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SYNOPSIS 
 

The need for clean and reliable sources of energy hardly needs an emphasis. The 

present sources of fossil fuels are rapidly getting depleted and at the same time, the 

burning of these fuels causes serious pollution problems. Hence we are forced to look at 

alternative routes of power generation (like nuclear, wind and solar). Harnessing the solar 

energy needs huge land area along with a reasonably high initial investment. The 

requirement of minimum wind velocity puts a restriction on the large scale wind power 

generation. Till the fusion based rectors become a reality, for India with its large thorium 

reserves, the nuclear route offers a viable source of energy.  

During the operation of a fission reactor, U-235 and Pu-239 atoms undergo 

fission which generates energy and radioactive fission products. At the end of the 

operation, the spent fuel rods are taken out of the reactor and they are subjected to 

reprocessing. Elements like U and Pu are separated and one is left with low, intermediate 

and high level wastes. For example, the liquid wastes are classified as exempt (below 37 

Bq/L), low level (37–3.7×106 Bq/L), intermediate-level (3.7×106–3.7×1011 Bq/L) and 

high-level waste (more than 3.7×1011 Bq/L) [1]. The low and intermediate level solid 

wastes are made into a slurry  and kept in near surfaces trenches for about 100yrs in 

stringent isolation and after another 200 yrs of milder isolation, they are made harmless. 

Here we are concerned with the high level wastes that are relatively low in volume but 

their activity is very high. 

The high level waste is first concentrated and then vitrified into a glass matrix. 

These glass matrices are sealed in canisters and then buried inside the earth surface at a 

depth of 500m or more. The medium surrounding these canisters is rock which is the 

porous medium that we discuss in subsequent chapters.  In the event of a breach of the 

canister, the active waste will come in contact with the rock and propagate through its 

http://www.kvisoft.com/pdf-merger/
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pore water. A realistic model of this waste migration is needed practically as an 

environmental problem. This model has a local context. The spent fuel rods of FBTR are 

kept in a cooling tank of depth 20m. This tank has a steel lining. In the event of a 

combined clad and the steel lining failure, there will be a migration of the activity into the 

surrounding charnokite rock. This again calls for a modeling. 

 A rock is a combination of randomly oriented and interconnected fractures and 

porous blocks. The porous blocks are of arbitrary size and they are surrounded by the 

fracture network. If the radioactive waste comes into contact with the pore water, it will 

start migrating due to the combined effect of advection and mechanical dispersion 

through the fracture network within the rock. Moreover, the adsorption into and the 

desorption from the porous matrix-fracture interface also plays a role in the migration 

process. In addition, there will be a diffusion of the species from the fracture into the 

porous matrix. Neretnieks[2] was the first to point out this important fact that the 

migration of the species could be greatly reduced due to the retardation effect of the 

matrix diffusion.  

There are two routes to model this problem. One can assume a simplified 

structure (a neat geometry consisting of an infinite array of identical parallel fractures 

between which porous matrices of equal width are sandwiched)  and set up a set of 

coupled partial differential equations (pde's) to describe the migration process. Tang et al. 

[3] described the migration using a set coupled pde’s for a linear fracture of infinite length.  

This was extended  by  Sudicky and Frind[4]   and their model is taken as the standard 

parallel fracture model. This model consists of an infinite array of periodically repeating 

identical parallel fractures separated by porous matrices.  Chen and Li[5] improved this 

model by introducing a proper inlet condition. Now the set of coupled pde’s describing 

the migration can be solved by the Laplace transformation technique for a source of 
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constant strength. The solution is in the form of a two dimensional integral. The highly 

oscillatory nature of this solution integrand puts a restriction on the evaluation of this 

integral. One can obtain the concentration values for a maximum distance of about 200m 

in quadruple precision for a period of 1000 years. In reality, one needs the concentration 

values at distances of the order of 500m.  Mohankumar et al.[6,7] overcame these 

difficulties of the Laplace transform approach by resorting to finite difference solution of 

these pde’s. They used both the FTCS and the Crank-Nicolson schemes. It is to be noted 

that the accuracy of this finite difference solutions is controlled crucially by the degree of 

approximation of an interface derivative term. [8] 

The second route is the probabilistic estimation of the migration within the 

random structure of a rock. Williams [9] reports a method based on an analogy with the 

transport of neutron inside a non-multiplying medium. He assumes that the species 

undergoing a random walk inside the fracture network can change direction only at the 

intersection of two or more fractures. This point is termed as a node and the change of  

direction of the motion is considered as a pseudo-scattering event. The mechanism of 

diffusion from the fracture into the porous matrix is not considered here.  Cvetkovic et 

al[10]  reported a method to estimate the escape probability of the waste from a rock 

sample. Giacobbo and Patelli[11] made a monte carlo based estimation of the radioactivity 

migration. They introduced the adsorption and desorption mechanisms in their model. 

 A comprehensive modeling of the radioactivity migration in rock using both the 

deterministic and the nondeterministic routes forms the main theme of this thesis work. 

The numerical schemes capable of providing reliable and highly accurate solutions are 

utilised to obtain solutions for the deterministic parallel fracture model. In addition, a 

random walk based approach is developed through a probabilistic route to model the 

problem in a more realistic way. The thesis consists of six chapters. Below a brief 
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description of the chapters is provided. 

 

Outline of the thesis: 

Chapter 1: In this chapter the context in which the present problem of the thesis 

arises and its importance to assess certain radiological and environmental related 

questions are highlighted. An outline of the problem and a survey of the literature related 

to the deterministic and the non-deterministic models of this porous flow problem are 

provided. This chapter also contains a chapter wise summary of the thesis. 

Chapter 2: In this chapter, a detailed derivation of the parallel fracture model of 

Sudicky and Frind [4] is given along with its assumptions, initial, boundary and inlet 

conditions. The exact analytical solution and its limitation are then described. 

Subsequently, the finite difference solutions of Mohankumar et al. [6,7] using the FTCS 

and Crank-Nicolson (CN) schemes that are at best second order in space and time 

variables are described. One of the key aspects of the present thesis is to develop 

algorithms that will provide accurate solutions for larger distances and longer times.  

Specifically, three different finite difference schemes are implemented. They are the 

Dufort-Frankel (second order accurate both in space and time), the higher order CN and 

the Higher Order Compact Finite Difference schemes. The last two methods are fourth 

order accurate in space and second order accurate in time. A detailed comparison of all 

the schemes is given and the results establish the fact that the higher order CN and the 

Higher Order Compact Finite Difference scheme are best suited for the required 

estimation and they provide a reliable assessment of the concentration up to a distance of 

around 500m. 

Chapter 3: The finite difference schemes that are dealt with in the previous 

chapter provide solutions that are at best accurate to fourth order in the space variable. 
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Also, the run times are large and the memory requirements are very heavy for reasonable 

accuracy. This raises an obvious question about the utilization of alternative schemes that 

provide better accuracy but with reduced memory requirement. This chapter provides an 

answer to these questions affirmatively. The prescription that is indicated is the use of the 

pseudospectral scheme. For our deterministic parallel fracture model, the Chebyshev and 

the Legendre pseudospectral methods are implemented and they are shown to yield far 

more accurate solutions than the finite difference schemes. Also, the run times and the 

memory requirements are reduced very drastically. These benefits stem essentially from 

the exponential convergence of these schemes that employ relatively fewer basis 

functions.  But this method has a limitation. Let C0 be a reference concentration to start 

with. In the pseudospectral method, a concentration value lesser than C010-16 can not be 

computed in double precision. The distance at which the concentration falls to this level 

gives the maximum distance of evaluation and this happens to be about 200m for our 

present set of parameters. By resorting to quadruple precision, this distance can be 

extended to about 300m. In conclusion it can be stated that for distances up to 300m, the 

pseudospectral method is the method to be employed. For distances beyond 300m, either 

the higher order CN or the higher order Compact finite difference schemes can be 

employed. Thus the pseudospectral methods and the above mentioned higher order finite 

difference schemes together provide a reliable algorithmic package for our concentration 

assessment. 

Chapter 4: The deterministic model of the previous chapters assumes a 

simplified model of the rock. If one is interested in a more realistic estimation of the 

migration process, the flow through the random structure of a rock is to be modeled. A 

real rock is a combination of porous blocks and randomly oriented interconnected 

fractures. The intersection point of two or more fractures is called a node. Now if a 
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species is allowed to travel through such a network, at each node it will randomly choose 

any one of the available outlets. Thus the path it chooses between the source and the 

observation point is totally random and hence the total path length  is a sum of the lengths 

of several zigzag paths and this sum is called the migration length. This length is always 

higher than the linear distance of separation between the source and the observation 

point. We make an estimation of the average migration length using the concept of 

random walk by averaging over several trials. Another important component of this 

model involves the diffusion of radioactive species through the porous blocks. This part 

is very difficult to model through the probabilistic route. For a small domain, this can be 

done using the Monte Carlo technique. But for the present problem it involves simulation 

over a large scale and hence it is impractical. We can circumvent this difficulty by 

adopting our earlier deterministic model for this part and hence we blend the best of both 

the deterministic and nondeterministic routes. Thus the calculations are performed using 

the deterministic parallel fracture model where we replace the linear fracture length by 

this average migration length. In these calculations, another important factor is the 

average width of the porous matrix. From the random distribution of the fractures, we 

estimate the maximum and the minimum possible widths of a porous matrix. We choose 

equispaced values in this range as equally probable representative values of width that are 

used in the deterministic calculation. We provide a comparison of the results of the 

probabilistic and the deterministic approaches. As expected, the probabilistic estimation 

proves to be more realistic and less conservative. 

 Chapter 5: In this chapter we report numerical experiments involving the CN 

scheme. The CN scheme is an unconditionally stable method and is capable of providing 

second order accuracy both in the space and the time variables for a purely diffusion 

problem. The second order accuracy in the space domain comes from the central 
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differencing approximation whereas the same order of accuracy in the time domain is due 

to the averaging of the spatial approximations between two levels of time. Let j be time 

index. Then in the conventional CN scheme, the centering is done between two time 

levels indicated by j and (j+1). This can be referred to as the half-integer centered CN 

scheme. There is another variant of CN method where the averaging is done between 

(j+1) and (j-1) time levels. This can be termed as the integer-centered CN scheme. We 

discretise the diffusion  equation by  both the schemes  and then average them 

arithmetically to arrive at a new discretised equation. We term this as the generalized CN 

scheme. The stability analysis shows that this is also an unconditionally stable method for 

the diffusion problem. Compared to the two conventional CN schemes, the amplification 

factor of the error (from the Fourier stability analysis) of the new scheme for the 

diffusion equation is smaller. Hence there exists a possibility of an onset of early 

convergence (i.e. the onset of solutions with a larger time step) for the new method. We 

have solved two test problems and the deterministic porous flow equations using this new 

scheme. In all the cases, this method has an early convergence trend when compared to 

the other two conventional CN schemes. However, the time step for normal  accuracies is 

not reduced when compared to the other two methods. That is,  it does not provide an 

eventual time step advantage. However, the solutions for complicated problems using this 

method prove to be definitely better as in the case our porous flow. This can be attributed 

to the better averaging while preserving the related symmetries in time and space 

discretisation. More extensive studies are required to explore the other advantages offered 

by this method. 

Chapter 6: In this chapter the future direction of research are indicated. It has 

been remarked that the present analytical solution for the parallel fracture model needs a 

constant source assumption. It may be possible to derive a series based analytical solution 
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that does not involve this assumption. Also, for the constant source parallel fracture 

problem, the derivation of the present Laplace transform based solution is quite 

complicated. There exists a possibility of reducing the complexity of the derivation by the 

use of a group theoretical analysis. This may also provide more general solutions.  Our 

random walk model, assumes a constant velocity and a fixed fracture radius. These 

assumptions may be relaxed in a future model if the computational complexities do not 

turn out prohibitive. The random walk methodology provides a less conservative estimate 

of the concentration than the deterministic model due to the increased path length from 

the source to the observation point. The question still remains as to how close these 

models are to real physical systems. These aspects can be resolved only by experiments.  

Finally, the generalized CN scheme needs to be explored further for exploiting its full 

potential. 
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1.1        Introduction 

 The need for sources of energy with minimal environmental and pollution related 

consequences in the long run is a perennial theme occupying the human minds presently. 

This assumes even more significance due to the steady depletion of the known fossil fuel 

reserves. Till a fundamental breakthrough occurs in the successful harnessing of energy 

from the nuclear fusion based reactors, the wind, the solar and the nuclear routes offer 

proven possibilities alongside the conventional hydel, coal and oil based power 

generation. The energy generation from the wind and the sun is clean and free but it calls 

for a huge initial investment. The requirement of a minimum wind speed puts a 

restriction on the duration of availability from a wind based generation. Typically, in 

India such a minimum speed is guaranteed for about five months at best in a given year 

and that too at few selected locations mostly in the neighborhood of the western ghat 

regions. It must be noted that the solar energy generation on a large scale needs expensive 

solar panels and storage batteries and also needs a huge land area which may be 

prohibitive. In this context the fission based nuclear reactors offer a viable source of 

energy in times to come. They are in operation for more than fifty years. 

 

 The nuclear fission reactors are of two types, namely thermal and fast reactors 

depending upon whether the fission that takes place inside a reactor is due to a fast or a 

slow (thermalized) neutron. There are multiple layers of safety from design to operation 

that are provided in these reactors [1]. In addition to design, the safety of the personnel 

during a normal operation is guaranteed by an appropriate radiation shielding. The time 

one works in a radiation zone and the distance one maintains with respect to a radiation 
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source are well regulated so as to result in a safe and acceptable radiation exposure. 

Stated concisely, the radiation safety of the personnel working in a reactor is ensured by 

the following three factors, time, distance and shielding. In a similar fashion, the safety of 

the general public living in the vicinity of a reactor is taken care of by stringent design 

criteria and operational procedures. Still, the general public may have certain genuine 

apprehensions that can be easily clarified. 

 

1.2 Nuclear waste and its classification 

One of the public concerns about the operation of nuclear fission reactors is the 

aspect of long term safe disposal of the radioactive waste from the fission products. In the 

Indian context, this key aspect is taken care of with due diligence [2]. Radioactive waste is 

broadly classified as low, intermediate and high level wastes. Tables (1.1, 1.2) give a 

classification for the above three levels for the solid, the liquid and the gaseous wastes. 

More details can be found in the paper of Raj et al. [2]. The waste disposal method in 

India follows the three guidelines.  

 The delay and the decay of short lived radionuclides.  

 The concentration and the containment of radioactivity as practically as possible.  

 The release of the low level radioactivity to the environment after a sufficient 

dilution and dispersion. 

 

 The gaseous waste treatment consists of an elaborate off-gas cleaning system 

consisting of wet scrubbers like the venturi, the dust, the packed bed, the cyclone 

separators, the high efficiency low pressure drop demisters, the chillers and the high 
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efficiency particulate air (HEPA) filters that retain practically most of the particulate 

radionuclides. The low level waste produced by the reactor operations, the off-gas 

scrubbers, the active floor drains, the decontamination centers and the laboratories is first 

treated to reduce its concentration. This involves a variety of processes like a chemical 

treatment for a co-precipitation, a selective ion-exchange for the radionuclide separation 

(using the synthetic zeolites, the granulated AMP etc.) and an evaporation for a very high 

volume reduction. In addition, one employs a membrane process like a reverse osmosis 

and an ultra filtration for a reduction of the liquid contamination. Once the liquid waste is 

treated to reduce the contamination to acceptable levels, then it is discharged. 

 

The low and intermediate solid wastes are first subjected to a cementation and a 

polymerization for immobilization and after this they are stored in a shallow land 

repository that is subjected to an active control involving monitoring, surveillance and 

remedial work over a period of 100 yr. This is followed by a 200 yr of passive control 

that involves permanent markers and land use restrictions. These measures enable the 

decay of the activity to harmless levels. 

 

High level and alpha contaminated liquid waste from the spent fuel processing 

and the radio metallurgical operations are first concentrated by an evaporation and then 

stored in stainless steel tanks. After sufficient cooling this waste is immobilized typically 

in a borosilicate matrix by a vitrification process. Subsequent to an interim retrievable 

storage with cooling, the container containing this glassy waste material is buried in deep 

geological formations at a depth of about 500m to 600m.  At these depths, the medium 
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surrounding the waste containers is rock. In case of an accidental breach of a container, 

the waste matrix will become a radioactive source. The aim of this thesis is to model as 

accurately and realistically as possible, the migration of the radioactivity in a porous 

rock medium in the relatively unlikely event of a breach of a container in its subterranean 

storage. One can easily understand the environmental and the radiological consequences 

of this event that calls for a thorough investigation.  

 

 

Fig. 1.1: Schematic picture of a rock. 

