                                                                                                                       (2.7) 

The TL luminescence is given by 

𝐿 =  −
ௗ஼ೝ

ௗ௧
                                                                                                                            (2.8) 

Where 

𝐶௧ = Concentration trapped electron at time t (m-3) 

𝐶௥ = Concentration of recombination centre at time t (m-3) 

𝐶௖ = Concentration of electron in conduction band at time t (m-3) 

𝐶் = Concentration of total number of electron traps (m-3) 

𝐵௧௥= Coefficient for probability of electron recombining with holes in RC (m3/s) 

𝐵௧= Coefficient for probability of electron re-trapping in electron traps (m3/s) 

𝐿 = Luminescence intensity 

𝑡 = Time in seconds 
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2.1.2 Quasi Equilibrium Condition 

Quasi equilibrium (QE) approximation says that the rate of change of charge carrier 

concentration in conduction band is very small as compared to rate of change of charge 

carrier concentration in electron traps or RC. Mathematically it can be framed as 

ቚ
ௗ஼೎

ௗ௧
ቚ ≪ ቚ

ௗ஼ೝ

ௗ௧
 ቚ  ,    ቚ

ௗ஼೟

ௗ௧
 ቚ                                                                                                          (2.9) 

When combined with the initial condition  

𝐶௖ (𝑡 = 0) = 0                                                                                                                    (2.10) 

It gives 

𝐶௖ ~ 0                                                                                                                               (2.11) 

This physically means that in conduction band there is no accumulation of charge carriers. In 

other words charge carrier concentration in conduction band is quasi stationary. Or in other 

words we can say as many charge carriers are going into the conduction band per unit time, 

nearly same number is coming out of the conduction band per unit time.  

Using quasi equilibrium condition we can simplify the rate equations. 

 Using equation (2.2) and equation (2.9) we can write 

0 =  𝐶௧ 𝑅 −  𝐶௖ ( 𝐶் − 𝐶௧) 𝐵௧ −  𝐶௖ 𝐶௥ 𝐵௧௥                                                                        (2.12) 

⟾ 𝐶௖ =  
஼೟ ோ

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
                                                                                                (2.13) 

Putting the result of equation (2.13) into equation (2.5) we get 

ௗ஼ೝ

ௗ௧
=  − 

஼೟ ோ

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
𝐶௥ 𝐵௧௥                                                                                        (2.14) 
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Using equation (2.8) we get 

𝐿 =
஼೟ ோ஼ೝ ஻೟ೝ

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
                                                                                                           (2.15) 

This can be rewritten as 

𝐿 = 𝐶௧ 𝑅[ 1 −  
( ஼೅ି஼೟) ஻೟

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
 ]                                                                                       (2.16)    

Equation (2.15) and equation (2.16) is known as general one trap one recombination centre 

(OTOR) model [Levy, 1985; Levy 1991]. 

 2.1.3 First Order Kinetics 

The approximation of first order kinetics            

The equation (2.15) can be simplified further [Randall and Wilkins, 1945a; Randall and 

Wilkins, 1945b] with an approximation  

 𝐶௥ 𝐵௧௥ ≫ ( 𝐶் − 𝐶௧) 𝐵௧                                                                                                      (2.17) 

This physically means that the probability of re-trapping in an electron trap is very small as 

compared to the probability of recombination at a recombination cite for an electron 

translating in conduction band. It may be kept in mind that till present discussion we have 

assumed that only electrons are freed by the thermal stimulus and not the holes. 

First Order Phosphorescence decay 

In this approximation equation (2.15) boils down to  

𝐿 = 𝐶௧ 𝑅                                                                                                                            (2.18) 

We may arrive at equation (2.19) using equation (2.6), (2.8) and (2.9) 



CHAPTER II: Basic TL models and estimation of glow curve 
 

45 
 

  𝐿~  −
ௗ஼೟

ௗ௧
                                                                                                                           (2.19) 

Using equation (2.18) and equation (2.19) we get 

 −
ௗ஼೟

ௗ௧
= 𝐶௧ 𝑅                                                                                                                       (2.20) 

It may be noticed from equation (2.20) that in present approximation 

 −
ௗ஼೟

ௗ௧
  𝐶௧                                                                                                                           (2.21) 

Which reflects rate of change of charge carrier concentration is proportional to charge carrier 

concentration raised to power unity. This is the origin of name 1st order kinetics. 

Further equation (2.20) may be solved at a constant temperature to get phosphorescence 

emission intensity as function of time.  

Solution of differential equation (2.20) is 

𝐶௧ = exp(−𝑅𝑡)                                                                                                                  (2.22) 

Putting the result of equation (2.22) in equation (2.20) and using equation (2.19) we arrive at 

the phosphorescence decay formula 

𝐿 = 𝐿଴ exp(−𝑅𝑡)                                                                                                                (2.23) 

First Order Themoluminescence 

Equation (2.20) can be rewritten as  

−
ௗ஼೟

ௗ௧
= 𝐶௧ 𝑓 exp(−

஽

௄்
)                                                                                                      (2.24) 

Equation (2.24) can be solved with a linear heating profile  

𝑇 =  𝑇଴  +   𝑡                                                                                                                     (2.25) 
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Solution of equation (2.24) is as below 

𝐶௧ = 𝐶௧଴ exp(−
௙


  ∫ exp(−

஽

௄Ɵ
) 𝑑Ɵ)

்

బ்
                                                                                (2.26) 

Putting in equation (2.24) and using equation (2.19) we can arrive at 

𝐿்௅ = 𝐶௧଴ 𝑓 exp(−
஽

௄்
) exp(−

௙


  ∫ exp(−

஽

௄Ɵ
) 𝑑Ɵ)

்

బ்
                                                          (2.27) 

This is famous Randall and Wilkins equation for first order kinetics. 

Equation (2.27) can be written in a transformed form [Kitis et al., 1998]  

𝐿(𝑇) = 𝐿௠exp [1 +
஽

௄்
 
்ି ೘்

೘்
−

்మ

೘்
మ exp ቀ

஽

௄்
 
்ି ೘்

೘்
ቁ (1 − Ѵ) − Ѵ௠]                                (2.27b) 

Where 

Ѵ = 2𝐾𝑇/𝐷  

Ѵ௠ = 2𝐾𝑇௠/𝐷  

𝑇௠ = Peak temperature 

𝐿௠= Peak Intensity 

2.1.4 Second Order Kinetics 

The approximation of second order kinetics              

Equation (2.16) was developed further by other authors [Garlick and Gibson, 1948] with a 

different set of approximations. 

Basic approximation is  

𝐶௥ 𝐵௧௥ ≪ ( 𝐶் − 𝐶௧) 𝐵௧                                                                                                       (2.28) 
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This approximation physically means that there is a high re-trapping probability for electrons 

escaping from traps by the thermal stimulus as compared to recombination probability at RC. 

Additional approximations are  

𝐶் ≫  𝐶௧                                                                                                                              (2.29) 

𝐶௧~ 𝐶௥                                                                                                                                 (2.30) 

𝐵௧௥ =  𝐵௧                                                                                                                             (2.31) 

Using equation (2.29), equation (2.16) becomes 

𝐿 = 𝐶௧ 𝑅[ 1 −  
( ஼೅) ஻೟

(஼೅) ஻೟ା  ஼ೝ ஻೟ೝ
 ]                                                                                             (2.32) 

⟾ 𝐿 = 𝐶௧ 𝑅 [ 
஼ೝ ஻೟ೝ

(஼೅) ஻೟ା  ஼ೝ ஻೟ೝ
]                                                                                                           (2.33) 

Using equation (2.31) we get 

𝐿 = 𝐶௧ 𝑅 [ 
஼ೝ 

஼೅ ା  ஼ೝ 
]                                                                                                                            (2.34)                                                                                                           

Using equation (2.30) we get 

𝐿 = 𝐶௧ 𝑅 [ 
஼೟ 

஼೅ ା  ஼೟ 
]                                                                                                                           (2.35) 

Using equation (2.29) again we get 

𝐿 =  𝐶௧
ଶ ோ

஼೅
                                                                                                                                          (2.36) 

Using equation (2.1) we get 

𝐿 =  𝐶௧
ଶ

௙௘௫௣ (ି
ವ

಼೅
)

஼೅
                                                                                                                              (2.37)         

Putting 𝑓ᇱ = 𝑓/𝐶்  we get 
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  𝐿 =  𝐶௧
ଶ 𝑓′𝑒𝑥𝑝 (−

஽

௄்
)                                                                                                                    (2.38)      

Using equation (2.19) we may arrive at 

ௗ஼೟

ௗ௧
= −𝐶௧

ଶ 𝑓′𝑒𝑥𝑝 (−
஽

௄்
)                                                                                                                 (2.39) 

ௗ஼೟

ௗ௧
  𝐶௧

ଶ                                                                                                                                              (2.40) 

It may be noted that the rate of change of charge carrier’s concentration in conduction 

band is proportional to concentration of charge carrier raised to the power two. This is 

the origin of name 2nd order kinetics. 

Second Order Phosphorescence decay   

Using equation (2.39) we may write 

ௗ஼೟

ௗ௧
= −𝐶௧

ଶ 𝑅଴                                                                                                                     (2.41) 

Where    

𝑅଴ = 𝑓′𝑒𝑥𝑝 (−
஽

௄்
)                                                                                                            (2.42) 

The solution of differential equation given by equation (2.41) is  

𝐶௧ =  
஼೟బ

ଵା  ோబ  ஼೟బ ௧
                                                                                                                   (2.43) 

Putting the value of 𝐶௧ from equation (2.43) into equation (2.41) we get 

ௗ஼೟

ௗ௧
= −(

஼೟బ

ଵା  ோబ ஼೟బ ௧
)ଶ 𝑅଴                                                                                                                   (2.44) 

Using the result of equation (2.19) we may write 
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𝐿 =
௅బ

(ଵା ோబ ஼೟బ ௧)మ
                                                                                                                                 (2.45) 

This is the expression for phosphorescence decay for 2nd order of kinetics. 

Second Order Themoluminescence  

To get the TL emission intensity for 2nd order kinetics of thermoluminescence we have to 

solve equation (2.39) with a linear heating profile of equation (2.25). 

The solution is  

𝐶௧ =
஼೟బ

ଵା  
಴೟బ ೑′
 ∫ ୣ୶୮(ି

ವ

಼Ɵ
)ௗƟ

೅
೅బ

                                                                                                              (2.46)  

Putting this solution in equation (2.39) we get 

 
ௗ஼೟

ௗ௧
= −𝐶௧଴

ଶ  𝑓′𝑒𝑥𝑝 ቀ−
஽

௄்
ቁ [1 +   

஼೟బ ௙′

 ∫ exp ቀ−
஽

௄Ɵ
ቁ 𝑑Ɵ

்

బ்
]ିଶ                                                  (2.47)   

Using equation (2.19) we may write 

𝐿்௅ = 𝐶௧଴
ଶ  𝑓′𝑒𝑥𝑝 ቀ−

஽

௄்
ቁ [1 +   

஼೟బ ௙′

 ∫ exp ቀ−
஽

௄Ɵ
ቁ 𝑑Ɵ

்

బ்
]ିଶ                                                     (2.48) 

This is the famous Garlick and Gibson equation for 2nd order kinetics of thermoluminescence. 

Equation (2.48) can be written in a transformed form 

𝐿(𝑇) = 4𝐿௠ exp ቂ
஽

௄்
 
்ି ೘்

೘்
ቃ [

்మ

೘்
మ (1 − Ѵ) exp ቀ

஽

௄்
 
்ି ೘்

೘்
ቁ + 1 + Ѵ௠]ିଶ                           (2.48b) 

Where 

Ѵ = 2𝐾𝑇/𝐷  

Ѵ௠ = 2𝐾𝑇௠/𝐷  
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𝑇௠ = Peak temperature 

𝐿௠= Peak Intensity 

2.1.5 General Order Kinetics  

The expressions of Randall - Wilkins and Garlick – Gibson discussed so far are based on 

relative magnitude of re trapping and recombination probabilities. With time there was 

development of empirical expressions for TL kinetics.  

Contribution of May and Partridge  

Just in analogy with expressions of first and second order kinetics May and Partridge [1964] 

discovered differential equation for TL kinetics which is known as General Order kinetics 

equation 

  𝐿 =  𝐶௧
௕ 𝑓′𝑒𝑥𝑝 (−

஽

௄்
)                                                                                                                    (2.49)    

Where  𝑏 is a scalar parameter, known as parameter for general order kinetics.  

Using equation (2.19) we may arrive at 

ௗ஼೟

ௗ௧
= −𝐶௧

௕ 𝑓′𝑒𝑥𝑝 (−
஽

௄்
)                                                                                                                 (2.50) 

The solution of above differential equation is  

𝐶௧ =  𝐶௧଴ [ 1 + (𝑏 − 1)
௙ᇲᇲ


 ∫ exp(−

஽

௄்
)]

்

బ்

భ

భష್
                                                                            (2.51) 

Where 𝑓ᇱᇱ = 𝑓ᇱ𝐶௧଴
௕ିଵ 

Putting this solution back to equation (2.49) we get the expression for TL emission 

intensity 
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𝐿்௅ =  𝑓ᇱᇱ𝐶௧଴ 𝑒𝑥𝑝 ቀ−
஽

௄்
ቁ [ 1 + (𝑏 − 1)

௙ᇲᇲ


 ∫ exp(−

஽

௄்
)]

்

బ்

್

భష್
                                              (2.52)   

Rasheedy’s contribution 

In above expression there is difficulty. The dimension of the parameter associated with 

frequency factor (𝑓ᇱᇱ) changes with order of kinetics. Rasheedy’s contribution was 

mainly in direction of removing this difficulty. 

He wrote the equation in following form [Rasheedy, 1993]                                                                                                                 

𝐿 = −
஼೟

್

஼೅
್షభ  𝑓𝑒𝑥𝑝 (−

஽

௄்
)                                                                                                                 (2.53) 

⟾ 𝐿்௅ =  𝐶௧଴
௕  𝑓 𝑒𝑥𝑝 ቀ−

஽

௄்
ቁ 𝐶்଴

(ଵି௕)
[ 1 + 𝑓(𝑏 − 1)

൬
಴೟బ
಴೅

൰
(್షభ)


 ∫ exp(−

஽

௄்
)]

்

బ்

ష್

భష್

               (2.54) 

Both of the expressions of general order kinetics equation (2.52) and equation (2.54) 

are not valid for b=1. But both of them boil down to first order kinetics equation as b 

tends to 1 [Chen, 1969]. 

The general order kinetics expression can be written in a transformed form as  

𝐿(𝑇) = 𝐿௠𝑏 
ష್

భష್  exp ቂ
஽

௄்
 
்ି ೘்

೘்
ቃ [ (𝑏 − 1)(1 − Ѵ)

்మ

೘்
మ  exp ቂ

஽

௄்
 
்ି ೘்

೘்
ቃ + 𝑧௠]

ష್

భష್               (2.54b) 

Ѵ = 2𝐾𝑇/𝐷  

Ѵ௠ = 2𝐾𝑇௠/𝐷  

𝑇௠ = Peak temperature 

𝐿௠= Peak Intensity 

𝑧௠ = 1 + (𝑏 − 1)Ѵ௠  
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2.1.6 Mixed Order Kinetics 

So far the developed equations are based on One trap One recombination centre (OTOR) 

model. But realistically there will be no material which will have exactly one trapping site. 

Even if we take temperature range where only one peak is active there will always be traps 

which are deeper than this trap in the material, though they are “thermally disconnected”. 

This concept has attracted the attention of many authors [Dussel and Bube, 1967; Saunders, 

1969; Kelly and Braunlich, 1970].  

  One can write the rate equations in this case and solve using QE approximation. Following 

the work of Kelly and Braunich we directly arrive at the equivalent expression for OTOR 

model (equation 2.15)  in this  two trap case.   

𝐿 =
஼೟  ௙ ୣ୶୮(ି

ವ

಼೅
) (஼೟ା ஼೓ )  ஻೟ೝ

( ஼೅ି஼೟) ஻೟ା ( ஼೟ା஼೓ )  ஻೟ೝ
                                                                                                           (2.55) 

Where we have substituted the value of 𝐶௥ in equation (2.15).  

𝐶௛ = Charge carrier concentration in deeper trap. 

Let us obtain the expression for 𝐶௥ using physical arguments. 

We will term the trap type which is under investigation as dosemetric trap and the trap that is 

deeper than this as the deeper trap. 

Charge neutrality dictates 

𝐶௖ +  𝐶௧ +  𝐶௛ = 𝐶௥                                                                                                           (2.56)                               

Using the extension of QE (equation 2.11) we can write 

𝐶௖~ 0                                                                                                                                 
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Hence equation (2.56) becomes 

𝐶௧ +  𝐶௛ = 𝐶௥                                                                                                                      (2.57) 

Using the result of equation (2.57) and following the work of Kelly and Braunich we arrive at 

equation (2.55) which is equivalent of equation (2.15). 

We can further solve equation (2.55). 

Assuming  𝐵௧ = 𝐵௧௥ we get 

𝐿 =
஼೟  ௙ ୣ୶୮(ି

ವ

಼೅
) (஼೟ା ஼೓ ) 

஼೅ ା஼೓ 
                                                                                                     (2.58) 

⟾ 𝐿 = 𝐶௧  𝑓
∗ exp(−

஽

௄்
) (𝐶௧ +  𝐶௛ )                                                                                           (2.59) 

⟾ 𝐿 = 𝐶௧ 
ଶ 𝑓∗ exp(−

஽

௄்
) + 𝐶௧  𝐶௛ 𝑓

∗ exp(−
஽

௄்
)                                                                      (2.60) 

For  𝐶௛ ≪ 𝐶௧ equation (2.60) reduces to second order kinetics equation and for 𝐶௛ ≫ 𝐶௧ , it 

reduces to first order kinetics equation.  

Following Chen [Chen et al, 1981] we may write the solution of equation (2.60)  

𝐿்௅ =  
௙∗ ஼೓ 

మ ୣ୶୮{ ൬
಴೓  ೑

∗

 ൰ ∫ ୣ୶୮ቀି
ವ

಼Ɵ
 ௗƟቁ} ୣ୶୮(ି

ీ

ే౐
)

೅
೅బ

 

[ୣ୶୮{ ൬
಴೓  ೑

∗

 ൰ ∫ ୣ୶୮ቀି
ವ

಼Ɵ
 ௗƟቁ}ି]

೅
೅బ

 మ
                                                              (2.61) 

where 

 =  C୲଴/(C୲଴ +  C୦)  

The transformed form of mixed order kinetics expression may be found in literature [Kitis 

and Gomez-Ros, 2000]. 
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2.1.7 Some more realistic delocalised models 

By the treatment so far it is clear that glow curve is fully described by four parameters 

𝑓, 𝐷, 𝐶௧଴ and 𝑏 (or ). With certain assumptions the complex rate equations can reduce to 

equations first, second and general (or mixed) order kinetics. Perhaps the most important of 

these assumptions are  

                      ቚ
ௗ஼೎

ௗ௧
ቚ ~ 0     The quasi equilibrium approximation (QE)                              (2.62)                                          

And              𝐶௛ = 𝐶ு       Non interactive kinetics approximation (NIK)                         (2.63) 

where  𝐶ு is concentration of deeper traps. 

Several authors have extended the basic models with these assumptions and many others 

have examined the applicability of these approximations. 

Extension of basic models 

There is a plethora of results discussing extension of basic models. We will start with a work 

that gives physical interpretation to otherwise empirically developed general order kinetics. 

In this work [Christodoulides, 1990] physical interpretation to parameters 𝑓′ and 𝑏 of general 

order kinetics equations are developed. A Gamma () distribution in ln(𝑓) was assumed and 

was applied to first order kinetics. By doing so general order kinetics equation was derived. 

Hence, in this interpretation 𝑓′ and 𝑏 of general order kinetics equation are characteristic 

parameters of ln(𝑓) distribution. 

By comparing the results of general order kinetics (equation 2.52 or 2.54) and the expression 

of mixed order kinetics (equation 2.61) discussed above and by applying certain assumption 

(𝐶௛ = 𝐶ு, 𝐶௧଴ = 𝐶் , 𝑓ᇱ = 𝑓𝐶௧଴
ଵି௕) Opanowicz [Opanowicz, 1989] found temperature 

dependence of order of kinetics 𝑏(𝑇). He found 𝑏(𝑇) to be highly temperature dependent in 
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contrast with the discussion so far where order of kinetics 𝑏 was just assumed to be a constant 

parameter.  

Till present discussion we have assumed localised energy states are single valued well 

defined energy levels. This is true for ideal defect in ideal crystal. But in actual defective 

crystal or especially amorphous material, there will be a spread in energy for energy level 

associated with a defect. This may be because of variation in bond length and bond angles for 

nearest neighbours. In case of amorphous material one has to compulsory talk about mobility 

gap where there is a spread of energy levels near Fermi level [Mott and Davies, 1979]. 

Several kind of distribution have been discussed in literature like linear, exponential and 

many more [Lampert and Mark, 1970; Meldin, 1961; Grenet et al, 1973;  Kao and Hwang, 

1981]. Detailed discussion with Gaussian [Hornyak and Franklin, 1988] and uniform [ 

Hronyak and Chen, 1989] distributions are present in literature. It is also possible to fragment 

the energy range numerically into discrete sets and superimpose the TL of all to get the glow 

curve. Though, this method has limitation as discussed in next topic (Approaches without QE 

and NIK).  

A distribution in recombination centre may cause distortion in glow curve structure. A 

distribution in capture cross section leads to a distribution in pre exponential factor. Rudlof et 

al [Rudlof et al., 1978] has assumed Gaussian distribution in pre exponential factor. 

In further discussion we can assume both electron and holes are freed by thermal stimulus. 

Hence,  
ௗ௡ೡ

ௗ௧
≠ 0 and rate equations can be modified accordingly. This case was discussed by 

Schon [Schon M., 1942] and later by Klasen [Klasen, 1946]. 

In this case 

𝐿்௅ ≠  −
ௗ஼೟

ௗ௧
                                                                                                                       (2.64) 
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But 𝐿்௅ =  𝐿்௅஼೟
+  𝐿்௅஼ೝ

                                                                                                  (2.65) 

⟾ 𝐿்௅ =   𝐶௖𝐶௥𝐵௧௥ +  𝐶௩𝐶௧𝐵௥௧                                                                                         (2.66) 

Where symbols have following meaning 

   𝐶௖ = Charge carrier concentration in conduction band. 

   𝐶௥ = Charge carrier concentration in recombination site for electrons. 

   𝐶௩= Charge carrier concentration in valence band. 

  𝐶௧= Charge carrier concentration in recombination site for holes. 

   𝐵௧௥= Probability coefficient for an electron in conduction band to recombine at a 

recombination site for electrons. 

   𝐵௥௧= Probability coefficient for a hole in valence band to recombine at a recombination site 

for holes. 

Approaches without QE and NIK 

It is possible to write equations for flow of charge carrier for a set of traps relevant to a 

particular material. Further, the question arises how to solve the obtained set of obtained 

differential equations to get the TL emission intensity. One approach is of Levy [Levy, 1985; 

Levy, 1991], as discussed above, who kept the assumption of QE approximation and obtained 

analytical expression for TL emission intensity. An alternative approach is of other author 

[Bull et al., 1986]. He solved the set of equations for a set of traps numerically. As the 

solution was obtained numerically QE was not there. Conclusion of his work is if re trapping 

is negligible in that case glow curve obtained numerically can be obtained by superposition of 

set of Randall Wilkins type equations (equation 1.27). But if re trapping is dominant in that 
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case superposition of 2nd or general order kinetics equations may not give the actual glow 

curve. 

