
Magneto-transport and High Pressure transport studies 

on the Topological Insulator system Bi2Se3 

 By 
 

T. R. Devidas 
 

(Enrollment No: PHYS02 2010 04006) 
 
 

Indira Gandhi Centre for Atomic Research, Kalpakkam 

 

A Thesis Submitted to the  

Board of Studies in Physical Sciences 

In partial fulfillment of requirements 

For the Degree of 

 

DOCTOR OF PHILOSOPHY  

of  

HOMI BHABHA NATIONAL INSTITUTE 

 
 

 

February, 2016 

  









List of Publications 

Journal 

a) Published  

1. Role of Se vacancies on Shubnikov-de Haas oscillations in Bi2Se3: A combined magneto-

resistance and positron annihilation study  

T. R. Devidas, E. P. Amaladass, Shilpam Sharma, R. Rajaraman, D. Sornadurai, N. 

Subramanian, Awadhesh Mani, C. S. Sundar and A. Bharathi,  EPL 108 (2014) 67008 

2. Magneto-transport behaviour of Bi2Se3-xTex: Role of disorder 

E. P. Amaladass, T. R. Devidas, Shilpam Sharma, C. S. Sundar, Awadhesh Mani and A. 

Bharathi, J. Phys.: Condens. Matter 28 (2016) 075003 

b) Manuscript under revision  

1. Magneto-transport in the Topological Insulator system Bi2-xSbxSe3 

T. R. Devidas, E. P. Amaladass, Shilpam Sharma, Awadhesh Mani, R. Rajaraman, C. S. 

Sundar and A. Bharathi 

c) Other Publications (not included as a part of the thesis): 

1. Pressure-induced structural changes and insulator-metal transition in layered bismuth 

triiodide, BiI3: a combined experimental and theoretical study 

T. R. Devidas, N. V. C. Shekar, C. S. Sundar, P. Chithaiah, Y. A. Sorb, V. S. Bhadram, 

J. Phys.: Condens. Matter 26 (2014) 275502 

2. Observation of superconductivity in SrMnBi2 and Bi interface 

K. Vinod, A. Bharathi, A. T. Satya, Shilpam Sharma, T. R. Devidas, Awadhesh Mani, A. 

K. Sinha, S. K. Deb, V. Sridharan, C. S. Sundar, Solid State Commun. 192 (2014) 60 

3. Unification of the pressure and composition dependence of superconductivity in Ru 

substituted BaFe2As2 





 
 
 
 
 
 

Dedicated To  
Mother Nature  

Of which  
I am just a tiny speck of dust 

 

 

  



ACKNOWLEDGEMENTS 
 

Firstly, I would like to express my sincere gratitude to my research supervisors 

Dr. Awadhesh Mani and Dr. A. Bharathi for their valuable guidance during my research 

tenure. Their innovative ideas, immense knowledge and motivation kept me brimming with 

positive energy throughout the course of the work.  

Besides my supervisors, I would also like to thank the rest of my thesis committee: 

Dr. C. S. Sundar and Dr. P. Ch. Sahu, for their insightful comments and encouragement, but 

also for the hard questions which incented me to widen my research from various 

perspectives.  

I sincerely thank the Department of Atomic Energy, India for providing me necessary 

financial support throughout my research tenure. I am grateful to Dr. Baldev Raj, former 

Director, IGCAR, for allowing me to carry out my research work in Material Science Group 

and also the subsequent directors Shri. S. C. Chetal, Dr. P. Vasudeva Rao including the 

current director Dr. S. A. V. Satyamurthy for allowing me to continue my research work in 

this esteemed institute. 

I am grateful to my seniors in the lab Dr. T. Sathyanarayana Annam, Dr. Shilpam 

Sharma, Dr. rer. nat. A. Edward Prabhu and Dr. K. Vinod for their willingness to share 

knowledge and helping me in carrying out experiments. I also thank my lab-mate and fellow 

research scholar Mr. Radhikesh Raveendran Nair for the wonderful time spent in lab 

discussing anything from science to sports. 

I express my sincere thanks Dr. G. Amarendra for allowing me to use the 15 T 

Cryogen-free Magneto-Resistance facilities at UGC-DAE-CSR, Kalpakkam node; without 

which this thesis is not possible. I thank Dr. R. Rajaraman, Dr. Varghese Anto Chirayath and 

Dr. S. Abhaya for the helping me with the positron lifetime measurements and analysis. I also 





i 
 

CONTENTS 

Sl. No. Title Page No. 

I SYNOPSIS I 

II LIST OF FIGURES Viii 

III LIST OF TABLES Xix 

   

Chapter 1 Transport behaviour in Topological 
Insulators (TI): An overview 
 

1 

1.1 Topology 1 

1.2 Integer Quantum Hall Effect (IQHE) 3 

1.3 Integer Quantum Hall Effect in Graphene 5 

1.4 The Quantum Spin Hall Effect 7 

1.5 Quantum Spin Hall State in 3D 10 

1.6 The Berry phase 11 

1.7 3D Topological Insulator materials 13 

 1.7.1 Bi1-xSbx 13 

 1.7.2 A2B3 chalcogenide systems 14 

 1.7.3 Other chalcogenide systems 16 

1.8 Signatures of TI in transport measurements 18 

 1.8.1 Shubnikov de Haas (SdH) oscillations 18 

 
1.8.2 Weak Localization (WL) and Weak Antilocalization 

(WAL) 
 

27 

1.9 Transport studies on single crystals of 3D TI system Bi2Se3 32 

1.10 Approach of investigation in the current thesis 35 

 References 39 



ii 
 

Chapter 2 Experimental Techniques 
 

43 

2.1 Single Crystal Synthesis 43 

2.2 X-Ray diffraction 44 

 2.2.1 Powder Diffraction 44 

 2.2.2 Laue Diffraction 45 

2.3 Electrical Resistivity 46 

 2.3.1 Ambient Pressure Resistivity 46 

 2.3.2 High Pressure Resistivity 49 

2.4 Magneto-transport 53 

2.5 Positron Lifetime Spectroscopy 57 

 References 61 

   

Chapter 3 Quantum oscillations from Topological 

Surface States in Bi2Se3 
 

62 

3.1 Synthesizing Bi2Se3 crystal with different Se/Bi ratio 64 

 3.1.1 Synthesis and X-Ray diffraction 64 

 3.1.2 Resistivity 67 

 3.1.3 Hall Effect Measurements 68 

 3.1.4 Magneto-resistance 68 

3.2 Synthesizing Bi2Se3 crystals by varying the rate of cooling 

from the melt 

 

73 

 3.2.1 Synthesis and X-Ray diffraction 73 

 3.2.2 Resistivity 75 

 3.2.3 Hall Effect Measurements 76 

 3.2.4 Magneto-resistance 77 



iii 
 

3.3 Positron Lifetime Measurements 82 

3.4 Discussion 87 

3.5 Conclusion 89 

 References 90 

   

Chapter 4 Magneto-transport studies on Sb substituted 

Bi2Se3 single crystals 
 

92 

4.1 Synthesis and X-Ray diffraction 93 

4.2 Resistivity 97 

4.3 Hall Effect Measurements 98 

4.4 Positron Lifetime Measurements 99 

4.5 Magneto-resistance 102 

4.6 Discussion 110 

4.7 Conclusion 112 

 References 113 

   

Chapter 5 Magneto-transport studies on Te substituted 

disordered Bi2Se3 single crystals 
 

115 

5.1 Synthesis and X-Ray diffraction 116 

5.2 Resistivity 119 

5.3 Hall Effect Measurements 121 

5.4 Magneto-resistance 125 

5.5 Discussion 129 

5.6 Conclusion 130 

 References 131 



iv 
 

   

Chapter 6 High Pressure transport studies on single 

crystal TI system Bi2Se3-xTex 
 

133 

6.1 Synthesis and X-Ray diffraction 134 

6.2 Ambient pressure resistivity 135 

6.3 Hall Effect Measurements 137 

6.4 High Pressure resistivity 137 

 6.4.1 Bi2Se3 138 

 6.4.2 Bi2Se2Te 139 

 6.4.3 Bi2SeTe2 142 

 6.4.4 Bi2Te3 143 

6.5 Discussion 145 

6.6 Conclusion 148 

 References 149 

   

Chapter 7 Summary of thesis and Future work 150 

 References 154 

 



i 
 

SYNOPSIS 

Topological insulators (TI) are an exotic class of compounds that have a band-gap in 

the bulk co-existing with gapless conducting edge/surface states on the edge/surface and have 

been extensively investigated in condensed matter physics in the past few years [1]. The 

characteristic features of these conducting states are that they are dissipation-less and spin 

polarized, properties that arise from their Dirac fermion like linear ε-k dispersion and strong 

spin-orbit coupling. These conducting states are topologically protected which makes them 

robust against weak perturbation or disorder and are hence very promising from the 

technological point of view such as in the field of spintronics and quantum computation [1]. 

The major focus has been on identification, growth and characterization of 3D TIs which 

possess conducting “topological surface states (TSS)” analogous to conducting “topological 

edge states” observed first in HgTe/CdTe [2] quantum well structure. The binary alloy Bi1-

xSbx was the first 3D TI to be predicted and experimentally confirmed. However the narrow 

Sb doping range (0.07 < x < 0.22), small band-gap (0.03 eV at x = 0.18) and the presence of 

multiple surface states subsequently reduced the interest in the system [3]. The prediction and 

confirmation of Bi2X3 (X = Se, Te) class of binary compounds being 3D TIs however sparked 

off extensive research, as they are relatively easy to synthesis, have a wider band gap (0.35 

eV for Bi2Se3) and present a single Dirac cone [4]. Surface sensitive techniques such as 

Angle Resolved Photo-Emission Spectroscopy (ARPES) [4] and Scanning Tunneling 

Microscopy (STM) [5] have been widely used to probe the TSS.  

Bi2Se3 – considered as the “hydrogen atom of 3D TI”, crystallizes in the R3m space-

group. It’s tetradymite structure consists of Se(1)-Bi-Se(2)-Bi-Se(1) quintuples (QLs) 

separated by Van der Waals force; where Se(1) and Se(2) are two non-equivalent positions of 

Se in QL. With a measured band-gap of 0.35 eV, single crystals of Bi2Se3 are expected to 
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exhibit the properties of a semiconductor in resistivity measurements. However, they exhibit 

metallic resistivity behaviour and the Hall Effect measurement suggests that the crystals are 

highly n-doped [6]. First principle calculations associate the n-type doping predominantly to 

Se vacancies [7, 8]; however direct experimental evidence for quantifying vacancies seems 

lacking. ARPES measurements performed on Bi2Se3 have shown that the presence of charge 

defects shifts the bulk Fermi level from the bulk band gap into the conduction band [9]. This 

causes complications in transport measurements as the parallel conductance from the bulk 

makes it difficult to distinguish between signatures from the TSS and that of bulk. Further, 

the presence of a semiconductor/metal interface in a TI results in phenomena such as band-

bending [9], in order to establish equilibrium between the bulk and surface Fermi levels. 

These play a significant role in observing the signature of TSS states in transport 

measurements viz. 2D Shubnikov de Haas (SdH) oscillations and Weak Anti-localisation 

(WAL) behaviour [10]. The major research pertaining to Bi2Se3 has been focused on the 

shifting the Fermi level into the bulk band-gap without disturbing the topological surface 

states so as to realize their signatures in transport measurements. To achieve this, various 

methods have been adopted such as (a) doping, (b) growing thin films and nanostructures, (c) 

electric gating; with varying degree of success [6]. Recent band structure calculations point 

out to a major role played by defects/disorder in modifying the direction of band-bending [11, 

12, 13] and hence shifting the Dirac point such that the Fermi level lies in the surface states, 

thereby affecting the relative contribution of surface states and bulk state to the transport 

property.  

The current thesis aims at investigating the role of defects/disorder in observing the 

signature of TSS in transport measurements in the Bi2Se3 crystal system by the following 

routes: 
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 Introducing weak and strong disorder by varying the growth conditions of Bi2Se3 single 

crystals. The presence of defects has been investigated using the technique of Positron 

Annihilation Spectroscopy. 

 Controlling the disorder in the Bi2Se3 system by substitution of Sb and Te at the cationic 

and anionic site respectively. 

 Applying external pressure to modify the electronic structure and understand whether –        

a) pressure can suppress the bulk conductivity and unmask the surface contribution in 

transport; b) induce superconductivity while preserving the topological surface state 

which could give rise to novel superconductor/TI interface. 

The thesis is organized into 7 chapters and the contents of each chapter are summarized 

below. 

Chapter 1 – Transport behaviour in Topological Insulators (TI): An overview 

 Chapter 1 presents a brief introduction to the field of Topological Insulators (TI), 

beginning from Quantum Hall Effect to the 2nd generation 3D TIs. Also a detailed review of 

the current literature on the role of defects/disorder on the transport properties of 3D TIs and 

the idea behind the current thesis is presented. 

Chapter 2 – Experimental techniques 

 Chapter 2 describes in detail the synthesis and various experimental techniques used 

in the current thesis. The modified Bridgman method, adopted for growing single crystals is 

described. Powder X-ray diffraction and Laue diffraction techniques used for structural 

characterization are briefed. The principle and working of the 15 T Cryogen free Magneto-

resistance setup used for measuring the magneto-transport properties, and the fast-fast 

coincidence spectrometer used for measuring the Positron Lifetime are explained. The home 

built opposed anvil Bridgman cell used for studying the high pressure-low temperature 

transport properties of the samples is also described. 
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Chapter 3 – Quantum oscillations from Topological Surface States in Bi2Se3 

 Chapter 3 focuses on understanding the role of defects in realizing the signatures of 

Topological Surface States (TSS) viz., the Shubnikov-de Haas (SdH) oscillations in magneto-

transport measurements in single crystalline Bi2Se3. Positron lifetime measurements 

supported by ab-initio calculations of Positron density on stoichiometric Bi2Se3 single 

crystals establish, for the first time, that Se vacancies play the dominant role in n-type doping 

of the Bi2Se3 crystal. Single crystals are synthesized under different growth conditions – a) 

varying the Se/Bi stoichiometry and b) cooling from melt at different rates (1°C/hr., 2°C/hr. 

and 137°C/hr.), to control the defect concentration. The crystals are characterized using 

powder XRD and Laue diffraction for structure. Magneto-transport measurements have been 

performed in the temperature range 4.2 K – 10 K and under 0 T – 15 T magnetic fields. It is 

observed that samples exhibiting SdH oscillations show a pronounced strain in Laue patterns 

associated with the presence of low-angle tilt grain boundaries and stacking fault disorder in 

the crystals. The appearance of TSS signatures viz. Shubnikov-de Haas (SdH) oscillations in 

magneto-transport measurements on Bi2Se3 is directly correlated to the presence of low-angle 

grain boundaries and extended defects such as stacking faults that shift the Dirac point to 

lower energies leading to upward band-bending behaviour, which in turn favour the transport 

being dominated by the TSS. 

Chapter 4 – Magneto-transport studies on Sb substituted Bi2Se3 single crystals 

 Chapter 4 presents a detailed magneto-transport study on the effect of Sb substitution 

on the signatures of TSS in magneto-transport measurements on the Bi2Se3. Since the Spin-

Orbit Interaction (SOI) plays an important role in defining the band-gap in TIs, Sb with a 

reduced SOI parameter has been increasingly substituted for Bi starting with the optimized 

parent Bi2Se3, so as to study the effect of reduced SOI on the TSS signatures. Magneto-

transport measurements have been carried out on Bi2-xSbxSe3 (x = 0, 0.05, 0.1, 0.3 & 0.5) 
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single crystals in the 4.2 K – 300 K temperature and 0 T – 15 T magnetic field range. It is 

observed that Shubnikov-de Haas (SdH) oscillations have a 2D character; however their 

origin, as deduced from the Landau Level-Fan diagram analysis, changes from, the TSS in x 

= 0, 0.05 & 0.1 to a mixture of TSS and the conventional 2D electron gas that forms at the 

metal/semiconductor interface in x = 0.3. The data is further analysed and the results are 

discussed. 

Chapter 5 – Magneto-transport studies on Te substituted Bi2Se3 single crystals 

Chapter 5 discusses the results of magneto-transport experiments carried out on fast 

cooled single crystals of Bi2Se3-xTex (x = 0 to 2) system in the 4.2 K – 300 K temperature 

range and 0 T – 15 T magnetic field range. The variation of resistivity with temperature that 

points to a metallic behaviour in Bi2Se3, shows an up-turn at low temperatures in the Te 

doped samples. Magneto-resistance measurements in Bi2Se3 show clear signatures of 

Shubnikov – de Hass (SdH) oscillations that gets suppressed in the Te doped samples. In the 

Bi2SeTe2 sample, the magneto-resistance shows a cusp like positive magneto-resistance at 

low magnetic fields and low temperatures, a feature associated with weak anti-localisation 

(WAL), that crosses over to negative magneto-resistance at higher fields. The qualitatively 

different magneto-transport behaviour seen in Bi2SeTe2 as compared to Bi2Se3 is rationalised 

in terms of the disorder, through an estimate of the carrier density, carrier mobility and an 

analysis in terms of the Ioffe-Regel criterion with support from Hall Effect measurements.   

Thus the substitution of larger Te for Se in Bi2Se3 introduces strong electronic 

disorder. A low field cusp in magneto-resistance, attributed to the Weak Anti-localization 

associated with TSS is observed at high Te concentration accompanied by the change in 

character of the Hall slope from linear to non-linear. This indicates the increased contribution 

of TSS in transport. 
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Chapter 6 – High pressure transport studies on single crystal TI system Bi2Se3-xTex 

 Chapter 6 presents the data on transport properties of Bi2Se3-xTex system under high 

pressure and low temperatures. Bi2Se3 changes from a metallic to insulating behaviour with a 

distinct hump-like behaviour occurring at temperature Tshoulder, which shifts to higher 

temperature with increasing pressure. Bi2Se2Te changes character from a system indicating 

metal-insulator transition at ambient pressure to completely insulating and then to metallic 

system with increasing pressure. The system exhibits superconductivity with a transition 

temperature (TC) = 5.90 K at a pressure of 2.5 GPa. The TC shifts to lower temperatures with 

increase in pressure beyond 2.5 GPa. Bi2SeTe2 system changes behaviour from insulating to 

metallic with increasing pressure. The system exhibits superconductivity with a TC = 6.20 K 

at a pressure of 1.2 GPa and the TC shifts to slightly lower values with increase in pressure. 

The Bi2Te3 exhibits completely metallic behaviour till the highest pressure in the current 

experiments and also undergoes a superconducting transition at 1.7 GPa with a TC = 5.87 K. 

The TC doesn’t exhibit much variation with increasing pressure. The observed behaviour 

across the Bi2Se3-xTex series is analyzed and the results are discussed. It is thus observed that 

although the pristine Bi2Se3 does not show superconducting transition even upto 8 GPa, 

addition of Te makes the system favour a superconducting phase under pressure. 

Chapter 7 – Summary of the thesis and Future work 

 This chapter summarizes the various results obtained in the current thesis and also the 

directions for future work. 
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CHAPTER 1 

Transport behaviour in Topological Insulators (TI): An overview  

Much of condensed matter physics aims at understanding the different phases of matter and 

transitions between them by change of pressure, temperature and chemical potential. The 

language used to understand why these transitions occur comes under the purview of 

symmetry breaking principles and was detailed by Landau in his theory of phase transitions. 

To give a few examples, in structural transitions the translational symmetry is changed, while 

in ferromagnets rotational symmetry is broken and in superconductors the gauge symmetry is 

broken. With the discovery of Integer Quantum Hall Effect (IQHE) by Klaus von Klitzing et 

al. [1] in 1980, the basic understanding of phase transitions had to be revisited as the normal 

state to IQHE state transition could not be explained on the basis of symmetry breaking 

alone. A new classification of phases, based on the topological property of the ground states 

was propounded by Thouless et al. [2] wherein a system is said to undergo a phase transition 

if there is a change in the topological property of its ground state. To understand what 

constitutes a topological transition let us first look at the definition of topology.  

1.1 Topology 

Topology is the mathematical study of the properties that are preserved through 

deformations, twisting and stretching of objects. For example, two geometrical constructions 

that can be transformed into one another by simple deformations are said to be topologically 

equivalent. In three dimensional Euclidean space, the topological class is based on the genus 

(g) i.e. the number of handles present; the geometries with the same number of handles are 

considered topologically equivalent. Thus, a coffee cup and a doughnut are topologically 

equivalent (g = 1) as are a solid sphere and a solid cube (g = 0). However the solid sphere and 

the doughnut are topologically non-equivalent as the solid sphere cannot be transformed into 
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the doughnut without piercing a hole through. This pinching of a hole is what constitutes a 

topological phase transition. Figure 1.1 shows the topological equivalence between a coffee 

mug and a doughnut, sphere and a cube and the non-equivalence between the doughnut and a 

sphere. 

 
Figure 1.1 – The sphere and cube on the left hand side are topologically equivalent with g = 

0 as are the coffee cup and the torus on the right with g =1. The sphere and the coffee cup are 

topologically non-equivalent as they cannot be transformed into one another through smooth 

deformations. 

In a band insulator, the concept of topology is applied to the parity characteristic of 

the valence band manifold. If the parity changes at an odd number of special points in the 

Brillouin zone, the insulator is termed a non-trivial or topological insulator whereas if the 

parity characteristic does not change or changes at an even number of points in the Brillouin 

zone, the insulator is termed a trivial insulator. The principle of adiabatic continuity can be 

used to explain topological equivalence in insulators i.e. two insulators are said to be 

topologically equivalent if they can be changed into one another by adiabatically tuning the 

Hamiltonian such that the finite energy gap in the band-structure doesn’t vanish. An 

equivalent statement that can be made is that while connecting two topologically different 
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insulators, the topological phase transition that happens is defined by the vanishing of the 

energy gap. The first instance of such a topological phase transition taking place was found 

with the discovery of the Integer Quantum Hall Effect by Klaus von Klitzing et al. in 1980 

[1]. 

1.2 Integer Quantum Hall Effect (IQHE) 

In this quantum analogue of the Classical Hall Effect, when a current carrying 2-

Dimensional Electron Gas (2DEG) system is subjected to a strong perpendicular magnetic 

field, the Hall resistivity (ρxy) is observed to have quantized plateaus at values of 2e
h


, as 

depicted in Figure 1.2, which shows the IQHE data measured on InGaAs based 

heterostructure at a temperature of 0.3 K [3]. Here h is the Planck’s constant; e is the electron 

charge and   is an integer described as the filling factor. 

 
Figure 1.2 – Experimental measurements of the integer quantum Hall effect for an InGaAs 

based heterostructure at a temperature of 0.3 K (adopted from [3]) 

At the values of magnetic fields where quantized plateaus are observed in ρxy, clearly the 

value of longitudinal resistivity (ρxx) also reduces to zero value as is evident from Figure 1.2. 

The phenomena can be explained as follows. Under strong magnetic fields and low 

temperatures, the free electrons in the system get quantized in cyclotron orbits (ref. Figure 
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1.4(b)) and as a consequence, the energy levels in the system are quantized into Landau 

Levels (LLs) with energy cn
2

1
nE 








  (ref. Figure 1.3). Here ℏ is the reduced Planck’s 

constant and ωc is the cyclotron frequency. The maximum of ρxx corresponding to the 

simultaneous increase in ρxy (ref. Figure 1.2) with increasing magnetic field occurs when the 

Fermi Level lies in between two Landau Levels; and the vanishing of ρxx occurring 

simultaneously to the quantization of ρxy into plateaus occurs when the Fermi level lies at the 

centre of a Landau Level (cf. Figure 1.3). 

 
Figure 1.3 – Energy level vs. number of states that the electrons can occupy for increasing 

magnetic field strength. The Fermi level marked by EF is dotted in red. Only those Landau 

Levels that lie below the EF are occupied 

 

As is evident from Figure 1.3, when the Fermi level lies between two Landau Levels, the LLs 

lying below the Fermi level are filled and those lying above are empty i.e. an energy gap 

exists between the occupied and vacant states akin to a normal insulator. The Landau Levels 

can thus be identified as a band-structure of the IQHE state. In addition to the IQHE being a 

quantum macroscopic phenomenon, Thouless et al. [2] showed that it is a topological 

phenomenon i.e. the IQHE is topologically distinct from other types of insulating states 

namely band insulator in condensed matter solids. They showed that the quantized plateaus 
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bear the signatures of this topological state termed, the Chern number  which occurs in the 

expression for ρxy shown earlier [2]. 

A characteristic feature of the IQHE state is the presence of chiral edge states that 

arise at the interface of a 2DEG sample and the vacuum. This is on account of a direct 

consequence of the topological character of gapped band structures, a semi-classical 

description of which follows. As mentioned earlier, the electrons in the IQHE state get 

quantized in cyclotron orbits (ref. Figure 1.4(b)). However, for the electrons that are at the 

edges of the 2DEG sample, the cyclotron orbits are incomplete and hence they form skipping 

orbits. The conduction along these edge states is unidirectional, defined by the direction of 

applied external magnetic field to the system (as shown in Figure 1.4(b)). These edge states 

are spin degenerate states i.e. irrespective of the spin of the electron, the electrons at one edge 

travel along one direction and the electrons on the other edge travel in the opposite direction 

(as shown in Figure 1.4(b)) and hence chiral. 

 
Figure 1.4 – (a) The atomic insulator; (b) The Integer Quantum Hall state with skipping 

orbits forming the edge states  

 

1.3 Integer Quantum Hall Effect in Graphene 

Using the tight binding model on the honeycomb lattice of graphene (ref. Figure 

1.5(a)), Haldane [4] proposed that the IQHE state could be realized in graphene. The band-

structure of graphene has a unique feature, wherein the conduction and valence bands touch 

each other at two distinct points in the Brillouin zone (K and K') (as shown in Figure 1.5(b)) 
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[5]. The electronic dispersion near these points is linear and can be described by the 

relativistic Dirac equation by setting the rest mass of the fermion to be zero [6][7][8]. 