 

1.3        A description of the rock structure 

The rock consists of randomly distributed and interconnected pathways of tiny 

width called fractures through which the pore water migrates. These fractures are 

embedded in porous matrices of randomly varying sizes. If the waste matrix comes into 
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contact with the rock, the pore water will serve as a medium through which the 

radioactive species will migrate by a combination of advective and dispersive transport. 

The sorption of the species onto the surfaces of the fractures is also a mechanism that 

needs to be taken into consideration. In a seminal paper, Neretnieks [3] was the first to 

point out the importance of the diffusion of radionuclides into the porous matrix. The 

importance stems from the fact that the migration of the species could be retarded to a 

very large degree if this mechanism of porous matrix diffusion is taken into consideration 

in addition to the sorption at the pore surface and the advective and the dispersive 

transport along the fractures. If diffusivities of appropriate magnitude for this process are 

supported by experimental evidence, then as pointed out by Neretnieks [3], few hundred 

meters of good rock will be a most effective barrier for most of the radionuclides of 

importance in a spent nuclear fuel. 

 

Figs. (1.1, 1.2) offer a typical picture of a rock with its random and interconnected 

fractures. As one can see, the length, the orientation and the width of the fractures are 

random variables. The radionuclide can be transported by the pore water in a solute form. 

From practical considerations, many models assume that the radionuclide gets instantly 

dissolved in the pore water and then migrates. More complex models have a provision for 

a non equilibrium that exists between the dissolved and the sorbed parts of the solute [4]. 

The time dependent concentrations of the dissolved and the sorbed components are then 

determined by solving a rate equation. One has to treat the fracture length, the branching 

angle (the angle a fracture makes at a node) and the fracture width as random variables 

and then model the migration through a random walk process that will constitute a 
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nondeterministic model. In addition, the actual values of these important rock parameters 

must be experimentally determined to serve as absolutely necessary input data. 

 

 

Fig. 1.2: Schematic picture of fracture, node and porous matrix. 

 

Another widely followed approach to model the migration involves a 

deterministic route. Here the fractures are assumed to be straight lines and are of uniform 

width and they are parallel. This is illustrated in fig. (1.3). The source which is a 

radioactive matrix is located at one end and one is required to estimate the concentration 

along the fracture direction. Along a fracture, an advective, a diffusive and a radioactive 

decay component are involved. And in the transverse direction, a diffusion into the 

porous matrix and a radioactive decay are both included. This deterministic model for a 

single radionuclide basically amounts to solving a pair of coupled partial differential 
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equations, one for the concentration along the fracture and the other for the migration in 

the porous matrix. The present thesis explores and compares both the deterministic and 

the nondeterministic models.  

 

The transport through a fracture involves both a mechanical dispersion and a 

molecular diffusion. The mathematical expression that describes this combination of two 

transport modes can be cast in the form of a diffusive transport. Hence for a transport 

along a fracture we use the terms either dispersive or diffusive but they both refer to a 

mechanism that involves both a mechanical dispersion and a molecular diffusion.  

 

1.4 Survey of the existing literature  

Here we present a comprehensive literature survey that encompasses the 

experimental observations, the evolution of the mathematical models (both deterministic 

and nondeterministic) and the analytical and the numerical solution techniques. The 

literature pertaining to the pseudospectral methods and a new Crank-Nicolson scheme are 

incorporated in the respective chapters. 

 

1.4.1 Literature survey for the deterministic models for a single species 

The seminal paper of Neretnieks [3] first brought out the importance of a diffusion 

in the porous matrix and its role in the retardation of migration. It also contains a model 

for the transport of the radionuclide in both the fracture and the porous matrix. For the 

porous matrix, the diffusion and the radioactive decay are considered. But for the 

transport along a single fracture, dispersion is not included. Grisak and Pickens [5] 
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consider a 2-D system consisting of a single fracture and a porous matrix of finite extent 

and they do a finite element analysis of the system. Their study highlights the conditions 

under which the fracture flow dominates over the matrix diffusion. Very low matrix 

porosities, a small fracture spacing, a large fracture width and a high fracture flow 

velocity are the factors that will make the matrix diffusion less dominant. 

 

  The inclusion of a dispersion along the fracture was carried out by Tang et al. [6] 

who considered a fracture of infinite length embedded in a porous matrix. This results in 

two partial differential equations, one for the transport along the fracture and the other for 

the transport in the porous matrix. The coupling between these two equations is provided 

by a diffusive flux at the fracture-porous matrix interface and this can be viewed as a 

source term for the differential equation that describes the transport along the fracture.  

Sudicky and Frind [7] extended the work of Tang et al. [6] by introducing a system of 

parallel fractures instead of a single fracture. This model was further improved by Chen 

and Li [8] who just modified the inlet condition at the source end appropriately. The 

model of Sudicky and Frind [7] with this modified inlet condition can be viewed as the 

standard parallel fracture model that we will refer to throughout the thesis. 

 

Sudicky and Frind [7] as well as Chen and Li [8] use a Laplace transform technique 

to arrive at an analytical solution. This solution is a closed form, elegant but difficult to 

evaluate two dimensional integral expression. It must be noted that in both these models, 

the source strength is assumed to be a constant. Also, the dissolved and the adsorbed 

components are in equilibrium and they are related by a linear relation involving kf , the 
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distribution coefficient. The assumption of a constant source strength implies that these 

two models can be applied only to sources of constant strength or whose half-life is very 

large, like the transuranic species. Hence these models are inapplicable for the cases of 

short-lived species. 

 

Hodginson et al. [9] developed a 1-D model where the following mechanisms, 

advection, dispersion, kinetic and/or equilibrium surface sorption, diffusion into the rock 

matrix with an equilibrium bulk sorption and a radioactive decay were included. This 

model has flexible input and output boundary conditions. The final solution for the 

concentration of the species in the fracture is found by numerically inverting the 

analytical solution of a Laplace transformed transport equations. In this investigation, it is 

found that matrix diffusion is the primary retardation mechanism for the element 

neptunium with an input data from the Finnsjo site of Sweden. 

 

Ray and Nair [10] studied a non equilibrium migration in a rock matrix from a 

repository. Their cylindrical repository of finite dimension consists of a canister and a 

barrier. With respect to the rock, the repository is treated as a line source. The migration 

through a barrier is governed by a diffusion and a decay. The migration in the rock is 

estimated by solving a 3-D pde that accounts for a dispersion, a decay, an advection, a 

sorption and a desorption. The above equations along with another equation for a non 

equilibrium sorption process are solved by a Laplace transform technique. Rasmuson [11] 

derived analytical solutions for the migration in fractures. In this model, the porous 
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matrix is treated as a system of spheres and the usual mechanisms that are considered in 

the fracture and in the porous matrix are retained. 

 

 

 

Fig. 1.3: Fracture and waste matrix geometry in a deterministic parallel fracture model. 

 

Chen [12] models the radionuclide transport for a system consisting of an injection 

well, a single fracture and a porous matrix where the fracture and the porous matrix are of 

infinite extension. The source at an injection point is either a constant or an exponentially 

decaying one. The usual attenuation mechanisms like a radioactive decay and an 

adsorption with a linear equilibrium isotherm are incorporated. Along the fracture, an 



Chapter 1 

12 
 

advection and a dispersion are considered and the usual Laplace transform solution is 

presented. The simple migration model of Sharland et al. [13] consists of a waste, a 

backfill and the rock. Two differential equations, one for the radionuclide concentration 

in the water of the micro pores of the backfill and the other for the concentration in the 

rock water are solved by numerically inverting the Laplace transformed quantities. 

 

Davis and Johnston [14] corrected some errors found in Sudicky and Frind [7].  

Thomas [15] investigates a diffusional release of a single component material from a finite 

cylindrical waste that is kept in a well-stirred bath.  The system has an azimuthal 

symmetry and hence r and z are the two independent variables. A Laplace transform 

solution is developed. The series for the Laplace transformed quantity is manipulated to 

handle an infinite summation efficiently before its inversion. Closed form expressions for 

the concentration profile, the flux through the ends, the fractional inventory leached and 

the leach rate are provided. Also, the governing equations have a provision for the 

inclusion of an irreversible reaction. 

 

Chiou and Li [16] consider an exponentially decaying concentration as an inlet 

boundary condition and they provide an analytical solution for a single fracture and a 

porous matrix system. This is a more realistic inlet source condition since it can handle 

both long and short lived species without restriction. Their model also highlights the 

importance of the retardation factor that can influence both the fracture and porous matrix 

concentrations.  
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Chiou and Li's [17] work is essentially the same as that of Chiou and Li [16] except 

that the continuity of the flux across the fracture-source interface is altered to reflect a 

kinetic solubility limited dissolution condition (bc of the third kind). 

 

Buckley and Loyalka [18] essentially consider a numerical solution to the above 

models of Chiou and Li [16, 17]. In addition, they consider a numerical solution for a 2-

member chain for the same system. In this case, the analytical solution of Ahn [19] is 

compared. For the numerical solution, a centrally symmetric spatial finite difference 

scheme with a forward time discretization is employed. The analytical solution of Chiou 

and Li [17] is not valid if a variation of the velocity of the solute across the fracture occurs 

and such a situation exists when a reaction takes place at the fracture-porous matrix 

interface. The numerical scheme of Buckley and Loyalka [18] can however handle these 

scenarios with ease. 

 

Buckley and Loyalka [20] place emphasis on the fact that the velocity across a 

fracture can be a variable instead of a constant as it is assumed in many models. Also, for 

a reacting flow, the assumption of a constant concentration across a fracture is not valid. 

They assume a parabolic velocity profile and consider a fracture in a two dimensional 

rock matrix defining a dual porosity model. The transport mechanisms considered in the 

fracture are an advection, a dispersion and a decay. A molecular diffusion, a decay and 

the adsorption/desorption are the physical processes that are considered for the 

surrounding porous matrix.  These equations are solved by finite difference techniques 
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and the sensitivity of the results with respect to the mean velocity, the diffusion 

coefficients and the rate coefficients is discussed. 

 

The continuum model of Jeong and Lee [21] is an interesting attempt to simplify 

the complexity of a porous medium. Here the random net work of fractures is replaced by 

two families of mutually orthogonal fractures. Each family consists of a set of 

periodically repeating parallel fractures of equal width inclined at 45 degrees to water 

flow. The mechanisms considered within the fracture and at the fracture rock interface 

are similar to those considered in standard models and the resulting equations are solved 

by a finite element technique. However, how closely this model mimics an actual fracture 

needs to be verified by actual experiments. 

 

For a single fracture-porous matrix system, Lee and Teng [22] derive an analytical 

solution through a Laplace transform method. There are two pde's, one governing the 

migration through the fracture and the other one accounting for the transport through the 

porous matrix. The Laplace transform of the second equation gets modified depending 

upon the following three cases: (a) no sorption and a non equilibrium sorption; (b) an 

equilibrium sorption; (c) no sorption and an equilibrium sorption. Analytical solutions are 

presented for all the three cases. 

 

Woodbury et al. [23] devise an interesting Arnoldi approach for the advection-

dispersion equation to make it computationally more economical. In this formulation, 

instead of a system of n coupled differential equations, one has to deal only with a system 
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of m differential equations that describes the time evolution where n >>m. Hence 

computational economy is enhanced without impairing the accuracy. 

 

1.4.2 Survey of the existing literature for multiple species 

The preceeding section dealt with the migration models for a single species. Here 

we indicate few representative works that model the migration involving a chain of 

species. Burkholder and Rosinger [24] provide an explicit analytical solution for up to a 

three member chain through a geological media that involves an advection, a decay and 

with or without a dispersion. For a chain involving more than three members, this 

solution method will cut down the evaluation time since the chain can be grouped into a 

family of two or three member sets. 

 

Huyakorn et al. [25] employ a finite element model to assess a nuclide decay chain 

transport in a naturally fractured porous medium by using a combination of a discrete 

fracture and a dual-porosity model.  An advection, a hydrodynamic dispersion in the 

fractures, a diffusion in the porous matrix and the chain reactions of solute species are 

considered simultaneously in this formulation. 

 

LeNeveu [26] devised a one dimensional migration model involving an advection 

and a dispersion for a chain of nuclides in a bentonite medium. A zero initial 

concentration of all the nuclides at time equal to zero is supplemented with a source 

boundary condition at x = 0 and another source-geosphere interface condition at x = a. 

After an exponential transformation, a Laplace transformation is applied and 
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subsequently a variety of analytical manipulations are implemented to efficiently 

calculate the series before inversion. 

 

Hodgkinson and Maul [27] present a Laplace transform based solution to the 

radionuclide transport equations for decay chains of arbitrary length. Their fracture 

transport model includes a one dimensional advection, a linear equilibrium sorption, a 

hydrodynamic dispersion and the radioactive decay with a matrix diffusion for the 

fractured rock masses. This model has a provision for an approximate solution for the 

transport through a series of different types of rock.  

 

Thomas [28] considers a case where a Green's function based solution is obtained 

for a chain of nuclides for a breach of a three dimensional repository. Here in the 

governing equation a convection, a dispersion and a retardation are considered. The 

contaminant inventory is preferentially released to a steady ground water flow. When all 

the radionuclides are equally mobile, a worst-case scenario is assumed and his method 

provides the bounding numbers. Also, one of the highlights of his approach is an ability 

to handle actinide chains of arbitrary length. 

 

1.4.3 Literature survey for the probabilistic models  

The probabilistic estimation of the migration of the contaminant particles through 

a porous medium is a widely established alternate route. Problems dealing with the 

dispersion and the diffusion have been dealt with using this approach since the middle of 

the last century [29, 30]. Ahlstrom et al. [31] developed a numerical code to simulate a 
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contaminant transport driven by a sub-surface flow. Kinzelbach [32] pointed out a 

dissimilarity between the conventional advection-diffusion equation and its random walk 

based variant for a heterogeneous system. The difference is small for a system with mild 

heterogeneity but the same becomes larger with an increase of the heterogeneity.  

 

In modern times, the stochastic methods are widely used for different types of 

porous flow estimation. Sahimi and Jue [33] simulated a diffusion in a disordered porous 

medium. This corresponds to a Brownian motion of macro molecules. Their work 

established a correlation between the effective diffusion coefficient and the mean pore 

diameter of the medium. Frymier et al. [34] developed an algorithm to address the 

migration in a bulk system that is done as a series of zizzag segments. Berkowitz et al. [35] 

derived a general form for a conservative chemical transport in a geological matrix. 

 

 The resistance offered by a medium to a flow is known as permeability. For 

simple systems, Kozeny equation [36] gives a very simple and workable expression for the 

permeability. Simonov and Mascagni [37] made a detailed study of a complex digitized 

porous medium to establish a relation between the permeability and the diffusion 

penetration depth. A code (LAGCARTW) based on a random walk particle advection-

diffusion model was developed by Sherwin [38]. This code can be run in a Windows 

environment. Nordbotten and Vasilyev [39] worked on the correlation between a multiple 

porosity model and a continuous time random walk. This work suggested that the 

continuous time random walk method could be viewed as a spatial discretization of a 

multiple porosity model in Lagrangian coordinates. Williams [40, 41] reported a stochastic 
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approach to model the migration of radioactive waste through a porous medium with 

fracture. This approach was based on an analogy with the neutron transport in a non 

multiplying medium. The numerical solution of this model was reported in a series of 

papers by Buckley et al. [42, 43, 44]. 

 

A simulation based on a Markov process (continuous in time) for a one 

dimensional transport of a radionuclide chain was carried out by Lee and Lee [45]. Smidts 

and Devooght [46] reported a method based on the concept of a non analog Monte Carlo 

simulation to model the transport of a chain in a geological medium. The issue of 

migration of a dissolved radionuclide has been addressed by Marseguerra et al. in a series 

of papers [47, 48, 49]. Marseguerra et al. [50] also estimated the effects of the engineered 

barriers of a radioactive waste repository using a Monte Carlo method. The  

Kolmogorov-Dmitriev theory [51] was used to simulate the flow of particles through 

different barriers. All the interactions that a particle could encounter during a transport 

process were considered as transitions from one particle state to another. 

 

Cvetkovic and Haggerty [52] made a study of the transport of particles with an 

exchange in a disordered medium. The probabilistic model of  Cvetkovic et al. [53] 

successfully incorporated the effect of the porous matrices in the evaluation of the  

concentration. Their results provided an estimation of the escape probability of a 

radionuclide from a rock. Bijeljic and Blunt [54] put forward an explanation for the 

complex macroscopic behavior of dispersion in a porous medium. They reported a 

relation between the longitudinal dispersion coefficient and the Peclet number. 
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Moreno et al. [55] pointed out that the uncertainty in the transport of the 

radioactive waste was mainly due to an uncertainty stemming from the retardation 

coefficients. In their assessment, they used the Palm process introduced by Mikhailov and 

Voitishek [56]. The Monte Carlo model of Giacobbo and Patelli [57] gave an estimation of 

the migration of radionuclide in a fractured porous medium. The effects of adsorption and 

desorption were considered with the incorporation of the porous blocks in the model. 