Certainly numerical solution of rate equation is one approach which is without these 

approximations. Few authors have solved the Schon-Klasen rate equations numerically 

[Mckeever et al., 1985]. 

Various authors have discussed applicability of QE approximation [Maxia, 1978; Maxia, 

1980; Shenker and Chen, 1972; Kelly et.al., 1971]. 

An entirely different approach is also present in literature where QE and NIK approximations 

are totally abandoned and analysis is based on two meaning functions P and Q [Lewandowski 

and Mckeever, 1991; Mckeever et al., 1993; Lewandowski et al. 1994]. 

It is pertinent to mention that in section 2.7 we have discussed some works which are ahead 

of basic models but in no way we claim that the list is exhaustive, as there is very vast 

amount of literature is available in the domain. 

 2.1.8 Localized transition models   

Looking at the mechanism of Figure 2.2, it is possible to have two types of models. One is, in 

which phenomenon of tunnelling takes place directly between trap and recombination centre. 

This happens because of spatial closeness of trapping and recombination sites. If the wave 

function of charge carrier in trapping and recombination sites overlaps appreciably then this   
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               Figure 2.2 Electron transition involving localised energy levels.    

(A) is the process of direct recombination from trap to recombination centre. (B) is the 

process of recombination mediated through excited state.      

type of mechanism is dominant. This type of mechanism has been suggested in various 

phosphor material [Delbecq et al, 1974; Visocekas  et al, 1976; Visocekas, 1985; Visocekas, 

1988]. This mechanism will be discussed in chapter two under heading “Fading”. 

  Another possibility is that charge carrier is first excited to a higher localised energy state 

and further tunnels to the recombination site. The rate equations for this type of mechanism is 

suggested in the pioneering work of Halperin and Braner [Haperin and Braner, (1960)] 

𝐿்௅ =  −
ௗ஼ೝ

ௗ௧
=  𝐶௘𝐶௥𝐵௥௘                                                                                                (2.67) 

ௗ஼೟

ௗ௧
= 𝑓𝐶௘ −  𝑓 exp(−

஽೐

௄்
)                                                                                               (2.68) 

 
ௗ஼೐

ௗ௧
= 𝑓 𝐶௧ exp(−

஽೐

௄்
) −  𝐶௘(𝐶௥𝐵௥௘ + 𝑓)                                                                        (2.69) 

Valence Band 

A 
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Ground 
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B 

Ground 
State  
Trap (t) 

Conduction Band 
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It can be shown by principal of detailed balance that the rate of retrapping in this type of 

transition is given by 𝑓𝐶௘ [Halperin and Braner, 1960]. Another author [Chen, 1976] replaced 

the term 𝐶௥𝐵௥௘ in equation (2.67) and equation (2.69) by a constant probability term, say . 

With these replacements the rate equations become 

𝐿்௅ =  −
ௗ஼ೝ

ௗ௧
=  𝐶௘                                                                                                         (2.70) 

ௗ஼೟

ௗ௧
= 𝑓𝐶௘ −  𝑓 exp(−

஽೐

௄்
)                                                                                                (2.71) 

ௗ஼೐

ௗ௧
= 𝑓 𝐶௧ exp(−

஽೐

௄்
) −  𝐶௘( + 𝑓)                                                                                 (2.72) 

Charge neutrality dictates 

𝐶௥ = 𝐶௧ + 𝐶௘                                                                                                                    (2.73) 

Assuming quasi equilibrium we have 

ௗ஼೐

ௗ௧
 ~ 0                                                                                                                                 (2.74) 

Combining with the initial condition 

𝐶௘଴ = 0                                                                                                                              (2.75) 

We arrive at 

𝐶௘~ 0                                                                                                                                (2.76) 

Putting the result of equation (2.76) in equation (2.73) we get 

𝐶௥ ~ 𝐶௧                                                                                                                              (2.77) 

 We can solve equation (2.72) using QE approximation 
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  𝐶௘ =  
௙ ஼೟ ୣ୶୮(ି

ವ೐
಼೅

)

(ା௙)
                                                                                                            (2.78) 

Putting the result of equation (2.78) in equation (2.70) we arrive at 

𝐿்௅ =
௙ ஼೟ ୣ୶୮(ି

ವ೐
಼೅

)

(ା௙)
                                                                                                           (2.79) 

Case I: 𝑓 ≫   

𝐿்௅ =   𝐶௧ exp(−
஽೐

௄்
)                                                                                                     (2.80)         

Case II:    𝑓 ≪   

 𝐿்௅ =  𝑓 𝐶௧ exp(−
஽೐

௄்
)                                                                                                    (2.81) 

In both the conditions we get first order kinetics type of equation. Hence localised transition 

following this mechanism always follows first order kinetics. The only difference is the 

magnitude of the term that is place of frequency factor.  

2.2 Master equation approach 

2.2.1 Analytical Solution of GOT / OTOR model 

Equation (2.15) and equation (2.16) are General One Trap (GOT) / One Trap One 

Recombination centre (OTOR) model equation [Adirovitch, 1956; Halperin and Braner, 

1960; Chen and Mckeever, 1997]. For decades it was not solved analytically. After five 

decades analytical solution was obtained by Kitis and Vlachos [2013] using Lambert W 

function and later by Lovedy Singh and Gartia [2013] using Wright Omega function. These 

approaches will be briefed here.  
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Analytical solution of GOT/OTOR model using Lambert W function 

From equation (2.15) we have the      

𝐿 =
஼೟ ோ஼ೝ ஻೟ೝ

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
                                                                                                         (2.82) 

By equation (2.19) we have 

𝐿~  −
ௗ஼೟

ௗ௧
                                                                                                                           (2.83) 

By equation (2.82) and equation (2.83) we arrive at 

- 
ௗ஼೟

ௗ௧
=

஼೟ ோ஼ೝ ஻೟ೝ

( ஼೅ି஼೟) ஻೟ା  ஼ೝ ஻೟ೝ
                                                                                                     (2.84) 

Using approximation 𝐶௧~𝐶௥ and 
஻೟

஻೟ೝ
= 𝐵 we get 

−
ௗ஼೟

ௗ௧
=

஼೟
మோ

( ஼೅ି஼೟) ஻ା  ஼೟
                                                                                                          (2.85) 

Rearranging equation (2.85) we get  

𝐶௧ 𝐵 ∫
ௗ஼೟

஼೟
మ

஼೟

஼೟బ
+  (1 − 𝐵) ∫

ௗ஼೟

஼೟

஼೟

஼೟బ
=  − ∫ 𝑅 𝑑𝑡

௧

௧଴
                                                                   (2.86) 

By doing some algebra we arrive at 

஼೟బ

஼೟
+  𝑐 ln ቀ 

஼೟బ

஼೟
 ቁ = 1 +

஼೟బ

஼೅஻
 ∫ 𝑅 𝑑𝑡

௧

௧଴
                                                                                 (2.87) 

Where  

𝑐 =  
஼೟బ

஼೅
  

ଵି஻

஻
                                                                                                                       (2.88) 

Case I                    𝒄 > 0  or 𝑩 =  
𝑩𝒕

𝑩𝒕𝒓
< 1 

In above case equation (2.87) becomes 
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஼೟బ

஼೟ ௖
+  ln ቀ 

஼೟బ

஼೟ ௖
 ቁ =

ଵ

௖
− ln (𝑐) +

஼೟బ

௖ ஼೅஻
 ∫  𝑅 𝑑𝑡

௧

௧଴
                                                                  (2.89) 

Equation (2.89) is transcendental equation of form 

𝑦 + ln 𝑦 = 𝑧                                                                                                                       (2.90) 

Where 

𝑦 =
஼೟బ

஼೟ ௖
                                                                                                                               (2.91) 

𝑧 =
ଵ

௖
− ln(𝑐) + 

஼೟బ

௖ ஼೅஻
 ∫  𝑅 𝑑𝑡

௧

௧଴
                                                                                         (2.92) 

Solution of equation (2.90) is Lambert W function [Corless et al., 1996; Corless et al., 1997] 

𝑦 = 𝑊 [𝑒௭]                                                                                                                        (2.93) 

By equation (2.91) and (2.88) we arrive at 

𝐶௧ =  
஼೅ ஻

(ଵି஻)
 𝑊 [𝑒௭]ିଵ                                                                                                         (2.94) 

Using equation (2.82) and with some algebra we arrive at  

𝐿 =  
஼೅ ஻

(ଵି஻)మ
  

ோ

ௐ [௘೥]ା ௐ [௘೥]మ
                                                                                                  (2.95) 

Where 

𝑧 =
ଵ

௖
− ln(𝑐) + 

௙

(ଵି஻)ఉ
 ∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

்଴
                                                                       (2.96) 

As it has been practiced in this chapter we would like to present equation (2.96) in a 

transformed form. Sadek et al. [2015] has done this transformation for first master equation 

from 𝐿 (𝐶௧଴, 𝐷, 𝑓, 𝐵, 𝑇)  to 𝐿 (𝐿௠, 𝐷, 𝑇௠, 𝐵, 𝑇) using the general procedure (as explained by 

Kitis et al. [2019]) 
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The final expression is  

𝐿 = 𝐿௠ exp( 
 ஽ (்ି ೘்)

௄ ் ೘்
)  [ 

ௐ ൣ௘೥భ೘൧ାௐ [௘೥భ೘]మ 

ௐ [௘೥భ]ା ௐ [௘೥భ]మ
                                                                     (2.97) 

Where 

𝑧1 =
ଵ

௖
− ln(𝑐) + 

஽ ୣ୶୮(
ವ

಼೅೘
)

௄ ೘்
మ   

ி (்,஽)

ଵିଵ.଴ହ ஻భ.మల
  

Where 

 𝑧1𝑚 = 𝑧1 at 𝑇 = 𝑇௠ and 𝐹 (𝑇, 𝐷) =  ∫ exp(−
஽

௄்
)

்

்଴
 

Case II                    𝒄 < 0  or 𝑩 =  
𝑩𝒕

𝑩𝒕𝒓
> 1 

As ln(𝑐) will become complex so we define 𝑐 = −|𝑐| and equation (2.89) will take the form 

஼೟బ

஼೟ |௖|
−  ln ቀ 

஼೟బ

஼೟ |௖|
 ቁ =

ଵ

|௖|
+ ln (|𝑐|) +

஼೟బ

|௖| ஼೅஻
 ∫  𝑅 𝑑𝑡

௧

௧଴
                                                        (2.98) 

Equation (2.98) is of the form 

𝑦 − ln 𝑦 = 𝑧                                                                                                                       (2.99) 

Where 

𝑦 =
஼೟బ

஼೟ |௖|
                                                                                                                            (2.100) 

𝑧 =
ଵ

|௖|
+ ln (|𝑐|) +

஼೟బ

|௖| ஼೅஻
 ∫  𝑅 𝑑𝑡

௧

௧଴
                                                                                 (2.101) 

For 𝑧 > 1 there are two branches of Lambert W function, but Kitis and Vlachos [2013] 

showed only one branch has physical significance. Hence, for 𝑐 < 0  the solution of equation 

(2.99) is  
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𝑦 = −𝑊 [−1, −𝑒ି௭]            

Using equation (2.100) and equation (2.88) we arrive at 

𝐶௧ = − 
஼೅ ஻

|(ଵି஻)|
 𝑊 [−1, −𝑒ି௭]ିଵ                                                                                     (2.102) 

Using equation (2.82) we can write  

𝐿 =  
஼೅ ஻

(ଵି஻)మ
  

ோ

ௐ [ିଵ,ି௘ష೥]ା ௐ [ିଵ,ି௘ష೥]మ
                                                                               (2.103) 

Equation (2.103) is the first master equation (solution of GOT/OTOR model) for  𝑐 < 0  or 

𝐵 =  
஻೟

஻೟ೝ
> 1. 

It can be presented in a transformed form by using the procedure explained by Kitis et al. 

[2019]. The final result as developed by Sadek et al. [2015] is 

𝐿 = 𝐿௠ exp( 
 ஽ (்ି ೘்)

௄ ் ೘்
)  [ 

ௐ ൣିଵ,ି௘ష೥మ೘൧ାௐ [ିଵ,ି௘ష೥మ೘]మ 

ௐ [ିଵ,ି௘ష೥మ]ା ௐ [ିଵ,ି௘ష೥మ]మ
                                                   (2.104) 

Where 

𝑧2 =
ଵ

|௖|
− ln(|𝑐|) + 

஽ ୣ୶୮(
ವ

಼೅೘
)

௄ ೘்
మ   

ி (்,஽)

ଶ.ଽ଺ଷିଷ.ଶସ ஻షబ.ళర
  

Where 𝑧2𝑚 = 𝑧2 at 𝑇 = 𝑇௠ and 𝐹 (𝑇, 𝐷) =  ∫ exp(−
஽

௄்
)

்

்଴
 

Analytical solution of OTOR/GOT model by Wright Omega function 

By equation (2.85) we have 

−
ௗ஼೟

ௗ௧
=

஼೟
మோ

( ஼೅ି஼೟) ஻ା  ஼೟
                                                                                                       (2.105) 

Using 
ௗ்

ௗ௧
=  𝛽 we may modify above equation as  
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−
ௗ஼೟

ௗ்
=

஼೟
మோ

ఉ [ ஼೅ ஻ା  ஼೟ (ଵି஻)]
                                                                                                 (2.106) 

Taking 𝑃(𝑇) = 𝑅/𝛽 and 𝐶௧ =
ଵ

௒
 equation (2.106) can be modified to  

ௗ௒

ௗ்
=  

௉(்)

஼೅ ஻ା
భషಳ

ೊ

                                                                                                                  (2.107) 

ௗ௒

ௗ்
=  

௒ ௉(்)/(ଵି஻)

௒ ஼೅
ಳ

భషಳ
 ାଵ

                                                                                                             (2.108) 

Making following substitutions 

𝑈 =
௒ ஼೅ ஻

ଵି஻
                                                                                                                        (2.109) 

𝑞(𝑇) =
௉(்)

ଵି஻
                                                                                                                      (2.110) 

We arrive at 

ௗ௎

ௗ்
=  

௎ ௤(்)

௎ାଵ
                                                                                                                       (2.111) 

𝑈 + log 𝑈 =  ∫ 𝑞(𝑇)𝑑𝑇    + 𝐶
்

்଴
                                                                                      (2.112) 

The value of integration constant can be found using initial condition at 𝑇 = 0 , 𝐶௧ = 𝐶௧଴  

Using equation (2.112) and substituting  

∫ 𝑞(𝑇)𝑑𝑇    + 𝐶
்

்଴
=  𝜒்  (𝑇)                                                                                            (2.113) 

We arrive at 

𝑈 + log 𝑈 = 𝜒்  (𝑇)                                                                                                         (2.114) 

Solution of above equation has contribution of various authors [Wright, 1959; Corless and 

Jeffrey, 2002; Lawrence et al., 2012] as 
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𝑈 = 𝑊(𝜒் (𝑇))                                                                                                               (2.115) 

Using equation (2.109), (2.106) and substitution 𝐶௧ =
ଵ

௒
 we can arrive at expression of TL 

intensity [Singh and Gartia, 2013] 

𝐿 =  
஼೅ ஻ ௙ ୣ୶୮(ି஽/௄்)

ఉ (ଵି஻)మ ௐ൫ఞ೅ (்)൯ (ଵାௐ൫ఞ೅ (்)൯) 
                                                                                 (2.116) 

Where  

𝜒் (𝑇) =  
௙

ఉ (ଵି஻)
 ∫ exp ቀ−

஽

௄்
ቁ  𝑑𝑇 

்

்଴
+  

஼೅ ஻

ଵି஻
 

ଵ

஼೟బ
 + log(

஼೅ ஻

ଵି஻
 

ଵ

஼೟బ
)                                 (2.117) 

The details of 𝑊(𝜒் (𝑇)) may be found in literature [Singh and Gartia, 2013]. 

The above equation is of the form 𝐿 (𝐷, 𝑓, 𝐵, 𝐶் , 𝐶௧଴) it can be transformed to the form 

𝐿 (𝐷, 𝑓, 𝐵) with two known parameters viz. 𝑇௠ and 𝐿௠. As derived by Singh and Gartia 

[2013] the final expression is written as 

𝐿 (𝑇) =  𝐿 (𝑇௠)
ௐ(ఞ೅ ( ೘்))

ௐ(ఞ೅ (்))
 ൤ 

ଵାௐ൫ఞ೅ ( ೘்)൯

ଵା ௐ൫ఞ೅ (்)൯
൨ exp[ 

஽

௄
  (

ଵ

೘்
−

ଵ

்
)]                                        (2.118) 

Where 

𝐿 (𝑇௠) and 𝜒் (𝑇௠) are for saturated case 𝐶் =  𝐶௧଴. 

Equation (2.118) represents 1st order kinetics for 𝐵 <
஼೟బ

ଵ଴଴ ஼೅ 
 and 2nd order case for 𝐵 = 

0.999. 

2.2.2 Analytical Solution of mixed order kinetics (MOK) model 

From equation (2.55) we get luminescence intensity expression for MOK 

𝐿 =
஼೟  ௙ ୣ୶୮(ି

ವ

಼೅
) (஼೟ା ஼೓ )  ஻೟ೝ

( ஼೅ି஼೟) ஻೟ା ( ஼೟ା஼೓ )  ஻೟ೝ
                                                                                            (2.119) 
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For ( 𝐶௧ + 𝐶௛ ) 𝐵௧௥ >>  ( 𝐶் − 𝐶௧) 𝐵௧ equation (2.119) reduces to 1st order Kinetics equation. 

For ( 𝐶௧ + 𝐶௛ ) 𝐵௧௥ ≪   ( 𝐶் − 𝐶௧) 𝐵௧ and 𝐶௧<< 𝐶் we can arrive at  

𝐿 =
஼೟  ோ (஼೟ା ஼೓ )  ஻೟ೝ

஼೅  ஻೟
                                                                                                        (2.120) 

With assuming,   𝐵௧=𝐵௧௥equation (2.119) reformulates to 

𝐿 =
஼೟  ோ (஼೟ା ஼೓ ) 

஼೅ି஼೓ 
                                                                                                              (2.121)                                                              

Equations (2.120) and equation (2.121) can be written together as 

𝐿 = 𝑔𝑅 𝐶௧ (𝐶௧ +  𝐶௛ )                                                                                                      (2.122) 

Where  

𝑔 = 𝐵௧௥/𝐶்  𝐵௧ or 𝑔 = 1/(𝐶் − 𝐶௛ ) in the respective equations. 

This is the differential equation for MOK model. Further, its analytical solution will be 

presented. 

By equation (2.19) and (2.122) we may write 

−
ௗ஼೟

ௗ்
= 𝑔𝑅𝐶௧(𝐶௧ +  𝐶௛ )                                                                                                 (2.123) 

Following Kitis et al. [2019] we may write equation (2.123) as 

ln ቂ
(஼೟ା ஼೓ )

஼೟
    

஼೟బ

(஼೟బା ஼೓ )
ቃ =  𝑔 𝐶௛ ∫ 𝑅 𝑑𝑡

௧

଴
                                                                          (2.124) 

As per Chen et al. [1981] we may define a parameter α 

𝛼 =  
஼೟బ

(஼೟బା ஼೓ )
                                                                                                                   (2.125) 

From equation (2.124) we may write 



CHAPTER II: Basic TL models and estimation of glow curve 
 

68 
 

𝐶௧ =
ఈ ஼೓ 

ி(௧)ିఈ
                                                                                                                       (2.126) 

Where 

𝐹(𝑡) = exp (𝑔 𝐶௛ ∫ 𝑅 𝑑𝑡
௧

଴
) 

Inserting equation (2.126) in equation (2.123) and using equation (2.19) we may write 

𝐿 =
௚ ஼೓ 

మ ோ ி(௧)ఈ

(ி(௧)ିఈ)మ
                                                                                                                (2.127) 

Where 

𝐹(𝑡) = exp (𝑔 𝐶௛ ∫ 𝑅 𝑑𝑡
௧

଴
) = exp (𝑔 𝐶௛ 

௙

ఉ
∫ exp (−

ா

௄்
) 𝑑𝑡

்

బ்
                                       (2.128) 

This is second master equation which is for MOK. Further, as we have done in all the 

previous cases, we will write the master equation in transformed form. 

Following Kitis and Gomez Ros [1999] and Kitis et al. [2019] we may write 

𝐿 = 𝐿௠ exp[
ா(்ି ೘்)

௄ ் ೘் 
] 

(ி( ೘்)ିఈ)మ

ி( ೘்)
 

ி(௧)

(ி(௧)ିఈ)మ
                                                                       (2.129) 

Where 

𝐹(𝑇) = exp(
ଵ

௙ಾೀ಼
 

்మ

೘்
మ  exp [

ா(்ି ೘்)

௄ ் ೘் 
]) (1 −

ଶ ௄ ்

ா
 )                                                           (2.130) 

𝑓ெை௄ =  
ଶ.଺ି଴.ଽଶ଴ଷ ఈା.ଷଶସ ఈయ.యయఴ

ଶ.଺ିଶ.ଽଶ଴ଷఈ .ଷଶସ ఈయ.యయఴ
                                                                                         (2.131) 

2.2.3 Analytical solution of NMTS model 

Multiple traps and competition between them during filling and stimulus give rise to IMTS 

model. When deep trap is saturated there is no competition during filling. This gives rise to 

NMTS model. 
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From equation (2.15) we may write 

𝐿 =
஼೟஼ೝ ோ ஻೟ೝ

(஼೅ି஼೟) ஻೟ା஼ೝ஻೟ೝ
                                                                                                          (2.132) 

This can be arranged as 

𝐿 =
஼೟஼ೝ ோ

(஼೅ି஼೟)஻ା஼ೝ 
                                                                                                               (2.133) 

Where 

𝐵 =
஻೟

஻೟ೝ
                                                                                                                             (2.134) 

Let us introduce function ϔ =
஼೟ (்)

஼ೝ(்)
 

Following the lines of Kitis and Vlachaos [2013] and Sadek et al. [2015] and after doing 

some algebra we arrive at 

∫
஼೅ ஻ା ஼ೝ (ଵିϔ஻) 

஼ೝ
మ

஼ೝ

஼ೝబ
 𝑑𝐶௥ =  −

ϔ௙

ఉ
 ∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

బ்
                                                         (2.135) 

ଵ

஼ೝబ
− 

ଵ

஼ೝ
+  

(ଵିϔ ஻)

஼೅ ஻
ln(

஼ೝ

஼ೝబ
) =

ϔ ௙

஼೅஻ ఉ
 ∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

బ்
                                                     (2.136) 

஼ೝబ

஼ೝέ
+ ln ቀ

஼ೝబ

஼ೝέ
ቁ =

ଵ

έ
− 𝑙𝑛 έ +

Ϋ௙

ଵିΫ஻
∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

బ்
                                                         (2.137) 

Where 

έ =
஼ೝబ(ଵିϔ஻)

஼೅ ஻
                                                                                                                     (2.138) 

The solution of equation (2.137) for B<1 is 

𝐶௥ =
஼ೝబ

έ ௐబ[ୣ୶୮(௭ଵ)]
                                                                                                               (2.139) 

Where 𝑊଴[exp(𝑧1)] is the principal branch of Lambert W function for exp(𝑧1) function and 
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𝑧1 =
ଵ

έ
− 𝑙𝑛έ +

Ϋ௙

ଵିΫ஻
∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

బ்
                                                                                                          

However for B>1        έ = −|έ| solution of equation (2.137) will be  

𝐶௥ =
ି஼ೝబ

έ ௐ [ିଵ,   ିୣ୶୮(ି௭ଶ)]
                                                                                                  (2.140) 

Where 𝑊 [−1,   exp(𝑧2)]  is the second branch of Lambert W function for exp(𝑧2) function 

and  

𝑧2 =
ଵ

|έ|
− ln |έ| +

Ϋ௙

|ଵିΫ஻|
∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

బ்
                                                                   (2.141) 

Using equation (2.133) we arrive at luminescence intensity equation in the two cases 

For B <1 

𝐿(𝑇) =  
஼೅ ஻ Ϋ 

ఉ(ଵିΫ஻)మ
   

௙ ୣ୶୮(ି
ವ

಼೅
)

ௐబ[ୣ୶୮(௭ଵ)]ାௐబ[ୣ୶୮(௭ଵ)]మ
                                                                      (2.142) 

For B> 1 

𝐿(𝑇) =  
஼೅ ஻ Ϋ 

ఉ(ଵିΫ஻)మ
   

௙ ୣ୶ (ି
ವ

಼೅
)

ௐ[ିଵ,ୣ୶୮(ି௭ଵ)]ାௐ[ିଵ,ିୣ୶୮(௭ଶ)]మ
                                                           (2.143) 

Equations (2.142) and (2.143) are the third master equations. The transformed form of third 

master equation is not in literature yet. 