 
Figure 1.5 – (a) Honeycomb lattice of graphene. a1 and a2 are the basis vectors of the 

triangular Bravais lattice; (b) the band structure of graphene. At two inequivalent BZ corners 

the valence band and conduction band touch each other and the band dispersion near these 

points is conical as shown in the zoomed portion (adopted from [5]).  

 

The dispersion at one of the K points is zoomed in Figure 1.5(b). This shows a double cone, 

meeting at the Dirac point. The states in the valence band (VB) are shown shaded while the 

top non-shaded cone is the conduction band (CB). These are called the Dirac cone in the 

band-structure of graphene. The presence of the chiral edge states was also proven by 

Haldane’s model under the conditions of a semi-infinite geometry. A schematic diagram 

where the direction of electron flow is marked is illustrated in Figure 1.6(a)).  

 
Figure 1.6 – (a) Edge states in Haldane’s model on a semi-infinite plane; (b) The chiral edge 

states that connect the valence band and the conduction band near K and K'; (c) tuning the 

Hamiltonian near edge changes the number of times the edge states intersect with the Fermi 

level, but n
 
is always equal to 1 (adopted from [6]) 
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To mimic the IQHE state, a gap needs to be formed in the band structure. This is achieved by 

the application of magnetic field which breaks the time reversal symmetry in graphene [9]. 

Figure 1.6(b)-(c) shows a schematic of the energy levels as a function of the momentum kx 

along semi-infinite edge of graphene. The bulk valence band and conduction band are 

labelled VB and CB respectively. The energy gaps at K and K' are also seen in the schematic. 

The chiral edge states are represented by the single band that connects the valence band at K' 

to the conduction band at K. The dispersion of the edge states and the number of times it 

crosses the Fermi level can be changed by tuning the Hamiltonian near the surface (as shown 

in Figure 1.6(b)-(c)), however the difference between the number of right moving (NR) and 

left moving modes (NL), “ n ” cannot be changed. It is always an integer value and is a 

topological invariant that characterizes the interface [6]. This is called the TKNN (Thouless-

Kohmoto-Nightingale-den Nijs) invariant [2] and is defined as the difference in the Chern 

number across the 2DEG/vacuum interface. Thus in the IQHE state, the topologically non-

trivial states characterized by the chiral edge states occur only when an external magnetic 

field is applied viz., when the time reversal symmetry in the system is broken.  

 

1.4 The Quantum Spin Hall Effect 

Kane and Mele [10][11] predicted a new state in which strong spin-orbit coupling 

played the role of an external magnetic field, thus preserving time reversal symmetry. This 

state has a bulk electronic band gap that supports the transport of charge and spin in gapless 

edge states. They named it as Quantum Spin Hall (QSH) state and associated the phase with a 

topological invariant Z2 [10]. The spin-orbit coupling lifts the spin degeneracy of the edge 

states present resulting in the chiral states at each edge of the sample that correspond to the 

two spins of the electron. They also predicted that the QSH state could be realised in 

Graphene [11]. (ref. Figure 1.7(a)) 
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Figure 1.7 – (a) spin-polarized edge states in graphene, obtained on introducing a spin-orbit 

interaction term in the Hamiltonian; (b) the corresponding schematic band diagram that 

shows the spin-polarized surface states crossing each other at Fermi level (adopted from [6]) 

 

The presence of a strong spin-orbit coupling makes these chiral edge states immune to back-

scattering from impurities. The immunity of these states to back-scattering is a direct 

consequence of the states being spin polarized i.e. electron with up spin has a momentum +k 

and electrons with down spin has a momentum -k. If an electron has to be back-scattered 

from +k to -k, then its spin should also be flipped from up spin to downspin for which an 

external magnetic field is necessary; and since a field is not present, the electrons in the chiral 

edge states cannot be back-scattered.  

To understand the physical meaning of the Z2 index, it is necessary to understand effect of 

presence of time reversal symmetry in the electronic structure of a solid. The time reversal 

symmetry is represented by an anti-unitary operator. For a spin-half particle, this leads to a 

condition where the wavefunction of the particle changes its sign after a 2π rotation. As a 

consequence, all the eigenstates of a time-reversal invariant system with half integer total 

spin are two-fold degenerate. This is called the Kramer’s theorem [12]. The points in 

momentum space where k and -k differ only by a lattice vector G, are called the Time 

Reversal Invariant Momenta (TRIMs). At these points, the energy of the two Kramer partners 

viz., the spin up and spin down electron is the same. Figure 1.8 shows the 4 TRIMs (marked 

as “Λi”; i = 1, 2, 3, 4) for a 2D Brillouin zone. 
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Figure 1.8 – The 4 Time Reversal Invariant Momenta for the 2D Brillouin zone (adopted 

from [13]). 

 

In the absence of spin-orbit coupling, this Kramer’s degeneracy refers to the degeneracy 

between the up-spin and down-spin states. However, in the presence of spin-orbit 

interactions, it introduces a new invariant (ν), in addition to the TKNN invariant [6]. The new 

invariant can have only two possible values ν = 0 or 1. The presence of only two classes 

denoted by 0 and 1 is understood from the principle of bulk-boundary correspondence. Figure 

1.9 shows the electronic band-structure associated with the edge of a time reversal invariant 

insulator as a function of crystal momentum along the edge.  

 

 
Figure 1.9 – Electronic dispersion between two boundary Kramers degenerate points. The 

number of surface states crossing the Fermi energy EF in (a) it is even, in (b) it is odd 

(adopted from [6]). An odd number of crossings at the EF leads to topologically protected 

surface states 
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As a consequence of the Kramer’s theorem [12], the chiral edge states are two-fold 

degenerate at the time reversal invariant momenta (TRIM) occurring at
a

kx


,0 . At other 

positions, the spin-orbit interaction lifts the degeneracy. The two states are then connected in 

two different ways as shown in Figure 1.9(a)-(b) respectively. If the connection is pair-wise 

i.e. if the bands intersect the Fermi energy EF an even number of times as shown in Figure 

1.9(a), the edge states can be removed by pushing the bound states out of the gap. However if 

the edge states connect as shown in Figure 1.9(b) where they cross EF an odd number of 

times, the states can never be eliminated. The occurrence of the above two types of cross-

over depends on the topological class of the valence band-structure of the system under 

investigation. Termed the bulk-boundary correspondence, it relates the number of Kramer’s 

pairs of the edge modes intersecting the EF and the change in the Z2 invariant across the 

interface. The presence of an odd number of crossings at the Fermi level leads to 

topologically protected edge states. 

 

1.5 Quantum Spin Hall State in 3D 

Fu, Kane and Mele in their seminal paper [14] extended the QSH state to 3D systems 

wherein the edges states are replaced by surface states and Moore and Balents [15] showed 

that the topology of such system is defined by four Z2 variants ( 0 ; 1 , 2 , 3 ). Consider the 

cube in Figure 1.10 to represent the Brillouin zone of a 3D material. The Kramer’s theorem 

[12] then defines 8 time reversal invariant momentum points in the Brillouin zone, marked as 

“Λ” in the figure.  



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

11 
 

 
Figure 1.10 – The 8 Time reversal Invariant Momenta in a 3D Brillouin zone (adopted from 

[13]).  

 

Six planes in the 3D BZ, x = 0, x =  π, y = 0, y =  π, z = 0, and z =  π possess the 

symmetries of the 2D BZ (shown in Figure 1.8), and therefore they each have a Z2 invariant 

denoted as x0, x1, y0, y1, z0, and z1. However, these six invariants are not independent. Thus 

only four invariants that are defined by the two constraining relations x0x1 = y0y1 = z0z1 can 

be determined independently in the 3D system. These 4 invariants ( 0 ; 1 , 2 , 3 ) provide a 

complete classification of the 3D time reversal invariant insulators based on whether their 

values are either 0 or 1. If 0  = 1, the system is called a strong TI and if 0  = 0 & i  = 1 for i 

= 1, 2, 3…, it is called a weak TI [13].  

 

1.6 The Berry phase 

A unique characteristic feature of the quantum spin hall insulator state is the presence 

of a π Berry phase in the system which is a consequence of the presence of spin-orbit 

coupling that spin-polarizes the fermions present in the system. By definition the Berry phase 

is the phase acquired by a wave function after traversing closed loop in a parameter space. 

The presence of a π Berry’s phase in TIs can be illustrated with the help of the schematic 

shown in Figure 1.11. 
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Figure 1.11 – (a) the electron’s orbit in real space; (b) the Dirac cone formed as a 

consequence of spin-orbit coupling, DP corresponds to the Dirac point; (c) the physics from 

the electron’s rest frame (adopted from [16]). 

 

Consider an electron with position r and momentum k performing a closed orbit in real space 

(as shown in Figure 1.9(a)). Let ψ be the wavefunction that describes the electron behaviour. 

In the presence of an electric field E, the electron experiences an effective magnetic field Beff, 

which couples to its spin. This spin-orbit coupling then lifts the degeneracy of the spin-

degenerate states, this lifting of degeneracy results in the formation of a Dirac cone in the 

momentum space, with the spin (s) rotating with, one chirality above the Dirac point (DP), 

and the opposite chirality below DP (Figure 1.11(b)) [16]. However in its rest frame the 

electron experiences a rotating magnetic field which changes both the spin direction θ and the 

Berry phase of the wavefunction ψ. For every closed orbit completed in real space, θ changes 

by 2π, but the Berry phase only changes by π, which means that sign of the wavefunction ψ 

changes from ψ to –ψ. The electron must therefore complete two complete orbits in real 

space for ψ to return to its original value. This is analogous to what happens when an electron 

as it moves on the surface of a Möbius strip (shown in Figure 1.12). 

 
Figure 1.12 – The Möbius strip 
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The Möbius strip has only one edge and one side. If an electron starts from a point, it has to 

move around the circumference of the strip twice i.e. it has to undertake 2 x 2π rotations to 

arrive at the initial position because after the first 2π rotation, the electron is at the opposite 

surface to the initial position.  

 

1.7 3D Topological Insulator materials 

As discussed in the earlier section 1.4, a material is identified as a topological 

insulator by calculating the Z2 invariant of the system. Fu and Kane [17] devised a method 

wherein the Z2 invariant could be estimated from the parity eigenvalues of the Bloch 

wavefunctions at the Time Reversal Invariant Momenta (TRIM) in the condensed matter 

systems. Bernevig, Hughes and Zhang (BHZ) [18] further simplified the process into just 

finding out whether a band inversion occurs at odd number of TRIMs in the system. 

Following the theoretical model proposed by BHZ, many candidate materials that had 

inherently strong spin-orbit interaction were examined to see if they host topological surface 

states.  

The following is a brief account of the materials that were predicted and then confirmed by 

Angle Resolved Photo-Emission Spectroscopy (ARPES) technique to be 3D Topological 

Insulators. 

1.7.1 Bi1-xSbx 

 Bi1-xSbx (x = 0.07-0.22) was the first 3D TI to be predicted based on band structure 

calculations [17]. The Z2 invariant of the Bi1-xSbx system, determined from ab-initio 

calculations is found to be (1;111) and thus the system is predicted to be a strong TI. Dirac 

cone states were experimentally observed in Bi0.9Sb0.1 using ARPES by D. Hsieh et al. [19]. 

Figure 1.13 shows the ARPES data for k-space cuts along the various directions. The Dirac 

cone dispersed states can be easily seen from the data.  However some inherent shortcomings 
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in the Bi1-xSbx system such as the narrow Sb doping range (0.07 < x < 0.22) in which the 

material could be tuned as an insulator, small band-gap (0.03 eV at x = 0.18) and the presence 

of multiple surface states have subsequently made the system least interesting from research 

point of view.  

 
Figure 1.13 – Selected ARPES intensity maps of Bi0.9Sb0.1 along three k-space cuts (a) ky 

direction; (b) a direction rotated by approximately 10° from the ky direction; (c) the kx 

direction through the L-point of the bulk 3D Brillouin zone (adopted from [19]). 

 

1.7.2 A2B3 chalcogenide systems 

 Following the results on Bi1-xSbx system, Zhang et al. [20] predicted that certain 

compounds of the A2B3 chalcogenides family of crystals viz. Bi2Se3, Bi2Te3, Sb2Te3 are 

prospective candidates to realize the 3D Topological Insulators, based on ab-initio 

calculations performed using density functional theory. The Spin-Orbit coupling strength was 

found to be strong enough to cause a band inversion at the Γ point in the Brillouin zone. 

Figure 1.14 shows the schematic of the atomic energy levels in Bi2Se3 and the effect of 

crystal field splitting and SOC on the energy eigenvalues at the Γ point as calculated by 

Zhang et al. [20]. 
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Figure 1.14 – Schematic diagram of the evolution from the atomic px,y,z orbitals of Bi and Se 

into the conduction and valence bands of Bi2Se3 at the Γ point. The three different stages (I), 

(II) and (III) represent the effect of turning on chemical bonding, crystal-field splitting and 

SOC respectively. The blue dashed line represents the Fermi energy (adopted from [20]). 

 

The calculations predicted a 3D Z2 invariant of (1;000) for these systems and were termed 

Strong Topological Insulators. The theoretical prediction was followed by observation of a 

Dirac cone state in Bi2Se3 by Y. Xia et al. [21], in Bi2Te3 by Chen et al. [22] and, in Bi2Te3 

and Sb2Te3 by Hsieh et al. [23] using Angle Resolved Photo Emission Spectroscopy 

(ARPES) which are reproduced in Figure 1.15(a)-(c). The Dirac Point (DP) was predicted to 

lie in the bulk band-gap for Bi2Se3 and at the top of the valence band for Bi2Te3 and Sb2Te3. 
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Figure 1.15 – Ab-initio calculation of the band structure at the Γ point and ARPES data on 

(a) Bi2Se3 [21]; (b) Bi2Te3 [22][23] and (c) Sb2Te3 showing the Dirac cones [23]. The Dirac 

Point (DP) is marked by the white arrows in the ARPES data. 

 

1.7.3 Other chalcogenide systems 

 Similar to the binary chalcogenides, systems consisting of combinations of several 

A2B3 such as Bi2Se3 – Bi2Te3 [24][25], Bi2Te3 – Sb2Te3 [26] and Bi2Se3 – Bi2Te3 – Sb2Te3 

[27] were also predicted to be 3D TIs. The Surface states were observed in these systems 

using ARPES measurements. Figure 1.16(a)-(e) shows the ARPES data on a few selected 

ternary and quaternary alloys. The Dirac points and the surface states are clearly visible 

lending credence to these ternary chalcogenides systems to be TI. 
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Figure 1.16 – ARPES data indicating the surface states and the Dirac Point (DP, marked by 

white arrows) in the ternary alloys (a) Bi2Te2Se [24]; (b) Bi2Se2Te [25]; (c) Bi1.5Sb0.5Te3; (d) 

Bi0.5Sb1.5Te3; (e) Bi0.12Sb1.88Te3; (f) Bi1.75Sb0.25Te1.85Se1.15 [26]; (g) Bi1.5Sb0.5Te1.7Se1.3; (h) 

BiSbTeSe2 [27] 
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1.8 Signatures of TI in transport measurements 

 In the earlier sections, the examples drawn from literature that demonstrate the Dirac 

cone like dispersion of the surface states in some 3D TI using ARPES were shown. Since 

these surface states form a metallic sheet encompassing the 3D insulating bulk, it will be 

interesting to inquire if the quantum hall like plateaus can be seen in the transport 

measurements. Although there have been several investigations of magneto-transport in the 

strong 3DTI, the observation of these QHE like plateaus have eluded experiments; primarily 

due to the fact that the bulk is not truly gapped as a consequence of the presence of intrinsic 

defects and disorder in the system, leading to the observation of much lower mobility of ~ 

1000 cm2/Vs in the 3D TI crystals until very recently, where with special care the Hall 

plateaus and zero longitudinal resistance has been observed [28]. Similar to the QHE state, 

where for very low magnetic fields Shubnikov de Haas (SdH) oscillations were observed (ref. 

Figure 1.2), in most 3D TIs the SdH oscillations have been observed, as also in the present 

thesis. In addition, akin to the situation in QSH insulator, Weak Anti Localization (WAL) is 

also observed in some TI samples, when the phase coherence length lφ is greater than the 

mean free path l of the electron. These two phenomena have been observed in several 

investigations, and formed a part of the studies presented in this thesis; and therefore a brief 

review of the phenomenon is given below [29].  

 The book titled “Semiconductor Nanostructures: Quantum States and Electronic Transport” 

[30] by Thomas Ihn has been referred for the theory and derivation of SdH oscillations and 

WAL phenomena, presented below. 

1.8.1 Shubnikov de Haas (SdH) oscillations 

The Shubnikov de Haas oscillations are the oscillations in the longitudinal 

resistivity/conductivity of a material observed at low temperatures in the presence of very 

high magnetic fields. The phenomenon can be explained as follows: In a 2D electron gas 
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confined to the xy-plane and subjected to a strong external magnetic field in the z-direction 

(as shown in Figure 1.17), the electrons execute cyclotron motion and their orbits get 

quantized.  

 
Figure 1.17 – Magneto-resistance measurement geometry of a 2DEG system with sample 

dimensions of length L and width W 

The Hamiltonian of an electron in the presence of an Electromagnetic field is  
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Where V(z) is the potential and the vector potential is chosen to be  By,0,0A   . 
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The Hz is independent of the magnetic field and depends only on the z-coordinate. The 

solution of Hxy can be obtained by using the trial solution   )y(ey,x xxik   which leads to 
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Here, 
*c

m

Be
  is the cyclotron frequency. This equation is that of a 1D quantum 

mechanical oscillator centred at
Be

k
y x

0


 . The solution of the equation is given by  











2

1
nE cn   (1.5) 

The quantum states with different quantum numbers kx but with same quantum numbers n are 

energetically degenerate. These states are called Landau Levels (LLs). The energy of each 

and every given Landau Level increases linearly with magnetic field which leads to the 

Landau Fan (shown in Figure 1.18). 

 

Figure 1.18 – Energy levels for electrons in a magnetic field. The energy of the Landau 

levels increases linearly with the magnetic field resulting in a fan-like diagram. The slope of 

each Landau level line depends on the quantum number n. At a fixed electron density in the 

electron gas, the Fermi energy oscillates as a function of the filling factor (adopted from 

[30]). 

The degeneracy of a Landau level is determined by the dimensions of the structure. If 

L is the sample length and W is the sample width (as shown in Figure 1.17), then the centre 

coordinate 
eB

k
y x

0


  should lie within the width W of the structure, i.e., W

eB

kx 


0 . The 

density of kx states for the above 2D system is L/2π. Hence good kx-values fulfil the condition

hA

eB

2π

Lkx 0 , where A = WL is the area of the sample. Thus the number of allowed kx states 
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per unit area is given as
h

Be
nL  . If an electron gas has the electron density ns, the number 

L

s

n

n
  tells us the number of Landau levels that are occupied at a given external magnetic 

field at zero temperature. Therefore, 
Be

hns is called the filling factor corresponding to the 

magnetic field B. At fixed electron density ns, the Fermi level of the electron gas oscillates as 

a function of B, i.e., with filling factor   in a 1/B periodic fashion as shown in Figure 1.18. 

This energy spectrum consists of discrete LLs which are determined by the external magnetic 

field. The Density of States (DOS) is described as delta function located at En and is given by  
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At temperatures above 0 K, scattering events such as intra and inter-Landau Level scattering 

can limit the lifetime of an electron in a particular quantum state and consequently broaden 

the ideal delta function shaped DOS. Consequently, the DOS of an individual LL with a 

quantum number n is given as  
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From classical Drude’s model, the Ohm’s law is given as Ej  . This can be expressed in 

tensor notation as 
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Where 
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Applying the Fermi Dirac distribution, the density of states for a 2D system and the Drude’s 

model, the resistivity tensor component ρxx is obtained as  
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The above equation 1.10 is called the Lifshitz-Kosevich (L-K) [31] equation and can be 

rewritten as  
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The various terms present in the L-K equation are defined below. 

i. xx = longitudinal resistivity 

ii. 0  = classical Drude resistivity around which the MR oscillates with a period 1/B 

iii. EF = Fermi energy 

iv. TD = Dingle temperature  
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 = Temperature damping factor = RT, reduces the amplitude of 

oscillations as a result of energy averaging over kBT around Fermi energy 
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 = Dingle damping factor = RD accounts for the finite lifetime broadening of 

the LL 

viii.  
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2

1
  = Spin damping factor = Rs 

ix. 0m = rest mass of electron 

x. *m = effective mass 

xi. F = Frequency of oscillations 

xii. β = phase factor that accounts for the phase shift 

These oscillations described by equation 1.10 in resistance versus magnetic field are called 

the Shubnikov de Haas (SdH) oscillations and are fitted to the observed magneto-resistance 

in the 3D TI.  

It should be noted that there lies a major difference between the Landau quantization of 

normal fermions which obey a parabolic E vs. k dispersion and the Dirac fermions which 

have linear E vs. k dispersion. While the Landau quantization of the energy states for the 

former is of the form given by Eqn. 1.5, for Dirac fermions it occurs as [13]  
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c
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F
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(1.12) 

Where n = 0, 1, 2...  

Thus while the spacing between two LLs in normal metals is a constant ( c ), as shown in 

Figure 1.3; the spacing in Dirac systems is not constant and changes as n . The equation 

1.12 is an indication of the presence of a zeroth LL occurring at the Dirac Point (DP). Figure 

1.19(a) shows the partially filled Dirac cone and Figure 1.19(b) shows the Landau 
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quantization of the Dirac cone in the presence of a magnetic field. The zeroth  LL is marked 

by n = 0.  

 

Figure 1.19 – (a) partially filled Dirac cone; (b) Landau quantization of the Dirac cone, n = 0 

marks the zeroth LL at the Dirac point (DP). EF  is the Fermi level (adopted from [13]) 

Analysis of the SdH oscillations plays an important role in the studies of 3D TIs for two 

reasons.  

(a) It provides a means to selectively and quantitatively characterize the 2D surface states 

that coexist with 3D bulk states by looking at the angular dependence of the SdH oscillation. 

The measurement geometry during MR is illustrated in Figure 1.20 below. C1, C2, C3 are the 

three axis of the crystal and H is the applied magnetic field strength.  

 

Figure 1.20 – Magneto-resistance measurement geometry. C1, C2, C3 are the three axis of the 

crystal and H is the applied magnetic field strength 



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

25 
 

According to theory of angular dependent magneto-resistance measurements, the positions of 

maxima and minima in SdH oscillations in 
B

1  depend only on the perpendicular component 

of field )( B as 11 BB 
  )cos()(  , where θ is the angle between the field direction and the 

normal to the crystal surface, which varies as 0° < θ < 90° [13]. For a 3D Fermi surface, the 

minima and maxima positions in oscillations would vary as 1B )cos(   and oscillations 

would be observed in the measurement at all angles from 0° to 90°. For a 2D Fermi surface, 

which would be the case for the TSS, the minima and maxima positions in SdH oscillations 

will not change with 1B 
 )(  and oscillations would cease to exist at θ = 90°. Thus if the 

oscillations are observed only in the H║C3 direction, it can be surmised that the origin of 

oscillations are associated with that of a 2D Fermi surface, whereas, if the oscillations are 

observed in both H║C3 and H║C1-C2 directions, then the SdH oscillations arise from a 3D 

Fermi surface.  

(b) The phase factor of the oscillations directly reflects the Berry phase of the system, from 

which we can elucidate whether the electrons showing the SdH oscillations are Dirac 

fermions or not. The TSS has a 2D Fermi surface with linear E vs. k dispersion while the 

normal fermions have a parabolic E vs. k relation. From equation 1.10 we know that in the 

SdH oscillations, resistivity and hence conductivity oscillates periodically as a function of 

1/B and the oscillatory part of the longitudinal conductivity σxx follows the relation 
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The phase factor β is the same one which appears in the Onsager’s semi-classical 

quantization condition [31] 
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Where, NA  is the area enclosed by electrons in the k-space with their cyclotron orbits on the 

Fermi surface and β is the Berry phase γ divided by 2π. The value of β for fermions with a 

parabolic dispersion is 0 and for Dirac fermions with a linear dispersion is 0.5 [13].  

When the EF lies at the centre of a LL, the DOS takes a maximum and when the EF lies in 

between two neighbouring LLs, the DOS takes a minimum. In the latter situation, a certain 

number of LLs are completely filled and the next LL is empty. Therefore, a minimum in σxx, 

which occurs when DOS takes a minimum, implies that some n LLs are filled, and hence we 

can assign an integer index n to that minimum. In ordinary metals, this LL index n 

corresponds to the filling factor . This is akin to the situation in the ordinary quantum Hall 

effect (ref. Figure 1.2), in which σxy is quantized to  e2/h and σxx becomes zero when the 

chemical potential lies between and ( +1)th LLs. In the case of Dirac fermions, the filling 

factor is not n but is n+1/2, because of the half-integer quantization that arises from the 

existence of the zeroth LL (Figure 1.19) [13]. The phase factor in the SdH oscillations can be 

experimentally determined from an analysis of the LL fan diagram, wherein the sequence of 

the values of 1/Bn corresponding to the nth minimum in σxx, are plotted versus n. From 

equation 1.12 it is clear that the nth minimum occurs when following condition occurs 
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Thus the slope of a plot of 1/Bn vs. n corresponds to the oscillation frequency and the 

extrapolation of the linear fit to the LL fan diagram to 1/Bn→0 gives an intercept on the n 

axis, as the phase factor β.  
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1.8.2 Weak Localization (WL) and Weak Antilocalization (WAL) 

The electron conduction in solids involves various characteristic lengths 

(a) Mean free path (l) – defined as the average distance travelled by the electron between 

successive collisions with impurities or phonons (Drude model). This is a classical quantity 

and is given by l = vτ, where v is the velocity of the electron and τ is the relaxation time 

(b) De-Broglie wavelength (λ) – this arises as a consequence of electron being a quantum 

mechanical object and is defined as 

k




2
  (1.16) 

Where k = wave-vector. For fermions k = kF Fermi wave-vector and the De-Broglie 

wavelength is called Fermi wavelength λF. 