This description and that of Williams [40] gave identical results for a set of problems [57]. 

Zoia et al. [58] developed a method to describe the concentration-dependent transport of a 

contaminant particle in a porous medium using the concept of non linear random walk. 

This work was based on the dynamics of dense particles.   

 

1.4.4 Experimental data related works 

It needs hardly an emphasis on the central role of validated experimental data 

since it is central to every modeling. In this context, the work of Skagius and Neretnieks 

[59] provides the porosities and the diffusivities of some non sorbing species in crystalline 

rocks.  The diffusion coefficient is modified to take into account the porosity, the 

tortuosity and the sorption effects. The surfaces in old fissures, that are in contact with 

the moving groundwater, are likely to have a different mineral composition than the 

surrounding rock. This is due to the weathering, the precipitates and the crystallization 

products from the groundwater. These modifications are termed as a coating material. 

The estimated diffusivities showed large differences between granite and gneiss taken 

from the same drilled core. This implies a practical impossibility of assigning a single 

value of the diffusivity for a rock material from a given area. Also their data indicates the 
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interesting point that the total diffusivity in rock with a fissure coating material is of the 

same order of magnitude or higher than the diffusivity in rock without a fissure coating 

material. Skagius et al. [60] did sorption experiments to evaluate the diffusion and the 

sorption parameters of cesium and strontium in granite samples from two different mines. 

Birgersson and Neretnieks [61] conducted experiments to find the rate of diffusion into the 

rock matrix. Migration was found to be different at different depths implying that the 

stress as a function of the depth could have a bearing on the migration. Also, the pore 

diffusivity and the hydraulic conductivity were found to have large variations with 

respect to depth. 

 

1.5 Summary of the present thesis 

Chapter 1: This first chapter has provided a comprehensive literature survey for 

the deterministic and the nondeterministic models.  

 

Chapter 2: In the second chapter, the basic derivation of the governing equations 

of the parallel fracture model is indicated. This is followed by an application of the higher 

order finite difference schemes to these equations to get a reliable estimate of the 

concentration of the radionuclides for larger distances. The governing equations for the 

standard parallel fracture model were first set up by Sudicky and Frind [7] and 

subsequently, Chen and Li [8] used the same set of equations. But unlike Sudicky and 

Frind [7] who do not distinguish between the waste and the fracture sides, Chen and Li [8] 

label these two sides separately and provide an appropriate inlet boundary condition. 

Their analytical closed form solution is given as a 2-D integral by a Laplace transform 
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method. It has a very oscillatory integrand and hence its evaluation poses enormous 

difficulties. Also due to the finiteness of numerical precision, there is a limitation on the 

maximum distance from the source at which the concentration can be evaluated. In 

fortran double precision, these quadrature based calculations can be done for a distance of 

about 200m. By resorting to quadruple precision, this distance can be extended a little 

more. This limitation served as a starting point to seek computational alternatives where 

the evaluation distance could be 500m or more. In this context, Mohankumar et al. [62,63] 

used the finite difference methods as a way of getting computational results for distance 

up to 500m. They employed a Forward Time and Centered Space scheme (FTCS) [62] that 

gave a first order accuracy in time and a second order accuracy in the space variable. This 

was later improved by Mohankumar [63] who used a Crank-Nicolson (CN) scheme that 

gave second order accuracy in both the space and time variables. 

 

This prompted the present thesis investigation to look for higher order schemes 

that will provide better precision than the FTCS and CN schemes at a reasonable 

computational cost. It is found that the higher order CN scheme can be profitably 

exploited to efficiently calculate the concentrations up to 500m with a fourth order 

accuracy in the space variable and a second order accuracy in the time variable. In recent 

times, the higher order compact schemes (HOCS) are extensively used in flow related 

problems [64, 65]. Taking clue from these works, the present porous flow equations are also 

solved by this HOCS approach. The order of accuracy of this HOCS approach is the same 

as that of the higher order CN method and hence they are comparable. These findings 

establish the fact that for distances up to 500m, either of these two schemes namely the 



Chapter 1 

22 
 

higher order CN or the HOCS can provide reliable benchmark values through the 

deterministic route. Also, the CN, the higher order CN, the Dufort-Frankel (DF) and the 

higher order compact schemes were compared to assess their relative accuracies and 

performances. These findings were reported by Sen and Mohankumar [66, 67].  

 

Chapter 3: In finite difference methods, one replaces a derivative by its 

approximant. Usually a derivative approximation amounts to a weighted linear 

combination of the function values in the neighborhood of the point of evaluation divided 

by the step size. In the pseudospectral method, we do not resort to a derivative 

approximation. Rather, the unknown is expressed as a linear combination of certain 

known functions belonging to a basis set. The expansion coefficients are then obtained by 

substituting this approximate solution in the given differential equation. Compared to the 

finite difference methods, the pseudospectral methods can offer a much superior 

accuracy, that is usually quantified as an exponential convergence [68]. This chapter 

explores the application of these pseudospectral methods for the radioactivity migration 

problem. The Chebyshev and the Legendre pseudospectral methods are employed for 

these computations. It is found that these methods offer far superior results compared to 

the finite difference methods. Due to a finite precision related restriction, the maximum 

distance of evaluation turns out to be about 300m. Hence for distances not exceeding 

300m, the pseudospectral method is the method of choice while for distances exceeding 

300m, either the higher order CN or the compact schemes can be used. These findings 

were reported by Sen and Mohankumar [66, 67]. 
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Chapter 4: In chapter four, we report a random walk based method for a more 

realistic and less conservative evaluation of the radioactivity migration. The parallel 

fracture model adopted for the deterministic calculation is a simplified picture of a real 

rock structure. In reality, rock is a combination of randomly oriented and interconnected 

network of fractures embedded within porous blocks of random size. A schematic of rock 

structure is given in fig. (1.1). In the deterministic model, one assumes a neat geometry 

where the fractures are assumed to be straight lines as shown in fig. (1.3). When a 

radionuclide travels through a fracture network of a real rock, it has to follow several 

randomly oriented zigzag paths. This increases the effective path length between a source 

and an observation point. Moreover the retardation within the porous matrix also 

increases with an increase in path length. The combined effect of these two mechanisms 

results in a very significant reduction of the concentration at an observation point when 

compared to the concentration calculated from a deterministic approach.  

 

Williams [40, 41] reported a stochastic method to address the migration through a 

fracture network. This model did not have any allowance for a matrix diffusion. Later, 

Cvetkovic et al. [53] incorporated the diffusion mechanism that takes place within a matrix 

to estimate the escape probability of a radionuclide from a rock. The Monte Carlo model 

of Giacobbo and Patelli [57] considered the adsorption and the desorption processes to 

account for the retardation effect of a porous matrix. 

 

Most of the existing models mainly consider an advective transport through a 

fracture network since this is the dominant mechanism. Though the model of Cvetkovic 
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et al. [53] considers matrix diffusion, the diffusion within a fracture is not considered. In a 

practical situation, it is very difficult to consider all the mechanisms within the frame 

work of a probabilistic estimation due to the limitation of computer resources. So our 

main aim is to exploit the best of both the deterministic and the probabilistic routes to 

consider realistically all the transport mechanisms in a dual porous medium of fracture 

and porous matrix. To achieve this goal, we first estimate the path length using the 

concept of random walk. We make a number of trials to arrive at a mean path length 

between the source and the observation point. This quantity is called the average 

migration length. Once this is estimated, the fracture length of the deterministic parallel 

fracture model is set equal to this average migration length. Another important factor that 

determines the concentration at an observation point is the average width of a porous 

matrix. This quantity is fixed by estimating the maximum and the minimum possible 

block widths for a rock structure. With these two quantities as input, one can evaluate the 

concentrations using the standard parallel fracture model. The results of this model turn 

out be less conservative as expected. Still, one needs an experimental verification to 

validate all these models. 

 

Chapter 5: This chapter deals with some numerical experiments involving the 

CN scheme. One of the problems associated with the CN schemes is an inherent 

oscillation of the solution [69]. In this context, numerical experiments were carried out to 

explore the possibility of suppressing the oscillations by resorting to a better averaging 

without violating the time centering of the space and time derivatives. For the CN 

scheme, it must be recalled that a central differencing scheme is used for the space 
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derivatives and more importantly, the time and space derivative approximations center 

around a particular time node. The time derivative can be centered around an integer time 

node or around a half-integer time node. As an experimentation, we averaged the two CN 

schemes based on these two time centerings  that resulted in a CN variant. This CN 

variant did not provide a time step advantage in the sense that it did not yield an 

increased time step compared to the conventional CN scheme for the same accuracy. But 

in few cases it demonstrated the onset of solution at very early times for some test 

problems involving a diffusion. Also, for our porous flow problem, the convergence of 

the new CN scheme is found to be definitely better. Here again, the ultimate converged 

values of the conventional CN and its variant do not differ. This method needs further 

analysis and experimentation to exploit its full potential.  

 

Chapter 6: In the final chapter we summarize the results of the thesis and also 

point out some possible directions for the future research.  
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Table 1.1 : Classification of the solid wastes 

 

Category 

Radiation Dose (D) on the 

surface of the waste 

package (mGy/h) 

 

Comments 

I 

II 

III 

IV 

D < 2 

2 < D < 20 

20 < D 

Alpha bearing wastes 

Beta-gamma emitters 

Beta-gamma emitters 

Beta-gamma emitters 

Activity in Ci/m3 or Bq/m3 

 

 

 

 

Table 1.2: Classification of the liquid and the gaseous wastes 

Type Category Activity (A) (Bq/ m3) 

(beta-gamma emitters) 

 

 

Liquid 

I 

II 

III 

IV 

V 

A < 3.7x 104 

3.7x 104 < A < 3.7x 107 

3.7x 107 < A < 3.7x 109 

3.7x 109 < A < 3.7x 1014 

3.7x 1014 < A  

 

Gas 

I 

II 

III 

A < 3.7 

3.7 <  A < 3.7x 104 

3.7x 104 < A 
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2.1  Introduction 

   This chapter provides a comprehensive treatment of the finite difference methods 

for the solution of the coupled partial difference equations (pde’s) that govern the 

migration of the radionuclides in the fracture and in the porous matrix of rock within the 

framework of the parallel fracture model. The material is organized as follows. First the 

basic works that are of importance in the analytical and the numerical solution of this 

parallel fracture model are briefly described. This is followed by a detailed derivation of 

the coupled pde’s that govern the migration of the radionuclides. The solution of these 

pde’s by a higher order CN and the higher order compact finite difference (fd) scheme 

are then presented. These results form one of the main components of this thesis. 

 

2.2     A brief survey related to the parallel fracture model 

    The isolation of the vitrified high level waste (HLW) for longer times is 

accomplished by storing them in containers in crystalline rock at depths of 500m or more. 

The rock has a very low permeability that is essentially governed by the fractures. 

Neretnieks [1] was the first to point out that diffusion in the rock matrix could very 

significantly retard the migration of the radionuclides. His model consisted of a single 

fracture and a porous matrix. He considered a diffusion and a radioactive decay as 

mechanisms in the porous matrix while in the fracture, only an advective and a 

radioactive decay component were considered. A similar model was considered by 

Grisak and Pickens [2]. It consisted of a 2-D system of a single fracture and porous matrix 

of finite extent. A finite element analysis was done that pointed out conditions under 

which the fracture flow would dominate over the matrix diffusion. Typically, very low 
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matrix porosities, small fracture spacings, a large fracture width and a high fracture flow 

velocity are the crucial parameters that will make the matrix diffusion less dominant. 

 

    Tang et al. [3] and Rasmuson and Neretnieks [4] were the first to include the 

effects of a longitudinal hydrodynamic dispersion in their modeling. It must be 

understood that the radioactive species in the fracture can exist in two forms, the 

dissolved component in the pore water and the adsorbed components in a solid form. By 

assuming an equilibrium, these two components are related by a linear relation involving 

kf , the distribution coefficient. Under these assumptions, the governing pde’s for the 

single fracture-porous matrix model of Tang et al. [3] are given below. 
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where b is the semi width of a fracture. With C and Cp referring to concentrations in the 

fracture and in the porous matrix respectively, the first and second equations relate to the 

migrations along the fracture and the porous matrix, respectively. The second, the third 

and the fourth terms of the first equation account for the advection, the mechanical 

dispersion and the radioactive decay, respectively. The last term of the first equation 

accounts for the diffusive flux from the fracture into the porous matrix and this term 

provides a coupling between the two equations. The term v stands for the velocity of 

water in the fracture. D and R are the dispersion and the retardation coefficients 

respectively for the fracture while Dp and Rp are the corresponding parameters for the 

porous matrix. λ is the radioactive decay constant. Also, it must be noted that for the 
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migration in the porous matrix, only a diffusion and a radioactive decay are considered. 

The above equations must be supplemented with appropriate initial, boundary and inlet 

boundary conditions [3]. 

 

    The models of Rasmuson and Neretnieks [4] and Rasmuson [5] are similar and 

these two models differ by their inlet boundary conditions. The physical mechanisms 

considered in these models are similar to that of Tang et al. [3]. Common to both these 

models is the assumption that a rock is made up of porous blocks that are separated by 

fissures. In three dimensions, this results in a cubic system of orthogonal fractures of 

equal width and spacing. For modeling purposes, the cubic block that constitutes the 

porous matrix is replaced by a sphere having the same surface to volume ratio. It must be 

noted that the block radius is small when compared with the overall distances we 

consider. 

 

    Sudicky and Frind [6] extended the single fracture model of Tang et al. [3] to a 

system of identical parallel fractures. In two dimensions, this results in fractures that are 

separated by the porous matrices. This system of fracture-porous matrix repeats 

periodically in space as shown in fig. (1.3). The waste matrix and the fracture-porous 

matrix system are separated by an interface located at z = 0. Here z is measured along the 

fracture and the z and x axes are mutually perpendicular. The inlet condition that is used 

in this model is given by 00),( CtzC z   where 0C  is a constant. This implies a source 

of constant strength at the z = 0 end. These equations were solved by a Laplace transform 

method to yield an analytical solution in the form of a two dimensional integral. This 
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integral was evaluated by a quadrature since it could not be evaluated in closed form. 

However, it must be remarked that the evaluation of these types of integrals needs a great 

deal of effort owing to its extremely oscillatory integrand. Also, it must be kept in mind 

that as the distance of evaluation gets larger, the difficulty of evaluation increases in 

proportion. This model of Sudicky and Frind [6] with a modified inlet condition 

introduced by Chen and Li [7] is taken as the standard parallel fracture model that we use 

in our subsequent calculations. This improved inlet condition is as follows. 

                      0
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,0 vCtvC
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Thus, the flux at the source side is equal to the sum of a normal advective flux plus a 

dipersive flux evaluated at the fracture side at the source-fracture interface. With this inlet 

condition, Chen and Li [7] provide an analytical solution to the pde's by a Laplace 

transform techniques. Again, one ends up with a two dimensional integral solution that is 

evaluable in principle but harder to evaluate in practice due to its highly oscillatory 

integrand. 

 

2.3  A physical picture of the model 

   As we described in the previous chapter, the rock consists of a network of 

fractures that are randomly oriented. The length, the width, the angle a given fracture 

makes with a reference direction and the velocity of the water in the fracture etc. are truly 

random parameters that are site specific. There are two ways to treat this problem. One 

way is to develop a nondeterministic approach where all the random aspects of the 

structure will be taken care of by a random walk approach. This mode of attack will be 

taken up in a subsequent chapter. Here we consider a deterministic model where we 
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simplify the fracture-porous matrix geometry so that we end up with a set of coupled 

pde's that can be solved with appropriate inlet, initial and boundary conditions. This 

simplified deterministic model is the standard model of the parallel fracture that was 

described in the previous section and it is illustrated in fig. (1.3). Due to the inherent 

symmetry of this model, one needs to concentrate on a single fracture alone. The point z 

= 0 separates the fracture and the waste matrix. To be more precise, the waste matrix and 

the fracture sides are represented by z = 0- and z = 0+, respectively. The assumptions of 

this model are listed below. 

 All the fractures are identical with a width 2b. Similarly, all the porous blocks are 

also identical. The midpoints of two consecutive fractures are separated by a 

distance 2B. 

 The length of a fracture is much larger than its width. 

 The transverse diffusion and dispersion ensures a mixing within each fracture. We 

assume that no concentration gradient exists across the width of a fracture. 

 The hydraulic conductivity of the porous rock matrix is very low and so it is 

assumed that the water flow takes place only within the fracture. 

 The flow of water within a fracture is laminar. 

 The flow velocity of water is same in all the fractures. 

 The migration of the radioactivity within a porous block is governed by a 

diffusion only and it takes place in the direction perpendicular to the fracture axis. 