2.2.4 Analytical Solution of simple localized transition (SLT) model 

Following the procedure given in section 2.1.8 (Localized transition model) i.e. writing the 

rate equation and using quasi equilibrium condition in the excited state we may arrive at 

equation (2.144). Following rate equations given by Kitis et al. [2019] and Mckeever [1997] 

we arrive at 
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𝐶௘ =
஼೟ ோ

஺ವା ஻ೝ೐஼ೝ
                                                                                                                 (2.144) 

Where 

𝐴஽= Rate of de excitation from excited state to ground state. 

𝐵௥௘= Probability coefficient for a electron in excited state to recombine with a recombination 

centre. 

Substituting equation (2.144) in equation (2.67) we get 

ௗ஼ೝ

ௗ௧
=  −𝐶௘𝐵௥௘𝐶௥ =  −

஼೟ ோ ஻ೝ೐஼ೝ 

஺ವା ஻ೝ೐஼ೝ
                                                                                      (2.145) 

By charge conservation  

𝐶௥ = 𝐶௧ + 𝐶௘                                                                                                                    (2.146) 

And using approximation 

𝐶௘ ≪  𝐶௧                                                                                                                           (2.147) 

We arrive at 

𝐶௥~ 𝐶௧                                                                                                                              (2.148) 

So equation (2.145) becomes 

𝐿௅ை஼ =  −
ௗ஼೟

ௗ௧
=  

ோ ஼೟
మ

௥ା஼೟
                                                                                                       (2.149) 

𝑟 =
஺ವ

஻ೝ೐
   

The analytical solution for equation (2.149) is [Kitis and Pagonis, 2018] 

𝐿௅ை஼ =  
ோ௥

ௐ[଴,   ௘೥]ାௐ[଴,   ௘೥]మ
                                                                                                (2.150) 
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Where 

𝑧௅ை஼ =  
௥

஼೟బ
− ln[

஼೟బ

௥
] + ∫ 𝑅(𝑡)𝑑𝑡

௧

௧଴
                                                                                   (2.151) 

For the specialized case of TL 

𝑧௅ை஼ି்௅ =  
௥

஼೟బ
− ln[

஼೟బ

௥
] +  𝑠 ∫ exp ቀ−

஽

௄்
ቁ 𝑑𝑇

்

்଴
                                                               (2.152) 

Transformed form of fourth master equation is not in literature yet. 

2.2.5 Analytical solution of Tunnelling localized transition (TLT) model 

The rate equations for TLT model [Kitis et al., 2019] are 

ௗ஼೒

ௗ௧
= −𝑅𝐶௚ +  𝐵௚௘𝐶௘                                                                                                       (2.153) 

ௗ஼೐

ௗ௧
= 𝑅𝐶௚ − 𝐵௚௘𝐶௘ − 3𝐶௘𝜌′′ଵ/ଷ𝑧 (𝑙𝑛

஼೟బ

஼೟
)ଶ/ଷ                                                                    (2.154) 

−
ௗ஼ೝ

ௗ௧
=  

ଷ஼೐ఘ′′భ/య௭ (௟௡
಴೟బ
಴೟

)మ/య

ఛ೎
                                                                                                (2.155) 

With  

𝜏௖ =  𝑓ିଵ exp[(
ଵ

ఘ′′  𝑙𝑛
஼೟బ

஼೟
)

భ

య]                                                                                              (2.156) 

Symbols have following meaning 

𝐶௚ = Instantaneous concentration of electrons (donors) in ground state 

𝐶௘ = Instantaneous concentration of electrons (donors) in excited state 

𝐶௥ = Instantaneous concentration of holes (acceptors) 

𝐶௧ = Instantaneous concentration of all electrons (donors) 
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𝐶௛ = Concentration of available electrons (donors) in TDDT 

𝐷 = Thermal activation energy 

𝑓 = Frequency factor 

𝜌′′ = Dimensionless number density of acceptors 

𝜏௖ = Critical tunneling lifetime 

𝑧 = Dimensionless constant equal to 1.8 introduced in the model 

𝐵௚௘ = Relaxation rate from the excited into the ground state 

The fifth master equation yields approximate analytical sol of tunnelling localized transition 

model. Kitis and Pagonis [2013] give this analytical solution from approximate model of Jain 

et al. [2012] 

The approximation used by Kitis and Pagonis [2013] is 

ଵ

஼೐

ௗ஼೐

ௗ௧
≪  𝐵௚௘ +  

ଷఘ′′భ/య௭ (௟௡
಴೟బ
಴೟

)మ/య

ఛ೎
                                                                                      (2.157) 

Using the approximation (2.157) in equation (2.154) we get 

𝐶௘ =
ோ஼೒

஻೒೐ା 
యഐ′′భ/య೥ (೗೙

಴೟బ
಴೟

)మ/య

ഓ೎

                                                                                                  (2.158) 

Putting (2.158) in equation (2.153) and taking some approximation we finally boil down to 

following 

ௗ஼೒

ௗ௧
= −𝑅𝐶௚   

ଷఘ′′భ/య௭ (௟௡
಴೟బ
಴೟

)మ/య

ఛ೎
                                                                                           (2.159) 

Since    𝐶௥ = 𝐶௚ + 𝐶௘ + 𝐶௛                                                                                              (2.160) 



CHAPTER II: Basic TL models and estimation of glow curve 
 

74 
 

And      𝐶௘ ≪  𝐶௚                                                                                                              (2.161) 

Hence, 
ௗ஼ೝ

ௗ௧
~ 

ௗ஼೒

ௗ௧
                                                                                                             (2.162) 

Using equation (2.162), equation (2.159) becomes 

Taking into account 𝐶௧ = 𝐶௚ + 𝐶௘~ 𝐶௚ and after extended algebra we arrive at 

𝐿(𝑡) = 3 𝐶௧଴ 𝜌′′𝑧 𝑅 𝐹(𝑡)ଶ𝑒ିఘ′′ ி(௧)య
𝑒ିி(௧)                                                                       (2.163) 

Where for the case of TL  

𝐹(𝑡) = ln (1 +
௭௙

ఉ
 ∫ 𝑒ି

ವ

಼೅
்

బ்
𝑑𝑇 )                                                                                     (2.164) 

  2.3 Conclusions 

This chapter is dedicated to various models proposed for TL phenomenon. The concept and 

mathematics of basic TL models have been discussed. This chapter is divided into tow 

subsections. Subsection 2.1 is dedicated to “Traditional Approach” and subsection 2.2 is 

dedicated “Master equation Approach” for stimulated phenomenon. First subsection starts 

with rate equation governing the flow of charge carriers in various bands and localised energy 

levels. From the rate equation and using QE approximation the general expression of 

luminescence for OTOR model is arrived at. 

The conditions of first order kinetics and second order kinetics are explained physically and 

mathematically. In both the approximations from the general expression the expressions of 

phosphorescence decay and TL emissions are obtained. Further, expression of general order 

kinetics is elaborated. 
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Mixed order kinetics followed by various extensions of discussed models is presented. This 

concludes our discussion on delocalised transition models. It is followed by the mathematical 

description of localised transition models.  

Second subsection (section 2.2) discusses five master equations one by one. Though full 

derivation could not be given because of complex algebra, but flow of logic is elaborated to 

some extent.   

As mentioned before, for various TL models the expression for TL intensity as a function of 

temperature has been obtained in this chapter. This TL intensity as a function of temperature 

is called as glow curve. But the question arises if the glow curve is recorded experimentally, 

does it exactly match with the glow curve predicted by the models derived. The answer to 

this question is: there are various reasons that lead to deviation from model predicted glow 

curves. In the further Chapter these reasons will be discussed.   
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                                                          CHAPTER III 

       Deviations in TL intensity from model estimated glow curve:  

                                   Sources of Uncertainty 

 

In previous chapter we have discussed various models that can be used to simulate the TL glow 

curve. But there are many reasons due to which experimental glow curves are different from 

simulated glow curve using these models. There are theoretical factors as well as experimental 

reasons. There are also reasons that originate from field conditions. This chapter is deals with 

those factors which cause deviation of experimental glow curve from the simulated one.  

3.1 Fading 

Fading is the phenomenon of loss of TL signal during irradiation and storage. Fading can be 

categorized in three categories namely,  

 Thermal fading  

 Anomalous fading 

 Thermally assisted fading 

These are discussed as follows. 

3.1.1 Thermal Fading 

Even if a TLD is stored at room temperature, due to Maxwellian distribution of trap depth for 

each trap type, there is a finite probability that few charge carriers that are trapped in trap centres 

will transit to conduction band by gaining sufficient energy and subsequently recombine with 

RCs through radiative or non radiative processes. In either of the case there is a loss of signal due 
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to this phenomenon and TL obtained on a subsequent readout is lower than what it was expected 

to be by that amount of incident irradiation. The luminescence that is emitted as function of time 

due to the phenomenon is called after glow, being a glow after irradiation. It should not be 

confused with fluorescence as fluorescence is a very short lived effect. 

This phenomenon can be modeled in two steps: excitation and isothermal decay.  

Isothermal decay may follow first, second or general order kinetics. All three are discussed in 

detail in chapter two. 

Examples of thermal fading in TL material are abundant and well studied. It is summarized by 

Horowitz and Yossian [Horowitz and Yossian, 1995]. A summary specific to TLD-100 is given 

by Horowitz [Horowitz, 1990].  

3.1.2 Anomalous fading 

Anomalous fading is the fading that occurs even if the temperature is not sufficient for excitation 

of trapped charge carrier. As a matter of fact its mechanism is totally different. It occurs due to 

spatial closeness of trap and RC. If they are so close that the wave function of opposite charge 

carriers in trap and in RC overlaps to some extent, phenomenon of anomalous fading may occur. 

It is characterized by non dependence on temperature unlike thermal or thermally assisted fading. 

First report of anomalous fading was given by Bull and Garlick [Bull and Garlick, 1950] for UV 

stimulated diamond. In the context of meteorites Hasan et al. [Hasan et al., 1986] reported 

anomalous fading. Tyler and Mckeever [Tyler and Mckeever, 1988] opposed his explanation. 

Visocekas et al. reported the phenomenon for labradorite [Visocekas et al., 1985]. The amount of 

literature on the subject is very vast and it is not possible to mention all of them here. Hence, 



CHAPTER III: Sources of Uncertainty 
 

78 
 

literature survey is stopped here and modeling of anomalous fading is discussed. In this 

discussion focus will be on our contribution to the literature [Sahai et al., 2019; Sahai et al., 

2018]. 

3.1.2.1 Anomalous fading and power law decay 

Due to anomalous fading there is a luminescence signal (afterglow) during the storage of the pre 

exposed sample. Though, the exact nature of afterglow is not well understood theoretically. But 

in general it is known to follow power law decay. 

𝐼 𝛼 𝑡ି௞                                                                                                                                                 (3.1) 

where 

𝐼 is afterglow intensity and 𝑡 is time 

𝑘 is the exponent whose experimental value ranges from 0.5 to 2.0. 

If the nature of afterglow is correctly represented by equation (3.1) then the graph between 

log( 𝐼 )  and log (𝑠𝑡) is expected to be a straight line with 𝑘 as the slope. 𝑠 is just a scaling factor. 

But in reality the experimental graphs of afterglow many a times show deviation from straight 

line. In this section the full experimental range of straight line graphs of afterglow is explained 

and in next section non linearity is discussed. 

Before this work power law decay of luminescence was explained only partially [Huntley, 2006].  

It was shown that different values of exponent 𝑘 can be obtained for different recombination 

centre concentration. But with this approach only range of exponent from 0.95 to 2.0 could be 
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explained. In Huntley’s work RPB between trap and RC has been considered. This choice is 

mainly because of ease of calculations as there is apparently no theoretical reason to justify RPB.  

In our approach a NRPB is considered between trap and RC and full range of exponent for 

different shape parameters of NRPB between trap and RC, has been explained. 

Mathematical formalism of the problem 

In the present study modelling has been done for charge carrier tunnelling through an isotropic 

NRPB between trap and RC. It is shown in Figure 3.1 as region I, region II and region III.  

Region I: Trap 

Region II: Tunnelling region (Region between trap and RC) 

Region III: RC 

In the present study tunnelling phenomena is approached in three dimensions with isotropic 

potential. For determining wave function in various regions, SE in spherical polar coordinate is 

taken, as the tunnelling problem we are dealing with has spherical symmetry 

SE in various regions is of the form of equation (3.2)  

ିЋమ

ଶ௠
 𝛻ଶ    𝛬 (𝑟, 𝜃, 𝛷)  + 𝑉(𝑟) 𝛬(𝑟, 𝜃, 𝛷) = 𝐸 𝛬(𝑟, 𝜃, 𝛷)                                                                    (3.2) 

It may be noted that the form of V(r) will be region dependent.            

 V(r) = ቐ

𝑉ூ                           𝑅𝑒𝑔𝑖𝑜𝑛 𝐼

𝐶∗ + 𝐷∗ 𝑟௕∗  
          𝑅𝑒𝑔𝑖𝑜𝑛 𝐼𝐼  

𝑉ூூூ                        𝑅𝑒𝑔𝑖𝑜𝑛 𝐼𝐼𝐼

                                                                                     (3.3) 

𝐶∗ , 𝐷∗   𝑎𝑛𝑑 𝑏∗  are arbitrary constants. 

Boundary conditions are 𝛬 (𝑟, 𝜃, 𝛷) → 0 as 𝑟 → 0, + ∞. 
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Wave functions in the regions are given by following [Sahai et. al., 2018]    

Region I :                               𝛬௟ (𝑘ଵ 𝑟) =   
஼೗

௞భ௥ 
   𝑒௜ቀ௞భ ௥ି

೗ П
మ

ቁ +
஽೗

௞భ௥
𝑒ି௜ቀ௞భ ௥ି

೗ П
మ

ቁ                      (3.4a) 

Region II:                               𝛬(𝑘଴𝑟) =  
஼బ

௥√ |௞బ|
      exp ( −

ଵ

௛
 ∫ 𝑘଴ (𝑟′)𝑑𝑟′)    

௥

௥ଵ
                      (3.4b) 

Region III:                               𝛬௟ (𝑘ଷ 𝑟) =   
ா೗

௞య௥ 
   𝑒

௜ቀ௞య  ௥ି
೗ П
మ

ቁ 
                                                   (3.4c) 

where 𝛬 is radial wave function, k1, k3 are wave vectors  in region I and region III  and  𝑘଴ =

ඥ2𝑚 (𝐸 − 𝑉ூூ(𝑟)), where 𝑉ூூ(𝑟)  is the potential in region II. 𝐶௟ , 𝐷௟, 𝐸௟  𝑎𝑛𝑑 𝐶଴  are arbitrary 

constants. The suffix  𝑙 represents the wave functions in various energy levels.  

                               

Figure3.1 Illustration of wave functions and boundaries : Figure shows the region I, region II and 

region III with respective wave functions (W1, W2, W3, W4), their boundaries (1, 2, 3 and 4) 

and NRPB or RPB between trap and RC, namely b1 (decreasing), b2 (rectangular) and b3 

(increasing).. Location of boundary 2 is r1 and of 3 is r2. 

 

Region I Region II Region III

Trap Recombination Centre

1

2
3 4

W1

W2

W3
W4

b1

b3

b2
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Further, continuity of wave function and their derivatives at the boundaries dictate following 

equations 

 𝛬ூ(𝑟ଵ) = 𝛬ூூ(𝑟ଵ)                                                  
ௗ௸಺

ௗ௥
  |௥ୀ௥ଵ      =       

ௗ௸಺಺

ௗ௥
    |௥ୀ௥ଵ       

𝛬ூூ(𝑟ଶ) = 𝛬ூூூ(𝑟ଶ)                                                
ௗ௸಺಺

ௗ௥
  |௥ୀ௥ଶ      =       

ௗ௸಺಺಺

ௗ௥
    |௥ୀ௥ଶ       

Under the conditions of tunneling from ground state of trap to ground state of RC, one can 

consider   𝑙 =𝑙′=0. 𝑘ଵ = 𝑘ଷ is assumed. Under these special conditions, the tunneling probability 

takes following form [Zittili, 2001; Mathews, 1976].   

 𝑇∗ ~  exp  ( 
ିଶ

Ћ
 ∫ 𝑘଴

௥ଶ

௥ଵ
(𝑟)𝑑𝑟)                                                                                                  (3.5) 

where   k0 = [ 2𝑚  |𝑉(𝑟) − 𝐸| +  
Ћమ

௥మ   ቀ𝑙 +
ଵ

ଶ
ቁ

ଶ 

 ]
భ

మ
          

𝑇∗ is tunneling probability                                                                                                         

When a charge carrier (electron/hole) is trapped inside the trap it constantly keeps colliding with 

its potential barrier and finite probability of barrier tunnelling exists. Tunnelling of charge carrier 

to RC for a RPB gives a life time 

𝜏 = 𝑓ିଵ𝑒ఈ௥   ~ 𝑓ିଵ𝑒ϔ                                                                                                                 (3.6) 

α is a constant [Thomas, 1965; Riehl, 1970]. Reasonable value of 𝑓 and α can be taken as ~10 15 

and ~10 9, respectively [Huntley, 2006]. Neglecting Ћଶ  term of equation (3.5) ϔ  can be 

estimated. 

ϔ can be written  as follows [Sahai et al., 2018] 
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  ϔ = (2/ℏ) ∫ ඥ[2𝑚 { 𝑉(𝑟′) − 𝐸}]
௥

଴
 𝑑𝑟′                                                                                   (3.7)                                                                     

where lower limit of integration is the point where tunnelling begins, 𝑟ଵ in figure 1,and 𝑟  is 

arbitrary point between 𝑟ଵand 𝑟ଶ.   

In the present case, V(r) is not a constant as it is considered to be NRPB. Additionally, there are 

few more requirements (i) increasing and decreasing NRPB shape should be simulated for 

different sets of parameter values, (ii) numerical integration required later should be feasible (iii) 

for applicability of WKB potential should not vary fast as exponentials or power laws. A 

practical choice may be:   

𝑉(𝑟) = 𝐶∗ + 𝐷∗ 𝑟௕∗
                                                                                                                 (3.8)                                         

where, 𝑏∗, 𝐶∗ and 𝐷∗ are  arbitrary constants.  Substituting V(r) from equation (3.8) into equation 

(3.7), equation (3.9) is obtained.  

 ϔ = (2/ℏ) ∫ ඥ[2𝑚 { 𝐶∗ + 𝐷∗ r′௕∗
 − 𝐸}]

௥

଴
  𝑑𝑟′                                                                      (3.9) 

 ϔ = (2/ℏ) ∫ ටൣ2𝑚 𝐶∗ + 2𝑚 𝐷∗ 𝑟′ ௕
∗

−  𝐸൧
௥

଴
  𝑑𝑟′                                                                  (3.10) 

ϔ = 𝐹 ∫ ඥ1 + 𝐴𝑟′ ௕
∗௥

଴
  𝑑𝑟′                                                                                                        (3.11) 

where                 𝐹 = ቀ
ଶ

ℏ
ቁ ඥ[2𝑚 𝐶∗ −  𝐸]     and   𝐴 = (2𝑚𝐷∗)/(2𝑚𝐶∗ − 𝐸) 

 A, 𝑏∗, 𝐶∗, 𝐷∗ , E and F are constant. 
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Figure 3.2 Shape of potential barrier in region II. (A)  b3 of Figure 3.1, (B) b2 of Figure 3.1 and 

(C) b1 of Figure 3.1. Plots have been generated for C*=0.1eV and changing D* and b*.  

Considering the fact that the contribution of perturbation is small one can write C* >> D*, this 

makes A very small        

 The equation (3.11) can be developed to equation (3.12) with approximations that A is very 

small and b lies between -1 & +1.  

ϔ = 𝐹 ∫ [ 1 +
஺

ଶ
 𝑟′௕  ]

௥

଴
 𝑑𝑟                                                                                                        (3.12)                                                                                                                             

ϔ = 𝐹 [ 𝑟 +
஺

ଶ
 
௥್శభ

௕ାଵ
]                                                                                                                  (3.13)  

 ϔ = 𝐹 (𝑟 + 𝑐1 𝑟௖ଶ)                                                                                                                  (3.14)                                                                                                                             

V
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)

V
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eV
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where value of F ~ 109 (order of α with rectangular potential barrier [Huntley, 2006] and c1, c2 

are related to A and b* by  

𝑐1 =
஺

[ଶ(௕∗ାଵ)]
                                                                                                                            (3.15)                                          

𝑐2 = 𝑏∗ + 1                                                                                                                              (3.16)                                                                                                                             

So far tunnelling of charge carrier from single trap to single RC has been discussed. However, 

considering that the RCs are distributed around trap within a volume 4/3 r3,   (r is a variable 

distance), it requires spatial integration.  The probability that the charge carrier will not 

recombine in the volume 4/3 r3 around the trap is given by exp(- 4/3* r3 )  [Huntely, 2006], 

where * is density of recombination centres. 

There is continuous depreciation of charge carrier concentration with time, 𝐶௧(𝑡) , due to 

recombination.  Following Huntley [2006] 

஼೟(௧)

஼೟(଴)
=  ∫ 3 (𝛬′)ଶ∞

଴
exp{−(𝛬′)ଷ} 𝑒(ି

೟

ഓ
)𝑑𝛬′                                                                                (3.17) 

Where  

Assuming 𝛬′ = (4𝜋𝜌∗/3)ଵ/ଷ 𝑟             

  By differentiation equation (3.17) with respect to time we obtain 

 
ூ (௧)

஼೟(଴)
=  ∫ ቀ

ଵ

ఛ
ቁ 3 (𝛬′)ଶ∞

଴
exp{−(𝛬′)ଷ} 𝑒(ି

೟

ഓ
)𝑑𝛬′                                                                         (3.18) 

where I(t) = - 
ௗ஼೟(௧)

ௗ௧
  is the intensity of luminescence 
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ூ(௧)

஼೟(଴)
= ∫ 𝑍 𝑑𝑟

∞

଴
                                                 (3.19) 

Where    𝑍 = ቀ
ଵ

ఛ
ቁ 𝜌∗4𝜋 𝑟ଶ exp{− ቀ

ସ

ଷ
ቁ 𝜋𝑟ଷ 𝜌∗} 𝑒(ି

೟

ഓ
) 

 

Figure 3.3 Z of equation (3.19) as a function of radial distance (A) for different potential barrier 

shape and (B) for different time. Plots are normalized with respect to height. 

