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ABSTRACT 

 

In many engineering applications it is essential to know the maximum 

response of the system and the nature of the oscillations under external excitations, 

during design in order to meet fundamental requirements. Under external excitations 

the system may show maximum response under resonance and or parametric 

resonance. Resonance corresponds to the tendency of the system to oscillate with 

greater amplitude, when the external excitation frequency is equal to natural 

frequency of the system. In resonance, the rate of increase of systems amplitude is 

linear. Parametric resonance refers to an oscillatory motion in a mechanical system 

due to time-dependent variation of the system parameters caused due to external 

excitation. The response of the system is orthogonal to the direction of external 

excitation. In parametric resonance, the rate of increase of systems response is 

generally exponential and grows without limit. This exponential unlimited increase 

of amplitude is potentially dangerous to the system. Although parametric resonance 

is secondary, the system may undergo failure near the critical frequencies of 

parametric resonance.  Parametric resonance is also referred as parametric instability 

or dynamic instability. 

The general mathematical equation of a mechanical system under parametric 

excitation is given by 

( ) ( ) ( ) 0+ + =ɺɺ ɺM t q C t q K t q     (1) 

where q is amplitude of response of the system, dots denote differentiation with 

respect to time t. M(t), C(t) and K(t) are inertial, damping and stiffness matrices 

respectively.  The mechanical system described by Eq. (1) can experience 



 
 

ii 
 

parametric instability when the excitation frequency Ω is twice or any integral 

multiple of the system natural frequency ω, i.e. 

,mωΩ =  m = 2, 3…     (2)  

The case Ω = 2ω, is most important in the application and is known as principal 

parametric resonance.  Also system undergoes parametric instability when excitation 

frequency is equal to combination of systems natural frequencies i.e. 

( )i jm ω ωΩ = ±      (3) 

 The main objective of analysis of the parametrically excited systems 

described by Eq. (1) is to establish the relationship between the system parameters at 

which the solution is unstable. The solution of   Eq. (1) can be represented by the 

regions in the parameter space in which the system becomes unstable. These regions 

are known as regions of dynamic instability. The boundary separating a stable region 

from an unstable one is called a stability boundary. Plot of these boundaries on the 

parameter space is called a stability diagram. 

Outline of the present work 

 The present work mainly deals with investigation of parametric instability of 

elastic structures, free surface of liquid and liquid-filled shells. The computer 

programs have been written for this purpose. The governing equations of motion are 

solved employing finite element method. Theoretical investigations have been 

carried out where ever possible and an experimental investigation of dynamic 

stability of plane free surface of liquid on shake table is reported. The stability 

boundaries for the elastic structures have been established by using Floquet’s theory, 

Bolotin’s method and Hsu’s conditions. For numerical computations computer 

programs have been developed using MATLAB and CAST3M.  
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 This thesis contains seven chapters.  

 In chapter 1 a detailed introduction to parametric instability and its governing 

equation of motion classified as Hill’s equation is given. The objective of the Hill’s 

equation is not to get the exact form of solution but to know under what parameters 

system undergoes instability. Various methods employed to obtain stability 

boundary diagrams are discussed along with detailed survey of relevant literature in 

this chapter.  

In chapter 2 dynamic stability of a parametric oscillator is considered i.e. dynamic 

instability of a single degree of freedom (SDOF). A parametric oscillator is a simple 

pendulum or an inverted pendulum excited vertically at its pivot; it is a harmonic 

oscillator whose parameters oscillate in time. This study helps in understanding the 

basics of parametric instability. The governing equation for the parametric oscillator 

is Mathieu equation. Stability diagram is plotted using Bolotin’s approach and 

reliability of the stability diagram is checked via simulation of response of Mathieu 

equation employing Runge-Kutta method.  

Chapter 3 deals with the investigation of dynamic stability of a slender beam. The 

instability regions are obtained using finite element Bolotin’s approach. To check 

the reliability of the procedure direct time integration using Newmark’s method is 

carried out. The instability regions are checked by plotting time vs. displacement 

plots at different integration points.  

In chapter 4 dynamic stability of simply supported plate under uniform edge loading 

is investigated. The governing Mathieu-Hill equation is obtained by employing 

finite element formulation. Mindlin plate theory is used for the formulation of global 
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system matrices. The effects of static load factor of edge loading and aspect ratio on 

the dynamic stability of plate are studied.  

 Chapter 5 deals with dynamic stability of bottom clamped cylindrical shells 

under uniform periodic compressive force. The governing Mathieu-Hill equation is 

obtained by employing finite element formulation. 3D degenerated four noded shell 

elements are used for the formulation of global system matrices. Two shells of 

different aspect ratio are considered for investigating the dynamic stability.  

In chapter 6 dynamic stability of plane free-surface of liquid in rectangular tanks is 

investigated numerically considering fully non-linear equations. Dynamic stability 

chart is plotted from the linear governing equations and response of the fluid is 

simulated employing arbitrary Eulerian-Lagrangian finite element method. The slosh 

response is simulated for horizontal, vertical and combined base excitations of the 

tank. An experiment on shake table is carried out to validate the stability chart 

obtained. 

Chapter 7 addresses the dynamic stability of bottom clamped cylindrical shells filled 

with fluid under vertical base excitation taking fluid-structure interaction into 

consideration. The governing Mathieu-Hill equation is obtained by employing finite 

element formulation. Two tanks of different aspect ratio are taken and analysis is 

carried out in CAST3M. 

Finally in chapter 8 important conclusions drawn from the present investigations 

reported in chapters 3-7 along with suggestions for future work are presented. 
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Chapter 1 

INTRODUCTION 

1.1 Parametric Instability 

In many engineering applications it is of immense interest to study the 

vibratory motion of a mechanical system under external excitations. In all the 

mechanical systems under going oscillatory or vibratory motion, it is essential to 

know the time history, or the maximum response of the system, and the nature of the 

oscillations i.e. if it is periodic, chaotic or not. It is very important to know the 

different resonance frequencies of the system for an efficient and safe design of the 

structures so that harmful resonances can be avoided during the working conditions. 

External excitations can cause the system to undergo two kinds of oscillations; 

forced oscillations and parametric oscillations. Forced oscillations correspond to the 

oscillatory response of the system in the direction of external excitation and system 

undergoes resonance when the external excitation frequency is equal to natural 

frequency of the system. In resonance, the rate of increase of systems amplitude is 

linear. The amplitude attained under resonance can be effectively reduced by 

including damping in the system. Parametric oscillations refer to an oscillatory 

motion of a mechanical system due to time-dependent variation of the system 

parameters caused due to external excitation. The external excitation enters into the 

system and changes the geometry of the system which in turn results in variation of 

system parameters, due to which forces or torques do work on the system and energy 

flows into the system from external source, depending on the frequency of system 

parameter variation and the natural frequencies of the system; such a state created is 

called parametric resonance.  The system parameters can be inertia, damping or 
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stiffness. Under parametric resonance, when certain energy flows into the system, 

the amplitude of the system response increases. The response of the system is 

orthogonal to the direction of external excitation. In parametric resonance, the rate 

of increase of the system’s response is generally exponential and grows without 

limit. This exponential unlimited increase of amplitude is potentially dangerous to 

the system. This behaviour is referred to as parametric instability or dynamic 

instability. Introducing damping can reduce only rate of increase of amplitude and 

thus have little or no effect on final amplitudes. System undergoes parametric 

resonance when the frequency of external excitation is equal to integral multiple of 

natural frequency of the system. The resonance condition is considered primary and 

given utmost importance during designing of the structures. Although parametric 

resonance is secondary, the system may undergo failure near the critical frequencies 

of parametric resonance.  The general mathematical equation of a mechanical 

system under parametric excitation is given by 

( ) ( ) ( ) ( ) ( ) ( ) 0M t q t C t q t K t q t+ + =ɺɺ ɺ   (1.1) 

and 

( ) ( ) ( ) ( ) ( ) ( ),   ,   M t T M t C t T C t K t T K t+ = + = + =   (1.2) 

where q(t) is amplitude of response of the system, dots denote differentiation with 

respect to time t. M(t), C(t) and K(t) are inertial, damping and stiffness matrices 

respectively with a time period T. Eq. (1.1) is a second order homogenous 

differential equation with time dependent coefficients; such type of equation is 

called Hill’s equation.  The mechanical system described by Eq. (1.1) can 

experience parametric instability when the excitation frequency Ω is twice or any 

integral multiple of the system natural frequency ω, i.e. 
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,mωΩ =  m = 2, 3…    (1.3) 

The case Ω = 2ω, is most important in design point of view and it is known as 

principal parametric resonance.  Not only at these discrete frequencies, parametric 

instability can occur over a spectrum of frequencies which are away from natural 

frequencies of system for a given external excitation amplitude. In case of multi 

degrees of freedom (MDOF), parametric instability can occur when the excitation 

frequency equals to sum or difference of systems natural frequencies of different 

modes. 

( )1
ω ωΩ = ±i j

n
     (1.4) 

The above relation defines the condition of parametric combination resonance. 

Combination resonance is of first order when n = 1; otherwise, it is of n-th order. 

 The main objective of analysis of the parametrically excited systems Eq. 

(1.1) is to establish the relationship between the system parameters at which the 

solution will become unstable. The solution of Eq. (1.1) can be represented by the 

regions in the parameter space in which the system becomes unstable. These regions 

are known as regions of dynamic instability. The boundary separating a stable region 

from an unstable one is called a stability boundary. Plot of these boundaries on the 

parameter space is called stability diagram. 

In practice, parametric excitation can occur in structural systems subjected to 

vertical ground motion, air craft structures subjected to turbulent flow, marine crafts 

subjected to longitudinal waves and in machine components and mechanisms. Other 

examples are liquid sloshing in tanks subjected to longitudinal excitation, thin shells 

filled with fluid under horizontal and vertical excitations and spinning satellites in 

elliptic orbits passing through a periodically varying gravitational field. In industrial 
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machines and mechanisms, their components and instruments are frequently 

subjected to periodic or random excitation transmitted through elastic coupling 

elements. A few examples include those associated with electromagnetic and 

aeronautical instruments, vibratory conveyers, saw blades, belt drives and robot 

manipulators etc.  

1.2 Difference between resonance and parametric instability 

 Although parametric resonance has a term resonance, its features are 

completely different from typical resonance. Parametric resonance differs as follows 

compared to normal resonance. 

Table 1.1: Difference between parametric instability and resonance 
 
 Parametric Resonance Resonance 

1. External excitation enters into the 

system; the excitation is called 

parametric excitation. 

External excitation remains outside as 

a forcing term; the excitation is called 

forcing excitation. 

2. The excitation makes the system 

properties time dependent. 

System properties are constant and 

are time independent.  

3. Systems response is orthogonal to 

direction of excitation. 

Systems response is along the 

direction of excitation. 

4. The rate of increase of systems 

response is exponential. 

The rate of increase of systems 

response is linear. 

5.  Damping has no control on the peak 

amplitude. Damping can reduce only 

the rate of increase of amplitude. 

Damping can control the peak value 

of amplitude. 
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6. Governing equation is second order 

homogenous differential equation 

with time dependent coefficients. 

Governing equation is second order 

inhomogeneous differential equation 

with constant coefficients.  

7. ( ) ( ) ( ) 0M t q C t q K t q+ + =ɺɺ ɺ  ( )Mq Cq Kq F t+ + =ɺɺ ɺ  

 

1.3 Historical background of parametric instability  

 The early work on parametric instability was reported in fluid mechanics. 

The credit of first work on parametric resonance goes to Faraday [1] way back in 

1831. Faraday observed that when a thin sheets of fluid like mercury, ink, water, 

alcohol, turpentine, milk and egg white covering a horizontal plate subjected to 

vertical vibration forms elevations, waves or crispations with a peculiar character on 

the plate projecting directly out of the plate. Faraday reported that these waves had a 

frequency equal to half the excitation frequency. Such waves generated under 

vertical excitation are sometimes referred to as Faraday waves. On a similar ground, 

parametric resonance in a stretched string was demonstrated experimentally by 

Melde [2].   In his experiment the tension in a string is varied periodically through 

attachment to one of the vibrating prongs of a massive tuning fork. The theoretical 

explanation for Melde’s experiment was given by Rayleigh [3]. Matthiessen [4] 

repeated Faraday’s experiment and reported that the fluid free surface vibrations are 

synchronous to the external vertical excitation. The Faraday’s study has been 

analyzed by Rayleigh [5, 6] and the analysis confirmed Faraday’s observations. On 

the same context of parametric resonance in free-surface of fluid, the  discrepancy  

between  Faraday's  observations  and Matthiessen's  observations  were  explained  

mathematically  by  Benjamin  and  Ursell  [7].   Benjamin and Ursell investigated 
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the problem theoretically and concluded that the governing equation to study the 

response of plane free-surface of fluid under vertical excitation is Mathieu equation 

[8].  

 The first work on parametric instability in structures was reported in an 

article by Beliaev [9]. Beliaev analysed the dynamic stability of a straight rod hinged 

on both ends and plotted the boundaries of principal region of instability 

theoretically. Later the problem of dynamic stability of rods with arbitrary support 

conditions was examined by Krylov and Bogoliubov [10]. A detailed review of the 

literature on the theory of dynamic stability in elastic structures till 1951 can be 

found in a review article by Beilin and Dzhanelidze [11]. The problem of dynamic 

stability is discussed in books by Stoker [12], Timoshenko [13], Bolotin [14], 

Nayfeh and Mook [15], Ibrahim [16] and Cartmell [17]. Bolotin [15] studied 

extensively on the dynamic stability of elastic systems under parametric excitations. 

Several review articles are published on parametric resonance, few worth noting 

articles are by Evan Iwanoski [18], Ariaratnam [19] and Simitses [20].  

1.4 Mathematical methods for stability analysis  

 The governing equation for parametric excited system is a second order 

homogenous equation with time dependent coefficients as given in Eq. (1.1). The 

system parameters like mass, damping and / or stiffness become time dependent 

under parametric excitation. In the present dissertation, parametric systems with 

time dependent stiffness are considered. The governing equation of motion for such 

a system is given as 

( ) ( ) ( ) ( ) 0Mq t Cq t K t q t+ + =ɺɺ ɺ    (1.5) 

and  
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( ) ( )K t T K t+ =     (1.6) 

The Eq. (1.5) is classified as Hill equation [21] and if the time varying coefficient 

matrices are sinusoidal it is classified as Mathieu equation [8]. To predict and 

determine the dynamic behavior of system, stability analysis must be implemented 

on Hill’s equation Eq. (1.5). The main objective of solving Eq. (1.5) is to find the 

existence of periodic solutions and their stability. Lots of mathematical methods are 

available to solve Eq. (1.5). A few well known solution methods which are 

commonly employed are Floquet’s theory, Bolotin’s approach based on Floquet’s 

theory, perturbation techniques, iteration techniques, Galerkin’s method, the 

Lyapunov second order method and the asymptotic technique by Krylov, 

Bogoliubov and Mitroploskii.   

 The essence of Floquet’s method is to examine the stability of the state 

transition matrix that maps an initial state to the state after one time period [22-24]. 

The state transition matrix can be formed from Wronskian matrix, but the numerical 

integrals require time consuming computations, especially for higher order 

dimensional systems. Bolotin [14] proposed a method based on Floquet’s theory for 

stability boundary tracing; Bolotin considered two types of solutions with periods of 

T and 2T expanded using Fourier series respectively, the areas surrounded by two 

solutions with identical periods are unstable and by two solutions with different 

periods are stable. But this method can be used to get stability boundaries for simple 

resonance only. This method was extended to find combination resonance 

boundaries in [25-30].  

 Hsu [31-32] developed a perturbation based technique for stability analysis 

of parametric systems under small parameter excitations, which can be employed to 
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obtain instability zones of simple, combination and difference type. Hsu gave 

conditions of stability and instability for a system with multi degrees of freedom 

under parametric excitation, which can be used to plot stability chart with ease.  

Hsu’s technique works faster than Floquet and Bolotin’s technique since it does not 

involve numerical computations.  

 Many researchers applied finite element method to study the dynamic 

stability of elastic systems. Brown [33] was the first investigator to employ finite 

element method to solve dynamic stability of bars. Burney [34] studied dynamic 

stability of plane structures. Abbas and Thomas [35], Abbas [36] analysed stability 

of Timoshenko beams using finite element method. Shastry [37-39] applied finite 

element method to study the dynamic stability of bars and cantilever columns 

subjected to axial loads. The finite element approach of Mathieu-Hill equation in 

case of shallow shells was proposed by Basar [40]. Briseghella [41] studied the 

dynamic stability problems of beams and frames by using finite element method. 

Svensson [42] studied the stability properties of a periodically loaded non-linear 

dynamic system, giving special attention to damping effects. 

 The present dissertation employs Floquet theory, finite element based 

Bolotin’s approach and Hsu’s method for stability analysis. These methods are 

explained below in the following sections in detail. 

1.4.1 Floquet Theory 

 The state-space form of Hill’s equation Eq. (1.5) is 

( ) ( ) ( )     with   
T

T T
X A t X X q t q t = =  
ɺ ɺ    (1.7) 

where  
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( ) ( ) ( ) ( )1 1

0
  and   

I
A t A t T A t

M K t M C− −

 
= + = − − 

  (1.8) 

Here, X is a column vector including 2n system state variables; A(t) is a 2n × 2n 

periodic system matrix with the period T; 0 and I are n × n zero and identity matrix 

respectively. According to Floquet theory, the stability of the periodically linear 

time-varying system, such as Eq. (1.7), can be represented by the stability status 

over only one period. The state of the system X(t) at a time t can be transferred to 

another state of time t0 through a transition matrix Φ(t,t0), and it is expressed as 

( ) ( ) ( )0 0,X t t t X tφ=     (1.9) 

Thus, the state after one period T, is 

( ) ( ) ( ),0 0X T T Xφ=     (1.10) 

If the initial state is identity, X(0) = I2n, then 

( ) ( ),0X T Tφ=     (1.11) 

Here, I2n is a 2n × 2n identity matrix. In general, the state after k-integral periods is 

given by [22-24] 

( ) ( ) ( ), 0
k

X t kT T X tφ+ =     (1.12) 

 The state transition matrix, Φ(T,0), can be obtained by numerically 

integrating Eq. (1.7) from 0 to T with initial conditions as identity matrix. This 

transition matrix is called Floquet Transition Matrix (FTM), and its eigenvalues, λi, 

are Floquet multipliers. These Floquet multipliers govern the stability characteristics 

of the system. The stability criteria is given by [22-24] 

0ln
  and  

0
ii

i i

i

stable
i

unstableT

αλ
α β

α
<

= + 
≥

  (1.13) 
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This method can give all instabilities but need intensive computations due to 

numerical integration of Eq. (1.7). 

1.4.2 Bolotin’s approach  

1.4.2.1 Analytical Bolotin’s approach 

 The analytical governing equation for a single degree of freedom (SDOF) for 

the dynamic stability of a system under periodic longitudinal force is given by 

( )2

2 1 2 cos 0q q t qη µ θ+ + Ω − =ɺɺ ɺ
   (1.14) 

where Ω and µ are the relations given as follows 

0
1

cr

P

P
ωΩ = −  ; 

( )
0

2

d

cr

P

P P
µ =

−
    (1.15) 

and q(t) is the deflection, η is damping, Ω is natural frequency of the system loaded 

with static component P0, µ is the excitation parameter, θ is the frequency of 

external periodic force, Pd is the dynamic component of external excitation and Pcr 

is the buckling load of the system. Equation (1.14) is a Mathieu-Hill equation. 

According to Bolotin [14], Eq. (1.14) will have periodic solutions with period T or 

2T and can be represented by the following Fourier series expansions 

0
2,4,...

1
: sin cos ,

2 2 2
k k

k

k t k t
T q b a b

θ θ∞

=

 = + + 
 

∑   (1.16) 

1,3,...

2 : sin cos ,
2 2

k k

k

k t k t
T q a b

θ θ∞

=

 = + 
 

∑    (1.17) 

where ak and bk are time-independent Fourier coefficient vectors. They are 

determined by substituting Eq. (1.16-1.17) into Eq. (1.14). Substitution of Eq. (1.17) 

into Eq. (1.14) and a term wise comparison of sin(kθt)/2 and cos(kθt)/2 coefficients 

leads to the following infinite system of homogenous algebraic equations for the 

unknown vector sequence ak and bk (k =  3, 5, …) 
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( )

( )

2

1 3 12

2

1 3 12

2 2

2 22

2 2

2 22

1 0
24

1 0
24

1 0
24

1 0
24

k k k k

k k k k

a a b

b b a

k k
a a a b

k k
b b b a

θ θ
µ µ

π

θ θ
µ µ

π

θ θ
µ

π

θ θ
µ

π

− +

− +

  ∆ + − − − =  ΩΩ 

  ∆ − − − + =  ΩΩ 

  ∆ − − + − =  ΩΩ 

  ∆ − − + + =  ΩΩ 

 (1.18) 

Similarly, substitution of Eq. (1.16) into Eq. (1.14) and term wise comparison leads 

to the following infinite system of homogenous algebraic equations for the unknown 

vector sequence ak and bk (k = 4, 6, …)  

( )

( )

( )

0 2

2

2 4 22

2

2 0 4 22

2 2

2 22

2 2

2 22

0

1 0

1 2 0

1 0
24

1 0
24

k k k k

k k k k

b b

a a b

b b b a

k k
a a a b

k k
b b b a

µ

θ θ
µ

π

θ θ
µ

π

θ θ
µ

π

θ θ
µ

π

− +

− +

− =

  ∆ − − − =  ΩΩ 

  ∆ − − + + =  ΩΩ 

  ∆ − − + − =  ΩΩ 

  ∆ − − + + =  ΩΩ 

 (1.19) 

where ∆ in Eq. (1.18) and Eq. (1.19) denotes the damping of free vibrations of a 

system, loaded by a constant component of longitudinal force and given by 

0

2

1

cr

P

P

πη

ω

∆ =

−

    (1.20) 

 The system of linear homogenous equations Eq. (1.18) and Eq. (1.19) have 

solutions different from zero only in the case where the determinant composed of the 

coefficients of the system of equations is equal to zero. Thus, the necessary 

condition for the existence of the periodic solution of Eq. (1.14) is that the obtained 

determinants of the homogenous system of equations be equal to zero. The 
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dimensions of the determinants obtained are infinite and these determinants are 

called Hill’s infinite determinants. The required Floquent exponents discussed in 

section 1.4.1 are the eigenvalues of these Hill’s determinants. The determinants of 

homogenous equations are given as follows: 

2

2

2

2

2

2

2

2

9 3
1 0

24

1 0
24

0

0 1
2

3 9
0 1

2 4

θ θ
µ

π

θ θ
µ µ

π

θ θ
µ µ

π

θ θ
µ

π

∇
− − −

ΩΩ

∇
− + − −

ΩΩ
=

∇
− − −

Ω Ω

∇
− −

Ω Ω

… … … …

… … … …

 (1.21) 

2

2

2

2

2

2

2

2

4
1 0 0

1 0 0

0 0 1 0 0

0 2 1

4
0 0 1

θ θ
µ

π

θ θ
µ

π

µ

θ θ
µ µ

π

θ θ
µ

π

∆
− − −

ΩΩ

∆
− − −

ΩΩ
− =

∆
− − −

Ω Ω

∆
− −

Ω Ω

… … … … …

… … … … …

  (1.22) 

 These infinite eigenvalue problems can be solved for crtitical frequencies by 

truncating the dimensions of the determinants. For most of the problems, the first 

approximation gives satisfactory results. The dynamic load component Pd is 

increased step wise, and the corresponding eigenvalues are solved for each load. 