 The migration along the fracture is faster than the migration within a porous 

matrix. 
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The first assumption relates to the geometry of the model. The second and the third ones 

indicate that a flow along a fracture is essentially a migration in one dimension. The 

fourth, the seventh and the eighth assumptions indicate that the transport within a porous 

matrix is governed by a diffusion only. Moreover, these assumptions allow a one 

dimensional analysis of the migration within the porous blocks. The fifth assumption 

enables the application of Darcy's law for the fracture transport. The sixth one is required 

for obtaining an analytical solution.  

 

It is important to note that all the models require physical parameters that need to be 

found experimentally. These parameters are site dependent. Even within a given site, they 

vary from location to location. Tables (2.1 – 2.3) give a flavor of some of the important 

parameters that are obtained experimentally from the samples of Stripa mine, Sweden [8]. 

 

2.4  The mathematical model 

   We first discuss different transport mechanisms of a particle inside a porous 

medium. 

 Advective transport: An advective (convective) transport of the dissolved 

species involves the migration due to the flow of water. If the transport is purely 

due to this mechanism (diffusion being absent), the dissolved particles move at 

the speed of water flow. 

 Diffusive transport: Diffusion is a spontaneous process which tries to reduce the 

concentration gradient present in a medium and it is a dominant mechanism at 

low velocities. 
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 Dispersive transport: This occurs along the fracture axis. The mechanical 

dispersion describes the combined effects of mixing due to a velocity profile and 

a roughness of the fracture walls. It is due to the flow and the pore system present 

in a medium and it is a predominant transport mechanism at high velocities. 

Experiments show that the mathematical expression of dispersion is very similar 

to that of a diffusion process. Usually the dispersive process is defined by a 

parameter D that combines the effects of dispersion and molecular diffusion and it 

is given by 

                  *
LD v D                              (2.3) 

Here αL is the dispersivity in the direction of the fracture axis and D* is the 

molecular diffusion coefficient in water. 

 

2.4.1 The governing equation for the fracture medium 

    Let us consider an elementary rectangle that has sides of magnitude 2b and Δz 

and this rectangle lies within the fracture between the points z and (z + Δz). We consider 

a parallelepiped of unit height with this rectangle as the base and so it has a volume of 

magnitude (2bΔz). We consider the flow of water that enters this volume through the face 

located at z and leaves at the other face located at (z + Δz). With C as the concentration 

per unit volume in the water and S as the solid concentration per unit length of the 

fracture surface, then the quantities of the species within this elementary volume in the 

liquid and the solid form are given by (2bΔzC) and (2ΔzS), respectively. Within this 

volume, it must be remembered that the solid component resides on both the sides of the 
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fracture wall and thus gets deposited on the two sides of total length 2Δz. The rate of 

change of this quantity is given by 

                       2 2b zC zS
t


    
  

Let v be the velocity of water through the fracture and it is assumed to be a constant. 

Then the net advective component of mass that enters this volume per unit time is given 

by 

                         2 2z z zb Cv b Cv


     

Similarly the net dispersion related component of mass that enters the volume per unit 

time is given by  

                     2 | 2 |z z zbD C bD C
z z 
        

Let λ be the decay constant of the radioactive species. The loss due to the radioactive 

decay per unit time is given by  

                          2 2b zC zS     
 

Finally, we must take into consideration the loss due the diffusive flux from the fracture. 

This loss term is given by (2Δzq) where q is the diffusive mass flux from the fracture into 

the porous matrix. The expression of q is given by 

     ( , )  , 0  , 0p
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q z t D z t
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               (2.4) 

Here Dp and Cp are the coefficient of diffusion and the concentration of dissolved 

radioactive species within the porous matrix, respectively. θ represents the matrix 

porosity which indicates the fraction of the porous volume with respect to the total 

volume of the porous matrix. Collecting all the terms we get 
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           2 2 2 2 2 | 2 |z z zz z zb zC zS b Cv b Cv bD C bD C
t z z 

                    
                      

                       2 2 2b zC zS zq                (2.5) 

Upon simplification we arrive at the following equation. 

                  
2

2

S C C S qC D v C
t b z z b b


                  

           (2.6) 

We assume a linear relation between the dissolved and the solid components, C and S. 

Then they are related by an empirical constant kf , known as the distribution coefficient in 

the following way. 

                              fS k C                            (2.7) 

Let R denote the retardation coefficient of the fracture and this is defined as 

                             
b
k

R f1                          (2.8) 

Substituting eq. (2.7) and eq. (2.8) into eq. (2.6), one gets the following pde. 

                     
2

2 0  ,   0  ,   0C C D C qC z t
t R z R z Rb




  
      

  
    (2.9) 

This is the first reference equation for the transport through the fractures for our standard 

parallel fracture model that will be repeatedly referred to throughout the thesis. 

 

2.4.2 The governing equation for the porous matrix 

   The governing equation for the transport of the radionuclide through the porous 

matrix can be derived in a similar way. It is to be noted that the migration takes place 

along the x direction and there is no advective component. We consider a rectangle 

placed between (x , x + Δx) and (z , z + Δz) in the porous matrix. With this rectangle as a 
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base, one constructs an elementary parallelepiped of unit height with a volume of 

magnitude (ΔxΔz). Let Cp and Sp represent the dissolved and solid concentrations (both of 

them are expressed per unit volume) of the radioactive species within the porous matrix. 

Then the amount of species present within this volume is given by 

                         1p pC x z S x z                                      

The net addition due to diffusion is given by  

                   | |p p x p p x xD z C D z C
x x

  
          

The decay of radioactive species per unit time within this volume is given by  

              1p pC x z S x z           

Then conservation of mass implies the following equation.  

             1 | |p p p p x p p x xC x z S x z D z C D z C
t x x
    

                    
 

                                      1p pC x z S x z                  (2.10) 

After simplification the above equation reduces to  

                      
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     (2.11) 

This is the pde governing the radionuclide transport through the porous matrix. 

Rearranging the equation, one can write 
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Now like the fracture medium, we assume a linear relation between Cp and Sp. 

                              p pS kC                           (2.13) 
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where k is a dimensionless quantity and it is related to the distribution coefficient of the 

porous matrix kp in the following way. 

                            p sk k                           (2.14) 

ρs is the true density of the porous matrix. We substitute eq. (2.13) and eq. (2.14) into eq. 

(2.12) 
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Now from the definition of porosity ( ), we can write 
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where b is the bulk density of the porous matrix. If we substitute eq. (2.16) into eq. 

(2.15) we get 
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21 1p p p p
b p b p

k C C k
D C

t x
  

 
    

          
               (2.17) 

The retardation coefficient of the porous matrix Rp is defined as 

                      1 p
p b

k
R 


                                    (2.18) 

Rearranging eq. (2.17) we arrive at the final expression for the equation governing the 

transport through the porous matrix. 

                  
2

2 0  ,    ,   t 0p p p
p

p

C D C
C b x B

t R x


 
     

 
          (2.19) 

The above equation [eq. (2.19)] along with eq. (2.9) form a set of coupled pde's that will 

be used throughout the remaining chapters. 
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The initial conditions for this set of coupled pde's are given by 

                     ( ,0) 0  ,  0C z z                         (2.20) 

                 , ,0 0  ,  b x B  ,  z 0pC x z                    (2.21) 

C(z, t) remains finite as z ∞ . This leads to the following boundary condition. 

                           ( , ) 0  ,   0C t t                           (2.22) 

The mass conservation at the waste-fracture interface gives the following inlet boundary 

condition. 

                             0
0

,0 vCtvC
z
CD

z












                 (2.23) 

where C0 is the concentration of the waste matrix. The molecular flux is continuous 

across the fracture-porous matrix interface and this leads to 

                         ( , , ) ( , )  ,   0  ,   0pC b z t C z t z t               (2.24) 

The concentration profile Cp is symmetric around the line x = B and this implies the 

following condition. 

                         
, ,

0  ,   z 0  ,   0p

B z t

C
t

x
 

   
 

                (2.25) 

With these initial, boundary and inlet conditions and assuming a source of constant 

strength (C0 = a constant), Chen and Li [7] provide an analytical solution based on a 

Laplace transformation that is given below. As we remarked earlier, it is a two 

dimensional integral that is not amenable to exact evaluation and hence needs a 

quadrature. 

                    1 2 3 4 5 6
0 0

2( , ) ( ) [ ]
t

oCC z t d F F F F F F d 




               (2.26) 
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All the terms of the above equation are defined below. 

           
 1/2

(1/2) 4
( / )   ;  ( )  ;    ; 

2p p

RD
G R D G B b

D v
             (2.27)   

               (1/2)

sinh( ) sin( )  ;  
( ) 2 cosh( ) cos( )R
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bRA
D R A

  
  


  


         (2.28) 

                    sinh( ) sin( )
2 cosh( ) cos( )A
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                       (2.29) 
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   

 
 

     
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              (2.30) 

               2 2

1( , , , , ) exp(2 ) 
2
zF z z Erfc 

     
 

 
    

 
      (2.31) 

             3 2 4
exp ( )( , , )

( / 4 )
R

RF    
 




                       (2.32) 

           
2 2

4 ( , , ) ( / 2)sin( ) cos( )  ;  ( / 2)IF t                    (2.33)                                  

        2
5 6( , , ) exp[ ( )]  ;  ( / 2)sin( ) cos( )I t t I t tF t t F                    (2.34) 

We list the typical values of the parameters that will be used throughout in our 

calculations. 

      
 

 

2 2

1/2 1/2

  1  .0  / ;       0.01  / ;      1  .0 ;     1  .0   ;      1  .0  / ; 

   2.14    06     ;        2 /    ;       0.0005    ;       0.01  ;   

( )  ( ) 

  1  000  .

   p pD m yr D m yr R R v m yr

T E yr log T b m B m 

    

     
 

    Here we need few comments regarding the oscillatory nature of the integrand. 

The terms cos(σε) and sin(σε) introduce violent oscillations since the parameter σ can 

assume very large values. In addition, the z dependent quantities lead to exponential over 

flow and under flow for large z values. These factors limit the evaluation of the analytical 

solution to smaller distances. 
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2.5  The FTCS Approach 

   The exact solution given by the two dimensional integral eq. (2.26) is elegant but 

the highly oscillatory nature of its integrand poses formidable difficulties. Using a double 

precision accuracy, the maximum distance of evaluation is about 200m that can be 

marginally extended by using a quadruple precision. Realizing this limitation, 

Mohankumar and Auerbach [9] applied the simple and explicit FTCS finite difference 

scheme to evaluate numerically the solution of the coupled pde's of this parallel fracture 

model. Another advantage of this approach is the fact that both the time dependent and 

the time independent sources can be handled without restriction while the analytical 

solution presupposes a constant source. Let i and j denote the space and the time indices, 

respectively. Then j
iC represents the concentration C at the time jΔt and at the spatial 

point iΔz. Below we indicate the approximations for the different partial derivatives. 

                           
1j j j

i i iC C C
t t

 


 
                  (2.35) 

                           1 1

2

j j j
i i iC C C

z z
  


 

                         (2.36) 
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1 1
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2
( )

j j j j
i i i iC C C C

z z
   


 

                      (2.37) 

A similar discretization scheme is adopted for Cp too. In the FTCS scheme, the 

discretization error in the spatial derivatives is of the order of ( Δz2 ) while the error in the 

approximation of the time derivative is of the order of ( Δt ). In the present problem, there 

is another important aspect which critically controls the accuracy of the results. The mass 

flux of the radionuclide entering into the fracture from the source is governed by the 
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concentration gradient 
0z

C
z 

 
  

. Similarly, p

x b

C
x



 
  

determines the mass flux across 

the fracture-porous matrix interface. Unless one evaluates these first order derivatives 

accurately, the concentration evaluations in both the z and x directions will be prone to 

error. The usual tendency is to approximate these derivatives by a 2 or 3 point formula 

but this order of derivative approximation is insufficient. As demonstrated by 

Mohankumar and Auerbach [9, 10], unless one employs a higher order like a 7th order 

derivative approximation, the concentrations at distances like 200m will be in error by 

about two orders. For equispaced grid points, the method of undetermined coefficients 

can be used to provide the required higher order derivative approximation. In the next 

section, we will outline this method. 

 

2.6  The method of undetermined coefficients 

   In a finite difference approximation, the derivative is expressed as a linear 

combination of function values [11, 12]. Let z be the grid point where the derivative needs 

to be approximated. We consider the function values at (m+n) points around z, ( m points 

on the left and n points on the right of z ). This gives a (m+n+1) point derivative 

approximation that can be written in the following way. 

   1 2

1 0 1 2

(1/ )[ ( ) ( ( 1) ) ( ( 2) ) ....

( ) ( ) ( ) ( 2 ) ... ( )]

m m m

n

df h a f z mh a f z m h a f z m h
dz

a f z h a f z b f z h b f z h b f z nh

         

         
   (2.38) 

Here we need the values of ia 's and ib 's. To make the calculation simple, one can 

choose z  as zero. Then setting  zf  equal to 0 2, ,  ,......,  m nz z z z   in succession, the 
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derivative 





dz
df  can be evaluated at 0z  analytically. Then by setting this exact 

derivative equal to approximate value as given by the above formula, one gets a set of 

 1 nm  linear equations. The solution of these equations gives the values of all ia 's 

and ib 's. For example, a 7-point forward derivative approximation is given below.  

 / ) ( ) / ) 6 ( ) / ) ( 2 ) / ) ( 3 )
49 15 20(1 (1 (1 (1
20 2 3

h z h f z h h f z h h f z h
df f
dz

                 
       

         / ) / ) / )
15 6 1(1 4 (1 5 (1 6        
4 5 6

h h hf z h f z h f z h               
     

      (2.39) 

       

2.7   The CN approach 

       The FTCS scheme employed by Mohankumar et al. [9] is of first order accuracy 

in the time variable and is of second order accuracy in the space variable. Subsequently, 

to obtain a second order accuracy in both the space and time variables, Mohankumar [13] 

used the CN scheme. As in the earlier case, we denote the time and the space indices by 

j and i , respectively. Then in this scheme, the time and spatial derivatives are 

approximated in the following way. 

                               
1j j j

i i iC C C
t t

 

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   (2.40) 
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                 (2.41)                                                 

              
2 1 1 1

1 1 1 1
2 2 2

2 2(1/ 2)
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j j j j j j j
i i i i i i iC C C C C C C

z z z

  
        

     
          (2.42) 

A similar discretization scheme is adopted for pC  also. Here, the spatial discretization is 
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centered at the time equal to tj 





 

2
1 . The approximations of the first and the second 

order spatial derivatives of the concentration are constructed to center around the same 

time quantity, tj 





 

2
1  as indicated by eqs. (2.41, 2.42). With these discretizations, 

one gets a set of linear algebraic equations for the quantities C and pC . The resulting 

linear equations for C  supplemented with the interface conditions eq. (2.23) 

(approximated by a 7-point formula) have a band matrix structure while for pC , the 

corresponding matrix is a tridiagonal one. 

 

2.8  The DF Scheme 

       This is an explicit numerical scheme capable of second order accuracy in both 

the space and the time variables. Unlike the CN method, here all the derivatives are 

centered around the time tj . The main advantage of this scheme is that, it uses less 

memory space as compared to the CN method. Thus it is comparatively faster than the 

other implicit and semi-implicit schemes. Here the derivatives are approximated in the 

following way. 
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i i iC C C
t t
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                          1 1
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z z
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                    (2.45) 

As in the earlier cases, we approximate the interface derivatives by a 7-point forward 
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formula. 

 

2.9   The higher order compact finite difference scheme 

    Till now we have discussed the schemes which are capable of providing second 

order accuracy in the space and the time domains. For our parallel fracture model, we 

need an assessment of the concentration for longer times and larger distances. As the 

value of z increases, the accuracy of the concentration values may deteriorate due to an 

error accumulation. Hence the need for more accurate schemes is felt. In fd 

approximations the derivatives can be subjected to higher order approximations (a five 

point central difference approximation is required for a fourth order accuracy). This has a 

major drawback. The first point just after the left boundary does not have sufficient 

number of grid points to its left for the desired degree of derivative approximation. A 

similar problem exists for the last point just before the right boundary. One may 

overcome these problems partially by introducing fictitious boundary points.  

 

      This was the motivation for a number of researchers to develop a higher order 

compact finite difference scheme that would use only three points to approximate the 

spatial derivative though the accuracy would be of higher order.  For a hyperbolic 

equation, Kreiss et al. [14] were the first to report such a compact finite difference scheme 

that retained the tridiagonal form of the discretized equations with an accuracy of fourth 

order. Hirsh [15] followed the ideas of Kreiss et al. [14] to solve a parabolic equation 

namely, the Burger's equation in the following way. 
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                      (2.47) 

where      0 1 1 1 1
1 1 1  ,    ,  

2n n n n n n n n nD y y y D y y y D y y y
h h h     

               
     

 and 

h is the mesh width. Now after rearranging we arrive at the following tridiagonal system 

of equations that can be easily solved by the Thomas algorithm. 