 

For determination of integration range in equation (3.18), the integrand shape of equation (3.18) 

with change in r was found. There is a spike in the shape, which shifts towards right with 

increase in time (with same order of magnitude) as well as with shape of the barrier (many orders 

of magnitude) as shown in Figure 3.3.  
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Table 3.1 Location and height of integrand of equation (3.19) with changing shape of NRPB. 

Normalization is with respect to RPB peak height. Table is for ρ* = 1022m-3, 𝑓  = 3.0 X 

1015second -1, C*=0.10eV, VI= -1.00eV, VIII=-1.250eV, E=-0.70eV  

Potential barrier        Parameter Set         Z 

    𝑫∗ 
  

    𝒃∗        t 
 

Relative Peak 
Height 

Peak location  

Potential 1     0.0      --     10ହ sec            1.0            294 Ao 

Potential 2 −5.0 𝑥 10ିହ     -0.50     10ହ sec 
     

        0.250 
             

           422 Ao 

Potential 3 −10.0 𝑥 10ିହ 
  

    -0.50 
   

    10ହ sec 
    

        0.00150             598 Ao 

 

Table 3.2 Location and height of Integrand of equation (3.19) at different times for a fixed shape 

of NRPB. Normalization of peak height is done as illustrated in table 3.2.  Rest of the parameters 

are same as shown in table 3.1. 

       Parameter Set              Z 

        𝑫∗ 
   
  

    𝒃∗        t 
 

Relative Peak 
Height 
 

Peak location  

 10ିହ   -0.50 
    

    10ହsec       1 
             

            313 Ao 

 10ିହ      -0.50    10ଵ଴ sec     1.10 𝑥  10ିହ             384 Ao 

 

 

Results 

Integration of equation (3.19) can be done numerically to obtain I(t) as a function of time. The 

value of life time 𝜏 can be inserted numerically using equation (3.6). For a RPB and changing 

RC concentration *, the results of Huntley [2006] could be reproduced. The results of Huntley’s 
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work was; different values of slope of log(I) vs. log (st) graph can be obtained for different RC 

concentration. But by changing the concentration of RC he faced a limitation of saturation of 

slope at a lower limit of 0.95. At higher end, graphs became a poor fit with a straight line. These 

results are reproduced and illustrated in Figure 3.4.   

 

Figure 3.4 Log (I) with Log (st) for different values of recombination center concentration. Data 

for plots is given in Table 3.3. 

                Table 3.3 Slopes for different values of RC concentration for curves of Figure 3.4. 

Curve No. of Figure 3.4      RC concentration (ρ)        Slope 
        1                1023.4 m-3         2.1 
        2                1023 m-3         1.4 
        3                1020 m-3         0.95 
        4                1018 m-3         0.95 

 
 

Following different approach in the study i.e. by changing the shape of potential barrier, the full 

experimental range of slope of log (I) vs. log (st) graphs (0.5 to 2.0) can be obtained. Results are 

shown in Figure 3.5. 
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                       Figure 3.5 Log(I) vs log (st) graph with change in potential barrier shape.  

 

 

 

                     Table 3.4 Slopes for different shape parameters for curves of Figure 3.5. 

Curve no. of Figure 3.5               D*           b*           Slope 

                 1   4 X 10-3 eV m-b         -0.8            0.5 

                 2 0.80 X 10-3 eV m-b         -0.5            0.8 

                 3   -7 X 10-5 eV m-b         -0.5            2.0 
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3.1.2.2 Non linearity is general feature of afterglow 

Further, the intention is to explore nature of afterglow intensity. Hence, the integrand of equation 

(3.19) is broken into time dependent and time independent parts with VI=VIII [Sahai et. al., 2019] 

Z= G1  G2                                                                                                                                  (3.20) 

Where  

G1 = ቀ
ଵ

ఛ
ቁ 𝜌∗4𝜋 𝑟ଶ exp ቄ− ቀ

ସ

ଷ
ቁ 𝜋𝑟ଷ 𝜌∗ቅ                                                                                      (3.21) 

G2= 𝑒(ି
೟

ഓ
)                                                                                                                                 (3.22) 

 

Figure 3.6 (A) Normalized plot of time dependent (G2) and time independent (G1) component of 

Z. (B) Normalized plot of Z for shown value of G1 and G2.  

 Motivation is to understand the experimental graphs given in literature [Jonscher and Polignac, 

1984] and to draw a general inference about the nature of log (I) vs log (st) plot. In this pursuit  
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the observed shape of integrand Z is explained in further discussion. Figure 3.6(A) illustrates the 

components G1 and G2. The product of both is Z as per equation (3.20). Initially the G2 is almost 

equal to zero and G1 is non zero. In a much later stage G1 is almost equal to zero and G2 is non 

zero. Hence, the product will be almost zero both in initial and later stage. In between it will 

have its maximum value. This explains the bell shape nature of Z as shown in Figure 3.6 (B).  

 

 

                            Figure 3.7 Temporal behaviors of the components of integrand Z.  

(A) Position of G1 and G2 at time = 0.4 femto seconds. (B) Position of G1 and G2 at time = 655 

femto seconds. (C, D) Location, shape and height of Z at the two points of time. (E, F) Log(I) vs 

log(st) graphs up to the two points of time. Plots are normalized for better comparison and 

clarity. 
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Further, it is intended is to see the progress of G1 and G2 with time. Figure 3.7 (A) and Figure 3.7 

(B) respectively show G1 and G2 at time = 0.4 femto seconds and time = 655 femto seconds. It is 

obvious from the figure that the time dependent component is preserving its shape and is 

translating rightwards with time. Hence, the peak of Z will translate rightwards with time. It can 

also be seen from Figure 3.7 (C) and Figure 3.7 (D) that the height of Z is reduced. Hence, the 

spatial integration value of Z will be less in case 3.7 (D) as compared to case 3.7 (C). This 

explains the fall in log(I) vs log (st) graph with time. Figure 3.7 (E) and Figure 3.7 (F) illustrates 

the log(I) vs log(st) graph up to the two times respectively.  

Effect of starting time of observation and period of observation 

 

 

Figure 3.8 Effect of starting time of observation on log (I) vs. log (st) curve for two values of 

times. 
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Figure 3.8 illustrates that if we initiate the observation at a much lower value of time there is a 

larger probability of getting the initial flat region of Figure 3.7 (E). If the observation is initiated 

at later stage the graph may apparently look straight line as we have missed the horizontal region 

of Figure 3.7 (E).  

Figure 3.9 shows the effect of observation period on log(I) vs. log (st) graph. It may be 

concluded that for a longer period of time the curvature of log(I) vs. log(st) graph may increase.  

 

Figure 3.9 Effect of observation period on curvature of log(I) vs log(st) graph. Initial time of 

observation is 1 milliseconds. 

(1) 1 second observation period (2) 3.6 X 107 years observation period. 
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Few other factors which may interfere in advent of non linearity 

The other factors that may affect advent of non linearity include recombination center 

concentration and shape of NRPB between trap and RC. Figure 3.10 and Figure 3.11 illustrate 

this effect for these parameters respectively.    

Curve fitting of log(I) vs. Log(st) plot with various functions 

In this heading the motivation is to establish that non linear functions better fit the log (I) vs 

log(st) graphs as compared to linear functions (straight line). To illustrate this affect the fitting of 

apprently straight line as well as graphs have obvious curvature in log(I) vs log(st) is done. 

 

Figure 3.10 Effect of recombination centre concentration on advent of non linearity. The 

recombination centre concentrations are (1) 1 X 1022 m-3  (2) 1 X 1023 m-3   (3) 1 X 1023.2 m-3   

(4)  1 X 1023.3 m-3    
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Figure 3.11 Effect of shape of potential barrier on advent of non linearity. The value of shape 

parameters (𝑒𝑉𝑚ି௕) are 1.D*=-1.9X10-4  2. D* = 0.0  3. D* =-10-5  

 

 

Straight line 𝑦 = 𝑝ଵ𝑥 + 𝑝ଶ                                                                                                 (3.23)                                                       

Parabola        𝑦 = −𝑝
3
𝑥2 + 𝑝

4
𝑥 + 𝑝

5
                                                                                   (3.24) 

Circle           (𝑥 − 𝑝଺)ଶ + (𝑦 − 𝑝଻)ଶ = 𝑝଼
ଶ                                                                                     (3.25) 

 The fitting parameters are presented in Table 3.5 and 3.6. Table 3.7 illustrates the comparison of 

error with least square fitting with these functions 
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Figure 3.12 Log (I) vs log(st ) graph for different RC concentrations.    (1)1019 m-3, curve (2) for 

1022.5m-3 and curve (3) for 1023 m-3 . The curve are fitted with 𝑦 = −𝑝
3
𝑥2 + 𝑝

4
𝑥 + 𝑝

5
. The 

values of fitting parameters are tabulated in Table 3.5. 

 

 

      Table 3.5 Fitting parameters for the curves of Figure 3.12 with 𝑦 = −𝑝
3
𝑥2 + 𝑝

4
𝑥 + 𝑝

5
. 

Curve                𝑝ଷ 𝑝ସ 𝑝ହ 
      1             0.0004               -0.1688                3.4259 
      2             0.0043               -0.0354                1.2611 
      3             0.0121                0.0986                0.6539 
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Figure 3.13 Log(I) vs log(st) graph with different RC concentrations (same as figure 3.12) fitted 

to (𝑥 − 𝑝଺)ଶ + (𝑦 − 𝑝଻)ଶ = 𝑝଼
ଶ. Fitting parameters are shown in Table 3.6. 

 

   Table 3.6 Fitting parameters for the curves of Figure 3.13 with (𝑥 − 𝑝଺)ଶ + (𝑦 − 𝑝଻)ଶ = 𝑝଼
ଶ 

Curve                 𝑝଼                  𝑝଺                    𝑝଻ 
      1             1.3  X 10ଷ               -212.5                -1.3 X  10ଷ 
      2             123.2               -5.2                 -121.8                
      3             48.4                2.2                 -47.8 
 

                              Table 3.7 Least square fitting error with various functions. 

                                     Curve fitting errors 
        Curve      Straight line             Parabola             Circle 
                1             0.4               0.05            0.02 
                2             1.9               0.19            0.07 
                3             5.6               1.1            0.16 
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3.1.3 Thermally assisted fading 

It is possible that the charge carriers get excited to some intermediate level and further tunnel to 

the recombination center site. This is known as thermally assisted fading. 

3.2 Finite life time in conduction band 

The assumption that life time of charge carrier in conduction band is negligible is another 

version (or implication) of QE approximation discussed before. In the previous chapter of this 

dissertation we have seen that rate equations for OTOR model can be decoupled using the QE 

approximation. There had been rigorous efforts to test the validity of QE approximation.  

The validity of QE approximation can be tested by use of rate equations. Shenker and Chen 

[Shenker and Chen, 1972] had studied the subject and infer that QE approximation is valid only 

if | 
ௗ஼೎

ௗ௧
|< 10ିଷ|

ௗ஼೟

ௗ௧
| . They further showed by solving the rate equations, that for the parameter 

set they had, the ratio of |
ௗ஼೎

ௗ௧
|   and |  

ௗ஼೟

ௗ௧
|  changed from 5X 10-5 to 1.0. It is worth noting that 

towards the end of the peak, the highest ratios were obtained. Kelly et al. [Kelly et al., 1971] also 

concluded that QE approximation cannot be valid for full range of physically plausible 

parameters. Recently, Sadek and Kitis [Sadek and Kitis, 2017] has discussed and attempted to 

overcome some of the objections raised by Kelly et al [Kelly et al, 1971] and Opanowicz 

[Opanowicz, 1992] 

3.3 NIK approximation 

While developing the RW, GG and MP equations it was seen that basic assumption was 

existence of an isolated trap and recombination center. This comes under general conception of 

OTOR model. But in actual crystal there will be multiple traps and multiple recombination 
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centers.  It is obvious that a charge carrier once excited to conduction band will not differentiate 

between different types of traps for getting re-trapped. In other words, the traps will interact.  

Many people studied the interactive kinetics approximation. The general way to approach this 

problem is to write a set of rate equations for a system of traps and RCs.  

For 𝑖 = 1 𝑡𝑜 𝑢 

ௗ஼೟೔

ௗ௧
=  −𝐶௧௜𝑓௜ exp(−𝐷௜/𝐾𝑇) + 𝐶௖(𝐶௥௜ − 𝐶௧௜)𝐵௧௜                                                                  (3.26)       

For 𝑗 = 1 𝑡𝑜 𝑣 

ௗ஼ೝೕ

ௗ௧
=  −𝐶௖𝐶௥௝𝐵௧௥௝                                                                                                                  (3.27) 

For conduction band we may write  

ௗ஼೎

ௗ௧
=  ∑ 𝐶௧௜𝑓௜ exp(−𝐷௜/𝐾𝑇) ௨

௜ୀଵ − 𝐶௖ [ ∑ 𝐶௥௝𝐵௧௥௝
௩
௝ୀଵ  +  ∑ (𝐶்௜ − 𝐶௧௜)𝐵௧௜]௨

௜ୀଵ                       (3.28) 

These equations can be solved in two ways  

1. By use of QE approximation these can be decoupled and an equivalent OTOR model can 

be developed [Levi, 1985; Levi, 1991]. 

2. With QE the rate equations can be solved numerically. This was done by Bull et al. 

[1986]. 

For the case where recombination dominates over re-trapping the two approaches give similar 

solution. But, as soon as the approximation breaks down, the two approaches start differing.  
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3.4 Temperature dependence of parameters 

As per the conditions under which Arrhenius law can be applied [Gibbs, 1972], frequency factor  

should not be dependent upon temperature. But as per findings of Eyring, using the absolute 

reaction theory [Eyring, 1936], frequency factor should be proportional to absolute temperature. 

Other studies [Keating, 1961] also suggests frequency factor should be slightly temperature 

dependent.  

Law of detailed balance [Bube , 1960] states 

𝑓 =  𝐶௖ 𝑢 𝜎                                                                                                                               (3.29) 

Where  

𝑢= Speed of charge carrier 

𝜎 = Capture cross section of the trap. 

It is well known that  

𝑢 𝛼 𝑇ଵ/ଶ                                                                                                                                    (3.30) 

And  𝜎 has dependency on temperature of the form 𝑇ି௔ (0< a < 4) [Lax, 1960] and   

𝐶௖ 𝛼 𝑇ଷ/ଶ                                                                                                                                 (3.31) 

Hence,  

𝑓 𝛼 𝑇ିௗ  where −2 < 𝑑 < 2   [Keating, 1961; Chen, 1969; Balarin 1979]                            (3.32) 

But slight temperature dependence of frequency factor is masked by the strong temperature 

dependence of Arrhenius law. 
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3.5 Uncertainty in parameters 

May the trap parameters be found by any numerical or experimental methodology, there will 

always be uncertainty associated with it. Hence, it is interesting to see how uncertainty in 

parameters propagates through the models and appears as final uncertainty in TL output.  

Chapter four is dedicated to study of this aspect with a focus on RW, GG and MP models. 

3.6 Re absorption 

There is a possibility that the TL released may be absorbed by trapped charged carrier and lead 

to its optical release. The rate equations in this scenario will be as discussed by Chen and 

Mckeerver [Chen and Mckeerver, 1997] 

ௗ஼೎

ௗ௧
=  𝐶௧ 𝑓 exp ቀ−

஽

௄்
ቁ −  𝐶௖𝐶௥𝐵௧௥ exp(−ϐ 𝐶௧) − 𝐶௖𝐵௧ (𝐶் − 𝐶௧)                                        (3.33) 

 
ௗ஼೟

ௗ௧
 =  −𝐶௧ 𝑓 exp ቀ−

஽

௄்
ቁ +  𝐶௖𝐵௧ (𝐶் − 𝐶௧) −  (1 − 𝑒𝑥𝑝 (−ϐ 𝐶௧)) 𝐶௖ 𝐶௥  𝐵௥                          (3.34) 

ௗ஼ೝ

ௗ௧
 = −𝐶௖ 𝐶௥  𝐵௧௥                                                                                                                        (3.35) 

Where  

ϐ = Absorption probability of photons by trapped electrons. 

In this case the thermal component of TL will be given by  

𝐿்௅ =  𝐶௖ 𝐶௥ 𝐵௧௥ exp(−ϐ 𝐶௧)                                                                                                   (3.36) 

In real material many scenarios may be expected. For example, one possibility is TL emitted 

may be partially absorbed by the deeper trap. This will not only reduce the TL intensity but also 
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opens a possibility that due to optical excitation charge carriers may be transferred from deeper 

traps to dosimetric traps. 

Over all self absorption will distort the glow curve structure of the material. 

3.7 Quenching effects 

3.7.1 Thermal Quenching 

Whether or not a material is a thermoluminescent material, the luminescence efficiency is given  

by 

𝐿ఎ =  
௉ೝ

௉ೝା ௉೙ೝ
                                                                                                                             (3.37) 

𝐿ఎ is found to be strongly temperature dependent in various material. For example, Johnson and 

Williams [Johnson and Williams, 1952] and Fillard et al. [Fillard et al., 1978] have discussed 

few materials in this context.  There are various explanations of temperature dependence of 

luminescence efficiency. Two will be discussed here. 

 Mott Seitz explanation  

The mechanism is given by Seitz [Seitz, 1940] and Mott and Gurney [Mott and Gurney, 1948]. 

They considered electronic transition within the excited state and ground state of same atom, and 

made use of configurational co-ordinate diagram and Franck Condon principle. The conclusion 

of their study is the probability of non radiative transition is related to temperature by Boltzmann 

factor  exp ቀ−
௱ா

௄்
ቁ where 𝛥𝐸 is the minimum energy required by the charge carrier in excited 

state to lose its energy without emission of radiation. The radiative transition is unaffected by 

temperature. Hence, 
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𝐿ఎ =
ଵ

ଵା௖ ୣ୶ ቀି
೩ಶ

಼೅
ቁ
                                                                                                                    (3.38) 

Schon – Klasen explanation  

The mechanism of this explanation is as follows. Once the charge carriers are excited to 

conduction band they recombine at RC. But, at high temperature electron recombination center 

(holes) get detached from their sites and get associated with killer centers. Killer centers are 

those centers at which recombination do not produce any luminescence. The process is 

accelerated with temperature. Hence, the probability of non radiative recombination increases 

with temperature. 

There are other explanations also present in the literature. As an example, non radiative capture 

of an electron in conduction band by the localized energy levels [Rickayzen, 1957] is one 

suggestion.  

3.7.2 Concentration Quenching 

With increase in concentration of dopent the luminescence efficiency first increases and after 

reaching a maximum limit, luminescence efficiency start decreasing. This decrease in 

luminescence efficiency with increase in concentration of dopent is called as concentration 

quenching. Schmidt et al. [Schmidt et al., 1974] studied CaSO4: Dy and CaSO4: Tm in context of 

this effect. Ewles and Lee [Ewles and Lee, 1953] gave mathematical expression for this 

phenomenon. 

𝐿ఎ = 𝐾ᇱ/(1 +  ὅ 𝐶ௗ
ିଵ exp( 𝐶௧𝐶ௗ) )                                                                                        (3.39) 

where  
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𝐾ᇱ, ὅ are constants. 

𝐶ௗ= Dopent concentration 

3.7.3 Impurity Quenching 

Introduction of certain elemental impurity, especially heavy metals such Cu, Fe, Co, Ni and Cr, 

reduces the intensity of TL emission drastically. This is called impurity quenching.  

Metallic impurities act as killer centers. Killer centers add competitive non radiative 

recombination path.  

3.8 Residual TL  

Whatever TL signal is left in the dosimeter after first readout in a previously exposed dosimeter 

is termed as residual TL. It is obvious that signal will be left in dosimeter because the deeper 

traps are certainly not emptied completely during the first readout. This happens because the 

temperature is not sufficient for the excitation of deeper trap.  

In a hot gas reader system with CaSO4: Dy Teflon embedded dosimeter the second readout 

(which is almost equal to the residual TL) is 10% of the first readout. The importance of residual 

TL in personnel monitoring program is twofold. 

 It is used to confirm the first readout dose for the cases where excessive dose is estimated 

by the first readout. 

 In case of loss of first readout data it is used to estimate the dose. 

The origin of residual TL is not explicitly explained in the literature. Hence, it is intended to 

explore the origin of residual TL.  
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 Experimental set up and procedure 

The dosimeter used is CaSO4: Dy Teflon embedded disc (13.3mm diameter and 0.8mm 

thickness). The concentration of Dy is 0.05mole %. The discs are fixed on a nickel plated 

aluminum plate. The reader model is TLD BR 7B, which is a hot gas based semiautomatic reader 

with Nitrogen gas jet temperature ~ 285oC. The flow rate of Nitrogen is 5 liters per minute and 

dosimeters are exposed for 30 seconds to this jet during the readout process.  

For experimental part of the work after annealing (230oC, 4 hours) the dosimeters were exposed 

to 3, 5 and 10 mSv using Cs-137 Gamma source. For exposure the dosimeters were sandwitched 

between 1.6mm PMMA plates for buildup. 

Mathematical formulation 

The process of heat transfer from hot gas to solid can be modeled using following differential 

equation [Van Dijk and Julius, 1993] 

ௗ்

ௗ௧
=

ధϮ ൫்ಸି ்(௧)൯

௠∗஼೛
                                                                                                                  (3.40) 

Where 

𝜛 = Heat transfer efficiency  

Ϯ = Area of dosimeter exposed to hot jet 

𝐶௣= Heat capacity of material of dosimeter 

𝑚∗ = Mass of dosimeter 

𝑇  = Temperature of hot gas 
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𝑇(𝑡) = Time dependent temperature profile of dosimeter 

We can solve equation (3.40) with initial condition 𝑇(0) =  𝑇௢ 

𝑇(𝑡) = 𝑇 −  (𝑇 − 𝑇௢) exp(−Ϫ𝑡)                                                                                                   (3.41) 

Where  

Ϫ = 𝜛Ϯ/𝑚𝐶௣  

Rate equation for change of trapped charge carrier density is given by [Chen and Mckeever, 

1997] 

−
ௗ஼೟

ௗ௧
=  𝐶௧ 𝑓 exp(−

஽

௄்
)                                                                                                           (3.42) 

Using the profile given by equation (3.41) we may write 

ௗ஼೟

ௗ௧
= − 𝐶௧𝑓 exp(−

஽

௄(்ಸି (்ಸି ೚்) ୣ୶୮(ିϪ௧) ) 
)                                                                             (3.43) 

ௗ஼೟

ௗ௧
=  −𝐶௧𝑓 exp(−Ж

ଵ

(்ಸି П ୣ୶୮(ିϪ௧) ) 
)                                                                                    (3.44) 

Where 

Ж = 𝐷/𝐾  

П = (𝑇 − 𝑇௢)  

The solution of equation (3.44) can be obtained numerically 

஼೟೔శభ ି஼೟೔

௱௧
=  −𝐶௧௜

𝑓 exp(−Ж
ଵ

(்ಸିП ୣ୶୮(ିϪ௧) ) 
)                                                                           (3.45) 
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𝐶௧௜ାଵ
=  𝐶௧௜

−   [𝐶௧௜
 𝑓 exp(−Ж

ଵ

(்ಸିП ୣ୶୮(ିϪ௧) ) 
)]  𝛥𝑡                                                                   (3.46) 

Using equation (3.46) we may do a book keeping of values of 𝐶௧ with time and it can be further 

differentiated to obtain the TL 

𝑇𝐿 = −
ௗ஼೟

ௗ௧
                                                                                                                                (3.47) 

For getting the TL from all the traps we may sum up the TL from individual traps 

𝑇𝐿௡௘௧ =  ∑ 𝑇𝐿௝
ே
௝ୀଵ                                                                                                                     (3.48) 

𝑇𝐿௝ = TL signal obtained from 𝑗௧௛ type of trap 

Numerical simulation 

For numerical work the trap structure of CaSO4: Dy given by Oliveri et al [Oliveri, 1978] is 

used. Initial charge carrier density was calculated to be of the order of 1018m-3 for an absorbed 

dose of 3mGy [Sahai et al., 2017]. This can be used as initial condition in equation (3.46) and the 

value of trapped charge carrier density of each time step (500 steps of 0.06 seconds each) can be 

obtained. The value of charge carrier density recorded can be further differentiated to obtain the 

TL as per equation (3.47). TL from each trap can be added to obtain the overall luminescence 

intensity in accordance with equation (3.48). For a simulation of 30 seconds the data represents 

the first readout. Taking the left over value of charge carrier densities as the initial concentration 

we can re-run the simulation code for 30 seconds to obtain the second readout data.  
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Results 

 

Figure 3.14 Experimental first (a), second (b) read out glow curves and hot gas temperature 

profile (c).  