(c) Phase coherence length (lφ) – the state of the electron is quantum mechanics is defined by 

a wave function that includes a phase. The phase coherence length is the characteristic length 

over which the scattered electron retains its original phase and is given by  

 Dl   (1.17) 

Where D – diffusion constant and τφ – time over which the electron undergoes elastic 

collisions. The diffusion constant is given by 
d

vl
D  where d is the dimensionality of the 

electron gas. The phase decoherence for the electron can occur only by scattering processes 

that break time reversal symmetry e.g. spin-flip by application of an external magnetic field. 

Based on the relation between the mean free path “l” and the sample dimensions, the 

transport in solids can be classified as –  
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(i) Ballistic: l << L, W; L = length of the sample, W = width of the sample 

(ii) Quasi-ballistic: W < l < L 

(iii) Diffusive: l > L, W, which can be further divided into 

(a) Semi-classical diffusive regime: lφ ≤ l; this gives Drude’s conductivity 

(b) Quantum diffusive regime: lφ >> l; quantum interference between time reversed paths 

gives rise to quantum correction to the conductivity. This gives rise to phenomena 

such as Weak Localization (WL) and Weak Antilocalization (WAL). 

 
Figure 1.21 – (a) the two time reversed paths for a scattered electron wavefunction; (b) WL 

and WAL signatures in magneto-resistance 

 

Weak localization (WL) is a phenomenon that is observed in systems that preserve Time 

Reversal Symmetry (TRS). It occurs when an electron is scattered sequentially in a loop by 

impurities distributed randomly in the conductor, whereby the electrons are weakly localized 

in the loop as a result of constructive interference of the wave functions. Figure 1.21(a) 

shows an example of the two time-reversed paths of an electron during scattering from 

disorders. The two partial waves traverse the same paths, in opposite directions during 

scattering. If A+ and A- are the quantum mechanical amplitudes of the two paths, the 

probability of the paths to return to the starting point and backscatter is given as  

   quantumclassical PPP   (1.18) 
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  




  AAAAAAAAP **

222

 
(1.19) 

Where the first two terms inside the square brackets are classical contribution to resistance 

from Drude-Boltzmann theory Pclassical and the last two terms inside the flower brackets are 

the quantum mechanical interference terms Pquantum. In the absence of an external magnetic 

field, Time Reversal Symmetry is preserved and thus  

AAA    (1.20) 

2
2 APclassical   (1.21) 

2
4 APquantum 

 
(1.22) 

Thus there is an enhanced back-scattering and an increase in resistance in the system is 

observed. The semi classical expression for the weak localization correction to the 

conductivity is then given by  

l

l
ln

lkF

m 



 1
  (1.23) 

Where, kF is the Fermi wave-vector. As seen from (1.23), the correction is logarithmic in 

behaviour with a negative contribution to the conductivity.  

 In the presence of a strong spin-orbit interaction (SOI), the quantum correction arising 

out of the phase coherent back-scattering changes a little. The presence of a strong SOI leads 

to spin rotation during scattering events. An intuitive way to visualize the spin rotation is to 

assume that the spin diffusing on a Bloch sphere (as shown in Figure 1.22) 
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Figure 1.22 – Spin diffusion on the Bloch sphere (adopted from [30] ) 

 

Let the partial wave start with a particular spin state s . After it traverses along the loop and 

reaches the origin, its new state is given by 

sRs '  (1.24) 

Where R is the rotation operator and defined as the product of the number of rotations that 

had occurred during the completion of the loop 123...... RRRRR n . For the time reversed path, 

the final state is given by 

sRs ''  (1.25) 

Where 123...... RRRRR n and 1mm RR  

The total probability for backscattering is then given by  

    '""'2"'"' ssssssss   (1.26) 

Where, the interference contribution is given as - sRsRssRss 2'"  .  

Now, let lSO and τSO be the characteristic length and the characteristic time scale respectively, 

over which the spin orientation doesn’t change during scattering. In the case of weak SOI i.e. 

lSO < lφ, the spin stays polarized in the same direction throughout the scattering process which 

implies R = 1 and hence the back-scattering is enhanced. This situation is akin to the Weak 

localization phenomenon discussed before. In the case of strong SOI i.e. lφ < lSO, the spin gets 
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completely randomized. However the spin randomization directions for the two time-reversed 

paths are in complete opposite directions throughout the scattering process in the loop. Here, 

evaluation of R2 becomes necessary. Solving for it we get
2

12 sRs .  

Thus the total back-scattering probability is given as  

    1)(22"'22'""'2"'"' 2
12  sRsssssssss  (1.27) 

Thus the presence of a strong spin-orbit interaction reduces the back-scattering probability by 

half of the classical contribution and hence the conductivity increases. Hikami, Larkin and 

Nagaoka (HLN) had derived an analytical expression to describe the WL-WAL phenomena 

in 2D systems. The HLN equation is given as 




























B

B

2

1

B

B

h

e
B

2
  ln)(  (1.28) 

Where   = Digamma function;



el4

B


 ;  Dl  is the phase coherence length and α is 

a constant. For WL α = 1 and for WAL α = -0.5.  

In Topological Insulators, since the spin of the electron is locked to its momentum, the spin 

direction in the two time-reversed paths is always in opposite directions to each other. As 

already described in Section 1.6, for a closed orbit around the Fermi surface of a TI a π Berry 

phase is accumulated. Thus the two time reversed paths acquire phases of 
2


  and 

2


  and 

the π Berry phase thus leads to destructive interference. The constant term α from the HLN 

equation is then used as a counter to detect the number of 2D transport channels. For 

example, if α = -0.5 then only one conducting SS is present etc. 

Thus, both SdH oscillations and WAL phenomena act as indicators of the presence of TSS in 

the system via the Berry phase obtained from the Landau Level Fan diagram analysis of SdH 
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oscillations and the value of α from HLN analysis of the WAL data respectively. A Berry 

phase of 0.5 or the value of α being close of -0.5 indicates that the transport is dominated by 

contribution from the TSS. 

1.9 Transport studies on single crystals of 3D TI system Bi2Se3 

 It has been indicated that to harness the transport from TSS of 3D TI, there should be 

no interference from the bulk conduction. In realistic crystals this is seldom possible, because 

Bi2Se3 and its related systems are host to a lot of defects and disorder. As the interest of this 

thesis lies on studying the transport in single crystals of Bi2Se3, the following literature 

review restricts itself to the same. 

 The strong 3D TI Bi2Se3 is a small band-gap semiconductor (0.3 eV) that crystallizes 

in the R3m space group. It has a tetradymite structure that consists of repeating Se1-Bi-Se2-

Bi-Se1 units called quintuples (QLs). The unit cell consists of 3 such QLs held together by 

Van der Waals interaction, stacked along the hexagonal c-axis [0001] direction. Se1 and Se2 

are two non-equivalent positions with the Se2 playing the role of centre of inversion in the 

crystal structure. The nature of bonding between the atoms in a QL is covalent. Figure 1.23 

shows the crystal structure of Bi2Se3. 
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Figure 1.23 – The crystal structure of Bi2Se3 indicating the Quintuple layers and the location 

of the van der Waals gap [32] 

Bi2Se3 has the inherent thermodynamic defects – a) anion vacancy VA (VSe1) which is 

a double donor, b) cation antisite CA (BiSe) which is a single donor and anion antisite AC 

(SeBi) which is again a single donor. The cation vacancy VC (VBi) is the sole acceptor (triple 

acceptor) [33][34]. As grown Bi2Se3 crystals have always been found to be electron doped, 

with the bulk carrier concentration of ~ 1019 cm-3. Ab-initio calculations by D. West et al. 

[33] and L. Xue et al. [34] have suggested based on the energy of formation, that the major 

defects in the system are Se vacancies (VSe1) and Se anti-site defects (SeBi). Y. S. Hor et al. 

[35] reported p-type crystals by substituting low concentrations of Ca (~ 1%) at Bi site, where 

the EF was shifted closer to the valence band lying below the Dirac Point. However the 

transport in these samples still displays metallic behaviour. J. G. Checkelsky et al. [36] 

observed that on doping Ca2+ to the Bi3+ site, the number of charge carriers were reduced and 

the temperature coefficient of resistivity changed sign from positive to negative i.e. the bulk 

went from being metallic to displaying semi-conducting character (0.002 < x < 0.0025, ρ4.2K 

= 80 mΩ-cm) in the transport. However no signatures of surface states viz., 2D Shubnikov de 
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Haas oscillations, were observed in the single crystals as Ca doping introduced strong 

scattering centres and the electron mobility was reduced in Ca-doped Bi2Se3 system. N. P. 

Butch et al. [37] obtained Bi2Se3 crystals with carrier concentration as low as 1016 cm-3 by 

varying the bismuth/selenium ratios and the heating conditions. However the samples still 

displayed metallic behaviour in transport except for shallow local minima below 30 K, 

beyond which the resistivity showed an upturn. SdH oscillations associated with the TSS 

were not observed in the magneto-transport measurements in these low carrier density 

crystals too. Analytis et al. [38] achieved low carrier concentrations of the order ~ 1016 cm-3 

by partially substituting for Bi by Sb, in which signatures from the TSS were observed in the 

single crystals of Bi2Se3. The crystal reached the quantum limit, that is, the point where a 

magnetic field can collapse the bulk carriers to their lowest Landau level. Beyond this field 

surface states could be seen clearly. However, no n-to-p type transition was achieved via this 

route. Ren et al. [39] achieved bulk semiconducting behaviour and a low temperature 

resistivity of 1Ω-cm in Te doped Bi2Se3 system with the composition Bi2Te2Se. This was 

possible because the compound Bi2Te2Se naturally crystallizes in a chalcogen-ordered 

structure with Te-Bi-Se-Bi-Te QL units. This structure brings out a two-fold advantage. 

Firstly, as Se occupies the centre of the QL, it cannot escape easily as in Bi2Se3 and hence the 

number of Se vacancies is reduced. Secondly, the larger electro-negativity of Se in 

comparison to Te makes Bi bond strongly with Se than Te reduces and hence discourages the 

formation of Bi/Te antisite defects as observed in Bi2Te3. Thus nearly bulk-insulating 

behaviour was achieved in the system. In addition, its ordered structure improved the 

mobility of carriers so that topological surface states characteristics remain unmasked in the 

material. Ren et al. [40] were able to tune the charge carrier type in single crystals of Bi2Se3 

to obtain high bulk resistivity and clear quantum oscillations by combining Cd doping and a 

Se-rich crystal-growth condition. They obtained a p-type Bi2Se3 which underwent a p-to-n-
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type conversion upon gradually increasing the Se vacancies by post annealing. With the 

optimal annealing condition, they achieved resistivity value in excess of 0.5 Ω-cm at 1.8 K 

and were able to observe two-dimensional Shubnikov–de Haas oscillations composed of 

multiple frequencies in magnetic fields below 14 T. Ren et al. [41] and Taskin et al. [42] 

synthesized crystals with higher bulk insulating characteristic by substituting Sb at Bi site in 

Bi2Te3-ySey. In this system, Se occupies the middle of the QL similar to that observed in 

Bi2Te2Se. In addition, the Bi/Sb ratio in the cation layers and the Te/Se ratio in the outer 

layers affect the levels of acceptors and donors, respectively, making it possible to achieve a 

maximally compensated situation. It was noticed that a reasonably bulk-insulating behaviour 

was observed for a series of compositions (x, y) in the compound Bi2-xSbxTe3-ySey with the 

highest being 10 Ω-cm for the composition BiSbTeSe2. Xiong et al. [43] reported Te doped 

Bi2Te2Se crystals with insulating characteristics and a low temperature resistivity value of 6 

Ω-cm and concluded that SdH oscillations from the Topological surface states were 

observed. Bao et al. [25] synthesized single crystals of the Te doped Bi2Se3 system Bi2Se2Te 

with highly insulating behaviour (420 Ω at 4.2 K) and observed signatures of TSS viz. SdH 

oscillations and Weak Antilocalization (WAL) in transport. Paul Syers et al. [44] devised a 

new synthesis method for achieving stoichiometric Bi2Se3 crystals that exhibit non-metallic 

behavior in electrical transport down to low temperatures, without the use of gating 

techniques. Hall Effect measurements indicated the presence of both electron- and hole-like 

carriers, and the latter were identified with topological surface state.  

1.10 Approach of investigation in the current thesis 

While the traditional approach to bring out TSS signatures in magneto-transport 

measurements has been focused on tuning the Fermi level into bulk band-gap by charge 

compensation; a recent article by Brahlek et al. [45] put forth a new idea where the TI system 
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Bi2Se3 was studied from the point of view of a semiconductor/metal interface wherein 

interface phenomena at the semiconductor/metal interface has been invoked. Since Bi2Se3 is a 

bulk semiconductor whose Fermi level is pinned to the conduction band because of 

thermodynamic defects and as it also hosts the metallic surface states, it has two Fermi levels 

viz. the bulk and surface Fermi levels. The presence of two distinct Fermi levels makes the 

system vulnerable to interface phenomena such as band bending. 

 
Figure 1.24 – (a) Flat band condition where both the Fermi levels are already in equilibrium; 

(b) Downward band-bending leading to accumulations of carriers at the interface; (c) Upward 

band-bending leading to depletion of charge carriers at the surface (adopted from [45]) 

 

Band bending happens when there is a large mismatch between the surface and bulk Fermi 

levels and upon equilibration, the bulk band shifts near the surfaces. This shift has can be 

either upward or downward. In the case of an upward shift (as shown in Figure 1.24(c)) the 

carriers at the interface get depleted, while in the downward case it leads to an accumulation 

region near the surface (as shown in Figure 1.24(b)). This downward bending gives rise to a 

conventional two dimensional electron gas (2DEG) at the surface (ref. Figure 1.24(b)). The 

presence of such a conventional 2DEG due to band-bending has been reported by Bianchi et 

al. [46] in detailed ARPES measurements (shown in Figure 1.25) on Bi2Se3.  
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Figure 1.25 – ARPES of Bi2Se3 (0001) crystal. (a) Spectrum collected 30 min after cleaving 

the crystal. The sharp V-type feature corresponds to the Dirac like dispersion of the TSS. The 

Dirac Point, denoted as DP is marked using the arrow in pink. The valence band states are 

visible below the Dirac point and the diffuse intensity inside the Dirac cone is due to the 

filled bottom of the conduction band; (b) Spectrum collected after 3 hours exposure of the 

crystal surface. The chemical potential and hence the DP is seen shifted downwards towards 

the conduction band. The sharp rim around the bottom of the conduction band marks the 

spectral signature of a 2DEG state (adopted from [46]). 

 

Brahlek et al. attributed the absence of SdH oscillations in Bi2Se3 in earlier studies [36][37] to 

the presence of the downward band-bending in the system as the systems with a downward 

band bending have very large Fermi surface which leads to very small period of oscillations. 

Additionally, the band-bending leads to the formation of quantum well states that are 2D in 

nature and hence quantum oscillations from transport in them would dominate in a 

measurement. Hence it is essential to realize an upward band-bending in the system, so that 

SdH oscillations from the TSS would show up in magneto-transport measurements. Also 

taking into consideration the fact that the single crystals of Bi2Se3 that have been synthesized 

always showed very low mobilities, Brahlek et al. applied the Ioffe-Regel criterion and found 

that Bi2Se3 lies in the region known as bad metal ( 33.0 lkF ) where the mean free path of 

the carriers l is very small. 
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From the above discussion it is amply evident that disorder/defects interfere with the 

contribution from TSS in transport behaviour. Thus a systematic investigation of transport 

behaviour with well characterised disorder deliberately introduced is much needed and the 

work presented in the current thesis is based on this premise. Chapter 3 focuses on studying 

the role of defects in achieving Quantum oscillations in magneto-transport from surface states 

by introducing weak and strong disorder by varying the growth conditions of Bi2Se3 single 

crystals. The role of substitutional disorder and its effect on magneto-transport behaviour of 

Bi2Se3 are studied in Chapter 4 (Sb substitution) and Chapter 5 (Te substitution). In addition 

to this, the effect of high pressure on the transport properties of the Te substituted Bi2Se3 

system is studied in Chapter 6.  

 

  



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

39 
 

References 

[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45 (1980) 494 

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49 

(1982) 405 

[3] Daniel R. Cooper, Benjamin D’Anjou, Nageswara Ghattamaneni, Benjamin Harack, 

Michael Hilke, Alexandre Horth, Norberto Majlis,Mathieu Massicotte, Leron 

Vandsburger, EricWhiteway, and Victor Yu, ISRN Condensed Matter Physics 2012 

(2012) 501686 

[4] F. D. M. Haldane Phys. Rev. Lett. 61 (1988) 2015  

[5] M. O. Goerbig, arXiv:0909.1998 

[6] Contemporary Concepts of Condensed Matter Science – Topological Insulators, edited by 

Franz Marcel and Molenkamp Laurens,Vol. 6 (Elsevier) 2013 

[7] D. P. DiVincenzo, E. J. Mele, Phys. Rev. B 29 (1984) 1685 

[8] G. W. Semenoff, Phys. Rev. Lett. 53 (1984) 2449 

[9] Serhii Shafraniuk, Graphene: Fundamentals, Devices and Application, (Pan Stanford 

Publishing) 2015 

[10] C. L. Kane and E. J. Mele Phys. Rev. Lett. 95 (2005) 146802 

[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95 (2005) 226801 

[12] H. A. Kramers, Proc. Amsterdam Acad. 33 (1930) 959  

[13] Y. Ando, J. Phys. Soc. Jpn. 82 (2013) 102001 

[14] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98 (2007) 106803 

[15] J. E. Moore and L. Balents, Phys. Rev. B 75 (2007) 121306(R) 

[16] Hari C. Manoharan, Nature Nanotechnology 5 (2010) 477 

[17] L. Fu and C. L. Kane, Phys. Rev. B 76 (2007) 045302 

[18] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314 (2006) 1757 



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

40 
 

[19] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452 

(2008) 970 

[20] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang & Shou-Cheng 

Zhang, Nature Physics 5, (2009) 438 

[21] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. 

J. Cava & M. Z. Hasan, Nature Physics 5, (2009) 398 

[22] Y. L. Chen, J. G. Analytis, J. -H. Chu, Z.K. Liu, S. -K. Mo, X. L. Qi, H. J. Zhang, D. H. 

Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325 

(2009) 178. 

[23] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. 

Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan,  Phys. 

Rev. Lett. 103 (2009) 146401. 

[24] Su-Yang Xu, L. A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin, A. 

Bansil, Y. S. Hor, D. Grauer, R. J. Cava, M. Z. Hasan, arXiv:1007.5111 

[25] Lihong Bao, Liang He, Nicholas Meyer,Xufeng Kou, Peng Zhang, Zhi-gang Chen, 

Alexei V. Fedorov, Jin Zou, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, 

Gary Tuttle & Faxian Xiu, Scientific Reports 2 (2012) 726 

[26] Jinsong Zhang, Cui-Zu Chang, Zuocheng Zhang, Jing Wen, Xiao Feng, Kang Li, 

Minhao Liu, Ke He, Lili Wang, Xi Chen, Qi-Kun Xue, Xucun Ma & Yayu Wang, Nat. 

Comm. 2 (2011) 574    

[27] T. Arakane, T. Sato, S. Souma, K. Kosaka, K. Nakayama, M. Komatsu, T. Takahashi, 

Zhi Ren, Kouji Segawa & Yoichi Ando, Nat. Comm. 3 (2011) 636 

[28] Yang Xu, Ireneusz Miotkowski, Chang Liu, Jifa Tian, Hyoungdo Nam, Nasser Alidoust, 

Jiuning Hu, Chih-Kang Shih, M. Zahid Hasan and Yong P. Chen, Nat. Phys. 10 (2014) 

956 



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

41 
 

[29] Dimitrie Culcer, Physica E 44 (2012) 860 

[30] Thomas Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport 

(Oxford University Press) 2010 

[31] D. Schoenberg, Magnetic Oscillations in metals (Cambridge University Press, London) 

1984 

[32] Desalegne Teweldebrhan, Vivek Goyal and Alexander A. Balandin, Nano Lett. 10 (4) 

(2010) 1209 

[33] D. West, Y. Y. Sun, Han Wang, Junhyeok Bang, & S. B. Zhang, Phys. Rev. B 86 (2012) 

121201 

[34] L. Xue, P. Zhou, C. X. Zhang, C. Y. He, G. L. Hao, L. Z. Sun & J. X. Zhong, AIP 

Advances 3 (2013) 052105 

[35] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. 

Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79 (2009) 195208 

[36]  J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Phys. 

Rev. Lett. 103 (2009) 246601 

[37] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew & J. 

Paglione, Phys. Rev. B 81 (2010) 241301(R) 

[38] James G. Analytis, Jiun-Haw Chu, Yulin Chen, Felipe Corredor, Ross D. McDonald, Z. 

X. Shen & Ian R. Fisher, Phys. Rev. B 81 (2010) 205407 

[39] Z. Ren, A.A. Taskin, S. Sasaki, K. Segawa & Y. Ando, Phys. Rev. B 82 (2010) 241306 

[40] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa & Y. Ando, Phys. Rev B 84 (2011) 075316 

[41] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa & Y. Ando, Phys. Rev. B 84 (2011) 165311 

[42] A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa & Y. Ando, Phys. Rev. Lett. 107 (2011) 

016801 



Transport behaviour in Topological Insulators (TI): An overview  Chapter 1 

 

42 
 

[43] Jun Xiong, A. C. Petersen, Dongxia Qu, Y. S. Hor, R. J. Cava & N. P. Ong, Physica E 

44 (2012) 917 

[44] Paul Syers, Johnpierre Paglione, arXiv:1412.1422 

[45] Matthew Brahlek, Nikesh Koirala, Namrata Bansal & Seongshik Oh, Solid State 

Communications 215 (2015) 54 

[46] Marco Bianchi, Dandan Guan, Shining Bao, Jianli Mi, Bo Brummerstedt Iversen, Philip 

D.C. King & Philip Hofmann, Nat. Commun.1 (2010) 128 

 



43 
 

CHAPTER 2 

Experimental Techniques 

2.1 Single Crystal Synthesis 

The “modified Bridgman” method [1] has been used to synthesize single crystals of 

the 3D Topological Insulator systems Bi2Se3, Bi2Te3, Bi2-xSbxSe3 and Bi2Se3-xTex. In this 

technique the precursor elements viz. Bi, Sb, Se, Te in their high purity form (99.999%) were 

taken in the required stoichiometry, mixed together and vacuum sealed in a quartz crucible 

with a conical tip. The sealed crucible was held vertically in a box furnace and the samples 

were grown by melt process. The melting points of the elements and the compounds are 

known to be Bi = 271.5°C, Sb = 630.63°C, Se = 221°C, Te = 449.51°C, Bi2Se3 = 710°C, 

Bi2Te3 = 586°C. The stoichiometric mixture was first heated to 850°C in 24 hours and the 

melt was then held at the same temperature for 24 hours for homogenization. This step was 

followed by cooling the melt from 850°C to 550°C with different cooling rates (1°C/hour, 

2°C/hour, 137°C/hour), and subsequently it was held at 550°C for 24 hours followed by 

furnace cooling to room temperature. The obtained boule was generally greyish in colour, 

had a cleavage plane along the 001 crystal axis leading to flat silvery crystals having typical 

dimensions of 0.6 cm x 0.6 cm (ref. Figure 2.1). 

 
Figure 2.1 – Photograph of Bi2Se3 crystals of typical dimensions. 
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2.2 X-ray diffraction: 

2.2.1 Powder Diffraction 

Phase elucidation for the synthesized samples was done by room temperature powder 

X-ray diffraction (XRD) on powdered single crystals carried out at BL-12 beam-line of Indus 

II, RRCAT – Indore [2]. The experiment was carried out Debye-Scherrer geometry mode 

wherein X-rays of a defined energy were incident on the samples enclosed in a circular 

depression in kapton tape and the data was collected using a MAR 3450 image plate detector 

positioned behind the sample. The energy of the incident X-ray and the sample to detector 

distance were 12.6 keV and 120 mm respectively. The 2D image plate data was converted 

into a 1D 2θ vs. intensity format using FIT2D software [3]. The lattice parameters were 

extracted from the diffraction data using the refinement procedure in PowderCell [4]. Figure 

2.2(a)-(b) show the typical MAR3450 image plate data and the corresponding 2θ vs. intensity 

plot of a Bi2Se3 sample respectively.  

5 10 15 20 25 30 35 40 45 50 55

0.0

0.2

0.4

0.6

0.8

1.0

In
te

n
si

ty
 (

a.
u

.)

2 (degrees)

Bi
2
Se

3

 

Figure 2.2 – (a) MAR3450 2D image plate data of powder diffraction from Bi2Se3; (b) 2θ vs. 

intensity data converted from image plate using the FIT2D program 
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2.2.2 Laue diffraction 

The Laue diffraction measurements were carried out on cleaved single crystals using a 

Molybdenum X-ray source, and the patterns were recorded using a HD-CR-35 NDT image 

plate system, to determine their orientation. In this experiment, a beam of white X-ray 

radiation is allowed to fall on a fixed single crystal. Since the Bragg angle θ is fixed for every 

set of planes in the crystal, each set picks out and diffracts a particular wavelength which 

satisfies the Bragg law for the particular values of d and θ involved [5]. The Laue diffraction 

can be carried out in two different measurement geometries – the transmission geometry and 

back-reflection geometry based on the relative positions of the X-ray source, the sample and 

the photographic film. The schematics of both the geometries are shown in Figure 2.3(a)-(b). 

In both the geometries, the single crystal is placed perpendicular to the direction of X-rays. 