Proceeding in this way, the instability charts; critical frequencies vs. dynamic load 

are obtained point by point.  
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 The analytical approach of Bolotin’s method is easy to apply for simple 

cases where the analytical equation can be derived for the system; if the system is 

complex and has multiple degrees of freedom with complex boundary conditions, 

the method cannot be employed. Employing a numerical procedure will be easy to 

analyze the dynamic stability behaviour of any complex system. A numerical 

procedure like finite element method can be applied to Bolotin’s numerical approach  

1.4.2.2 Finite element Bolotin’s approach 

Hill’s equation Eq. (1.5) under external periodic excitation given as, 

( ) cosS DP t P P t= + Ω     (1.23) 

can be written as, 

( cos ) 0e GS GDMq Cq K K K t q+ + + + Ω =ɺɺ ɺ   (1.24) 

Here PS is static component; PD is dynamic component and Ω frequency of the 

external parametric excitation. M, C, Ke are mass matrix, damping matrix and elastic 

stiffness matrix respectively; KGS, KGD are the geometric stiffness matrix 

corresponding to static load component PS and dynamic load component PD 

respectively. 

 According to Bolotin [14], Eq. (1.24) will have periodic solutions with 

period T or 2T and can be represented by the following Fourier series expansions 

0
2,4,...

1
: sin cos ,

2 2 2
k k

k

k t k t
T q b a b

∞

=

Ω Ω = + + 
 

∑   (1.25) 

1,3,...

2 : sin cos ,
2 2

k k

k

k t k t
T q a b

∞

=

Ω Ω = + 
 

∑     (1.26) 

where ak and bk are time-independent Fourier coefficient vectors, which are 

determined by substituting Eq. (1.25-1.26) into Eq. (1.24). Substitution of Eq. (1.26) 
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into Eq. (1.24)  and a term wise comparison of sine- and cosine- coefficients leads to 

the following infinite system of homogenous algebraic equations for the unknown 

vector sequence ak and bk (k =  3, 5, …) 

( )

2

1 1 3

2

1 1 3

2 2

2 2

2 2

2

1 1
0

2 4 2 2

1 1
0

2 4 2 2

                              

1
0

4 2 2

1

4 2 2

e GS GD GD

e GS GD GD

e GS k k GD k k

e GS k k GD k k

K K K M a Cb K a

K K K M b Ca K b

k k
K K M a Cb K a a

k k
K K M b Ca K b b

+ −

+ −

 Ω Ω
+ − − − + = 

 

 Ω Ω
+ + − + + = 

 

 Ω Ω
+ − − + + = 

 

 Ω Ω
+ − + + + 

 

⋮

( )2 0=

(1.27) 

Similarly, substitution of Eq. (1.25) into Eq. (1.24) and term wise comparison leads 

to the following infinite system of homogenous algebraic equations for the unknown 

vector sequence ak and bk (k = 4, 6, …)  

( )

( )
( ) ( )

( )

( )

0 2

2
2 2 4

2
2 2 0 4

2 2

2 2

2 2

2 2

0

0

2 0

                                     

1
0

4 2 2

1
0

4 2 2

e GS GD

e GS GD

e GS GD

e GS k k GD k k

e GS k k GD k k

K K b K b

K K M a Cb K a

K K M b Ca K b b

k k
K K M a Cb K a a

k k
K K M b Ca K b b

+ −

+ −

+ + =

+ −Ω −Ω + =

+ −Ω +Ω + + =

 Ω Ω
+ − − + + = 

 

 Ω Ω
+ − + + + = 

 

⋮  (1.28) 

Both the above sets of equations Eq. (1.27-1.28) possess non-trivial solutions, if the 

infinite determinants of the corresponding coefficient matrices vanish identically, 

yielding two eigenvalue problems of infinite order for the critical frequencies Ω. The 

condition of solvability of an infinite eigenvalue problem can be approximated by a 
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simplified and finite one by considering the first few terms. The simplified 

eigenvalue problems for the above infinite equations are 

2

2

1 1

2 4 2 0
1 1

2 2 4

e GS GD

e GS GD

K K K M C

C K K K M

Ω
+ − − − Ω

=
Ω

Ω + + −

 (1.29) 

2

2

0

0 0.

1

2

e GS

e GS GD

GD e GS

K K M C

K K K

C K K K M

+ −Ω −Ω

+ =

Ω + −Ω

 (1.30) 

After some suitable transformation and adjustment of terms in the above 

determinants, the following eigenvalue problems are obtained for solution with 

period 2T and T respectively [40], 

2

1 1 1
0 0 0

2 2 4 0
1 1 1

0 0 0
2 2 4

e GS GD

e GS GD

K K K C M

K K K C M

     + − − Ω −     
+Ω +Ω =     

     + + Ω −
            

          (1.31) 

( )
2

1

0
0 0

01
0 00

2

e GS

e GS GD e GS GD

K K
C M

C MK K K K K K
−

+  − −     +Ω +Ω =     −+ − +    
 

 

(1.32) 

Eqs. (1.31-1.32) are quadratic eigenvalue problems, which can be solved for critical 

excitation frequencies Ω, which give the boundary curve between dynamic stability 

and instability regions. The quadratic eigenvalue problem can be solved by reducing 

it to a generalized eigenvalue problem [43] as discussed in Appendix-A. In the 
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absence of damping, the above eigenvalue problem reduces to a generalized 

eigenvalue problem and can be easily solved. The eigenvalue equations of Eq. (1.31) 

and Eq. (1.32) in the absence of damping are given in Appenidx – A. Bolotin’s 

approach can give simple regions of parametric instability which are most 

dominating and dangerous. The present approach cannot capture combination 

parametric instability regions. 

1.4.3 Hsu’s method  

 Compared with the numerical integral based Floquet method and eigenvalue 

based Bolotin’s approach, perturbation techniques provide better computation 

efficiency because they are based on analytical approximations. Hsu [31-32] 

developed a general and simple perturbation based algorithm which can trace simple 

and combination stability boundaries approximately. Eq. (1.5) is transformed into a 

standard form through normalization and diagonalization process as  

( ) ( ) ( ) ( )( ) ( )0 0q t Cq t K K t q tε+ + + =ɺɺ ɺ   (1.33) 

where ε is a small real number. K(0) is a diagonal matrix with positive real numbers 

which are the square of natural frequencies on its diagonal line and can be expressed 

as  

2
1

2
(0) 2 2 22

1 2

2

 with n

n

K

ω
ω

ω ω ω

ω

 
 
 = ≤ ≤
 
 
  

…
⋱

 (1.34)  

Here, ω1, ω2 … ωn are system natural frequencies. K(t) is periodically time varying 

and expanded as Fourier series as follows 

( ) ( ) ( )( )
1,2,

cos sin
S

s s

s

K t D s t E s tω ω
=

= +∑
…

  (1.35) 
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and damping matrix is assumed as C = F
(0). Here, ω = 2π/T and S is a finite integer. 

Substituting Eq. (1.34), Eq. (1.35) into Eq. (1.33) yields, 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

0

1

0

cos sin

                           

ε ω ω
=

+ = − +

−

∑
…

ɺɺ

ɺ

S
s s

s

q t K q t D s t E s t q t

F q t
   

(1.36) 

and its component form, 

( ) ( ) ( )( ( ) ) ( )

( )

2

1,2 1,2

0

1,2

cos sin

                           ( ),    1, 2, ,

ω ε ω ω
= =

=

+ = − +

+ =

∑ ∑

∑

… …

…

ɺɺ

ɺ …

S n
s s

i i i ij ij j

s j

n

ij j

j

q t q t d s t e s t q t

f q t i n

 (1.37) 

where dij
(s)

, eij
(s) and fij

(0) are the elements of matrices D(s), E(s) and F(0) respectively. 

 When ε = 0, Eq. (1.37) is a set of equations for s system without parametric 

excitation and can be solved when the initial values iq and iqɺ are known. The first 

order form of Eq. (1.37) can be written as 

( ) ( )i iq t w t=ɺ  

( ) ( ) ( ) ( )( ) ( )

( ) ( )

2

1,2 1,2,

0

1,2

cos sin

                           

ω ε ω ω
= =

=

+ = − +

−

∑ ∑

∑

… …

…

ɺ

S n
s s

i i i ij ij j

s j

n

ij j

j

w t q t d s t e s t q t

f w t

 (1.38) 

The possible form of perturbed solution to Eq. (1.38) is, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1,

1,

cos sin

sin cos

rr

i i i i i i

r

rr

i i i i i i i

r

q t A t t B t t q t

w t A t t B t t q t

ω ω ε

ω ω ω ε

∞

=

∞

=

= + +

 
= − + + 

 

∑

∑

…

…

ɺ

  (1.39) 

First two terms on the right hand side of Eq. (1.39) are called variational part and the 

remaining is the perturbation part [44]. Substituting q, w in Eq. (1.38) with the 
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expressions in Eq. (1.39) and on truncating terms to the first order of ε, results into 

the following equations 

cos sin 0i i i iA t B tω ω+ =ɺ ɺ        (1.40) 

( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 12

1 2

1, 1, 3 4

n
0

ij
1,

sin cos

cos cos
                   

2 sin sin

                   f cos sin

i i i i i i i i i

s s
S n

j j

s s
s j

j j

j j j j j

j

A t B t q q

H t s t H t s t

H t s t H t s t

B t A t

ω ω ω ω ε ω

ω ω ω ωε

ω ω ω ω

ε ω ω ω

= =

=

− + + + =

 + + −
 −
 + + + − 

− −

∑ ∑

∑

… …

…

ɺ ɺ ɺɺ

 (1.41) 

where  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2

3

4

s s s

ij j ij j

s s s

ij j ij j

s s s

ij j ij j

s s s

ij j ij j

H d A e B

H d A e B

H d B e A

H d B e A

= −

= +

= +

= −

    (1.42) 

The essential feature of Hsu’s method is that, the terms which lead to 

instability i.e. terms of infinite magnitudes on right hand side of Eq. (1.41) are 

associated with the variational part and the rest of the stable terms are associated 

with the perturbation part [44].  The perturbation terms are always stable for all ωi 

and ω being positive and the variational terms govern the system stability. 

 For a given i (i = 1, 2… n), if ωi ± sω is not nearly equal to ±ωi, for any 

choices of  j and s the solution of Eq. (1.40) and Eq. (1.41) is  

( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1
1 322

1, 1,

2 422

1 1
cos sin

2

1
                              cos sin

n S
s s

i j j

j s
i j

s s

j j

i j

q H t s t H t s t
s

H t s t H t s t
s

ω ω ω ω
ω ω ω

ω ω ω ω
ω ω ω

= =


  = − + + +  − +


 + − + −  − − 

∑ ∑
… …
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( ) ( )0

2 2
1,

1
cos sin

n

ij j j j j j

j i j
j i

f B t A tω ω ω
ω ω=

≠

− −
−∑

…

   (1.43) 

Here, in obtaining the perturbation part, A and B are taken to be constant in the 

present first approximation and Ai, Bi are determined from the equations 

( ) ( )0

cos sin 0

s cos cos sin

i i i i

i i i i ii i i i i

A t B t

A in t B t f B t A t

ω ω

ω ω ε ω ω

+ =

− + = − −

ɺ ɺ

ɺ ɺ
 (1.44) 

The solution of Eq. (1.44) is given by 

( ) ( )0 01 1

2 2
0 0,   

ii iif t f t

i i i iA A e B B e
ε ε− −

= =   (1.45) 

where Ai0 and Bi0 are 2n constants which can be determined form the initial 

conditions. On substituting Eq. (1.45) and Eq. (1.43) into Eq. (1.40), we obtain the 

desired solution; this solution is well behaved and stable, no question of instability 

arises if the damping terms are positive. This implies that, the excitation frequency 

of the coefficient matrices in Eq. (1.33) are away from the system natural 

frequencies and thus response of the system is stable.  

 When the excitation frequency of the coefficient matrices in Eq. (1.33) is 

equal or close to combinations of the system natural frequencies, the parametric 

resonance occurs. First, the case of the excitation frequency close to sum of two 

natural frequencies is analyzed. Let the excitation frequency be 

( )1
k j

s
ω ω ω ελ= + +     (1.46) 

Here, λ is a finite real number and ελ is a small quantity since ε is small. The 

frequencies ωk  and ωj  terms are included in the variational equations as  
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( ) ( ) ( ) ( )

( ) ( )

( )

2 4

0

2

cos sin 0

sin cos cos sin
2

                                        cos sin

cos sin 0

sin cos cos
2

k k k k

s s

k k k k k k

k

kk k k k k

j j j j

s

j j j j j

j

A t B t

A t B t H t st H t st

f B t A t

A t B t

A t B t H t

ω ω

ε
ω ω ω ελ ω ελ

ω

ε ω ω

ω ω

ε
ω ω ω

ω

+ =

 − + = − + − + 

− −

+ =

− + = −

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ ɶ ( ) ( ) ( )
( ) ( )

4

0

sin

                                        cos sin

s

j

jj j j j j

st H t st

f B t A t

ελ ω ελ

ε ω ω

 + − + 

− −

ɶ

(1.47) 

where the terms ( ) ( )
2 4,s s

H Hɶ ɶ  are the terms ( ) ( )
2 4,s s

H H  with the subscripts  k and j 

exchanged respectively. After decoupling Ak, Bk, Aj and Bj  from Eq. (1.47), all 

resulting equations are integrated with respect to ωkt and ωjt over [0, 2π] and then 

on substituting their integral average, the variational equations becomes 

( ) ( ) ( )

( ) ( ) ( )

0
2 4

0
2 4

sin cos
2 4

cos sin
2 4

s sk
k kk

k

s sk
k kk

k

A
A f H st H st

B
B f H st H st

ε
ε ελ ελ

ω

ε
ε ελ ελ

ω

 = − − + 

 = − − − 

ɺ

ɺ

  (1.48a) 

 

( ) ( ) ( )

( ) ( ) ( )

0
2 4

0
2 4

sin cos
2 4

cos sin
2 4

j s s

j jj

j

j s s

j jj

j

A
A f H st H st

B
B f H st H st

ε
ε ελ ελ

ω

ε
ε ελ ελ

ω

 = − − + 

 = − − − 

ɺ ɶ ɶ

ɺ ɶ ɶ

 (1.48b) 

Substituting Eq. (1.42) in Eq. (1.48), remembering that the index i should be 

replaced by k, and then on further simplification based on the following 

transformation, 

1 1

2 2

,    

,    

k k j j

k k j j

X A iB Y A iB

X A iB Y A iB

= + = +

= − = −
    (1.49) 

where i is a complex number. The results are  

( ) ( ) ( )( )0
1 1 2

1

2 4
s s i st

kk kj kj

k

X f X i d e e Yελε
ε

ω
− = − − −

 
ɺ   (1.50a) 
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( ) ( ) ( )( )0
2 2 1

1

2 4
s s i st

kk kj kj

k

X f X i d e e Yελε
ε

ω
 = − − − −
 

ɺ   (1.50b) 

( ) ( ) ( )( )0
1 1 2

1

2 4
s s i st

jj jk jk

j

Y f Y i d e e Xελε
ε

ω
− = − − −

 
ɺ    (1.50c) 

( ) ( ) ( )( )0
2 2 1

1

2 4
s s i st

jj jk jk

j

Y f Y i d e e Xελε
ε

ω
 = − − − −
 

ɺ   (1.50d) 

 Owing to the special structure of Eq. (1.50a) and Eq. (1.50d), we can write 

their solution as 

1 1

2 2
1 10 2 20,

pt i st pt i st

X X e Y Y e
ελ ελ− +

= =    (1.51) 

where X10 and Y20 are constants. The indicial equation for p is found as 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2
0 0 0 02

2

2 4

                                
16

kk jj jj kk

s s s s

kj kj jk jk

k j

p f f p f is f is

d ie d ie

ε ε
λ λ

ε
ω ω

+ + + + −

− + −
 (1.52) 

and hence, 

( ) ( )( ) 10 0 2

4 4kk jjp f f P
ε ε

= − + ±     (1.53) 

where 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2
0 0 0 04

1
                             +

kk jj jj kk

s s s s

kj kj jk jk

k j

P f f f is f is

d ie d ie

λ λ

ω ω

= + − + −

+ −
 (1.54) 

Likewise for Eq. (1.50b) and Eq. (1.50c), we get 

1 1

2 2
2 20 1 10,

qt i st qt i st

X X e Y Y e
ελ ελ+ −

= =    (1.55) 

where X20 and Y10 are constants. The indicial equation for q is  
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( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2
0 0 0 02

2

2 4

                                
16

kk jj jj kk

s s s s

kj kj jk jk

k j

q f f q f is f is

d ie d ie

ε ε
λ λ

ε
ω ω

+ + + − +

− − +
 (1.56) 

and hence, 

( ) ( )( ) 10 0 2

4 4kk jjq f f Q
ε ε

= − + ±     (1.57) 

where 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2
0 0 0 04

1
                             +

kk jj jj kk

s s s s

kj kj jk jk

k j

Q f f f is f is

d ie d ie

λ λ

ω ω

= + − − +

− +
 (1.58) 

From Eq. (1.54) and Eq. (1.58) it is evident that Q is complex conjugate of P and 

hence the roots of q are the conjugates of the roots of p. Then it follows that the real 

parts of q and p must be same. 

 Looking at Eq. (1.49), Eq. (1.51) and Eq. (1.55), for the terms Ak, Bk, Aj and 

Bj to not to grow with time, none of p and q should have a positive real part. The 

system is stable if, 

( ) ( )1 0 02   kk jjeP f fℜ < +     (1.59a) 

and unstable if 

( ) ( )1 0 02  kk jjeP f fℜ > +     (1.59b) 

As P is given by Eq. (1.54), the above stability conditions for the excitation 

frequency close to sum of kth and jth
 natural frequencies, (ωk+ωj)/s may be written as 

follows after a simple calculation 



CHAPTER-1 

 

23 
 

( ) ( ) ( )

( ) ( )

1
1 2

2 2 0 02

0 0

 

2  

kk jj

kk jj

f f stable

f f unstable

α α β  + + < +  ⇒   > +  

 (1.60) 

where  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
0 0 0 0 2 2 1

 4 +s  s s s s

kk jj jj kk kj jk kj jk

k j

f f f f d d e eα λ
ω ω

 = + − + +   (1.61a) 

( ) ( )( ) ( ) ( ) ( ) ( )0 0 1
4  s s s s

jj kk kj jk kj jk

k j

s f f e d d eβ λ
ω ω

 = − + +     (1.61b) 

 Based on the same approach, the stability criterion for the excitation 

frequency close to the difference of kth and jth
 (j>k) natural frequencies, (ωj-ωk)/s is 

similar to Eq. (1.60) except that α and β are now given by 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
0 0 0 0 2 2 1

 4 +s  s s s s

kk jj jj kk kj jk kj jk

k j

f f f f d d e eα λ
ω ω

 = + − − +   (1.62a) 

( ) ( )( ) ( ) ( ) ( ) ( )0 0 1
4  s s s s

jj kk kj jk kj jk

k j

s f f d e e dβ λ
ω ω

 = − + −     (1.62b) 

 Similarly, the stability criterion for the excitation frequency close to twice of 

k
th natural frequencies, 2ωk/s is  

( ) ( )

( )

1
1 2

2 2 0

0

2  

2 2  

kk

kk

f stable

f unstable

α α  + <  ⇒   >  

  (1.63) 

where 

( )( ) ( )( )2 2
2 2

2

1
4s s

kk kk

k

d e sα λ
ω
 = + −  

   (1.64) 

1.5 Summary 

 This chapter introduces parametric instability, its governing equation and 

mathematical methods to analyze the parametric system. The governing equation of 
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motion to study parametric instability is classified as Hill’s equation.   The objective 

of solving Hill’s equation is not to get the exact form of solution but to know under 

what parameters, the system undergoes instability. This is done by plotting stability 

chart. 

 According to Floquet theory, the state transition matrix that maps an initial 

state to the state after one time period determines the stability of the system. This 

transition matrix is Floquet Transition Matrix and it needs intensive numerical time 

integration to calculate.  Bolotin’s approach of finding eigenvalues which separate 

regions of stability and instability gives simple regions of parametric instability but 

does not give combination type of instability regions. Hsu’s method which is based 

on perturbation technique can capture all regions (simple and combination) of 

stability boundaries approximately.  The high-accuracy results can be achieved when 

the system damping and the time varying components of system stiffness are much 

smaller than the constant component of the system stiffness. 
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Chapter 2 

PARAMETRIC OSCILLATOR 

2.1 Introduction 

 A simple pendulum consists of a mass m suspended from a string of length L 

which is fixed at a pivot P. When simple pendulum is displaced to an initial angle 

and released, the pendulum will swing back and forth with periodic motion. The 

simple pendulum has two equilibrium configurations: the downward position (m 

located in the downward position) and the upright inverted position (m located in the 

upward position), they are known as simple pendulum and inverted pendulum 

respectively. The downward position is obviously stable, while the vertical 

orientation is clearly unstable. When the pivot P of simple pendulum is excited 

vertically, this vertical excitation changes the effective gravity acting on the simple 

pendulum; such a pendulum is called parametric oscillator or parametric pendulum. 

When the pivot P is subjected to harmonic vertical oscillation of frequency, ω and 

amplitude A, the effect of parametric excitation on the simple pendulum is that, 

under some system parameters (ω, A) the parametric simple pendulum undergoes 

instability and the parametric inverted pendulum attains stability.  It is beneficial to 

study the parametric pendulum since it will enable us to understand more 

complicated physical phenomena with ease. In addition, pendulum being a single 

degree of freedom, complicated mathematical concepts can be applied easily for 

better understanding. The pendulum can also help in understanding the nonlinear 

system theory and chaos [45]. Extensive research has been done on parametric 

oscillator. The literature reports analytical methods, numerical methods and 

experimental works on parametric oscillator. Few remarkable references on this 
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context can be seen in [46-59]. In the present chapter a simple pendulum and 

inverted pendulum excited vertically at its support points are considered. The 

stability of the pendulum is analysed using Bolotin’s analytical approach; stability 

chart is validated by simulating response of pendulums under various system 

parameters taken form the stability chart. 

2.2 Governing Equations 

 Consider a simple pendulum and an inverted pendulum with mass m attached 

to a rod of length L as shown in Figure 2.1. The support of the pendulum is made to 

vibrate vertically by y(t) = Acosωt, where A, ω are amplitude and frequency of the 

support excitation respectively. 

 

Figure 2.1: The simple pendulum under vertical excitation at its support (a) simple pendulum 

(b) inverted pendulum 

According to Newton’s second law of motion in the direction perpendicular 

to the rod of simple pendulum Figure 2.1(a), we obtain equation of motion: 

( )2 2sin cos sinθ θ ω ω θ= − −ɺɺmL mgL mgL A t   (2.1) 

( )
2

cos sin 0
g A

t
L L

ω
θ ω θ

 
⇒ + − = 

 
ɺɺ    (2.2) 
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Similarly, for inverted pendulum we obtain equation of motion: 

( )2 2sin cos sinθ θ ω ω θ= −ɺɺmL mgL mgL A t   (2.3) 

( )
2

cos sin 0
g A

t
L L

ω
θ ω θ

 
⇒ − − = 

 
ɺɺ    (2.4) 

Equation (2.3) and (2.4) can be combined and written as follows 

( )
2

2
0 cos sin 0

A
t

L

ω
θ ω ω θ

 
± − = 
 

ɺɺ    (2.5) 

where ω0
2 = g/L, natural frequency of the pendulum and + sign for simple pendulum, 

– sign for inverted pendulum and g is acceleration due to gravity. Reparametrizing 

Eq. (2.5) using τ = ωt, we obtain the following equation 

( )( )cos sin 0θ δ ε τ θ+ + =ɺɺ     (2.6)  

where δ = ω0
2
/ω

2 and ε = A/L. For small oscillations approximation sinθ ≈ θ 

holds.With this approximation Eq. (2.6) gives 

( )( )cos 0.θ δ ε τ θ+ + =ɺɺ     (2.7) 

Equation (2.7) is a Mathieu equation [8] and it defines the stability of parametric 

oscillator. Eq. (2.7) governs the motion of simple pendulum by setting δ = ω0
2
/ω

2 

and ε = – A/L, and governs inverted pendulum on setting δ = – ω0
2
/ω

2 and ε = A/L. 