 

Figure 3.15 Characteristic shape differences in first (a) and second (b) readouts for same dose.  

Figure 3.14 is an illustration of experimental first and second readout for 3mSv of dose. Figure 

also illustrates the profile of temperature of hot gas obtained experimentally. Figure 3.15 is an 
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illustration of characteristic shape difference in first and second readout for same value of dose. 

Numerically calculated profile of temperature of disc material is compared with profile of 

temperature of hot gas in Figure 3.16. 

 

Figure 3.16 Simulated temperature profile of disc (a) and experimental hot gas temperature 

profile (b). 

The first readout from each trap is plotted in Figure 3.17. This illustrates their separation in time 

scale and characteristic shape difference. It is worth observing that shape of first readout of 

deeper traps corresponds to residual TL shape closely. Numerically simulated 1st and 2nd 

readout glow curve data is compared with experimental glow curves for 3mSv of dose in Figure 

3.18. It can be seen that there is a reasonable good match. Hence, it can be concluded that 

residual TL originate from trapped charge carriers in traps deeper than dosemetric trap which do 
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not deplete completely in first readout. The TL left over in dosemetric trap is not a significant 

contributor to the residual TL.  

 

 Figure 3.17 First readout glow curve from different types of traps. Overall TL (a) is a 

summation of TL from shallow (b), dosemetric (c) and deeper (d, e) traps.  
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Figure 3.18 Experimental first (a), second (b) readouts and simulated first (c) and second (d) 

readouts. 

3.9 Non linear response of TL dosimeter 

As dosimetry is based on calibration of dosimeter at one point on Dose vs TL output graph, if 

there is a non linearity in TL output vs amount of radiation incident plot, it will obviously result 

in error in estimated dose. The aim of this section is to study these effects. 

Experimentally speaking there are two types of non linearity : 

 First we have a linear region in TL output vs imparted dose graph and non linearity 

comes at a later stage.  

 First we have a non linear region in TL output vs imparted dose graph and linear region 

comes at a later stage. 
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Two terms have been coined to understand the phenomenon of non linearity. 

Supralinearity 

Supralinearity index is defined as 

𝜒 (𝑑) =
(఍(ௗ)ି ఍బ)/ௗ

(఍(ௗ೗)ି ఍బ)/ௗ೗
                                                                                                           (3.49) 

𝜒 (𝑑)= Response function (or supralinearity index) at dose D. 

𝜁(𝑑)= TL intensity value at dose D. 

𝜁(𝑑௟)= TL intensity value at dose 𝐷௟. 

𝑑= Dose at which investigation is being done. 

𝑑= Dose at which linearity exist. 

𝜁଴= Intercept on TL axis, actually it is the response of dosimeter at zero dose. 

The concept of linearity, sublinearity or supralinearity is defined by 𝜒 (𝐷). 

𝜒 (𝑑)= 1                          Linear response at dose 𝑑 

𝜒 (𝑑) < 1                        Sublinear response at dose 𝑑. 

𝜒 (𝑑) > 1                       Supralinear response at dose 𝑑. 

This has been discussed previously in chapter one but is again given here for the sake of 

continuity. 
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Superlinearity 

Superlinearity index is defined as 

ƙ (𝑑) =  
஽ ఍ᇲᇲ(ௗ)

఍ᇲ(ௗ)
 + 1                                                                                                               (3.50) 

ƙ (𝑑) > 1 Superlinearity 

ƙ (𝑑) = 1 Linearity 

ƙ (𝑑) < 1 Sublineariy 

It is worth noting that the two terms are similar but not equivalent. We may have cases where 

ƙ (𝑑) < 1 but still the graph is above the extrapolation range i.e. 𝜒 (𝑑) > 1. 

Conceptual explanation of non linearity 

Conceptually the non linearity is explained on the basis of competition between the traps during 

filling and during readout.  

During filling 

Suppose a situation where we have a recombination center and two traps, the dosimetric trap and 

a competing trap. If the capture cross section of competing trap is larger in that case it will be 

filled faster (assuming the concentration of the two traps is almost same).  

In the starting phase the charge carriers generated will be trapped in both the traps and while 

reading the signal will be proportional to the charge carriers tapped in the dosimetric trap i.e. a 

fraction of total amount of charge carriers generated. But as soon as the competing trap goes to 

saturation, more and more fraction of total amount of charge carriers generated will be trapped in 
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the dosemetric trap and hence, the TL will be proportional to larger fraction of total charge 

carriers generated. This will lead to super (or supra) linearity in the TL output vs imparted dose 

graph. 

During heating 

Again assume a situation of a recombination center and two traps one competing trap and one 

dosimetric trap. While heating the charge carriers trapped in the dosimetric trap will be excited to 

the conduction band. A part of it will be recombining with the recombination center to produce 

luminescence and rest of it will be re-trapped in the competing trap. Hence, the TL will be 

proportional to a fraction of charge carriers liberated from the dosemetric trap. As the competing 

trap will tend to saturation more and more fraction of charge carriers liberated from the 

dosemetric trap will recombine with the recombination center to produce luminescence. Hence, 

TL will be proportional to larger fraction of charge carriers liberated from the dosemetric trap. 

3.10  Other factors 

There are various experimental factors which may lead to deviation from true dose in TL based 

dose estimation. There is extensive literature on it [Chen and Mckeever, 1997]. For the sake of 

completeness the factors are discussed below. 

A) Arising from TL instrumentation 

Black body radiation 

For TL emission we have to heat the sample. This leads to emission of IR from the planchet as 

well as from the sample. Though IR filters are used but they do not cut the IR completely. 

Hence, the luminescence that is emitted from the sample is altered by the IR signal. 
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Mechanical Misalignment 

In TLD reader system, TLD and PMT should be perfectly aligned. Slight shift of TLD from the 

position at which calibration was done may affect the true dose estimation.  

 Dark Current of PMT 

Due to thermionic emission (at ambient temperature), PMT gives signal even when no dosimeter 

is there. This is called dark current. It is of the order of nA. It also affects dose estimation. 

Non linearity 

In TL based dosimetry it is assumed that response of the reader is linear. But many  times the 

output current of PMT is not linearly related to the input luminescence. This mainly happens at 

high doses. 

In addition to above mentioned factors light leakage, fluctuation in temperatue profile during 

readout, chemiluminescence (luminescence arising due to chemical reactions), triboluminescence 

(luminescence arising due to mechanical stress) affects the signal. 

B) Arising from Dosimeter 

Binding material 

We use binding material for making disc out of powder. It may also affect the performance of TL 

dose estimation. 
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Grain size 

Thermoluminescence from TLD material is well known to be affected by the grain size of TLD 

material. 

C) Arising from field conditions 

We calibrate the dosimeters in panoramic conditions. Whereas, in field incidence of radiation is 

possible from all directions. In addition to this, natural background (though it is corrected by use 

of control cards) also affect the dosimetric performance. 

3.11 Conclusions 

 In this chapter we have discussed various reasons because of which dose estimated by RW, GG 

and MP models may not be exact. As elaborated in this chapter reasons are theoretical 

(limitations of models), experimental as well as arising from field conditions. The emphasis in 

this chapter was on theoretical factors like quasi equilibrium approximation and its validity, non 

interactive kinetics and its validity, temperature dependence of parameters, re-absorption of TL 

emission and its after effects, various forms of quenching etc. 

Our contribution to literature on fading and residual TL has been emphasized in this chapter at 

appropriate places. In the domain of residual TL it has been established that the origin of residual 

TL are the deeper traps and the left over TL in dosemetric trap is not the major contributor to 

residual TL. In the domain of fading the experimental data on afterglow has been explained 

theoretically and it has been established that non linearity is general feature of afterglow.  

These topics have got sufficient attention in literature, from both theoretical as well as 

experimental perspective. But there is one domain which is almost unexplored. Parametric 
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uncertainty analysis of these models has not got sufficient attention in the literature. So, in next 

chapter we will be discussing parametric uncertainty analysis of these models.   
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                                             CHAPTER IV 

             Parametric Uncertainty analysis of Basic TL models 

In this dissertation various TL models have been discussed. From the models and 

mathematical expressions derived from them, model predicated temperature vs. TL intensity 

graphs (known as glow curves) can be obtained. It has also been elaborated that there are 

various factors that may lead to deviation in TL intensity from model predicated TL intensity 

values. One of the reasons is uncertainty in trap parameters. This chapter is dedicated to 

uncertainty propagation through basic TL models (RW and MP). GG models is not given 

elaborate attention as MP equation holds good for GG model with numerical value of order 

of kinetics equal to two.  

This study is relevant as it can be hypothesized: any theoretical or experimental methodology, 

used to arrive at the trap parameter values (values of Trap depth (D) and attempt to escape 

frequency (𝑓)) will always report the values of trap parameters with some uncertainty. This 

uncertainty will propagate through the TL models and lead to uncertainty in the TL intensity 

output. What is the trend of temperature vs. Uncertainty in TL intensity due to parametric 

uncertainty? This is question intended to be probed in this chapter.  

This chapter is bifurcated into three sections based on methodology used to carry out the 

uncertainty analysis. Section 4.1 is based on Monte Carlo (MC) technique, section 4.2 on 

Fuzzy set theory technique and section 4.3 on Polynomial chaos expansion (PCE) technique. 

Each section starts with discussing the algorithm for uncertainty propagation using particular 

method and concluded with results followed by discussion.  

4.1 Monte Carlo (MC) approach for uncertainty propagation 

There are certain prerequisites to understand this method; hence they are discussed here.   
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Probability density function (PDF) 

If there is a set of data, it is always possible to obtain a histogram of the data by taking a 

appropriate bin size. This histogram is called as frequency distribution. An area normalised 

frequency distribution is called as probability density function (PDF). 

Cumulative distribution function (CDF) 

From a PDF it is possible to arrive at the CDF using following equation. 

𝐶𝐷𝐹 (𝑥) =  ∫ 𝑃𝐷𝐹 (𝑦)𝑑𝑦
௫

଴
                                                                                                  (4.1)  

Where 𝑥 is the parameter value and 𝑦 is a dummy variable. 

Inversion Method 

This is a method for generating set of parameter values whose PDF is given. The method is as 

explained below. 

From the given PDF, CDF is to be generated using equation (4.1). In the CDF the X axis has 

the parameter value and Y axis has range from 0-1. A random number is generated between 

0-1 and corresponding point on X axis is to be found using the CDF. This way one value of 

parameter is obtained. By repeating this process many times a set of values of parameters is 

obtained whose distribution is as per initially taken PDF.  

4.1.1 Algorithm for uncertainty propagation using MC 

The general scheme for MC method applied to uncertainty analysis of individual TL peak is 

illustrated in flow chart on next page 
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                     Figure 4.1 Algorithm for uncertainty propagation using MC technique.  

Assume the PDF 

     Of D and 𝑓 

Using inversion method separate sets of D and 𝑓 
values are generated whose distribution is as per 
assumed PDFs.  

Randomly pick D and 𝑓 values from the sets 

Chose initial value 
of temperature 

Get the distribution of output TL intensity 

   Find the mean and standard deviation  

     Increment the temperature value 

Final T 
reached? 

Plot standard deviation vs. T 
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4.1.2 Simulation results 

 

In Monte Carlo method the first question that is required to be settled is the sample size. 

Sample size is the number of data in the parameter set. In present case the sample size is 

defined as number of data in the set of trap depth (D) and attempt to escape frequency (𝑓) . 

Hence, it is required to be established that how many data should be in each set of trap 

parameters. It is pertinent to mention at this point that we have two separate sets, one of trap 

depth (D) and other of attempt to escape frequency ( 𝑓 ) to avoid any confusion.                        

 

Figure 4.2 Optimisation of sample size. For this plot trap depth (D)=1.3eV, standard 

deviation in trap depth (𝜎஽)=.005eV, frequency factor (𝑓)=1012sec-1 and standard deviation in 

attempt to escape frequency  (𝜎௙)=1010sec-1. Heating rate is 5oK/sec. 
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It is required to optimize the sample size. With increasing sample size the statistical 

fluctuation will be reduced. At the same time the increasing sample size will also raise the 

computational burden. Hence, a trade off is required. 

In order to do this sample size from 100 to 105 is taken. With each sample size D and 𝑓 

values are sampled randomly from respective sets and a set of TL intensity values is obtained. 

By numerically generating the histogram, the most probable value of TL intensity is found. 

Further a graph is plotted between sample size and most probable value of TL intensity. This 

graph is shown in Figure 4.2. It can be seen in the plot that the fluctuation is reduced with 

increasing sample size. Looking at this graph we optimize the sample size to be 3000. 

Further with this sample size parametric uncertainty analysis of individual TL peak is done. 

This is done for first order and general order kinetic equations of thermoluminescence also 

known as RW and MP model equations. Analysis of second order kinetic equation (GG 

model) is not done as general order kinetic equation exactly represents the second order 

kinetic equation with value of order of kinetics equal to two.  

4.1.2.1 First Order Kinetics 

After generating a set of Gaussian distributed 3000 values of trap parameters (D and 𝑓) 

having mean and standard deviation as documented in Table 4.1, we randomly sample from 

respective sets and find the output TL intensity at a given temperature using first order 

            Table 4.1 Mean value and standard deviation of PDFs of trap parameters 

    Trap Parameter        Mean value       Standard Deviation 

    Trap Depth            1.3 eV             0.005 eV 

Attempt to escape frequency             1012 sec-1              1010sec-1 
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Kinetic (RW) model equation. By this way a distribution of TL intensity is obtained. 1σ value 

is calculated from both the sides of the most probable value.  This process is repeated for full 

range of temperature. Figure 4.3 shows the obtained graph. 

 

Figure 4.3 Output thermoluminescence intensity (2) with its 1 values (1, 3) on both side. 

Values of parameters are same as Figure 4.2. 

As not much is obvious from Figure 4.3, hence, the 1 value is subtracted from the mean on 

both the sides and is plotted in Figure 4.4. This plot is termed as positive and negative residue 

plot. From Figure 4.4 the trend of uncertainty along with temperature can be observed which 

was not evident from Figure 4.3. There are two maximums close to temperature 

corresponding to half intensity value of TL intensity with a minimum at temperature 
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corresponding to peak of TL intensity in the glow curve. Glow curve has been illustrated in 

Figure 4.3. 

  

Figure 4.4 Positive and negative residue as a function of temperature for first order kinetics 

(RW model) of thermoluminescence. The values of parameters are same as Figure 4.2.  

There is another way of visualising the same phenomenon. At each point of temperature we 

have PDF of TL intensity. From these PDFs, the CDFs at each temperature point can be 

obtained. Figure 4.5 shows the CDFs at five illustrative points. From CDFs at each 

temperature the 2.5th and 97.5th percentile can be obtained.  

These values can be plotted against temperature to get the uncertainty profile. It can be seen 

from Figure 4.4 that in the region ABC and CDE the trend is same. The graph is raising, 

reaching a maximum, and then falling. Hence, for visual clarity 2.5th -97.5th percentile plot is 

done in only one region namely, ABC. This plot is shown in Figure 4.6.   
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Figure 4.5 CDFs for mentioned values of temperature for first order kinetics of 

thermoluminescence. Values of parameters are same as Figure 4.2.

 

 Figure 4.6 2.5th and 97.5th percentile plot for half range of temperature. Graphs are 

normalised with respect to maximum value. Values of parameters are same as figure 4.2. 
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Explanation of the trend 

In order to understand the phenomenon it is given a thought keeping only one parameter (D) 

uncertain and fixing the value of another parameter to its mean value (𝑓 =1012sec-1). If only 

one parameter is kept uncertain then actually glow curve is being generated at slightly higher 

and lower values of that parameter, the magnitude of which is equivalent to uncertainty in 

that parameter. So, glow curve is plotted at two values of D, 1.3eV and 1.28eV, to get the 

corresponding glow curves GC1 and GC2. The graphs of which are shown in Figure 4.7. 

Though the actual uncertainty in our parameter D is much lower (1 =.005eV) but a larger 

difference in energies is kept for visual clarity. If we consider a particular temperature say 

T=500K, then the residue is actually the length AB of Figure 4.7. Where A is a point on GC1 

at T=500K and B is a point on GC2 at T=500K.  

 

Figure 4.7 Glow curve for two certain (𝜎஽ =0.0) values of trap depth (D). The value of 

frequency factor is 1012 sec-1. Heating rate is 5oK/s. 
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For further understanding, the modulus of rate of change of TL intensity with change in 

temperature is plotted, shown in Figure 4.8. It is found that it has similar nature as of the 

positive residue plot. It is reasonable as due to uncertainty in D we have glow curves shifted 

along temperature axis. Now, for a given shift along temperature axis larger will be length 

AB where TL vs. temperature gradient is larger and smaller where TL vs. temperature 

gradient is smaller. Hence, positive residue plot and |𝑑𝑇𝐿/𝑑𝑇| vs T plot should have similar 

nature.  

Similar analysis can be done by keeping D fixed and 𝑓 uncertain.  

 

 

Figure 4.8 Modulus of differentiation of themoluminescence (TL) output as a function of 

temperature. The value of D=1.3eV. Rest parameters are same as Figure 4.7. 
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4.1.2.2 General Order Kinetics 

For General order kinetics uncertainty analysis is done in similar fashion as explained for the 

first order kinetics case. Figure 4.9 shows the residue plot for order of kinetics equal to two 

and Figure 4.10 illustrates the residue plot for order of kinetics equal to 1.8. Figure 4.11 and 

Figure 4.12 shows the representative CDFs at five values of temperature for two cases of 

order of kinetics equal to two and order of kinetics equal to 1.8.  

It is pertinent to mention at this point that X axis value corresponding to 50th percentile of a 

CDF plot is mean value of TL intensity. Hence, the CDF close to half intensity values (at 

which there is maximum of uncertainty, points B and D of residue plot (Fig. 4.4)) are 

expected to be in between, with CDF corresponding maximum intensity point (at which there 

is a local minimum of uncertainty, point C of residue plot (Fig. 4.4)) on right hand side and 

CDF corresponding starting and end points of glow curve (points A and E of residue plot (Fig 

4.4)) on the left hand side.  This is obvious from Figure 4.11 and Figure 4.12. 

It can be seen from the residue plots and the CDFs that they disclose the same information. It 

can be seen from the residue plot that uncertainty has two local maximums with a minimum 

in between the two. In the CDF plot larger is the slant of curve larger is uncertainty as larger 

will be the separation along X axis between 5th and 95th percentile. As is obvious from the 

CDF plots the CDFs close to half intensity values of TL intensity in glow curve have 

maximum slant, CDF corresponding to maximum intensity value of TL intensity in glow 

curve has smaller slant and CDF corresponding to starting and end values of TL intensity in 

glow curve are almost vertical lines (least slant). 
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Figure 4.9 Positive and negative residue as a function of temperature for b=2. The values of 

parameters are D=1.3 eV, 𝑓  =1012sec-1, Ct0=1010m-3, CT=1010m-3, heating rate=5oC/sec. 

Uncertainty in D and 𝑓 are respectively 0.005eV and 1010sec-1. 

 

Figure 4.10 Positive and negative residue as a function of temperature for b=1.8.  
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Figure 4.11 The CDFs for mentioned values of temperature for b=2 of general order kinetics.  

 

 

Figure 4.12 The CDFs at five representative temperatures for b=1.8 of general order kinetics.  
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4.1.3 Discussions 

The algorithm aimed at establishing the trend of uncertainty for temperature range of our 

interest has been discussed in section 4.1.1. In the further section using the algorithm the 

trend has been obtained. Further, it is required to discuss the benefits of the study. The major 

benefit of the study is as follows.  

In experimental scenario often glow curves are recorded. If under same experimental 

condition (heating rate, temperature range etc.) glow curve is recorded for same phosphor 

repeatedly, till sufficiently large number of glow curves are recorded. Each glow curve is 

deconvoluted to yield individual TL peaks. Further, one of the obtained TL peaks is 

considered. For the particular glow peak and at a particular temperature, mean and standard 

deviation of TL intensity can be obtained at that temperature. This process may be repeated 

for full range of temperature under consideration for that particular TL glow peak. By this 

way experimental trend of temperature vs. uncertainty plot can be obtained, for the particular 

TL glow peak. If this trend matches with trend established in this chapter then, it can be 

inferred that the statistical fluctuation in trap parameters is the major source of uncertainty for 

that particular TL peak.   

In above method the number of simulation runs has to be kept quite large for accurate result. 

This may be a time consuming affair. Hence, we may use another technique known as α cut 

method of Fuzzy set theory for reducing computational burden. 

4.2 Fuzzy set theory approach for uncertainty propagation 

Since its proposition by Zadeh [Zadeh, 1965] Fuzzy set theory has been applied to diverse 

fields of engineering like fault detection in gearboxes [Joentgen et al., 1999] etc and 

management like transportation problem [Chanas et al., 1984]. But the estimation of 
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uncertainty in TL signal due to inherent uncertainty in parameter using Fuzzy set theory is 

relatively unexplored field. 

4.2.1 Basics of Fuzzy set theory for uncertainty analysis 

Ordinary set 

In ordinary (non fuzzy) set theory elements fully belong to set or are fully excluded from it. 

Membership function μ A(x) of x, of a classical set A is defined as 

 μ
୅

(x)  = ൜
1                       𝑖𝑓 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴
0               𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴

 

This means that an element x is either a member of set A (μ A(x) =1) or not (μ A(x) =0). 

Fuzzy set 

A fuzzy set A on universe (domain) X is a set defined by membership function μ A(x) which 

is a mapping from the universe X into unit interval. Membership function represent the 

degree that specified value belongs to set. 

μ
୅

(x) = ቐ

1            𝑥 𝑖𝑠 𝑓𝑢𝑙𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴

𝜖 (0,1)      𝑥 𝑖𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴
0             𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴

 

 

A triangular membership function is illustrated in Figure 4.13. 

𝛼௖௨௧ method 

The αୡ୳୲ method is explained in the subsequent paragraph.  
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If we take a particular value of membership function (say 𝛼௖௨௧) and draw a line parallel to 

horizontal axis, it cuts the membership function at two points. The two points define the 

range of interval (𝐼௠௜௡ & 𝐼௠௔௫) on the X axis. Figure 4.13 may be seen. 

Quantification of uncertainty 

For a given 𝛼௖௨௧value the interval (𝐼௠௜௡, 𝐼௠௔௫) is a measure of spread (or uncertainty). To 

quantify the uncertainty we define the degree of uncertainty (DOU). 