 

Figure 2.3 – Schematic of the Laue diffraction geometries – (a) Transmission geometry; (b) 

back-reflection geometry 

 

In the transmission geometry (Figure 2.3(a)), the photographic film is placed after the 

sample which records the beams diffracted in the forward direction that gets partially 

transmitted through the crystal. In the back-reflection Laue method (Figure 2.3(b)), the film is 

placed between the X-ray source and the crystal and the beams diffracted in the backward 

direction are recorded. In both these geometries, the diffracted beams form an array of spots 
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on the film. Figure 2.4(a)-(b) shows the Laue diffraction pattern from transmission and back-

reflection geometries of a Bi2Se3 single crystal. 

(a) (b)

 
Figure 2.4 – Laue diffraction pattern on Bi2Se3 in (a) transmission geometry; (b) back-

reflection geometry. 

 

2.3 Electrical Resistivity  

2.3.1 Ambient Pressure resistivity 

The resistivity of the synthesized samples was measured by the Van der Pauw 

method. Figure 2.5(a)-(d) shows the schematic of the Van-der Pauw geometry used for 

resistivity measurements. 

 
Figure 2.5 – (a)-(d) The four Van der Pauw configurations used for resistivity measurement 

represented schematically.  

The resistivity ρ at a particular temperature is determined by iteratively solving the following 

equation [6] 
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Where r1 and r2 are resistance values from different Van der Pauw configurations (for 

example Figure 2.5(a)-(b)) and t is the thickness of the sample. Figure 2.6(a) shows the setup 

for the measurement of resistivity as a function of temperature. 

 

Figure 2.6 – (a) The set-up for measuring the resistance of a sample in the temperature range 

300 K to 4.2 K; (b) The sample holder portion of the dipstick. 

This setup consists of a dipstick, the helium dewar, current sources and nano-

voltmeters. The sample is mounted on an OFHC (Oxygen Free High Conductivity) copper 

block (shown in (Figure 2.6(b))) using a double sided tape. 44 SWG copper wires, de-

enamelled at the ends are used as leads and the contacts are made on the sample using silver 

paste that cures at room temperature. The other end of the leads are connected to the current 

source and nano-voltmeter through a connector mounted on the dipstick. A calibrated Si 

diode thermometer (shown in (Figure 2.6(b)) which is mounted on the OFHC copper block is 
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used to record temperatures. The sample is mounted in close vicinity of the thermometer so 

as to avoid any thermal gradients in the holder. The temperature range of 300 K to 4.2 K is 

attained in a Dewar containing liquid helium where the liquid bath is at 4.2 K (boiling point 

of liquid Helium) and the neck of the Dewar is nearly at 300 K. The dipstick with the sample 

mounted is then attached to the neck of the Dewar using clamps and then slowly dipped 

inside. The resistance of the sample is measured by passing a steady direct current of few mA 

through it, measuring the voltage drop across the sample and converting it into resistance 

using the formula R = V/I. A direct current of 10μA is passed through the Si diode sensor and 

the resulting voltage drop across it is used for calculating temperature using pre-calibrated 

Chebyshev polynomial coefficients. The sample voltage and the Si diode voltage are 

measured simultaneously by triggering the respective nano-voltmeters at the same instant 

using a LabView program through GPIB interface with the computer. As the leads that 

connect the sample to the current-source and the nano-voltmeters experience a thermal 

gradient, the measured voltage across the sample includes an additional thermo-emf 

component. Thus for a current I+, the measured voltage V  across the sample is given as  

thermosample VVV    (2.2) 

To negate the contribution of this thermo-emf, the direction of current through the sample is 

reversed i.e. I- and the corresponding voltage drop V is measured. As the thermo-emf is 

independent of the direction of current, the voltage measured under current reversal is 

thermosample VVV    (2.3) 

The two voltages are then subtracted and the modulus of the average is taken to get the actual 

voltage drop across the sample which gives its resistance as  

I
VR   (2.4) 
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Where |VV|V    

The data is collected throughout the dipping process until the sample reaches the liquid 

Helium bath where the minimum temperature of 4.2 K is reached. The resistance as a 

function of temperature data is also collected during the warming process so as to check 

whether the R vs. T curve is retraced.  

2.3.2 High Pressure resistivity 

A home built miniature Bridgman opposed anvil high pressure cell attached to a 

dipstick arrangement is used for carrying out resistivity measurements at high pressures in the 

temperature range 300 K to 4.2 K [7]. The design is that of a clamp-type cell where the 

applied pressure on the sample is retained by employing a lock-nut. The maximum pressure 

attainable in this cell is ~ 8 GPa. Pyrophillite and steatite are used as the gasket and pressure 

transmitting medium respectively. The schematic of the high pressure cell is shown in Figure 

2.7. 
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Figure 2.7 – Schematic diagram of the miniaturized high pressure cell used for resistivity 

investigations 

The various components of the cell are  

a) Guide tube – made of stainless steel (SS), 40mm diameter x 140 mm length x 9 mm wall 

thickness 

b) Anvils – made of tungsten carbide, 12 mm diameter x 20 mm length, flat face of 4 mm 

diameter 

c) Aligning sleeves – made of SS, 22 mm outer diameter x 36 mm length x 5 mm wall 

thickness. The sleeves have a tapering at angle of 30° at one end to reduce the diameter to 

12 mm 

d) Lock nut – made of SS, cylindrical, 2 mm diameter x 5 mm length 

e) Piston – made of SS, 100 mm diameter 

f) Thermometer – pre calibrated Si diode sensor 
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Slits of dimensions 5 mm width x 20 mm length are machined at diametrically opposite ends 

of the guide tube for taking the leads from the anvils to the exterior. Pyrophillite and Steatite 

are used as the gasket and pressure transmitting medium respectively. 

The sample mounting procedure is described below –  

1. On the 4 mm flat face of the tungsten carbide anvils, a pyrophillite washer of dimensions 

1 mm inner diameter x 4 mm outer diameter x 0.16 mm thickness is mounted using slow 

setting araldite. 

2. Grooves, 8 in number are made on the pyrophillite gasket using a sharp scalpel so as to 

hold the electrical leads in place. The grooves are made deep enough so as to allow the 

leads to sit safely inside but at the same time it is ensured that groove doesn’t cut through 

the pyrophillite disc and damage its integrity. 

3. The pressure transmitting medium steatite, in the form of discs of dimensions 1 mm 

diameter x 0.13 mm thickness is then placed inside the 1 mm hole in the pyrophillite 

washer.  

4. Electrical leads, preferably made of 46 SWG manganin wire and of sufficient length are 

then placed inside the grooves, such that a part of them lies inside the sample space 

without touching each other. The wires are anchored in their grooves using araldite. 

5. Another pyrophillite washer of similar specifications as the first is then mounted over the 

lower one using araldite.  

6. The sample is the mounted in the 1 mm sample space provided by the two pyrophillite 

washers.  

7. This is followed by closing the sample space by placing another steatite disc over the 

mounted sample and sealing it using araldite.  
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Figure 2.8 – Schematic of the face of the anvil with Pyrophillite washer, steatite disc and 

wires mounted on it. 

During the mounting process, care is taken so that the araldite used for bonding at 

various places does not flow into the sample space. Following the mounting of the sample on 

the anvil, the same anvil is slowly inserted into the guide tube and the free ends of the leads 

are taken out of the guide tube through the slits. The other anvil is then slowly placed over 

the top of the bottom anvil such that their faces are in perfect alignment. The lock-nut notch 

provided on the top anvil and on the inner wall of the guide tube prevents the top anvil from 

rotating while locking the applied pressure. The pressure is applied at ambient temperature 

using a hydraulic press and is locked. The cell is then attached to a specifically designed 

dipstick arrangement. The leads from both the sample and the thermometer are connected to 

DC power supply and nano-voltmeters for passing current and measuring the voltage 

developed. The pressure cell is then wrapped around with several layers of aluminized Mylar 

for improving the temperature uniformity. The dipstick is then slowly inserted into the 

Helium Dewar and the resistance of the samples under study is measured as a function of 

temperature from 300 K to 4.2 K by exploiting the natural gradient present inside the Dewar. 

The procedure for data collection remains the same as mentioned in the preceding section.  



Experimental Techniques                                                                                         Chapter 2 

 

53 
 

4 5 6 7 8
0

10

20

30

40

 1.1 GPa
 3.0 GPa
 4.1 GPa
 5.7 GPa
 7.1 GPa

R
( 


)

Temperature (K)  

Figure 2.9 – The variation of superconducting transition temperature of Pb with application 

of pressure 

The relation between the loads applied by the hydraulic press to the value of pressure 

locked in the cell is determined by measuring the shift in the superconducting transition in 

lead (Pb). This calibration is done prior to mounting the experimental sample. Figure 2.9 

shows data collected on Pb under different pressures. Care is taken to perform the subsequent 

high pressure resistivity measurement on the sample under the same experimental conditions 

as that of the Pb calibration. The maximum error in the value of pressure reported is of the 

order of ~ 0.2 GPa. 

2.4 Magneto-transport: 

Magneto-transport measurements were carried out in a commercial cryogen free 15 T 

MR system from Cryogenics Ltd., UK. Figure 2.10 shows the complete set-up.  
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Figure 2.10 – Commercial 15T Cryogen free Magneto-resistance set-up from Cryogenic 

Ltd., UK for carrying out magneto-resistance and Hall measurements 

The various components of the system are  

i. Cryogen-free magnet system which includes – 

a) Cryostat 

b) Superconducting magnet – the magnet is a vertically oriented hybrid solenoid wound 

from copper stabilized filamentary superconducting wire of NbTi with Nb3Sn.The magnet 

is energized via high temperature superconducting current leads. The temperature of the 

magnet is monitored with the help of temperature sensors mounted at various positions 

c) Cryo-cooler – a two stage cryo-cooler, a Pulse tube refrigerator is used for cooling the 

whole system from the 300 K to base temperature. The first stage cools the radiation 

shield which surrounds the low temperature parts in the system and the second stage is 

used to cool the magnet and the variable temperature insert (VTI). 
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d) Variable temperature insert (VTI) – this helps in regulating the temperature of the sample 

from the 1.6 K to 325 K.  

e) Electronic units – the main components are the Lakeshore temperature controller, 

Keithley 2700 multimeter, Magnet controls (Cryogenics Ltd.) 

 

ii. Measurement probe – The probe platform (shown in Figure 2.11(a)) has two sample 

sockets for mounting the sample perpendicular and parallel to the magnetic field direction, 

a calibrated CERNOX sensor and a separate 100 Ω heater. A 19 pin connector is used to 

connect the platform to the probe.  

 
Figure 2.11 – (a) Measurement probe; (b) the sample puck 

 

Samples are mounted on a sample puck (shown in Figure 2.11(b)). Samples of typical 

dimension 10 mm x 5 mm can be mounted on the puck. The sample wiring is made by 

soldering wires on to the gold pin contacts present. The Linear geometry (shown in Figure 

2.12) was used for the magneto-transport measurements.  

 

Figure 2.12 – Schematic representation of the linear geometry used for measuring magneto-

resistance and Hall Effect on the synthesized samples. 
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Where ix = current passed through the sample, Vx = longitudinal voltage, Vy = Hall voltage 

and Bz = External magnetic field. 

From the boule grown, single crystals of uniform thickness have been cleaved and shaped 

into a rectangle. The length to width ratio is preferably maintained as 3:1. The sample was 

placed on the sample puck (shown in Figure 2.11(b)) provided by Cryogenics Ltd. using 

double sided tape. The contacts were made on the sample using a 25 micron thick gold wire 

and a conducting silver paste that cures at room temperature. Figure 2.13 shows a schematic 

diagram for the longitudinal and Hall resistance measurement in MR experiments.  

 
Figure 2.13 – Schematic diagram of the longitudinal resistance and Hall resistance 

measurement in MR experiments.  

The electrical leads that are used for measuring the longitudinal voltage (Vx) and Hall voltage 

(Vy) are connected to the two channels of the Keithley Nano-voltmeter (NVM). A pre-

calibrated Cernox sensor is used as a thermometer and is placed in proximity to the sample. A 

heater located near the sample space is connected to the Lakeshore temperature controller so 

as to monitor and control the temperature in the vicinity of the sample. The magnetic field Bz 

is applied via a NbTi-Nb3Sn hybrid magnet which can provide magnetic fields in the range of 

-15 T to +15 T. The magnet is energized with the help of a magnet power supply. The 
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longitudinal voltage and Hall voltage are measured simultaneously using a special switching 

unit. The data collection protocol involves: (a) stabilizing the sample at a specific temperature 

and (b) sweeping the magnetic field from -15 T to +15 T in small steps of 0.1 T. The data 

collection is automated using LabView program through a GPIB interface to the computer. 

 

2.5 Positron Lifetime Spectroscopy 

Positron annihilation lifetime spectroscopy is a non-destructive spectroscopy 

technique that allows studying a variety of phenomena and material properties on an atomic 

scale. The principle of this technique is based on the process of annihilation that occurs when 

a particle and its anti-particle meet. Positron (e+) is the anti-particle of electron (e-) with the 

same mass but with a positive charge as opposed to negative charge of the electron. The 

electromagnetic interaction between electrons and positrons makes possible annihilation of 

e+– e– pairs in which the total energy of the annihilating pair may be transferred to quanta of 

the electromagnetic field (photons). Principal channel of this reaction is the two-photon 

annihilation 

21ee     (2.5) 

When a positron is implanted into a solid, it undergoes a thermalisation process whereby it 

loses its energy to the matrix by scattering at ion sites, by electronic excitations and finally 

via phonon excitation. The thermalisation process happens within ~ tens of picoseconds. In 

the thermalised state, the positron undergoes a random walk through the ionic Bloch 

potential. In the absence of any defects, the positron wave function itself shows a Bloch like 

behaviour which is maximized around the interstitial position. In the presence of open 

volume defects like vacancies, the positron gets trapped in the attractive potential of the 

vacancy. This attractive potential is a result of the absence of the repulsive ion core and thus, 

the positron gets preferentially trapped at the vacancy trap site as shown in Figure 2.14(a) [8]. 
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Figure 2.14 – (a) Schematic of the various processes which positron undergoes inside solid 

before its annihilation. The potential trap at a vacancy site is also shown schematically; (b) 

the decay scheme of the Na22 radioactive atom which is used as the positron source. 

The annihilation process is also characterized with an annihilation rate   (positron lifetime

1  ), where   is proportional to the effective electron density ne sampled by positron. 

The annihilation rate of positrons (λ) which is inverse of the lifetime (τ) of positron inside the 

solid is directly proportional to the overlap of the positron  )(rn  and electron  )(rn  

densities and is given by [8] 

  drrnrncr 


 )()(
1 2

0  (2.6) 

Where γ is the enhancement in electron density around positron due to Coulomb attraction, r0 

is the classical electron radius and c is the speed of light. When a vacancy is created by the 

removal of ion core, the net reduction in the local electron density is reflected as an increase 

in the lifetime of positron trapped at the site. The intensity of such a lifetime component gives 

the concentration of such trap sites.  

The experimental lifetime spectrum can be understood in terms of simple rate equations, 

provided trapping of non-thermalised positrons is negligible and that the non interacting 

defects are homogeneously distributed in the sample. Under these conditions the time 

dependent positron diffusion equation for a sample with only one defect type can be written 

as [8] 
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Where  

fn  is the fraction of positrons annihilating from the Bloch like delocalized state 

f
f  1 is the annihilation rate in the defect free state 

1  is the trapping rate of the defect d 

d
d  1 is the annihilation rate at the defect site  

dn  is the fraction of positrons annihilating from defect d 

The solution to the coupled differential equation is the decay spectrum which is expressed as  

d
tt

eIeItD  

 2
1

1)(  (2.9) 

Where  

I1 and I2 are the intensities of the two annihilation sites such that I1 + I2 = 1 

 1
1

1





f

 is the reduced bulk lifetime in the presence of the defect site. 

The actual lifetime spectrum is the absolute value of the time derivative of the expression (4). 

Through the lifetime measurement, one tries to identify these lifetime components and thus 

get an idea of the defect species and their concentration in the sample.  

For positron lifetime measurements, the Na22 positron source evaporated on a 1.25 micron Ni 

foil was sandwiched between two crystal surfaces. The measurements were carried out using 

a fast-fast coincidence spectrometer, having a time resolution of ∼260 ps [9]. The positron 
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data were analyzed using the LT program [10]. The mean lifetime is measured as the time 

delay between the birth of a positron, marked by the emission of the 1274 keV gamma 

photon due to the de-excitation of Ne (as shown in the decay scheme in Figure 2.14(b)) and 

its annihilation inside the solid, which is marked by the emission of two 511 keV gamma 

photons. Figure 2.15 shows a typical lifetime spectrum on a standard sample. 

 
Figure 2.15 – A typical lifetime spectrum which shows the fit after subtracting the lifetime 

from the source. Two components have been resolved. The Gaussian like behaviour on the 

left side arises from the spectrometer resolution function with time resolution ~ 260 ps. 

In general, in the presence of defects there are two components in the lifetime spectrum, 

corresponding to annihilations from bulk and the defects. The lifetime spectra analysed in 

terms of the convolution of the resolution function with the exponential decay functions. The 

annihilation rates from the bulk and defects are obtained from the nonlinear fit of the 

experimental data, to the above function. In general there is an annihilation that arises from 

the source foil, this component is obtained by carrying out an experiment on a standard 

sample, such as annealed iron (Fe). This is used in the fits to subtract out the source 

component (shown in Figure 2.15). In the present thesis most samples are characterized by 

positron annihilation lifetime measurements to throw light on the presence of Se vacancy in 

the systems investigated.  
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CHAPTER 3 

Quantum oscillations from Topological Surface States in Bi2Se3  

 

It is clear from Chapter 1 that the Topological Insulators (TI) are small gap 

semiconductors, with band inversion occurring across the gap at TRIMs, rendering 

Topological Surface States (TSS) with Dirac cone dispersion [1][2][3][4]. To access these 

surface states, the Fermi surface needs to be in the TSS with virtually no states being 

occupied in the conduction band. In practise, this is seldom possible in Bi2Se3, as the system 

is prone to the host native thermodynamic defects such as Se and Bi vacancies (VBi & VSe), 

BiSe & SeBi antisite defects [5][6]. As a consequence of their small gap, the presence of these 

defects renders the system to be highly n-doped and even for the lowest defect concentration 

realised in experiments the Fermi level gets pinned to the conduction band minima. The 

transport from the bulk carriers is in parallel to that of the metallic surface state and thus 

transport measurements would have a significant contribution from the bulk masking the 

signatures of TSS. Hence the initial studies were focussed on achieving lower charge carrier 

density and observing Shubnikov de Haas (SdH) oscillations from the TSS in these samples 

[7]. The earliest report on observation of SdH oscillation in Bi2Se3 was by G. R. Hyde et al. 

[8], who studied the angle dependence of the Magneto-resistance (MR) by carrying out the 

measurement in various configurations viz. sample plane perpendicular, parallel and at an 

acute angle to the external magnetic field direction, with SdH oscillations being observed in 

all the configurations. The fact that oscillations were observed by G. R. Hyde et al. even from 

θ = 90° implies that the SdH oscillations arose from the quantized 3D bulk Fermi surface. To 

avoid transport from 3D Fermi surface individual reports by Analytis et al. [9] and Butch et 

al. [10] reported successfully synthesized samples with lower carrier densities of the order ~ 
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1016 cm-3; however oscillations from the TSS were observed only in the crystals grown by 

Analytis et al. SdH oscillations from the Quantized 3D bulk Fermi surface were observed in 

studies carried out by Eto et al. (carrier density 1018 cm-3) [11] and Petrushevsky et al. (carrier 

density 1017 cm-3) [12], as oscillations were seen in experiments with applied magnetic field 

parallel and perpendicular to the sample surface. In contrast, samples with carrier density 1019 

cm-3 grown by M. Petrushevsky et al. exhibited characteristic oscillations from the TSS. Thus 

it is apparent that carrier density tuning alone is not sufficient to ensure that transport occurs 

from bulk or surface electronic states. M. Brahlek et al. [13] hypothesized that the carrier 

density and their dimensional nature depends crucially on the Fermi energy levels of the bulk 

and the surface states which are in turn governed by the concentration of defects in the 

surface and bulk respectively. When the Fermi level in the bulk is higher than that of the 

surface; there is charge depletion from the surface state and 2D SdH oscillations from the 

TSS will be observed. In the reverse scenario there is downward band bending and the bulk 

predominates in transport. It is therefore of interest to understand clearly, the role played by 

defects in observing SdH oscillations from TSS in magneto-transport measurements in single 

crystals.  

Towards realising this objective, studies were undertaken along the following directions 

i. Synthesizing Bi2Se3 crystal with different Se/Bi ratio; simulating Se and Bi 

atmosphere synthesis 

ii. Synthesizing Bi2Se3 crystals by varying the rate of cooling from the melt. 

The crystals were then characterized for structure, defects and transport, and the results 

obtained are discussed. 

 

 



Quantum oscillations from Topological Surface States in Bi2Se3                         Chapter 3 

 

64 
 

3.1 Synthesizing Bi2Se3 crystal with different Se/Bi ratio 

3.1.1 Synthesis and X-Ray diffraction 

Single crystals of Bi2Se3 were synthesized with varying Se/Bi ratio so as to simulate 

the following conditions:  

a) Bismuth rich Bi2.1Se3 with Se/Bi ratio of 1.428 

b) Stoichiometric Bi2Se3 with Se/Bi ratio of 1.5 

c) Selenium rich Bi2Se3.1 and Bi2Se3.2 with Se/Bi ratio of 1.55 and 1.6 respectively.  

For the crystal growth, the elements Bi and Se, taken in their high pure form, were 

melted at 850ºC in an evacuated quartz tube. The melt was then slow cooled at the rate of 

1ºC/hour until 550ºC, kept at 550ºC for 24 hours followed by rapid cooling. These crystals 

could be easily cleaved along the basal plane yielding a silvery shiny mirror like surface. The 

cleaved crystals were powdered for characterization of their phase formation and crystalline 

purity using room temperature powder X-Ray diffraction at BL-12 beam-line of INDUS-II 

synchrotron, RRCAT – Indore. Figure 3.1 shows the powder diffraction pattern for the 

various compositions. All the major peaks could be indexed to those of the Rhombohedral 

Bi2Se3 structure. No Se or Bi impurity peaks were observed in the patterns confirming the 

phase purity of the prepared samples. The lattice parameters a and c were obtained by 

analyzing the powder diffraction data using the refinement routine in PowderCell [14]. 

Figure 3.2 shows the lattice parameter values as a function of Se/Bi ratio. It is observed that 

both a and c lattice parameters increase with increase in Se/Bi ratio from 1.428 to 1.55. For 

the sample with the highest Se/Bi ratio i.e. Bi2Se3.2, a and c are observed to decrease to values 

closer to the value for stoichiometric Bi2Se3. 
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Figure 3.1 – Powder diffraction pattern of Bi2Se3 samples with different Se/Bi ratios. The 

peaks have been normalised to the highest observed peak intensity and have been shifted 

vertically for clarity. 
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Figure 3.2 – Variation of a and c lattice parameters as a function of Se/Bi ratio. 

Laue diffraction measurements in transmission and back reflection geometry were 

undertaken on the cleaved crystals using a Molybdenum X-ray source, and the patterns were 

recorded in both, transmission geometry and back-reflection geometry using a HD-CR-35 

NDT image plate system. Figure 3.3 shows the Laue pattern collected in both transmission 
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and back-reflection geometry. From the back-reflection pattern it is deduced that the cleavage 

plane of the crystal is (001). It is observed that while the spots are sharp in the Bi2Se3 sample, 

predominant radial streaking is observed in the non-stoichiometric samples Bi2Se3.1 and 

Bi2Se3.2, pointing to the presence of lattice deformations. These lattice deformations could 

manifest due to stacking faults along the c-axis and strain inhomogeneities [15][16][17]. In 

addition, some spots in the Laue pattern of Bi2Se3.1 show streaking in directions along the 

Debye arc, indicative of the presence of small angle tilt grain boundaries in the sample. The 

absence of back-reflection Laue pattern in Bi2Se3.1 sample indicates the presence of very 

strong stacking disorder, as can be observed from the large c lattice parameter value of 

28.657 Å. The Laue pattern of the Bi rich sample Bi2.1Se3 has larger spots probably due to 

uniform strain due to presence of excess Bi. 
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Figure 3.3 – Laue diffraction pattern of the crystals in transmission (above) and back-

reflection (below) geometries. The sharp spots observed in the Laue pattern of stoichiometric 

Bi2Se3 indicate high crystallinity of the same. 
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3.1.2 Resistivity 

Figure 3.4(a) shows the resistivity versus temperature data measured in the Van der 

Pauw geometry. The positive temperature co-efficient of resistivity indicates metallic 

behaviour in all samples, with a tendency of the resistivity to saturate below 30 K. In the 

samples with excess Se viz. Bi2Se3.1 and Bi2Se3.2, an increase in resistivity below 30 K was 

observed. The 
K50

 vs. temperature plots for Bi2Se3.1 and Bi2Se3.2, which depict the 

resistivity upturn at low temperatures are shown in Figure 3.4(b). The results obtained are 

similar to the one obtained by J. G. Analytis et al. [9]. Such an upturn suggests a significant 

contribution to the conductivity from the thermally activated carriers from an impurity band 

apart from that from the conduction bands. 

