
MODELING AND SIMULATION OF STRUCTURAL

STABILITY, THERMAL EXPANSION AND

ANHARMONICITY OF 2D MATERIALS

By

ANEES P

(Enrolment No. PHYS02201104011)

Indira Gandhi Centre for Atomic Research, Kalpakkam, India.

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February, 2017









STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgment of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may

be granted by the Competent Authority of HBNI when in his or her judgment the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

Date:

Place: Kalpakkam

Anees P

iii

USER
Typewriter
27/10/2017

USER
Typewriter





DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out

by me. The work is original and has not been submitted earlier as a whole or in part

for a degree/diploma at this or any other Institution/University

Anees P

v





List of Publications

PUBLICATIONS

(a) Published in journals

1. Ab initio study on stacking sequences, free energy, dynamical stability and po-

tential energy surfaces of graphite structures, P. Anees, M. C. Valsakumar,

Sharat Chandra, and B. K. Panigrahi, Model. Simul. Mater. Sci. Eng., 2014,

22, 035016

2. Temperature dependent phonon frequency shift and structural stability of free

standing graphene: A spectral energy density analysis, P. Anees, M. C. Val-

sakumar, and B. K. Panigrahi, 2D Mater., 2015, 2, 035014

3. Effect of strong phonon-phonon coupling on temperature dependent structural

stability and frequency shift of 2D h-BN, P. Anees, M. C. Valsakumar, and B.

K. Panigrahi, Phys. Chem. Chem. Phys., 2016, 18, 2672

4. Anharmonicity of optic modes in monolayer MoS2, P. Anees, M. C. Valsaku-

mar, and B. K. Panigrahi, Appl. Phys. Lett., 2016, 108, 101902

5. Delineating the role of ripples on thermal expansion of 2D honeycomb materials:

graphene, 2D h-BN and monolayer(ML)-MoS2, P. Anees, M. C. Valsakumar,

and B. K. Panigrahi, Phys. Chem. Chem. Phys., 2017, 19, 10518

(b) Manuscript under preparation

6. A spectral energy density based package to extract the temperature dependent

phonon dispersion, frequency shift, linewidth and coupling of normal modes, P.

Anees, M. C. Valsakumar, and B. K. Panigrahi

(c) Other publications

(i) Published in conference proceedings:

1. High temperature phonon dispersion in graphene using classical molecular dy-

namics simulations, P. Anees, M. C. Valsakumar and B.K Panigrahi. AIP

Conf. Proc. 2014, 1591, 1070

(ii) Papers presented in national/international conferences:

1. Effect of temperature on stability of bilayer graphite structures : Lattice dy-

namics and molecular dynamics study, P. Anees, M.C. Valsakumar, Sharat

Chandra and B.K. Panigrahi, Asia Sweden Meeting on understanding Func-

tional Materials From Lattice Dynamics (ASMFLD), 9-6 January, 2014, IIT-

Guwahati, Assam, India

vii



2. Extracting temperature dependent phonon frequency shift, linewidth and cou-

pling of normal modes using classical molecular dynamics simulations, P. Anees,

M.C. Valsakumar and B.K. Panigrahi, (Invited talk), symposium on molecular

simulations (Anessur rahaman Day), 24 August, 2014, University of Hyderabad,

India

3. Temperature dependent phonon frequencies in monolayer MoS2, P. Anees,

M.C. Valsakumar and B.K. Panigrahi, Multiscale Modeling of Materials and

Devices (MMMD), 30 October - 2 November, 2014, BARC, Mumbai, India

(Best poster Award)

4. Delineating the role of ripples on thermal expansion properties of free-standing

graphene, P. Anees, M.C. Valsakumar and B.K. Panigrahi, International con-

ference on ”Nanoscience, Nanotechnology & Advanced Materials” (NANOS-

2015), 14-17 December, 2015, GITAM University, Visakhapatnam, India

(d) Publications not included in the thesis

1. Computation of thermal conductivity: A non-equilibrium approach, P. Anees,

K. Gururaj, and M. C. Valsakumar. AIP Conf.Proc., 2012, 1447, 1011

2. Phase stability and lattice dynamics of ammonium azide under hydrostatic com-

pression, N. Yedukondalu, G. Vaitheeswaran, P. Anees and M. C. Valsakumar,

Phys. Chem. Chem. Phys., 2015, 17, 29210

3. Crystal structure and bonding characteristics of transformation products of bCCb in Ti-Mo alloys, M. Sabeena, S. Murugesan, P. Anees, E. Mohandas and M.

Vijayalakshmi, J. Alloy. Comp., 2017, 705, 769

(e) Workshop/school attended

1. Workshop on“Materials Modeling and Simulation”, 27-31 December, 2010, Uni-

versity of Hyderabad, India

2. Psi-K Quantum-ESPRESSO school on ab initio thermal transport, 27-30 June,
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SYNOPSIS

Graphene has got enormous attention due its fascinating electronic, mechanical and

thermal properties and it is proposed as a promising candidate for next generation

electronic industry. The main pitfall in graphene based electronics is the absence of

finite band gap in its electronic band structure. After successful isolation of graphene

in 2004, the search for other 2D layered materials has geared up in past few years.

The 2D hexagonal (h)-BN and monolayer (ML)-MoS2 are other interesting 2D layered

materials with finite band gap.

Knowledge of structural, thermal and vibrational properties of these materials is essen-

tial to fabricate sophisticated electronic devices. However, it is difficult to understand

the above mentioned phenomena at atomistic level by experimentation. Computer

simulations can be used to understand the fundamental issues associated with ther-

mal and vibrational properties at atomistic level. Ab initio simulation employs the

quasi-harmonic approximation (QHA) to compute the thermal and vibrational prop-

erties at finite temperature. The QHA works well at intermediate temperatures and it

may not be suitable at high temperature because of the phonon–phonon interactions,

which are not included in QHA. As the temperature increases, more and more phonon

modes are excited and anharmonicity of the crystal becomes more pronounced. To

incorporate the third order phonon scattering processes, anharmonic lattice dynam-

ics methods are used. Both QHA and anharmonic LD fails to incorporate the full

anharmonicity of materials, and also they can include only few hundreds of atoms,

hence they can’t model the effects of long wavelength ripples on surfaces of 2D materi-

als. Since molecular dynamics (MD) simulations incorporate the anharmonicity of the

interatomic potential without truncating it and also it can handle systems having mil-

lions of atoms, it will be a natural choice to model the high temperature thermal and

vibrational properties. To compute the vibrational properties of materials at finite

temperatures, a spectral energy density (SED) based method is adapted and coupled

with classical MD simulation package LAMMPS which is the highlight of this thesis.
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The structural, thermal and vibrational properties of graphite, graphene, 2D h-BN

and ML-MoS2 are studied in detail using ab initio and classical MD simulations. The

thesis comprises seven chapters and the content of each chapter is given in a nutshell

below.

CHAPTER-1: Introduction

This chapter gives a brief overview of structural, thermal and vibrational properties

of aforementioned 2D materials. The literature status and motivation of the thesis is

deliberated. Further, the challenges and scope of the thesis are brought out at end of

this chapter.

CHAPTER-2: Computational and Theoretical methods

The computational and theoretical methods employed in this thesis are discussed in

this chapter. The details of density functional theory (DFT) and classical molecular

dynamics (MD) simulations are discussed in brief. The detailed theoretical derivation,

implementation and validation of SED method is given at end of this chapter

CHAPTER-3: Stacking sequences and dynamical stability of graphite

structures

In this chapter the structure and stability of several plausible stacking sequences

in the graphite (in addition to the standard AB-hexagonal and ABC-rhombohedral

structures) are studied using ab initio and classical MD simulations.

CHAPTER-4: Temperature dependent structural stability and phonon

frequency shift of graphene

This chapter discusses the temperature dependent structural stability, frequency shift,

linewidth and coupling of normal modes of vibrations of free-standing graphene ob-

tained using SED method. The role of thermally excited ripples on thermal expansion

properties of graphene is delineated by explicitly carrying out 3D and 2D classical MD

simulations.

CHAPTER-5: Effect of strong phonon-phonon coupling on structural and
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vibrational properties of 2D h-BN

2D h-BN is iso-structural to graphene, in chapter-4, the structural, thermal and vi-

brational properties of graphene are discussed in depth. This chapter is devoted to

analyze the similar properties of 2D h-BN and the results are compared with graphene.

CHAPTER-6: Thermal expansion, structural stability and anharmonicity

of monolayer (ML-MoS2)

Monolayer (ML)-MoS2 , is another honeycomb lattice structure, posses a special S-

Mo-S symmetric sandwich structure which makes it differ from graphene and 2D

h-BN. The prime focus of this chapter is to analyze the structural stability, thermal

expansion and anharmonicity of ML-MoS2 . The results are compared with graphene

and 2D h-BN.

CHAPTER-7: Conclusions and future outlook

This is the final chapter of the thesis and it discusses the key findings of this study

and scope for future work. The structural, thermal and vibrational properties of 2D

materials are discussed and compared. To get better insights and also for further

developments, few recommendations are given at end of this chapter.
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Chapter 1

Introduction

This chapter gives a brief overview of properties and applications of 2D materials.

The electronic properties of graphene, 2D hexagonal (h)-BN and monolayer (ML)-

MoS2 are outlined. Their structural, thermal and vibrational properties are deliberated.

Finally, the objective of the thesis are brought out at end of this chapter.

1.1 2D materials: An overview

Two-dimensional (2D) materials are a class of materials, consisting of a limited number

of crystalline layers of atomic thickness [1]. They exhibit electronic properties that

differ drastically from their bulk counterpart due to the confinement of charge carriers

into a plane [1]. Some of the 2D materials can exist in nature as stack of individual

sheets, such as graphene in graphite, and hence they can be easily exfoliated into single

sheet. Some others do not exist as layered crystals in nature, they can be derived only

through chemical route, and many of them are not stable in ambient conditions [2].

One characteristic feature of almost all 2D materials is that, they possess a strong in-

plane bond, and show relatively weak van der Waals (vdW) interaction along direction

normal to the 2D sheet, hence the name 2D materials [2].

The research on 2D materials blossomed over a decade ago with the isolation of

graphene in 2004 [3], and has resulted in amazing discoveries. The bulk form of carbon
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such as graphite and diamond have been known to mankind for hundreds of years.

The zero dimensional bucky-balls and one dimensional carbon nanotubes (CNT) were

discovered in late 1980’s and early 1990’s respectively. After that, researchers started

attempt to isolate the 2D form of graphite which led to the discovery of graphene.

Most of the carbon nanostructures are made up of 2D graphene sheet, hence it is

known as the mother of all graphitic materials [4]. The graphene sheet can be wrapped

in to 0D bucky-balls, rolled up into 1D CNT and stacked into bulk graphite (Figure

1.1).

Figure 1.1 – Graphene is the 2D building block for all other carbon materials with
different dimensionalities. It can be wrapped to form 0D C60 fullerene(left); rolled up
into 1D CNT (middle) and stacked to bulk graphite (right); (image reproduced from
reference [4]).

The field of 2D materials has grown enormously in past few years, still then many

questions needs to be answered. Below what thickness one can call a thin crystal as

2D material ?. Several authors [5–7], analyzed this issue by exploring the electronic

properties of trilayer graphene, and showed that, both thickness (number of layers)

and the stacking arrangement is important in determining their electronic properties.

Whether a crystal of particular thickness can be called 2D material or not, may depend

on the specific compound and the physical phenomena considered [1]. When the

thickness of a compound decreases, significant change in its electronic properties can
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occur at a thickness of about tens of monolayers [1]. In certain cases, further decreasing

the thickness can cause unexpected changes in its electronic properties, hence, when

exactly a thin crystal can be considered as a 2D material is ambiguous, and it is

still under debate [1]. This ambiguity can be illustrated with graphene. Monolayer

graphene is a zero-gap semiconductor and shows linear dispersion around K point

in the Brillouin zone (BZ) [4, 8]. The bilayer graphene is a zero-gap semiconductor

with quadratic energy dispersion [8]. The band structure of bilayer graphene can be

tuned electrostatically, application of a perpendicular electric field can lead to a band

gap opening [8]. Experiments [5–7] shows that ABC-trilayer graphene is physically

distinct from all other multilayer graphene. The energy dispersion is cubic in ABC-

trilayer graphene rather linear (like monolayer) or quadratic (like bilayer). The unique

electronic properties of ABC-trilayer graphene with respect to all other multilayer

graphene makes it a distinct 2D material.

After successful isolation of graphene, the search for other 2D materials was geared

up in past few years. Since there exist hundreds of layered materials, in principle,

one can think of cleaving them in to single layer using the same simple Scotch-tape

experiment[3], but this task is not so straightforward [9]. Many 2D crystals proposed

theoretically are still far from reality, because they corrode, decompose, segregate

and so forth at ambient conditions [10]. The high thermal and chemical stability of

3D crystal is essential for the survival of its 2D counterpart. Graphite meets both

conditions, that allows graphene to exist under ambient conditions, the same is true

for other stable 2D crystals such as hexagonal (h) boron nitride (BN) and molybdenum

disulphide (MoS2) [9].

Graphite, h-BN and MoS2 are widely used as solid lubricant, and their monolayers

are extensively studied. Though the structural, chemical and electronic properties of

tungsten disulphide (WS2), tungsten diselenide (WSe2) and molybdenum diselenide

(MoSe2) are similar to MoS2, their monolayers are not studied in detail, probably

3



1. Introduction

because of their less abundance in nature [9]. Figure 1.2 shows the current members

of 2D materials family. The materials that belong to the blue-shaded regions are

stable monolayers at ambient conditions. The materials which are probably stable

in air are shaded in green, materials in the pink shaded regions are unstable in air,

but they may become stable in inert atmosphere. The gray-shaded materials are

exfoliated to monolayer from their bulk, but no further information is available about

these materials other than atomic force microscopy (AFM) results[9]. Apart from

this, there exist entire periodic table of crystalline solids and compounds each having

different electronic, optical and mechanical properties, and the possibility to separate

them into single-atomic or few-atomic layer thick 2D crystals still remains open. Even

though a wide spectrum of stable 2D materials are available today, the prime focus of

this thesis is on graphene, 2D h-BN and monolayer(ML)-MoS2 because of their novel

properties and potential applications in different sectors.

Figure 1.2 – 2D materials family. Blue-shaded regions are stable monolayers at
ambient conditions (room temperature in air). Green-shade- materials are probably
stable in air; pink shade-materials are unstable in air, but they may become stable in
inert atmosphere. Gray-shade-materials are exfoliated to monolayer from their bulk,
but no further information are available about these materials (image reproduced from
reference [9]).

1.1.1 2D materials based disruptive technologies

Technologies, in general, advances either as incremental or as quantum leap. In order

to become disruptive, a new technology should bring an improvement in order of
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magnitudes instead of incremental [11]. 2D materials are expected to have major

impact in technological applications and have a chance to become next disruptive

technologies due to their novel properties [11]. Among 2D materials, graphene has

got enormous attention due to its superior electronic [4], thermal [12] and mechanical

properties [13]. Figure 1.3 shows graphene’s properties and its possible application

areas. The mobility of charge carriers in graphene is 100,000 cm2/V-Sec [4], which is

two order of magnitude higher than that of Si (1,400 cm2/V-Sec), hence the charge

carriers in graphene travels 10-100 times faster than in Si at room temperatures. The

high carrier mobility, high thermal conductivity (> ∼2000 to 5300 W/m-K [12]) and

high flexibility of graphene makes it a promising candidate to replace or complement

the Si based electronic industry. Due to the potential electronic properties, graphene

is used to fabricate high-frequency devices, touch screens, ultra-sensitive sensors and

nano-electromechanical systems (NEMS) [11]. Graphene’s ability to transmit (97.7 %)

light [14] and its high electrical conductivity makes it an appealing candidate to device

high performance light emitting diodes (LEDs), flexible touch-screens and photo-

detectors. Graphene has many other intriguing properties, being one atom thick,

flexible and chemically inert, it can be used to make thin membranes/gas barriers.

The high Young’s modulus (∼1,100 Gpa) and fracture strength (∼125 Gpa) [13] of

graphene can be utilized to make high strength and light weight composites. The

flexibility of graphene enables it to substitute the brittle indium tin oxide (ITO) in

the manufacturing of flexible displays and touch screen [11].

The 2D hexagonal boron nitride (h-BN), which is structurally analogous to graphene,

is a wide gap semiconductor with a band gap of ∼5.8 eV [15], and hence it is a

promising material in opto-electronic industry [15–17]. The graphene/h-BN hybrid

structures are also devised to have better performance [18]. Graphene deposited on

SiO2 substrate lacks the intrinsic properties of free-standing graphene due to scattering

from impurities [19, 20] and surface roughness [21–23]. The h-BN, which geometrically
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supports graphene due to its identical structure, is hence used as a substrate which

retains the quality of the suspended graphene sheets [24].

Atomically thin MoS2 is another emerging 2D material with fascinating optical, elec-

trical and mechanical properties [25, 26]. Being an intrinsic semiconductor with a

finite band gap (∼1.9 eV) [25] makes this material a promising candidate in electronic

and opto-electronic industry [27]. The ML-MoS2 has been isolated in 2005, but it

gained much attention few-years back, when researchers made field effect transistors

(FETs) using ML-MoS2 with extraordinary performance[27]. Its room temperature

carrier mobility and on/off ratio are comparable to that of graphene nano-ribbons

[27]. A recent experiment demonstrates a high thermo-electric energy conversion us-

ing ML-MoS2 [28]

Figure 1.3 – An overview of properties and application of graphene (image reproduced
from reference [11]).

1.2 Structural and electronic properties of graphene,

2D h-BN and ML-MoS2

Graphene is a 2D crystal with carbon atoms arranged in a honeycomb structure (Fig-

ure 1.4). The 2D honeycomb lattice is not a Bravais lattice, because two neighboring

sites are not equivalent. The 2D Bravais lattice of honeycomb structure is defined

using a rhombus (Figure 1.4), the corresponding primitive lattice vectors are
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The angle between Ā and B̄ is 120o. The first Brillouin zone (FBZ) is shown in

figure 1.4, which is also hexagonal in shape. The Γ, M, K and K’ are high symmetry

points in FBZ. The Γ point is at the center of FBZ where the wave-vector (q̄) is zero.

The corners of hexagon are called K points (also known as Dirac points), these are

very special points in the electronic band structure of graphene. The conduction and

valence band touch each other at K points (Figure 1.5) and shows linear dispersion

(E = ~kvF ), as a consequence, the quasi-particles in graphene behaves as if they

were massless Dirac particles, with a Fermi velocity vf ≈ C
300

[4, 8]. The linear

dispersion around K point stimulate a new“Fermi-Dirac”physics. Another interesting

consequence of linear dispersion is the anomalous room temperature quantum-Hall

effect [4].

One of the potential drawbacks of graphene is the absence of a finite band-gap in its

electronic band structure, which limits its use as an alternate to silicon based elec-

tronics. Due to this special electronic band structure, graphene based FETs shows

low on off ratios. Several attempts have been made to obtain a finite band gap on
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1. Introduction

graphene’s electronic band structure, which includes, substrate induced band gap

opening, chemical substitution doping, quantum confinement (nanoribbons) and hy-

brid structures (BCN-structures) [29]. In a multilayer graphene, the stacking order

provides a new degree of freedom to tune the electronic band structure [7]. Bao et al

[7] made a detailed study on stacking-dependent band-gap and electronic transport

in ABA (Bernal) and ABC (rhombohedral) stacked graphene. At Dirac point, the

ABA stacked graphene is semi-metallic, at the same time, the ABC stacked graphene

shows a band gap opening (∼6 meV )[7].

Figure 1.4 – (left) The unitcell of graphene and 2D h-BN is defined using a rhom-

bus containing two basis atoms. The primitive lattice vectors are ā = a(
√

3
2 ,−1

2 , 0),

b̄ = a(
√

3
2 , 1

2 , 0) and c̄=(0, 0, c). (right) The first Brillouin zone (FBZ), which is also
hexagonal in shape. The Γ, M, K and K’ are the high symmetry points in FBZ, Ā and
B̄ are the reciprocal lattice vectors.

In 2D h-BN, instead of carbon atoms, B and N atoms are alternatively occupied

at the corners of hexagons (Figure 1.4), therefore its sublattices are chemically not

equivalent. This make the electronic properties of 2D h-BN completely different from

that of graphene. Recent ab initio calculation predict a band gap of 4.67 eV [30],

(which is 1 eV less than the experimental values [15]), and also shows a direct to

indirect transition along K-Γ direction (indicated using red arrow). Due to the large

electronegativity difference between the B and N atoms, the π-band wavefunction is

located near the N atom and the π∗-band wave function is located near the B atom.

The localization of π-band wavefunction near the N atom makes the 2D h-BN a wide
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1.2. Structural and electronic properties

band semiconductor [31]. In graphene, the two basis atoms are equivalent, hence the π

and π∗ band wavefunctions are degenerate at the K point, leading to linear dispersion.

Figure 1.5 – The electronic band structure of graphene (image reproduced from ref-
erence [32]) and 2D h-BN (image reproduced from reference [30]). The conduction and
valence band touch each other at K points in graphene, while there is a band gap open-
ing at the K points in 2D h-BN. The 2D h-BN shows direct to indirect transition along
K-Γ direction (indicated using red arrow), and its fundamental band gap is 4.67 eV.

ML-MoS2 belongs to transition metal dichalcogenides (TMDs) family, and posses a

hexagonal symmetry as graphene and 2D h-BN (Figure 1.6). Unlike graphene and 2D

h-BN, each MoS2 layer is formed by stacking two hexagonal planes of S atoms and

an intercalated hexagonal plane of Mo atoms bound with the S atoms in a trigonal

prismatic arrangement [33]. The unitcell of ML-MoS2 is also defined using a rhombus

with three basis atoms, and their coordinates are, Mo (2/3, 2/3, 0.500), S1 (1/3,

1/3, 0.603) and S2 (1/3, 1/3, 0.394). Kuc et al [34] calculated the electronic band

structure of bulk, bi-layer and ML-MoS2 (Figure 1.7). For bulk and bilayer MoS2,

the valence band maximum (VBM) and the conduction band minimum (CBM) are

situated at Γ point and the midway between the Γ and K point, respectively. When

thickness reduces from 2L to ML, both VBM and CBM shifted to K point, and shows

an indirect to direct band gap transition. The unique electronic properties of ML-

MoS2 arises from the d-orbital related interaction [34, 35]. The conduction band at K

point is composed of d-orbital of Mo atoms, since Mo atoms are located at the middle

of S-Mo-S layer, they have minimal interlayer coupling. At the same time, states near

Γ-point and the points of indirect band gap stems from the linear combination of
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d-orbital of Mo atom and pz orbital of S atom. Hence there will be a strong interlayer

coupling at these points and their energy is very sensitive to number of layers [35].

Figure 1.6 – (top) The side view of ML-MoS2 ; Mo atomic layer sandwiched between
the two S atom layers in a trigonal prismatic fashion. (bottom) top view of ML-MoS2 ;
The honeycomb lattice contains one Mo atom and two S atoms located at the corners
of hexagons.

Figure 1.7 – The electronic band structure of bulk, bilayer and monolayer MoS2. The
top and bottom of valence and conduction bands are highlighted in green color. The
indirect to direct band gap transition from bulk to monolayer is indicated by red arrow
(image reproduced from reference [36]).

1.3 Thermal and vibrational properties of graphene,

2D h-BN and ML-MoS2

The 2D materials based technologies can bring down the size of the electronic devices

considerably low. Heat removal is a crucial issue in such miniaturized and nano-

size electronic devices due to increased level of dissipated power [12]. Knowledge on
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1.3. Thermal and vibrational properties

thermal and vibrational properties of materials are essential to design high quality

devices with better heat dissipation capability. However, it is difficult to understand

the above mentioned phenomena at atomistic level by experimentation. Computer

simulations can be used in such situations to understand the fundamental issues as-

sociated with thermal and vibrational properties at atomistic level. To comprehend

the current state-of-art, the thermal and vibrational properties of graphene, 2D h-BN

and ML-MoS2 are briefly reviewed in the following sections.

1.3.1 Thermodynamic stability of 2D crystals

The thermodynamic stability of strict 2D crystal is a long standing debate in condensed-

matter theory. In 1930’s, Landau and Peierls claimed that strictly 2D crystals are

thermodynamically unstable and could not survive as free-standing crystals [37, 38].

Their theory predicted that, at finite temperatures, the divergent contribution of

thermal fluctuations in 2D crystal lattice causes the displacement of atoms that is

comparable to that of interatomic distances. Later, this arguments were extended

by Mermin and Wagner, who have formulated the so called Mermin-Wagner theorem

[39], which states that, the long wavelength thermal fluctuation would destroy the

long range order in 2D crystals at finite temperatures. In support of this argument, it

has been found that the melting point of thin films rapidly decreases with decrease in

thickness and it start to decompose when thickness is of the order of dozens of atomic

layers [40]. Because of this reason, atomic monolayers can exist only as an integral

part of bulk 3D structures, usually grown epitaxially on the top of substrates having

matching lattice constants [40]. This was the scenario until the discovery of graphene

in 2004. In the case of graphene, the strong coupling between the in-plane stretching

and out-of-plane bending modes will suppress the thermal fluctuations, and makes the

2D crystals stable with strong height fluctuation on the surfaces known as ripples [41].

Meyer et al [42] studied the structure of individual graphene sheets, which are freely

suspended in a micro fabricated scaffold in vacuum or air. Their transmission electron
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microscopy images shows that the suspended graphene sheets are not perfectly flat;

the microscopic corrugations of 2D graphene sheets are conspicuous, and the out-

of-plane deformations reach 1 nm. These corrugations are prominent in graphene,

becomes smaller in bilayer graphene and disappears in bulk graphite, indicates that

the corrugations are intrinsic to graphene sheets [42].

Figure 1.8 – An artist’s impression of ripples in graphene’s surface (Image reproduced
from, university of Manchester- Jannik Meyer/AFP/Getty Images).

1.3.2 Thermal expansion

Even though tremendous efforts have been made to investigate thermal transport in

graphene both experimentally and theoretically, the complete picture is not yet clear

and the overall scenario still remains complex [12, 43]. Mounet and Marzari [44]

made first detailed study on structural, thermal and vibrational properties of dia-

mond, graphite and graphene in the framework of density functional theory (DFT)

via quasi-harmonic approximation (QHA). In their study, the authors found that the

in-plane lattice parameter (a-lattice) of graphite shows negative thermal expansion in

the temperature range of 0 K - 600 K, and its minimum value is around room temper-

ature. This feature is absent in diamond and much more apparent in graphene, where

a-lattice shows thermal contraction upto 2300 K, and it is three times larger than

graphite. In 2008, Zakharchenko et al [45] studied the thermal expansion of graphene

using Monte Carlo (MC) simulations, which allows to go beyond the quasi-harmonic
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calculations and enables to incorporate the anharmonic effects. They found that the

thermal expansion coefficient of graphene is negative upto 900 K and positive there-

after. Their results are in qualitative agreement with Mounet and Marzari [44] upto

500 K, but shows strong deviations at higher temperatures. The authors conclude

that, the QHA works reasonably well for bulk crystals, but it fails in strong anhar-

monic crystals like graphene. Later, Pozzo et al [46] performed ab initio molecular

dynamics (MD) simulations and found that, the a-lattice of free-standing graphene

is contracting with an increase in temperature (upto 2000 K). At the same time, the

same graphene sheet supported on Ir (111) substrate, the a-lattice shows thermal ex-

pansion instead of contraction [46]. Jiang et al [47] used Green’s function technique

and reported that the linear thermal expansion coefficient (LTEC) is very sensitive

to substrate layer interaction. A weak substrate-layer interaction can cause a signif-

icant change in the value of LTEC, and if the substrate effects are strong enough,

the LTEC can become positive in the whole computed temperature range [47]. The

above discrepancies among the various simulations arises due to the difference in the

incorporation of anharmonicity in those calculations, its effects are usually very strong

in 2D crystals.

From the experimental front, Bao et al [48] reported the negative thermal expansion

of graphene in the temperature range 200 K - 350 K. Later, Singh et al [49] measured

the thermal expansion coefficient of graphene by monitoring the variation of frequency

of resonance of suspended graphene electro-mechanical resonators and found it to be

negative in the temperature range of 30 K - 300 K. Yoon et al [50] used temperature

dependent Raman spectroscopy to study the thermal expansion coefficient of graphene

and found that it remains negative in the measured temperature range of 200 K - 400

K. They constrained their thermal expansion measurement upto 400 K as above this

temperature graphene sheet slips on SiO2 substrate surface because the tensile strain

increases significantly over the weak Van der Waals (vdW) force which pins the sheet
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on the substrate [50]. The situation is likely to be true for 2D h-BN also. Hence, high

temperature Raman data are not available to compare with the theoretical predictions.

Due to the overwhelmingly attractive properties and novel applications, substantial

amount of research have been pumped towards graphene. However, the thermophys-

ical properties of 2D h-BN and ML-MoS2 are not explored in detail so far. Yates et

al [51] measured the thermal expansion of pyrolytic BN in the temperature range of

80 K - 780 K using a interferometric experimental set up. Their data show that the

LTEC remain negative in the whole measured temperature range and attains a min-

imum value around 230 K (−2.95 × 10−6K−1). The authors compared their results

with the pyrolytic graphite, and found that the LTEC is more negative in pyrolytic

BN. After graphene’s discovery, researchers started to revisit the thermal expansion

of 2D h-BN. Sevik [52] studied the thermal expansion of graphene, 2D h-BN and

ML-MoS2 using QHA. They found that the LTEC of graphene and 2D h-BN are

more negative than that of their bulk counter part. At low temperature, there is a

remarkable difference between the LTEC of these two materials. Unlike graphene and

2D h-BN, the a-lattice of ML-MoS2 shows a positive thermal expansion in the whole

computed temperature range (0 K - 1500 K) [52, 53] and it has been measured earlier

in bulk-MoS2 using X-ray powder diffraction [54, 55].

1.3.3 Vibrational properties

In order to interpret the structural and thermal properties of 2D materials, an un-

derstanding of lattice vibrational modes is essential. In general, lattice vibrational

modes are obtained using lattice dynamics (LD) methods. For a crystal containing N

basis atoms, there will be 3N modes of vibrations. Among 3N modes, three modes are

always acoustic (A) corresponding to to three rigid translational motion of crystal,

and the remaining 3N-3 are optic (O) modes. For acoustic modes, the atoms in the

unitcell move in same phase, whereas for optic modes they move out of phase.
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1.3.3.1 Phonons in 2D honeycomb structures

The unitcell of graphene contains two basis atoms, hence there will be six modes of

vibrations (three acoustic + three optic). Figure 1.9 shows the phonon dispersion

(the relationship between the phonon frequency/energy and the phonon wave-vector

q) of graphene and graphite. In the long wavelength limit, one can distinguish three

kinds of modes, (1) longitudinal (L) modes, in which atoms move in the direction

of q; (2) transverse (T) modes, in which atoms move in 2D plane, in a direction

perpendicular to q; (3) out-of-plane modes (Z), where the atoms move along out-of-

plane direction. Graphite, the bulk counterpart of graphene contains 4 basis atoms,

leading to 12 modes of vibrations (three acoustic + nine optic). The phonon modes

designated with prime (say LO’ ) indicates that the two equivalent atoms in a layer

vibrate in phase but they are vibrating with a phase difference of 180o with respect

to the two atoms in the neighbouring layer. Since graphene contains only one layer,

the primed optic mode do not appear in graphene [44]. For frequencies above 400

cm-1, the modes are doubly degenerate, because of weak inter-sheet interaction [56].

The in-plane modes are identical in both graphene and graphite. Below 400 cm-1,

the phonon branches of graphite deviate noticeably from graphene sheet (Figure 1.9).

The phonon branches of graphite split in to acoustic (corresponds to the in-phase

vibration of equivalent atoms of neighbouring layer) and optic branches (corresponds

to the out of phase vibration of equivalent atoms in the neighbouring layer) below 400

cm-1 [56].

In 2D materials, there is a clear distinction between the in-plane and out-of-plane

modes. The term out-of-plane mode is used to denote the modes, where the atom

movement is perpendicular to the 2D sheet (labeled using letter Z). The LA and TA

modes show linear dispersion near the � point, whereas the ZA modes [44, 56] shows

quadratic dispersion, the latter being a characteristic feature of phonon dispersion

of 2D layered materials [57, 58], which is observed in neutron scattering experiments
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[59]. The quadratic dispersion of ZA mode is due to the D6h point-group symmetry

[60]. In the long wave length limit, the ZA mode causes bending of the surfaces due

to thermally excited ripples in the sheets, hence it is known as bending modes.

Figure 1.9 – The phonon dispersion of graphene and graphite. The solid and dashed
lines are GGA and LDA ab initio calculations, respectively. The experimental data
are shown as symbols. The quadratic dispersion of ZA mode is clearly visible in both
graphene and graphite. The phonon dispersion of graphite deviate noticeably from
graphene below 400 cm-1(image reproduced from reference [44]).

Figure 1.10 – Phonon dispersion of bulk and ML-MoS2. The unitcell of ML-
MoS2 is composed of three basis atoms, hence there will be nine modes of vibra-
tions (three acoustic + six optic). The optic branches of ML-MoS2 are designated
using both group theory based notations (A

′′

2 , E
′

, A
′

1, E
′′

) and their polarizations
(ZO1, LO2/TO2, ZO2, LO1/TO1) (image reproduced from reference [33]).