                                        DOU= 𝐼௠௔௫ −   𝐼௠௜௡ 

                                      

                                    Figure 4.13    Triangular membership function 

 

4.2.2 Algorithm for estimating uncertainty using α cut method 

The algorithm for doing uncertainty analysis using α cut method is depicted in flow chart of 

Figure 4.14. 

 



CHAPTER IV: Parametric Uncertainty analysis of Basic TL models 
 

133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Flow chart of  cut method for estimating uncertainty profile of single TL peak. 

 

Assume membership 
function for trap 
parameters and T=Tmin 

Apply α cut to all membership 
functions of input trap parameters  

Generate all combinations of trap 
parameters 

Find TL intensity for all sets of 
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Record min and max TL intensity and 
calculate DOU for that α cut 
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Justification for adopting triangular membership function for input trap parameters 

Gaussian probability density function has been used in section 4.1 for the input trap 

parameters. Among the generally used membership functions (rectangular, trapezoidal, 

triangular etc.) triangular membership function is the best approximation of a Gaussian 

function as shown in Figure 4.15. 

 

           Figure 4.15 Triangular membership function is best approximation of Gaussian PDF.  

Another justification that can be furnished for using a triangular membership function is as 

follows. Any experimental or theoretical methodology will always report the trap parameters 

with a most probable value and uncertainty (1α or 3α value). Hence, a particular value of trap 

parameter will be most probable with fall in probability on moving from it on both the sides. 
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So a triangular membership function with coordinates as shown in Figure 4.16 is most 

suitable simple membership function for trap parameters. 

 

X: Trap parameters (trap depth (D) or attempt to escape frequency (𝑓)) 

Y: Membership function 

Figure 4.16 Triangular membership function is a reasonable approximation for trap 

parameters. 

4.2.3 Simulation Results 

The basics of Fuzzy set theory relevant to our case study and the algorithm used to carry out 

the uncertainty analysis has been discussed in previous sections. Further, in this section it is 

intended to present the simulation results. 

4.2.3.1 First order kinetics 

The results are started with the case of first order kinetics. 

[Most probable value, 1] 

[1α / 3α , 0] [  (+ve)  1α / 3α , 0] 

Y 

X [(-ve) 1α / 3α , 0] 
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Figure 4.17 Membership function graph of output TL intensity at T=500 oK for 1st order 

kinetics. 

 

Figure 4.18 DOU with temperature for full range of temperature under consideration for 1st 

order kinetics.  
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Figure 4.17 shows the representative membership function for TL intensity for 1st order 

kinetics of thermoluminescence at a particular temperature (T=500oK). Similar membership 

function graphs can be obtained at all temperatures and from each membership function 

graph DOU | =0.01 can be obtained. Further DOU | =0.01 may be plotted along with 

temperature to get the uncertainty trend along with temperature. Figure 4.18 shows this result. 

4.2.3.2 General order kinetics 

Figure 4.19 shows the membership function graph for general order kinetics at a 

representative temperature (T=500oK) and Figure 4.20 show the uncertainty plot. 

4.2.4 Discussions 

In this chapter trend of temperature vs. uncertainty graph is discussed. For minimising the 

computational time to carry out large number of simulation runs,  cut method of fuzzy set 

theory was introduced. The major benefit of the study was explained. It was elaborated that 

by these methods it can be established that whether or not, statistical fluctuation in trap 

parameters are major source of uncertainty.  

Further, it is interesting to look in to the matter in case where, sources of deviation from basic 

TL model so dominant that basic TL models are no longer valid and to see whether we may 

do modelling and further the uncertainty analysis in that case with recording a reasonably low 

number of TL glow curves.  

One of the suitable methods for such cases is Polynomial Chaos Expansion (PCE) for 

modelling the scenario. Hence, PCE will be introduced further. 
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Figure 4.19 Membership function graph of output TL intensity at T=500 oK for general order 

kinetics at b=1.8. Rest parameters are same as figure 4.18. 

 

Figure 4.20 DOU with temperature for full range of temperature under consideration for 

general order kinetics with b=1.8. 
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4.3 Polynomial Chaos Expansion (PCE) for uncertainty analysis 

4.3.1 Basics of PCE 

The foundation of PCE theory dates back to 1938 when Wiener represented Gaussian as an 

infinite series of Hermite polynomials whose argument was a vector of random variables. 

Further, in 1991 Ghanem and Spanos developed stochastic finite element method based on 

the theory developed by Wiener. In 2002 Xiu and Karniadakis elaborated further the 

formalism to non Gaussian cases using different orthogonal polynomials as basis function. 

Polynomial chaos expansion (PCE) (Wiener,1938; Ghanem & Spanos, 1991; Isukapalli, 

1999; Xiu & Karniadakis, 2002) is an efficient method of simulation. PCE can be used for 

uncertainty propagation and quantification. 

Here it is intended to present algorithm for modelling the TL phenomenon using PCE and 

further carrying out the uncertainty analysis of the model (response surface) generated. 

The motivation here is to illustrate that this technique can be applied to uncertainty analysis 

of TL intensity in glow peak. Hence, experimental data points may be replaced by model 

predicated TL values. Obviously in this case repetition of results of section 4.1 and section 

4.2 is expected. This will validate the applicability of algorithm to the phenomenon of TL. 

4.3.2 Algorithm for uncertainty propagation using PCE 

The algorithm is as follows. The number of input variables is two namely, trap depth and 

attempt to escape frequency (𝑟 = 2) and expansion is taken up to second order (𝑛 = 2). Hence, 

the sample size (number of inputs) is given by equation 4.2 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 =  
(௡ା௥)!

௡!௥!
=  

(ଶାଶ)!

ଶ!ସ! 
= 6                                                                                   (4.2) 
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 So two sets each containing of 6 normally distributed random numbers with mean and 

standard deviation (1.3eV, 0.005eV) and (1012 sec-1, 1010 sec-1) are taken. First set is for trap 

depth and second set is for pre exponential factor. The corresponding set of output TL 

intensity is generated using RW model equation at a particular value of temperature. It will  

contain 6 elements as explained before. Let the elements be 𝑌ଵ, 𝑌ଶ … . 𝑌଺. For each output the 

expansion can be written as follows. 

𝑌ଵ =  𝑎଴ + 𝑎ଵଵ,ଵ
+ 𝑎ଶଶ,ଵ

+ 𝑎ଷ ቀ
ଵ,ଵ
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,ଵ
ଶ − 1ቁ + 𝑎ହଵ,ଵ


ଶ,ଵ

                       (4.3.1) 

𝑌ଶ =  𝑎଴ + 𝑎ଵଵ,ଶ
+ 𝑎ଶଶ,ଶ

+ 𝑎ଷ ቀ
ଵ,ଶ
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,ଶ
ଶ − 1ቁ + 𝑎ହଵ,ଶ


ଶ,ଶ

                       (4.3.2) 

𝑌ଷ =  𝑎଴ + 𝑎ଵଵ,ଷ
+ 𝑎ଶଶ,ଷ

+ 𝑎ଷ ቀ
ଵ,ଷ
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,ଷ
ଶ − 1ቁ + 𝑎ହଵ,ଷ


ଶ,ଷ

                       (4.3.3) 

𝑌ସ =  𝑎଴ + 𝑎ଵଵ,ସ
+ 𝑎ଶଶ,ସ

+ 𝑎ଷ ቀ
ଵ,ସ
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,ସ
ଶ − 1ቁ + 𝑎ହଵ,ସ


ଶ,ସ

                       (4.3.4) 

𝑌ହ =  𝑎଴ + 𝑎ଵଵ,ହ
+ 𝑎ଶଶ,ହ

+ 𝑎ଷ ቀ
ଵ,ହ
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,ହ
ଶ − 1ቁ + 𝑎ହଵ,ହ


ଶ,ହ

                       (4.3.5) 

𝑌଺ =  𝑎଴ + 𝑎ଵଵ,଺
+ 𝑎ଶଶ,଺

+ 𝑎ଷ ቀ
ଵ,଺
ଶ − 1ቁ + 𝑎ସ ቀ

ଶ,଺
ଶ − 1ቁ + 𝑎ହଵ,଺


ଶ,଺

                       (4.3.6) 

Where 
ଵ,ଵ

, 
ଵ,ଶ

, 
ଵ,ଷ

, 
ଵ,ସ

, 
ଵ,ହ

, 
ଵ,଺

 is one set of normally distributed random numbers whose 

mean is 0 and standard deviation is 1. Similarly, 
ଶ,ଵ

, 
ଶ,ଶ

, 
ଶ,ଷ

, 
ଶ,ସ

, 
ଶ,ହ

, 
ଶ,଺

 is another set of 

normally distributed random numbers with mean 0 and standard deviation 1. These two sets 

correspond to two input variables. Normally distributed random numbers with mean 0 and 

standard deviation 1 are called standard random variables (srvs) 

Equation 4.3.1 to 4.3.6 can be written in matrix form and the values of coefficients 

𝑎ଵ, 𝑎ଶ … 𝑎଺ can be obtained. Once the coefficients are known the response surface is defined. 
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Further large number of srvs may be input to this response surface to generate the probability 

density function (PDF) of output (TL intensity at that temperature).  

From the obtained PDF the cumulative distribution function (CDF) may be obtained as 

explained in section 4.1. From this CDF the 2.5th percentile and 97.5th percentile can be 

obtained to visualise the uncertainty.  

Further, the whole process may be repeated at different values of temperature to obtain the 

variation of uncertainty as a function of temperature.    

In order to be more precise it is possible to do a Monte Carlo on coefficients.                                    

4.3.3 Simulation Results 

4.3.3.1 First Order Kinetics 

As mentioned in the algorithm section (section 4.3.2) by constructing the response surface 

and further input of large number of srvs, PDF of output TL intensity at that temperature 

value can be obtained. From the PDF the CDF may be obtained for that temperature. Figure 

4.21 shows the CDFs at five representative temperature values for first order kinetics. The 

values of parameters are as mentioned in algorithm section. Heating rate is 5oKelvin/sec,  

4.3.3.2 Second Order Kinetics 

Figure 4.22 illustrates the CDFs at five representative temperature values. For this plot the 

heating rate is 5oKelvin/sec. 
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Figure 4.21 CDFs at five representative temperatures generated using PCE for first order 

kinetics model. 

 

Figure 4.22 CDFs at five representative temperatures generated using PCE for second order 

kinetics model. 
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4.4 Conclusions 

The trap parameters (trap depth and pre exponential factor) are the model parameters of the 

RW, GG and MP models. Due to uncertainty in model parameters there will be uncertainty in 

the TL emission intensity. This uncertainty will also be a function of stimulating temperature. 

In this chapter the trend of variation of uncertainty in TL emission intensity with variation in 

temperature has been established.  

This chapter started with MC simulations and the objective of uncertainty analysis of various 

models proposed for TL phenomenon was achieved. It was further established that the results 

of MC simulation can be obtained using  cut method of Fuzzy Set theory with 

comparatively much lower computational burden. 

In case where mentioned TL models are no longer valid, modelling can be done using PCE 

by generating response surface. After establishing the response surface, uncertainty analysis 

can also be done. This method was also introduced and the results obtained from MC 

simulation and Fuzzy set theory was successfully reproduced using PCE. 
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                                       CHAPTER V 

                        Deconvolution of TL Glow Curve  

Necessity and benefits of CGCD has already been discussed in chapter one of this 

dissertation. The glow curve is superposition of TL output from various type of trapping 

centres in the material. Hence, to get any meaningful information regarding one type of 

trapping centre it is mandatory to deconvolve the glow curve. Due to above reason a novel 

technique for deconvolution is of interest. In this chapter it is intended to present Mixture 

Model based Computerised Glow Curve Deconvolution (MM based CGCD). The major 

benefit of this technique over other CGCD techniques is as follows. 

It would be of interest to the CGCD community to find a theoretical platform for determining 

correct number of glow peaks to which a given glow curve should be deconvolved. Presently, 

for same phosphor different authors fit the glow curve to different number of glow peaks. 

Example is the case of CaSO4: Dy [Oliveri, 1978; Souza, 1993; Srivastava and Supe, 1983]. 

In the context of MM this question has already been addressed by different authors [Fraley 

and Raftery, 1998; Gassiat and Dacunha-Castelle, 1997]. It is our presumption that on similar 

line of action it is possible to develop theoretical platform for determining correct number of 

glow peaks for a given glow curve theoretically. MM based CGCD, that we present here, 

may be a milestone to the mentioned objective of finding purely theoretical way for correct 

number of glow peaks for a given glow curve. Author is aware of the fact that there are 

experimental techniques like fractional glow technique for the purpose. But our interest is in 

purely theoretical platform for answering the question, which to the best of our knowledge, is 

missing in TL literature till date. 
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To develop the formalism of deconvolution using Mixture model (MM), prior knowledge of 

conditional probability, Bayes’ theorem, maximum likelihood and Expectation maximization 

algorithm is required. Hence, a brief introduction of these topics is given. 

5.1 Conditional probability 

In basic set theory only information about outcome of a trial of a given experiment, available 

before trial, is that it corresponds to some point in the sample space. With this assumption,  

probability of any event A is calculated. If added information that outcome of a trial is 

contained in a subset of B of sample space with, P(B)≠0, is given, then knowledge of 

occurrence of event B may change the conditional probability of event A. We define the 

conditional probability of A given B has occurred. Symbolically it is represented as P (A|B). 

5.2 Bayes’ theorem 

 In practice, after the experiment, a situation often arises in which the event A is known to 

have occurred, but not known directly which of the mutually exclusive and exhaustive events 

B1, B2....Bn has occurred. In situation, we may be interested in finding 𝑃൫𝐵௝ห𝐴൯ , it is given as 

𝑃൫𝐵௝ห𝐴൯ =
௉ቀ𝐴ቚ𝐵௝ቁ  ௉(஻ೕ)

∑ ௉൫𝐴ห𝐵௜൯  ௉(஻೔)೔
                                                                                                (5.1) 

This relation is known as Bayes’ theorem. It is also sometimes called as posterior probability. 

5.3 Posterior Probability 

Posterior probability is the probability of having argument set  given the data set 𝑋. It is 

related to likelihood and prior by following relation 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑥 𝑃𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Mathematically it is written as 
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𝑃(|X) =
୔൫Xห൯୔()

୔(ଡ଼)
                                                                                                            (5.2) 

5.4 Maximum likelihood 

Suppose there is a sample of 𝑥ଵ, 𝑥ଶ … … . 𝑥௡  n independently and identically distributed 

observations, coming from an unknown probability distribution. It is how ever known that the 

distribution belongs to a family of distributions. It is desirable to find the parameter set  of 

the family of distributions specific to the unknown probability distribution. The likelihood is 

defined as (assuming data to be independent) 

𝐿 (;  𝑥ଵ, 𝑥ଶ … … . 𝑥௡ = 𝑓(𝑥ଵ, 𝑥ଶ … … . 𝑥௡| ) = ∏ 𝑓(𝑥௜|)௜                                                (5.3) 

The method of maximum likelihood estimates  by finding the value of  that maximises  

L(; x). Symbolically it is written as 

{௠௟௘} = {𝑎𝑟𝑔 𝑚𝑎𝑥 𝐿(; 𝑥ଵ, 𝑥ଶ … … . 𝑥௡)}                                                                         (5.4) 

The concept of maximum likelihood estimate (MLE) of parameters can be explained by an 

example. It may be assumed that there are three data points and it is known that Gaussian 

process models the phenomenon under consideration adequately. Joint probability 

distribution of data set is required, generation of which is complicated. Hence, problem is 

approached with an assumption that data points are independent.  

Hence, 

𝑃(𝑥ଵ, 𝑥ଶ, 𝑥ଷ;  , 𝜎) = 𝑃(𝑥ଵ;  , 𝜎) 𝑃(𝑥ଶ;  , 𝜎)𝑃(𝑥ଷ;  , 𝜎)                                                   (5.5) 

𝑃(𝑥;, 𝜎) =  
ଵ

ఙ√ଶП
exp[−

(௫ି)మ

ଶఙమ
 ]                                                                                         (5.6) 

From equation (5.5) and (5.6) equation (5.7) may be obtained 
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𝑃(𝑥ଵ, 𝑥ଶ, 𝑥ଷ;, 𝜎) =
ଵ

ఙ√ଶП
exp ቂ−

(௫భି)మ

ଶఙమ
ቃ

ଵ

ఙ√ଶП
exp[−

(௫మି)మ

ଶఙమ
]

ଵ

ఙ√ଶП
exp[−

(௫యି)మ

ଶఙమ
]             (5.7) 

Further, it is known that logarithm is a monotonically increasing function. Hence, maxima of 

log likelihood will occur at the same point where the maximum of likelihood is.  

log (𝑃(𝑥ଵ, 𝑥ଶ, 𝑥ଷ;  , 𝜎) = 3 ln
ଵ

ఙ√ଶП
 −

(௫భି)మ

ଶఙమ
−

(௫మି)మ

ଶఙమ
−

(௫యି)మ

ଶఙమ
                                      (5.8) 

Taking partial differential of equation (5.8), equation (5.9) may be obtained 

 ௉(௫భ,௫మ,௫య;,ఙ)

 
= ଵ

ఙమ
 [ 𝑥ଵ + 𝑥ଶ + 𝑥ଷ − 3 ]                                                                  (5.9) 

The condition of maxima is  

 ௉(௫భ,௫మ,௫య;,ఙ)

 
   = 0                                                                                                      (5.10) 

Using equation (5.10), equation (5.11) may be obtained 

 =  (𝑥ଵ + 𝑥ଶ + 𝑥ଷ)/3                                                                                                      (5.11) 

Similarly,  
 ௉(௫భ,௫మ,௫య;,ఙ)

 ఙ 
   = 0 may be used to estimate the 𝜎. 

But in real world scenario the MLE always doesn’t give the close form of estimate of 

parameters. Hence there is improved version like Expectation Maximization (EM) algorithm.    

5.5 Expectation maximization algorithm (EM) 

EM algorithm is a two step iterative algorithm: 

(A) Calculate the expectation of log likelihood of complete data set with respect to the 

latent variable. 
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(B) Maximize the above (differentiate and equate to zero) with respect to parameter set so 

as to estimate the parameter set 

Proof for convergence of likelihood function to an upper bound in EM algorithm is as 

follows. 

Symbols: 

𝑋: 𝐷𝑎𝑡𝑎 𝑠𝑒𝑡                                                         

𝑥௜: 𝐷𝑎𝑡𝑎                                                                

𝑍: 𝐿𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒                                           

: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡                                            

௧ ∶ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡  𝑖𝑛 𝑡௧௛ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.  

𝑄: Auxiliary𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝐿(): Log Liklihood of parameter set   

ℎ (𝑥|): Liklihood of incomplete (observed) data  

𝑟(𝑦|): Liklihood of complete data (including latent variable)  

 

𝐿 () = log h(x|)                                                                                                           (5.12) 

Following definition can be made for conditional density of complete data set 𝑦 = (𝑥, 𝑧). 

𝑗 (𝑦|𝑥,) =
୰ (୷|)

୦(୶|)
                                                                                                         (5.13)  

Equation (5.12) can be rewritten as 

𝐿 () = log 𝑟(𝑦|) − log 𝑗(𝑦|𝑥,)                                                                 (5.14) 

Taking expectation value with respect to latent variable, 𝑧, given observation and parameters 

obtained from previous iteration equation (5.15) can be obtained [McLachlan and Krishnan, 

1997; Dempster et al., 1997; Sammaknejad et al., 2019] 
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< 𝐿 () > = < log r(y|)ห x,୲ > −< log j(y|x,൯|x,୲ >                                        (5.15) 

                  = 𝑄(|୲) − 𝑀(|୲)   

Where 

𝑄(|୲) =< log r(y|)|x,୲ >  

𝑀(|୲) = < log j(y|x,)|x,୲ > 

𝐿 ൫௧ାଵ൯ − 𝐿൫௧൯ = 𝑄൫୲ାଵห୲) − 𝑄൫௧ห୲) − {𝑀൫୲ାଵห୲) − 𝑀൫௧ห୲)}              (5.16) 

In expectation maximization algorithm Q function is maximized. Hence, 

𝑄൫୲ାଵห୲) ≥ 𝑄൫௧ห୲)                                                                                                   (5.17) 

Therefore 𝐿 ൫௧ାଵ൯ ≥ 𝐿൫௧൯ will be true if 𝑀൫୲ାଵห୲) − 𝑀൫௧ห୲) ≤ 0 

For an arbitrary   [McLachlan and Krishnan, 1997; Dempster et al., 1997; Sammaknejad et 

al., 2019] 

 𝑀൫୲ାଵห୲) − 𝑀൫௧ห୲) = < log
୨(୷ |୶,) 

୨(୷|୶,౪)
 |x,୲ >                                                        (5.18) 

                                                   ≤   log <  
୨(୷ |୶,) 

୨(୷|୶,౪)
 | x,୲ >                                                   (5.19) 

                                                  =   log ∫ 𝑗 (𝑦|𝑥,) dy = 0                                                   (5.20) 

Equation (5.19) is obtained by using Jensen’s inequality [McLachlan and Krishnan, 1997] 

Hence log likelihood function and thereby, likelihood function ℎ (𝑥|) will increase. If the 

sequence is bounded it should converge to some upper bound [McLachlan and Krishnan, 

1997; Dempster et al., 1997; Sammaknejad et al., 2019] 

 

 

5.6 Mathematical Background of mixture model (MM) for deconvolution of TL glow 

curve 

The problem of deconvolution of TL glow peaks can be modelled as mixture model (MM). A 

mixture model is a probability density function represented by weighted sum of several 
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component probability distribution functions. It is assumed that each component density is 

finite set of data and can be modelled using density functions like Gaussian, Poisson etc. This 

method is useful when data originates from not one but multiple sources, which are trap types 

in our case. If each component density is assumed to be a Gaussian, the model is said to be a 

Gaussian Mixture Model (GMM). The parameters of GMM can be estimated using 

Expectation – Maximization (EM) algorithm. EM algorithm is an iterative method for finding 

maximum likelihood estimates of parameters in model, where model depends on unobserved 

latent variables. If we associate an identifier to each type of trap, then this identifier is our 

latent variable. The EM iteration alternates between performing an expectation (E) step 

which generates a function for the expectation of the log likelihood evaluated using the 

current estimate of the parameters, and a maximization (M) step, which calculates the 

parameters by maximizing the expected log-likelihood found in the E step. This process goes 

on iteratively. 

 

Further there is need of mapping the glow curve deconvolution problem to MM formalism. 

Glow curve is a plot of TL counts as a function of temperature, so, it gives number of counts 

at each temperature. For application of MM we need a set of distributed data points with a 

given distribution. So, to map glow curve problem to MM formalism, at each location on 

temperature axis as many points are put as is the height of glow curve at that temperature. 

Now the problem can be looked as points distributed in one dimensional temperature space 

with glow curve as the distribution function. So we have a set of points at various locations in 

a one dimensional space whose distribution is known. Hence, MM formalism is applicable. 

Books [McLachlan and Peel, 2004] discuss Gaussian Mixture Model, Expectation 

Maximization and likelihood estimation comprehensively but in their own context. So 

derivation is discussed in following section. In the derivation following symbols are be used. 
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Symbols: 

𝑋: 𝐷𝑎𝑡𝑎 𝑠𝑒𝑡                                                         

𝑥௜: 𝐷𝑎𝑡𝑎                                                                

𝑍: 𝐿𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒                                           

𝑃(𝑥௜): 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎  

 : 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡                                            

௧ ∶ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡  𝑖𝑛 𝑡௧௛ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.  