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

1

2

3

4

5

6

0 10 20 30 40 50
0.92

0.94

0.96

0.98

1.00

 Bi
2.1

Se
3

 Bi
2
Se

3

 Bi
2
Se

3.1

 Bi
2
Se

3.2

Temperature (K) 


 (

m


-c
m

)

Temperature (K)


/

50
K

 
Figure 3.4 – (a) Resistivity vs. temperature behaviour of the synthesized samples marked in 

separate legend; (b) The upturn in resistivity at low temperatures (below 30 K) in the Se rich 

samples Bi2Se3.1 and Bi2Se3.2 is shown in normalized form. 
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3.1.3 Hall Effect measurements 

To get an idea of the nature of charge carriers, Hall measurements were carried out at 

4.2 K, (shown in Figure 3.5(a)). From the negative slope of the Hall data it is inferred that the 

carriers are electrons. The charge carrier density for the samples is estimated from the slope 

of the Hall data at low fields. Figure 3.5(b) shows the variation of charge carrier density with 

respect to Se/Bi ratio. The values of the charge carrier concentration initially increases with 

increase in Se/Bi ratio from 1.428 (Bi2.1Se3) to 1.55 (Bi2Se3) beyond which there is a 

significant reduction in the number of charge carriers for higher Se/Bi ratio. A possible 

reason for the reduction in charge carrier density with increasing Se Se/Bi ratio could be the 

reduction in the number of Se vacancies that contribute to the carriers in the system, which 

get compensated by the excess Se added during synthesis. 
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Figure 3.5 – (a) Hall data on the synthesized samples with different Se/Bi ratio; (b) 

estimated charge carrier density vs. Se/Bi ratio. The charge carrier density is observed to 

decrease with increase in Se/Bi ratio. 

 

3.1.4 Magneto-resistance (MR) 

The results of magneto-resistance (Rxx(B) - Rxx(0)) measurements, carried out on 

(001) oriented single crystals in the magnetic field range of -15 T to 15 T at 4.2 K are shown 

in Figure 3.6. The resistivity contacts were made in the linear geometry as shown in Figure 
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2.11. Rxx is the longitudinal resistance at all fields and Rxx(0) is the value of resistance at 0 T. 

As described in Section 1.8.1, the MR measurement was carried out in two different 

configurations with respect to the (001) sample plane viz., field out-of-plane (H║C3), where 

C3 for Bi2Se3 is the c-axis and field in-plane (H║C1-C2), where C1-C2 plane corresponds to 

the a-b plane of Bi2Se3. It is observed that the quantum oscillations i.e. Shubnikov de Haas 

oscillations are absent in the stoichiometric Bi2Se3 and present in the samples with higher 

Se/Bi ratio and lower charge carrier density (cf. Figure 3.5(b)). The frequency of the 

oscillations is determined by the Fourier transform on Rxx vs. 1/B data (shown on the right 

panel of corresponding MR data in Figure 3.6). It is noticed that the oscillations are 

dominated by a single frequency only in samples with an excess Se content viz., Bi2Se3.1 and 

Bi2Se3.2. The frequency of oscillations for Bi2Se3.1 and Bi2Se3.2 in the H║c direction, are 

47.91 T and 36.78 T respectively. In the H║ab direction, the frequency of oscillations for 

Bi2Se3.1 and Bi2Se3.2 are 70.62 T and 58.92 T respectively. In the Bi rich sample Bi2.1Se3, 

multiple frequencies are observed in the oscillations.  
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Figure 3.6 – Magneto-resistance data on the single crystals of Bi2Se3 with varying Se/Bi ratio 

in H║c and H║ab configurations. The data from the two configurations are offset for clarity. 

SdH oscillations are observed only in samples with higher Se/Bi ratio and lower charge 

carrier density. On the right side of each panel are the corresponding FFT plots indicating the 

frequency of oscillations. It is seen that the oscillations in Bi2.1Se3 do not have a single 

frequency. 

Further analysis of the SdH oscillations is carried out using the Lifshitz-Kosevich (L-K) 

equation (described in Section 1.8.1). The L-K equation is given as [18] 
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Figure 3.7 shows the L-K equation fits to the oscillations in Bi2Se3.1 and Bi2Se3.2 in both the 

H║c and H║ab configurations. The fitting parameters kf, TD, m0, β, g and the physical 

quantities derived from them are tabulated in Table 3.1. 
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Figure 3.7 – L-K equation fit to the SdH oscillations in Bi2Se3.1 and Bi2Se3.2 in (Left) H║c 

configuration and (Right) H║ab configuration 
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Table 3.1 The fitting parameters and the derived physical quantities from the L-K equation 

fit to the oscillations in Bi2Se3.1 and Bi2Se3.2 in H║c and H║ab configuration 

Fitting Parameters Bi2Se3.1 Bi2Se3.2 

Applied Magnetic Field Direction H║c H║ab H║c H║ab 

Fermi wave-vector �� (106 cm-1) 3.7495 4.7221 3.3321 4.1371 

Dingle Temperature �� (K) 7.32 17.06 6.49 16.36 

Cyclotron mass �∗ (m0) 0.181 0.116 0.152 0.068 

quantum scattering time 

[�� = ℏ/(2�����)] (fs) 
166 71 187 74 

Fermi velocity 

[�� =  (ħ��)/�∗] (105 ms-1) 
2.42 4.71 2.52 7.03 

2D carrier density 

[�� =  (��
�)/4�] (*1012 cm-2) 

1.12 1.77 0.88 1.36 

Surface mean free path 

[��
��� =  ����] (nm) 

40.17 33.44 47.12 52.02 

surface mobility 

[μ�
��� =  (���

���)/(ħ��)](cm2/V.s) 
1619 1075 2146 1908 

β 0.62 -0.05 0.60 -0.08 

g 2 2 2 2 

 

The values of Berry phase obtained from the L-K equation fits to Bi2Se3.1 and Bi2Se3.2 in the 

H║c configuration are 0.62 and 0.6 respectively, close to the value of 0.5 that should be 

obtained when transport occurs via TSS and the value of Berry phase obtained from SdH fit 

for H║ab configuration is nearly zero; a value expected when transport is due to fermions 

with a parabolic dispersion.  

 As discussed in Section 1.8.1(a), the positions of minima and maxima in oscillations have a 

  1cosB 
  dependence and hence oscillations from a 2D Fermi surface should be absent for 

θ = 90°. Thus the occurrence of oscillations in the H║ab configuration implies that there is a 

3D Fermi surface which in the present case is the ellipsoidal bulk Fermi surface of Bi2Se3, as 
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reported by Eto et al [11]. Therefore it can be surmised that the oscillations in H║c 

configuration, has contributions from both 2D and 3D Fermi surface with the contribution 

from the bulk being predominant.  

3.2 Synthesizing Bi2Se3 crystals by varying the rate of cooling from the melt  

3.2.1 Synthesis and X-ray diffraction 

Single crystals of Bi2Se3 were synthesized in the route as described in Section 3.1.1, 

with an exception to the cooling stage where the rate of cooling from melt at 850ºC was 

varied as 1ºC/hour, 2ºC/hour and 137ºC/hour. The purpose of growing the crystals at a faster 

cooling rate was to introduce strain disorder in the system. The single crystals grown from the 

above conditions would be referred to as BS1, BS2 and BS137 corresponding to the rate of 

cooling from the melt which are 1ºC/hour, 2ºC/hour and 137ºC/hour respectively. Powder 

diffraction experiments were carried out on powdered single crystals (shown in Figure 3.8). 

No visible impurity phases of Se or Bi are observed. Figure 3.9 shows the variation of a and c 

lattice constants obtained from analysis of the powder diffraction pattern using PowderCell 

[14]. The lattice parameters of BS2 are lower than the values for the BS1, however both a 

and c lattice parameters of the fast cooled sample (BS137) are found to be very large 

compared to the slow cooled ones (BS1 and BS2). Such a significant increase suggests the 

presence of a uniform strain in the lattice.  
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Figure 3.8 – Powder diffraction data of samples BS1, BS2 and BS137 measured on 

powdered single crystals. The peaks have been normalised to the highest observed peak 

intensity and have been shifted vertically for clarity. 
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Figure 3.9 – Variation of a and c lattice parameters as a function of cooling rate from melt. 

Figure 3.10 shows the Laue diffraction pattern for the three crystals BS1, BS2 and BS137. 

The Laue pattern of BS2 is found to be very similar to the pattern observed for Bi2Se3.1 (cf. 

Figure 3.3), both exhibit radial streaking. The Laue spots of BS137 are found to be enlarged 

in comparison to the sharp Laue spots observed in BS1. 
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Figure 3.10 – Laue diffraction pattern for the Bi2Se3 single crystals grown from melt at 

different cooling rates in transmission (above) and back-reflection (below) geometries. 

 
3.2.2 Resistivity 

The resistivity vs. temperature data for BS1, BS2 and BS137 samples are shown in 

Figure 3.11. The resistivity is seen to decrease monotonously with increase in cooling rate.  
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Figure 3.11 – Resistivity vs. Temperature data for the Bi2Se3 single crystals grown at 

different cooling rates. 

To understand the resistivity behaviour, it is essential to look at the charge carrier 

concentration in the samples, which is determined from the Hall Effect measurements 
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3.2.3 Hall Effect measurements 

Figure 3.12(a) shows the data of Hall Effect measurements on the single crystals of 

BS1, BS2 and BS137. The charge carrier concentration estimated from the slope of the Hall 

resistance (Rxy) vs. B curve at low fields is shown in Figure 3.12(b). It is observed that the 

charge carrier density (n) of both BS2 and BS137 are lesser in comparison to BS1. A possible 

reason for the lowering of charge carrier density in the samples cooled faster could be the 

reduction in number of Se vacancies by arresting Se evaporation from the lattice as a 

consequence of faster cooling rate.  
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Figure 3.12 – (a) Hall effect data on the samples grown at different cooling rates; (b) 

variation of charge carrier density 

 

The decrease in charge carrier density with increase in cooling rate implies that the resistivity 

must increase with increase in cooling rate. However, from Figure 3.11, it is observed that the 

resistivity decreases. The electron relaxation time estimated from the relation



2ne

m
 , is 

found to be 0.15 ps, 0.33 ps, 0.41 ps for BS1, BS2, and BS137 at 300 K respectively. The 

increase in relaxation time suggests that the disorder in the system reduces, which is contrary 

to the result obtained from Laue diffraction which shows a streaking behaviour with 
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increasing in cooling rate and points to an increase in disorder. The reduction in resistivity (as 

observed in Figure 3.11) can then be due to increased contribution from TSS in transport. 

 

3.2.4 Magneto-resistance: 

Figure 3.13 shows the MR data collected on the different stoichiometric Bi2Se3 

crystals viz. BS1, BS2 and BS137 in H║c and H║ab configurations. It is observed that both 

BS2 and BS137 exhibit visible Shubnikov-de Haas oscillations only in the H║c configuration 

which suggest that the oscillations arise from an underlying 2D Fermi surface. The L-K 

equation analysis [18] is carried out on the oscillatory component of MR in both BS2 and 

BS137. The fits to the L-K equation are shown in Figure 3.14(a)-(b) for BS2 and BS137 

respectively. The fitting parameters kF, TD, m0, β and the various physical quantities derived 

from them are tabulated in Table 3.2. 
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Figure 3.13 – MR data on Bi2Se3 crystals grown at different cooling rates viz. BS1, BS2 and 

BS137. Oscillations in MR were observed in the crystals BS2 and BS137 in the H║c 

configuration. On the right side of each panel are the corresponding FFT plots indicating the 

frequency of oscillations.  



Quantum oscillations from Topological Surface States in Bi2Se3                         Chapter 3 

 

79 
 

0.06 0.09 0.12 0.15 0.18
-0.8

-0.4

0.0

0.4

0.8

0.06 0.08 0.10 0.12

-0.2

-0.1

0.0

0.1

0.2

 Data

 Fit

1/B (T-1)


R

x
x
 (

m


)

(a)

BS2

(b)

1/B (T-1)


R

x
x
 (

m


)

 Data

 Fit

BS137

 

Figure 3.14 – L-K equation fit to the oscillations observed in the H║c configuration in MR 

in (a) BS2; (b) BS137 

 

Table 3.2 The fitting parameters and the derived physical quantities from the L-K equation 

fit to the oscillations in BS2 and BS137 in H║c configuration 

Fitting Parameters BS2 BS137  

Applied Magnetic Field Direction H║c H║c  

Fermi wave-vector �� (106 cm-1) 7.2321 7.6486  

Dingle Temperature �� (K) 25.61 38.87  

Cyclotron mass �∗ (m0) 0.1523 0.1055  

quantum scattering time 

[�� = ℏ/(2�����)] (fs) 
47.46 31.27 

 

Fermi velocity 

[�� =  (ħ��)/�∗] (105 ms-1) 
5.49 8.38 

 

2D carrier density 

[�� =  (��
�)/4�] (*1012cm-2) 

4.16 4.65 
 

Surface mean free path 

[��
��� =  ����] (nm) 

26.07 26.20 
 

surface mobility 

[μ�
��� =  (���

���)/(ħ��)](cm2/V.s) 
547 519 

 

β 0.5 0.46  

g 2 2  
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It can be seen from Table 3.2 that the value of β for BS2 and BS137 are 0.5 and 0.46, 

which are nearly equal to the ideal value of 0.5 for transport from Topological Surface States. 

To further confirm the validity of the Berry’s phase obtained from the L-K equation fit, the 

preferred approach in literature [7] is to carry out a Landau-Level Fan diagram analysis of the 

SdH oscillations in which the maxima and minima in SdH oscillations in
B

1  are plotted 

against an index “n”, which is undefined upto an addition or subtraction by an integer. With 

respect to TI systems, as suggested by Ando [7], the oscillations in resistivity are first 

converted to oscillations in conductivity using the relation
 2

xy
2
xx

xx
xx







 , following 

which the minima and maxima in conductivity oscillations are assigned integer and half-

integer values respectively and plotted vs.
nB

1 ; Bn being the field at which the Fermi energy 

EF lies in between two consecutive Landau Levels i.e. minima in oscillations in conductivity. 

The value of intercept at 0 T-1, obtained from a linear fit to the data; with slope being fixed by 

the frequency of oscillations, obtained from the FFT analysis to determine the exact nature of 

the 2D oscillations – for TSS, the presence of a π Berry phase would lead to an intercept of 

0.5 in the LL fan diagram. The LL-Fan diagrams obtained for BS2 and BS137 are shown in 

Figure 3.15(a) and Figure 3.15(b) respectively. The intercept values obtained from the LL-

Fan diagram analysis are 0.5 for BS2 and 0.25 for BS137. 
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Figure 3.15 – Landau Level Fan diagram (n vs. 1/Bn plot) for the oscillations in conductivity 

in (a) BS2; (b) BS137. The insets in the figures are the same plots in expanded scale to show 

the intercept in “n” axis with more clarity.  

The intercept of 0.5 obtained from the LL Fan diagram for BS2 sample indicates that 

the oscillations may arise from the 2D TSS. This is further confirmed by the Fermi velocity 

value of vF ~ 5.49*105 ms-1 obtained from the L-K equation fit to the SdH oscillations, which 

agrees well the literature value of 5*105 ms-1 obtained from ARPES measurements on Bi2Se3 

by Y. Xia et al. [2] In addition, the single valued frequency value of 172 T corresponds to a 

large Fermi surface as expected for the TSS. Though observed SdH oscillations in the H║c 

configuration in BS137 also suggests a 2D origin with a large Fermi surface (F = 188 T), the 

intercept value of 0.25 indicates that the oscillations observed are not purely from the 

Topological Surface States.  

From the above results in section 3.1 and section 3.2, it is seen that SdH oscillations 

arising from a single frequency are observed only in samples that exhibit a predominant strain 

in their Laue patterns viz. Bi2Se3.1, Bi2Se3.2, BS2 and BS137. It is thus important to 

understand if this is in any way linked to controlling Se vacancies (as observed from Hall 

Effect data) that introduce charge carriers in the system, leading to shift of the Fermi level 
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away from the Dirac point, and it is with this motivation, positron lifetime measurements are 

carried out.  

3.3 Positron Lifetime measurements:  

Figure 3.16 shows the results of positron lifetime measurements carried out at room 

temperature for the various samples synthesized viz. stoichiometric Bi2Se3 which includes 

BS1 and BS2; Bi rich Bi2.1Se3; Se rich Bi2Se3.1, Bi2Se3.2, on which the magneto-resistance 

measurements have been carried out. Lifetime measurements on BS137 crystals could not be 

carried out as the size of the cleaved crystals were very small in comparison to the positron 

source which would have lead to a large source and background component in the 

experimental data and thus error in the measured lifetime value. The lifetime values obtained 

experimentally for the various samples are tabulated in Table 3.3. It is observed that the 

positron lifetime reduces with the increase in Se/Bi ratio. The lifetime of BS2 sample is also 

found to be lower than that of BS1. 
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Figure 3.16 – Positron lifetime value on the various single crystals synthesized in the present 

study. The data points represented by open hexagons are the samples synthesized with 

varying Se/Bi ratio. The data point represented by an open square corresponds to the sample 

BS2. 
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Table 3.3 Carrier concentration n obtained from the low field Hall data, experimental 

positron lifetime τ and Se vacancy concentration estimated from positron experiments 

Sample 
Charge carrier density from Hall 

n ( 1018 cm-3) 

Positron Lifetime 

τ (ps) 
VSe (1017 cm-3) 

Bi2.1Se3 28.3 229±2 5.4 

Bi2Se3 (BS1) 43.2 224±2 2.8 

Bi2Se3.1 6.1 216±2 1.1 

Bi2Se3.2 1.2 214±2 0.9 

Bi2Se3 (BS2) 26.2 219±2 1.6 

 

From Table 3.3 it is observed that with the decrease in charge carrier density 

corresponding to the increase in Se/Bi ratio, the positron lifetime decreases. To understand 

the experimental positron data, theoretical estimates of positron lifetimes are carried out from 

a calculation of the overlap of the positron density distribution with the electron density 

within the unit cell. These calculations are carried out for both the perfect crystal, and crystal 

containing various vacancy defects, viz., vacancy at the Se(1), Se(2) and the Bi site. The 

positron density distribution is calculated by solving the Schrödinger equation for the 

positron, using the Doppler code [19]. Figure 3.17 shows the plot of the positron density 

distribution in crystalline Bi2Se3 and in the presence of a vacancy at the Bi, Se(1) and Se(2) 

sites. 
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Figure 3.17 – Positron density distribution in crystalline Bi2Se3 and in the presence of 

vacancy at Bi, Se(1) and Se(2) sites. The positron density distribution for vacancies is carried 

out for the 441 super-cell, with vacancies in each layer. In defect-free Bi2Se3, the positron 

density is confined to the van der Waals gap, and in the presence of Bi and Se(1) vacancy, it 

gets localized at the vacancy site. For the Se(2) vacancy within the quintuplet layer, the 

positron samples both the vacancy and the van der Waals gap. The overlap of this positron 

density distribution with the atomic superposition of electron density is used to calculate the 

corresponding positron lifetimes.  

As discussed in section 1.8 in the introduction chapter, the structure of Bi2Se3 consists 

of two non-equivalent Se positions in the lattice Se(1) and Se(2). Se(1) lies close to the 

Vander Waals gap and Se(2) lies sandwiched between the two Se(1)-Bi layers. It is seen that 

in the perfect crystalline solid the positron density is confined to the Van der Waals gap in the 

Bi2Se3 structure, which are the open regions within the crystal. In the presence of Bi and 

Se(1) vacancy, it gets localized at the vacancy site. For the Se(2) vacancy within the 

quintuplet layer, the positron density is diffuse in that it samples both the vacancy and the 

Van der Waals gap. The above positron density distribution in the presence of vacancies has 

been calculated using a super-cell of 441 unit cells. Using the above positron density 

distribution, the annihilation rate is calculated from the overlap with the electron density. The 

positron total annihilation rate (tot) is given by [20] 
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valcoretot    (3.2) 

Where, core arises from the annihilations from the core electron density and val is the 

annihilation rate from the valence electron density. For these calculations, the electronic 

configuration of Bi is taken to be ([Xe] 4f14 5d10) 6s2 6p3 and Se to be ([Ar] 3d10 4s2) 4p4, 

with the orbitals in brackets taken as core electrons and those outside as valence electrons. 

The above partitioning into valence and core electrons seems reasonable, as recent band 

structure calculations [21] suggests that the electronic structure of Bi2Se3 is well represented 

as pp bonding of the 6p Bi and 4p Se orbitals. The annihilation rate is calculated taking into 

account the enhancement of valence electron density around the positron [22]. Using the 

above methodology, the positron lifetime in defect free Bi2Se3 bulk is calculated to be 201 ps. 

In the case of positron localization and annihilation at Se(1), Se(2) and Bi vacancies, the 

lifetimes sre calculated to be 238 ps, 202 ps and 224 ps respectively (ref. Table 3.4). It is seen 

that the positron lifetime at Se(2) vacancy, within the quintuplet layer is not very different 

from that in the bulk. This is also reflected in the fact that the positron density distribution is 

not very localized for the Se(2) vacancy (ref. Figure 3.17), and the binding energy is small as 

indicated in Table 3.4 implying that vacancy at Se(2) site is not an efficient positron trap. 

Table 3.4 The calculated lifetimes in the perfect crystal of Bi2Se3 and at various vacancy 

defects. The positron binding energies at various vacancy defects are also shown. Se(1) is 

vacancy in the Se layer closest to the van der Waals gap, the Se(2) is vacancy in the Se layer 

inside the quintuple layer. 

Species  (ps) Binding energy (eV) 

Bi2Se3(bulk) 201  0.0  

Se(1) vacancy 238 0.281 

Se(2) vacancy 202  0.014  

Bi vacancy 224  0.213  
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However, the other Se vacancy, viz., the Se(1) vacancy near the Van der Waal gap is 

a deep trap for positrons with a lifetime substantially higher than that of the bulk. 

Experimentally, the positron lifetimes for the various samples Bi2.1Se3, Bi2Se3 (BS1), 

Bi2Se3.1, Bi2Se3.2 and BS2 were measured to be 229 ps, 224 ps, 216 ps, 214 ps and 219 ps 

respectively (ref. Table 3.3). First it is noted that these values are larger than the calculated 

bulk lifetime of 201 ps, clearly pointing to the localization and annihilation from vacancy 

type defects. To identify the specific vacancy defect, it is first noted that in the detailed first 

principles calculations by D. West et al. [5] who had incorporated a spin-orbit coupling 

component, it was shown that formation energy of vacancy at the Bi site was significantly 

larger (by a factor of 3) than that at Se site, for both Bi rich and Se rich conditions, and it was 

the VSe that determined the n-doping level in Bi2Se3. Hence, the vacancies at the Bi site as a 

possible positron trap are not considered here. Amongst the two possible vacancy type 

defects at the Se site, it has already been noted that the vacancy at Se(2) is a weak trap with a 

lifetime (202 ps), not different from the bulk value. Hence it is inferred that the positron 

lifetime in the Bi2Se3 samples arises due to positron trapping and annihilation at the Se(1) 

vacancy. Using this assumption, the concentration of Se(1) can be determined from the 

measured value of lifetimes on samples of varying compositions within the framework of the 

two state trapping model [20][22]. The measured mean lifetime τm is given by  















b

v
bm

K

K






1

1
 (3.3) 

Where ��  is the bulk lifetime (201 ps), �� is the lifetime at the Se(1) vacancy (238 ps) and K 

is the trapping rate defined as K = µvCv, where µv is the specific trapping rate at a vacancy 

and Cv is the vacancy concentration. For the specific rate at the Se vacancy in Bi2Se3, the 

value for trapping rate at Se vacancy in CuInSe2, viz., µv = 1 x 1015 s-1 [24] is used. The 

resultant vacancy concentrations in the five samples are indicated in Table 3.3. It is observed 
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that the concentration of vacancies, as obtained from positron experiments, is consistent with 

the theoretically predicted decrease in Se vacancies when grown under Se rich conditions [5].  

3.4 Discussion: 

From our experiments we observe that SdH oscillations are absent in the 

stoichiometric BS1 sample. However on addition of excess Se and growing the 

stoichiometric crystals at faster cooling rate, both of which introduces strain in the lattice, the 

SdH oscillations are being observed. Absence of SdH oscillations in the stoichiometric Bi2Se3 

sample have been earlier reported by Butch et al. [10]. As discussed in Section 1.10, the 

explanation for absence of SdH oscillations was put forth by Brahlek et al. [13] based on the 

phenomena of band-bending occurring at the metal/semiconductor interface in Bi2Se3. The 

absence of oscillations in MR was attributed to the presence of downward band-bending in 

Bi2Se3 [13]. In the case of downward band bending (ref. Figure 1.24(b)), the size of the Fermi 

surface of the TSS becomes much larger than in the case of an upward band bending (ref. 

Figure 1.24(c)). As the period of the oscillations varies inversely as the cross-sectional area of 

the Fermi surface, a larger Fermi surface would translate into a small period of oscillation 

which would make the observations of oscillations from TSS in transport difficult. Also, the 

presence a downward band-bending leads to the accumulation of surface charges leading to 

formation of quantum well structures (QWS) which have the characteristics of a conventional 

2D electron gas (Figure 1.24(b)). The presence of such a 2DEG state has been experimentally 

confirmed by M. Bianchi et al. using ARPES (cf. Figure 1.25) [25]. These states have high 

mobility and thus oscillations from these QWS also exhibit 2D characteristics and hence the 

transport would have mixed signatures from both these QWS and the TSS. However, the only 

difference arises because the dispersion of electrons in a conventional 2DEG is essentially 

parabolic and does not carry the π Berry phase of the relativistic Dirac fermions of the TSS 



Quantum oscillations from Topological Surface States in Bi2Se3                         Chapter 3 

 

88 
 

and thus would not give an intercept of 0.5 in the LL Fan diagram analysis, as seen from the 

result for sample BS137 (ref. Figure 3.15(b)). Thus origin of oscillations in BS137 sample 

can be attributed to a mixed contribution from the conventional 2DEG that forms due to 

band-bending and the TSS. As discussed at the end of section 3.1.4, the SdH oscillations in 

Bi2Se3.1 and Bi2Se3.2 in H║c configuration have contributions from both the bulk 3D Fermi 

surface and the 2D TSS with the bulk characteristics predominant. However the absence of 2 

frequencies that should arise from the two different Fermi surfaces and should be seen in FFT 

of oscillations can be explained if the two Fermi levels lie in close proximity to each other 

such that their cross-section areas are nearly the same. As discussed in Section 3.2.4, the 

oscillations in the sample BS2 are purely from the TSS.  