                      ' ' '
1 1 1 1

1 2 1 1 
6 3 6 2n n n n ny y y y y

h                     (2.48) 

                   '  ' '  ' ' '
1 1 1 12

1 5 1 1 2
12 6 12n n n n n ny y y y y y

h                  (2.49) 

Lele [16] reported a compact scheme that had a spectral like resolution. Sun and Zhang [17] 

implemented a method that was fourth-order accurate in both the space and the time 

variables to solve the heat equation. Cecchi and Pirozzi [18] reported a family of fully 

discrete finite difference implicit methods which could provide third order accuracy in 

the space variable and second order accuracy in the time domain. For our porous flow 

problem, we follow a version of a higher order compact fd scheme of Mohebbi and 

Dehghan [19]. This scheme is capable of providing results which are 4-th order accurate in 

the spatial domain. The higher order accuracy comes from the evaluation of the error 

terms (up to 4-th order) by a repeated differentiation of the original differential equation. 

For the sake of illustration, let us consider a second order differential equation with its 

boundary conditions in the domain [0, l]. 
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2

1 22

( ) ( ) ( )d y x dy x g x
dx dx

                         (2.50) 

                       0(0)   ,  ( ) ly y y l y                             (2.51)  

We approximate the spatial derivatives by a central difference formula  

                         1 1

2
i iy yy

x
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                             (2.52) 

                       
 

2 1 1
2

2i i iy y yy
x

   



                          (2.53)  

By substituting these approximations into the original the differential equation, one gets a 

discretized expression as follows. 

                      2
1 2i i i iy y g                                (2.54) 

where,  
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                (2.55)  

If we differentiate the original differential equation, we get  
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The final compact difference formula of fourth order accuracy can be written as 

              
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For the time discretization, we resort to a conventional CN like time approach by 

centering the spatial variables around tj 





 

2
1  and this gives a second order accuracy 
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in the time variable. Moreover, here also a 7-point formula is implemented to discretize 

the interface derivative. 

 

2.10 The 4th order CN approach 

   The conventional CN scheme of second order accuracy in the space variable is 

modified to a yield fourth order accuracy in the spatial discretisztion. This is 

accomplished by replacing the second order spatial central differencing formula with a 

fourth order approximation. For the time discretization, there is no modification and 

hence we still have a second order accuracy. The required derivative approximations are 

indicated below. 
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                                                                            (2.61) 

Though this scheme provides a fourth order accuracy in the space variable and a second 

order accuracy in the time part, it suffers from a limitation. The point just after the left 

boundary does not have enough grid points on the left side to implement this scheme. 

Similarly, the point just before the right boundary suffers from the same problem. There 

are two ways to overcome this limitation. One can introduce some fictitious grid points to 

implement this scheme. Otherwise some other scheme capable of providing the same 
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accuracy in both the space and the time variable is to be implemented only at these 

points. If any less accurate scheme (like the conventional CN scheme) is implemented at 

these points near the boundary, it will impair the overall accuracy of this higher order 

approximation. In the present problem, we implemented the HOCS (described in the 

previous section) at these two points as it can provide the required higher accuracy. 

 

2.11  A stability analysis 

    In this section, the stability analysis of the finite difference schemes is 

discussed.  Specifically, we restrict the analysis to the higher CN and HOC schemes 

using a Fourier stability method. First we discuss the analysis for the HOC scheme. For 

this, we consider the governing equations namely eq. (2.9) and eq. (2.19).  Here, the 

source term of eq. (2.9) that gives a coupling between the fracture and the porous matrix 

is omitted for simplicity and hence we analyze the following equation.  

                     
2

2 0C v C D C C
t R z R z


  

   
  

                       (2.62) 

Let Δz be the mesh width along the z axis and Δt is the time step. We indicate the space 

and the time indices by n and j, respectively. Then upon discretization using the HOC 

scheme, the above equation takes the following form. 
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   (2.63) 

The various terms of eq. (2.63) are listed below. 
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For a Fourier stability analysis, we set 

                     exp
jj

n fC ikn z 
                          (2.65)           

where k is the wave number and f is the error amplification factor for the fracture. 

Substituting this in eq. (2.63) and setting kΔz = f , we get 
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                                                                            (2.66) 

For stability, one should have | f |2 ≤ 1. For our analysis, since we need an equation, we 

set | f |2 = 1. This gives the following equation. 

         
2 2

4 4 5 6
1 5 2cos cos sin sin

6 2 6f f f fS S S S
t t t


                   

  

        
2 2

4 4 5 6
1 5 2cos cos sin sin 0

6 2 6f f f fS S S S
t t t


                     

(2.67)                                                               

With a known value of Δz, we need to find a value of Δt that satisfies the above equation. 

Since the wave number and hence f are unknown, we need to get another equation that 

involves f and Δt. This required equation is obtained by demanding that we maximize Δt 

with respect to f . This gives the following equation.  
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     (2.68) 

Eq. (2.67) and eq. (2.68) need to be solved in tandem using the Newton-Raphson 

technique, to get the required value of time step, Δt. One needs to check by a second 

derivative condition that the time step value obtained is indeed a maxima and not a 

minima. 

 

    At this stage, one knows the values of Δz and Δt. For the stability analysis of the 

porous matrix equation, we set up two equations similar to eq. (2.66) and eq.(2.67) that 

involve the quantities, p and p, the amplification factor and the wave number related 

quantity for the porous side, respectively. Repeating the earlier steps, we evaluate p and 

Δx. Hence we have the required quantities, namely Δt and Δx for a given Δz that will 

guarantee a stability. But as we see the above method is too complicated if not 

impossible. 

 

     So here we indicate a practical approach to fix the required quantities. First we 

fix a value for Δz. As the migration through a fracture is dominated by an advection, we 

use the Courant-Friedrichs-Lewy (CFL) condition [20] to get an estimate of Δt. Let us call 

the time step that is obtained as Δt1. On the other hand, the migration of the radionuclide 

through a porous matrix is dominated by a diffusion process. Here the mesh width Δx 

must be greater than the diffusion length corresponding to a time step Δt. To ensure 

stability one can choose Δt in such way that Δx is a multiple of the diffusion length. For 
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our purpose, we have chosen Δx as six times the diffusion length. Let us call the Δt 

corresponding to this as Δt2. Now for an overall stability, we choose the minimum of Δt1 

and Δt2 as the required time step. The stability analysis for the higher order CN method 

also has a similar complexity and hence the practical procedure that we have just now 

outlined is once again followed. 

 

2.12  Result and discussions 

    All the reported calculations in this thesis are performed using an Intel Pentium 

Core (TM)2 Quad CPU Q 6600 PC with a clock speed 2.4 GHz and with a 3.23 GB 

RAM employing a Lahey Fortran compiler running under a Windows XP operating 

system. By employing a quadruple precision, the integral evaluation based reference 

analytical solution is calculated up to a distance of 200m. Beyond this distance, the non 

availability of reference values is indicated by dashes in the table. In table 2.4, the double 

precision results of the 2nd and the 4th order CN schemes, the DF scheme and the higher 

order compact (HOC) scheme are presented for a time period of 1000 yrs. The 

concentration values for these four schemes in a given row are followed by their absolute 

relative percentage errors that are given within brackets in the next row. Since the 

reference analytical values are available only up to 200m, these relative errors are also 

indicated up to the same distance. Unlike the analytical solution, the finite difference 

based evaluation is not limited by a distance factor. However, memory based restriction 

relating to the total number of grid points in both the z and the x directions will ultimately 

limit the maximum distance of evaluation for these fd schemes. 
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    Let NX and NZ denote the number of grid points along the x and the z axis, 

respectively. Since the CN, the 4th order CN and the HOC schemes need matrix 

inversion, the maximum values that we can choose for NX and NZ are 5600 and 2800, 

respectively. The corresponding time step is Δt = 0.02yr. These three schemes need a run 

time of about 12 hrs. Since the DF scheme is an explicit one, we can set NX=10,000 and 

NZ=8000 with a time step of Δt =0.004yr and this method requires a run time of 80 hrs. 

 

    The foremost conclusion that can be drawn from the results is the fact that the 

4th order CN and the HOC schemes offer relatively the best accuracy and they are 

comparable. This is followed by the accuracy of the CN scheme of second order. The DF 

scheme has the least accuracy even though theoretically its errors in both the time and 

space variables are of second order. In fact, the accuracy of the DF scheme is less than 

that of the 4th order CN and the HOC schemes by about three orders. Also, as the 

distance increases, the accumulation of error has its impact on all these schemes. The 

relative error of the CN scheme of second order is more by about one or two orders when 

compared to the errors of the 4th order CN and the HOC schemes. This is to be expected 

since the last two schemes have a fourth order error in the space variable. Hence we can 

choose either the 4th order CN scheme or the HOC scheme for the reliable assessment of 

the radionuclide concentration up to a distance of about 500m. 

 

2.13 Conclusions 

   We have indicated that both the 4th order CN and the HOC schemes can be 

utilized for a reliable assessment of the radionuclide buildup for the deterministic parallel 
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fracture model. We have extended the maximum distance of evaluation of the analytical 

schemes which is about 200m to about 500m by employing these fd schemes. This is of 

practical interest since one needs a realistic assessment over such longer distances. Also, 

these approaches can handle both the time dependent and the time independent sources 

without restriction. It must be highlighted that the use of these two higher order schemes 

with the higher order interface derivatives is a first of its kind for this problem. 

 

 

 

 

Table 2.1: Experimental values of the pore diffusivities (Dp) [8] 

Depth 

(m) 

Iodine 

Dpx1012m2/s 

Uranium 

Dpx1012m2/s 

1.49 90 8 

2.63 200 9 

2.83 200 3 

2.83 200 10 
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Table 2.2: Typical experimental values of pore diffusivity (Dp) and hydraulic conductivity 

(Kp) at different depths [8] 

Depth 

(m) 

Dpx1010 

m2/s 

Kpx1013 

m/s 

0.36-0.48 > 1 > 2-5 

0.78-1.41 0.5 0.1 

1.46-1.59 0.05 < 0.1 

1.74-2.24 1 1 

2.62-2.67 > 1 > 2-5 

 

 

 

 

 

Table 2.3: Typical pore size values [8] 

Depth 

(m) 

Porosity 

(in percentage) 

2.575 0.21 

0.555 0.47 

1.825 0.42 

0.825 0.42 

1.315 0.36 
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Table 2.4: The concentration values and the relative percentage errors at different 

distances by different methods 

Z 

(m) 

Exact CN  

(∆t = 0.02yr) 

DF  

(∆t=0 .004yr) 

HOC 

(∆t= 0.02yr) 

  4th CN 

(∆t= 0.02yr) 

10 0.6293E+00 0.6293E+00 

(0.298E-02) 

0.6318E+00 

(0.399E+00) 

0.6293E+00 

(0.432E-03) 

0.6293E+00 

(0.432E-03) 

20 0.3627E+00 0.3627E+00 

(0.735E-03) 

0.3643E+00 

(0.442E+00) 

0.3628E+00 

(0.639E-03) 

0.3627E+00 

(0.637E-03) 

30 0.1841E+00 

 

0.1841E+00 

(0.145E-01) 

0.1851E+00 

(0.520E+00) 

0.1842E+00 

(0.154E-03) 

0.1841E+00 

(0.147E-03) 

40 0.8219E-01 0.8224E-01 

(0.529E-01) 

0.8274E-01 

(0.659E+00) 

0.8220E-01 

(0.165E-02) 

0.8220E-01 

(0.166E-02) 

50 0.3230E-01 0.3234E-01 

(0.126E+00) 

0.3291E-01 

(0.189E+02) 

0.3231E-01 

(0.549E-02) 

0.3231E-01 

(0.549E-02) 

60 0.1119E-01 0.1122E-01 

(0.246E+00) 

0.1146E-01 

(0.235E+02) 

0.1120E-01 

(0.122E-01) 

0.1120E-01 

(0.121E-01) 

70 0.3427E-02 0.3441E-02 

(0.426E+00) 

0.3527E-02 

(0.294E+02) 

0.3427E-02 

(0.225E-01) 

0.3427E-02 

(0.223E-01) 

80 0.9290E-03 0.9353E-03 

(0.681E+00) 

0.9631E-03 

(0.367E+02) 

0.9293E-03 

(0.373E-01) 

0.9293E-03 

(0.370E-01) 

90 0.2236E-03 0.2259E-03 

0.102E+01 

0.2373E-03 

(0.613E+02) 

0.2237E-03 

(0.576E-01) 

0.2237E-03 

(0.570E-01) 

( Table 2.4 is continued in the next page) 



Chapter 2 

61 
 

100 0.4788E-04 0.4858E-04 

(0.147E+01) 

0.5140E-04 

(0.735E+02) 

0.4792E-04 

(0.842E-01) 

0.4792E-04 

(0.833E-01) 

200 0.2574E-13 0.2948E-13 

(0.157E+02) 

0.3644E-13 

(0.431E+03) 

0.2572E-13 

(0.970E+00) 

0.2571E-13 

(0.959E+00) 

300 ………… 0.1490E-26 0.2360E-26 0.9051E-27 0.9052E-27 

400 ………… 0.2259E-43 0.4338E-43 0.6651E-44 0.6674E-44 

500 ………… 0.3491E-63 0.5350E-63 0.3132E-64 0.3179E-64 
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3.1  Introduction  

This chapter deals with a pseudospectral solution of the deterministic porous 

flow problem. For the parallel fracture model, the Laplace transform method provides 

an analytical solution in closed form only if the source is of constant strength. Also, 

the resulting solution in the form of a two dimensional integral contains a very highly 

oscillatory integrand and its evaluation for larger distances and longer times poses 

serious computational problems. We are interested in seeking numerical solutions that 

demand minimum computational cost but at the same time they must be capable of 

better accuracy for longer times and larger distances. With these objectives, in the 

preceding chapter, the pde's of the parallel fracture model were solved by a variety of 

finite difference methods. By these approaches, one can get concentrations up to a 

distance of about 500m with a reasonable accuracy and also, one is not constrained by 

a constant source requirement. This distance up to which the concentration is 

evaluated can be extended further by foregoing a bit of accuracy (by choosing a larger 

grid size). This is definitely a significant improvement since by resorting to a 

quadrature, the closed form solution can be evaluated only up to a maximum distance 

of about 200m in quadruple precision.  But still the accuracy of these finite difference 

methods that we employ is of fourth order in the space variable and second order in 

the time variable. This raises a natural question as to whether more accurate methods 

can be adopted. The pseudospectral methods provide an affirmative answer to this 

question. They provide very accurate results with minimum computational cost even 

though the maximum distance at which the concentration can be evaluated is not as 

large as in the case of the finite difference methods. 
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The relatively poor accuracy of the finite difference methods stems from the 

fact that this process can be viewed as an approximation by a sequence of overlapping 

polynomials of low order that are used to interpolate the function at the grid points. 

One can enhance the accuracy by using a finer grid but this comes with an ever 

increasing computational cost. If the domain under consideration is very large as it 

happens in our parallel fracture model, the number of grid points increases in direct 

proportion. Also, for the porous problem one needs a fine grid in a two dimensional 

domain and this results in a large number of grid points and this in turn results in a 

large run time. Typically, the implicit schemes that are reported in the previous 

chapter demand an execution time of about 12hrs and the memory related 

requirements are very excessive. The pseudospectral method circumvents these 

complications of the fd schemes by some ingenious ingredients. This method can be 

viewed as a very high order polynomial approximation over the entire domain that 

leads to its characteristic exponential convergence. As a result, one needs a lesser 

number of grid points that results in a much reduced computational cost and execution 

times. Hence for the porous problem, the pseudospectral method outperforms the fd 

methods. We will consider two variants of this approach, namely the Chebyshev and 

the Legendre methods for the solution of the radioactivity migration problem. 

 

3.2 A brief survey of literature 

In the pseudospectral method the unknown to be found is approximated as a 

sum of functions that belong to a complete set of basis functions. The infinite 

summation involving the basis functions is truncated for practical considerations. Let 
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function u(x) be a solution of an one dimensional problem. In the pseudospectral 

approach, u(x) is approximated as 

                                     j j
j

u x a x                                                       (3.1) 

Here j(x) is a known function that belongs to a basis set. The problem of finding u(x) 

now gets recast as a problem of fixing the coefficients {aj}. In the pseudospectral 

scheme, one substitutes the above series in the equation to be solved and then 

demands the equality of the rhs and the lhs on a set of points that belong to the 

domain of u(x). These points are called the collocation points. This collocation 

process provides as many equations as the number of unknowns {aj} that need to be 

found. By solving these resulting equations, one evaluates {aj} and hence finally the 

value of u(x).  