2.3 Stability analysis of Mathieu equation 

 Mathieu equation is a second order homogenous equation with periodic 

coefficients. It has forest of solutions which can be stable or unstable. The objective 

of solving Eq. (2.7) is not to find the exact form of the solution, but to find at what 

combination of system parameters (δ, ε) the solution becomes unstable. The periodic 

solutions of Mathieu equation have either period π or 2π.  These periodic solutions 
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have transition values of δ and ε from stable to unstable behaviour of the solution. 

Hence, a stability diagram of system parameters (δ, ε) can be drawn from which 

stability of the Eq. (2.7) can be obtained. If the periodic motion at both the ends of 

an interval in the parameter plane possesses same period π or 2π, then the enclosed 

interval is characterized by unbounded/ instable motion. If the periodic motion at 

one end of an interval in the parameter plane possesses period π (2π) and at the other 

end possesses period 2π (π), then the motion in that interval is bounded. To establish 

the regions of bounded and unbounded motions in the parameter plane it is required 

to obtain only the periodic solutions. These periodic solutions can be expressed as 

Fourier series expansion as follows 

1,3,5

2 : cos sin
2 2

n n

n

n n
a b

τ τ
π θ

∞

=

 = + 
 

∑
…

    (2.8a) 

0
2,4,6,

: cos sin
2 2

n n

n

n n
a a b

τ τ
π θ

∞

=

 = + + 
 

∑
…

  (2.8b) 

Substituting the series Eq. (2.8) into Eq. (2.7) leads to the following sets of recursive 

relations for the an and bn, which are 

( )

1 3

2

2 2

1
0

2 4 2

 = 0  3,5,
4 2

ε ε
δ

ε
δ − +

 + − + = 
 

  − + + = …  

n n n

a a

n
a a a n

 (2.9a) 

( )

1 3

2

2 2

1
0

2 4 2

 = 0  3,5,
4 2

ε ε
δ

ε
δ − +

 − − + = 
 

  − + + = …  

n n n

b b

n
b b b n

  (2.9b) 

for solution with period 2π and  
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( )

( )

0 2

0 2 4

2

2 2

0
2

1 0
2 2

 = 0  4,6,
4 2

ε
δ

ε ε
δ

ε
δ − +


 + =



+ − + =

 

− + + = … 
 

n n n

a a

a a a

n
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 (2.10a) 

( )

( )

2 4

2

2 2

1 0
2

 = 0  4,6,
4 2

ε
δ

ε
δ − +

 − + =

  − + + = …  

n n n

b b

n
b b b n

 (2.10b) 

for solution with period π. The system of linear homogenous Eqs. (2.9-2.10) has 

solutions different from zero only when the determinant composed of coefficients of 

system of equations is equal to zero. The obtained determinants equipped of the 

coefficients an and bn are referred as Hill’s determinants. By taking a finite number 

of terms in Eq. (2.8), the Hill determinants are given as follows: 

 

( )2

2

1
0 0 0

4 2
9

0 0
2 4 2

25
0

2 4 2 0

2
0 0 0

2 4 2

0 0 0 0
2 4

n

n

ε
δ ε

ε ε
δ

ε ε
δ

ε ε
δ

ε
δ

± −

−

−
=

−
−

−

⋯

⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 (2.11) 

where Eq. (2.9a) and Eq. (2.9b) are combined into one Hill determinant under ± sign, 

Eq. (2.11) is Hill determinant obtained for 2π periodic solution and n = 3,5,… in Eq. 

(2.11).  Similarly Hill determinants for π periodic solution with n = 2, 4… is given 

by  
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  (2.12a) 

and 

( )2

2

1 0 0 0
2

4 0 0
2 2

0 9
2 2 0
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0 0 0
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2 4

n

n

ε
δ
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ε
δ

−

−

−
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⋯
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  (2.12b) 

The Hill determinants can be solved for δ by increasing ε step wise. On plotting the 

obtained values of δ for the corresponding ε values, a stability diagram is obtained. 

The stability diagram of Mathieu equation Eq. (2.7) is obtained as shown in Figure 

2.2. 

2.4 Numerical results and discussion  

 To check the reliability of stability diagram obtained, the response of the 

parametric oscillator is simulated for different system parameters lying in stability 

diagram. Equation (2.7) is solved using fourth order Runge-Kutta method. A 

pendulum of length 0.19 m is considered. Its natural frequency is ω0  =  (g/L)
 ½   =   
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Figure 2.2: Stability diagram of Mathieu equation (Eq. 2.7) 

  

7.1855 rad/s, where g = 9.81 m/s2. The amplitude of support excitation is considered 

as A = 0.0133 m, which gives ε = A/L = 0.07. For all the simulation cases carried out 

in the present chapter, same amplitude is taken and different frequencies which lie in 

stable and unstable region are taken. The system parameters considered are given in 

Table 2.1. 

    Table 2.1: Support excitation frequencies for fixed amplitude lying in stable and unstable     

    regions of stability diagram 

S. No 

Simple pendulum Inverted pendulum 

ω (rad/s) δ ω(Hz) δ 

1 15.8701 0.2050 140.9195 0.0026 

2 15.6801 0.2100 145.1693 0.0024 

3 15.4967 0.2150 151.4839 0.0022 

4 15.3196 0.2200 185.5291 0.0015 
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2.4.1 Response of parametric oscillator 

 

Figure 2.3: Location of system parameters for simple pendulum 

Figure 2.3 shows the location of system parameters for pendulum under 

support excitation. These system parameters are given in Table 2.1. Figure 2.4 

shows response of the pendulum and the respective phase plane plots for the given 

system parameters.  

First two system parameters lie in stable region and the other two system 

parameters lie in unstable region. Figure 2.4 (a, c) shows the response of the 

pendulum for the first two system parameters and Figure 2.4 (b, d) shows the 

respective phase plane plots, as expected from the stability chart  it is clear that, the 

response of the oscillator is stable or bounded for these cases. Figure 2.4 (e, g) 

shows the response for the system parameters lying in unstable region. The response 

clearly shows unstable or unbounded motion of the pendulum as expected from the 

stability chart. The state of the response can be clearly understood from the 

respective phase plane plots shown in Figure 2.4 (f, h). The response of the oscillator 

in unstable regions is exponentially increasing which is a peculiar characteristic is of  
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Figure 2.4: Response of parametric oscillator for the system parameters shown in 

Figure 2.3  
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parametric instability. The response of the pendulum is as expected from the 

stability diagram. 

The animation of simple pendulum’s response in stable region shown in 

Figure 2.4 (c) can be seen in the link http://youtu.be/QwSHhknz9ys. The animation 

of the pendulum in unstable region whose response is shown in Figure 2.4 (e) can be 

seen in the link http://youtu.be/L-Q6xg2KbCA. 

2.4.2 Response of inverted pendulum 

 

Figure 2.5: Location of system parameters for inverted pendulum 

 Figure 2.5 shows the location of system parameters for inverted pendulum 

under parametric excitation. These system parameters are given in Table 2.1. The 

response of the inverted pendulum for given parameters is shown in Figure 2.6. The 

parameters taken here, move from unstable region to stable region and from 

response of the inverted pendulum shown in Figure 2.6 it is clear that the pendulum 

attains stability as the system parameters move from unstable region to stable region. 

From this study it can be inferred that pendulum has to be excited with large 

frequencies to make it stable. The response of the inverted pendulum is as expected 

from the stability diagram. The response animation of inverted pendulum under  
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      Figure 2.6: Response of inverted pendulum for system parameters shown in Figure 2.5 

stable excitation and unstable excitation parameters can be viewed in the links 

http://youtu.be/GwlegJHI4vQ and http://youtu.be/ytkwtTaWOq0 respectively.  

2.5 Summary 

 Present chapter discusses SDOF parametric systems. The simple pendulum 

and inverted pendulum serves in many ways as a pedagogical tool to understand 

complicated physical phenomena and mathematics involved with systems under 

going oscillatory motion. The governing equation for the parametric oscillator is 

Mathieu equation. Stability diagram is plotted using Bolotin’s approach and 

reliability of the stability diagram is checked via simulation of response of Mathieu 

equation employing Runge-Kutta method. The response of the pendulum was as 

expected from the stability chart. 
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Chapter 3 

DYNAMIC STABILITY OF SLENDER BEAMS 

3.1 Introduction 

 The function of beam structure in most of the engineering applications is to 

carry a static load. To minimize costs, it is often desired to reduce the mass of the 

supporting structure as much as possible, while retaining high stiffness. Thin-walled 

structures or slender structures which have high stiffness to mass ratio are often used 

for this purpose. These structures carry static load and are prone to buckling under 

high loads. A static buckling analysis should be carried out to assess their static 

stability. In many situations, for example due to motion of the base of the structure 

under seismic events, a dynamic load can act on the structure in addition to the static 

load. This dynamic load acting on the structure can be parametric and can cause 

dynamic buckling or parametric instability resulting in structural damage or total 

collapse of the structure. Hence it is required to carry out stability analysis of the 

structure under parametric loadings to avoid such damages.  

 The governing equation for dynamic stability of elastic structures under 

parametric excitation is a Mathieu-Hill equation [8, 14]. The dynamic stability of 

mechanical systems, according to Bolotin’s definition [14], represents a specific 

aspect of the stability of motion. Several works have been presented along the lines 

of Bolotin’s studies [14] aiming to give quantitative description of the phenomenon. 

But those methods become difficult to apply on slender structures of complex shape 

with arbitrary boundary conditions. Thus, to analyse the stability of complex 

structures, numerical methods are prefered. Numerical methods like finite difference 

method and finite element methods can be employed to solve the Mathieu-Hill 
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equation. Brown [33] was the first to employ the finite element method to solve the 

dynamic stability problem; he employed finite element method to solve dynamic 

stability of bars. Shastry [37-39] applied the finite element method to study the 

dynamic stability of cantilever columns subjected to axial loads.  The finite element 

approach of Mathieu-Hill equation in case of shallow shells has been proposed by 

Basar [40], the proposed method is applicable to all types of structures. Briseghella 

[41] applied finite element method to investigate the stability of slender beam and a 

frame under vertical axial periodic excitation. T. Iwatsubo and Saigo [60, 61] 

employed the finite difference method to analyze the stability of columns under 

periodic axial loads.  Most of the studies target to study the response of structure 

under parametric excitation alone. There are chances that along with the parametric 

excitation, a forcing excitation act on the structure which can set structure to 

resonance. Few studies exist on the investigation of stability of structures under 

combined parametric and forcing excitations. Lin and Shih [62] investigated 

earthquake response of cantilever beam under both lateral and transverse loadings.  

Hara [63] analyzed response of a downward hanging cantilever beam with a 

concentrated mass at the tip under combined lateral and transverse excitations. R. F. 

Fung [64] analyzed the stability of beam subjected to combined excitations using 

average method and method of multiple scales. Park [65] analyzed long slender 

marine structures under combined parametric and forcing excitations using finite 

element method. Chiba [66] conducted an experiment to analyze the influence of 

horizontal excitations on dynamic stability of a slender beam subjected simultaneous 

horizontal and vertical excitations. Hamed [67] studied the dynamic behavior of 
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string-beam coupled system under combined excitations using method of multiple 

scales.  

 In the present chapter, dynamic stability of slender beam is analyzed using 

finite element Bolotin’s approach and Hsu’s method. To verify the reliability of the 

stability diagram, response of the beam under parametric excitation is computed by 

employing Newmark’s method of direct time integration technique.  

3.2 Governing equations  

 The continuum model considered by Bolotin for a slender column subjected 

to external periodic load is shown in Figure 3.1. The column is discretized using 

two-noded Euler beam elements with two degrees of freedom namely transverse 

displacement and rotation at each node as shown in Figure 3.2.  Beam element 

neglecting axial degree of freedom (d.o.f) is used for this study. Let E be the 

Young’s modulus, I be the moment of inertia of the beam cross sectional area. To 

describe the displacement at intermediate nodal points Hermite polynomial shape 

functions are used [68]. Referring to the beam element we can write: 

Displacement function,   Tu N q=     (3.1) 

Strain,     T TLu LN q B qε = = =    (3.2) 

Stress,     TD DB qσ ε= =     (3.3) 

where N is a vector of shape functions, q is vector of d.o.f., L is curvature 

differential operator, B is strain displacement matrix and D is bending stiffness 

modulus. The element equation for beam according to principle of virtual work is, 

( )
2

1

0
t

e e e

t

T U W dtδ − + =∫    (3.4) 
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where Te is kinetic energy, Ue is internal potential energy of the beam element and 

W
e is work done on the beam element by the external periodic force p(t). With the 

help of principle of virtual work it is possible to obtain the element mass, stiffness 

and geometric stiffness matrix. 

                                                        

Figure 3.1: Column subjected to axial loading      Figure 3.2: Two noded beam element 

 
3.2.1 Element mass matrix 

Elemental kinetic energy of the beam element is given by, 

2

2
0

1

2

l

e w
T A

t
ρ

∂
=

∂∫     (3.5) 

where ρ is the mass density per unit volume, A is the cross sectional area of the 

beam, l is the element length. Substituting Eq. (3.1) in Eq. (3.5) and applying 

Galerkin’s method results in the elemental mass matrix for the beam.  Element mass 

matrix Me of the beam is given as, 

0

l

e T
M N ANdxρ= ∫     (3.6) 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

l l

l l l lAl
M

l l

l l l l

ρ

− 
 − ⇒ =
 −
 
− − − 

  (3.7) 
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3.2.2 Element stiffness matrix 

Elemental potential energy of the beam element is given by 

2 2

2 2
0

1

2

l

e w
U EI

x x

 ∂ ∂
=  ∂ ∂ 
∫    (3.8) 

Substituting Eq. (3.1) in Eq. (3.8) and applying Galerkin’s method results in the 

elemental stiffness matrix for the beam. Element stiffness matrix Ke of the beam is 

given by, 

0

l

e T
K B EIBdx= ∫     (3.9) 

2 2

3

2 2

12 6 122 6

6 4 6 2

12 6 12 6

6 2 6 4

e

l l

l l l lEI
K

l ll

l l l l

− 
 − ⇒ =
 − − −
 

− 

  (3.10) 

3.2.3 Element geometric stiffness matrix 

The beam is subjected to external periodic transverse loading p(t). The elemental 

work done on the beam by the external periodic force p(t) is given by, 

2

2
0

1
( )

2

l

e w
W p t dx

x

∂
=

∂∫     (3.11) 

Substituting Eq. (3.1) in Eq. (3.11) and applying Galerkin’s method results in the 

elemental geometric stiffness matrix for the beam. Elemental geometric stiffness 

matrix e

gK  of the beam is given by, 

0

Tl

e

g

N N
K dx

x x

∂ ∂   =    ∂ ∂   ∫    (3.12) 
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2 2

2 2

36 3 36 3

3 4 31

36 3 36 330

3 3 4

e

g

l l

l l l l
K

l Ll

L l l l

− 
 − − ⇒ =
 − − −
 

− − 

  (3.13) 

3.2.4 Governing equation for dynamic stability 

 On substituting the element matrices Eq. (3.7), Eq. (3.10) and Eq. (3.13) into 

Eq. (3.4) of principle of virtual work and on assembling the element matrices, the 

following governing equation is obtained 

( )( ) 0gMq K p t K q+ − =ɺɺ    (3.14)  

The damping effects in the governing equation can be included by introducing the 

damping matrix [8, 14] in the form C = αM in the above equation, we get 

( )( ) 0gMq Cq K p t K q+ + − =ɺɺ ɺ   (3.15) 

where M is mass matrix, C is damping matrix, K is elastic stiffness matrix, Kg is 

geometric stiffness matrix or stability matrix, p(t) is external periodic force and q is 

vector of d.o.f.  The periodic force is assumed to be of the form 

( ) coss dp t P P t= + Ω     (3.16) 

where Ps is the static load component, Pd is the dynamic load component and Ω is 

the frequency of the parametric periodic force. It can be expressed as 

( ) coscr crp t P P tα β= + Ω    (3.17) 

where α = Ps/Pcr and β = Pd/Pcr are termed as the static and dynamic load factors 

respectively, Pcr is the critical buckling load of the beam. Buckling load of the beam 

can be obtained numerically by solving the following eigenvalue problem 

0.gK Kλ− =     (3.18) 

Where λ is vector of buckling values and Pcr is the minimum value of vector λ. 
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3.3 Stability analysis of slender beam 

Stability analysis of slender beam with any arbitrary boundary conditions can 

be carried out using the methods discussed in Chapter 1. Bolotin’s finite element 

approach is used here.  

3.3.1 Finite element Bolotin’s approach 

Substitution of Eq. (3.16) into Eq. (3.15) leads to  

( cos ) 0gs gdMq Cq K K K t q+ + + + Ω =ɺɺ ɺ   (3.19)  

where Kgs = -Ps×Kg, Kgd = -Pd(t)×Kg. Eq. (3.19) is similar to Eq. (1.15). To apply 

Bolotin’s approach the required mass, damping, stiffness and geometric stiffness 

matrices are formed and to obtain the stability chart Eq. (1.22) and Eq. (1.23) are 

solved for critical frequencies with increasing dynamic load component Pd. To 

obtain stability diagram without damping Eq. (A.1 – A.4) given in Appendix – A are 

solved. This approach cannot plot combination resonance regions. Combination 

resonance regions can be captured using Hsu’s method. 

3.3.2 Dynamic stability diagram 

Using the proposed Bolotin’s approach the dynamic stability of a beam 

simply supported at both ends is examined. A simply supported beam of length 7 m, 

Young’s modulus 2.1×1011 N/m2, moment of inertia 2003×10-8 m4 and mass per unit 

length of 61.3 Kg/m is considered for analysis. The dimensions are of a HEB 200 

beam. A simply supported beam is considered because the theoretical solution of 

this case is known and can be used for comparison. For dynamic analysis the static 

component of the external periodic force is taken zero i.e. ps = 0. The theoretical 

natural frequencies and Euler buckling load for the simple beam supported at both 

the ends are, 
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22
nk EI

f
L mπ

=     (3.20) 

where kn = 9.87, 39.5, 88.8 for the first three modes respectively. 

2

2cr

EI
P

L

π
=      (3.21) 

Table 3.1 gives the comparison of natural frequencies and Euler buckling load of the 

simply supported beam obtained using theoretical and finite element method. In the 

finite element analysis 10 beam elements are considered.  

Table 3.1: Natural frequencies (s
-1

) and buckling load (N) for simple supported beam 

Mode Theory FEM Error % 

1 52.7644 52.7623 0.004 
2 211.1645 211.0536 0.052 
3 474.7192 474.9113 -0.040 

Buckling 

load 
847235 847669 -0.051 

 

 Figure 3.3 shows the region of instability, obtained from solving 2T period 

eigenvalue solution, Eq. (1.22). The exact solution obtained using theoretical 

continuum solution [14] is also shown. From the Figure 3.3, it is clear that exact 

solution and FEM solution are in good match. This instability region obtained from 

2T period eigenvalue solution is called the principal instability region, and it is the 

most dominating and dangerous. This instability region corresponds to the first 

fundamental frequency.  

Figure 3.4 shows the instability regions of the beam for damped and 

undamped case, obtained from solving 2T and T eigenvalue solutions. The 

instability regions shown correspond to the first fundamental frequency.  Also there 

exist infinite regions of instability corresponding to infinite modes of vibration but  
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        Figure 3.3: Comparison between FEM solution and theoretical solution 

 

 

Figure 3.4: Dynamic stability diagram for simply supported beam 

 
those instability regions are of least importance. The instability region obtained from 

the 2T period eigenvalue solution will be wider than the instability region obtained 

from T period eigenvalue solution.  The presence of damping increases the 

structures chance of stability under dynamic loading. From Figure 3.4 it is clear that 

the instability region is reduced due to damping. There exists a critical excitation 

parameter, below which the system is always stable. From the stability chart, one 

can conclude that, when the axial loading parameters lie in the instability regions, 
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the structure undergoes instability, i.e. the structure’s response goes unbounded. 

Contrarily, if the loading parameters are outside the instability zones, the structure is 

stable.    

3.4 Numerical results and discussion 

 To verify the reliability of stability chart obtained a direct numerical 

integration of the Mathieu equation Eq. (3.15) is carried out. To compute the 

response of the beam under parametric excitation, a direct time integration technique 

Newmark’s method is employed. A time step of ∆t = 5×10-4 s and β = 0; γ = 0.5 are 

the parameters employed for direct time integration. A damping parameter of α = 5 

is considered for numerical time integration. 

 The load cases examined under parametric excitation are shown in Figure 3.5 

and are given in Table 3.2. A very small initial displacement of 3 mm to the 

translational degree of freedom is imposed to evaluate the response, without this 

initial displacement there won’t be any response in the structure.    

Figure 3.6 shows structure’s response w.r.t time at time integration points A, 

B and C. The left side cases (a), (c) and (e) are computed without damping, where as 

the right hand side cases (b), (d) and (f) are computed with damping present in the 

structure. From Figure 3.5, it is clear that these excitation parameters lie in principal 

instability region and as expected the response of the beam is unbounded. Figure 

3.6(a) shows gradual increase in the response, where as in Figure 3.6(b) the structure 

come to rest due to damping, achieving stability. Point A lies in stability region 

when damping is present, thus a stable response is shown. From Figures 3.6(c) – 

3.6(f) parametric instability can be noted; response shows an exponential increase in 

time. The rate of increase of amplitude is low in presence of damping, which can be  
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Figure 3.5: Location of system parameters for direct time integration 

 
Table 3.2: System parameters shown in Figure 3.5 

Case Ω/ω1  Pd/Pcr 

A 2.0150 0.1594 
B 1.9251 0.3348 
C 2.2362 0.6009 
D 2.2016 0.3991 
E 1.6624 0.4284 
F 0.9850 0.3523 
G 0.9297 0.7763 

 

seen from Figure 3.6(d), 3.6(f) when compared to Figure 3.6(c), 3.6(e). Damping 

can only reduce the rate of increase of amplitude and may delay occurrence of 

instability but have no control on final amplitude. From Figure 3.6, it can be seen 

that, as the loading amplitude is high, the rate of increase of amplitude is high, 

irrespective of presence or absence of damping.  Since these points lie in unstable 

region, the response is unstable as expected. The response animation of the beam for 

the case A lying in unstable region and whose reponse is shown in Figure 3.6 (a) can 

be seen in the link http://youtu.be/xW065jvw_wg.  

Figure 3.7 shows structure’s response at points D and E with and without 

damping. The point D lie on the boundary curve of principal instability region and 
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the point E lies in stable region. Both the points should show a stable response and 

from Figure 3.7 it is evident that the response of the beam is stable. In Figure 3.7(a) 

the response of the beam shows a beating phenomenon; the displacement function is 

the product of periodic function with period T and a function of difference of two 

harmonic functions with limited different frequencies of vibration. The difference of 

the frequencies of the harmonic functions have a phase difference, thus the 

oscillation amplitudes add or subtract themselves showing beating phenomenon. 