It is also noted that the oscillations from TSS are observed in the samples with 

inherent strain, as inferred from their Laue patterns. This observation is further supported by 

a recent study on thin films of Bi2Se3 by Liu et al. [17] where it has been demonstrated with 

the help of calculations and Scanning Tunneling Microscopy data that the introduction of low 

angle grain boundaries in Bi2Se3 plays a major role in shifting the Dirac point (as shown in 

Figure 3.18). The unshifted band structure of the bulk and the TSS are shown as solid lines, 

where there is downward band bending. In a strained crystal, the Dirac point (DP) shifts such 

that the band-bending becomes upward, resulting in the domination of transport from non-

trivial surface states.  



Quantum oscillations from Topological Surface States in Bi2Se3                         Chapter 3 

 

89 
 

 
Figure 3.18 – (a) Downward band bending in stoichiometric Bi2Se3 (BS1) (red lines denote 

the EF of the surface state, blue lines denote the Bulk EF); (b) In samples with strain (shown 

with broken lines), the Dirac point shifts due to strain leading to the upward band bending. 

 

3.5 Conclusion 

Bi2Se3 crystals, synthesized by varying growth conditions such as Se/Bi ratio and rate 

of cooling were subjected to detailed Magneto-transport and Positron Lifetime studies. From 

Positron Lifetime experiments and calculations it is observed that Se vacancies play the 

major role in n-type doping of the Bi2Se3 system. From Laue diffraction experiments and 

magneto-transport measurements it is noted that while SdH oscillations are not observed in 

the Bi2Se3 sample with perfect crystalline nature, introduction of stacking faults and low 

angle grain boundaries that induce strain in the lattice can shift the Dirac point to lower 

energies (as shown in Figure 3.18) leading to an upward band bending and consequently in 

the manifestation of signature of Topological Surface States (TSS) in transport 

measurements.  
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Chapter 4 

Magneto-transport studies on Sb substituted Bi2Se3 single crystals 

 

The paper by Zhang et al. [1] on 3D Topological Insulators (TIs) Bi2Se3, Bi2Te3 and 

Sb2Te3 had pointed out that a similar compound Sb2Se3 does not show a topologically non-

trivial phase. The reason ascribed was the absence of adequate spin-orbit coupling (SOC) 

strength in Sb2Se3 that could bring about a band-inversion at the Γ point, observed in the 

other three materials. It would be of interest to study the effect of substituting Sb with a 

smaller SOC parameter (of 0.40 eV) in the place of Bi (SOC parameter = 1.25 eV), in Bi2Se3 

and in turn see the effect on the signatures of Topological Surface States in transport 

measurements viz. Shubnikov de Haas oscillations. Since the end compounds viz., Bi2Se3 and 

Sb2Se3 are topologically distinct; a quantum phase transition is expected to occur at a certain 

critical concentration (xc) of Sb substitution. Independent ab-initio calculations on the Bi2-

xSbxSe3 system by Liu et al. [2] and Abdalla et al. [3] determined the value of xc = 1.2, 

corresponding to the alloy composition Bi0.8Sb1.2Se3. However experimentally, the solid 

solubility of the Sb2Se3 in Bi2Se3 is less than 16 mol% [4] and it is therefore difficult to 

synthesize single phase crystals with Sb substitution required to observe the Quantum Phase 

transition.  

The transport co-efficients viz. Hall co-efficient RH, electrical conductivity σ and the 

Seebeck co-efficient α of the Bi2-xSbxSe3 system as a function of temperature in the solid 

solubility range were first reported by Drašar et al [5]. Kulbachinskii et al. [6] was the first to 

observe Shubnikov de Haas oscillations (SdH) on Bi2-xSbxSe3 single crystals. However this 

study was undertaken before Bi2Se3 was identified as a TI and hence it is worthwhile to 
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repeat the experiment and understand it in this context of the subject of TI. Zhang et al. 

presented a detailed ARPES study on MBE grown Bi2-xSbxSe3 thin films in which they 

observed that with increase in Sb substitution till x = 0.3, the Dirac point shifted towards the 

Fermi level and then disappeared for higher concentration [7]. Here we look at how the SdH 

oscillations from the TSS in Bi2Se3, evolves with Sb substitution in the bulk single crystalline 

form. Since the previous chapter clearly indicated that the stoichiometric Bi2Se3 sample BS2, 

corresponding to the cooling rate of 2°C/hour exhibits oscillations from the Topological 

Surface States, we use this procedure for all substitutions. Thus we investigate the effect of 

lowering of SOC and reduction of bulk band gap on the presence of TSS in the system, in 

particular its effect on the transport behaviour. 

4.1 Synthesis and X-Ray diffraction 

Single crystals of Bi2-xSbxSe3 (x = 0, 0.05, 0.1, 0.3, 0.5) were grown by slow cooling 

stoichiometric melts of high purity Bismuth (Bi), Antimony (Sb) and Selenium (Se) from 

850°C to 550°C for over 150 hours (2°C/hour), followed by annealing at 550°C for 24 hours 

and rapid cooling. Phase formation was checked by room temperature powder x-ray 

diffraction (XRD) on powdered single crystals carried out at BL-12 beam-line of Indus II, 

RRCAT – Indore. Figure 4.1 shows the powder diffraction data on the Bi2-xSbxSe3 crystals 

with all the peaks indexed to Rhombohedral Bi2Se3. Absence of peaks corresponding to 

elemental Sb or Sb-Se secondary phase confirms the substitution of Sb at Bi lattice position. 

Further a systematic shift in peak positions, in particular (015) peak (shown in Figure 4.2(a)) 

is observed in the powder diffraction pattern, indicating Sb substitution in Bi site. Impurity 

peaks indexed to elemental Selenium (marked as # in Figure 4.2(b)) are observed in the 

sample with x = 0.5 composition.  



Magneto-transport studies on Sb substituted Bi2Se3 single crystals                    Chapter 4 

 

94 

 

 

5 10 15 20 25 30 35 40 45 50 55

Bi
2
Se

3

Bi
1.05

Sb
0.05

Se
3

Bi
1.9

Sb
0.1

Se
3

Bi
1.7

Sb
0.3

Se
3

Bi
1.5

Sb
0.5

Se
3

In
te

n
si

ty
 (

a
.u

.)

2 (degrees)

(1
 1

 9
)

(1
 1

 6
)

(0
 0

 3
)

(0
 0

 6
)

(1
 0

 1
)

(0
 1

 2
)

(0
 0

 9
)

(1
 0

 4
)

(0
 1

 5
)

(1
 0

 7
)

(0
 1

 8
)

(1
 0

 1
0
)

(0
 1

 1
1

)
(1

 1
 0

)

(0
 0

 1
5

)

(0
 2

 1
)

(1
 0

 1
3
)

(2
 0

 5
)

(2
 0

 8
)

(0
 2

 1
0
)

(2
 0

 1
1

)

(1
 1

 1
5

)
(1

 0
 1

9
)

(0
 1

 2
0

)
(2

 1
 1

)

(1
 2

 5
)

(0
 2

 1
6

)

(3
 0

 6
)

(1
 1

 2
1
)

(3
 0

 9
)

(1
 0

 2
5
)

(2
 1

 1
6

)

(0
 3

 3
)

(2
 1

 1
0
)

 

Figure 4.1 – Powder diffraction pattern of Bi2-xSbxSe3 crystals. The peaks have been 

normalised to the highest observed peak intensity and have been shifted vertically for clarity. 
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Figure 4.2 – (a) observed shift in the 100% peak (015) with increasing Sb substitution; (b) 

Se impurity peaks observed in sample x = 0.5 denoted by # at their positions. 
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Figure 4.3 – (a) variation of a and c lattice parameters of Bi2-xSbxSe3 crystals as a function of 

Sb concentration; (b) variation of unit cell volume as a function of Sb concentration 

Figure 4.3(a) shows the variation of a axis and c axis lattice parameters as a function 

of increasing Sb substitution, determined from the powder diffraction patterns using 

PowderCell [8]. It is evident from the figure that there is a non-monotonic variation in the 

lattice parameters with increasing Sb substitution. In particular, the a and c lattice parameters 

for x = 0.05 sample display an anomalous deviation from the overall variation. Figure 4.3(b) 

shows the variation of the unit cell volume as a function of increasing Sb substitution. The 

decrease of unit cell volume with increasing Sb substitution further substantiates the 

incorporation of Sb in the lattice, consistent with the smaller ionic radius of Sb when 

compared to Bi. We try to reconcile these observations of anomalous a and c lattice 

parameters variation with the help of their Laue diffraction patterns shown in Figure 4.4. 
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x = 0 x = 0.05 x = 0.1

x = 0.3 x = 0.5

 

Figure 4.4 – Laue diffraction pattern of Bi2-xSbxSe3 crystals in the transmission geometry. 

The Laue spots in x = 0 sample display radial streaking 

The Laue diffraction patterns on freshly cleaved crystals were recorded in the 

transmission mode using a Molybdenum X-ray source and a HD-CR-35 NDT image plate 

system. It is observed that the Laue spots in the pristine Bi2Se3 show radial streaking. Such 

streaking has been attributed to strain inhomogeneities [9][10] along the c-axis arising due 

the sub-stoichiometry of Se because of inherent Se vacancies. On introducing a small amount 

of Sb (x = 0.05), the lattice stabilizes as witnessed from the sharp spots in the Laue pattern, 

the c-axis parameter value increases to 28.636 Å. For x = 0.1, the value of c = 28.625 Å and 

the nature of the Laue spots does not change much from that of x = 0.05. For higher 

concentrations x = 0.3 and 0.5, the Laue spots become larger and also show slight radial 

streaking, which can be ascribed to the presence of a uniform strain in the lattice as is evident 

from the larger values of c = 28.650 Å & 28.669 Å for x = 0.3 & 0.5 respectively. The 

observed increase in c lattice parameter may also be attributed to the reduced cation-anion 

bonding strength on substitution of the larger and hence more polarizable ion (Bi) with a 
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lighter one (Sb), which could result in an increase in the intra-QL distances and in turn 

expand the lattice parameter.  

4.2 Resistivity 
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Figure 4.5 – (a) Resistivity vs. Temperature as a function of Sb concentration; (b) variation 

of resistivity as a function Sb concentration at 300 K (open symbol) and at 4.2 K (closed 

symbol) 

Figure 4.5(a) shows the temperature dependent resistivity behaviour of the Bi2-xSbxSe3 

samples. It is evident from the figure that resistivity behavior shows a positive temperature 

co-efficient and the low temperature resistivity shows a tendency to saturate to constant value 

below ~ 30 K. It is observed that the magnitude of resistivity shows an increase with Sb 

substitution. The variation of resistivity as a function of Sb concentration at 300 K and 4.2 K 

is shown in Figure 4.5(b). The resistivity value decreases marginally from that in the pristine 

sample to the low Sb concentration sample i.e. x = 0 and 0.05, whereas for higher Sb 

concentrations it shows an increase. The anomalous drop in resistivity value for x = 0.5 

sample can be attributed to the presence of the secondary Se phase (cf. Figure 4.2(b)).This 
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observed behaviour agrees well with earlier resistivity reports in Bi2-xSbxSe3 system [6]. To 

understand the reason for the observed variation in resistivity with Sb substitution, viz., 

whether the observed trend is a consequence of reduction in the number of carriers or due to 

introduction of disorder by Sb substitution, Hall Effect measurements are undertaken. 

4.3 Hall Effect 

Figure 4.6(a) shows the Hall Effect data on the various samples at 4.2 K. The linear 

behaviour and the negative slope indicate that the major charge carriers are electrons. The 

charge carrier density in Bi2-xSbxSe3 system, obtained from the low field slope of the Hall 

data, is plotted as a function of Sb concentration in Figure 4.6(b). 
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Figure 4.6 – (a) Hall resistance (Rxy) as a function of Sb concentration; (b) charge carrier 

density as a function of Sb concentration. 

 

It is observed that the carrier density increases from 26 x 1018 cm-3 for the pristine 

Bi2Se3 to 33 x 1018 cm-3 in the low Sb concentration sample i.e. x = 0.05. At higher 

concentrations of Sb, the charge carrier density decreases, with pre-factors for x = 0.05 and x 

= 0.5 decreasing by ∽ 25. The overall variation of charge carrier density with increase in Sb 
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concentration in the pristine Bi2Se3 lattice is consistent with earlier reports on the same 

system [6]. As Sb is an iso-electronic substituent at the Bi site in Bi2Se3, no external charges 

are expected to be introduced in the system. Besides, the decrease in unit cell volume as 

observed in Figure 4.3(b), can only lead to an increase in charge density, which implies that 

the reduction in charge density seen in the Bi2-xSbxSe3 system (ref. Figure 4.6(b)) is not due 

to volume change consequent to Sb substitution but could be due to defect introduced into the 

system by Sb substitution. To look for any possible variation in the vacancy concentration as 

a function of Sb substitution, we employ positron lifetime measurements. 

4.4 Positron Lifetime measurements 

Figure 4.7 shows the measured positron lifetime values (τ in ps) in the Bi2-xSbxSe3 

samples. It is observed that the lifetime values decrease initially, from ~ 220 ps for the 

pristine Bi2Se3 to ~ 215 ps for Bi1.9Sb0.1Se3 and then shows no further change in the higher Sb 

doping. Since the mean positron lifetime τ in a system is given by inverse of the total 

annihilation rate λtot, where λtot is proportional to the enhanced charge carrier density in the 

system [11]; the observed decrease in τ should imply an increase in charge carrier density if 

the positron annihilation is purely from the bulk charge density in the Bi2-xSbxSe3 samples, 

which is contrary to the Hall data (cf. Figure 4.6(b)). However the decreasing trend of the 

positron lifetime value with increase in Sb substitution could imply that Se vacancy 

concentration decreases with Sb substitution. This is substantiated by the fact that the 

theoretically estimated positron lifetime value (from Chapter 3) at uncompensated Selenium 

vacancy VSe1 is 238 ps, which is much larger than that compared to the value of 201 ps in 

bulk Bi2Se3 (ref. Table 3.4). The magnitude of lifetime values obtained in the Bi2-xSbxSe3 

samples is consistent with the fact that VSe1 should be present in Bi2Se3 whose concentration 
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decreases with Sb substitution. Thus the variation of charge carrier density obtained from 

Hall Effect measurements taken in conjunction with behaviour of positron lifetime behavior 

points to the decrease in the concentration of VSe1 with Sb substitution. 
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Figure 4.7 – Positron Lifetime as a function of Sb concentration in Bi2-xSbxSe3 

 

As discussed in section 1.8, single crystalline Bi2Se3 with strong Spin-Orbit 

interaction (SOI) has the following defects: (i) anion vacancy VA (VSe1) – a double donor; (ii) 

cation antisite CA (BiSe) – a single donor; (iii) anion antisite AC (SeBi) – single donor and (iv) 

cation vacancy VC (VBi) – a triple acceptor [12][13]. Since the Bi2Se3 system is known to 

have inherent Se vacancies, a crystal grown from stoichiometric precursors tends to be sub-

stoichiometric in Se i.e. Bi2Se3-δ, making it cation rich. Under cation rich conditions, the 

energies of formation of defects in pristine Bi2Se3 with increasing order of energies are VSe ≤ 

BiSe < SeBi < VBi [12]. Thus the lowest formation energy is for VSe and the negative carriers 

seen in the pristine Bi2Se3 crystals are consistent with the presence VSe in the pristine Bi2Se3 

crystals. Therefore, the reduction in positron lifetime with increase in Sb doping observed in 

the samples upto x = 0.1 can be attributed to the reduction in VSe1 with increase in Sb 
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concentration in Bi2-xSbxSe3 samples. The reduction in Se(1) vacancies with increase in Sb 

concentration, can be attributed to the increase in the vacancy formation energy due to 

reduction in the unit cell volume (as observed in Figure 4.3(b)) with increase in Sb 

substitution [14]. The positron lifetime (cf. Figure 4.7) beyond x = 0.1 shows no change 

suggesting there is no further decrease in the VSe1 vacancy concentration for crystals with Sb 

fraction beyond x = 0.1. However, the charge carrier density obtained from Hall Effect 

measurements shows a further reduction even beyond x = 0.1, implying that carriers other 

than those that arise from VSe1, could be responsible for charge density variations seen for 

these concentrations. 

The observed decrease could be due to the reduction in the number of BiSe and SeBi 

antisite defects on substitution of Bi by Sb, which may contribute to the variation of charge 

density in the system, and the lack of variation in positron lifetime could arise because of 

positrons not being sensitive to antisite disorder. Taking clue from an earlier report by Van 

Vechten [15] which showed that in binary crystals iso-structural to Bi2Se3, the possibility of 

formation of a vacancy defect is determined by the surface area of the defect; the larger the 

surface area, the higher the energy of formation and vice-versa. Since the substitution of Sb at 

Bi site in Bi2Se3 leads to a reduction in the effective radius of the cation sub-lattice in Bi2-

xSbxSe3 system, a reduction in the formation energy of cation vacancies VC (VBi) is expected, 

which in turn could give rise to an increase in the number of VBi defects. Since the VBi defect 

level in Bi2Se3 is known to be a triple acceptor, it can also be responsible for the observed 

reduction in the charge density, shown in Figure 4.6(b). From our calculation in Chapter 3, 

the positron lifetime in uncompensated Bi vacancy was seen to be 224 ps, much higher than 

that in the bulk Bi2Se3 (201 ps). The increased lifetime from positron trapped at VBi, could 

also be responsible for the arresting of decrease in the positron lifetime at higher Sb 
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concentration of x = 0.3 and 0.5. However, a triple acceptor would have a negligibly small 

mobility and may not show up as a positive contribution in Hall Effect measurement and as a 

consequence, non-linear slope of the Hall data versus magnetic field expected due to the 

presence of two types of carriers might not be observed. 

4.5 Magneto-resistance 

Figure 4.8 shows the Magneto-resistance (MR) plots (Rxx(B)-Rxx(0) vs. B) of Bi2-

xSbxSe3 samples in two different configurations – field out-of-plane (H∥c) and field in-plane 

(H∥ab). Rxx is the longitudinal resistance at each field applied and Rxx(0) is the value of 

resistance at 0 T. It is observed that oscillations in MR viz. Shubnikov de-Haas (SdH) 

oscillations are observed in the samples i.e. x = 0, 0.05, 0.1 & 0.3 in H∥c configuration alone 

and only in x = 0.5 in both H∥c and H∥ab configuration. As discussed in the previous chapter, 

in angular dependent magneto-resistance measurements, the positions of maxima and minima 

in oscillations depend only on the perpendicular component of field (��) as (��)�� ≡

(� cos �)��, where θ is the angle between the field direction and the normal to the crystal 

surface [16]. If the oscillations disappear for θ = 90° i.e. the H∥ab (field in-plane) 

configuration, the SdH oscillations could be from a 2D Fermi surface. It is evident from 

Figure 4.8 that oscillations are not observed for H∥ab configuration, in x = 0, 0.05, 0.1 and 

0.3 crystals which is a clear indication that the observed SdH oscillations for these 

compositions arise from an underlying 2D Fermi Surface. In x = 0.5 sample, oscillations are 

observed in both H∥c and H∥ab plane which suggest a bulk 3D origin. 
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Figure 4.8 – Magneto-resistance data of Bi2-xSbxSe3 crystals. The data in both H∥c and H∥ab 

configuration are plotted in the same panel for each composition and are offset for clarity. 
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The SdH oscillations obtained experimentally are further analysed using the Lifshitz-

Kosevich (L-K) equation [17] after suitable background subtraction. This fit results in the 

extraction of valuable parameters such as Fermi wave-vector (kF), Fermi velocity (vF). The L-

K equation is given as [17] 

















 

2

1
2cos0

B

F
RRRAR SDTxx  (4.1) 

Figure 4.9 shows the L-K equation fit to the oscillatory component ����, for all the 

compositions viz. x = 0, 0.05, 0.1, 0.3, 0.5 in the H∥c configuration. As can be seen from the 

figure, the L-K equation fits are very good. 
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Figure 4.9 – L-K equation fit to the SdH oscillations in MR in Bi2-xSbxSe3 
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The fitting parameters kF, TD, m0, β, g and other derived physical parameters obtained from 

the L-K equation fit to the MR data of Bi2-xSbxSe3 samples (x = 0, 0.05, 0.1, 0.3) are 

tabulated in Table 4.1.  

 

Table 4.1 Fitting parameters and derived physical constants from L-K equation fit to SdH 

oscillations in Bi2-xSbxSe3 system. 

Fitting Parameters Bi2Se3 Bi1.95Sb0.05Se3 Bi1.9Sb0.1Se3 Bi1.7Sb0.3Se3 Bi1.5Sb0.5Se3 

Fermi wave-vector 

 �� (106 cm-1) 
7.23 7.27 6.85 6.54 5.08 

Dingle Temperature �� (K) 25 27 22 26 23 

Cyclotron mass �∗ (m0) 0.1523 0.1170 0.1174 0.1169 0.1161 

quantum scattering time 

[�� = ℏ/(2�����)] (fs) 
47 44 54 46 52 

Fermi velocity 

[�� =  (ħ��)/�∗] 

(105 ms-1) 

5.49 7.19 6.75 6.47 5.06 

2D carrier density 

[�� =  (��
�)/4�]  

(1012 cm-2) 

4.16 4.21 3.73 3.40 2.05 

Surface mean free path 

[��
��� =  ����] (nm) 

25 31 35 29 26 

surface mobility 

[μ�
��� =  (���

���)/(ħ��)] 

(cm2/V.s) 

541 659 804 690 785 

β 0.5 0.6 0.6 0.875 - 

g 2 2 2 2 2 

 

Some of the fit parameters and their variation with Sb concentration are shown in 

Figure 4.10. The β value for x = 0.5 sample is not considered as the oscillations exhibit 3D 

character and thus are likely to arise from the quantization of the bulk 3D Fermi surface of 

Bi2Se3 as observed by Kazumo Eto et al. [18]. 
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Figure 4.10 – Variation of Frequency (F), 2D carrier concentration (ns), surface mobility 

(μ�
���), β and the LL-fan diagram intercept as a function of Sb concentration in Bi2-xSbxSe3 

single crystals. 

 

The oscillation frequency in x = 0 sample is 172 T, which increases marginally to 174 

T in x = 0.05 sample. For higher Sb concentrations viz. x = 0.1, 0.3 and 0.5 the frequency 

decreases. The Fermi wave-vector (kF), defined as the radius of the 2D Fermi sphere, shows a 

marginal increase in value from the pristine x = 0 to x = 0.05 sample and then decreases for 
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higher concentrations of Sb substitution. The reduction in its value implies a reduction in the 

cross-section of the Fermi level at EF. The cyclotron mass of 0.1523 m0 observed in x = 0 

reduces to 0.1170 for x = 0.05 and nearly remains the same for the higher Sb substitutions. 

The values of Fermi-velocity (vF) obtained from the values of kF and m0 shows a variation 

with Sb, which is similar to that seen for kF. The magnitude of the 2D carrier density ns 

shows a decreasing trend with increasing Sb substitution. The dingle temperature (TD), 

quantum scattering time (τq) and surface mean free path (��
���) do not show any systematic 

variation with Sb substitution implying that Sb substitution in Bi2Se3 does not introduce any 

disorder into the system. These results are consistent with earlier calculations on the Bi2-

xSbxSe3 system [2]. The surface mobility (μ�
���) initially increases from 541 cm2/V.s in x = 0 

to 804 cm2/V.s in x = 0.1, reduces to 690 cm2/V.s for x = 0.3 sample and increases again to 

785 cm2/V.s in x = 0.5. The value of β for x = 0, 0.05, 0.1, 0.3 are 0.5, 0.56, 0.7, 0.875 

respectively. The value of g obtained is 2 for all compositions. 

The LL-fan diagram analysis [19] is then carried out to ascertain the origin of the 

oscillations viz. the relativistic Dirac fermions of the TSS that have linear dispersion or a 

trivial 2D electron gas (2DEG) that forms at the interface of semiconducting bulk/metallic 

surface as a consequence of equilibration between the bulk and surface Fermi levels and have 

a parabolic dispersion. As discussed in Chapter 3, the oscillations in resistivity are first 

converted to oscillations in conductivity using the relation  ��� =  ���/(���
� + ���

� ) following 

which the minima and maxima in conductivity oscillations are assigned integer and half-

integer values respectively and plotted vs. 1/��. The value of intercept at 0 T-1, obtained 

from a linear fit to the data; with slope being fixed by the frequency of oscillations helps in 

determining the exact nature of the 2D oscillations – for TSS, the presence of a π Berry phase 

should lead to an intercept of 0.5 in the LL fan diagram. Figure 4.11 shows the LL-fan 
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diagram analysis for the oscillations in H∥c configuration in the compositions x = 0, 0.05, 

0.01, and 0.3. The x = 0.5 sample is not considered for LL Fan diagram analysis as it presents 

oscillations of 3D character i.e. SdH oscillations in both H∥c and H∥ab configurations. 
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Figure 4.11 – LL-Fan diagram analysis (1/�� vs. n plot) for the oscillations in H∥c 

configuration in the compositions x = 0, 0.05, 0.1, and 0.3. Minima and Maxima in 

conductivity are assigned integer and half integer values corresponding to the number of 

Landau levels inside the Fermi surface. The insets in each panel are the enlarged view of the 

same panels near 0 T-1, to show the intercept. 