The unitcell of 2D h-BN contains 2 basis atoms, which leads to six modes of vibra-

tions as in the case of graphene. The designation of these modes are identical to

that of graphene, and their frequencies differ from the graphene because of the differ-
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1.3. Thermal and vibrational properties

ence in masses of basis atoms. In ML-MoS2, the unitcell is composed of three basis

atoms, hence there will be nine modes of vibrations (three acoustic + six optic, Figure

1.10). The designation of acoustic modes are identical to that of graphene and 2D

h-BN. Since there are six optic modes their designation will be slightly different from

graphene and 2D h-BN. More detailed description will be given in respective chapter.

1.3.3.2 Literature survey-graphene

The harmonic and quasi-harmonic lattice dynamics methods are extensively used to

obtain the phonon frequencies and then the thermodynamic properties of graphite and

graphene [44, 56]. Wirtz et al [56] made a detailed first principle study on phonon

dispersion of graphite and graphene. In their study, they analyzed the effect of ex-

change correlation (XC) functional on the phonon dispersion. The authors found that

generalized gradient approximation (GGA) underestimates the phonon frequencies by

2 % with respect to local density approximation (LDA) and the agreement with ex-

periments became more satisfactory. Mounet and Marzari [44] calculated the phonon

dispersion for hexagonal (ABABA.. stack) and rhombohedral (ABCABC... stack)

graphite and graphene using ab initio simulations. They observed that stacking has

negligible effects for all phonon branches lying above 400 cm-1. Phonon dispersion of

hexagonal and rhombohedral graphite are different only along the out-of-plane direc-

tion (Γ−A). To obtain the thermodynamic quantities such as thermal expansion, spe-

cific heat and temperature dependent elastic constants, the authors employed QHA.

Later, many authors studied the thermal and vibrational properties of graphite, few-

layer and single layer graphene using ab initio simulations within QHA [52, 61–63].

The anharmonic effect is usually very strong in 2D crystals and it becomes more pro-

nounced at high temperatures. The coupling between the phonon modes will have

significant effects on structural, thermal and vibrational properties at finite tempera-

tures. The effects of anharmonicity on thermal and vibrational properties of graphene

have been studied using DFPT [43, 64, 65]. Most notably, Bonini et al [64] investi-
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gated the effect of anharmonicity on phonon frequency shift and phonon linewidth in

graphene and graphite. The authors found that the width of the E2g (this nomencla-

ture is based on group theoretical classification; experimentalists designate it as the

G peak) phonon mode decreases with increasing temperature due to strong electron-

phonon coupling. On the other hand, the frequency of this mode shows a down-shift

with increasing temperature in spite of contraction of the lattice. Recently, Paulatto

et al [65] developed a method based on the 2n+1 theorem within the framework of

DFPT to compute the anharmonic scattering coefficients for processes involving three

phonons having arbitrary wave-vectors.

Being fast and non-destructive characterization tool, Raman spectroscopy will be the

first choice for experimentalist to study the vibrational properties of graphene and

allied 2D materials [66]. Calizo et al [67] studied the effect of temperature on the G

peak of single and few-layer graphene on Si/SiO2 substrate by Raman spectroscopy

and observed a down-shift in frequency in the temperature range of 123 K - 198 K.

Later, Lin et al [68] conducted Raman scattering experiments on un-supported ver-

tical graphene sheets to eliminate the substrate effect. The authors found that while

the frequency shift observed by them is consistent with the results of first principle

calculations, the phonon linewidth shows an opposite trend. Modification of phonon

dispersion due to the strain effect by the substrate has to be taken into account in

temperature dependent Raman studies of graphene on Si/SiO2 substrate. This strain

effect caused by the substrate prevents a direct comparison of Raman spectra with

the results of calculations which pertain to a free-standing graphene. Yoon et al [50]

tried to eliminate the substrate effect in the thermal expansion coefficient obtained

using Raman spectroscopy and found that there are significant differences between

the results of calculations and experimental data near the room temperature. The

discrepancies between the different Raman studies are related to presence of defects

in the sample, low excitation power on sample surface and drift of the laser spot [67].
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Raman and other optical scattering spectroscopy techniques are limited to probe

zone center (Γ-point) phonons. This can be illustrated as follows. The wave-vector

of incident photon is k̄ = 2π
λ

, for a typical value λ=500 nm, k̄ ≃ 105cm-1. The size of

BZ is of the order of π
a
≈ 108 cm-1. The k̄ is smaller than the size of BZ by a factor

of ≃ 103. The theory of scattering demands that, the wave-vector of incident photon

should be of the same order of scattering medium (say phonon, its wave vector is q̄ ).

Since the value of k̄ is much smaller than the radius of BZ, only those phonons with

small q̄ (long wave length phonons) will participate in light scattering. More precisely,

this type of scattering probes only region close to the centre of zone [69].

To obtain the entire phonon dispersion, in-elastic neutron scattering techniques are

used. The energy/wave length of thermal neutron (∼25 meV/1-2 Å) is of the same

order of magnitude of phonons. Hence, thermal neutron scattering is an ideal tool

to probe the phonon spectra and dynamics of the scattering medium [70]. The in-

elastic x-ray scattering techniques are also used to determine the phonon dispersion.

The relative advantage of neutron scattering over x-ray is that, the energy of thermal

neutron is of the same order of phonon frequency, hence there will be an appreciable

shift in phonon frequency, which can be determined with great accuracy [69]. The

electron energy loss spectroscopy (EELS) is another tool to obtain the phonon disper-

sion, which are used to probe the surface phonons. In EELS, the low energy electrons

are in-elastically scattered from the surface phonons, whose energy ∼ 10−3 eV to 1

eV. The neutron, x-ray and electron scattering techniques have been widely used to

obtain the phonon dispersion of graphite [59, 71–75] and graphene [76–80].

1.3.3.3 Literature survey-2D h-BN and ML-MoS2

As pointed out earlier, graphene’s fascinating properties intrigued extensive research

on other novel 2D materials. Consequently, in past few years enormous studies have

been done to understand the vibrational and thermodynamic properties of 2D h-BN

and ML-MoS2. Topsakal et al [81] performed ab initio simulations to study the struc-
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tural, electronic and vibrational properties of all allotropic forms of BN. Michel et al

[82] employed empirical force constant model to derive the phonon dispersion of mul-

tilayer BN. Later, Slotman et al [83] studied the thermal expansion, bending rigidity

and energetics of point defects using classical MD simulations. Singh et al [84] studied

the thermomechanical properties of 2D h-BN using atomistic simulations. The vibra-

tional properties of BN nanotubes have been studied in early 2000 [85, 86]. Sànchez

et al [85], reported the phonon dispersion, density of states and elastic constants of

single-walled nanotube and 2D h-BN using tight binding methods. The vibrational

properties of BN nanotubes of different diameter and chiralities are studied using ab

initio lattice dynamics calculation [86]. Experimentally, the vibrational properties of

bulk h-BN are studied four decades ago [87, 88]. The phonon modes of bulk h-BN

at the Γ point in the BZ is studied using IR [87] and first order Raman scatter-

ing techniques [87, 88]. Electron energy loss spectroscopy (EELS) has been used to

get the phonon dispersion of 2D h-BN on Ni(111) substrate [89, 90]. Serrano et al

[91], studied the vibrational properties of h-BN using in-elastic x-ray scattering and

complemented with ab initio calculations.

After the discovery of ML-MoS2 based field effect transistors (FETs) [27], the re-

search on monolayers of MoS2 and other transition metal dichalcogenides has grown

exponentially [92]. Similar to graphene and 2D h-BN, LD methods are widely em-

ployed to obtain the vibrational properties of ML-MoS2 [33, 52, 93, 94]. Ataca et al

[93], investigated the LD properties of bulk and ML-MoS2 using DFT. They studied

the effect of vdW interaction on structure, energetics and phonon dispersion of bulk

MoS2. Due to the absence of vdW interaction, some Raman active modes are softer

in ML-MoS2 [93]. Sánchez et al [33], studied the behaviour of Raman active E1
2g and

A1g as a function of layer number using ab initio calculations. They found that A1g

mode frequency increases with layer number, while E1
2g mode shows reverse trend.

Later, Cai et al [94], calculated the Grüneisen parameter and Umklapp scattering
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limited relaxation time of phonons in ML-MoS2 using DFPT.

Raman spectroscopy has been widely used to study the vibrational properties of

ML/FL MoS2 [95–101]. Lee et al [95], made first detailed study on ML and FL MoS2

using AFM and Raman spectroscopy. Two Raman active modes E1
2g and A1g are very

sensitive to thickness of MoS2. The frequency of E1
2g mode falls with thickness, while

A1g mode frequency increases. Later, many authors studied the evolution of Raman

active modes with layer number [92, 95, 97]. The temperature evolution of E1
2g and

A1g modes are studied using temperature dependent Raman spectroscopy [98–101].

These studies shows a red shift of E1
2g and A1g mode with an increase temperature

[98, 99]. Recently, Robinson et al [102] reported the effect of supporting substrate

on the Raman shift of E1
2g and A1g modes. The excitation laser power can induce a

local temperature change which can also alter the Raman spectra [103].

1.4 Objective of the thesis

We reviewed the structural, thermal and vibrational properties of different 2D mate-

rials (graphene, 2D h-BN and ML-MoS2) in section 1.3. The main issues in the field

of 2D materials and the objective of the thesis are as follows.

1. The structural, thermal and vibrational properties of 2D materials are investi-

gated in detail using harmonic and quasi-harmonic LD methods (section 1.3.3). In

harmonic LD, the effects of anharmonicity are completely ignored. The finite tem-

perature properties are modeled using the tedious QHA1. The QHA works well at

intermediate temperatures and it may not be suitable at high temperature because of

the non inclusion of phonon–phonon interactions. As the temperature increases more

and more phonon modes are excited and anharmonicity of the crystal becomes more

pronounced. To probe the higher order anharmonicity, a few efforts have been made

using anharmonic LD based techniques (section 1.3.3). The higher order phonon ef-

fects are neglected in anharmonic LD based methods by truncating the crystal lattice

1more details about LD, QHA and anharmonic LD methods will be given in chapter-2, section
2.3

21



1. Introduction

potential energy at third order in the displacement of the atoms from their equi-

librium position, therefore some crucial information may miss in the case of strong

anharmonic crystals.

2D materials, being strong anharmonic in nature, the higher order phonon processes

are important and cannot be neglected [68]. Under such circumstances MD simula-

tions becomes a natural choice; it can incorporate the anharmonicity of interatomic

potentials fully without any approximations. Ling Ti Kong [104] proposed a method

to compute the phonon dispersion and phonon DOS directly from MD simulations at

finite temperatures. These method seems to be an extension of QHA to MD simula-

tions, hence couldn’t capture the true anharmonic properties of materials. Moreover

this method will not provide the information about mode resolved phonon frequencies

and linewidth. In the present thesis, the above tasks have been achieved by adapting

a spectral energy density (SED) based method. Several in-house codes have been

developed and coupled with classical MD simulation package LAMMPS.

2. The thermally excited ripples are inevitable in 2D crystals, which makes them sta-

ble at finite temperature (section 1.3.1). These ripples can affect the thermo-physical

properties of 2D materials significantly. Most of the researchers used ab initio simula-

tion in conjunction with QHA to obtain the thermal expansion properties. In QHA,

the 2D sheets are considered to be flat, hence the effects of ripples cannot be incor-

porated. Ab initio MD simulation can be used to incorporate the effects of ripples,

but within the ab initio MD frame work one cannot include more than few hundreds

of atoms in the simulation cell (due to the lack of computational resources), which

seems to be in-adequate to incorporate the long wavelength ripples. From the ex-

perimental perspective, most of the measurements are made on 2D sheet supported

on a substrate or over a trench. These measurements are extremely challenging due

to the strain effects, and may not be able to capture the intrinsic thermal expansion

properties of free-standing 2D sheets with complete effects of ripples. Since classical
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MD simulations can incorporate millions of atoms and also computation can be done

with free-standing sheets containing ripples, detailed MD study needs to be under-

taken to understand the role of ripples on the thermal expansion of 2D crystals at

finite temperatures.

In light of above facts, we set the objective of the present thesis as follows; under-

stand the structural, thermal and vibrational properties of 2D materials with full

anharmonicity. In order to achieve these tasks, systematic studies have been done

using the ab initio and classical MD simulations (in conjunction with SED method),

and the significant results obtained are presented in the thesis. The remaining part

of the thesis is organized as follows. The computational and theoretical methods em-

ployed in this thesis are discussed in chapter 2. The detailed theoretical derivation,

implementation and benchmarking of SED method is given at end of chapter-2. The

dynamical (structural) stability of stacking altered graphite structures are analyzed

using ab initio and classical MD simulations, and presented in chapter-3. The SED

method is used to calculate temperature dependent structural stability, thermal ex-

pansion, frequency shift and coupling of normal modes of vibrations of graphene and

2D h-BN, and the results are discussed in chapter-4&5, respectively. Chapter-6

focuses on the anharmonicity of optic phonon modes of ML-MoS2. The temperature

dependent structural stability and thermal expansion of ML-MoS2 are also addressed

in this chapter. Finally the conclusion and scope for the further studies are brought

out in chapter-7.
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Chapter 2

Computational and theoretical
methods

This chapter discusses the computational and theoretical methods employed in this

thesis. The general aspects of density functional theory (DFT) and classical molec-

ular dynamics (MD) simulations are discussed. To probe the complete anharmonic-

ity in materials, a spectral energy density based (SED) formalism is adapted. Sev-

eral in-house codes are developed and coupled with classical MD simulation package

LAMMPS. The theoretical derivation, implementation and validation of SED method

is discussed in detail.

2.1 Density Functional Theory (DFT)

Density Functional Theory (DFT) is the most successful and widely used quantum me-

chanical modeling method in condensed matter physics and materials science. With

the advancement of powerful computers, DFT based simulations became routine,

and it is widely used to predict the various physical properties of materials, which

comprises not only bulk solids but also low dimensional materials, interfaces, nano-

particles, complex molecules and proteins. The basic idea behind DFT is that the

wave-function of many-body interacting system is replaced with a single scalar quan-

tity known as charge-density, which reduces the complexity of 3N degrees of freedom
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2. Computational and theoretical methods

of the system in to only three spatial coordinates.

2.1.1 Hamiltonian for a condensed matter system and Born-

Oppenheimer approximation

The ground state properties of a many-body system (such as collection of atoms,

molecules or a solid) can be obtained by solving the time independent Schrödinger

equation

ĤΨ = EΨ (2.1)

where Ĥ is the non-relativistic Hamiltonian for a many-body system (say a solid)

contains N nuclei and n(ZN) electrons and it is written as follows

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂ee(r) + V̂NN(R) (2.2)

Ĥ = −~
2
∑

I

∇2
I

2MI

− ~
2

2m

∑

i

∇2
i −

∑

iI

ZIe
2

|ri − RI|
+
e2

2

∑

i6=j

1

|ri − rj|
+
e2

2

∑

I 6=J

ZIZJ

|RI − Rj|
(2.3)

where r = {r1, r2, r3.....rn} are electron coordinates and R = {R1, R2, R3, ......RN} are

the nuclear coordinates. The first two term represent the kinetic energy of the nuclei

and electrons. The third term corresponds to electron-nucleus Coulomb interaction.

The last two terms are the electron-electron and nucleus-nucleus Coulomb interaction.

The Hamiltonian Ĥ acts on many particle wave function Ψ(R, r) which depends on

both nucleus and electron coordinates.

Due to heavy mass, nuclei moves much slower than electrons. Hence nuclei can be con-

sidered as fixed particles and electrons are moving relative to them, electrons can re-

spond to nuclei motions almost instantaneously. This is known as Born-Oppenheimer

(BO) approximation [105]. As a consequence of BO approximation the first term in

equation 2.3, kinetic energy of nuclei is considered as zero and the fifth term will

be a constant function. The BO approximation decouples the nuclear and electronic
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2.1. Density Functional Theory (DFT)

coordinates and allows one to solve the Schrödinger equation for the wave functions

of electrons alone which are moving in an external potential V̂eN ≡ V̂ext. Under BO

approximation the modified Hamiltonian can be written as

Ĥ = T̂e + V̂ee + V̂ext (2.4)

BO approximation simplifies the many-body problem into a many electron problem,

but still difficult to find an exact solution. The first stepping stone towards DFT is

the Thomas-Fermi (TF) model [106, 107]. In this model the total electronic energy

is expressed in terms of the electron density ρ(r) rather than the wave function. TF

model used a heuristic approach, in which the various contributions towards the total

electronic energy such as kinetic energy, exchange and correlations were taken from

the homogeneous electron gas. The approximation used in TF model is so crude and

hence it fails in many cases, especially in the cases of solids and molecules, where TF

model fails to describe the bonding between the atoms [108]. Though the TF model

fails to describe the properties of solids, it paves the way towards the modern DFT

by introducing the concept of electron density.

2.1.2 The Hohenberg-Kohn theorems and Kohn Sham equa-

tion

The basis of the modern DFT is Hohenberg-Kohn (HK) theorem [109–111]. Hohen-

berg and Kohn proved that the total energy of an electron gas is a unique functional

of electron density. The minimum value of the total energy functional is the ground

state energy and the corresponding density is the single particle ground state density.

Once the ground state electron density is known all other properties of the system

can be computed. Pauli’s exclusion principle demands that the many-electron wave

function should be anti-symmetric. The anti-symmetry of the wave function keeps

the electrons of same spin spatially apart and thus reduce the Coulomb energy of the

electronic system. This reduction in energy of electronic system due to anti-symmetry
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2. Computational and theoretical methods

of wave function is called exchange energy [112]. The exchange energy is computed

straightforwardly using Hartree-Fock method [110]. The electrons having opposite

spin can also be spatially separated at the expense of increasing the kinetic energy.

In this case the Coulomb energy of system is reduced at the cost of increasing kinetic

energy of electrons, this is known as correlation energy [112]. The difference between

the many-body electronic energy and energy computed in Hartree-Fock methods will

give the correlation energy.

Though HK theorem reduces the complexity of many-body problem using electron

density as a basic variable, still there is no direct way to deduce the exact kinetic

energy from the electron density. This limitation is overcome in Kohn-Sham (KS)

approach [110, 113]. The Kohn and Sham put HK theorem into practical usage, in

this formulation the interacting many-body electronic system mapped onto a fictitious

system of non-interacting electrons moves in an effective potential due to all other

electrons.

In order to understand the Kohn and Sham formulation, we can re-write the many-

electron Hamiltonian (equation 2.4) in term of its corresponding energy functional

E[ρ] = Te[ρ] + Eee[ρ] + Eext[ρ] (2.5)

where Te[ρ] = 〈Ψ(ρ)|T̂ |Ψ(ρ)〉 is the kinetic energy of interacting system; Eee[ρ] =

〈Ψ(ρ)|V̂ee|Ψ(ρ)〉 is the Coulomb repulsion energy and Eext[ρ] is the energy functional

corresponding to electron-ion interaction. To have an intuitive understanding on

how exchange-correlation functional is introduced, the equation 2.5 is re-written by

adding and subtracting the non-interacting kinetic energy functional T0[ρ] and Hartree

functional EH [ρ] as follows

E[ρ] = Te[ρ] + T0[ρ] − T0[ρ] + Eee[ρ] + EH [ρ] − EH [ρ] + Eext[ρ] (2.6)

= T0[ρ] + EH [ρ] + Eext[ρ] + {Te[ρ] − T0[ρ] + Eee[ρ] − EH [ρ]} (2.7)
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2.1. Density Functional Theory (DFT)

Here the energy functional remains the same. The basic idea in Kohn and Sham

formulation is that, if one can find a non-interacting system of same electron density

as of interacting system, then the kinetic energy of non-interacting system can be

calculated exactly using the following equation [110]

T0 =
−~

2

2m

Ns
∑

i

〈Φ|∇2|Φ〉 (2.8)

where Φ is used to denote the the wave-function of non-interacting particles instead of

Ψ, and this will be usually represented as the Slater determinant of occupied orbitals

Φ =
1√
Ns!

SD[φ1(r1)φ2(r2).....φNs
(rNs

)] (2.9)

and yield the electron density as

ρ(r) =

Ns
∑

i

∣

∣φi(r)
∣

∣

2
(2.10)

KS formulation again brings back the wave function into picture to calculate the

kinetic energy. The kinetic energy computed in this formalism is not the exact kinetic

energy of interacting system, which is due to the fact that the true many-body wave

function is not a Slater determinant [110]. The correlation term in kinetic energy is

not take into account in this scheme. The other terms in equation 2.7 are Hartree

energy, EH(ρ) =
�

ρ(r) ρ(r′)
|r−r′| dr dr

′, and the Coulomb repulsion in KS scheme can be

written as, Eee(ρ) = 〈Φ|V̂ee|Φ〉. Advantage of the re-arrangement of equation 2.7 is

that the first three terms can be calculated exactly. The quantity inside the curly

bracket in equation 2.7, contains the effects of correlation contribution to kinetic

energy,
(

Tc(ρ) = Te(ρ)− T0(ρ)
)

, exchange energy,
(

EX(ρ) = 〈Φ|V̂ee|Φ〉 −EH(ρ)
)

and

the Coulombic correlation
(

EC(ρ) = 〈Ψ(ρ)|V̂ee|Ψ(ρ)〉− 〈Φ|V̂ee|Φ〉 = 〈Ψ(ρ)|V̂ee|Ψ(ρ)〉−

EH(ρ) − EX(ρ)
)

, and which is known as exchange correlation energy EXC(ρ). The

EXC(ρ) = 〈Ψ(ρ)|T̂ + V̂ee|Ψ(ρ)〉−〈Φ|T̂ + V̂ee|Φ〉, will account for the difference between

the exact ground state energy and energy computed in Hartree-Fock approximation,
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and using the non-interacting kinetic energy T0[ρ]. Now in KS formulation the energy

functional and its corresponding Hamiltonian (KS-Hamiltonian) can be written as

E[ρ] = T0[ρ] + EH [ρ] + Eext[ρ] + EXC [ρ] (2.11)

ĤKS = T̂0 + V̂H(r) + V̂ext(r) + V̂XC(r) (2.12)

where T̂0 is the kinetic energy operator of a single electron, V̂H(r) is the Hartree

potential given by V̂H(r) = δEH [ρ(r)]
δρ(r)

=
�

ρ(r′)
|r−r′|dr

′. The exchange-correlation potential

is given by V̂XC(r) = δEXC [ρ(r)]
δρ(r)

.

Only the minimum value of KS functional has physical meaning. At the minimum,

the KS energy functional is equal to the ground state energy of the system [112]. One

has to find out a set of wave functions φi which minimize the KS energy functional.

These wave functions can be obtained from the self consistent solution to the KS

equations

[

− ~
2

2m
∇2 + VKS(r)

]

φi(r) = ǫiφi(r) (2.13)

where VKS(r) = Vext(r) + VH(r) + VXC(r), φi is the wave function of electronic state

i, and ǫi is the KS eigenvalue. Both VH(r) and VXC(r) depends on charge density,

which in turn depends on φi (equation 2.10). Hence the KS equation must be solved

in a self consistent manner. It is worth to note that the KS eigenvalues are not the

energies of single particle energy states, and total energy of electronic system is not

the sum of the eigenvalues of all occupied states Etot 6=
∑occ.

i ǫi. Similarly the KS

wave-functions φi are not single particle wave-functions of electrons.

In KS theory, the many body effects are introduced through the exchange-correlation

(XC) functional. But the exact functional form of XC functional is not known up to

now, certain approximations have been made to compute XC functional, which works

reasonably well for most of the solid state systems. The following sections briefly

discuss the most popular and widely used XC functionals.
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2.1. Density Functional Theory (DFT)

2.1.3 Local Density Approximation (LDA)

LDA [114–116] is the simplest and most widely used approximation to compute the

XC functional. In LDA, the XC functional is constructed by assuming that the XC

energy at a point r is equal to the XC energy of a homogeneous electron gas (HEG)

of the same density at the point r. The total XC functional can be written as

ELDA
XC [ρ] =

�
ρ(r)εhomo

XC (ρ(r))dr (2.14)

In this scheme, the exchange part of the functional is expressed as the exact expression

of HEG. The analytic representation of correlation varies in different versions, of which

most popular one is Ceperly-Alder (CA) [114] . Other popular versions are Vosko-

Wilk-Nusiar (VWN) [117], Perdew-Zunger (PZ) [116] and Perdew-Wang (PW) [118].

2.1.4 Generalized Gradient Approximation (GGA)

LDA works well for the systems where the electron density varies slowly. In the real

systems, the spatial distribution of electron density is not homogeneous and it varies

rapidly. In such situation the XC energy of inhomogeneous system varies significantly

from that of HEG. The above limitation has been overcome in GGA [119, 120] , in

which the XC functional is calculated by taking the contributions from both electron

density ρ(r) and its gradient ∇ρ(r). In GGA, the XC energy can be expressed as

EGGA
XC [ρ] =

�
ρ(r)εhomo

XC

(

ρ(r),∇ρ(r)
)

dr (2.15)

As in LDA, there exists many flavors of GGA, the three most widely used GGAs

are proposed by Becke (B88) [121], Perdew-Wang (PW91) [120] and Perdew, Burke

and Ernzerhof (PBE) [122]. Generally GGA works better than LDA and predicts

accurately the bond length, binding energy and lattice constant, especially for system

with rapidly varying charge density. In certain cases (some ionic crystal, layered

materials) GGA over corrects the LDA results and overestimate the lattice parameters,

which deviates from the experimental data. There are no universal XC functionals,
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2. Computational and theoretical methods

the choice of XC has to be made carefully and judiciously depending upon the physical

problem.

2.1.5 Solving Kohn-Sham equations

The KS equation (equation 2.13) must be solved self consistently to obtain the exact

density and energy of a ground state system, this is usually done using some self-

consistent iteration schemes. The procedure is to start with initial guess of charge den-

sity, which is generally constructed from the superposition of atomic electron density.

Once the initial charge density is available the effective KS potential, VKS(r) can be

calulated, and then solve KS equation to obtain the single particle energies and wave-

functions. Now calculate the new charge density from the KS wave-function obtained,

and check the self-consistency condition. If self-consistency is not achieved, mix the

new density obtained with old one and repeat the cycle until the self-consistency is

achieved. Once self-consistency is achieved various physical quantities such as to-

tal energy, force, stress, electron density of states and band structure etc., can be

calculated.

At this level, to solve the KS equation (equation 2.13), one has to make certain choices,

1. To write a wave-function for infinite number of electrons in the system moving in a

static potential; 2. To represent single particle KS orbitals; 3. To represent electron-

ion interaction
(

Vext(r)
)

;

2.1.5.1 periodic boundary conditions - Bloch’s theorem

In KS scheme the many-electron problem is mapped into a single electron problem

and exchange-correlation effects are treated with certain approximations. Still it is a

tedious job to solve KS equation for a non-interacting system which contains infinite

number of electrons. System containing a large number of atoms will have infinite

number of electrons, therefore wave function must be calculated for each of these

electrons in the system. This problem can be tackled with the help of Bloch’s theorem

(more details can be found in any elementary solid state physics book [123, 124]).
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2.1. Density Functional Theory (DFT)

Bloch’s theorem maps the calculation of wave-function for all electrons in an infinite

solid onto a calculation of wave-function for a finite number of electrons in the unitcell.

It is not necessary to calculate the electronic wave-function everywhere in space. It

is sufficient to know the solution in the unitcell, and it differs in the neighboring cell

by a phase factor eik.a due to periodic boundary condition [110]. In principle the

calculation needs to be done at infinite number of k points in the first Brillouin zone

(BZ). Computationally, it is forbidden to do the calculations with infinite k points.

This can be tackled using the k point sampling techniques. Many physical properties,

such as, density of states, band structure are calculated by integrating over the entire

BZ. Such integrations can be performed by summing over finite number of k points in

the BZ, and they are called k point mesh. Some special techniques have been made

to choose the special k points in the BZ appropriately, and thereby increases the

computational efficiency, among them Monkhorst-Pack [125] and Chadi-Cohen [126]

schemes are widely used.

2.1.5.2 Choice of basis set- To represent the single particle KS orbitals

To solve the KS equation (equation 2.13), a mathematical description for the KS

orbital φi is required. Most convenient method is express the wave-function in terms

of Fourier expansion using a plane wave basis set.

φ
(k)
i =

1√
Ω

∞
∑

G=0

Cik(G) ei(k+G).r (2.16)

where Ω is the supercell volume, G is the reciprocal lattice vector and k is the wave

vector in the first Brillouin zone. The plane wave basis set is mostly preferred due to its

mathematical simplicity and it spans the entire Hilbert space. The practical advantage

of plane wave basis set is that it can be easily implemented into a computational

code, and also the evaluation of Hφi becomes exceedingly efficient using Fast Fourier

Transforms. In principle one has to use an infinite basis set to represent the electronic

wave functions. However, in practice, we can use a finite basis set. The plane wave
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with small kinetic energy is more important than that of plane waves with large

kinetic energy. Hence the plane wave basis set can be truncated to incorporate only

those plane waves whose energy is less than that of a cut-off value (Ecut). The size of

basis set affects the accuracy of calculation, hence series of convergence test has to be

done to fix the cut-off energy. Apart from the plane wave basis set, there are certain

other choices to represent the electronic wave-functions such as, extended basis sets,

localized basis sets, mixed basis set and Augmented basis set, the details can be found

in reference [110].

2.1.5.3 Pseudo-potential methods - To represent the electron-ion inter-

action

The electrons attached to the atoms can be classified into core electrons and valence

electrons. The core electrons are tightly bound to the nuclei and do not participate

in bonding. Therefore most of the physical properties of solids depend on valence

electron configuration than the core-electron. The core states are localized in the

vicinity of the nucleus, hence valence states shows rapid oscillations near the core

region to maintain the orthogonality conditions, which is required by the exclusion

principle. An extremely large number of plane waves are required to expand the

core orbitals and to follow the rapid oscillations of valence electrons near the core

region [112]. If we treat all the electrons explicitly, the computational effort increases

enormously. The above difficulty is overcome by pseudo-potential method [127], which

allows to use a smaller basis set to expand the electronic wave functions. In pseudo-

potential method, we eliminate the core-core and core-nucleus interactions and replace

the strong Coulomb potential with a much weaker pseudo-potential (PP). This models

the core-valence and valence-nucleus interactions; the valence electron wave-functions,

which oscillates rapidly near the core region are described by a pseudo-wave-function

with significantly fewer nodes. Figure 2.1 illustrates the concept of pseudization. The

pseudo-potential
(

Vpseudo

)

matches with all electron potential
(

V
)

beyond the cutoff
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radius (rc) and it removes the singularity of V near to origin. The upper part shows

that all electron wave-function Ψ and its pseudo counter part Ψpseudo, which is smooth

and nodeless near the core region.

Figure 2.1 – The schematic representation of all electron potential and pseudo po-
tentials, and their corresponding wave-functions [128].

There are different kinds of PPs, which have been implemented in DFT codes, among

them most popular PPs are norm-conserving, ultrasoft and projector augmented wave

(PAW) [129, 130]. Detailed description of these PPs can be found elsewhere [110, 111].

In the present study, only PAW potential is used, which has been employed in Vienna

Ab initio Simulation Package (VASP) [131].

2.1.6 Lattice dynamics using ab initio methods

In this thesis, chapter 3 discusses the dynamic stability of different graphite structure

using lattice dynamics calculations. The lattice dynamics properties can be obtained

either from linear response calculations or from frozen phonon method within the ab

initio framework. A brief discussion of the above two method is given below.

1) Hellmann-Feynman theorem and Density Functional Perturbation The-

ory (DFPT) : One has to compute the first and second derivative of Born-Oppenheimer

energy surface to obtain the equilibrium geometry and vibrational frequencies of the

system. The above task can be accomplished using Hellmann-Feynman theorem

[132, 133] , which states that the first derivative of the eigenvalue of a Hamiltonian,
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Hλ, depends on parameter λ, is given by the expectation value of the derivative of

the Hamiltonian;

∂Eλ

∂λ
=

〈

Ψλ

∣

∣

∣

∣

∂Hλ

∂λ

∣

∣

∣

∣

Ψλ

〉

(2.17)

where Ψλ is the eigenfunction of Hλ corresponding to the eigenvalue Eλ (HλΨλ =

EλΨλ). In BO approximation the electronic Hamiltonian (HBO) depends on ionic

co-ordinates parametrically.
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ZIZJ
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Where the last term in the equation 2.18 is electrostatic interaction between the ions

(EI) and it is essential in the total energy calculations. EI is only a classical additive

in the electronic structure theory. The force acting on I th nucleus in the electronic

ground state can be written as [134]

FI = −∂E(R)

∂RI
= −

〈

Ψ(R)

∣

∣

∣

∣

∂HBO(R)

∂RI

∣

∣

∣

∣

Ψ(R)

〉

(2.19)

where Ψ(r,R) is the electronic ground state wave function of the BO Hamiltonian,

which depends on R via electron-ion interaction, that couples to the electronic degrees

of freedom only through electron charge density. Hence in this case the Hellmann-

Feynman theorem can be written as

FI = −
�
ρ
∂Vext

∂RI

dr − ∂EI(R)

∂RI

(2.20)

where ρ is the ground state electronic charge density corresponding to the nuclear

configuration R and Vext =
∑

iI
ZIe2

|ri−RI| is the electron-ion interaction. The force

constant matrix (Hessian of BO potential energy surface) is obtained by taking the

second derivative of Hellmann-Feynaman forces (equation 2.20) with respect to the

nuclear co-ordinates,
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∂2E(R)

∂RI∂RJ

≡ − ∂FI

∂RJ

=

�
∂ρ

∂RJ

∂Vext

∂RI

dr +

�
ρ
∂2Vext

∂RI ∂RJ

+
∂2EI(R)

∂RI ∂RJ

(2.21)

The equation 2.21 states that the calculation of force constant matrix requires the

knowledge of ground state electronic charge density ρ and its linear response to nu-

clear distortion ∂ρ

∂RI
[134]. Applicability of this method extends to many other fields

depending upon the nature of perturbations. A perturbation in ionic co-ordinates,

magnetic field, lattice vectors and electric field will give the responses as force con-

stant matrix, NMR frequency, elastic constants and di-electric constants respectively.