This kind of behavior is not observed in presence of damping. As the points lie in     

Figure 3.6: Structure’s response at points A, B and C 
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Figure 3.7: Structure’s response at points D, E 

Figure 3.8: Structure’s response at points F, G  
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the stable region, as expected stable response of the beam is observed. The response 

of the beam for the case E, which lies in stable region and whose reponse is shown 

in Figure 3.7 (c) can be viewed in the link http://youtu.be/mOAmeDxQq9w. 

Figure 3.8 shows structure’s response at points F and G with and without 

damping. The parameters F and G lie in the instability region bounded by boundary 

curves of solution with period T. This instability region corresponds to the beams 

response characterized by vibration with period equal to T.  Figure 3.8(a) shows 

response at point F without damping. The time taken for the amplitude to grow is 

large when compared to the time taken by parameters lying in principal instability 

region. The parameters for F lie in stable region when damping is present and a 

stable response is shown in Figure 3.8(b).  Figures 3.8(c), 3.8(d) shows the beams 

response at point G, both the responses show instability. The time taken for 

amplitude to grow up is large when compared to response of the beam in principal 

instability region. It can be seen from Figure 3.4, that as the damping increases the, 

instability region becomes small and vanishes. 

It was discussed in Chapter 1, that Bolotin’s approach cannot plot parametric 

combination instability regions. To plot those regions Hsu’s stability criteria can be 

used. For the present simply supported beam, Hsu’s criteria for combination 

resonance Eq. (1.60) were applied and it was found that no combination resonance is 

possible in this case of beam simply supported at both the ends.    

3.5 Summary 

Using finite element formulation of beam the dynamic stability of simply 

supported slender beam is investigated. The instability regions are obtained using 

finite element Bolotin’s approach. To check the reliability of the procedure direct 
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time integration using Newmark’s method is carried out. The instability regions are 

checked by plotting time vs. displacement plots at different integration points. The 

plots show an exponential increase in displacement in the instability region and 

bounded solution in the stability region as estimated from the theory. This numerical 

procedure can be applied to any complex structure with arbitrary boundary condition 

under any load for which the analytical solution is difficult to use.   
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Chapter 4 

DYNAMIC STABILITY OF THIN PLATES 

4.1 Introduction 

 Plate is defined as a flat body whose thickness is much smaller than its other 

dimensions. A flat plate carries a lateral load by bending; it develops bending 

moments in two directions and a twisting moment. Slabs in civil engineering 

structures, bearing plates under columns, many parts of mechanical components are 

the common examples of plates.  In the fields of aerospace, aeronautics, 

transportation etc. lighter and thin-walled structures are used because they offer 

better economy satisfying the functional requirements. Thus it is of great concern to 

study the mechanical behavior of such structures when they are subjected to a static 

or dynamic loading. In particular, when a plate is subjected to an out-of-plane 

sinusoidal loading it exhibits forced resonance and when the plate is subjected to in-

plane loading it exhibits lateral instability (parametric instability) over certain 

regions of the system parameters.  A  number  of  researchers  have  investigated  the  

dynamic  stability  of  plates  due  to  periodic in-plane  loads.  For  example,  Hutt  

and  Salam  [71] used  the  thin  plate  finite  element  model  to  study the  dynamic  

instability  of  plates.  Krajcinovic  and Herrmann  [72]  used  an  integral  equation  

technique  to solve the  dynamic  stability  problem  of  an  isotropic rectangular  

plate.  Tani and Nakamura [73] studied annular plates.  Srinivasan  and  Chellapandi  

[74]  studied the  dynamic  stability  of  thin  rectangular  layered  plates  by  the  

finite  strip  method.  Takahashi [75] analyzed dynamic stability of rectangular 

plates analytically. Chen and Yang [76] studied the dynamic stability of laminated 

composite plates by the finite element method. Deolasi and Datta [77] analyzed the 
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parametric resonance of rectangular plates under non-uniform edge loading using 

method of multiple scales. Sassi [78-81] analyzed the behavior of plates under 

combined parametric and forcing excitation.  

 In the present chapter dynamic stability of thin plate is analyzed using finite 

element method.  Two plate theories exist, Kirchhoff theory and Mindlin theory. In 

the Kirchhoff theory, transverse shear deformation is not considered and in Mindlin 

theory it is accounted. In the present chapter Mindlin plate theory is considered.  

4.2 Mindlin plate theory 

 Plate is a flat surface having considerably large dimensions as compared to 

its thickness. Due to this geometry, 3D finite element analysis is not required to 

model plates; a 2D finite element analysis is adequate. A plate of thickness t is 

modeled by its midsurface at a distance t/2 from each lateral surface. Let the xy 

plane be the plate midsurface, so that z=0 defines the midsurface. The behavior of 

plate is idealized by a line normal to the midsurface under applied loads. In Mindlin 

plate theory, the straight line normal to the midsurface remains straight but not 

normal to the deformed midsurface after applying load. The Mindlin plate theory 

takes shear deformation into account. The normal gets rotated by components θx and 

θy. Thus a point not on the midsurface has the x-direction displacement u, y-

direction displacement v and z-direction displacement w. For small displacements 

and rotations, stresses and strains can be written as [68, 70, and 82]; 

Bending stresses and strains are written as 

T

b x y xyσ σ σ τ =       (4.1) 

T

b x y xyε ε ε γ =       (4.2) 

Transverse shear stresses and strains are written as 
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T

s xz yzσ τ τ =       (4.3) 

T

s xz yzε γ γ =       (4.4) 

The assumed displacement field for a plate can be written as 

0; ;x yu z v z w wθ θ= = =    (4.5) 

For small displacements and rotations, strains can be written as [68, 70, and 82]; 

4.2.1 Strains 

Bending strains are obtained as 

x
x

y

y

y x
xy

u
z

x x

v
z

y y

u v
z

y x x y

θ
ε

θ
ε

θ θ
γ

∂∂
= =
∂ ∂

∂∂
= =
∂ ∂

∂ ∂∂ ∂
= + = + ∂ ∂ ∂ ∂ 

   (4.6) 

Transverse shear strains are obtained as 

xz x

yz y

w u w

x z x

w v w

y z y

γ θ

γ θ

∂ ∂ ∂
= + = +
∂ ∂ ∂
∂ ∂ ∂

= + = +
∂ ∂ ∂

    (4.7) 

4.2.2 Stresses 

 The linear elastic stress-strain relations in bending for a homogenous 

isotropic material is defined as 

b b bDσ ε=      (4.8) 

where Db is defined as 

2

1 0

1 0
1

1
0 0

2

b

E
D

ν
ν

ν
ν

 
 
 

=  −  −
 
 

   (4.9) 



CHAPTER-4 

 

54 
 

The linear elastic stress-strain relations in transverse shear for a homogenous 

isotropic material is defined as 

s s sDσ ε=     (4.10) 

where Ds is defined as 

0

0s

G
D

G

 
=  
 

    (4.11) 

where E, ν and G are Young’s modulus, Poisson’s ratio and shear modulus of the 

homogenous isotropic material respectively.  

4.3 Finite element discretization 

 The generalized displacements are independently interpolated using the same 

shape functions as follows 

( )

( )

( )

1

1

1

,

,

,

n

i i

i

n

x i xi

i

n

y i yi

i

w N w

N

N

ξ η

θ ξ η θ

θ ξ η θ

=

=

=

=

=

=

∑

∑

∑

    (4.12) 

where Ni(ξ,η) are the shape functions and n is the number of nodes in the element. 

Strains can be defined as 

;e e

b b s szB d B dε ε= =     (4.13) 

where Bb and Bs are the strain-displacement matrices for bending and shear 

contributions and can be written from shape functions as  
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1

1

1 1

0 0 0 0

0 0 0 0

0 0

n

n
b

n n

NN

x x

NN
B

y y

N NN N

y x y x

 ∂∂
 

∂ ∂ 
 ∂∂

=  ∂ ∂ 
 ∂ ∂∂ ∂
 ∂ ∂ ∂ ∂ 

⋯

⋯

⋯

   (4.14) 

1
1

1
1

0 0

0 0

n
n

s
n

n

NN
N N

x x
B

NN
N N

y y

∂∂ 
 ∂ ∂ =

∂∂ 
 ∂ ∂ 

⋯

⋯

  (4.15) 

and de is the degrees of freedom of node 

{ }1 1 1
eT

x y n xn ynd w wθ θ θ θ= ⋯   (4.16) 

4.3.1 Element mass matrix 

 The kinetic energy of the Mindlin plate is given as 

( )2 2 21

2 V
T u v w dvρ= + +∫ ɺ ɺ ɺ    (4.17) 

Substituting the above defined field equations, the kinetic energy for an element can 

be written as 

3 3
2 2 21

2 12 12e

e e

x y

t t
T tw dρ θ θ

Ω

 
= + + Ω 

 
∫ ɺ ɺɺ   (4.18) 

The element mass matrix is computed as  

e

e T eM N INdρ
Ω

= Ω∫     (4.19) 

where I is given by   

 
3

3

0 0

0 0
12

0 0
12

t

t
I

t

 
 
 
 =
 
 
 
  

    (4.20) 
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If isoparametric shape functions are used, the stiffness matrix becomes  

1 1

1 1

e TM N IN J d dρ ξ η
+ +

− −

= ∫ ∫    (4.21) 

4.3.2 Element stiffness matrix 

 The strain energy of the Mindlin plate is given as  

1

2 2
T T

b b s s
v v

U dv dv
α

σ ε σ ε= +∫ ∫    (4.22) 

where α is the shear correction factor and can be taken as 5/6. The finite element 

strain energy for an element can be written as  

1

2 2e e

e eT T e e eT T e e

b b b s s s
z z

U d B D B dzd d d B D B dzd d
α

Ω Ω
= Ω + Ω∫ ∫ ∫ ∫  (4.23) 

The element stiffness matrix of the Mindlin plate is then obtained as 

3

12 e e

e T e T e

b b b s s s

t
K B D B d t B D B dα

Ω Ω
= Ω + Ω∫ ∫    (4.24) 

If isoparametric shape functions are used, the stiffness matrix becomes  

1 1 1 13

1 1 1 12
e T T

b b b s s s

t
K B D B J d d t B D B J d dξ η α ξ η

+ + + +

− − − −

= +∫ ∫ ∫ ∫  (4.25) 

where J is the Jacobian matrix.  

4.3.3 Element geometric stiffness matrix 

 The geometric stiffness matrix is a result of initial stress present in the 

structure. The strain energy for an initially stressed Mindlin plate, after neglecting 

terms with third and higher powers in displacement gradients is written as [83], 

( )0

1

2 2

TT T L

b b s s
v v v

U dv dv dv
α

σ ε σ ε σ ε= + +∫ ∫ ∫   (4.26) 

where σ0 is initial membrane stress distribution present in the plate and 
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2 2 2

2 2 2

1

2

1

2
L

u v w

x x x

u v w

y y y

u u v v w w

x y x y x y

ε

  ∂ ∂ ∂     + +        ∂ ∂ ∂       
 
       ∂ ∂ ∂
 = + +       ∂ ∂ ∂       

 ∂ ∂ ∂ ∂ ∂ ∂ + +
∂ ∂ ∂ ∂ ∂ ∂ 

 

   (4.27) 

On integrating over the plate thickness, the strain energy is  

0

0

1 1

2 2

1
ˆ                    +  

2

1
ˆ                    +

2

e e
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T e T e

b b b s s s

T e
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σ
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Ω Ω
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 ∂ 
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 ∂
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∫
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 ∂ 
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∫

 (4.28) 

where  

0 0

0 0 0
ˆ x xy

xy y

σ τ
σ

τ σ

 
=  
  

   (4.29) 

The element geometric stiffness matrix from Eq. (4.28) is obtained as  

0

3 3

1 0 1 2 0 2

ˆ

ˆ ˆ       
12 12

e

e e

e T e

G b b

T e T e

s s s s

K t G G d

t t
G G d G G d

σ

σ σ

Ω

Ω Ω

= Ω

+ Ω + Ω

∫

∫ ∫
 (4.30) 

where  
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1
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0 0 0 0

0 0 0 0

n

b
n

NN

x x
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y y

∂∂ 
 ∂ ∂ =

∂∂ 
 ∂ ∂ 
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⋯

  (4.31) 

1

1
1

0 0 0 0

0 0 0 0
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s
n

NN

x x
G

NN

y y

∂∂ 
 ∂ ∂ =

∂∂ 
 ∂ ∂ 
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⋯

  (4.32) 

1
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0 0 0 0

0 0 0 0
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NN

x x
G

NN

y y

∂∂ 
 ∂ ∂ =

∂∂ 
 ∂ ∂ 

⋯

⋯

  (4.33) 

The geometric stiffness matrix KG can be written as, 

G Gb GsK K K= +     (4.44)  

where KGb is bending contribution and given by first term of Eq. (4.30) and KGs is 

shear contribution and given by last two terms of Eq. (4.30). On using isoparametric 

shape functions, the geometric stiffness matrix becomes 

1 1

0

1 1

1 1 1 13 3

1 0 1 2 0 2

1 1 1 1

t t
         +

12 12

T T

G b b

T T T T

s s s s

K t G G J d d

G G J d d G G J d d

σ ξ η

σ ξ η σ ξ η

+ +

− −

+ + + +

− − − −

=

+

∫ ∫

∫ ∫ ∫ ∫
(4.45) 

 The mass, stiffness and geometric stiffness matrices given by Eq. (4.21), Eq. 

(4.25) and Eq. (4.45) respectively are computed by numerical integration employing 

Gaussian integration. For thin plates, the shear contribution shall reduce and become 

negligible. Shear contribution is significant for thicker plates. But it should be noted 

that, as the bending energy is proportional to t3 and shear energy proportional to t, 

the shear energy becomes dominant compared to the bending energy as the plate 

thickness t becomes very small compared to its side length. This is called shear 
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locking. To resolve this shear locking problem, the reduced integration technique 

was proposed. The remedy of shear locking is, shear term is under integrated 

compared to bending term i.e. bending term is integrated using the exact integration 

rule and shear term with reduced integration. For example, when four-noded bilinear 

isoparametric elements are used, the 2×2 Gauss-Legendre quadrature is used for the 

bending term while 1-point integration is used for the shear term. Similarly, for the 

nine-node biquadratic isoparametric elements the bending term is integrated using 

3×3 integration order and shear term is integrated using 2×2 integration order.    

4.4 Governing equation for dynamic stability 

 Application of finite elements to a plate under parametric in-plane loading 

yields the following equilibrium equation 

( )( ) 0GMq Cq K P t K q+ + + =ɺɺ ɺ   (4.46) 

where M, C, K and KG are the global assembled mass, damping, elastic stiffness and 

geometric stiffness matrices respectively. All  these  matrices  are  square  

symmetric  matrices  of  order  N,  where N is the number of degrees of freedom of 

the system and q is the nodal displacement column vector of order N. P(t) is the 

magnitude of the dynamic load acting on the edges of the plate.  In the present 

analysis, a plate simply supported at all its edges and under uniform load P(t) on the 

opposite edges as shown in Figure 4.1 is considered.   The matrices M, K are 

obtained by finite element formulation as derived in the previous section and C is 

obtained from the mass matrix by multiplying the mass matrix with proportionality 

constant. To calculate KG, initially plane stress analysis under the uniform edge 

loading at the opposite edges is carried out to obtain initial stress distribution and 

from these initial stress distribution KG matrix is evaluated.   
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Figure 4.1: Simply supported plate under uniform edge loading at opposite edges 

 For the free vibration problem without damping, Eq. (4.46) can be reduced to  

2 0K Mω φ − =     (4.47) 

where ω is the natural frequency of vibration and Ø gives the normal mode of 

vibration of the plate. For static stability or for the buckling problem Eq. (4.46) 

reduces to 

[ ] 0cr GK P K ϕ− =    (4.48) 

where Pcr is the buckling load and φ is the mode shape of buckling. Both the 

equations Eq. (4.47) and Eq. (4.48) are eigenvalue problems. These are solved to get 

the fundamental natural frequencies and the critical buckling load of the plate.  

If the edge in-plane loading is considered periodic in the form  

( ) coss dP t P P t= + Ω    (4.49) 

where Ps, Pd  are static and dynamic component of the parametric excitation and Ω 

the frequency of excitation, Eq. (4.46) reduces to  

( ) 0Gs GdMq Cq K K K t q + + + + = ɺɺ ɺ   (4.50) 
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( ) 0E GdMq Cq K K t q ⇒ + + + = ɺɺ ɺ   (4.51) 

where KGs  is the geometric stiffness matrix corresponding to the static load 

component and KGd is the geometric stiffness matrix corresponding to the dynamic 

load component and this matrix changes with respect to time. KE is the elastic 

stiffness matrix which is equal to sum of K and KGs. 

4.5 Stability analysis of thin plates  

Stability analysis of thin plates with any arbitrary boundary conditions can 

be carried out using the methods discussed in Chapter 1. Bolotin’s finite element 

approach and Hsu’s stability criteria are used here. Bolotin’s approach can give only 

simple parametric instability regions, while with Hsu’s conditions stability regions 

for simple and combination resonance can be obtained.  

4.5.1 Hsu’s method 

To apply Hsu’s method, Eq. (4.51) is transformed into a suitable form by 

means of modal transformation. The global displacement matrix is assumed as  

q φξ=      (4.52) 

where Ø is a normalized modal matrix containing the normal modes of free vibration 

problem, 

0EMq K q+ =ɺɺ     (4.53) 

and ξ is a set of normal coordinates. Substituting Eq. (4.52) into Eq. (4.51) under the 

parametric excitation given in Eq. (4.49) results in 

2

1

2 cos 0
N

m m m m m m cr mn n

n

P t dξ η ω ξ ω ξ β ξ
=

+ + + Ω =∑ɺɺ ɺ  (4.54) 

Eq. (4.54) is set of coupled Mathieu equations, where m = 1, 2,…N corresponds the 

mode number, ωm is the natural frequency of mth mode obtained from Eq. (4.53), ηm 



CHAPTER-4 

 

62 
 

is the modal damping ratio, β (= Pd / Pcr) is the dynamic load factor and dmn are the 

elements of the matrix 

1 1
gD M Kφ φ− −= −     (4.55) 

To apply Hsu’ method, stability conditions Eq. (1.60 – 1.64) are modified and can 

be written as [69] follows: 

i. Simple resonance, Ω = 2ωj + ελ (i=j)  

2 2

2 4
2

jj j

j

j

d ηε
ω

ω ε

   
Ω− < −       

  (4.56) 

ii. Combination resonance of sum type, Ω = ωi + ωj + ελ (i≠j) 

( )
21

4
22

ij ij ji i
i j ij

i jij

d dη ηε
ω ω η

ωω εη

+  Ω − + < −  
 

 (4.57) 

iii. Combination resonance of difference type, Ω = ωi – ωj + ελ (i>j) 

  ( )
21

4
22

ij ij ji i
i j ij

i jij

d dη ηε
ω ω η

ωω εη

+  Ω − − < − −  
 

 (4.58) 

In the above conditions ηij = ηi/ηj. In the case of simple resonance, i = j and it gives 

always ηij = 1. 

4.5.2 Dynamic stability chart of simply supported plate under uniform edge 

loading 

 A program is written to perform all the computations described above. Plate 

is discretized with isoparametric four noded elements. Elements elastic stiffness and 

mass matrices are obtained using Gaussian reduced integration and these elements 

are assembled into global matrices. A plane stress analysis is performed to know the 

initial stress distribution under given edge loading, which is required to calculate 

geometric stiffness matrix. Reduced Gaussian quadrature is used for obtaining 
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element geometric stiffness matrices and these matrices are assembled into global 

geometric stiffness matrix. After obtaining the global matrices, the appropriate 

boundary conditions are applied. The stability chart is plotted point by point using 

Eq. (4.56 – 4.58). 

 In order to check the validity of the code, the free vibration problem and 

buckling problem are solved to get natural frequencies and buckling load and these 

results are compared with the available literature. These values are expressed in the 

non-dimensional form defined as follows. 

Non-dimensional buckling load,  crP a

D
γ =     (4.59) 

Non-dimensional frequency   2 t
b

D

ρ
λ ω=     (4.60) 

where a, b are the plate lengths in x- and y- directions respectively; ρ is mass density 

of the plate material; t is plate thickness. D is flexural rigidity given by 

( )
3

212 1

Et
D

ν
=

−
   (4.61) 

where E is the Young’s modulus and ν is the Poisson’s ratio. 

Table 4.1: Comparison of non-dimensional natural frequencies of the plate with [83] 

a/b � 
 Mode 11 Mode 12 Mode 21 Mode 22 

1.0 19.7170 
(19.7392) 

49.2771 
(49.3480) 

49.2771 
(49.3480) 

78.6045 
(78.9568) 

 Mode 11 Mode 21 Mode 31 Mode 12 
2.0 12.3346 

(12.3370) 
19.7531 

(19.7392) 
32.2215 

(32.0762) 
41.9529 

(41.9458) 
 

Table 4.2: Comparison of non-dimensional buckling load of plate with [84] 

a/b Present [84] 
1 39.4312 39.4784 
2 78.9353 78.9568 
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Table 4.1 and 4.2 shows the comparison of non-dimensional natural frequencies and 

buckling load for square and rectangular plate obtained using the present code and 

the available literature.   

Figure 4.2 shows the region of principal parametric instability corresponding 

to first fundamental frequency, obtained from solving 2T period eigenvalue solution 

in Bolotin’s method, Eq. (1.22) and Hsu’s stability criteria Eq. (4.56) without 

considering damping. From the Figure 4.3, it is clear that both the solutions are in 

good match. 

 

Figure 4.2: Comparison of principal parametric instability region for plate a/b = 1 

 Figure 4.3-4.4 show the complete stability chart for the plate with and 

without damping (α = 0 and α = 50). The stability chart shows the regions of 

instability of first order and second order. The first five mode shapes are considered 

in the stability chart. The boundaries in the chart shows the simple and sum type 

instability regions. It is found that, for the uniform loading on opposite edges when 

all the edges are simply supported no combination resonance of difference type is 

possible. As the load on the edges increases, the width of instability region increases.  
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Figure 4.3: Dynamic stability chart of simply supported plate under edge loading (a/b=1, ps = 0) 

 

 

Figure 4.4: Dynamic stability chart of simply supported plate under edge loading (a/b=2, ps = 0) 

It can be seen from Figures 4.3-4.4, that in  the  presence  of  damping  the  

regions  of  instability  gets  smaller. In the presence of damping, there exists a 

critical dynamic load value for each instability region below which the plate cannot 

be dynamically unstable.  The value of this dynamic load factor increase as the 

damping increases.  The widths of combination resonance will be very small in the 
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presence of damping. The effect of damping on the combination resonances is so 

high such that in few cases the combination resonance cannot occur. 

4.5.3 Effect of static load factor on dynamic stability 

Figure 4.5 shows the influence of static load on the dynamic stability of 

square and rectangular plate. Figure 4.5(a) shows the principal parametric instability 

region of square plate under different static load factor. Figure 4.5(b) shows the first 

three instability regions of first order without damping for three different static load 

factors. For square plate, as the static load Ps increases, the instability region shift 

outwards along the frequency ratio axis and the width of instability region almost 

remains same. For rectangular plate, as the static load Ps increases, all the instability 

regions shift inward along the frequency ratio axes and their width increases. This 

shows that as the static load increases, the rectangular plate is prone to dynamic 

instability. 