It is observed that for the x = 0 sample the plot intercepts exactly at 0.5 and for the 

other compositions i.e. x = 0.05, 0.1 and 0.3, the intercepts are 0.6, 0.6 and 0.875 

respectively.  
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4.6 Discussion 

The Berry phase of 0.5, obtained from the LL-fan diagram analysis and a Fermi 

velocity value of vF ~ 5.49 x 105 ms-1
 obtained from the L-K equation fit to the SdH 

oscillations which is in agreement with the Fermi velocity value of 5 x 105 ms-1 for the Dirac 

cone states in Bi2Se3 as observed from ARPES measurements reported earlier [20] gives 

strong evidence for the presence of TSS signatures in transport in the pristine x = 0 sample. In 

addition the single valued frequency value of 172 T corresponds to a large Fermi surface as 

expected for TSS. As discussed in Chapter 1, SdH oscillations from the surface states can be 

realized in TIs only when there is an upward band bending in the system where the surface 

Fermi level lies below the bulk Fermi level in energy. With the origin of oscillation in the 

pristine sample assigned to the TSS using Berry phase values from the LL fan diagram 

analysis (Figure 4.11) and vF (Table 4.1); it is clear that the band-bending in our pristine 

Bi2Se3 system is upward. The 2D carrier density of ns ~ 4.12 x 1012 cm-2; estimated from the 

SdH analysis is also well within the theoretically calculated value of 5 x 1012 cm-2, below 

which upward band bending is expected in pristine Bi2Se3 [21]. The introduction of Sb into 

the lattice is seen to give rise to two visible changes in the MR data viz. the change in 

frequency of oscillations (ref. Figure 4.10) and the change in LL Fan diagram intercept (ref. 

Figure 4.11). The reduction in frequency of oscillations could arise due to a reduction in the 

Fermi level, as a consequence of an upward shift of the Dirac Point (DP) due to reduction in 

the bulk band-gap. Such an upward shift of the DP in Sb substituted Bi2Se3 system has been 

predicted from band-structure calculations [2][3] and also been observed by ARPES in thin 

films of Sb substituted Bi2Se3 films grown by MBE technique [7]. The deviation in LL-Fan 

diagram intercept is marginal; from 0.5 for x = 0 to 0.6 for x = 0.05 & 0.1 samples, well 

within the spread observed in literature [19] and thus the SdH oscillations observed in x = 
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0.05 & 0.1 can still considered as the signature of TSS states. For x = 0.3, the intercept 

deviates significantly to a value of 0.875. This could imply that the observed SdH oscillations 

cannot be purely attributed to the TSS. 

Alternatively, the 2D oscillations in x = 0.3 sample could arise from a trivial 2D state 

of 2DEG. This could arise due to the expected changes in Band gap with Sb substitution 

[2][3]. Since the band-gap is expected to reduce with Sb substitution, as mentioned earlier the 

DP shifts to higher energy with increase in Sb substitution [7]. It can then be conceived that 

the shift could result in the swapping of the Fermi level positions, such that in 

��
�������

>��
���� leading to surface charge accumulation and hence formation of Quantum 

Well States (QWS). This QWS at the surface being inherently 2D in nature, can show SdH 

oscillations of 2D character, but have a parabolic dispersion such that their Berry phase 

deviates from 0.5. Thus the variation in the L-K equation parameters could then be reconciled 

with transport arising from TSS moving over to a topologically trivial 2DEG state. This 

cross-over made plausible with Sb substitution is illustrated schematically in Figure 4.12. 
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Figure 4.12 – Schematic diagram of Band structure in Bi2-xSbxSe3 showing (a) upward band 

bending and (b) downward band-bending and also reduction of bulk band gap [2][3] with Sb 

substitution. ��
���� and ��

�������
are the bulk Fermi level and surface Fermi level respectively. 

DP corresponds to the Dirac Point and 2DEG corresponds to the trivial 2D electron gas that 

can form due to surface charge accumulation. The bulk Fermi level is pinned to the bottom of 

the conduction band as defined by the value of carrier concentration obtained from Hall 

Effect measurement [21] 

 

4.7 Conclusions 

Synchrotron measurements suggests that the Bi2-xSbxSe3 (x = 0, 0.05, 0.1, 0.3, 0.5) 

crystal system is highly single phase only for low Sb substitution concentration i.e. ≤ 15%. 

The resistivity increases with increase in Sb substitution which is supported by the observed 

reduction in charge carrier density from Hall Effect measurements. From analysis of the SdH 

oscillations obtained from magneto-resistance measurements we surmise that the signatures 

of the TSS are observed for Sb concentration of upto x = 0.1, whereas for x = 0.3 the trivial 

2DEG masks the transport from TSS. Thus we can conclude that a reduction in the bulk 

band-gap can shift the DP in such a manner that the positions of the Fermi levels interchange 

leading to a transport being dominated by the electronic structure of the bulk/surface interface 

which can mask signatures from TSS in transport measurements.   
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CHAPTER 5 

Magneto-transport studies on Te substituted disordered Bi2Se3 

single crystals 

 

Both Bi2Se3 and Bi2Te3 being Topological Insulators (TIs) [1] with similar structures, 

naturally evoked an interest to investigate the series of intermediates Bi2Se3-xTex compounds 

for the presence of Dirac cone states. Xu et al. [2] were the first to predict from ab-initio 

calculations and confirm by ARPES experiments the presence of a single Dirac cone in 

Bi2SeTe2 (BTS). This was followed by a report from Ren et al. [3] on the synthesis of a bulk 

insulating BTS crystal with a low temperature resistivity value as high as 1 Ω-cm, which 

showed Shubnikov de Haas (SdH) oscillations from the Topological Surface States in 

magneto-transport measurements. Xiong et al. [4] in another report showed similar results 

with the low temperature resistivity of the bulk reaching ~ 6 Ω-cm. Wang et al. [5] in their 

report confirmed that along with BTS, another intermediate Bi2Se2Te (BST) is also a TI, 

based on observed parity inversion at the Γ point in band structure calculations. Highly 

insulating crystals (420 Ω at 4.2 K) of BST were synthesized by Bao et al. [6] and signatures 

of TSS viz. SdH oscillations and Weak Antilocalization (WAL) were observed.  

While most of the studies in this ternary TI system viz. Bi2Se3-xTex, have focussed on 

synthesis of individual compounds which are highly insulating in the bulk, there exists no 

comprehensive study on the behaviour of magneto-transport across the Bi2Se3-xTex series of 

TI single crystals. With recent band structure calculations suggesting that the introduction of 

large size defects viz., stacking faults can shift the Dirac point of the topological insulator, 

thereby favouring Fermi level to lie in surface states and in-turn affect the relative 

contribution of surface states and bulk state towards the transport property [7]; it would be 
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interesting to look at the evolution of magneto-transport behaviour with introduction of Te 

into the Bi2Se3 lattice. Since the emphasis of this chapter is the influence of strong disorder 

on magneto-transport investigations, we use for synthesis of the samples, the procedure 

employed for BS137 mentioned in Chapter 3 viz., very fast cooling rate. It may be recalled 

that this sample was seen to be strongly disordered and it had much larger lattice parameters 

in comparison to BS1 (cf. Figure 3.9) and displayed SdH oscillations that had contribution 

from both the TSS and the trivial 2DEG. 

5.1 Synthesis and X-Ray diffraction 

Single crystals of Bi2Se3-xTex (x = 0, 1, 1.8 and 2) were grown from stoichiometric 

mixtures of high purity Bi, Se and Te powders. The mixtures were melted at 850˚C for 6 

hours in an evacuated sealed quartz tube environment, followed by rapid cooling at the rate of 

137˚C/hour. This step of rapid cooling is drastically different from the other reports in the 

literature and was intended to introduce strong disorder in the system [3][4][6][8][9]. 

Synchrotron X-ray diffraction measurements were carried out on the powdered single crystal 

samples at room temperature, at the beam line BL-12 of the Indus II synchrotron at RRCAT – 

Indore, India, using 12.6 keV X-rays. Figure 5.1 shows the powder diffraction patterns on the 

powdered single crystals, for samples with nominal compositions of Bi2Se3 (BS), Bi2Se2Te 

(BST), Bi2Se1.2Te1.8 and Bi2SeTe2 (BTS). All the diffraction peaks could be indexed to 

rhombohedral R 3 m structure. The a and c axis lattice parameters were obtained by analyzing 

the powder diffraction data using the refinement routine in PowderCell [10]. Figure 5.2(a) 

shows the variation of the lattice constants as a function of Te substitution in the Bi2Se3 

system. It is observed that both the a and c increase with increase in Te concentration. The 

unit cell volume as a function of Te concentration is shown in Figure 5.2(b). The progressive 

increase in unit cell volume substantiates the incorporation of the bigger Te atom at the Se 

position in the lattice. The values agree with earlier reports on the system [11]. 
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Figure 5.1 – Powder diffraction patterns of Bi2Se3-xTex samples normalised to the highest 

observed peak intensity. The graphs has been shifted vertically for clarity, the indices of the 

rhombohedral structure are shown for Bi2Se3.  
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Figure 5.2 – (a) variation of a and c lattice parameters of Bi2Se3-xTex crystals as a function of 

Te concentration; (b) variation of unit cell volume as a function of Te concentration 
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Figure 5.3(a) shows the enlarged view of the (015) diffraction peak for the various 

compositions. It is observed that the peak broadens with increasing Te substitution, which is 

indicative of increasing extended disorder in the sample [8][12]. This is also reflected in Laue 

diffraction patterns acquired in back scattering geometry as observed in Figure 5.3(b). A clear 

six-fold symmetry with a line of close spots that is observed in the pristine crystals indicating 

good long range order is seen to get distorted with increasing Te substitution and become less 

distinctive, indicative of the increasing crystalline stacking disorder in the samples with large 

Te substitution.  
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Figure 5.3 – (a) broadening of (015) peak upon Te substitution (b) Laue diffraction patterns 

in the backward scattering geometry shows the six fold symmetry with distinct spot in Se rich 

samples (x = 0, 1) and the gradual degradation of crystalline order inferred from the distortion 

and elongation of spots along the radial direction upon Te substitution (x = 1.8, 2). 
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5.2 Resistivity 

Figure 5.4 (a)-(d) shows the resistivity (ρ) versus temperature (T) behaviour of Bi2Se3-

xTex (x = 0, 1, 1.8 and 2) samples. It is evident from the figure that the pristine Bi2Se3 crystal 

shows a metallic behaviour with a discernible saturation in resistivity below 30 K. Such a 

saturation tendency at low temperature has been reported to stem from the excess carriers 

from Se vacancies in the sample [9][13]. It is also observed that in Bi2Se1.2Te1.8 and BTS 

samples, the positive temperature coefficient of resistivity at high temperatures changes to a 

negative temperature co-efficient as the temperature is lowered. The observed temperature 

dependence of resistivity and its order of magnitude for BTS are different from that reported 

by Ren et al. [3][9], where resistivity changed by two orders of magnitude and clearly 

showed activation behaviour at high temperature and a 3D variable range hopping (VRH) at 

low temperature suggesting that the carriers in the system are highly localised as observed 

from the very low value of their bulk mobility of 11cm2/Vs. Figure 5.4(e) shows the variation 

of resistivity at 300 K and 4.2 K as a function of Te concentration. The resistivity values are 

observed to increase with increase in Te substitution in the Bi2Se3 system, a behaviour that 

could arise due to a reduction in the carrier concentration and/or a suppression of the carrier 

mobility.  
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Figure 5.4 – (a)-(d) The variation of resistivity as a function of temperature of Bi2Se3-xTex 

samples. A metal to insulator type of behaviour is evident upon Te substitution; (e) the 

variation of resistivity as a function of Te substitution at 300 K (open symbol) and 4.2 K 

(closed symbol) 

To understand the origin of the negative temperature co-efficient of resistivity at low 

temperatures in Bi2Se1.2Te1.8 and BTS sample, the low temperature data is fitted to known 

models such as Mott-VRH (shown in Figure 5.5(a)) and Arrhenius (shown in Figure 5.5(b)). 

The activation energy from the Arrhenius fit to BTS sample is found to be 1.5 meV. However 

as the temperature range for fits are too narrow, we are not able to present a conclusive 

argument to unequivocally establish the mechanism of transport (VRH/Arrhenius) from the 

present data. In order to understand the reason for the change in resistivity behaviour with Te 

addition, Hall Effect measurements are carried out in the samples. 
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Figure 5.5 – (a) VRH fit for high Te concentration (x = 1.8, 2) samples (b) Arrhenius fit for 

x = 2 sample. 

 

5.3 Hall Effect measurement 

Figure 5.6 shows the Hall Effect measurement data on the Bi2Se3-xTex samples. It is 

observed that in the pristine Bi2Se3 sample, Hall resistance is linear with magnetic field 

which evolves into a non-linear response in the higher Te substituted samples Bi2Se1.2Te1.8 

and BTS. The non-linearity in Hall data is more prominent in BTS sample. The linear 

behaviour in BS and BST suggest that the transport is dominated by a single type of carrier. 

The non-linear behaviour in Bi2Se1.2Te1.8 and BTS suggests the presence of transport from 

two or more types of carriers in the system [3]. Such non-linear behaviour has been observed 

in similar TI samples and is reported to be due to the parallel contribution of both surface and 

bulk carrier to the transport [3][9][13][14].  
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Figure 5.6 – Hall resistance as a function of Te concentration in Bi2Se3-xTex series. With 

increase in Te concentration the Rxy plots become non-linear.  

To look at the evolution of the non-linear behaviour of Hall resistance with 

temperature, Hall Effect measurements are carried out at various temperatures for the Bi2Se3-

xTex and the data are plotted in Figure 5.7(a)-(d). It is observed that for Bi2Se3 and BST 

samples, the Hall data is linear as a function of magnetic field and is nearly temperature 

independent, implying that the carrier density is unaffected by temperature. However in the 

Bi2Se1.2Te1.8 and BTS samples the non-linear behaviour vanishes and a linear behaviour takes 

over at a temperature of 100 K.  
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Figure 5.7 – The variation of Hall resistance as a function of magnetic field at various 

temperatures in Bi2Se3 and Te doped samples showing a linear behaviour for low Te 

concentration viz., (a) Bi2Se3 (BS); (b) Bi2Se2Te; and a non-linear behaviour at low T for 

higher Te concentration viz., (c) Bi2SeTe2; (d) Bi2Te3. 

From the resistivity and Hall Effect measurements, the carrier concentration (n) and 

the mobility () of carriers are evaluated, both, as a function of temperature in each 

compound and also as a function of Te concentration. Further, as this system viz., Bi2Se3-xTex 

is seen to have disorder as suggested from Laue patterns, we try to quantify the disorder by 

using the Ioffe-Regel criterion. According to the Ioffe-Regel criterion, the metallic behaviour 

of a system is limited by the increase in the disorder in the system such that metallic transport 

would become impossible once the mean free path of the electrons reduce to values less than 

the inter-atomic spacing. The Ioffe-Regel [15] parameter, given by   







e
n3lk 32

f





 

where kf is the Fermi wave-vector and l is the electron mean free path, is thus evaluated for 
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the current system. The variation of carrier density (n), mobilityand kfl as a function of 

Te content at 4.2 K are shown in Figure 5.8(a)-(c) and their variation as function of 

temperature are shown in Figure 5.8(d)-(f). 

1

2

3

4

5

100

200

300

400

500

600

700

0 50 100 150 200 250 300

0

10

20

30

40

50

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50
0

100

200

300

400

500

600

700

 x = 0
 x = 1
 x = 1.8

 x = 2

n
 (

10
19

 c
m

-3
)

(d)

(e)


 (

cm
2 /V

s)
k

fl

(f)

T (K)

(a)

n
 (

10
19

 c
m

-3
)

T = 4.2 K

(c)

x (Te conc.)

k
fl

(b)


 (

cm
2 /V

s)

 
Figure 5.8 – Te concentration dependence of (a) carrier concentration (n), (b) mobility (μ), 

(c) the Ioffe-Regel parameter (kfl); Temperature dependence of (d) carrier concentration (n), 

(e) mobility (μ) and (f) the Ioffe-Regel parameter (kfl), as obtained from the analysis of Hall 

and resistivity data. 
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From Figure 5.8(a) we see that the carrier concentration decreases with increase in Te 

content, however the carrier concentrations for each individual sample do not show any 

temperature dependence (Figure 5.8(d)). From Figure 5.8(b) we see that the Hall mobility 

decreases with increase in Te concentration. This decrease in mobility with increase in Te 

concentration could imply a decrease in scattering time τ, and hence can imply an increase in 

disorder with increase in Te. Figure 5.8(e) shows the variation of mobility as a function of 

temperature in individual Te substituted samples. It is observed that the mobility increases 

with decrease in temperature in the low Te samples (x = 0, 1). The degree of increase in 

mobility with decrease in temperature, slows down with increase in Te content, whereas for 

large Te content (x = 1.8, 2) the mobility decreases with decrease in temperature. From 

Figure 5.8(c) we see that the kfl values obtained from the resistivity and Hall data, decrease 

with Te content and become close to one in the high Te concentration samples, particularly at 

low temperatures. This implies that the electronic disorder induced in the high concentration 

Te samples leads to the localisation of carriers and could account for the appearance of 

upturn in ρ(T) of high Te doped Bi2Se3-xTex (x = 1.8, 2) as seen in Figure 5.4(c)-(d) 

 

5.4 Magneto-resistance 

In order to see the effect of the drastic change in mobility upon Te substitution on 

magneto-transport, magneto-resistance (Rxx(B)-Rxx(0)) measurement were carried out on 

Bi2Se3-xTex (x= 0, 1, 1.8 and 2) samples at 4.2 K in the field range of -15 T to 15 T (shown in 

Figure 5.9(a)-(d)).  



Magneto-transport studies on Te substituted disordered Bi2Se3 single crystal  Chapter 5 

 

126 
 

0

1

2

3

4

0 100 200 300 400 500

-15 -10 -5 0 5 10 15

-120

-90

-60

-30

0

30

0

3

6

9

12

-15 -10 -5 0 5 10 15

0

1

2

3

Bi
2
Se

3

R
x
x
(B

)-
R

x
x
(0

) 
(m


)
4.2 K

(a)

x = 1
x = 0

115 T

(e)

A
m

p
li

tu
d

e

F (T)

188 T

Bi
2
SeTe

2

R
(B

)-
R

(0
) 

(m


)

B (T)

(d)

Bi
2
Se

2
Te

(b)

Bi
2
Se

1.2
Te

1.8

B (T)

(c)

 

Figure 5.9 – (a)-(d) Variation of magneto-resistance (Rxx(B)-Rxx(0)) with magnetic field 

measured with magnetic field parallel to the c-axis of the crystal at 4.2 K, in the Bi2Se3-xTex 

series; (e) Frequency of SdH oscillations in BS and BST from the FFT on the oscillatory 

component.  

It is observed that both pristine Bi2Se3 and the low Te concentration BST sample 

show a positive MR with discernible Shubnikov-de Haas (SdH) oscillations for B > 7 T. The 

frequency of oscillations obtained from a Fourier transform on the oscillatory component of 

MR in BS and BST are shown in Figure 5.9(e). The oscillation frequency is found to decrease 

from 188 T for BS to 115 T for BST. This implies a contraction of the Fermi surface with Te 

substitution [16]. It is also noted from Figure 5.9(e) that the oscillations are not at a single 

frequency for BST unlike that seen in the pristine BS. This suggests a lack of coherence of 
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the Landau levels due to disorder induced in the Te substituted samples. The SdH oscillations 

are observed to vanish for the Bi2Se1.8Te1.2 and BTS samples (see Figure 5.9(c)-(d)). 

Interestingly the MR in these samples shows a qualitatively different behaviour from that of 

BS and BST viz., the MR shows a low field cusp behaviour that is associated with Weak anti-

localisation (WAL) [17]. It is also evident from Figure 5.9(c) that the MR vs. Magnetic field 

of x = 1.8 shows a positive slope upto ~10 T and changes to a negative slope for B > 10 T. 

The x = 2 sample shown in Figure 5.9(d) shows a more pronounced positive cusp for -2T < B 

< 2 T, reaching a maximum at 2 T, and then starts to decrease on increasing the field, similar 

to Weak Localisation (WL). Thus as a function of Te substitution Figure 5.9(a)-(d) displays 

that there is a crossover from Weak Antilocalization (WAL) to Weak Localization (WL) 

behaviour. 

It has been shown from earlier studies [6][17] that the cusp like positive magneto-

resistance behaviour attributed to WAL gives way to negative magneto-resistance on account 

of opening of band gap at the Dirac point due to magnetic impurity [18], or due to 

hybridisation of the bottom and top surface states in very thin samples [16][19]. As the 

samples in the present study are neither in thin film form nor have any magnetic impurities, 

an alternative interpretation of the WAL-WL crossover needs to be sought. It is interesting to 

note that the WAL phenomenon is observed in samples that exhibit non-linear Hall resistance 

as a function of magnetic field viz. Bi2Se1.2Te1.8 and BTS (cf. Figure 5.7(c)-(d)). As we have 

seen in the temperature dependence of Hall resistance that the non-linear behaviour at low 

temperatures changes to linear behaviour above 100 K, it of interest to study how the MR 

evolves across the non-linear to linear transition in temperature. 
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Figure 5.10 – The variation of magneto-resistance as a function of magnetic field at various 

temperatures in (a) BS, (b) BST (c) Bi2Se1.2Te1.8 and (d) BTS.  

Figure 5.10 (a)-(d) show the temperature evolution of the MR for all the four samples. 

For the pristine BS sample, the oscillatory magneto-resistance behaviour is seen for 

temperatures upto 10 K and gets suppressed as the temperature is increased. The oscillatory 

part of MR rides on a linear high field MR behaviour, whose magnitude decreases with 

increase in temperature. In the case of BST, the MR behaviour is qualitatively similar to 

Bi2Se3, albeit with a substantially larger MR. In the Bi2Se1.2Te1.8 sample, the negative slope 

seen at B > 10 T vanishes when temperature exceeds 10 K. In the BTS sample, a systematic 

transition upon increasing temperature is seen. From 4.2 K to 10 K the WAL cusp decreases 

and vanishes at 50 K. On further increasing the temperature i.e. T > 50 K, a transition to 
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positive MR is observed. This negative to positive MR transition occurs at the same 

temperature when the Hall data (shown in Figures 5.7(c)-(d)) also shows a transformation 

from a non-linear behaviour to a linear behaviour on increasing T. Since both WAL and WL 

are quantum phenomena they are not observed at higher temperatures, where a regular 

positive magneto-resistance is seen.  

5.5 Discussion 

We know from the Landau Level fan diagram analysis of the SdH oscillations in 

Bi2Se3 (in Chapter 3), that both TSS and a conventional 2DEG that forms because of band-

bending contribute to the transport in Bi2Se3 sample BS137/BS. The mobility of the carriers 

are high in BS and BST and SdH oscillations are observed in MR. The addition of Te 

introduces an electronic disorder in Bi2Se3-xTex systems, which in turn reduces their 

electronic mobility and the mean free path (see Figure 5.8). The decrease in the mean free 

path (l) makes it conducive for the condition ll  (where ll   is the phase coherence 

length) to be met, leading to the quantum corrections to the transport, viz. the WAL 

behaviour that points to the involvement of topological surface state in the transport 

behaviour. With the increase of magnetic field, this WAL feature is seen to transform to the 

WL behaviour – as has been observed in other experiments [16][20]. The significant result 

from the present experiments is that there is a change from SdH to WAL behaviour with Te 

doping, which can be attributed to the electronic disorder, arising from large defects, like 

stacking faults. Since the presence of large defects such as stacking faults and small angle 

grain boundaries can shift the Dirac point and therefore the Fermi level, the contribution to 

the total electrical transport from the topological surface states can be altered [7]. Similar 

results have observed recently in BiSbTe3 samples where an SdH to WAL to WL transition 

has been seen [21]. 
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5.6 Conclusion 

From magneto-transport studies on Bi2Se3-xTex (x = 0, 1, 1.8, 2) single crystals, it is 

seen that SdH oscillation attributed to both the TSS and the 2DEG gas are observed in the 

Bi2Se3 and low Te substituted Bi2Se2Te samples. In the higher Te concentration samples i.e. 

x = 1, 2, an interesting feature exhibiting evolution of WAL behaviour is observed which can 

be due to increase of underlying strong disorder as observed from the values of mobility. This 

WAL behaviour is accompanied by the change in character of the Hall slope from linear to 

non-linear. This suggests an increased contribution of TSS in transport. The WAL to WL 

transition observed with increase of magnetic field could be due to the 2D electron gas state 

that forms due to band bending in the disordered Te samples.  
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CHAPTER 6 

High Pressure transport studies on single crystal TI system 

Bi2Se3-xTex  

High pressure has been a valuable tool in condensed matter research. It provides a 

platform wherein the ground state properties of the material to be studied can be tuned 

without resorting to chemical procedures such as substitution or doping and thereby retaining 

the original stoichiometry of the material. To mention a few examples from recent past, 

pressure has been observed to drive the parent compound of 122 arsenide superconductors 

BaFe2As2 into a superconducting phase, which otherwise exhibits superconductivity only on 

chemical doping [1]. Application of pressure is also seen to induce metallization in the anti-

ferromagnetic insulator BaMn2As2 [2]. Thus the high pressure studies on TI system is based 

on two reasonable expectations: (a) pressure can help in suppressing the 3D charge carrier 

density responsible for the bulk conductivity and can enhance the relative contribution of 2D 

charge carrier density corresponding to surface states in the electronic transport, (b) pressure 

can induce superconductivity by employing these surface states and hence provide a valuable 

tool to explore topological insulator/superconductor interface. A great deal of reports on high 

pressure studies on end compounds Bi2Se3 and Bi2Te3 are available in literature [3][4][5][6] 

but little exist on the pressure dependent evolution of the transport properties of Te doped 

Bi2Se3 single crystals. Thus, this chapter brings about a systematic pressure dependent 

evolution of ground state behaviour of entire Bi2Se3-xTex (x = 0, 1, 2, 3) series. It is known 

that these compounds can retain the ambient crystal structure only upto a pressure P < 8 GPa 

[3][5]. Therefore present investigations are restricted to the pressure range until which the 

systems remain in ambient phase, and hence purportedly retain their topologically protected 

surface states.  
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6.1 Synthesis and X-ray diffraction 

Single crystals of Bi2Se3-xTex (x = 0, 1, 2, 3) system were synthesized by melting 

stoichiometric mixtures of Bi, Se and Te at 850°C in an evacuated quartz tube, followed by 

cooling to 550°C over 300 hours. They were then maintained at this temperature for 24 hours 

and were then rapidly cooled to room temperature. The temperature profile for the synthesis 

is similar to the one mentioned in Section 3.1.1 and hence the x = 0 sample in this series is 

the same as Bi2Se3 (BS1) in Chapter 3. Phase formation was checked by room temperature 

powder x-ray diffraction (XRD) on powdered single crystals carried out at BL-12 beam-line 

of Indus II, RRCAT – Indore. Figure 6.1 shows the powder diffraction data on the Bi2Se3-

xTex crystals. All the observed XRD peaks are indexed and no extra peaks corresponding to a 

secondary impurity phase are observed (ref. Figure 6.1). The analysis of XRD data indicated 

that the samples crystallized in the R3m structure. Figure 6.2(a) shows the variation of lattice 

parameters a and c, deduced by analysing the pattern using PowderCell [7] refinement 

routine. It is observed that parameters a and c increase monotonically with increasing Te 

concentration in Bi2Se3-xTex. Figure 6.2(b) shows the variation of unit cell volume with Te 

substitution. It is observed that the volume increases which substantiates the incorporation of 

the bigger Te ion at the Se position in the lattice.  The values are consistent with the earlier 

reports on the system [8]. 
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Figure 6.1 – Powder x-ray patterns of Bi2Se3-xTex crystals normalised to the highest observed 

peak intensity. The graphs has been shifted vertically for clarity, the indices of the 

rhombohedral structure are shown. 
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Figure 6.2 – (a) The variation of a and c lattice parameters for Te substituted Bi2Se3 samples; 

(b) variation of unit cell volume as a function of Te concentration 

 

6.2 Ambient pressure resistivity 

The evolution of temperature dependent electrical resistivity ρ(T) behaviour with Te 

substitution in Bi2Se3-xTex system (x = 0, 1, 2, 3) is shown in Figure 6.3(a)-(d) respectively. It 
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is evident from the figure that metallic behaviour observed in end compounds Bi2Se3 and 

Bi2Te3 is progressively suppressed under Te substitution and overall ρ(T) increases from x = 

0 to x = 2. Metal to non-metal transition is observed at T = 100 K for x = 1 and T = 150 K for 

x = 2. This indicates that Te substitution may help in revealing, though partially, the intrinsic 

bulk insulating behaviour of Bi2Se3 which otherwise was masked by the carriers from Se 

vacancies. The variation of room temperature resistivity ρ300K, as a function of Te 

concentration in Bi2Se3-xTex system is shown in Figure 6.3(e)). It is observed that ρ300K 

increases upto x = 2 then decreases.  
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Figure 6.3 – Resistivity vs. Temperature behaviour of (a) Bi2Se3; (b) Bi2Se2Te; (c) Bi2SeTe2; 

(d) Bi2Te3; (e) Variation of ρ300K as a function of Te content x in Bi2Se3-xTex. 