Even-though DFPT calculations are efficient and accurate, it is computationally de-

manding in the case of many complex systems.

2) Frozen phonon method: This is a primitive method, here the force constants are

determined by explicitly displacing the atoms from their equilibrium configurations

and compute the force on every atom using Hellmann-Feynman theorem. This method

is quicker and easy to implement, hence widely used. The main drawback of this

method is that, displacing the atoms creates the forces not only between the atoms

within the unitcell but also with their periodic images. To avoid this, calculations has

to be done with big supercells which is computationally expensive [134].
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2.2 Molecular dynamics

MD is a technique to study the time evolution of a system of particles. In order to

use MD methods one has to define a set of rules that governs the interaction between

the atoms in the system. These interaction can be derived either from ab initio

calculations (ab initio MD) or from empirical potentials (classical MD). In ab initio

MD, though the interaction between the atoms are derived quantum mechanically, the

atomic motion still obeys the laws of classical mechanics. Ab initio MD simulations are

computationally demanding, and it is applicable to systems containing less than ∼100

atoms and simulations for durations less than ∼100 ps. Because of these limitations

classical MD simulation scheme is adapted in the present work.

2.2.1 Basics of MD simulations

In MD simulations, the time evolution of a system of interacting particle is obtained

by solving the equation of motion [135, 136] ,

Fi = miai = mi

d2ri

dt2
, (2.22)

where Fi is the force acting on ith atom due to the interaction with other particle

in the system; mi, ri and ai are the mass, position vector and acceleration of the

particle i respectively, and t stands for the time. The force Fi acting on the particle

is obtained from the negative gradient of the total potential energy of the system

U(r1, r2,, ......rN),

Fi = −∇iU(r1, r2,......rN) (2.23)

In order to solve the equation 2.22 the information about the total potential energy

of the system is required. Hence before starting MD simulation one has to choose

a proper interatomic potential which is capable of describing the system properties

reasonably well. Once the initial conditions (eg. initial positions and velocities of all
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particles) and interatomic potential is defined the equations of motion can be solved

numerically to obtain the position
(

r(t)
)

and velocities
(

vi(t)
)

of all particles as a

function of time. MD does not require any prior knowledge of the system and it is a

fully deterministic method; state of the system at any future time can be predicted

from its current state.

2.2.2 Work-flow in MD simulations

MD simulations are analogous to real experiments in many aspects. In real experi-

ments, first we prepare a sample of interest. Thereafter this sample will be connected

to an instrument say for example with a thermostat or a high pressure diamond anvil

cell to maintain the sample under a certain temperature and pressure. Once the sam-

ple is equilibrated into a desired value, various physical quantities can be measured.

MD simulations also follows the similar scheme. A typical MD simulation consists the

following steps: [136–138]

2.2.2.1 A. Initialize the system

A1. Create a simulation cell: Before starting the simulation one has to set

up a simulation cell of the system of interest. The particles are arranged inside a

simulation cell of size SxÖSy ÖSz. It is also possible to set up a simulation cell with

non-orthogonal axes. In classical MD, there are three types of boundary conditions to

deal with surface atoms, such as, free, fixed and periodic. Free boundary conditions

works well for molecules and nano-clusters in vacuum. For a continuous medium this

does not work, the atoms are left hanging on the surface and creates surface effects.

In fixed boundary condition the atoms at boundary are fixed, hence it is completely

un-physical, sometimes it can be used with large sacrificial regions. The PBC are

most popular and widely used, in which the simulation cells are infinitely repeated

across the borders. PBC conditions helps to study the properties of a bulk system

with lesser number of atom in such a way that the atoms experiences the same force

as if they are inside the bulk. PBC eliminates the surface effects, at the same time
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it will cause artificial interaction across the cell borders. To avoid the above problem

a proper convergence test needs to be done to fix the cell size. More details can be

found in the references [136–138].

A2. Provide the initial position and velocities of the particle: Once a

simulation cell is defined, one has to assign the initial positions and velocities to the

particles. The particles are arranged on a lattice as per the crystal structure. This

will be the ground state structure (T = 0 K) of the material with the given potential.

Initial velocities are taken either zero or from a Maxwell-Boltzmann distribution. At

ground state the net force acting on the particles would be zero because of symmetry,

therefore atoms would sit indefinitely at their equilibrium position. Under this situa-

tion equation of motion won’t do anything different apart from evolving exactly the

same way. To avoid this, some randomization must be done in the starting sample

[139]. This can be achieved in the following way. 1) small random displacements

are added to lattice positions; in this case special care has to be taken to avoid the

overlap of atomic cores. 2) The initial velocities are taken from the Maxwell distri-

bution at a given temperature. In doing so, the system will have a linear momentum

corresponding to the translational motion, this is eliminated by subtracting the linear

momentum component from the velocity of each particle.

A3. Select a time step: In MD, the equation of motion is solved using time inte-

gration algorithms. All these algorithms are based on finite difference method, where

time is discretized on a grid and the time step △t is the distance between the grid. If

one knows the position and its derivative at time t the integrating algorithm will give

the same quantities at later time t + △t [139]. The common and important concept

in various algorithms is time step △t. If time step is too large particles will move

too far and lead to instability, reversely for a small time step it will not be efficient

due to long simulation times. To ensure the numerical stability and conservation of

energy, one has to choose a time step which is one order smaller than that of the

40



2.2. Molecular dynamics

fastest process in the system. A practical rule-of-thumb is that the particles should

not move more than 1
20

th of the nearest neighbour distances. In practice, the time

step should be kept as △t < 4 fs, to ensure the stability of algorithm [136, 138].

2.2.2.2 B. Integrate Newton’s equations of motion

B1. Selecting the appropriate interatomic potential: To compute the force

between the atoms using equation 2.23 an interatomic potential function is required.

The accuracy of the MD simulation results depends on the quality of interatomic

potential used. While selecting a potential, one should consider the following charac-

teristic features; 1) accuracy, 2) transferability (capable of computing various other

properties for which it was not fit) and 3) computational speed [140]. The potential

energy of a system of N-particle can be expressed as [135, 139],

U(r1, r2,....rN) =
∑

i

U1(ri)+
∑

i

∑

i<j

U2(ri, rj)+
∑

i

∑

i<j

∑

j<k

U3(ri, rj, rk)+ .... (2.24)

The first term U1 represents the external potential and depends on the each particles

co-ordinates. The second term U2 is the pair-potential term which depends only on

the distance between the two atoms. The third term U3 will come into picture when

the interaction between the two atoms is modified with the presence of a third atom.

The clause i < j (for two body) and i < j < k( for three body) is used to avoid the

double counting between the bonds. Based on above expression the potentials can be

broadly classified as pair-potential (contains only U2 term) and many-body potential

(U3 and higher terms are incorporated).

Pair-potentials: The most commonly used pair-potential to model the properties of

a simple system is Lennard-Jones (LJ) potential, and its functional form is

U(rij) = 4ǫ
[

( σ

rij

)12 −
( σ

rij

)6
]

(2.25)

where ǫ is the depth of the potential energy well and its value is equal to 2
1

6σ for
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the equilibrium particle separation. The first term represents the repulsion between

the atoms when they are brought closer to each other. The second term is the long

range attractive contribution. The LJ potential gives good description for van der

Waals interaction in inert gases and molecular systems. The functional forms of other

commonly used pair potentials in MD simulations are listed below in table 2.1 [140]

Table 2.1 – The functional form and applicability of commonly used pair-potentials
in MD simulations

Name Functional form Applicability

Hard

sphere
U(rij) =

{

∞ rij < r0

0 rij > r0

Theoretical investigation of some

idealized problems

Coulomb U(rij) =
q
i
qj

rij

Coulomb interaction between the

charged particles

Morse U(rij) = ǫ
[

e−2α(rij−r0) − 2e−α(rij−r0)
]

More suitable when attractive

interaction comes from a chemical

bond

Buckingham U(rij) = Ae
− rij

RBM − B
r6
ij

Suitable for simulating the

bombardment of energetic ions or

atoms

The pair potentials is used to describe the properties of many systems accurately.

However, they possess severe limitations, notably, pair-potentials do not have en-

vironment dependence and hence they wrongly predict the bond energies for many

transition metals. The vacancy formation energies of many metals are severely overes-

timated in pair-potential based calculations. Pair-potentials also fails to describe the

deviation of elastic constants from the Cauchy relations in cubic crystals (C12 = C44).

All these limitations are due to the fact that many-body effects are not incorporated

in pair-potentials. The above discrepancies were resolved to some extent with the

development of embedded atom (EAM) method [141, 142]. The main attraction of

EAM based potential is that it can explain the variation of bond strength with coor-

dination. In this thesis EAM potential is not used, hence a detailed description of it
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is not provided here. More details can be found in the references [141–143]

Potentials for covalently bonded systems: The present thesis focus on structural,

vibrational and thermal properties of different 2D materials, where the predominant

bonding is covalent in nature. The Stillenger-Weber (SW) potential [144] is the first

successful potential constructed to model the covalent bonding in diamond lattice

(eg. Si, Ge, C and GaAs ). In SW potential the total system potential energy can be

written as

U(r1, r2, ....rN) =
∑

i

∑

i<j

U2(ri, rj) +
∑

i

∑

i<j

∑

j<k

U3(ri, rj, rk) (2.26)

The two body term is

U2(rij) =



















A
(

Br−p

ij − r−q

ij

)

exp
[

c
(rij−rc)

]

rij < rc

0 rij > rc

Where A, B, p and q are constants. The first term is very similar to Lennard-Jones

form, and the second term is a cutoff function that smoothly terminate the potential

at a distance rc. The three body term models the angular dependence and can be

written as the sum of functions of each of the three angles of a triplet i, j, k.

U3(rij, rik, rjk) = h(rij, rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj, θikj)

where θjik is the angle centered on atom i and h is a function with parameters λ, γ, β:

h(rij, rik, θjik) = λexp

[

γ

rij − rc

+
γ

rik − rc

]

(cos(θjik) − β)2

For tetrahedral structure the value of β = cos(109.47o) = −1
3
. The angle-j term (hijk)

and angle-k term (hikj) can be computed by permuting the indices accordingly. The

parameters used in the original study of Stillinger and Weber were obtained by fitting

the radial distribution function, melting temperature to the experimental data by

assuming that diamond lattice is the lowest energy structure [144]. The original SW

parameters are, A = 7.049556277, B = 0.6022245584, p = 4, q = 0, rc = 1.80, λ =
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21, γ = 1.20 [144]

SW potential is popular because of its simplicity and fairly good description of Si in

diamond lattice. However, it possess severe limitations such as transferability problem.

The three body term will explain only one equilibrium configuration (angle 109.47o).

The SW potential cannot give a proper description in the case of carbon, that have

three equilibrium configurations with angles 180o, 120o and 109.47o. Later, more

realistic potentials were developed to explain the properties of group IV elements (Si,

Ge and C) based on the concept of bond-strength dependence on bonding environment

(known as bond order potentials), among them the most popular ones are Tersoff [145]

potential (for Si& Ge) and Brenner-potential[146] for C. In this thesis long range bond

order potential (LCBOP) [147], Tersoff potential [148] and reactive empirical bond

order (REBO) [149] potential are used to model graphene, 2D h-BN and molybdenum

di-sulphide (MoS2) respectively. The detailed descriptions will be given at respective

chapters.

B2. Solving the equation of motion and determining the new position and

velocity: In MD, to integrate the equation of motion several numerical algorithms

have been developed. The important ones are Verlet, leapfrog Verlet, velocity Verlet,

and Gear predictor corrector algorithms [135, 136]. The objective of all the above

algorithms is to compute the position and velocity at a time t+ △t from its current

state (at time t). A good MD algorithm requires the following features, 1) robustness,

2) fast, 3) take little memory 4) allows longer time step 5) conserve energy, and 6)

time-reversibility [137]. In the present studies the velocity Verlet algorithm [150, 151]

is used because of its robustness, ease of implementation and its superior energy

conservation properties [135, 136]. Verlet algorithm is derived from the two Taylor

expansion (third order) of r(t), one backward and other forward. Let v(velocity),

a(acceleration) and b are the first, second and third order derivative of the r(t) then,

r(t+ △t) = r(t) + v(t)△t+ a(t)
△t2
2

+ b(t)
△t3
6

+ o(△t4)
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r(t−△t) = r(t) − v(t)△t+ a(t)
△t2
2

− b(t)
△t3
6

+ o(△t4)

Adding above two equation and re-arranging leads to

r(t+ △t) = 2r(t) − r(t−△t) + a(t)△t2 + o(△t4)

The algorithm essentially does {r(t), a(t), r(t−△t)} → {r(t+ △t), a(t+ △t)} . The

a(t) can be calculated from the force divided by mass, which in turn is a function of

r(t). a(t) = − 1
m
∇U(r(t)), at every instant compute the force, which makes the system

to evolve. The truncation error of the algorithm is of the order of △t4. One drawback

of Verlet algorithm is that velocities are not directly generated, which is required to

compute the kinetic energy of the system and it is mandatory to check the energy

conservation criteria. The velocities can be obtained from the positions as follows

v(t) =
r(t+ △t) − r(t−△t)

2△t

The error involved in the above expression is of the order of △t2 rather than △t4.

To overcome the above limitation, another form of Verlet algorithm has been devised,

which computes the position, velocity and acceleration at time t + △t from their

values at time t. This variant is known as velocity Verlet algorithm and it works in

the following way

{r(t), v(t), a(t)} → {r(t+ △t), v(t+ △t), a(t+ △t)}

r(t+ △t) = r(t) + v(t)△t+ a(t)
△t2
2

v(t+ △t) = v(t) +
[

a(t) + a(t+ △t)
]△t

2

The velocity Verlet algorithm is mathematically equivalent to Verlet algorithm. It

explicitly includes the velocity at each time step, and it is self-starting from the initial

positions and velocities.
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B3. Updating the neighbour list : Most time consuming part of MD simulation

is the energy or force evaluation. For a system of N particle it is needed to evalu-

ate N(N−1)
2

pair interactions. This implies that the time needed for the evaluation of

forces scales as N2 [136]. To speed up the calculations Verlet [150, 151] suggested

a technique, in which another cut-off radius (rv) is defined apart from the potential

cut-off radius (rc) in such a way that rv > rc. Before one starts the calculations, for

a given particle i, a list of all other atoms within rv is constructed. For further calcu-

lation of interactions, only those particles in this list is considered. If the maximum

displacement of particles is less than rv − rc, then only those atom in the list needs

to be considered. This is a calculation of the order N . If any particle crosses rv , the

list has to be updated, and this operation is of the order of N2, but need not be done

at all time-steps. The list needs to be updated only at regular intervals [136]. This

technique works for systems with short-range interactions, whereas in the case of long

range interactions special lattice summation techniques are needed [152].

2.2.2.3 C. Equilibration

C1. Equilibrating the system at desired temperature and/or pressure:

Before computing the physical properties one has to equilibrate the system under

certain desired conditions. If the equations of motion is integrated as discussed be-

fore, the total energy of the system will not change, and the system is said to be in

microcanonical ensemble (NVE). In this ensemble, the total number of particles N,

system volume V, and total energy E are kept constant. The main limitation of NVE

ensemble is that, most of the experiments are not performed under the conditions

of constant total energy. To simulate the actual experimental situation one has to

use other ensembles such as canonical (NVT) and isobaric-isothermal (NPT), which

allows to keep the system under a particular temperature and pressure.

The temperature enters into MD simulation via equipartition theorem. The temper-

ature and particle velocities are related through mean kinetic energy(K) as
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K =
3

2
NkBT =

1

2

N
∑

i=1

〈

miv
2
i

〉

(2.27)

where N is the number of particle and kB is the Boltzmann constant. The initial

velocities are assigned from a Maxwell-Boltzmann distribution at the desired temper-

ature. There are several method to control temperatures, the most trivial method is

velocity rescaling, in which the velocities of particles are scaled with a factor
√

Tdesired

Tcurrent

to obtain the desired temperature. The inherent problem with this method is that it

does not allow the fluctuation in temperature which is always present in canonical en-

semble. Another possibility of reproducing the canonical ensemble is coupling the MD

system with an external thermostats. In doing so the equations of motion are mod-

ified, hence the total energy is not conserved in NVT and NPT ensemble, rather, it

fluctuate around the mean value [153]. Several thermostats have been made to control

the temperature such as Andersén [154], Berendsen [155] and Nosé-Hoover [156, 157].

In this thesis Nosé-Hoover thermostats are used to control the temperatures.

The definition of the pressure is not straightforward as temperature. The Virial

theorem can be used to calculate the pressure, which relates the pressure to the

product of the positions and forces as follows

P =
NkBT

V
+

1

3V

〈

∑

i

∑

i<j

(rij.Fij

〉

(2.28)

Where N is the number of atoms, rij is the distance between a pair of interacting atoms

and Fij is the corresponding force, and sum is over all pairs. The methods used to

control the pressure are analogous to the one used for temperature control. The system

pressure is set by changing the simulation volume with a scaling factor. The scaling

is done for both simulation cell dimensions and the position of particles (Berendsen

barostat). Nosé-Hoover scheme is also available to control the pressure [156, 157].

A suitable combination of Nosé-Hoover thermostat and barostat will reproduce the

proper NPT ensemble.
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2.2.2.4 D. Averaging

D1. Compute the average of the measured quantities of interest: Accord-

ing to statistical mechanics, the macrostates (such as T, P, V, and N) are represented

as averages over the microstates (ri, pi) of the system (configurations) in an ensemble,

known as ensemble average. In MD simulations, instead of ensemble average, time

average is used to obtain the thermodynamic variables, this is motivated by ergodic

hypothesis. The ergodic hypothesis postulates that for sufficiently long time the phase

trajectory of a closed system passes arbitrarily close to every point in phase space.

This implies that average over phase space or average over a trajectory are equivalent.

〈

A
〉

Ensemble
=
〈

A
〉

T ime
(2.29)

After ensuring that the system has equilibrated properly in a particular ensemble,

one can start the production runs. The system has to evolve for sufficiently long time

to hold good the ergodic hypothesis. After that point, averaging among any of the

physical quantities of interest can be started.
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2.3 Theoretical methods - For vibrational proper-

ties of solids

Many important physical properties of materials such as thermal expansions, specific

heat, thermal conductivity and phase transitions stems from the dynamics of the

atoms [158, 159]. The collective vibrations of atoms in a solid form a traveling wave,

called lattice vibrations. The subject which deals with the study of lattice vibrations

is known as lattice dynamics (LD). At sufficiently low temperatures (well below Debye

temperatures), these traveling waves are decoupled and does not interact with each

other. They behave like independent harmonic-oscillators, which are called normal-

modes of vibrations and their quanta is known as “phonon”. At very low temperature,

the phonon properties can be evaluated by harmonic approximation. The anharmonic

effects are studied using quasi-harmonic and anharmonic LD methods. In the following

section, the harmonic, quasi-harmonic and anharmonic LD methods are reviewed

briefly.

2.3.1 Lattice dynamics

In this section, the basic theory of lattice dynamics (LD) is briefly reviewed. The

detailed description can be found in the literature [158, 159]. Vibrations occur due to

the displacement of atoms from their equilibrium configurations. Assuming that the

displacement of atoms, u
(

l

κ

)

are small around the equilibrium positions, r
(

l

k

)

{where l

is the unitcell index (l = l1, l2, l3, set of integers) and κ is basis index (κ=1, 2,... Nb)}

the crystal potential energy can be expressed as Taylor series. The Taylor expansion

is truncated at second order-term, which is a key approximation in the theory of LD

known as harmonic approximation. Under harmonic approximation, the potential

energy can be expressed as follows;
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Φ = Φ(0) + Φ(1) + Φ(2) (2.30)

where

Φ(0) = Φ

(

r

(

l

κ

))

,

Φ(1) =
∑

lkα

∂Φ

∂uα

(

l

κ

) uα

(

l

κ

)

∣

∣

∣

∣

∣

0

=
∑

lkα

Φα

(

l

κ

)

uα

(

l

κ

)

,

Φ(2) =
1

2

∑

lkα

∑

l
′
k
′
β

∂2Φ

∂uα

(

l

κ

)

∂uβ

(

l
′

κ
′

)

∣

∣

∣

∣

∣

0

uα

(

l

κ

)

uβ

(

l
′

κ′

)

=
1

2

∑

lkα

∑

l′k
′
β

Φαβ

(

l l′

κ κ′

)

uα

(

l

κ

)

uβ

(

l
′

κ′

)

where α, β = x, y, z are the Cartesian components.

The first term (Φ(0)) in equation 2.30 does not depend on displacement, hence can be

considered as zero. In equilibrium configuration the force on every atom must vanish,

this leads to Φα

(

l

κ

)

= 0, for every α, κ, l. Hence Φ(1) = 0.

Now the Hamiltonian under harmonic approximation can be written as follows

H = T + Φ (2.31)

H =
∑ p2

α

(

l

κ

)

2mκ

+
1

2

∑

lkα

∑

l′k
′
β

Φαβ

(

l l′

κ κ′

)

uα

(

l

κ

)

uβ

(

l
′

κ′

)

(2.32)

where Pα

(

l

κ

)

is the momentum conjugate to uα

(

l

κ

)

. From Hamilton’s equations, one

can directly obtain the equations of motion as

− ṗα

(

l

κ

)

= −mκüκ

(

l

κ

)

=
∑

l′k
′
β

Φαβ

(

l l′

κ κ′

)

uβ

(

l′

κ′

)

(2.33)

From equation 2.33 it is evident that Φαβ

(

l l′

κ κ′

)

is the negative of the force exerted

on
(

l

κ

)th
atom along α direction due to displacement of

(

l′

κ′

)th
atom along β direction.
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This quantity (Φαβ) is referred as force constant, symbolizing the spring constant in

Hook’s law.

If an infinitesimal translation is given to a crystal, all the atoms will have same

displacement (ǫβ) and doesn’t make any restoring force, hence from equation 2.33 we

can write

0 =

[

∑

l′k
′

Φαβ

(

l l′

κ κ′

)

ǫβ

]

(2.34)

where ǫβ is arbitrary hence

∑

l′k
′

Φαβ

(

l l′

κ κ′

)

= 0 (2.35)

This is known as translational sum rule, and it helps to determine the self force

constant(lκ = l
′

κ
′

), which has not been defined in equation 2.33. The diagonal terms

is given by

Φαβ

(

l l

κ κ

)

= −
∑

l′k
′ 6=lk

Φαβ

(

l l′

κ κ′

)

(2.36)

Due to the periodicity of crystal, the displacement of the corresponding atoms in

different cells are equivalent apart from a phase factor, hence one can assume a wave-

like solution to equation 2.33

uα

(

l

κ

)

=
1√
mk

Uα(κ|q̄) exp
[

i

(

(q̄.r̄(l) − ω(q̄)t)

)

]

(2.37)

where q is the wave vector and ω(q) is the angular frequency associated with the

wave. Substituting equation 2.37 into equation 2.33 leads to the following 3n-coupled

equations of motion in the wave amplitude Uβ(κ′|q);

ω2(q)Uα(κ|q) =
∑

k′β

Dαβ

(

q

κκ′

)

Uβ(κ′|q) (2.38)

where Dαβ is the dynamical matrix and it is given as
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Dαβ

(

q

κκ′

)

=
1√

mκmκ′

∑

l′

Φαβ

(

l l′

κ κ′

)

exp

[

iq.

(

r̄(l′) − r̄(l)

)

]

(2.39)

Equation 2.38 can be written in matrix form as

ω2(q̄)U(q̄) = D(q̄)U(q̄) (2.40)

From equation 2.40, it is clear that the lattice dynamics now essentially became eigen-

value problem. The frequencies and polarizations of normal modes are obtained by

diagonalizing the dynamical matrix. The equation 2.40 will have a non-trivial solu-

tion, if the determinant of coefficients vanishes, and the secular equation is

det

∣

∣

∣

∣

Dαβ

(

q

κκ′

)

− ω2(q̄)δκκ′δαβ

∣

∣

∣

∣

= 0 (2.41)

Solving 2.41 yields 3n eigenvalues, which are labelled as ω2
j (q̄) (j=1,2,... 3n). Since

the dynamical matrix
(

D(q̄)
)

is Hermitian, the eigenvalues ω2
j (q̄) are real . A neg-

ative eigenvalue would lead to a purely imaginary frequency, which implies that the

displacements of atoms increases indefinitely with time, leading to destruction of crys-

tal; that means the system under study is dynamically unstable. The eigenvectors

Uα

(

κ

∣

∣

∣

∣

q
j

)

can be obtained by substituting the eigenvalues ω2
j (q̄) to equation 2.38. Be-

ing Hermitian the eigenvectors of D(q̄) can be chosen as orthonormal. We can write

the jth eigenvector Uα

(

κ

∣

∣

∣

∣

q
j

)

as

Uα

(

κ

∣

∣

∣

∣

q
j

)

= A

(

q̄

j

)

eα

(

κ

∣

∣

∣

∣

q
j

)

(2.42)

where A
(

q̄

j

)

is the amplitude of the mode, eα

(

κ

∣

∣

∣

∣

q
j

)

is the components of eigenvector,

which determine the pattern of displacement of atoms in the unitcell for a particular

normal mode and hence it is referred as polarization vector. Under some special

circumstances the polarization vectors are either parallel (or perpendicular) to q, then

the mode is said to be longitudinal (or transverse) [158].
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2.3.2 Quasi-harmonic approximation (QHA)-incorporates vol-

ume dependence of frequency

LD calculations can be used to obtain the frequencies and polarizations of normal

modes under harmonic approximation. For a truly harmonic crystal there will be

no thermal expansion and also its thermal conductivity will be infinite [160]. This is

contradicting with experimental observations, which predicts a finite value for thermal

conductivity at a given temperature. The above contradiction is due to the complete

absence of anharmonicity in LD calculations which are always associated with the

crystal [158]. To model the finite temperature properties such as thermal expansion,

thermal conductivity, and higher order phonon-phonon scattering processes, one has

to go beyond harmonic approximation [158, 161, 162]. As temperatures increases

the lattice expands/contracts, hence the mean positions of atoms changes from r0
(

l

κ

)

to rT
(

l

κ

)

, and the latter can be determined by minimizing the free-energy [161].

In order to device a theory to explain the temperature dependence of vibrations of

atoms, Leibfried and Ludwig [163] proposed that the crystal potential energy can be

expanded around the mean positions for a given temperature .

ΦT = Φ
(0)
T + Φ

(1)
T + Φ

(2)
T (2.43)

where

Φ
(0)
T = ΦT

(

r

(

l

κ

))

,

Φ
(1)
T =

∑

lkα

∂ΦT

∂rα

(

l

κ

) uT
α

(

l

κ

)

∣

∣

∣

∣

∣

mean.posi at T

=
∑

lkα

ΦT
α

(

l

κ

)

uT
α

(

l

κ

)

,

Φ
(2)
T =

1

2

∑

lkα

∑

l
′
k
′
β

∂2ΦT

∂rα

(

l

κ

)

∂rβ

(

l
′

κ
′

)

∣

∣

∣

∣

∣

mean.posi at T

uT
α

(

l

κ

)

uT
β

(

l
′

κ′

)

=
1

2

∑

lkα

∑

l′k
′
β

ΦT
αβ

(

l l′

κ κ′

)

uT
α

(

l

κ

)

uT
β

(

l
′

κ′

)

The potential energy around the means positions corresponds to a particular temper-
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ature and the Taylor expansion is truncated at second order. This method is known

as quasi-harmonic approximation (QHA). In QHA the atoms are vibrating around

the mean positions harmonically. The dynamics of the problem is same as before,

and the new force constant is represented as ΦT
αβ

(

l l′

κ κ′

)

. The new force constant

is evaluated as the second derivative of potential energy around the mean-positions,

which changes with temperature. Since the force constant matrix contains the effect

of thermal expansion, unlike harmonic theory, the mode frequencies are temperature

dependent here. In QHA, the anharmonicity arises from thermal expansion is incor-

porated, but anharmonicity due to the movement of atoms are still excluded. The

QHA works well at intermediate temperatures and it may not be suitable at higher

temperature because of the phonon–phonon interactions which are not included in

QHA [134].

2.3.3 Thermodynamic properties

2.3.3.1 Thermodynamics under harmonic approximation:

In harmonic model the normal modes of vibrations are treated as independent har-

monic oscillator. Within harmonic model, many physical quantities can be derived

at low temperatures, where the phonon modes are assumed to be independent [164].

The thermodynamic quantities can be derived by setting up the partition function.

The partition function for a single quantum harmonic oscillator with energy ǫi = ~ωi

Zi =

∞
∑

n=0

exp

(

−(n+ 1
2
)~ωi

kBT

)

(2.44)

Zi =

exp

(

− ~ωi

2kBT

)

1 − exp

(

− ~ωi

kBT

) (2.45)

Equation 2.45 is obtained from equation 2.44 by assuming it as a geometric series with

constant factor exp
(

− ~ωi

2kBT

)

. The partition function of a harmonic solid containing

N atom can be written as the product of individual partition function [164]
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ZN =

3N
∏

i

Zi =

3N
∏

i

exp

(

− ~ωi

2kBT

)

1 − exp

(

− ~ωi

kBT

) (2.46)

Now all other thermodynamic properties of crystal can be derived from the partition

function. The vibrational free energy Fvib and vibrational entropy Svib are given as

Fvib = −kBT lnZ =
1

2

3N
∑

i

~ωi + kBT

3N
∑

i

ln

(

1 − exp

(

− ~ωi

kBT

)

)

(2.47)

Svib = −dF
dT

= kB

3N
∑

i

[

− ln

(

1 − exp

(

− ~ωi

kBT

)

)

+

(

~ωi

kBT

)

(

exp ~ωi

kBT
− 1
)

]

(2.48)

The specific heat at constant volume is

Cv = −T
(

∂2F

∂T 2

)

= kB

3N
∑

i

(

~ωi

kBT

)2 exp
(

~ωi

kBT

)

(

exp ~ωi

kBT
− 1
)2 (2.49)

2.3.3.2 Quasi-harmonic thermodynamics:

In QHA, the phonon frequencies are dependent on the structural parameter {ai},

hence ωi → ωi{ai}. The free energy in QHA can be written as

F
(

{ai}, T
)

= E
(

{ai}
)

+
1

2

3N
∑

i

~ωi{ai}+kBT

3N
∑

i

ln

(

1− exp

(

−~ωi{ai}
kBT

)

)

(2.50)

where E
(

{ai}
)

is the ground state energy. The direct minimization of free energy

gives the equilibrium structure at a given temperature. This formalism can be used

to derive many temperature dependent thermodynamics properties, such as thermal

expansion, Grüneisen parameter and heat capacity. The linear thermal expansion

coefficient can be determined in two ways, first one is the direct minimization of quasi-

harmonic free energy (equation 2.50) for each lattice parameter at a given temperature.

This will give a lattice parameter a(T ) at that temperature for which free energy is

minimum. Now the linear thermal expansion coefficient can be obtained as
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α(T ) =
1

a(T )

da(T )

dT
(2.51)

The second formalism is the Grüneisen parameter based, which assumes a linear

dependence of the phonon frequencies on three orthogonal cell direction {ai} [165]

α =
1

a2
o

∂2E
∂a2

∣

∣

∣

0

∑

i

Cv,i

−a0

ω0,i

∂ωi

∂a

∣

∣

∣

∣

∣

0

(2.52)

where subscript 0 indicate the quantity computed at equilibrium and Cv,i is the specific

heat contribution from the ith(i=q, j) phonon mode

The Harmonic theory yields the specific heat at constant volume Cv. But experimen-

tally we are measuring specific heat at constant pressure Cp , and it can be obtained

from the following relationship

Cp(T ) − Cv(T ) = αv(T )2BV T (2.53)

where αv is the volume thermal expansion and B is bulk modulus and it is defined as

B = −V dP
dV

.

2.3.4 Anharmonic lattice dynamics - introduces the interaction

between the phonon modes

Both harmonic and quasi-harmonic approximation treat the phonon modes as decou-

pled. Once a phonon mode gets excited, it vibrates indefinitely without decaying its

energy into the other modes. In anharmonic LD, the interaction between the phonon

modes are introduced as a perturbation to the quasi-harmonic solution [166–168], and

the anharmonic phonon frequency (ωA) and lifetime time (τ) can be written as follows

ωA

(

q

j

)

= ω

(

q

j

)

+ ∆

(

q

j

)

(2.54)

τ

(

q

j

)

=
1

2Γ
(

q

j

) (2.55)
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where ∆
(

q

j

)

is the shift in the quasi-harmonic mode frequency ω
(

q

j

)

and Γ
(

q

j

)

is the

phonon linewidth. The frequency shift and linewidth are the second order anharmonic

corrections to the quasi-harmonic frequencies, which contains the contributions from

the three and four phonon processes. The three and four phonon processes depends

on the third and fourth order derivative of the potential energy(Φ) [166]. Using this

formalism the mode dependent frequency shift and linewidth can be obtained, with

which one can compute the thermal conductivity [166]. Density functional perturba-

tion theory (DFPT) [134] formalism has been used to compute the frequency shift

and lifetime of phonon modes using anharmonic LD [169, 170]. In anharmonic LD,

the potential energy is truncated at third or fourth order (difficult to implement in

DFPT) in the displacement of the atoms from their equilibrium position, by assum-

ing that the higher order phonon processes are negligible. This assumption may not

be valid in many crystals which shows strong anharmonicity at higher temperatures,

where the higher order phonon process are important [171]. The high computational

cost involved in DFPT calculations, restrict this studies at Γ point (q = 0). DFPT

based studies can incorporate only few hundreds of atoms, hence the thermal proper-

ties (say thermal conductivity) computed using this formalism will be prone to finite

size effects.