4.5.4 Effect of aspect ratio on dynamic stability 

From Figure 4.3 - 4.5, it can be seen that the dynamic stability behavior 

depends to a large extent on the plate aspect ratio. From Figure 4.3 and Figure 4.4 it 

is clear that for higher aspect ratio the instability regions have large width compared 

to less aspect ratio indicating they are more prone to dynamic instability. From 

Figure 4.5, it can be infered that the effect of static load factor on dynamic stability 

with repective to aspect ratio is also, to make the structure prone to instability. The 

effect of damping on simple and combination resonance characteristics is similar, 

irrespective of the aspect ratio of plates. 
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Figure 4.5: Effect of static load factor on dynamic stability (a) a/b = 1 (b) a/b = 2 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Summary 

 The dynamic stability of simply supported thin plates under uniform edge 

loading is obtained using Hsu’s stability criteria. The governing Mathieu-Hill 

equation is solved by employing finite element formulation. Mindlin plate theory is 

used for the formulation of global system matrices. Effects of aspect ratio, static load 

factor on the dynamic stability are studied. The present code developed can be used 

for any plate with any arbitrary boundary conditions. 
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Chapter 5 

DYNAMIC STABILITY OF THIN SHELLS 

5.1 Introduction 

 A shell is defined as a curved surface which develops membrane and 

bending stresses under external loadings. Thin-shell structures find wide 

applications in many branches of engineering. Examples include aircraft, space craft, 

cooling towers, nuclear reactors, steel silos and tanks for bulk solid and liquid 

storage, pressure vessels, pipelines and offshore platforms. Because of the 

slenderness of these structures, buckling is often the controlling failure mode. It is 

therefore essential that their stability behavior must be properly understood for 

safety and reliability. A detailed review on static buckling of thin shells can be found 

in [85]. The formulation of shell governing equations based on different theories can 

be found in [86]. 

 If thin walled structures are subjected to pulsating excitations they may fail 

well before the static bifurcation load leading to dynamic instability, hence a number 

of studies have focused on this aspect. The dynamic stability of simply  supported  

cylinders  under  periodic  axial  and  pressure  loadings  has  been  treated  by 

Bolotin  [l4],  Yao  [87], and  Wood  and  Koval  [88], while  that  of  a vertical  

cylinder  with  one  end clamped  and  the  other  end  free subjected  to  sinusoidal  

base  motion,  was studied  by Vijayaraghavan  and  Evan-Iwanowski  [89]. Nagai 

and Yamaki [90, 91] studied parametric oscillations in cylindrical shells using 

Donnell’s shallow shell equations. While the reference cited above was completely 

based on analytical approaches, Basar [40] and Eller [92] employed finite element 

method for the stability analysis of shell structures under parametric excitations. 
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Lam [93] studied the dynamic stability of cylindrical shells under periodic axial 

loads using different shell theories. Paulo [94, 95] studied nonlinear oscillations 

under parametric excitation in cylindrical shells theoretically using Donnell shallow 

shell equations. Pellicano [96] studied stability of cylindrical shell connected to rigid 

disk.  

In the present chapter the dynamic instability of thin shells under uniform 

periodic compressive force is investigated. Shell model is assumed to be linearly 

elastic, isotropic and homogenous. Finite element method is employed for dynamic 

stability analysis. Degenerated curved shell elements [97] are used for the 

formulation of finite element matrices. The next section explains in brief the 

formulation of degenerated shell elements.  

5.2 Formulation of degenerated shell elements 

 In this section, the underlying basic ideas in the formulation of degenerated 

curved shell element are described in brief. Figure 5.1 shows a degenerated four-

node shell element. The main assumptions made in the formulation of curved shell 

element degenerated from the 3D solid are, 

1. Normals to the middle surface before deformation remain straight even after 

deformation. Same assumption is valid for thick shells as well. 

2. Stress component normal to the shell mid-surface is constrained to be zero 

and eliminated from the constitutive equations. 

Typically a nodal point of a degenerated shell element have three displacements u, v, 

w in the global directions x, y, z and two normal rotations αi and βi. 

5.2.1 Element geometry 

Let ξ, η be the two curvilinear coordinates in the middle plane of the shell and ζ a  
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                  Figure 5.1: Four node shell element (a) Global coordinate system (b) Nodal   

                   coordinate system at node i 

 

linear coordinate in the thickness direction. Further ξ, η, ζ vary between -1 and +1 on 

the respective faces of the element. Global coordinates of an arbitrary point in the 

element can be written in terms of curvilinear coordinates in the form  

( ) ( ) 3, ,
2

V

i

i
i i i i

i

x x
t

y N y N

z z

ξ η ξ η ζ
   
   = +   
   
   

∑ ∑   (5.1) 

where V3i is a vector along the thickness direction and is given by 

3

3 3

3

V   

i

i i i

i

l

t m

n

 
 

=  
 
 

where 
3

3

3

1
i j k

i j k

i

i j k

l x x

m y y
t

n z z

 − 
  

= −   
   −   

    (5.2) 

in which l3i, m3i and n3i are the direction cosines of the midsurface normal and ti is 

the shell thickness at the node i.  

 Vectors V1i and V2i shown in Figure 5.1(b) are perpendicular to each other 

and to V3i. These vectors are used to define directions of nodal rotation degree of 

freedom αi and βi. Directions of αi and βi may differ from node to node in a single 

element and may differ between elements at a node the elements share with each 
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other. Before elements are assembled, each element matrices must be transformed to 

suit a global set of degree of freedom at structure nodes.  

 A vector V1i can be obtained by describing it normal to both V3i and the 

global y direction by writing the cross product V1i = j X V3i, where j is a unit vector 

in the y direction. The last vector would be then V2i = V3i X V1i. If j and V3i are 

parallel to each other, the above calculation fails, in that case use, V2i = V3i X i and 

V1i = V2i X V3i. We can define the matrix of direction cosine of vectors V2i and V3i as 

[ ]
2 1

2 1
2 1

2 1
2 1

i i

i i
i i i

i i

i i

l l

m m

n n

µ
− 

   = − = −       − 

V V

V V
   (5.3) 

5.2.2 Displacement field 

 The displacement of an arbitrary point on the midsurface of the shell element 

can be written as  

[ ]
2

i

ii
i i i i

i

i

u u
t

v N v N

w w

α
ζ µ

β

   
    

= +     
    

   

∑ ∑   (5.4) 

5.2.3 Strain-displacement relation 

 In order to make the shell assumption of zero normal stress on the surface ζ = 

constant to obey, the strain components should be defined in terms of local system 

of axes. Thus, at any point on this surface a normal z’ is erected and two other 

orthogonal axes x’ and y’ tangent to it are considered, the significant strain 

components of interest are given by 

{ }
T

T

x y x y x z y z

u v u v w u w v

x y y x x z y z
ε ε ε γ γ γ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
′ = = + + + ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

           

(5.5) 
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where u’, v’ and w’ are the displacement components in the local direction axes x’, y’ 

and z’ respectively. These local derivatives are obtained from the global derivatives 

of the displacements u, v and w.  The stress components corresponding to these 

strain components are defined as follows 

[ ]{ }   

T

x y x y x z y z

D D B d

σ σ σ τ τ τ

ε

′ ′ ′ ′ ′ ′ ′ ′′  =  
′ ′ ′= =

   (5.6) 

where D’ is the constitute matrix of size 5×5, given by 

( )

( )

2

1 0 0 0

1 0 0 0

1
0 0 0 0

2
1 1

0 0 0 0
2

1
0 0 0 0

2

E
D

ν
ν

ν

ν ν α

ν α

 
 
 
 −
 
 ′ =

− − 
 
 

− 
  

  (5.7) 

in which E and ν are Young’s modulus and Poisson’s ratio respectively. The factor α 

included in the last two shear terms is taken as 5/6 and its purpose is to improve the 

shear displacement approximation.  

And     [ ] [ ]1 2 3 4B B B B B=    (5.8) 

{ } { }1 2 3 4

T
d d d d d=    (5.9) 

Where the vector {di} of degrees of freedom is defined as 

{ } { }i i i i i id u v w α β=    (5.10) 

And the strain displacement matrix B is given by 
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[ ]
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N N N
t m t m
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N

ζ ζ

ζ ζ

ζ ζ

ζ ζ

∂ ∂ ∂
−
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∂ ∂ ∂

−
′ ′ ′∂ ∂ ∂

∂ ∂ ∂
−

′ ′ ′∂ ∂ ∂
=    ∂ ∂ ∂ ∂ ∂ ∂

− + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂   

∂
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 
 
 
 
 
 
 
 
 
 
 
 
    ∂ ∂ ∂ ∂ ∂

− + +    ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂    
 ∂ ∂ ∂ ∂ ∂ ∂   

− + +    ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂    

 

(5.11) 

5.2.4 Jacobian matrix 

 The [B] matrix is defined in terms of the displacement derivatives with 

respect to local Cartesian coordinates (x’, y’, z’). It is required to follow two sets of 

transformations before the element matrices are assembled with respect to the 

curvilinear coordinates (ξ, η, ζ). 

First, the derivatives with respect to the global (x, y, z) directions are obtained by 

using the matrix relation 

[ ] 1

u v wu v w

x x x

u v w u v w
J

y y y

u v wu v w

z z z

ξ ξ ξ

η η η

ζ ζ ζ

−

 ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂∂ ∂ ∂   
 ∂ ∂ ∂ ∂ ∂ ∂  =   ∂ ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂∂ ∂ ∂ 
   ∂ ∂ ∂∂ ∂ ∂   

  (5.12) 

where [J] is the Jacobian matrix and given by, 
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x y z

x y z
J

x y z

ξ ξ ξ

η η η

ζ ζ ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

    (5.13) 

The derivatives , ,
u v

ξ η
∂ ∂
∂ ∂

…etc are obtained using Eq. (5.4)  

Second, after establishing the direction cosines [Tdc] of local axes, the global 

derivatives of displacement u, v, and w are transformed to the local derivatives of the 

local orthogonal displacements by the transformation 

[ ] [ ]T

dc dc

u v w u v w

x x x x x x

u v w u v w
T T

y y y y y y

u v w u v w

z z z z z z

′ ′ ′   ∂ ∂ ∂ ∂ ∂ ∂
   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂   

′∂ ∂ ∂ ∂ ∂ ∂   =   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
   

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂   
   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂   

  (5.14) 

The direction cosines needed in [Tdc] are the direction cosines of the vectors V1, V2 

and V3. 

5.2.5 Element stiffness matrix 

 The element stiffness matrix for a four noded isoparametric element is given 

by 

[ ] [ ] [ ]
1 1 1

20 6 6 6 6 2020 20
1 1 1

Te

X X XX
K B D B J d d dξ η ζ

− − −

  =  ∫ ∫ ∫  (5.15) 

5.2.6 Element mass matrix 

 The element mass matrix for the four noded isoparametric element is given 

by 
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[ ] [ ]
1 1 1

20 5 5 2020 20
1 1 1

Te

X XX
M N N J d d dρ ξ η ζ

− − −

  =  ∫ ∫ ∫   (5.16) 

where ρ is the density of the material. 

5.2.7 Element geometric stiffness matrix 

 The geometric stiffness matrix is defined based on the constant terms of 

Cauchy stresses as, 

[ ] [ ] [ ]
1 1 1

020 9 9 9 9 20
1 1 1

ˆ
Te

G NL NLX X X
K B B J d d dσ ξ η ζ

− − −

  =  ∫ ∫ ∫  (5.17) 

where    [ ] 1 2 3 4
NL NL NL NL NLB B B B B =      (5.18) 

and matrix [Bi
NL] is formed as shown below 
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          (5.19) 

The Cauchy stress tensor [ ]0σ̂ is defined as follows 
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[ ]
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     (5.20) 

with the components 

0 0 0
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0
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=  
 
 

    (5.21) 

The stiffness, mass and geometric stiffness matrices given by Eq. (5.15), Eq. 

(5.16) and Eq. (5.17) respectively are computed by numerical integration employing 

Gaussian integration. Like plate element, thin shell also has shear locking problem, 

to reduce this problem reduced integration technique is carried out.  

5.3 Governing equation for stability 

Application of finite elements to a thin shell under parametric loading yields the 

following equilibrium equation 

( )( ) 0GMq Cq K P t K q+ + + =ɺɺ ɺ   (5.22) 

where M, C, K and KG are the global assembled mass, damping, elastic stiffness and 

geometric stiffness matrices respectively. All  these  matrices  are  square  

symmetric  matrices  of  order  N,  the number of degrees of freedom of the system 

and q is the nodal displacement column vector of order N. For the dynamic stability 

analysis a thin cylindrical shell under axial periodic compressive force p(t) is 

considered. A perfect thin-walled circular cylindrical shell of radius R, length L and 

thickness t made of an elastic, homogenous and isotropic material with Young’s 

modulus E, Poisson ratio ν and mass per unit area ρ is considered for stability 

analysis. The cylindrical shell is clamped at the bottom and at the top surface a 
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uniform periodic compressive force is applied as shown in Figure 5.2.   The matrices 

M, K are obtained by finite element formulation as derived in the previous section 

and C is obtained from the mass matrix by multiplying the mass matrix with 

proportionality constant. To calculate KG initially, plane stress analysis under the 

uniform compressive edge loading is carried out to obtain initial stress distribution 

and from these initial stress distribution KG matrix is evaluated.   

 

Figure 5.2: Cylindrical shell under uniform periodic compressive force 

5.4 Free vibration of cylindrical shell 

 The natural frequencies and free vibrational modes of a circular cylindrical 

shell can be obtained by solving the eigenvalue problem 

2 0K Mω φ − =      (5.23) 

where ω is the natural frequency of vibration and Ø gives the normal modes of 

vibration of the shell. The vibrational modes of a circular cylindrical shell can be 

classified as the cos θ-type modes for which there is a single cosine wave of 

deflection in the circumferential direction, and as the cos nθ -type modes for which 

the deflection of the shell involves a number of circumferential waves higher than 1. 

These circumferential cos nθ-type modes can be further denoted as beam-type 
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modes because the shell behaves like a vertical cantilever beam across the length. 

Figure 5.3 shows the vertical nodal patterns and circumferential modes for a circular 

cylindrical shell. 

  

         Figure 5.3: Circular cylindrical shell vibrational modes (a) Vertical nodal patterns  

         (b) Circumferential nodal patterns 

5.5 Dynamic stability of cylindrical shell 

 Using the modal transformation Eq. (5.22) can be transformed into the 

following form [31] 

2

1

2 cos 0
N

in in in in in in ijmn in

n

t dξ η ω ξ ω ξ ε ξ
=

+ + + Ω =∑ɺɺ ɺ  (5.24) 

where ε is a small parameter, i, j corresponds to frequency number of beam type and 

m, n corresponds to circumferential mode number. The stability of Eq. (5.24) can be 

carried out using Hsu’s stability criteria as given in section 4.5 of chapter 4. Two 

different cylindrical tanks i.e. a tall tank and a broad tank are taken for dynamic 
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stability studies. The geometrical data for the tall and broad cylindrical shells used 

for the analysis are given in Table 3.1. 

Table 5.1: Geometric and material data of the cylindrical shells 

Shell data Tall shell Broad shell 
R Radius 7.32 m 18.130 m 
L Length 21.96 m 12.20 m 
t Thickness 0.0254 m 0.0254 m 
E Young’s modulus 206.7 GPa 206.7 GPa 
ν Poisson ratio 0.3 0.3 
ρ Shell mass density 7.84×103 Kg/m3 7.84×103 Kg/m3 

A program is written to obtain the required matrices of shells. Shell is discretized 

with isoparametric four noded elements. Elements elastic stiffness, geometric 

stiffness and mass matrices are obtained using Gaussian reduced integration and 

these elements are assembled into global matrices. After obtaining the global 

matrices, the appropriate boundary conditions are applied. A free vibration problem 

is solved and the global matrices are converted into the form given in Eq. (5.24) 

using the modal transformations and then stability chart is plotted using Hsu’s 

criteria given in Eq. (4.56 – 4.58). 

 5.5.1 Dynamic stability of tall and broad cylindrical shell 

Table 5.2 shows the first ten cos nθ-type modes of first and second beam 

mode frequencies obtained for tall and broad shell. Figure 5.4 shows the mode 

shapes for the frequencies given in Table 5.2 for a tall tank. Figure 5.5 and Figure 

5.6 shows the stability chart of tall and broad circular cylindrical shells obtained 

using Hsu’s conditions respectively. The stability chart is limited to 30 Hz along the 

frequency axis. The stability charts have regions of simple resonance and 

combination resonance of sum type. A damping parameter of 0.01 is considered for 

all the modes for both the shells. To plot the stability charts first ten cos nθ-type  
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Figure 5.4: Mode shapes of tall tank 
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modes of first and second beam mode are taken. Three types of resonance regions 

are observed. Simple resonance regions for each first two axial modes of cos nθ-type 

modes and combination resonance of sum type between the first two axial modes of 

respective cos nθ-type modes. It can be observed from the stability charts that tall 

shell is more prone to dynamic buckling under compressive force because there are 

many instable regions compared to broad shell and the instability regions are wider 

compared to instability regions of broad shell. Combination resonance regions of 

difference types are not observed in this case.  

Table 5.2: Natural frequencies of tall and broad shell 

 Tall shell 
Frequency (Hz) 

axial mode 

broad shell 
Frequency (Hz) 

axial mode 
 i = 1 i = 2 i = 1    i = 2 

n ω1n ω2n ω1n ω2n 

0 57.73 109.09 44.67 44.36 
1 19.17 56.13 34.02 43.84 
2 8.37 33.39 23.52 41.46 
3 4.44 20.78 16.74 37.42 
4 3.19 14.00 12.33 32.62 
5 3.48 10.36 9.37 28.01 
6 4.73 8.80 7.32 24.04 
7 6.61 8.91 5.90 18.15 
8 9.08 10.41 4.91 18.15 
9 12.22 13.06 4.26 16.04 
10 12.35 21.29 3.91 12.99 

5.6 Summary 

The dynamic stability of bottom clamped cylindrical shells under uniform 

periodic compressive force is obtained using Hsu’s stability criteria. The governing 

Mathieu-Hill equation is obtained by employing finite element formulation. 3D 

degenerated four noded shell elements are used for the formulation of global system 

matrices. For the considered tall tank and broad tank, it was found that tall shell is 

more prone to dynamic instability compared to broad shell. 
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Figure 5.5: Stability chart of a tall shell under axial periodic compressive force 

 

 

Figure 5.6: Stability chart of a broad shell under periodic axial compressive force 
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Chapter 6 

DYNAMIC STABILITY OF PLANE FREE-SURFACE OF 

LIQUID 

6.1 Introduction 

The motion of an unrestrained free surface of the liquid, due to external 

excitation in the liquid filled container is known as sloshing. Sloshing is likely to be 

seen in liquid free surface experiencing disturbances in the presence of gravity. At 

equilibrium, the free surface of the liquid is static, when the container is perturbed; 

an oscillation is set up in the free surface. The phenomenon of liquid sloshing occurs 

in a variety of engineering applications such as sloshing in liquid propellant launch 

vehicles, liquid oscillation in large storage tanks by earthquake, sloshing in the pool 

type nuclear reactors, nuclear fuel storage tanks under earthquake and the water flow 

on the deck of ship. Such liquid motion is potentially dangerous problem to 

engineering structures and environment leading to failure of engineering structures 

and unexpected instability. Thus, understanding the dynamic behaviour of liquid 

free surface is essential. As a result the problem of sloshing has attracted many 

researchers and engineers motivating to understand the complex behaviour of 

sloshing and to design the structures to withstand its effects.  

Liquid sloshing can be stimulated by a variety of container excitations. The 

container excitation can be horizontal, vertical or rotational. Under horizontal 

excitations the liquid free surface experiences normal sloshing; the sloshing 

frequency will be equal to excitation frequency. When the external excitation 

frequency is equal to fundamental slosh frequency, the free surface undergoes 

resonance. Extensive research has been done on sloshing response under pure 

horizontal excitations. When the liquid filled container is subjected to vertical 
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excitations, for some combinations of amplitude and frequency of the external 

excitation the free surface undergoes unbounded motion leading to parametric 

instability and for few other combinations the free surface shows a bounded 

response.  

Abundant research is available on sloshing under horizontal and the literature 

is vast with wide varieties of numerical methods, analytical solutions and 

experiments.  The linear theory of sloshing and its applications concerned to 

aerospace were discussed extensively by Abramson [98]. Abramson covered the 

aspects of sloshing in various shaped containers both analytically and 

experimentally. A wide variety of analytical and numerical solutions are available in 

the literature for linear slosh dynamics in rigid and elastic containers namely Haroun 

[99], Aslam [100], Mitra et al. [101], Morand and Ohayon [102], Miles [103], 

Abramson [104], Bauer [105], Zienkiewicz and Bettes [106], Liu and David [107], 

Muller [108], Cho et al. [109]. Similar to vast literature on sloshing in linear domain, 

there are equally numerous references on sloshing in non-linear domain namely 

Flatinsen [110, 111], Nakayama and Washizu [112], Ortiz and Barhorst [113], Wu 

and Taylor [114 – 116], Chen et al. [117], Turnbull et al. [118], Frandsen [119], Cho 

et al. [120], Wang and Khoo [121], Sriram et al. [122], Biswal et al. [123], Kanok-

Nukulchai [124]. Ibrahim et al. [125] gives an excellent review of sloshing 

phenomenon with extensive number of references available in literature.     

 In all the references cited above except Wu et al. [116] and Frandsen 

[119] the concentration was on sloshing under pure horizontal excitation. Fluid free-

surface undergoes parametric resonance under vertical excitations which is 

important for study of ship motion and for dynamic stability of fluid in fluid-filled 
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shells. The problem of liquid response under vertical excitations was first studied 

experimentally by Faraday [1], reporting that the frequency of the liquid vibrations 

on free surface is half of the external excitation frequency. The sloshing waves 

generated under vertical excitation are sometimes referred as Faraday waves.  

Rayleigh [5, 6] analyzed the Faradays study and confirmed Faraday’s observations. 

Matthiessen [4] conducted experiments and reported that the fluid free surface 

vibrations are synchronous to the external excitation. The discrepancy between 

Faraday's observations and Matthiessen's observations were explained 

mathematically by Benjamin and Ursell [7]. Benjamin and Ursell [5] investigated 

the stability of fluid under vertical excitations theoretically. They considered 

linearized inviscid potential flow model with surface tension. They concluded that 

the response of the plane free surface of fluid under vertical excitation is governed 

by Mathieu equation. The solution of Mathieu equation [8] may be stable, periodic 

or unstable depending on the system parameters. The problem of sloshing under 

vertical excitation in various geometric shapes of the container has been studied by 

various researchers. For example, Dodge [126], Miles [127] have studied the liquid 

surface oscillations under vertical excitation in cylindrical tanks.  Khandelwal [128] 

have studied the parametric instability in rectangular tanks. The problem of 

parametric oscillations in liquid free surface was also discussed by Miles and 

Henderson [129], in their review paper and by Perlin and Schultz [130] and Jiang et 

al. [131]. Frandsen [119, 132] analyzed the problem numerically and theoretically, 

considering fully non linear inviscid potential flow equations. Wu [116] applied 

finite element method for solving sloshing 2D and 3D sloshing problems. Wu 

discussed the sloshing response under vertical excitations in rectangular tanks. De-
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Zhi Ning [133] applied boundary element method to study the liquid sloshing in 

rectangular containers under coupled horizontal and vertical excitation.  

In the present paper the sloshing response under vertical excitations in liquid 

filled tanks is taken up. First, the stability of plane free surface of liquid in tanks is 

obtained from the linearized equations and the sloshing response of fluid is 

numerically simulated for various frequencies and amplitude of the external 

excitation, using finite element method under pure vertical excitations. Then the 

numerical work is extended to explore the sloshing behaviour of tanks under 

coupled horizontal and vertical excitations.  