𝑤௜: 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠    

𝑄: Auxiliary𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑡∗ = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝  

𝜆஺: 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  

 = 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡  

The motivation of the section is to estimate the parameters trap depth (𝐷௃), frequency factor 

(𝑓௝)  and the weighting factor (𝑤௝)  for each component glow peak, condition that the 

convoluted graph of glow peaks is known.  To do this following route will be followed. In 

step (I) the convolved graph is written as weighted sum of normalised (with respect to area) 

glow curves and a latent variable (𝑧௜௝) is associated with each glow curve. In step (II) 

likelihood and log likelihood for the combined probability distribution of X and Z at a given 

, 𝐿 (𝑋, 𝑍|), will be developed.  Further we use EM algorithm for estimation of parameters 

(𝐷௃ , 𝑓௝  𝑎𝑛𝑑 𝑤௝)  of individual glow peaks . For this, an auxiliary function (𝑄),  which is 

expectation of log likelihood ൣlog( 𝑃 (𝑋, 𝑍)൯ห ௧∗
൧ with respect to the latent variable 𝑍 , is 

developed.  In step (III) the auxiliary function is introduced. In step (IV), expectation is 

calculated with respect to Z and in step (V) obtained expression is maximised with respect to 

parameters. Resulting equation obtained from step (V) has been utilized to have the 
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estimation of the parameters. In final step (step VI) Lagrange multiplier is used to get the 

estimate of weighting factor 𝑤௝.  

 

Step (I): 

 

Let us have a given data set 𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … . . 𝑥ே) with a probability distribution 𝑃(𝑥௜). We 

assume it is a convolution of ₤ glow peaks, hence it can be written as weighted sum of ₤ 

normalised glow peaks. 

𝑃(𝑥௜) = ∑ 𝑤௝
₤
௝ୀଵ  (𝑥௜|)                                                                                                  (5.21)                                                                                                                

Where  (𝑥௜|)  is a normalised component glow peak. 

                                                                                                                                             

Indicator variable (latent variable) defined below are introduced as 

𝑧௜௝ = ቄ
1      𝐼𝑓 𝑥௜ 𝑖𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑗𝑡ℎ 𝑔𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒
0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                                                        (5.22)    

 

Step (II):  

 

Combined likelihood of 𝑋 and 𝑍 at a given parameter set  can be written as  

𝐿 (𝑋, 𝑍|) = 𝑃(𝑋, 𝑍|)                                                                                                     (5.23) 

                    = ∏ ∏ [𝑃 (𝑥௜, 𝐽 |]௭೔ೕଷ
௝ୀଵ

ே
௜ୀଵ                                                                             (5.24) 

                    = ∏ ∏ [ 𝑃(𝑥௜ | 𝐽,]௭೔ೕ  [ 𝑃( 𝐽|)]௭೔ೕଷ
௝ୀଵ

ே
௜ୀଵ                                                       (5.25) 

 

Taking log of equation (5.25) we get 

log 𝐿(𝑋, 𝑍|) =  ∑ ∑ [𝑧௜௝ log  𝑃(𝑥௜ | 𝐽,)  +   𝑧௜௝ log  𝑃( 𝐽|)ଷ
௃ୀଵ

ே
௜ୀଵ ]                               (5.26) 
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Step (III) 

 

Introducing auxiliary function 𝑄 

𝑄 = <  ൣ log( 𝑃 (𝑋, 𝑍)൯ห ௧∗
൧ >௭                                                                                      (5.27) 

     =< [ ∑ ∑ {𝑧௜௝ log  𝑃(𝑥௜ | 𝐽,)  +   𝑧௜௝ log  𝑃( 𝐽|)}ଷ
௃ୀଵ

ே
௜ୀଵ  |௧∗

] >௭                             (5.28) 

     = ∑ ∑ <  (ଷ
௃ୀଵ

ே
௜ୀଵ 𝑧௜௝|௧∗

) >௭ log  𝑃(𝑥௜ | 𝐽,) + < (𝑧௜௝|௧∗
) >௭ log  𝑃( 𝐽|)            (5.29) 

Where < >௓ means expectation with respect to 𝑧. 

 

Step (IV) 

 

Expectation Step: 

<  ൫𝑧௜௝ห௧∗
൯ >௭= 1 × 𝑃 ൫𝑧௜௝ = 1ห௧∗

൯ +  0 ×  𝑃 ൫𝑧௜௝ = 0ห௧∗
൯                                    (5.30) 

                      = 𝑃( 𝐽 |𝑥௜,
௧∗

)                                                                                             (5.31) 

                      =  
௉( ௃ |೟∗

) ௉ (௫೔| ௃,೟∗
)

∑ ௉( ௃ |೟∗
) ௉ (௫೔| ௃,೟∗ೖ

ೕసభ )
                                                                                 (5.32) 

 

Step (V) 

 

Maximization Step: 

డ ொ 

డ 
= 0                                                                                                                               (5.33) 

 As   is a parameter set comprising 𝐸 𝑓 𝑎𝑛𝑑 𝑤, auxiliary function Q is to be maximised 

with respect to each of these parameters                                                                                                                                                                      

డ ொ 

డ 
=  ∑

డ ொ

డ ୪୭୥  ௉(௫೔ | ௃,)

డ ୪୭୥  ௉(௫೔ | ௃,)

డ
ே
௜ୀଵ                                                                               (5.34) 

 

       = ∑ 𝑃(𝐽|ே
௜ୀଵ 𝑥௜ ,௧∗

) 
డ ୪୭  ௉(௫೔ | ௃,)

డ
                                                                              (5.35) 
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Step (VI) 

 

To calculate weighting factors we use the constrain ∑ 𝑤௃ = 1 ଷ
௃ୀଵ and use Lagrange multiplier 

𝐴 = 𝑄 + ൫1 − ∑ 𝑤௃ ଷ
௃ୀଵ ൯𝜆஺                                                                                                 (5.36) 

డ஺

డ௪಻
=  

డ஺ 

డொ
 

డொ

డ௪಻
   − 𝜆஺                                                                                                          (5.37) 

డ஺

డ௪಻
= 1 × ൬∑ 𝑃( 𝐽 |𝑥௜ ,௧∗

) ே
௜ୀଵ

ଵ

௪಻
൰   −  𝜆஺                                                                         (5.38) 

𝑤௃ =  
∑ ௉( ௃ |௫೔,೟∗

)ಿ
೔సభ

ఒಲ
                                                                                                            (5.39) 

  By taking summation on both sides and using ∑ 𝑤௃ = 1 ଷ
௃ୀଵ we get 𝜆஺ = 𝑁. 

𝑤௃ =  
∑ ௉( ௃ |௫೔,೟∗

)ಿ
೔సభ

ே
                                                                                                            (5.40) 

 

In order to express   𝑃( 𝐽 |𝑥௜,
௧∗

) in terms of 𝑃(𝑥௜| 𝐽,௧∗
) and weighting factor 𝑤௃ we can 

use Bayes’ theorem (Posterior probability) 

 

𝑃( 𝐽 |𝑥௜,
௧∗

) =
௉(௫೔| ௃,೟∗

) ௪಻

∑ ௉(௫೔| ௃,೟∗
)಼

಻సభ ௪಻ 
   (Posterior probability)                                                 (5.41)  

5.6.1 For Gaussian peaks 

As  Ɵ is a parameter set comprising µ, 𝜎 𝑎𝑛𝑑 𝑤, auxiliary function Q is to be maximised with 

respect to each of these parameters                                                                                                                                

డ ொ 

డµ಻ 
=  ∑

డ ொ

డ ୪୭୥  ௉(௫೔ | ௃,Ɵ)

డ ୪୭୥  ௉(௫೔ | ௃,Ɵ)

డµ಻

ே
௜ୀଵ                                                                                (5.42) 

       = ∑ 𝑃( 𝐽 |𝑥௜, Ɵ௧∗
) (

௫೔ିµ಻

ఙమ
ே
௜ୀଵ )                                                                                        (5.43) 


௝

=  
∑ ௉ቀ𝐽ቚ𝑥௜ ,   Ɵ௧∗

ቁ ௫೔ ಿ
೔సభ

∑ ௉ቀ𝐽ቚ𝑥௜ ,   Ɵ௧∗
ቁಿ

೔సభ

                                                                                                     (5.44)                                                                  

  
డ ொ 

డఙ಻
మ =  ∑

డ ொ

డ ୪୭୥  ௉(௫೔ | ௃,Ɵ)

డ ୪୭୥  ௉(௫೔ | ௃,Ɵ)

డఙ಻
మ

ே
௜ୀଵ                                                                              (5.45) 
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       = ∑ 𝑃( 𝐽 |𝑥௜, Ɵ௧∗
) (

(௫೔ିµ಻)మ

ଶఙ಻
ర

ே
௜ୀଵ −  

ଵ

ଶఙ಻
మ )                                                                        (5.46) 

𝜎௝
ଶ =

∑ ௉ቀ𝐽ቚ𝑥௜ ,   Ɵ௧∗
ቁ(௫೔ିµ಻)మ ಿ

೔సభ

∑ ௉ቀ𝐽ቚ𝑥௜,   Ɵ
௧∗

ቁಿ
೔సభ

                                                                                           (5.47) 

5.6.2 For First order kinetics peaks 

In first order kinetics a similar root of differentiating the auxiliary function 𝑄 with respect to 

parameters 𝐷௝  and 𝑓௝can be followed. But in order to reduce the number of variables first  𝑓௝ 

is eliminated from 1st order kinetics equation of TL (RW equation) using the maxima 

condition. 

RW 1st order kinetics equation for one trap is 

𝐿்௅ = 𝐶௧଴,௝ 𝑓௝  exp(−
஽ೕ

௄்
) exp(−

௙ೕ


  ∫ exp(−

஽ೕ

௄Ɵ
) 𝑑Ɵ)

்

బ்
                                                    (5.48) 

Area of glow curve is 𝐶௧଴,௝𝛽 , hence glow curve (RW) normalized w. r. t area is  


௝

=
்௅ೕ

஼೟బ,ೕఉ
=

௙ೕ

ఉ
exp ቀ−

஽ೕ

௄்
ቁ exp (−

௙ೕ

ఉ
∫ exp ቀ−

஽ೕ

௄
ቁ

்

బ்
𝑑 )                                                (5.49)                                

 By maximizing equation (5.48) with respect to temperature (T) we get following condition 

௙ೕ

ఉ
=

஽ೕ

௄ ೘்ೕ
మ   exp ൬

஽ೕ

௄்೘ೕ
൰                                                                                                        (5.50) 

Where, 

𝑇௠௝=Peak temperature for jth peak                                                                                                                         

Eliminating 𝑠௝/𝛽 from equation (5.49) using equation (5.50) we get 


௝

=
஽ೕ

௄ ೘்ೕ
మ exp ൬

஽ೕ

௄்೘ೕ
൰ exp( ቀ−

஽ೕ

௄்
ቁ exp[ 

ି஽ೕ

௄ ೘்ೕ
మ exp ൬

஽ೕ

௄்೘ೕ
൰ ∫ exp ቀ−

஽ೕ

௄
ቁ

்

బ்
𝑑 ]                (5.51) 

After this we maximize with respect to the only variable 𝐷௝  

 

Using equation (5.33), (5.34), (5.35) & (5.51) 
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డ ொ 

డ஽ೕ 
= ∑ 𝑃(𝐽|ே

௜ୀଵ 𝑥௜ ,௧∗
)[

௄

஽ೕ
−

ଵ

்೘ೕ
−

ଵ

௫೔
−

ଵ

೘்ೕ
మ  𝑒𝑥𝑝 ൬

஽ೕ

௄்೘ೕ
൰ ∫ exp ቀ−

஽ೕ

௄
ቁ

௫೔

௫೔బ
𝑑 −

஽ೕ

௄ ೘்ೕ
య 𝑒𝑥𝑝 ൬

஽ೕ

௄்೘ೕ
൰ ∫ exp ቀ−

஽ೕ

௄
ቁ

௫೔

௫೔బ
𝑑 +

஽ೕ

௄ ೘்ೕ
మ 𝑒𝑥𝑝 ൬

஽ೕ

௄்೘ೕ
൰ ∫ exp ቀ−

஽ೕ

௄
ቁ ቀ

ଵ


 ቁ

௫೔

௫೔బ
𝑑]           (5.52) 

 

 

∑ 𝑃(𝐽|ே
௜ୀଵ 𝑥௜,

௧∗
)[

௄

ாೕ
−

ଵ

೘்௝
−

ଵ

௫೔
−

ଵ

೘்ೕ
మ  𝑒𝑥𝑝 ൬

ாೕ

௄்೘ೕ
൰ ∫ exp ቀ−

ாೕ

௄
ቁ

௫೔

௫೔బ
𝑑 −

ாೕ

௄ ೘்ೕ
య 𝑒𝑥𝑝 ൬

ாೕ

௄்೘ೕ
൰ ∫ exp ቀ−

ாೕ

௄
ቁ

௫೔

௫೔బ
𝑑 +

ாೕ

௄ ೘்ೕ
మ 𝑒𝑥𝑝 ൬

ாೕ

௄்೘ೕ
൰ ∫ exp ቀ−

ாೕ

௄
ቁ ቀ

ଵ


 ቁ

௫೔

௫೔బ
𝑑] =0       (5.53) 

 

5.6.3 For General order kinetics peaks 

The normalised (with respect to area) general order kinetics equation (GG equation) is  


௝

=
௙ೕ

ᇲᇲ

ఉ
𝐶௧଴,௝ exp(  −

஽ೕ

௄்
)[ 1 + ൫𝑏௝ − 1൯

௙ೕ
ᇲᇲ

ఉ
∫ exp ቀ−

஽ೕ

௄
ቁ

்

బ்
𝑑 ]

ష್ೕ

(್ೕషభ)                               (5.54)  

The parameters set is  ={ 𝐷௝ , 𝑓௝
ᇱᇱ 𝑎𝑛𝑑 𝑏௝} 

Using equation (5.33), (5.34), (5.35) and (5.54) we following procedure 

The partial derivatives with respect to the parameters give us following equations  

డ ொ 

డ஽ೕ 
= ∑ 𝑃(𝐽|ே

௜ୀଵ 𝑥௜ ,௧∗
)[ 

ିଵ

௄ ்
+  

௕ೕ ௙ೕ
ᇲᇲ 

ఉ௄
 

∫ ୣ୶୮൬ି
ವೕ

಼൰
ೣ೔

ೣ೔బ
ௗ

ଵା ൫௕ೕିଵ൯
೑ೕ

ᇲᇲ

ഁ
 ∫ ୣ୶୮൬ି

ವೕ

಼൰
ೣ೔

ೣ೔బ
ௗ

]                                     (5.55) 

 
డ ொ 

డ௙ೕ
ᇲᇲ 

= ∑ 𝑃(𝐽|ே
௜ୀଵ 𝑥௜ ,௧∗

)[ 
ଵ

௙ೕ
ᇲᇲ −  

௕ೕ

ఉ
 

∫ ୣ୶୮൬ି
ವೕ

಼൰
ೣ೔

ೣ೔బ
ௗ

ଵା ൫௕ೕିଵ൯
೑ೕ

ᇲᇲ

ഁ
 ∫ ୣ୶୮൬ି

ವೕ

಼൰
ೣ೔

ೣ೔బ
ௗ

 ]                                        (5.56) 

డ ொ 

డ௕ೕ 
= ∑ 𝑃(𝐽|ே
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 By equating derivatives to zero we get following equations 
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5.7 Algorithm for MM based CGCD  

 𝑝(𝑖, 𝑗) =  𝑃(𝑥௜| 𝐽,௧∗
) = 

௝
                                                                                                         (5.61)        

𝜏 (𝑖, 𝑗) =  𝑃( 𝐽 |𝑥௜,
௧∗

)                                                                                                                   (5.62)  

Algorithm to calculate the parameter set (𝐸௃, 𝑠௃, 𝑤௃) is given below. 

(I) Randomly choose value of parameters.   

(II) Calculate 𝑝(𝑖, 𝑗) using equation (5.61). 

(III) Calculate 𝜏 (𝑖, 𝑗) using equation (5.62) and (5.41). 

(IV) Calculate updated value of parameters using the non linear equations obtained in 

section 5.6.1 / 5.6.2 / 5.6.3.  

(V) Generate the single peak glow curves with 𝐷௃ and 𝑓௝  using equation (5.49) or 

(5.54). 

(VI) Superimpose them with weighting factors 𝑤௃to obtain simulated GC. 

(VII) Normalise height of  simulated GC with the experimental GC. 

(VIII) Calculate Figure of Merit. 

       Reiterate with step (II) till good figure of merit (FOM) is achieved. 
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5.8 Validation with simulated glow curve 

In this section we will validate the algorithm developed in this chapter. For this purpose we 

will use simulated glow curve. 

Simulation of glow curve 

The thermoluminescence intensity (TL) is given as  

𝑇𝐿 = − ෍
ௗ஼೟,ೕ

ௗ௧

௞

௝ୀଵ
                                                                                                             (5.63)                                                                                                                            

The rate of change of trapped charge carrier density for a particular trap type ( jth ) is given by  

𝑇𝐿௝ = −
ௗ஼೟,ೕ

ௗ௧
=  𝐶௧,௝

௕ 𝑓௝
′ exp(−

஽ೕ

௄்
)                                                                                        (5.64) 

𝑇 = 𝑇଴ + 𝛽 𝑡                                                                                             

𝑓′
௝

= 𝑓௝/𝐶்,௝  

where, 

𝐶௧,௝ is trapped charge carrier density for jth trap type at time t 

b is order of kinetics  

D is trap depth  

K is Boltzmann Constant 

T is temperature oK 

T0 is initial temperature 

β is heating rate   

t is time of heating 

𝑓′௝ is modified pre exponential factor for jth trap type 

𝑓௝ is pre exponential factor or frequency factor for jth trap type 

𝐶்,௝ is trap concentration for jth trap type 
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Figure 5.1  Convolved glow curve which is to be deconvoluted using MM formalism. The 

actual values of trap parameters for the component glow curve are mentioned in text. 

Equation (5.64) cannot be solved analytically hence to get the thermoluminescence intensity 

TLj we need to solve equation (5.64) numerically to obtain the charge carrier density Ct, j (t). 

Thermoluminescence intensity from jth trap(TLj) is further obtained by taking derivative of  

Ct, j (t) with respect of time. Overall thermoluminescence intensity (TL) may be obtained by 

summation over ‘j’ for all the trap types. 

For illustration purpose, glow curve of our interest with three peaks, each of 1st order kinetics, 

is taken. Heating rate (β) is considered 5.0 OK/s.  The   parameters for each glow peak 

considered are given below:   

1st peak:  Trap depth (E)=0.7 eV, Initial trapped charge carrier concentration =1023m-3, Pre 

exponential factor (s)=108 sec-1 

2nd peak: Trap depth (E)=0.88 eV, Initial trapped charge carrier concentration =1.2 X 1023 m-3 

, Pre exponential factor (s)=108 sec-1     

3rd peak: Trap depth (E)=1.0 eV, Initial trapped charge carrier concentration =1.5 X 1023 m-3 , 

Pre exponential factor (s)=108 sec-1      
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All the three single peaks were superimposed to obtain the convolved glow curve. The 

convolved glow curve was divided by its area to get the normalised convolved glow curve. 

Further the obtained convolved glow curve was multiplied with suitable factor. This factor is 

10000 in our case. This factor only effects computational time and to some extent accuracy of 

the deconvolution process. Larger this factor longer will be the computational time and better 

will be the accuracy. The effect on accuracy is not expected to be drastic. The obtained glow 

curve will be referred to as test gc.  

 

Results 

 

Figure 5.1 shows the glow curve which is to be deconvolved, the test gc. Figure 5.2 shows 

equation (5.53) in the probable range where solution may exist for three types of traps, 

namely, trap one (Figure 5.2 (a)), trap two (Figure 5.2 (b)) and trap three (Figure 5.2 (c)). In 

equation (5.53), 𝑗 has three values (𝑗 = 1, 2, 3). In order to obtain Figure 5.2 (a) we have put 

𝑗 = 1 in equation (5.53) and obtain its value for 𝐷௝ୀଵ = 0.1 eV to 𝐷௝ୀଵ = 1.5 eV. Similarly 

Figure 5.2 (b) and Figure 5.2 (c) are obtained by putting  𝑗 = 2 and 𝑗 = 3 in equation (5.53) 

and obtaining its value in specified range of trap depth (0.1 eV to 1.5 eV). It is necessary to 

plot these graphs for two reasons. Firstly it checks that the solution of equation (5.53) lies in 

the range we have considered. Secondly if there are more than one solutions or local minima, 

then due care is to be taken accordingly.  
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Figure 5.2 Plot of equation (5.53) with its independent variable i.e. trap depth for the three 

types of traps considered.  

 

In equation (5.53), peak temperatures (𝑇௠௝ , 𝑗 = 1, 2, 3) is a parameter. Hence it has to be 

evaluated before. It can be evaluated using 2nd derivative of the convolved glow curve data. It 

has been shown in Figure 5.3. It has been discussed in literature that 2nd derivative of 

composite glow curve data can be utilised to estimate the peak temperature and number of 

peaks [Reddy et al, 2018, Karmakar, 2017]. 2nd derivative is a reflection of curvature of 

graph; hence, at peak temperatures maximum curvatures will be obtained. By plotting 2nd 

derivative graph peak positions can be obtained from the locations of minima [Reddy et al, 

2018, Karmakar, 2017]. By counting the number of peak locations we can estimate number 

of glow peaks. We are aware of the fact that this method has some limitations and it will not 

work for the cases where peaks do not show their existence at all in the overall convolved 

glow curve (test gc).  
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Figure 5.3 Figure show variation of 2nd derivative of convolved glow curve data with 

variation in temperature.  

 

Further we solve equation (5.53) to obtain the values of different trap depths (𝐷௃)  and 

equation (5.40 & 5.41) for weighting factors (𝑤௃). For each set of parameters ( 𝐷௃  & 𝑤௃) 

values of pre exponential factor (𝑓௝) can be calculated using equation (5.50). By obtained 

values of parameter set ( 𝐷௃, 𝑓௝  and 𝑤௃ ) graph of glow curves can be obtained and 

superimposed. The peak value of computed superimposed graph and the graph which was to 

be deconvolved is to be matched by applying suitable factor obtained from ratio of maximum 

values of the two. 
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                    Figure 5.4 Deconvolution process at different iteration steps. 
 

  

Figure 5.4 shows the evolution of iterative process at 1st, 5th, 10th and 15th iteration and figure 

5.5 shows the final deconvolved graph. Values of parameters at concluding iteration step are 

tabulated in table 5.1.  For comparing accuracy of results with current literature, data of all 

the three peaks were superimposed. This produces the simulated data set comprising TL 

counts and temperature. Figure of merit (FOM) was calculated using the following relation. 

FOM (%) =  
| ∑ ( ௬೟೐ೞ೟ ೒೎ି௬ೞ೔೘ೠ೗ೌ೟೐೏)|೘

೔సభ

஺
    X 100                                                  (5.65) 

Where 𝑚 is the number of data points in unconvolved glow curve. 

 𝑦௧௘௦௧ ௚௖  is the counts at a given temperature in glow curve initially generated for 

deconvolution. 
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𝑦௦௜௠௨௟௔௧௘ௗ is the counts obtained by superposition of deconvolved individual glow curve at 

that temperature. 

A is area under the glow curve.  

Figure 5.6 shows the variation in FOM with iteration steps.  

FOM < 1% was calculated and computational time was few seconds, which is comparable to 

data in recent literature [Harvey et al, 2011]. 

            

Figure5.5 Original convolved graph (1), deconvolved glow peaks (2,3,4) and superposition of 

the deconvolved glow peaks (5) at concluding iteration step. 