2.3.5 Phonons from MD simulations - incorporates the full an-

harmonicity of interatomic potential

The lattice dynamics methods are reviewed in detail in section 2.3.1. The LD meth-

ods can incorporate at most third (in general) or fourth order phonon process. To

incorporate the full anharmonicity of interatomic potential one has to depend on MD

simulations. This section discusses the theoretical formalism adapted to compute the

phonon frequencies within the classical MD framework.
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2.3.5.1 Velocity-Velocity Auto correlation Function (VACF):

Velocity-Velocity auto correlation
〈

v (t) v (0)
〉

is the most commonly used method to

compute the phonon frequencies from MD simulations. The normalized VACF can

be defined as

Cv(τ) =

〈

v̄i (τ) v̄0(0)
〉

〈

v̄i (0) v̄0 (0)
〉 (2.56)

where the expectation value is computed as

〈

v̄i (τ) v̄0 (0)
〉

=
1

3Nτ ′

τ
′

∑

t

3N
∑

i

v̄i(t+ τ)v̄i(t) (2.57)

The summation ranges over all the frames in time (from 0 to τ
′

= M∆t) and over

the 3N velocity components. The Fourier transform of the equation 2.56 will give the

phonon density of states (PDOS) [172–174]

g (ω) =

�
exp (iωt)

〈

v̄i (t) v̄i (0)
〉

〈

v̄i (0) v̄i (0)
〉dt (2.58)

The VACF is prone to finite size effects hence large simulations cells are required,

also simulation has to run for long time to ensure the convergence in the correlation

functions.

2.3.5.2 Phonon dispersion from an effective dynamical matrix - fix-phonon method.

Ling Ti Kong [104] proposed a method to compute the phonon dispersion directly from

MD simulations, and implemented as an extension (known as fix-phonon method) to

classical MD simulation package LAMMPS. Using this method phonon dispersion and

PDOS can be computed at any finite temperature well below the melting point. The

theoretical derivation of this method is discussed below

Consider a single particle with mass m which is connected to its equilibrium position

by a massless spring with force constant k. Particle will fluctuate around the equi-

librium position even in the absence of external force. Let us assume that it vibrates

along x-direction only, under equilibrium condition an equipartition of energy will be

expected, hence it can be written as
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1

2
k〈∆x2〉 =

1

2
m〈v2〉 =

1

2
kBT (2.59)

where the 〈..〉 denotes the ensemble average, ∆x is the displacement and v is the

velocity of particle. kB is the Boltzmann constant and T is the temperature. If

temperature can be defined for a single particle, then the force constant will be

k =
KBT

〈∆x2〉 (2.60)

The above relationship will be valid only for a real crystal under harmonic approxima-

tion. For a real crystal, the lattice Green’s function coefficient (Glkα,l
′
k
′
β) is obtained

from the second moment of the displacement [175, 176]

Glkα,l
′
k
′
β = 〈ulkαul

′
k
′
β〉 (2.61)

Now the force constant can be written as

Φlkα,l
′
k
′
β = kBT

[

G−1
]

lkα,l
′
k
′
β

(2.62)

Computing the Green’s function coefficient in reciprocal space is more convenient

due to the periodic boundary conditions. The displacement in reciprocal space is the

Fourier transform of the real space ones

ũlkα(q) =
1√
N

∑

l

ulkαexp(−iq.r̄l) (2.63)

Here N is the total number of unitcells in the crystal. The Green’s function in

reciprocal space is

G̃lkα,l
′
k
′
β(q) = 〈ũlkαũ∗l′k′β〉 (2.64)

where * denotes the complex conjugate. The force constant is then given by

Φ̃lkα,l
′
k
′
β(q) = kBT

[

G̃−1(q)
]

lkα,l
′
k
′
β

(2.65)

Equation 2.65 gives the force constant matrix in the reciprocal space, which is nothing
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but the dynamical matrix. Once dynamical matrix is available the mode frequencies

and polarization can be obtained by simply solving the eigenvalue problem (equation

2.40).

In summary, the displacement of atoms are extracted during the MD simulation and

the Green’s function is computed in reciprocal space, which will give the force constant

matrices in reciprocal space (dynamical matrices) by simple matrix operations. This

method uses harmonic and quasi-harmonic mode frequency relationship to construct

the dynamical matrices. At finite temperature the crystal Hamiltonian is replaced

with an effective one at an average lattice parameter. Hence this method can be

considered as an extension of QHA to MD simulations. More-over this method cannot

predict the mode resolved frequency shift and linewidth.

2.3.5.3 Spectral energy density (SED) method

Both the VACF and effective dynamical matrix method cannot predict the mode

resolved phonon frequency shift and linewidth at finite temperatures, also the later

cannot incorporate the full anharmonicity of interatomic potential. To overcome above

limitations, a spectral energy density (SED) based method [177, 178] is adapted and

coupled with classical MD simulation package LAMMPS [179]. Several in-house codes

were developed, and using those codes one can compute phonon dispersion, Phonon

DOS, mode resolved phonon frequencies, linewidths (at any q̄ point in the Brillouin

zone) and coupling of normal modes of vibrations. The theoretical formalism behind

the SED method is discussed below.

Let {eα

(

κ

∣

∣

∣

∣

q
j

)

, α = x, y, z; κ = 1.....Nb} be the polarization vector corresponding to

the jth normal mode of vibration of the crystal with wave-vector q within the harmonic

approximation (here Nb is the number of atoms in the basis). The αthcomponent of

displacement of the κth atom in the lthcell at a time t is given by

uLD
α

(

l
κ

∣

∣

∣

∣

t

)

=
1√
N

∑

q̄,j

eα

(

κ

∣

∣

∣

∣

q
j

)

A

(

q

j

)

exp

(

iq̄.r(l) − iω

(

q

j

)

t

)

(2.66)
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where A
(

q

j

)

is the amplitude of jth mode of frequency ω
(

q

j

)

. The corresponding velocity

can be written as

vLD
α

(

l
κ

∣

∣

∣

∣

t

)

= − 1√
N

∑

q̄,j

iω

(

q

j

)

eα

(

κ

∣

∣

∣

∣

q
j

)

A

(

q

j

)

exp

(

iq̄.r(l) − iω

(

q

j

)

t

)

(2.67)

Let vα

(

l
κ

∣

∣

∣

∣

t

)

be the velocity of the
(

l

κ

)th
particle at time t at finite temperature (ob-

tained say from MD simulations or some other means). We can project the velocities

of the particles on to the jth normal mode of vibration with wave-vector q of the

perfect crystal by defining a quantity ψ

(

q̄
j

∣

∣

∣

∣

t

)

given by

ψ

(

q̄
j

∣

∣

∣

∣

t

)

=
∑

α,κ

(

∑

l

vα

(

l
κ

∣

∣

∣

∣

t

)

exp
(

−iq̄.r̄(l)
)

)

e∗α

(

κ

∣

∣

∣

∣

q
j

)

(2.68)

In case the velocities are obtained from time evolution within the harmonic approxi-

mation, the corresponding quantity ψLD

(

q̄
j

∣

∣

∣

∣

t

)

is given by

ψLD

(

q̄
j

∣

∣

∣

∣

t

)

=
∑

α,κ

(

∑

l

vLD
α

(

l
κ

∣

∣

∣

∣

t

)

exp
(

−iq̄.r̄(l)
)

)

e∗α

(

κ

∣

∣

∣

∣

q
j

)

(2.69)

The right hand side of equation (2.69) is given by

=
1√
N

∑

α,k

∑

q̄′,j′

(

−i
)

ω

(

q̄′

j′

)

A

(

q̄′

j′

)

exp

(

−iω
(

q̄′

j′

)

t

)

× eα

(

κ

∣

∣

∣

∣

q̄′

j′

)

e∗α

(

κ

∣

∣

∣

∣

q
j

)

∑

l

exp
(

i(q̄′ − q̄).r̄(l)
)

Using the fact that
∑

l exp

(

i(q̄′− q̄).r̄(l)
)

= Nδq̄,q̄′ and the ortho-normality condition

∑

α,k eα

(

κ

∣

∣

∣

∣

q
j′

)

e∗α

(

κ

∣

∣

∣

∣

q
j

)

= δj,j′ the above equation can be re-written as

ψLD

(

q̄
j

∣

∣

∣

∣

t

)

=
(

−i
)
√
N ω

(

q

j

)

A

(

q

j

)

exp

(

−iω
(

q

j

)

t

)

(2.70)
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The time Fourier transform of equation 2.70 is

ψ̃LD

(

q̄
j

∣

∣

∣

∣

ω

)

=

�
dt exp

(

−iωt
)

ψLD

(

q̄
j

∣

∣

∣

∣

t

)

=
(

−i
)
√
N ω

(

q

j

)

A

(

q

j

)

2πδ

(

ω−ω
(

q

j

)

)

(2.71)

The power spectrum
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∣

∣

∣
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ψ̃LD
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j
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∣

∣

ω
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∣

∣

∣

∣
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2

is infinitely sharply peaked at the mode frequency

ω
(

q

j

)

. The

∣

∣

∣

∣

∣

ψ̃LD

(

q̄
j

∣

∣

∣

∣

ω

)

∣

∣

∣

∣

∣

2

constructed in this manner should give the spectral density

of the vibration of a system at any temperature resolved on to the
(

q

j

)

th normal mode

of the harmonic crystal.

2.4 Benchmarking of codes

The lattice dynamics (LD) problem essentially involves the evaluation of force con-

stants and further the dynamical matrices (section 2.3.1). Diagonalizing the dynami-

cal matrix will yield the square of the mode frequencies (eigenvalues) and polarizations

(eigenvectors). This is shown schematically in figure 2.2

Figure 2.2 – The schematic representation of lattice dynamics method

The objective of the problem is to construct the force constant matrices. Tradi-

tionally, analytical models are used to define the interaction between the atoms and

evaluate the force constants. Force constants can be derived in various other routes,
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and most of them essentially involves fitting the theoretical models to experimental

data such as phonon dispersion (obtained from in-elastic neutron scattering), specific

heat and compressibility. The analytical models were replaced by electronic struc-

ture calculations with the development of powerful ab initio calculation tools [180].

The ab initio methods are tedious and computationally expensive. In order to get a

quick and accurate estimation of phonon frequencies and polarization, LD based on

empirical potentials is adapted, in which the force constants are computed using em-

pirical potentials rather than the electronic structure calculations. An in-house code

has been developed to compute the force constants using a synergetic combination of

LAMMPS [179] and Phonopy [181]. The work flow of this method is as follows. A

super cell of appropriate size is created, the atoms which are inequivalent by symme-

try are displaced along the inequivalent directions by a fixed amount (figure 2.3) and

the force acting on each atom is calculated by LAMMPS using empirical potentials.

These forces are given to phonopy as FORCE SETS. Phonopy uses the FORCE SET

to compute the dynamical matrix and then mode frequencies and polarizations.

Figure 2.3 – (left) Schematic of supercell with displacements;(right) The work flow
of the lattice dynamics based on empirical potential using a combination of LAMMPS
and Phonopy
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2.4.1 Lattice dynamics of Si

The benchmarking of the code has been done using Si (diamond-structure). LD cal-

culations are done with a supercell of size 3Ö3Ö3 using various empirical potentials.

Figure 2.4 shows the phonon dispersion and phonon DOS (PDOS) of Si. The unit-

cell of Si contains 2 basis atoms hence there will be six modes of vibrations, three

of them are acoustic (A) and remaining three are optic (O) modes. The modes are

labeled according to their polarizations the letter ’L’ and ’T’ are used to designate

longitudinal and transverse polarizations. The accuracy of the results depends on

the quality of empirical potentials, hence to choose a proper empirical potential, cal-

culations are done with SiC-Tersoff [182], Stillinger-Weber (SW) [144] and modified

Stillinger-Weber (mod.SW) potentials [183]. The phonon frequencies at high symme-

try points in the Brillouin zone are tabulated and compared with experiment (table

2.2). The original SW potential largely overpredict the Γ point degenerate longitudi-

nal optic and transverse (LO/TO) mode frequency by 15.18 %. The Tersoff potential

also overpredict the LO/TO mode frequency at Γ point by 3.87 %. At the same time,

the modified SW potential predict the Γ point LO/TO mode frequency reasonably

accurate and it is 1.50 % smaller than the experimental one. In the case of acoustic

modes, the LA mode frequencies are in good agreement with experiments. All three

potentials largely under predict the TA mode frequency at the boundary of X and L

points. This problem has been already reported with Tersoff potential [184]. Among

three potentials, the modified SW reproduces the Γ point LO/TO mode frequency

accurately, but it could not reproduce the acoustic mode (LA-mode) as good as Ter-

soff potential. Over-all analysis shows that the Tersoff potential can reproduce both

optic and acoustic modes reasonably well, hence it will be used to predict the finite

temperature phonon properties.
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Figure 2.4 – The Phonon dispersion and DOS of Si, computed using lattice dynamics
with various empirical potentials. The blue-spheres are experimental data taken from
references [185, 186]

Table 2.2 – The phonon frequencies (in cm-1) of Si at different high symmetry point
in the Brillouin zone. The Letters S, D and T denotes the single, double and triple
degenerate modes.

mode SiC-Tersoff SW mod.SW Expt.

LO/TO(Γ) 536.01 (T) 594.37(T) 508.30 (T) 516.01
TA (X) 229.59 (D) 221.69 (D) 212.79 (D) 149.03

LA/LO (X) 406.69 (D) 433.08 (D) 373.54 (D) 406.39
TO (X) 496.84 (D) 520.92 (D) 426.68 (D) 465.11
TA (L) 155.55 (D) 156.76 (D) 150.46 (D) 115.41
LA (L) 376.85 (S) 392.24(S) 354.10 (S) 380.42
LO (L) 438.93 (S) 446.57 (S) 364.67 (S) 419.59
TO (L) 514.66 (D) 558.85 (D) 469.27(D) 486.98

2.4.2 Phonon frequencies at finite temperatures from classi-

cal MD simulations

The finite temperature phonon properties are computed by resorting to classical MD

simulations. The size of the simulation cell is chosen in such a manner that the

temperature and pressure of the system stabilizes to the required value. It is found

that a 15Ö15Ö15 supercell containing 6750 atoms is adequate, in this respect. Periodic

boundary condition is employed in all the three directions. The initial geometry

is relaxed using the conjugate gradient algorithm to eliminate the residual stresses.

The system is equilibrated by coupling it to a Nosé-Hoover thermostat at constant
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temperature and under ambient pressure (NPT ensemble) for 500 ps. The NPT

ensemble allows change in the volume of the cell with respect to temperature and hence

incorporates the anharmonic effects without any approximations. The velocities of all

atoms are collected in the NVE (micro-canonical) ensemble. How often the velocities

of all the atoms should be collected is determined by Nyquist theorem, according to

which the sampling frequency should be at least twice the highest frequency contained

in the signal. From the LD calculations it is known that the maximum frequency of

vibration
(

νmax

)

in Si is ∼540 cm-1(16.21 THz). So the sampling interval can be

obtained as △t = 1
2νmax

= 31 fs. The Nyquist theorem demands that the velocities of

all the atoms should be sampled at least every 31 fs. In the present simulations the

velocities are sampled at every 5 fs. The simulations are carried out for 3.2 ns.

2.4.2.1 Phonon dispersion and phonon DOS (PDOS)

To study the finite temperature effect on phonon frequencies, the temperature depen-

dent phonon dispersion is computed directly from MD simulations using SED method.

The modes of vibration of the crystal at finite temperature are labeled in terms of

wavevectors q̄ belonging to the Brillouin zone of the perfect crystal. When MD sim-

ulations are carried out on a simulation cell comprising of n1Ön2Ön3 unit cells with

periodic boundary condition along all the three directions, the allowed values of q̄ are

of the form j1Ā/n1 + j2B̄/n2 + j3C̄/n3. Here, Ā, B̄ and C̄ are the reciprocal lattice

vectors and 0 ≤ j1 < n1, 0 ≤ j2 < n2 and 0 ≤ j3 < n3, thereby giving n1Ön2Ön3

q-points. If there are n atoms per unit cell, there are 3nÖn1Ön2Ön3 modes of vibra-

tion. These modes are organized as 3n branches with n1Ön2Ön3 points along each

branch.

Figure 2.5 shows the phonon dispersion computed at 300 K (thick black) from MD

simulation using SED method. The LD phonon dispersion (green dash) is also shown

here for reference. The phonon dispersion obtained using SED method is in good

agreement with LD calculations and experiments, which guarantees the reliability of
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this method. The acoustic modes (LA and TA) obtained at 300 K, is identical to

LD dispersion, indicating its less sensitivity to temperature. The optic modes (LO

and TO) show softening at 300 K with respect to LD frequencies, and agreement

with experiments became better. This is due to the fact that, the MD simulations

and experiments are done at 300 K, whereas the LD frequencies are obtained at 0

K. The phonon DOS is obtained from the Fourier transform of velocity-velocity auto

correlation function (VACF) at 300 K is shown in figure 2.5.
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Figure 2.5 – (left) The phonon dispersion of Si computed at 300 K (thick black
lines) using spectral energy density (SED) method. The green dash lines are obtained
from LD calculations. The blue-spheres are experimental data taken from references
[185, 186]. (right) phonon DOS obtained from the Fourier transform of velocity-velocity
auto-correlation function (VACF).

2.4.2.2 Mode resolved phonon spectra

To study the softening of LO/TO mode frequencies, mode resolved phonon spectra (at

Γ point) is calculated as a function of temperature (Figure 2.6). At 300 K, the LO/TO

mode peaks at 530.62 cm-1 which is slightly (2.7 %) higher than that of experimental

value. The temperature dependent shift and broadening of peaks are clearly visible.

The exact peak position and linewidth is obtained by fitting a Lorentzian to the

frequency spread.

ψ̃

(

q̄
j

∣

∣

∣

∣

ω

)

=
A

(ω − ωc)
2 + γ2/4

(2.72)
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where 4A/γ2 is the peak height, ωc is the peak frequency and γ is the full width at

half maximum. The LO/TO mode frequency falls with an increase in temperature

(Figure 2.7), which is due to the softening of the force constants at higher lattice

parameters. The linewidth is increasing in a monotonous fashion with temperatures

(Figure 2.7).

To study the anharmonic effect on eigenvectors, the phonon frequency shift and

linewidth is computed in two different methods. In first method, the frequency shift

and linewidths are extracted by projecting the MD based atomic velocities on to the

normal modes of vibrations of a perfect crystal (obtained from LD calculations). In

an alternate method, the same quantities are computed directly from the Fourier

transform of atomic velocities obtained from the MD simulations. In this method a

priori knowledge of eigenvector is not necessary. The frequency shift obtained using

the above method (black square in figure 2.7) is identical to the one obtained with

projection technique (green upper triangle in figure 2.7); the linewidths shows a small

deviation.
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Figure 2.6 – The Γ point LO/TO mode frequency as a function of temperature. The
vertical (short dash) line is the LD peak position.
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2.4.2.3 Anharmonic coupling of normal modes

The phonon coupling and decay seen in the MD simulations can be modeled in terms

of the third and higher order terms in the expansion of lattice potential energy with

respect to displacement of atoms from equilibrium [187]. The third order anharmonic

term corresponds to three phonon processes and it is the simplest model used to

study anharmonic effects [167, 168]. There are two allowed processes in three phonon

interactions- in first process, one phonon of momentum k1 and energy ǫ
(

k1

)

decays

into two other phonons of momenta k2 and k3 and energy ǫ
(

k2

)

and ǫ
(

k3

)

, respec-

tively with ǫ
(

k1

)

= ǫ
(

k2

)

+ ǫ
(

k3

)

and k1 = k2 + k3 + G. In the second type, two

phonons combine to form a third one ǫ
(

k1

)

+ ǫ
(

k2

)

= ǫ
(

k3

)

and k1 + k2 = k3 + G,

where G is a reciprocal lattice vector, which will be zero in a normal process and

nonzero in an Umklapp process [187]. Since MD simulations are carried out with the

untruncated interaction potential, the anharmonicity is fully incorporated, and hence

all the higher order phonon process are included naturally.

Figure 2.8 shows the mode resolved phonon spectra at Γ, X and L point at 300 K. The

modes are designated as longitudinal or transverse as per their polarization at the Γ

point. The modes are, in general, neither longitudinal nor transverse, but of mixed

character, when the propagation is along a general direction. At Γ point, there are

three acoustic modes with zero frequency and three optic modes (triply degenerate
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LO/TO) with non-zero frequency. The LO/TO modes do not get coupled with other

modes at Γ point. At X point, all modes are having non- zero frequency. The TO

modes are coupled with LA/LO and TA modes. Similarly at L point, TO modes

with certain polarization get coupled with LA and TA, and TO modes with different

polarizations are coupled with LO, LA and TA modes. The modes are coupled due to

anharmonicity. While laborious calculations can, in principle, be done to analyze the

multi-phonon processes associated with decay of each mode for anharmonicity of a

particular order, there is no simple way of enumerating the decay channels taking into

account all orders of anharmonicity. Our method automatically incorporates decay

due to all orders of anharmonicity. This is one of the interesting features of the present

method.
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Figure 2.8 – Mode resolved phonon spectra at Γ, X and L point in the Brillouin
zone at 300 K. The modes are designated as longitudinal or transverse as per their
polarization at the Γ point
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2.5 Summary

The general aspects of density functional theory (DFT) and classical molecular dy-

namics simulations are discussed in the present chapter. The harmonic, quasi-harmonic

and anharmonic lattice dynamics theories are reviewed and their merits and demerits

are discussed. The above mentioned methods cannot incorporate the anharmonicity

of interatomic potential fully, hence a spectral energy density (SED) based method

is adapted to compute the phonon transport of materials directly from classical MD

simulations at finite temperatures. Several in-house codes were developed and cou-

pled with classical MD simulation package LAMMPS. These codes can be used to

compute the (1) Lattice dynamics properties of crystal at 0 K; (2) The phonon dis-

persion and phonon DOS at finite temperatures; (3) Mode resolved phonon spectra at

any point in the Brillouin zone; (4) Anharmonic coupling and decay of normal modes.

This technique can complement the results obtained from the optical (Raman and

IR) and neutron scattering experiments. Since MD simulation cannot incorporate

the electronic contributions, this method can’t be used to model the electronic ef-

fects, such as electron-phonon coupling and LO-TO splitting. These codes have been

benchmarked by computing the phonon dispersion, phonon DOS and mode resolved

phonon frequency shift and linewidth of Si (diamond-structure) at 300 K.
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Chapter 3

Stacking sequences and dynamical
stability of graphite structures

The electronic, optical and transport properties of few layer graphene or graphite can be

tuned by altering the stacking sequences between the graphene layers. In this chapter,

the structure and stability of several such plausible stacking sequences in the graphite

are investigated using ab inito and classical MD simulations.

3.1 Introduction

Graphite or few layer (FL) graphene is obtained by stacking the graphene sheet one

above another in a certain fashion. Based on the stacking sequences between the

graphene layers, there are two known forms of graphite (or FL-graphene) such as

AB-hexagonal (Bernal) [188] and ABC-rhombohedral strictures [189]. Varying the

stacking sequences between the graphene sheets leads to different graphite struc-

tures in addition to the AB-hexagonal or ABC-rhombohedral structures. Stacking

sequences are used as a probe to tune the electronic band gap, optical conductivity

and transport properties of few layer graphene [7]. Charlier et al [190] studied the

effect of stacking sequences on the electronic properties of graphite and found that the

stacking sequence alters the electrical conductivity. From the ab initio simulations

Andrews et al [191] predicted the existence of a structure based on AA stacking
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3. Stacking sequences and stability of graphite structures

with a strong covalent bonding between the layers which are having an inter-planar

separation of 1.56 Å. The study further showed that this structure is metastable with

respect to the standard AB graphite structure. Okada et al [192] studied the elec-

tronic structure of multilayer graphene with different stacking sequences using tight

binding approximation and found a qualitative agreement with that of graphite hav-

ing analogous stacking sequences. Savini et al [193] made the first detailed study on

the mechanical stability of graphite structures. In addition to the structures analyzed

by Charlier et al [190], they also studied the AB-orthorhombic structure. The authors

found that stacking sequences, which are different from the AB-hexagonal and ABC-

rhombohedral structures are mechanically unstable even though they are comparable

in free energy.

There is no detailed study on the dynamical stability of the stacking altered graphite

structures. In addition to the structures analyzed by Savini et al [193], one more stack-

ing sequence of type ABC...ABC... . . is proposed here, which leads to ABC-hexagonal

structure with a free energy comparable with that of the other structures. The vibra-

tional properties of hexagonal (AB-bilayer) and rhombohedral (ABC-trilayer) graphite

are studied using first principle calculations [44, 56, 194]. The first detailed study on

the effect of stacking sequence on phonon dispersion of multilayer graphene was made

by Yan et al [61]. In their study, they compared the phonon dispersion and vibra-

tional properties of graphene with a few layers stacked in hexagonal or rhombohedral

sequences, such as AB, ABA and ABC, via DFPT. In this chapter, the free energy,

mechanical and dynamical stability of all stacking altered structures are studied using

ab initio calculations. Further, the effect of temperatures on the stability of these

structures are studied using classical MD simulations.
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3.2 Computational methods

In this study, all the calculations are done using ab initio DFT as implemented in

VASP [131], which also employs pseudopotentials to describe the interaction between

the valence electrons and ions. PAW [195] pseudopotentials used in this study helps

not only to reduce the size of the basis set considerably, but also to obtain the accuracy

of all-electron calculations. Perdew-Zunger [116] version of LDA and GGA of Perdew-

Burke-Ernzerhof (PBE) [122] are used to compute the exchange correlation functional.

It is seen that while the LDA reproduces the equilibrium structure of bulk 3D graphite

reasonably accurately [196], GGA yields poor binding across the layers [44, 197]. The

equilibrium in-plane lattice parameter a and the c/a ratio obtained from LDA based

calculations are found to be 2.451 Å and 2.712, in good agreement with experimental

values (a = 2.463 Å, c/a = 2.725) [198] and previous calculations [61, 197]. The GGA

predicts a (2.467 Å) accurately but over-predicts the c/a ratio (3.335) [44, 62]. DFT

does not yet have a completely successful formalism to accurately model the Van

der Waals (vdW) interaction across the layers. Incorporating the vdW interaction

by DFT-D2 method [199] leads to over binding between the layers for both LDA

(a = 2.446 Å and c/a = 2.440) and GGA (a = 2.463 Å and c/a = 2.601). A series

of convergence tests are done to fix the kinetic energy cut-off that determines the

size of the basis set and k-point mesh size that governs sampling of the Brillouin

zone in the reciprocal space. A kinetic energy cut-off of 800 eV is found to give

free energy convergence of the order 0.025 meV/atom for AB-hexagonal graphite.

Integration over the Brillouin-zone is done by using a Monkhorst-Pack [125] grid of

35Ö35Ö15 k-points for bilayer graphite structures which contain four atoms in a unit

cell. For ABC-rhombohedral/hexagonal structures which contain 6 atoms in a unit

cell, a Monkhorst-Pack grid of 35Ö35Ö13 k-point mesh is used. Methfessel-Paxton

[200] smearing with a smearing width of 0.1 eV is used to incorporate the partial

occupancy near the Fermi level. All the structures are relaxed until force on each
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atom is less than 10−5 eV/Å.

The elastic constant tensor is determined by calculating the elastic energy for six

finite distortions of the lattice, and relating the elastic energy to elastic constants

through the stress-strain relationship [201]. The phonon dispersion for all structures

is calculated using DFPT (chapter-2, 2.1.6) as implemented in VASP code. Phonon

frequencies and polarizations are calculated by constructing the force constant matrix,

from which the dynamical matrix is obtained by Fourier inversion. Eigenvalues of

dynamical matrix give the square of the phonon frequencies. Occurrence of a negative

eigenvalue in the spectrum of the dynamical matrix signifies imaginary frequency for

the corresponding phonon mode, and that indicates dynamical instability in the lattice

[158, 202]. DFPT will yield zone center (q=0) phonon frequencies and eigenvectors.

Phonon dispersion in the entire Brillouin-zone is computed using the PHONOPY

module [181].

3.3 Results and Discussions

3.3.1 Stacking sequences and structural models

Bulk graphite is obtained by stacking of graphene sheets having in-plane C-C nearest

neighbor distance of 1.42 Å and a relatively larger inter-planar separation of 3.35 Å

due to the weaker van der Waals interaction, which is responsible for holding the

planes together. Graphene can be described in terms of a two dimensional lattice

with a rhombus containing two basis atoms as the unit cell as seen in Figure 3.1.

The two basis atoms are at (ā + b̄)/3 and 2(ā + b̄)/3, where ā and b̄ are the lattice

translation vectors. The graphene sheets can be stacked directly one above the other

leading to the AA-simple hexagonal structure. Experiments suggest that graphite

crystallizes in AB-hexagonal/ABC-rhombohedral structures [188]. The ‘B’ layer in

the AB-hexagonal structure [188] is obtained by shifting the second graphene layer

by (ā + b̄)/3 (one C-C bond length) with respect to the first layer (the ‘A’ layer) as
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shown in Figure 3.1. Thus in the AB-hexagonal structure, half of the carbon atoms

in ‘B’ layer coincide with those in the ‘A’ layer and the remaining half reside above

the center of the hexagons of the ‘A’ layer. The ‘C’ layer in the ABC stacking is

obtained by shifting a graphene layer by (ā+ b̄)/3 with respect to the ‘B’ layer. This

stacking produces the rhombohedral structure. In the ABC-rhombohedral structure,

half of the carbon atoms in the ‘C’ layer coincide with those in the ‘B’ layer and the

remaining half sit directly above their hexagonal ring centers. In addition to these

three, there are two other stacking sequences. The AB stacking is obtained by shifting

‘B’ layer by ā/2 along the basis vector ā with respect to the ’A’ layer. This leads to

another high symmetric graphite phase known as AB-orthorhombic structure [193].

We propose a new ABC stacking sequence in which the ‘C’ layer is obtained by shifting

by b̄/2 along the basis vector b̄ with respect to the ’B’ layer. In the ABC-hexagonal

structure thus obtained, all the carbon atoms in the successive layers remain distinct

when compared to the ABC-rhombohedral structure. All the structures are shown in

Figure 3.1, which is generated using VESTA [203].

Figure 3.1 – Different stacking sequences leading to different graphite structures .
The 2D unit cell of graphene is shown as a rhombus (a = b = 2.456 Å and g = 60� )
that contains two basis atoms; the successive layers in graphite are held together by a
weak van der Waals force with an inter-planar separation

(

cint

)

of 3.35 Å.

The geometry of all the structures is relaxed such that the forces acting on all the

atoms are < 10-5 eV/Å. The free energy of each of the relaxed structures is compared

(Table 3.1) with that of the AB-hexagonal structure, which is the ground state struc-

ture of bulk graphite. Among the bilayer graphite structures studied here, it is seen

that the AA-simple hexagonal and AB-orthorhombic structures are higher in energy
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with respect to the AB-hexagonal structure, by 9.7 meV/atom and 1.7 meV/atom, re-

spectively. ABC-rhombohedral graphite is higher in energy as compared to the ground

state by 0.1 meV/atom. The newly proposed ABC-hexagonal structure is higher in

energy with respect to the AB-hexagonal structure by 1.6 meV/atom. These free

energy calculations are compared with the results of previous investigations in table

3.1. Since the difference in free energies among the various structures is very small,

all these plausible structures can coexist.

Table 3.1 – Comparison of the free energies of different graphite structures with
standard AB-hexagonal structures.

Structure
Energy/atom

(eV/atom)

Difference in energy with

respect to AB-hexagonal

(meV/atom)
AA-simple hexagonal =10.0951 9.70, 9.29 [193] , 17.31 [190]
AB-hexagonal =10.1048 ——

AB-orthorhombic =10.1031 1.70, 1.66 [193]
ABC-rhombohedral =10.1047 0.10, 0.10 [193], 0.11 [190]
ABC-hexagonal =10.1032 1.60

Table 3.2 – The in-plane lattice parameter (a) and inter-planar separation (cint) for
the different graphite structures. The quantities inside the curly brackets are calculated
with van der Waals (vdW) correction.

LDA GGA
Structure a (Å) (cint) (Å) a (Å) (cint) (Å) Space group

AB-hex
present study
Literature
(ab initio)

Experiment

2.451{2.446}
2.451 [56, 61,

190, 197]

2.463 [198]

3.320 {2.984}
3.350 [190], 3.330 [61],
3.320 [197]

3.356 [198]

2.467 {2.463} 4.070 {3.204} P63/mmc (194)

AA-sim.hex. 2.450 {2.446} 3.610 {3.201}, 3.34 [190] 2.467 {2.463} 4.291 {3.441} P6/mmm (191)

AB-ortho 2.451 {2.446} 3.370 {3.020} 2.467 {2.463} 4.141 {3.245} Fmmm (69)

ABC-rhombo 2.451 {2.446} 3.327{2.989}, 3.340 [190] 2.467 {2.463} 4.073 {3.207} R3̄m (161)

ABC-hex 2.451 {2.446} 3.361{3.011} 2.467 {2.463} 4.142 {3.236} P6422 (181)

The structural details of the different graphite phases are summarized in table 3.2. The

in-plane lattice parameter (a) and inter-planar separations (cint) are computed using

LDA, LDA with vdW correction, GGA and GGA with vdW corrections. From the

above calculations, it is found that LDA predicts the equilibrium lattice parameters

accurately. Computed in-plane lattice parameter (a) and inter-planar separation (cint)

match with previous studies (table 3.2). Bosak and Krisch [198] reported the lattice
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parameter a = 2.463 Å and cint = 3.356 Å from inelastic X-ray scattering studies

on single crystalline graphite. In LDA based simulations we obtain a = 2.451 Å and

cint = 3.320 Å for AB-hexagonal graphite. It is seen that the lattice parameter a

is under-predicted by 0.5 % whereas the discrepancy is ∼1 % for cint. In fact, the

discrepancy between the computed and experimental values is small for a as compared

to cint in all the previous studies as well (table 3.2). Higher cint value for the AA-

simple hexagonal, AB-orthorhombic and ABC-hexagonal structures as compared to

AB-hexagonal and ABC-rhombohedral structures indicates lesser binding across the

layers in the former structures as compared to the latter.
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Figure 3.2 – The calculated XRD pattern of different graphite structures with exper-
imental lattice parameters. The peak positions of the standard structures are shown
as a stick plot (ICDD data base, PDF Number: 00-056-0159 (hexagonal), 01-075-2078
(rhombohedral)).