6.2 Governing equations 

Consider a rectangular tank fixed in Cartesian coordinate system Oxz, which 

is moving with respective to inertial Cartesian coordinate system O0x0z0. The origins 

of this system are at the left end of the tank wall at the free surface and pointing 

upwards in z direction. These two Cartesian systems coincide when the tank is at rest. 

Figure 6.1 shows the tank in the moving Cartesian coordinate system Oxz along with 

the prescribed boundary conditions. Let the displacements of the tank be governed 

by the directions of axes as, 

( ) ( ),t tX x t z t =       (6.1) 

Fluid is assumed to be inviscid, incompressible and irrotational. Therefore the fluid 

motion is governed by Laplace’s equation with the unknown as velocity potential ϕ, 

2 0φ∇ =     (6.2) 

The fluid obeys Neumann boundary conditions at the walls of the container 

and Dirichlet boundary condition at the liquid free surface. In the moving coordinate  
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Figure 6.1: Sloshing wave tank in moving coordinate system 

system the velocity component of the fluid normal to the walls is zero.  Hence, on 

the bottom and on the walls of the tank (ΓB) we have, 

0,

0; 0
x L z hn n

φ φ

= =−

∂ ∂
= =

∂ ∂
   (6.3) 

On the free surface (Γs) dynamic and kinematic conditions hold, they are given as, 

( )1
. 0

2
t t

z

g z xx
t ζ

φ
φ φ ζ

=

∂ ′′ ′′+ ∇ ∇ + + + =
∂

  (6.4) 

0
t x x z

ζ φ ζ φ∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
    (6.5) 

Where ζ is the free surface elevation measured vertically above still water level, xt'' 

and zt'' are the horizontal and vertical accelerations of the tank, and g is the 

acceleration due to gravity. 

Equations (6.1) - (6.5) give the complete behaviour of non-linear sloshing in 

fluids under base excitation of the tank. The position of the fluid free surface is not 

known a priori, to solve the problem, the fluid is assumed to be at rest with some 

initial perturbation on the free surface.  Thus the initial conditions for the free 

surface in the moving Cartesian system at t = 0 and z = 0 can be written as, 
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( ), 0,0 t tdx dz
x x z

dt dt
φ = − −     (6.6) 

( ),0 0xζ =   for horizontal excitation   (6.7) 

( ) 0,0xζ ζ= for vertical excitation    (6.8) 

Where ζ0 is the initial elevation of the free surface. It should be noted that it is not 

possible to attain the initial boundary condition Eq. (6.8) maintaining Eq. (6.6), in 

real, it is a non-physical condition.  This condition is used in case of vertical 

excitations alone, because in this excitation some initial perturbation is needed 

without which there won’t be any oscillation in the liquid free surface.   

6.3 Governing equation for dynamic stability of free -surface  

In this section the governing equation for dynamic stability of free-surface of 

liquid under vertical excitation is derived. The general solution for Laplace equation 

in the rectangular domain satisfying the given rigid boundary conditions can be 

written as 

( )( )
( )

( ) ( )
0

cosh
cos

cosh

n

n n

n n

k z h
k x F t

k h
φ

∞

=

+
=∑   (6.9) 

( ) ( )
0

cos n n

n

k x z tζ
∞

=

=∑     (6.10) 

where kn = nπ/L is the wave number for mode number n. Fn(t), Zn(t) are the time 

evolution functions of the respective nth mode and can be calculated by substituting 

the general solution Eq. (6.9) and Eq. (6.10) in the linear free-surface boundary 

conditions obtained from Eq. (6.4) and Eq. (6.5).   The linearized free-surface 

boundary conditions are 

( ) 0t

z

g z
t ζ

φ
ζ

=

∂ ′′+ + =
∂

   (6.11) 
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0
t z

ζ φ∂ ∂
− =

∂ ∂
     (6.12) 

On substituting Eq. (6.9) and Eq. (6.10) in Eq. (6.11), Eq. (6.12) leads to 

( ) ( ) ( ) 0n

t n

dF t
g z z t

dt
′′+ + =     (6.13) 

( ) ( ) ( )tanh 0n

n n n

dz t
k k h F t

dt
− =    (6.14) 

On substituting Eq. (6.13) in Eq. (6.14) and arranging terms gives 

( ) ( )
2

2

2
1 0n t

n n

d z t z
z t

dt g
ω
 ′′
 + + =
 
 

   (6.15) 

where  

( )tanhn n ngk k hω =      (6.16) 

Eq. (6.16) gives the linear slosh frequencies. If the tank is assumed to be subjected 

to harmonic vertical excitation alone given by  

( ) ( )cost v vz t a tω=      (6.17) 

Eq. (6.15) reduces to 

( ) ( )( ) ( )
2

2

2
1 cos 2 0n

n v n

d z T
k T z T

dT
+Ω − =   (6.18) 

where T = ½ ωvt, Ωn = ωn/ωv and kv = avωv
2
/g. Eq. (6.18) is a Mathieu’s equation. 

The stability and instability of the free-surface is guided by Eq. (6.18).  

6.4 Dynamic stability chart for free-surface of liquid 

 Stability chart of Mathieu equation Eq. (6.18) is plotted using harmonic 

balance method [14, 22] and following the Bolotin’s method as discussed in Chapter 

1. The Hills determinants obtained are discussed in Appendix-B. The stability chart 

obtained for dynamic stability of liquid free-surface is as shown in Figure 6.2. 
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Figure 6.2: Stability chart for dynamic stability of free-surface under vertical excitations 

6.5 Numerical simulation of sloshing waves 

 To validate the stability chart obtained, the sloshing response under vertical 

excitation is simulated based on numerical techniques. A finite element based 

numerical formulation for non-linear sloshing response of fluids under pure 

horizontal, pure vertical and combined excitations is developed. A finite element 

numerical approach based on mixed Eulerian-Lagrangian scheme is adopted. The 

free surface nodes behave like Lagrangian particles and interior nodes behave like 

Eulerian particles. For this formulation, the free-surface kinematic and boundary 

conditions Eq. (6.4) and Eq. (6.5) respectively are modified and written in 

Lagrangian form as [134] follows 

( )1
.

2 t t

z

d
g z xx

dt ζ

φ
φ φ ζ

=

′′ ′′= ∇ ∇ − + −    (6.19) 

;
dx dz

dt x dt z

φ φ∂ ∂
= =
∂ ∂

    (6.20) 

In order to solve this nonlinear sloshing problem, time interval t is divided 

into finite number of time steps, tn = n∆t (n = 0, 1, 2, 3…..), at a particular time step 
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(n = 0), the initial boundary conditions Eqs. (6.6) - (6.8) are known, using these 

initial conditions along with the boundary condition Eq. (6.3), Laplace equation, Eq. 

(6.2) is solved to get velocity potential Ø. Further velocity v is evaluated from the 

velocity potential Ø using patch recovery technique by Zienkiewicz [135]. Using 

these evaluated velocities the kinematic and dynamic free surface boundary 

conditions,   Eqs. (6.19) - (6.20) are time integrated using Runge-Kutta method and 

the position of free surface is updated to get the free surface position for the next 

time step (n = 1). In this manner the sloshing response is numerically simulated. 

6.6 Numerical procedure 

6.6.1 Finite element formulation 

The solution of the non-linear sloshing boundary value problem is obtained 

using finite element method.  The entire liquid domain is discretized by using four 

noded isoparametric quadrilateral elements.  A typical mesh structure is shown in 

Figure 6.3. By introducing the finite element shape functions the liquid velocity 

potential can be approximated as 

( ) ( )
1

, ,
n

j j

j

x z N x zφ φ
=

=∑    (6.21) 

where Nj is the shape function, n is the number of nodes in the element and ϕj is 

nodal velocity potential. The potential on the free surface at a particular time step is 

obtained from the free surface boundary condition (like at t= 0, Eq. (6.6)). It is 

needed to calculate the velocity potential for the interior nodes. Applying Galerkin 

weighted residual method to the Laplace equation along with the Neumann 

boundary conditions and taking the free surface nodes where the potential is known 

to the right hand side will lead to the following system of finite element equation, 
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Figure 6.3: Finite element discretization of liquid domain 

, ,
1 1

S S S

m m

i j j i j ji i j i
j j

N N d N N dφ φ
∉Γ ∈Γ ∉Γ

= =Ω Ω

∇ ∇ Ω = − ∇ ∇ Ω∑ ∑∫ ∫  (6.22) 

Where m is the total number of nodes in the liquid domain.   

6.6.2 Velocity recovery 

 To track the free-surface Eq. (6.19) and Eq. (6.20) need velocities, which can 

be computed from the calculated potential using  

.j jv N φ= ∇     (6.23) 

The velocities calculated using Eq. (6.23) are the velocities at the Gauss integration 

points and they do not possess inter element continuity and have low accuracy at 

nodes and element boundaries. Utmost care was taken to calculate the velocities; a 

small error in the velocity recovery will affect the accuracy of free surface updating 

or tracking and gets accumulated with time and leads to underestimation of the 

solution. In order to derive a smoothed and continuous velocity, patch recovery 

technique by Zienkiewicz [135] is applied.  In patch recovery technique, the 

continuous velocity field is obtained by considering the linear interpolation of the 

velocities at the Gauss integration points, 

1 2 3 4v̂ a a a aξ η ξη= + + +    (6.24) 
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where v̂ is any velocity component ( ˆ
xv or ˆ

yv ), ξ, η are the Gauss locations and a1, a2, 

a3, a4 are unknowns which need to be evaluated. To evaluate these unknowns, a least 

square fit is considered between v̂  and v  as given below 

( ) ( ) ( )
4

2

1

ˆ , ,i i i i

i

F a v vξ η ξ η
=

 = − ∑    (6.25) 

where i is the 2x2 order Gauss integration points.  Then, the four unknown 

coefficients are determined from four simultaneous equations obtained from 

( )
0;    1, 2,3, 4

k

F a
where k

a

∂
= =

∂
   (6.26) 

Substituting these calculated ak’s in Eq. (6.24) gives the velocity values for 

individual elements and these are averaged for the common nodes. Finally, a 

smoothed velocity field which is inter element-continuous is constructed by 

interpolating the finite element shape functions used in Eq. (6.21) and nodal 

averaged velocities. The global continuous velocity field is given as, 

ˆ.v N v=     (6.27) 

where v is velocity component (vx or vy).  

6.6.3 Numerical time integration and free-surface tracking 

After calculating the velocity at a time step t, we need to calculate the 

position of free surface from Eq. (6.20) and determine the potential on the free 

surface using Eq. (6.19) for the next time step t+∆t. As a result, the liquid mesh and 

the boundary condition required for the next-time step are established. This is done 

using a finite difference numerical procedure. The numerical time integration 

scheme plays a major role in any time marching problem.  The fourth-order Runge-

Kutta method using explicit time integration is carried out in the present work.  The 
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nodal coordinates of the free surface and the associated velocity potential at a 

current time step i, are known and can be represented in a single variable as, 

( ), ,i i i is x z φ=      (6.28) 

where 

( )
( )
( )

1 2 1

1 2 1

1 2 1

, , ,

, , ,

, , ,

i NX i

i NX i

i NX i

x x x x

z z z z

φ φ φ φ

+

+

+

=

=

=

…

…

…

    (6.29) 

where NX is number of segments along the free-surface. Similarly the time 

derivative can be written as 

( ), .i
i i i

Ds
F t s F

Dt
= =     (6.30) 

The free-surface position and associated velocity potential at the next time step i+1 

can be expressed as  

31 2 4
1

6 3 3 6
i i

ss s s
s s+ = + + + +     (6.31) 

where  

( )

( )

1

1
2

2
3

4 3

,

,
2 2

,
2 2

,

= ∆

∇ = ∆ + + 
 

∇ = ∆ + + 
 

= ∆ +∇ +

i i

i i

i i

i i

s tF t s

st
s tF t s

st
s tF t s

s tF t t s s

    (6.32) 

After obtaining the new positions and potential of the free surface, the liquid domain 

is re-meshed based on these obtained new coordinate positions. 

6.6.4 Regridding algorithm        

 At the beginning of the numerical simulation, the free surface nodes are 
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uniformly distributed along the x-direction with zero surface elevation. As the time 

proceeds the free surface nodes are spaced unequally and cluster into a steep 

gradient leading to numerical instability. This problem occurs for a long time 

simulation; to avoid this instability, an automatic regridding condition using cubic 

spline is employed when the movement of the nodes is 75% more or less than the 

initial grid spacing. For the regridding, first the free surface length Lf is obtained. 

Then the free surface is divided into NX segments with the identical arc length. The 

coordinates of node is denoted as (xl, yl )  (l=1,2,…,NX+1) and let the arc length 

between two successive points l and l+1 be Sl.  Being a uniform regridding, Sl can 

be expressed as 

f

l

lL
S

NX
=     (6.33) 

The coordinates of the nodes (xl, yl) is a function of the arc length Sl, 

( ) ( ),l l lx y f S=    (6.34) 

The cubic spline interpolation is used to calculate the coordinates (xl, yl) and the 

velocity potential on the new uniform free-surface is also obtained in a similar 

fashion.  

6.6.5 Complete algorithm for nonlinear sloshing  

Including all the steps above, the algorithm for numerical simulation of 

nonlinear sloshing is as shown in Figure 6.4. 

6.7 Numerical results and discussion 

Numerical simulations are carried out with the above discussed numerical 

formulation to explore the behaviour of sloshing under pure vertical and combined 
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harmonic excitations of the tank. First the natural slosh frequencies are calculated 

followed by sloshing response.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Numerical procedure for nonlinear sloshing simulation 

6.7.1 Free vibration analysis 

To validate the code for stiffness matrix formulation, a free vibration 

problem is solved first. A mass matrix as given in Eq. (6.35) for the free surface of 

the liquid is formed: 

1

S

T

sM N Nd
g Γ

= Γ∫     (6.35) 

If ωn denotes the n
th natural slosh frequency of the coupled system and {Ψn} the 

corresponding mode shape, the free vibration problem to be solved is  

( ){ }2
n nK Mω− Ψ     (6.36)  

Yes 

t+∆t 

No 

Free surface boundary conditions 
Φ(x,0)|t=0 and  ζ(x,0)=0 

Evaluate Φ for interior nodes 
(FEM) 

Compute velocity 
(FEM) 

Update free surface (RK4 method) 
Φ(x,z)|t+∆t and  ζ(x,z) 

 

Mesh stability check 

Regridding 
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The natural slosh frequencies obtained from Eq. (6.36) are compared with the 

analytical formula obtained in Eq. (6.16).  

6.7.2 Verification problems 

 Following the above numerical formulation, a code is developed. The 

developed code can deal with Eigen sloshing analysis and the sloshing response can 

be obtained for any excitation of the tank with frequency and amplitude of the 

excitation as variable. Also the liquid depth, width of the tank and the number of 

elements on the free-surface and in the fluid domain are taken as variables. First, the 

developed code is validated; sloshing response is simulated for horizontal forced 

excitation of the tank. The horizontal forced excitation is assumed to be harmonic as 

( ) ( )sin ω=h h hx t a t     (6.37) 

where ah is the amplitude and ωh is the frequency of forcing excitation. Two 

simulation cases are considered which are given in Table 6.1. The two cases taken 

by previous investigators are for the comparison purpose with the existing reference 

solutions: case 1 by Nakayama and Washizu [112] and case 2 by Frandsen [119]. 

The natural slosh frequencies calculated for the cases considered are shown in Table 

6.2. Natural Slosh frequencies obtained numerically are compared with analytical 

solution Eq. (6.16) in Table 6.2 and are in good match.   

Table 6.1: Simulation cases for verification problem 

 
case 

Tank Geometry Excitation 

Tank width  (m) Liquid depth (m) Amplitude (m) Frequency (rad/s) 
1 0.9 0.6 0.002 5.5 

2 2 1. 0.0097 3.7607 
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Table 6.2: Slosh frequencies (rad/s) compared with analytical solution for verification problems 

Mode 
No. 

Case 1 Case 2 
FEM Theory FEM Theory 

1 5.7658 5.7637 3.7607 3.7594 
2 8.2809 8.2738 5.5456 5.5411 
3 10.1530 10.1355 6.8092 6.7986 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5(a) shows the comparison of time history of sloshing response at 

right of the wall with the solution by Nakayama and Washizu [112] that has been 

frequently used as a reference solution in comparative numerical experiments. For 

this simulation, 20 nodes along the free-surface and 10 nodes along the height and a 

Figure 6.5: Time history response of the free-surface elevation (case 1) (a) comparison with 

Nakayama and Washizu [112] (b) extension to t = 30 s 
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time step of 0.001 s are used. It can be observed that the numerical solution by the 

proposed method is in good agreement with the reference solution. In view of the 

fundamental sloshing frequency ω1 = 5.76077 rad/s, the excitation frequency ωh is 

taken as ωh = 0.9547 ω1. Figure 6.5(b) presents the time history response of free 

surface elevations at right wall that is extended to 30 s. From the plot, we see that 

the free surface elevation reaches the peak level and then its magnitude gradually 

decreases after that. 

 

           Figure 6.6: Free-surface elevation at the left wall for case 2 compared with Frandsen [119] 

Figure 6.6 shows the free-surface elevation at the left wall for case 2 

compared with numerical result of Frandsen [119]. For this simulation, 40 nodes 

along the free-surface, 20 nodes along the depth and a time step of 0.001 s are taken. 

As the fundamental slosh frequency, ω1 = 3.7607 rad/s and excitation frequency, ωh 

= 3.7607 are equal, this case is a resonance case; with the amplitude of excitation 

considered is large. For the present case the sloshing response shows nonlinearity. 

As expected in resonance, the sloshing response increases with time and as the 

forcing excitation is large eventually, as the amplitude increases, the non-linear 
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effects begin to play a considerable role leading to higher peaks and smaller troughs 

in the surface elevation. From the Figure 6.6 it can be seen that the present 

numerical solution is in an excellent agreement with the reference solution 

considered. Check the link http://www.youtube.com/watch?v=LlwUOWMmVtc for 

the sloshing response animation in this resonance case. 

6.7.3 Sloshing response under pure vertical excitation 

In this section, sloshing response of free-surface under vertical harmonic 

excitation is carried out. The tank is subjected to forced harmonic vertical motion 

given in Eq. (6.17). For only pure vertical excitation to exist xt’’ is assumed zero. Eq. 

(6.17) gives excitation velocity as -avωvsin(ωvt), which leads to a zero free surface 

velocity potential as initial condition from Eq. (6.6). As far as the free-surface is at 

rest, no motion can be generated by the vertical excitation. Thus to simulate the 

sloshing response under vertical excitation the initial conditions play an important 

role, there should be some initial perturbation on the free-surface for slosh response. 

The initial conditions can be prescribed as  

( ),0,0 0xφ =       (6.38) 

( ) ( ),0 cos nx a k xζ =     (6.39) 

where a is the initial wave profile and x is the horizontal distance from the origin. 

The measure of non-linearity depends on the adopted initial condition, ε = aωn
2
/g 

[119]. 

The sloshing response is simulated for various cases inside and outside the 

regions of parametric resonance; six different cases are considered and are marked 

on the stability chart shown in Figure 6.7. The parameters for the cases shown in 

Figure 6.7 are given in Table 6.3. The test cases considered are similar to the test  
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Figure 6.7: Stability chart for sloshing response under vertical excitations with test cases  

(Value are shown in Table 6.3) 

 

Table 6.3: Excitation parameters for the test cases shown in Figure 6.7 

Case Ωn kv ωv avωv
2 

1 1.253 0.5 0.7981ω1 0.5g 
2 0.5 0.3 2ω1 0.3g 
3 1.0 0.5 ω1 0.5g 
4 0.5 0.2 2ω3 0.2g 
5 0.6 0.5 1.66ω1 0.5g 
6 0.55 0.5 1.8182ω1 0.5g 

Table 6.4: Slosh frequencies compared with analytical solution 

Mode No. Present (rad/s) Theory (rad/s) Error % 
1 3.7607 3.7594 0.0353 
2 5.5456 5.5411 0.0801 
3 6.8092 6.7986 0.1553 
4 7.8715 7.8510 0.2620 
5 8.8126 8.7777 0.3983 

cases by Frandsen [119]; to make comparison. In the present numerical simulations, 

the tank is assumed to be rigid with aspect ratio (h/L) of 0.5; h is depth of fluid, L is 

length of the tank and 40 nodes along the x-direction and 20 nodes along the z-

direction are taken and a time step of 0.001 s is adopted.  Table 6.4 shows the slosh  
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Figure 6.8: Free-surface elevation at the left wall in the stable region (test case 1) Ω1 = 1.253, kv 

= 0.5 for (a) ε = 0.0014 (b) ε = 0.288 and the respective phase-plane plots 

frequencies in rad/s obtained for the present tank using finite element method and 

the above analytical formula Eq. (6.16). 

The first test case is in stable region, with frequency ratio Ω1 = 1.253, and 

forcing amplitude kv = 0.5; test case 1 as shown in Figure 6.7. The slosh response at 

the left wall of the tank for low (ε = 0.0014) and high (ε = 0.288) wave steepness are 

shown in Figure 6.8(a) and 6.8(b) respectively. Figure 6.8(c) and 6.8(d) shows the 

respective phase-plane plots for the small and steep wave cases. The time histories 

of the free-surface elevation are non-dimensionalised. The slosh response obtained 

with the present simulation is compared with numerical results of Frandsen [119]. 

Both the results are in excellent agreement.   The slosh response for low steep waves 

is symmetric i.e. amplitudes of peak and troughs are equal, where as for high steep 
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waves the response is asymmetric showing different amplitudes for peaks and 

troughs. This is an indication of non-linear response. This non-linear behaviour can 

be noticed from the respective phase-plane plots.  The phase-plane plot of slosh 

response with low wave steepness shown in Figure 6.8(c) has a closed orbit 

displaying a linear behavior, where as the phase-plane plot of slosh response with 

high wave steepness have non-repeatble, non-closed orbits displaying a non-linear 

characteristic. 

 

Figure 6.9: Free-surface elevation at the left wall in the unstable region (test case 2) for Ω1 = 0.5, 

kv  = 0.5, ε = 0.0014 and the respective phase plane plot 

The second test case lies in the unstable region, with frequency ratio Ω1 = 0.5, 

and forcing amplitude kv = 0.3; test case 2 as shown in Figure 6.7. Figure 6.9(a) 

shows the free surface elevation at the left wall of the tank for a low wave steepness 

of ε = 0.0014. As the excitation parameters lie in unstable region, an unbounded 

response is expected; the slosh response plot displays the expected behaviour. Figure 

6.9(b) shows the corresponding phase-plane diagram. The phase-plane plot and the 

response plot clearly show that the nonlinear effects are predominant. A moving 

mesh generated at different time steps in this instable region for parametric  
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Figure 6.10: Moving mesh generated at different time steps in parametric resonance 

 

resonance is shown in Figure 6.10. The response of free surface of fluid in this case 

showing parametric instability can be seen in the link http://youtu.be/VTsA0I7Ry4s. 

Figure 6.11 also shows the slosh response time histories in unstable regions. 