To understand the behaviour of resistivity values with Te concentration, Hall Effect 

measurements were carried out to determine the nature of charge carriers and also the carrier 

concentration. 



High Pressure transport studies on single crystal TI system Bi2Se3-xTex             Chapter 6 

 

137 
 

6.3 Hall Effect Measurements 

Figure 6.4(a) shows the Hall data on the Bi2Se3-xTex (x = 0, 1, 2, 3) samples. It is 

evident from the data that Bi2Se3, Bi2Se2Te and Bi2SeTe2 show n-type carriers and Bi2Te3 

exhibits p-type carriers. Figure 6.4(b) & (c) show the variation of charge carrier concentration 

and mobility with Te concentration respectively. These quantities exhibit systematic non-

monotonic variation with x, i.e., n & µ decreases upto x = 2 then increases for x = 3. The 

decrease in carrier density under Te substitution of iso-electronic Se is consistent with the 

view that Te help in suppressing Se vacancies and hence reducing the bulk conductivity. 

However, the increase in carrier concentration in Bi2Te3 can be associated with the increase 

in number of TeBi anti-site defects that are predominant in Bi2Te3. 
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Figure 6.4 - (a) Hall data on synthesized samples as a function of Te concentration; Variation 

of  (b) n and (c) µ as a function of Te content x in Bi2Se3-xTex. 

 

6.4 High Pressure resistivity 

The results of the high pressure transport measurements performed on the series of 

Bi2Se3-xTex single crystals with x =0, 1, 2 and 3 are presented below. 
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6.4.1 Bi2Se3 

Figure 6.5(a)-(h) shows the temperature dependent resistivity normalized with respect 

to room temperature resistivity (ρ(T)/ρ(300K)) at various indicated pressures from 0 to 7.5 

GPa in 4 – 300 K temperature range.  
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Figure 6.5 – (a)-(h) Normalized Resistivity ρ(T)/ρ(300K) versus T plots at for Bi2Se3 at 

various pressures (from 0 GPa to 7.5 GPa). Arrow marks the position around which Tshoulder 

occurs in the resistance curve 

It is seen that Bi2Se3 exhibits metallic behaviour at ambient pressure (Figure 6.5(a)), 

as can be inferred from the positive temperature coefficient of resistivity. The resistivity 

seems to saturate for temperature below T ~ 30 K. On increasing the pressure to 0.8 GPa 
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(Figure 6.5(b)), the sample continues to exhibit metallic behaviour but the saturation 

temperature of resistance raises to ~ 150 K. At a pressure of 1.5 GPa, the slope of resistivity 

is observed to change from a positive to negative value below T ~ 250 K indicating a metal to 

insulator transition (MIT). For pressure P   2.5 GPa, the transport shows a negative slope in 

the entire temperature range (Figure 6.5(d)) indicating non-metallic behaviour in entire 

temperature range. In addition to the negative slope, the resistance behaviour shows a 

shoulder like feature, denoted as Tshoulder for P   1.5 GPa. The value of Tshoulder is observed to 

increase with increasing pressure, from 50 K at 1.5 GPa to 125 K at 7.5 GPa (see Figure 

6.5(c)-(h) as marked by arrows). The monotonic increase of Tshoulder with pressure (P) is 

shown in the Figure 6.6.  
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6.4.2 Bi2Se2Te 

Figure 6.7(a)-(g) exhibits the variation of the normalized resistivity ρ(T)/ρ(300K) at 

various pressures for Bi2Se2Te system. It is observed that at ambient pressure conditions, the 

ρ(T)/ρ(300K) curve exhibits a positive temperature co-efficient till ~ 125 K, below which an 

upturn in resistivity is observed. With application of a small pressure of 0.9 GPa, the 

resistivity upturn shifts to a higher temperature of ~ 250 K, below which the system shows a 
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semiconducting behaviour. At 1.2 GPa, the system completely exhibits semiconducting 

behaviour from room temperature to 4.2 K. At a pressure of 1.6 GPa, the system sheds its 

semiconducting behaviour to become completely metallic and the resistivity value saturates 

below 20 K. 
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Figure 6.7 – (a)-(g)Variation of normalized resistivity ρ(T)/ρ(300K) as a function of 

temperature at various specified pressures from 0 to 4.5 GPa of Bi2Se2Te sample. Insets in 

(e)-(g) exhibit closer view of superconducting transition.  

Interestingly, a pressure induced superconducting transition is observed at P ~ 2.5 

GPa with a transition temperature (Tc) onset of 5.9 K. The transition temperatures of onset, 
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midpoint, or zero resistance are defined based on the differential of resistance over 

temperature (dR∕dT) (as shown in Figure 6.8(a)). Insets in Figure 6.7(e)-(g) show a magnified 

view of the superconducting transition of Bi2Se2Te at various pressures. 
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Figure 6.8 – (a) resistance near the critical temperature TC with the differentiation of dR dT 

showing the definition of onset
cT  , mid

cT  and offset
cT  respectively; (b) variation of Tc onset as 

a function of pressure in Bi2Se2Te; (c) current dependence of the superconducting transition 

at 2.5 GPa 

The variation of the Tc onset with pressure is shown in Figure 6.8(b). It is found that Tc 

decreases with increasing pressure. Figure 6.8(c) shows the current dependence of the 

transition measured at P = 2.5 GPa. It is found that transition shifts towards lower 

temperature with increasing the biased DC current as expected from a superconducting 

transition, a well known Silsbee effect. Thus even though zero resistance is not observed, the 
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current dependence seems to provide evidence that the observed transition is to a 

superconducting state. 

6.4.3 Bi2SeTe2  

The evolution of temperature dependent normalized resistivity ρ(T)/ρ(300K) 

behaviour of Bi2SeTe2 system at various pressures is shown in Figure 6.9(a)-(e). 
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Figure 6.9 – (a)-(e) Variation of normalized resistivity for Bi2SeTe2 sample as a function of 

temperature at various specified pressures from 0 to 3 GPa. Insets in (c)-(e) exhibit closer 

view of superconducting transition.  

At ambient pressure, the resistance initially decreases over a small range till 150 K, below 

which the system shows a negative temperature coefficient akin to a semiconducting 
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behavior. At 0.9 GPa, the system shows a similar characteristics as that of the ambient except 

that the semiconducting nature begins below T ~ 200 K. With further increase in pressure to 

1.2 GPa, the metallic behavior extends down to 20 K and an onset of a pressure induced 

superconducting transition at 6.20 K is observed. The pressure dependence of Tc is shown in 

Figure 6.10(a). It is seen that the Tc onset shifts to lower values with increasing the applied 

pressure. This is similar to the trend observed for Bi2Se2Te system (see Figure 6.8(b)). The 

current dependence of the transition temperature is shown in Figure 6.10(b). Here again Tc 

shifts to lower temperatures with increasing the current value, though the shift is smaller 

compared to that in the case of Bi2Se2Te.  
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Figure 6.10 – (a) Variation of transition temperature onset as a function of pressure in 

Bi2SeTe2; (b) current dependence of the transition temperature at 1.2 GPa. 

6.4.4 Bi2Te3  

Figure 6.11(a)-(e) displays the evolution of normalized resistivity as a function of the 

temperature of the Bi2Te3 at various pressures. At ambient pressure Bi2Te3 exhibits a metallic 

behavior like Bi2Se3. However, unlike Bi2Se3 which shows to non-metallic behavior at higher 

pressure (P > 1.5 GPa), the conductivity behavior in Bi2Te3 remains metallic at all the 

pressures reported here. We observe a pressure induced superconducting transition in Bi2Te3 

at a critical pressure of 1.7 GPa. The onset of superconducting transition temperature at this 

pressure is observed to be at 5.87 K. The closer view of superconducting transition is shown 



High Pressure transport studies on single crystal TI system Bi2Se3-xTex             Chapter 6 

 

144 
 

in the insets of Figure 6.11(c)-(e) at various pressures. The variation of Tc with pressure is 

shown in Figure 6.12(a) and the current dependence of the transition temperature at 1.7 GPa 

is shown in Figure 6.12(b). It can be seen that the value of Tc changes little with increase in 

the applied pressure. 
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Figure 6.11 – (a)-(e) Variation of normalized resistivity for Bi2Te3 sample as a function of 

temperature at various specified pressures from 0 to 3.4 GPa. Insets in (c)-(e) exhibit closer 

view of superconducting transition 
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Figure 6.12 – (a) Variation of transition temperature onset as a function of pressure in 

Bi2Te3; (b) current dependence of the transition temperature at 1.7 GPa 

6.5 Discussion 

 In present study, no superconducting transition is observed in Bi2Se3 upto the 

measured pressure of 7.5 GPa. From the high pressure resistivity data we observed that the 

net effect of pressure on Bi2Se3 is to drive this system from initial metallic behaviour to an 

increasingly semiconductor like behavior (Figure 6.5(a)-(h)). Similar results were obtained by 

Hamlin et al. wherein pressure is initially seen to drive Bi2Se3 toward less metallic behaviour 

until 8 GPa, after which a structural transition is observed [1]. The suppression of metallic 

behaviour under pressure, leading to a metal – insulator transition, may indicate a pressure 

induced suppression of bulk conductivity possibly due to squeezing out of Se vacancies. 

These vacancies in the as prepared sample give rise to defect states that pin Fermi energy to 

bulk conduction band, and hence result in the metallic resistivity. The resistivity below 

Tshoulder showing weak temperature dependence seems to capture the contribution from the 

topological surface states. It is seen that ρ(T) below Tshoulder gradually flattens as Tshoulder 

progressive shifted to higher temperature with increasing pressure. This can stem from the 

fact that surface states provide parallel metallic conduction in conjunction to the bulk states. 

Due to suppression of bulk conductivity under pressure, the relative contribution from surface 

states would become more prominent and hence dictate ρ(T) behavior at low temperatures. 
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However in Te substituted samples, no such Tshoulder behaviour is observed. An interesting 

outcome of high pressure studies on Bi2Se3-xTex has been the occurrence of pressure induced 

superconductivity for x = 1, 2 and 3. The Tc of all the three samples is found to be within 

6±0.2 K. In earlier studies on p-type Bi2Te3, the pressure induced superconductivity was seen 

to occur at P = 3.2 GPa with value of Tc of 2.6 K [5][6]. It should be mentioned that ambient 

parent structure of Bi2Te3 persists upto ~ 6 GPa and the observed Tc remained unchanged 

upto the pressures of 6 GPa. Though the pressure independent behavior of Tc observed in our 

sample is similar to that seen by Zhang et al [5], the value of Tc (5.9 K) is significantly higher 

and the onset of superconducting phase too occurs at a comparatively lower critical pressure 

(1.2 GPa).  

It is observed that Tc decreases with increasing pressure for Bi2Se2Te and Bi2SeTe2, while Tc 

remains invariant with pressure for Bi2Te3. The rate of decrease of Tc per unit pressure 









dP
dTc  is calculated to be = 0.139 K/GPa for Bi2Se2Te and = 0.127 K/GPa for Bi2SeTe2. 

The values of 

















dP

dT

T

1

dP

Tlnd c

c

c are calculated to be = 0.023 and 0.02 GPa-1 for Bi2Se2Te 

and Bi2SeTe2 respectively. The value of 
dP

Tlnd c is reported to be within the range of 0.01 – 

0.08 for the conventional superconductors [9]. This suggests that the nature of pressure 

induced superconductivity seen in Bi2Se3-xTex systems may be of conventional BCS type. In 

order to gain further insight about the role of electron-phonon interaction in inducing 

superconductivity in this system, we try to fit the normal state resistivity of Bi2Se3-xTex, at 

critical pressures (Pc) at which supercondutivity is observed, using the Bloch-Gruneisen 

equation, applicable to a conventional metal to deduce the Debye temperature, which is 

related to the frequency of the acoustic phonons responsible for electron’s scattering [10]. 
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Here, A  is a constant that represents residual resistivity due to electron – impurity scattering, 

2BT  accounts for electron – electron interaction and 




























T

0
xx

33

)e1)(1e(

dxxT
C  = 

represents the electron – phonon scattering contribution to resistivity. Figure 6.13 shows the 

high pressure resistivity data fitted to the above equation.  
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Figure 6.13 – Normal state resistivity data at critical pressure Pc for Bi2Se2Te, Bi2SeTe2 and 

Bi2Te3 fit to eqn. (6.1) 

The value of B found from the fitting is of the order of 10-5, which indicates that 

electron correlation is not very significant in this system. The value of Debye temperature  
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extracted from the fit is found to be 236 K for Bi2Te3 at Pc =1.7 GPa, 300K for Bi2Se2Te at Pc 

= 2.5 GPa and 432K for Bi2SeTe2 at Pc =1.2 GPa. The value of electron phonon coupling 

constants  is obtained by substituting the values of  and Tc in McMillan's formula [11] 

given below: 


















)62.01(

)1(04.1
exp

45.1
T

*c



 (6.2) 

Where, the values of * , which is the Effective Coulomb repulsion term is taken as 0.1. 

The value of , deduced using Eq. 6.2 at is found to be 0.66 for Bi2Te3; 0.61 for Bi2Se2Te and 

0.55 for Bi2SeTe2. These values of  < 1 may indicate that observed pressure induced 

superconductivity in Bi2Se3-xTex may lie in the regime of weakly coupled superconductors.  

6.6 Conclusion 

The high pressure resistivity of Bi2Se3-xTex (x = 0, 1, 2, 3) single crystals have been 

studied. Bi2Se3 which exhibits metallic behaviour under ambient conditions becomes non-

metallic at pressure > 1.5 GPa and the non-metallicity persists till 7.5 GPa. Pressure induced 

superconductivity has been observed in the Te doped systems Bi2Se2Te, Bi2SeTe2 and Bi2Te3 

with transition temperatures of 5.9 K, 6.2 K and 5.87 K respectively. The value of 
dP

Tlnd c

estimated for the BST and BTS of ~ 0.023 and 0.020 respectively suggests that the nature of 

superconductivity seen in Bi2Se3-xTex systems may be of conventional BCS type. The Debye 

temperature is estimated from the Bloch-Gruneisen fit to the normal state resistivity at critical 

Pressure (Pc). The value of electron-phonon coupling constant determined from the 

McMillan’s formula suggests that the observed pressure induced superconductivity in Bi2Se3-

xTex may lie in the regime of weakly coupled superconductors.   
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CHAPTER 7  

Summary of thesis and Future Work  

The work presented in this thesis focussed on the low temperature transport properties 

of the Topological Insulator system Bi2Se3. Single crystals were synthesized using the 

modified Bridgman method. Magneto-transport measurements were carried out in the 

temperature range of 4.2 K – 300 K and magnetic field range of 0 – 15 T. High pressure 

transport measurements were performed in pressure range of 0 – 8 GPa. The summary of 

various results in this thesis are presented below. 

1. In Chapter 3, the role of defects in observing the quantum oscillations in magneto-

transport experiments on the topological insulator Bi2Se3 has been investigated. Using 

positron lifetime spectroscopy as a tool for defect characterisation, it has been established that 

the vacancy defect (VSe) plays the major role in the n-type doping of the bulk in Bi2Se3. From 

Laue experiments it is observed that growing single crystals of Bi2Se3 with excess Se in the 

starting stoichiometry (Bi2Se3.1, Bi2Se3.2) or changing the rate of cooling from the melt during 

single crystal growth (BS2) is seen to introduce extended defects such as stacking faults and 

low angle grain boundaries in the lattice. These defects are seen to induce an upward band 

bending in the system and Shubnikov de Haas (SdH) oscillations with contributions from 

Topological Surface States (TSS) are observed in magneto-resistance measurements. 

2. In Chapter 4, the effect of Sb substitution at Bi site on transport properties of single 

crystals of Bi2Se3 (Bi2-xSbxSe3; x = 0, 0.05, 0.1, 0.3, 0.5) has been studied. The resistivity of 

the samples is seen to increase with increasing Sb substitution with an anomalous reduction 

in x = 0.5 sample which can be attributed to the presence of multiple phases x = 0.5 sample. 

The Sb substitution is seen to reduce the concentration of Vacancy defects (VSe) as observed 

from Hall Effect and positron lifetime measurements. From the magneto-transport studies it 
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is seen that increasing Sb substitution beyond x = 0.3 leads to SdH oscillations with mixed 

signatures from both TSS and a conventional 2DEG system.  

3. The effect of Te substitution at Se site on transport properties of single crystals of 

Bi2Se3 (Bi2Se3-xTex; x = 0, 1, 1.8, 2) has been studied in Chapter 5. With Te substitution 

metal-insulator transition is seen in resistivity, with the MIT transition temperature increasing 

with increasing Te content. In Hall Effect measurements, the hall response changes from 

linear to non-linear with increase in Te concentration, indicating the presence of multiple 

(two) carriers in the system, which can be identified with carriers from the bulk and carriers 

from the topological surface states. The mobility of the samples is seen to reduce drastically 

suggesting increasing electronic disorder with Te substitution. The above statement is 

vindicated by the values of the Ioffe-Regel parameter (kFl), calculated from resistivity and 

hall data which lie very close to one for the higher Te concentrations (x = 1.8, 2). Weak-Anti 

localization behaviour, a signature of time reversal invariant topological surface states are 

observed in the highly disordered samples, suggesting that the transport from TSS can be 

realised in transport by introducing strong electronic disorder into the system and achieving 

the quantum diffusive condition of lφ > l. 

4. In Chapter 6 the high pressure low temperature resistivity of Bi2Se3-xTex (x = 0, 1, 2, 

3) single crystals has been studied. It is observed that while Bi2Se3 shows increasingly non-

metallic behaviour, the Te substituted samples are driven into a superconducting phase with 

pressure. The critical pressure Pc at which superconducting transition occurs is 2.5 GPa, 1.2 

GPa and 1.7 GPa for x = 1, 2 and 3 respectively. The superconducting transition temperatures 

(Tc) onset of the three Te substituted systems i.e. x = 1, 2 and 3 are 5.9 K, 6.2 K and 5.87 K 

respectively. While the Tc of the x = 1, 2 systems decrease monotonically with pressure, it 

remains the same for x = 3 sample i.e. Bi2Te3. The nature of the pressure induced 

superconducting phase is found to be of conventional BCS type and the analysis of the 



Summary of thesis and Future work                                                                       Chapter 7 

 

152 
 

normal state resistivity at Pc suggests that the pressure induced superconductivity in Bi2Se3-

xTex system may lie in the regime of weakly coupled superconductors. 

Future outlook 

1. Effect of ion beam irradiation on the Topological surface states: 

It is established in the present thesis that defects and disorder play a crucial role in 

observing the SdH oscillations or WAL from the TSS in magneto-transport measurements in 

Bi2Se3 based systems. With most of the crystals being naturally n-type (~ 1019 cm-3), reducing 

the bulk conductivity is of prime technological importance to access the surface states. As 

discussed in Section 1.8, various dopings/substitutions have been tried to reduce the n-type 

doping and achieve a p-type Bi2Se3, However with exception to Hor et al. who achieved it in 

Ca doped system, the minimum value attained has been of the order ~ 10-16 cm-3. Ion 

implantation provides an alternative route as the number and spatial distribution of dopants 

and thus the charge carrier concentration can be controlled. This can help in reducing the bulk 

conductivity in transport. Recently Sharma et al. [1] reported the feasibility of ion 

implantation in Bi2Se3. Thus it would be an interesting project to undertake a systematic 

study of ion irradiation with Bi or Se ions on Bi2Se3 and its effect on the magneto-transport 

properties of TI such as SdH oscillations or WAL. 

2. Proximity effect in Topological Insulator/Superconductor (TI/SC) interface:  

Achieving an intrinsic superconducting phase in a Topological insulator has been one 

of the main targets in this area of research. Much of the interest for this has been the interest 

to observe the elusive Majorana fermions. So far bulk superconductivity has been reported 

only on very few systems such as Cu intercalated Bi2Se3 [2] or under high pressure in Bi2Te3 

[3], Bi2Se2Te, Bi2SeTe2 (current study); the reason being the weak electron-phonon coupling 

present in TIs. In this direction, an alternative approach is to make Topological 
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Insulator/Superconductor (TI/SC) interfaces and search for whether superconductivity can be 

induced via proximity effect in them. Such studies have been carried out using Bi2Se3/SC 

heterostructures where tin (Sn) [4] and Bi2Sr2CaCu2O8+δ (BSSCO) [5][6] have been used as 

the superconducting material with contrasting results. In this regard the 11 family of Iron 

arsenide superconductors such as FeSe [7] and Fe1+yTexSe1-x [8] are also good candidate 

materials as superconductivity has been achieved both in their single crystalline [7][8] and 

thin film [9] form. Thus TI/SC heterostructures of the form Bi2Se3-xTex/ Fe1+yTexSe1-x are a 

good system to study the proximity effect. 

  



Summary of thesis and Future work                                                                       Chapter 7 

 

154 
 

References  

[1] P. A. Sharma, A. L. Lima Sharma, M. Hekmaty, K. Hattar, V. Stavila, R. Goeke, K. 

Erickson, D. L. Medlin, M.Brahlek, N. Koirala, and S. Oh, Applied Physics Letters 105 

(2014) 242106 

[2] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W.  

Zandbergen, A. Yazdani, N. P. Ong and R. J. Cava, Phys. Rev. Lett. 104 (2010) 057001  

[3] J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. 

C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. 

Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 24 

[4] Fan Yang, Yue Ding, Fanming Qu, Jie Shen, Jun Chen, Zhongchao Wei, Zhongqing Ji, 

Guangtong Liu, Jie Fan, Changli Yang, Tao Xiang, and Li Lu, Phys. Rev. B 85 (2012) 

104508 

[5] T. Yilmaz, I. Pletikosić,  A. P. Weber, J. T. Sadowski, G. D. Gu, A. N. Caruso, B. 

Sinkovic, and T. Valla, Phys. Rev. Lett. 113 (2014) 067003 

[6] Su-Yang Xu, Chang Liu, Anthony Richardella, I. Belopolski, N. Alidoust, M. Neupane, 

G. Bian, Phys. Rev. B 90 (2014) 085128 

[7] S. B. Zhang, Y. P. Sun, X. D. Zhu, X. B. Zhu, B. S. Wang, G. Li, H. C. Lei, X. Luo, Z. 

R. Yang, W. H. Song and J. M. Dai, Supercond. Sci. Technol. 22 (2009) 015020 

[8] B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, D. Mandrus, and Y. Mozharivskyj, 

Phys. Rev. B 79 (2009) 094521  

[9] Ta-Kun Chen, Jiu-Yong Luo, Chung-Ting Ke, Hsian-Hong Chang, Tzu-Wen Huang, 

Kuo-Wei Yeh, Chung-Chieh Chang, Po-Chun Hsu, Chun-Te Wu, Ming-Jye Wang, 

Mau-Kuen Wu, Thin Solid Films 519 (2010) 1540 