Having compared the energetics of the plausible structures, we now proceed to com-

pare the XRD pattern computed for each of these structures with the experimental

data available in the ICDD data base (PDF Number: 00-056-0159 (hexagonal), 01-

075-2078 (rhombohedral)). Since the lattice parameters obtained from the calcula-
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tions are not exactly the same as the values obtained from experiment, the positions

of the peaks in the computed patterns are not expected to match with those obtained

from experiments. Hence the XRD patterns of each of the structures are calculated at

the experimental lattice parameters of graphite. The systematic extinction of certain

reflections due to symmetry, and the differences in relative intensities can be used to

identify which of the proposed structures are actually relevant from the experimental

consideration.

Figure 3.2 shows the XRD patterns calculated using Cu-Kα radiation. It can be seen

that among the bilayer graphite structures, the peak positions of the AB-hexagonal

structures are matching well with experimental XRD pattern. The XRD pattern of

AB-orthorhombic structures is very similar to the experimental data, there are sig-

nificant difference as well at higher angles. In the case of the AA-simple hexagonal

structure, the diffraction peaks at 2θ = 44.56°, 59.87°, and many low intensity peaks at

higher angles are missing when compared to AB-hexagonal/orthorhombic structures.

The calculated XRD patterns of the ABC-rhombohedral and ABC-hexagonal struc-

tures are identical and matches with experimental data. Hence, from the structural

point of view, it is quite likely that graphite seen in nature contains the newly pro-

posed structures in addition to the AB-hexagonal and ABC-rhombohedral structures.

3.3.2 Elastic constants

The elastic constants are intimately related to the mechanical stability of a crystal

and they determine the response of the crystal to external strain. There are five

independent elastic constants for graphite, which are C11, C12, C13, C33 and C44 and

they can be categorized into three different classes depending on the nature of the

predominant bonding involved. C11, C12 belong to first class, where the strong in-

plane covalent bonding is involved. C33 and C44 belong to second class, where the weak

Van der Waals bonding across the layers is important. C13 forms the third class which
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depends both on in-plane covalent bonding and inter-layer van der Waals interactions.

The elastic constants data is very much essential to predict the mechanical properties

of graphite structures. The Born stability criterion, obtained by demanding that the

elastic strain energy should be positive definite [161], requires that 2C2
13 < C33(C11 +

C12) and C11, C12, C33, C44 > 0 for mechanical stability of graphite.

Elastic constants of hexagonal graphite have been obtained using different experimen-

tal techniques. Blakslee et al [204] determined the five independent elastic constants

of pyrolytic graphite using ultrasonic and static tests. The value of C44 thus obtained

is in the range 0.18 – 0.3 GPa, which is very small. Grimsditch [205, 206] found that

the value of C44 reported by Blakslee et al [204] is small due to the low ultrasonic

wave velocity propagation along the c-axis caused by movement of dislocations. After

neutron irradiation, which arrests the movement of dislocations due to pinning by

defects produced by the irradiation, C44 increases to 5 GPa. Later Cousins et al [207]

refined the values of C13 and C44. Bosak et al [198] determined the elastic constants

of graphite single crystals from phonon dispersion obtained by inelastic x-ray scat-

tering and found that the value of C11 is slightly higher than that obtained from the

ultrasonic experiments, due to the presence of defects in their samples.

Mounet and Marzari [44] calculated the elastic constants of graphite from the sound

velocities computed from the slope of the phonon dispersions near the Γ-point by

PWSCF using ultrasoft pseudopotentials. The authors found the overall agreement

with experiments to be satisfactory. Savini et al [193] computed the elastic con-

stants of different graphite structures using linear response theory, as implemented in

ABINIT code. The elastic constants obtained using norm-conserving pseudopoten-

tials [208] show good agreement with experimental data. Michel and Verberck [209]

made a theoretical investigation and derived the elastic constant data of graphite

using Born’s long wave method.
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3. Stacking sequences and stability of graphite structures

Table 3.3 – Elastic constants for all graphite structures

Structure C11(Gpa) C12(GPa) C33(GPa) C13(GPa) C44(GPa)

AB-hexagonal (present study) 1109.4 216.6 30.5 -2.7 5.1
Mounet and Marzari [44], ab initio 1118.0 235.0 29.0 -2.8 4.5
Andres et al [208], ab initio 1069.0 204.0 32.0 -2.8 1.0
Michel and Verberck [209], Theory 1211.3 275.5 36.79 0.59 4.18
Savini et al [193], ab initio 1109.0 175.0 29.0 -2.5 4.5
Blakslee et al [204], expt. 1060.0±20 180.0±20 36.5±1 15±5.0 0.18 - 0.35
Cousins & Heggie [207], fit to expt. 1060.0 180.0 36.5 7.9 5.05
Bosak et al [198], expt. 1109±16 139±36 38.7±7 0±3.0 5±3.0
AA-simple hexagonal 1018.7 202.0 20.0 =2.7 =4.0
AB-orthorhombic 1094.8 211.5 29.3 =1.4 =3.2
ABC-rhombohedral 1108.2 214.9 30.7 =2.6 4.5
ABC-hexagonal 1097.3 213.0 29.2 =2.8 =7.1

The elastic constants computed for all the structures are shown in table 3.3, and the

results for AB-hexagonal structure are compared with results of previous calculations

and experiments. The qualitative agreement between the present calculations and the

previous ones is satisfactory. However, it is worth mentioning that there is a consid-

erable spread in the elastic constant data reported from various ab initio simulations

(table 3.3). In the present study, the effect of smearing width [210] and the size of

the k-grid to sample the Brillouin zone on the convergence of the computed elastic

constants has been investigated. The values of C11 and C12 are found to be very high

for all the structures consistent with the strong in plane C-C covalent bonding. Simi-

larly, the values of the computed C44 and C33 are seen to be small in view of the weak

coupling across the layers. The computed Poisson ratio, (νxy = νyx = C12

C11

= 0.195)

and the Young’s modulus (Y x = Y y = 1.1 TPa) match well with the results of the

previous calculations [208] and experiment [204] (0.165 and 1.1 TPa, respectively).

C13 of all the structures becomes negative in the calculations (meaning that Poisson’s

coefficient νxz would be negative [44]) which may be indicative of the inadequacy of

the LDA exchange and correlation functional [208]. It is interesting to note that a

GGA based calculation also leads to a negative νxz [44].

The criterion for mechanical stability is that except C13, all the other independent

elastic constants mentioned above should be greater than zero [161]. In our calcula-

tions, except for the AB-hexagonal and ABC-rhombohedral structures, C44 becomes
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3.3. Results and Discussions

negative and hence violates the stability criterion for all the other structures including

the newly proposed ABC-hexagonal structure. Hence, all the newly proposed struc-

tures are mechanically unstable, which is in agreement with the conclusions of Savini

et al [193].

3.3.3 Phonon dispersion

The elastic constant data shows that the new structures are mechanically unstable.

The dynamical stability of these new structures is not addressed in the literature.

Hence, the dynamical stability of all graphite structures are analyzed by computing

the phonon dispersions. Even though LDA predicts the accurate equilibrium lattice

parameters, in order to understand the effect of long range van der Waals (vdW)

interactions on phonon dispersions, the calculations are done using LDA, LDA with

vdW correction and GGA with vdW correction scheme of S. Grimme [199]. The

phonon dispersion of all the structures is computed with a 6Ö6Ö1 supercell (144

atoms in bilayer graphite, 216 atoms in trilayer graphite), with a Monkhorst-Pack

grid of 3Ö3Ö7 k-point mesh for bilayer graphite and 3Ö3Ö5 k-point mesh for trilayer

graphite structures. For smaller supercells, there is a phonon branch with imaginary

frequencies even for the AB-hexagonal structure which is the ground state structure

of graphite. Also, the dispersion of the ZA mode is not quadratic in q in contrast to

what is seen in neutron scattering experiments [59]. The supercell size was therefore

increased (upto 6Ö6x1) until the imaginary frequencies disappears and obtain the

quadratic dispersion for the ZA branch, which is a characteristic feature of layered

structures[57, 58]. The phonon frequencies are converged to ∼1-2 cm-1 with respect

to supercell size and energy cut off. The phonon density of states (Phonon DOS) is

computed on a dense k-point mesh of 51Ö51Ö51.
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Figure 3.3 – The phonon dispersion of AB-hexagonal structure. The red (solid)
lines are calculated using LDA, the blue (dash–dot) lines are calculated using LDA
with van der Waals correction (LDA+vdW) and the black (dash) lines are obtained
using GGA+vdW. The inset shows the enlarged view along the Γ–A direction. The
experimental results [59, 71–75] are shown as symbols for the AB-hexagonal structures
and is taken from [70].

The phonon dispersion and phonon DOS for AB-hexagonal structures are computed

for the equilibrium lattice parameters and compared with experiments [59, 71–75]

(Figure 3.3; the experimental data are taken from reference [70]). The unit cell of

AB-hexagonal structure contains four atoms and gives 12 branches in the phonon

dispersion, three of them are acoustic (A) and remaining nine are optic (O) branches.

The phonon modes are doubly degenerate above ∼400 cm-1 due to weak coupling

between the layers [56]. As can be seen from Figure 3.3, in LDA based calculations,

the low frequency modes are in good agreement with the experimental data , whereas

there is a slight deviation from experiments for the LA and ZO high frequency modes.

The LDA with vdW correction affects the low frequency phonon modes along Γ-

A direction and shows that the low frequency modes harden and deviate from the

experimental data. This up-shift in frequency is due to the reduction in the inter-
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3.3. Results and Discussions

planar separation in the presence of vdW interaction. The frequencies of low lying

modes along the Γ-A direction obtained in GGA with vdW corrections falls in between

LDA and LDA with vdW corrections. When compared among the above three cases,

LDA shows better agreement with experimental data for low lying modes along Γ-A

direction. Because of strong C-C in-plane covalent bonding and low atomic weight

of carbon atom, some modes vibrate with very high frequency (1596.51 cm-1). The

phonon frequencies of degenerate LO/TO and ZO mode at Γ point (1593.17/1596.51

cm-1, 887.24 cm-1) are in good agreement with the calculation results of Mounet and

Marzari [44] (1591.84/1603.17 cm-1, 898.58 cm-1) and experiments also (1589.17 [72]

/1573.84 [211] cm-1, 860.58 [72] cm-1). The LO/TO and ZO (1617.17/1630.17 cm-1,

883.58 cm-1) modes obtained using LDA with vdW correction deviate slightly from

the values predicted by LDA. The increase in frequency of LO/TO mode is due to the

decrease in the in-plane lattice parameter in the presence of vdW interaction. The

LO/TO and ZO (1568.04/1568.01 cm-1, 864.91 cm-1) mode frequency predicted by

GGA with vdW correction is smaller than that given by LDA and LDA with vdW

correction. This can be attributed to higher in-plane lattice parameter obtained in

GGA with vdW correction. GGA with vdW corrections shows better agreement with

experiments for high frequency LO/TO modes.

The phonon dispersion and phonon DOS of ABC-rhombohedral structure are shown in

Figure 3.5a. The nature of phonon dispersion of AB-hexagonal and ABC-rhombohedral

structures above 400 cm-1 are almost similar, which implies that difference in stack-

ing has no significant effect on phonon dispersion above 400 cm-1. There is a slight

difference in dispersion below 400 cm-1 along Γ-A direction and near the Γ-point [44].

The LO/TO modes show two doubly degenerate branches in AB-hexagonal and three

doubly degenerate branches in ABC-rhombohedral structures [61].
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The phonon dispersion of other stacking altered structures such as AA-simple hexago-

nal, AB-orthorhombic and ABC-hexagonal structures are computed at their optimized

lattice parameters and are shown in Figure 3.4a-b &Figure 3.5b, respectively. In all

these structures, one or more phonon modes become imaginary along Γ-A direction

(out of plane dispersion) in all the three cases (LDA, LDA with vdW and GGA with

vdW), indicating a dynamical instability. When compared with AB-hexagonal/ABC-

rhombohedral structures, the phonon modes in the new structures have almost similar
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3.3. Results and Discussions

behavior along Γ-M, M-K and K-Γ directions. The quadratic dispersion of ZA mode

and the linear crossing of ZA/ZO, LA/LO modes at K-point are identical to that seen

in the AB-hexagonal/ABC-rhombohedral structures. In AB-hexagonal and ABC-

rhombohedral structures, the frequency difference between the degenerate LO and

TO mode at Γ-point is about ∼3 cm-1, and occurs due to the weak binding across the

layers [61]. This splitting is more apparent in the new structures. In the AA- simple

hexagonal structure, the difference between TO and LO mode rises to 42.32 cm-1, in

AB-orthorhombic it is 32.66 cm-1and in ABC-hexagonal it is 18.66 cm-1.
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3. Stacking sequences and stability of graphite structures

The enlarged view of phonon dispersion along Γ-A direction is shown as an inset in

Figure 3.3, Figure.3.4a&b and Figure 3.5 a&b. There are no imaginary modes in

the phonon dispersion of AB-hexagonal and ABC-rhombohedral structures. In AA-

simple hexagonal, AB-orthorhombic and ABC-hexagonal structures, there are some

imaginary modes along Γ-A direction. In AA-simple hexagonal both TA and TO’

modes become imaginary. In AB-orthorhombic and ABC-hexagonal structures the

degeneracy in TA and TO’ is lifted and one of the TA and TO’ modes becomes

imaginary. Under certain circumstances the dynamical instability can be removed by

stabilizing the imaginary phonon modes and this can be achieved by incorporating

the effects of zero point vibrational energy to the equilibrium lattice parameters via

quasi harmonic approximation [212]. Figure 3.6 shows the phonon dispersion of AB-

orthorhombic structure at three different volumes. The volume of the unit cell is

varied by ± 5% by varying the in-plane lattice parameter. For all the three volumes

the instability associated with the lattice still persists in all the three cases (LDA, LDA

with vdW and GGA with vdW). This may be due to the failure of quasi harmonic

approximation to describe the strong anharmonicity associated with these lattices

[213]. The movement of atoms in AB-orthorhombic structure corresponding to an

unstable mode at Γ-point is shown in Figure 3.7. The atoms in A layer (brown

spheres with blue arrow) are vibrating in phase, but out of phase with the neighboring

B layer atoms (blue sphere with pale green arrow). The polarization associated with

this mode is transverse in nature. It can be concluded that the TO’ mode frequency

becomes imaginary at Γ-point.
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Figure 3.6 – Phonon dispersion of AB-orthorhombic for three different volumes using
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Figure 3.7 – Vibration of atoms in AB-orthorhombic structures corresponding to the
unstable mode at the Γ−point.

89
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3.3.4 Potential energy surfaces

In order to further study the nature of instability, the potential energy surfaces are

computed by calculating the total energy as a function of the displacement given to

all the atoms away from their equilibrium position along the unstable normal mode

eigenvector (polarization). The eigenvectors of dynamical matrix contain the infor-

mation about the relative displacement of atoms in the unit cell. The normalized

eigenvector ~ǫ corresponding to an unstable mode is extracted, and each atom is dis-

placed away from the equilibrium position in accordance with the displacement vector

~ǫ d, so that d is the amplitude of displacement. Then perform a non self-consistent

calculation for each incremental displacement d and get the free energy. It is seen

from Figure 3.8 that the resultant potential energy surface has the topography of a

potential hill, and not a potential well, for all the new structures which confirms that

they are inherently unstable. The fact that the potential energy surface is not in the

form of a double well when displacements of larger amplitudes are considered implies

that the new structures are linearly as well as globally unstable.
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Figure 3.8 – (a) Potential energy surface of AB-orthorhombic for an unstable mode
and (b) for a stable mode. (c) and (d) Potential energy surfaces of AA-simple hexag-
onal and ABC-hexagonal for an unstable mode (d = 0.25 Å). The red (solid) lines are
calculated using LDA and the blue (dash–dot) lines are calculated using LDA with van
der Waals correction (LDA + vdW). The black (dash) lines are obtained using GGA +
vdW. The inset is the potential energy surfaces computed at smaller displacement (d =
0.025 Å).

3.4 Dynamical stability at finite temperatures

In order to understand the effect of temperature on stability of graphite structures,

phonon dispersions are computed directly from classical MD simulations using the fix-

phonon method (chapter-2,2.3.5.2). The phonon dispersions at 0 K are obtained using

lattice dynamics method. To compute the phonon dispersion at finite temperature

using MD, a triclinic simulation box of size 10Ö10Ö1 is used. The interactions between

the carbon atoms in in-plane lattice is modeled by a reactive empirical bond order

(REBO) potential [214]. The out-of-plane Van der Waals (vdW) forces between the

graphite layer is treated using the Lennard–Jones (LJ) potential. Periodic boundary

conditions (PBC) are employed in all three directions. In order to eliminate any
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3. Stacking sequences and stability of graphite structures

residual stresses that could be present in the initial configuration, the simulation

volume is relaxed using conjugate gradient algorithm. The system is then equilibrated

for 500 ps in NPT ensemble at 300 K. After ensuring that the system has equilibrated

properly, the instantaneous positions of atoms are extracted at a predefined intervals

for 15 ns.

Figure 3.9a&b shows the phonon dispersion of bilayer and trilayer graphite structures

obtained from LD calculations at 0 K. The phonon dispersions shares a resemblance

with those obtained from DFPT calculations (section 3.3.3). The quadratic dispersion

of ZA mode and the linear intersection of ZA/ZO, LA/LO modes at K-point are iden-

tical to that seen in the DFPT calculations. In AB-hexagonal structure (green dash

lines) all modes are real and positive. The phonon dispersion of AA-simple hexagonal

(red solid line) and AB-orthorhombic (blue dot lines) structures contains imaginary

modes along Γ−A direction, indicating the dynamical instability of these structures,

which is in accordance with DFPT calculations. Figure 3.9c shows the phonon dis-

persion of bilayer graphite structures calculated at 300 K. In contrast to LD results,

all the modes are positive and real; the phonon dispersion of all bilayer structures

are identical at 300 K. The similar studies are done on trilayer graphite structures

(Figure 3.9b&d). The LD results shows that, the ABC- rhombohedral structure is dy-

namically stable, at the same time the ABC-hexagonal structure have the imaginary

modes along Γ−A direction, and thus unstable (Figure 3.9c). The instability associ-

ated with ABC-hexagonal structure is removed in MD simulation, where all modes

are positive and real (Figure 3.9d). The phonon dispersion for ABC-rhombohedral

and ABC-hexagonal structures obtained from MD simulations are identical.

In some context, the structures which is dynamically unstable at 0 K can be stabilized

at high temperatures due to the anharmonic contributions to the free energy [213,

215]. In such cases the potential energy surfaces would have a topography of double-

well. Since the potential energy surfaces (Figure 3.8) are having a shape of inverted

92



3.4.
D

y
n
am

ical
stab

ility
at

fi
n
ite

tem
p
eratu

res

-200
0

200
400
600

800
1000

1200
1400
1600

1800
2000

-20
-10
0

10
20
30

 

  AA Simple hex
  AB hexagonal
 AB ortho rhombic

 F
re

qu
en

cy
 (

cm
-1
)

A M K

ZA
LO'

ZO'

TA
LA

ZO

TO
LO

i

(a)

i
 

A TO'
TA

-200
0

200
400
600
800

1000
1200
1400
1600
1800
2000

-10
0

10
20
30
40

(b)

 
i

 
 F

re
qu

en
cy

 (c
m

-1
)

  ABC rhombohedral
 ABC hexagonal 

A KM

ZA

ZO'LO'

TA

LA

ZO

TO
LO

i

 

A

-200
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

-100

0

100

200

 

(c)

i

 F
re

qu
en

cy
 (c

m
-1
)

  AA Simple hex - (300 K)
  AB hexagonal - (300 K)
 AB ortho rhombic - (300 K)

A M K

ZA
ZO'LO'

TA

LA

ZO

TO
LO

Ai -200
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

-100

0

100

200

 

(d)

i

 
 F

re
qu

en
cy

 (c
m

-1
)

  ABC rhombohedral - (300 K)
 ABC hexagonal - (300 K)

A KM

ZAZO'LO'

TA
LA

ZO

TO
LO

i

 

A

Figure 3.9 – (a&b) Lattice dynamics of bilayer and trilayer graphite structures (at 0 K); (c&d) The phonon dispersion calculated from MD
simulations at 300 K. The insets shows the enlarged view along Γ-A direction.
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parabola the above possibility is eliminated in these cases. Another possibility is

that there may be some structure relaxation at elevated temperatures. To study

the structural relaxation at higher temperatures, the radial distribution functions

(RDF) are calculated for all the structures. Figure 3.10a shows the RDF of bilayer

structures calculated at 300 K. The peak positions of AA-simple hexagonal and AB-

orthorhombic structures are identical to that of AB-hexagonal structure, this may

lead to a conclusion that the unstable bilayer structures are reverting back to the

stable AB-hexagonal structures at 300 K. Hence the imaginary frequencies along theG-A direction disappears in all bi-layer structures at 300 K. Similarly the RDF of

ABC-hexagonal and ABC-rhombohedral structures are identical (Figure 3.10b), it

may tempt to conclude that ABC-hexagonal structures are falling back to ABC-

rhombohedral structures. The similarity in phonon dispersion strengthens the above

arguments.
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Figure 3.10 – The radial distribution function (RDF) of (a) bilayer graphite structures
and (b) trilayer graphite structures computed from MD simulations at 300 K.

3.5 Summary

Ab initio and classical MD simulations have been performed to study the structure,

energetics and stability of several plausible stacking sequences in graphite. The key

findings of this study are summarized below
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3.5. Summary� Calculations suggest that in addition to the standard structures, graphite can

also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal type

stacking. The free energy difference between these structures is very small (∼1

meV/atom), and hence all structures can coexist from purely energetic consid-

erations.� Shear elastic constant C44 is negative in AA-simple hexagonal, AB-orthorhombic

and ABC-hexagonal structures, suggesting that these structures are mechani-

cally unstable. Phonon dispersions show that the frequencies of some modes

along the Γ–A direction in the Brillouin zone are imaginary in all of the new

structures, implying that these structures are dynamically unstable. Incorpora-

tion of zero point vibrational energy via the quasi-harmonic approximation does

not result in the restoration of dynamical stability.� Potential energy surfaces for the unstable normal modes are seen to have the

topography of a potential hill for all the new structures, confirming that all of

the new structures are inherently unstable. The fact that the potential energy

surface is not in the form of a double well implies that the structures are linearly

as well as globally unstable.� The effect of temperature on stability of the above structures are studied using

classical MD simulations at 300 K. The phonon dispersion at 0 K is obtained by

lattice dynamics methods shows imaginary modes along the G- A direction and

this is consistent with ab initio predictions. The phonon dispersion calculated at

300 K does not have imaginary frequencies along the G-A direction. The high

temperature structural relaxations are studied from radial distribution func-

tions, and found that the new bilayer/trilayer structures are thermodynamically

unstable and revert back to the standard AB-hexagonal/ABC-rhombohedral

structures.
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Chapter 4

Temperature dependent structural
stability and phonon frequency

shift of graphene

This chapter discusses the temperature dependent structural stability, frequency shift,

linewidth and coupling of normal modes of vibrations of free-standing graphene, which

are studied using spectral energy density (SED) method. Structural stability of graphene

at finite temperatures is analyzed by computing the phonon dispersion using quasi-

harmonic, fix-phonon and SED methods. The mode resolved phonon spectra is cal-

culated at Γ, M and K points in the Brillouin zone to extract the frequency shift,

linewidth and coupling of normal modes of vibrations. To understand the role of rip-

ples on thermal expansion properties, 2D and 3D simulations are done explicitly at

different temperatures.

4.1 Introduction

Graphene and other allied 2D materials are expected to have tremendous applica-

tions in the forthcoming technologies. For such applications, the knowledge on struc-

tural, thermal and vibrational properties are mandatory. The thermal expansion of

graphene has been studied in detail both theoretically [44–47] and experimentally

[48–50]. There are considerable differences between the thermal expansion data ob-
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4. Structural stability and frequency shift of graphene

tained from various simulations because of difference in handling anharmonicity in

those calculations. Disagreement among experimental data are due to the strain ef-

fects induced by substrates. The effect of anharmonicity on phonon frequency shift

and linewidth is studied using DFPT calculations [43, 64, 65]. Experimentally, the

temperature dependent phonon frequency shift and linewidth of graphene (normally

supported on Si/SiO2 substrates) are obtained using Raman spectroscopy [50, 66–

68]. The strain effect caused by the substrate prevents a direct comparison of Raman

spectra with the results of calculations which pertain to a free-standing graphene.

DFPT based calculations can include anharmonicity upto fourth (maximum) order

[43, 64, 65]. Being a strong anharmonic 2D crystal the higher order phonon pro-

cesses are important in graphene and cannot be neglected [68]. Hence in the present

chapter a spectral energy density (SED) formalism (chapter-2, 2.3.5.3) is adapted to

probe the complete anharmonicity in free-standing graphene using classical MD sim-

ulations. The simulations are done in both isobaric-isothermal (NPT) and canonical

(NVT) ensembles to delineate the contributions of thermal expansion and phonon-

phonon coupling to the total anharmonic effects. The thermally excited ripples can

affect the thermal expansion properties considerably. The quasi-harmonic calcula-

tions cannot incorporate the effects of these ripples, where they consider a flat sheet.

Moreover quasi-harmonic methods can incorporate only few hundreds of atoms, which

is inadequate to model large scale ripples. Hence three-dimensional (3D) and two-

dimensional (2D) molecular dynamics (MD) simulations are done to delineate the role

of thermally excited ripples on thermal expansion properties explicitly.

4.2 Computational methods

All the simulations are performed using the classical MD simulation package LAMMPS

[179]. The interaction between the carbon atoms in the honeycomb lattice of graphene

is modeled using the long range bond order potential (LCBOP) [147]. Magnin et al
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4.2. Computational methods

[216] have investigated the finite temperature effect on the a-lattice of free-standing

graphene using various semi-empirical potentials, and concluded that LCBOP po-

tential shows better agreement with their reference data near the room temperature.

The LCBOP potential successfully combines the strong in-plane covalent bonding and

weak intermolecular interactions that are significant for describing breaking and mak-

ing of bonds, and is used to account for the interaction between the carbon atoms in

the honeycomb lattice of graphene. The interaction energy defined by LCBOP [147]

potential is

Eb =
1

2

N
∑

i,j

V tot
i,j =

1

2

N
∑

i,j

[

fc,i,jV
SR
i,j + Si,jV

LR
i,j

]

(4.1)

where fc,i,jV
SR
i,j describes the short range covalent bonding, and the long range inter-

action is given by Si,jV
LR
i,j . The LCBOP potential is a combination of the short range

bond order potential and a long range radial potential. It accurately describes bond

distances, conjugation, stretching force constants, elastic constants and interlayer in-

teraction energy in graphite [147].

The 2D unitcell of graphene is as shown in figure 4.1. The graphene sheet forms a

honeycomb lattice with a C-C nearest neighbor distance of 1.42 Å. The simulations

are carried out in three dimensions with periodic boundary condition along all the

three directions. In order to ensure that the interaction of the graphene layer with its

replicas is negligible an inter-planar vacuum separation of 25 Å is provided between

the layers. A supercell of size 6Ö6Ö1 (72 atoms) is used to obtain the phonon disper-

sion and phonon density of states (Phonon DOS) at 0 K by LD method (chapter-2,

2.4). The finite temperature properties are computed by resorting to classical MD

simulations. The size of the simulation cell is chosen in such a manner that the tem-

perature and pressure of the system stabilizes to the required value. A supercell of

size 70Ö70Ö1 (9800 atoms) is adequate, in this respect, for graphene. Moreover, the

70Ö70Ö1 supercell is sufficiently large to incorporate the effect of thermally excited
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4. Structural stability and frequency shift of graphene

ripples, which are known to stabilize free-standing graphene sheet [41]. The computa-

tional procedure is same as given in chapter-2 (2.4.2). The Nyquist theorem demands

that the velocities of all the atoms should be sampled at least every 10 fs. In the

present simulations the velocities have been sampled at every 5 fs. The simulations

are carried out for 3.2 ns.

Figure 4.1 – (a) The graphene honeycomb lattice at 0 K. The unitcell is defined using a
rhombus; the inequivalent carbon atoms are situated in A and B sites. (b) Alternatively,
the unitcell can be visualized as two interpenetrating triangular sub-lattices, the atoms
(A and B) are situated at the centers of triangles. (c) The graphene sheet at 300 K
with corrugations due to the thermally excited ripples. Such corrugations are seen in
the simulations carried out at all nonzero temperatures.

4.3 Results and discussions

4.3.1 Lattice parameter and linear thermal expansion coeffi-

cient (LTEC)

The behaviour of in-plane lattice parameter (a-lattice) and linear thermal expansion

coefficient (LTEC) of graphene are studied as a function of temperature. The sim-

ulation box contains 9800 atoms, and the dimensions of the box are Lx=172.15 Å,

Ly=149.09 Å and Lz=25 Å. The variation of lattice parameters are monitored in NPT

ensemble. Figure 4.2 displays the temperature dependence of a-lattice. The LTEC

is computed by direct numerical differentiation of the above data.

α (T ) =
1

a (T )

da (T )

dT
(4.2)
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4.3. Results and discussions

The a-lattice contracts with increasing temperature upto ∼1300 K, and it expands

thereafter. The LTEC remains negative upto ∼1300 K and then changes its sign from

negative to positive. The LTEC is αa= =4.300Ö10=6 K=1 at 300 K, which matches

well with the previous reports [45]. Based on DFPT calculations in conjunction with

QHA, Mounet and Marzari [44] reported that the in-plane thermal expansion coef-

ficient of graphene continues to be negative up to 2300 K. Zakhrchenko et al [45]

calculated the finite temperature properties of graphene by MC simulations using

LCBOPII potential and predict that both the a-lattice and average nearest neigh-

bor distance (Rnn) decrease when temperature increases and this trend continues up

to 900 K. They attribute this anomalous behavior to low frequency bending phonon

modes [58]. The thermal expansion coefficient matches with the results of Mounet

and Marzari [44] up to 500 K, it continues to be negative up to 900 K and then

changes the sign. The above disagreement between the quasi-harmonic theory and

MC simulations may be due to the strong anharmonicity associated with the graphene

lattice which is not incorporated properly in the quasi-harmonic approximation [45].

Pozzo et al [46] performed ab initio MD simulations on free-standing and supported

graphene and found that the average C-C distance increases with temperature in both

free-standing and supported graphene sheets. The authors observed that unlike the

increasing trend shown by the C-C nearest neighbor distance, the a-lattice decreases

with temperature (up to 2000 K) in free-standing graphene [41]. They also observed a

simulation cell size dependence arising from the presence of long wave length ripples.

At low temperatures our LTEC data matches qualitatively with the predictions of

Mounet [44] and Zakhrchenko [45] et al. The disagreement among the high temper-

ature data obtained through quasi-harmonic, MC and MD simulations is due to the

difference in handling the anharmonicity, which is more pronounced at higher tem-

peratures. The behaviour of LTEC is also sensitive to type of interaction between the

C-C atoms, which has been discussed in reference [216].
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Figure 4.2 – (top) temperature dependent in-plane lattice parameter (a -lattice) and
(bottom) linear thermal expansion coefficient (LTEC)

4.3.2 Phonon dispersion and structural stability

Lattice dynamics calculations are done at equilibrium a-lattice (2.459 Å) to obtain the

phonon dispersion and polarization vectors at 0 K. The dynamical matrix and phonon

frequencies are obtained using LCBOP potential under harmonic approximation. The

unitcell of graphene contains 2 basis atoms, and hence there are six modes in the

phonon dispersion (three acoustic (A) + three optic (O) modes, Figure 4.3). The

letters L, T and Z are used to represent the longitudinal, transverse and out-of-plane

modes. The ZO modes are considerably softer than LO and TO modes due to the

higher freedom of the basis atoms to move along the Z direction [63]. The LO and

TO modes are degenerate at � point, and they are designated as LO/TO. The LO

and LA, ZO and ZA modes are degenerate and show a linear crossing at K point.

The doubly degenerate phonon modes arise as a consequence of the C3v symmetry.

Since graphene is a non-polar material, any splitting of ZA/ZO or LA/LO modes at

K point is in violation of C3v symmetry. However, the ZA/ZO degeneracy at K point

may be lifted if there is a reduction of C3v symmetry. Allard et al [217] showed that
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4.3. Results and discussions

such a reduction in symmetry and the consequent lifting of the degeneracy occurs in

graphene on Ni(111) substrate. From the symmetry considerations it is found that

bending (out-of-plane) modes are not coupled with in-plane vibrations [218].