A low wave steepness parameter of ε = 0.0014 is considered. Figure 6.11(a) shows 

the slosh response time history for frequency ratio Ω1 = 1.0, forcing amplitude kv = 

0.5; test case 3 as shown in Figure 6.7. This case corresponds to instability in first 

sloshing mode lying in the second instability region. According to the theory, the 

effect of parametric resonance gradually reduces as we move to the higher regions of 

instability. As expected, the amplitudes do not grow rapidly in this instability region 

compared to first instability region response shown in Figure 6.9(a).  First the 

amplitude of the slosh response starts growing exponentially in a resonance mode 

and then after certain time the response reduces gradually. As the amplitude  



CHAPTER-6 

 

105 
 

Figure 6.11: Free-surface elevation at the left wall in the unstable regions with ε = 0.0014 (a) Ω1 

= 1.0, kv = 0.5 (test case 3) (b) Ω3 = 0.5, kv = 0.4 (test case 4) and respective phase-plane plots 

increases the natural frequency of the system changes and creates low frequency 

amplitude oscillations leading to decrease in amplitudes of response. This behaviour 

is called detuning effect; under parametric excitation of frequency close to twice the 

natural frequency of a certain mode, the free-surface oscillates exhibiting the shape 

of that mode. As the excitation amplitude increases, the natural frequency changes 

and the input energy can excite the other neighbour modes. If the excited neighbour 

nodes are stable, the increase in the amplitude will be suppressed leading to detuning 

effect. This detuning effect can be captured only in non-linear systems. In case of 

linear systems [7], the response will be always increasing; this detuning effect 

cannot be captured. The present finite element non-linear numerical model can 

capture this detuning effect effectively. Figure 6.11(c) shows the respective phase-
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plane plot.  Figure 6.11(b) shows the slosh response at left wall of tank for frequency 

ratio Ω3 = 0.5, forcing amplitude kv = 0.2; test case 4 as shown in Figure 6.7. This 

case corresponds to instability in second sloshing mode lying in the first instability 

region. As the instability is in second mode, the amplitudes do not grow rapidly 

when compared to instability in the first mode, Figure 6.9(a). After certain time, the 

amplitude comes down showing the detuning effect. In this case, the free-surface 

oscillates exhibiting the third slosh mode and as the amplitude increases, the input 

parametric excitation excites the first sloshing mode, which is stable and the 

amplitudes fall down. Figure 6.11(d) shows the respective phase plane plot. The 

phase-plane plots for the responses display a linear behaviour for the system. Figure 

6.12 shows the moving mesh generated for the response shown in Figure 6.11(b) at 

various time steps. The animation of liquid free-surface sloshing for detuing effect 

shown in Figure 6.11 (b) can be viewed in the link http://youtu.be/ylRHuxKt3rw. 

 

 Figure 6.12: mesh generated at different time steps in unstable region displaying detuning 

effect 
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Figure 6.13 shows the slosh response for the test case 5 as shown in Figure 

6.7, with frequency ratio Ω1 = 0.6, forcing amplitude kv = 0.5. This point lies in the 

stable region but very close to instability region. Figure 6.13(a) shows the slosh 

response for low wave steepness parameter, ε = 0.0014 and Figure 6.13(b) shows the 

slosh response for high wave steepness parameter, ε = 0.288. As expected the point 

is in the stable region and the slosh response is stable. 

 

   Figure 6.13: Free-surface elevation at the left wall in the stable region (test case 5) for Ω1 =    

   0.55, kv = 0.5 (a) ε = 0.0014 (b) ε = 0.288 

Figure 6.14 shows the slosh response for test case 6 with frequency ratio Ω1 

= 0.55, forcing amplitude kv = 0.5 lying in the unstable region as shown in Figure 

6.7. A low steepness parameter ε = 0.0014 is taken. As the point lies in the unstable 

region, the response is also unstable as expected. The low steepness response is 

sufficient to demonstrate to show the rapid increase in the amplitudes. 

6.7.4 Sloshing response under coupled horizontal and vertical excitations 

In this section the sloshing response when the tank is subjected to combined 

horizontal and vertical excitations is considered. Both the excitations are considered 

harmonic as prescribed by Eq. (6.37) and Eq. (6.17) for horizontal and vertical 

excitations respectively. The initial conditions required for this simulation are 
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             Figure 6.14: Free-surface elevation at the left wall in unstable region (test case 6)     

             for Ω1 = 0.55, kv = 0.5, ε = 0.0014 

( ), 0,0 0xφ =      (6.40) 

( ),0 0xζ =      (6.41) 

No initial perturbation is required as needed in case of pure vertical excitation; the 

horizontal harmonic excitation creates the perturbation needed for slosh response 

under vertical excitations.  The governing equation for the dynamic stability of free 

surface under pure vertical excitation (Eq. 6.18) differs in the case of combined 

excitations; a forcing term appears on the right side due to horizontal excitation. Eq. 

(6.18) under combined excitation of tank can be written as 

( ) ( )( ) ( ) ( )
2

2

2
1 cos 2n

n v n t

d z T
k T z T x T

dT
′′+Ω − =  (6.42)  

Eq. (6.42) is a non-homogenous Mathieu Hill equation. It should be noted 

that the stability chart of the Mathieu- Hill equation is independent of the term on 

right hand side. The stability chart shown in Figure 6.2 is still valid, but the response 

of the free-surface is affected by the presence of horizontal loading. This horizontal 

term can produce resonance, which is recognized by the linear growth of amplitude 

in time. It is known that, under pure horizontal excitation when external excitation 
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frequency is equal to fundamental sloshing frequency the free-surface undergoes 

resonance. In case of pure horizontal motion, system has only one resonance 

frequency; but under combined motion, it is found that the system has infinite 

resonance frequencies. When the horizontal excitation frequency ωh is close to 

fundamental slosh frequency and when sum or difference of horizontal and vertical 

frequencies ωh, ωv is closer to fundamental slosh frequency, system undergoes 

resonance. This resonance is characterized by linear growth in the amplitude if the 

vertical excitation parameters are in stable region. If the vertical excitation 

parameters are in unstable region, system grows exponentially in time.  Figure 6.15-

6.17 shows the slosh response for three main resonant frequencies of the horizontal 

motion (ωh/ω1 = 0.98, 0.18, 1.78) under vertical excitation lying in a stable region 

with Ω1 = 1.253, kv = 0.5 test case 1 as shown in Figure 6.7 for small and large 

amplitudes of the horizontal excitation.  

Figure 6.15 shows the slosh response for the strongest of the resonant 

frequencies for low and high horizontal forcing amplitude. The horizontal forcing 

frequency is closer to the first slosh natural frequency (ωh/ω1 = 0.98).   Figure 6.16 

and Figure 6.17 shows the slosh response for coupled frequencies (ωh ± ωv) closer to 

first slosh natural frequency.  It can be observed from figures that the sloshing 

response is high in main resonant frequencies compared to secondary resonances. 

Influence of vertical excitation with horizontal excitation is that, if the vertical 

excitations parameters are in stable region and the horizontal frequency or coupled 

frequencies are closer to sloshing natural frequency, resonance takes place, which is 

characterized by linear increase in the response. 
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Figure 6.15: Free-surface elevation at the left wall for the main resonance with horizontal 

excitation, ωh/ω1 = 0.98 and vertical excitation, ω1/ωv = 1.253, avωv
2
 = 0.5g (a) ahωh

2
 = 0.0014g (b) 

ahωh
2
 = 0.0069g 

 

Figure 6.16: Free-surface elevation at the left wall for the first resonance with horizontal 

excitation, ωh/ω1 = 0.18 and vertical excitation, ω1/ωv = 1.253, avωv
2
 = 0.5g (a) ahωh

2
 = 4.85*10-

5g (b) ahωh
2
 = 0.0194g 

 

 

Figure 6.17: Free-surface elevation at the left wall for the second resonance with horizontal 

excitation, ωh/ω1 = 1.78 and vertical excitation, ω1/ωv = 1.253, avωv
2
 = 0.5g (a) ahωh

2
 = 0.0046g (b) 

ahωh
2
 = 0.0228g 
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Figure 6.18-6.19 shows the slosh response in the unstable regions for small 

horizontal forcing amplitude. The vertical excitation parameters lie in unstable 

regions and a small horizontal forcing amplitude ah = 0.001m with a forcing 

frequency ωh/ω1 = 0.18 is considered. The difference between the present simulation 

and simulations carried out in section 6.7.3 is that, in the present case tank is moved 

horizontally with small forcing amplitude. This horizontal forcing creates necessary 

initial perturbation required for vertical slosh response. Figure 6.18(a) and Figure 

6.18(b) shows the slosh response at the left wall of the tank and respective phase- 

plane plot in the unstable region, with frequency ω1/ωv = 0.5, with a forcing 

amplitude of 0.3g; test case 2 as shown in Figure 6.7. This corresponds to the  

 

Figure 6.18: Free-surface elevation at the left wall and corresponding phase-plane plot in the 

unstable region; ω1/ωv = 0.5, avωv
2
 = 0.3g (test case 2 in Figure 6.7) with small horizontal 

excitation force, ωh/ω1 = 0.18, ah = 0.001m 

 

Figure 6.19: Free-surface elevation at the left wall in unstable regions with small horizontal 

excitation force, ωh/ω1 = 0.18, ah = 0.001m; (a) ω1/ωv = 1, avωv
2
 = 0.5g (test case 3 in Figure 6.7) 

(b) ω3/ωv = 0.5, avωv
2
 = 0.2g (test case 4 in Figure 6.7) 
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instability of the first mode in the first instability region. The sloshing response of 

the combined forced tank motion, compared with response in Figure 6.9, illustrates 

that the small horizontal forcing excitation delays the occurrence of instability in the 

free-surface. Figure 6.19(a) shows the slosh response, with frequency ω1/ωv = 1, 

with a forcing amplitude of 0.5g; test case 3 as shown in Figure 6.7. This 

corresponds to the instability of the first mode in the second instability region, thus 

shows a less strong parametric resonance compared with response in Figure 6.18. 

Figure 6.19(b) shows the slosh response, with frequency ω3/ωv = 0.5, with a forcing 

amplitude of 0.2g; test case 4 as shown in Figure 6.7. This corresponds to the 

instability of the third mode in the first instability region and a stable first mode; the 

response grows up exponentially with time leading to an increase in frequency, 

which in turn excites the first stable mode and the exponential growth is suppressed. 

This detuning effect is nicely captured in the Figure 6.19(b). 

Figure 6.20-6.21 shows the slosh response under combined excitations for 

the off-resonance cases when the vertical excitation parameters are in stable region. 

The vertical excitation has a frequency ω1/ωv = 1.253, and amplitude of 0.5g (test 

case 1 in Figure 6.7).  Figure 6.20(a) and Figure 6.20(b) shows the slosh response at 

the left wall for horizontal excitation frequency ωh/ω1 = 0.7 for small (ahωh
2 = 

0.0036g) and large (ahωh
2 = 0.036g) forcing amplitude respectively.  Figure 6.21(a) 

and Figure 6.21(b) shows slosh response at the left wall for horizontal excitation 

frequency ωh/ω1=1.3, for small (ahωh
2=0.0036g) and large (ahωh

2=0.072g) forcing 

amplitude. 
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Figure 6.20: Free-surface elevation at the left wall in stable region ω1/ωv = 1.253, avωv
2
 = 0.5g 

(test case in Figure 6.7), with horizontal excitation frequency, ωh/ω1 = 0.7 (a) ahωh
2
 = 0.0036g (b) 

ahωh
2
 = 0.036g 

 

Figure 6.21: Free-surface elevation at the left wall in stable region ω1/ωv = 1.253, avωv
2
 = 0.5g 

(test case 1 in Figure 6.7), with horizontal excitation frequency, ωh/ω1 = 1.3 (a) ahωh
2
 = 0.0036g 

(b) ahωh
2
 = 0.072g 

 

6.8 Experimental study on dynamic stability of free-surface of fluid 

6.8.1 Shake table experiment 

Shake table test was conducted in Structural Mechanics Laboratory (SML), 

Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam to analyse the 

slosh response in stability and instability regions of the stability chart. A rectangular 

tank of dimensions 1.2 x 1 x1 m filled with water to a height of 0.6 m is considered. 

Depth of the fluid is chosen 0.6 m to maintain an aspect ratio (h/L) of 0.5.  

Rectangular tank made of carbon steel with one side having acrylic glass window is 

used to perform the experiment. Acrylic glass is used in one side of the tank so as to 
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enable visualization of the slosh waves during excitation. The details of the shake 

table: The shaker table is of size 3 mX3 m and has a pay load capacity of 10 ton. It 

has six actuators, which enable the table to move in all the six degrees of freedom (3 

translations and 3 rotations). Three actuators are dedicated for the movement in two 

horizontal direction (x and y axes) and three actuators are for the movement in 

vertical direction (z axis). The actuators are driven by hydraulic power and precisely 

controlled by the servo-valves to produce the simultaneous and independent motions 

with six degrees of freedom. The shaker table can be displaced to ±100 mm. Its 

maximum velocity is 0.3 m/s.    The maximum acceleration of shaker table is 0.3g in 

horizontal direction and 1g in vertical direction. The shaker table can be operated in 

0.1 – 100 Hz frequency range.  Shaker table can be excited with a sine sweep, saw 

tooth, ramp and random excitations. A dedicated data acquisition system with 64 

channels is used for capturing the slosh response under vertical excitation. The 

displacement of the free surface is captured by Infrared (IR) sensors placed at the 

top of the tank as shown in Figure 6.22. Tiny white colored thermocol beads are 

placed on the free-surface, IR sensor transmits the infrared signal which senses the 

movement of these thermocol beads. IR sensor has a receiver and a transmitter. The 

transmitter will produce a signal, and the receiver receives the reflected signal, the 

time difference between transmitting a signal pulse and receiving signal pulse gives 

the slosh height. For the signal pulse to reflect thermocol beads are placed on the 

free-surface. This time difference generates a pulse, which will be sent to data 

acquisition system, where the signal pulse is amplified, calibrated. A schematic 

diagram of shake table test is shown in Figure 6.23. 

 



CHAPTER-6 

 

115 
 

 

Figure 6.22: Rectangular tank placed on shake table with IR sensors at the top 

 

 

Figure 6.23: Schematic of shake table experiment carried out for dynamic stability of free-

surface (a) Controlling system (b) Hydraulic pump (c) Fluid filled tank on shake table (d) IR 

sensor (e) Data acquisition system (f) Output display system 
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6.8.2 Free vibration analysis 

A sine sweep test was conducted first to calculate the slosh natural 

frequencies. To calculate the sloshing natural frequencies, liquid filled container is 

excited sinusoidally with varying frequencies along the X-direction and Y-direction 

independently. Exciting the container along certain direction sinusoidally with 

varying frequencies is called a sine sweep.  When the excitation frequency equals 

the natural slosh frequency resonance takes place and one can observe that the free-

surface oscillates with high amplitudes or slosh elevations. These slosh elevations 

are recorded with respective time with the help of the IR sensor placed at the top. 

The data from IR sensor gives time vs. slosh elevation data, which signifies a signal 

data. The plot of Fourier spectrum of this signal data gives natural frequencies of the 

system. The Fourier amplitude spectrum of the signal data will have peaks, these 

peak values are the slosh natural frequencies. Table 6.5 shows the first three natural 

frequencies along X and Y direction obtained in experiment and compared with 

frequencies obtained from analytical formula Eq. (6.16) and finite element model. 

Table 6.5: Free-surface natural frequencies 

Mode (fmn) Experiment (Hz) Analytical (Hz) FEM (Hz) 
f10 0.7324 0.7724 0.7726 
f01 0.8544 0.8634 0.8636 
f20 1.0986 1.1385 1.1393 
f02 1.3567 1.2489 1.2497 
f30 1.4648 1.3969 1.3988 
f03 1.7089 1.5303 1.5324 

6.8.3 Slosh response under vertical excitation 

   The container is excited vertically with various frequencies and amplitudes 

selected from the stability chart which lie in stable and unstable regions. To obtain- 

the response under vertical excitation, the free-surface requires some initial 
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perturbation. To create some perturbation on the free-surface, the container is 

excited horizontally with a frequency of 0.5 Hz and amplitude of 0.5 mm for the first 

10 seconds and then the container is excited vertically. The focus was on the 

principal parametric instability region, which is most dominating and catastrophic. 

Principal parametric resonance region corresponds to instability at a frequency equal 

to twice the fundamental natural frequency. 

Figure 6.24 shows the slosh response of free-surface for excitation parameters lying 

in stable and unstable regions respectively. Figure 6.24(a) shows the response of the 

free-surface when the external excitation frequency is 0.8 times of the fundamental 

slosh frequency, amplitude 0.2g, these system parameters lie in stable region, as 

expected bounded / stable response is obtained. Figure 6.24(b) shows the response 

of the free-surface when the external excitation frequency is twice the fundamental 

slosh frequency with amplitude of 0.2g, these system parameters lie in unstable 

region, and as expected the free-surface is unstable and shows unbounded response. 

Figure 6.24(b) shows the exponential increase in the amplitude of the free-surface 

wave, which is a peculiar behaviour of parametric instability. Figure 6.25 shows the 

snapshots of the experiment at various time steps, for the response shown in Figure 

6.24(a), when the free-surface is stable. Figure 6.26 shows the snapshots of the 

experiment at various time steps, for the response shown in Figure 6.24(b), when the 

free-surface is unstable. Figure 6.25 displays a bounded response of the free-surface. 

The video of this case can be seen in the http://youtu.be/L1LADAPVKG4. Figure 

6.26 displays an unbounded response of the free-surface. The video of this case can 

be seen in the http://youtu.be/4ft_jd5dkvQ. 
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Figure 6.24: (a) Stable response, ωv = 0.8f10, av = 0.2g (b) Unstable response, ωv = 2f10, av = 0.2g 

 

 

Figure 6.25: Snapshots of free-surface at different time steps showing stable response as shown 

in Figure 6.24(a) 
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Figure 6.26: Snapshots of free-surface at different time steps displaying parametric instability 

as shown in Figure 6.24(b) 

6.8.4 Validity of stability chart 

 The liquid filled container was excited with various frequencies ranging from 

0.5f10 to 2.5f10 for fixed amplitude ranging from 0.1g to 1g picking the frequencies 

from the stability chart lying in the principal parametric instability region to validate 

the stability chart obtained. The focus was on the principal parametric instability 

region because it is the most dominating and catastrophic. For these different 

excitation parameters the response of the fluid free-surface is checked, the excitation 

parameters for which free-surface response is unbounded or bounded are noted and a 

chart is plotted. Figure 6.27 shows the experimental test points for which the free-

surface response is stable and unstable. Figure 6.27 also shows the theoretical 
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boundary curve separating the stable and unstable region. Figure 6.27 indicates   that 

the predicted boundaries of the instability region agree closely with the experiment.  

 

Figure 6.27: Comparison of theoretical and experimental stable and unstable regions 

6.9 Summary 

Stability of free-surface sloshing response of liquid in 2-D fixed and forced 

tanks is investigated numerically considering fully non-linear equations. The 

stability of the free-surface is obtained theoretically. A fully non-linear finite 

element numerical model has been developed based on potential flow theory to 

simulate the sloshing response. Free-surface sloshing response is simulated under 

regular harmonic base excitations for small and steep waves as defined by Frandsen. 

The slosh response is simulated for horizontal, vertical and combined base 

excitations of the tank. An experiment on shake table is carried out to validate the 

stability chart obtained. It is found that numerical and experimental results are in 

good agreement with the stability chart obtained theoretically.  
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Chapter 7 

DYANMIC STABILITY OF THIN SHELLS FILLED WITH 

LIQUID 

 

7.1 Introduction 

Thin cylindrical shells are used extensively in several branches of 

engineering especially in civil, off-shore, nuclear, petrochemical, mechanical, 

marine and aerospace engineering. These cylindrical shells are utilized as a 

containment vessels or tanks for the storage of liquids. This is mainly due to the 

important role played by these shells as efficient load carrying members, particularly 

axial and lateral loads. Under dynamic loadings like seismic excitations, these thin-

walled cylindrical shells experience axial compressive loads and exhibit highly 

nonlinear behaviour and lose stability there by failing at load levels very much less 

than the material’s ultimate strength. The inertial coupling between fluid motion 

(sloshing) and shell wall motions may affect significantly the dynamic behaviour 

and stability of fluid filled shells. When a thin cylindrical storage tank is subjected to 

vertical excitations, axisymmetric dynamic liquid loads act on the shell wall 

resulting in large amplitude vibrations with circumferential wave numbers equal to 

or larger than one. The frequencies of these vibrations will be half the frequency of 

the excitation force and this type of vibration can be explained as parametric 

resonance. Hence, in order to utilize the thin cylindrical shells effectively without 

failing under dynamic loads, it is important to study the dynamic behaviour of shells 

under dynamic excitations.   

In 1960, Bublik and Merkulov [136] analyzed the dynamic stability of a 

simply supported cylindrical tank under axial excitations theoretically and showed 
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that the problem is governed by Hill’s equation. Kana and Craig [137, 138] 

considered a cantilever cylindrical shell completely filled with liquid and analyzed 

the stability of the shell theoretically and experimentally. Vijayaraghavan and Evan-

Iwanowski [139] investigated the parametric instability of thin cylindrical shells 

subjected to in-plane longitudinal inertia loading arising from sinusoidal base 

excitation analytically and experimentally. Shkenev [140] and Pavlovskii and Filin 

[141, 142] analyzed dynamic stability of an elastic shell filled with ideal liquid 

theoretically. Tani [143] studied the dynamic stability of truncated conical shells 

under periodic axial load theoretically. Yamaki and Nagai [144] investigated 

dynamic stability of cylindrical shells under periodic shearing forces theoretically. 

Haroun [145] and Veletsos [146] studied the axisymmetric response of a cylindrical 

tank subjected to vertical excitation theoretically by making few simplified 

assumptions.  Chiba and Tani [147 – 152] studied the dynamic stability of liquid 

filled cylindrical shells under horizontal and vertical excitations experimentally and 

theoretically. Chiba and Tani carried out experimental studies with polyester test 

cylinders and their studies were at high frequency range (200-900 Hz) whereas the 

normal seismic loadings are of frequency range 1-30 Hz. The studies on 

investigation of dynamic buckling in the seismic frequency range were carried out 

by Uras and Liu [153 – 159]. Uras and Liu investigated the dynamic stability of 

liquid-filled shells with fluid-structure interaction theoretically through Galerkin 

finite element discretization procedure under the seismic loadings. Kochupillai and 

Ganesan [160, 161] studied the parametric instability in flexible pipes conveying 

fluid under time-periodic flow fluctuations of fluid numerically using finite element 

method. Goncalves and Silva [162 – 164] analyzed dynamic instability of circular 
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cylindrical shells under static and harmonic axial loadings theoretically using 

Poincare maps and Lyapunov exponents. A detailed review of linear and non-linear 

shell vibrations, including fluid-shell interaction, can be found in a book by Amabili 

[165]. 

 In all the references cited so far, the dynamic stability studies in fluid-filled 

cylindrical shells were carried out either theoretically or experimentally. Theoretical 

studies are possible for simple geometries with simple boundary conditions. If the 

geometry of the shell or the boundary conditions are complex, theoretical solution 

goes complex and may be even impossible for some situations. It is possible to 

apply numerical methods like finite element method for such cases. In the present 

chapter the dynamic stability of fluid-filled cylindrical shells is investigated 

numerically using finite element method. Both the thin shell and fluid are discretized 

using finite element method. Hsu’s stability criteria are applied to study the dynamic 

stability.  

7.2 Governing equations 

The liquid-shell system under consideration is shown in Figure 7.1; it is a 

ground-supported circular thin-walled cylindrical shell of radius R, height L and 

thickness h, with the wall connected to rigid base. The tank is partly filled with an 

inviscid, compressible liquid of mass density ρf to a height H. E, υ, ρs are the 

structures Young’s modulus, poisons ratio and density respectively. 