 

Table 5.1 Actual value of parameters trap depth (D), frequency factor ( 𝑓 ), initial 

concentration (𝐶଴) and values obtained from simulation for three trap types (indicated by 

subscript indices). 

C
o

u
n

ts
 (

n
o

s
.)

 𝐷ଵ(eV) 𝐷ଶ(eV) 𝐷ଷ(eV) 𝑓ଵ(𝑠𝑒𝑐ିଵ) 𝑓ଶ(𝑠𝑒𝑐ିଵ) 𝑓ଷ(𝑠𝑒𝑐ିଵ) 𝐶଴ଵ(𝑚ିଷ) 𝐶଴ଶ(𝑚ିଷ) 𝐶଴ଷ(𝑚ିଷ) 
Actual 
value 

0.7000 0.8800 1.0000 1 X 10଼ 1 X 10଼ 1 X 10଼ 1 X 10ଶଷ 1.2 X 
10ଶଷ 

1.5 X 10ଶଷ 

Calculated 
value 

0.6589 0.9110 1.0295 0.2583 X 
 10଼  

1.9528 X 
10଼ 

1.8311 
X10଼ 

2.7794 
X10ଶଷ 

3.2238 
X10ଶଷ 

3.9248 
X10ଶଷ 
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Figure 5.6 Figure of merit (FOM) during the iteration process. FOM is computed between 

original unconvolved glow curve and the superposition of deconvolved glow peaks as per 

formula given in text 

 

5.9 Deconvolution of experimental glow curve 

Figure 5.7 shows the experimental glow curve of CaSO4: Dy which we intent to deconvolve 

and figure 5.8 show the deconvolved glow curve which is our result. Table 5.1 shows the trap 

parameters obtained from the deconvolution process. The weighting factors are also reported. 

Individual glow peaks were be generated, superimposed with applying weighting factors and 

further the total height of the obtained simulated glow curve was normalised with respect to 

the height of the experimental glow curve. By this way the deconvolution process was 

validated. 
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Figure 5.7 Experimental glow curve of CaSO4: Dy for a dose of 3.00 gray and heating rate of 

1 oK/sec [Souza et. al., 1993]. 

 

                           Figure 5.8 The deconvolved graph of Figure 5.7 glow curve. 
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            Table 5.2 Trap parameters obtained by MM algorithm for CaSO4: Dy. 

Peak No. Weighting factor   (wj)       Dj (eV)       fj (sec-1) 

1             0.0082        0.83          1.8 X 109 

2             0.0139        0.99          7.5 X 1010 

3             0.0365        0.92          1.6 X 109 

4             0.1016        1.10          3.8 X 1010 

5             0.1648        1.20          1.2 X 1011 

6             0.1638        1.10          3.0 X 109 

7             0.1595        0.98          4.0 X 107 

8             0.1445        1.09          1.3 X 108 

9             0.1137        1.15          4.0 X 107 

10             0.0774        1.73          7.9 X 1011 

 

 

5.10 Comparison with Synthetic glow curve of GLOCANIN Project 

 

GLOw Curve ANalysis INtercomparision (GLOCANIN) was an international project carried 

out for comparison of computer programs for deconvolution of glow curves into individual 

glow peaks. Total number of computer programs that were intercomparied was thirteen. 

Reference glow curves were provided with specifications. REFGLOW.002 was having four 

peaks as per glow curve of TLD-100. The comparison of figure of merits (FOM) are given in 

table 5.3 with results of Sature et al [2017] and GLOCANIN projects. The superposition of 

individual peaks obtained by deconvolution (shown by symbol ‘o’) along with provided glow 

curve (shown by ‘-‘) are plotted in Figure 5.9. The FOM is plotted in Figure 5.10.      
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                      Figure 5.9 Deconvolution of Ref glow curve-002 of GLOCANIN project. 

 

                             

Figure 5.10 Plot of figure of merit (FOM) with iteration steps for Ref glow curve-002 of 

GLOCANIN project. 
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Table 5.3 Comparison of Figure of Merits (FOM) of our algorithm with results of Sature et 

al. [2017] and those of program in GLOCANIN projects.   

 Result of our  

  algorithm 

Results of 

Sature et al 

[2017] 

Prog. B of 

GLOCANIN 

project 

Prog. F of 

GLOCANIN 

project 

 

   FOM (%) 

 

     0 .07 

 

     0 .27 

 

    0.01 

 

    0.2950 

 

 

5.11 Advantage and disadvantage of MM based CGCD over other CGCD techniques  

As already mentioned in the introduction of this chapter MM based is not only a novel 

technique for CGCD but has an added advantage over other CGCD techniques. It may be 

pivotal in development of theoretical platform for uniqueness of trap parameters.  

On the disadvantage side it is possible to say that it is mathematically more involved.     

5.12 Conclusion 

In this chapter prerequisite for EM algorithm like conditional probability, Bayes’ theorem etc. 

are discussed, following that MLE and EM is explained. Further, it has been elaborated that 

how the deconvolution problem of TL glow curve can be mapped to general formalism of 

MM. Its mathematics is also discussed.  

Our algorithm for deconvolution of TL glow curve based on MM using EM algorithm is 

elaborated. Mathematical calculations have been done for three cases: (a) assuming the glow 

peaks to be Gaussian (b) assuming the glow peaks to be of first order kinetics and (c) 

assuming the glow peaks to be of general order kinetics. It is validated with a simulated glow 

curve. For validation a synthetic glow curve has been generated comprising of three TL 

peaks. Further this is deconvoluted using our algorithm and the obtained value of trap 
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parameters are compared with the original values of trap parameters which were used to 

generate the synthetic glow curve. 

And in the last deconvolution of experimental glow curve of CaSO4: Dy is done. Its 

deconvoluted graph and the calculated value of trap parameters are presented.   

Lastly, comparision with simulated glow  curve of GLOCANIN project is done by data given 

by Sature et al [Sature et al, 2017]. 

Our method is quite robust as for any value of trap parameters it is equally efficient and has 

no bias for small or large value of activation energy. Once the code is written (which can be 

provided with reader as an executable file) there is not much left for the uses to do. User just 

need to input number glow peaks and give input glow curve file a particular name (which is 

recognized by the program). The result has been compared with experimental glow curve of 

CaSO4: Dy (which is phosphor important for dosimetric applications in India) in section 5.9, 

self simulated glow curve in section 5.8 and simulated glow curve of GLOCANIN project in 

section 5.10.  

As far as fitting experimental glow curve of CaSO4: Dy with 10 peaks is concerned, it is well 

known that this phosphor has a continuous distribution of traps (Srivastava J K and Supe S J, 

Trap distribution analysis for thermoluminescence of  CaSO4: Dy, Journal of Phyiscs D: 

Applied physics 16 (1983) 1813-1818. But it also exists in literature that it gives good figure 

of merit if fitted with 10 glow peaks for the range of temperature important to us (Souza et al, 

Radiation protection dosimetry  47 (1993) 103-106. Hence, a comparison with 10 glow peaks 

is done.  
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                                                               CHAPTER VI 

                                   Summary and Future Plans 

CHAPTER III: Deviation in TL intensity from model predicted glow curve: Sources of 

Uncertainty 

Coming back to the basic models of 1st ,2nd and general order kinetics and analysing things 

from the perspective of these models following observations can be made. RW, GG and MP 

predict TL intensity at a particular  stimulating temperature, given the model parameters. But, 

there are various sources which lead to deviation from these predicted values. This topic is 

discussed from a theoretical perspective and experimental reasons are not elaborated much, 

though they have been briefed. 

One of the most important reasons that lead to deviation from predicted values from these 

models is fading. Fading is loss of signal with storage time. Types of fading are thermal 

fading, anomalous fading and thermally assisted fading. Thermal fading is loss of TL signal 

due to excitation of trapped charge carrier as a result of ambient temperature. Anomalous 

fading is due to tunnelling of charge carrier from ground state of trap to recombination centre. 

It is obvious that the fading will lead to luminescence from the sample during the period of 

storage.  This is known as afterglow. As we have contributed to the literature in the domain 

of anomalous fading, it is pertinent to elaborate on it at this point.  

Extensive experimental work exists on afterglow in literature for period of time ranging from 

fraction of second to decades. But the exact expression for afterglow is not existing in 

literature, though for a very long time it is said to follow a power law 𝐼 𝛼 𝑡ି௞. This means a 

graph between log (𝐼) and log(𝑠𝑡) should be a straight line. Where, s is just a scaling factor. 

Before our work it was prevalent in literature that different slopes of log (𝐼) - log(𝑠𝑡) graph 
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can be obtained with different recombination centre concentration. But with this approach 

full experimental range of exponent  𝑘 , could not be obtained theoretically. Our work 

considered the trap and the recombination centre as two potential wells separated by potential 

barrier of different shapes (increasing, decreasing and constant). Further, the tunnelling 

probability of charge carrier from trap to recombination centre using WKB theory was 

calculated. Finally an expression of afterglow intensity was obtained. This approach could 

obtain full experimental range of exponent 𝑘, for different potential barrier shape between 

trap and recombination centre.  

But experimental literature not only reports straight line graph between log (𝐼) and log(𝑠𝑡) 

but also non linear graphs. In a further work it has been established by us that non linearity is 

general nature of afterglow and the linear graph that are obtain in experiment or simulation is 

an artefact of limited period of observation. In this work, various factors that may affect the 

advent of non linearity in afterglow like initial time at which observation is started, 

recombination centre concentration etc. are also discussed. 

Among other reasons of deviation, finite life time of charge carrier in conduction band 

already referred to as quasi equilibrium approximation is an important factor. It has been 

shown by simulation that this approximation is always not valid. 

Non interactive kinetics approximation of OTOR model also discussed in this chapter is 

certainly a reason of deviation from values predicated by OTOR model based expressions i.e 

RW, GG and MP. 

The trap parameters, trap depth (D) and attempt to escape frequency (f) are assumed to be a 

constant parameter for full stimulating range of temperature. But, as matter of fact they are 

temperature dependent. This point is also elaborated. 
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It is possible that the TL emission from the sample may be partially absorbed by the sample, 

which may lead to different repercussions like optical excitation of charge carriers from 

deeper traps.  

Quenching is reduction of TL intensity with temperature (thermal quenching), concentration 

of dopant (concentration quenching) and with added impurity (impurity quenching). This is 

another factor which is not accounted for in the basic RW, GG and MP expressions for TL 

emission. 

TL left in dosimeter after 1st readout which comes out in subsequent readouts is termed as 

residual TL. The origin of residual TL was a dilemma in literature before our contribution. It 

has been established by our work that the deeper traps that are excited to a very little extent 

by thermal stimulus are the source of residual TL. Due to contribution of deeper traps 

during the readout process the predication from RW, GG and MP models will be erroneous if 

only dosimetric trap is considered.   

 But all these sources of deviation are explored to a good extent in literature. Only one reason 

i.e. uncertainty in trap parameters, trap depth (𝐷) and pre exponential factor (𝑓), leading to 

deviation from values predicated by RW, GG and MP models is a domain which is almost 

unexplored. Hence, we explore this in full detail. 

Chapter IV: Parametric uncertainty analysis of basic TL models 

In this section it has been studied how uncertainty in trap parameters, trap depth (𝐷) and pre 

exponential factor (𝑓) , propagate through RW, GG and MP models for full range of 

stimulating temperature. Uncertainty analysis has been done using Monte Carlo, Fuzzy set 

theory and Polynomial Chaos. 
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Monte Carlo 

Gaussian PDF has been assumed for the trap parameters (𝐷 & 𝑓) with typical values of mean 

and standard deviation. From these PDFs random samplings of the values of trap parameters, 

as per standard Monte Carlo procedure has been done. From the sampled values the set of 

output TL has been generated. By histograming, the PDF of output TL has been obtained. 

From PDF, the CDF could be generated and further the uncertainty, using 5th and 95th 

percentile. By repeating the whole process for full range of temperature, temperature vs 

uncertainty graph could be obtained. It has typical shape with two maxima with a minimum 

in between. The minimum is located at the temperature value at which we have a peak in the 

glow curve. Qualitative explanation of the nature of graph is also provided in the text.   

The major benefit of above study is; it could be used to establish that effects like temperature 

quenching are dominant in a particular glow peak or not. 

As MC simulation involves large number of simulation runs. Hence,  cut method of Fuzzy 

set theory is introduced for uncertainty analysis of TL models. 

Fuzzy set theory 

α-cut method of fuzzy set theory is used to do the uncertainty analysis of RW, GG and MP 

models. Triangular membership function for D  &   𝑓  has been assumed. A membership 

function is a graph between parameter value (x axis) and membership value α (y axis).  

Further, a particular value of α-cut was taken and book keeping of the minimum and 

maximum value of the parameters corresponding to this value α-cut had been done. After this 

all combinations of obtained parameter sets were generated and the TL values corresponding 

to them were obtained. The minimum and maximum values of TL output from these TL 
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values were obtained. This is the minimum and maximum value of TL corresponding to 

considered value of α-cut.  

By scanning whole range of α (0-1) and repeating the above procedure the membership 

function graph for the output TL could be obtained. From the membership function graph 

uncertainty for a particular value of temperature could be obtained, at which the above 

procedure is done. Repeating the whole process for full range of stimulating temperature the 

temperature vs uncertainty graph could be obtained. 

It is found that it has similar qualitative nature as the temperature vs uncertainty graph 

obtained from the Monte Carlo analysis. 

Polynomial Chaos 

This is yet another way of propagation of uncertainty from uncertain input parameters (trap 

depth and pre exponential factor in our case) of model to output of the model (TL intensity in 

our case). The major advantage of this method over conventional methods is requires very 

small number of simulation runs unlike conventional methods like Monte Carlo. 

Using this technique the output TL intensity was expanded in terms of Hermite Polynomials 

with standard random variables (srvs) as arguments of Hermite Polynomials.  The srvs were 

randomly selected from sets of independently identically distributed (iid) normally distributed 

sets of random numbers. Using this expansion the response surface was simulated. The 

sample size required for this simulation, for number of input variables equal to two and 

expansion up to second order Hermite Polynomials, was just equal to six. With this small 

sample size the response surface could be simulated and used to generate the probability 

distribution function (PDF) of output TL intensity. From this PDF the cumulative distribution 

function (CDF), and thereby uncertainty, was quantified.  
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CHAPTER V: Deconvolution of TL glow curve 

In this chapter a novel method of deconvolution of TL glow curve was established using 

Mixture Model (MM) techniques. The results were verified using simulated glow curve. 

The chapter was started with discussing the prerequisites of the technique like conditional 

probability, Bayes’ theorem, Posterior probability, Maximum likelihood estimation (MLE) 

and Expectation Maximization (EM) algorithm. Further, using MLE and EM an algebraic 

expression for trap parameters was established, which requires and iterative solution. This 

was done for both first order kinetics (RW model) and general order kinetics (MP model).  

In the end the method was verified using simulated glow curve (including simulated glow 

curve from GLOCANIN project). Further, experimental glow curve of CaSO4: Dy was 

deconvolved. 

CHAPTER VI: Summary and Future Plans 

In this chapter the whole work was summarized and the chapter concludes with probable 

future directions. 

Probable future directions 

1.  Algorithm for Deconvolution based dosimetry of radiation workers 

The three element dosimeter based on CaSO4: Dy phosphor mixed with Teflon is prevalent in 

Indian Personnel Monitoring programme. It involves phosphorescence decay with non linear 

clamped heating profile with saturation temperature 285oC for all the three discs. Further an 

algorithm evaluates the dose. This method still involves all the traps present in the phosphor. 

I intent to develop this process for single peak i.e. the main dosemetric peak. During the work 

of this thesis I have gone through various advantages of single peak dosimetry like increase 
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in precision and reduction of MMD. Hence, further work can be initiated in this direction to 

increase precision and MMD for PMS of my country.  

2.  Estimating time elapsed from single shot exposure for CaSO4: Dy based three 

element dosimeter used in PMS of India. 

Though I understand the idea of estimating the time elapsed from single shot exposure is not 

a new idea for international community but this technique is not yet fully developed and used 

in PMS provided by Indian laboratories. Hence, developing this technique for the TLD used 

in Indian scenario is another target which can be explored. It will certainly require 

deconvolution of peaks. Hence, the work done on deconvolution in this thesis will be a 

milestone for proposed work. 

3. Establishment of mathematical formulation for correct number of individual peaks 

for a given glow curve (a purely theoretical approach).  

During the period of thesis I have gone through lot of literature on deconvolution. There is 

lack of concrete theoretical research paper on what should be the correct number of glow 

peaks for a given glow curve.  

4.  Effect of temperature quenching to be introduced inside deconvolution code. 

If a phosphor is having thermal quenching in that case application of LMM for deconvolution 

will certainly result in wrong trap parameters. It would be interested to develop a code for 

deconvolution in this case. 

5. Re establishment of experimental work citied by Sahai et al, 2018. 
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As suggested by Dr. Georgios S. Polymeris (Reviewer 1) it would be of interest to re 

establish the theoretical results of Sahai et al [Sahai et al, 2018] experimentally, using 

Durango apatite or some other persistent phosphor. 

6. In the context of power law decay discussed in Chapter three, non linear estimation of 

fractal and multifractal techniques will be discussed. 

A fractal is a self similar subset of Euclidean space whose fractal dimension strictly exceeds 

topological dimension.  

For example, if we look at earth from moon it will be more or less a sphere. But as we come 

closer, new features like hill, valleys start coming up into picture. If there is a self similarity 

as we zoom in the object is called a fractal. 

Another example is measuring length of a sea coast. If we measure it using a meter scale it 

has a different value, as compared to, if we measure it with a scale of millimeter length. 

Hence the length of a sea coast is also a function of the length of the scale with which it is 

measured. This property makes it distinct from geometric figures like line, side of triangle 

etc. where choice of length of scale does not make any difference. Again self similarity is 

important as we zoom in for being categorized as fractal. 

An important way of discriminating fractal from geometric figures is the way scale. For 

example if we double the radius of a sphere, its volume becomes eight times. However if 

fractal’s one dimensional lengths are doubled the spatial content of fractal scales by a power 

which is not necessarily a integer. This power is called fractal dimension. 

If we generalize the concept of fractal system in which single fractal dimension is not 

enough, rather a continuous spectrum of exponents (so called singularity spectrum) is 

required. The system is called multifractal.  
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The behavior of a multifractal system s* around any point x is described by a local power 

law. 

𝑠∗ (�̅� + 𝑎ത) − 𝑠∗(�̅�) = 𝑎௛∗(௫)തതത 

Where, ℎ∗(𝑥)തതത is singularity exponent as it describes singularity or regularity around a point 𝑥. 

Singularity manifold of exponent ℎ∗ is the ensemble formed by all points that share same 

singularity exponent and is a fractal set of fractal dimension 𝐷′(ℎ∗). Curve of  𝐷′(ℎ∗) vs. ℎ∗ 

is called singularity spectrum.  

As in our case we are talking about power law decay of luminescence hence, non linear 

estimation and application of fractal and multifractal techniques will be really very 

interesting. We thankfully add it to our list of future directions of work. 
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                                                            ABSTRACT 

Thermoluminescence (TL) is the phenomenon of emission of energy in form of light when 

thermal stimulus is given to a pre exposed thermoluminescent material (known as phosphor). 

When ionizing radiation falls on a phosphor, it generates charge carriers, which subsequently get 

trapped at defect centers of the material. When stimulus is given, the trapped charge carriers get 

excited to delocalized energy levels and when they eventually get in the vicinity of defect centers 

which have opposite charge carrier trapped at its site (known as recombination center), they 

recombine to produce luminescence. This is mechanism of TL phenomenon. Various models 

collectively known as delocalized transition models of thermoluminescence have been developed 

for simulation of the phenomenon. 

If the traps and recombination centers are spatially close. Charge leakage is possible due to 

tunneling (thermally assisted/anomalous). The luminescence arising due to charge leakage is 

called after glow. The loss signal due to the phenomenon is called fading. Localized transition 

models exist for its modeling. 

Analyzing from perspective of basic models there are various sources that lead to deviation from 

TL predicted from these models like residual TL, uncertainty in model parameters, etc. As 

uncertainty in model parameters is a possible reason of deviation from model predicted values, it 

is interesting to do a parametric uncertainty analysis of basic models. 

As real life materials will have more than one type of trap the TL emission will be a 

superposition of TL from all the trap types. Hence deconvolution of TL glow curve is another 

aspect covered in dissertation.  
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We have five major achievements during the period of thesis. 

1. A novel methodology of deconvolution of TL signal based on Expectation Maximization 

(EM) algorithm and Maximum Likelihood estimation (MLE) is developed. It has been 

validated with simulated glow curve (GC). Further deconvolution experimental GC of 

CaSO4: Dy is achieved. 

2. The origin of Residual TL has been investigated. Results of theoretical model and 

experiments are matching to a good extent. 

3. After glow from thermoluminescent material was mostly investigated experimentally. 

Theoretical explanation of experimental findings has been one of the achievements of this 

dissertation. 

4. It has been established that non linearity is general feature of afterglow. 

5. Monte Carlo, fuzzy set theory and Polynomial chaos expansion based study for 

parametric uncertainty analysis of RW, GG and MP models has been conducted. 
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The phenomenon of themoluminescence (TL) is emission of light when a pre exposed sample is given thermal stimulus. 

On exposure charge carriers (electron hole pairs) are generated. While translating in delocalized energy levels, small 

fraction of them is trapped in defect centers. Sample stays in this meta stable state for fairly long period of time 

depending upon material parameters.  On getting thermal stimulus trapped charge carriers are excited to respective 

delocalized energy levels. Further, while moving in delocalized energy levels eventually recombine with opposite charge 

carrier trapped at defect centers and produce luminescence. Figure (left, top) gives the figure of basic apparatus for 

recording TL. Figure (left, bottom) illustrates the mechanism explained.  

But if trapping sites of charge carrier and recombination 

centers are spatially close, phenomenon of tunneling is 

possible due to which we may get continuous signal 

since exposure. This is called afterglow.  The 

phenomenon of afterglow is known to follow power law 

decay with exponent ranging from 0.5 to 2.0. The full 

range of exponent could not be explained theoretically, 

region behind, the problem was always approached 

with a rectangular potential barrier between trap and 

recombination center. We considered non rectangular 

potential barrier between trap and               

Figure 1. Basic TL apparatus (left, top); Mechanism of TL (left, 

bottom); Explanation of non linearity in afterglow (right) 

recombination center and successfully explained full experimental range of exponent. The final expression we obtained 

for TL phenomenon can be broken into time dependent (G2) and time independent (G1) parts. The time dependent part 

translates on the time independent part as shown in figure (right, (A) and (B)). Using this we could explain the non 

linearity in afterglow. Figure (right, (C) and (D)) are spatial integration of figure (right, (A) and (B) respectively) and figure 

(right, (E) and (F)) illustrates the afterglow shapes in the respective cases.  

The parametric uncertainty analysis of these models is a gray area in TL literature. We tried to throw light on this area in 

this dissertation and established that the Temperature vs. uncertainty graph for basic delocalized TL model has a typical 

shape with two peaks. The typical shape is independent of parameters in the model and the uncertainty in them.  

Further, a realistic material will never have one trap and one recombination site. There will be multiple sites and hence 

the experimental TL signal will be a convolution of TL from single sets.  Hence, it is interesting to develop and new 

methodology to deconvolve the composite TL signal. It is mandatory for understanding the phenomenon and extracting 

various benefits out of the phenomenon.  We developed a mixture model and Bayes’ theorem based methodology for 

the deconvolution of TL signal.    
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