Figure 4.3 shows the phonon dispersion of graphene, where the green dot-dash curve

is obtained from LD, the red solid curves are computed using quasi-harmonic lattice

dynamics (QH-LD) (the terminology QH-LD is used to represent the phonon frequen-

cies computed at temperature dependent lattice parameter, which is obtained from

MD simulations), the blue dash lines and thick black lines are calculated from MD

simulations (at 300 K) using fix-phonon and SED methods (chapter-2, 2.3.5.3). The

recent experimental data of graphene are shown as symbols [76–80]. The LD frequen-

cies match with previous calculations [63] and the agreement with the experiments is

satisfactory. The in-plane acoustic modes (LA and TA) show very good agreement

with experimental data, whereas the optic modes ( LO/TO) slightly deviate from

the experiments at � point. Table 4.1 shows the comparison of LD and MD with

experiments at high symmetry points in the Brillouin zone. The LCBOP potential

underestimates the ZO mode frequency by 0.4 % at � point. Similarly the computed

LO/TO modes frequency is 3 % lower with respect to experimental data at � point.

The LCBOP potential reproduced the quadratic dispersion of ZA mode, but there is

a significant reduction in the frequency along �-M direction, and this may be due to

the strong temperature dependence of this mode [63]. While the LA and TA modes

show excellent agreement with experimental data along � -M direction, the TA modes

are overestimated by 14 % at M point. Similarly the frequency of linear crossing of

ZA/ZO modes at K point is underestimated by 13 %.
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Figure 4.3 – The phonon dispersion of graphene. The green dot-dash lines are from
LD calculations at equilibrium lattice parameter, the red solid curves are computed
using quasi-harmonic lattice dynamics, the blue dash lines and thick black lines are
obtained directly from MD simulations (at 300 K) using fix-phonon and SED method
respectively. Insets shows the instability of ZA mode along Γ-M (quasi-harmonic LD)
and K-Γ (quasi-harmonic LD and fix-phonon method) direction. The experimental data
corresponding to blue circles, green squares, magenta diamonds, red stars, and brown
pentagons are obtained respectively from the references [76–80]. There is an upshift of
LO/TO phonon frequencies at 300 K (from MD) with respect to the 0 K frequencies
(from LD).

The phonon dispersion obtained by MD simulations (at 300 K) shows a blue-shift of

LO/TO mode with respect to the LD calculations. This blue-shift in frequency is due

to the thermal contraction of a-lattice and/or anharmonic phonon-phonon coupling.

The thermal contraction of a-lattice causes an increase in the in-plane force constants

and hence there is an upshift in the LO/TO mode frequency. Unlike to the quasi-

harmonic and fix-phonon method the phonon dispersion obtained using SED method

shows a temperature dependent broadening of each branch (Figure 4.3). The width of
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Table 4.1 – The phonon frequencies at high symmetry points in the Brillouin zone. The frequencies are expressed in cm-1 units. The results of LD
calculations are compared with those obtained from MD simulations using SED method ( at 300 K) and experiments.aReference [76], bReference
[77], cReference [78], dReference [79], eReference [80]� M K

Mode LD MD expt. LD MD expt. LD MD expt.

ZA 0 0 272.39 277.72 422.91a, 437.56b 414.58 422.91 475.86a, 483.18e

TA 0 0 689.31 692.00 604.06a, 628.70e 1003.66 1008.99 944.06a

LA 0 0 1248.08 1262.07 1253.41a , 1239.76c 1136.20 1172.16 1193.14a

ZO 820.20 825.17 823.18a, 822.84b 553.45 558.44 620.71b, 604.06d 414.59 422.91 521.15a, 592.07e

LO 1511.82 1637.30 1555.44a , 1577.75d 1285.38 1348.00 1382.00a , 1383.95c 1136.20 1172.16 1298.7a, 1225.77e

TO 1511.82 1630.03 1555.44a , 1577.75d 1426.90 1541.80 1389.28a 1510.16 1631.7 1321.34a, 1309.23e
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4. Structural stability and frequency shift of graphene

each branch is inversely proportional to the lifetime of the corresponding mode. The

increase in width of LO and TO modes at 300 K is a result of higher order phonon

scattering processes. The ZO mode frequency obtained from MD simulation is 0.2 %

higher than the experimental value. Similarly the LO/TO mode frequency is 5.2 %

higher when compared to experiments at � point.

At 300 K, the quasi-harmonic ZA (bending) mode shows an instability along Γ-M

and K-Γdirection (Figure 4.3). Similarly the ZA mode obtained from fix-phonon

method is also shows an instability along K-Γdirection (Figure 4.3). This indicates

a structural instability of flat 2D-graphene sheets, which arises when the a-lattice is

reduced below the equilibrium value as reported in ab initio calculations [219]. But

the ZA mode obtained from MD simulations using SED method doesn’t show the

above structural instability. This is due to the fact that the quasi-harmonic and fix-

phonon methods includes only the anharmonic effect that arises from the thermal

contraction/expansion of a-lattice. In addition to the thermal contraction/expansion

of a-lattice, the entire phonon-phonon scattering processes are included naturally

in MD phonon dispersion obtained using SED method; this strong phonon-phonon

coupling stabilizes the structure of graphene at higher temperatures. This exemplifies

the Mermin-Wagner theorem [39]. In the case of graphene sheet, the strong coupling

between the in-plane stretching and out-of-plane bending mode suppresses the effect

of thermal fluctuations and leads to ripples on the surface. These ripples stabilize a

free-standing graphene sheet [41].

Figure 4.4 shows the phonon dispersions of graphene at different temperatures (100,

1000 and 2000 K)1. The instability of quasi-harmonic ZA mode along Γ-M and K-

Γ directions are conspicuous at these temperatures (Figure 4.4d&e). As discussed

earlier, the phonon dispersions obtained from SED method at these temperatures

restores the dynamical stability of the system, by incorporating the higher order

1The fix-phonon methods is used to compute the phonon dispersion only at 300 K, since it fails
to incorporate the full anharmonicity, we didn’t use this method in further calculations
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Figure 4.4 – The phonon dispersion of graphene at different temperatures. The
green dot-dash line is from LD calculation at equilibrium in-plane lattice parameter
(a -lattice). The red solid curves are obtained from quasi-harmonic lattice dynamics.
The thick black curve is obtained directly from MD simulations using SED method.
There is an upshift of LO/TO mode frequency (obtained from MD simulations) with
temperature. The quasi-harmonic ZA mode becomes imaginary along Γ−M and K-Γ
directions. (d&e) quasi-harmonic ZA mode (zoomed along Γ−M and K-Γ directions)
at different temperatures.

phonon-phonon coupling processes. As temperature increases from 100 K to 2000 K,

there is an upshift of LO/TO optic modes with respect to the frequency obtained

from LD and quasi-harmonic calculations. The ZO mode also shows a blue-shift in

frequency, but not as significant as in the case of the LO/TO modes.

The Phonon DOS of graphene is calculated by computing the Fourier transform of

the velocity-velocity auto correlation function (VACF) (chapter-2, 2.3.5.1). Figure

4.5 shows the phonon DOS at different temperature. The dotted lines represent the

frequency of different branches at various high symmetry points. The shoulder at
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4. Structural stability and frequency shift of graphene

frequency ω = 0 cm-1 is coming from ZA branch at � point, which is flat around

this point. The ZA mode at M point peaks at ω = 277.72 cm-1, and the ZA mode

frequency shifts to higher frequencies as the temperature increases. The degenerate

ZA/ZO mode at K point shows a dip around 422.91 cm-1, which shifts to higher

frequency as temperature increases. The out-of-plane optic mode (ZO) peaks around

558.44 cm-1 (at M point) and 829.17 cm-1( � point) also exhibits a blue- shift in

frequency with temperature. The in-plane optic modes (LO/ TO) show a clear shift

to the higher frequency side of the spectrum upto ∼1300 K .
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Figure 4.5 – The phonon density of states of graphene at different temperatures.
The high frequency optic modes get blue shifted with temperature upto ∼1300 K. The
vertical lines (short dash) represent the peak positions obtained from LD calculations.

4.3.3 Temperature dependence of Γ point optic phonon modes

In the previous section, a blue-shift of LO/TO and ZO mode frequencies is observed

with an increase in temperature. To analyze the above blue-shift, the mode-resolved

phonon spectra at Γ point is computed as a function of temperature. It is found
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from group theoretical analysis of graphene that the degenerate LO/TO modes at �
point involve vibrations of atoms in sublattice A against those in sublattice B (Figure

4.1b) and they belong to the E2g representation [66]. The G peak (E2g symmetry)

at ∼1580 cm-1 is the only Raman active mode at � point and it arises from the first

order Raman scattering process. The defect induced D peak at ∼1350 cm-1 arises

from the breathing modes of six-membered rings of carbon atoms, and involves a TO

mode and a defect near the K point of Brillouin zone. The D’ peak at ∼1620 cm-1 is

the weak disorder induced peak, which comes from the intra-valley double-resonance

process. The G’ (2D) peak at ∼2700 cm-1 is the overtone of D peak and comes from

the second order Raman scattering process of zone boundary phonons. The D and

G’ peaks arise from the inter-valley double resonance process, in which the phonon

wave-vectors (q) associated with D and G’ peaks will couple to electronic states with

wave-vectors (k) at K point in the Brillouin zone [66, 220]. Since electron-phonon

coupling cannot be incorporated in classical MD simulations, the G’ peak will not be

considered in this study. The simulations are done using perfect graphene sheet, and

hence the defect induced D and D’ peaks will not appear in these simulations.

In the case of graphite, the E2g mode splits into two nearly degenerate modes such

as E2g (Raman active, at 1580 cm-1) and E1u (IR active mode, at 1588 cm-1) [221].

The ZO mode corresponds to out-of-plane atomic displacement and belongs to B2g

representation and it is neither Raman nor IR active. In graphite the degeneracy in

the B2g mode is lifted and it splits into the B2g mode and an A2u mode (IR active,

868 cm-1) [221]. In table 4.2 we compare the results of simulations with those from

Raman and IR scattering experiments at 300 K.
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Table 4.2 – Comparison of the frequencies of Γ point LO/TO and ZO modes (in units
of cm-1) at 300 K with IR and Raman scattering experiments for graphene and graphite.
aReference [220], bReference [221]

mode simulation
graphene-

Raman

graphene-

IR

graphite-

Raman
graphite-IR

LO/TO (E2g or

G-peak)
1637.03 1580.09a (E2g) inactive 1580.09a (E2g) 1588.08b(E1u)

ZO 825.17 inactive inactive inactive 867.80b (A2u)

LD calculations using LCBOP potential predicts the peak position of LO/TO modes

at Γ point to be 1511.72 cm-1 at 0 K. As temperature increases the LO/TO mode fre-

quency shows a blue-shift (Figure 4.6). Similarly the ZO mode at 0 K peaks at 820.18

cm-1 and shows a slight blue-shift with temperature. The shift in phonon frequency

and change in phonon linewidth with temperature are due to the anharmonicity in

the effective interaction between the atoms. Effect of anharmonicity can be separated

into two parts: one that comes from the anharmonic coupling of phonon modes (self-

energy change) and the other that arises from the thermal expansion/contraction of

the crystal. Thermal expansion/contraction leads to decrease/increase in the values

of the force constants and hence a shift in the mode frequencies. On the other hand,

the coupling between the phonon modes leads to finite lifetime (nonzero width) apart

from a shift in the mode frequency. The phonon frequency shift with temperature

that arises purely due to anharmonic coupling of phonon modes, can be obtained from

the constant volume simulations/experiments [67, 222]. Since most of experiments are

performed at constant pressure, the observed frequency shift arises from the combi-

nation of thermal expansion and self-energy change. In the present work we decouple

this self energy change and thermal expansion contributions by performing constant

volume (NVT ensemble) and constant pressure (NPT ensemble) simulations.
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Figure 4.6 – The ZO and LO/TO frequencies at � point as a function of temperature.
The vertical lines (short dash) represent the peak positions of ZO and LO/TO frequency
obtained from LD calculations. The ZO and LO/TO mode frequencies show a blue
shift with temperature when compared to LD calculations. (bottom) The eigenvectors
corresponds to (a) ZO and (b)/LO/TO mode

The exact peak position and linewidth is computed by fitting a Lorentzian to the fre-

quency spread (chapter-2, equation 2.72). Figures 4.7 a&b show the shift in LO/TO

and ZO frequency with temperature. The quasi-harmonic frequencies computed at

temperature dependent a-lattices, showing a blue-shift in the LO/TO mode frequency,

and it peaks at ∼1300 K, where the thermal contraction of a-lattice is a maximum.

This sensitive behavior of LO/TO mode frequency with respect to small change in

the a-lattice was reported by Wirtz et al [56] using ab initio calculations. Both NVT

and NPT ensemble simulations are showing a blue-shift of LO/TO mode frequen-

cies. The NVT ensemble shift is purely due to anharmonic phonon-phonon coupling,

while NPT ensemble shift is an outcome of anharmonic phonon-phonon coupling as
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well as the thermal contraction of a-lattice. The difference between NVT and NPT

simulations is more apparent in the temperature range of 700 K - 1300 K which in-

dicates that thermal contraction of graphene is maximum in this temperature range.

From the above discussion it can be concluded that the thermal contraction of in-

pane lattice leads to a blue-shift in quasi-harmonic mode frequency, but when only

phonon-phonon coupling is introduced (NVT ensemble) the blue shift becomes more

prominent than quasi-harmonic shift. When phonon-phonon coupling and thermal

contraction operates together (NPT ensemble), the blue-shift is even more promi-

nent due to additional contribution from thermal contraction. Hence we can conclude

that the strong anharmonic phonon-phonon coupling is the major cause for the ob-

served blue-shift of LO/TO mode frequencies. There is a cross-over of quasi-harmonic,

NVT and NPT ensemble frequencies above 2500 K, which indicates that the effect

of phonon-phonon coupling becomes weak when compared to thermal-contraction for

temperatures >2500 K.
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Figure 4.7 – (a) The LO/TO frequency shift with temperature. The inset depicts the
contribution from in-plane thermal contraction in the temperature range 900 - 1500 K.
(b) The shift in ZO frequency with temperature. Legends are common for both plots

A fifth order polynomial fit to describe the variation of phonon frequency with tem-

perature shows a maximum at ∼800 K in NPT ensemble. The relative change in

the a-lattice is small (-0.3% ) at 800 K, and it causes 1.5 % shift (23 cm-1) in quasi-

harmonic LO/TO frequency. But when we compare the NPT ensemble LO/TO fre-
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4.3. Results and discussions

quency with quasi-harmonic data (at 800 K), there is a considerable upshift (10 %)

which is due to strong phonon-phonon scattering process. Bonini et al [64] studied the

frequency shift of E2g mode as a function of temperature using DFPT implemented

in the PWSCF package. These authors found that even though the a-lattice contrac-

tion would imply an upward shift in frequency, the 3-phonon and 4-phonon scattering

processes cause a downward shift. They further showed that the total shift (both from

lattice contraction and anharmonic phonon coupling) is downward with temperature

(0 K - 800 K). In our simulations the anharmonicity is fully included, and hence all

the multi-phonon processes have been taken into account. However, we did not ob-

serve any downward shift in the frequency with respect to the values predicted by LD

calculation. On the experimental front, a red-shift of the G-peak (E2g mode) is seen

in the temperature dependent Raman spectra of graphene sheets [50, 67, 68] which is

in qualitative agreement with the above mentioned DFPT calculations. The ab initio

MD simulations carried out in the temperature range 0 K - 2000 K by Pozzo et al [46]

show thermal contraction of free-standing graphene for various system sizes. On the

other hand, Pozzo et al show that thermal expansion occurs for supported graphene

sheets in the entire temperature range of simulation, and this might be one of the rea-

sons for the red shift seen in the experiments. In support of this argument, we can see

the previous observation of Aizawa et al [223], who reported that the in-pane lattice

parameter of graphene over TaC(111) substrate is 3 % larger than the bulk graphite,

which leads to a considerable softening of zone-centre optical phonons. Later, Rieder

et al [224], also observed similar softening of optical phonon of monolayer graphite

on Ni(111) substrate. Recently, Allard et al [217] measured the phonon dispersion

of graphene supported on Ni(111) surfaces, and found significant softening of optical

phonon for Ni over which graphene layer bonded strongly. The strong coupling be-

tween the graphene and substrate causes an increase in a-lattice (∼3 %). Yoon et al

[50] found that the thermal expansion mismatch between the graphene and substrate

leads to a strain which also alters the physical properties. Hence we can conclude
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4. Structural stability and frequency shift of graphene

that the strong binding between the graphene sheet and substrate causes a significant

softening of in-plane lattice, and alter the phonon-transport mechanism, and their

combined effect may lead to substantial changes in the phonon frequency shift when

compared to free-standing graphene.

In graphene the ZO mode is inactive in both Raman and IR scattering experiments.

There are no studies to understand the effect of temperature on ZO mode both exper-

imentally and theoretically. Figure 4.7b shows the variation of ZO mode frequency

with temperature. The quasi-harmonic ZO mode frequencies show a behaviour op-

posite to that of LO/TO mode. The mode frequencies decrease with temperature

upto ∼1300 K and further increases with temperature. This red-shift of ZO mode

quasi-harmonic frequency can be explained using membrane effect [58]. When the

thermal contraction occurs the tension in the in-plane lattice grows, which restricts

the out-of-plane motion of atoms, leading to a softening of out-of-plane force con-

stants and fall in the mode frequency [44]. Unlike to quasi-harmonic data, the NVT

and NPT ensemble frequencies are showing a blue-shift, which is again a consequence

of phonon-phonon coupling. The NPT ensemble mode frequency shows a maximum

at ∼2060 K and it is slightly lower than the NVT ensemble frequencies due to the

membrane effect induced by thermal contraction.
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Figure 4.8 a&b shows the width of LO/TO and ZO phonon modes at � point as a
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4.3. Results and discussions

function of temperature. The width of the LO/TO phonons increases with temper-

ature in a non-monotonic manner. There is a local maximum in the temperature

range 0 K - 500 K followed by a local minimum in the temperature range 500 K -

1000 K. This unusual behavior is seen in the results obtained with both NVT and

NPT ensemble simulations. The phonon processes responsible for such a behavior are

currently not known. Furthermore, the pronounced nonlinear increase in width seen

at all temperatures is in disagreement with Bonini et al [64], who showed that the

E2g linewidth decreases with temperature. This occurs in their calculations due to

the strong electron-phonon coupling which reduces the linewidth and more than nul-

lifies the increase in linewidth of E2g mode that occurs due to three-phonon process.

The temperature dependent Raman spectra of graphene sheets show an increase in

linewidth of G peak as a function of temperature [68, 171]. The model calculations

including the three-phonon, four-phonon and electron-phonon scattering processes

predict an increase in phonon linewidth with temperature which is in agreement with

experimental observations [68]. These model calculations suggest that four-phonon

scattering process should be incorporated to study the linewidth of G peak at high

temperatures. Even though we did not consider the electron-phonon coupling, the

phonon linewidth increases with temperature in our simulations, which may be due to

the contribution from higher order phonon scattering processes. This is in agreement

with previous experimental result [171], where it was found that the broadening of G

peak as a function of temperature is an outcome of higher order anharmonic phonon

coupling which becomes more pronounced at higher temperature. The linewidth of

ZO mode increases with temperature, and the broadening is less when compared to

LO/TO mode. Since ZO mode is inactive in Raman and IR scattering experiments,

no experimental results are available for comparison.

To study the anharmonic effect on eigenvectors, the phonon frequency shift and

linewidths of ZO and LO/TO modes are computed with and without eigenvectors
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4. Structural stability and frequency shift of graphene

(chapter-2, 2.4.2.2). Figure 4.9 displays the results obtained in both methods. For

LO/TO mode the frequency shift and linewidths computed with and without eigen-

vectors are identical. In the case of ZO mode the second method predicts a slightly

lower frequency shift and linewidth at a given temperature. But this difference (

△ω300 K= -1.5 cm-1 and △Γ300 K = -0.47 cm-1 ) is too small to be significant.
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Figure 4.9 – The temperature dependent frequency shift and linewidth of LO/TO
and ZO mode. The black squares are computed directly from the Fourier transform
of MD based atomic velocity. The green open triangles are obtained by projecting the
atomic velocity on to the normal modes of vibration. Legends are common for all plots

4.3.4 Anharmonic phonon coupling at �, M and K point

In harmonic approximation, the normal modes of vibration of a crystal are, by defi-

nition, decoupled from each other. Once such a normal mode is excited, the crystal

will continue to vibrate for ever in that mode without any decrease in the amplitude.

However, at finite temperature, the modes get coupled due to anharmonicity. This

coupling leads to sharing of energy between the modes, thereby causing decay of the

vibrational excitations leading to reduction in the intensity of the spectral lines. Fur-
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thermore, lifetime of the modes become finite, which is manifested as a finite width

of the spectral line. Thus anharmonic coupling of a mode with other modes leads

to a decrease in intensity and increase in width of that particular mode. In order to

understand the anahrmonic coupling between the phonon modes, we computed the

temperature dependent phonon spectra at 500 K and 1000 K at �, M and K points

and are shown in figure 4.10. LO/TO modes do not get coupled with the other modes

at � implying that their decay occurs by coupling with phonons at other points in

Brillouin zone. At M point, the out-of-plane vibrations (ZO and ZA) are coupled. The

high frequency LO and TO optic modes are coupled to LA and TA acoustic modes.

At K point, the ZA/ZO and LA/LO modes are not coupled with other modes, and

the TO mode gets coupled with TA mode.

4.3.5 Temperature evolution of acoustic phonon modes

To study the temperature evolution of acoustic phonon modes, the mode resolved

phonon spectra is computed at M-point in the Brillouin zone. Figure 4.11 shows the

frequency shift and linewidth of acoustic modes as a function of temperature. The

quasi-harmonic LD frequencies of out-of-plane acoustic (ZA) mode falls with temper-

ature up to ∼1300 K and increases thereafter, this is due to the membrane effect [58].

The ZA-mode frequencies obtained from both NVT and NPT ensemble simulations

show a blue-shift. The phonon-phonon coupling effects dominates over the mem-

brane effect, leads to an upshift in ZA-mode frequencies in NVT and NPT ensemble

simulations. For transverse acoustic (TA) mode ( Figure 4.11b), the quasi-harmonic

frequencies increases with temperature upto ∼1300 K, and decreases thereafter. Both

NPT and NVT ensemble simulations predicts a large and identical upshift in TA mode

frequencies with respects to quasi-harmonic calculations, which is again due to higher

order phonon-phonon coupling effects. For longitudinal acoustic (LA) mode (Figure

4.11c), the upshift in quasi-harmonic mode frequencies (upto ∼1000 K) are due to

thermal contraction effects. LA mode frequencies obtained from NVT ensemble are
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Figure 4.10 – Spectral density is shown at some special points in the Brillouin zone to obtain information about anharmonic coupling of each
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4.3. Results and discussions

further shifted up with respect to quasi-harmonic predictions. NPT ensemble LA

mode frequencies show even higher shift in mode frequencies, this is due to the com-

bined effects of thermal contraction and phonon-phonon coupling. Figure 4.11a1-c1

shows the linewidth of the corresponding acoustic modes. The linewidths of all modes

are increasing in a monotonous fashion.
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Figure 4.11 – The temperature evolution of acoustic mode at M point in the Brillouin
zone. The left panel (a-c) shows the mode frequency shift computed in quasi-harmonic
lattice dynamics (blue-star), NVT ensemble (red-sphere) and NPT ensemble (black
squares) simulations. The right panel (a1-c1) shows the linewidth of the corresponding
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4.3.6 Effects of ripples on thermal expansion properties

In order to understand the role of ripples on thermal expansion properties, we explic-

itly carried out 2D and 3D simulations of very same system at different temperatures.

In 2D simulations, we arrested the movement of atoms along the direction normal to
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4. Structural stability and frequency shift of graphene

the sheet and prevented the formation of thermally excited ripples using fix enforce2d

command [179]. Ripples are naturally included in 3D simulations and leads to a cor-

rugated surface instead of flat 2D sheet (figure 4.12a). We used simulation cells of

various sizes (10Ö10Ö1, 30Ö30Ö1, 50Ö50Ö1, 70Ö70Ö1, 100Ö100Ö1, 150Ö150Ö1) to

incorporate the effect of long wavelength ripples. Figure 4.12b&c displays the tem-

perature dependence of a-lattice and linear thermal expansion coefficient (LTEC) of

free-standing graphene. In 3D simulations, we found that the a-lattice decreases with

an increase in temperature. Fourth order polynomial fit to the above data shows that

minima occurs in the temperature range 1300 K - 1400 K, and further it expands with

an increase in temperature.

Noteworthy, the temperature evolution of a-lattice is system size dependent (Figure

4.12 b&c). For the simulation cell of size 10Ö10Ö1 (contains only 200 atoms) a-lattice

shows relatively less contraction with respect to bigger cells and minima occurs around

T = 1100 K. The a-lattice shows a convergence from simulation cell of size 70Ö70Ö1

(9800 atoms) onwards, and the minima falls in the temperature range of 1300 K - 1400

K (dependence on system size). The similar system size dependence was reported by

Pozzo et al [46], they used simulation cells of sizes 8Ö8Ö1, 10Ö10Ö1 and 16Ö16Ö1

contains 128, 200 and 512 atoms respectively. The authors found that the thermal

contraction of a-lattice is identical at low temperatures for simulations employing

cells of various sizes. At 1000 K, a-lattice slightly increases for two smaller simulation

cells, while it decreases for the cell of bigger size. This system size dependence of a-

lattice is due to the existence of large scale ripples [42] in the actual physical context,

which cannot be fitted adequately inside the small simulation cells [46] . Fasolino

et al [41] observed fluctuations with wavelength of the order of 80 Å at 300 K from

their Monte Carlo simulations. To incorporate such long wave length fluctuations

bigger simulation cells are required, which makes ab initio Car-Parinello simulations

prohibitive. In the present study, we used a simulation cell of size 150Ö150Ö1 (45000
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atoms), is adequate to incorporate all long-wavelength rippling effects.
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Figure 4.12 – clockwise; (a) snapshots of the sheets obtained from 2D and 3D simula-
tions at 300 K. (b) The temperature evolution of in-plane lattice parameter (a -lattice)
obtained from 2D and 3D simulations. Inset shows that in 2D simulations the C-value
doesn’t change with temperature. (c) The linear thermal coefficient (LTEC) as a func-
tion of temperature. (d) The phonon dispersion curve of graphene obtained from 2D
simulations. The green-dot-dash lines are obtained from lattice dynamics calculations
(LD) at 0 K, the thick black line is computed directly from 2D-molecular dynamics
simulations using SED method at 300 K.

In 3D simulations, the LTEC is negative for all simulation cells. The LTEC also

shows a system size dependence and its value for 10Ö10Ö1 simulation cell is roughly

half of the value of 150Ö150Ö1 cell (table 4.3). The value of LTEC at 300 K (αa =

−4.300×10−6K−1) is in qualitative agreement with previous calculations [44, 45, 52].

All simulations predict the LTEC roughly half of the experimental value [48, 50] (table

4.3). Unlike DFPT calculations, present study incorporated the full anharmonicity

of interatomic potential, hence the disagreement with experiments may not be due

to the strong anharmonic nature of graphene. Though the above experiments has
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4. Structural stability and frequency shift of graphene

taken care to eliminate the strain effect induced by substrate, more accurate analysis

is needed to get a clear picture. To support the above arguments, we can see the

previous observation of Pozzo et al [46], when the graphene sheet was supported on Ir

(111) substrate it shows thermal expansion instead of thermal contraction. Jiang et

al [47] used Green’s function technique and reported that the LTEC is very sensitive

to substrate layer interaction. They found that a weak substrate-layer interaction

can cause a significant change in the value of LTEC, and if the substrate effects are

strong enough, the LTEC can become positive in the whole computed temperature

range. Later, Pan et al [225], used temperature dependent Raman spectroscopy and

measured a lower bound of LTEC (at 300 K (αa = −5.5 × 10−6K−1)) of graphene

which was supported on BN, while Bao et al [48] and Yoon et al [50] used Si and

SiO2 substrates to support their graphene sheet respectively; this may be one of the

reason to have different LTEC in these experiments. Our results, along with the

earlier theoretical predictions[44, 45, 52] are in qualitative agreement with Pan et al

[225].

Table 4.3 – The system size dependence of linear thermal expansion coefficient (LTEC)
of graphene at 300 K. In 2D simulations the LTEC are positive and does not show any
system size dependence. The LTEC obtained from 3D simulations are negative and
show a system size dependence. The data has been compared with the experiments.
aReference[225], bReference[48], cReference[49], dReference [50]

simulation

cell size

2D
simulation

αa(×10−6K−1)

3D
simulation

αa(×10−6K−1)

expt.

αa(×10−6K−1)

10Ö10Ö1 (200 atoms) 5.178 -2.486
30Ö30Ö1 (1800 atoms) 5.226 -3.706

50Ö50Ö1 (5000 atoms) 5.235 -3.907 -5.500a, -7.000b, c, -8.000d

70Ö70Ö1 (9800 atoms) 5.230 -4.300
100Ö100Ö1 (20000 atoms) 5.243 -4.490
150Ö150Ö1 (45000 atoms) 5.241 -4.524

Further the 2D simulation results are analyzed (Figure 4.12a&b). In contrast to 3D

simulations, a-lattice increases with an increase in temperature for 2D simulation,

and it does not show any system size dependence. We compared the LTEC at 300

K in table 4.3. The LTEC obtained from 2D simulations are all positive in sign and
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does not have any system size dependence (table 4.3). Since there is no movement

of atoms along Z direction, rippling effects are absent in 2D simulations, hence a-

lattice shows a thermal expansion, and the sign of LTEC is positive in the whole

computed temperature range. Here it is concluded that, the long-wavelength ripples

have significant effect on thermal expansion properties of free-standing graphene.

Grüneisen theory has been widely used to understand the underlying mechanism

behind the thermal contraction or expansion of solids [44, 52, 226]. According to

Grüneisen theory, modes with positive Grüneisen parameters will encourage the ther-

mal expansion, while modes with negative Grüneisen parameter will aid thermal con-

traction. A solid is undergoing thermal expansion or contraction is determined by the

balance between the modes with positive and negative Grüneisen parameters [226].

For graphene, the Grüneisen parameters of low lying bending mode (ZA) become

large negative (as low as -80). At low temperature only low frequency acoustic modes

will be excited, (high frequency optic modes with positive Grüneisen parameters are

frozen) and contributes to thermal contraction [44, 52]. The competition between

the modes with positive and negative Grüneisen parameters leads to an initial fall

of a-lattice and a crossover at a particular temperature (for graphene it is around

1100 K-1400 K). The mode dependent Grüneisen parameters are computed by strain

derivative of phonon frequencies which obtained using quasi-harmonic approximation

(QHA) [44]. One drawback of above method is that, under certain compressive strain,

it is difficult to keep the crystal stable. When compressive strain is large enough, it

leads to imaginary frequencies around the Γ point which cannot be used to compute

the mode Grüneisen parameters. Due to above limitation, wavevectors are computed

with less accurate finite difference algorithm around the Γ point [219] . Moreover in

QHA we are using a flat 2D sheet, which is devoid of ripples. Despite the above lim-

itations, Grüneisen theory predicts the thermal expansion of honeycomb structures

reasonably well .
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Instead of Grüneisen theory based analysis, we computed the phonon dispersion sepa-

rately from 2D simulations to get a clear picture about the role of each phonon modes

on thermal contraction (Figure 4.12d). In 2D dispersion, the in-plane acoustic modes

LA and TA shows similar behavior as reported in 3D dispersion (Figure 4.3). The

most important point here to note the absence of out-of-plane modes (ZA and ZO).

Since we arrested the movement of atoms along Z directions, the branches correspond-

ing to out-of-plane motions are missing in phonon dispersion. This complete absence

of ZA and ZO mode, which is responsible for thermal contraction of a-lattice at low

temperature, is the reason behind the continuous thermal expansion of a-lattice in

2D simulations, and this observation is completely agreeing with Grüneisen theory

based analysis.

4.4 Summary

A spectral energy density (SED) based formalism is adapted to probe the tempera-

ture dependent structural stability, frequency shift, linewidth and coupling of normal

modes of vibrations of free-standing graphene. The key findings of this study are

summarized below.� The in-plane lattice parameter (a-lattice) of graphene shows thermal contraction

upto 1300 K and it expands thereafter.� Frequency of the bending mode (ZA) becomes imaginary in the quasi-harmonic

and fix-phonon dispersions at higher temperatures, suggestive of a structural

instability. However, the frequency of the ZA mode becomes real in the disper-

sion obtained from molecular dynamics (MD) simulations using SED method.