7.2.1 Fluid field equations 

 The linearized governing equation for the inviscid, compressible, irrotational 

fluid domain in terms of pressure variable is the wave equation given as follows in 

the frequency domain 
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    Figure 7.1: Fluid-filled cylindrical shell and its boundary conditions 

2 2

2 2

1 1
0

f i f

p
p

x c

ω
ρ ρ
∂

+ =
∂

 in Vf   (7.1) 

where Vf  is the fluid volume, c is the acoustic wave propagation velocity in fluid, p 

is the dynamic pressure field. To the volume equation of fluid various boundary 

conditions are associated, as shown in Figure 7.1. 

7.2.1.1 Moving wall boundary condition (S) 

( )21
. . .i i i i i

f i

p
n n u t n

x
ω γ

ρ
∂
− =

∂
   (7.2) 

where ni is unit vector normal to the boundary, ui is the displacement vector of the 

moving wall of the thin shell and ( )i tγ  is the dynamic load acting on the system. 

7.2.1.2 Free surface in gravitational field (Σ) 

In the gravitational field g, the dynamic pressure on the free surface is related to the 

normal displacement Z of fluid, by the equation 

fp gzρ=     (7.3) 
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( )21
. .i i i

f i

p
n z t n

x
ω γ

ρ
∂
− = −

∂
   (7.4) 

Fixed pressure on the free surface 

sp p=      (7.5) 

7.2.2 Structural filed equations 

 Let u be the structure displacement, ε(u)be the strain and σ(u) be the stress 

fields of the thin-walled structure. The structure is described using an elastic shell 

model. The structure is assumed to have an elastic, linear, isotropic behaviour. The 

kinetic and potential energies of the structure are given by, 

( )
2

1

2
m

s

V

u
T t dv

t
ρ

∂ =  ∂ ∫    (7.6)  

( ) ( ) ( )1

2
mV

U t u u dvσ ε= ∫    (7.7) 

The governing equation for structure in frequency domain is given by, 

( )2 0ij

s i i

ij

u
u F

x

σ
ρ ω

∂
+ + =

∂
in Vm   (7.8) 

with boundary condition: 

( ).ij j ju n pnσ = −  on S    (7.9) 

Fi corresponds to volume forces of the structure. 

7.2.3 Fluid-structure coupling 

Coupling between the fluid and structure is done by the boundary conditions 

Eq. (7.2) and Eq. (7.9). Equation (7.2) expresses the continuity of the normal 

displacement component of the structure. On S, the structure acts on the fluid 

through an imposed displacement in the normal direction at the fluid boundary. 
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Equation (7.9) expresses the continuity of the normal component of the stress tensor 

at the fluid-structure interface. On S, the fluid acts on the structure through imposed 

pressure that creates a structure loading in the normal direction at the structure 

boundary. 

7.3 Numerical treatment of the coupled problem 

7.3.1 Variational formulation of the coupled problem 

 To obtain the numerical approximation of the coupled problem, finite 

element method is employed. A start of employing finite element method is to use a 

variational formulation approach. The variational formulation of the structure for 

any virtual displacement field δu satisfying the required boundary conditions is 

written as: 

( ) ( ) 2 . . 0
m m m

ij ij s i

V V V S

u u dv u udv F udv pn udsσ ε ω ρ δ δ δ− − − =∫ ∫ ∫ ∫  (7.10) 

The variational formulation of the fluid for any virtual pressure field δp is written as: 

( )

2 2

2

1 1
.

                          . 0

f f
f i i fV V s

i i

S

p p
dv p pdv u n

x x c

z pds t n pds

δ
ω δ ω

ρ ρ

δ γ δ
Σ +Σ

∂ ∂
− −

∂ ∂

− + =

∫ ∫ ∫

∫ ∫
  (7.11) 

The sloshing of the free surface is governed by Eq. (7.3), the corresponding 

variational formulation with any virtual normal displacement δz can be written as: 

0f gz zds p zρ δ δ
Σ Σ

− =∫ ∫    (7.12)   

7.3.2 Finite element discretization 

 To the above variational formulations equations, setting a suitable shape 

functions for each variable and spatially discretizing using finite elements gives 
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mass, stiffness, load and fluid-structure interaction matrices [72, 80] for the structure 

and fluid as follows: 

Structure: 

.
m

T

s s

V

u udv U M Uρ δ δ→∫    (7.13)  

( ) ( )
m

T

ij ij s

V

u u dv U K Uσ ε δ→∫   (7.14) 

m

i s

V

F udv Fδ →∫     (7.15) 

Fluid: 

2

1

f

T

f

fV

p pdv p M p
c

δ δ
ρ

→∫    (7.16) 

1

f

T

f

f i iV

p p
dv p K p

x x

δ
δ

ρ
∂ ∂

→
∂ ∂∫   (7.17) 

( ).i i f

s

t n pds Fγ δ
+Σ

→∫    (7.18) 

Free surface of fluid: 

T

f gz zds z K zρ δ δ Σ
Σ

→∫    (7.19) 

Fluid-structure interaction: 

. T

fs

S

pn uds U R pδ δ→∫    (7.20) 

. T T

fs

S

u n pds p R Uδ δ→∫    (7.21) 

T

szz pds p R zδ δ
Σ

→∫     (7.22) 

T T

szp z z R pδ δ
Σ

→∫     (7.23) 
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In the above equations the suffix s stand for structure and f stand for fluid. Finite 

element discretization leads to the following coupled equations: 

2
s s fs sM U K U R p Fω− + − =     (7.24) 

2 2 2T

f f fs sz fM p K p R U R z Fω ω ω− + − − =   (7.25) 

0T

szK z R pΣ − =     (7.26) 

The above dynamic equations of the coupled liquid-elastic shell system can be 

combined to obtain complete fluid-structure dynamic interaction matrix equation as 

follows: 

2

0 0 0

0 0

0 0 0 0 0

s fs s s

T

f fs f sz f

T

sz

K R U M U F

K p R M R p F

R K z z

ω

Σ

−         
         − =         
         −         

 (7.27) 

The above matrix eq. (7.27) is non-symmetric and extraction of eigenvalues 

and eigenvectors become extremely difficult. Although the eigenvalues and 

eigenvectors can be computed using available non-symmetric algorithms [166], they 

require lots of computational time. From that point of view, the non-symmetric 

matrix equations are converted to symmetric form. Several methods have been 

proposed to convert the non-symmetric coupled problem to symmetric coupled 

problem. In some formulations [167], the matrices are forced to take symmetrical 

forms by including some additional unknowns. 

A new variable π is introduced, such as: 

2

p
π

ω
= −     (7.28) 

Thus the coupled problem is formulated with the unknowns as (u, p, z, π), where the 

structure has displacement, u as unknown and the fluid has pressure, p, normal free 
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surface displacement, z and π as the unknowns. Equation (7.28) can be written as 

follows, using the fluid stiffness matrix, Kf: 

2 0f fK p Kω π+ =     (7.29) 

Combining Eq. (7.29) with Eq. (7.27) gives the following system of coupled 

equations: 

          2

0 00 0 0

0 0 00 0 0 0

0 0 0 0

0 0 00 0 0 0

s fss m

ff

T T

fs f f sz f

T

sz

M RK U U F

KK p p

R K M R F

RK z z

ω
π π

Σ

−        
        −        − =
        − − −
        

−        

 (7.30) 

The above matrix equation is in symmetric form and could be easily solved. The 

system of equation is in the general form of a usual structural system equation K-

ω
2
M=F, the usual numerical methods used for dynamic analysis of structure 

systems can be applied without any change to the coupled fluid-structure system of 

equations.    

From the above coupled fluid-structure equations, when the equation of 

motion for the structure with fluid-structure interaction is considered the mass 

matrix gets an additional term called added mass matrix denoted by MAdd. A portion 

of the liquid vibrates with the tank; this portion called as impulsive mass and is 

characterized by the added mass. The fluid structure interaction in the frequency 

domain is described by the following eigenvalue problem: 

[ ]2 0s Add sM M U K Uω− + + =    (7.31) 

where  

1 T

Add fs f fsM R M R−=     (7.32) 
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The added mass matrix MAdd is positive definite. Due the added mass, the 

eigenfrequencies of the structure with fluid are lower than the eigenfrequencies of 

the structure without fluid.    

7.4 Governing equation for dynamic stability analysis of liquid-filled 

shells 

 Thus the governing equation for dynamic stability of liquid-filled shells 

under vertical seismic excitations can be written as  

( ) 0GMU KU K t U+ + =ɺɺ    (7.33) 

where M, K, KG is the mass matrix (including added mass of the fluid), the stiffness 

matrix and the time dependent geometrical stiffness matrix. U is the generalized 

displacement vector. The formulations of these matrices are shown in Chapter 6.  Eq. 

(7.33) can be transformed to the following equation using natural vibration mode 

shapes as per the mode superposition technique 

( ) ( )( )0 0u K K t u+ + =ɺɺ    (7.34)  

By applying the transformation, the total mass matrix is normalized to the identity 

matrix and stiffness matrix is reduced to a diagonal matrix K(0) of natural frequencies 

ωin
2 where i for axial mode number and n  stand for circumferential mode number 

and u is the generalized displacement in transformed coordinates.  The time 

dependent geometric stiffness matrix K(t) varies periodically with time and can be 

expanded as Fourier series as follows 

( ) ( ) ( ) ( ) ( )( )
1,2,

cos sin
S

s s

s

K t D s t E s tω ω
=

= +∑
…

   (7.35) 

By adding a diagonal damping matrix C, whose components are given by  

2in inc ξω=     (7.36) 
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where ξ is the damping ratio and the coupling of each mode is assumed to be 

negligible, the governing equation of motion for dynamic stability analysis takes the 

form 

( ) ( ) ( ) ( ) ( )( )0

1

cos sin 0
S

s s

s

u Cu K u D s t E s t uω ω
=

+ + + + =∑ɺɺ ɺ   (7.37) 

In seismic analysis, the response of the fluid-structure system is dominated by only a 

few modes, with this assumption Eq. (7.37) can be simplified to  

( )0 cos 0u Cu K u Du tε ω+ + + =ɺɺ ɺ    (7.38) 

where ω and ε represent a typical dominant frequency and the normalized amplitude 

of the seismic excitation respectively. The above equation in the component form 

can be written as follows 

22 cos 0j jn jn ij

j

u u u d tξω ω ε ω+ + + =∑ɺɺ ɺ   (7.39) 

Eq. (7.39) is a set of coupled Mathieu equations. The stability of Eq. (7.39) can be 

sought from the methods discussed in Chapter 1.  

7.5 Dynamic stability analysis 

 For a given dimensions and physical properties of the shell and liquid, Eq. 

(7.39) shows the solution growing indefinitely with time under certain combinations 

of ε and ω. The dynamic stability Eq. (7.39) is obtained using Hsu’s stability criteria. 

According to Hsu’s results, the instability boundaries are given by the following 

equations [148]  

1 ij

ij

ω
θ

ω
= ±     (7.40) 

   
2

2

2 2
,   

16
ij ji

ij in jn ij

in jn

d dε
ω ω ω θ ξ

ω ω
= + = −   (7.41) 
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In the above stability conditions, ωij and ijθ  correspond to the central frequency and 

the relative width parameter of the instability region respectively. The instability 

regions obtained using Eq. (7.40 – 7.41) are the combination resonance instability 

regions of sum type. In addition, Eq. (7.39) has parametric instability regions when 

the excitation frequency ω is almost twice the natural frequency ωin. The boundaries 

of this instability region is obtained by putting i=j in Eq. (7.40) and Eq. (7.41).   

7.6 Numerical results and discussion 

 The dynamic stability of fluid filled shells is studied for two different cases; 

a tall tank and a broad tank. The geometrical data for the tall and broad storage tank 

used in this chapter are given in Table 7.1. Both the tanks are assumed to be filled 

with water to 75% of height. The dimensions of the tank are same as the dimensions 

of tanks taken in Chapter 5. Density of water is taken as 1000 kg/m3. Before 

analyzing the dynamic stability of shells, it is needed to know the natural 

frequencies of the fluid-structure system. A free-vibration analysis is carried out in 

the next section.  

7.6.1 Free vibration analysis of fluid-structure system 

 The natural frequencies and mode shapes of the fluid-structure system can be 

obtained by solving the eigenvalue problem given in Eq. (7.30). The complete 

analysis of the dynamic stability of fluid-structure system is carried out in CAST3M 

[168], an object oriented finite element software package. The validity of CAST3M 

for fluid-structure interaction problems can be referred in [169-171].  The 

vibrational modes of a circular cylindrical shell filled with fluid can be classified as  
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Table 7.1: Geometric and material data of the cylindrical shells 

Shell data Tall shell Broad shell 
R Radius 7.32 m 18.130 m 
L Length 21.96 m 12.20 m 
t Thickness 0.0254 m 0.0254 m 
E Young’s modulus 206.7 GPa 206.7 GPa 
ν Poisson ratio 0.3 0.3 
ρ Shell mass density 7.84*103 Kg/m3 7.84*103 Kg/m3 

 

            

             Vertical nodal patterns                                        circumferential nodal patterns 

 
              Figure 7.2: Fluid filled circular cylindrical shell vibrational modes 

the cos θ-type modes for which there is a single cosine wave of deflection in the 

circumferential direction, and as the cos nθ-type modes for which the deflection of 

the shell involves a number of circumferential waves higher than 1. These 

circumferential cos nθ-type modes can be further denoted as beam-type modes 

because the shell behaves like a vertical cantilever beam across the length. Figure 

7.2 shows the vertical nodal patterns and circumferential modes for a circular 

cylindrical shell filled with fluid. Table 7.2 and Table 7.3 shows the frequencies 

obtained for tall and broad shell respectively filled with 75% of fluid using 



CHAPTER-7 

 

134 
 

CAST3M. Eleven circumferential modes and respective first four beam bending 

modes for tall and broad tanks are listed in the tables.  

Table 7.2: Natural frequencies of 75% water filled tall tank in Hz 

N i =1 i = 2 i =3 i =4 

0 8.3900 21.7788 30.6000 37.0870 

1 7.5664 19.0684 27.2553 34.7280 

2 3.8778 13.3654 23.3592 30.6960 

3 2.3316 9.2367 18.3713 26.1492 

4 1.8390 6.8814 14.3715 22.1290 

5 2.1403 5.6799 11.7428 18.9999 

6 2.9151 5.5905 10.2408 16.7749 

7 3.9289 6.6056 9.9507 15.4247 

8 5.4472 8.0779 11.4522 15.1237 

9 7.8278 7.8279 14.2709 16.9166 

10 11.4890 11.4886 12.2500 13.2498 

 

Table 7.3: Natural frequencies of 75% water filled broad tank in Hz 

N i =1 i = 2 i =3 i =4 

0 7.6132 14.0437 16.6794 22.0095 

1 7.7356 13.5557 18.0370 21.8886 

2 6.7361 12.8303 17.7728 21.7119 

3 5.7191 12.5201 17.4291 21.857 

4 4.8012 11.8171 16.9818 21.3220 

5 4.0513 11.1001 16.9560 20.8907 

6 3.4553 10.2286 15.9066 20.3305 

7 2.9916 9.3406 15.3397 19.8196 

8 2.6485 8.5395 14.7584 19.4217 

9 2.4242 7.8678 14.1782 19.1193 

10 2.3253 7.3345 13.6227 18.8837 

 

7.6.2 Dynamic stability of tall and broad fluid filled shells   

 In the present section dynamic stability analysis is carried out for the fluid-

filled shells using Hsu’s conditions as given in Eq. (7.40). Figure 7.2 and Figure 7.3 

shows the dynamic stability chart of tall and broad shell respectively. The simple 
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resonance regions are shown in blue colored lines and combination resonance 

regions are shown in red colored lines. From the stability charts it can be observed 

that, if the peak ground acceleration (PGA) of vertical base excitation exceeds 

approximately 0.2g, the tanks undergo parametric instability and below this 

excitation the tanks are stable. From the figures we can infer that, the instability 

regions are more dense and broad for tall tank compared to broad tank. Thus tall 

tank is more prone to dynamic instability under vertical excitation. 

7.7 Summary 

The dynamic stability of bottom clamped cylindrical shells filled with fluid 

under vertical base excitation is obtained using Hsu’s stability criteria. The 

governing Mathieu-Hill equation is obtained by employing finite element 

formulation. Two tanks of different aspect ratio are taken and analysis is carried out 

in CAST3M. 

 

Figure 7.3: Dynamic stability chart for tall tank 
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Figure 7.4: Dynamic stability chart for broad tank 
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Chapter 8 

SUMMARY AND SCOPE FOR FUTURE STUDIES 

8.1 Summary 

The present work deals with the investigation of dynamic stability of elastic 

structures under parametric excitation. The governing equations of motion for the 

system have been derived using finite element method. The governing equation of 

motion to study parametric instability is classified as Hill’s equation. The objective 

of solving Hill’s equation is not to get the exact form of solution but to know under 

what parameters the system undergoes instability. This is done by plotting stability 

chart. Computer codes were written to plot the dynamic stability charts. The entire 

computational process has been accomplished by computer codes developed in 

MATLAB and CAST3M.  

Chapter 1 introduces to parametric instability, its governing equation and 

mathematical methods to analyze parametric systems. Mathematical aspects and 

methodology of analyzing the stability of parametric systems is discussed. Floquet’s 

theory, Bolotin’s analytical and finite element approach and Hsu’s stability approach 

are discussed along with pros and cons of each method.     

  In chapter 2 a SDOF parametric system i.e. a simple pendulum and an 

inverted pendulum are studied which serves in understanding the methodology and 

phenomenon of parametric stability and instability with ease.  

Chapter 3, 4 and 5 respectively deal with dynamic stability analysis of 

simply supported slender beam, simply supported thin plates and bottom clamped 

thin cylindrical shell. The governing equations are derived using finite element 

method. Stability analysis was carried out using Bolotin’s finite element approach 
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and Hsu’s stability criteria. The present computer codes are written so that any 

arbitrary boundary conditions can be given to the elastic structures. 

Chapter 5 deals with dynamic stability of free-surface sloshing of liquid in 

rigid tanks under vertical excitations. The stability of the free-surface of the liquid is 

analyzed theoretically through the governing linearized equations. A finite element 

arbitrary Eulerian-Lagrangian formulation is developed [List of Publications, 

Journals, 1] for sloshing response under horizontal, vertical and combined 

excitations.  The stability chart obtained is checked by simulating sloshing response 

using the finite element formulation and by an experiment on shake table. The 

numerical and experimental results were as expected from the stability chart. The 

same numerical model is extended to sloshing response in axisymmetric tanks [List 

of Publications, Journals, 2], sloshing response in tanks with submerged components 

[List of Publications, Conference Proceedings, 7] and to sloshing response in 3D 

rectangular tanks. 

Chapter 6 deals with the dynamic stability of cylindrical shells filled with 

fluid taking fluid-structure-interaction into account. Dynamic stability chart is 

obtained employing Hsu’s stability criteria. Numerical analysis is carried out in 

CAST3M.  

8.2 Scope of future-work  

Some of the possible areas for further research from the present work are 

given below. 

1. The dynamic stability of the elastic structures with material non-linearity has to 

be explored. 
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2. Numerical formulation for dynamic stability of free-surface of liquid and for non 

linear sloshing response in tanks was studied assuming tanks as rigid. The 

numerical formulation for the same studies can be extended to flexible tanks. 

3. The same numerical formulation can be extended to study the sloshing response 

in tanks subjected to rotational motion. 

4. It would be interesting to study the sloshing response under vertical excitations 

of large amplitudes. For large amplitudes, the sloshing response can be chaotic 

and liquid can splash. These studies cannot be carried out with the present 

developed finite element formulation. Finite element method being a grid based 

method, it has its own limitations for very large amplitude sloshing response 

studies, it demands mesh less methods. Such studies have to be carried out using 

smoothed particle hydrodynamics (SPH).  

5. Shake table experiments have to be conducted for studying dynamic stability of 

thin shells filled with fluid.  

6. In the present work dynamic stability of fluid-filled shells are carried out 

assuming linearized free-surface boundary conditions of fluid. The dynamic 

stability studies of fluid-filled shells can be carried out with non-linear free-

surface boundary conditions of fluid. 
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Appendix-A 

A.1 Eigenvalue problem in the absence of damping 

Eq. (1.29) and Eq. (1.30) are reduced to following generalized eigenvalue problems 

in the absence of damping respectively, 

21 1
0

2 4
e GS GDK K K M+ − − Ω =   (A.1) 

21 1
0

2 4
e GS GDK K K M+ + − Ω =   (A.2) 

and 

2 0e GSK K M+ −Ω =     (A.3) 

2 0 0
01

0
2

e GS GD

GD e GS

K K K

MK K K

+ 
   −Ω =  +  

 

 (A.4) 

A.2 On solving quadratic eigenvalue problem 

Let the quadratic eigenvalue problem be of the form 

( )2 0A B C vλ λ+ + =     (A.5) 

The quadratic eigenvalue problem Eq. (A.5) can be reduced to generalized 

eigenvalue problem using the enlarged eigenvector  

.
V

U
V

λ 
=  
 

    (A.6)  

Substituting Eq. (A.5) into Eq. (A.4), it reduces to the following linear form 

0 0
0.

0

A A
U

C A B
λ

    
− =    − −    

  (A.7)   

Eq. (A.7) can be solved for λ by 
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0 0
0

0

A A

C A B
λ

   
− =   − −   

   (A.8) 
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Appendix-B 

The periodic solution with a period 2π can be written in the form 

( )
1,3,5

sin cos
2 2

k k

k

kt kt
z t a b

∞

=

 = + 
 

∑   (B.1) 

Substituting the series above Eq. (B.1) into Eq. (6.18) and equating the coefficients 

of identical sine and cosine terms lead to the following system of linear homogenous 

algebraic equations 

( )

1 32

2

2 22

1
1 0

2 4 2

1 0     3,5,7,
4 2

v v

n

v
k k k

n

k k
a a

kk
a a a k− +

 
+ − − = 

Ω 

 
− − + = = 
Ω 

…

 (B.2) 

( )

1 32

2

2 22

1
1 0

2 4 2

1 0        3,5,7,
4 2

v v

n

v
k k k

n

k k
b b

kk
b b b k− +

 
− − − = 

Ω 

 
− − + = = 
Ω 

…

 

(B.3) 

The periodic solution with period π can be expresses in Fourier series is given as 

( ) 0
2,4,6

sin cos
2 2

k k

k

kt kt
z t b a b

∞

=

 = + + 
 

∑  (B.4) 

Substituting the series Eq. (B.4) into Eq. (6.18) and equating the coefficients of 

identical sine and cosine terms lead to the following system of linear homogenous 

algebraic equations  

( )

2 42

2

2 22

1
1 0

2

1 0       4,6,8,
4 2

v

n

v
k k k

n

k
a a

kk
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 
− − = 
Ω 
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Ω 

…

 (B.5) 
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2

1
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Ω 

…

 (B.6) 

 The system of linear homogenous Eqs. (B.2) - (B.3) and Eqs. (B.5) - (B.6) has a 

non-trivial solution when the determinant composed of the coefficients is zero. The 

determinants are written as 

2

2

2

1
1 0

2 4 2

9
1

2 4 2 0

25
0 1

2 4
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…

…

…

⋮ ⋮ ⋮ ⋱

  (B.7) 

Eq. (B.7) gives determinant obtained from both the Eqs. (B.2)-(B.3) combined under 

the ± sign.  
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   (B.8) 
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  (B.9) 

The determinants given above are called Hill determinants, they are of infinite order. 

The Hill determinants are tri-diagonal in nature. It is clear from these determinants 

that Ωn always appear on the diagonal of the matrices, one can invoke the analogy 

with the eigenvalue problem and refer Ωn as an eigenvalue. Then, for given values 

of kv, it is possible to calculate values of Ωn corresponding to periodic solutions of 

period π and 2π. By solving the above eigenvalue problems, a stability chart is 

plotted. 
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