 

If the unknown function obeys periodic boundary conditions, then the choice 

of basis function naturally reduces to the trigonometric functions and the resulting 

pseudospectral method is called the Sinc or the Fourier pseudospectral method. If one 

chooses a polynomial basis set like the Chebyshev or the Legendre or the Laguerre 

basis functions, then one can evaluate an unknown function that obeys a non periodic 

boundary condition. In this case, j(x) represents a basis polynomial of order j. Since 

our solution is not periodic, we use both the Chebyshev and Legendre basis functions 

and then compare their relative merits. In the following section a brief survey of the 

literature dealing with the pseudospectral method is presented. 
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Kreiss et al. [1] were the first to employ this pseudospectral strategy to the 

solution of a hyperbolic equation. This was later followed up by Fornberg [2]. Funaro 

and Gottlieb [3-4] used these ideas for the time dependent hyperbolic equations. Boyd 

[5] made a detailed analysis of different types of pseudospectral methods. In particular, 

he highlighted the role of non uniform grid points that were suitable when the 

equation to be solved had singularities.  This was illustrated in the case of the Runge 

phenomenon. Boyd also developed [6] a fast algorithm for the Chebyshev, the Fourier 

and the Sinc interpolation. He also developed algorithms employing a modified Euler 

summation for a convergence acceleration on non uniform grids [7-8]. 

 

Don and Gotlieb [9] proposed an interesting method known as the Chebyshev-

Legendre method. In their work, the Legendre polynomial was chosen as the basis 

function but the interpolation nodes were chosen as the Chebyshev-Gauss-Lobatto 

points which are the nodes of the Chebyshev pseudospectral method. This recipe was 

used for the solution of some parabolic and hyperbolic equations. This strategy 

exploits the advantages inherent to both the Legendre and Chebyshev methods. Later 

on this approach was extended to the solution of the elliptic equations [10]. This 

method was also utilized for solving the equations of non linear conservative laws [11, 

12] and Kdv equations [13]. 

 

  Merrill [14] made a detailed comparison of the finite difference approximation 

and the pseudospectral method for the shallow water equations in spherical 

coordinates. Ross and Fahroo [15] used the Legendre basis to address an optimal 
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control problem. Dehghan and Shamsi [16] solved a two-dimensional parabolic 

equation with a non standard boundary condition. Guo and Wang [17] proposed a 

modified version of the Laguerre pseudospectral method which was further refined by 

multi domain Legendre pseudospectral approximation. Javidi and Golbabai [18] 

reported a method to solve a parabolic partial differential equation with Neumann 

boundary condition. They used the Chebyshev polynomials as the basis set. This was 

extended to solve a non linear Schrodinger equation [19].  Here they used a numerical 

technique called preconditioning to minimize the round off errors. Golbabai and 

Javidi [20] also handled the non classical parabolic problems by this methodology. 

Akinpelu et al. [21] reported an interesting observation that there could be instances 

where the Legendre collocation method might prove superior to its Chebyshev 

counterpart. 

 

3.3  The equations for the radioactivity migration in a porous medium 

For the sake of convenience, the pde's that govern the migration of the 

radioactivity and the values of the parameters of the pde's are given below. All the 

details can be found in the previous chapter.  
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3.4  The pseudospectral (PS) method 

Let us assume that u(x), the unknown function to be solved is defined on the 

interval [-1, 1]. We approximate the function by a polynomial uM(x) of degree at most 

M.   

                                     
0

 
M

M j j
j

u x l x u x


                                                (3.4)               

The collocation requirement demands that u(x) and uM(x) are equal on a set of 

collocation points {x0, x1,...., xM}. This demands the following discreet orthogonality 

relation. 

                                            
   ; , 0,1,....,j k jkl x j k M 

                                      (3.5) 

Then one can write the n-th order derivative of u(x) as [22]. 

                                                   
0

 
M

n n
M j j

j
u x l x u x



                                           (3.6) 

We express the above equation in matrix form in the following way. 

                                                    
n nU F U

                                                            (3.7) 

                                      0 1,  , .... , 
Tn n n n

M M M mU U x U x U x   
                               (3.8) 

                                          0 1,  , .... , 
T

mU U x U x U x   
                                   (3.9) 

            

               



Chapter 3 

71 

 

3.4.1  The Chebyshev pseudospectral method 

In this method, the Chebyshev-Gauss-Lobatto points are taken as the 

collocation points. They are given by the following explicit relation. 

                                 cos   ;  0,....,j
jx j M
M
   

 
                                    (3.10) 

The interpolating polynomial, lj(x) is expressed in terms of the M-th order Chebyshev 

polynomial TM (x) as follows [18]. 
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Now fkj , the elements of the derivative matrix F are given by 
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   (3.14) 

 

3.4.2  The Legendre pseudospectral method 

For this method, the Legendre-Gauss-Lobatto (LGL) nodes are taken as the 

collocation points {x0, x1,...., xM} with  x0 = -1 and xM = 1. The remaining collocation 
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points are the zeros of P'M(x) which is the first derivative of the Legendre polynomial 

PM(x). There is no explicit formula for LGL nodes but they can be calculated 

numerically [15]. The interpolating polynomial, lj(x) expressed in terms of the M-th 

order Legendre polynomial PM(x) [16] is given below. 
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The elements of F are given by 
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Up to now for reasons of notational simplicity, u is assumed to depend only on 

x, the space variable. In case the unknown is a function of both the space and the time 

variables, one replaces uM(x) by uM(x,t) as follows.  

                            
0

,  ,
M

M j j
j

u x t l x u x t


                                                  (3.17) 

Now at a particular instant of time, all the spatial derivatives can be evaluated by any 

one of the schemes that we have just discussed. Once this is done, a forward 

difference formula can be utilized to calculate the value of u(x,t) at the next instance 

of time. For example, consider the following differential equation. 
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t x

 
      

 
                               (3.18) 

Let i and j denote the space and the time related indices, respectively. Then if one 

applies the pseudospectral approximation for the spatial domain and a forward 

difference formula for the time part, the above equation is discretized in the following 

way. 
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As all the ui 
j s are known, one can find ui 

j+1. 

 

3.5  Remarks on stability analysis 

 The stability analysis for this set of coupled pde’s is very complicated. This 

will be pursued as a future work as a sequel to this thesis. Presently, we fix the time 

step by numerical experimentation. Let us assume that we have chosen a time step Δt. 

Next we evaluate the concentrations with a time step Δt/2. If the results are nearly the 

same, we conclude that the results do not diverge. The concentration values 

corresponding to Δt/2 are taken as a solution. 

 

3.6  Results and discussion 

Here we present the numerical results of the parallel fracture model employing 

both the Chebyshev and the Legendre pseudospectral schemes.  The calculations of 

table 3.1 and table 3.2 are performed for a time of 1000 yrs. For both the methods, the 
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number of basis functions (equal to the number of grid points) chosen is the same and 

this is maintained for approximation along both the z and x directions.  Let NZ and NX 

be the number of grid points along the z and x axes, respectively. For the present 

calculation, the values employed are NZ=101 and NX=201 with a time step value, Δt 

= 0.02yr. In Table 3.1, the concentration values calculated by these two methods in 

quadruple precision are given.  As we saw in the previous chapter, the higher order 

CN and the higher order compact fd give the best results among the schemes 

compared. But it must be noted that the higher order CN method is computationally 

relatively more involved since one needs to solve pentadiagonal matrices whereas the 

higher order compact fd scheme needs only the solution of a simpler tridiagonal 

matrix. Hence for our comparison purposes, the results of our pseudospectral schemes 

are compared with that of the higher order compact fd scheme. The number of grid 

points along the z and x directions for the higher order compact fd scheme are 2800 

and 5600 respectively. 

 

The relative percentage errors of all the schemes in double precision accuracy 

are tabulated in table 3.2. It can be easily seen that the errors obtained from the two 

pseudospectral schemes are much less compared to the results of their fd counterpart. 

There is one more huge gain the psedospectral methods enjoy over the higher order 

compact fd scheme. Both the Chebyshev and Legendre methods need a run time of 

about 10 min. This must be contrasted with the run time of about 12 hrs needed by the 

present fd scheme. This implies a reduction in computing time by a factor 72. Also, 

this much reduced computing time comes with a much diminished computer memory 

requirement since the pseudospectral methods needs only a 101 by 201 grid while the 
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fd scheme needs a 2800 by 5600 grid.  Thus the total number of grid points is reduced 

by a factor of about 772 for the pseudospectral methods.  These facts establish the 

pseudospectral method as a superior candidate when compared to its fd counterpart.  

 

Some elaboration is needed regarding the maximum distance at which the 

concentration by the pseudospectral method can be evaluated. If C0 is the original 

concentration then roughly C010-16 is the smallest concentration value that can be 

estimated by the pseudospectral approach in double precision. For our chosen model 

problem, the drop in the concentration by an order of magnitude 16 happens when the 

z value is about 200m. This sets an upper limit on the maximum distance of 

evaluation.  This distance can be increased to about 300m by resorting to quadruple 

precision.  It must be remembered that the finite difference methods do not suffer 

from these restrictions. However the memory related restrictions define the smallest 

grid one can choose and this in turn restricts the largest distance of evaluation for the 

fd schemes. 

 

The results indicated in tables (3.1, 3.2) show that both the Legendre and 

Chebyshev are accurate and comparable. However, for our porous flow case, the 

Legendre scheme gives mildly more accurate results at shorter distances. However, it 

must be kept in mind that the node evaluation for the Legendre scheme needs a little 

bit of extra computation since the nodes are not explicitly given. On the other hand, 

the nodes of the Chebyshev scheme involve a simple and explicit algebraic formula.  

Finally, the entries in the second column of table 3.1 are the exact values obtained by 
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the integral evaluation [eq. (2.26)] that are available only up to a distance of 200m. 

Hence beyond this distance the second column carries no entries. 

 

In table 3.3, we indicate the concentration profiles calculated by the 

Chebyshev pseudospectral and the HOC scheme for a time of 100 yrs in double 

precision. The corresponding relative percentage errors are given in the brackets. For 

these calculations, the flow velocity of water through a fracture is taken as 4m/yr. All 

other rock related parameters are kept unchanged. Here, we use a time step (Δt) of 

0.02yr for the HOC scheme. For the Chebyshev pseudospectral method, we choose Δt 

= 0.001yr.  

 

3.7  Conclusions 

In summary, the conclusions that can be drawn from the combined results of 

this and the previous chapters are as follows.  If the distance of evaluation is less than 

300m, then either the Legendre or the Chebyshev pseudospectral method is the 

method of choice. They offer exponential convergence at much reduced 

computational cost.  If the distance exceeds 300m, then for these larger distances, the 

higher order compact fd scheme and the higher order CN scheme are preferable and 

among these two methods the former one is a better candidate. The combination of 

these two sets of methods provide us with reliable algorithms by which one can 

accurately assess the concentration of radioactivity migration without any ambiguity 

by the deterministic routes. Compared to the higher order fd methods, for the 

pseudospectral method the run time gets reduced by a factor 72 while the memory 
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requirements get reduced by a factor 772. These gains are very impressive. Finally, it 

must be noted that the application of the pseudospectral methods for the radioactivity 

migration was done for the first time in these investigations. 

 

 

Table 3.1: Comparison of the concentration values calculated by the two 

pseudospectral methods (Δt=0.02 yr) 

(Calculations are performed in quadruple precision) 

Z (metre) Exact Legendre 

pseudospectral 

Chebyshev 

pseudospectral 

10 0.6293E+00 0.6293E+00 0.6293E+00 

20 0.3627E+00 0.3627E+00 0.3627E+00 

30 0.1841E+00 0.1841E+00 0.1841E+00 

40 0.8219E-01 0.8219E-01 0.8219E-01 

50 0.3230E-01 0.3230E-01 0.3230E-01 

60 0.1119E-01 0.1119E-01 0.1119E-01 

70 0.3427E-02 0.3426E-02 0.3426E-02 

80 0.9290E-03 0.9289E-03 0.9289E-03 

90 0.2236E-03 0.2235E-03 0.2235E-03 

 

(Table 3.1 is continued in the next page) 
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100 0.4788E-04 0.4787E-04 0.4787E-04 

120 0.1562E-05 0.1561E-05 0.1561E-05 

140 0.3283E-07 0.3281E-07 0.3281E-07 

160 0.4520E-09 0.4515E-09 0.4515E-09 

180 0.4135E-11 0.4128E-11 0.4128E-11 

200 0.2547E-13 0.2540E-13 0.2540E-13 

220 ……………. 0.1065E-15 0.1065E-15 

240 ……………. 0.3072E-18 0.3072E-18 

260 …………….  0.6156E-21 0.6156E-21 

280 ……………. 0.8647E-24 0.8647E-24 

300 ……………. 0.8552E-27 0.8535E-27 
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Table 3.2: Relative percentage errors of different methods (Δt =0.02 yr) 

(Calculations are performed in double precision) 

Z (meter) Legendre 

pseudospectral Err. 

Chebyshev 

pseudospectral Err. 

HOCS Err. 

10 0.166E-03 0.173E-03 0.432E-03 

20 0.277E-03 0.294E-03 0.639E-03 

30 0.259E-03 0.275E-03 0.154E-03 

40 0.107E-04 0.385E-04 0.165E-02 

50 0.864E-03 0.873E-03 0.549E-02 

60 0.242E-02 0.242E-02 0.122E-01 

70 0.494E-02 0.494E-02 0.225E-01 

80 0.870E-02 0.869E-02 0.373E-01 

90 0.140E-01 0.140E-01 0.576E-01 

100 0.210E-01 0.210E-01 0.842E-01 

120 0.416E-01 0.416E-01 0.161E+00 

140 0.728E-01 0.728E-01 0.276E+00 

160 0.117E+00 0.117E+00 0.441E+00 

 

(Table 3.2 is continued in the next page) 
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180 0.180E+00 0.177E+00 0.667E+00 

200 0.324E+00 0.372E+00 0.970E+00 

 

 

 

Table 3.3: Comparison of concentration values calculated by the Chebyshev 

pseudospectral method and the HOC scheme (for a period of 100yrs) 

Distance 

             (m) 

Exact Chebyshev PS 

(Δt = 0.001yr) 

HOCS 

(Δt = 0.02yr) 

10.0 0.7143E+00 0.7143E+00  

(0.5263E-04)     

0.7143E+00    

(0.3563E-02)   

20.0 0.4653E+00 0.4653E+00   

(0.1801E-03)    

0.4653E+00   

(0.6305E-02)    

30.0 0.2709E+00   0.2709E+00  

(0.4959E-03)  

0.2709E+00   

(0.5015E-02) 

40.0 0.1391E+00   0.1391E+00  

(0.1201E-02)  

0.1391E+00   

(0.4671E-02) 

 

(Table 3.3 is continued to the next page) 
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50.0 0.6229E-01   0.6228E-01 

(0.2616E-02) 

0.6230E-01 

(0.2934E-01) 

60.0 0.2402E-01  0.2402E-01  

(0.5215E-02) 

0.2404E-01 

(0.8175E-01) 

70.0 0.7890E-02   0.7889E-02 

(0.9670E-02) 

0.7905E-02 

(0.1892E+00) 

80.0 0.2183E-02   0.2182E-02 

(0.1689E-01) 

0.2191E-02 

(0.4072E+00) 

90.0 0.5029E-03   0.5027E-03 

(0.2809E-01) 

0.5071E-03 

(0.8396E+00) 

100.0 0.9544E-04   0.9540E-04 

(0.4482E-01) 

0.9703E-04 

(0.1664E+01) 

110.0 0.1476E-04   0.1475E-04 

(0.6904E-01) 

0.1523E-04 

(0.3164E+01) 

120.0 0.1840E-05   0.1838E-05 

(0.1032E+00) 

0.1946E-05 

(0.5769E+01) 

 

(Table 3.3 is continued in the next page) 
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130.0 0.1829E-06   0.1826E-06 

(0.1502E+00) 

0.2014E-06 

(0.1012E+02) 

140.0 0.1434E-07   0.1431E-07 

(0.2137E+00) 

0.1680E-07 

(0.1717E+02) 

150.0 0.8774E-09   0.8748E-09 

(0.2979E+00) 

0.1127E-08 

(0.2840E+02) 
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4.1  Introduction 

   This chapter deals with the probabilistic estimation of the radioactivity migration 

in a porous medium. In chapter 2, the deterministic parallel fracture model to estimate the 

migration of the radioactivity has been dealt with. There it is noted that a Laplace 

transform based analytical solution can be arrived at only when the source is assumed to 

be of constant strength. Moreover, this mode of solution has a major limitation with 

respect to the maximum distance of evaluation that turns out be about 200m in quadruple 

precision. To extend the solution beyond this limit, four different finite difference 

approximations have been tried and the results are reported in chapter 2. These schemes 

do not suffer from this distance limitation to a larger extent and they can also handle a 

non constant source. But the finite difference schemes have limitations with respect to 

greater accuracy and the memory utilization. This was the motivation to use the two 

variants of a pseudospectral method which could provide accurate results up to 300m.  