Dynamical stability to the structure is restored by strong anharmonic coupling

of phonon modes which is automatically incorporated in the MD simulations

using SED method, whereas it is ignored in the quasi-harmonic and fix-phonon

dispersion.
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4.4. Summary� The mode resolved phonon spectra at Γ point show a blue-shift of degener-

ate longitudinal and transverse (LO/TO) optic modes. The blue-shift observed

in canonical (NVT) and isobaric-isothermal (NPT) ensembles are more promi-

nent than the shift predicted by quasi-harmonic approximation due to the addi-

tional contribution from phonon-phonon coupling. The out-of-plane optic (ZO)

mode frequencies are red-shifted in the quasi-harmonic approximation due to

membrane-effect, whereas MD simulations show that the strong phonon-phonon

coupling dominates the membrane effect leading to a blue-shift. The linewidth

of LO/TO and ZO modes increases non-monotonically with temperature.� Temperature evolution of acoustic modes are studied at M point in the Brillouin

zone. Similar to optic phonon modes, the strong phonon-phonon coupling causes

the upshift of ZA, TA and LA mode frequencies.� The role of ripples on thermal expansion properties of graphene is delineated

by performing 2D and 3D simulations of very same system at different temper-

atures. The 2D a-lattice, which is devoid of ripples, shows continuous thermal

expansion. At the same time, the a-lattice obtained from 3D simulations shows

thermal contraction upto 1300 K and further it expands. The discrepancy be-

tween 2D and 3D simulations of graphene is due to the absence of out-of-plane

bending mode (ZA) in 2D simulations, which is responsible for thermal contrac-

tion of a-lattice at low temperatures.
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Chapter 5

Effect of strong phonon-phonon
coupling on structural and

vibrational properties of 2D h-BN

2D-h-BN is isostructural to graphene and used as a substrate to graphene based elec-

tronics. Knowledge on temperature dependent phonon transport, structural stability

and thermal expansion of 2D h-BN is crucial to fabricate graphene/h-BN hybrid nano-

devices. This chapter discusses the temperature dependent structural stability, thermal

expansion, frequency shift and linewidth of 2D h-BN, which are studied using SED

method. The effects of ripples on thermal expansion properties is also discussed.

5.1 Introduction

The 2D h-BN is structural analog of graphene, with B and N atoms located at the

corners of hexagons of honeycomb lattice. 2D h-BN geometrically supports graphene

due to identical structure, is hence used as a substrate, which retains the quality of

suspended graphene sheets [24]. The thermal and vibrational properties of 2D h-BN

are studied both theoretically [82–84] and experimentally [87–91]. Being a 2D crystal

and analogue of graphene, it is expected to have strong anharmonicity in 2D h-BN

also. The thermally excited ripples are inevitable in 2D h-BN, and they can affect the

thermal and phonon transport. The temperature dependent structural and vibrational
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5. Structural stabilty and frequency shift of 2D h-BN

properties of 2D h-BN are not studied in detail, knowledge of these properties is crucial

to fabricate nano-devices with better heat dissipation capability. This chapter is

devoted to study the finite temperature structural, thermal and vibrational properties

of 2D h-BN using spectral energy density (SED) method (chapter-2, 2.3.5.3). The

effects of ripples on thermal expansion are analyzed and compared with graphene at

end of this chapter.

5.2 Computational methods

All simulations are done using the classical MD simulation package LAMMPS [179].

The interaction between B and N atoms in a honey-comb lattice (Figure 5.1) is mod-

eled using a Tersoff-type [182] interatomic potential, and its functional form can be

written as

E =
1

2

∑

i

∑

j 6=i

Vij (5.1)

Vij = fC(rij)
[

fR(rij) + bijfA(rij)
]

,

fC(r) =



































1 r < R −D,

1
2
− 1

2
sin (π

2
r−R
D

R−D < r < R+D

0 r > R +D

fR(r) = Aexp(−λ1r),

fA(r) = −Bexp(−λ2r),

bij = (1 + βnζn
ij)

− 1

2n ,

ζij =
∑

k 6=i,j

fC(rik)g(θijk)exp
[

λ3
3(rij − rik)

3
]

,

g(θ) =

(

1 +
c2

d2
− c2

[d2 + (cosθ − h)2]

)
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5.2. Computational methods

where fR and fA are two-body and three-body terms respectively. The summation

is over all the neighbors j and k of atom i within a cut-off radius of R + D. The

modified cut-off functions fc guarantees the first nearest neighbour interaction. The

bond angle term bij depends on local coordination of atoms around atom i and angle

between atoms i, j, and k (θijk). Sevik et al [148], developed a set of Tersoff-type

potential parameters, that reproduces the experimental phonon dispersion of 2D h-

BN effectively. This potential also models the structural, mechanical and thermal

properties of 2D h-BN reasonably well [148]. The parametrization of Sevik et al [148]

is used in this study for further calculations. A supercell of size 70Ö70Ö1 (9800 atoms)

is created and periodic boundary conditions are employed in all the three directions.

A vacuum separation of 25 Å is provided along Z-direction to avoid the unphysical

interactions between the periodic images of the 2D h-BN layers. The computational

procedure is same as discussed in chapter-2 (2.4.2). The velocities of all atoms are

collected at every 5 fs interval. The whole simulations are done for 3.2 ns.

Figure 5.1 – (a) The 2D h-BN at 0 K; the red and blue balls are B and N atoms,
respectively. (b) The 2D h-BN sheet at 300 K. Similar to graphene, the 2D flat surface
becomes corrugated due to thermally excited ripples
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5. Structural stabilty and frequency shift of 2D h-BN

5.3 Results and Discussions

5.3.1 Lattice dynamics (LD) and quasi-harmonic lattice dy-

namics (QH-LD)

The interatomic potential predicts the equilibrium in-plane lattice parameter (a-

lattice) of 2D h-BN to be 2.498 Å at T = 0 K, which is close to the experimental

value 2.500 Å [227, 228]. The LD calculations (chapter-2, 2.4) are done with various

supercells of size 4Ö4Ö1, 5Ö5Ö1, 6Ö6Ö1 and 8Ö8Ö1, and the convergence is found in

the spectrum of the order of 0.03 cm-1 for a supercell of size 6Ö6Ö1 (72 atoms) and

larger. Hence, we adapted 6Ö6Ö1 supercell for LD and quasi-harmonic LD (QH-LD)

calculations. The results obtained at equilibrium a-lattice parameter (2.498 Å) (Fig-

ure 5.2a) show a very good agreement with previous calculation [148]. The acoustic

phonon frequencies around the Γ point obtained using Tersoff potential show an excel-

lent matching with experiment [91], while the optic mode frequencies show deviation

from experiments. This is due to the partial ionic nature of h-BN, which can affect

optic mode frequencies around the Γ point [82]. This effect is not incorporated in the

present potential. This shows that the empirical potential used in the present simu-

lation, albeit being the best in the literature, still needs revision to be able to capture

all structural and dynamical aspects of 2D h-BN. Analogous to graphene, the unit

cell of 2D h-BN contains 2 basis atom, and hence there are six modes of vibrations.

The LA and TA modes are showing linear dispersion around the Γ point, while ZA

mode exhibits quadratic dispersion, as found in graphene. Even though BN is a polar

material, the macroscopic electric field due to electrostatic interaction does not cause

an LO-TO splitting at Γ point because of its 2D nature [85, 86, 229].
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Figure 5.2 – (a) The phonon dispersion of 2D h-BN along high symmetry directions,
the experimental data are shown as solid (green) circles taken from reference [91](b)
Quasi-harmonic frequencies obtained by varying the equilibrium in-plane lattice pa-
rameter (a-lattice) by ±1%. (c&d) The ZA (bending) mode is imaginary around the Γ
point along Γ-M (c) and K-Γ (d) directions for the in-plane lattice parameter which is
smaller than the equilibrium value (aeq = 2.498 Å). Legends are common for plots b, c

and d.

In order to include the anharmonicity that arises from thermal contraction/expansion

of a-lattice we used QH-LD, in which dependence of phonon frequency on the lattice
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5. Structural stabilty and frequency shift of 2D h-BN

parameter is studied by varying the equilibrium a-lattice by ±1 % (c-value kept fixed

as 25 Å). In a single layer of h-BN, there is no interaction along c-axis, hence the

phonon frequencies do not have any dependence on the value of c. Figure 5.2b shows

the quasi-harmonic phonon dispersion curves obtained at different a-lattices. The

degenerate longitudinal and transverse (LO/TO) optic mode at Γ point arises from

the in-plane atomic displacement, so any change in a-lattices will have an influence on

LO/TO mode frequency. When a-lattice decreases/increases the in-plane force con-

stants will increase/decrease, hence there will be an upshift/downshift in the LO/TO

mode frequency.

From figure 5.2b we can see that when a-lattice parameter decreases there is an

upshift of LO/TO mode frequency and vice-versa. The variation in a-lattice affects

the ZO mode frequency also, but this change is not significant as in the case of the

LO/TO mode. The LO/TO and ZO mode frequency shift as a function of a-lattice

parameter is shown in figure 5.3. The LO/TO mode frequency shows a linear increase

in mode frequency with decrease in a-lattice parameter. The ZO mode frequency

shows an opposite behaviour. This is due to membrane effect [58], and it has already

reported in the case of graphene [44, 219]. For a = 2.473 Å (1 % smaller than aeq),

the LO/TO mode frequency increases by ∼ 3.76 % and for a = 2.523 Å (1 % larger

than aeq) there is a downshift in the LO/TO mode phonon frequency by ∼ 3.68 %.

The ZO mode shows an upshift (∼ 0.68 %) for 1 % increase and a downshift of (∼

0.89 % ) for 1 % decrease in the a-lattice parameter.

Similar to graphene, the ZA mode (bending mode) shows an instability around the Γ-

point along Γ-M and K-Γ directions when the a-lattice parameter is smaller than the

equilibrium value (aeq = 2.498 Å). The imaginary ZA mode suggests an instability

of 2D-flat h-BN sheet. This is a shortcoming of approximation we used, namely, we

considered the h-BN sheet to be a flat 2D surface in QH-LD. Since the anharmonic

couplings are not included in QH-LD, the ZA mode is unstable as reported in the case
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5.3. Results and Discussions

of graphene (chapter-4, 4.3.2). Thus strong anharmonicity is envisaged in 2D-h-BN

sheet also, which cannot be incorporated in QH-LD, and hence we have to go beyond

quasi-harmonic method to include the full anharmonicity.
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Figure 5.3 – The quasi-harmonic Γ point (a) LO/TO and (b) ZO optic mode frequen-
cies as a function of in-plane lattice parameter (a-lattice)

5.3.2 Negative thermal expansion of a-lattice

The variation of a-lattice parameter and linear thermal expansion coefficient (LTEC)

are studied as a function of temperature. MD simulations are done with a 2D h-BN

sheet containing 9800 atoms, and the dimensions of the simulation box are Lx=174.86

Å, Ly=151.43 Å and Lz=25 Å. Though the melting point of 2D h-BN is quite high

(∼3000 K), in this study, the simulations are restricted upto 2000 K, above this

temperature the system shows an instability with the present potential [148]. Figure

5.4 displays the simulations results for a-lattice parameter and LTEC. The a-lattice

decreases with an increase in temperature, and its magnitude reduces to 0.84 % of the

equilibrium value at 2000 K. The experimental data of bulk h-BN shows a thermal

contraction with an increase in temperature upto 300 K [230]. The LTEC is computed

by direct numerical differentiation of the above data. The LTEC is negative in the

whole computed temperature interval upto 2000 K and this is consistent with previous

prediction [231]. The negative thermal expansion of h-BN is more prominent at low
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5. Structural stabilty and frequency shift of 2D h-BN

temperatures, and it is due to the large negative Grüneisen parameter of out-of-plane

bending mode (ZA) [52]. The room temperature LTEC αa= =5.32Ö10=6 K=1 , is

comparable with the quasi-harmonic predictions [52]. Both the quasi-harmonic and

MD results are lower than the experimentally reported values of bulk h-BN, =2.72Ö
10=6 K=1 [230], =2.76Ö10=6 K=1 [51] and =2.90Ö10=6 K [232].
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Figure 5.4 – The temperature dependent (a) in-plane lattice parameter (a-lattice)
and (b) the linear thermal expansion coefficient (LTEC)

5.3.3 Structural stability at finite temperatures

The effect of temperature on structural stability is studied by computing the phonon

dispersion directly from MD using SED method. Figure 5.5 displays the phonon dis-

persion curves computed at different temperatures. The LD dispersion (green dot

dashed line) is calculated at equilibrium a-lattice parameter. The red solid lines are

obtained from quasi-harmonic LD calculations. The thermal contraction of a-lattice

parameter increases the in-plane force-constants and hence there is an upshift in the

LO and TO quasi-harmonic LD frequencies. The overall appearance of phonon dis-

persion curves obtained from MD simulation (thick black curve) is similar to LD and

quasi-harmonic dispersion. As temperature increases the LO and TO optic mode

frequencies obtained from MD simulations are showing an unusual downshift (mode

softening). This unusual downshift contradicts with the quasi-harmonic predictions.

The out-of-plane optic (ZO) mode frequencies also show a downshift and this is con-
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5.3. Results and Discussions

sistent with quasi-harmonic calculations.
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Figure 5.5 – The phonon dispersion of 2D h-BN at different temperatures. The
green dot dashed lines are obtained from the lattice dynamics at equilibrium in-plane
lattice parameter (a-lattice). The red solid lines are the quasi-harmonic dispersion curve
computed at temperature dependent in-plane lattice parameter (obtained from MD
simulations), and the thick black lines are MD dispersion curves. The quasi-harmonic
ZA modes becomes imaginary along Γ-M and K-Γ directions, and it is more apparent
at higher temperature. (d&e) quasi-harmonic ZA mode (zoomed along Γ-M & K-Γ
directions) at different temperatures.

From figure 5.5 we can see that the low energy quasi-harmonic ZA bending mode

(red solid lines) computed at temperature dependent a-lattice parameter is unstable

along Γ-M and K-Γ directions at finite temperatures. Due to the thermal contraction,

the value of a-lattice parameter falls below that of the equilibrium value, causing a

structural instability. We have already seen this in section 5.3.1, where we arbitrarily

varied the a-lattice parameter. At the same time the phonon dispersion obtained

from MD simulations does not have any such instability. All the ZA mode frequencies
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5. Structural stabilty and frequency shift of 2D h-BN

are real at finite temperatures. The dynamical stability has been restored in MD sim-

ulations. This behaviour is analogous to that of graphene (chapter-4, 4.3). The strong

anharmonic coupling between the phonon modes is absent in quasi-harmonic meth-

ods where we consider a flat 2D sheet, whereas all the phonon-phonon interactions

were naturally included in MD simulations, and it leads to the formation of thermally

excited ripples, which makes the 2D sheet stable. The above result explains the role

of strong anharmonic phonon-phonon coupling on the structural stability of 2D h-BN

sheet at finite temperatures, and this is in concurrence with the findings on graphene.

Experimental [233, 234] and theoretical [84] efforts have been made to quantify the

dimension and role of ripples on electronic and thermo-mechanical properties of 2D

h-BN sheet and nanotube.
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Figure 5.6 – The temperature dependent phonon DOS of 2D h-BN. The high fre-
quency optic modes show a red-shift with an increase in temperature. The vertical dash
lines is the peak position of LO/TO mode obtained from LD calculation.

Figure 5.6 shows the phonon DOS of 2D h-BN as a function of temperature. The

vertical (black dash) line represents the peak position of high frequency optic modes

at 300 K. As temperature increases the optic modes shifts towards the lower frequency

side of the spectrum and exhibits a red-shift. This is concurrent with the downshift
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5.3. Results and Discussions

of optic branches observed in phonon dispersion (Figure 5.5).

5.3.4 Temperature dependence of Γ point optic modes

In the previous section we observed an unusual downshift of LO/TO optic mode

frequencies with temperature. In order to analyze this unusual downshift we computed

the mode resolved phonon spectra at Γ point. The bulk h-BN belongs to a point group

D6h(space group, P6/mmm), according to the factor group analysis the Γ point optic

mode frequencies can be classified as [81].

Γoptic(bulk) = 2E2g(Raman) + 2B2g(inactive) + 2A2u(IR) + 2E1u(IR) (5.2)

The E2g and E1u modes are doubly degenerate, while B2g and A2u modes are non-

degenerate. The Raman and IR active modes are assigned. The 2D h-BN structure

is having D3h (space group, P62m) point group symmetry and the corresponding Γ

point optic mode frequencies are [81] ,

Γoptic(2D) = A2
′′

[ZO](IR) + E
′

[LO/TO](IR+Raman) (5.3)

In equation 5.3 the quantity inside the square bracket represents the polarization

based designation of the corresponding mode. The E
′

and A2
′′

are the group theory

notations of LO/TO and ZO mode respectively.

In order to delineate the contributions of thermal contractions and phonon-phonon

coupling to the total frequency shift and linewidth, we performed quasi-harmonic LD,

NVT and NPT ensemble simulations of the very same system at different tempera-

tures. Figure 5.7 displays the temperature dependent frequency shift and linewidth of

LO/TO and ZO modes. Both ZO and LO/TO modes are exhibiting a red-shift with

respect to LD predicted peak positions. The temperature induced broadening of the

modes is clearly visible. In order to obtain the exact peak position and linewidth we

fit a Lorentzian to the frequency spread (chapter-2, equation 2.72).
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5. Structural stabilty and frequency shift of 2D h-BN
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Figure 5.7 – The Γ-point ZO and LO/TO modes as a function of temperature. The
dot-dashed lines are the LD predicted peak positions. Both ZO and LO/TO modes are
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Figure 5.8a shows the variation of LO/TO mode frequency with temperature. The

quasi-harmonic LO/TO frequencies (blue star) computed at the temperature depen-

dent a-lattice parameter shows a blue shift in the mode frequency as expected. The

NPT ensemble simulations (black square) shows a reverse trend, the mode frequencies

are falling with temperature (red-shift), which contradicts the well known assumptions

that for shorter bond-lengths, the bonds becomes stiffer leading to larger force con-

stants and mode frequencies. In the NPT (constant pressure) ensemble simulations,

the volume change is allowed, hence the observed frequency shift is an outcome of both

thermal contraction of a-lattice parameter and the coupling of phonon modes. While
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in NVT ensemble, the simulation volume is fixed, hence the frequency shift is purely

due to anharmonic coupling of phonon modes. To analyze the above unusual shift

we studied the same system using NVT ensemble. NVT ensemble (red circle) simu-

lations also predict the red-shift in the LO/TO mode frequency and it is much more

prominent than NPT ensemble simulations. From these results we can conclude that,

even-though the thermal contraction of a-lattice parameter leads to an upshift in the

LO/TO quasi-harmonic mode frequency, the strong anharmonic phonon-phonon cou-

pling dominates over this weak thermal contraction effects and pulls down the LO/TO

mode frequency in NVT and NPT ensemble simulations. This behaviour contradicts

with the observations made in graphene, where the strong phonon-phonon coupling

causes blue-shift of LO/TO mode frequency along with thermal contraction effects

(chapter-4, 4.3.3). This discrepancy may be due to the difference in masses of basis

atoms (B and N) in 2D h-BN, whereas it is identical in graphene.
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Figure 5.8 – The temperature dependent frequency shift of Γ-point (a) LO/TO and
(b) ZO modes. The quasi-harmonic frequencies (blue star) are computed at temperature
dependent in-plane lattice parameter a obtained from MD simulations, and it includes
a weaker type of anharmonicity that arises from the thermal contraction of a-lattice
parameter. The NVT (red) and NPT (black) ensemble simulations are done to delineate
the contributions of phonon-phonon coupling and thermal contraction to the total peak
shift. Legends are common for both plots

Figure 5.8b shows the temperature dependence of ZO mode; the temperature de-

pendent quasi-harmonic frequency exhibits a slight red-shift. Both NPT and NVT

ensemble simulations are showing a red-shift in the ZO mode frequency. In NVT en-
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semble the ZO mode frequency falls with temperature due to strong phonon-phonon

coupling. But when we switch the NPT ensemble the thermal contraction of a-lattice

also comes into picture, and it has a reverse effect here (with respect to LO/TO mode).

The thermal contraction further pulls down the ZO mode frequency, this is due to

the membrane effect [58]. Hence the combined effect of phonon-phonon coupling and

membrane effect leads to a red-shift in the ZO mode frequency.

5.3.5 Anharmonic effects on eigenvectors

The anharmonic effect on the Γ-point optic mode frequencies were studied in the previ-

ous section. Here we are studying the non-linear effects on eigenvectors (polarization)

of the dynamical matrix due to temperature driven anharmonicity. Recalling the dis-

cussions in the section on theoretical formulations (chapter-2, 2.4.2.2), the phonon

properties are evaluated by projecting the MD based atomic velocity on to the jth

normal mode of vibrations of a perfect crystal, assuming that the eigenvectors will

remain the same at all temperatures. In order to validate this assumption we compute

the Γ-point optic mode frequency and linewidth using with and without eigenvectors.

Figure 5.9a&b displays the LO/TO and ZO mode frequencies obtained from both

methods. The mode frequencies computed with and without eigenvectors are iden-

tical and match with the previous predictions. Figure 5.9c&d shows the linewidth

of LO/TO and ZO mode. Unlike the mode frequency, the linewidth of the LO/TO

modes obtained from both methods are different. The linewidths computed using

eigenvectors are lower in magnitude than the direct calculations in both NPT and

NVT ensemble simulations. At low temperature (10 K - 300 K) both NPT and NVT

ensemble simulations predict similar linewidths; but as temperature increases further,

there is a significant difference in the variation of linewidths. The NPT ensemble

simulations shows higher linewidths (in both methods) than NVT ensemble simula-

tions at higher temperatures. This shows that the thermal contraction of a-lattice

parameter has an effect on LO/TO linewidths at higher temperatures. But in the case
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of ZO mode the change in linewidth is too small to distinguish the effect of eigenvec-

tors. Both NPT and NVT ensemble simulations predict almost similar behaviour of

linewidths at all temperature.
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Figure 5.9 – The temperature dependent frequency shift and linewidth of LO/TO
and ZO mode. The black squares (NPT-ensemble) and red circles (NVT-ensemble) are
computed directly from the Fourier transform of velocities. The blue upper triangle and
green lower triangle are calculated by projecting the velocity to the normal modes of
vibrations in NPT and NVT ensemble simulations. Legends are common for all plots

5.3.6 Anharmonic coupling of normal modes

To understand the anharmonic coupling and decay of normal modes, phonon spectra

is computed at Γ, M and K point in the Brillouin zone. Figure 5.10 shows the mode

resolved phonon spectra at 500 K and 1000 K. At Γ point, there are six normal

modes of vibrations, three acoustic modes with zero frequency, and three optic modes

with non-zero frequency (Figure 5.10 a1&a2). The ZO and LO/TO mode do not get

coupled with any other modes at Γ point, implying that their decay occurs by coupling

with modes at other point in the Brillouin zone. This behaviour is analogous with

graphene (chapter-4, 4.3.4). At M point (Figure 5.10b1&b2) all six normal modes
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have non-zero frequency. The ZO modes are coupled with ZA modes. Similarly the

LO and TO modes are coupled with LA and TA modes at M point. At K point

(Figure 5.10 c1&c2) the ZA and ZO modes coupled each other, similarly the LO

modes with certain polarizations couple with TO and LA modes, LO modes with

different polarization couple only with TA mode. This observation contradicts with

graphene, where the ZA/ZO and LA /LO modes are degenerate and do not couple

with any other modes (chapter-4, 4.3.4) .

5.3.7 Temperature dependence of acoustic (ZA, TA and LA)

phonon modes

To study the temperature dependence of acoustic phonon modes, we analyzed the

ZA, TA and LA modes at M point in the Brillouin zone. Figure 5.11 shows the

frequency shift and linewidth of ZA, TA and LA modes. The quasi-harmonic fre-

quencies are computed as a function of temperature dependent a-lattice parameter.

The ZA mode quasi-harmonic frequencies are decreasing with temperatures. While

the NVT ensemble frequencies are showing a blue-shift, the NPT ensemble frequen-

cies are red-shifted. The red-shift observed in NPT ensemble frequencies are not as

prominent as that of the quasi-harmonic shift. From this we can conclude that for

ZA mode the thermal contraction of a-lattice parameter (quasi-harmonic) leads to

a red-shift, while the anharmonic phonon-phonon coupling pull the mode frequencies

up (NVT ensemble). But when thermal contraction and phonon-phonon coupling

operates together, (NPT ensemble) the thermal contraction effect slightly dominates

over the phonon-phonon coupling and leads a red-shift in the mode frequency. For

TA mode, there is a small blue-shift in the quasi-harmonic mode frequency. At the

same time, both NVT and NPT ensemble simulations are predicting a red-shift and

it is identical in magnitude. Since the red-shift observed in NVT and NPT simula-

tions are identical, we can conclude that the phonon-phonon scattering is the cause

of observed red-shift. This behaviour of TA mode is analogous to that of Γ-point
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Figure 5.10 – The spectral density at (a) Γ, (b) M and (c) K point in the Brillouin zone. The modes are labeled as per their polarization at
Γ−point and P1, P2, P3 and P4 represent different polarizations. Top panel is at 1000 K and bottom panel is at 500 K.
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5. Structural stabilty and frequency shift of 2D h-BN

ZO mode studied in the previous section (5.3.4). In the case of LA mode the quasi-

harmonic frequencies are blue-shifted. Both NVT and NPT ensemble frequencies are

red-shifted, and it is more significant in NVT ensemble. This again leads to a similar

conclusion as we made for Γ point LO/TO mode in the previous section, the strong

anharmonic phonon-phonon coupling dominates over the thermal contraction effects

and pulls down the mode frequency. The above explanations clearly bring out the

role of strong anharmonic phonon-phonon scattering effect in the mode frequency

shift of M point acoustic phonon modes. The phonon modes are deviating strongly

from the quasi-harmonic predictions, due to their strong anharmonic nature, which

was introduced in MD simulations and we captured their true anharmonic behaviour.

The linewidth of all modes are monotonically increasing with temperature as shown

in figure5.11 a1-c1.
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Figure 5.11 – The temperature dependent frequency shift (a,b and c) and linewidths
(a1,b1 and c1) of ZA (bending), TA (transverse acoustic) and LA (longitudinal acoustic)
phonon modes at M point in the Brillouin zone. The blue stars are quasi-harmonic
frequencies, the black squares and red spheres are NPT and NVT ensemble simulations.
Legends are common for all plots

5.3.8 Delineating the effects of ripples on thermal expansion

In order to delineate the role of ripples on thermal expansion properties, 2D and 3D

simulations has been carried out separately. Figure 5.12 displays the temperature
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5.3. Results and Discussions

dependence of a-lattice for different system sizes. As found in section 5.3.2, in 3D

simulations, a-lattice decreases with an increase in temperature. To incorporate the

effect of long wavelength ripples, simulations are done with various supercells of size

10Ö10Ö1, 30Ö30Ö1, 50Ö50Ö1, 70Ö70Ö1, 100Ö100Ö1 and 150Ö150Ö1. Similar to

graphene (chapter-4, 4.3.6), a-lattice shows a system size dependence in 2D h-BN

also, and we found a convergence for the simulation cell of size larger than 70Ö70Ö1

(9800). In 2D simulation, the a-lattice increases with an increase in temperature and

shows thermal expansion in the whole computed temperature range. The a-lattice

does not show any system size dependence in 2D simulations and it is consistent with

our earlier observations for graphene (chapter 4, Figure-4.12b)

The LTEC obtained at 300 K are shown in table 5.1, the LTEC is negative in 3D

simulations and their system size dependence is discernible. The LTEC at 300 K

(αa = −5.508× 10−6K−1) is matching with previous quasi-harmonic predictions [52].

The computed values of LTEC are showing significant difference with experimental

values (table 5.1). The LTEC obtained from 2D simulations all are positive in sign and

does not have any system size dependence. To understand the effect of phonon modes

on thermal expansion, the phonon dispersion is computed from 2D simulations (Figure

5.12). The out-of-plane modes (ZO and ZA) are absent in 2D phonon dispersion of

2D h-BN and is analogous with graphene (chapter-4, Figure-4.12). The ZA mode

which is responsible for thermal contraction of lattice [52] is absent in 2D simulation,

which leads to the thermal expansion of a-lattice in the whole computed temperature

range. Here we can conclude that, similar to graphene, the effect of ripples are quite

strong in 2D h-BN also.
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5. Structural stabilty and frequency shift of 2D h-BN
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Figure 5.12 – (a) The temperature dependence of in-plane lattice parameter (a -
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Table 5.1 – The linear thermal expansion coefficients (LTECs) of 2D h-BN at 300
K, the system size dependence of LTECs obtained from 3D simulations are discernible.
The data has been compared with available experiments. aReference [230],bReference
[51],cReference [232]

simulation

cell size

2D
simulation

αa(×10−6K−1)

3D
simulation

αa(×10−6K−1)

expt.

αa(×10−6K−1)

10Ö10Ö1 (200 atoms) 4.145 -2.905
30Ö30Ö1 (1800 atoms) 4.130 -4.330
50Ö50Ö1 (5000 atoms) 4.124 -5.105 -2.720a , -2.760b, -2.900c

70Ö70Ö1 (9800 atoms) 4.129 -5.508
100Ö100Ö1 (20000 atoms) 4.114 -5.516
150Ö150Ö1(45000 atoms) 4.107 -5.670
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5.4. Summary

5.4 Summary

Temperature dependent structural stability, frequency shift and linewidth of 2D hexag-

onal boron nitride (h-BN) are computed using SED method. The major findings of

this study are summarized below.� The in-plane lattice parameter (a-lattice) calculated from MD simulations shows

negative thermal expansion in the whole computed temperature range (0 K -

2000 K).� When the in-plane lattice parameter falls below the equilibrium value, the quasi-

harmonic bending (ZA) mode frequency becomes imaginary along Γ-M and K-Γ

directions in the Brillouin zone, leading to a structural instability of the 2D

sheet. The ZA mode is seen to be stabilized in the dispersion obtained from

MD simulations, due to automatic incorporation of higher order phonon scat-

tering processes in MD, which are absent in quasi-harmonic dispersion. These

observations are analogous to graphene.� The mode resolved phonon spectra computed with quasi-harmonic method pre-

dicts a blue-shift of longitudinal and transverse (LO/TO) optic mode frequencies

with temperature. On the other hand, both canonical (NVT) and isobaric-

isothermal (NPT) ensembles predict a red-shift with temperature, that is more

prominent in NVT ensemble. The strong phonon-phonon coupling dominates

over thermal contraction effect and leads to a red-shift in LO/TO mode fre-

quency in NPT ensemble simulations. This is contradicting with the observa-

tions made in graphene, where the strong-phonon coupling along with thermal

contraction causes a blue-shift in LO/TO mode frequency. The out-of-plane

(ZO) optic mode quasi-harmonic frequencies are red-shifted due to membrane

effect. The phonon-phonon coupling effects in NVT and NPT ensemble simula-

tions lead to a further reduction in the ZO mode frequencies. The linewidth of
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5. Structural stabilty and frequency shift of 2D h-BN

LO/TO and ZO mode frequencies increases in a monotonic fashion.� Temperature dependence of acoustic modes is analyzed at M point in the Bril-

louin zone. The frequencies of ZA, TA and LA modes obtained from MD sim-

ulations deviate significantly from quasi-harmonic predictions. This is again a

consequence of strong phonon-phonon coupling in MD simulations.� The role of ripples on thermal expansion properties is delineated by carrying out

2D and 3D simulations. The 2D a-lattice shows continuous thermal expansion,

at the same time the a-lattice obtained from 3D simulation shows thermal con-

tractions. This discrepancy is due to the absence of ZA mode in 2D simulations,

and it is in agreement with the observations made in graphene.
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Chapter 6

Thermal expansion, structural
stability and anharmonicity of

monolayer (ML)-MoS2

The monolayer(ML)-MoS2 is an emerging 2D honeycomb material similar to graphene

and 2D h-BN. This chapter discusses the thermal expansion, structural stability and

temperature evolution of Γ-point optic phonon modes of free-standing ML-MoS2, and

the results are compared with graphene and 2D h-BN.

6.1 Introduction

The monolayer(ML)-MoS2 is an atomically thin layered material similar to graphene

and 2D h-BN, which shows striking optical, electronic and mechanical properties

[25, 26]. ML-MoS2 posses a special S-Mo-S symmetric sandwich structure which

makes it differ from graphene and 2D h-BN. Unlike graphene, ML-MoS2 is a direct

band gap semiconductor with a band gap of ∼1.8 eV [25]. This special property

puts ML-MoS2 in the front-end of electronic and opto-electronic industry [25, 26]. To

devise ML-MoS2 based electronic devices knowledge about the thermal and vibrational

properties is essential. Ab initio simulations are used to obtain the phonon frequencies

of monolayer and bulk MoS2 [33, 52, 93, 94]. Experimentally, among four Raman

active modes, the evolution of E1
2g(E

′

) and A1g(A
′

1) modes in bulk (monolayer) MoS2
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6. Anharmonicity of monolayer MoS2

was studied as a function of layer number [95–97] or temperature [98–101]. The

evolution of other Raman active modes E1g(E
′′

) and E2
2g (absent in mono layer) are

not reported in the literature due to the constraints imposed either by the selection

rules on the scattering geometry(E1g(E
′′

)) [95] or Rayleigh rejection filter(E2
2g) [96].

The temperature evolution of IR active A2u(A
′′

2) modes is also not reported in the

literature.

Though the melting point of MoS2 is 1498 K [53], most of the Raman spectroscopy

studies measured the spectra upto a maximum temperature of 550 K [98–101]. This

is due to the decomposition of MoS2 sample above this temperature [98]. Further,

experimental/theoretical investigations are needed over a wide range of temperatures

to get a clearer picture about the temperature evolution of Raman peaks. In this

chapter, the temperature driven anharmonic effects on all four Γ point optic phonon

modes are analyzed, irrespective of experimental constrains. The structural stability

and thermal expansion properties are studied and compared with graphene and 2D

h-BN, the effects of ripples and system size on thermal expansion are also discussed.

6.2 Computational methods

The ML-MoS2 is made up of three atomic layers (Figure 6.1). The middle Mo atom

layer is sandwiched between two S atom layers in a trigonal prismatic fashion, and

held together by a strong covalent bond. Liang et al [235] parametrized a many body

reactive empirical bond order (REBO) potential for Mo-S system and its functional

form can be written as

EREBO =
1

2

∑

i6=j

f c
ij(rij)

[

V R(rij) − bijV
A(rij)

]

=
1

2

∑

i6=j

f c
ij(rij)

[

(

1 +
Qij

rij

)

Aije
−αijrij − bijBije

−βijrij

]

(6.1)
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6.2. Computational methods

where rij is the distance between atoms i and j, f c
ij(rij) is the cutoff function. V R(rij)

and V A(rij) are the pairwise repulsive and attractive interactions. bij is the many-

body bond-order function. The α, β, A, B, and Q are the pairwise parameters which

depends on the chemical species of the interacting atoms. This potential could suc-

cessfully model the structural and mechanical properties of Mo-S and MoS2 systems.