Although all these methods provide an estimation of the radioactivity migration, they still 

use a very simplified picture of a rock. The parallel fracture model is an idealization 

where the rock is thought to be a combination of an infinite array of identical parallel 

fractures separated by porous matrices of equal width.  

 

In reality, a rock consists of porous blocks of uneven size in which several networks 

of randomly oriented and interconnected fractures are embedded. The schematic picture 

of a rock is given in fig. (1.1) of chapter 1. The pore water containing a radionuclide 

flows through these fractures. Due to the random network configuration, the effective 

path length traversed by the species from the source to an observation point located at the 
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z axis is higher than the linear distance between them. This will have an important 

bearing on the concentration. First, due to the increased path length, the concentration at 

a point of evaluation will be reduced. Secondly, with an increase in the path length, the 

retardation effects due to the porous matrix will also be enhanced. Hence due to these 

combined effects, the concentration will be significantly reduced and thus a realistic 

porous model will yield a less conservative estimate than the idealized parallel fracture 

model. This is the motivation to address the present problem through a probabilistic 

route as the deterministic approach can not address this zigzag flow through a fracture 

network. 

 

An arbitrary single porous matrix with its embedded fracture network can be divided 

into several smaller blocks and the migration can be modeled by a random walk approach 

through this collection of smaller blocks. But as the number of porous matrices increases 

due to a larger domain as it happens in our case, the total number of smaller blocks 

increases enormously. Even though one can model the migration probabilistically in 

principle for this huge collection of blocks, in reality it becomes an impossible task.  To 

circumvent this difficulty we can assume that we can deal with a single porous matrix of 

an appropriate width that reflects the averaging done over all the porous matrices of 

different shape, size and width that make up a real rock.  We also calculate a quantity 

called the average migration length which is the average of several path lengths. With the 

average width and the average migration length, we can invoke the deterministic model 

to calculate required concentration profile as a function of time. Thus, we exploit the 

advantages of both the deterministic and the nondeterministic models. 
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4.2  A brief survey of literature 

   The probabilistic estimation of the migration of contaminant particles through a 

porous medium is a widely used technique. Using this approach, problems dealing with 

dispersion and diffusion have been handled since the middle of the last century [1, 2].  For 

our porous flow problem, a number of realistic models have been proposed based on the 

probabilistic estimation. Williams [3, 4] reported a stochastic approach to address the 

migration of radioactive waste through a fracture-porous matrix system. This was based 

on an analogy with the neutron transport in a non multiplying medium. He considers the 

transport of radionuclides in pore water as a series of linear movements through the 

randomly oriented and interconnected fractures. The radionuclide flow can encounter a 

sudden change of direction at a node which is the intersection point of two or more 

fractures. These are treated as pseudo-scattering events. He introduced a scattering term 

to quantify the reaction rate (like a particle getting deposited on a solid surface which 

amounts to a removal). The direction of the motion at a node is indicated by an 

anisotropy related function. Though this approach gives an analytic estimation of the 

transport through a fracture network, it has a serious drawback. The diffusion of species 

into the porous blocks from the fracture is not taken into consideration. The numerical 

solution of this model was reported in a series of papers by Buckley et al. [5, 6, 7]. 

 

   The probabilistic model of Cvetkovic et al. [8] considered the migration in both 

the fractures and the porous matrices. He implemented the deterministic single fracture 

model in a small domain and considered the flow velocity as a truly random parameter 

and thus he repeats the calculation to cover the total volume of rock. For simplicity, he 
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ignored the diffusion process within a fracture and assumed that the transport was a 

function of advection alone. The results provided an estimation of the escape probability 

of a radioactive species from a rock. 

 

   In the model of Giacobbo and Patelli [9] the random walk of a particle in a phase 

space was governed by two quantities, a free flight kernel and a collision kernel 

characterizing a transition in the physical-chemical state of a particle (e.g. a particle 

encountering a node of fractures). They generated an effective path length between a 

source and an observation point using a random walk approach similar to that of 

Williams [3]. This model too did not consider the matrix diffusion but assumed a constant 

adsorption and desorption rate to account for the retardation offered by the porous 

matrices. 

 

 4.3  A description of our present model 

   Throughout the chapter, meter is used as the unit of length. As mentioned earlier, 

the radionuclide is assumed to travel through a network of interconnected fractures. This 

random network of fractures is embedded in porous matrices of random shapes and sizes. 

This is a very complicated system and the exact modeling of the migration involving the 

network of fractures and porous matrices is difficult. As explained in the third paragraph 

of this chapter, we introduce the average porous matrix width and the average migration 

length and then invoke the deterministic model. We assume a uniform distribution of the 

fractures and the porous blocks throughout the medium. That is, the average densities of 

the fractures and the porous blocks are independent of the position. 
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   The migration of a radioactive particle through this network is modeled in two 

stages. In the first stage, a randomly oriented path between the source and the observation 

point is generated. Following Williams [3], we assume that the flow through a network 

can be imagined as a series of straight line movements. The radionuclide can change its 

direction only at a node which is the intersection of two or more fractures. Thus there is 

no change of direction of movement between two consecutive nodes. In a practical 

situation, the shape, the width and the length of a fracture vary randomly. For simplicity, 

we assume that the first two quantities are identical for all the fractures whereas the 

length is assumed to follow a distribution. Buckley et al. [6] considered two models 

namely, the Picket Fence and the Fracture Angle models to sample the fracture length. By 

analogy with neutron transport, a term called the mean free path was introduced in these 

models. This is the average distance that a particle travels between two consecutive 

pseudo-scattering events. Cvetkovic et al. [8] assumed a uniform distribution of fracture 

length in the interval [1, 10] and we follow the same distribution. 

 

   The next point to be considered is the orientation of a fracture at each node. The 

Fracture Angle model [6] assumes that at each node a fracture can have a orientation (with 

respect to the mean flow direction) that is uniformly distributed in the range [-φmax, φmax]. 

The same assumption was considered by Giacobbo and Patelli [9]. Now this angle that 

defines the new direction of flow at a node is called the branching angle. Using the above 

defined quantities, one can generate a migration length that a particle travels between the 

source and the observation point. By repeating this a number of times, we obtain an 
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average migration length. The steps involved in this statistical averaging are described 

below. 

a. Sample a set of fracture lengths from a uniform distribution in the range [1, 10]. 

b. Sample a set of branching angles from the range [-φmax, φmax]. 

c. Select a fracture length and a corresponding branching angle from these two sets 

defined in the previous two steps. 

d. The selected fracture is of length Lf and it is oriented at an angle φ with respect to 

the mean flow direction. Then it has a projection of magnitude Lf cos(φ) in the 

mean flow direction. To cover a distance of length LSD between the source and the 

observation point along the mean flow direction, one has to repeat steps (c) and 

(d) till the quantity ( Σi Li
f cos(φi)) equals LSD .  

e. Steps from (a) till (d) will generate a value for the migration length. This is 

repeated a number of times to arrive at the average migration length between the 

source and the observation point. 

 

   The second stage of the modeling involves the migration of the radioactive 

species through the porous matrix by choosing an average width and then use it along 

with average migration length in the deterministic model. We choose this truly random 

quantity as follows. Let Lf,max denote the maximum length of a fracture and φmax denote 

the maximum branching angle for a rock sample. Then the maximum possible distance of 

separation of two consecutive fractures is Δ = 2Lf,maxsin(φmax) (fig. 4.1). On the other 

hand, the minimum distance of separation is zero (at a node). This implies that the 

average width of the porous matrix must fall in between 0 and Δ. We choose uniformly 
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distributed values from the interval [0, Δ] to represent the average width of the porous 

matrix. 

 

Fig. 4.1: Estimation of the maximum width of a porous matrix 

 

   With the average porous matrix width and the average migration length, we solve 

the coupled pde's that were solved in second chapter using the same set of parameters that 

were used earlier [eq. (2.9) and eq. (2.19)]. 
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4.4  Results and discussions 

   All the calculations reported in this chapter are performed in double precision for 

a period of 1000 yr. Three sets of values are chosen for φmax namely 30°, 60° and 89°. For 

each of these values, we have followed the steps from (a) to (e) described in the previous 

section to arrive at an average migration length. The law of large numbers [10] states that 

the average of a set of independent and identically distributed random numbers tends to a 

mean value with an increase in the size of the sample space. In this present problem if the 

number of trials exceeds about 104, we arrive at a mean value for the average migration 

length. Hence for all the values of φmax , 105 trials are performed to ensure a statistical 

convergence. 

 

   In the previous section, we have discussed in detail about the maximum and the 

minimum possible widths of the porous matrix for a rock sample. It was pointed out that 

the average width of a porous matrix is a function of φmax and Lf,max. In this present study, 

we are using three different values of φmax (30°, 60° and 89°) and Lf,max is 10 in all the 

cases. So the maximum possible widths of the porous matrices are 10m, 17.32m and 

19.997m that correspond to φmax = 30°, 60° and 89°, respectively. Following the parallel 

fracture model, we denote the separation distance between the mid points of two 

consecutive fractures by 2B.  We choose 2B values from the set {1,5,10} for all the 

values of φmax . A radioactive element of very large half- life T1/2 = 2.14E6 is chosen so 

that the source strength can be considered as practically constant. 
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   In figs.(4.2, 4.3) we plot the concentration as a function of the linear distance for 

all the values of φmax . In these calculations, a fixed width of the porous matrix is 

considered. It is easy to note that there is a systematic decrease in the concentration value 

with the increase of φmax. This can be understood very easily. A large φmax will result in a 

large migration length and this in turn causes the reduction in the concentration values. 

For comparison, we have plotted the results of parallel fracture model for the same value 

of 2B. In the figs.(4.2, 4.3), these values are labeled as 'Parallel frac'. As expected, the 

values of the standard parallel fracture model form an upper bound. 

 

   Next we study the effect of the width of the porous matrix on the concentration 

values. The results are plotted in figs.(4.4-4.6). It is important to note that in all the plots, 

the concentration values decrease with the increasing width of the porous matrix. 

Moreover, it reaches a saturation when the width exceeds the value 5. We can easily 

explain these trends. A porous matrix of large volume can allow more diffusion and 

absorption. This in turn causes the decrease in the concentration at the observation point. 

On the other hand, the diffusion process is limited up to a distance of few diffusion 

lengths. So beyond a limit, the concentrations saturate and this explains the patterns 

observed in figs.(4.4- 4.6). 

 

4.5  Conclusions 

   The structure of a rock has a complicated randomness and the modeling of the 

migration of a species through this medium demands a huge computational effort. We 

have tried to model realistically this complex mechanism subject to the limits of practical 
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computation. In this process, the ingredients from both the probabilistic and the 

deterministic approaches are used. We have used two randomly varying parameters, 

namely the fracture length and the branching angle and both of them are assumed to 

follow uniform distributions in their respective ranges. We attempt to mimic the 

migration of radioactivity within a rock by sampling over these two parameters. 

Subsequently, the calculations are performed within the frame work of the deterministic 

parallel fracture model since this approach easily estimates the diffusion process through 

a porous block once the width of the porous matrix is known. Thus by blending the best 

of the deterministic and the probabilistic approaches, we try to improve the results of the 

simplified parallel fracture model.  

 

    From the results, it can be noted that the current approach gives a less 

conservative estimate when compared to its deterministic counterpart. This reduction of 

conservatism of concentration estimates is very desirable from both the radiological and 

environmental angles. The present model can be definitely improved if an analytical 

solution for a finite fracture embedded in a finite porous matrix is possible. As far we 

know, such solution is not available. This needs to be explored in future. If such a 

solution is made possible, then each segment of the zizzag path can be handled by this 

proposed new solution technique. This suggested approach will prove to be a much better 

probabilistic model of the porous medium than the present one that we have just 

indicated. Also, our present model has assumed a constant source. This is only to use the 

analytical results of the constant source parallel fracture model. Instead, if we resort to a 

finite difference solution for the parallel fracture model, then the requirement of a 
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constant source can be avoided. As a final remark, it must be mentioned that only 

experimental results can truly test the merits of all these models. 

 

 

 

Fig. 4.2: Concentration vs. distance plot for 2B = 1. 
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Fig. 4.3: Concentration vs. distance plot for 2B = 5. 

 

Fig. 4.4: Concentration vs. distance plot for φmax= 30° 
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Fig. 4.5: Concentration vs. distance plot for φmax = 60° 

 

Fig. 4.6: Concentration vs. distance plot for φmax = 89° 
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5.1    Introduction 

     The Crank-Nicolson (CN) scheme is one of the widely used finite difference 

schemes [1]. It finds extensive application in the numerical solution of partial differential 

equations (pde's) dealing with the diffusion problems and similar ones relating to pricing 

options in finance. It is unconditionally stable and it is capable of second order accuracy 

in both the space and the time variables. However it has a particular limitation. The 

solution values are prone to oscillations at times [2].  This gave the starting point to look 

for improvements and alternatives that would eliminate or minimize these oscillations. 

This led to certain numerical experiments wherein a variant of the existing CN method 

was developed. This new variant retains the advantages of the classical CN method and 

yet promises few additional benefits. This new variant of the CN method is called the 

Generalized CN (GCN) scheme. Specifically, this new variant exhibits a more robust 

convergence pattern. That is, even though both the CN and the GCN methods eventually 

converge to the same value with nearly equal time steps, the onset of solution is quite 

early for the new generalization. The material is organized as follows. We briefly discuss 

the CN method and then indicate the new approach. This is followed by a stability 

analysis and finally, we present few test cases where we compare the new and the old 

schemes. 

 

5.2    The CN and the ICN schemes 

     j
iC denotes the unknown C(iΔz, jΔt) where z and t refer to the space and the 

time variables, respectively. In the CN scheme, the time derivative of C(z,t) is 

approximated simply as  
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1j j j

i i iC C C
t t

 


 
                         (5.1) 

The discretized quantities on the rhs of the above equation are centered around the 

half-integer time (j + 1/2) Δt. The first and second space derivatives are approximated by 

a central difference formula below and by construction, these discretized quantities too 

are centered around the same time (j + 1/2) Δt. 

                   
1 1

1 1 1 1(1/ 2)
2 2

j j j j j
i i i i iC C C C C
z z z

 
      

     
                     (5.2) 

              
2 1 1 1

1 1 1 1
2 2 2

2 2(1/ 2)
( ) ( )

j j j j j j j
i i i i i i iC C C C C C C

z z z

  
        

     
         (5.3) 

The CN scheme allows an alternate approximation where all the derivative quantities are 

centered around the integer time (jΔt) instead of (j + 1/2)Δt. We denote this integer time 

centered scheme as the ICN method for convenience and below we indicate this 

discretization. 

                            
1 1

2

j j j
i i iC C C
t t

  


 
                        (5.4) 

                     
1 1 1 1

1 1 1 1(1/ 2)
2 2

j j j j j
i i i i iC C C C C
z z z

   
      

     
                (5.5) 

                
2 1 1 1 1 1 1

1 1 1 1
2 2 2

2 2(1/ 2)
( ) ( )

j j j j j j j
i i i i i i iC C C C C C C

z z z

     
        

     
      (5.6) 

 

5.3    The GCN scheme 

     The new GCN scheme that we introduce is just a simple arithmetic average of 

the CN and the ICN schemes after we have discretized the given pde. This we illustrate 

with the following simple one dimensional diffusion problem. 
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2

2 0  ;  0   ;  t 0 C C z L
t z

 
    

 
                   (5.7) 

Using the CN scheme, above equation gets discretized as  

  
 

1 1 1
1 1 1 1 1 1 1 1 1 21 2 2   ;  

2
j j j j j j j

i i i i i i i
tK C K C K C K C C C C K
z

  
   

           
    (5.8) 

Similarly, using the ICN scheme, we get the following equation. 

 
 

1 1 1 1 1 1 1
2 1 2 2 1 2 1 1 2 21 2 2   ;  j j j j j j j

i i i i i i i
tK C K C K C K C C C C K

z
      
   

           
  (5.9) 

Now in the GCN scheme, we average both the discretized equations indicated above to 

get the following expression. 

     
     1 1 1

1 2 1 1 2 1 2 1

1 1 1 1
1 1 1 2 1 1

2 2 2

2 2   

j j j
i i i

j j j j j j j j
i i i i i i i i

K K C K K C K K C

K C C C C K C C C C

  
 

   
   

      

             
           (5.10) 

For the pde given by eq. (5.7), let us consider the standard Von Neumann stability 

analysis [1]. We set     

                         
   expjj

nC ikn z 
                                                   

where k is the wave number and ρ is the error amplification factor. Upon substituting the 

above expression in the three finite difference schemes under consideration, we arrive at 

the following expressions for the amplification factor.  

                          1 4
1 4CN








                            (5.11) 

                          1 8
1 8ICN










                          (5.12) 

           
      

 

21 4 1 4 4 1 8 2 12
2 2 12GCN

   



     




           (5.13) 
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where,           
 

 2
2   ;  sin / 2

2
t k z
z

 
  


                       (5.14) 

Numerical stability of the discretization demands that the modulus of the amplification 

factor is bounded by unity so that the errors do not multiply as the computation 

progresses. Note that for a fixed Δz, α varies linearly as Δt. Now as the time step Δt → 0, 

then α → 0, it is found that both ρCN and ρICN tend to unity. ρGCN tends to 1 or (-0.5). On 

the other hand for large time steps, that is when α tends to infinity, both ρCN and ρICN tend 

to unity. However, in this case, |ρGCN|2
 → 2

3
. Hence all the three schemes are 

unconditionally stable for the given problem. Moreover, since the magnitude of the 

amplification factor of the new scheme is less than unity, the GCN method promises the 

possibility of an early onset of solution which makes the convergence more robust in 

comparison with the other two variants. Now let us list out the truncation errors (T.E.) of 

all the three variants of CN schemes. 

                  
2 2 23 4 4

3 3

3 2 2 4 . . ,
6 4 12CN

t t zC C CT E O z t
t z t z

               
    (5.15) 

                  
2 2 23 4 4

3 3

3 2 2 4 . . ,
6 2 12ICN

t t zC C CT E O z t
t z t z

               
    (5.16) 

                  
2 2 23 4 4

3 3

3 2 2 4

3
 . . ,

6 8 12GCN

t t zC C CT E O z t
t z t z

               
  (5.17)  

The three schemes are compared first for two simple diffusion problems over finite 

domains with different initial and boundary conditions. These two problems [3] are 

indicated below. 
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5.4    Test Problems  

  Test problem 1. 

                        
2

2 0  ;  0   ;  t > 0 C C x
t x


 

   
 

              (5.18) 

The boundary conditions are 

                           
 0, 0  ;  0C t t 

                        (5.19) 

                           
 , 0  ;  0C t t  

                        (5.20) 

The initial condition is given by 

                          
   ,0   ;  x 0C x x x    

               (5.21) 

The exact solution is given by 

                   
 
 

 2
3

1

sin 2 18, exp 2 1
2 1n

n x
C x t n t

n





       
           (5.22) 

 

  Test Problem 2. 

                    
2

2 0  ;  0   ;  0 C C x L t
t x

 
    

 
                  (5.23) 

The initial condition is given by 

                          
 ,0   ;  0C x x L x  

                     (5.24) 

The boundary conditions are given by 

                          
 0,

0  ;  0
C t

t
x


 


                           (5.25) 

                          
 , 0  ;  0C L t t 

                         (5.26) 
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The exact solution is given by 

  
 

     2 2

2 2
1

1 2 1 2 14 2, cos exp
2 1 2 42 1

n

n

n x n tLC x t
n L Ln

 
 





       
             

     (5.27) 

The comparison of the results for these problems is indicated in table 5.1 and table 5.2. 

For the first problem, when the time step has the value Δt = 0.2, the values of the GCN 

schemes are definitely closer to the exact values than those of the CN schemes as seen 

from table 5.1. Also, the ICN scheme fails to converge with this time step value. 

Subsequently, with Δt = 0.05, all the three schemes converge to nearly the same value. 

Thus the relatively more robust convergence of the GCN scheme is obvious. A similar 

trend is manifested in the results of the test problem 2. The values from the GCN scheme 

start appearing with the time steps Δt = 0.05, Δt = 0.01 when the other two methods have 

not converged at this stage. The non-availability of the results for these time steps for the 

CN and ICN schemes are indicated by the symbols * and ** in the third and fourth 

columns, respectively. All the three schemes converge eventually to roughly the same 

value with Δt = 0.002. The ICN scheme does not exhibit a convergence with Δt = 0.005. 

The GCN values with Δt = 0.01 are not different from the values of CN schemes with Δt 

= 0.005. The relatively robust convergence of the GCN scheme is apparent. Lastly, it 

must be remarked that for the second test problem, the exact values given in the second 

column of table 5.2 differs from the converged values of all the three schemes under 

consideration. 
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5.5    The migration of radioactivity in a porous medium 

     Next we consider the solution of the pde's of the parallel fracture model for the 

migration of radionuclides that has been dealt with in the second and third chapters. The 

governing pde's are given below. The initial, boundary and inlet conditions are the same 

as in our earlier chapters. 

              
2

2 0  ,   0  ,   0C C D C qC z t
t R z R z Rb




  
      

  
          (5.28) 

                 
2

2 0  ,    ,   t 0p p p
p

p

C D C
C b x B

t R x


 
     

 
            (5.29) 

The solution is needed for fairly large distances like z = 500m and for longer times that 

are governed by the half-lives of the radioactive species. Hence the number of grid points 

is fairly large. Hence this practically important problem calls for accurate solutions with 

computational economy. The superiority of the GCN scheme over the other two schemes 

is brought out well in this problem. In table 5.3, the computations are done with three 

different time steps, namely, Δt = 0.2, 0.05, 0.02 yr. It can be noted that the values 

calculated by the ICN scheme are not stable for this problem and so they are not included 

in table 5.3. When the time step is Δt = 0.2 yr, the GCN and the CN results converge but 

for large distances (z ≥ 300m), the results of the CN method deviate by one or five orders. 

On the contrary, the order estimates of the GCN values for this fairly large time step is 

not in error demonstrating once again the early convergence. Again, GCN values 

corresponding to time steps Δt = 0.05 yr and 0.02 yr do not differ much. 
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    Finally, these schemes were compared for the following simple problem when 

both the advection and the diffusion were involved [4]. The results for this case are similar 

to those of the test problems 1 and 2. 

                  
2

2 0  ;  0   ;  0C C C x L t
t x x

 
  

     
  

             (5.30) 

The initial condition is given below. 

                         2

exp
4

x
x






 
  

  
                         (5.31) 

The boundary conditions are given below. 

                     
 

2 2110, exp   ;  0
4 11

t
C t t

tt



 
   

   
              (5.32) 

                     
 

2
11, exp   ;  0

4 11

L t
C L t t

tt




  
   

   
            (5.33) 

  

The exact solution is given below. 

                     
 

2
11, exp   ;  0

4 11

x t
C x t t

tt




  
   

   
            (5.34) 

 

5.6     Conclusions 

      The new scheme GCN is a better variant of the conventional CN scheme. The 

convergence pattern of this scheme is definitely more robust than that of the CN and the 

ICN schemes. The amplification factor for the GCN scheme is smaller and this aids the 

onset of the solution for larger time steps while the conventional methods have not started 
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converging. Still one must admit that one does not gain a time step advantage since all 

the methods demand nearly the same time step for the ultimate convergence. The leading 

truncation error of the GCN scheme is just the arithmetical average of the CN and the 

ICN schemes and hence this error quantity is roughly the same in all the three cases and 

this has a bearing on the time step requirement for the ultimate convergence. This being 

said, for complicated phenomena the estimates of the new scheme can be more relied up 

on since the convergence is definitely more robust in this case as demonstrated in the 

porous flow case. Still, a lot more experimentation and more elaborate error analysis are 

needed to exploit the full potential of this new scheme. These aspects will be pursued in a 

future work. 
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Table 5.1: The concentration values at different distances by conventional CN, GCN and 

ICN methods, NX = 11, time = 20. (test problem 1) 

X 

 

Exact 

(E-08) 

GCN 

(E-08) 

Δt = 0.2 

CN 

(E-08) 

Δt = 0.2 

ICN 

(E-08) 

Δt = 0.2                                          

GCN 

(E-08) 

Δt = 0.05 

CN 

(E-08) 

Δt = 0.05 

ICN 

(E-08) 

Δt = 0.05 

0.31 0.162 0.154 0.179 ….......... 0.189 0.190 0.188 

0.63 0.309 0.293 0.340 ….......... 0.359 0.362 0.358 

0.94 0.425 0.403 0.469 ….......... 0.494 0.498 0.492 

1.26 0.499 0.473 0.551 ….......... 0.580 0.586 0.579 

1.57 0.525 0.498 0.579 ….......... 0.610 0.616 0.608 

1.88 0.499 0.473 0.551 ….......... 0.580 0.586 0.579 

2.20 0.425 0.403 0.469 ….......... 0.494 0.498 0.492 

2.51 0.309 0.293 0.340 ….......... 0.359 0.362 0.358 

2.83 0.162 0.154 0.179 ….......... 0.189 0.190 0.188 
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Table 5.2: Concentration values at different distances by conventional CN, GCN and ICN 

methods, L=1, time=100, NX=101. (test problem 2) 

X Exact 

E-107 

GCN* 

E-108  

GCN** 

E-108 

GCN 

E-108 

CN 

E-108 

ICN 

E-108 

GCN 

E-108 

CN 

E-108 

ICN 

E-108 

  Δt = 

0.05 

Δt = 

0.01 

Δt = 

0.005 

Δt = 

0.005 

Δt = 

0.005 

Δt = 

0.002 

Δt = 

0.002 

Δt = 

0.002 

0.1 0.318 0.100 0.259 0.266 0.268 …….. 0.268 0.268 0.266 

0.2 0.306 0.097 0.249 0.257 0.258 …….. 0.258 0.259 0.256 

0.3 0.287 0.091 0.234 0.240 0.242 …….. 0.242 0.242 0.240 

0.4 0.260 0.082 0.212 0.219 0.220 …….. 0.220 0.220 0.218 

0.5 0.227 0.072 0.186 0.191 0.192 …….. 0.193 0.193 0.191 

0.6 0.189 0.060 0.154 0.159 0.160 …….. 0.160 0.160 0.159 

0.7 0.146 0.046 0.119 0.123 0.123 …….. 0.124 0.124 0.123 

0.8 0.099 0.032 0.081 0.084 0.084 …….. 0.084 0.084 0.083 

0.9 0.050 0.016 0.041 0.042 0.043 …….. 0.043 0.043 0.042 

 

The concentration values cannot be evaluated by CN and ICN with the time steps of 

GCN* and GCN**. 
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  In this final chapter, we summarize the contents of all the previous chapters and 

then outline the problems that will be pursued as a sequel to the thesis investigations. 

 

6.1    Chapter wise summary of the thesis 

  The first chapter gave a broader outline of the need for the present 

investigations. The ever increasing demand for energy in India will have a huge nuclear 

component in times to come. The reprocessing of the spent fuel from the reactors results 

in the high level wastes (HLW). The safe disposal of the HLW in a vitrified form in 

canisters in the underground repositories needs the present computational modeling of the 

radioactivity migration in a rock. An exhaustive survey of the existing literature dealing 

with both the deterministic and the nondeterministic models was presented. 

 

  In the second chapter, the basic physical model, the complete set of assumptions 

and a comprehensive derivation of the coupled pde's of the parallel fracture model were 

indicated. If the waste matrix has a constant strength, these pde's are solvable exactly by a 

Laplace transform technique. However, the evaluation of this elegant solution is beset 

with excessive numerical difficulties. To overcome this complication and to relax the 

requirement of a constant source, some of the state of the art finite difference schemes 

were tested. A higher order Crank-Nicolson scheme and a higher order compact finite 

difference scheme were shown to yield reliable concentration estimates for distances of 

the order of 500m or more. This must be contrasted with the analytical solution that can 

be obtained at best for a distance not exceeding 200m. 

 



Chapter 6 

116 

 

  In the third chapter, the numerical solution of the parallel fracture model is 

continued. The accuracy of the finite difference solutions still leaves a scope for 

improvement. Also, the memory utilization and the run time requirements are on the 

higher side for these schemes. So, the use of the pseudospectral methods is tested in this 

chapter. In particular, the Chebyshev and the Legendre pseudospectral methods are used 

and the accuracies offered by these methods surpass that of the finite difference schemes 

by one or two orders. This is due to the fact that the use of an appropriate basis functions 

guarantees an exponential convergence that is not possible for the finite difference 

schemes. Along with a superior accuracy, the runtimes and the memory requirements are 

drastically reduced. The runtime gets reduced by a factor of 72 and the memory 

requirement is curtailed by a big factor of 772. Due to an inherent limitation, this method 

can evaluate the concentration in quadruple precision up to a distance of about 300m 

only. Hence, for distances of this order, the pseudospectral method can be profitably 

used. For distances exceeding 300m, the higher order Crank-Nicolson and the higher 

order compact finite difference methods can be chosen. Hence reliable prescriptions for 

the assessment of the concentration for distances like 500m are given within the frame 

work of a standard deterministic model. 

 

  In the fourth chapter, the limitations of the deterministic model are improved by 

resorting to a nondeterministic model. Essentially, the deterministic model of a rock 

suffers from its simplicity. One needs to take into consideration a realistic structure of the 

rock with its porous matrices of random size in which random network of interconnected 

fractures are embedded. The straight line path connecting the source and the observation 
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point must be replaced by an average over several zigzag paths. Also, the radionuclide 

can go through any one of the branching paths (that is characterized by the term 

branching angle) at the intersection point of the fractures, called a node. In the 

nondeterministic model that is considered, a random walk approach is used. The linear 

distance between the source and the observation point is covered by a zigzag path and a 

segment of this path is called a fracture length. The sum of all these fracture lengths gives 

a quantity called the migration length. By repeating this process, different paths and 

hence a set of varying migration lengths are obtained. And finally after averaging, one 

gets an average migration length. By choosing an average porous matrix size, the parallel 

fracture model is employed to calculate the concentration where the distance is replaced 

by the average migration length. This approach, that effectively utilizes both the 

deterministic and the nondeterministic components tries to take into consideration the 

complex structure of the porous medium as realistically as possible, subject to the 

limitations of computation. One fruitful fallout of this method is the reduction of the 

conservatism in the assessment of the concentrations by the parallel fracture model. Since 

the path length is more in the nondeterministic route, there is a significant decrease in the 

concentration at the observation point. The increased path length also enhances the 

matrix retardation.  

 

  The fifth chapter is about numerical experiments involving the Crank-Nicolson 

(CN) schemes. Experimentation is driven by curiosity. The reason for the success of the 

classical CN scheme is due to the preservation of the same time centering in both the time 

and space derivative approximations. The CN scheme can be written down in two ways, 
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an integer time centered CN scheme and a half-integer time centered CN scheme. Given 

a pde, we can disctretize it by both these schemes. In this process it occurred that by 

making an arithmetic average of these two discretizations for the same equation, one still 

maintains a time centering in both the time and space derivative approximations. Since 

this averaging involves more terms than the ones we started with, it may possibly yield 

better results. In fact numerical experiments indicate that this new CN variant is a better 

one than its original counterparts in an interesting way. The onset of correct solution 

values occurs for a larger time step while the other two methods still have not converged. 

However, for the eventual convergence, this new method needs the same time step and 

hence one does not get a time step advantage. More analysis and experiments are needed 

to exploit the full potential of this new variant. Interestingly, for pde's of our porous flow, 

this new method yields relatively better results.  

 

6.2   Outline of future work 

  In the following, we indicate problems that can be pursued in future as a sequel 

to the present investigations. 

 The parallel fracture model assumes a constant source and an exact solution is 

obtained via a Laplace transform method. This leads to an open problem where 

the constant source is replaced by a time varying source. A Fourier series type 

solution may be tried. 

 Another interesting open problem is a single porous matrix of finite size with a 

fracture embedded in it. An analytical solution involving a Fourier series can be 

tried. Otherwise an efficient numerical solution can be worked out. 
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 If a practical solution can be obtained for the problem defined just above, then the 

infinite single porous matrix of a fixed width that is used in our random walk 

approach can be replaced by several porous matrices of finite size and varying 

width. This approach will be much more realistic since the present random walk 

model does not take into consideration finite porous matrices of varying sizes. 

 The pseudospectral schemes employed in the thesis have excellent accuracy and 

need much reduced memory and run time. But they have a limitation with respect 

to the maximum distance of evaluation that is of the order of about 300m. This 

condition needs to be relaxed if possible. 

 The compact finite difference scheme employed in the thesis gives 4th order 

accuracy in the space domain. This can be definitely extended to still higher 

orders. 

 The use of Lattice Boltzmann methods for the migration involving a porous 

medium offers a novel possibility. 

 The Crank-Nicolson variant needs further probing to exploit it full potential, 

especially if the time step related gains can be achieved. 

 The stability analysis for the pseudospectral method is a quite demanding problem 

that needs to be investigated. 

 Finally, setting up of some experimental facilities to validate these models is a 

very useful problem. 

As a final remark, it must be pointed out that only the last mentioned future work relates 

to experiment. But such an experimental set up will really pave way for validating and 

improving the existing models in a practical and realistic way. 