Later, Stewart and Spearot [149] refined the parametrization of Liang et al and im-

plemented it into MD simulation package LAMMPS. We used the parametrization

of Stewart and Spearot [149] to model the interaction between the Mo and S atoms

in MoS2 monolayer. The present potential predicts the equilibrium a-lattice, a0 =

3.17 Å which is close to the experimentally reported value (3.16 Å) [93]. Simulations

are done using the classical MD simulation package LAMMPS [179]. A supercell of

size 25Ö25Ö1 (1875 atoms), has been created. Periodic boundary conditions are em-

ployed in all the three direction to eliminate the surface effects. A vacuum separation

of 15 Å is provided along Z-direction to avoid the un-physical interactions between

the periodic images of the layers. The general computational procedure is same as

discussed in chapter 2 (2.4.2). The velocities of all atoms are collected at every 5 fs.

The whole simulations are done for 1.6 ns.

Figure 6.1 – (a) Top view of the honeycomb lattice of ML-MoS2. The honeycomb
lattice contains one Mo atom and two S atoms located at the corners of hexagons. (b)
Side view of ML-MoS2 ; Mo atomic layer sandwiched between the two S atom layers
in a trigonal prismatic fashion. (c) ML-MoS2 at 300 K, similar to graphene and 2D
h-BN, the thermally excited ripples are present in ML-MoS2 also.
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6. Anharmonicity of monolayer MoS2

6.3 Results and Discussions

6.3.1 Thermal expansion

In order to understand the thermal expansion behaviour of ML-MoS2, the variation

of in-plane lattice parameter (a-lattice) is studied as a function of temperature. The

a-lattice is found to be increasing in the whole computed temperature range (Figure

6.2), and this behaviour is consistent with the previously reported experiments on

the bulk MoS2 [54, 55]. The linear thermal expansion coefficients (LTEC) increases

quickly with temperatures and becomes fairly stable for temperatures greater than

400 K, and approaches an asymptotic value of 8.0Ö10=6K=1 , and this is in agreement

with quasi-harmonic predictions [53]. In contrast to other 2D layered materials, such

as graphene and h-BN, which shows a thermal contraction of a-lattice upto a wide

range of temperature [44, 45, 83], MoS2 shows a thermal contraction in the tempera-

ture range of 0 K - 20 K, and thereafter it expands. This phenomena is explained by

small negative Grüneisen parameters (-10) of out of plane bending (ZA) mode around

the Γ point, which is smaller than that of graphene and h-BN (as small as -80), and

leads to a relatively small negative LTEC in the range of 0 K - 20 K in MoS2 [52, 53].

This difference in thermal expansion coefficient of the 2D layered materials can be uti-

lized to fabricate graphene/MoS2 based hybrid devices for better performance. MD

simulations will not be meaningful at very low temperature because of the manifes-

tation of quantum effects, so we studied the properties of the system above 100 K,

hence we can not observe the thermal contraction effect in these simulations.
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Figure 6.2 – (top)Temperature dependence of in-plane lattice parameter (a -lattice);
(bottom) linear thermal expansion coefficient (LTEC).

6.3.2 Phonon dispersion and structural stability

In ML-MoS2, due to the trigonal prismatic arrangement of Mo and S atoms, vi-

brational modes behaves quite differently from that of graphene and 2D h-BN. The

unitcell of ML-MoS2 contains three basis atoms, hence there will be nine modes of vi-

brations (3 acoustic+6 optic). Figure 6.3 displays the phonon dispersion in ML-MoS2.

The LA and TA modes show linear dispersion, while ZA mode exhibits quadratic dis-

persion around the Γ point, analogous to graphene and h-BN. The six optic branches

are two in-plane longitudinal (LO1, LO2), two in-plane transverse (TO1, TO2) and

two out-of plane optic (ZO1, ZO2). These six optic branches belongs to irreducible

representation of E
′′

(LO1, TO1), E
′

(LO2, TO2), A
′′

2(ZO1)and A
′

1(ZO2) at Γ point

[92]. The gap between the acoustic and optic modes is discernible, three acoustic

branches TA, LA and ZA are separated below the optic branches (TO1 and LO1) by

∼55 cm=1, and it is in agreement with ab initio calculations [94]. Since MoS2 is a

polar insulator, an LO-TO splitting is expected in the long wave length limit (q=0)

due to the coupling of the lattice to macroscopic electric field created by relative dis-

placement of Mo and S atom. The born effective charges of Mo and S are small and

hence the polarized field associated with IR modes are weak, this leads to a small
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6. Anharmonicity of monolayer MoS2

LO-TO splitting (2 cm=1) in bulk MoS2 [236]. In ML-MoS2 the electronic screening

is weaker than bulk MoS2, hence the splitting will be even smaller [94].

The LD calculations (green dot dash curves) are done with various supercells of sizes

2Ö2Ö1, 2Ö2Ö2, 3Ö3Ö1, 3Ö3Ö2 and 3Ö3Ö3, and found convergence in the spectrum

of the order of 0.2 cm-1 for simulation cell of size 3Ö3Ö2 (contains 54 atoms) onwards.

The LD calculations are in good agreement with previous reports [33, 94]. The LD

frequency of LO2/TO2 (E
′

) mode at Γ point is 426.87 cm-1, which is 9 % higher

than the experimental value (384.62 cm-1) [95, 96]. Similarly the ZO2 (A
′

1) mode

LD frequency (461.87 cm-1) is 12 % higher than the experimental one (384.62 cm-1)

[95, 96].
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Figure 6.3 – phonon dispersion of ML-MoS2. The quasi-harmonic LD (red) and MD
(thick black lines) phonon frequencies are real and positive, indicates the structural
stability at 300 K.

In order to understand the structural stability of free-standing monolayer, the quasi-

harmonic LD calculations are performed. The quasi-harmonic LD dispersion (red

curve) is computed with a-lattice obtained from MD simulation at 300 K, and it pre-

dicts that all phonon modes are real and positive at all q-points in the Brillouin zone,
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6.3. Results and Discussions

which indicates the structural stability of free-standing ML-MoS2. These observations

differ from that of graphene and 2D h-BN, where the quasi-harmonic LD frequencies

are imaginary along Γ−M direction and that led to a structural instability of the

free-standing graphene and 2D h-BN. The phonon dispersion is also computed from

MD simulation (thick black curve) using SED method. Similar to quasi-harmonic

calculations, all modes are real and positive in MD phonon dispersion curve, and it

again confirms the structural stability at 300 K. MD phonon dispersion shows soften-

ing of high frequency optic modes with respect to quasi-harmonic predictions, and its

agreement with experiments becomes more satisfactory (table 6.1). This is analyzed

and discussed in detail in the subsequent sections.

In the case of graphene and 2D h-BN, the stability of sheet has been ascribed to

strong coupling between in-plane stretching and out-of-plane bending modes which

re-normalizes the long wavelength ripples and stabilizes the 2D sheets (chapter-4, 4.3.2

and chapter-5, 5.3.3). The internal modes in ML-MoS2 (arising from the vibrations of

Mo-S bond) are activated at lower energy with respect to C-C bond in graphene, hence

there will be less coupling between the in-plane and out-of-plane modes in ML-MoS2

[237]. Therefore in ML-MoS2, unlike graphene and 2D h-BN, the finite temperature

structural stability can be attributed to its finite thickness effect, which counteract

against the membrane effects and makes the crystal stable and prevents the crumpling

transition.

6.3.3 Anharmonicity of Γ point optic modes

To address the anharmonic effect on optic modes we computed the mode resolved

phonon spectra at Γ point as a function of temperature. Bulk MoS2 belongs to point

group D6h, using group theoretical analysis the Γ point optic mode frequencies can

be classified as [93, 94]

Γoptic(bulk) = A1g(R)+A2u(IR)+2B2g+B1u+E1g(R)+E1u(IR)+2E2g(R)+E2u (6.2)
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6. Anharmonicity of monolayer MoS2

For fewlayer(FL)-MoS2, there is a lack of translational symmetry along z-axis, which

leads to a reduction in the symmetry [92]. The ML-MoS2 belongs to a point group of

D3h, and the corresponding Γ point optic mode frequencies are given below [93, 94]

Γoptic(ML−MoS2) = A
′′

2 [ZO1](IR) + E
′

[LO2/TO2](IR+R)+

A
′

1[ZO2](R) + E
′′

[LO1/TO1](R) (6.3)

The Raman (R) and IR active modes are assigned. The quantity inside the square

bracket is the polarization based designation. Since most of the literature follows

the group theoretical notations, in the subsequent discussions, we follow the group

theoretical based designation to avoid ambiguity when compare with experimental

data. The modes labelled using letter E are doubly degenerate. The E
′

mode in

the monolayer is both Raman and IR active due to absence of inversion center in

monolayer and denoted as E1
2g in bulk [95], similarly the A1g mode in bulk, which used

to identify the layer number in FL-MoS2 is identical to A
′

1 mode in the monolayer

[94, 95].

Figure 6.4 displays the Γ point phonon spectra at different temperature. The fre-

quency shift and linewidth of all four modes are captured irrespective of the selection

rule or scattering geometry constraints of the Raman spectroscopy. The frequency

and linewidth of E ′ and A
′

1 modes at 300 K are in qualitative agreement with exper-

iments (table 6.1). The E ′ and A
′

1 modes are showing a red-shift with an increase

in temperature, which is consistent with experimental observations [98–101]. The

newly reported E
′′

and A
′′

2 modes also show a red-shift in mode frequency (Figure

6.4). The temperature dependent peakshift and broadening of peaks are due to the

manifestation of anharmonic effects. The peakshift arises from the combined effect of

thermal expansion and phonon-phonon coupling (self-energy change). The thermal

expansion/contraction of lattice will cause a change in effective force constants leading

to a softening/hardening in the mode frequency. The peakshift induced by self-energy
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6.3. Results and Discussions

change cannot be predicted a priori, it is intrinsic to material properties.
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Figure 6.4 – (top)The Γ-point optic phonon modes as a function of temperature. The
modes are labelled, the notations inside the bracket corresponds to bulk representation.
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corresponding modes.

Table 6.1 – The Γ point optic mode frequencies and linewidth at 300 K (expressed

in cm-1) compared with experiments. Reference a,b,c, and d are from [95, 96, 98, 238]
respectively

peak

position

linewidth

Mode MD expt. MD expt.

E
′′

280.96 ......... 1.35±0.09 .......

E
′

392.96 384.28a,b, 391.7c, 385d 2.1±0.20 2.0b, 2.0c

A
′

1
418.11 402.93a,b, 408.9c, 405d 3.3±0.33 4.0b, 5.5c

A
′′

2
498.25 .......... 1.75±0.13 ..........

The peakshifts and linewidths are extracted by fitting a Lorentzian to the frequency

spread (chapter-2, equation 2.72). Figure 6.5 displays the temperature dependent
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6. Anharmonicity of monolayer MoS2

frequency shift of all four Γ point optic modes over a wide range of temperatures

(100 K - 1000 K). To study the underlying mechanism of observed peakshift, we

computed the mode frequency shift using quasi-harmonic lattice dynamics (QH-LD),

canonical (NVT) and isobaric-isothermal (NPT) ensembles. In QH-LD, we compute

the mode frequencies at temperature dependent lattice parameters obtained from

MD simulations. The quasi-harmonic (blue star) frequencies of all modes are falling

with an increase in temperature, and this red-shift in mode frequencies is due to

the softening of force constants with an increase in lattice parameters. The mode

frequencies are further reduced in NVT ensemble simulations (red sphere). Since the

simulation volume is fixed here, the enhanced red-shift is purely due to anharmonic

coupling of phonon modes. NPT ensemble (black square) simulations incorporate the

combined effect of thermal expansion and coupling of phonon modes, and predicts a

similar downshift as we observed in NVT ensemble.
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6.3. Results and Discussions

The three types of simulations carried out here help us to delineate the contributions

of thermal expansion and phonon-phonon coupling effects to the total frequency shift.

The red-shift of quasi-harmonic mode frequencies arises purely from thermal expan-

sion of a-lattice, and it does not contain the effects of phonon-phonon coupling. The

NVT and NPT ensemble simulations predict a large downshift in mode frequencies

with more steeper variation, and their magnitudes are identical. This leads to the con-

clusion that the observed red-shifts at finite temperatures are essentially due to strong

anharmonic coupling of phonon modes. Although thermal expansion contributes, its

effect is masked by strong anharmonic coupling of phonon modes, and it is true for

all four optic modes including the newly reported E
′′

and A
′′

2 .

Najmaei et al [98], used temperature dependent Raman spectroscopy to study the

vibrational modes. The authors found that four phonon process is the major source of

observed red-shift of E1
2g(E

′

) and A1g(A
′

1) modes. Thermal expansion also contributes

to the latter mode. Lanzillo et al [99] computed the temperature dependent phonon

density of states of ML-MoS2 using first principle MD simulations, and found that the

temperature dependent red-shift of E1
2g(E

′

) and A1g(A
′

1) modes are due to anharmonic

coupling of phonon modes. Later, Taube et al [238] also made a similar conclusion

about the observed red-shift of Raman active modes. Huang et al [53] performed first

principle simulations and found that the observed red-shift of optic modes are due

to multi-phonon scattering process with an insignificant contribution from thermal

expansion. Present results are in qualitative agreement with the above reports in the

case of all optic phonon modes.

The anharmonic coupling of phonon modes leads to decay of vibrational excitation

from one mode to other causing a finite width of normal modes. Here we are analyzing

the variation of linewidth as a function of temperature. The evolution of linewidth

with layer numbers has been reported in various studies [95, 239]. However, temper-

ature evolution of linewidth is not studied in detail. Taube et al [238] measured the
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6. Anharmonicity of monolayer MoS2

linewidth of E1
2g(E

′

) and A1g(A
′

1) modes at temperatures between 70 K to 350 K and

found that the change in linewidth of E1
2g(E

′

) mode is insignificant, while A1g(A
′

1)

mode shows a strong temperature dependence. Figure 6.6 displays the computed

linewidth of all four optic modes as a function of temperature. All modes are showing

a monotonous increase in linewidth with an increase in temperature, except A
′

1 mode,

which shows a small non-linearity in the initial portion, the similar trend has been

reported by Taube et a l [238]. Our data for E ′ also shows narrow spread in linewidth

(∼1 - 2 cm-1) in the temperature range 50 K - 300 K, and matches with Taube et

al [238]. But for temperature higher than 300 K, E ′ mode linewidth varies consider-

ably. Unfortunately there are no high temperature Raman data for comparison. The

newly reported E
′′

and A
′′

2 mode linewidth also shows a monotonous increase with an

increase in temperatures. However, their magnitude is less compared to their in-plane

(E ′) and out-of-plane (A
′

1) counter parts.
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Figure 6.6 – The temperature dependent linewidth of Γ point optic modes in ML-
MoS2.

To understand the non-linear effect on eigenvectors, we computed the mode frequency

shift and linewidth of all modes with and without using eigenvectors (chapter-2,
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6.3. Results and Discussions

2.4.2.2). The peakshifts of modes obtained using both methods are identical (Fig-

ure 6.7), while linewidths are showing little difference (Figure 6.7). The linewidths

obtained using eigenvectors (green-open triangle) are slightly lower in magnitude with

respect to the one obtained without eigenvectors. But these differences are too small

to be significant, as found in the case of graphene and 2D h-BN.
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Figure 6.7 – (top)The peakshift and (bottom) linewidth of all modes computed with
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From figure 6.5 we found that the peak positions evolve linearly with an increase in

temperature, and this can be represented by the relationship [98],
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6. Anharmonicity of monolayer MoS2

ω = ω0 + χT (6.4)

where ω0 is the extrapolated peak-position at 0 K, and χ is the first order temperature

coefficient. The value of χ will be used to quantify the linear dependency, and it can

be obtained from the slope of linear fit to ω vs T plot (Figure 6.8). The extracted

values of χ for E ′ and A
′

1 modes are in qualitative agreement with experiment (table

6.2). The value of χ for A
′

1 mode is slightly higher than that of E ′ mode, which

is an indication of higher temperature sensitivity of the corresponding mode. The

smallness of the value of the temperature coefficient of E
′′

mode implies that it is less

sensitive to temperature changes compared to the other in-plane (E ′) mode. Among

the out-of-plane modes, A
′

1 and A
′′

2 modes are having almost similar temperature

coefficient.
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6.3. Results and Discussions

Table 6.2 – The first order temperature coefficient (χ) of all optic modes (expressed

in cm-1/K). Reference a, b, c and d are from [98–100, 238] respectively.

Mode simulation experiment

E
′′

-0.0094 ———

E′ -0.0175 -0.0179a, -0.013b, -0.011c, -0.0124d

A
′

1 -0.0177 -0.0143a, -0.016b, -0.013c, -0.0143d

A
′′

2 -0.0170 ———

6.3.4 Effects of ripples and system size on thermal expansion

Similar to graphene and 2D h-BN, thermally excited ripples are present in ML-MoS2

also. In order to understand the effect of thermally excited ripples we performed

2D and 3D simulation of very same system with simulation cells of different sizes.

Figure 6.9 displays the thermal expansion of a-lattice and linear thermal expansion

coefficient (LTEC). As seen in the previous section (6.3.1) a-lattice is expanding

in the whole computed temperature range. This monotonous increase in a-lattice

with temperature is almost similar in both 2D and 3D simulations, and its system

size dependence is marginal. The linear thermal expansion coefficients (LTEC) are

positive in both 2D and 3D simulations (table 6.3), and its magnitude is slightly

higher in 2D simulations at low temperatures (T < 300 K). Though ML-MoS2 shares

the same hexagonal honeycomb lattice with graphene and 2D h-BN, the a-lattice of

ML-MoS2 shows a positive thermal expansion. This contradiction with graphene and

h-BN can be visualized as an effect of S-Mo-S sandwich structure in ML-MoS2, which

reduces the thermally excited rippling behavior considerably [237].
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Figure 6.9c displays the phonon dispersion of ML-MoS2 obtained from 2D simulations,

and it shares a resemblance with LD calculations. Unlike graphene and 2D h-BN,

all the out-of-plane modes are present in the 2D dispersion of ML-MoS2. Though

we arrested the out-of-plane movement of atoms, the ZA and ZO branches are still

persisting in ML-MoS2 dispersion curve, and this can be ascribed to the finite thickness

effect. The graphene and 2D h-BN are one atom thick structure and have more

flexibility along out-of-plane direction, the S-Mo-S sandwich structure of ML-MoS2

makes it a more rigid material along out-of-plane direction and leads to less rippling.

The magnitude of thermally excited ripples can be quantified using the height-height

correlation function
〈

h2
〉

, and its value is much smaller for ML-MoS2 (∼1 Å2at 300

K) in comparison with graphene(∼3.5 Å2at 300 K), and it is an outcome of its less

rippling behaviour [237]. The finite thickness of ML-MoS2 counteracts the membrane

effects, and hence the origin of bending mode (ZA) is not purely due to the out-

of-plane movement of atoms. From the above results, it is clear that, the special

S-Mo-S sandwich structure of ML-MoS2 lowers the rippling behaviour, and its effect

on thermal expansion is not prominent as found in graphene and 2D h-BN.

Table 6.3 – The linear thermal expansion coefficient LTEC of ML-MoS2 at 300 K.
The system size dependence of LTEC is insignificant in both 3D and 2D simulations.
aReference [55]

simulation
cell size

2D
simulation
αa(×10−6K−1)

3D
simulation
αa(×10−6K−1)

expt.
αa(×10−6K−1)

10Ö10Ö1 (300 atoms) 5.340 4.469
25Ö25Ö1 (1875 atoms) 5.343 4.530 4.922a

50xÖ50Ö1 (7500 atoms) 5.261 4.140

6.4 Summary

Thermal expansion, structural stability and anharmonicity of free-standing ML-MoS2

are computed using SED method. The important findings of this study are given

below
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6. Anharmonicity of monolayer MoS2� Unlike graphene and 2D h-BN the in-plane lattice parameter (a-lattice) of ML-

MoS2 shows thermal expansion in the whole computed temperature range (100

K - 1000 K).� The phonon dispersion computed from quasi-harmonic lattice dynamics and

molecular dynamics doesn’t have any imaginary modes, which confirms the fi-

nite temperature structural stability. In graphene and 2D h-BN the structural

stability can be ascribed to strong coupling between in-plane and out-of-plane

modes, but in ML-MoS2 it owes to its special S-Mo-S symmetric sandwich struc-

ture.� Temperature evolution of Γ point optic modes are studied. Here we probed the

temperature evolution of experimentally forbidden E
′′

and A
′′

2 modes in addition

to the Raman active E ′ and A
′

1 modes. All the Γ point optic modes are showing

a red-shift with an increase in temperature. We delineated the contributions

of thermal expansion and anharmonic coupling of phonon modes to the total

frequency shift and linewidth, and found that anharmonic coupling of phonon

modes is the dominant source of observed red-shift and broadening of peaks.� The effect of thermally excited ripples on thermal expansion are studied. Con-

trary to graphene and 2D h-BN, the a-lattice of ML-MoS2 shows thermal ex-

pansion in both 3D and 2D simulations and their system size dependence is

marginal. The special S-Mo-S sandwich structure of ML-MoS2 lowers the rip-

pling behaviour, and its effect on thermal expansion is not prominent as found

in graphene and 2D h-BN.

166



Chapter 7

Summary and future outlook

7.1 Summary

2D materials are the potential candidates in future electronic and opto-electronic in-

dustry due to their novel electronic, thermal and mechanical properties. Among 2D

materials graphene has been studied extensively due its unique physical properties.

The absence of finite band gap in graphene’s electronic band structure is the major

bottleneck in graphene based electronics. The 2D h-BN and monolayer(ML)-MoS2

are other high interesting 2D honeycomb materials, they show fascinating electronic

and optical properties. 2D materials based technologies makes the electronic devices

smaller and more efficient in comparison with conventional Si based electronics. Heat

removal is a crucial issue in such miniaturized and nano-size electronic devices. To

fabricate electronic devices with better heat dissipation capability, knowledge of ther-

mal and vibrational properties is essential. The ability of a material to transport heat

is related to its atomic structure. However, it is difficult to understand heat transport

phenomena at the atomistic level by experimentation. Computer simulations can be

used in such situations to understand the fundamental issues associated with thermal

and vibrational properties at atomistic level.

The structural, thermal and vibrational properties of 2D materials were reported

elaborately in literature using ab initio calculations in conjunction with DFPT. How-

ever, there were no attempts to understand the temperature dependent structural

stability and anharmonicity of these materials, which takes into account the full an-

harmonicity of the effective interaction between the atoms. The main reason behind
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7. Summary and future outlook

this situation is that appropriate computational tools were not available to probe the

complete anharmonicity of materials. We tackled this problem by adapting a spec-

tral energy density (SED) method and investigated the structural stability, thermal

expansion and anharmonicity of different 2D materials (graphite, graphene, 2D h-BN

and monolayer (ML)-MoS2) using ab initio and classical MD simulations. The present

chapter discusses the major findings of this thesis and scope for future work.

Spectral energy density (SED) method to compute the phonon frequencies

from MD simulations

A spectral energy density formalism is adapted to compute the phonon transport from

MD simulations with full anharmonicity of effective interactions between the atoms.

Several in-house codes were developed and coupled with classical MD simulation pack-

age LAMMPS. Using these codes one can readily compute the 1)phonon dispersion,

2)phonon DOS, 3)mode resolved frequency shift and linewidth at any point in the

Brillouin zone, 4)anharmonic coupling and decay of normal modes. These codes were

benchmarked using Si as a reference material. The phonon dispersion computed using

SED method shows good agreement with experimental data. The Γ point longitu-

dinal or transverse (LO/TO) optic mode frequency is ∼2.7 % higher than that of

experimental value. The above agreement with experimental data is reasonably ac-

curate, which guarantees the reliability of this method. After that, these codes were

extensively used to study the finite temperature structural and vibrational properties

of strong anharmonic 2D crystals such as graphene, 2D h-BN and ML-MoS2. These

studies show significant difference from quasi-harmonic predictions, due to inclusion

of higher order phonon-phonon scattering processes. The key findings are given below.

Structural stability of 2D materials at finite temperatures

To understand the finite temperature structural stability of different 2D materials,

phonon dispersions are computed using lattice dynamics (LD), quasi-harmonic LD

and SED method. The computed phonon dispersions show reasonable agreement

168



7.1. Summary

with experiments. In graphene, the out-of-plane optic (ZO) mode frequency is ∼0.4

% smaller than the experimental value at � point. Similarly the in-plane LO/TO

modes frequency is ∼3 % lower with respect to experimental data at � point.

The quasi-harmonic out-of-plane bending mode (ZA) frequency of graphene and 2D

h-BN becomes imaginary at higher temperatures, suggestive of a structural instabil-

ity. However, in MD simulations using SED method, the frequency of the ZA mode

becomes real. The dynamical stability of the system is restored due to the incorpora-

tion of phonon-phonon coupling processes of all orders in MD simulations, which were

absent in the quasi-harmonic dispersion. The strong coupling between the phonon

modes leads the formation of thermally excited ripples, which makes the 2D sheet

stable at finite temperatures. The above results explain the role of strong anharmonic

phonon–phonon coupling on the structural stability of free-standing graphene and 2D

h-BN sheet at finite temperatures.

The phonon dispersion of ML-MoS2 computed from LD, quasi-harmonic LD and MD

(using SED method) doesn’t have any imaginary modes, which confirms its finite

temperature structural stability. Unlike graphene and 2D h-BN, where the structural

stability is ascribed to strong coupling between phonon modes, in ML-MoS2 it owes

to its special S-Mo-S symmetric sandwich structure, which counteract against the

membrane effects and makes the crystal stable and prevents the crumpling transition.

Anharmonicity of Γ point optic phonon modes

To understand the temperature dependent phonon frequency shift and linewidth of

optic phonon modes, mode resolved phonon spectra is computed at Γ point. The

contributions of thermal expansion and anharmonic coupling of phonon modes to

the frequency shift and linewidth are delineated using quasi-harmonic LD, canonical

(NVT), and isobaric-isothermal (NPT) ensemble based MD simulations. In graphene,

along with thermal contraction effects, the strong phonon-phonon coupling causes a

blue-shift of LO/TO and ZO mode frequencies with increase in temperature. At the
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same time, the phonon-phonon coupling causes a reverse effect in 2D h-BN. Though

the thermal contraction of a-lattice causes a blue-shift in LO/TO mode frequency, the

strong phonon–phonon coupling dominates over it and decreases the mode frequency,

eventually leading to a red-shift. This discrepancy between the graphene and 2D h-BN

is due to the difference in masses of basis atoms (B and N) in 2D h-BN. The ZO mode

also got red-shifted due to strong phonon-phonon coupling effects. Similar studies

in ML-MoS2 showed that the phonon-phonon coupling between the phonon modes is

the predominant source of observed redshift of optic mode phonon frequencies, the

thermal expansion contribution is insignificant.

From the above results, we concluded that the higher order phonon-phonon coupling

processes have significant role in determining the temperature dependent peak shift

of phonon modes in all 2D materials studied here.

Thermal expansion of 2D materials - role of thermally excited ripples

The variation of in-plane lattice parameter (a-lattice) and linear thermal expansion

coefficient (LTEC) are studied as a function of temperature using 3D MD simula-

tions. The a-lattice of graphene shows a thermal contraction upto ∼1300 K and

further it expands. The linear thermal expansion coefficient is αa= =4.300Ö10=6 K=1

at 300 K, which is in agreement with experimental data (=5.500Ö10=6 K=1). From

the experimental front, graphene shows thermal contraction upto 400 K. Above this

temperature graphene sheet slips on SiO2 substrate surface because the tensile strain

increases significantly over the weak Van der Waals (vdW) force which pins the sheet

on the substrate, hence high temperature experimental data is not available for com-

parison. In 2D h-BN, the a-lattice shows thermal contraction in the whole computed

temperature range (100 K - 2000 K). Contrary to graphene and 2D h-BN, the a-

lattice of ML-MoS2 shows a thermal expansion in the interval of 100 K - 1000 K. This

difference in thermal expansion of the 2D layered materials can be utilized to devise

graphene/MoS2 based hybrid devices for better performance.
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We delineated the role of thermally excited ripples on thermal expansion properties of

aforementioned 2D materials, by explicitly carrying out 3D and 2D MD simulations.

In 3D simulations, the in-plane lattice parameter (a-lattice) of graphene and 2D h-BN

shows thermal contraction over a wide range of temperatures and exhibits a strong

system size dependence. The 2D simulations of the very same system show a reverse

trend, where the a-lattice is expanding in the whole computed temperature range.

Contrary to graphene and 2D h-BN, the a-lattice of ML-MoS2 shows thermal expan-

sion in both 2D and 3D simulations and their system size dependence is marginal. By

analyzing the phonon dispersion at 300 K, we found that the discrepancy between 2D

and 3D simulations of graphene and 2D h-BN is due to the absence of out-of-plane

bending mode (ZA) in 2D simulations, which is responsible for thermal contraction

of a-lattice at low temperature. Meanwhile, all the phonon modes are present in 2D

phonon dispersion of ML-MoS2, which indicates that the origin of ZA mode is not

purely due to out-of-plane movement of atoms and also its effect on thermal expansion

is not significant as found in graphene and 2D h-BN.

Though ML-MoS2 possess the same hexagonal honeycomb lattice of graphene and 2D

h-BN, the a-lattice of ML-MoS2 shows a positive thermal expansion. This contra-

diction with graphene and h-BN can be visualized as an effect of S-Mo-S sandwich

structure in ML-MoS2, which reduces the thermally excited rippling behavior consid-

erably.

Mechanical and dynamical stability of stacking altered graphite structures

Ab initio simulations have been performed to study the structure, energetics and sta-

bility of several plausible stacking sequences in graphite. These calculations suggest

that, in addition to the standard structures (AB-hexagonal and ABC-rhombohedral),

graphite can also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal

type stacking. The free energy difference between these structures is very small (∼1

meV/atom), and hence all the structures can coexist from purely energetic consid-
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erations. From elastic constant and phonon dispersion calculation we found that

these stacking altered structures are mechanically as well as dynamically unstable.

The stability of these structures at finite temperature is studied by computing the

phonon dispersion (at 300 K) directly from classical MD simulations. These studies

indicates that all the stacking altered bilayer/trilayer structures are reverting back to

thermodynamically stable AB-hexagonal/ABC-rhombohedral structures.

7.2 Future outlook

The following studies can be carried as an extension to the present study.

1. The stacking altered graphite structures are found to be unstable. It is worth

studying whether the incorporation of planar defects or intercalates will stabilize

the stacking altered graphite structures or not. MD results indicates that the

unstable bilayer/trilayer structures are reverting back to thermodynamically

stable AB-hexagonal/ABC-rhombohedral structure at 300 K. Nudged elastic

band (NEB) [240] calculation can be done to confirm the above transition and

to get the information on transition pathways.

2. In the present study, we didn’t investigate the isotope effects on the structural

and anharmonic properties. This study needs to be undertaken to understand

the role of isotopes on thermal and vibrational properties of 2D materials at

different temperatures.

3. The presence of defects can alter the phonon transport mechanism. This can’t be

studied in conventional LD method. The SED method can be used to study the

effects of various defects on vibrational properties of materials at finite tempera-

tures. Hence this method can be used to understand the thermal and vibrational

properties of 2D materials with different types of topological defects.

4. Recently, several van der Waals (vdW) hetero-structures have been fabricated

by stacking different types of 2D materials one above another. These hetero-

172



7.2. Future outlook

structures revealed many intriguing electronic phenomena. It will be interesting

to study their finite temperature structural stability and anharmonicity using

SED method.

5. SED method can be further extended to develop a code which can predict the

mode resolved contribution to the lattice thermal conductivity. This information

will help to control and manipulate the heat flow and will aid in the development

of promising thermo-electric materials with higher ZT values.
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[132] H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, 1937).

180

http://en.wikipedia.org/wiki/Pseudopotential


[133] R. P. Feynman, Phys. Rev. 56, 340 (1939).

[134] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys.
73, 515 (2001).

[135] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon
Press, New York, NY, USA, 1987).

[136] D. Frenkel and B. Smit, eds., Understanding Molecular Simulation: From Algo-
rithms to Applications (Academic Press, Inc., Orlando, FL, USA, 1996).

[137] K. Nordlund and D. F. Djurabekova, Molecular dynamics simulations, Uni-
versity Lecture (2015), URL http://www.acclab.helsinki.fi/~knordlun/

moldyn/.

[138] N. Zabaras, Introduction to molecular dynamics simulations, University Lecture
(2012), URL http://www.zabaras.com/Courses/MAE715/MAE715.html.

[139] F. Ercolessi, A molecular dynamics primer, Spring College in Computational
Physics (1997).

[140] L. Zhigilei, Introduction to interatomic potentials, Lecture notes (2016), URL
http://www.people.virginia.edu/~lz2n/mse627/.

[141] M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

[142] M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

[143] M. Mendelev, D. Srolovitz, S. Han, A. Barashev, and G. Ackland, J. Phys.:
Condens. Matter 16, S2629 (2004).

[144] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

[145] J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

[146] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

[147] J. H. Los and A. Fasolino, Phys. Rev. B 68, 024107 (2003).

[148] C. Sevik, A. Kinaci, J. B. Haskins, and T. Çağ ın, Phys. Rev. B 84, 085409
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